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PREFACE 

This book has been written primarily as a textbook for the 
use of those second-year students at the Massachusetts Institute 
of Technology who intend to pursue further studies in electrical 
engineering, physics, or both. These students have completed 
a year’s course in calculus and one in mechanics and heat utiliz¬ 
ing the author’s text‘ and are simultaneously pursuing a second 
course in calculus. The goal .to w^ch this book aspires is a com¬ 
pact logical exposition of the fundamental laws of the electric 
and the magnetic field and the elementary applications of these 
laws to circuits, to a study of the electrical and magnetic prop¬ 
erties of matter, and to the field of optics. The treatment is 
quantitative throughout and an attempt has been made to 
imbue the reader with a sound understanding of the fundamental 
laws (the Maxwell equations) and with the ability to apply them 
to many and varied phenomena without resorting to special 
formulas and methods. Thus ordinary circuit concepts and the 
ideas necessary for the understanding of optics are presented as 
natural consequences of the basic field equations. 

In attempting to carry through the above program in an ele¬ 
mentary text, it has been found expedient to depart widely from 
the usual elementary treatments. The book is essentiaUy di¬ 
vided into two parts. The first half sets as its aim a systematic 
development of the fundamental laws of the electric and magnetic 
fields for empty space, confining the discussion of the electrical 
properties of matter to those of conductors. In this connection 
all four electromagnetic vectors, 6, D, B, and H, are introduced 
from the very outset; hence the Maxwell equations for empty 
space are presented in forms which are perfectly general, retain¬ 
ing their validity in the presence of material bodies. The second 
half encompasses the electric and magnetic properties of matter 
and is based essentially on the electron theory of matter. The 
study of electromagnetic waves in dielectrics leads smoothly to 

‘“Introduction to Mechanics and Heat,” N, H. Frank, McGraw-Hill;, 
Book Company, Inc., New York. 



VI PREFACE 

the subject of optics; physical optics is largely emphasized, 
although one rather long chapter is devoted to geometrical 
optics. 

Since it has become necessary to teach the m.k.s. system of 
units, these units have been employed from the very beginning 
along with the electrostatic system. P^lectromagnetic units are 
then introduced at an appropriate place. Thus the student 
learns the advantages of the newer m.k.s. system and at the same 
time becomes conversant with the older Gaussian units without 
which his understanding of much of the literature would be 
seriously handicapped. In view of the order of development of 
the subject matter, unrationalized units have been employed 
throughout and the transition to rationalized units, if desirable, 
may readily be made at a later stage of the student^s education. 

The first three chapters are devoted to the subject of the 
electrostatic field in vacuum. Here, as well as elsewhere in the 
book, the order of presentation of the topics has been chosen in 
accordance with the principle of introducing basic concepts one 
at a time wherever practicable. The concepts and definition of 
the magnetic field in empty space have been based solely on the 
mutual force actions of currents or of moving charges, care being 
taken to stress the magnetic induction vector B as the funda¬ 
mental force vector. Discussion of magnetic poles is deferred 
to the second half of the book in connection with the properties 
of ferromagnetic media. The use of complex numbers is avoided 
in connection with simple a.c. circuits but the vector diagram 
method is derived from first principles. The two chapters 
which conclude the treatment for empty space introduce the 
concept of the Maxwell displacement current, a discussion of 
electromagnetic waves in free space, and the Poynting vector. 
Here the Maxwell equations are formulated in integral form to 
avoid the premature use of the symbolism of vector differentia¬ 
tion. Traveling and standing waves on an ideal transmission 
line serve to bridge the usual gap between oscillating LC circuits 
and the radiation field of an antenna, the latter topic being 
treated semi-quantitatively. 

As previously mentioned, the second half of the book intro¬ 
duces the electrical and magnetic properties of matter on the 
basis of the Lorentz electron theory. Following a study of the 
essentially free electrons in vacuum tubes and in metals, the 
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properties of dielectrics in terms of bound electrons and of mag¬ 
netic media in terms of the orbital motions and spins of the 
electrons are discussed. The diflBicult questions of mechanical 
forces on dielectrics and on magnetic bodies have been relegated 
to the problems in an attempt to develop critical methods of 
reasoning in this connection rather than a blind reliance on 
formulas. A dual standpoint has been adopted in connection 
with dielectrics and magnetic media: (1) the classical description 
in terms of dielectric constant and magnetic permeability and 
(2) the replacement of matter by equivalent charge and current 
distributions and the consequent reduction of a problem to one 
for empty space. It is gratifying to find that the treatment of 
magnetic problems in terms of Amperian currents is fully as 
simple as the equivalent method of introducing surface dis¬ 
tributions of magnetic matter (magnetic poles) and has unques¬ 
tionable pedagogical advantages. The laws of reflection and 
refraction of electromagnetic waves at dielectric boundaries are 
derived from the electromagnetic boundary conditions and the 
problem of intensity relations for normal incidence is discussed 
completely. An elementary, but quantitative, theory of the dis¬ 
persion and scattering of light in gases is extended to give a phys¬ 
ical picture of the nature of the refracted wave in isotropic and 
anisotropic media, the latter leading to the phenomena of 
double refraction. Fresnel diffraction is analyzed with the help 
of Fresnel zones and the Fraunhofer diffraction patterns of a 
single and of a double rectangular slit are worked out completely. 
The final chapter proceeds to a quantitative discussion of thermal 
radiation, including an elementary derivation of the law of 
radiation pressure and of the concept of electromagnetic momen¬ 
tum. A brief discussion of photometry and its connection with 
general radiation theory is also included. 

A number of problems have been included at the end of each 
chapter. These problems have been designed not only to help 
the student learn how to apply fundamental principles to many 
and varied situations—and the working of many problems is 
essential for a thorough grasp of these fundamentals—but also 
in some cases to require the student to derive for himself a number 
of important general results not obtained in the text. A con¬ 
siderable range of complexity has been aimed at in these prol?- 
lems, and it is hoped that not too many of them can be solved 
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by use of formulas alone. It should be pointed out that this 
book is planned as a guiding textbook and, as such, should be 
supplemented by laboratory work and descriptive material, 
especially with regard to experimental methods. 

The author would like to express his thanks to a number of 
his colleagues for valuable suggestions and criticisms and 
especially to John E. Meade for his able assistance in preparing 
the manuscript for publication. 

N. H. Fkank. 
Cambridge, Mass., 

May, 1940. 



CONTENTS 
Pag]!. 

Preface . v 

Chapiter 1 

THE ELECTROSTATKl FIELD OF FORCE 
Introduction. I 

1. Conservation of Electric (charge; the Electron. 2 

2. Intensity of the Electric Field. 3 

3. Potential; Electromotive Force. o 

4. Example. 8 

5. Metals as Equipoteritials. 1-1 

6. Motion of Charged Particles in Electric Fields.10 
Problems.19 

(hiafter II 

THE SOURCES OF THE ELECTr ROST ATI C FIELD 

Introduction.22 

7. (youlomb’s Law; the Electric Displacement Vector.23 

8. Gausses Law; Flux of D.26 

9. Applications of Gauss’s Law.28 

10. The Held of Fixed Charge Distributions.30 

11. The Use of Potential in Field Calculations.33 

Problems.38 

Chai»ter III 

INDUCED CHARGES AND CAPACITY 

Introduction.41 

12. Induced Charges.41 

13. Method of Electrical Images.42 

14. Capacity (^coefficients; Condensers. ..44 

15. Condensers in Parallel and Series. 48 

16. Energy Stored in a (h)ndenser; Energy in the Electrostatic Field . 50 

Problems.52 

Chapter IV 

STEADY ELECTRIC CURRENTS 

Introduction.55 
17. Definitions of Current and Current Density.  55 

18. The Steady State; Equation of Continuity.57 

19. Sources of E.m.f.59 
20. Ohm’s Law for Linear Conductors.6l 

21. Resistivity and Conductivity; Ohm’s Law for Extended Media . . 68 

ix • 



X CONTENTS 
Paow 

22. Kirchhoff*s Rules.71 

23. Joule’s Law; Power in Direct-current Circuits.75 

Problems.77 

Chapter V 

THE MAGNETIC FIELD OF STEADY (CURRENTS 

Introduction.81 

24. The Magnetic Induction Vector B.81 

25. Magnetic Flux; Solenoidal Nature of the Vector P^ield of R. . . . 86 

26. Motion of Charged Particles in Magnetic* Fields.88 

27. Side Thrusts on (‘Onductors; the Moving-coil Galvanometer . . 91 

28. Ampere’s Rule; The Magnetic Intensity 11.94 

29. The Biot-Savart Law; P^xamples.99 

30. The Ampere Circuital Law for H.103 

31. Magnetic Moment of a Current Loop; Sc^alar Magnetic Potential. 107 

Problems.114 

Chapter VI 

INDUCED ELECTROMOTIVE FORC^ES AND INDUCTANCE 

Introduction.120 

32. The Faraday Induction Law for Stationary Circuits; Lenz/s Law 121 

33. Motional Electromotive Forces.123 

34. Self- and Mutual Inductance.127 

35. Energy Stored in the Magnetic Field of an Inductance; Energy 

Density.i 32 

Problems.134 

f/HAPTBH VH 

ELEMENTARY ALTERNATING-CURRENT CIRCUITS 

Introduction.137 

36. The Simplest Alternating-current Circuits.338 

37. Vector Representation of Sinusoidal Functions.141 

38. The Simple Series Circuit.142 

39. Energy Considerations for the Series Circuit.145 

40. Free Oscillations of an LC Circuit; Simple Transients.148 

Problems.151 

Chapter VIII 

DISPLACEMENT CURRENT AND ELECTROMAGNETIC WAVES 

Introduction.  154 

41. The Equation of Continuity for Charge and (Current.154 

42. The Maxwell Displacement Current.155 

43. Plane Electromagnetic Waves in Vacuum.159 

44. Intensity and the Poynting Vector.164 

Problems.  168 



CONTENTH xi 

Chapter IX 

RADIATION OF ELECTROMAGNETK^ WAVES 

Introduction.170 

45. Electromagnetic Waves on W ires.171 

46. The Radiation Field of an Oscillating Dipole.178 
Problems.185 

Chapi’er X 

ELECTRONIC CONDUCrriON IN VACUUM AND IN METALS 

Introduction.187 

47. Thermionic Emission; Electronic Currents in High Vacua.188 

48. Electrical (Conductivity of Metals.195 
49. Thermoelectric Effects.197 

Problems.202 

Chapter XI 

DIELECTRKCS 

Introduction.204 

.*)(). Dielectric Constant; th<^ Polarization Vec^tor.20f) 

51. C.Cavity Definitions of 1) and £.211 

52. The Dielectric Constant of Gases.212 

53. Houndary CConditions on I) and £.213 

54. Polarization and Disphu^ement (Current in Diele<*tric8.217 

Problems.219 

(hlAPTKR XIT 

MAGNETIC MEDIA 

Introduction.223 

55. The Electronic Origin of Magnetic Properties.225 

56. Intensity of Magnetization; Amperian Currents.228 

57. Relations of R, //, and M; Magnetic Susceptibility.230 

58. Ferromagnetism.232 

59. Boundary Conditions on B and //.234 

60. Magnetic Circuits; Reluctance.239 

Problems.243 

Chapter XIII 

ELECTROMAGNETIC WAVES IN MATERIAL BODIES 

Introduction.248 
61. Plane Waves in Dielectric.s.248 

62. Reflecition and Refraction of Plane W'aves.263 

63. Intensity Relations for Normal Incidence.256 

Problems.260 

Chapter XIV 

GEOMETRICAL OPTICS AND SIMPLE OPTICAL INSTRUMENTS 

Introduction.263 

64. Fermat’s Principle.265 



aONTJtJNTS xii 
Paqic 

65. Reflection of Light.268 

66. Refraction of Light at a Spherical Surface.271 

67. 'Phin Lenses.275 

68. The Thick I^ens in Air.278 

69. Lens Aberrations.283 

70. The Eye.288 

71. The Simple and the Cknnpotind Microscope.288 

72. ()(!ulars.292 

73. Telescopes.293 

74. The Projection Lantcnn . ..295 

Problems.296 

Chapter XV 

DISPERSION AND S(^ATTERING 

Introduction.301 

75. Dispersion in Gases.303 

76. Dispersion in Solids and Liquids; the Prism Spectroscope .... 306 

' 77. Chromatic Aberrations an<l Their Correction.311 

78. The Scattering of Light.314 

V 79. The Propagation of Light in Crystals; Double Refraction .... 318 

Problems ^ ,.324 
sv' '' 

'' CvHAPTER XVI 

INTERFERKNCE AND DIFFRACTION 

Introduction.327 
^ 80. Conditions for Interference.329 

^ 81. Young^s Experiment.331 

* 82. Interference in Thin Films; Newton’s Rings.334 

^83. Interferometers.338 

’' 84. Fresnel and Fraunhofer Diffraction; Fresnel Zones.339 

' 85. Application of Fresnel Zones to Fresnel Diffraction.344 

^ 86. Fraunhofer Diffraction.346 

v87. The Diffraction Grating; Many Slits.354 

88. Resolving Power of Optical Instruments.358 

Problems.361 

Chapter XVII 

HEAT RADIATION 

Introduction.365 

89. Emission and Absorption; Kirchhoff’s Law.366 

90. Radiation Pressure.371 

91. The Stefan-Boltzmann Law.376 

92. The Planck Radiation Law; Wien's Displacement Law.  378 

93. Photometric Units; Visibility of Radiant Energy.382 

Problems.386 

Index 389 



INTRODUCTION TO 
ELECTRICITY AND OPTICS 

CHAPTER I 

THE ELECTROSTATIC FIELD OF FORCE 

The subject of electrostatics deals with the laws governing 
the equilibrium interactions between ^^electrically charged^’ 
bodies or between electrically charged bodies and matter. 
It is avssumed that the reader is acquainted with the qualitative 
facts concerning various methods of electrifying bodies, such as 
the historical method of rubbing a rod of hard rubber or bakelite 
with fur, as well as the more modern method of bringing th(5 
bodies into contact with one terminal of a battery or a power 
line. When bodies are so treated and placed near together, they 
exert forces on one Another which did not exist before the treat¬ 
ment. We say that the bodies so treated have become elec¬ 
trically charged. For the present we shall not concern ourselves 
with the study of the methods of charging bodies electrically, but 
shall simply assume the possibility of so doing. 

The fact that electrically charged bodies exert forces on 
each other when not in contact reminds one of gravitational 
forces and there is, in fact, a strong although not complete analogy 
between these two types of force. Just as in the case of gravita¬ 
tional forces, we can adopt one of two points of view with respect 
to these forces. First, there is the simple idea of **action-at-a- 
distance^^ forces and, secondly, the somewhat more involved 
concept of a field of force, produced, in this case, by the presence 
of electrified bodies. While it is true in studying electrostatics 
that both points of view are equally useful, the field concept 
proves to be ever so much more valuable in studying non-static 
phenomena and we shall adopt the idea of an electric field from 
the very outset. Suppose we have a single electrically charged 
body. We think of all space being affected by this body and 

1 



2 ELECTRICITY AND OPTICS [Chap, I 

say that an electric field is established throughout space. If 
we place a second charged body at a given point of space, it will 
be acted on by a force (due of course in the last analysis to the 
presence of the first charged body) and we can use this force 
exerted on a test charge to describe the field of force. In this 
chapter we shall concern ourselves solely with a study of the 
nature of electrostatic fields of force and shall defer an examina¬ 
tion of the sources of such fields until the next chapter. 

1. Conservation of Electric Charge; the Electron.—One of the 
fundamental facts concerning electrical forces is that, in contrast 
to gravitational forces, one may have both attractive and repul¬ 
sive forces. If two bodies are brought into contact with th(‘. 
same terminal of a battery, it is found that they rep(d each other, 
whereas, if brought into contact with opposite terminals, they 
attract each other. This fact led to the assumption thai there 
are two kinds of electricity, originally termed “ vitreous anti 

resinous*’ after the manner of their production, and now called 
“positive” and “negative,” respectively. When a body is 
electrified, we say that electric charge has been transferred to 
the body, positive or negative charge as the case may be. There 
is a fundamental law concerning elec.tric charge, namely, that 
no net electric charge can ever be created or destroyed. When¬ 
ever any positive charge is created, there is always created an 
equal amount of negative charge. The experimental proof of 
this law as given by Faraday will be discussed later. This law is 
known as the law of conservation of charge and is one of the most 
fundamental laws of physics. 

It was postulated in the early days of the subject that elec¬ 
tricity was a fluid, or rather two fluids, present in equal quantities 
inside matter, and that charging a body consisted of adding 
an excess of positive or negative fluid to it. There is over¬ 
whelming evidence today that electricity is atomic rather than 
continuous in nature and that the smallest electric charge avail¬ 
able is that possessed by an electron^ one of the fundamental 
particles of which atoms are composed. The electron carries a 
negative charge and its positive twin, the positron, has been 
recently discovered but does not possess the permanence of the 
negative electron. As one might expect, the charge carried by 
an electron is so exceedingly small compared to the ordinary 
charges with which one has to deal in large-scale experiments, 
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that for many purposes one may still think of electricity as being 
continuous rather thart atomic. 

To proceed to a quantitative formulation of the laws, we must 
introduce a measure of charge. There are two units of electric 
charge which will be of most use to us for the present, and these 
are, of course, arbitrarily defined. We postpone the actual 
definitions of these units to a later chapter but we shall name 
them and give their relative magnitudes. First, we have the 
statcoulomb or electrostatic unit of charge (e.s.u.). The other 
unit is the coulomb or practical unit which is a much larger unit. 
In fact, 1 coulomb = 3.00 X 10® statcoulombs. The charge on 
an electron is 4.80 X 10”^® statcoulomb. 

2. Intensity of the Electric Field.—The presence of an elecjtric 
field in a given region of space can be detected by bringing into 
that region a so-callcd test charge, z.c., a small 'positively charged 
body, and determining whether a force is exerted on this test 
(‘harge. If such a force exists, we say that an electric field is 
present, and it would seem reasonable to specify the field by 
stating the force (direction and magnitude) exerted on the test 
body at each point of space. This procedure is open to a dis¬ 
turbing objection, namely, the force depends on the magnitude 
of the charge carried by the test body and hence cannot be used 
as a unique measure of the field. Hence we set up another 
measure of the strength of the field, the so-called electric mtensity, 
which we denote by €. The intensity is defined as a vector 
equal in magnitude to the force per unit positive charge exerted 
on the test body and of the same direction as this force. Thus, 
if the charge on the test body is q and at a given point of space 
there is an electrical force F exerted on it, the intensity 6 at that 
point of space is 

F ^ (1) 
or 

F = eq (la) 

There still remains one question to be settled before we can be 
sure that € is a unique measure of the fieM strength. If the 
force exerted on the test body is proportional to the charge on 
the latter, then Eq. (1) provides a perfectly satisfactory defini¬ 
tion. If, and this occurs in many cases, the force per unit 
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charge does depend on the size of the test charge due to the 
reaction of the latter on the sources of thfe field, we must gener¬ 
alize Eq. (1) to remove the ambiguity involved. Let us suppose 
that we bring a number of test charges successively to a given 
point of space and upon measurement we find that the ratio of 
force to charge does vary with the size of the test charge. We 
proceed to make the magnitude of the test charge smaller and 
smaller, the force becomes smaller and smaller, but the ratio of 
force to charge approaches a definite limiting value as the test 
charge is reduced indefinitely. This limiting value is then 
defined as the intensity of the field at that point. In symbols 

r ^ A Jim -i— as Ao • 
^q 

Logically, we should adopt Eq. (16) as the only strict definition 
of field intensity, but in many int(iresting cases the reaction of 
the test body is so small that Eq. (1) can be used as an excellent 
approximation. 

A complete knowledge of a field involves the knowledge of i-he 
electric intensity, in both direction and magnitude at each point 
of space. Let us suppose that at each point of space there is 
constructed a vector representing the intensity of the field at 
that point. The totality of such vectors forms a vector field 
and is entirely similar to a gravitational field of force or to the 
vector field describing the motion of a fluid. Just as in these 
cases, we can c.onstruct lines of force or, more properly, lines 
of electric intensity which give the direction of the intensity 
at each point. Thus we can map out an electric field by use 
of these lines of force and then there remains only the task of 
specifying the magnitude of the intensity at each point. A 
special but important type of field is one in which the lines of 
force are all parallel straight lines and the intensity has the 
same magnitude at all points of the field. Such a field is called 
a uniform field and can exist only in a limited region of space. 
In general, however, the lines of 6 will be curved and £ itself 
will vary in magnitude from point to point of space. 

If we measure charge in statcoulombs (the electrostatic 
measure of charge) and force in dynes, intensity is then measured 
in dynes per stalcoulomh. For reasons which will appear in 
the next section, this unit is sometimes called a statvoU per 
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centimeter. In the system of units involving the coulomb as 
unit charge, it turns out to be convenient to measure force in 
units of 10^ dynes (this corresponds to using the kilogram as 
unit of mass, meter as unit of length, and second as unit of time) 
and corresponding intensity units are termed volts per meter, 

3. Potential; Electromotive Force.—The electrostatic field is a 
conservative field of force just like the gravitational field. We 
postpone a formal proof of this statenKuit until the next chapter 
but will examines some of the consequences of this fact in this 
section. If a test charge is moved around a closed path, the 
total work done on it by the electrostatic force is zero. Thus 
we see that the vector field can never bo represented by lines 
of force which form closed loops. Furthermon^, we can introduce 
the idea of potential energy of a 
test (jharge according to the 
usual definition that the gain of 
potential energy of the test 
charge in moving from one point 
in the field to another is the nega¬ 
tive of the work done on it by the fi(‘ld during this motion. In 
other words, the work which we must do in pushing the charge 
can all be regained by allowing it to niturn to its initial position. 

As in the preceding section, it is useful to refer all quantities 
such as work to unit charge, and we must introduce a few defini¬ 
tions. The work done by the field in moving a charge from 
point A to point B per unit charge is called the electromotive 
force along the path joining A and B, The work done in moving 
the charge q (Fig. 1) is, by definition, 

W ^ fy.ds^ qf^e.ds (2) 

using Eq. (1). F, and 6, are the components of force and 
intensity in the direction of motion, respectively. Thus we have 
for the electromotive force along this path 

e.m.f. = — = r 6, ds (3) 
3 JA 

Similarly, the potential energy per unit charge of a charge 
located at a given point is defined as the electric potential, or 
simply the potential, at that point. If we denote potential 
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energy by V and potential by F, we have for the gain of potential 
energy of the charge q as it moves from A to B (Fig. 1) 

Uj, - = -qf^e.ds (4) 

and the difference of electric potential of points A and B is 

= — - —= - Ce, (is (5) 
q q jA 

or the negative of the electromotive force along the path. If 
the charge gains potential energy in moving from A to B^ we say 
that point B is at a higher electric potential than point Ay and 
vice versa. 

Furthermore, it is convenient to place the potential ent^rgy 
of our charge equal to zero at points infinitely distant from the 
region of space wluu'e the electric field exists (making the poten¬ 
tial energy zero where the electrostatic force is zero) and thus 
have for the definition of the potential V at a point P, 

Vp= - fy. ds (6) 

In words, the potential at a point P is the work per unit charge 
which we must do on the charge to bring it from infinity to tlu'. 
point P along any path whatsoever. Equation (6) may bo use(i 
only if the intensity at points distant from the sources drops otf 
faster than 1/r, where r is the distance from the sources to the field 
point. In any case, however, Eq. (5) is applicable. 

The description of an electrostatic field in terms of the potential 
^at each point instead of the intensity is decidedly simpler since 
the potential is a scalar quantity. Wo now have to show that 
one can deduce the intensity of a field at any point of space 
from a knowledge of the distribution of potential. Let us sup¬ 
pose that we know the potential V at each point of space, Lc., 
that we are in possession of a relation of the form V = /(x,2/,z), 
where the function fiXyPyZ) depends on the particular type of 
field under discussion. If we wish to know what points of space 
are at the same potential Fo, we set F = Fo and obtain an equa- 
tion/(a:,^,z) = Fo = constant. This is the equation of a surface, 
and this surface is called an equipotential surface. There will 
exist a whole family of these equipotential surfaces corresponding 
to various values of Fo. Since, bv definition, it requires no work 
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to move a charge from one point to another on the same equi- 
potential surface, it follows that the lines of force (or intensity) 
must be at right angles to the equipotential surfaces at every 
point. Thus we have a connection between the lines of electric 
intensity and the potential. If one has a uniform field, for 
example, then the cquipotentials consist of a set of parallel 
planes, the normals to these planes being the lines of force. 
Conversely, if one knows the cquipotentials, one may immedi¬ 
ately construct the lines of force by drawing the lines which 
intersect these surfaces at right angles. For example, suppose 
the equipotential surfaces consisted of a family of concentric*. 
spherical surfaces with a common center at a point 0. Then the* 
lines of force would consist of a set of straight lines radiating in all 
directions from 0, since these lines, being radii of all the spherical 
equipotential surfaces, int(*rsect the surfaces at right angles. 

Suppose we consider a charge situated at a point P in an elec¬ 
tric field and we move the charge a distance ds to a neighboring 
point. From Eq. (5) it follows that the change of potential 
dF is given by 

dV-€sds (7) 

or 

(8) 

In words, the component of electric intensity in any given direc¬ 
tion 8 is equal to the negative rate of change of potential with 
position along this direction. The space derivative in Eq. (8) 
is known as a directional derivative, since its value depends on 
the direction in which ds is taken. This checks the fact that 
being the component of a vector, has a definite direction as well 
as a magnitude. If one moves from a point P to a neighboring 
point on the same equipotential, then dV/ds is zero in this 
direction since the potential docs not change. If one moves, 
however, to a neighboring point not on the same equipotential, 
we obtain a value of dV/ds different from zero. The direction 
for which dV/ds has the maximum value possible at a given point 
is along a line of force, and the negative of this maximum rate of 
change of V with, distance is the vector electric intensity at the 
point in question. This maximum rate of change of potential 
with position is known as the gradient of the potential, and this 
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is a vector pointing at right angles to the equipotential surface. 
In symbols we write 

6 = — grad V (9) 

An example may help clarify the above statements. Suppose 
one is walking on a hillside and is interested in the changes in 
elevation, vertical height from the bottom, as one walks. The 
points of equal elevation form curves called contours, and one 
often sees maps with these contour lines indicating the various 
elevations. These contour lines correspond to the equipotentials 
in the case of the electric field. Suppose one is standing at a 
point of 100-ft. elevation and wishes to descend to a point of 
95-ft. elevation. There are many ways of doing this; all that 
is necessary is that one move from the starting point to any 
point on the 95-ft. contour. There is, however, a short(;st way; 
this is along the perpendicular to the contours and is the direction 
of maximum slope, the line of steepest descent. It is clear 
that the maximum rate of change of elevation with position 
is along the line of steepest descent (or ascent) and this cor¬ 
responds to the gradient of the elevation. In the electrostatic*, 
case, one moves from one equipotential surface to another differ¬ 
ing in potential by a definite amount dV along the shortest path 
by following a line of force perpendicular to the surfaces. The 
rate of change of potential with distance in this direction is 
thus the gradient of the potential and is the maximum rate 
of change at the point in question. 

The unit of potential or electromotive force in the electro¬ 
static system of units is one erg per statcoulomb, usually called 
1 statvolt. In the practical system of units, the unit of work 
is the joule = 10^ ergs, so that the unit of potential or c.m.f. 
in this system is 1 joule/coulomb and is called 1 voU. One can 
easily show from the above that 1 statvolt = 300 volts. 

4. Example.—In order to clarify further the principles prev 
sented in the preceding section, we shall apply them to a specific 
example. Suppose we are given the information that the dis¬ 
tribution of electrostatic ootential in the x-2/ plane is given by 
the equation 

V - 
ax 

(x^ + (10) 
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where a is a constant. (This is actually the potential of a tiny 
dipole at the origin, as we shall sec in the next chapter.) We 
wish to determine the magnitude and direction of the electric 
intensity at any point in the plane and, if possible, derive the 
equation for the lines of electric intensity. 

To obtain the x- and ^/-components of 6, we utilize the result 
expressed by Eq. (8). First, consider the change in potential as 
we move from a point, the coordinates of which are (x^y), to a 
neighboring point with coordinates (x + dx^y). The displace¬ 
ment ds for this case is dx, and we thus obtain for the x-component 
of 6 

(11) 

In carrying out the indicated differentation, we must keep y 
constant, since x alone varies. Similarly, the .(/-component of 
6 is given by 

€y = iT 
By 

(12) 

keeping x constant. 
Using Eq. (10) for V, we find readily 

a , Zax^ _ a{2x^ — y^) 
(a-s + y2)! + (3.2 ^ yiy (a;2 ^ yiy (13) 

and 

„ _ Zaxy 
" (Ir* + j/*)* 

The magnitude of £ is then obtained from 

£2 = £| + €l 
as 

l/?l _ a(^g^ + y^)* 

~ (X^ + y^y 

(14) 

(15) 

which is not particularly simple but does allow a calculation of 
the field intensity at each point. There remains the question of 
the direction of the electric vector, i.e., the direction of the 
lines of electric intensity. By definition the lines of £ are 
drawn so that the tangents to these lines at every point give the 
direction of £. Thus the tangent of the angle which the vector 
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€ makeB with the a;-axis is equal to the slope dy/dx of the lines 
of 6. Writing this as an equation, we have 

d^ ~ ^ 
dx €x 

(16) 

and, using Eqs. (13) and (14), this becomes 

dx 2x^ — y- 
(17) 

If we can integrate this, the resulting equation is the equation 
for the lines of electric intensity. 

Equation (17) is not easy to integrate as it stands, and indeed 
the whole problem looks rather formidable when handled in terms 
of Cartesian coordinates. For example, the equation for the 

equipotentials (more precisely, for 
the curves which represent the 
intersections of the equipotential 
surfaces with the x-~y plane), which 
is obtained by setting V == (a 
constant) in Eq. (10), turns out to 
be of the sixth degree. 

The whole problem becomes 
much simpler if we utilize polar 
coordinates in the plane, and wc 
shall proceed to do so, checking 
the results already obtained and 

carrying the solution through to • completion. In Fig. 2 the 
relations between the Cartesian coordinates x^y of point P and 
its polar coordinates r,^ are clearly brought out. We have 

X = r cos 6; x^ + y^ ^ 

V 
y = r Bin 6; - = tan $ 
^ ' X 

Expressing Eq. (10) in terms of r and By we have 

y — ^ ^ (18) 

for the potential. The equipotentials are pven by r® =» fc cos 0, 
(k = a/Vo), which is a much simpler equation to plot than 
Eq. (10). Now let us compute the radial and tangential compo- 
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nents of For the radial component we have, according to 
Eq. (h), 

fi. = - £7 
Sr 

since ds = dr, and for the tangential component 

1 SV 
€9 = — r SO 

(19) 

(20) 

since for this case ds — r dd (consult Fig. 2). Using Eq. (18), 
there follows 

and 

2a cos 6 

a sin $ 

(21) 

Fig. 3. 

Th(^ magnitude of £ is obtained 
from £2 = + £|, yielding 

lei = (23) 

which is identical with Eq. (15). 
The proof is left to the student. 
The equations of the lines of £ 
may be obtained as follows: The 0 
angle between £ and the radius 
vector r is equal to the angle between an infinitesimal length ds 
of the curve and r (Fig, 3). Thus we may write 

do €9 
» ^ dr €r 

and, using Eqs. (21) and (22), this becomes 

(16 _ 1 tan 6 
dr 2 r 

If we rewrite this equation in the form 

(24) 

(25) 

(Ir _ ^ dB 
T ^ tan 6 

= % 
cos 6 dB _ ^djain B) 

sin B sin B 
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it may be integrated immediately, yielding 

constant 

r = 6 sin^ d (26) 

where b is an arbitrary constant. The solid curves of Fig. 4 
are plots of Eq. (26) for different values of 6, and the dotted 
curves are a few of the cquipotentials which, according to Eq. 
(18), are given by cos $/r^ = constant. The cquipotentials inter- 

se(^t the lines of electric intensity 
y at right angles. The fact that, «the lines of € are normal to tlu‘. 

I equipotentials allows the calcu¬ 
lation of the latter from a knowl¬ 
edge of the former. Thus, for 

. example, were we given Eqs. (21) 
_^_^ fi/ud (22) as the initial data, we 

X would write for the slope of ihe 
lines of force 

as in Eq. (25). At any point 
the slope of the curve intersect- 

Fig. 4. ing a given curve at right angles 
is th(‘ negative of the reciprocal 

of the slope of the latter. Hence the equipotential curves 
satisfy the equation 

= 2*^”® 

tan 0 da -f 2 ~ = 0 
r 

Upon integration this yields 

= constant 

which checks the potential as given by Eq. (18). 
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As a final check, let us rewrite Eq. (26) for the lines of 6 in 
f artesian components, differentiate to find the slope and see if 

the result agrees with Eq. (17). Since r = and 
sin^ e = yyr^ = yy(x^ + yi)^ Eq. (26) becomes 

and this is in the form 

(26a) 

f(x,y) = constant 

Differentiating, we }iav(‘ 

so tliat 

dx ^f/^y 

From K(|. .(26a) oik* finds 

ami 

dx i/- ^ + 2/*)* 

I = ^ix'^ + + y^y = (x^ + yy 

Hence 

dy ^ 3xy 
dx 2x^ - y^ 

which is identical with Eq. (17). 
To summarize, we have seen how one may find the components 

of the electric intensity if the potential is known and from 
this how to find an expression for the slope of the lines of force 
at any point. The latter expression, when integrated, leads to 
an equation (or equations) for the lines of electric intensity. 
Conversely, if the components of the field are known, the slope 
of the equipotentials (more precisely, the intersection of the 
equipotential surfaces with a plane) may be written down 
and, if integrated, yields the equation of the equipotentials. 
One may obtain the potential more directly, however, by utilizing 
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Eq. (6). In applsring this equation, we have the freedom of 
choosing the path along which we integrate as we wish, and this 
may simplify the calculation enormously. For example, we may 
integrate along a radius vector r, starting at r = oo and ending 
the integration at the value of r corresponding to the point P 
at which we desire the potential. In this case, we have [using 
Eqs. (21) and (6)] 

or 

r*" c^'dr r 1 y 
= — I €rdr = —2a cos $l ~ = 2a cos $ ^ 

y _ a cos 6 
r2 

which checks Eq. (18). 
In general, especially for three-dimensional problems, it is 

not feasible to attempt an integration of Eq. (16) or its equivalent 
in three dimensions and the lines of electric intensity are best 
obtained by graphical methods. 

6. Metals as Equipotentials.—We must now recall to the 
reader the fact that in a general way substances may be classified 
as conductors of electricity or as nonconductors or insulators. 
In our previous sections we have assumed tacitly that the b(xlies 
which were charged electrically were either insulators or, if 
conductors, were supported by insulators, so that the charge' 
on them did not escape. It must be understood that the distinc¬ 
tion between a conductor of electricity and an insulator is not 
absolutely sharp. From an atomic viewpoint, conductors of 
electricity are those forms of matter in which some or all of the 
electric charges of which the body is composed (electrons in 
the case of metals, ions in the case of aqueous solutions) can 
move more or less freely under the action of electric forces. 
In insulators, on the other hand, the electrons are held more or 
less rigidly fixed in the atoms of the substance. 

In this section we shall concern ourselves with the behavior 
of good conductors such as metals in electrostatic fields. First, 
let us consider what happens when a metallic body (supported by 
an insulator) is charged. The charge transferred to the metal, 
being free to move, will flow through the metal and finally 
reach an equilibrium distribution. This equilibrium distribution 
has the following properties: 
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1. All the charge resides on the surface of the metal. 
2. The charge distributes itself in such a manner that the 

surface of the conductor becomes an equipotential surface. 
3. Every point inside the metal is at the same potential as 

the surface, so that the electric field is zero at every point inside 
the metal. 

The fact that the charge resides on the surface is due to 
the mutual repulsion of the elements of charge so that they move 
as far away from each other as possible. Since the surface 
charge distribution is an equilibrium distribution, there can be 
no component of electric intensity parallel to the surface. Were 
this not so, the charge would be accelerated along the surface 
and equilibrium conditions would not prevail. Thus the electric 
intensity vector 6 just at the metal surface is normal to it, 
the lines of force starting from (or terminating on) the surface 
in a direction perpendicular to it. Hence the surface is an equi¬ 
potential. Inside the metal we still have the normal content 
of electrons which are free to move. For equilibrium there 
must be no net force on these charges, and hence the field is zero 
(everywhere inside the metal. In an insulator it is possible to 
have a potential gradient inside the body without flow of charge, 
but this cannot happen for a conductor. 

The mobility of charge in a metallic conductor gives rise 
to complicated phenomena which one does not encounter in the 
case of gravitational fields. Suppose we bring an uncharged 
piece of metal into a region of space where an (dectric field exists. 
The mobile charges in the metal will be acted on by forces and 
will flow through the metal and distribute themselves in such a 
manner that the metal becomes an equipotential. Although the 
net charge on the metal is zero, there is a nonuniform distribution 
of charge set up on the surface, and the resultant of the field 
produced by these so-called induced charges and the original 
field is such as to make the whole metal an equipotential. Thus 
the presence of a metallic body in an electric field will, in general, 
modify the field considerably. This is true whether the metal 

be charged or uncharged. 
One can make use of the above phenomena to charge metals by 

'‘inductionor "influence.'' Suppose a changed body is brought 
near an uncharged metallic body, as indicated in Fig. 6. There 
will be charges induced on the metal surface as indicated in the 
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figure, electrons being drawn closer to the positive external 
charge.' If now the metal is connected to earth, the positive 
charge escapes, the negative charge being held by the attraction 
of the external positive charge. The connection to ground is 

now broken and then the ex¬ 
ternal charge is removed. The 
metal is now found to be 
charged negatively, as one 
expects from the pictures 

6. Motion of Charged Particles in Electric Fields.—Th(' 
problem of determining the motion of a charged particle in an 
electrostatic field is essentially% a dynamical on(\ Be(*,aus(i 
the force acting is of electrical origin, the question of propc^r 
units is often troublesome, and we shall attempt to clarify 
this matter by solving a numerical example. We shall assume!: 
that the presence of the charged particle in the field does not 
appreciably disturb it, so that we may use Eq. (1) to calculate 
the force acting on the particle. If the particle carries a charge 
q and has a mass m, then the force acting on it is, according to 
Eq. (1), 

F = eq 

and by Newton’s second law 

(27) 

where v is the vector velocity of the particle. If € is known 
as a function of position, the solution of the problem then follows 
the usual lines. Since electrostatic forces are conservative, we 
may apply the principle of conservation of mechanical energy. 
This takes the form 

Fig. 5. 

— + gF = constant (28) 

since gF is the potential energy of the charge g when at a position 
where the potential is F. The constant is the constant total 
energy of the motion. Equation (28) is often useful in dealing 
with problems of the type under discussion. 

If the charge g is expressed in statcoulombs (e.s.u.), then 
€ must be in statvolts per centimeter (dynes per statcoulomb), 
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V in slat volts (ergs per statcoulomb), m in grams, time in seconds, 
and length in centimeters. This leads to a dynamical problem in 
c.g.s. units. It is recommended that the student use this system 
exclusively at the beginning and, if the charge is given in cou¬ 
lombs or potential in volts, that these quantities be reduced to 
the electrostatic system of units before making numerical 
substitutions. 

Let us consider a very elementary problem. Suppose an 
electron of charge —4.80 X statcoulomb and mass 
9.0 X 10”28 gram starts from rest in a uniform field of intensity 
100 volts/cm. How long does it take this electron to move 
10 cm.; what are its velocity and kinetic energy at this time? We 
choose an origin at the initial position of the electron and an 
X-axis in the direction of the field (to the right, let us say). Since 
for a uniform field the intensity is everywhere the same, we have 
a constant force acting on the electron, and the problem is 
the simple one of motion with constant acceleration". From 
Eq. (27) this constant acceleration is 

dt m 

and, since the right-hand side is constant, this can be integrated 
immediately giving 

= Vo H—I 
m / 

and > (29) 

^ = "•^ + 5 

In our special case, Vo = 0, since the particle starts from rest. 
The intensity 6 must be expressed in electrostatic units. Since 
300 volts == 1 statvolt, we have 

* - -ST ^ 300 volts ■ 3 .‘“‘''“■‘/cm. (e.s.u.) 

Using the second of Eqs. (29), we have, for a: = —10 cm. (since 
the motion is opposite to the direction of the field due to the 
negative charge bn the electron), 
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1 1 4.8 X 10- 
2 ‘ 3 ■ 9.0 X 10-« 

<2 = I X 10->» 
< = 1.06 X 10”* sec. 

From the first of Eqs. (29) we find for the velocity at this time 

1 4 8^ 10->® 
P = X X 1.06 X 10-* = -1.9 X 10» cm./soc. 

The kinetic energy at this point is 

K.E. = == ^ X 9.0 X lO"** X (1.9)* X 10‘» = 
16 X 10-*® erg 

We can obtain the last result very quickly from energy considera¬ 
tions. Since the electron moves to the left, opposite to the 
direction of the field, it moves from a point of given potential 
to points of higher potential. Because of its negative charge, 
however, its potential energy decreases, and there must be a cor¬ 
responding gain of kinetic energy. From Eq. (8) or Eq. (9) we 
have for the relation between intensity and potential for this 
case (field in the x-direction) 

e = 
dx 

(30) 

and, since € is constant, this yields 

F* - F, - €{x, - Xi) 

where Fi is the potential at and F* the potential at x?. For 
our case *1 = 0 and ** = —10 cm., so that we have 

Fs — Fi = i X [0 — (—10)] = statvolt = 1,000 volts 

as the difference of potential between points Xi and a:*. The 
change in potential energy of the electron in moving between 
these two points is, by definition, 

Ut-Ui = g(F* - Fi) = -4.8 X 10-»® X ^ = 
-16X10-*® erg 

and this is a decrease as expected. Thus the gain of kinetic 
energy is 16 X 10-*® erg, and, eance the particle starts from rest, 
this is the kinetic energy after it has moved 10 cm. This checks 
the answer found above. 
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Problems 

(The charge carried by an electron is c » 4.80 X 10"^® e.s.u., and itn 
mass is 9.0 X 10“** gra(m.) 

1. The intensity of an electric field in the x-y plane is given by 

fi ^ a(2a?* - y*) 

« __Zaxy 

(x* + ?;*)* 

where a is a constant. 

a. Compute the potential at a point P (coordinates x,y) by calculating 
the work per unit charge which must be done in moving a charge from 
infinity in along the x-axis to the point (x,0) and then along a path parallel 
to the y-SLXiQ to the point P. 

b. Repeat the calculation of part a along the following path; from infinity 
along the y-axis to the point (0,y) and then parallel to the x-axis to th<» 
point P, 

V - 
ax 

Am. 

2. The potential of a ‘‘dipole.lineis given by 

X* -t- 2/* 

where c is a constant. 
a. Show that the equipotential surfaces are circular cylinders. 
b. Plot F as a function of x along the line y ~ 2 = 0. 

c. Compute the components of 6 at any point, in both Cartesian and 

polar (cylindrical) coordinates. 
d. From your answer to part c find the polar equation of the lines of 

electric intensity in the x-y plane. 
Find expressions for the force wTiich would be exerted on a charge q 

placed 
(1) At the point x = 1, y = 0. 
(2) At the point x ~ 2 = 0, y =* 1. 
3, The intensity of an electric field between two long concentric cylin¬ 

drical surfaces is given by 

e. 
cx 

X* + y*’ 

£ ^ ^ . 

X* + y*' 
€g ^ 0 

where c is a constant and the x~y plane is perpendicular to the axis of the 

cylinders. 
a. Construct the lines of force in the x-y plane, and sketch in some of the 

equipotentials. 
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h. Calculate the distribution of potential for tins field, and show that thc^ 

potential depends only on the distance from the axis. 

c. Make a plot of potential against distance from the axis. 
4. It is po8.sible to produce the following potential in a limited region of 

space: 

V - 2x^ - 

a. What are the components of the electric intensity in this field? 
b. Find the equation of the lines of force in the plane z == 0, an<l plot 

the equipotentials and liiieis of force in this plane. 

c. An electron is liberated at the point x — z ^ 0, y ~ 1. What sort of 

motion does it perform if it starts from rest? 

d. Solve part c if the electron starts from rest at tin* point x = 1, 

7^ = 2 = 0. 

5. An X-ray tube contains a filament where electrons are emitted with 

negligible velocities and a metallic target or anode placed some distance 

from the filament. The anode is maintained at a potential of 30,000 volts 

above the filament. 

a. How fast are the electrons moving when they strike the anode? 

h. How many electrons hit the anode per second if the electric current 

in the tube is 10 ma.? (1 amp. of current corresponds to 1 co\ilomb of 

charge reaching the anode per second.) 

c. What is the force exerted on the anodes due to this electron bombard¬ 

ment? 

d. How much heat is generated per second? 

6. A rigid insulating rod of length f, carrying charges -f-g and — g> 

respectively, at each of its ends, is susptmded by a thread attached to its 

center as a torsion pendulum in a uniform electric field of intensity 6, 

which is perpendicular to the suspending thread. Assume that the thread 

<«erts no restoring torque when twisted. 

a. Show that the resultant force on the rod is zero no matter what angle 

the rod makes with the field. 

b. When in equilibrium what is the angle w^hich the rod makes with tiit: 

field? 

c. If the rod is displaced from its equilibrium position by twisting it so 

that it makes an angle S with the field, calculate the torque about the axis 

of suspension acting on the rod when in this position. What is the potential 
energy of the system in this configuration? 

d. Considering the angle B to be small, w^hat sort of motion will the rod 

perform when released from the position described in part c? What will 

the period of the motion be? 

7. The nucleus of a hydrogen atom may be considered a fixed mass 
point carrying a charge equal to and opposite in sign to that of the 
electron. The potential due to this nucleus is F « e/r (using e.s.u.) where 
r is the distance from the nucleus. An electron moves about this nucleus 
in a circle of radius o. 

a. What is the force in dynes acting on the electron when in this orbit? 
h. What must the speed of the electron be so that this potion is possible? 
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c. What k the total energy of the electron (kinetic plus potential)? 

d. It the normal hydrogen atom it is found that the total energy of the 

electron in its orbit is —2.16 X erg. What is the radius of the circle 

in which the electron moves? 

8. A uniform electric field is set up between two metal plates A and B 
and a stream of electrons enters this field, as indicated in Fig. 6, with an 

initial velocity acquired by falling from rest through a potential difference 

of 1,000 volts. The plates are 2 cm. long and of i-cm. separation. The 

(‘lectrons fall on a fiuo^cs<^CT^t screen 30 cm. from the plates and give rise ti) a 

visible spot. If the difference of potential between the plates is 50 volts, 

Flo. 6. 

calculate the deflection of the spot from its position when no field exists 

between the plates. 

9. A three-element vacuum tube may be idealized as follows: A plane 

m(‘tallic sheet (the filament) emits electrons with negligible velocities. 

Parallel to this filament is a plane grid of wires (the grid) separated })y a 

distance of 2 mm. Another solid metallic sheet (the plate) is 10 mm. 

beyond the grid and parallel to it. Assume that uniform fields exist between 

filament and grid and between grid and plate. 

a. What conditions must hold among the potentials of filament, grid, 

and plate so that electrons may reach the plate? 

h. For given potentials of filament and plate how does the grid potential 

affect the velocity with which an electron strikes the plate? 

c. Suppose the grid is made 10 volts positive and the plate 10 volts 

negative (both with respect to the filament). What will the motion of an 

electron be if it starts from the filament with zero velocity? 

10. An oil drop of density 0.90 gram per cubic centimeter is held at rest 

by a vortical electric field of intensity 7.69 statvolts/cm. If the eJe(^tri(j 

field is reunoved, it is found that the drop falls with a constant velocity of 

1.09 X lO""* cm./sec. Utilizing Stokeses law with the coefficient of viscosity 

of air equal to 1.8 X 10“^ c.g.s. unit, calculate 

a. The radius of the drop. 

b. The electric charge on the drop. 

(This is the principle of the method utilized by Millikan to measure th(' 

charge on an electron.) For Stokes’s law, consult Frank “Introduction to 

Mechanics and Heat.” 



CHAPTER II 

THE SOURCES OF THE ELECTROSTATIC FIELD 

We are now ready to undertake a more detailed discussion 
of the question of the production of electrostatic fields, inquiring 
into the laws which govern the dependence of such fields on the 
positions and magnitudes of the charges which produce them. 

At the very outset we encounter an experimental fact which, 
in sharp contrast to the corresponding facts for gravitational 
fields, introduces some complication. One finds experimentally 

that the intensity of an electric field produced, let us say, by a 
number of fixed charges depends, not only on the positions and 
magnitudes of the.se fixed charges, but also on the material 
medium in which the.se charges are embedded. For example', 
the force acting on a test charge in empty space is found to be 
reduced to a fraction of its original value when sources and test 
charge are immersed in a nonconducting liquid, such as oil. 
This dual dependence of intensity on both sources and medium 
makes it desirable from the standpoint of a logical, systematic 
procedure to develop a mode of description which shall, as far as 
possible, distinguish between these two effects. 

In the course of our study we shall find that a complete 
separation of these two ejects can be attained for the case of 
homogeneous media which are large enough so that the effects of 
the boundaries are negligible at all points at which we are 

interested in the field. (Under certain conditions the boundaries 
produce no effects even if in the immediate neighborhood of the 
field points.) We shall postpone a detailed examination of 
boundary effects (Chaps. X and XI) and for the present concern 

ourselves only with the ease of infinite homogmems media, and 

indeed principally with the case of empty space. In so doing, 
we shall be able to introduce a field vector different from £ 
which shall depend only on the strengths and positions of the 
sources. We can then formulate independently the relation 
between the new vector and £, this latter relation taking into 

account the dependence of the electric intensity on the medium 

in which the charges are immersed. 
22 
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7. Coulomb’s Law; the Electric Displacement Vector.—The 
law of force describing the interaction of electrical charges was 
formulated by Coulomb in 1785 as a result of experiments with a 
torsion balance. Coulomb found that the force of attraction 
or repulsion between two “ pointcharges was proportional 
to the products of the charges and inversely proportional to 
the square of the distance between them. The validity of 
Coulomb\s law has been established with a high degree of pre¬ 
cision, the result being obtained deductively from the fact 
that everywhere inside a hollow conductor the electric field is 
zero. The law is very much like Newton^s law of gravitational 
attraction, and the student should constantly draw parallels 
between the laws which we shall examine and those governing 
gravitation. 

In symbols we express the content of Coulomb ^s law by 
writing 

(1) 

where r is the separation of the two charges and qi. From 
tile field standpoint we can write for the intensity of the field 
due to a single point charge q 

(2) 

where r now denotes the distance from q to the point where 6 is 
measured. In empty space or in most homogeneous insulating 
media £ is directed along the line connecting q and the point 
where € is measured, away from or toward g, according to whether 
q is positive or negative. As we have indicated in the intro¬ 
ductory paragraph, the proportionality factor in relation (2) 
depends on the medium, and we proceed now to define a new field 
vector, the so-called electric displacement vector, denoted by I), 
which will depend only on the magnitude and positions of the 
charges which give rise to the field. 

For the case of a single point charge q the vector D at a point P 
located at distance r from g is defined by 

(3) 
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and is directed along the line connecting q and the field point P 
either away from or toward q, according to whether q is positi\'<‘ 
or negative. 

For the case of the field due to a number of point charges, 
we calculate the contribution to the resultant vector of each 
charge from Eq. (3) and then find the resultant D by vector 
addition. In symbols we may write * 

D = p (vector addition) (4) 

If we have to calculate the field due to a continuous distribu¬ 
tion of charge, we use an integral in Eq. (4) instead of the summa¬ 
tion. Since we are adding vectors, however, we must proceed 
with caution. The method of calculation is the following: 

1. Write an expression for the infinitesimal vector dl) at 
a given field point due to an element of charges dq in accordance 
with Eq. (3). 

2. Resolve this vector into components dDx, dDy, dDg. 
3. Calculate each component of D by integration, e.g., 

IK = J* 

4. Find the resultant D from its components. 
We shall illustrate this procedun^ in detail in a later section. 

The relation between the vectors Z> and 6 is usually written . 
in the form 

D = (5) 

This equation is to be looked upon as a definition of e, which 
is called the inductive capacity or permittivity of the medium in 
which we are calculating the field. For homogeneous isotropic 
substances e is a constant, so that the vectors D and £ have the 
same direction and differ only in magnitude. In the case of 
empty space, and this is the only case with which we shall concern 
ourselves for the present, we write Eq. (5) as 

D = €o£ (6) 

where to denotes the inductive capacity or permittivity of empty 
space. 
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For the special case of a single point charge in empty space, 
we combine Eqs. (6) and (3) to obtain 

6 = --^ (7) 

and this is one analytic formulation of Coulomb^s law for vacuum. 
Before proceeding further, we must stop to consider the ques¬ 

tion of units. We have complete freedom in our choice of both 
the units and dimensions of co (or e), and different choices lead 
to different systems of units. As previously indicated, we 
shall confine our attention in this discussion to two sets of 
units. In tlie electrostatic system of units (e.s.u.), wc place 
Co equal to unity and without dimensions (a pure number). 
Although this procedure has the distinction of being the first 
to be (employed, it is not without its disadvantages. All dis¬ 
tinction between D and £ in vacuum is lost, and the vectors 
b(^come identical. This identity docs not exist in material media 
although c is dimensionless. If we write'. Coulomb’s law for the 
force between two point charges in vaemum, we have 

F 
cor^ 

(8) 

and if co is the pure number unity, the dimensions of charge can 
be expressed in terms of those of mass, length, and time. This 
is, as we have shown, quite an arbitrary procedure. unit 
charge in the electrostatic system^ the statcoulomh, is defined so 
that two such similar charges separated by a distance of 1 centimeter 
in vacuum repel each other with a force of 1 dyne. 

The other system of units which we shall employ, the so-called 
m.k.s. system in which mass is measured in kilograms, length in 
meters, and time in seconds, differs from the e.s.u. in two ways: 
(1) the sizes of the units are different and (2) no attempt is 
made to express all quantities in terms of mass, length, and time 
In fact, we treat electric charge as a new fundamental physical 
quantity having its own dimension, just as mass is introduced 
in mechanics. Thus the units of all quantities are to be expressed 
in terms of units of mass, length, time, and charge. As unit of 
(diarge in the m.k.s. system we have the coulomb, and at present 
we must content ourselves with the fact that this is equal to 
3 X 10^ statcoulombs. The actual definition of the coulomb 
is not based on electrostatic laws, so that we must defer it to t\ 
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later chapter. We are, however, in a position to calculate the 
numerical value of €o in the m.k.s. system. From Eq. (8) we 
see readily that co has the dimensions of qH'^fmP, Suppose we 
have two point charges, each 1 statcoulomb, placed 1 cm. apart 
in vacuum. The force is 1 dyne, and we can use Eq. (8) to obtain 
€o. Substituting numerical values in Eq. (8), there follows 

10“5 = 
i X lO-i® 
€0 X 10-4 

or 

€o = i X 10“® (coulombs)2(sec.)Vkg.-meter* 

In making this substitution we have used the facts that the unit 
force in the m.k.s. system is 10* dynes, that 1 cm. = 10-* metcjr 
and that 1 statcoulomb = ^ X 10-® coulomb. 

8. Gauss’s Law; Flux of D.—^Just as in the case of the intensity 
vector £, one can map the field of the vector D, constructing linens 
of D which give its direction at every point. In vacuum (and 
also in isotropic homogeneous media) the directions of Z) and 6 
coincide at every point so that a single diagram represents both 
fields. As we have pointed out, the lines of intensity or dis¬ 
placement merely give information as to the directions of the 
vectors but give no information as to their magnitudes. We 
can insert this latter information by limiting the number of 
lines which we draw in a definite manner. The convention to 
be used is that the number of lines per unit area which pass 
through an element of area normal to these lines shall be made 
equal to the number of units in the magnitude of the vector 
at the point where the element of area is located. Thus, for 
example, if we consider a point where the intensity of the electric 
field is 10 units, we should (using the electrostatic system of 
units) construct 10 lines crossing 1 cm.^ which is normal to these 
lines at the field point. 

Suppose we construct the lines of*Z> due to a single point 
charge q in empty space according to the above scheme. These 
lines are straight lines radiating in all directions from q. At 
a distance r from q we construct a spherical surface of radius r 
and center at q (this is an equipotential), and this surface is 
everywhere normal to these lines. According to Eq. (3), D has 
the same value everywhere on this surface, and hence the number 
of lines per unit area crossing this surface is the same at every 
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point. Since there arc q/r"^ lines per unit area and the area 
of the sphere is we see that the total number of lines of D 
crossing the surface is Arrq. The total number of lines crossing 
any surface is called the flux across that surface, and we denote 
it by the symbol \l/. Thus we have ^ = 4irg. This flux does 
not depend on the radius of the spherical surface enclosing q 
and hence is the same for all such spherical surfaces, no matter 
what their radii. Thus we see that lines of D cannot start 
or stop in empty space but must terminate on charges. It 
is clear from the above that, if any closed surface is constructed 
which completely surrounds g, the total flux of D across it must 

be Airq, When expressed formally as an equation, this is the 
content of Gausses theorem. It follows immediately that the 
flux of 6 is 1/co times as great as the flux of D in empty space. 

The formal statement of Gauss's theorem is as follows. The 
surface integral of the normal component of the electric displacement 
taken over any closed surface is equal to hrq, where q is the total 
charge enclosed by the surface. In symbols 

^ = fD.dS^iirq (9) 

where Dn is the component of D along the normal n to the sur¬ 
face. We shall take the direction of the normal as positive if it 
points outward from the closed surface. To obtain a formal proof 
of Eq. (9), we imagine a charge gi at a given point 0 surrounded by 
an arbitrary closed surface. Now construct an infinitesimal cone 
with its vertex at 0, intersecting the enclosing surface in an 
element of area dS at a distance r from 0 (Fig. 7). Let dS* 
be the projection of dS on a sphere of radius r. The flux of D 
across dS is 

dip = Dn dS ^ D cos $ dS 
dS cos $ 

= —-t— 

using Eq. (3) 
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Since dS' == dS cos B and dS'/r^ is the solid angle dil subtended 
at 0 hy dSj we have 

dil 

and, if we integrate over the whole closed surface, we obtain 

\l/ = qijdil Airqi 

since the solid angle subtended by any closed surface at a point 
inside it is 47r. 

If the surface encloses a number of charges gi, q>z, q^, * • * , 
• • • , each charge gives rise to a flux 47r(?i, so that the total 

flux across the surface becomes = 4irqj where q is the 
1 

total enclosed charge. 
Although we have derived Gauss's law from the definition 

of D as given by Eq. (3) or by Eq. (4), it is clear from the prineip!(‘ 
of conservation of charge that it is perfectly general. On Mk^ 
other hand, Eqs. (3) and (4) are subject to the restrictions 
discussed in the introductory paragraph. Gausses law is one 
of the basic laws of the theory of electricity, 

9. Applications of Gauss’s Law.—Gauss's law provides a 
simple means of calculating the field due to certain symmetrical 

(charge distributions.* The power 
of Gauss's law lies in the fact thal 
we arc free to apply it to any sur¬ 
face w^hatsoever. In those cases 
where the directions of the lines of 
D are known from considerations 
of symmetry, we can construct a 
surface so shaped that the evalu¬ 

ation of the integral JDn dS becomes much simplified. 
The following examples will illustrate the procedure, 
a. Field of an Infinite Plane Metal Plate^ Uniformly Charged,— 

In this case the symmetry requires that the lines of D be straight 
lines normal to the plate and the magnitude of D can depend 
only on the distance of the field point from the charged surface. 
Hence we construct an appropriate Gaussian surface in the form 
of a cylinder whose axis is normal to the plate, the top face lying 
above the surface and the bottom face Ijring inside the metal 
(Fig. 8). The curved surface has no flux passing through it, 
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since D is everywhere parallel to the cylinder axis. At the 
bottom face, D is everywhere zero., since no electric field can 
exist inside the metal. The total flux emerging from the cylinder 
comes through the top face where D is normal to the surface 
and has the same value at all its points. Thus wc have 

^ = fDndS = DjdS = DA 

top 
face 

when^ A is th(‘ area of the top face. By Gauss’s tluwem this 
must equal where q is the total charge inside the (ylinder. 
Denoting the charge per unit area by a (the surface-charge density), 
we have q = aA and hence 

yp — DA == 4t<tA 

D = At<t (10) 

and is constant, independent of the position of the area A, The 
corresponding (doctric intensity is also constant in free space 
and has the value 

e 47rcr 

€0 
(11) 

This is an example of a uniform field. In practice one cannot 
have an infinite metal sheet, but for a plate of finite size the 
field is practically uniform at points whose distances from the 
plate are small compared to its surface dimensions. 

The field intensity just at the surface of any charged conductor^ 
no matter what its shape or size, is given by Eq. (11), where a, 
the surface-charge density, will vary from point to.point on the 
conducting surface. The lines of D and 6 leave the surface 
at right angles to it and start out at each point with the magnitude 
given by Eqs. (10) and (11), respectively. The proof of this 
statement is identical with the one we have given, with the single 
modification that one considers a cylinder of infinitesimal cross 
section and altitude, rather than one of finite dimensions. This is 
necessary since the charge is not uniformly distributed over the 
surface and the field is normal to the surface only in the immedi¬ 
ate neighborhood thereof. 

6. Field of a Long Uniformly Charged Straight Wire,—In 
this case the symmetry is such that the lines of D are all normal 
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to the axis of the wire. At a given field point P the value of D 
cannot depend on the x-coordinate of P (along the wire), since the 
wire is very long, nor on the angular position of P around the wire 
because of cylindrical symmetry. Thus the magnitude of D 
can only depend on the distance r of the field point from the axis 

of the wire. We therefore construct a closed 
surface in the form of a cylindrical can (Fig. 
9) with radius r and altitude h. No flux 
crosses the top or bottom face of the cylinder, 
as the normal component of D is zero every¬ 
where on these faces. On the curved surface, 
D has everywhere the same magnitude (sinccr 
it* depends only on r) and is normal to the 
surface at all its points. Thus the flux 
emerging from the cylinder is 

i = jD^dS = ofdS == 2KrhD 
curved 
surface 

where D is the value of the displacement 
vector at a distance r from the axis of the 
wire. If the charge per unit length of the wire 

is T, the total charge inside the cylinder is rh and Gausses theorem 
requires that 

^ = 2irrhD = Aithr 

D = ^ (12) 

The corresponding electric intensity in empty space becomes 

£ = — (13) 
€or ' 

and we see that the field strength drops off inversely as the 
distance from the wire. Contrast this with the field of a single 
point charge. 

10. The Field of Fixed Charge Distributions.—When one is 
faced with the problem of determining the field of an arbitrary 
distribution of charge, the direct application of Gauss's theorem 
as given in the preceding section is not convenient, and one can 
proceed by the method outlined in Sec. 6. For the case of the 
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field due to a number of point charges, the method requires a 
straightforward vector addition of the fields due to the individual 
point charges [utilizing Eq. (4)] and requires no further comment. 
As we have stated, the field due 
to a continuous distribution of 
charge can be calculated by an 
integration, and we shall illu¬ 
strate the procedure with the 
help of examples. 

Let us calculate the field due 
to a long, uniformly charged 
straight wire by this method. 
Let the plane determined by the 
wire and the point P at which 
we are calculating D be the 
x-y plane, and construct x-y axes, as shown in Fig. 10. The 
contribution to D due the element of charge dq is shown as 
dD in the figure. If the charge per unit length of the wire is t, 
we have 

dg = rdx 

The magnitude of dD is given according to Eq. (3) as 

dD = '!-^ (14) 

We must next calculate the components dD* and dDy of this 
vector before integrating. These are 

• /I dx sin ^ 
dDx = dD • sm 0 == r—p— 

jn cos 6 dDy = dD ’ cos d == r-— 

Fiq. 10. 

The components D* and Dy of the resultant field at P are then 

C,-tJ 
C'^ sin 6 
L. 1 

D..r] 
f""dx cos B 
L; p 

(15) 

From symmetry we see without calculation that the first integral 
will vanish, so that the vector D is normal to the wire. The 
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integrations are most easily carried out using 6 as the independent 
variable. We have (Fig. 10) 

so that 

.r == r tan 6; 

r = I cos 6; 

dx = /• sec^ 6 dS 
1 _ cos^*^ 

dx _ dB 
P “■ 7 

and the integrals be(^orne 

and 

Thus we have D = 2r/r and 6 = 2r/€or, coinciding with the 
results found utilizing Gauss\s theorem and given by Eqs. (12) 
and (13). 

As a second example we shall calculate the field due to a 
uniformly charged circular ring of wire of lujgligible cross section 
at a point on the axis of the ring. Let the x-axls be the axis of the 
ring and the origin at the center of the ring, as shown in Fig. 11. 
Consider an element of charge dq on an element ds of the ring. 
This is 

dq — T ds — ’JLds 
^ 2wr 

where q is the total charge on the ring and r its radius. 



Skc. Ill S(JUHCES OF ELECTROSTATIC FIELD 33 

At the point P the i^ector dD due to dq has the direction shown, 
and has the magnitude 

P ■" 27rr P (16) 

If we consider all the vectors due to the various elements of 
charge dq on the ring, we see that they form a conical array of 
vectors with the apex at P and furthermore that they all have' 
the same magnitude according to Eq. (16). If we resolve these' 
vectors into components, it is evident that only the compone'ut 
dDx yields anything to the resultant field, the other components 
adding up to zero. Thus we have 

and hence' 

dDx = dD cos 0 = J_ 
27rr 72 

X 
1 

D. 
r qx ds qx C , qx 

“ J 2irr ‘ “F ~ ~ 

around 
ring 

since Jds is simply the circumference of the circle. Thus we have 
the resultant field directed along the x-axis at the point P and 
equal to 

y; = ^_ 
13 9(^2 ^ (17) 

with the corresponding value of € as 

£ = „_?_ (17o) 

Kquations (17) and (17a) are valid only for points on the axis Ox, 
as is clear from the derivation. 

11. The Use of Potential in Field Calculations.—The method 
of the preceding section, although straightforward, is cumbersome 
oven in relatively simple problems because of the necessity of 
dealing with vector summations or integrations. The introduc¬ 
tion of the electric potential, a scalar quantity, turns out to 
simplify the problem of the calculation of electrostatic fields 
considerably. In this section we shall investigate the use of the 
electric potential in this connection. 
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Our first task is to prove that the electrostatic field is conserva¬ 
tive and hence that a potential exists. We start by considering 
the field of a point charge in empty space. Suppose a test charge 

is moved from one point A to 
another B in this field. We 
have to show that the work 
done on this charge, or that the 
electromotive force along the 
path, depends only on the start¬ 
ing and end points A and B and 
not on the path. Consider a 
portion of the path ds as shown 

in Fig. 12. The electromotive force along this elementary path 
is, by definition, 

d (e.m.f.) = £, ds == ds cos 

From the figure it is clear that 

ds cos = dr 

so that we have 

d (e.m.f.) = €dr == ~dr 

utilizing Eq. (7) for 6. For the whole path from A to B, we have 

•e.m.f. (18) 

as the electromotive force (the work per unit charge) along the 
path from A to B, Since this depends only on the positions of 
A and B (more precisely, on and Tb), it is independent of the 
path connecting them. This shows that the field of a single point 
charge is conservative. It immediately follows that the field 
of an arbitrary distribution of charge is also conservative, since 
such a field can be obtained by superposing the fields of point 
charges and the e.mi. can be calculated as the sum of the e.m.fs. 
due to each point charge. Since each term of the sum is inde- 



Sbc. 11] SOURCES OF ELECTROSTATIC FIELD 35 
r 

pendent of the particular path followed, then the whole sum is also 
independent of the path. This completes the proof. 

We now investigate the potential of various charge distributions, 
a. Potential of a Point Charge.—From Eq. (18) and the defini¬ 

tion of potential difference as given by Eq. (5) of Chap. I, it 
follows that the difference of potential between two points A and 
B in the field of a single point charge q is given by 

Using the convention that the potential at points infinitely far 
from q be taken as zero [compare with Eq. (6) of Chap. I], wo 
find for the potential at any point P of the field 

(20) 

where r is the distance from q to the point P. As stated before, 
this is the work per unit charge we mUvSt do on a test charge to 
move it from infinity to the point P against the repulsion of the 
charge q. The points lying on a sphere of radius r all are at 
the same potential and thus form an equipotential surface. The 
lines of D or are normal to these surfaces and hence are the radii 
of such spheres. The gradient of the potential at any point is 
directed radially toward or away from q, and we have 

€ = - grad V = ~ = (21) 
/ ® dr tor® ' ' 

• 

which checks Eq. (7). 
One can demonstrate readily, with the help of Gauss’s theorem, 

that for the field of any spherically symmetrical distribution of 
charge, e.g., a unifomly charged metal sphere, Eqs. (20) and (21) 
hold for all points oidside the charge. For a proof of this involv¬ 
ing a direct integration, see Frank “Introduction to Mechanics 
and Heat,” Chap. XII. Thus a spherical charge distribution 
creates a field external to itself which is the same as if the charge 
were concentrated at the center of the sphere. 

b. The Potential and Field of a Dipole.—By a dipole is meant a 
pair of equal and opposite point charges separated by a definite 
distance. We shall investigate the field of a dipole, charges ±q, 
separation 2o. Since there is symmetry about the axis of the 
dipole (the line connecting the charges), it will be sufficient to 
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restrict our attention to the plane containing the field point P 
and the dipole (Fig. 13). 

The potential at P due to the charge +q is H—-- and that due 

to the charge -O'IS —^--. 
cor2 

Since potential is a scalar quantity^ the 

potential at P is the algebraic sum of the two terms. Thus we have 
at the point P 

V JL 
€ori 

JL. 
€or2 

Vi - i) 
€o\ri ^2/ 

(22) 

In order to (express V in terms of x and jy, the coordinates of P, 
we us(^ the reflations 

r\ == (x - ay -f y‘^; 

and Eq. (22) becomes 

1 

r| = (:r + a)^ + y^ 

Vjx - a)2 + \/^+ «)^ + 
(23) 

The components of € may then be obtained by differentiating 
Eq. (23) with respect to x and y, respectively. In symbols we 
have, in accordance with Eq. (8) of Chap. I, 

= - 
dx' 6. - - 

dV 
'dy 

This,example illustrates the general p;octdure: (1) Calculate 
the potential as an algebraic, 
sum of the potentials of point 
charges. For continuous dis¬ 
tributions this becomes an ordi¬ 
nary integration. This is 
always an easier process than 
the corresponding integrations 
in the method of the previous 
section because potential is a 
scalar quantity and there is no 
question of taking components. 

(2) When the potential has been found, the intensity £ can 
be computed by differentiation in accordance with the relation 

— grad V, 

■y 

y P(x,y) 

_^ 
ho<+*a’»4 
Fio. 13 
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In the special but very important case where the distance 2a 

between the charges is small compared to ri and we can 
simplify Kq. (22) as follows. We write: 

where r is the distance from the dipole 
to the field point, — r\) is tlu^ 
difff^rence in distances bc'tween th(i 
ends of the dipol(‘ and the point P 

and, if the charges are close together, 
we (^an writer very nearly (Fig. 14) 

/•2 — ?■ 1 = 2a cos 6 Fm. 14. 

so that we obtain for 

V 2aq 
cos 8 

€or2 
(24) 

The expression 2aq is the produet of the separation of the charges 
and the magnitude of either of them. This is calhid the dipole 

moment of the dipole, and we denote it by p. Using the symbol 
p, Eq. (24) becomes 

„ ^ P t-QS 9 
€or-'= 

(25) 

as the potential of a tiny dipole of moment p. In terms of the 
X- and ^-coordinates of the field point P the equation becomes, 
since and cos 0 — xjr, 

F = =_ 
tor’ + t)-- 

(26) 

from which 6* and 6* may be conveniently found. Further dis¬ 
cussion of this field is left to the problems. 

e. Potential of a Circular Ring of Charge.—To illustrate the 
case of fields due to a continuous distribution of charge, we con¬ 
sider the example of the previous section and calculate the 
potential of a uniformly charged ring at a point on the axis of the 
ring. In general the potential is given by 
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whore r is the distance between dq and the field point. For dq 
we write t ds, c dS, or p dv, depending on the problem at hand, 
where t, <r, p are linear, surface, and volume charge densities, 
respectively. 

Referring to Fig. 11, we have, in place of Eq. (27), 

ft*. 1 

since I is the same for all the elements of charge dq on the ring. 
This can be written as 

Equation (28) gives the variation of the potential with the 
coordinates of points on the x-axis only and should not be applied 
at other points. We can, however, find the ^-component of 6 
from Eq. (28) for a point such as P. We have 

'dx €o(r2 + 

which is identical with’Eq. (17a). 

Problems 

1. Two equal and opposite point charges are held 1 ft. apart in empty 
space. What must be the magnitude of each charge in coulombs if they 
attract each other with a force of 1 lb.? 

2. Two equal negative charges, each of magnitude 8 statcouloiubs, 
are held fixed with a separation of 4 cm. Calculate the intensity of the 
field produced by these charges in a plane which bisects the line joining 
these charges at right angles, at a point 16 cm. from the intersection of the 
plane and line joining the charges. At what points of the plane is the 
intensity a maximum? What is the maximum value of the intensity? 

3. Two equal and opposite charges -H? and —9 are held fixed with a 
separation 2o. Using the line connecting the charges as an aj-axis with an 
origin halfway between them, calculate: 

o. The intensity of the field produced by this dipole at any point on the 
ap-axis. 

h. The intensity of the field at any point on a line perpendicular to the 
a^-axis and passing through the positive charge. 

c. The intensity due to each charge separately and from this the resultant 
intensity (magnitude and direction) at any point in the x-y plane, using a 
perpendicular bisector of the line joining the charges as a ^axis. 
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4. Two pith balls, each of mass 0.02 gram, are suspended from a common 

point by threads of length 10 cm. Each is given the same charge, and in 

equilibrium the threads make an angle of 74® with each other. 
Compute the charge on each pith ball. 

6. Charges of +40 and —10 statcoulombs are placed along the x-axis 
at —10 and 0 cm., respectively. 

a. Make a plot of the potential as a function of x at any point along the 

x>axis, also at any point on a line perpendicular to the x-axis through the 

point X = +10 as a function of distance along t liis line. 

6. At what points on the x-axis is the potential 1 statvolt? Is the electric 
inUmsity the same at all these points? 

c. At what point would a third charge remain in (equilibrium? Would it 

be stable equilibrium? 

6. Using Gauss’s theorem, prove that the difference b(^twe(m the electric 
intensity vf^ctors on either side of a very large uniform plane sheet of charge 

(not a conductor) is 47r tiimjs the surfacc-charg(i density. What is the 

intensity at a point outside the plane? 

7. Starting from the fact that for electrostatic equilibrium no electric 

field can exist in the interior of a metallic conductor, show" by the use of 

Gauss’s laW" that the charge on a charged metal body of arbitrary shape 

must reside on its surface. 

8. Given a charge q distributed uniformly throughout a sphere of 

radius a wdth c+arge density p. 

o. With the help of Gauss’s law show" that the electric intensity at points 

inside the sphere is proportional to the distance from the center of the 

sphere. 
b. Derive a formula for the intensity at points inside and outside the 

sphere. 
c. Make a plot of the magnitude of the electric intensity against distance 

from the center of the sphere. 
d. Calculate the potential as a function of distance from the center of 

the sphere for points both outside and inside the sphere. 
e. Plot the potential as a function of distance from the center of the 

sphere. 
9. A thin wire is bent to form the arc of a circle of radius r, subtending 

an angle at the center of the circle. If the wire carries a charge q uniformly 

distributed along its length, derive an expression for the intensity of the 

field at the center of the circle. 
10. A spherical drop of water 1 cm. in diameter carriers a charge of 5 

statcoulombs. 
а. What is the potential at the surface of the drop? 
б. If two such drops, similarly charged, coalesce to form a single drop, 

what is the potential at the surface of the drop thus formed? 
c. What is the maximum intensity of the field in p^rts a and b? Where is 

the intensity maximum? 
11. A conducting sphere of radius a carries a charge q. If an infinitesimal 

additional charge dq is brought up to the sphere from a distant point, 

calculate the work done in bringing up this charge. What is the total work 
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done in charging the sphere to a potential T, considering the sphere initially 
uncharged and then charged in the manner described above? 

12. One face of a thin circular disk of radius R is charged uniformly with 
a positive surface-charge density <r. 

a. Derive an expression for the potential at a point on the axis of the disk 
at a distance x from the center of the disk. 

b. From your answer to part a derive an expression for the electric, 
intensity at this point. What is its direction? 

c. If the disk is 3 cm. in radius and carries a total (jharge of 0.9 stat- 
coulomb, calculate the potential and intensity at a point on the axis 4 cm. 
from the center of the disk. Give your answers in volts and volts per 
(centimeter. 

d. Using the data of part c, calculate the potential at the c(‘nt(*r of th(c 
disk in volts. 

e. At what point on the axis is the intensity a maximiitn? What is this 
maximum intensity? 

IS. Using the expression V - (p cos d)/€ar^ for the potential of a small 
dipole of moment p at a point whose polar coordinates are r,0 [Eq. (25) of 
text], calculate: 

a. The component of field intensity along /• at this point. 
b. The component of field intensity perpendicular to r at this point. 
c. The resultant intensity and its direction at this point. 
14. Calculate the potential at a point outside two neighboring parallel 

infinite sheets of charge, one carrying a uniform positive surfac.(^-charg(i 
density +(r and the other an equal uniform ncjgative surface-charge density 
—(T. The pianos have a separation <i. Calculate the potential at a point on 
the other side of the planes, and show’ that the change in potential as one 
crosses this so-called double layer is equal to Anadl^^u 

ad is known as the dipole moment per unit area of the double layer. 
15. A hemispherical ctip of radius r carries a charge q uniformly distributiMl 

over its surface. What is the electric intensity at the center (»f fh»i 
hemisphere? 



CHAPTER III 

INDUCED CHARGES AND CAPACITY 

Electrostatic problems involving conductors are in general 
much more compli(;ated than those discussed in the last chapter in 
which we considered the fields produced by systems of fixed 
charges. The complication arises from the fact (which we have 
discussed briefly in Chaf). I) that, when a conductor is placed in 
an electrostatic field, induced charges distribute themselves in 
such a manner as to make the conductor an equipotential. Not 
only the field but also the distribution of these induced charges 
on conductors must be calculated, and only for comparatively 
simple geometrical (jonfigurations have exact solutions been 
obtained. 

12. Induced Charges.—If an uncharged insulated conductor 
is placed in an electrostatic field, the total charge on the con¬ 
ductor stays equal to zero, positive and negative surface charge 
appearing in equal amounts. Just as many lines terminate on 
negative induced (charges as leave from the positive induced 
charges. Suppose we consider the case of an uncharged metallic 
sphere placed in the neighborhood of a positive point charge. 
Some of the lines of D leaving the point charge will terminate on 
the side of the sphere toward the point charge, and an equal 
number will leave from the other side. The magnitude of the 
induced charge of either sign will depend on how much of the field 
is intercepted by the conductor. If a charged body is brought 
inside a hollow metal container (with a small opening), practically 
all the field is intercepted, and there is an induced charge on the 
inside of the container equal to, and of sign opposite to, the charge 
introduced into the container. On the outside of the container 
one finds a charge equal in sign and magnitude to the charge 
introduced. If the outside of the container is connected to an 
electroscope, the leaves will diverge because of this charge. Upon 
bringing the charged body into contact with the inside of the 
container, no effect is noted on the electroscoper, and upon 
removing the originally charged body there is still no change in 

41 
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electroscope. The charge remaining on the metal container 
is thus shown to be equal to the original charge introduced. The 
tihovi) experiment was performed along with others by Faraday, 
using an ice pail as the metal container, and these are known as 
the Faraday ice-pail experiments. Using this arrangement, 
Faraday found that, if two bodies were electrified by friction 
inside the pail, no deflection of the electroscope was observed. 
If one of the two bodies which were rubbed was removed from the 
pail, the leaves of the electroscope diverged, thus showing that 
the bodies were charged. This provides an experimental proof 
of the law of conservation of charge^ showing that the two bodies 
had acquired exactly equal and opposite* charges. 

In spite of the difficulties of exact calculation, one can obtain 
a good idea of the field in the presence of conductors by sketching 

the lines of D and the equipoten- 
tials, remembering that the 
surface of the conductor is an 
equipotential and that the equi- 
potentials near this surface must 
bear some resemblance to it. In 
Fig. 15 is shown the. field which 
results from placing an insulated 
imcharged sphere in a region 
where there originally was a 
uniform field. The solid lines 

are the lines of displacement (or intensity), and the dotted ones 
show the equipotentials. 

13. Method of Electrical Images.—The distribution of charge 
induced on a conductor when it is placed in an electric field can 
be calculated in certain simple cases by the method of electrical 
images, introduced by Lord Kelvin. We shall explain the 
method with the help of an example. Suppose we have a large 
plane conductor placed in the field produced by a point charge 
-bg. Let the distance d of the point charge g from the plane be 
small compared to the dimensions of the plane so that we may 
treat the latter as infinite. Furthermore, the conductor is 
grounded (connected to the earth) so that we may take its 
potential as zero. We now must try to find a distribution of 
charge on the surface of the conductor such that its potential is 
zero. In the method of images we imagine the conducting plate 

Fig. 15, 



Sec. 13] INDUCED CHARGES AND CAPACITY 43 

removed and a point charge — g placed at a distance d in back 
of the plane occupied by the conducting surface, as if it were the 
image of the charge +q in a plane mirror (Fig. 16). The field of 
these two point charges is such that the plane bisecting the line 
joining them (the position of the conducting surface) is an 
equipotential because eveiy point on this plane is equidistant 
from both charges. Thus at a point P, the potential is 

y = X _ X := 0 
€or €or 

The two point charges produce the same effect as the induced 
charge and the original point charge. At any point Q wc can 
calculate the field since the potential there is 

V = - -) 
€o\ri Vi/ 

and this yields the dipole field discussed in Chap. II. In the real 
problem, we thus have the field at all points to the right of tlm 
plane, since there is no field in¬ 
side or to the left of the plate. 

To obtain the distribution of 
induced charge on the plane, wc 
make use of the fact that the 
intensity of the electric field at 
the surface of a conductor equals 
47r<r/€o, where a is the surface- 
charge density at the point in 
question [see Eq. (11), Chap. II]. 
The intensity € at an arbitrary 
point P of the plane is the vector 
sum of the two vectors and 

as shown in Fig. 16. The vectors 6+ and 6^. ani equal in 
magnitude, each being gAor*, and they make equal angles with 
the x-axis. The resultant is 

2qd 
€or® (1) 

the negative sign indicating that it is directed to the left, i.e., 
toward the surface. The induced surface-charge density at this 
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point is thus 

€o£ _ qd 
4ir 27rr» 

(2) 

and varies inversely as the cube of the distance from the point 
charge. One can readily show that the total induced charge is 
just equal to equal and opposite to the point charge outside 
the plane. The proof of this is left to a problem. The force 
with which the conducting plane and the point charge attract 
(^ach other is equal to the force with which q attracts its mirror 
image. Note that, although the conductor is grounded (its 
potential is zero), it carriers a charge. It is a common error to 
suppose that a grounded conductor can ncv(ir carry an electric 
charge. 

14. Capacity Coefficients; Condensers.—^f an isolated con¬ 
ducting body, such as a metal sphere, is charged, its potential 
(with respect to an infinitely distant point) is raised or lowered 
depending on the magnitude and sign of the charge imparted to 
it. In fact, the potential is proportional to the charge on the 
sphere. If the body is not alone, however, and there are othei- 
conducting bodies in its neighborhood, the potcuitial of the first 
body will depend not only on its own charge but also on the 
charges and positions of all its neighbors. It can be shown 
(although we shall not give a proof here) that, for a system of 
conducting bodies, the potential of each is a linear function 
of the charges carried both by itself and all the others. Con- 
v'ersely, the charge on each conductor is a linear function of the 
potentials of all the bodies, itself included. The constant 
coefficients appearing in these relations (charges in terms of 
potentials) depend only on the geometry of the system, not on its 
electrical state, and are called the capacity coefficients of the 
system. In our work we shall restrict our attention to the case 
of two-body systems for which the above relations become com¬ 
paratively simple. 

Let us consider two uncharged metallic bodies, insulated from 
each other and far removed from other conductors or from 
charged bodies. If we transfer a quantity of charge from ono. 
body to the other, as can be done by connecting them for a 
moment to opposite terminals of a battqry or power line, one 
of the bodies will carry a charge d-g', the other a charge — gr, and 
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there will exist a potential difTerenee between the bodies. Such 
a two-body system is called an electrical condenser or capacitor. 
The potential difference between the two so-called plates qf a 
(condenser is proportional to the charge transferred from one 
plate to the other and the ratio of the charge on either plate to the 
potential difference between them is called the electrical capacity or 
capacitance of the condenser. If q is the magnitude of the charge 
on either plate and -- V\ denotes tlu* potential diffenmee 
between the plates, the capacity C is given by 

The capacity C of a condenser is dc^fined as a positive quantity, 
and its value depends only on the geometry of the system and the 
medium in which the field produced by the charges on its plates 
exists. We shall, in this discussion, confine our attention to the 
case’s of empty space (or air, since the value of e for air is practically 
the same as for vacuum). In the electrostatic system of units, 
the dimensions of C can be readily shown to be those of length, 
so that the unit cai)acity in tliis system of units is the centi¬ 
meter^ sometim(;s called a statfarad. In the m.k.s. system, the 
unit capacity, 1 coulomb/volt, is given the name 1 farad. One 
farad is equivalent to 9 X 10“ cm. 

All the lines of D which leave the positively charged plate of a 
c^ondeiiscir must tcirminate on the negative plate because the 
charges on the plates are equal and opposite. The general 
problem of determining this field for arbitrary bodies (in order 
that the potential difference may be calculated) is virtually 
impossible, so that capacities are usually determined experi¬ 
mentally. There are, however, several simple and important 
geometrical configurations for which a theoretical calculation 
can be made without difficulty and we shall examine a few of 

these. 
a. T'he Parallel-plate Condenser,—The condenser fionsists of 

two parallel metal plates, each of area A, separated by a distance 
d which is small compared to the surface dimensions of the plates 
(Fig. 17). If the left-hand plate carries a charge +q and the 
other plate a charge -g, the field due to these charges will 
exist practically only in the region between the plates. There 
will be a slight fringing at the ends, but this can be neglected if 
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the plates are large enough. In the figure are indicated the lines 
of D originating at the positive charges, which are uniformly 
distributed on the inside surface of the left-hand plate, and 
terminating on corresponding negative charges on the opposite 
plate. The field between the plates is a uniform field, and, from 
Eq. (10) of Chap. II, we have for the magnitude of D 

D = 4ir<r (4) 

By definition, the potential difference between the plates is equal 
to the work per unit charge which must be done in moving a 

Fio. 17, 

charge from one plate to the other. Since the field is unirorm, 
this is 

JStds — £d 

so that we may write 

Fa - 7i = (5) 

To calculate the capacity of the condenser, we must have an 
expression for the charge on either plate. From Eq. (4) we 

find 

Q = Aff = ^ (6) 

Using the definition Eq. (3) of capacity, there follows for the 
capacity of a parallel-plate condenser (neglecting fringing) in 

vacuum or air, 

C = 
Ui 

DA_ 
€ 4ird 

g A 
(7) 
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Equation (7) shows that the capacity increases with increasing 
area and with decreasing separation, of the plates. 

6. The Sphericul Condenser,—The condenser consists of a 
metallic sphere of radius a (let us say) and a hollow concentric 
metallic sphere of inner radius b surrounding the first (Fig. 18). 
The spherical symmetry of the condenser demands that the 
charges on the inner and outer spheres be distributed uniformly 
over the surfaces. 

At any point (between the spheres) at a distance r from 0, 
the displacement field points out along r and has a value 

with a corresponding intensity in vacuum 

(9) 

since the field is the same as if the charge q were concentrated 
at the center 0. The difference of potential between the plates is 

n - F6 = dr = — i = s/i«i) 
eojb r^ €o\a h) 

and from Eq. (3) the capacity of the condenser is 

rr _ ^ 

^ ~ " (1/a) (1/6) h -- a 

(10) 

(11) 

If the radius b of the outer sphere is very large compared to a, 

we have 

C = €oa (12) 

as the capacity of an isolated sphere of radius a. We can give a 
simple interpretation to the unit of capacitance in the electro- 
st^atic system of units. In this system e© = 1, and the unit of 
capacity is the capacity of an isolated sphere of radius 1 cm. 

c. The Cylindrical Condenser,—The condenser consists of a 
metallic cylinder of radius a and a concentric hollow metallic 
cylinder of inner radius b surrounding the first cylinder. If the 
length I of the cylinder is very large compared to the separation, 
the field between the cylinders is essentially that produced by an 
infinitely long straight wire, uniformly charged. For this case a 
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calculation similar to those of the preceding examples yields, as 
the capacity per unit length of such a condenser, 

60 

2 In (6/a) 
(13) 

The proof of this is left as a problem for the reader. 
16. Condensers in Parallel and Series.—In many practutal 

cases one is interested in the capacity of systems of condensers 
when they are connected to one another in various manners by 
metallic wires. At first sight it might seem that we would have 

to employ the general theory 
of capacity coefficients to carry 
through such a calculation. Wc; 
have seen, however, that the field 
due to the charges on the plates 
of a condenser is confined practi¬ 
cally entirely to the region be¬ 
tween the plates. The presence 

of other conductors in the neighborhood of a condenser makes 
no difference, provided only that they are outside the field 
produced by the condenser. This is the case in practice, and wo 
shall proceed with the calculation on this basis. 

Suppose a number n of condensers are connected in parallel, 
as shown in Fig. 19. The difference of potential Fab is the samc^ 
for all the condensers Ci, C2, * * * , C„ by virtue of the connec.- 
tion, and the total charge on the condensers is the sum of th.e 
charges on the individual condensers. For the individual 
condensers we have 

Ql — C\Vabj ^2 — C2Vah] ’ ’ * J Qn Cn^ab 

If we add all these equations, there follows 

qi + Q2 + * • * + Qn — Q = V„h(Ci + C2 + • • • + Cn) 

and, since a single condenser which is equivalent to this combina¬ 
tion would take the same charge when its plates have a potential 
difference Vob between them, its capacity would be 

(14) 
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Thus the capacity of a single condenser equivalent to a number of 
condensers in parallel is equal to the sum of the individual 
capacities. 

If we connect the condensers in serieSj we obtain the arrange¬ 
ment shown in Fig. 20. Suppose we establish a definite potential 
difference Vah between the terminals a and b by connecting them 
to a battery. Let the positive charge on plate I be +q. There 
must be an equal negative charge —q on plate II since all the 
lines of D starting from plate I terniinate on plate 11. Since 
the plates II and III arc connected together and are originally 
uncharged, there must be an equal charge +q on plate III. 

^1 
-q +q 

^2 C3 ! Cn 

0 " 

III m 
Fi«. 20. 

Thus we see that the charges on the condensers are equal in 
series connection, li V\^ V2, • Vn denote the potential 
differences between the plates of the various condensers, we 
see that 

F,, = F, + F2 + • • • + Fn 
since the work one must do to move a charges from b to a is equal 
to the sum of the works done in moving through the fields of the 
individual condensers. 

For the individual condensers we have (since the charges are 
all equal) 

Adding these equations, there follows 

where C is the capacity of a single equivalent condenser, 
we have 

Hence 

fl5) 

as*the formula for calculating the capacity of a single condenser 
which is equi>i alent to a number of. condensers in series. 
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16. Energy Stored in a Condenser; Energy in the Electrostatic 
Field.—^Let us calculate the work which must be done in charging 
a condenser. To do so, we imagine the charge brought from one 
plate to the other in successive steps, an infinitesimal amount dq 
in each step. Suppose at some point in the process the charge 
on the plates is q and the potential difference V'. The work we 
have to do in bringing an additional charge dq from one plate 
to the other is 

dW = F dq (16) 

since F' is the work per unit charge which one must do to transfer 
a charge from one plate to the other. By definition we have 

F' = I (17) 

where C is the capacity of the condenser. Substituting in Eq. 
(l&), there follows 

dW — ^qdq 

and the total work in charging the condenser to a final charge 
Q is 

If the final difference of potential is F, tliis can be written as 

W - iCF2 (18a) 

This energy can be thought of as stored up as potential energy in 
the condenser since it can all be regained. For 
example, in a parallel-plate condenser one could 
allow the plates to come together under the action 
of their attraction for each other and thereby 
raise a weight. We can use this type of argu¬ 
ment to calculate the force of attraction between 
two condenser plates. Let the condenser plates 
have a separation x, and let us imagine the con¬ 
denser charged with charges ±Q on its plates and 

insulated so that the charge cannot escape. If we separate the 
plates by an additional amount dx (Fig. 21), we must do an 
amount of work ’ • 

-dx 

Fig. 21. 

dW = Fdx (19) 
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where F is the magnitude of the force of attraction between the 
plates. This work must be stored up in the condenser. We can 
calculate the increase of energy stored in the condenser by noting 
that we have decreased the capacity of the condenser, and hence 
from Eq. (18) the energy increases. We write for the energy 
U, in accordance with Eqs. (18) and (7), 

u — « 
2C 

27rQ^^ —— X 
eoA 

(20) 

and if x is increased by c/x, th(' incr(\ase of U is 

dU - 
2tQ^ 

dx (21) 

and, equating (21) and (19), th(‘n* follows for t he attractive fon^e 

F = 
2wQ^ 
UiA C(i 

(22) 

whcAv G is the surface-charge density on either plate. From this 
we find for the jorce per unit area (a normal stress) acding on the 
charged surfaces 

F 
A (23) 

This expression turns out to be correct for any charged surface, 
although we have derived it only for a spcjcial case. Note tliat 
in the derivation we have considered the charge on the condenser 
plates constant while the plates arc moved. One might ask, 
<<Why not calculate the work done during a motion dx of one of 
the plates, keeping the potential constant?’^ Such a calculation 
would not yield the? correct value for the force because one would 
have to maintain a constant difference of j)otential with an 
(ixternal device, such as a battery. The battery would then 
deliver energy to or absorb it from the condenser when the 
separation of the plates is changed. Hence we could not cor¬ 
rectly identify the mechanical work done with the increase of 
electrostatic energy in the condenser. 

Let us return to the question of the energy stored in a parallel- 
plate condenser. From Eq. (18), this can be written as 

_ WAd 
^ ~ 2C ~ 2C 260 

(24) 



52 ELECTRICITY AND ORTICS [Chap. Ill 

using the fact that the capacity C * eoAliird. It is interesting 
to write this expression in terms of the field vectors € and D, We 
haveD = 4x0-and £ = 4x(r/€o for the uniform field of the parallel- 
plate condenser, so that Eq. (24) takes the form 

r = ^D(Ad) = '-^(Ad) (25) 

Now .Ad is just the volume of space in which the field is different 
from zero, and the energy is proportional to this volume. Thus 
for this case we can think of the energy as stored in the ele(?tro- 
static field with an energy density (energy per unit volume) 

equal to One can prove in general (using methods which 
OTT 

would take us beyond the scope of this book) that the above 
interpretation is possible for any arbitrary electrostatic field. 
It takes work to establish such a field, and we can think of this 
work as being stored up in the field, distributed throughout space 
with a density given, as above, by 

»- 

where € and D represent the magnitudes of the intensity and 
displacement vectors at the point where the energy density is 
being calculated. Equation (26) holds only for empty spacer as 
written with the factor €o, but we shall later see that a very similar 
relation holds in material media. For a given field one can com¬ 
pute the total electrostatic energy by integrating over all spac/e, 
so that 

U^^je^dv (27) 

space 

where dv is an element of volume. 

Problems 

1. Prove by direct integration that the total charge induced on an 
infinite conducting plane by a point charge is equal to and of opposite sign 
to the point charge. [Use Eq. (2) for the surface density of induced charge.] 

2. In the preceding problem, derive an expression for the fraction of the 
total induced charge on the plane which lies inside a circle whose radius 
equals the distance of the charge from the plane, the center of the circle 
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being tLe point of intersection of a perpendicular from the point charge 
with the plane. 

3. An electron is located at a distance of 10“** cm. in front of a large 
plane metallic plate. 

a. Calculate the force exerted by the plate on the electron when in the 
above position. 

h. When the electron is at a distance x from the plate, calculate the attrac¬ 
tive force. 

c. How much work (in ergs) would it take to pull the electron to infinity 
starting at the point x — 10“* cm.? 

d. Through what difference of potential in volts would an electron have 

t.o move to gain the amount of energy calculated in part c? 

4. A parallel-plate condenser has plates of 100-cm.* area separated by a 
distance of 1 mm. 

а. Calculate the capacity of this condenser in e.s.u. and in microfarads. 

б. If the plates of the condenser are connected to the terminals of a 100- 

volt battery, what charge resides on the plates? 

6. Considering the earth as an isolated spherical conductor, calculate its 

capacity in microfarads. The radius of the earth is 4,000 miles. 

6. Derive Eq. (13) for the capacity per unit length of a long cylindrical 

condenser. 

7. Derive an expression for the capacity of the condenser formed by two 

spheres, each of radius a, separated on centers by a distance 6, h being so 

much larger than a that the distribution of charge on either sphere may be 

taken as very nearly unaffected by the presence of the other sphere. 

8. Three condensers of capacities 2, 4, and 6 /uf> respectively, are con¬ 

nected in series, and a potential difference of 200 volts is established across 
the whole combination by connecting the free terminals to a battery. 

а. Calculate the charge on each condenser. 

б. Find the potential difference across each condenser. 

c. What is the energy stored in each condenser? 

9. The three condensers of the preceding problem are connected in 

parallel and then connected to the same battery as before. 

a. What is the total charge on all three condensers? 

h. What is the total energy stored in ail three condensers? 

10. The 4- and fi-^f condensers of the preceding problems are connected 
in parallel and the combination then connected in series with the 2-/if 

(condenser. The potential difference across the system so formed is main¬ 

tained at 200 volts. Calculate the total energy stored in the condensers and 

t he charges on each. 
11. A 0.01-iuf condenser is alternately charged to a potential difference of 

5,000 volts and discharged through a spark gap, 500 times per second. 

What is the energy dissipated per discharge? What is the average rate of 

power dissipation? 
12. Suppose two condensers, one charged and the other uncharged, are 

connected together in parallel. Prove that, when equilibrium is reached, 

each condenser carries a fraction of the initial charge equal to the ratio of 

its capacity to the sum of the two capacities. Show that the final energy 
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in the system is always less than the initial energy and derive a formula for 
this difference in terms of the initial charge and the capacities of the 

condensers. 

13. Two condensers of capacities 5 and 10 iii are each charged with a 

potential difference of 100 volts and the negative plate of the 5-Acf condenser 

is connected to the positive plate of the 10-/if condenser. 

a. What is the total charge on the two plates which arc <;onncctcd 

together? 

h. If the other two plates are then connected together, what is the 

potential difference across each condenser after equilibrium is established? 

14. Show that the force of attraction per unit area betweem two parallel 

condenser plates can bo written as ~ where £ is the intensity of the 
A OTT 

field between the plates. From this show that, if the potential dilfercncci 

between the plates is maintained constant (by connecting the condenser to a 

battery), the force varies inversely as the square of the separation of the 

plates. 

16. A parallel-plate condenser having plate areas of 100 cm.* and a 

separation of 2 mm. is permanently connected to a 100-volt batter3^ Using 

the results of the preceding problem, calculate hov; much work is done in 

separating the plates to a distance of 4 mm., maintaining the potential 

difference constant during the process. Docs the energy stored in the 

condenser increase or decrease, and by how much? Compare this with the 

mechanical work done in effecting the plate separation. 

16. Assuming the validity of the expression 27r(r*/€o as the force per unit 

area acting outward on any charged conducting surface (a the surfa(‘»'- 

charge density), calculate the maximum charge which can be put on the 

surface of a water drop 2 cm. in diameter. The surface tension of water is 

72 dynes/cm. What is the potential at the surface of the drop under these 

conditions? 

Hint: The maximum charge is that for which the outward electrical force 

just balances the surface-tension force. 

17. For the problem of the point charge and conducting plane, cahjulate 

the force of attraction between charge and plane by integrating the (‘xpres- 

sion 27r(r*/€o over the area of the plane. Show that this is just the same* a.s 

the attraction of the point charge for its image. 

18. Show that the expression Q^I2C gives the energy stored in a spherical 

condenser by integrating the energy density u over the region of 

space between the plates. Take as volume elementihc volume between 

two spheres of radii r and r + dr, respectively. 

19. Assuming that an electron is a uniformly charged sphere of radius o, 

calculate an expression for the total electrostatic energy in the field produced 

by a single electron. 

Assuming further that this energy is equal to me*, m the mass of an elec¬ 

tron, c the velocity of light (3 X 10^® cm./sec.), calculate the radius of an 

electron in centimeters. 



CHAPTER IV 

STEADY ELECTRIC CURRENTS 

The fundamental laws of the equilibrium behavior of con- 
duetors in electrostatic fields are changed radic ally whcm equilib¬ 
rium is disturbed, ix., when there is or motion of electric 
charges. When the charges in a conductor are not at rest, 
the intensity of tlie field at the surface need not b(j normal to 
the surface. Hence the conducting body is not an equipotential, 
and there will exist an electric field inside the conductor. As an 
(‘xample let us considei* a (diarged cond(mser in electrostatics 
equilibrium. If w(; connect the two plates by a metallic wire, 
we have, at the instant of contact, a single conducting system 
(the two plates and the wire) with a difFc'rence of potential 
betwecm two of its parts. Sincic this is not a possible equilibrium 
states, electric charge flows from one plate to th(^ otlu^r until all 
points of the system attain the same potential. We say that an 
electric current flows in the wire connc^cting the plates and in this 
(example the flow is trenedent or nonsteady, equilibrium being 
reestablished in a very short time. One can say that positive 
charge flows from the plate of higher i)otential to that of lower 
potential, or that negative charge flows in the opposite direction, 
or both. No matter v/hat piedore one has, it is necessary to adopt 
a convention as to the direction of current flow, and wo do so by 
(tailing the direction of flow of positive charge the direction of flow 
of the electric current. When electric current flows in a material 
medium, su(;h as a conductor, it is usual to denote the current 
as conduction current^ whereas, if charged masses such as electrons 
or ions transport the charge directly from one point to another, 
the current is called convection current. The essential point is 
that charge is transferred from one point to another, the whole 
vsituation being analogous to the mode of description of heat flow. 
In fact, the analogy is so close that the student should constantly 
draw parallels between the two phenomena. 

17. Definitions of Current and Current Density.—We shall 
define the electric current flowing across a definite surface as 

o5 
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the charge per unit time crossing this surface. In symbols 

(1) 

where dq is the charge passing across the surface in time dt. 
For many problems it becomes necessary to introduce the idea of 
current density. Consider an infinitesimal area at a point of 
a medium carrying current, and let us choose the elementary area 
so that it is perpendicular to the direction of current flow. 
If we denote this area by dSn and the current crossing it by dt, 
then the current density j at this point is defined by 

i = 

di 
(ISn (2) 

The subscript n is to indicate that dSn is normal to the direr tion 
of current. If j is known (magnitude and direction) at every 

point of a surface, we can obtain the total current crossing a 
finite area by the following scheme: The current crossing an 
element dS of the area is jn dSy since only the component of j 
normal to dS contributes to the charge crossing this area. Th(j 
total current is then the sum of the contributions from all the 
elements of the area under consideration. Thus we have 
(Fig. 22) 

i ~ J*jn dS = Ji cos $ dS (3) 

area 

In the electrostatic system of units, the unit of current is 1 
statcoulomb/sec. and is called a statampere. The unit of current 



Sbc. 18| STEADY ELECTRIC CURRENTS 57 

density is thus 1 statampere/cm.^ In the m.k.s. system the unit 
current of 1 coulomb/sec. is called 1 ampere and the corresponding 
unit of current density is 1 ampere per square meter. 

18. The Steady State: Equation of Continuity.—Consider a 
conducting medium in which electric current is flowing, and let 
us imagine that at each point we construct the vector j. The 
totality of such vectors forms a vector field of flow just as in 
the case of flow of fluids. One can construct ^Hines of flow^' 
which give the direction of the current at each point of space and 
also tubes of flow just as in the hydrodynamical case. In this 
chapter we restrict our attention to the case of the steady or 
stationary state in which the pattern of lines of flow stays fixed. 
The current density maintains a definite value at each point 
of the medium although it may vary from point to point. In 

A2 

the applications with which we shall concern ourselves, we will 
have to do largely with the flow of currents in metallic wires. 
In this case we have a bundle of stream lines within the wire 
(the current flowing along the length of the wire) which we con¬ 
sider to form a single tub(^ of flow. 

The law of conservation of electric charge places a definite 
restriction on the pattern of flow lines, and this is called the 
equation of continuity. We shall derive this law for the steady 
state. Consider a single tube of flow, as shown in Fig. 23, and 
let the cross sections at points Pj and P2 normal to the direction 
of current flow be Ai and A2, as shown. We shall assume that 
the current density j is constant at all points of either area. 
This involves no loss of generality, since we can make these areas 
as small as we please. In the steady state, the charge entering 
the volume of the tube between the areas Ax and A2 across Aj 
per unit time must be just equal to the charge leaving per unit 
time across A 2. Otherwise the charge in this volume would 
keep increasing (or decreasing) indefinitely, contradicting the 
assumption of a steady state. From the law of conservation of 
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charge we know that no net charge can be created or destroyed 
inside this volume. 

The current across Ai is ii = jiAi [Eq. (3)], and across A*z 
it is iz == ^42^2, so that the equation of continuity takes the form 

ii = ii 

or 

jiA 1 = jzA 2 (4) 

where 1 and 2 refer to any pair of points on the tube of flow. 
This equation may readily be extended to the case wh(?re a 

tube of flow branches into two or more tubes of flow, as in the; case? 
of linear metallic circuits where more than two wires are con- 

Fig. 24. 

nected at a single point (a so-called branch point). In Fig. 24 
we show the (;ase of three conductors connected at a branch point 
P. Choosing areas .42, and Az as shown, one finds easily 
that the equation of continuity bocom^^s 

= ^2 + H 

or 

jiAi = ^2-4 2 + isAs (5) 

The extension to the case of more than three conductors meeting 
at a point is obvious. 

The law of conservation of charge requires that, in the steady 
state, the lines of current flow (and hence the tubes of flow) 
form closed curves and cannot start or stop anywhere in the 
medium where current is flowing. This fact can be easily 
formulated mathematically to give a somewhat more general 
form of the equation of continuity than we have written. Con¬ 
sider any closed surface. From the above we see that there can 



19j STEADY ELECTRIC CURRENTS 59 

be no net current entering or leaving the volume enclosed by 
this surface, and hence we can write 

fj.dS==0 (6) 
closed 
surface 

This is the general form for the equation of continuity for the 
steady state. Equations (4) and (5) can be obtained immedi¬ 
ately by applying Eq. (6) to the particular cases described by 
them. 

19. Sources of E.m.f.—Thus far we have (jonsidered only the 
geometrical description of the flow of electric curnuits, and now 
we must investigat(i the methods by which such flow can be set 
up and maintain(»d. Let us start with the simplest (*ase of a 
single metallic wire. If we maintain a constant difference of 
f)otential between the ends of the v/ire, it is found that a steady 
state is (istablished in which a constant curnmt flows in the wire 
and a steady evolution of heat is obscu-ved. This generation of 
heat corresponds to a continual dissipation of energy, and this 
eiK^rgy must be supplied by the devic^e which maintains the differ¬ 
ence of potential between the ends of the wire. Any device which 
7naintains a definite difference of 'potential between two points^ 
which we call the terminalsy shall be called a seat of electromotive 
force. If a wire is connected between the terminals of a seat of 
e.m.f., a steady current will be set up and a definite potential 
difference will be maintained between the terminals. This 
potential difference will in general be different for different cur¬ 
rents, but in any given case it will be constant, and the seat of 
e.m.f. will continually supply energy to the electrical circuit 
thus formed, forcing charge internally from its low potential 
1,0 its high potential terminal. One important characteristic of 
steady currents must be always kept in mmd: Although the charges 
are not at rest in the system, there is a static distribution of potential 
and of electric field which is maintained by the seat of e.m.f. 

Let us examine the situation in the case of a typical seat 
of e.m.f., a battery. First, let us suppose that we have a charged 
parallel-plate condenser with the plates made of copper. If 
the charged plates are dipped into a dilute sulphuric acid solution 
(a conducting medium), the electric field between the plates 
sets the charged ions in the solution into motion; a current 
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flows discharging the condenser. When equilibrium Ls reached, 
the plates are at the same potential. Were we to perform the 
above experiment with the condenser initially uncharged, nothing 
would happen when the plates were dipped into the solution. 
If we substitute a zinc plate for one of the copper plates and dip 
the uncharged condenser into the sulphuric acid solution, we find 
the surprising result that a difference of potential appears and 
is maintained between the plates, the copper being at a higher 
potential than the zinc. The electric field inside this so-called 
cell tends to send current from the copper to the zinc and destroy 
the difference of potential. Since, however, this does not occur, 
we must assume the existence of forces inside the cell which are 
not due to the electric field and which we shall denote as non¬ 
electrical or chemical forces. In equilibrium, then, the chemical 
force tending to drive an ion from one plate to the other is just 
equal and opposite to the force on the ion due to the presence 
of the electric field. If we imagine that wc were to move an 
ion inside the cell from the negative plate to the positive plate, 
the work done by the electric field must be just equal and 
opposite to the work done by the chemical forces. Thus the 
work done per unit charge by the chemical forces in the above 
motion is just equal to the potential difference between the 
terminals (this is only true on open circuit, i.e., when no current 
is being sent around a circuit containing the cell) and is called 
the electromotive force of the cell. It is in this manner that 
we can utilize the idea of electromotive force to measure the work 
per unit charge done by nonelectrical forces which must act in 
any seat of e.m.f. 

There is another method of describing the above situation 
which is often employed, in which one uses the terminology 
e.m.f. to denote the work done per unit charge by both non¬ 
electrical and electrical forces on a charge carried around a 
closed path, part of which lies inside the seat of e.m.f. Although 
there is no essential difference between the two modes of descrip¬ 
tion, it often causes confusion. Let us imagine that we have a 
cell on open circuit and that we cany a charge around a closed 
path, as shown in Fig. 25. The work done per unit charge in 
the part of the closed path AB external to the cell is just 
the difference of potential between the plates. Inside the cell 
we have equal and opposite electrical and nonelectrical forces, 
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SO thao the net work done by all the forces for the path BA inside 
the cell is zero. In cither mode of description we have the 
fundamental result that the electromotive force of a seat of e.mf, is 

measured by the potential difference be¬ 
tween its terminals on open circuit. In tC/osedpafh 

symbols we write 

^ = Vah (open circuit) (7) { 

One more fundamental point must 
be insisted upon. Since we have a 
static- electric field maintained by vir- 

Fig. 25. 

tue of the action of the seat of e.rn.f., we can still write the 
fundamental law of electrostatics for £(= — grad V) 

fe. (is = 0 (8) 

(ilosod 
path 

or, in words, the work done by the electrical forces per unit 
charge around any closed path must be zero. This is just another 
way of stating that the field is conservative and that a potential 
exists. 

20. Ohm’s Law for Linear Conductors.—^Let us return to the 
c^ase of a simple series circuit, a single metallic wire of uniform 
cross section connected to the terminals of a seat of e.rn.f. Since 
a constant potential difference is maintained between the ends of 
the wire, there must be an electrostatic field within the wire. 
Under the influence of this field a steady unidirectional current i 
is maintained. If we change the potential difference between 
the ends of the conductor, the steady current also changes, and 
it turns out that the ratio of potential difference to current is 
constantj independent of the current, provided the temperature 
of the conductor is maintained at a constant value. This is 
the essence of Ohr^s law. Denoting the potential difference by 
Vah, a and b referring to the ends of the wire, then Ohm's law 
states that 

V I. 
—^ = constant 
i 

(9) 

This constant ratio is called the electrical resistance of the con¬ 
ductor for this type of current flow. Note that Ohm's law is a 
statement of the behavior of conducting bodies and in this sense 
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should be looked upon as describing a property of matter rather 
than as a fundamental electrical principle. If we denote this 
constant resistance by Rabj Eq. (9) becomes 

yf=R., (10) 

The unit of resistance in e.s.u, is 1 statvolt/statampere and is 
calked a statohm. In tlu^ m.k.s. system the unit resistance is 
1 volt/amp. and is called 1 ohm, Ohm^s law as expressed by 
Eq. (9) or (10) holds for any portion of a linear conductor, 
a and b then referring to any two (*.ross sections of the uniform 
wire. For a homogeneous straight wire of uniform cross section, 
the equipot(?ntial sui*faces are cross-sectional areas of the wir(3 

normal to the direction of the lines of current flow, and the 
electric field inside the wire is uniform and directed along the 
lines of flow. We return to this point in the next section. 

Since heat is evolved as long as current flows, we think of 
P the expression iRah as the work done per unit 

(diarge on the moving charges by forces which 
have the nature of friction forces and are direct¬ 
ed opposite to the direction of the current. 
Thus we can interpret the expression iRab as 
the work done per unit charge against the resist¬ 
ance forces in moving charges from a and 6, and 
it is often called the iR drop along the wire. 

A schematic diagram of a simple series circuit is shown in 
Fig. 26. Let the e.m.f. of the battery be E and let us suppose 
that the internal resistance of the battery (the resistance of 
the path carrying current between the terminals) is so small 
compared to the resistance R of the wire that we can neglect it. 
The current i flows in the external circuit from the positive 
to the negative terminal. Let us calculate the work done by the 
electric field in moving a charge completely around the closed 
circuit. From Eq. (8) this must be zero. Thus we have 

LvvVWVV-' 
R 

Flu. 26. 

Vab + Vba == 0 
(external) (internal) 

(11) 

where the first term is taken along the external circuit and the 
second inside the seat of e.m.f. From Eq. (10) the first term 
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is iR aad from Eq. (7) we see that the second term is — ^ (using 
the facts that inside the cell 

V^a = n -- 7« = -{Va - n) - -Vat 

and that there is no internal resistance). Thus Eq. (11) becomes 

iR - E = 0 

or 

E = iR (12) 

Now let us drop the restriction of no intornaJ resistance, and let 
us assume that there is an ohmic resistance Rn between the tc^r- 
minals of the battery. When a current flows through a battery, 
the e.m.f. no longer equals the potential diffennice between its 
terminals. If current flows inside the battery from the nega¬ 
tive to the positive terminal (the case of Fig. 22), then some 
of th(‘ work done pei’ unit charge by the nonelectrical forces 
in driving charge through the battery is used in overcoming 
the friction forces (ohmic resistance), and the remaining work ' 
is availabl(‘ to do work against the electrical forces. Thus the 
potential difference between th('. terminals is less than that on 
open circuit, and we have 

Vat ^ E iR, (13) 

The terminal potential difference is thus the e.m.f. minus the 
iR drop through the battery. 

If current is fonied through the battery from the positive 
to the negative terminal (this can only be done with the help 
of additional seats of e.m.f.), then the electric forces inside 
the battery must be larger than the chemical forces. Indeed 
the work done by the electrical field in moving a charge in this 
manner between the terminals must be equal and opposite to 
the sum of the works done by the chemical and friction forc(‘s 
acting on the charge. Expressing this per unit charge, we have 
in contrast to Eq. (13) 

Vat = JS + IRb (14) 

Equation (14) holds, for example, in the case of the charging of a 
storage battery, whereas Eq. (13) holds when the same battery 
is discharging. 
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Equation (12) is no longer correct for the circuit of Fig. 22 
when the internal resistance Rb is included, but Eq. (11) is of 
course still valid. The second term in Eq. (11), referring to 
the portion of the path inside the battery, is again 

Vha = ““Fa6 == + iRit 

using Eq. (13). Th(‘ first term is iR^ so that we obtain 

iR — E "jr iRa = 0 

or 

E = i(R + Rb) (15) 

as the relation between e.m.f., current, and resistances which 
is to replace Eq. (12). Note that Eqs. (12) and (15) become 
identical when Rb = 0. We see from the foregoing example that 
Ohm^s law in the form of Eq. (10) holds only for a portion of 
circuit in which there are no seats of e.m.f. 

Equation (15) no longer contains any term referring to the work 
done by purely electrostatic forces. This is due to the fact 
that it refers to work done in a closed path, and according to 
Eq. (8) the electrostatic forces yield no contribution. The 
electromotive force of the battery (£/), which is the work done 
per unit charge in moving a charge through the cell, is equal to 
the work done per unit charge against the dissipative forces in 
the conducting path. 

Resistances in Series and in Parallel,—^Let us suppose we have 
a number n of resistances connected in series as shown in Fig. 27. 

Fig. 27. 

From the equation of continuity we see that the current flowing 
in any resistance is the same as that in any other. Thus we have 
a common current i in a series circuit. If the potential drpps 
across the individual resistances are Fi, 72, • * * . Fn, Ohm^s 
law yields 

Fi == iRu V2 = iR2; • * • ; Vn - iRn 

and, since the potential difference Vat between the outdde ter¬ 
minals a and b is equal to the sum of the potential differences 
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across the individual resistances, there follows 

Vab^V\’^-V2’i‘ * • i(Rl + /22 4“ ‘ * "h Rn) 

Thus the series combination of resistances behaves just like a 
single resistance i?, where 

/? = /?1 + /e2 + • • • + fin (16) 

If the resistances are connected in 
parallel, we have the arrangement R, 

shown in Fig. 28. If a constant poten¬ 
tial difference Vat is maintained be¬ 
tween terminals ab, the potential 
difference between the ends of any on(‘ 
of the resistances is equal to Vab by 
virtue of the connection. From Ohm’s law 

Fnft — “^ifil — t2fi2 — • . . — inRn 

or 

* ___ , «* _ ^. • ___ ^ 

The equation of continuity requires that the total current i 
entering at a be equal to the sum of the currents ii ’ ^ • in- 

i = + ^2 + * ' ‘ in = ir + + * ' ' + ) 
\ftl 112 JLln/ 

Thus the parallel combination of resistances behaves as a single! 
resistance fi, where 

1 = J- 
fi fii 

(17) 

This shows that the equivalent resistance of a parallel com¬ 
bination is always smaller than the smallest resistance in the 
combination. 

Examples 

1. Two batteries of e.m.fs. 6 and 8 volts are connected in series as shown 
in Fig. 29, and a parallel-series combination of resistances is connected to 

the battery terminals as shown. The internal resistance of the 6-volt battery 

is 0.4 ohm and that of the 8-volt battery is 0.6 ohm. Required are the 
currents flowing through the individual resistances, and the potential 

differences between the battery terminals. 
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Let the currents be ti, and t2, as indicated. 
From the equation of continuity we have at the branch point a, 

i == i\ 4" U 

Wo can reduce the problem to that of a simple series circuit by replacing th(^ 
parallel combination R\ and Rz by an equivalent resistance R\ where 

R' R, Ri 

It is evident that the two batteries have an e.m.f. together equal to the sum 

Fig. 29. 

of the c.m.fs. of each, and hence Eq. 
(15) becomes 

El Ei — i{H' + Ea + Rjii 4“ Rb^) 

or 

. ^ -b E,_ 

R' + 1^3 4" Riii 4" Rjii 

For IP we have 

A - J- J_ ^ A. 
r “ Jo ^ “ To’ 

= 2 ohms 

so that 

0 4-8_ 
2 4* 4 4- 0.4 4- 0.6 

14 

7 
2 amp. 

To find the currents in K\ and w<i can write 

'Vab 1’lRl ~ I2R2 

where V„b is the potential drop between points a and b. This gives 

ii R2 2.5 1 

"" ^1 "" *10 "" 4 

This, together with the equation of continuity i *= 2 =* 4“ ta, gives 

ti - 0.4 amp.; h =* 1.6 amp. 

To find the potential difference across the battery terminals, we may 
utilize Eq. (13) since both batteries are discharging. For the 6-volt battery 

Vi ^ El — {Rbi ** 6 — 2 X 0.4 « 5.2 volts 

and for the other 

Fg ~ E2 — iRb, « 8 — 2 X 0.6 «* 6,8 volts 
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This problem may also be solved by applying Eq. (8) which may be stated 
in words as follows: The algebraic sum of the potential drops around any 
closed loop is zero. In applying this rule, the potential drops iR are positive 
if one moves in the direction of current flow, and potential rises are treated 
as negative potential drops. The student should work the above problem 

by this method. We shall return to a detailed consideration of this scheme 
in a later section. 

2. As a second example, let us consider the problem of determining the 
value of a resistance by the so-called ammeter-voltmeter method. For our 
purposes it is only necessary to statue that an ammeter connected in a circuit 

reads the current flowing through it and acts only as a small resistance. 
The voltmeter is a similar instrument which, when connected between any 
two points of a circuit, reads the potential difference between these points. 

For reasons which will become evident from our problem, voltmeters have 
relatively high resistances. 

One possible method of connection is shown in Fig. 30. The terminals 
a and h are maintained at a definite 

potential difference Vab by some sort 
of battery or d.c. generator. The 
voltmeter of resistance Rv is connectr- 
ed directly across the terminals of the 

unknown resistance R, and the am¬ 

meter A is connected in series with the 
combination. Let the currents flow¬ 
ing through amm(?ter, resistance, and 

voltmeter be f, ir and it, respcjctively, 

as shown. The reading of the am¬ 

meter gives i; that of the voltmeter gives Vu, the potential drop across the 
resistor; and let us suppose that Rv is known. 

At the branch point 1 we have 

i = ir + iv 

and from Ohm^s law 

V\2 = irR = ivRv 

or 

so that 

from which R may be readily found. 
If wc write the above equation in the form 

(18) 
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we see that, if the voltmeter resistance is very large compared to the 
unknown resistance jK, one may obtain the value of R very nearly by writing 

Vn/i. If, however, R,. is not large compared to R, one must use the com¬ 
plete formula and thus correct for the 
presence of the measuring instrument. 

One might suppose that the difficulty 

might be avoided by connecting the 
elements as shown in Fig. 31. This 
does not eliminate the disturbing effect 
of the instruments. Let the current 

through the resistance R and ammeter 

be i as shown and the ammeter resist¬ 
ance he RA. The voltmeter reading is 
just Voi, since its terminals are connect¬ 

ed to the points a and 6. Since the potential drop across ammeter and 
resistance in series is also Vah^ we have from Ohm's law 

as the correct formula for R, requiring a knowledge of the ammeter resistance. 
If we write this relation in the form 

we see that again an approximate value of R may be obtained from Vub/i 
provided Ra^R- Ammeters arc constructed so as to have very small 
resistances in drder that instrument corrections may be neglected in most 

practical work. 

21. Resistivity and Conductivity; Ohm’s Law for Extended 
Media.—In order to extend the considerations of the last section 
to the case of current flow in ex¬ 
tended media, it is necessary to 
examine Ohm^s law in some detail 
with the object of formulating it in 
such a manner that it can be applied 
at any point of a conducting medi¬ 
um rather than to a section of a 
linear conductor. As a preliminary step, let us consider a length 
I of a wire of uniform cross section A (jFig. 32). It is an experi¬ 
mental fact that the resistance of such a conductor between its end 

Fig. 32. 
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faces is proportional to the length I and inversely proportional to 
the cross section A. Writing this as an equation, we have 

R = 

A 
1 
a A 

(20) 

where the proportionality constants p and c are known as the 
resistivity and conductivity of the material of which the conductor 
is composed, and obviously we have p = 1/<t. 

The unit of resistivity in the (dectrostatic system of units 
is 1 statohm-cm., and the student can easily show that this is 
equal to 1 sec., so that the dimensions of resistivity in e.s.u. 
are those of time. In the m.k.s. system the unit resistivity is, 
strictly speaking, 1 ohm-meter. In engineering practice, how¬ 
ever, there has growm a custom of specifying resistivity as ^^ohms 
per mil-foot,” and this needs explanation. This mixed unit has 
come from the practice of specifying the lengths of wires in feet 
and the cross section in so-called ‘Circular mils.” One mil is 

inch and 1 circular mil is the area of a circle of diameter 
equal to 1 mil. Thus the cross-sectional area of a wire of diam¬ 
eter d mils is equal to d^ circular mils. In using the ^^ohm per 
mil-foot” unit of resistivity, one must be careful in employing 
Eq. (20) to specify I in feet and A in circular mils to obtain the 
resistance R in ohms. 

The resistivity of copper is about 10 “ohms per mil-foot,” 
2 X 10”® ohm-meter, or about 2 X 10”^® e.s.u. In changing 
from one system of units to another a convenient relation to 
remember is 1 statohm = 9 X 10*' ohms. The resistivity of a 
metal varies markedly with temperature, increasing with increas¬ 
ing temperature. For moderate temperature ranges the resis¬ 
tivity can be represented by a linear function of temperaturf^ 
(in a manner exactly like the expansion of a solid) 

p = po(l + at) (21) 

where a, the temperature coeflScient of resistivity (referred to 
0®C.), is of the order of magnitude of 0.5 per cent per degree 
centigrade for ordinary metals, po is the resistivity at 0®C. 

Returning to our original problem, we now apply Ohm’s law to 
an infinitesimal volume element inside a conducting medium. 
At an arbitrary point 0 we construct the tiny cube dx dy dZy as 
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shown in Fig. 33. If there is no seat of e.m.f. at the point where 
the volume element is located, Ohm^s law in the form of Eq. (10) 
yields 

F*.o - = -dV - iB (22) 

where —dV is the negative increase (the drop) in potential 
between the left- and right-hand faces of the volume element, 

i is the current flowing normally 
to the faces dy dZy and R is the - 
resistance between theses facjos. 
From Eq. (3) we have i = jx dy dz, 

and from Eq. (20) B = 

Substituting these values in Eq. 
(22), there follows 

-dV = j^dydz—p-^ =^-dx a dy dz c 

Now -~(dV/dx) == €xy the nega¬ 

tive ^-component of the gradient of the potential, so that 

or 

jx = (r€x (23) 

In words, the x-component of the current density at a point of 
a conducting medium is equal to the conductivity of the medium 
times the x-component of the intensity of the field at that 
point. It is clear that Eq. (23) holds for any component (x, 2/, 
or z)y and hence, if the medium is isotropic, we can write a single 
vector equation 

j - <re (24) 

This is Ohm’s law in a form which holds at each point of the 
medium. Equation (24) implies that, for isotropic media obey¬ 
ing Ohm’s law, the direction of current flow (for steady currents) 
coincides with the direction of the electric field intensity at 
every point. Thus the lines of current flow coincide with the 
lines of electric intensity and are perpendicular to the equi- 
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potential surfaces. This is by no means an evident fact as one 
can see by considering the steady flow of current between 
two electrodes in vacuum where the current is carried by moving 
electrons. Here the electrons obey Newton’s laws of motion. 
In general the motion of a body is nol in the direction of the 
resultant force acting on it. If the lines of € are not straight 
lines, then the electron trajectories will certainly not coincide 
with the lines of €. 

22. Eirchhoff’s Rules.—Problems involving the steady flow of 
currents (direct currents) in networks of linear conductors can 
be solved by a straightforward application of the methods devel¬ 
oped in Secs. 18 to 20, but in complex cases it is convenient to 

3 

Via. r>4. 

follow a systematic procedure which is embodied in Kirchhoff's 
rules. At the outset we wish to emphasize the fact that these 
rules provide no new principle beyond those already presented. 
By a network one means a system of linear conductors and seats 
of e.m.f. interconnected in some arbitrary fashion. A typical 
network is shown in Fig. 34, In this network there are four 
branch 'points labeled (i), @, ®, and ®. Kirchhoff’s first rule 
states: At any branch point the sum of the currents entering equals 
the sum of the currents leaving the junction. This is simply a 
statement of the equation of continuity as we have formulated 
it in Eqs. (4) and (5). For example, at branch point ® we have 
the equation 

ii = ia + U 

If there are n branch points, there will be n — 1 independent 
current relations of the type given abo\ e. 
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Kirchhoff^s second rule is a statement of the content of Eq. 
(8). The mm of the potential drops around any closed loop of the 
network equals zero. In applying this rule one must remember 
that the potential drop across a resistance is positive if one 
moves in the direction of current flow and that potential rises 
are to be handled as negative drops of potential. Thus in the 
case of the network of Fig. 34, if we apply this rule to the loop 
(or mesh) containing Ei, iZi, JB2, Ra, and iJe, we have (starting 
at point 0 and proceeding clockwise) 

— El ”1“ Riii “f" R^ii "f* R^ii “b Riih = 0 

The directions of the currents in the various branches arc 
assumed, and negative answers for the currents indicate that the 
corresponding directions must be reversed. In applying Kirch- 
hoff's rules it is necessary to write down a number of independe7it 

equations equal to the number of unknowns. It is a common 
failing to formulate a perfectly correct equation which may be 
obtained, let us say, by adding two equations already formulated. 
Clearly this yields no more information than the first two, and 
it becomes necessary to adopt a systematic mode of procedures. 
We can describe this best by an example. In Fig. 34 there are 
four branch points and the equation of continuity demands 
that 

0 = 1*2 + iz 

0 iz + iz = ii 

0 ii = ih + iz 

0 ih 4* iz = ii , 

(26) 

The last equation is not independent of the preceding three, 
and in fact one can obtain it by adding the first three equations. 
Thus there are three independent current relations. Since 
there are six unknown currents (assuming that the E^s and JB’s 
are known), we need three more equations to effect a solution. 
Let us start with the mesh equation already written 

—i?i + Riii + Riii + Riii + Rziz = 0 (26) 

If now we choose a second closed path not containing Eiy for 
example, then we are sure that the resulting equation will be 
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independent of Eq. (26). Thus in the mesh containing A’2, R2, 
and 2?8, we have 

-Eh + izRi — i2JK2 = 0 (27) 

Finally the mesh containing Ez, Rz, and Rz contains neither 
El nor Eh) hence the equation relating to it must be independent 
of the two already written. Then^ follows 

izRz — Ez — ihRh ~ 0 (28) 

This completes the task of finding three independent loop equa¬ 
tions and illustrates the procedure to be followed. Any other 
equation, as for example the one obtained by proceeding through 
El, Riy Rzy Riy Rzy EZj 8016. back to £i, yields 

'-'El + iiRi + inRn + iiRi + izRz — Ez 0 

and this is simply the sum of Eqs. (26) and (28). 

Examples 

1. Consider the network of Fig. 35 with F7i == 6 volts, Ez - 12 volts, 

fix =* 10 ohms, Rz = 20 ohms, and 
fis = 8 ohms. Required are the cur¬ 
rents in each resistance. Let the cur¬ 
rents be as shown in the figure. Since 
there are but two branch points a and 

6, there is only one current relation, 

namely, 

ii =* iz + is (29) 

and we need two mesh equations. 
Consider the mesh cdahc. The second 
Kirchhoff rule yields 

—fix -f* fiii’i + iiRs =* 0 (30) 

and for the mesh aefha (not containing Ei) we obtain 

izRz Ez — fsfis ~ 0 (31) 

Substituting for ii in Eq. (30) its value from Eq. (29) there follows: 

— fix + fiifa 4- (fix 4 Ri)iz 0 

and inserting numerical values into this equation and Eq. (31) we obtain 

WVWWSr 

E2 , ^2 

R2 

Fus. 35. 
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2012 — 8i8 = 12 

and 

10t2 4* ISij =* 6 
from which one obtains readily tj = 0; « 0.6 amp. and thus ti = 0.6 amp. 
In this case no current flows through Rz and points a and 6 are at the same 

potential. 
2. The Wheatstone Bridge.—The Wheatstone bridge is a network utilized 

to measure resistances and is shown in Fig. 36. M and N are fixed resist¬ 

ances, P a variable resistance, and X the unknown. G represents the 
resistance of a galvanometer and Rb is the internal resistance of the battery 
of e.m.f. E, Let the currents be as shown. Three independent current 

relations are 

i — im -f ip (branch point a) (32) 
im = in -h 4 (branch point h) (33) 

ip + 4 - 4 (branch point d) (34) 

and three indepe.ndent mesh equations are 

Mini -h Nin A- iRa -- E =0 (mesh abcea) (36) 

Mim + Nin — Xix — Pip - 0 (mesh aheda) (36) 
Mim + Gig — Pip ~ 0 (mesh ahda) (37) 

The solution of these six equations yields the current 4 through the galva¬ 

nometer. The bridge is said to be in balance when the galvanometer 

current 4 is zero. Under these con¬ 
ditions we have [Eqs. (33) and (34 )J 

im = in 

and 

ip = 4 

so that Eqs. (35) to (37) become 

{M -|- N)im 4“ iRs — « 0 
{M + N)in. - (X + P)ij, = 0 

Mim ~ Pip « 0 

Dividing the second of these equa¬ 

tions by the third, one gets 

M a-n XA-P 

M “ P ' M P 

or 

E ^E. 
p 

^E (38) 

Equation (38) is the condition which must be satisfied to balance a Wheat¬ 
stone bridge. For a fixed ratio of iV to M this may always be accomplished 
by adjusting P and hence obtaining the value of X, 
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23. Joule’s Law; Power in D.C. Circuits.—^Let us consider any 
d.c. network S, and let a and b represent the terminals of the 
system across which a definite potential difference Vah is main¬ 
tained by an external seat of e.m.f. Let 
the steady current flowing into and out of ^ 
the system be i (Fig. 37). No detailed 
knowledge is assumed about the system. 
Since, by definition, Vab - Va — Vi is 
the work done per unit charge (the drop b 
in potential) in moving a charge from a 
to h and since the charge transported per 
unit time from a to b is i, it follows that the work done per unit 
lime on S (the power absorbed by the system S) is given by 

P ^ Vab-i (39) 

This is the general expression for the power input to a d.c. system 
when a current i is supplied to it and a potential difference Vab is 
maintained across its terminals. Power in the electrostatic 
system of units is measured in ergs per second and in the m.k.s. 
system in joules per second = watts. (1 watt = 1 volt-ampere.) 

Just what happens to the energy absorbed by the system S does 
depend on the make-up of the system. Let us examine some 
typical cases. Suppose the system S consists solely of a resist¬ 
ance R obeying Ohm's law. In this case Eq. (39) can be extended 
to 

P = Vab • i = Ri^ (40) 

since by Ohm's law Vab = Ri^ The terra i^R is the rate at which 
heat is evolved in the resistance, and the statement that the rate 

of heating of a conductor is equal 
to PR is known as Jouters law. As 
v/e see from the above, it is totally 

L_-1 
Fig. 38. 

equivalent to Ohm's law. The 
equality between power input to 
a system and the rate of heating 
is valid only if there are no seats 
of e.m.f. in the system which act 

as sources of, or as sinks for, energy. To illustrate this, let 
us suppose that system S consists of a resistance and a storage 
battery which is being charged (Fig. 38). Let B be the e.m.f. 
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of the battery and R the series resistance (including the internal 
resistance of the battery). For this circuit we have, appl3dng 
Kirchhofl^s rules 

iR + — Fab = 0 
or 

Fob = + iR 

so that the power input to this system is 

p = F«b • i = Ei + i^R (41) 

We see that only a fraction of the input power goes into heat and 
the remaining term Ei represents the power absorbed by th(* 
battery which continually stores up chemical energy (the process 
of charging). Let us examine this term more closely. Th(» 
(\m.f. of the battery E was defined as the work done by the chemi¬ 
cal forces per unit charge in moving a charge from the plate 
of lower to that of higher potential inside the battery. In 
the above case in which the current is forced to flow from high to 
low potential terminal inside the battery, work is done by the 
external source against these chemical forces, so that Ei (the rate 
of doing work) is the power absorbed by the battery. Were the 
battery discharging, then the expression Ei is the power delivered 
by a battery to the circuit of which it is a part. To clarify this 
statement, consider a simple series circuit of a battery of e.m.f. 
Ey internal resistance Rb and external resistance R, For such a 
circuit we have 

E == iR -f” iRs 

and multiplying by i, 

Ei = i^R + mn (42) 

The term i^R is the rate of heating in the external resistance; 
i^Ra is the rate of heating inside the battery, so that Ei represents 
the total power developed by the battery. To be sure only a 
fraction (i^R) is delivered to the circuit external to the battery, 
but that is of no import in this argument. 

Returning to Eq. (41), which is often written in the form 

(Fab - E)i - i^R 

The term — is called the ‘‘back electromotive forcein the 
system S, One often speaks of the net voltage available for 
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inainiaining a current i through the resistance R as the difference 
between the ‘‘applied'' voltage Vab and the back e.m.f. E. This 
terminology is common in discussing motor action in which the 
rotating armature becomes a seat of “back" e.m.f. In such a 
(^ase the term Ei represents the mechanical power developed 
))y the motor. 

In passing we may point out that we might have logically ma(l(‘ 
Joule's law (rate of heating = i^R) the basis of our discussion of 
steady currents and derived Ohm's law from it. Resistance 
would then, have been defined by 

u _ power dissipated 
K — -*2 (44) 

and for direct steady currents the two definitions are identical. 
In the case of alternating currents, which w(i shall encounter 
later, the two definitions ceas(^ to coincide. It is then usual to 
refer to resistance as defined by ICq. (43) as effective resistance 

(K^u) in contrast to the d.c. or “ohmic" resistance. 

Problems 

1. Two colls of e.m.f. and internal resistance 2 volts, 0.2 ohm and 4 volts, 

0.4 ohm are connected in series and the combination is connected to form a 

simple series circuit with an external resistance of 11.4 ohms. 

а. What is the ratio of currents for the two possible connections? 

б. What current flows in each case? 

2. Sixteen cells, each of e.m.f. E and internal resistance Rsy are con¬ 

nected in a series-parallel arrangement (s cells in series and p of these series 

combinations in parallel). The whole combination is connected in series 

with a single external resistance R — Rb> Prove that the maximum 

current which can be sent through the external resistance is four times the 

current which a single cell would send through it. How many cells are in 

series for this to happen? , 
3. Given two batteries, one of e.m.f. 10 volts and internal resistanct* 

0.9 ohm, the other of e.m.f. 3 volts and internal resistance 0.4 ohm. 

How must these batteries be connected to give the largest possible 

current through a resistance R, and what is this current for 

a. R ^ 0.3 ohm? 

b. R ^ 0.4 ohm? 

c. R ^ 0.6 ohm? 
4. A storage battery of e.m.f. 24.0 volts and internal resistance 0.6 ohm, 

is to be charged with a current of 10 amp. The battery in series with a 

resistance R is connected to a 110-volt power line. 
a. Draw a diagram showing the proper connections and mark the 

polarities. 
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b. What resistance R is needed? 

c. What is the potential difference across the battery terminals dnring the 
charging process? 

5. IIow large a resistance must be placed in shunt (in parallel) with a 
resistance of 1,000 ohms to reduce its resistance b}^ 50 per cent of its original 
value? 

6. A long uniform wire is cut into n equal lengths which are then used to 

form an w-strand cable. The resistance of the cable is R. What was the 
resistance of the original wdre? 

7. A unifoim drop wire of total resistance 1,200 ohms is conm^cted to 
power mains whic.h maintain a potential difference of 120 volts across i<.. 
A voltm(‘ter connected between one end of the drop wire and its inid-poinf 

reads 50 volts. What is the resLstance of the voltmeter? 
8. A uniform drop wire of 1,000 ohms resislance is coiinecttul across a 

100-volt line and a voltmeter of 500 ohms internal resistance is used to 

measure the potential difference across a portion of the drop win* of n^sist- 

ance R, 
Make a plot of the voltmeter reading against R for all possible values of R. 
9. A voltmeter is constructed of a galvanometer of 2,000 ohms resistance 

and two resistances of 2,000 and 6,000 ohms, as shown in Fig. 89. Tlje 

I—®—I 
R, — 
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^3 
Fig. 40. 

o b c d 
Fig. 39. 

galvanometer gives full-scale deflection when a current of 2.5 ma. flows 
through it. What voltages across the terminals ab, ac, and ad will give 

full-scale deflections? Would this instnunent serve as a suitable ammeter? 

Explain. 
10. An ammeter consists of an 8-ohm galvanometer and three resistances, 

Ri, R2, and Ri, all connected in parallel as shown in Fig. 40. By means of a 
switch Ri^ 7? 8, or Rz and Rs, may 
be disconnected, A current of 2 
ma. through the galvanometer gives 
full-scale deflection. 

What resistances must be used if 
the ammeter is to have A-, 1- and 
10-amp. scales? 

Do the shunts change the percent¬ 
age accuracy of the instrument? 

a 90-ohm resistance permanently 

The instrument 

abed e 
Fig. 41. 

11. A 10-ohm galvanometer with 

connected across its terminals is used as a galvanometer, 

may be used with a choice of connections ab, ac, ad, or ae, as shown in 
Fig. 41. How should the 90-ohm resistance be divided so that the sensi- 
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tivity (the reciprocal of the current causing full-scale reading) of the instru¬ 
ment should change by a factor of 10 for each succeRsive connection a6, ac, 
adj and ac? 

12. Calculate the resistance of a seven-strand copper cable 2 miles long, 
each strand being of circular cross section and diameter 0.020 in. The 
resistivity of copper is 10.4 ohms “per mil-foot. 

13. A cylindrical rod of copper of diameter 0.2 in. is drawn into a wire 
of 10 mils diameter. The resistance of the rod is 0.001 ohm. Calculate the 
n^sistance of the wire, assuming that the drawing has no effect on the resistiv¬ 
ity of the (^opper. 

14. A cable consists of a central core of steel win* 500 mils in diamet<*r 
surround(Hl by a tightly fitting sheath of copper 0.10 in. thick, ("alculatc 
the resistance of 1 mile of this cable. What fraction of the current carried 
in the cabh; is in the copper? The resistivities of copper and steel on the 
mil-foot basis are 10.4 and 90 ohms, respectively. 

16. How constant must the temperature cf a coil of wire be maintained if 
its resistance is to be constant within 0.1 per cent? The tempera tun* 
(coefficient of resistivity of the metal is 0.004 per degnu* centigrade. 

16. The resistivity of platinum at 0°C. is 54.0 ohms “per mil-foot.” 

Calculate its conductivity in e.s.u. and in the m.k.s. system at O'^C. and at 
20°C. The temperatun? coeffi<uent of resistance of plat inum is 0,00354 per 
degree centigrade. 

17. The el(*ctrod(^s of a cell consist of a metal rod 5 cm. in diameter and a 

coaxial hollow cylinder of inside diameter 25 cm. The electrodes stand on a 
glass plate in an electrolyte (a conducting solution) whi(;h is 20 cm. det^p 
over the glass plate. A current of 5 amp. flows through the cell. Calculate 

the current density at the surface of each electrode and at any point in the 

solution. 
18. The conducting solution in Prob. 17 has a resistivity of 4.8 X 10”^ 

ohm-meter (m.k.s.). What is the internal resistancie of the cell? 

'Hint: This problem is analogous to the problem of steady heat flow 
between coaxial cylindrical surfaces. 

19. A current i flows steadily between two concentric spherical electrodes 
(the spherical condenser), the radius of the inner electrode being ri and that 

of the surrounding spherical surface being ra. 
The medium between the spheres has a con- ^ 

ductivity o-. 
а. Derive an expression for the current 

density in terms of i at any point between the 

electrodes. 
б. Derive an expression for the resistance 

between the electrodes. 
20. Using Eqs. (32) to (37) of Chap. IV, 

derive an expression for the galvanometer cur¬ 
rent iff when the Wheatstone bridge is not Fig. 42. 

balanced. 
21. In the network shown in Fig. 42 find the currents in the three resist¬ 

ances. The battery resistances are included in the values of Ri and Ri. 
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22. If the 4-volt batter}’’ is reversed in Prob. 21, find the currents in Ri, 
R2i and R^. 

28. The accompanying diagram (Fig. 43) illustrates the essentials of the 

circuit of a potentiometer. R is a 
uniform slide wire. How far along 
the slide wire must the contact P 
be moved in order that the galva¬ 
nometer G read zero? What is the 
potential difference between the 

^ points P and Q when the above 
adjustment is made? 

24. In the circuit of Fig. 44 find 
the potential difference between th(^ 
points a and h. Which is at tln^ 
higher potential ? Battery A has an 

<Mn.f. of 12 volts and an internal resistance of 0.10 ohm and battery B has an 
e.m.f. of 6.0 volts and an internal resistance of 0.05 ohm. 

Fig. 44. 

26. An electric heater immersed in water raises the temperature of f5,000 
grams of water from 0 to 40®C. in 5 min, when a current of 25 amp. flows 
through the heater. What is the resistance of the heater? ^ 

26. A 10-hp. electric motor operates on 110 volts and has an efficiency of 
85 per cent. The generator supplying the power has a terminal voltage of 
125 volts and is 2,000 ft. from the motor. What diameter of copper wire 
(p » 10.4 ohms *^per mil-foot'') is needed to deliver current to the motor 
at its rated voltage? 

A. 72-volt storage battery of 0.33-ohm int/crnal resistance is (diarged 
from 110-volt supply mains with a 6-ohm resistance in series with it. 

a. How much power is drawn from the mains? 
b. What is the rate of heating in the circuit? 
c. What is the efficiency of the charging process? 

28. A factory draws an amount of power P from a d.c. transmission line 
at a terminal voltage (at the factory) F. The resistance of the transmission 
line (both wires) is i2. 

a. Write an expression for the current drawn and for the generator 
terminal voltage (in terms of P, 7, and R). 

b. From the above obtain an expression for the power output of the 
generating station and also for the percentage of this output delivered to 
the factoiy. 

E.,Rb, 

Fig. 43. 



CHAPTER V 

THE MAGHEJIC FIELD OF STEADY CURRENTS 
* 

In addition to tile heating effects of steady currents which 
we have studied in the last chapter, there appear mechanical 
forces of a type quite different from electrostatic forces which 
are known as “magnetic” forces. It is assumed that the reader 
is acquainted with the elementary facts concerning the forces 
which permanent magnets exert on each other. We shall not 
follow the customary historical treatment of magnetism utilizing 
permanent magnets as the basis for the discussion because, in 
spite of the apparent simplicity of the idea of magnetic poles, 
magnetic phenomena are in fact very different from electro¬ 
static phenomena and the usual analogic^s drawn between these 
subjects are apt to lead to serious confusion. We delay a detailed 
discussion of permanent magnets to a later chapter in which we 
shall study the magnetic properties of mattc^r and shall introduce 
the idea of a magnetic field as a field produced by moving charges 
or electric currents. It is undeniably convenient to visualize 
a magnetic field existing in a given region of space if a small 
compass needle freely suspended at its center orients itself in a 
definite direction (and returns to this orientation if disturbed) 
and to think of this simple experiment as a practical method of 
determining the direction of the field at the 4>^oint where the 
compass needle is located. Indeed it was as late as 1820 that 
Oersted discovered that an electric current exerts mechanical 
forces on a magnet. Immediately thereafter Ampere observed 
forces of a similar nature between current-carrying conductors 
and performed a series of fundamental experiments from whicli 
the laws of force between currents were derived. Ampfere^s 
experiments were performed with currents in conductors, but 
it was shown later by Rowland that moving charges produce 
magnetic effects similar to conduction currents and are acted on 
by forces when in the vicinity of current-carrying circuits or 

magnets. 
24. The Magnetic Induction Vector B.—As stated above, we 

shall start from the results of the experiments of Ampere, or 
81 
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their equivalent, to develop the idea of a magnetic field. One 
of the fundamental facts observed is that the force on an element 
ds of a conductor carrying a current i due to the presence of a 
neighboring current-carrying circuit (or a magnet) acts at right 
angles to the length ds. Stated in terms of moving charges, we 
can say that such a force acts on a moving charge at right angles 
to the direction of its motion. Any region of space whore moving 
charges (or currents) experience a force of the above type is said 
to have a magnetic field existing in it. This field is of course diu? 
to the presence of other currents or magnets. As in the electro¬ 
static case we shall not concern ourselves at present with the 
mode of creation of such fields but shall examine the nature of 
the forces exerted by the field on currents or on moving charges. 
In order to set up a quantitative description of the field, it will 
be necessary to introduce the idea of a test body just as we 
used the idea of a test charge in the discussion of the cdectro- 
static field. As our test body we can employ either an element 
ds of a conductor carrying a current or, better still, a tiny beam 
of moving electrons such as one would obtain in a miniature 
cathode-ray tube. In utilizing such a test body to detcjct the 
presence of and to measure a magnetic field, we encounter a 
complic^ation at the very outset in that the force acting on our 
current element depends not only on the position of the oleiiKint 
but also on its orientation in space, i,e,, on the direction of cur¬ 
rent flow at the point in question. In every case, however, the 
magnetic force acts at right angles to the current The magni¬ 
tude of the force depends among other things on the direction 
of the current, and there is one direction for which the force 
becomes zero. We call this the direction of the magnetic field 
at the point where the current element is located. If the current 
flows at right angles to this direction, the force becomes maximum 
and for other orientations it is proportional to the sine of the angle 
between the direction of current flow and the direction of the 
field. Furthermore, the force is proportional to the current i 
flowing in the clement ds and to the length ds and is always at 
right angles to the direction of the field as well as to the direction 
of current flow. 

At each point of space we define a magnetic field vector, 
denoted by 5, and called the magnetic induction, whose magnitude 
is the maximum force exerted on a current element divided by the 
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product of the currerd and the length of 
direction has been specified on page 82. 

by we can write 
dF 

JR — _ 
t ds 

the element and whose 
If we denote this force 

(1) 

as the magnitude of the magnetie induction vector, the direction 
of this vector being at right angles to both and to ds. 
As we shall prove in a moment, this is entirely equivalent to 

B = (2) 
qv ^ ' 

where is now th(^ maximum force exerted on a charge q 
moving with a velocity i;, and B is perpendicular to both 
and to V. 

If the dirc'ction of current flow is not perpendicular to 5, 
then tlui force on a curremt element lias a magnitude given by 

dF = i dfi D Hin d (S) 

where 6 is the angle between the direction of B and that of ds 
and dF is normal to the plane determined by B and ds. Similarly, 
the force F acting on a moving charge is 

F = qvB sin 9 (4) 

where 6 is the angle between v and B. 
The directions of the vectors vrhose magnitudes enter into 

Eqs. (3) and (4) are related in the folloAving manner: If one 
rotates the vector ds (in the direction 
of current flow) or v through the 
smallest possible angle so that it lines 
up with B, the force points in the 
direction in whicih a right-handed 
screw would move when so rotated 
(Fig. 45). This rule is very similar to 
that for finding the direction of the 
vector moment of a force about a given 
point, orf or finding the direction of the 
angular momentum of a particle about 
a given point. The rather cumbersome mode of presentation 
which has been given can be considerably shortened and clarified 
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by introducing the idea of vector multiplication, and we shall now 
(iign^ss to define these convenient quantities. 

Scalar and Vector Products of Vectors,—^The scalar or ^^dof’ 
product of two vectors A and B is defined as a scalar of magnitudti 
equal to the product of the magnitudes of A and B and the cosine 
of the angle between them. It is written in the form 

> yA 
A B^ ylBcos< (5) 

It is clear that the scalar product is equal to the product of the 
component of one of the vectors in the direction of the other and 
the magnitude of the second vector. As examples, we have the 
familiar expression for the work done by a force F in moving a 
particle through a displacement ds. The work done is 

dW = F • ds == F ds cos == ds 
^ds 

Similarly the electromotive force around a closc^d path can be 
written as a scalar product in the form 

The second type of product which one forms of two vectors A. 
and B is known as the vector or “cross'^ 
product. It is defined as a vector C 
whose magnitude is the product of the 
magnitudes of A and B and the sine of 
the angle between them and whose direc¬ 
tion is normal to the plane of A and B. 
The sense of the vector product of A and 
B is obtained by rotating A through the 
smallest angle so that it lines up with B 
and taking the direction in which a right- 
handed screw would move as the direc- 

Fiq. 46. tion of (7. In symbols, one writes 

C ^AXB (Fig. 46) (6) 

and the magnitude of C is AB sin 6, The order of multiplication 
is important, and we have 
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7x B - ~(5 X 7) (6a) 

In terms of this notation one can write for the torque of a force 
F about a point 0 

T = r X F 

where r is the vector drawn from the point 0 to the point at whi(;h 
the force is applied. 

Equations (3) and (4) state that the magnetic force on a current 
element or on a moving charge can be expressed as the vector 
product of two vectors. Thus for the current element ds, 

dF — i{ds X B) (7) 

and for the moving charge 

7 = ^7x 7) (8) 
Equations (7) and (8) are to be looked upon as the equations 
which define the magnetic induction vector B. We still have to 
show that they are equivalent. 

Consider a straight metallic wini of cross section A carrying 
a steady current and let us suppose that this current is due 

r.-_vdt “>| 

Fig. 47. 

to the steady motion of frpe electrons inside the conductor. 
Since the electric current is the rate at which electric charge 
crosses any cross section A of the conductor, it is equal to the 
product of the charge q on each particle and the number of such 
particles crossing A per unit time. Now the number of particles 
crossing A in a time interval dt is equal to the number found 
inside a cylinder of base ^4 and altitude vdt^ where v is the 
constant velocity of the charged particles. Thus if n be the 
number of charged particles per unit volume (a constant for 
the case of steady flow), the current i may* be written as 
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Consider now a length ds of the conductor. We have evidently 

i ds = nqvA ds = Nqv 

where N = nA ds is the total number of charged particles in 
the volume A ds, so that the magnetic force acting on these 
particles is, according to Eq. (7) 

F = i(ds X J5) = Nq(v X B) 

and the force acting on one particle is this expression divided 
by Nf the number of partic^les in the element ds. This compk‘te\s 
the proof. 

We still have to concern ourselves with the question of units. 
The units of B [according to Eq. (7) or Eq. (1)] depend on the 
units chosen for force, length, and current. In the m.k.s. system 
the unit force is 10® dynes = 1 newton, the unit length 1 meter, 
and the unit current is 1 amp. Since the dimensions of force 
are those of electric field intcuisity times charge and thosc^ of 
current are charge per unit time, evidently B is expressed in volt- 
seconds per square meter, sometimes denoted by webers p('r 
square meter. B is practically never expressed ii^ e.s.u., so 
that we need not concern ourselves with that casc^. There is, 
however, another system of units called the electronmqnetic 
absolute system by virtue of the fact that the units an^ (leriv(*d 
from ^Jectromagnetic laws. In this system of tmits (e.m.u.) 
the mechanical units are centimeters, grams, and seconds and 
the unit current, called the abampere, is equal to 10 amp. The 
size of the unit of B in e.m.u. is determined by the defining 
equation (1) or (7), and it is called 1 gauss. In the electro¬ 
magnetic system the unit charge is called 1 abcoulomb and equals 
10 coulombs, the unit potential 1 abvolt = 10““^* volt, etc. The 
units in the e.m.u. are related to those of the m.k.s. system 
by powers of ten. As we shall see later when we definci the 
abampere precisely, this is a consequence of definition and not 
of experiment. 

26. Magnetic Flux; Solenoidal Nature of the Vector Field of B. 
At each point of space we can imagine the vector B constructed; 
the totality of these vectors in a given region is called the mag¬ 
netic field there. One can construct lines of B which give 
the direction of B at every point and can limit the number of 
lines per unit area crossing a tiny area which is normal to the field 
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in such a way that the number of lines per unit area is made 
equal to the numerical magnitude of D. This is the same 
convention as was employed for the electrostatic field. The total 
number of lines of magnetic induction crossing an area is called 
the magnetic flux across the area, and we have evidently 

♦ 

(9) 

<1> is the magnetic flux, and is the component of B normal 
to the surface at the point where dS is located (Fig. 48). From 
Eq. (9) we that the magnetic induction B can be measured 

in flux units per unit area, and hence it is often called magnetic 
flux density. The unit of flux in the electromagnetic system of 
units is called 1 maxwellj so that 1 gauss = 1 maxwell/cm.*** 
In the m.k.s. system the unit of flux is called 1 weher so that 
the unit of B is 1 weber/meter^ as stated in the previous section. 

The nature of the vector field of B is radically different from 
that of the electrostatic field. In the electrostatic case we 
saw that the lines of Z> or (in vacuum) always terminate on 
charges and hence could never form closed curves. Furthermore, 
one could introduce a scalar potential having a definite value 
at each point of space from which the field could be obtained 
by differentiation. These facts are not true for the field of B. 
The lines of B can never start or stop at any point and hence always 
form closed curves, A vector field of this sort is called solenoidal 
or source-free, since no starting points or sources can be assigned 
to the lines describing the field. We have already encountered 
one such field in our study of steady currents, since the conserva- 
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tion of charge requires that the lines of electric current flow 
be closed in the steady state (the equation of continuity). Thus 
one can say that the vector field describing the steady flow of 
electric currents (the field of j) is solenoidal. If we wish to 
express the above facts for mathematically, we note that the 
total magnetic flux crossing any closed surface must be zero since 
no lines can start or stop inside the volume enclosed by the sur¬ 
face. In symbols, this becomes 

fB^dS = 0 (10) 

closed 
surface 

Equalion (10) is one of the fundamental laws of electromagnetic 
theory. Furthermore, one cannot introduce a scalar potential 
to describe such a field. It can be shown that it is impossible 
to find a scalar function of position such that a purely solenoidal 
vector field may be obtained from it by differentiation, i.e., by 
taking the gradient of a scalar function. 

26. Motion of Charged Particles in Magnetic Fields.—In this 
section we shall investigate the motion of charged particles both 
in magnetic and in combined electric and magnetic fields. In 
so doing we must remember that we assume that wc can neglect 
the modification of the field caused by the presence of the moving 
charges. This condition is often realized in practice when the 
magnetic field produced by these moving charges is negligible 
compared to the external field in which they move. The study 
of the motion of ions or of electrons, in particular the determina¬ 
tion of the orbits, is of fundamental importance since the methods 
of determining#electronic and ionic masses are based on such a 
study. 

From the fundamental Eq. (8) giving the force on a moving 
charge as F = q{v X 5), it is clear that, since the fonie F is 
normal to the direction of motion, the kinetic energy of the 
particle is not affected by the magnetic field and only the direc¬ 
tion of i; changes. For this reason the magnetic force is often 
called a deflecting force. Let us consider the problem of the 
motion of a particle which is projected with an initial velocity 
Vo into a region of space where there exists a uniform field B, 
the direction of vq being at right angles to J5. The subsequent 
motion of the particle is one of constant speed vo in a curved path, 
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the component of force along the path being zero. Normal to 
the path, in a direction n, let us say, we have from Newton’s 
second law 

Fn = qvoB = ma„ = 
mvl 

since the angle between the direction of the motion and B is 90® 
and the component of acceleration normal to the path is vl/r^ 
with r the radius of curvature of iho 
path. Solving for r, we obtain ^ 

mvo 

Tb 
(11) 

Fia. 49. 

T (12) 

and as all the quantities on the right- 
hand side are constant, the path is 
a circle of radius r, the circle being 
a (iurve of constant radius of curva¬ 
ture (Fig. 49). The direction of 
rotation is as shown for a positively charged particle, the opposites 

direction for a negatives charge. The angular 
velocity w is 

s! = 
r m 

and hence the period T is 

2w _ 2T7n 1 
0) q B 

The time for one complete rotation does not 
depend on the velocity of particle! This is a 
very important fact and much use is made of it 
in the experimental methods of atomic physics. 

If the particle has an initial velocity ?^o not perpendicular 
to B, we can resolve into two components, one perpendicular to 
and one parallel to B. The latter component is not affected by 
the magnetic induction; hence the motion is a superposition of 
circular motion described by Eq. (11) in a plane normal to B and 
a uniform translation parallel to B. The path is a helix of uni¬ 
form pitch (Fig. 60). One important use of these results is in the 
application to magnetic focusing by a longitudinal magnetic 
field. In Fig. 51 is shown a slit S through which ions enter a 
region where there is a uniform magnetic field B, All the ions 

Fig. 60. 
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entering at an angle p with the induction B will be brought to a 
focus at P on a fluorescent screen S' located at a distance d from 
the slit if the time of flight from /S to P is just equal to the time 
for one revolution in the helical path. The time of flight is 

Vo cos P 

and, equating this to the expression given by Eq. (12), there 

follows 
d __ 2T7n 

Vq cos p qB 

The focal length d depends on the initial velocity Vo, the angle/5, 

the induction B, and the ratio of charge to mass of the particles. 

The ratio of charge to mass of an ion may be determined for a 
known initial velocity of the ion by deflecting the ions by a con- 

B normal io pfone of the page 

Fia. 62. 

stant magnetic field normal to the direction of motion, as shown 
in Fig. 52. The ions entering through the slit S are deflected 
in a semicircle and impinge on a photographic plate at P. The 
distance SP is given by 

qB 

and Vo can be determined by allowing the ions to fall through a 
known electrostatic potential drop V before entering the slit S, 

Thus the ratio q/m can be determined and this is the principle 
underlying the operation of a mass spectrograph. 
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In making numerical calculations one must be careful to 
express charge in abcoulombs (e.m.u.) when B is expressed in 
gauss, or in coulombs when B is expressed in webers per square 
meter (m.k.s.). In calculations concerning the motion of 
charged particles in combined electric and magnetic fields, par¬ 
ticular care must be employed since the electric field intensity 
is so often expressed in e.s.u. The general expression for the force 
on a charge q moving in a combined electric and magnetic field is 

F q£ + qip X L) (13) 

This equation can be used as it stands if all quantities entering 
into it are expressed in the same system of units, e.gr., in the 
m.k.s. system. The custom of expressing electric intensity and 
charge in e.s.u. and magnetic induction in gauss (c.m.u.) in the 
same equation is widespread (the mechanical units are those 
of the e.g.s. system in both e.s.u. and e.m.u.), and, if this is done, 
Eq. (13) cannot be used as it stands. This mixed system of 
units, partly electrostatic and i)artly electromagnetic, is called 
the Gaussian system. To find the correct form of Eq. (13), we 
can write 

F = q € + q (v X B) 

i i i i i i 
(dynes) (c.s.ii.)(c.s.u.) (cj.ni.u.) (cm./see.) (gauss) 

and if wo denote the ratio by c, the above equation 
q (in c.m.u.) 

becomes 

F (dynes) = q (e.s.u.)^5 (e.s.u.) + 

-[v (cm./sec.) X B (gauss)] / (14) 

The numerical value of c as determined experimentally is very 
nearly 3 X 10^°. We shall return to a discussion of its dimen¬ 
sions later. 

27. Side Thrusts on Conductors; the Moving-coil Galvanom¬ 
eter.—The magnetic forces exerted on current-carrying wires are 
generally termed ^‘side thrusts” because they'act normally to the 
length of the conductor. We have formulated the law for this 
force in the differential form 
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dF = i{ds X B) 

and, in order to obtain the resultant force (or torque) acting on 
any finite length of a conductor, the above equation must be 
integrated. Since it is a vector equation, this must be done in 
general by computing the components of dF before integrating. 

Steady currents always flow in closed conducting paths; hence 
it is import;ant to consider the magnetic force (and torque) on 
a closed loop of wire carr3dng current. We shall employ a loop 
in the form of a rectangle for simplicity, but the results will be 
stated in a manner whi(;h will be valid for an arbitrary shape of 
loop. In a uniform field of magnetic induction B, a closed cur- 

no magnetic force. Only if the field is 
inhomogeneous is there a resultant force 
on the loop. The forces acting on the 
sides of a rectangular loop whose plane is 
normal to a uniform field B are shown in 
Fig. 53. The upward force on the side 
ah is just balanced by the downward 
force on side cd. Similar balance occurs 
between the forces on the vertical sides 
of the loop ad and 6c, as shown. Evi¬ 
dently this cancellation of forces occurs 
even if B is not normal to the plane of the 

loop. In this case the magnitude of the side thrust on ah would 
equal iB sin a(a6), where a is the angle between B and the current 
direction in the length ah. The side thrust on cd is similarly iB 
sin a(cd) but of opposite sign since the current flows in a direction 
opposite to that In ah. Since cd = ah, we again have a balance. 
In a nonuniform field of B, however, this cancellation does not 
occur, as B or sin a, or both, will vary from point to point on the 
loop so that in general there will be a resultant force. 

We next consider the case of a rectangular loop of wire carrying 
a current i which is free to rotate about a horizontal axis A A 
passing through its center, as shown in Fig. 54a. The width 
of the loop is w, its length is Z, and let the current i flowing 
around it be as shown. Suppose this loop is in a uniform mag¬ 
netic field normal to the axis of rotation. The two equal and 
opposite forces F act on the two conductors of length w vertically. 
These forces give rise to a torque about the axis AA, The forces 

rent loop (experiences 
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acting on the other two sides of the loop give rise to no torque 
about this axis. In Fig. 546 is shown the same loop, as one looks 
at it along the axis A A. We see that the torque about the axis is 

sin 6 + F~ sin d = FI sin d 

where 6 is the angle between the normal n to the plane of the loop 
and B. Since F is the force acting on a conductor of length 

Fia. 54. 

and B is everywhere constant and at right angles to the current 
flowing in this conductor, the force F is 

F = Bvn (15) 

so that the torque becomes 

T = Bi{wl) sin $ 

and, since wl is the area of the loop, this can be written as 

T = BiA sin $ (16) 

This torque is a torque tending to rotate the loop into a position 
in which its plane is normal to B, In this position S = 0, and 
the torque T is also zero. It is a position of stable equilibrium, 
hjquation (16) turns out to be true for a loop of arbitrary shape, 
the torque being proportional to the area of the loop. The maxi¬ 
mum torque occurs when 6 = 90®, Le.y when the normal to the 
plane of the loop is perpendicular to B. 

One of the most common types of galvanometers, the so-called 
d^Arsonval or moving-coil galvanometer, functions by virtue of 
the torque action discussed above. A coil of N turns in series is 
suspended by wires IF, as shown in Fig. 55. For the uniform 
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field B shown in the figure, one of the coil sides is pushed toward 
and the other away from the reader, giving rise to a torque about 
the axis of suspension 

T = NBiA (17) 

The magnetic field is supplied by a permanent magnet, which in 
actual design is so arranged that B is in the plane of the coil even 
when the latter is twisted through an angle (a so-called radial 
field). When current flows through the coil, it rotates through 

an angle 6 until the torsional restoring 
torque of the suspension is equal and 
opposite to the magnetic torcpie. Since 
the restoring torque is pro])ortional to 0, 
we can write for equilibrium 

NBiA = h'O (18) 

where ¥ depends on the torsion modulus, 
length, and radius of the susixmding 
wires. 

Equation (18) may b(‘ written in the 
form 

0 = ^== constant X I (19) 
Fio. 55. k 

so that th(?^angular deflection is proportional to the current. The 
discussion of the sensitivity of the instrument is h^ft to the 
problems. 

The principle underlying the action of an elecitric motor is 
essentially that for the moving-coil galvanometer, the only essen¬ 
tial difference being that the coil (more precisely, the armature 
carrying the coil) is free to rotate about its axis in bearings 
instead of being subjected to a restoring torque. 

28. Ampere’s Rule; The Magnetic Intensity H.—We now must 
inquire into the question of the laws governing the production of 
magnetic fields by currents. These laws were discovered, as 
previously mentioned, by Ampdre as a result of his experiments 
on the forces exerted by one current-carrying conductor on 
another. Just as in the electrostatic case, one finds that these 
magnetic forces depend not only on the currents but also on the 
material bodies which are present. Once again w^e defer the treat¬ 
ment of the effects of the boundaries between such material 
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media and shall confine ourselves in this chapter to the case of 
infinite homogeneous media (principally empty space); hence the 
boundary effects may be entirely neglected. The result of 
Ampere’s experiments may be stated as follows: The magnetic 
induction vector i? at a given point of space may be considered 
as the vector sum of infinitesimal vectors dB, each of the latter 
being due to a current element i ds of the circuit producing the 

field. Let r be the radius vector from the current element i ds 
at 0 to the point P where the 
field B is being calculated (Fig. 
56). The magnitude of dB due 
to this current element is jiroiior- 
tional to the magnitude of i ds, 
to the siiKi of the angle a between Fio. 50. 

i ds and r, and inversely to the square of the distance r. In symbols, 

dB 
- ds sin a 

The direction of dB is at right angles both to ds and to r, and, 

if the vc^ctor ds is rotated through the smallest possible angle 

so that it lines up with r, the direction in which a right-handed 
—> 

screw would move is the direction of dB. Using the notation 
for a vector product, we may write the above proportionality 
in the form 

dB 
i{ds X rj 

If there is a current element ii dsi at P, the foi*co on it is, accord¬ 
ing to Eq. (7), 

3 = iiiZi X ^ dsi X xT) (20) 

The proportionality expressed by the above relation summarizes 
Amp^re^s law for the force exerted on a current element iidsi 
by another current element i ds separated from it by a distance 
r. If we denote the proportionality factor by g., the above 
proportionality can be written as an equation 
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rfF = X (ds X r) (21) 

The proportionality factor n is called the magnetic permeability 
of the medium in which the conductors are embedded. It is the 
only factor in Eq. (21) depending on the medium, the other 
factors depending only on the currents and their relative posi¬ 
tions. Remember that this statement is valid only for infinite 
homogeneous media or in such cases for which boundary effects 

—> 

are negligible. Thus we can write for dR, due to the current 

element i ds (Ampdre^s rule), 

. ds X r 
dij — fjLi — (^^} 

and, in the case for which the medium is empty space (or, for all 
practical purposes, air), we write 

dB = Moi (23) 

where mo is the magnetic permeability of empty space. 
Just as in the case of electrostatics, it is convenient to introduce 

a second magnetic vector which depends on the currents pro¬ 
ducing the field and which shall be independent of the medium 
in which the field is produced. This vector (the analogue of D 
in electrostatics) is called the magnetic intensity and is denoted 
by the letter H. The contribution to at a given point of space 

due to a current element i ds, is by definition for an infinite medium 

dH = i 
,ds X r 

(24) 

and the vector H is obtained by summing the elementary vectors 

dH produced by all the current elements. The magnitude of the 

elementary vector dH is accordingly 

dH = 
i ds sin a 

(26) 

Comparing Eq. (24) with Eq. (22) and with Eq. (23), we see that 

H = -B 
H 

(26) 
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or, for vacuum, 

H =-B (27) 
Mo 

Thus far we have not considered the question of units. There 
are two sets of units commonly employed in magnetic calcula¬ 
tions. First, the electromagnetic absolute system of units (e.m.u.) 
is characterized by the fact that the permeability /x is arbitrarily 
chosen as a pure member without dimensions and the value of 
/xo is taken as unity. (Compare this mode of procedure with that 
for defining € in electrostatics.) Furthermore, e.g.s. units are 
used for all mechanical quantities just as in the electrostatic 
system. Since /x is dimensionless, we see from Eq. (21) that the 
dimensions of current and hence of charge can be expressed in 
terms of mass, length, and time. Thus this equation shows that 
current in e.m.u. has the dimensions given by 

[t^]e.m.u. = mlt'^ 

and hence charge q in e.m.u. has dimensions given by 

[Q^**]e.m.u. rnl 

In sharp contrast to this we have for the dimensions of <7^ in 
e.s.u., according to Coulomb^s law, 

[Q'‘^]e3.u. == mlH-^ 

from which there follows the surprising fact that the dimensions 
of charge in e.s.u. and in e.m.u. are different from each other. 
This has been a source of great confusion to the student of elec¬ 
tromagnetic theory. In fact the ratio of the dimensions of q in 
e.s.u. to those of q in e.m.u. is readily seen to be ? 

• _ }[ 
[O'e.m.u.] t 

(a velocity!) (28) 

and is expix\ssed in centimeters per second. Equation (21) 
applied’ to two current elements in vacuum defines the unit 
current in e.m.u., the so-called abampere. For simplicity, let us 
suppose that the two current elements are parallel to each other 
carrying the same current. Expressing all quantities in e.m.u., 
Eq. (21) becomes 

dsi ds 
dr = Mo* ^2 (29) 
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and is a force of attraction acting along r (Fig. 57). The element 
i dsi produces a field at P normal to and into the paper, 

dB 
fxoi dsi 

(mo - 1) 

and hence the force on i ds is as shown and of magnitude 

dF = i ds D 
P ds dsi 

(mo = 1) 

Thus, if two parallel current elements of equal length ds attract 
each other with a force of 1 dyne i^er unit length (centi- 

^^5 meter) of each element when 

I_^ tp by a distance of 1 cm., 
' the current ^ in each is 1 abampcrc. 

This is not a •convenient working 
definition, although logically correct, since one always has closed 
circuits; hence we shall give an equivalent, more convenient 
definition later. 

The ratio of a charge (or a current) expressed in e.s.u. to the 
same charge (or current) exi)ressed in e.m.u. turns out to be 
experimentally 

q (in e.s.u.) _ i (in e.s.u.) 
q (in e.m.u.) i (in e.m.u.) 

= 3 X 10^® cm./sec. 

According to Eq. (27) the vectors II and B become identical for 
vacuum when e.m.u. an? employed. In isotropic material media 
they differ in magnitude but have the same direction and 
dimensions. 

In the mdc.s. system of units, the dimensions of m or mo are 
fixed by Eq. (21) in terms .of mass, length, time, and charge. 
Thus we have 

The unit charge in the m.k.s. system is defined as one-tenth 
the e.m.u. unit and is called the coulomb. Thus we have 
1 coulomb = abcoulomb and 1 amp. = ^ abampere. The 
magnitude of mo in m.k.s. units can be readily calculated from 
Eq. (29), and is 

/lo = 10*^^ kg.-meter/coulomb* (30) 
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Let us now summarize the discussion of this section. Suppose 
we have the problem of determining the force exerted on one 
current-carrying circuit by another. The following procedure 
is to be followed: 

1. Calculate the vector JET, due to the second circuit at a point 
where an element of the first circuit is located, by applying 
Eq. (24) and by integrating over all the current elements of the 
second circuit. Since 11 is a vector, we must first take com¬ 
ponents of dll, integrate separately for each component, and then 
find the resultant //. 

2. Find the vector B from B = ju/7. 
3. Calculate the force on the element of the first circuit due 

to this induction vector B in accordance with Eq. (7). 
4. Integrate over all elements of this first circuit to find the 

resultant force. This calculation is to be carried out by first 
taking components of the force and then integrating as in 
procedure 1. 

In the following sections we shall concern ourselves mainly 
with part one of the above scheme and confine our attention 
exclusively to the consideration ^ 
of magnetic fields in vacuum or _ —.x /_ 
in air, so that B = jnoTf. 

29. The Biot-Savart Law; 
Examples.—As a first example of 
the application of the laws ex¬ 
pounded in See. 28, let us con¬ 
sider the magnetic field of a very 
long straight wire carrying a 
steady current i (Fig. 58). From the symmetry of the problem we 
see that the field intensity H can depend only on the distance a 
of the field point P from the wire. The contribution to H from 
any current element i dx is a vector pointing straight into the 
page at P, at right angles to the element i dx and to r. Since all 
the vectors dll have the same direction (only one component of 
jff), we may integrate directly and have from Eq. (24) 

dx sin a 
r2 (31) 

It is simplest to use the angle as an integration variable. From 
the figure it is evident that sin a = sin (t — a) = cos <l>; 
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X === a tan <l>; dx = a sec^ d4»] ^ 
cos- <l> dx _ d(t> 

so that Eq. 

(31) becomes 

cos <l> d<t> — 
ir 

2 

?! 
a 

Thus we have for the magnetic intensity H due to a long straight 
wire at a point P a vector of magnitude 

H = - (32) 
a 

which is directed at right angles to the plane of the wire and a. 
This result is known as the Biot-Savart law and is of great 

importance, since it gives the field near a straight wire of finite 
length if the distance a is small compared with the length of the 
wire. 

Let us imagine that the point P of Fig. 58 describes a circle 
of radius a about the wire with the center at 0. At every point 
of this circle, the vector H (and also B) is tangent to it and hence 
the circle is one of the lines of H or B. Thus we see that the lines 
of magnetic intensity or induction produced by a long straight 
wire are, circles with their centers at the wire (Fig. 59). Note 
that, if one moves around a line of magnetic intensity in the 
direction of H, the current producing the field is in the direction 
in which a right-handed screw would move when so rotated. 

Let us now examine the magnetic field produced by a circular 
loop of wire canyijig a steady current t. First, we calculate 
the field H at the center of the loop (Fig. 60), The field intensity 
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H is normal to the plane of the loop at 0 and points out at the 
reader. For all elements ds, the angle between ds and r is 90°, so 
that Eq. (25) becomes simply 

- dH = 
i da 
r- 

and, since r is constant , we have 

(33) 

We can immediately (ixtcmd this law to calculate the magnetic 
intensity at any point on th(‘ axis of th(' loop (Fig. 61). The 

distance H from any elennmt ds of the loop to P is constant and is 
given by 

R = Jf. J.2 

Furthermoni, da is normal to R at all points of the loop so that in 
Flq. (25) sin a = 1. Hence 

dH 
ds 

Befon) integrating we must resolv(i H into a component along the 
ar-axis and one at right angles to it. By symmetry the latter 
vanishes for the? whole (dreuit and H = Hx- Thus we have 

dHx = dH cos <t> = dH 
R 

and 

Hx 
C rds 
j (0:2 + ^2)1 (j.2 + r*)! J (X* + (34) 

This expression for the axial field of a circular loop of current is 
useful for calculating the axial field of any number of coaxial 
circular loops. As an example, we consider the case of a solenoid^ 
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which is a closely wound helical coil of conducting wire. We can 
get the axial field by integrating the contributions from the indi¬ 
vidual turns as given by Eq. (34), since for very close winding 
each turn is almost exactly circular. 

We replace the solenoid by a current flowing circumferentially 
around a hollow cylinder (everywhere perpendicular to the axis). 
If there are n turns per unit length of the solenoid, each carrying 

Fig. 62, 

a current then the current per unit length is ni and the cur¬ 
rent carried in a circular ring of thickness dx is ni dx (Fig. 62). 
The contribution of this ring to the field intensity at P is accord¬ 
ing to Eq. (34) 

jTi ^ 2irr^mdx 

where x is the distance from the plane of the circle to P. This 
expression must be integrated over the whole length I of the 
solenoid to find the axial field H at P, From the lower sketch in 
Fig. 62 we see that 

R do = sin 6 dx 
and hence 

dx — R 
de 

sin 9 
and since 

r _ r 
R ~ 

our expression for dH becomes 

sin 

dH 
2vnir^ dB • R 

(x* + sin 9 
2vni sin 9 d9 
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The integration immediately yields 

sin 0 do = 2Trni (cos 0i — cos 62) (35) 
0i 

where 0i and 62 are the values of 0 when dx is at the ends of the 
solenoid. 

When the solenoid is of infinite length, = 0 and 62 = ir, 
so that 

H = 4xm (36) 

is the magnetic intensity on the axis of an infinitely long solenoid 
wound with n turns per unit length, each turn carrying a current 
i. Equation (35) can be used to find the axial field inside a 
solenoid of finite length Z. Further discjussion is left to the 
problems. 

30. The Ampere Circuital Law for H.—There is a more general 
relation, also due to Ampere, than Eq. (24) between the magnetic 

H 

intensity H and the steady current i which produces it, and this 
relation is known as the circuital law. To formulate this, wo 
must introduce the idea of the magnetomotive force (m.m.f.) 
along a path. This is defined as JHe ds taken along the given 
path. If the path is closed, we write it as He dSy the circle 
indicating the fact that a closed path is employed. The integral 
is always to be evaluated by traversing the path in such a direction 
that the enclosed area is kept on the left. 

Let us consider the expression for the magnetomotive force 
around a closed path in the field of a long straight wire, given 
by the Biot-S|tvart law, Eq. (32). First we take the closed path 
as one of the closed lines of H (a circular path) as shown in Fig. 
63a. Since H is everywhere tangential to the circle, we have 
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If now from Eq. (32) we insert the value H = 2i/a into the preced¬ 
ing integral, there follows 

ads == • a ^ 2i^d^ = ^ici 

since the integral of around the circle is just 2m. It can be 
shown in general that the ds around any closed path which 
encloses the wire has the value imi. On the other hand, if the 
closed path does not enclose the wire, the integral is zero. We 
can readily check this last statement for a closed path, the 
path consisting of two radial sections and two arcs of circles of 
radii ri and n, as shown in Fig. 636. We have 

ds = f^H. ds + £’II. ds + ds + ds 

The first and third terms are zero since H is everywhere normal 
to a radius vector. The second integral is 

I —Tid^ = 2i^o 
Tt 

and the fourth one is 

fV.ds = f”-ri# = -2i^o 
s)d 

Thus we have shown that ^Hgds = 0 for this path which 
encloses no current. 

The results illustrated above turn out to be true in general and 
hold not only for steady current flow in wires but also for currents 
distributed in space. This is the essence of Ampdre's circuital 
law, and it is one of the fundamental laws of electromagnetic 
theory. The formal statement of this law is as follows: 

The magnetomotive force around any closed path is equal to Air 
times the current crossing any surface of which the closed path is a 
boundary. 

This law has unrestricted validity, holding in all cases, whereas 
the Ampere rule as expressed in Eq. (24) is in general valid only 
for media of infinite extent. For the purposes df the present 
chapter, however, the Ampfere rule is more convenient, since the 
complete determination of the magnetic field requires the use of 
both the AmpSre circuital law and Eq. (10). The more funda- 
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mental character of the circuital law will become evident when we 
study the magnetic behavior of matter and investigate tlui 
effects of boundaries between magnetic media. 

In symbols we write the circuital law in the form 

ds == iiri (38) 

If i is expressed in abamperes, then H is also in e.m.u. (abamperes 
per centimeter), whereas, if i is expressed in amperes, d8 must 
be expressed in meters to obtain H in m.k.s. units (amperes per 
meter). If one wishes to use the Gaussian mixed system express¬ 
ing H in e.m.u., ds in centimeters, and i in statamperes (e.s.u.), 
the above equation must be written in the form 

ds = AiA (38a) 

One must not lose sight of the fact that this law as written holds 
only for steady currents, since in this case the lines of current 
flow are closed and hence the current crossing any surfaces 
having a common perimeter is the same for all such surfaces. 

If the current flow is distributed throughout space, we have 
for the current flowing across any surface 

f = J* jn dS 

so that the Ampere circuital law takes the general form 

^H, ds = iwjjn dS (39) 

where the .surface integral is taken over any surface having the 
closed path as a boundary. 

As an example of an application of Eq. (38) let us consider tlu^ 
magnetic fiield inside a long straight wire of radius B carrying 
a steady current i. The lines of H inside the wire will be circles 
concentric with those outside the wire, but H will not vary as 
1 /r, r being the distance from the central axis of the wire. To 
find the correct variation, we evaluate the magnetomotive force 
around a circle of radius r less than R and have (by symmetry H 
can vary only with r and hence is constant along the circle and 
tangential to it at every point) 

fn. ds = 2irrH 
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This must be iv times the current flowing across the area enclosed 
by the circle. If the current density is j = this current is 
simply jirr^j so that 

2?rr// = 

and solving for H, there follows 

^ ^ (r^R) (40) 

For r > JB, we still have H = 2i/r, and we note that there is no 
discontinuity in H as one passes out of the wire since both Eq. 
(40) and Eq. (32) yield the same value 2i/R at the surface of the 
wire. 

The calculation of the magnetic intensity inside a very long 
closely wound solenoid can be accomplished readily with the help 

c,—k—.d 
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Fia. 64. 

of the circuital law. Figure 64 shows a portion of a section of the 
solenoid through its axis. From the symmetry we see that the 
lines of H and B must be straight lines parallel to the solenoid 
axis in the space inside the solenoid. (These lines will of course 
come out of the ends and close on themselves. If the solenoid 
is long enough compared to its radius, however, the lines of H or 
B outside the solenoid will be far from it.) H can depend only 
on the distance y from the axis. Let us evaluate the magneto¬ 
motive force around the dotted path. For the portion of the path 
lying outside the solenoid, H is practically zero, and the portions 
normal to the axis give no contribution to the m.m.f. since H 
is at right angles to the path. Thus the whole integral takes 
its value from the portion ah of the closed path of length Z, and 
we have 

^H,da = HI 



Sec. 31] MAGNETIC FIELD OF STEADY CURRENTS 107 

where H is the magnitude of the magnetic intensity at a distance 
y from the axis. The current flowing through the area enclosed 
by this path is nlij where n is the number of turns per unit length 
and i is the current flowing in each turn. Thus we have 

ds = III = 47r(m‘Z) 

so that 
II = 47rm - (41) 

and is constant, independent of position inside the solenoid. 
This result checks Eq. (36) for the field on the axis of such a 
solenoid, but we now see that the result holds for points other 
than those on the axis. The corresponding value of B is 

* B = fxo^Tni (42) 

for vacuum, and here we have an example of a uniform field of 
magnetic induction. In practice one never has an infinite 
solenoid, but, if the diameter of the solenoid is very small com¬ 
pared to its length, Eqs. (41) and (42) are correct for the central 

Fig. 65. 

portion of the solenoid. Only near the ends where the lines start 
to curve do these equations give incorrect values of the field. 
Figure 65 gives a rough picture of the complete field of a solenoid 
of finite length. 

31, Magnetic Moment cf a Current Loop; Scalar Magnetic 
Potential.—^Let us return to the problem of the magnetic field 
produced by a circular current-carrying loop. In Sec. 29 we 
derived the expression (Eq. 34) for the magnetic intensity H 
at any point on the axis of such a loop 
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where r is the radius of the loop and x the distance from the 
center of the loop to the point on the axis where H is calculated. 
If the radius r of the loop is very small compared with x, the above 
expression becomes, very nearly, 

2irtr^ — 
(43) 

where A is the area of the loop. 
This expression is just like the corresponding expression for the 

electrostatic field on the axis of a dipole at distances large com¬ 
pared with the dimensions of the dipole. The correspondencti 
between the magnetic intensity at large distances from a small 
current loop and the electric field intensity or displacement at 
large distances from a small dipole is also true for points not 
on the axis. Therefore it is very convenient to describe the 
magnetic field of a small current loop in terms of an equivalent 
magnetic dipole. For an electric dipole the expression for D, let 
us say, corresponding to Eq. (43) is 

C = g (43a) 

where p is the dipole moment, and D is in the same direction as 

the vector p, from the negative to the positive charge of the 

dipole. We now define the magnetic moment m of a small loop 
of current as a vector of magnitude 
iA (product of current and area of 

-tn __the loop) whose direction is along 
the normal to the plane of the loop. 

The sense of the vector m is such 
that if a right-handed screw were 

rotated in the direction of current flow it would move in the direc- 

Fig. S6. 

tion of m (Fig. 66). In terms of the magnetic moment of the cur¬ 
rent loop Eq. (43) takes the form 

H = 
2m 

(436) 

It must be always kept in mind that this expression for the axial 
field is valid only at points x which are very far from the loop. 
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Furthermore, in the electrostatic case the dipole field at large 
distances can be obtained by forming the gradient of the scalar 
potential V given by Eq. (25), Chap. II. The convenieiUHj of 
having a scalar potential has also been carried over to the case 
of a magnetic dipole, and we define the scalar magnetic potential 
of a dipole at large distances from 
it by (Fig. 67) 

r.. (44) 
_^ 

and from this the magnetic inten- 0 
sity H can be obtained as 

H = - grad Vn, (45) 

It turns out experimentally that the magnetic field produced by 
a tiny bar magnet is identical at large distances with that pro¬ 
duced by a tiny current loop; hence one thinks of such a permanent 
magnet as being describable by a magnetic moment. This 
(equivalence is valid also for largo bar magnets and solenoids, 
provided one restricts one/s attention to the field outside the bar 
magnet or solenoid. In fact, from measurements of the external 
field produced by a bar magnet or by a solenoid, one could not 
distinguish between them. The scalar magnetic potential is 
})articularly convenient for describing the external magnetic field 
of permanent magnets. One more word is necessary concerning 
the use of a scalar potential in magnetic calculations. The con¬ 
dition for the existence of such a quantity is that the magneto¬ 
motive force around a closed path be zero {J'Hgds = 0). We 
liave seen that this is true for paths not enclosing a current. If, 
however, we consider a region of space in which distributed 
currents flow, the above equation is not true, and one cannot use 
the idea of scalar potential at all. 

Equation (44) for the scalar magnetic potential of an infini¬ 
tesimal current loop can be put in an interesting and useful 
form. Writing it as 

_ i dA cos d 
y.2 

we see from Fig. 68 that the tiny area dA^ normal to r is related 
to dA by the equation 

dA' = dA cos 6 
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and that the solid angle dO. subtended at P by dA is 

. dA^ dA cos $ 
= TT = --2- 

Hence the potential Vm can be written very simply as 

Vm = idn (46) 

Written in this form one can now deduce the corresponding 
expression for a finite current loop of any shape wliatsoc^ver. If 
we have a large current-carrying loop, we can imagine it built 
up by superposing a huge number of tiny loops, each carrying 
the same current, as shown in Fig. 69. Any part of a loop not 
on the perimeter carries two equal and opposite currents (hen<*.e 

zero current), so that the large single loop is equivalent to the 
sum of the small ones. This construction bears the name of 
Ampere. At a point P the large loop subtends a solid angle it 
which is evidently the sum of the solid angles subtended by the 
tiny loops. Hence, using Eq. (46), the potential due to any loop 
of current at a point P is 

Vm - fa (47) 

where i is the current in the loop and a the solid angle subtended 
by the loop at P. 

As an illustration of the use of Eq. (47) we calculate the scalar 
magnetic potential of a circular loop of radius r at a point on the 
axis of the loop. The solid angle 0 subtended at P by the loop is 
equal, by definition, to the area of the portion A' of the surface 
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of a sphere of radius R divided by (Fig. 70). The area is 
readily found to bo 

A' = 2tR^{1 — cos $) 

where 0 is the angle between the radius to a point on the loop 
and the x-axis as shown. 
Thus 

“ - F - =’'<> -”> - K' “ s) - K'" 
and from Eq. (47), 

- =-(> - vPTfp) <«) 

This gives the magnetic scalar potemtial at points on the x-axis 
and we can obtain the; axial field intensity H according to Eq. 
(45) by 

rj _ ^ 1 - 
dl (x2 + r=)?J (x^ + r*)? 

and this is the result expressed by Eq. (34). « 
It is interesting and instructive to express the tonpie on a curr 

rent loop which is placed in a 
magnetic field in terms of the /\ \ 
magnetic moment of the cur- ^ k f ] \R 
rent loop. We have seen in r 

Sec. 27 that a current-carrying ^ X 
loop in a uniform field i? is in ^ 0 p X 
equilibrium when the plane of ^ 

L 

the loop is at right angles to the % i 
direction of B. From an ex- \ 

\J 
amination of Fig. 54 on page 

Flo. 70. 
93, we see that the position of 
stable equilibrium is such that the magnetic field produced 
by the current in the loop aids the external field at the center 
of the loop. If the normal to the plane of the coil makes an 
angle 6 with the direction ofZl, the restoring torque is 

T = BiA sin 0 (49) 

as given by Eq. (16). If the induction B varies from point to 
point, this equation is still correct for a very small loop, so small 
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that B is practically constant over the area A. In terms of the 
magnetic moment m = Eq. (49) becomes 

T == mB sin 6 (50) 

and the axis of rotation (the direction of the vector torque) is 

normal to the plane of m and B. Using the notation for a vector 
product, we can state this concisely as 

r = m X~B (51) 

(In Fig. 546 the direction of m is that of the normal n shown 
there.) We have already pointed out the equivalence of a small 
bar magnet, such as a small compass needle, and a small (mrrent 
loop with regard to the field produced by each. This equivalences 
is also true with respect to the torques exerted on each by a 
magnetic field. The torque exerted on a small compass needle 

suspended at its center is given by Eq. (51), where m now repre¬ 
sents the magnetic moment of the compass needle. If the needle 
is displaced rfom its equilibrium orientation (in which it is 
lined up with the field vector B) through a small angle 6 and 
released, it will perform simple harmonic motion with a period 

where I is the moment of inertia of the needle about the axis 
of rotation. Used in this manner, a small magnet serves as a 
magnetometer and is employed to measure weak magnetic fields, 
such as the magnetic field of the earth. 

There is a simple important current-measuring instrument, 
which operates with the aid of such a suspended compass needle, 
called a tangent galvanometer. Suppose a compass needle is 
suspended so that it is free to rotate about a vertical axis through 
its center and is placed at the center of a large vertical circular 
coil of wire of N turns and radius a. The plane of the coil is 
perpendicular to the east-west direction. When no current 
flows through the coil, the compass needle points north. If a 
current i flows through the coil, it sets up a field B at its center 
in an east-west direction of magnitude given by (see Eq. 33) 
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Be Mo~ 
2irNt 

The compass needle rotates until it points in the direction of the 
resultant of this field and the horizontal component of the earth's 
field, Bk. The tangent of the angle between th(^ direction of the 
needle and north is given by (Fig. 71) a 

tan d = 
2TfXoN . 

w *' 
North 

or 
'tan 6 = constant X i (53) 

Thus we have a simple and relatively 
cheap ammeter which can be used to 
determine the absolute value of the current 
i if Bk is once known. If one were to ^ 
mount a small current-carrying coil at tic.. 7i. 

the center of a large v(u*tical circular coil so that the small 
coil were free to rotate about a vertical axis through its center, it 
would behave just like the compass needle. It is, of course, much 
more convenient to employ the small permanent magnet. Sup¬ 
pose the large coil has N turns and radius R and the small coil n 
turns and radius r. If we hold the small coil so that its plane is 
normal to that of the big coil and send the same current i through 
both coils (series connection), we must exert a torque on the 
small coil equal to 

T = Hty 
27rNi 

R 
• niwr^ 

or 
27rVoiVnr2 

R " ' 
(54) 

This equation can be used to define the abampere (the e.m.u. of 
current), placing mo = 1. Thus, for example, let iNT = n = 10, 
r = 1 cm. and R = 100 cm. Then the abampere is that current 
sent through the coils for which a torque of 2ir^ dyne-cm. is 
exerted on the small coil. 

In conclusion, we should point out that the definition of the 
magnetic moment of a very small current loop which we have 
adopted, viz., m = iA, is at variance with that adopted by many 
writers on the subject.* The alternative definition, namely, 
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m' fXoiA for a loop in vacuum, has enjoyed considerable 
popularity, and, using it, one is led to equations differing slightly 
from those we have written. For example, Eq. (44) for the 
magnetic scalar potential becomes 

ir ^ ^ 
r jn — n 

fJLor^ 

and Eq. (51) for the torque on a current loop takes the form 

^ xll 
Since B is the fundamental magnetic force vector, this last rela¬ 
tion seems forced and may lead to confusion when applied to 
permanent magnets. We return to a more critical discussion of 
this point when we study the magnetic behavior of ferromagnetic 
bodies. 

Problems 

1. The magnetic induction in a given region of space is given by Bx - ay, , 
By = —aa;, B, = 0. Show that the lines of induction arc circles. 

2. In Prob. 8, Chap. I, the two deflecting plates of the cathode ray 
tube are replaced by coils producing a uniform transverse magnetic field of 
5.3 gauss in the same region of space in which the electric field existed with 
the deflecting plates in position. The beam is deflected 3.1 cm. Calculate 
the ratio e/m for an electron. 

3. An electron enters a uniform magnetic field perpendicular to the lino.s 
of induction and performs circular motion with a period of 10“* sec, 

o. Calculate the value of B in gauss and in webers per square meter. 
6. If the electron enters with a speed acquired by falling from rest 

through a potential difference of 3,000 volts, what is the radius of the 
circular orbit? 

4. Carry through the calculations of Prob. 3 for a hydrogen ion instead 
of an electron. The mass of a hydrogen ion u 1,840 times that of an 
electron. 

6. The earth\s magnetic field at the equator is about 0.4 gauss. What 
should the velocity of an electron be if it is to describe a circle around the 
earth at the equator? What is its energy in electron-volts? Should it 
travel toward the east or the west? 

6. A magnetron consists of a filament 0.5 mm. in radius surrounded by a 
coaxial cylindrical plate of inner radius 5 cm. When the tube is placed in a 
uniform magnetic field with its axis parallel to the lines of B, it is observed 
that the electron current from filament to plate is zero for plate potentials 
less than 10.2 volts. Calculate the magnitude of B. 

Hint: Set up the equation for conservation of mechanical energy, and 
set the torque about the axis equal to the rate of change of angular 
momentum. 
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7. Referring to Fig. 52 in the text, show that all electrons with the same 
speed Vo, leaving the slit S at small angles to the normal, will be brought to 
a focus at P. 

8. Electrons are emitted normally from the negative plate of a parallel- 
plate condenser of separation d with negligible velocities under the action 
of ultraviolet light. The condenser is situated in a uniform magnetic 
field with the lines of B parallel to the plates, and a potential difference V 
is maintained between the plates. Show that no electrons reach the 

positive plate if F < - 
2 m 

Hint: Use Newton’s second law for the motion parallel to the plates and 
the conservation of mechanical energy. 

How should this inequality be written if th(i Gaussian system of units is 
to be employed? 

9. A cloud chamber enables cne to observe the tracks of charged 
particles. When a uniform iriagnetic field exists in the chamber, the 
tracks are curved. Suppose tracks of 102-mm. radius are observed when 
the field is 0.1 weber/meter^ and that it is known that the particles have the 
same charge as an electron and an energy of 3,400 electron-volts. What is 
their mass? 

10. A 60-mil diameter copper wire (density 8.9 grams/cm.*) 1 ft. long is 
pivoted at A and rests lightly against a horizontal wire passing through R, as 
shown in Fig. 72. A current of 1 
amp. is sent through the wires from A 
to C and a nuignetic field of 1,000 
gauss is applied normal to the plane of 
the wires. What angle 6 will the 
hanging wire make with the vertical 
at equilibrium? 

11. A copper bar weighing 100 
grams rests on two rails 20 cm. apart 
and carries a current of 20 amp. from 
one rail to the other. The coefficient of friction is 0.16. What is the 
least magnetic field that would cause the bar to elide, and what is its 
direction? 

12. A very thin wooden block, 25 by 40 cm., has 10 turns of wire wound 
around its edge, and the block is suspended in equilibrium wdth its plane 
horizontal on an east-west axis with its 40-cm. edges pointing north and 
south. Using very flexible leads, a current of 28 amp. is sent through the 
coil. How far from the axis of suspension must a 1-gram body be hung so 
that the coil remains in equilibrium in the earth’s field? The horizontal 
component of the earth’s magnetic field is 0.21 gauss, and its vertical com¬ 
ponent is 0.48 gauss. 

13. An equilateral triangular loop of wire, of side a and weight TT, is 
suspended from one vertex so as to turn freely in all directionsp A current i 
flows around the loop, and it is placed in a uniform magnetic field B. 

a. The field is normal to the loop. Draw the forces acting on the wires, 
and find the resultant tension in the wires. 
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h. The field is horizontal and in the plane of the loop. What is the 
torque tending to‘turn the loop? 

c. The field is vertical. What is the equilibrium position of the loop? 
14. A circular loop of wire of area A, carrying a current f, is placed in a 

uniform magnetic field B so that the field is in the plane of the loop. Show 
that the torque on the loop is BiA. 

16. A uniform magnetic field is applied normal to a rigid circular loop 

of wire carrying a current. Find the tension in the wire. 

16. The coil of a d^Arsonval galvanometer has 100 turns and encloses an 
area of 5 cm.* The magnetic induction in the region whore the coil is 
located is 1,000 gauss and the torsional constant of the suspension is 

10“^ dyne-cm./deg. 
а. Find the angular deflection of the instrument per milliamperc. 
б. If the angular deflection is measured by reflecting a beam of light from 

a mirror on the suspension, what current would cause a deflection of 1 mm. 

of the light spot on a scale 1 meter distant from the mirror? 
17. How will the sensitivity of a galvanometer change if the number 

of turns of wire on the coil is doubled, the diameter of the wire being corre¬ 
spondingly reduced so as to keep the weight constant? Consider both the 

ampere and the volt sensitivities. 
18. Discuss how the sensitivity of a d^Arsonval galvanometer depends 

on the magnetic induction B, the area of the coil, and the length and radius 

of the suspending fiber. What practical limitations can you give for the 

design of the instrument, if one desires maximum sensitivity? 
19. Calculate the period of a moving-coil galvanon^ter for torsional 

vibrations, neglecting friction. Derive a formula for the angular deflection 

of such an instrument in terms of the current, magnetic induction B, 
number of turns AT, coil area A, the period calculated above, and the moment 

of inertia of the instrument about the axis of suspension. 

20. A large current is sent through the coil of a d'Arsonval galvanometer 
for a very short time. Neglecting friction, prove that the maximum 
angle through which the coil rotates is proportional to the total charge 

passing through the coil. 
Derive a formula for the proportionality constant. When a galvanometer 

is used in the manner described, it is called a ballistic galvanometer. Why 
should a ballistic galvanometer have 
a relatively large moment of inertia 

about the suspension axis? 

21. A metal bar slides on two con¬ 

ducting rails carrying a current t, as 
shown in Fig. 73. Under the influence 

of a uniform magnetic field B and a 
suitable external force, it moves with 

the velocity t>. Compare the rate at which work is done against the 

external forc^ with the rate of increase of flux in the circuit behind the wire. 

Give your answer for both m.k.s. and absolute electromagnetic units. 
22* The armature of a motor is a cylinder 25 cm. in diameter and rotates 

with an angular velocity of 1,200 r.p.m. The armature carries 100 conduc- 

l 

Fig. 78. 
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tors, each 40 cm. long and each carrying 15 amp. at right angles to a magnetic 

field of flux density 8,500 gauss. Compute the torque and horsepower 

developed by the motor. 

28. Two long straight parallel wires carry equal and opposite currents. 

The wires are separated by a distance of 10 cm. and each carries a current 

of 20 amp. 

a. Calculate an expression for the magnetic intensity H at any point 

(outside the wires) in the plane containing the wirc^s. 

h. Plot to scale the magnitude of H as a function of distance along a line 

j>erpendicular to bo^i wires, using the mid-point between the wires as an 

origin. 

24. A long straight wire of circular cross section and radius 0.02 cm. 

(tarries a steady current of 50 amp. Calculate the total flux of B inside a 

cylinder coaxial with the wir(i of radius 2 cm. and altitude 1 meter. Neglect 

the flux inside the wire. 

25. A solenoid of 1,000 turns is wound uniformly on a cylindrical tube 

40 cm. long and of 8 cm. radius. A current of 1.5 amp. flows in the winding. 

Calculate the axial magnetic intensity at the center of the solenoid and in 

the plane at one end of t he solenoid. 

26. Derive a formula for the magnetic intensity at points on the axis of a 

solenoid of length I in terms of the distance from the center of the solenoid. 

Plot the magnitude of H against this distance for points both inside and 

outside the solenoid. 

27. Calculate the attractive force per foot between two long parallel 

wires 5 in. apart when each carries a current of 50 amp. Express your 

answer in pounds per foot. 

28. Derive an expression for the magnetic induction at the center of a 

square circuit of side I, if the circuit carries a current i, 
29. Calculate the magnetic intensity due to two long parallel conductors 

separated by a distance 2d and carrying equal currents in opposite directions 

at any point of a plane bisecting a line joining the two wires and perpen¬ 

dicular to each. Where is this intensity a maximum? 

30. Calculate and plot the magnetic induction as a function of distance 

from the central axis of a long cylindrical wire 2 mm. in radius carrying a 

current of 50 amp. What is the flux of B per centimeter of length inside 
the wire? 

31. A steady current i flows in a long straight cylindrical wire of radius a 
and returns along a coaxial hollow cylinder of inner radius h and thickness d. 
Assuming uniform current density in the conductors, calculate the magnetic 

intensity as a function of distance from the central axis of the wire. (Use 

Ampere’s circuital theorem.) 

32. In Prob. 31 calculate the ratio of the flux of B outside the conductors 

to that inside both conductors. 

33. A uniformly charged circular ring is rotated about its axis with con¬ 

stant angular velocity w. Calculate the magnetic field intensity 

o. At the center of the circle, 

h. At any point on the axis. 
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34. A sphere carries a uniform surface-charge density <t and is rotated 

about a diameter with constant angular velocity Using the results of 

Prob. 33, calculate the magnetic induction B at the center of the sphere. 

35. A toroid of inner radius 9 cm. and outer radius 10 cm., as shown in 

Fig. 74, is wound uniformly with 2,000 turns of wire. If a current of 4 amp. 

is sent through the winding what is the magnetic induction at a point 9.2 cm. 
from the axis of the toroid? By how' 

many per cent does B vary as one 

moves from a point 9 cm. from the 

axis to a point 10 cm. from it? 

36. A brass rod of square cross seev 

tion (2X2 cm.) is bent inf o the form 

of a ring of inner radius 5 cm., and th<». 
ends are welded together. Wire is 

wound toroidally around this ring to 

form a coil of 500 turns, and a current 

of 1 amp. flows through the winding. 

Assuming the magnetic permea¬ 

bility of brass to be that of empty 

space, calculate the total magnetic 

flux (of B) in the brass. 

Fia. 74. Note that B varies from point to 

point inside the brass. 
37. Calculate an expression for the rate of change of the axial magnetic 

field intensity with distance along the axis of a circular turn of radius a 
carrying a current i. 

Show that the above expression has a zero rate of change at a point on the 

axis at a distance a/2 from the center of the turn. 
What value has H at this point? 

38. The results of Prob. 37 are used in the design of Helmholtz coils used 

to produce a uniform magnetic field in a small region of space. Two coils, 

each of N turns and radius a, are mounted coaxially and separated by a 

distance a. The field due to both coils is nearly uniform in the neighborhood 

of the point on the axis midway between them, i.c., at a distance a/2 from 
either coil. 

Calculate and plot the resultant axial field due to both coils as a function 

of position along the common axis of the coils. What is the value of H at 

the central point midway between the coils? 

39. Two circular turns of wire, each 20 cm. in radius, arc mounted coaxially 

at a separation of 20 cm. A current of 10 amp. flows steadily through each 

turn, and this device is used as a tangent galvanometer. A compass needle 

is mounted at a point on the axis midway between the turns, and the com¬ 

mon axis lies along the east-west direction. If the horizontal component cf 

the earth^s magnetic field is 0.2 gauss, calculate the angle between the needle 
and the axis of the system. 

40. Show by Amp^re^s law that the magnetic intensity on either side of a 

plane current sheet is 2irjj where j b the surface density of current, and is 

directed parallel to the plane and at right angles to the current. 
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41. A long thin strip of metal, of width w, and negligible thickness, carries 
a current i. It is placed in a uniform magnetic field of intensity 2Tri/xo 
directed parallel to the plane of the strip and at right angles to the current. 

Show that the resultant field is zero on one side of the strip and Atd/w on 
the other. Show that there is a force on the 

metal strip equivalent to a pressure 
acting on the side where there is the field K 
(Fig. 75). 

42. Coils are frequently wound in ‘‘pancake 
sections,” each section being a closely wound 
plane spiral of wire. Find the force between two 

neighboring sections if they are w’ound of 3-min. 
wire, if the inside diameter of the h3ec1ion is 5 
cm., the outside diameter 15 cm., and if the wire 

(tarries 30 amp. Consider a section as eqiiivalent 
to a current distribution in a plane, the lines of 

flow being circles, the current density being con¬ 
stant, and the lines of B being radial just outside the plane. 

43. Find an expression for the resultant force between two infinite straight 

wires carrying equal current if the wires are not in the same plane and form 

an angle 6 with each other. 
44. A metal roller rests on two parallel condinding rails. Show that, 

when the rails are connected to a source of e.m.f. so that a steady current 
flows through the rails and roller, the roller tends to move. 



CHAPTER VI 

INDUCED ELECTROMOTIVE FORCES AND INDUCTANCE 

In the preceding chapter we considered the magnetic fields 
produced by steady currents and the forces which these fields 
exerted on conductors carrying steady currents and on moving 
charges. The magnetic field produced by a distribution of 
steady currents is stationary, the value of R, for example, being 
constant at a given point of space. Stationaiy magnetic fields 
exert no forces on conductors at rest if the latter cany no current. 
If, however, the magnetic field in the neighborhood of a sta¬ 
tionary conducting circuit changes with time, one observes a 

current flow in the circuit, a so-called 
induced current, and this current 
flows as long as the magnetic field 
keeps changing. One interprets this 
current flow as being caused by an 
electromotive force induced in the 
circuit, and these induced e.m.fs. 
were discovered by Faraday in 1831 
and also independently by Henry. 
Suppose we have two fixed conduct¬ 

ing loops arranged as in Fig. 76. If the switch S is closed, a 
momentary deflection of the galvanometer (? is observed, ceasing 
as the current flow in circuit (1) becomes steady. If the switch 
is then opened, the galvanometer deflects in the opposite direction. 
Thus we see that, while the current in circuit (1) is increasing or 
decreasing, with a consequent increase or decrease of the magnetic 
field, there is an induced e.m.f. in circuit (2). Faraday also dis¬ 
covered that if circuit (2) is moved relative to circuit (1), while the 
latter carries a steady current, an e.m.f. is also induced in circuit 
(2). This motion may be such that the circuit (2) remains rigidly 
imdeformed or may consist of a deformation of the circuit. The 
e.m.fs. induced in conductors which move relative to a stationary 
magnetic field are often called motional e.m.fs., and these are the 

120 
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electromotive forces induced in many types of rotating machin¬ 
ery. In the following sections we shall formulate the laws 
governing these induced voltages and examine* some of their 
consequences. 

32. The Faraday Induction Law for Stationary Circuits; Lenz’s 
Law,—Let us start with a discussion of the e.m.f. induced in a 
stationary circuit, which we take for simplicity as a single 
circular turn of wire. If the magnetic field in the region of space 
occupied by the turn is changed in any manner, c.^., by changing 
the current in neighboring circuits, or moving the latter when 
they carry steady currents or by moving a permanent magnet 
in the neighborhood, the induced electromotive force is found to be 
equal to the rate at which the magnetic flux which crosses any area 
of which the loop is a boundary changes with time. The magnetic 
flux crossing such a surface is said to *‘link’’ the circuit. 

Denoting the induced e.m.f. by £ = ds and the flux linking 
the circuit by $ = fBn dSy the Faraday induction law becomes 

JS = - d^ 
dt 0) 

I'he negative algebraic sign occurring in Eq. (1) is to indicate the 
direction of the induced e.m.f. and hence that of the induced 
current. The induced current always flows in such a direction 
that its magnetic field tends to oppose the change in the magnetic 
field which produces it. Thus, if we try to increase the magnetic 
flux through the loop {d^/dt positive), the induced current flows 
so that its field tends to decrease the flux and opposes the change. 
Hence the minus sign indicates the induced voltage establishing a 
current tending to decrease the flux in the above example. 

This law concerning the direction of induced e.m.fs. is per¬ 
fectly general, holding equally well when the e.m.fs. are induced 
in moving circuits, and it bears the name of Lem^s Law. It 
follows immediately from the conservation of energy since 
otherwise an induced e.m.f. once started would grow indefinitely 
large. If, instead of a single conductor loop, one considers a coil 
of N turds in series, Eq. (1) becomes 

N 

k » I 

(2) 
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where is the flux Unking the fcth turn. An important special 
case occurs when all the are equal (or very nearly so), the same 
flux linking each turn. Eq. (2) then becomes 

^ d{N^) 
dt dt (3) 

and the product is called the number of flux linkages. Equa¬ 
tion (1), (2), or (3) may be used as it stands in the m.k.s. or 
electromagnetic systems of units. In the former case, ^ is 
measured in webers, t in seconds, and E comes out in volts. In 
the latter case, is expressed in maxwells, t in seconds, and E in 
abvolts (the e.m.u. of e.m.f.). It is convenient to remember that 
1 volt = 10^ ahvoUs. 

If one wishes to employ the Gaussian mixed system, expressing 
^ in maxwells, t in secxnids, and E in statvolts, the equations 
cannot be used as they stand. Th(i correct form is readily shown 
to be [for Eq. (1), for example] 

1 d^ 
dt 

(3a) 

where c is 3 X 10^‘* The other two equations are 
similarly altered. 

The Faraday mdu(*tion law holds equally well for extended con¬ 
ducting bodies at rest. In this (;ase it is more convenient to 
write Eq. (1) in the equivalent form 

. (4) 

Here the e.m.f. is taken around any closed path in the conducting 
medium, and the integral JDndS is the flux linking this path. 
The spacially distributed currents which flow under such condi¬ 
tions are called eddy currents. There is a furt^her generalization 
of the induction law which we shall need later. We postulate 
that an electric field is established in any region of space in which a 
magnetic field changes with time and that Eq, (4) is obeyed whether 
the closed path be in a conducting or nonconducting medium or in 
empty space. In this connection it must be emphasized that the 
electric field so produced is quite different in nature from that 
produced by stationary charges. In fact, Eq. (4) shows clearly 
that jf&^ds is not zero, and hence that no scalar potential for 
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6 exists. One can no longer obtain 6 as the negative gradient 
of a scalar potential when discussing the electric field produced 
by changing magnetic fields. This is, of course, in sharp con¬ 
trast to the electrostatic case. 

33. Motional Electromotive Forces.—We now turn our atten¬ 
tion to the case of induced e.m.fs. caused by the motion of con¬ 
ductors relative to a magnetic field. An exact analysis of the 
situation requires relativity theory which is far beyond the scope 
of this book; hence we must content ourselves with an approxi¬ 
mate method which gives excellent results provided the velocities 
encountered are small compared to c (3 X 10^® cm./se^c). For 
most practical problems this condition is well satisfied. We 
shall approach the question from the law giving the force exerted 
by a magnetic field on a moving charge, the so-called Lorentz 
force. This force is 

F =, q{v X B) 

where v is the vector velocity of the charge q. If wo now imagine 
a metallic circuit moving in a fixed magnetic field, the conduction 
electrons in it will be acted on by a force per unit charge equal 

to (v X B) and, being free to move, will set up an inducc^d cur¬ 
rent. Treating this force per unit charge as an effective electric 
intensity £' from the standpoint of an observer moving with the 
circuit, we expect that the magnitude of the induced e.m.f. 
should be given by a formula 

E = ds = ^{v X -B)* ds (6) 

Equation (5) is the correct formula for low velocities, and the 
induced e.m.f. as given by this equation sets up a current which, 
in accordance with Lenz^s law, tends to oppose the motion 
producing it. There will be a force exerted on the conductors 
tending to slow them down, and this force action is usually 
termed electromagnetic reaction. In many applications of Eq. (6) 
it is^ convenient to think of an e.m.f. induced in each element ds 
of the circuit 

dE = ds = (i; X B), ds (6) 
*r' 

and the e.m.f. along any path becomes the sum of these infini¬ 
tesimal e.m.fs. Viewed in this manner, one can state that the 
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( induced in a conductor is equal to the rate at which this con- 
doctor cuts lines of B. We can see this readily with the help of a 
simple example. Suppose a metal bar is moved at constant 
velocity in a direction perpendicular to its length in a uniform 
field of magnetic induction directed normal to the conductor and 
to its direction of motion, as shown in Fig. 77. In time dt the 
conductor sweeps out an area equal to Iv dt and cuts all the lines 
of B which cross this area. The number of lines cut is 

d<f> = Blv dt 

so that the induced e.m.f. has a magnitude given by 

5 = f = (7) 

Direction of 
inciuceof e.m. f 

(B into page) 

Fig. 77. 

This is exactly the result which one obtains employing Eq. (6), 
remembering that v is normal to B and that 
V "K B is directed along the length of the 
conductor. Furthermore, v and B have 
the same values and directions at each 
point of the conductor. Other cases will 
be taken up in the problems. 

If we apply Eq. (5) to a moving closed 
circuit or to a closed circuit in an extended conductor in motion, 
we can, under certain conditions, find a simple relation between 
the rate of change of flux through the moving circuit and the 
induced e.m.f. as given by this equation. If the circuit moves as a 
rigid body, undeformed during its motion, the induced e,m,f, as given 
by Eq, (5) is just equal to the rate of change of flux through the circuit. 
This is true if the magnetic field is stationary. If the magnetic 
field varies with time, one gets the correct induced e.m.f. by taking 
the total rate of change of flux through the circuit. This now 
consists of the sum of two terms, one the rate of change of flux due 
to the varying field and the other the rate of change of flux due 
to the motion of the circuit in the field. 

We shall not attempt a general proof of the above statements 
but shall content ourselves with a simple, but important, example. 
Consider a rigid rectangular coil of width d and length I which is 
rotated with constant angular velocity <a about an axis per¬ 
pendicular to a uniform magnetic field B, as shown in Fig. 78. 
The angle $ between the direction of B and that of the normal 
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n to the plane of the loop varies uniformly with time, so that 
6 = Let us first evaluate the induced e.m.f, in the coil by 

applying Eq. (5). We note that the vector v X B is directed 
parallel to the axis of rotation for all elements ds of the coil, and 
hence the induced e.m.f. may be considered to arise in the sides I 
only. This is in accord with the notion of cutting lines of B, 
and the two e.m.fs. thus induced add as one moves around the 
loop. For each side I wo have 

(v X B) — vB sin 6 

and this vector is along the direction I; hence we have 

E = ^{v X B)s ds = 2vBl sin 6 = 2vBl sin o)t 

The speed v of either side* I is related to the angular velocity w by 
V == ci)d/2, so that the induced e.m.f. 
becomes 

E = o)Bld sin 6 = 03BA sin o)t (8) 

Now let us calculate this e.m.f. by evalu¬ 
ating the rate of change of flux through 
the coil. When in the position shown in 
Fig. 78, the flux ^ linking the turn is 

4> = jBndS — BA cos 6 = BA cos wt 

and differentiating with respect to the time t, we find 

E = o)BA sin cot 

which is identical with the result expressed by Eq. (8). Writing 
for the maximum flux linking the coil and assuming that we 

have a coil of N turns in series, we have an induced voltage in the 
coil equal to 

E ~ Nco^m sin cot (9) 

where = BA. Equation (9) is the fundamental formula 
underlying the action of either a.c. or d.c. generators. If the 
terminals of the coil are brought out to slip rings on the axis of 
rotation, we have the case of an a.c. generator in which the 
induced e.m.f. varies sinusoidally with the time. In the case of 
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d.(\ generators a comnjutator, which reverses the direction of 
current flow in opposite sides I (with respect to a fixed external 
circuit) every half cycle, takes the place of the slip rings. 

Th^Oase of induced voltages in circuits which are deformed and 
do not move as rigid bodies is more complicated, and in general 
it is safest to apply Eq. (5). For such examples it is true only in 
special cases that the induced e.m.f. is equal to the rate of change 
of flux through the circuit. One such special case is shown in 
Fig. 79, in which a metal rod a6, of length ?, is moved with con¬ 

stant velocity v and slides along con¬ 
ducting rails ad. and he. The induced 
voltage around the circuit adch is B = 
Bh\ and this is equal in magnitude to 
the rate of increases of flux through the 
circuit adch. Since B is assumed uni¬ 
form, the rate of increase of flux is 

equal to the flux density B times the rate of increase of area. 
This latter term is Iv. The induced current, which flows as in^ 
the direction shown, has a magnitude 

. _E Blv 
^ R~ R (10) 

where R is the resistance of the circuit. Since the conductor 
ah carries this current, there is a side thrust on it equal to 
F == BK = By^hfR^ which is directed opposite to the direction 
of V. This is the electromagnetic reaction and one must exert 
a force equal and opposite to it on the conductor to keep it moving 
with a constant velocity. The power required is 

and we see that the law of conservation of energy is satisfied, the 
mechanical work done per unit time by external forces just equal 
to the rate of heating in the circuit. When one moves an 
extended metallic conductor in a magnetic field, there is an 
electromagnetic reaction similar to that discussed in the above 
example, and the conductor moves as if in a viscous medium, the 
force being proportional to the velocity and opposite to the direc¬ 
tion of motion. This is the principle of the eddy-current brake. 
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In all the applications with which wre shall concern ourselves, 
we shall restrict ourselves either to stationary circuits in varying 
magnetic fields or to moving circuits which are not deformed 
during the motion. In both these cases we may use the Faraday 
induction law as expressed by Eq. (1) to calculate induced 
e.m.fs. 

34. Self- and Mutual Inductance.—In this section we shall 
restrict our attention to fixed, rigid circuits and shall examine the 
induced voltages created in them when the currents they carry 
change with time. First we consider a simple circuit as shown 
in Fig. 80, carrying a steady current There is a steady 
magnetic field set up by the current, and some of the lines of B 
are indicated. There is a definite flux 
linking the coil and the number of flux 
linkages with the coil is 

NjDndS 

where N is the number of turns in the 
coil and the integral extends over an 
area bounded by the loop. The exact 
evaluation of this integral is exceed¬ 
ingly difiicult in all but a few simple 
geometrical shapes of the circuit, but no matter what the geome¬ 
try, the results of the pnjceding chapter require that it be pro¬ 
portional to the steady current i flowing in the loop {H and 
hence B at any point are proportional to t). If we denote the 
proportionality factor by L, we can write for the flux linkages 

= Li (12) 

where L, called the self-inductance of the circuit, depends only on 
the geometry of the circuit and not on the current, at least in 
empty space. 

If we now vary the current in the circuit by changing the 
variable resistance and if we assume thaty while the current is 
changingy is proportional to the instantaneous value of the 
currency an induced e.m.f. will be generated in the circuit accord¬ 
ing to Eq. (1) whose magnitude is 

(13) 
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and which acts in such a direction as to oppose the change of cur¬ 
rent by tenz^s law. This is often called a back e.m.f. Our 
assumption concerning the validity of the proportionality 
^ ^ t turns out to be very accurately true for slow rates of 
change of i with time, and for the present we shall accept it as 
true for all the cases we shall examine. A more exact criterion 
for its validity will be given in Chap. VIII. 

According to Eq. (12) the self-inductance L of a circuit equals 
the number of flux linkages set up in the circuit per unit current 
in it. In the m.k.s. system the unit inductance is called the 
henry and this is 1 weber/amp. or, as we sec from Eq. (13), 
I volt-sec./amp. In e.m.u., the unit inductance is 1 abhenry 
which is 1 maxwell/abampere or 1 abvolt-sec./abampcre. 
One henry = 10® abhenrys. 

In general, whenever the current in a circuit is caused to 
change, there will be induced in it a back e.m.f. given by Eq. (13) 
which tends to keep the current from changing. Thus, when one 
closes a switch in a circuit fed by a d.c. seat of e.m.f., the current 
will attain its final steady-state value only after some time. 
While the current is increasing, the net e.m.f. acting around the 

• . di 
circuit is J? — L where E is the external e.m.f. Similarly a 

current cannot be instantaneously reduced to zero by opening 
a switch. 

We now turn to a calculation of the inductance of two readily 
calculable circuits. First, consider a solenoid whose length I is 
large compared to its radius, n turns per unit length, N total turns 
carrying a steady current i. From Eqs. (41) and (42) of Chap. V 
we write for H and B at all points inside the solenoid 

and 
H = Avni 

B = fioimi 

These formulas are, strictly speaking, valid only for an infinitely 
long solenoid but are good approximations when I is large com¬ 
pared to the radius. This is equivalent to neglecting end effects 
in a manner similar to the treatment of a parallel-plate con¬ 
denser in electrostatics. The total flux ^ inside the solenoid is 
accordingly 

— BA 5= Ttr^B 
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where r is the radius and the total number of flux linkages is 

where we have written 

N 
n == -r 

Thus we obtain from Eq. (12) a formula for the inductance L 
of a long solenoid in air; 

~i T~ 
(14) 

or, written in terms of the number of turns per unit length, 

L = (14tt) 

It is evident from Eq. (14) that the dimensions of inductance in 
e.m.u. are those of length so that 1 abhenry equals 1 cm. 

As a second example, consider a long coaxial cable consisting 
of a central cylindrical wire of radius a 
and an^ outer thin hollow cylinder of 
radius h (Fig. 81). We shall assume ^ 
that 6 — a >> a so that we can neglect 
the magnetic flux inside the conduc¬ 
tors. Since the magnetic induction 
has the value 

B = 
r 

at points in the space between the 
conductors and is zero outside, the 
total flux linking a length I of the cir¬ 
cuit can be obtained by a simple 
integration. Consider an element of area I dr as shown in the 
figure. The flux across the area is evidently 

= Bl dr ^ 2Mo*f — 
r 

and the total flux linking a length I is 

= 2tioil ^ ~ In 

Fio. 81. 

(15) 
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This gives for the inductance per unit length of the cable 

i' . I . 2„ In 0) (16) 

Mutual Inductance.—Now let us consider the case of two 
circuits such as those shown in Fig. 82. If the current in circuit 
I is changed, a voltage is induced in circuit II and conversely, 
a current change in circuit II induces a voltage in circuit I. 
First take the case of a steady current ii in circuit I. This 

I U sets up a magnetic field as indi- 
B figure, and a fraction 

-due to ii links circuit 
HZZIZ Hi__ II. Let the flux linking circuit 

denoted by <^2i- 
This is proportional to JVi, the 

^ ^ number of turns in circuit I, to ii 
and the proportionality constant 

depends only on the geometry of the system, i.e.^ the dimensions 
and shapes of both circuits and their relative positions. In 
symbols, this is 

<l>2i = KNiii (17) 

Now consider a steady current i2 in circuit II and let us call the 
flux linking circuit I due to this current ^12. This flux is pro¬ 
portional to the number of turns iV2 of circuit II and to ^2. The 
proportionality constant depends only on the dimensions and 
shapes of the two circuits and on their relative positions arid it 
can be shown to be the same as K in the above formula. Thus 
we can write 

<1*12 == KNzii (18) 

We now define the coefficient of mutual inductance M of the system 
as the number of flux linkages of either circuit per unit current in 
the other. Thus we have 

Ni#12 
KNiN2 

Now suppose we change the current ii in circuit I. This will 
induce an e.m.f. E% in circuit II given by 

E2 = — JV2 = -JIf- (20) 
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If the current u in circuit II is changed, an e.m.f. Ei is induced 
in circuit I given by 

(21) 

Any two circuits which are so arranged that an appreciable 
amount of flux due to one of them links the other are said to be 
coupled, and any change of current in one induces a voltage in 
the other. The maximum mutual inductance is obtained when 
aM the flux produced by either circuit links the other. 

Let us calculate the mutual inductan(*.e of two long coaxial 
solenoids. Suppose the length of each is I, the number of turns 
Nl and ^2, and the radii ri and r2, respectively. For the sake 
of definiteness, let us assume that r2 < Vi. The induction B 
produced by a current i\ in the outer solenoid is 

B = /io 
T 

and the flux linking the inner solenoid is 

iirNiii 
4>2i = BTrrl = Mo- l 

• 7rr| 

The mutual inductance is, according to Eq. (19), 

,, 47riV'ii\r2 2 
M = Mo—J— • 7rr| (22) 

The same result can be obtained by considering a current in the 
inner solenoid and calculating the number of flux linkages of 
the outer solenoid. This is left as an exercise for the student. 
With the help of Eq. (14), we can write for the self-inductances 
of the two solenoids 

, iwNi 2 /oo\ 
Li — Mo—^— * 'Jrri (23) 

and 

1/2 — Mo—I— * '*rr| (24) 

Comparing Eqs. (22), (23), and (24) one finds readily that 

M = 
r\ 

(25) 
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This is a special case of the general relation between the mutual 
inductance and self-inductances for a coupled circuit. In general^ 
one has 

M = (26) 

where k is called the coefficient of coupling and is always less than 

or at most equal to unity. If fc = 1, Af = y/LjT^ is the maxi¬ 
mum mutual inductance possible. For the case of the two long 
solenoids we see that this occurs for Vi = r2, in which case all the 
flux produced by one links the other. 

35. Energy Stored in the Magnetic Field of an Inductance; 
Energy Density.—In setting up a steady distribution of electric 
currents a definite amount of work must be done by the external 
sources of e.m.f. against the induced voltages which exist while 

the currents are being built up. 
We think of the work as being 
stored in the magnetic field associ¬ 
ated with the current, and it can 
be regained by allowing the cur¬ 
rents to vanish. To investigate 
these relations consider the simple 

circuit of Fig. 83, formed by connecting a coil of inductance L and 
resistance 7? to a battery. If the switch S is closed, the current i 
in the circuit will start to increase with a consequent increase of 
the magnetic field produced by this current. At any instant of 
time we have, from the Faraday induction law, applied to the 
circuit 

If we assume Ohm's law to be valid for currents var3ring with 
time, the left-hand side of this equation has the value 

^69 da = —E + iR 

just as in the case of steady currents. E is the e.m.f. of the 
battery. Thus we have 

+ . (27) 

as the differential equation for the current in such a circuit. 
The work done per unit time by the battery, t.c., the power input 

Flo. 83. 
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to the S3^stem resist.ance plus inductance, is FA. Using Eq. (27), 
we have 

The first term on the right-hand side is the rate of heating in the 
resistance, and we interpret the second as the rate of increase of 
magnetic energy. The total energy stored in the magnetic field 
produced by the inductance L after time <, when a current i is 
floAving, is accordingly 

- X a(H - XKH - 
Just as in the case of electrostatic energy, we can think of this 
energy as distributed throughout the region of space in which 
the magnetic field exists and introduce the concept of magnetic 
energy density^ the energy per unit volume of space. We can 
obtain a formula for this energy density by considering the 
magnetic field produced by an infinitely long solenoid carrying a 
steady current i. Consider a section of the solenoid of length L 
Its inductance is, according to Eq. (14a), 

L = 4^n(sn^Al 

where n is the number of turns per unit length and A the cross 
section of the solenoid. The current is related to the magnetic 
induction B inside the solenoid by 

so that 
B = Airnfioi 

9 _ 

Hence the magnetic energy is 

xr l] 9.T 52 52 ,, Al • 

Now is just the volume of that region of space enclosed by a 
length I of the solenoid, so that the energy per unit volume of the 
space in which the magnetic field exists is pven by 

B* ttoH* (30) 
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This turns out to be the correct formula in general and holds 
even when B varies from point to point of space. From our 
derivation it is clear that this expression represents the work done 
against the induced e.m.fs. in building up the field with the help 
of currents. The total magnetic energy can be calculated from 

t/m = (31) 
J Stt/xo 

all 
spac^c 

and this can be evaluated if the space dependence of B is known 

Problems 

1. The magnetic flux linking a fixed coil of 1,000 turns is varied so that 

it has the value at any time t 

^ sin (120ir^) 

where 4>m = 3,000 maxwells and t is in secoiuis. Calculate an expression 

for the induced electromotive force E in the coil. What is the maximum 

value of this e.m.f. in volts? Make a plot of 4> and E as functions of time, 

plotting them on the same graph. 

2. A slender metallic rod of length 21 rotates about an axis through its 

center with an angular velocity of n r.p.s. If the rod is placed in a uniform 

magnetic field B directed parallel to the axis of rotation, show that the 

magnitude of the voltage induced between the axis and either end of the rod 

is given by 

E = ttI^Bu 

3. A copper disk of radius 10 cm. is rotated about its axis of symmetry 

at an angular velocity of 3,000 r.p.m. The disk is in a uniform field of 

magnetic induction of magnitude 200 gauss the direction of which makes 

an angle of 30° with the plane of the disk. 

а. Calculate the induced voltage between the axis and rim of the disk. 

Express your answer in volts. 

б. Draw a diagram indicating the directions of field, rotation, and induced 

e.m.f. 

4. A copper disk 10 cm. in radius is placed inside a long solenoid of 

radius 11 cm. with its axis coincident with that of the solenoid. The solenoid 

is 1 meter long, has 1,000 turns, and carries a steady current of 2 amp. 

The copper disk is rotated about its axis with a uniform angular velocity of 

1,200 r.p.m. Calculate the e.m.f. induced between slip rings connected to 

•he rim and axis in volts. 

5. The flux linking a lOO-tprn coil connected in series with a ballistic 

galvanometer is changed suddenly and the maximum angular deflection of 

the galvanometer is 0.01 radian. The sensitivity of the galvanometer is 
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10 radians/coulomb and the resistance of the circuit is 10 ohms. Calculate 
the change in flux through the coil. 

6. A large circular coil of N turns and radius b carries a current i and is 

rotated uniformly about a horizontal diameter. At the center of this coil 

is a small fixed horizontal circular turn of radius a. Cahiulate the e.m.f. 

induced in the small loop as a function of the time. What is the angle 

between the planes of the coils when the e.m.f. is a maximum? 

7. Given N turns of wire connected in series. Under what conditions 

would you expect the inductance of such a coil to be proportional to the 

number of turns? How would you arrange these turns to obtain the maxi¬ 

mum inductance? 

8. A solenoid 3.0 cm. in radius and 90 cm. long is wound closely and 

uniformly with 20 turns per centimeter of length. What is the self-induc- 

tance of this solenoid in henrys? 

9. A closely wound circular coil of 60 turns is wound around the central 

portion of the sohtioid of Prob. 8. Assuming that all the flux produced 

by the solenoid links this coil, calculate the mutual indiurtance of the system. 

Would this be altered if the 60-turn coil were short-circuited by connecting 

its ends together? 

10. In Prob. 9 suppose the solenoid carries a current given by 

i — 2 sin (amperes) 

where v = 60 cycles/sec. and t is the time in seconds. Compute the voltage 

induced in the 60-turn coil as a function of time when this coil is on open 

circuit. 

11. Given two concentric coplanar circular coils A and B of Ni and N'> 
turns, respectively. Let ri be the radius of coil A and r2 that of coil 

and suppose ri >> r2, so that one may assume the magnetic, field produced 

by coil A to be uniform over the area of coil B. Deduce an t^xpreission for 

the mutual inductance of the system. 

12. Solve Prob. 11 for the case in which the two coils are coaxial, their 

planes being separated by a distance R which is much larger than ri. 

13. Two long straight parallel wires forming part of a circuit are separated 

by a distance d and carry equal steady currents in opposite directions. 

Neglecting the flux inside the wires, calculate an expression for the inductance 

per unit length of this part of the circuit. 

14. A coil carrying a steady current i is moved from a position in which 

no external magnetic field exists to a position where an external flux links 

the coil. During this process the current is maintained constant with the 

help of suitable batteries. Show that the work done by these batteries 

against induced e.m.fs. is 

15. Starting from the expression for the energy density in a magnetic 

field, compute the magnetic energy stored per unit length inside a circular 

metallic wire of radius r when it carries a steady current i. From this derive 

an expression for the contribution to the inductance of a circuit (per unit 

length) of the flux inside the conductor. 

16. Proceeding according to the scheme of Prob. 15, derive an exact 

formula for the inductance per unit length of the coaxial cable of Prob. 31, 
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Chap. V. Compare your result with that given by Eq. (16), and state the 
conditions under which Eq. (16) is a good approximation. 

17. A transmission line consists of two parallel wires each of circular 
section, radius a, separated by a distance b between the axes of the wires. 
Deduce an expression for the inductance per unit length of the transmission 
line. Assume h >> a. 

18. Prove that, if two coils are connected in series, the inductance of the 
system is given by Li + L2 ± 2M, where Li and L2 are the self-inductances 
of the two coils and M the mutual inductance of the system. Under what 
conditions is the + s!gn valid? 

19. A rectangular coil of width a and length I having N turns is placed 
between two very long parallel conductors of separation 3o forming part of 
a circuit. The coil is centered between the conductors, the long sides I being 
parallel to the conductors and the plane of the coil lying in the plane of 
the parallel conductors. 

Derive an expression for the mutual inductance of thtf system. 
20. Two fixed coils of self-inductances Li and L2 and mutual inductance M 

carry steady currents ii and t2, respectively. Prove that the energy stored 
in the magnetic field is given by 

f 'fH “ “b ^L'zin i Miii'i 

the sign of the last term depending on the relative directions of the currents. 
21. Using the fact that the expression for the magnetic field energy as 

given in Prob. 20 must be independent of the manner in which the currents 
ii and U are established, prove that the proportionality constants K of 
Eqs. (17) and (18) are equal. 



CHAPTER VII 

ELEMENTARY ALTERNATING-CURRENT CIRCUITS 

In this chapter we shall investigate the behavior of the simplest 

circuits in which there are e.m.fs. and currents varying with the 

time, and particularly we shall consider the case of sinusoidal 

time variations. We have already seen that one can generate 

a sinusoidally varying e.m.f. in a coil by rotating it with constant 

angular velocity in a uniform magnetic field [Eq. (9), Chap. VI], 

and we shall study the steady-state behavior of simple circuits 

connected to the terminals of such an a.c. generator. We shall 

assume that the generators employed are sufficiently large so 

that we may take the terminal voltage as independent of the 

current drawn from them. 

The whole theory of a.c. circuits is based on the application 

of the Faraday induction law, which provides the extension of the 

Kirchhoff rules employed in the case of steady currents. In the 

latter case the statement that the sum of the voltage drops around 

any closed surface equals zero is equivalent to the fundamental 

law of electrostatics 

ds — 0 

and the evaluation of the integral in terms of tR drops and 

impressed e.m.fs. leads to the d.c. circuit equations. For the 

case of currents varying with the time, this equation takes the 

more general form given by the Faraday law, viz., 

- -|(M) - -4; 
where the evaluation of the integral leads to the sum of the 

instantaneous voltage drops around the circuit. Thus we shall 

be led to circuit equations which are entirely similar to those for 

steady currents, differing only in the presence of the L{di/dt) 
term. There are two common modes of interpretation of this 

term: (1) One puts it on the left-hand side of the equation and 
137 
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treats it as an additional voltage drop in the circuit. In this 
manner one retains the original form of the Kirchhoff law for 
the a.c. case. (2) One can look upon this term as representing 
a ‘‘back^^ e.m.f. which must be subtracted from the impressed 
e.m.fs. to obtain the net e.m.f. acting around the circuit. Both 
procedures lead, of course, to ideiitic^al equations. 

The fundamental assumption which is made in applying the 
above reasoning to actual circuits is that the current variations 
are sufficiently slow so that^ at a given instant of time, the electric 
and magnetic fields are essentially the same as would, be produced 
by the corresponding steady currents and charges. Thus, for 
example, we consider the current to be the same at every point 
in a series circuit at a given instant of time, so that the idea of 
inductance may be employed to describe the rate of change of 
magnetic flux through the circuit. An exact criterion for the 
validity of the above assumption must be delayed to a later 
chapter, and the phenomena for which this assumption is valid 
are called quasi-stationary. 

33. The Simplest Alternating-current Circuits.—First let us 
consider the simplest possible case, a noninductive resistance B 
connected across the terminals of a generator whose teitninal 
voltage is given by £ = JSJo sin (at, where co = 2vn, n being the 
frequency of this impressed sinusoidal e.m.f. Assuming the 
validity of Ohm’s law for varying currents, we have for the sum 
of the voltage drops around the scries circuit, 

-E + iR 0 
or 

E = iR (1) 

In this equation, v/hich is identical in form with that employed 
to describe a similar d.c. circuit, both E and i vary with the time, 
so that Eq. (1) gives the relation between instantaneous current 
and instantaneous generator e.m.f. From Eq. (1) we find for 
the current i, as a function of the time, 

E E 
i ^ ^ sin 2vnt = I sin 2irnt (2) 

where / — E/R is the maximum value of the current. Equa¬ 
tion (2) shows that a sinusoidally varying current flows which 
is in phase with the sinusoidally varying voltage drop across the 
resistance. 
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Now let us consider the case of a coil of inductance L and 
negligible resistance connected to the generator terminals (Fig. 
84). At any instant of time there is an e.m.f. induced in the coil 

d/i 
equal to so that Kirchhofif^s laws applied to this circuit 

give 

B-4'.O 
dtf 

or 

(3) 

The rate of change of current with time at any instant is propor¬ 

tional to the instantaneous voltage applied to the coil. If we 
write Eq. (3) in the form 

^ _ E 
Tt ~L 

E(f . 
-j- sm m 

a direct integration yields for the current 

• Eo . Eq o # /A\ I --- (JOS (j)t = — Pi—j COS 2wnt (4) 
wL 2TnL ^ 

The current varies as (— cos (at) = sin ("' - i)’ SO that agair) 

we have an alternating current of the same frequency as the 
generator voltage, but in this case the current is not in phase with 
the voltage, lagging behind it by 90° = 7r/2 radians. In Fig. 85 
are plotted the voltage drop E across the inductance and the 
current i flowing in it as functions of time t. From the plot 
one sees that the current reaches its maximum value later than 
the voltage. The time lag At is also shown. This time lag At 
can be obtained as follows: We write the current as 
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i = gsin (2^ - 1) = ^sin - ^)] 

so that At — 1/in. The quantity uL = 2mL is known as the 
inductance reactance of the coil at the frequency n and is usually 
denoted by Xl. We can write for the maximum current 

__ Xq 
(5) 

I- 
I 

Eq sin wi 

Fiu. 86. 

Ah a final example, consider the case of a condenser of capaci¬ 
tance C connected to the terminals of the generator (Fig. 86). 
The charge on the condenser plates will vary with time, and we 
can think of the potential difference between the plates varying 

with the time. The flow of charge to 
and away from thd condenser plates 

Q constitutes an electric current in the 
wires connected to the condenser given 
by i == dq/dL Wo now assume that, as 
the charge q on the plates varies, the 

potential drop across the condenser is given at any instant of time 
by the ratio of the charge on the plates at that instant of time to 
the capacity of the condenser. Thus the static relation V = q/C 
is assumed valid even when q varies with the time. This will be 
true as long as the time necessary for a charge to distribute itself 
uniformly over the plates is very small compared with optical 
frequencies. 

According to the above, we write for the charge on the con¬ 
denser at any time as 

q = CEq sin oot (6) 

and hence the current is given by 

i = (t)CEo cos (at (7) 

The current varies as cos (at = sin ; consequently we 

have a sinusoidally alternating current of the same frequency 
as the generator voltage but not in phase with it, the current 
leading the voltage by 90® = t/2 radians. 

In Fig. 87 are plotted the voltage drop E across the condenser 
and the current i in the circuit as functions of the time L One 
Hees that the current reaches its maximum value before the 



Sec. 37] ELEMENTARY A.C. CIRCUITS 141 

voltage becomeH maximum; the tirne lead M is shown and equals 
l/4n. The quantity 1/wC = If^nC is known as the capacitive 
reactance of the condenser and is denoted by Xc. The maximum 
current can be written in the form 

= uCEo = (8) 

Summarizing, we have the following important results: 
1. When an alternating current flows through a noninductive 

resistance, the voltage drop across the resistance is given by iR^ 
and the current is in phase with 
this voltage drop. 

an inductance carrying an 
alternating current i is given 
by io)L = iXh^ and the current 
lags the voltage drop by 90®. 

3. When a condenser is con¬ 
nected in an a.c. circuit, the 

Fig. 87. 

voltage drop across the condenser is given by i/wC = iXcj and 
the current leads the voltage drop by 90®. 

37. Vector Representation of Sinusoidal Functions.—In our 
following discussion we shall have occasion to add two or mon^ 
sinusoidally varying voltages when we apply Kirchhoff^s laws to 
a series a.c. circuit. Hence we digress for a moment to study the 
laws of addition. For simplicity consider the sum of two 
alternating voltages of the same frequency but different phases 

El — A sin <at 
E2 ^ B sin {(tit S)i 

(9) 

Here A and B are the maximum values of Ei and Et, respectively, 
and 5 is the phase difference between the voltages. The sum of 
these terms E will be a sine function of the same frequency but not 
in phase with either Ei or Et. Let this sum be 

E El + Ei == C An iwt - e) (10) 

and our problem is to determine the amplitude and phase C and 

« in terms of A, B, and 8. 
We have 

15 = + Bs = -4 sin w< + B sin (w« — 8) = A sin + 
B cos 8 sin wt — B sin 8 cos ut (11) 
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where we have used the relation 

sin (a — /3) = sin a cos P — cos a sin P 

Equation (11) can be written as 

E — {A + B cos 5) sin (at -- B sin b cos wt (12) 

and we wish to identify this with Eq. (10). Equation (10) can 
be written as 

jE? = C sin {(at — c) = C cos c sin (at — C sin e cos (at (13) 

Comparing Eqs. (12) and (13), we must have 

C sin c = B sin b 
C cos € = A + B cos b 

from which we can calculate C and €. Squaring these equations 
and adding, there follows 

C = -s/(A + B cos 5)^ + B^ sin^ b = 

\/A^ + B^ + 2AB cos 5 

and dividing the first by the second 

B sin b 
tan € = 

A + J5 cos 5 

(15) 

(16) 

Equations (15) and (16) are exactly the formulas for the sum of 
two vectors A and B which make an angle b with each other 

(Fig. 88). Thus we have the 
fundamental theorem: The mm 
of two sinusoidal functions of the 
same frequency is a sinusoidal 
function of the same frequency, 
and the amplitude and phase of the 
sum can be obtained from those of 

the two given functions by vector addition. We can therefore repre¬ 
sent sine functions by vectors, the lengths of the vectors being the 
amplitudes of the sine functions and the angles between the 
vectors being the phase differences between the corresponding 
sine functions. One can readily show that the addition of more 
than two functions is also equivalent to adding vectors. 

38. The Simple Series Circuit—Consider a simple series 
circuit consisting of resistance R, inductance L, and capacitance 
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C, connected to the terminals of an a.c. generator as shown in 
Fig. 89. Applying Kirchhoff’s laws to this circuit (the sum 
of the voltage drops around the circuit must be zero), we have 

-Easin ut + iR + Lj^ +^ 0 (17) 

Lr^ + iR ■f' ^ = Et> sin ut (18) 

and the solution of this equation yields the current i in the circuit 
and the charge q on the condenser. 
The complete solution of this equa- ^_vww\-_ 
tion yields two terms; one is a tran- s S 
sient current which depends on the oL 
initial conditions and soon dies out t_||_2 
and the other is a steady-state cur- 
rent which persists as long as the 
applied voltage acts in the circuit. We shall confine ourselves to 
the, ateady state in this section, and, since the steady-state current 
has the same frequency as the applied voltage, we can utilize the 
results of the previous sections to obtain the solution. 

Equation (18) states that the applied voltage {Eo sin wi) is the 
sum of the voltage drops across inductance, resistance, and con- 
dcniser, and we shall add these with the help of a vector repre- 
s(^ntation. We can write symbolically 

lie 
Fig. 89. 

^ E == Vl + Vj,+Vo 

where the F's are the vectors representing the drops across 
inductance, resistance, and capacitance. From the results of 

Sec. 36 we have for the magni- 

(Vu-M:)- 

tudes of these vectors: 

Vl = o^LI 
Vh^IR 

I 

\ ~ where I is the amplitude of the 
^ Fig ^ current i. Figure 90 shows the 

vector diagram for the circuit. 
The vector I represents the common current in the circuit, the 
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vector IB = Vb is in phase with I (zero angle between them), the 
vector oiLI = Fl is 90® ahead of / (•considering counterclockwise 
rotation positive, as usual), and I/o)C == Vc is 90® behind J, 
according to the results previously found. Evidently we have 

E, = + (wL - = ly/R^ + (Xl - Xcy 

and (19) 

tan 6 = 
o)L — 

coC Xl - 

; R'' 

The first of these equations relates the amplitude of the current I 
to that of the applied voltage Eo. The second equation gives 
the phase angle 8 between current and applied e.m.f. This is a 
positive angle when the current lags the voltage and is negative 
when the current leads the voltage. The quantity 

v®’+(“^ - 
is called the impedance of the circuit and is denoted by the 
letter Z. 

From Eqs. (19) we see that the instantaneous current i is 
given by 

. iBo • / . 
i sin (wf 5) (20) 

if £ = £o sin w/. Here the impedance Z is 

Z = Vi?* + {Xl - XcY = + {^L - ^y (21) 

and 8 is given by the second of Eqs. (19). Equation (20) is the 
steady-state solution of Eq, (18). Note that impedance and 
reactance are measured in the same units as resistance. From 
the expression for tan 8 we see that the current will be in phase 
with the applied voltage if Xl = Xc- When this condition 
exists, the circuit is said to be in resonanccj and the current has 
the maximum value possible (Z is a minimum). At resonance, 
then, Eq. (20) becomes 

i = sin ul (at resonance) (22) 
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when (joL = l/o)C, This resonanee condition written in terms of 
frequency becomes 

" - 

Further discussion of the series resonant circuit is left to th(' 
problems. 

39. Energy Considerations for the Series Circuit.—Now let 
us examine the energy relations which must exist in the series 
circuit which we have been examining. First, the power input 
to the circuit from the generator Ei is not constant but varies 
with the time. There will be, however, an average rate of doing 
work which we must calculate. In the resistance R the power 
consumed (i^R) will vary with the time so that the rate of heat¬ 
ing is not constant. Again there is an average value which 
must be computed. In the inductance L there will be an instan¬ 
taneous power consumption Li{di/dt) which represents the rate 
at which the energy in the magnetic field increases or decreases. 
This averages to zero over a cycle as we shall see in a moment. 
Finally, there will be an instantaneous power consumption by the 
condenser equal to {q/C)i representing the rate at which the 
energy in the electric field between the plates is increasing or 
decreasing. As in the case of the magnetic energy, this averages 
to zero over a cycle. 

In the resistance the rate of heating at any instant is 

i^R = PR sin^ - 6) = PR sin^ $ (24) 

utilizing Eq. (20) with I = Eg/Z and 0 = — 5. 
The average rate of heating (averaged over one period of oscilla¬ 
tion) is accordingly 

m = 7*7?^^ e de^ (25) 

since, in one period, 6 increases by 2ir and by definition the aver¬ 
age value of any function f{x), let us say, over an interval 0 to a is 

The integral in Eq. (25) may be evaluated simply as follows: 
From the similarity of the sine and cosine functions we must 

have 
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sin* 6 do ^ cos* 0 dO ^ (1 — sin* 0) dO - 

2v — sin* 0 do 

so that 

sill* 0 do 1C 

Substituting this value in Eq. (25) there follows for the averag(‘ 
rate of heating 

/>« = PE = 4e (26) 
Jh 

or one-half the maximum rate. From this relation we see that 
the average value of the square of the current i is /*/2, It is 
convenient to introduce the idea of the square root of this average 

square of the current. This quantity is called the rooUrman- 
square (r.m.s.) value of the current or the effective current, and 
this is the value which would be read on an a.c. ammeter. Thus 
we can write • 

= Vii = -L/ = 0.7C71 (27) 

The effective value of a sinusoidally varying current is l/\/2 
times the maximum value of the current. An analogous relation 
holds for the effective value of a sinusoidally ^^arying volt¬ 
age. In terms of effective current, the average rate of heating 
in the resistance is simply ilaR, 

The rate of increase of energy in the magnetic field of the 
inductance is given at any instant of time by 

di <1* 
Li ^ = uLP sin (ut — 5) cos (ut — S) — uL-^ sin 2(w< — 5) 

In terms of the effective current Xm, this becomes simply 

Pl = wLiat sin 2(w< — 5) = i^uXi sin 2(w< — 8) (28) 

The average power input to the inductance is thus zero since the 
average value of the sin 2(ut — 5) = 0. Energy is alternately 
stored up in the magnetic field and returned to the generator. 

A similar state of affairs exists in the condenser. The power 
input to the condene^r is 
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—^ sin {(ct — 5) cos io)t — d) 

P 
2wC 

sin 2(ij)t - 5) 
or 

Pc ^ sin 2(a)< — 5) = ~ (29) 

Energy is alternately stored up in the condenser while it is 
charging and returned to the generator during discharge. The 
average power consumption is zero. 

The power input to the whole circuit from the generator is at 
any instant 

P ^ Ei = Eol sin cat sin (ojt — 6) = Eol cos 5 sin^ cot — 
Eol sin 5 sin ot cos cot (30) 

The average power input is therefore 

P - 
Eol 

cos 5 = Eetdou cos 5 (31) 

since the last term averages to zero. 
The ratio of the average power input to a system to the 

product of the efifective voltage across the system and the effec¬ 
tive current flowing is called the power factor of the system. 
For the case of sinusoidal alternating currents Eq. (31) shows 
us that 

p.f. = cos 8 (32) 

The relations just derived have a simple interpretation based on 
a vector diagram, as shown in Fig. 91. 
tive voltage and current instead of 
maximum values and the phase differ¬ 
ence 8. The average power input, as 
given by Eq. (31), is clearly the product 
of the r.m.s. voltage and the component 
of current in phase with this voltage. 
The second term in Eq. (30) for the 
instantaneous power can be put in the form (E^dmtt sin 8) sin 2a)f, 
and this quantity is often referred to as the ** wattlessor reac¬ 
tive’^ power. For certain values of Eq. (30) can yield negative 
values of the power input and at these times energy is transferred 
from the circuit to the seat of e.m.f. 

Here wo show the effec- 

ieffsfn^ 

Fig. 91. 
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40. Free Oscillations of an L C Circuit; Simple Transients. - 
Thejre is a simple important case in which steady-state ahernatiriM; 
currents may be set up without the aid of an ('xtcnnal sc^at of 

e.m.f. Consider the circuit of Fig. 92, con¬ 
sisting of a condenser and inductance in 
series, and let us suppose that the resistance 
is negligible. We charge the condenser to an 
initial difference of potential Vo, so that it 
has an initial charge go, and close the switch 

1 
Fig. 92. 

S, Kirchhoff’s laws give 

or, since i = dq/dt, 
d^q 
di^ 

(33) 

This is the equation of simple hannonic motion, and the solution 
is 

and 
g = go cos osi (34) 

— wgo sin (j)t —coCFo sin <jdt (36) 

since at < = 0, q — qo and i == 0. w = l/\/LC] so that we 
obtain free oscillations of the system with a frequency n given by 

While the system is oscillating, there is a constant int;erchange 
of energy between the electric field + 
of the condenser and the magnetic I 
field of the inductance, the total 
energy remaining constant. This 
is analogous to the case of mechani- 
cal oscillations with the interchange of potential and kinetic 
energy. If resistance is present, the oscillations die out as they 
do when friction is present in the mechanical case. 

Thus far we have considered only steady-state solutions of 
the circuit equations, and we now turn to two simple cases of 
nonsteady or transient currents. Consider first the circuit shown 
in Mg. 93. At any instant of time we have 

-.1 + 

Fig. 93. 
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E 
at 

or 

I^ + Ri = E (37) 

To integrate this equation, it is convenient to make the sub¬ 
stitution 

. . , £ 
-j- — 

Substituting in Eq. (37), we find 

I^ + Rh = 0 (38) 

SO that the constant term E has been eliminated. Equation 
(38) can now be directly integrated, yielding 

where c is an arbitrary constant and the complete solution 
becomes 

t ^ + C c ^ (39) 

Equation (39) shows that the current is the sum of a steady-state 

term E/R (Ohm^s law) and a transient term ce which depends 
on initial conditions. For example, let us consider the case in 
which a switch is closed to establish the closed circuit at < = 0. 
We then have i = 0 when ^ = 0, and Eq. (39) yields for the 
integration constant c 

E 
~ R 

so for that case 

i = |(1 - e~h (39a) 

A plot of current versus time is shown in Fig. 94. Now let 
us suppose that a steady current flows in the circuit of Fig. 93 

"and that at < ~ 0 the e.m.f. is removed. At all subsequent times 
there is no external e.m.f. acting in the circuit; consequently we 
place S « 0 in Eq. (37), obtaining 
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I^ + Ri^O 

the solution of which is 

{ = ioe ^ (396) 

where io is the value of the current when the e.m.f. is removed. 

A plot of i versus t is shown in Fig. 95. The time elapsed 
before the current in the circuit drops to 1/eth of its initial value 
is called the time constant of the circuit. Denoting this by r 
we have 

r «= 
L 
R (39c) 
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As a second and final example of transient currents let us 
consider the discharge of a condenser through a resistance (Fig. 
96). Suppose that initially the condenser carries a charge go, 
that the potential difference Fo = Q'o/C, and that at ^ = 0 a 
switch is closed establishing the circuit shown. The discharge 
is given by the equation (Kirchhoff's rules) 

^ + z72 = 0 

or, since i = dq/di^ 

^ , _ 
di HC 

Integrating this equation, we find 

= 0 

q = goc 
t 

'rc (41) 
and from this the current 

.JiLp RC 
_L 

^ RC (42) 
• _ dq _ 

^ ~ dt ~ RC'' ~ H' 
Both current and charge decay exponentially with the time, the 
curve being similar to that of Fig. 95. The time constant of 
such a circuit is 

T ^ RC (43) 

Problems 

{All voltages and currents are r.m.s. values unless otherwise stated.) 

1. A coil of unknown inductance and of resistance 37.7 ohms is con¬ 

nected to a 230-volt, 60 cycle, a.c. line, and a current of 4.7 amp. flows 
through the coil. 

a. Calculate the reactance and inductance of the coil. 

h. Calculate the phase difference between the voltage across the coil and 

the current through it. 
c. What current would flow if the frequency of the applied voltage were 

30 cycles per second? 

2. A coil takes a current of 25 amp. when connected to 220-volt, 60-cycle 
mains. If this same coil in series with a 5-ohm resistance is connected to a 
110-volt d.c. line, the current is 17 amp. Compute the resistance and 

inductance of the coil. 
3. A resistance draws 10 amp. when connected to a 110-volt, 60-cycle 

line. How big a condenser must be connected in series with the resistance 

so that the current drop to 5 amp.? What is the voltage across the con¬ 
denser and across the resistance for this connection? 

4* A series circuit consists of a 300-ohm resistance, an inductance whose 

reactance is 400 ohms at 60 cycles, and a condenser of 500 ohms reactance at 

60 cycles. A 60-cycle voltage of 500 volts is applied to the circuit. 
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o. Calculate the inductance in henrys and the capacity of the condenHcr 
in microfarads. 

h. What is the impedance of the circuit? 
c. What steady-state current flows in the circuit? 
d. What is the phase angle between the current and the applied voltage? 

Does the current lead or lag the voltage? 
e. What size condenser would be needed to produce resonance? Wliat 

current would flow under these conditions? 
6. A series circuit consisting of a resistance /iJ, inductance L, and capaci¬ 

tance C, is connected to a generator of variable frequency so that the 
applied voltage is given by sin 27rw<, where E{j is constant at all 
frequencies. 

a. Calculate expressions for the impedance of the circuit as a function of 
frequency n if L = 0.1 henry and C — 1 fif for the following values of 
resistance: R ~ 100 ohms; R — 10 ohms; R 1 ohm. 

h. Plot the current as a function of frequency for the three values of 
resistance. 

c. What is the frequency at which resonance occurs? What current 
flows at resonance for /jJ = 1 ohm, J^o * lO-y/2 volts? For what values 
of frequency is the current one-half ite maximum value? 

6. A coil of resistance 2 ohms and inductance 0.1 henry is used in series 
with a condenser to show resonance. The only source of e.m.f. available 
is a 110-volt, 60-cycle line. What is the nece^ssary capacity of the con¬ 
denser? If the condenser is designed to stand an effective voltage of 500 
volts, what resistance must be inserted in the circuit to limit the drop across 
the condenser to this value? 

7. An alternating voltage of constant amplitude and variable frequency 
is applied to a series R, L, C circuit. Deduce an expression for the fre¬ 
quency at which the voltage drop across the condenser is a maximum. Is 
this higher or lower than the resonant frequency of the circuit? 

8. For the circuit of Prob. 7, deduce an expression for the frequency at 
which the voltage drop across the inductance is a maximum. 

9. The equations of two alternating e.m.f.s are = 160 sin 2771 

and Ei = 150 sin (377^ + 60®). If these e.m.fs. are in series, what is the 
equation of their resultant? What is the phase angle between the resultant 
and each of the two e.m.fs.? At the instant of time when the resultant is 
zero, what are the values of Ei and Ez? 

10. An alternating current of amplitude 0.10 amp. is rectified so that 
current flows only during the positive half cycles (half-wave rectification). 
Calculate the average and r.m.s, values of the current. 

11. Two coils have resistances of 10 and 16 ohms and inductances of 0.02 
and 0.4 henry, respectively. If connected in series across 220-volt, 60-cycle 
mains, what current will they take? What is the power factor of the circuit? 
What is the phase difference between the voltage drops across the two coils? 

12. A coil of 2.7 ohms resistance and variable inductance is connected in 
series with a noninductive resistance across a 220-volt, 60-cycle line. The 
circuit is so adjusted that the drop across the coil is 150 volts and the power 
it absorbs is 2^ watts. 
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What is the value of the noninductive resistance? 
18. A noninductive resistance of 25 ohms in series with a condenser 

absorbs 968 watts when connected to a 220-volt, 60-cycle line. What 
current will this circuit take when connected to a 110-volt, 25-cycle line? 
What power will it absorb? 

14. A coil is connected in series with a condenser across 220-volt, 60-cycle 
mains. The circuit absorbs 650 watts at a power factor of 0.87 and is so 
adjusted that the drops across coil and condenser are equal. What are 
these voltages? 

16. A series circuit with JK = 10 ohms, L = 0.1 henry, and C = 30 /wf 
is connected to 110-volt, 60-cycle mains. At the instant at which the 
impressed e.m.f. is zero, what is the energy in the condenser? When there 
is no energy in the condenser, what is the energy in th‘e magnetic field of the 
inductance? 

16. A coil takes 250 watts at a power factor of 0.1 w^hen connected to a 
220-volt, 60-cycle line. What capacity must be connected in series with this 
coil so that it takes the same power from a 110-volt, 60-cycle line? What is 
the power factor of the latter circuit? 

17. A coil has a resistance of 1 ohm and an inductance of 0.1 henry. 
a. What is the time constant of the coil? 
h. Plot the values of the current during the first 8e(‘,ond after an e.m.f. 

of 10 volts is impressed on the coil. 
c. Plot the rate at which energy is supplied to the coil during this second. 
d. What is the energy of the magnetic field 0.1 sec. after the switch is 

closed? 
18. A coil has a resistance of 5 ohms and an inductance of 0.15 henry. 

When carrying a current of 25 amp. the impressed e.m.f. is suddenly replaced 
by a noninductive resistance of 10 ohms. 

а. What per cent of the initial magnetic energy is ultimately dissipated 
in the 10-ohm resistance? 

h. What is the initial voltage across the 10-ohm resistance? 
19. A lO-^f condensqr which has been charged to a potential of 200 volts is 

discharged by connecting a 1,000-ohm resistance across its terminals. 
o. What is the initial energy stored in the condenser and the initial value 

of the discharge current? 
б. What is the current when the charge on the condenser has fallen to 

one-half of its initial value? 
c. Compute the total heat generated in the resistance by evaluating 

i^R dt and compare with the answer to part o. 

20. A condenser of capacity C is charged through a resistance R by 
connecting the two in series to the terminals of a battery of e.m.f. E, 

Derive formulas for the charge on the condenser and for the charging 
current as functions of the time. 



CHAPTER VIII 

DISPLACEMENT CURRENT AND ELECTROMAGNETIC 
WAVES 

In Chap. V we formulated the laws of the stationary magnetic 
field produced by steady electric currents, and now we must 
extend these laws to cover nonsteady or transient phenomena. 
The concept of inductance and the circuit laws discussed in the 
last chapter have been based on the assumption that the Ampere 
circuital law for steady currents remained valid for currents 
varying with the time. We are now ready to investigate tlu* 
range of validity of this assumption. From the fundamental 
law of conservation of electric charge, as expressed in the equa¬ 
tion of continuity, we have seen that the lines of current flow 
always close on themselves for the steady state; consequently one 
has to deal only with closed circuits. For nonst(^ady, transient 
currents this is no longer* the case, and one may have current 

flowing in an open circuit as, for example, in the 
c.ase of a condenser being charged or discharged. 
Our first task is to formulate the equation of 
continuity for nonsteady currents. 

41. The Equation of Continuity for Charge 
and Cmrent.—^Let us first’examine the simple 
case of a condenser which is being discharged 
(Fig. 97). Suppose that at some instant of time 

the charges on the condenser plates are +g and — g, as shown, and 
that the current flowing at this instant is i. This is a typical 
example of an open circuit, the lines of current flow starting at the 
positively charged condenser plate and terminating on the nega¬ 
tive plate. Since, by definition, the current i is the rate at which 
charge crosses a cross section of the conducting wire normal to 
the direction of flow, we see that the law of conservation of charge 
requires that the rate of increase of charge on a condenser plate 
just equals the current flowing into that plate. We have already 
employed this relation between the charge on a condenser and 
the current in our study of a.c. circuits. 

154 

Fig. 97. 
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To formulate this continuity law mathematically, let us 
imagine that we construct a closed surface which completely 
encloses one of the condenser plates in Fig. 97, let us say the 
positive plate. The current flowing outward across this surface 
is z, which equals the rate of decrease of charge on the plate, and 
we may write 

In Eq. (1) the left-hand side refers to the current flowing out of 
the volume enclosed by the surface. We can now formulate 
Eq. (1) more generally. The total current flowing out of a closed 
volume can be written as fjn dSy where jn is the normal component 
of the current density at a point where the element of area dS 
is located and the integral extends over the whole closed surface 
(compare Eqs. (3) and (6), Chap. IV). Equation (1) can then 
be written in the form 

. -I (2) 

closed 
surface 

This is the general form for the equation of continuity for 
stationary bodies in which q represents the charge inside the 
closed surface. Equation (2) reduces to Eq. (6) of Chap. IV 
for the steady state, since in this case the right-hand side vanishes. 
If the charge inside the volume enclosed by the surface is dis¬ 
tributed with a space density p, we can write Eq. (2) in the form 

jjndS ^ (3) 

closed 
surface 

where the integral on the right-hand side extends throughout the 
volume. We have used the partial derivative dp/dt to indicate 
the rate of change of charge density at a fixed point (where dv is 
located) inside the volume. ^ 

42, The Maxwell Displacement Current.—If we now inquire 
into the question of the magnetic field produced by transient 
or nonsteady currents, we find that the Ampfere circuital law, 
which states that the magnetomotive force around a closed 
path is equal to 4t times the current flowing across any surface 
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of which the closed path is a boundary, breaks down for open 
circuits. We can carry through the discussion best for the simple 
case of a condenser being charged. In Fig. 98 are shown the con¬ 
denser and a closed circular path Q surrounding the wire leading 
to the positive plate. The magnetomotive force ds around 
this path should equal 47r times the current traversing any area 
of which this path is a boundary. If we consider the plane 
area which is shaded, we find simply — 47ri for this m.m.f. If, 

on the other hand, we construct a 
hemispherical surface, as shown, 
with the same perimeter, we find the 
magnetomotive force equal to zero, 
since no current crosses this surface. 
Hence Ampdrc’s circuital law can¬ 
not be correct for the nonsteady 
state, and we are confronted with 
the problem of generalizing this law 
so that it will always be valid. 

A satisfactory solution of this problem was first given by 
Maxwell, and it consists of generalizing the concept of electric 
current to include not only currents due to moving charges but 
also a new kind of current, called displacement current, which 
occurs whenever an electric field (or more precisely, the electric 
displacement vector D) varies with time. We can obtain the 
correct form for this current by considering the circuit of Fig. 98. 
If we set up an expression for a displacement current between 
the condenser plates just equal to the current in the wire, the 
Ampfere circuital law can then be retained, and it gives a unique 
answer for the magnetomotive force around a closed path. In 
other words, we must postulate a displacement current such 
that the net current (both convection and displacement) leaving 
any closed surface is zero. This will be so if the displacement 
current emerging from the curved surface in Fig. 98 just equals 
the current entering across the plane shaded area. The latter 
has a magnitude dq/dt according to the equation of continuity, 
and this can be written as 

dq .dcr 

^ere A is the area of the plate and <r the surface density of 
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charge. Since for the parallel-plate condenser we have D == 4ir<7, 
we have for the displacement current between the condenser 
plates 

1 .dD 
(4) 

and a corresponding current density 

1 dD 
(5) 

Equation (5) is now postulated to bo true in general; conse¬ 
quently, whenever an electric field changes with time, a current 
flows as given by this equation and a magnetic field is produced 
just as if a current due to moving charges existed. This remark¬ 
able discovery of Maxwell gives a symmetrical form to the 
fundamental laws of electromagnetism. The Faraday induction 
law implies that changing magnetic fields produce electric fields, 
and the Maxwell assumption implies that changing electric 
fields produce magnetic fields. 

We can now reformulate the Ampere circuital law so that it 
holds in all cases, for both open and closed circuits. The total 
current, convection plus displacement, crossing any closed 
surface is zero; hencci we may say that all distinction between 
open and closed circuits is lost. Writing the equation of con¬ 
tinuity Eq. (2) in the form 

jjndS + ^ = 0 (6) 

closed 
surface 

we can use Gauss’s theorem for the flux of the electric displace¬ 
ment vector across this closed surface and have 

ijo.dS., 
closed 

surface 

where q is the charge inside the surface. Substituting this value 
of q in Eq. (6), there follows 

/(’■■ +5 f’') 
closed 
surface 
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or 

I’OnH-J.Jrf-S = 0 (8) 

closed 
surface 

and the form of the Ampere circuital law remains unchanged if we 
replace the ordinary current i by the sum of this current and the 
displacement current. Thus we find 

fu.ds = 4« + (9) 

This is one of the fundamental equations of electromagnetic 
theory. 

Equation (9) can be used as it stands in any system of units 
in which all quantities are expressed in that system, as, for 
example, m.k.s. units. If we wish to use the Gaussian mixed 
system, however, expressing H in e.m.u., i and D in e.s.u., 
Eq. (9) takes the form 

where 
c = 3 X 10^® cm./sec. 

Note that the displacement current flowing across any surface 
is just equal to l/4ir times the rate at which the flux of D aerdss 
that surface changes with time. Thus, in Eq. (4), the displace¬ 
ment current flowing between the condenser plates is just l/47r 
times the rate of change of the flux of D(DA) leaving either plate. 
In ordinary conducting bodies the contribution of the displace¬ 
ment current to the total current flowing is completely negligible 
at low frequencies. To see this, let us imagine that we have an 
alternating-current density j — J sin 2Tmt in a medium of conduc¬ 
tivity <r. By Ohm^slaw wehavej = (r€or6 = i/a. Hence there 
will be a displacement current density 
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and the ratio of the r.m.s. values of displacement to conduction 
current is c7i/2<r. 

We have no information concerning the value of e for metals, 
so let us assume that it is equal to €o for the moment. Using 
e.s.u., the ratio of displacement to ordinary current becomes of 
the order of magnitude n/tr. Now, since c is of the order of 
10^^ per second for good conductors, we see that, even if € were 
much larger than unity, the displacement (current can be neglected 
in conductors for frequencies up to optical frequencies. Even 
at ultra high radio frequencies there is no error introduced by 
taking the conduction current to be the total current. In non¬ 
conducting bodies, however, this is not the case, and in empty 
space the displacement current is the total current. This dis¬ 
cussion justifies the procedure employed in Chap. VII. 

43. Plane Electromagnetic Waves in Vacuum.—Now let us 
examine some of the consc^quences of the concept of displacement 
current. We treat the case of empty space for which no convec¬ 
tion currents or charges exist. The fundamental electromagnetic 
laws can be written for this case in the form: 

Jond-S = 0 

closed 
surface 

JfindS = 0 

closed 
surface 

If Gaussian units are employed, Eqs. (12) and (13) remain as 
they stand, but Eqs. (10) and (11) take the form 

^H. ds = i J ~dS (lOo) 

(ua) 

A simple and important solution of these equations may be 
obtained for which the electric and magnetic field vectors depend 

(10) 

(11) 

(12) 

(13) 
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on only one coordinate, let us say x, and on the time. For this 
case Eqs. (12) and (13) require that both the electric and mag> 
netic vectors be normal to the a^-axis, that the x-components 
of all the vectors be zero. To see this, let us apply Eq. (12) at a 
given instant of time to the surface of an infinitesimal cub(^ of 
sides dx^ dy^ and dz (Fig. 99). Equation (12) states that th(^ 
total flux of D across the faces of this cuV)c is zero. Since tlu* 
components of D do not vary with y or z, the flux entering th(‘ 
volume across one of the faces dx dy^ or dx dz, is just equal to 
the flux leaving across the corresponding opposite face. For 
the faces dy dz the flux leaving through the right-hand face is 

Dx dy dZf where Dx is the value of this component at the point 
where this surface is located. Similarly the flux leaving across 
the left-hand face is —Dxdydz, where now D* is taken at the 
point where this face is located. (The outward normal at this 
face is x.) Since the sum of these terms must vanish in 
accordance with Eq. (12), it follows that Dx must have the same 
value at both faces and hence cannot vary with x. A similar 
proof holds for the magnetic induction B, 

Let us start with the simplest assumption, namely, that 6 has 
only one component, 6y, which may depend on x and out We 
now apply Eq. (11) to the elementary circuit shown in Fig. 100, 
proceeding in a counterclockwise direction as shown. The 
horizontal portions yield no contribution to the e.m.f. since 
is zero for these sides. For the right-hand vertical side we have 

^dS ~ (Sy)x+dx ^y 

and for the left-hand side the corresponding term is 
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rfs — — (€y)m dy 

Thus we obtain for Eq. (11) 

^€,d8 = - {€v)z]dy = -^dxdy (14) 

Now (€y)x^x — (£v)x is just the change in €y between the points 
X and X + dx and can be written as (d6y/dx) dx. Substituting 

circuit shown in Fig. 101, proceeding in the direction indicated. 
We find exactly as in the preceding calculation 

^H.ds = [(H.), - (H.),+a,]dz = -^dxdz 

and from Eq. (10) this must equal 

^~dS = ^^xdz 

There then follows 

m. ^ d£, 
dx dt dt (16) 

The simultaneous solution of Eqs. (15) and (16) will then yield 
the electric and magnetic fields. We already see that, in order to 
have fields of the type we are investigating, the electric vector 
is accompanied by a magnetic vector perpendicular to it (in 
our case, B»), If we differentiate Eq. (15) with respect to x, 
we obtain 

d^6y _ 
ax* “ ^"aox 

and differentialing Eq. (16) with respect to <, 

d*ff._ 
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from which we obtain immediately 

[Chap. VIII 

d^€y _ d^€y 

at^ 
(17) 

One can easily show that the other magnetic and electric vectors, 
Hg, Bgf and Dy satisfy exactly the same equation. Had we 
carried through our derivation using Eqs. (10a) and (11a) so 
that Gaussian units might be used, we would have in place of 
Eq. (17) 

d^€y ^ 1 d^£y 

dx^ dt^ 
(17a) 

Equation (17) or (17a) is the equation for wave motion, the 
so-called wave equation, which we have encountered in our study 
of elastic vibrations, and the solutions represent waves traveling 

along the x-axis with a velocity c = 1/v^eo/xo. Here v/e encoun¬ 
ter a direct consequence of the assumption of a displacement 
current, the prediction of the existence of electromagnetic waves 
traveling with a velocity c which can be predicted from purely 
electrical measurements. The fact that the conversion factor 
c had a value nearly 3 X 10^® cm./sec., wliich is the velocity of 
light, led Maxwell to propose an electromagnetic theory of light. 
Nowadays the existence and observation of electromagnetic 
waves have become commonplace, but in MaxwelPs time this 
prediction provided a critical test for his theory. 

We see from our derivation that only transverse waves are 
predicted, both the electric and magnetic vectors being per¬ 
pendicular to the direction of propagation. Let us consider a 
traveling sinusoidal wave which satisfies Eq. (17a). We can 
write for 6y 

£o sin cu (18) 

representing a wave of amplitude £o traveling in the positive 
^-direction with frequency v = w/2x and velocity c. The wave 
length of the wave is given in the usual manner by 

• X = ; (19) 

The surfaces of constant phase are planes normal to the x-axis, 
given at any instant of time by the equation x = constant; these 
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surfaces travel in the positive x-direction with a velocity c. 
The waves described by Eq. (18) are called plane waves, and the 
velocity c is often referred to as the phase velocity of these waves. 
At any fixed point of space the electric vector performs simple 
harmonic motion along a fixed direction, the ^-axis, and the 
magnetic vector a similar vibration in a direction normal to 
this, the 2;-axis. Such a wave is called a linearly polarized wave, 
since the electric vector at any point has a fixed direction at 
all instants of time. More generally, we would have both y- and 
z-components of 6 of arbitrary amplitudes and phases but of 
the same frequency. Thus the 
resultant vector £ at a fixed point 
of space would in general vary in 
such a manner that it would 
sweep out an ellipse, the super¬ 
position of two mutually orthog¬ 
onal simple harmonic motions of 
arbitrary amplitudes and phase 
difference. This is shown dia- 
grammatically in Fig. 102. Such 
a wave is called clliptically polarized, and the circularly polarized 
wave is the special case of the ellipse with equal major and minor 
axes. 

We must now investigate the relations between the amplitudes 
and phases of the electric and magnetic vectors in a plane wave. 
Suppose we start with Eq. (18) for the electric vector of a linearly 
polarized wave, 

and differentiate this with respect to the time t. There follows 

a£y._ 

dt 
= caSo cos 4 - 0 

Substituting this in Eq. (16), we find 

^ cos o>(i - 0 

ffg ~ sin 

and integrating 
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Since c = W^omo we can write this in the form 

showing that the magnetic vector oscillates in phase with the 
electric vector and the amplitudes of the electric and magnetic 
intensities are related by 

(20) 

This relation is valid even in the Gaussian mixed system of units, 
as can be verified by using Eq. (16) in the form 

dHj_ ^ _ 1 
dor c dt 

In a plane electromagnetic wave in empty npace the electric a7ui> 
7nagnetic intensities are equal if the former is expressed in e.s.u. 

and the latter in e.m.u. In Fig. 103 are shown the space variations 
of € and in a traveling linearly polarized sinusoidal wave. 

44. Intensity and the Poynting Victor.—Electromagnetic 
waves such as we have just encountered carry energy, and this 
propagated energy is usually observed by absorption, i.e., allow¬ 
ing the wave to impinge on some material surface and observing 
the changes which occur in the absorbing material. If we 
consider electromagnetic waves in empty space, the law of con¬ 
servation of energy requires that the total energy flowing out of a 
fixed volume per unit time must just equal the rate of decrease of 
electromagnetic energy inside the volume. To formulate this 
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law quantitatively, we must introduce the concept of the intensity 
of electromagnetic radiation. We define the intensity as tlui 
(mergy per unit area traversing an elementary surface*, per unit 
time when the elementary area is chosen normal to the direction 
of energy flow. From this definition we see that the intensity S 
is a vector, the magnitude of which is measured in ergs per square 
centimeter per second when e.s.u. or e.m.u. are employed, or in 
watts per square meter when 
m.k.s. units are utilized. 

The rate at which energy flows 
across an arbitrary surface, open 
or closed, may be obtaiiu^d as 
follows: Consider an element of 
area dA as shown in Fig. 104. 
The energy crossing this area 
per unit time is /Sn dA^ where Sn 
is the component of S along the normal n to the surface (Fig. 104). 
Th(i total energy (crossing the whole area per unit time is 
accordingly 

= (21) 

where the integration extends over the whole surface. If the 
surfa<^e is closed, w(» can write for the electromagnetic energy 
inside the volume of space enclosed by this surface 

V = (eoS^ + dv (22) 

The terms inside the parentheses are essentially the density of 
electric and magnetic energies at the point where the volume 
element dv is located. The rate of decrease of this expression 
with time must just equal the expression given in Eq. (21). 
Remembering that the surface and enclosed volume are fixed 
and do not vary with t, we have 

) * (23) 

closed 
surface 

As already pointed out, this equation is merely a statement of the 
conservation of energy as applied to electromagnetic waves in 
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empty space. From it we can derive the appropriate form 
for the intensity vector S in terms of the electric and magnetic 
field vectors. This intensity vector S is known as the Poynting 

vector after its discoverer. Let us 
apply Fq. (23) to the case of the 
linearly polarized plane waves 
which we discussed in the last sec¬ 
tion. Since the equality expressed 
by this equation must hold for an 
arbitrary volume, we shall choose 
an infinitesimal cube of sides dx^ 
dy^ and dz, as shown in Fig. 105. 

Llie right-hand side of Eq. (23) becomes, with the help of Eqs. (15) 
and (16), 

1 r . / 1 dH\ 
+ 

or 

Ue 
4t\ ^ dx 

i i-iSyR,) dx dy dz 
47r ox 

+ 

(24) 

Now consider the left-hand side of Eq. (23). This becomes 
{Sxdy dz)xJrdx — {Sxdy dz)x + similar terms in Sy and S,. The 
first two terms represent the excels energy per unit time leaving 
the volume across the right-hand face dy dz over that entering 
across the left-hand face dy dz. These two terms can be written 
in the form 

no 

^dx dy dz (25) 

This is just the same sort of expression as we have obtained in 
(24) and shows that in this case the Poynting vector is 
directed along the a;-axis (the direction of propagation) and is 
given by 

-S. = ^ByHy (26) 

This is just the vector product of 6 and ff, so that we write, in 
general, 

—> 1 —► —> 
(27) 
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This is the correct general form for the Poynting vector and 
shows that the energy flows in a direction normal to the plane 
of 6 and H, If Gaussian units are employed, the corresponding 
expression for the intensity vector is 

"s = ^(€ X H) (27a) 

In the special case of plane waves where Eq. (20) gives the 
relation between the magnitudes of £ and ff, we obtain for the 
magnitude of the vector S 

* - U'ifi "(‘ - t) - “(‘ - i) « 
where we have set 

= _L 

This shows that the intensity varies with the time but that the 
energy flow is always in the same direction, along the positive 
a;-axis. The average rate of energy flow per unit area is 

(29) 

since the averse value of si sin^ is 

Equation (28) has a very simple physical meaning. Wo write 
it in the form 

(30) 

since €o6^ == by Eq. (20). This states that the intensity 
in the wave at any point is equal to the velocity of the wave, c. 

times the energy density j at that point. If 

we consider a unit area normal to the direction of energy flow, 
the energy crossing this in time dt would be S dt, and this would 
occupy a volume of base unity and altitude c dt Thus we expect 

S dt 
an energy density equal to or S/c as is given by Eq. (30). 

For convenience in numerical calculations, Eq. (29), giving the 
average intensity in a plane wave, can be written as 
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“S (in watts per square meter) = 1.32 X = 
2.65 X 

where 6o and 6r.m.8. are expressed in volts per meter. In the 
Gaussian system one obtains 

H (in ergs per square centimeter per vsc^eond) = l.l9XlO*€o = 
2.38 X 

with €q and firm.*, expressed in statvolts per centimeter. 

Problems 

1. Starting from the equation of continuity in the form 

show for a conducting medium obeying Ohirrs law {J — that iu any 
volume element of the medium the following relation is valid: 

Use Gauss's law for the flux of D emerging from this volume. From the 

above relation show that, if initialh^ one has a charge density po at any 
point inside the conductor, the charge density p at any later time is given by 

p ~ pire 

The time constant €o/4w’<r is known as the relaxation time. 

2. A parallel-plate condenser having circular plates, each of area. A, is 

connected to an a.c. generator so that the charge on the plates is given by 

q ^ Qo sin ud. Neglecting end effects, the lines of H are circles whose centers 
lie on the axis of symnietry of the system. Prove that the magnetic inten¬ 
sity at any point between the plates is given by 

H « - —^0 cos a>t 
A 

where r is the distance from the axis to the field point. 

8. For the arrangement of Prob. 2 derive an expression for the flux of B 
in the space between the condenser plates. 

4. Compute the frequencies of electromagnetic waves of the following 

wave len^hs: 10^ cm. (audio frequencies); 10^ cm. (radio frequencies); 

10 microns (heat waves) [1 micron « mm.]; 5,000 angstrom units 

(optical waves) [1 angstrom « lO”* cm.); 10~^ angstrom (X rays). 
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5. Followiug the method outlined in the text, show that, for «'i, plaiu? wave 
traveling in the x-direction, the electric and magnetic intensities satisfy 
the relations 

_ 
ax ~ ‘‘'‘at' ax ~ at 

aHy a€i^ aHi a€, 
- t= . ~ — 

ax at dx at 

From these equations show that €y and €* separately satisfy the wave 
equation (Eq. 17 of the text). 

6. The average rate at which the earth receives radiant energy from the sun 
at noon is 2.2 cal./min. per cm.* Compute the r.m.s. values of the electric 
intensity £ and of the magnitude induction B in sunlight at the earth’s 
surface. 

7. A 100-watt lamp radiates all the energy supplied to it uniformly in all 
directions. Compute the r.m.s. values of the electric and magnetic vectors 
at a point 1 meter from the lamp. What is the energy density of electro¬ 
magnetic radiation in ergs per cubic centimeter at this point? 

8. Two linearly polarized plane waves traveling in the same direction 
(along the x-axis) have their electric vectors in the same direction (the 
y-axis) but have different amplitudes and frequencies. Prove that the 
average intensity of the resultant wave is equal to the sum of the average 
intensities of each wave. (Average over a large number of periods.) From 
this result show that the r.m.s. value of £ for the resultant wave is equal to 
the square root of the sum of the squares of the r.m.s. values of £ for the 

individual waves. 
9. A plane electromagnetic wave with a maximum value of the electric 

intensity of 0.01 volt/cm. falls normally on a surface which is perfectly 
absorbing. The mass of the surface is 10”^ gram/cm.*, and its specific heat 
is 0.2. What is the rate of increase of temperature of the surface? 



CHAPTER IX 

RADIATION OF ELECTROMAGNETIC WAVES 

In the preceding chapter we have seen how the introduction 
of the concept of displacement current by Maxwell led to the 
prediction of the possibility of free electromagnetic waves in 
empty space. We now turn to the question of the sources of 
electromagnetic waves, f.e., to the methods of producing waves of 
different wave lengths. The electromagnetic spectrum is most 
conveniently classified according to the sources utilized for the 
production of the radiation of different wave lengths and in a 
broad sense falls naturally into two large divisions: First—and 
this is the region which will occupy our attention in this chapter— 
we have the long wave region, comprising waves of wave length 
longer than about 1 mm. in empty space; and, secondly, we have 
the region from about 1-mm. wave length down to the shortest 
waves known, at present about IQ-^^-cin, wave length. The 
fundamental difference between these two regions lies in the 
so-called coherence of the radiation. In the short wave-length 
region the electromagnetic radiation field consists of the super¬ 
posed effects of a huge number of elementary wave trains, each 
of atomic origin; one cannot control the relative phases and the 
lengths of these elementary wave trains. Such radiation, for 
which the relative phases of the individual elementary waves 
bear no fixed relations to each other and hence for which there is 
a completely random distribution of these relative phases, is 
called incoherent. In the long wave-length region, on the other 
hand, the radiation can be produced by large-scale generators or 
oscillators and is coherent; amplitude, phase, and length of the 
wave trains can be controlled and maintained with fixed relative 
values. The difference between incoherent and coherent radia¬ 
tion is quite similar to the difference between the motion of a 
large number of molecules (in kinetic theory), in which the posi¬ 
tions and velocities of the individual molecules are completely 
random and uncontrollable, and the motion of one or more large- 
scale particles, in which the individual motions may be controlled. 

170 
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We defer the discussion of atomic radiation (heat, light, 
X rays, etc.) to later chapters and confine ourselves in this 
chapter to a treatment of the long wave-length region. Here we 
shall concern ourselves principally with plane electromagnetic 
waves of the sort studied in the preceding chapter gftid with 
spherical wavers, waves for which the constant-phase surfaces 
are concentric spherical surfaces. It should be pointed out that 
the term spherical wave does not necessarily imply spherical 
symmetry in the distribution of amplitude of the wave over a 
surface of constant phase—the amplitude may vary in a com¬ 
plicated manner from point to point of such a spherical surface— 
but simply t\mt these constant-phase surfaces are spherical. 

46. Electromagnetic Waves on Wires.—In a traveling electro¬ 
magnetic wave the electric and magnetic vectors vary with both 
position and time, the changing magnetic vector inducing an 
electric field and the changing electric vector (the displacement 
current) inducing a magnetic field. Since stationary charges 
produce electrostatic fields and since charges moving with con¬ 
stant velocity (steady currents) produce steady magnetic fields, 
it is evident that electromagnetic wave fields can be produced by 
accelerated charges or by currents varying with the time. The 
simplest sort of accelerated motion of charges or variation of 
current with time is that involving simple harmonic motion, and 
we have already studied this sort of oscillation in the case of a 
simple circuit consisting of an inductance and a capacitance in 
series. Neglecting the resistance in the circuit, the conduction 
current in such a circuit will vary 
sinusoidally (as will the charges 
on the condenser plates) ^vith a 
frequency v given by 

Fig. 106. 
11± 
2ir\LC 

where L is the inductance and C the capacitance [Fig. 106 and 
compare Eq. (36), Chap. VII]. This circuit is the analogue 
of the mechanical system of a mass m moving under the action 
of a spring of stiffness coefficient fc, the motion being simple 
harmonic with frequency 

2ir^m 
V (la) 
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In the mechanical motion there is a periodic interchange of the 
kinetic energy of the mass m (assuming it to be large enough 
compared to the mass of the spring so that we may neglect the 
latter) and the potential energy of the spring. We must stress 
the point that the mass m (the carrier of kinetic energy) and the 
spring (the carrier of potential energy) are completely separated. 
Similarly in the electric circuit, wo have a periodic interchange 
of the electric energy stored in the condenser (the analogue of 
potential energy) and the magnetic energy (the analogue of 
kinetic energy) in the field of the inductance. Once again we 
have a complete separation of the electric and magnetic energies, 
neglecting the small magnetic field produced by thoKiisplacement 
current between the plates of the condenser and the small 
distributed capacity of the inductance and connecting wires. 
This separation of the seats of electric and magnetic energies 
becomes more and more complete, the larger the inductance L 
and the larger the condenser C. Since an electromagnetic wave 
involves the overlapping of the fields of S and //, the possibility 
of production of waves from the circuit of Fig. 106 is practically 
nil, just as one cannot obtain mechanical waves in the case of the 
spring and mass of the same figure. 

In mechanics we have seen that wave motion could be set up 
in extended continuous bodies in which mass and restoring forces 
are continuously distributed throughout the media. Such is the 
case of a stretched string or of an air column in a tube. In these 
cases we may no longer think of the potential energy being 
restricted to one region of space and kinetic energy to another, 
but there is a periodic variation of kinetic and potential energy 
at every point of the medium. Now exactly the same require¬ 
ments must be met in the electrical problem if one is to set up 
wave motion. Our circuit must not have concentrated capaci¬ 
tance and inductance, but the configuration must be such that 
both the electric and magnetic fields overlap and exist in the same 
region of space. Perhaps the simplest circuit which fulfills this 
requirement is a transmission line, consisting of a pair of parallel 
wires, or the more symmetrical coaxial cable. Here we may 
consider the two conductors as forming the plates of an 
extended condenser, the electric field being largely in the 
region of space between them, and the currents flowing along 
these conductors as giving rise to a magnetic field in the same 
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region of space. We should expect that electromagnetic waves 
could be set up in this system, and we shall now show that this 

is true. 
Consider a very long parallel pair of wires connected to an a.c. 

generator as shown in Fig. 107. We shall consider the case for 
which the resistance of the conductors is negligible, so that 
the charges on the winvs flow along their surfaces. At a givc^n 

^(x) Q(x+dx) 

Fi«. 107. 

instant of time there will be a definite distribution of charge 
on the conductors, and this distribution will change with time, 
giving rise to a current distribution. If r is the charge per unit 
kmgth (linear charge density)—this varies from point to point 
and with the time—then the charge residing on the element of 
length dx = PQ (Fig. 107) is r dx at a definite instant of time with 
an equal and opposite charge on the element P'Q'. If C' is the 
capacity per unit length of the system, then the voltage E 
between P and P' (at the point x) is related to the charge by 

T = C’E (2) 

qe 
Furthermore, the voltage drop —dE = is given by 

-^dx^L'dx% (3) 
dx at 

whore L' is the inductance per unit length. The charge density 
and current are related by the equation of continuity. For the 
case at hand we have for the decrease of charge on the element 

dx (PQ) in time dt 

—dq — —^^dxdt 

and this must equal the difference of the currents at Q and P 

times the time dt. Thus we have 

— ~ dtdx — ~ dxdt 
dt ax 

(4) 
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If we differentiate Eq. (2) with respect to the time and use 
Eq. (4), we obtain 

dx ^ dt (6) 

and Eq. (3) may be written as 

— = ~L'— 
dx ^ at (6) 

Equations (5) and (6) determine the current and voltage distri¬ 
bution along the conductors. Differentiating Eq. (5) with 
respect to x and Eq. (6) with respect to t, we can eliminate E 
from these equations and find 

— = IT'— 
dx^ ^ at^ (7) 

which is the wave equation, showing that traveling waves of (!ur- 
rent (and charge) may exist in this line. Similarly from E(]S. (5) 
and (6) one obtains for E 

dx^ at^ (8) 

showing that the voltage between conductor also obeys the wave 
equation. The velocity of these electromagnetic waves is given 

by 
1 

(9) 

Now it is a remarkable fact that, for any pair of parallel straight 
conductors of uniform cross section, the product of the inductance 
per unit length and the capacitance per unit length is just 

<oMo = 1/c*; hence the velocity given by Eq. (9) is just the 
velocity of free electromagnetic waves in empty space. We can 
check this for the case of a coaxial cable. For this case Eq; (13) 
of Chap. Ill gives 

~ 2 In {b/a) 

whereas Eq. (16) of Chap. VI yields 

L' = 2 In (6/a) 
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If, for example, the generator at the end of the line of Fig. 107 
generates a voltage Eo sin 2trvt, then in the steady state one 
obtains a traveling sinusoidal voltage wave along the line given 

by 

E = Ea sin 2irv(t - (10) 

One has similar expressions for the traveling waves of current and 
charge which may be immediately obtained from Eqs. (5) and 
(6) when one utilizes Eq. (10) for E, 

Thus far in our discussion of electromagnetic waves on a per¬ 
fectly conducting transmission line we have employed the 
language of circuit theory, using the notions of capacity and 
inductance. Now let us examine the question in terms of the 
field theory, f.e., in terms of the electric and magnetic fields 
in the space around the conductors, so that we may clearly see 
the connection between the circuit ideas and the plane electro¬ 
magnetic waves in free space which were introduced in Chap. 
VIII. For this purpose it will be easier to visualize the state of 
affairs by imagining the wires replaced by flat strips without 
changing the essentials of the problem. For this case the lines 
of € will be parallel to each other, and, at a given instant of time, 
the magnitude of 6 will be constant at any fixed point along the 
line and equal to Eld, d being the separation of the conductors. 
This neglects fringing, and we must confine ourselves to points 
well within the boundaries. Similarly, near the central portion, 
the lines of B (or //) will be parallel to each other at right angles 
to € and to x and the magnitude of either will b^j essentially 
constant in this region. Thus we have the identical picture 
for the electromagnetic field between the conductors as we had 
for the case of a linearly polarized plane wave in free space, € 
having only a ^-component and H a ^-component. It now 
becomes clear that the wave equation for the voltage (Eq. 10) is 
identical with that for = E/d, which one derives directly 
from the fundamental electrodynamic laws for plane waves 
[compare Eq. (18) of Chap. VIII]. Thus we have traveling 
waves of € and H with the Poynting vector S directed along the 
a:-axis (along the line) so that the energy flow is always in this 
direction. The state of affairs is illustrated schematically in 
Tig. 108 for a traveling sinusoidal wave at a given instant of time. 
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The vertical lines terminating on the conductors represent the 
lines of £, the magnitude of 6 indicated by the separation of 
the lines. The dots indicate the distribution of the magnetic 
field vector H, the density of dots indicating roughly the manner 
in which the magnitude of this vector varies with position along 
the line. The arrows just above and below the + and ~ charges 
indicate the distribution of current in the conductors. To 
obtain the picture of the traveling sine wave, we must imagine 
the whole diagram moving uniformly to the right. The sine 

Direction of propagation 

Fig. 108. 

curve sketched below the figure represents the variation of either 
charge, electric intensity or magnetic field, current or voltage 
between wires, with distance along the line. Note that they are 
all in phase with one another. It must be emphasized that these 
results hold strictly only for infinitely good conductors for which 
the charges reside on the surface. When resistance is taken into 
account, the velocity of propagation is less than that of electro¬ 
magnetic waves in empty space, and the fields are distorted, there 
being a component of the Poynting vector directed perpendicular 
to and into the wires. However, at very high frequencies due to 
skin effect, the current is concentrated very near the conductor 
surfaces so that the velocity of the waves approaches c an4 is 
independent of the conductor material. 
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Thus far we have been discussing waves traveling on an 
infinitely long transmission line. Just as in the case of mechan¬ 
ical waves, one obtains reflections of these waves at the end of the 
line when the latter is of finite length, and in some eases one may 
obtain standing waves. Thus, for example, suppose we imagine 
the line of Fig. 107 of length 1/2, open at the far end as shown in 
Fig. 109. In this case we obtain very nearly complete reflection 
at the open end, and the superposition of the incident and reflected 
waves gives rise to standing waves just as in the case of mechan¬ 
ical waves. In Fig. 109 are sketched the first few modes of 

vibration of an open line, representing the distribution of current 
along the wires. The arrows schematically indicate the variation 
of current in both wires with position at a given instant of time 
for the fundamental mode of oscillation. The analogies with the 
case of vibrating mechanical systems are evident. In contrast 
to the case of traveling waves, the voltage and current are 90® 
out of phase at every point; consequently there is no propagation 
of energy on the average, merely an oscillation back and forth 
along the line. Thus there is a current node at the open end and 
a voltage maximum at this point, whereas at the short-circuited 
end there is a voltage node and a .current maximum. One can 
readily show that the standing-wave pattern of the electric and 
magnetic fields is similar to that of voltage and current, the 
electric field having a node at the short-circuited end and an 
antinode at the open end, with just the converse behavior of the 
magnetic field. In the fundamental mode of vibration, the volt¬ 
age between the wires varies according to the equation 
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and from Eq. (5) we have 

— EmC'^vv * cos 2irvt • sin ^ 
ax I 

Integrating this with respect to the current distribution 
becomes 

• i = 2EjC'lv • cos 2‘Kvt ■ cos y (12) 

which brings out the fact that the 90® phase difference between 
voltage and current occurs both for the space distribution at a 
given instant of time and to the sinusoidal time variations at 
a given point on the line. Further details are left to the problems. 

46. The Radiation Field of an Oscillating Dipole.—We have 
just seen how both traveling and standing electromagnetic waves 
may be produced by currents and charges on a pair of parallel 
conductors and must now inquire into the question as to how 
such waves may be disengaged from the conductors and become 
free electromagnetic waves. This is the problem of the radiation 
of waves from accelerated charges and is sufficiently complicated 
that we cannot undertake a quantitative analysis. We shall 
therefore arrive at the radiation formulas with the help of 
qualitative and semiquantitativc reasoning. 

Since the Maxwell displacement current is primarily respon¬ 
sible for the possibility of existence of free electromagnetic waves, 
let us consider more carefully the distribution of displacement 
current in the case of waves on a transmission line. In any case 
the lines of current flow (conduction and displaceincmt current) 
must form closed curves. For the transmission line, the lines of 
displacement current terminate on the conductors, since they 
are coincident with the lines of €, and there they join continuously 
with the lines of conduction current on the surfaces of the con¬ 
ductors. This is in sharp contrast to the situation present in 
the case of free electromagnetic waves in empty space where 
there is no conduction current and hence the lines of displacement 
current (and of £) form closed curves. To understand how it is 
possible to produce free electromagnetic waves from currents or 
waves on conductors, we must see why the lines of S should 
break away from the conductors and form closed curves. The 
clue to the solution of this problem lies in the fact that electro¬ 
magnetic disturbances are propagated with a finite velocity. If 
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we consider the electric and magnetic fields at a distance r from 
an oscillating charge distribution on an element of length of a 
conductor, we readily see that the fields oscillate essentially in 
phase with the charge and current variations, provided that the 
distance r is very much shorter than a wave length of waves 
of the same frequency. In this case the time required for a 
change in the charge and current distribution to produce a 
corresponding chang(i in the fields is very short compared to the 
period of oscillation; consequently at any instant of time the fields 
are essentially the same as would be produced by a steady-state 
distribution of charge and current. On the other hand, if we 
consider the state of affairs at a distance large compared to a 
wave length, i.6., such that the time of propagation of the fields 
from the source to the field point is much longer than one period 
of oscillation, then retardation effects^ as they are termed, become 
important, the fields are distorted from the patterns obtained 
from fixed-charge distributions and steady currents, and this 
field distribution corresponds to that of traveling waves. Suppose 
we fix our attention on two field points, both lying on a straight 
line drawn through the source and both at distances from the 
source which are much greater than a wave length. Further¬ 
more, let the separation of these points be just half a wave length. 
At a given instant of time there will be a definite direction of 6 
and of the displacement current at the outer point, and evidently 
at the other field point the direction of these vectors must be just 
reversed, since the time required for the fields to propagate 
from one field point to the other is just half a period. In this 
time the charge and current distributions at the source have just 
reversed. Now the lines of 6 and d€/dt through these two points 
cannot conceivably both terminate on the conductor which is 
the source, and, since these lines cannot start or stop in empty 
space, they must close on each other, forming the closed lines of 
€ necessary for free electromagnetic waves. In the region of 
space which is of the order of magnitude of a wave length 
distant from the source, the field patterns are exceedingly 
complex. This is the transition region between the two types 
of field just discussed. 

When the electromagnetic waves travel along a pair of parallel 
wires, the fields are confined largely to the region of space between 
the conductors, making the geometrical arrangement unfavorable 
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for radiation. Even if the separation is made large compared 
to a wave length—and we have tacitly assumed in Sec. 45 that 
it was very small compared to a wave length—no appreciable 
advantage is gained, since lines of £ starting at the surface of a 
conductor then terminate on other points of the same conductor 
rather than on the other wire and the wave is still guided, 
so to speak, by the wires. Let us, however, imagine that w(‘ 
deform the circuit shown in Fig. 109 by increasing the angle 
between the wires until they eventually form a straight con¬ 
ductor of length I (Fig. 110). 

The electric field due to a fixed-charge distribution on this 
circuit evidently spreads out over a larger and larger region of 

Fig. no. 

space as the angle between the original pair of parallel wires is 
increased. In Fig. llOd we have the straight wire (an antenna) 
with its field extending to large distances. This is the so-called 
electric dipole (more precis(dy, an extended dipole), and in it we 
are now to imagine, not a static distribution of charge, but a 
standing sinusoidal wave of charge and current, let us say in the 
fundamental mode of vibration corresponding to Fig. 109. At 
any point of this antenna, i.e., in any length element dZ, the cur¬ 
rent and charge will vary sinusoidally with the time, but there will 
be a progressive phase shift of these sinusoidal oscillations as we 
move the element dl along the antenna. Hence to calculate the 
radiation field of such a system, we must superpose the contribu¬ 
tions from all the elementary lengths dl, taking into account 
the relative phases of these contributions. Thus the funda¬ 
mental problem is that of studying the field of an element 
dl carrying an alternating current, and, as we shall show in a 
moment, this is equivalent to a tiny dipole oscillating in simple 
harmonic motion. An antenna of finite length evidently 
becomes equivalent to such a dipole if it is driven in forced 
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oscillation at frequencies much below its lowest natural fre¬ 
quency so that essentially no phase difference exists between the 
currents at different points of the conductor. In this case the 
length of the antenna is very small compared to a wave length 
and consequently extremely small compared to the distances 
from the antcmna to the field points where the wave field exists.. 

We are now r(‘ady to discuss the nature of the radiation field 
of an oscillating dipole in more detail. The lines of B or ff due 
to our dipole consist of circles with their centers on the axis 
of the dipole, just as in this case of a straight wire carrying 
(iurrent, and this is true at all distances from the dipole, although 
the variation of magnitude with distance is radically different at 
distant and near points. The distribution of the lines of electric 
intensity is very complicated, becoming 
relatively simple only at large distances. 
In this region the lines of 6 are perpen¬ 
dicular both to // and to the radius 
vector drawn from the dipole to the 
point P at which we are considering the 
field This is illustratcni in Fig. 111. H 
at the point P is directed outward from 
the plane of the paper. Furthermore', S 
and H are equal to each other (in 
Gaussian units) at the point P, just as 
in the case of plane waves. The Poynting vector S is directed out¬ 
ward along r so that we have energy traveling radially outward 
from th(^ source at 0 and thus have sphcirical (electromagnetic 
weaves. Befoi-e w’c discuss the analytical expressions for 6 and H 
for these spherical waves, let us consider the physical nature of 
the field. 

The oscillating charge and current in the antenna produce 
(ilectric and magnetic fields which propagate outward from the 
source with the velocity of light. During a half cycle, fields 
build up in one direction, and then they reverse and decrease 
(build up in the opposite direction). These alternations of th(^ 
field strengths lag behind the alternations of charge and current 
in the source, the lag increasing with increasing distance from 
the source because of the finite velocity of propagation of these 
fields. If there were no phase lag (infinite velocity of propaga¬ 
tion), the average power flowing into the field would be zero 
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when averaged over a cycle, as much energy flowing out as 
returning during this time just as in the case of the field energy 
in a condenser at low frequencies. Because of the progressive 
phase lag with distance, however, there is not exact cancellation 
of outward and inward flow of power from the source, and there 
is a small amount radiated in the form of the sphc^rical waves 
mentioned previously. It must not be thought that these waves 
exist only at large distances from the source. They are present, 
in all space, even close to the source. The r(\sultant fields, 
however, are to be thought of as the superposition of this wave 
field and other fields which do not represent traveling waves. 
The latter fields, the energy of which alternately leaves and 
returns to the source, are very large compared to the wave? field 
near the antenna, but they decrease much more rapidly with 
distance from the source than the wave field, so that only at 
distances large compared to the wave length does the resultant 
field correspond to traveling spherical waves. 

Now let us consider the variation of the magnitudes of € and 
H with position and time. Since € and H are equal in the wave 
field, it will be sufficient to consider one of them. First con¬ 
sider the variation with distance r from the source and with the 
time. We would expect that £ would vary sinusoidally with 
the time with a frequency equal to that of the dipole but retarded 
in phase by an amount 2Trr/\ = 2Tvrfc, Furthermore, the 
amplitude of this oscillating vector must be proportional to 
1/r, as we can immediately see from the conservation of energy: 
The total energy crossing a spherical surface of radius r per unit 
time must be independent of r, since there are no sources or sinks 
of energy in empty space. The Poynting vector, which is pro¬ 
portional to £®, must hence vary as l/r®, so that, when it is 
integrated over the surface of the sphere (the area of which is 
4firr^), the result will be independent of the position of the spherical 
surface. Thus we expect an expression for 6 (or H) of the form 

(13) 

We have been referring to the source either as an antenna or 
as a dipole. Let us examine the connection between the wire 
of length I of Fig. llOd with a standing wave of current and a 
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dipole. Let p = gjs be the dipole moment at any instant of time 
and P = gstma* the maximum value thereof. Since for simple 
harmonic motion 

we have 
2 = Zmmx COS 2irvt 

p = qz P COS 2Tvt 

Now a charge q moving with velocity v is equivalent to a current 
element i • dl, so that we have 

dp 
di 

dz 
^dt 

= ’-2vvP sin 2Tvt == i dl 

Thus an oscillating dipole is entirely equivalent to a sinusoidal 
current in a conductor element of length equal to the amplitude 
of motion of the dipole, and the amplitude of this cur¬ 
rent is equal to 27r times the product of the frequency 
and the charge of the dipole. Hence each element of 
length of the antenna (the extended dipole) is equiv¬ 
alent to an oscillating dipole. 

The magnitude of € depends on the angle 6 (Fig. Ill) 
between r and the direction of the dipole moment in 
just the same way as the field of a static dipole, being 
maximum for (9 = 7r/2, zero for ^ = 0, and proportional 
to sin 6 for intermediate values of $, Thus the complete space 
dependence of 6 (and //) in the wave field is, using Eq. (13), 

Fig. 112. 

sin 2tv\ 

\€\ = \H\ (‘-0. _' cs» sin 0 (14) 

and there remains only the question of the proportionality con¬ 
stant. As we have already mentioned, electromagnetic waves 
are produced by accelerated charges (varying currents), since 
steady charges and currents give rise to static electric and 
magnetic fields, respectively. Thus we would expect the propor¬ 
tionality constant of Eq. (14) to be proportional to the accelera¬ 
tion of the oscillating dipole charge, i.e., to the quantity Ak^v^P^ 
and this is exactly the result one obtains from the exact theory. 
We now write the complete expression for the magnitude of the 
electric or magnetic vector for the spherical wave emitted by an 
oscillating dipole. It is, in Gaussian units, 
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\6\ = i//| = sin $ • sin 2mv{^ — (15) 

and the directions of these vectors (at a given instant of time) 
are shown in Fig. 113. Since S and H both vary as sin the 

intensity of the wave, #S, is not 
spherically symmetrical but varies 
as sin‘^ B, maximum radiation at 
right angles to the direction of the 
dipole moment and zero along th(' 
axis. The surfaces of constant 
phases are, ho weaver, concentric 
spherical surfaces. 

As a final step we shall computer 
the total rate of emission of (dec- 
tromagnetic (mergy from tlu^ 
dipole. The Poynting ve(dx)r 

has the magnitude' 

\S\ = e • sin» - 0 (16) 

and is normal to the constant-phase surfaces. Since the time 

average of sin^ 2Trv {‘-t) is we have for the averagt^ rate of 

energy flow per unit area across a sphere of radius r 

S sin^ B (17) 

and to obtain the total rate of emission of energy (the radiated 

power), we must evaluate the integral fS * dA over the surface 
of a sphere of radius r. The appropriate element of area is a 
ring of width r dB and circumference 27rr sin B (Fig. 114), so that 
we have 

_ = JSdA = —(18) 

To evaluate the integral, we write 

sin® B dS ^ (1 — cos* B) sin B dB = — (1 — cos* B)d(cos B) 

so that 
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X'""’ 
(1 — cos^ d)rf(cos 6) == 

r . (JOS® ^1’' 4 
-L"”*-—J.-.5 

Substituting this value in Eq. (18), we obtain as the final result 

dt 3c® 3c® 

whcjre w = 2irv. 
Thus we see that the average rate of energy emission is pro¬ 

portional to the scjuare of the 2 

amplitude of the dipole moment 
and to the fourth power of the ^-^ 
fn^quency. _e 

The (extension of the for(‘- 
going results to the ease of an / \ 
antenna of finite length oscillal- / \ 
ing at one of its natural fre- ^ j 
quencies is a straightforward \ / 
integration of the (expressions \ J 
for £ and H over the (jlements \ / 
of length of the antenna. We ^ 
shall not carry it through, how- 
(^ver, since we shall have 0(jca- 
sion to solve a similar problem in optics later which will bring out 
all the essential points. 

Problems 

1, A voltage E = sin 2TFvi is applied to one end of a very long trans¬ 
mission line which consists of a pair of parallel conductors. Neglecting 
resistance, show that the generator delivers a current i to the line which is 
related to the voltage by 

Fio. 114. 

where L‘ and C' are the inductance and capacitance per unit length of the 
line. 

2. Suppose the transmission line of Prob. 1 is a <!oaxial cable, the central 
conductor having a radius a and the sheath an inner radius h. Assuming 
ideal conductors: 

a. Compute expressions for S and H at any point bet ween the conductors, 
and from these obtain the direction and magnitude of the Poynting vecdor, 
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5. Find the rate of energy flow perpendicular to a cross section of the 
cable by integrating the Poynting vector over such a cross section, and show 
that its average value equals the average power delivered by the generator. 

8. Prove, for the coaxial cable of Prob. 2, that the magnitudes of the 
electric and magnetic vectors are related by the same equation as for a 
plane wave, viz., 

= \//xoH 

4. Starting ivith Eq. (11) of the text for the voltage distribution in a 
standing wave on a line of length 1/2 (the fundamental mode), derive an 
expression for the current distribution using Eq. (6) of the text, and show 
that this is identical with the result expressed by Eq. (12) if l/L'C" =* c*. 

6. A pair of parallel wires, each of length 3 meters, form a line which is 
short-circuited at both ends. 

a. Compute the frequencies of the first three modes of oscillation of this 
system. 

b. Write a general expression for the frequencies cf the standing waves 
which may be set up on these wires. 

6. A coaxial cable of length 4 me’ers, radius of the central conductor 
2 mm. and inner radius of the outer cylinder 2 cm., is short-circuited at both 
ends. A standing wave is set up of frequency equal to that of the funda¬ 
mental mode. The r.in.s. value of the current at one end of the cable (in the 
short-circuiting element) is 5.0 amp. 

a. Write expressions for the energy density of the electric field and of the 
magnetic energy density at an arbitrary point inside the cable, and find an 
expression for the total energy density at this point. 

b. Integrate your answer to part a to find the total electromagnetic 
energy of the wave, showing that it is constant, and compute this energy 
in joules. 

7. An antenna of length I is driven at a frequency v small compared to its 
lowest natural frequency, so that it carries an alternating current of ampli¬ 
tude I. Show that the expressions for the magnitudes of the electric and 
magnetic field intensities in the radiation field cf this antenna take the form 

|£| - \H\ * sin B sin 2Trp{^ — ^ 

where Gaussian units are employed and X is the wave length of the emitted 
waves. 

Using the above equation derive the following formula for the average 
rate of energy radiation from the antenna; 

^ 4ir»/Y^Y 
dt Zc \X/ 

8. A radio station employs an antenna of length 80 meters and broadcasts 
on a wave length of 300 meters. If the antenna h to radiate 5 kw., compute 
the antenna current using the results of Prob. 7. 



CHAPTER X 

ELECTRONIC CONDUCTION IN VACUUM AND IN METALS 

We have now reached the point in our study where we must 
turn to a discussion of the electrical and magnetic behavior of 

matter. Our principal task thus far has been the formulation 

of the fundamental laws of electromagnetism for empty space, and 
to accompUsh this it has been necessary to introduce a number 

of facts concerning the electrical properties of matter, e.g., the 

distinction between conductors and insulators and Ohm’s law. 

These have been kept to a minimum, however, and now we 

proceed to a more detailed investigation of the laws governing 

the electromagnetic behavior of material media. The situation 

is somewhat analogous to that in which we found ourselves 

in the study of mechanics when we had completed our formulation 

of Newton’s laws and their application to particles and to rigid 

bodies. Upon entering the field of the mechanics of deformable 

bodies, we found ourselves forced to inquire into the nature of 

the internal forces which hold matter together and found that 

there were two distinct modes of approach to this problem. (1) 

There is the large-scale viewpoint, treating material bodies 

as continuous media; and (2) there is the more fundamental, but 
more complicated, atomic viewpoint. Similarly, one can 

approach the problems of the electrical and magnetic behavior 

of matter in the same dual manner, and we shall do so in the 

following, but we shall spend more time on the atomic inter¬ 

pretation than we did in mechanics. 

There is overwhelming evidence that atoms are composed of 

electrically charged particles, a central nucleus carrying prac¬ 
tically all the mass of the atom and having a positive charge equal 

to an integral multiple of the charge on an electron, let us say 

Ze. Z is known as the atomic number, and it is this number 

which characterizes the chemical elements. Thus the hydrogen 

nucleus, the so-called proton, has Z = 1, the helium nucleus has 

an atomic number ^ » 2, and so on throughout the whole 
187 



188 ELECTRICITY AND OPTICS [Chap. X 

periodic table of the elements. Each atom possesses Z electrons, 
so that it is normally uncharged as a whole, and these are dis¬ 
tributed more or less spherically around the central nucleus. 
The mass of the proton is about 1,840 times that of an electron. 
Atoms possessing a larger or smaller number of electrons than 
their normal complement of electrons are called ions, positive 
ions if they possess fe'wer than Z electrons and negative ions if 
they possess more than Z electrons. One essential point must 
always be kept in mind in thinking of any model of an atom, and 
that is that it is an open structure, the distances between the 
nucleus and the electrons and betw^een the electrons being very 
large compared to the dimensions of either the nucleus or the 
electrons. 

From an atomic standpoint the conduction of electricity in 
material bodies is due to motion of either electrons or ions or 
both. In electrolytes the current is due to the migration of 
both the positive and negative ions of the solute under the 
influence of the externally applied electric field. Migration of 
ions is also possible under the influence of strong fields in certain 
types of crystals in which there is a definite space lattices arrange¬ 
ment of positive and negative ions, as in the case of silver bromide. 
We shall concern ourselves in this chapter only with electronic 
currents. The simplest case occurs in the conduction of elec¬ 
tricity by free electrons in high vacua such as one has in the 
ordinary radio tube. Somewhat more complicated is the con¬ 
duction of electricity in metals, w’^here electrons can move 
through the metal. These electrons, the so-called free or con- 
duction electrons, can be thought of as the valence electrons of 
the metallic atoms which have been liberated from their parent 
atoms by the mutual interactions of the atoms when the latter 
arc packed together as tightly as they are in a metallic lattice. 
These liberated electrons form a sort of gas and are more or less 
free, belonging to the metal as a whole rather than to individual 
atoms. Finally, in the case of electric discharges in gases, both 
mobile ions and electrons are present; the latter are mainly 
responsible for the current, but the presence of the former gives 
rise to extremely complicated phenomena. 

47. Thermionic Emission; Electronic Currents in High Vacua. 
Before formulating the laws governing the flow of electronic 
currents in vacuum, we must say a few words concerning the 
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methods by which electrons can be liberated from a metal. In 
removing an electron from a metal, work must be done against 
the attractive forces which normally hold the electrons in the 
metal. The work per unit charge necessary to remove an elec¬ 
tron from a metal is emailed the work function of the metallic 
surface and is of the order of magnitude of a few volts. In any 
case this work must be done if electrons are to be liberated and 
the various methods of liberation differ in the manner in which 
this energy is supplied. In the photoelectric effect the electrons 
gain energy from the absorption of light. Electrons liberated 
when a metallic surface is bombarded with electrons (so-called 
secondary electrons) pick up their energy from the impinging 
electrons. Positiv(‘-ion bombardm(*nt or bombardment by 
neutral atoms carrying more than their normal amounts of 
energy (metastable atoms) can also liberates electrons. Very 
intense electric fields can pull electrons out of metals (so-called 
cold (mission), and finally heating the metal can impart enough 
thermal energy to some of the electrons so that they (;an escape 
in a manner analogous to the thermal evaporation of a liquid, and 
this phenomenon of thermionic emission has becomes familiar to 
all through the applications to radio tubes, etc. 

Suppose we maintain a piece of metal with a plane surface at a 
definite temperature. We picture the eh^drons inside a metal 
as forming a gas and shall treat them as free. These free elec¬ 
trons in.side the metal possess kinetic energy, and it was formerly 
supposed that they bcdiaved just like the atoms of an ideal gas 
in that the avc^rage kinetic energy of an electron was ffcT {k is 
Boltzmann^s constant) in accordance with the law of equi- 
partition of energy. However, the fact that the contribution 
to the specific heat of a metal by its conduction electrons is 
exceedingly small always was a grave difficulty for the free- 
electron picture. We now know, however, that the electrons 
inside a metal do not follow the equipartition law and that their 
energy is practically independent of temperature, increasing but 
slightly when the metal temperature is raised. This small 
increase of energy, however, is just what is needed to enable the 
electrons to escape. Returning to our metallic sample, we 
then have the picture of some of the electrons escaping from 
the surface and forming a sort of a negatively charged cloud just 
outside the surface (Fig. 115). This negative space charge 
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inhibits the further release of electrons, and equilibrium is estab¬ 
lished. The density of electrons in the space outside the metal 
is so small compared to that inside the metal that these electrons 
do behave like an ideal gas and possess the normal amount of 
thermal energy, f fcT per electron. If these electrons are removed, 
by drawing them off to a collecting plate whose potential is main¬ 
tained positive with respect to that of the emitting surface, more 
electrons escape, and there is a limiting rate (at each tempera¬ 
ture) at which escape can take place. When the maximum 
electronic current flows from emitter to plate, we say that there 
is saturation. The saturation current density varies very mark¬ 
edly with temperature in close analogy with the evaporation 

Vacuum 
/Electrons 

/ 

/. 

Me-tal 
Fig. 115. 

rate of a liquid. The law giving the saturation current density 
is known as Richardson^s equationj and we present it without 
proof: 

3 - (1) 

^ is the work function of the metal so that is the gain of poten¬ 
tial energy of an electron escaping from the metal. A is a 
constant depending on the metal but having a value of about 
60 amp./cm.^-®C.^ for many clean surfaces. Equation (1) has 
been tested over an enormous range of the variables involved; 
in fact it would be diflScult to find any other electrical equation 
which has been verified over a wider range. The exponential 
dependence on temperature reminds one strongly of the vapor- 
pressure law for liquids. 

When the collector (anode) potential is not high enough to 
cause the saturation current given by Eq. (1) to flow, a steady 
state is set up in which a smaller current flows, and one speaks 
of the current being limited by space charge. We shall investi¬ 
gate the laws governing the flow of space-charge limited currents 
for the simple case of plane parallel electrodes, the separation 
of which is small compared to the surface dimensions of either 
so that the electric field and potential vary only with an a;-coordi- 
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nate normal to the planes of the electrodes as in the corresponding 
condenser problem/ Since we are concerned only with a steady 
flow of current, we know that the electric field and potential 
obey the laws of electrostatics, and our first task is to formulate 
Gauss's theorem, which relates field intensity to charge density, 
in the form of a differential equation holding at any point of 
space. From this we can then obtain a relation between poten¬ 
tial and charge density in the form of a differential equation known 
as Poisson^s equation, which is more convenient for purpose's of 
application than Gauss's theorem. 

Poisson^s Equatio7i in One Dimension.—We apply Gauss's 
theorem in the form 

JOndS = 47rJp dv 

to a volume element shown in Fig. 116, for 
which the a:-coordinatc is normal to the 
faces A. The element has a thickness dx 
and is located at a position x. In our case x x + dx 
D has only an x-component, and this can 
depend only on x. The flux of D emerging from the volume 
element shown in Fig. 116 is given by 

J DndS = - {DA)^ = ^A dx = 
ax ax 

so that Gauss's theorem requires that 

or 
dx 

4irp 

d€ _ 4irp 

dx ~ €o (2) 

using the fact that D = cofi. 
Finally, sin/^e 6 = —grad V = —{dV/dx) for the case under 

consideration, Eq. (2) becomes 

^ (3) dx^ 60 

which is Poisson's equation for one dimension. Note that if 
p = 0, denoting the absence of space charge, the integration of 
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(3) yields a uniform field in accordance with our former 
results for the parallel-plate condenser. 

Returning to our original question of space-charge limited 
current, let the electrode separation be d, the hot cathode 
grounded (its potential equal to zero), and let the anode be 
maintained at a potential Fo above ground (Fig. 117). The 

steady current is carried by a stream 
of electrons moving from cathode to 
anode, and the magnitude of the cur¬ 
rent density .7 is related to the velocity 

^ V of the electron stream and the charge 
density p by the equation 

j = \p\v = nev (4) 

where n is tlui ele(;tron density at any 
point, V the velocity of the electrons at 
that point, and e is the magnitude of 
the electronic charge. In £q. (4) both 

n and v vary from point to point, but their product is independent 
of position. If we denote by ro the average initial velocity of the 
electrons in the x-dirc^ction (as they leave the cathode), we hav(^, 
according to the conservation of energy, 

^mvl = — eV (5) 
or, solving for v, 

+s’')' 

Fia. 117. 

yielding a relation between electron velocity and potential at 
each point between the electrodes. Using the fact that the 
charge density p is related to the electron density n by p = — nc, 
Eq. (3) may be rewritten with the help of Eqs. (6) and (4) as 

dW ^ne 4t./ 2 , 2e,A‘~* 
^ m'') . 

The variation of potential between the electrodes will thus be 
obtained if we can integrate this equation. Multiplying each 
side of Eq. (7) by 2{dVldx) dx and making use of the identity 

dxLVdx / J dx^ 
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we can integrate once and find readily 

where — {dV/dx)^ is the field intensity at the cathode surface and 
we have set V = 0 for a: = 0. 

Thus far the equations which we have derived are quite general, 
holding equally well for the case of saturation current or for the 
case of space-charge limited current. What, then, is the physical 
distinction between these two cases, and how can we introduce 
these considerations into Eq. (8)? Let us start by (;onsidering 
Eq. (3). Since the right-hand side of the equation is always 
positive (p is negative because of the negative charge of the 
electron), the curve of potential ^ 
against distance from the cath¬ 
ode must be concave upwards 
ev(irywhere. This is equivalent 
to saying that the rate of change 
of the slope of the curve in¬ 
creases with increasing x. If 
the charge density p were negli¬ 
gibly small, V would be a linear ^ 
function of x. If we imagine p ^ 

Fig 118 
to increase, the variation be¬ 
comes something like that of curve (A) in Fig. 118, and, if p 
becomes large enough, a minimum will be present, as shown in 
curve (B). The critical curve which divides these two types is 
evidently the one for which the field and hence the slope 
becomes zero at a; = 0. The potential distributions which have 
no minima correspond to saturation current, since the field is 
everywhere positive and every electron leaving the cathode will 
reach the anode. On the other hand, the presence of a potential 
minimum at P indicates a large electron density at this point 
(the curvature is greatest there), and the field near the cathode 
is reversed because of the repulsive force action of these electroas. 
In this case some of the electrons leaving the cathode (the slower 
ones whose initial energies are smaller than eFo;>) will turn around 
and only a fraction of the emitted electrons reach the anode. 
This, then, is the case of space-charge limited current. We 
now see that we must not only consider the average initial 
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velocity of the electrons but that we must take into account 
the fact that the electrons leave the cathode with a distribution 
of velocities (in fact a Maxwell distribution) such that a larger 
and larger fraction return to the cathode the more pronounced 
the potential minimum. However, since the number of electrons 
leaving the cathode with initial energies greater than one electron- 
volt is entirely negligible for ordinary cathode temperatures, we 
need not concern ourselves with potential minima for which 
Vop is greater than 1 volt. 

It is then possible to obtain an approximate solution of Eq. (8) 
by shifting the origin of coordinates from 0 to P (Fig. 118). 
If the anode potential is of the order of 100 volts, we may consider 
V in Eq. (8) as measured from the potential at P without much 
error and also may neglect the initial velocity vo (now th(? velocity 

(2e dV 
—F 1 . Since is zero at the point 

P, we set (dV/dx)o equal to zero in Eq. (8), and this equation 
becomes 

\dx / €o \ e / 
or 

which yields upon integration 

(9) 

(10) 

satisfying the condition F = 0 at a; = 0. Equation (10) gives 
very nearly the variation of potential between the point where 
the potential minimum exists and the anode. The current- 
voltage relation is obtained by noting that F = Fo for a; — 
Inserting these values in Eq. (10) and solving for one obtains 
readily 

.60 I^Vo* 
^ 9iryjm x'* (11) 

Thus a current denaty proportional to the f power of the 
potential difference between the electrodes is predicted, provided. 
the value of x' does not vary appreciably with Fo. Actually the 
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potential minimum lies so close to the cathode that z' may be 
approximately replaced by d and Eq. (11) becomes 

(12) 

and this is known as the Langmuir-Child equation. It can be 
shown that the proportionality between current and the f power 
of the potential difference is not dependent on the geometrical 
arrangement of cathode and anode, subject to the limitations 
imposed by the approximations employed in our derivations. 

48. Electrical Conductivity of Metals.—The electrical con¬ 
ductivity of metals is defined with the help of Ohm’s law. In 
differential form this law can be written as 

In this section we shall show how our elementary picture of free 
electrons leads to Ohm’s law and to an expression for the con¬ 
ductivity. In our picture we have free electrons wandering 
about among fixed positive ions with random velocities, very 
much as the molecules of a gas. On the average there is no 
resultant force on these conduction electrons and hence we 
imagine them moving in a region of constant potential, the 
average internal potential of the metal. If a uniform external 
field € is maintained inside the metal, there will be a force of 
magnitude e€ acting on an electron. The electrons will be 
accelerated but will not move very far before colliding with the 
metal ions and losing the kinetic energy gained during this part 
of their motion. The average effect of these collisions with the 
ions is the same as if there were friction force acting on the 
electrons and we assume that this is like a viscous force, propor¬ 
tional to the electron speed. Thus the equation of motion of an 
electron becomes 

— Av = ma (14) 

Let us take the external field 6 in the z-direction as constant, 
and according to Eq. (14) the electron will drift with a constant 
velocity v given by 
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This is the steady-state solution of Eq. (14). If n is the number 
of electrons per unit volume, there results a steady current 
density 

j = nev = -T-c 
k 

(15) 

Comparing this with Eq. (13), we obtain for the conductivity 

ne^ 
(16) 

Thus the conductivity is proportional to the number of free 
electrons per unit volume. The above argument is exceedingly 
crude and neglects completely the kinetic energy possessed by the 
electrons in the absence of an external field. Actually this 
energy is very large compared with the amount gained by an 
electron between collisions with the ions. The average drift 
velocity of the electrons is very small compared with their random 
speed. 

We can refine our calculation to take these facts into account 
and dispense vnih the rough picture of a \d8cous force. Let us 
assume that after each collision an electron, having given up 
the energy it has gained from the field to the lattice, starts again 
with its initial random speed. The time between two successive 
collisions will be different for different electrons, but we shall 
consider the average collision time which we denote by r. This 
collision time is equal to Z/w, where I is the mean free path of 
the electrons and u the average random speed. During the time 
r an electron undergoes a uniform acceleration in the direction of 
the field, and the average velocity gained in excess of its initial 
component of velocity in this direction is 

_ 1 _ I e6 _ I e6j 
^ 2^^ 2 2 mu 

This average excess speed in the direction of the applied field is 
just the drift velocity of the electrons, and the current density 
is 

j = nev = 
1 ne^6 

I 
2 mu 

Comparison with Ohm's law now gives for the conductivity 

' - <") 

This is a much more satisfactory formula than Eq. (16), and it is 
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essentially the one obtained by a much more elaborate theory 
based on modern statistical theory using a frce-electron model 
Since we know that the mean kinetic energy of the electrons in a 
metal is practically independent of temperature and the number 
of free electrons per unit volume probably does not vary appre¬ 
ciably with temperature, the actual temperature dependence of 
the conductivity must be explained by the variation of the mean 
free path I with temperatuni. 

Actually, the conductivity of pure metals varies practically 
inversely with the absolute temperature, and there is good 
reason to believe that the mean free path varies this way also, at 
least at high enough temperatures so that the thermal vibrations 
of the metallic ions are practically independent of each other. 

49. Thermoelectric Effects.—The most important thermal 
effect of an electric current flowing in a metallic conductor is the 
j oule heating. This heating is an irreversibh* 
effect, independent of the direction of current 
flow. There are three very closely related 
reversible effects involving thermal and electri¬ 
cal energies which are denoted as the thermo- b 
electric effects, and we shall examine tlum 
briefly in this section. 

The Seebeck Effect.—If a closed circuit 

\ y, 
a. V7/2Z//A\ 

T, 
Fia. 119. is constructed of two (or more) different 

metallic wires, a current will in general flow 
around the circuit if the junctions are maintained at different 
temperatures. This effect is termed the Seebeck effect after its 
discoverer. A simple circuit consisting of two metals A and B 
with junctions at P and Q is shown in Fig. 119, and let us suppose 
that the temperature T2 of Q is higher than Tiy that of P. Such 
a device is known as a thermocouple and is used extensively as a 
temperature measuring instrument. The e.m.f. around this 
circuit is called a thermal e.m.f.y and it depends on the junction 
temperatures as well as on the two metals involved. We shall 
denote this thermal e.m.f. by the order of the subscripts 
indicating that the e.m.f. is such that current flows from A to B 
at the hot junction Q. The interposition of a third metal C in 
series with the thermocouple circuit does not affect the thennal 
e.m.f. provided the junctions with this third metal are main¬ 
tained at the same temperature. 
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6. The Peltier Effect,—When an electric current flows across a 
junction of two dissimilar metals, the temperature of the junction 
changes unless heat is supplied or abstracted by external means. 
The rate at which heat must be supplied to the junction to main¬ 
tain constant temperature is proportional to the current and 
changes sign when the current changes direction. This phenom¬ 
enon of the evolution or absorption of heat at junctions of dis¬ 
similar metals is called the Peltier effect. It occurs whether the 
current is driven across by an external agency or is spontaneously 
developed by the action of the thermo(;ouple itself. Thus, in 
Fig. 119, the temperature T^, of the junction Q tends to drop 
(heat must be supplied to maintain it), and the temperature Ti 
of the junction P tends to rise. From the existence of this 
Peltier heat one infers the existence of an e.m.f. at the junction 
between two different metals. This Peltier e.m.f. will be denoted 
by UjLBf indicating that the junction is between the metals A and 
J5, and a positive sign will mean that heat must be supplied to the 
junction to maintain its temperature when current flows from A to B. 
This Peltier e.m.f. is in general a function of temperature. If a 
charge q is transported across the junction, the heat which must 
be supplied during tliis process is equal to Uq. 

c. The Thomson Effect.—The third effect was predicted on the 
basis of theoretical thermodynamic arguments by Sir William 
Thomson (Lord Kelvin). If different parts of the same metallic 
conductor are maintained at different temperatures, a tempera¬ 
ture gradient will exist inside the metal and a steady heat cur¬ 
rent will flow. If now an electric current flows in this metal, 
the temperature distribution will be disturbed, and the accom- 
panjdng evolution or absorption of heat throughout the metal 
(in addition to the joule heating) comprises the Thomson effect. 
The Thomson heat which one must supply or abstract to maintain 
a steady temperature distribution is reversible, changing sign with 
change of direction of the electric current flow and it is propor¬ 
tional to the product of the temperature gradient and the electric 
current. The existence of a temperature gradient inside a metal 
then implies the coexistence of an electric potential gradient. 

Consider an element of length dx of a wire, and let the tempera¬ 
ture difference between the ends of this element be dT. If the 
Thomson e.m.f. due to this temperature gradient be denoted by 
djB', we define the Thomson coefficient^ or, by the relation 
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c = 
dW 
dT 

(18) 

and call the coefficient positive if the e.tn.f. tends to drive current 
inside the metal along the temperature gradient, i.e., from low to 
high temperatures. For a finite length of wire with its ends main¬ 
tained at temperatures T\ and Ti (Ti > Ti), the Thomson 
e.m.f. along the wire is evidently given by 

E’ = 
jTi 

dT (19) 

The thermal e.m.f. of a thermocouple is the sum of the Peltier 
and Thomson e.m.fs. in the circuit, so that the Seebeck effect is 
not a phenomenon demanding sepa¬ 
rate explanation if one can explain the 
existence of the Peltier and Thomson 
ejffects. Consider the theimocouple 
circuit of Fig. 120. It is shown as a 
closed circuit for simplicity, but we 
can imagine it opened and connected 
tio a potentiometer so that the 
thermal e.m.f. is measured without 
current flow. Suppose T2 > Ti, so 
that the Peltier and Thomson e.m.fs. 
shown in the figure correspond to 
positive coefficients. From the figure 
it is evident that the net thermal e.m.f. Eab is given by 

Eab = IIab(T2) - Uab(Tj) + Ei - Ei 

or, using Eq. (19) 

Eab = TIab{T2) — TIab{Ti) + <^a dT — <tb dT 

T. 
Fig. 120. 

(20) 

(21) 

It is often useful to write this relation in differential form. 
This may be obtained by applying the above relation to a thermo¬ 
couple with its cold junction at temperature T and its hot junc¬ 
tion at temperature T + dT. The result is evidently 

dEAB dJlAB I / \ /rirtN 

^AB j» dT^ (22) 

dE 
where cab — is called the thermoelectric power of the 

thermocouple. Equation (22) is essentially a statement of the 
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first law of thermodynamics as applied to a thermocouple. 
Application of the second law (we omit the derivation) yields 

- <r«) = 0 (23) 

where T is the absolute temperature. From Eqs. (22) and (23) 
follow the relations 

IUh = (24) 

<^a-cb=-T'^ (25) 

so that, from a knowledge of thermal e.m.fs. as functions of the 
temperature, one may compute the Peltier e.m.f. for the two 
metals from Eq. (24) and the difference of the Thomson coeffi¬ 
cients from Eq. (25). 

In tabulating the thermoelectric properties of metals, it is 
usual to use lead as a reference metal because its Thomson 
coefficient is zero. Suppose we have a thermocouple constructed 
of lead and some other metal and that one of the junctions is kept 
at 0°C. It turns out experimentally that the thermal e.m.f. 
of this thermocouple can be represented very closely by a 
quadratic function of the temperature of the hot junction. Thus 
we may write 

E = a« + (26) 

where f, the hot junction temperature, is expressed in degrees 
centigrade, and a and h are known as the Seebeck coefficients. 
The following table gives values for several metals referred to 
lead. A positive sign corresponds to current flow from lead 
to the metal at the hot junction so that lead corresponds to the 
metal A in our previous discussion. 

Metal a, microvolts/°C. 6, microvolts/°C.* 

Aluminum. - 0.47 +0.003 
Bismuth. -43.7 -0.47 
Copper. + 2.76 ! +0.012 
Gold. + 2.90 +0.0093 
Iron (soft).. +16.6 -0.030 
Nickel.:. -19.1 -0.030 
Platinum (Baker).... - 1.79 -0.035 
Silver. + 2.50 +0.012 
Steel. +10.8 -0.016 
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In order to use the preceding table to compute the thermal e.mi. 
of a thermocouple composed of two arbitrary metals A and 
one makes use of the following equation 

^AB = (27) 

where eAs is the thermoelectric power of the thermocouple and 
and Cb are the thermoelectric powers of thermocouples made of 
metal A and lead and of metal B and lead, respectively. The 
proof of this equation is left to the problems. It then follows 
that 

Cab = (u-i* — "f" (bn (28) 

where the a^s and are the values listed in the foregoing table. 
We must now inquire into an atomic interpretation of the 

Peltier and Thomson effects. Qualitatively, the free-electron 
gas picture offers a simple explanation of these effects. When 
a junction is made between two different metals (both at the 
same temperature), we are essentially bringing together two elec¬ 
tron gases of different densities and pressures. There is a 
tendency for diffusion,, and, since this does not occur in equilib¬ 
rium, we must conclude that there is a difference of potential 
l>etween two points lying on opposite sides of the boundary. 
This internal potential difference between two metals must then 
be equal in magnitude to the Peltier e.m.f. at the junction. 
In a crude way we may think of the Peltier e.m.f. as the equiva¬ 
lent of a seat of e.m.f. at the boundary, the nonelectrical forces 
acting in this seat of e.m.f. being diffusion forces. The work 
done by this seat of e.m.f. on the circuit when current flows is 
(^qual to the heat inflow to the junction from the surroundings. 

As regards the Thomson effect, let us imagine that we have 
a straight rod of metal with one end in boiling water and the 
other in melting ice. A steady heat current will flow, and there 
will be a uniform temperature gradient in the metal. We think 
of the thermal conductivity of a metal being due to the transport 
of energy by the free electrons, so that we have the picture of 
the free electrons near the hot end of the metal gaining thermal 
energy in excess of those nearer the cold end. Now, since no 
electric current can flow, we must have a condition established 
in which equal numbers of electrons traverse a cross section of 
the rod per unit time in opposite directions. Those Moving 
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toward the cold end have higher energies on the average than 
those moving in the opposite direction; hence there is a net trans¬ 
fer of energy, but not of charge, across this surface. In general, 
this balance will not be attained under the influence of the 
temperature gradient alone, but an electric field will be set up 
inside the bar of such magnitude and direction that the above 
conditions are satisfied. This field is to be identified with the 
Thomson potential gradient. 

Problems 

1. For clean tungsten the work function is 4.52 volts and the constant 
A in Richardson’s equation is 60 amp./cm.*-°C.* Compute the satura¬ 
tion current density in amperes per square centimeter for tungsten at 
T = lOOO^abs. and at T' =« 2500®abs. What is the ratio of these two 
currents? 

2. For plane parallel electrodes of separation d, plot to scale the variation 
of potential and field as a function of distance from the cathode for the case 
of space-charge limited currents. 

3. Space-charge limited current flows between two plane parallel elec¬ 
trodes, each of area 4 cm.* and separation 2.0 mm. Compute the total 
current when the potential difference between anode and cathode is main¬ 
tained at 240 volts. 

4. Assuming that the total space-charge limited current which flows 
between a hot cathode to an anode can depend only on e/m (ratio of charge 
to mass of an electron), on Fo (the potential difference between anode and 
cathode), and on d (the separation of the electrodes), show by a dimen¬ 
sional analysis that the total current must be given by 

where B is a dimensionless constant. 
6, A copper wire of cross section 0,04 cm.* carries a steady current of 

60 amp. Assuming that there is one free electron per atom of the metal, 
compute: 
а. The number of free electrons per cubic centimeter. 
б. The average drift velocity of these electrons. 
c. The mean collision time of these electrons with the metallic ions. 
The density of Cu = 8.9 grams/cm.*; the atomic weight of copper is 64, 

and its resistivity is 1.77 X lO^* ohm-cm. 
6. Derive Eqs. (24) and (25) of this chapter from Eqs. (22) and (23). 
7. Prove that the thermoelectric power ei2 of a pair of metals 1 and 2 is 

equal to the difference between the thermoelectric powers of these metals 
each taken in conjunction with the same reference metal [Eq. (27) of the 
text]. 

8. Show that for a thermocouple of two metals A and B, the thermal 
e.m.f. of the couple is given by 
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EiB = {as - ojlKU - <.) + --- -\ll - «!) 

where h and t2 are the cold and hot junction temperatures, respectively, in 
degrees centigrade. 

9. The **neutral*’ temperature of a thermocouple is the temperature at 
which the thermoelectric powers of the two metals (each with respect to 
lead) become equal, so that the thermal e.m.f. becomes a maximum with 
respect to varying temperature of the hot junction. Show that the thermal 
e.m.f. of the couple may be written in the form 

where Co is the thermoelectric power of the thermocouple at 0®C. and is 
the neutral temperature. 

10. Compute the Peltier e.m.f. for a copper-nickel junction at 0*^0. and 
the Thomson coefficients for each of these metals. 

11. A gold-iron thermocouple has the following values for the ther¬ 
moelectric powers for the gold and for the iron employed, respectively: 
(2.8 + 0.010 microvolts/®C. and (17.5 — 0.0480 Tnicrovolts/°C. Calcu¬ 
late and plot the curve for the e.m.f. of this couple with one junction at 
0°C. and the other at f°C., between 0®C. and 700®C. What is the temper¬ 
ature of the neutral point and the maximum e.m.f. of the couple? 

12. A copper-iron thermocouple has a cold junction temperature of 20®C. 
Compute the maximum e.m.f. obtainable with this couple. 

13. Prove that the thermal e.m.f. of a couple may be written as a quadratic 
hmetion of the temperature difference between the junctions, x.e., in the form 

EaB = «(f3 — fl) + "(^2 — ^i)* 

provided that 
a = (qb — oa) 4* {ha — hA)ti 

~ — 6a 



CHAPTER XI 

DIELECTRICS 

In this chapter we shall investigate the electrical behavior 
of insulating nonconducting material bodies, the so-called dielec¬ 
trics. As previously pointed out, there is no sharp line of 
distinction to be drawn between conductors and insulators, but 
many substances, such as glass, waxes, and some crystals, are 

very m^arly ideal insulators in that they can retain localizcid 
charges almost indefinitely. We shall assume in the following 
that we are dealing with ideal dielectrics and furthermore that 

they are both isotropicy the properties of the substance being 
the same in all directions at a point, and homogeneous. From 
an electronic viewpoint, dielectrics are characterize by the 

faCfltfat the electrons arc^ig^^ bound to their parent atoms 
and tranribf be dislodged \^E^orffihary"^dds. As ir"rc8ult no 
conduction'of eiectricity can take place by m moving 

cKarges as ~in*^ conductor, and the conductivity of an ideal 
diMectfkris'lgfegYnolSe z^qTJI^ dfelectric is located 

in“'a~region of spa(^e where there is no electric field, the positive 

and negative charges in any small volume element produce no 
potential or field, and we may say that in such a volume element 
the center of ^^gravity ” of pdfeitive and negative charges coincide. 
If, however, such a dielectric is placed in an external electric 
field, e.g.y between the plates of a charged condenser, then the 

positive charge is pushed in the direction of the field and the nega¬ 
tive charge in the opposite direction. The forces holding the 

charges together may be thought of as elastic so that when such a 
separation of positive and negative charge takes place, there is 
a restoring force proportional to the separation distance, and a 

state of equilibrium is attained. Thus there is formed in each 

volume element a dipole (equal and opposite charges separated 
from each other), and this dipole is said to be induced by ihv, 

external field, disappearing when the external field is removed. 
The whole process of inducing dipoles in dielectrics is called 

204 
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polarization, A polarized dielectric produces a field of its own, 
modifying the external field which gives rise to the polarization. 

From an atomic standpoint the dipole moment induced in a 
volume element of a dielectric is thought of as the average of the 
dipole moments of all the atoms or molecules in that volume 
element. There are two cases which we must consider; (1) 
when the atoms or molecules possess no dipole moment in the 
absence of an external field and (2) the case of molecules which 
possess permanent dipole moments (the so-called polar molecules). 
For nonpolar molecules (the first case), the induced dipole 
moment per unit volume of the dielectric is simply the sum of the 
induced moments of the individual atoms or molecules. The 
induced dipole moment of an atom or molecule is proportional 
to the magnitude of the field producing it. The ratio of the 
induced dipole moment to the ex¬ 
ternal field is called the polariz¬ 
ability of the atom or molecule. 
When molecules possess perma¬ 
nent dipole moments, the essential 
point is the question of the orienta¬ 
tion of these dipole moments. In 
th(^ absence of an external field the 
orientation is random; hence the aven-age moment in a small 
volume element is zero, as indicated in Fig. 121a, where the arrows 
show the molecular dipole moments. When an external field 6 is 
applied, the dipoles line up in the direction of the field, as shown in 
Fig. 1216, since this is the position of stable equilibrium and the 
sum of the dipole moments is no longer zero. Actually the thermal 
motion of the molecules prevents them from lining up completely 
and tends to maintain the random orientation. The stronger the 
field € at a given tempe^rature, the larger the dipole moment of the 
volume element and again we have a net result similar to the case 
of nonpolar molecules, the induced dipole moment increasing with 
the external field. For ordinary field strengths there is pro¬ 
portionality between the dipole moments produced and the field 
producing them. One can distinguish between the two types of 
polarization discussed above bec^e oi^l^i^n^l^ 
de^dentr ^fag'^'fienliairdn^^ with increasinfiL 
tftmpefaf;u7e7‘^^f^ of temperatijxe. 
SoTfitrotr-foriiie^^q picture. We must now turn to a 

(5 

(a) (b) 
Fid. 121. 
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quantitative formulation of the laws governing the behavior of 
dielectrics. 

60. Dielectric Constant; the Polarization Vector.—It was 
discovered by Cavendish, and later by Faraday, that, if a 
dielectric were inserted between the plates of a condenser, 
the capacity of the condenser increased. Let us imagine a 
charged condenser with insulated plates, and suppose we insert a 
dielectric between its plates. Since the charge on the plates 
q = CV stays constant, the potential difference between the 
plates decreases, and this implies that the electric field inside 
the dielectric has become less than it was in vacuum. If the 
whole of the space between the condenser plates is filled with 
the dielectric, the capacity C" of the condenser becomes greater 
than its original capacity C by a factor /c, so that C' = kC. 
K is called the dielectric constant of the medium. Thus the poten¬ 
tial difference and the field in the dielectric are reduced by the 
same factor. This result does not depend on the particular 
form of the condenser employed, and hence we infer that Cou¬ 
lomb’s law for the force between point charges q and embedded 
in a dielectric has the form 

F = ^ = ii' 
A€or2 (1) 

where c = Kto i^ the permittivity or specific inductive capacity 
of the medium. In terms of tlie field intensity S due to a single 
point charge, we then have 

e (lo) 

so that Vvc can look upon e as the ratio D/6 [compare Chap. II, 
Eqs. (3) and (5)]. Note that k is the dimensionless ratio c/co, 
and only in the electrostatic system of units is it identic^al with 
€. K is always greater than unity, only about 0.1 per cent for 
gases but is of the order of 2 to 10 for solid insulators, such 
as glass, and about 80 for pure water. 

The reduction in electric intensity in a dielectric medium 
relative to its value in the absence of the medium is to be traced 
to the effect of the induced dipole field, which acts in addition 
to |h^ external field. This field always acts in a direction 
opposite to that of the external field, and hence there results a 
lower value of the resultant electric intensity. This can be 
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readily seen with the help of a simple example. Suppose we 
have a slab of dielectric, as shown in Fig. 122, placed in a uniform 
external field The fundamental fact is that, owing to the 
polarization of the medium, surface charges appear as indicated, 
equal and opposite on the two faces. This charge, although 
bound to the dielectric, contributes to the result¬ 
ant field just as do free charges, such as those 
which we can place on conductors or move 
around as we wish. From the figure we see that 
the field of these induced surface charges opposes 
the external field 6. 

Let us now consider a medium in v/hich we 
have equal and opposite charges e so close 
together that they produce no external effect. 
If an external field is applied, these charges arc 
separated by a distance r and an induced dipole of moment 

-f 
+ 
+ 

+ 
+ 

+ 

Fi(i. 122. 

[I 
introduce 

= cr j 

field 
d/recHon 

(2) 
IS created. We introduce a vc^ctor called the polarization 
vector P, which is defined as the dipole moment per unit volume 
induced in the medium. Clearly P is the vector sum of the 
induced atomic or molecular dipoles in a volume element divided 

fx fernai volume of that element. Let 
us consider now an elementary area 
A A inside a dielectric, as shown in 
Fig. 123. If the medium is polar¬ 
ized by an external field acting in 
the direction indicated, charges will 
be pushed across and, in fact, 

the charge crossing AA will be equal to that originally contained 
in a slant prism of base Ail and length r [the same r as in Eq. (2)], 
If rn is the component of r in the direction of the normal n to the 
surface element, then this charge is equal to 

N(ern)AA ^ PnAA (3) 

Fig. 123. 

where N is the number of dipoles per unit volume created in the 
dielectric. If AA should be an element of the outer surface of a 
body, then this represents the surface charge induced on the sur¬ 
face element. We thus have the important result that the 
surface density of charge a induced on the surface of a polarized 
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dielectric is equal to the normal component of the polarization 
vector at that point. In symbols 

(Ti - Pn (4) 

If we consider a closed volume element inside the medium, the 
net charge crossing the surface will b(i zero if the polarization 
is uniform (P = constant), but if the polarization varies from 
point to point, there may be more charge? l(?aving than ent(?ring 
the volume element, with the result that one can have a charge 
density created inside this volume element, the so-called polariza¬ 
tion charge density. 

We can clarify the above statements with the help of a simple^ 
but important example. Consider a plain? parallel condenser 

r- -1 

-1-^>1 
Fig. 124. 

with a slab of dielectric material inserted between th(^ plates, as 
shown in Fig. 124. Let the area of each plate and slab surface 
be A, the separation of the metal plates be and the slab thick¬ 
ness be d. In the figure are sliown the lines of D starting on the 
free positive charges on the left-hand metallic plate and termi¬ 
nating on the negative charges on the right-hand plate. The 
lines of S inside the slab are to be obtained as the resultant 
of D (due to the free charges on the plates) and the field due? 
to the induced surface charges ±<TiA on the surfaces of the 
dielectric slab. Since the polarization vector is everywhere 
constant in magnitude and normal to the slab surfaces, we can 
write in accordance with Eq. (4), 

(r, = P 

and hence the field intensity € inside the dielectric is given by 
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<ii) = -{a - P) (5) 
€o €o 

Since the slab faces are parallel to the condenser plates, the 
symmetry of the arrangement is not affected by the presemce of 
the dielectric slab, with the result that the displacement vector 
D has the value ira at every point between the plates, as is 
immediately evident from Gauss^s law. Hence in this example 
the presence or absence of the dielectric slab does not affect the 
value of D. There then follows, from Eq. (5), 

€o €o 
(6) 

D = €o£ + 4irP (7) 

Equations (6) and (7) constitute the general definition of D, and 
they give the fundamental relation among the vectors £, Z), and P. 
Equation (6) in particular shows how the field £ is reduced from 
its vacuum value jD/co by the induced polarization field 47rP/6o 
inside the dielectric. 

Now let us suppose that the whole space between the condenser 
plates is filled with the dielectric, i.e., that rf = For this case, 
we have for the capacity of the condenser ^ ^ 

^ A _ DA _ eA V 
(8) 

Since in vacuum this condenser would have a capacity €o2l/4jri, 
the ratio of capacities is c/co = k, which checks the previous 
discussion. Note also that the total induced charge on the slab 
faces is ±PA, and, since these faces are separated by a distance 
rf, the dipole moment of these charges is PAd, Now Ad is 
simply the volume of the slab and we see for this case of 
uniform polarization that P is truly the induced dipole moment 
per unit volume. 

We now have the following general picture: The field of 
D is that produced by charges distributed throughout space or 
put on conductors (controllable charge), the field of £ is that 
produced by all charges, both of the controllable and polarization 
type, and the polarization field is due to the induced polarization 
charges; Eq. (7) giving the connection among the vectors £, 
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D, and P. It is instructive to interpret Gausses theorem for the 
flux of D with the help of these ideas. We have 

fDndS = 4^q (9) 

closed 
surface 

where q is the free controllable charge inside the closed surfac^e. 
Using Eq. (7) for D, the above equation can be written as 

<•/«- dS + irJ'PndS = 4irq" (10) 

closed closed 
surface surface 

Now fPndS is just the charge which has crossed the closed 
surface due to polarization according to Eq. (3), and hence there 
remains a polarization charge inside the volume equal to 

qp = -fPpdS 

as it must be of opposite sign to that which has passed out of 
the volume. Putting this into Eq. (10), we find for the flux 
of € emerging from the volume 

= + (11) 

closed 
surface 

which checks our statement that € was the field of all the charge, 
free plus polarization. 

If we write eS for D in Eq. (7), we have 

£) = ^6 = + 47rP 

or 

or again 

K = -=l+—5 (12o) 
€o to c 

Thus the dielectric constant k will truly be constant if the 
polarization vector P is proportional to the field intensity 6. 
The ratio P/cofi is known as the electric maceptibility x of the 
medium, ''' ' " 

P ^ (13) 
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SO that the relation between dielectric constant and susceptibility 
is 

.£ = 1 + 4irx (14) 

61. Cavity Definitions of D and £.—^Let us now inquire 
somewhat more closely as to exactly what one means by the 
intensity of an electric field inside a dielectric medium. We 
recall that the intensity £ for empty space was defined as a vector 
specifying the force per unit charge on an infinitesimal test 
charge placed at th^ point in question. In order properly to 
define £ inside a dielectric, it becomes necessary to provide 
for the pos.sibility of introducing , I-1' I 
a test charge. This is done, ^ 
following Lord Kelvin, by imag¬ 
ining that one scoops out a cavity 
inside the dielectric. Then one 
(ran introduce a tiny charge in the 
cavity and determine the force ~ 
on it, at least in principle. In 
Fig. 125 we show the parallel- 
plate condenser with the slab of 
dielectric. If we imagine a long 
needle-shaped cavity such as o 
with its long sides parallel to the field, then a test charge placed 
in it would be acted on by the field of both the real and 
polarization charg(;s, and thus the force would be q£ if q is the 
magnitude of the point te.st charge. It is necessary to choose 
the cavity of the form and orientation specified to avoid the 
appearance of polarization bound charge on the cavity surface. 
Thus in a cavity of the form b, which we imagine shaped like a 
pillbox with its flat faces perpendicular to the field, there will 
appear bound surface charges on these faces of density ±P, so 
that the lines starting from the dielectric slab surfaces will 
terminate on the faces of the cavity and none will traverse it. 
As a result, only the real charge on the metal plates is effective 
in producing the force on a test charge in' a cavity of shape h 

and this force will be 

using Eq. (12o). The reason for the needle-shaped cavity a is 
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to minimize the effect of polarization charge on its end faces, 
which can be done by making thetn arbitrarily small in compari¬ 
son with the length of the .cavity. The field inside a (ravity in a 
dielectric depends on the shape of the cavity; for examples, in 
the case of a spherical cavity the field at the center may be 
shown to be 

[€ + (47r/3€o)Pl 

52. The Dielectric Constant of Gases.—There is one case for 
whi(;h it is not difficult to computer th(^ dielectric constant on the 
basis of a simple atomic picture. This is the case of a gas, let 
us say a monatomic gas, at moderate pressures, so that the atoms 
are relatively far enough apart from each other on the average to 
allow us to neglect the int(^ractions between them. Each atom 
contains charges on the electrons, and +Ze on the nucleus, 
which can be displaced relatives to each other in an external field 
and behave as if held together by linear restoring forces. Sup¬ 
pose a uniform external field £ is applied to the gas, a charge q 
is acted on by the force q€ due to the field, and a restoring 
force —kXf if x is the direction of the uniform field £. In equilib¬ 
rium we have 

--kx + q€ == 0 
or 

and the dipole moment created is 

p == qx = (15) 

The polarizability a of an atom is defined, as previously men¬ 
tioned, by the ratio of the indu(;ed dipole moment to the field 
intensity, so that 

(16) 

If there are n atoms per unit volume, the polarization vector P 
is simply np = na£, and we have from Eq. (12a) 

* = 1+ (17) 
«0 ' 

Now let us try to get an idea of the order of magnitude of 
the atomic polarizability a. To do this we shall adopt a simple 
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model of the atom, a central point charge +Ze corresponding 
to the nucleus, surrounded by a uniform spherical distribution 
of radius R of negative charge — JZ'e corresponding to the electrons. 
Under the influence of an external field the positive charge will 
move a distance x in the direction of the field relative to the 
negative charge, from 0 to P in Fig. 126. When in this position, 
it will be attracted back toward 0 by the negative charge. From 
our ])revious work in electrostatics we can _ 
(*alculate this force by considering all th(' 
negative charge inside the dotted sphere of 
radius x to be concentrated at 0, the nega¬ 
tive' charge outside this sphere yielding no 
contribution to the force. The negativ^e 
charge at the center 0 is then 

a' = -Zei%. 
R) 

Fid. 12f). 

and from Coulomb^ law th(^ attraction force is 

and this is a linear restoring force of the type we used in the 
foregoing discussion. From Eq. (16) we then find for th(* 
polarizability, since q = Ze, 

« = = to/2* (18) 

and it is simply proportional to the volume of the atom. Using 
this value of a in Eq. (17), we find the dielectric constant of a 
gas to be given on the basis of this approximate model by 

K = 1 -f- (19) 

Th(i number of atoms per cubic centimeter of a gas is about 
3 X 10^® under standard conditions, and for the atomic radius 
R we may use a rough value of lO""* cm. = 1 angstrom. Thus 
the term 4^nR!^ becomes approximately 0.4 X 10~® or about 
0.04 per cent. This is the actual order of magnitude of /c — 1 for 
gases. 

63. Boundary Conditions on D and £.—Our examination of 
the manner in which the electric intensity and displacement 
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vectors change as one moves across a boundary separating two 
dielectric media has thus far been confined to the special case 
in which the interfacial surface is normal to the direction of these 
field vectors. We must now examine what happens when the 
field vectors are no longer normal to the surface of separation 
and in so doing we shall be able to understand why the law of 
Coulomb is not valid under all conditions. Thus the law of 
Gauss becomes one of the fundamental and universally applicable 

laws of electricity. Let us consider 
.rt ^ the case of two dielectric media of 

different permittivities, ei and €2, 
and apply Gauss's theorem to the 
infinitesimal volume (mclosed by 
the pillbox shown in Fig. 127. The 
pillbox is so chosen that a portion of 
the boundary surface lies inside the 

volume and we can, by making the pillbox infinitely shallow, 
neglect the flux of D across its curved surface, which is normal to 
the boundary between the dielectrics. For the two flat faces, we 
have for the flux of D emerging from the volume 

# = (l>2n - />ln) dA 

so that Gauss’s theorem yields 

(Z)2n 7)ln) dA = 4x0" dA 

where is the surface density of charge on the interface. Din 
and Dzn are the components of D normal to the boundary sur¬ 
face at the point in question. Thus we have 

D2n — Din = 47r<r (20) 

or, if there is no surface charge on the interface, 

Dm = i>2n (21) 

In words, the lines of the electric displacement vector must 
have continuous normal components when crossing an uncharged 
boundary surface between two dielectrics. Applied to the 
example of the dielectric slab between the plates of the con¬ 
denser (Fig. 124), this condition states that the value of D is 
unchanged as one crosses the surface of the slab, since the lines 
of D are normal to this surface. Evidently, this will be true 

Fig. 127. 
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in all cases for which the boundaries are normal to the direction 
of the field. 

For the components of the field tangent to the boundary, 
we must apply the Faraday induction law to a closed path such 
as is shown in Fig. 128, in which the sides perpendicular to the 
boundary are made infinitely short compared to the parallel 
sides dL As the lengths of the short sides are made smaller and 
smaller, the area enclosed by the path approaches zero, so that 
the magnetic flux through this area also approaches zero. Hencro 

62 

Fig. 12K. Fig. 129. 

the Faraday law rcjquires that tlu; e.m.f. around this path be 
zero. We then may writer 

^6, ds == fiu dl — 621 dl ^ 0 

or 
€it = €21 (22) 

where €\t and €21 are the tangential components of the electric 
intensity in media 1 and 2 at the point in question. Note.that 
tliis condition is automatically satisfied in cases for which the 
boundary is normal to the field, such as the example of Fig. 124. 

The two boundary conditions (21) and (22) are sufficient 
to determine uniquely the relative directions of the lines of 6 

or I) as one passes across an uncharged boundary between two 
dielectrics in any case. Let ai and .a2 be the angles between 
the normal to the boundary and the directions of 61 and 62 at 
the point where the normal is drawn as shown in Fig. 129. We 
write, in accordance with Eq. (22), 

61 sin ai = £2 sin ai (23) 

and, according to Eq. (21), using D = efi, 

€i£i cos ai = €262 cos ai (24) 
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Dividing Eq. (23) by Eq. (24), there follows 

' = il = !i! f25) 

tan 0^2 €2 IC2 

and this is the law of refraction for the electric field at the 
])oundary between two dielectrics of dielectric constants kj and 
k2, respectively. It is obvious that the same law gives the 
relative direction of the lines of D. If the direction of the field 
at a boundary is known in one medium, Eq. (25) uniquely fixes 
its direction at that boundary in the second medium. Notc^ 

Fig. iso. 

t,hat the lines of force are bent more toward the normal in the 
medium of smaller dielectric constant than in the other medium. 
Thus Fig. 129 is drawn for the case ki > 

We are now in a position to state precisely the limitations 
which must be imposed on the simple definition of Z> as given by 
Eq. (3) or Eq. (4) of Chap. II (Coulomb^s law) and on the state¬ 
ment that the field of D is determined solely by the positions 
and magnitudes of the free charges. These statements are 
true only (1) if the field produced by the charges is appreciably 
different from zero in empty space or in a single homogeneous 
dielectric medium or (2), if the boundaries of the dielectrics 
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present are everywhere normal to the direction of the field which 
would be set up in the absence of these dielectrics. In the 
presence of arbitrarily shaped dielectrics of finite size, the only 
property of the field of D which is unaltered by these dielectrics is 
the total flux of Z), due to the free charges present (Gausses 
law). At the boundaries the direction of D undergoes a change 
in general, but the number of lines of I) is unaltered by the 
presence of the boundary. We thus see why Gauss\s law is so 
important. The above statements may be clarified with the help 
of a simple example. Consider the field produced by a single 
point charge q in the presence of an infinite slab of dielectric as 
shown in Fig. 130. 

In the absence of the dielectric, the lines of D are radial and 
are shown dotted in the figure. The solid lines show the actual 
field of D in the presence of the dielectric. One sees that the 
direction (and magnitude) of D is altered even in empty space 
by the presence of the dielectric. However, the total flux of D 
is Awq in any case. 

The solution of the general problem, e.g.y one such as that 
shown in Fig. 130, involves the simultaneous solution of the 
equations 

fDr^dS = irq 

closed 
surface 

(£€s ds = 0 

D ^ e€ 

for the case of electrostatic fields, subject to the boundary 
conditions derived in this section. This would take us far 
beyond the scope of this book. 

64. Polarization and Displacement Current in Dielectrics.— 
We now turn to a brief discussion of transient or nonstt'ady 
fields in dielectric media. For simplicity let us first consider 
the case of a parallel-plate condenser with a dielectric of per¬ 
mittivity e filling the space between the plates, as shown in Fig. 
131. Suppose the switch S is closed and a charging current 
starts flowing. As the field between the condenser plates builds 
up, the dielectric becomes polarized, positive charge moves, as 
shown, across the surface aa, and negative charge moves in th(^ 
opposite direction. This motion corresponds to a transient 
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current while the dipoles are being formed, and this current is 
called polarization current. The polarization current can be 
expressed in terms of the polarization vector P, From Eq. (3) 
it follows that the charge crossing the area aa — A in time dt 
is A dPy where dP is the increase in the polarization vector in 

this time. Consequently the 
moves in ibis « / polanzation current IS 

i. - A% (26) 

and the corresponding current 
density is 

I - f (27) 

'T|l|i|l 
Fig. lai. 

This polarization current con¬ 
tributes to the total displace¬ 
ment current flowing between 

The displacement current is given by the condenser plates. 
(A/47r)(dZ)/50 and, using Eq. (7), can be written as 

U 
eo.^1 

dt ^ dt 
(28) 

Thus the displacement current can be thought of as the sum of 

two terms, one a displacement current which would 

flow in vacuum and the other the polarization current in tlu^ 
dielectric. The ratio of the polarization to the vacuum dis¬ 
placement current is then, using Eqs. (13) and (14), 

MdP/dt) ^ i^.oAx(d€/dt) = . ^ ^ _ J .29) 
(eoA/iir){0€/dt) (9A{d€/dt) ^ 

Thus in the case of the medium of dielectric constant k = 2, one- 
half the displacement current is polarization current. 

More generally, if we consider the case of nonuniform polariza¬ 
tion of a dielectric, the total polarization current flowing across 
a fixed closed surface is given by 

ip = jJPndS (30) 

closed 
surface 
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and we have seen from the considerations leading from Eq. (10) 
to Eq. (11) that 

fPndS== -g, 
where Qp is the polarization charge inside the closed surface. 
Consequently we may write 

(31) 

where pp is the density of polarization charge. Equation (31) 
is just the equation of (;ontinuity for polarization charge and 
current, stating that the current flowing out of the volume equals 
the rate of decrease of charge inside this volume. 

Problems 

1. Consider a parallel-plate condenser with a medium of permittivity c 

between its plates. Following the arguments of Sec. 16, Chap. Ill, show 

that the electrostatic energy density in the medium is given by 

u = — *= — 
Stt Sttc 

and that the force of attraction of one plate for the other is given by 

2TrA<r^ efi* . 
F *= - = A 

€ StT 

2. A parallel-plate air condenser is connected to a battery which main¬ 
tains a difference of potential Fo between its plates. A slab of dielectric of 

dielectric constant k is inserted bet ween the plates, completely filling the 

space between them. 

a. Show that the battery does an amount of work Fo9o(k — 1), if ^ois the 
charge on the condenser plates before the slab is inserted. 

5. How much work i.s done by mechanical forces on the slab when H is 

inserted between the plates? Is this work done on, or by, the agent insert¬ 

ing the slab? 
3. A parallel-plate condenser with plate areas of 200 cm.* and a separa¬ 

tion of 2.0 mm. is immersed in oil of dielectric constant 3.0 and permanently 

connected to a 300-volt battery. 
a. Compute the charge on the condenser plates. 

h. Compute the induced dipole moment per unit volume and the electric 

field intensity in the oil between the plates. State units. 

c. What is the force of attraction of the plates for each other? 
d. If the plates are separated to a distance of 4.0 mm., maintaining the 

potential difference constant at 300 volts, calculate the mechanical work 

done in effecting this separation. 
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e. How much energy is supplied to the condenser by the battery during 

the process described in part d? 

4. A parallel-plate condenser of separation d has a capacity Co in air. 

A slab of dielectric of dielectric constant k, thickness t < d, and area equal 
to that of the plates is introduced between the plates, the faces of the slab 
beiifg parallel to those of the condenser. Neglecting end effects, provt^ 
that the capacity of the condenser becomes 

5. A condenser is formed of two concentric spherical metal shells of radii 
2 and 6 cm. The inner sphere is covered by a wax coating 3 cm. thick, and 

the remainder of the space between the spheres is filled with a liquid of 

dielectric constant 4.2. The dielectric constant of the wax is 2.0. 
Compute the capacity of the condenser thus formed in microfarads. 

6. If the plates of the condenser of Prob. 5 are maintained at a potential 

difference of 3,000 volts, compute the total energy stoned in the condenser. 

What is the surface density of polarization charge at the wax-liquid interface? 
7. The inner sphere of a spherical condenser of inner and outer radii a 

and 5, respectively, is coated with a thin coat of varnish of thickness t and 

dielectric constant k. Show that the increase? of capa(?ity due to the varnish 

i.«! approximately given by 

bHK - i; 

8. The dielectric constant of the material betvreen the plates of a parallel- 
plate condenser varies uniformly from one plate to the other. If ki and 

. /Scm.->1 values at the two plates, prove 
.y.y ^ ■■■. . that the condenser has a capacity 

In ('#C2Ai) 
f 5cm.-^ 

Fig. 132. riG. 16Z. ^ A parallel-plate condenser con¬ 

sists of two square plates 15 cm. on a side separated by a distance of 0.3 cm. 

A slab of glass of dielectric constant 6.0, thickness 0.3 cm. and 15 cm. on a 

side, is inserted, as shown in Fig. 132, between the condenser plates, and the 

condenser is connected to a 600-volt battery. Neglect the edge effects. 

a. Compute the capacity of the condenser so formed. 

b. What is the total charge on the condenser plates, and how is it dis¬ 

tributed? 
c. How much energy is stored in the condenser? 

d. Suppose the battery is disconnected, leaving the condenser charged, 

and the glass slab moves in a distance dx farther to the right. Obtain an 

expression for the increase or decrease of energy in the condenser. 
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e. From your answer to part d compute the force tending to pull the glass 
slab between the plates. How does it depend on the length of slab already 

inserted? 

10. Suppose that the thickness of the glass slab in Prob. 9 is 0.2 cm. and 
that the battery is left connected to the plates. 

a. Compute the for<‘o tending to draw the slab between the plates. 
h. How much work is done on the slab if it starts as shown in the figure 

of Prob. 9 and ends with 10 cm. of its length between the plates? 

c. How much energy dotis the batter}^ supply to the system during this 
process? 

(1. Compute the change of field energy in the condenser during the process 

described in part h, and show that it is equal to the energy supplied by the 
battery mimis the mechanical work done on the glass slab. 

11. A parallel-plate condenser of plate separation d in air is charged by A 
battery, and the battery is then disconnected. A slab of dielectric of thick¬ 

ness t < d and area equal to that of eith(^r of the condenser plates is intro¬ 

duced betw(?en the plates, the slab faces bfung parallel to the condenser 
plates. 

Prov(j that the electrostatic energy in the condenser field is decreased by an 

amount given by 

where v is the volume of the dielectric, P the polarization vector in the 
dielectric, and the field intensity which existed before the insertion of the 
dielectric. 

12. Consider the electrostatic field set up in air by a number of fixed 

charged conductors. If a small rigid dielectric body is introduced into the 
field in a position far enough from the conductors so that the distribution of 
true charge on these conductors is not. sensibly altered by the introduction 

of the dielectric, the field energy may be shown in general to change by an 

amount 

i; - U, = -if (Iv 

(the result of Prob. 11 is a special case of this general formula). Given the 
fact that the field intensity € inside a dielectric sphere is uniform when the 
sphere is placed in an originally uniform field of intensity 6o, and that £ is 

related to 6o by the equation 

e = 

3 

K-f 2 
e 0 

derive an expression for the change of field energy caused by the introdu(v 
tion of a dielectric sphere of radius a into a position where the field originally 

was £o. Take the volume of the sphere small enough so that £o does not 

sensibly vary over the region of space occupied by this volume. 

18. Let the dielectric sphere of Prob. 12 be displaced slightly to a point 

where the original field had a value slightly different from £©. Compute 



222 ELECTRICITY AND OPTICS [Chap. XI 

the change in electrostatic energy, and, using the fact that this must equal 

the mechanical work done on the sphere, show that the mechanical force F 

acting on the sphere is given by 

F 
toa^ (k - 1) 

2 (^+2) 
grad 

14. A small dielectric sphere of susceptibility x and radius b is placed at a 

large distance r from a metal sphere of radius a which is maintained at a 

potential V. Assume that 6 <3C r and that a <5C r. Using the result of 

Prob. 13, derive an expression for the force with which the metal sphere 

attracts the dielectric sphere. 

15. The vertical plates of a parallel-plate condenser are dipped into an 

insulating liquid of susceptibility x- Neglecting surface tension, show that, 

if a potential difference V is established between the plates, the liquid will 

rise between the plates to a height h above its initial level where h is given by 

2pgd^ 

d is the separation of the plates and g is the acceh^ration of a freely falling 

body. The susceptibility of air is neglected. 

16. Prove that, at an interface between two dielectrics of dielectric con¬ 

stants Ki and k2 which carries no true charge, there is a surface polarization 

charge density <rp given by 

where £in is the component of € in medium 1 normal to the interface at the 

point in question. 



CHAPTER XII 

MAGNETIC MEDIA 

The study of magnetism was pursued as a branch of physics 
entirely distinct from that of electricity up to the time of the 
discoveries of Oersted and Faraday and probably is the older 
of the two subjecits. The early study of magnetic fields con¬ 
cerned itself with the interactions of permanent magnets and 
particularly with tern^strial magnetism. The laws governing 
the behavior of the magnetic fields of permanent magnets were 
formulated in a manner analogous to the laws of electrostatics, 
at least as far as was possible, and (mm i,oday many (expositions 
of the subject are treated on the basis of these analogies. In 
our study, however, we have introduced the magnetic field 
vectors, at least for empty space, in terms of the electric currents 
which give rise to them, and we shall continue to adopt this mode 
of interpretation even for the case of magnetized material bodies. 
The formulas which we shall find will be essentially the same as 
those obtained by tlu' more (dassical treatment, but the inter¬ 
pretation we give them will be based on our present-day atomic 
ideas concerning the origin of the magnetic behavior of material 
media. This mode of interpretation is not really new, since 
Ampere pointed out the possibility of utilizing it. In Ampfere^s 
time, however, and until comparatively recently, there was no 
particular reason to adopt one mode of interpretation rather than 
the other, but today we have a large amount of evidence showing 
that the electrons in matter are responsible for its observed 
magnetic behavior. 

Returning to the question of the analogy between electric 
and magnetic fields, the starting point of electrostatics is Cou¬ 
lomb's law with the consequent possibility* of defining and 
obtaining units of charge and electric intensity. Right at the 
start the analogy between electrostatics and magnetic fields 
breaks down completely, since it is impossible to produie a 
^‘magnetically charged*’ body. (This has not hindered writers 
from assuming its existence, however.) It is true that one 
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can magnetically polarize a material body so that the external 
magnetizing field is modified by its presence, but one cannot 
impart a “magnetic charge to such a body. On the other hand, 
there are substances, called magncdically hard, which can be 
magnetized and retain some of the induced magnetization when 
the external field is removed. These substances, permanent 
magnets, now produce magnetic fields of their own, and their 
permanent magnetization is almost iiuh^pendent of external fields, 
at least for weak fields. We can imagine ideal magnetically 
hard permanent magnets which are not affected at all by external 
fields and then have the possibility in principle of utilizing 
a tiny permanent bar magnet to investigate and define magnetics 
field strength and magnetic moments. In so doing, the test bar 
is treated both as a “ source (a dipole source) and as an indicator 
of the magnetic field. 

In Sec. 31 of Chap. V we have introduced the idea of the 
magnetic moment of a tiny current loop or “whirT^ and can 
carry this discussion over as it stands to examine the behavior 
of our tiny permanent magnet test bar, thus indicating from the 
start a possible interpnitation of the magnetization of material 
bodies. If a test bar is suspended by a thread fastened to 
its center, it will align itself with the direction of the (4rth’s 
magnetic field at the point where it is located and, if displaced 
from equilibrium, oscillates with a frequency 

1 fmBo 
(1) 

Fid. 133. 

[see Eq. (52), Chap. V], whore m is the magnetic moment of the 
g ^ bar, I its moment of inertia 

about the axis of suspension, 
and Bo the magnetic induction 

B vector of the earth^s field. In 
this experiment the bar is used 

as an indicator (a magnetometer). Now suppose we use the bar 
as a “ source of a field and hold it fixed so that its long axis is 
perpendicular to the earth^s field (Fig. 133). The induction B 
produced by this magnetic moment at a point P is {x is large 
con^ared to the dimensions of the rod) 

B (2) 
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[see Eq. (436), Chap. V], so that the angle which the resultant of 
this field and that of the earth makes with the original direction 
of the earth’s field is given by 

tan a = B, 2/xo^ 
(3) 

This angle is readily determined with the help of a compass 
needle. Equations (1) and (3) now allow a simultaneous 
determination of Bq and m (choosing mo arbitrarily, e.g,, = 1 
in e.m.u.). Now we have a calibrated test body which can be 
used to measure any arbitrary magnetic field. This is the method 
utilized by Gauss to measure magnetic moments and the earth’s 
magnetic field in an absolute system of units. {H was used 
instead of B as is done here.) 

The utilization of a scalar magnetic potential Tm has already 
been discussed in Chap. V, and its convcuiience in describing 
the field of permaiKuit magnets has l)e(^n indicated. We shall 
not pursue the classical development any further but turn now 
to a discussion of the magnetic properties of matter on the basis 
of modern atomic ideas. 

66. The Electronic Origin of Magnetic Properties.—The 
fundamental facts concerning the magnetic behavior of material 
bodies can be most clearly pr(\sonted by considering a simple 
(‘xperimcmt. Suppose we consider the magnetic field produced 
by a closely wound toroidal coil. In empty space this toroid 
will have a definite inductance, let us say Lo. If now Ave have this 
same toroid wound around a material core, it will be found that 
the inductance of the coil will be different, let us say L, and th(^ 
ratio L/L() is the relative magnetic permeability /i//xo of the 
medium in which the magnetic field exists when a currirnt 
flows through the winding. This follows from the fact that the 
value of the magnetic intensity, at a given point within th(^ 
volume enclosed by this (^oil is determined in accordance with 
Ampere’s circuital law as independent of the material medium 
present, lliis is true in the case of the toroid because the 
material medium comph'tely fills the region of space in which the 
magnetic field exists (see S(^c. 59). Since the inductance (for a 
given curnmt) is proportional to the flux of B in this volume, we 
conclude that, for isotropic homogeneous media, the value of B 
at every point in the medium has been changed from its value 
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in empty space in the ratio L/Lo, or since B = fiHy in the ratio 
m/mo. In contradistinction to the corresponding experiment in 
electrostatics, in which a dielectric medium is inserted between 
the plates of a condenser with a consequent increase of capacity, 
the inductance L may be either smaller or larger than the induc¬ 
tance Lo in the absence of the medium. If L < Lo, i.c., /x < /xo, 

we term the medium diamagnetic and, if L > Lo, Lc., fx > /xo, 
paramagnetic. In the diamagnetic case?, the effect of the medium 
is to weaken the field of B relatives to its value in empty space 
(keeping the current in the coil constant), and this is analogous 
to the dielectric case in electrostatics in which the field intensity 
€ is weakened by the presence of the dielectric (keeping the 
charges on the condenser plates constant). There is no electro¬ 
static analogue in this sense to the paramagnetic behavior of 
material bodies. , 

In order to understand how diamagnetism and paramagnetism 
can occur, it is necessary to consider the magnetic properties 

of atoms (and molecules). As we have 
B //7/0 page already pointed out, an atom consists of 

^ a massive positivejly charged nucleus sur- 
rounded by a sufficient number of elec- 

vf 
/ 

/ 

F=-e(vxB) 
Fig, 134. 

^ trons to make the atom neutral as a 
v/hole. These electrons perform some 
sort of motion around the nucleus, and, 
when the atom is placed in a magnetic 
field B, these moving electrons will b(*- 
acted on by the Lorentz force —e{v X B), 

their motions being modified because of this force. The change 
in the electronic motions caused by the Lorentz force is always 
such that the altered motion tends to weaken the external field 
B which gives rise to the change. This is the origin of the 
diamagnetic behavior of atoms and hence of matter. We can 
see how this behavior comes about with the help of a very simple 
example. Consider an electron of charge — c moving with a 
velocity v as shown in Fig. 134. If a magnetic field B into the 
page is set up, then there will be a deflecting force, as shown 
acting on the electron, which would result in the circular dotted 
path shown were the electron free. This is equivalent to a 
current i flowing as indicated, and this current produces a 
field which is directed out of the page and hence tends to diminish 
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the externally applied field. Actually in an atom the electrons 
are not free but perform orbital motions, so that an electron 
possesses both angular momentum about the nucleus and a 
magnetic moment, the latter by virtue of the fact that the orbital 
motion of a charged particle is equivalent to a tiny current loop. 
The torque of the Lorentz force on this electron must act at right 
angles to its angular momentum (since it is a deflecting force) 
and cannot change the magnitude of thc^ angular momentum, 
with the result that the angular momentum vector precesses 
about the direction of the^applied field in a manner similar to the 
precession of a gyros(5ope. This pre(*(vs8ion of the elc^ctron orbits 
induced by a magnetic field is called the Larrnor pnjcession and 
gives rise to the diamagnetic behavior of the atom. 

Besides the magnetic moment possessc^d by an electron bec^ause 
of its orbital motion, an electron possesses an inherent magnetic 
moment verj’^ much as if it were a spinning sphere of charge 
and this is called electron spin. The resulting magnetic moment of 
an atom will then be the resultant of the orbital and spin magnetic 
moments of all the electrons of which it is (M)mposed. There 
are some atoms, e.g., He in its normal state, in whi(^h there are 
two electrons and no resultant magnetic moment, the magnetic 
effects of the (dectrons just neutralizing each other, but many 
atoms and molecules do possess resultant magnetic moments in 
their normal states. The diamagnetic effecd discussed in the 
last paragraph will be present whether the atoms have a resultant 
moment or not; if they havc^ a resultant moment, there is a 
possibility of another effect due to the tendency of this moment to 
orient itself in such a direction that its potential energy in the 
field is a minimum corresponding to stable equilibrium. We 
have already seen in Chap. V, Sec. 27, that a current loop 
assumes a stable equilibrium position in the presence of an 
external field in which the plane of the loop is at right angles 
to the external field, its magnetic moment in the direction of 
the external field. In this orientation the field of the current 
loop aids the external field at the point where the loop is located. 
This orientation effect gives rise to the paramagnetic behavipr 
of material bodies, the magnitude of the natural atomic magnetic 
moments being large enough to more than compensate for the 
diamagnetic effect which is always present. The paramagnetic 
behavior, being an orientation effect, is very much like the 
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orientation effect of polar molecules in that it is a function of 
temperature, increasing with decreasing temperature since the 
thermal agitation of the atoms and molecules tends to hinder 
the orientation. The diamagnetic effect is essentially tempera¬ 
ture independent. One must always keep in mind the fact 
that inside paramagnc^tic media the field produced by the 
natural atomic magnetic moments aids the external field, whereas 
in the dielectric case the field inside the dielectric always opposes 
the external field whether we have induced or oriented dipoles. 
So much for the qualitative atomic picture. 

66. Intensity of Magnetization; Amperian Currents.—In 
describing quantitatively the magnetic behavior of bodies, 
it has been customary to introduce the conc(;pt of a vector M, the 
so-called intensity of magnetization^ which is analogous to the 
polarization vector P in electrostatics. This viivtov is defined 

as the induced magnetic moment per unit volume of 
the magnetized body. In the cas(^ of isotropic 
media, and W(! shall restrict our attention to this 
case, the atomic magnetic moments inducted (dia¬ 
magnetic case) or the net result of the orientation of 
the permanent atomic magnetic moments (paramag¬ 
netic case) are opposite to or in the direcjtion of the 
appli(Hl field, so that the intensity of magncdization 

is a vector in the same direction as the applied field at every point 
of the medium. Consider a volume element inside a magnetic 
medium of an^a AA and altitude Kx, as shown in Fig. 135, and let 

mo be the magnetic moment per atom produced by an externally 
—^ 

applied field. The total magnc^tic moment Am of this volume 

element is the vector sum of all the atomic mo’s in this element, and 
the intensity of magnetization becomes 

U-^x—*1 
Fig. 136. 

M = 

or more strictly as Av —» 0 

M = liiii 
Am 
Av 

Am 

~Av 

as Av-*0 

(4) 

(5) 

where Am = iJwo, the siimnjfttion extending over all the atonvs 
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in Ay. If the vector field of M is uniform, we say that the 
substance is uniformly magnetized. 

Siniie each induced magnetic moment mo is tlu^ (Xiuivalent of 
an elementary current loop, we can equally well attribute the 
state of magnetization of a body to circulating currents^ called 
Amperian currenta after Ampdre, who first suggested them, and 
these Amperian currents resemble currents in superconductors 
rather than ordinary currents since their flow involves no dis- 
sipation of eiu'rgy. In describing the magnetic effects of these 
Amperian currents we make use of the construction of Ampere, 
as discussed in Sec. 31, Chap. V. For simplicity, consider a 
cross section of a uniformly magnetized rod as shown in Fig. 
136, of thickness Ax^ and suppose the direction of the magnetiza¬ 
tion vector M is into the paper. The induced magnetic moments 
are eciuivaUuit to current loops 
of area dA, each carrying an equal 
current Ah as shown, the intensity 
of magnetization being uniform. 
By Amp^.ixVs construction these 
(current loops are equivalent to a 
surface* current Ah flowing around 
t he periphery of the bar as shown. 
To ol^tain the relation between 
this induced surface current (the 
inagiKiic analogue of the induced 
surface charges on polarized dielec¬ 
trics) and the magnetization vector M, we proceed as follow^s: 
From th(‘ definition of M we have 

_ _ 2(At« • dA) _ Az«X dA _ Ah 
Av A Ax A Ax A Ax Ax ^ 

since S dA is the total cross section A of the rod. The expression 
Ah/Ax is just the surface density of current, current per unit 
length measured along the surface normal to the direction of 
current flow, which we shall denote by the superscript (s) to 
remind us that it is a surface current density rather than a 
volume current density. We thus have the fundamental relation 

if = M (7) 

giving the relation between the magnitudes of the induced surface 
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current density of Amperian currents and the magnetization 
vector M. We can include the specification of the directions 
with the help of a unit vector n drawn normal to the surface. 
From Fig. 136 it is clear that the vector relation 

- M X n (8) 

Fig. 137, 

gives the correct direction of the surface current and it can be 
shown that Eq. (8) is valid in general. Besides the surface 
currents required by Eq. (8), one will in general have a volume 
distribution of Amperian currents in the case of nonuniform 
magnetization, just as one obtained a volume density of polariza¬ 
tion charge for nonuniform polarization of a dielectric. One can 
readily show that the Amperian volume currents are related 

to the magnetization by the equation 
da . n i* 

M f(ja)ndS:=fMsdS (9) 

i.e., the current crossing any area in- 
side the medium equals the line inte¬ 
gral of the magnetization vector 
around the boundary of the area, thc^ 

directions as shown in the accompanying figure. 
67, Relations of B, H, and M; Magnetic Susceptibility.—In 

our discussion of magnetic fields in empty space, we found it 
convenient to introduce a magnetic intensity vector H in addition 
to the fundamental induction vector B. This was defined essen¬ 
tially as B/fjio [see Eqs. (23), (24), and (27), Chap. V], and this 
simple definition must now be extended for the case of magnetic 
media, since just for this latter case is this auxiliary vector 
extremely useful. We shall approach the problem of extending 
the definition of H with the help of a simple example, viz,, a long 
solenoid of circular cross section, the length large enough com¬ 
pared to the cross-section dimensions so that end effects become 
negligible, and let us suppose that we insert a cylindrical rod of 
material coaxially into the interior of the solenoid (Fig. 138). 
Let the number of turns per unit length of the solenoidal winding 
be n and the current i. If the cylindrical rod were not present, 
this WDuld produce a uniform magnetic field inside the solenoid. 
Thus we see that the rod becomes uniformly naagnetized, and we 
have shown in the last section that the effect of this magnetiza- 
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tion is equivalent to Amperian currents flowing solenoidally 
(circumferentially) around the surface of the cylindrical rod. 
These currents are indicated as dotted in Fig. 138, whereas the 
^‘true’^ current i in the winding is indicated by full lines. We 
now consider the fundamental induction vector B as produced 
by all the currents, external plus Amperian (just as £ in electro¬ 
statics was the field of all the charge, true plus polarization) and 
replace the material rod by the equivalent Amperian currents, 

c d 

thus leaving a problem in empty space which we can n^adily 

solve. 
We now apply Ampfere^s circuital law to the path abed in th(»- 

usual manner, and, remembering that for empty space H = 
we have (the length ah is 1) in the usual manner 

= 47r(ito1.al) (Ifl) 
Mo 

where ftotni is the total current (including the Amperian currents) 
passing through the area abed. We have for the total current 

itotia = nil + faH = {ni + M)l (11) 

utilizing Eq. (7). Thus Eq. (10) yields 

~ = Awni ■+• AirM 
Mo 

or 

- - 4irM = (12) 
Mo 

Thus we see that the quantity 4?rm, which is a measure of H 
inside such a solenoid, is no longer equal to B/no when matter is 
present, and we define H by the more general relation 
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H 4^M (13) 
Mo 

This reduces to the previous case if M is zero, as in the case of 
empty space. We see in this example that H is the field of the 
external currents, and B the field of the total current, both 
(external and hidden (Amperian). 

The general problem of dc^termining the magnetic induction B 
thus involves a knowledges of both H and M. The magnetization 
vector My howe^ver, is in general a function of H (or B)y and 
consequently we must distinguish among various eases which are 
actually found in material bodies. Let us restrict ourselves for 
the present to those materials in which By Hy and M are all 
proportional to each other, the magnetization being proportional 
to the field. Calling the ratio of B to II the magnetic permea¬ 
bility of the medium, m = Bjlly we hav(^ from Eq. (13) 

(14) 

and the ratio MIH is called the magnetic susceptibility of the 
medium and is denoted by Xw* For most materials (the notable 
exceptions Ixnng iron, nick(d, cobalt, and other so-called ferro¬ 
magnetic substances) the intensity of magnetization is propor¬ 
tional to Hy and Xm is a constant. Materials for which Xw is 
negative are called diamagneiic (/i < mo), and those for which Xm 
is positive are teimed parajnagnetic (m > mo)- For paramagiudic* 
media the Amperian currents aid the (external currents, and in 
diamagnetic media they oppose them. In terms of the suscepti¬ 
bility, Eq. (14) can then be written 

— = 1 + 47rxm (15) 
Mo 

The susceptibilities of ordinary paramagnetic and diamagnetic 
substances are very small compared to unity, being of the order 
of 10“* for diamagnetic bodies (bismuth is a notable exception 
with about ten times this susceptibility) and somewhat larger, 
of the order of 10~®, let us say, for paramagnetic bodies. Thus 
it is possible to treat most substances as being nonmagnetic for 
the purposes of many practical problems. 

68. Ferromagnetism.—From a practical standpoint, by far 
the most important magnetic media are the so-called ferromagnetic 
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materials which are characterized by abnormally large values of 
the magnetization M and by the fact that the magnetization is 
not proportional to H) indeed in some substanc(5s it is not a 
single-valued function of H, The elements iron, nickel, cobalt, 
and a number of alloys display this abnormally large para¬ 
magnetic behavior. Equation (13) still holds, since it is a 
definition, but the permeability defined as B/H is at best a 
function of H, Not only is the magnetization intensity much 
larger for these substances than for ordinary paramagnetic 
materials (sometimes a million times larger), but also it is possible 
to attain a limiting saturation value of M at relatively low field 
strengths. The saturation value of M is relatively independent 
of the mechanical state and small amounts of impurities, but the 
B-H or M-H relation (the so-called 
magnetization curve) is very strongly 
dependent on these factors. It is 
convenient to classify ferromagnetic 
materials into two groups: 

a. Magnetically Soft Snbstances.— 
These anj substance's for which M is 
at least approximately a single-valued 
function of //. This function is Fui. 139. 

shown in Fig. 139 and has the following gemeral characteristics; 
an initial sharp rise in M and a later flattening out and saturation. 
Actually there are no strictly reversible ferromagnetics, but one 
can only speak of ^^softcr^^ or ^‘harder’' magnetic substances 
depending on the size of the hysteresis loop (see below). 

6. Magnetically Hard Substances.—In these the magnetization 
intensity not only is not a single-valued function of H but 
depends on the previous history of the sample under considera¬ 
tion. If one subjects an initially unmagnetized sample of 
magnetically hard steel to an increasing magnetic field //, the 
initial magnetization curve (shown dotted in Fig. 140) is not 
unlike that of Fig. 139. If now the applied field is reduced and 
reversed, the magnetization follows the solid curve PAQ. The 
value of ilf for JT == 0, the ordinate OA in Fig. 140 (a measure 
of the so-called '‘remanence^’ of the substance), and the reversing 
field OB necessary to reduce M to zero (the so-called ‘^coercive 
force)can be used as measures of the magnetic hardness of the 
material. If one now carries the substance back to the point P 
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by increasing Hy the lower curve is follov/ecl, and this cyclic 
operation is exactly what occurs in a.c. transformers. The loop 
PAQCP is called a ^'hysteresis'' loop, and there is an energy loss 
whenever such a loop is traversed. Consider a toroidal coil closely 
wound around a steel core of cross section A and mean length L 
When a current is set up in the magnetizing coil, energy is sup¬ 
plied to the system at the rate Ely where E is the voltage across 
the coil and i the current through it. Neglecting the resistance 
of the coil (taking this into account would simply add the ordi¬ 
nary i^R heating), this voltage is given by Faraday's law as 

E = NA 
(W 

(it 

whore N is the number of turns of the 
coil. The value of H is related to 
the current i by 

T _ ^ttNi 

Z 
so that 

HI 
^ ArrN 

and the rate of doing work is 

dB 

where v is the volume of the steel specimen. The total work 
done in carrying the substance around the hysteresis loop is hence 

(16) 

SO that the hysteresis loss per cycle per unit volume is l/47r times 
the area of the loop on a B-H diagram. 

In the interior of a permanent magnet the direction of the 
magnetic intensity H is generally opposite to that of the mag¬ 
netization and induction. Such a magnetic state corresponds 
to a position such as is found on the portion of the curve of Fig. 
140 lying between A and B, Furthermore, the internal field of 
such a magnet depends, for a given magnetization, on the 
geometrical shape of the magnet. 

69. Boundaiy Conditions on B and H.—Up to this point in 
our discussion of the magnetic behavior of material bodies, we 
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Mi 

ndarj^ 

M> 

Flo. 141. 

have confined ourselves cither to the case of a single material 
medium completely occupying the region of space in which the 
magnetic field existed, or to the case where the boundary surface 
between two media (the case of Fig. 138) was everywhere parallel 
to the direction of the magnetic field which existed before the 
insertion of the material body. In both these cases the direction 
of the lines of B or H is unaltered by the presence of the material 
body, and we were not concerned with the possibility of the 
refraction of these lines at the 
interface. We must now investi¬ 
gate the relations which hold at a 
boundary which is not parallel to 
the lines of force, let us say a 
boundary surface between two 
media of permeabilities jui and m2. 
Since the field of B is solenoidal 
(the linos of B closing on themselves) Gauss’s theorem, applied 
to the flux of this vector, states that the net flux of B emerg¬ 
ing from any closed volume must be zero. We apply this 
theorem to the shallow pillbox shown in Fig. 141, and we may 
neglect the flux of B emerging from the curved sides, since it 
vanishes as the altitude of the pillbox approaches zero (the 
boundary surface always lying between the flat faces). The flux 
of B emerging from the top face is B2ndAj where B^n is the 
normal component of Bz at the point where this surface element 
dA is located. Similarly the emergent flux across the bottom 

face is dA. Hence, we have 

BzndA — BindA = 0 
5ln.= Bzn (17) 

The normal component of B is con¬ 
tinuous at the boundary surface 
between two media. Note that this 

condition is automatically satisfied if the boundary is parallel to 
the lines of B, 

For the tangential components of the field we make application 
of the Ampfere circuital law and choose a closed path as shown in 
Fig. 142, in which the sides perpendicular to the boundary can be 
made vanishingly small compared to the other sides, each of 
length dl. As this occurs, the displacement current through the 
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area enclosed by this path becomes vanishingly small and does 
not contribute to the magnetomotive force around the closed 
path. This magnetomotive force is given by 

fu, ds = Hu dl - Hi, dl 

and this must equal 4t times the triK'- current flowing across the 
area enclosed by our olcrncntaiy path. If the surface density of 
this current on the interface is we have 

Hu dl - Hn dl = 47r;» dl 
or 

Hu — Hit = 4Tj^«^ (18) 

as the relation which must be satisfied by the tangential com¬ 
ponents of H. If no true surface currents are present (there 
may be Amperian currents, however), = 0, and Eq. (18) 
becomes 

Hu = Hit (19) 

establishing the continuity of the tangential com[)onents of H 
for this case. 

Using the relations 

Bi = Hi = ^XiHi 

one finds readily the law of refraction of the lines of B or H at an 
interface which carries no true surface current. It is 

tan a\ ___ m 
tan ai ya (20) 

where ai and ai are the angles which H or B makes with the nor¬ 
mal to the surface in media 1 and 2, respectively. This law is 
entirely similar to the corresponding law for the electric field. 

We are now in a position to state precisely the conditions under 
which Ampere/s rule [Eq. (24), Sec. 28, Chap. V] may be 
employed to calculate the field of H and thereby bring out 
clearly the generality of the Ampere circuital law, which is 
always valid, over the Ampere rule. From our discussion of the 
boundary conditions it becomes clear that Ampere \s rule will giv(^ 
correctly the field of H in two cases, (1) when the region of space 
in which the magnetic field exists is completely occupied by a 
single homogeneous material medium, or when the boundaries 
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between media are so far from the region of spac(» under con¬ 
sideration that they produce no sensible effect in this region, and 
(2) when the boundary surface between bodies is everywhere 
parallel to the magnetic lines, so that the field pattern is inde¬ 
pendent of the presence of the boundary. This follows from the 
facts that P]q. (17) is automatically satisfied and Eq. (19) insures 
an unchanged valiK' of H as one crosses the boundary. Only in 
these cases may we say that H is completely and uniquely deter¬ 
mined by th(' true currents and their relative positions, whereas 
the magnetomotive^ force; around any closed path is always given 
uniquely by the true curremt (including displacement current) 
which traverses any surface bounded by this path. We can 
illustrate th(;s(; statements with the help of a simple example. 
Consider the magnetic; field produc(;d by a very long solenoid in 
air carrying a steady current. Near the center of this solenoid 
the field is confined to the region of spaeu; enclosed by the winding 
and is uniform in this region (see Sec. 29, Chap. V). If a cylin¬ 
drical rod of magnetic material is inserted coaxially into this 
solenoid, either filling or only partially filling it, the field of H is 
exactly as it was before (still confining our attention to the central 
portion of the solenoid), and the pattern of magnetic lines is 
unchanged. The only change which occurs is the change in the 
value of B inside the magnetic material. Now, however, let us 
imagine that we insert a short cylind(;r of this magnetic material 
coaxially into the central part of the solenoid. The whole 
field pattern changes violently and is neither uniform in the 
central part of the solenoid nor is it confin(;d to the space enclosed 
by the solenoidal winding. We can obtain a good qualitative 
picture of the field in this case with the help of the concept of 
Amperian currents, replacing the material cylinder by a solenoid 
of equal length. The number of ampere turns of this short 
solenoid may be enormous if the material is ferromagnetic. The 
field pattern will now be that obtained by superposing the field 
produced by this finite ‘‘Amperian” sohmoid (compare Fig. 65, 
page 107) and that produced by the original very long solenoid 
in air. It becomes evident that the presence of the flat surfaces 
of the rod (or the ends of the “Amperian” solenoid) play an 
important part in modifying the original field pattern. 

Let us investigate more closely the effect of these boundaries in 
a very simple case. Suppose we consider the case where the lines 
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of JS or iff are normal to the interface between two media, as 
shown in Fig. 143. In this figure we have indicated the lines of 
H in the two media, assuming that M2 > Mi- Since the field is 
normal to the boundary, Eq. (19) is satisfied and Eq. (17) 
demands that 

MiHi = 112Hz 

or 

so that the number of lines of H emerging per unit area of th(‘ 
interface into medium 1 is larger than the number incident per 
unit area on the interface in medium 2. This discontinuity is not 
present when we consider the lines of B, since Bi = Bz. When¬ 

ever new lines of force start (or stop) 
H, at definite points of space, it is natural 
ft I to think of these new lines as originat¬ 

ing in sources’^ of the field at these 
points. Thus we may say that it is 
possible to have sources of the field of 
H but not of B, These sourccjs of 

H have been called magnetic poles, and, before it was recognized 
that B is the fundamental magnetic vector and H merely an 
auxiliary aid to calculation, real physical significance was given 
to these poles. It seems better, in the light of our present 
knowledge of the subject, to look upon them merely as possible 
modes of description and indeed they are very convenient con¬ 
cepts when applied to many engineering problems, especially 
those in which one is interested in the magnetic field in an air gap 
which has been introduced in an otherwise closed ‘‘magnetic 
circuit” (see below) composed of a ferromagnetic substance of 
high permeability. 

One can set up a measure of the “strength” of a magnetic pole 
in terms of the number of lines of H produced by it. For 
example, suppose we consider an interface area A in Fig. 143, 
and let us suppose that the medium 1 is empty space, so that 
Ml = Mo and that medium 2 is a ferromagnetic body. The 
number of lines of H starting at the pole on this surface A is 
clearly 

(ff 1 ^ H2)A 
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and, since we have the relations 

^2 = ti - 4^J|f 

where M is the magnetization intensity at the surface, the expres¬ 
sion for the strength of the magnetic pole on this surface is 

Pole strength = {Hi — H2)A = ^MA (21) 

or alternatively. 
Pole strength 

Unit area 
= 47rM 

Clearly one might adopt units of pole strength such that it equals 
l/47r times the net flux of H emerging from the surface, in which 
case the pole strength per unit area would be simply equal to the 
intensity of magnetization at the surface. This has been the 
common definition. More precisely, the M in Eqs. (21) and 
(22) is the normal component of M at the surface, as is evident 
from our derivation. One fact becomes very clear from these 
considerations, namely, that the constancy of magnetic pole 
strength implies constancy of the magnetization intensity, and 
only for substances which are so hard magnetically that the 
remanent magnetization is practically independent of the external 
field is it possible to assign even an approximate meaning to the 
term pole strength as a property of the system independent of its 
external surroundings. In electrostatics, however, the electric 
charge on an insulated body is strictly constant and thus can be 
used uniquely to detect and measure electric fields. With 
magnetic poles we are never quite sure of our basic assumption, 
for even in weak fields, immersion of a permanent magnet in a 
medium of high permeability will certainly modify the pole 
strength by virtue of the ‘^induced” magnetization and the 
consequent induced poles. For reasons such as these we have 
preferred to introduce the magnetic field concept on the basis of 
electric current rather than from the standpoint of permanent 
magnets, as is commonly done. 

60. Magnetic Circuits; Reluctance.—^The determination of the 
field of magnetic induction in the presence of arbitrary magnetic 
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bodies is, in general, an extremely difficult task and far beyond 
the scope of this book. The general problem for steady fields 
involves the simultaneous solution of the equations 

ds = 47rz 

f dS = 0 

closed 
surface 

B = m// 

subject to the boundary conditions expressed by Eqs. (17) and 
(19). There are, however, certain problems of practical impor¬ 
tance, involving so-called magnetic circuits^ for w’^hich it is possible 
to readily obtain approximate solutions. The name magnetic 
circuit has its origin in certain analogies between this sort of 
problem and that of the flow of steady currents in linear con¬ 
ductors. The fundamental reason for the analogy lies in the fact 
that both the cuwent-density field and the magnetic induction 
field are solenoidal, there being no sources or sinks, and the lines 
are closed on themselves in both cases. If one compares the 
equations 

j = cr€ and B = iiH 

(the first is Ohm\s law), one sees that in a sense /x can be looked 
upon as the analogue of the conductivity <r. Now, in simple 
electrical problems, the current can be easily confined to con¬ 
ducting bodies. In particular for linear conductors, such as 
wires, the lines of current flow are parallel to the boundary 
surfaces of the wires and are uniformly distributed across the 
cross section if the latter is uniform. For this case, Ohm^s law 
applied to a simple series circuit takes the more convenient form 

E = ^69 ds = iRy 

where the resistance R is related to the conductivity by 

I being the length of the conductor and A its cross section. 
In the: corresponding magnetic circuit one has a closed path 

of highly permeable material such as iron, as shown in Fig. 144, 
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with an exciting winding of N turns carrying a steady current i. 
We naake the following assumptions: 

1. The lines of B are confined to the circuit and are parallel 
to the boundaries of the magnetic medium. The higher the 
ratio m/mo and the smaller the cross section A relative to the 
length I of the circuit, the more nearly is this fulfilled. 

2. The magnetic permeability ^ is (constant. This is not 
nearly so true as the corresponding statement that <r is a constant 
(at constant temperature) for a c.on- 
ductor. We shall use to denote a 
mean value. 

3. The values of H and B over any 
(TOSS section of th(^ circuit may be 
rc^placed by mean values over such a 
c ross se(^tion. This in volves a choicer 
of m(an length I of the circuit which, 
at least in practical cases, has not a 
very small ratio of cn^ss-secition dimension to length. 

With these assumptions we can set up equations analogous to 
those describing the corresponding electrical circuit. The 
magnetomotive force around the path I is, using Amp^re^s 
circuital law, 

fH, ds HI = irNi 

where now H is the mean value of 11 in the medium and I the 
mean length. From this we obtain the magnetic flux ^ as 

A 
Fkj. 144. 

^ A ZJ A ^wNinA ^ = BA = iiHA ==- 

or rewritten 
_ ArNi _ m.m.f. 

(23) 

where AnNi is the magnetomotive force around the circuit 
(m.m.f.) and the script (R is called the reluctance of the magnetic 
circuit. The reluctance is the analogue of electrical resistance 
as wc see by writing Ohm^s law for a corresponding simple series 

circuit. 
. e.m.f. 
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From the similarity of the equations one can readily see that, 
subject to the same assumptions, the analysis of two or more 
reluctances in series or in parallel can be handled by the same 
method. We shall illustrate this for the case of a simple electro¬ 
magnet, as shown in Fig. 145, in which there is an air gap of 
length d. Denoting by H the value of II inside the iron and by 

its value in the air gap, we have for the magnetomotive force 
around the path (Z + d), 

m.m.f. = ds = HI + Hod = 4irNi 

If we assume that the effective air-gap area is equal to Aj that 
of the iron (this neglects fringing and is a good approximation 

Fio. 145. 

only if d^ <K ^1), we can set the magnetic flux equal to BA, 
From the above equation we have 

l(- + -'l = irNi 
V P'0/ 

using B = ijlH and the fact that B is continuous at the boundaries, 
so that 

+ {d/niA) ~ (51 + (Ro 

where (R is the reluctance of the iron path and (Ro is the reluctance 
of the air gap. Thus we see that reluctances in series add just 
as do resistances. The magnetomotive force across the gap is 
given by 

(Ro^ 
Arm 

1 + (Z/io/dg) 

and if the ratio Z/d is 100, let us say, and the permeability of the 
iron is 2,OOOmo, then this magnetomotive force is ^ of the total 
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m.m.f. around the circuit, i.e., about 95 per cent of the *'drop'' 
is across the air gap. 

Problems 

1. A very long solenoid having 20 turns per centimeter is wound on an 

iron core 3 cm. in radius and a current of 10 amp. flows through the winding. 

The permeability of the iron (assumed constant) is 2,OOOjuo. Neglecting 

end effects, calculate: 

a. The self-inductance per centimeter length of the solenoid. 

b. The intensity of magnetization inside the iron core. 

c. The induced Amperian current per centimeter flowing solenoidally 

around the core surface. 

d. The number of turns per centimeter for a solenoid in air of similar 

dimensions needed to produce the same inductance. 
e. The magnetic field energy stored per centimeter length of the solenoid. 

2. A toroidal coil has a mean radius of 10 cm. and a cross section of 

5 cm 2. It has 1,500 turns wmund on a core of permeability 800/xo. If the 
resistance of the winding is 2 ohms, compute the time constant of the coil. 

(Assume the field uniform over a cross section of the core.) 

3. Explain how the cavity definitions of D and £ in electrostatics may 

be carried over to the magnetic case, showing that the field inside a needle- 

shaped cavity with its long axis parallel to the direction of magnetization is 

given by H, whereas that inside a pillbox cavity with its faces normal to 

the magnetization direction is B, 

4. A long straight copper wire 1 cm. in diameter is surrounded coaxially 

by a long hollow iron cylinder of permeability 1,000/ii., inner radius 2 cm., 

and outer radius 3 cm. The wire carries a steady current of 20 amp. 

a. Compute the total magnetic flux inside a section of the iron cylinder 

1 meter long. 

5. The induced Amperian currents flowing on the surfaces of the iron 

cylinder are parallel or antiparallel to that in the copper wire and are uni¬ 

formly distributed ovtir these siirfaces. Compute the magnitudes of these 

currents on both inner and outer surface of the hollow cylinder and their 

directions relative to the current in the copper wire. 

c. Compute the intensity of magnetization at a point 2.5 cm. from the 

axis of the copper wire. 

d. Prove that the Amperian current density inside the iron is zero. 

e. Show that the magnetic field outside the iron cylinder is the same as if 

the iron were absent. 
6. A very long solenoid of radius R is wound with n turns per unit length 

and a long cylindrical rod of radius r < R is placed coaxially inside the 

solenoid. 
a. If the permeability of the rod material is g, derive an expression for 

the self-inductance per unit length of the solenoid. 

b. A coil of N turns is wound around the cylindrical rod, and an alternating 

current I sin (d flows in the outside winding. Derive an expression for the 

e.m.f. induced in the secondary coil of N turns, assuming it to be on open 

circuit. 
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6. A 1,200-turn toroid is wound on an iron ring of mean diameter 18 cm. 

and cross section 6 cm.*, and a current of 2 amp. flows in the winding. The 

permeability of the iron is 3,OOOjuo. 

а. Compute the flux of B in the ring. 

h. If an air gap of length 0.5 mm. is cut in the ring, compute the flux in 

this air gap, assuming its effective area to be that of the ring. 

c. Compute the inductance of the coil with and without the air gap. 

(i. Calculate the total field energy when there is no air gap. 

e. Calculate the total field energy and the field energy in the iron and in 

the air gap. 

7. An iron rod of square cross section (2 by 2 cm.), of relative permeabil¬ 

ity 1,600, is bent into the form of a ring of inner radius 5 cm., and the ends 

are welded together. Wire is wound toroidally around the ring to form a 

coil of 500 turns and a current of 1 amp. flows through the winding. 

o. Compute the total flux of 5 in the ring, taking into account the vari¬ 

ation of B inside the iron. What is the inductance of the coil? 

б. What is the magnitude of the Amperian current flowing around the 

surface of the ring? 

c. What is the maximum percentage variation of the magnetization inlen- 

sity inside the iron? Where is the magnetization largest and where is it 

smallest? 

d. Prove that the density of Amperian currents is zero everywhere inside 

the iron. 

8. A 3-mm. air gap is cut in the ring of the toroid of Prob. 7. 

a. Compute the flux of B inside the ring and the self-inductance of the coil. 

b. A square slab of iron (2 by 2 cm.), of thickness 2 mm. and relative 

permeability 2,400, is inserted into the air gap so that the edges of one of its 

faces coincide with tliose of the toroidal core. How much work must be 

done? by the sources which maintain the cur¬ 

rent in the coil constant during the insertion 

process? 

c. What is the increase of magnetic field 

energy during the process described in part. 

6, and how much mechanical work is done by 

the force which pulls the slab into the gap? 

9. Suppose the iron rod used in construct¬ 

ing the toroid of Prob. 7 is hollow and has the 

cross section show n in Fig. 146. Compute the 

self-inductance of the toroid in henrys, taking 

into account the variation of B with position. 

10, Prove that the magnetic field energy stored in a magnetic circuit can 
be written as 

^ Um = « ~(m.m.f.)f» « r-~(m.m.f.)* 
^ otr 8ir 8jr0t 

where #is the total flux of B in the circuit, (Si the reluctance, and (m.m.f,) is 

the magnetomotive force around the circuit. 
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11. Consider the magnetic circuit of uniform cross section A shown in 

Fig. 147. The air-gap lengths are very small compared to the cross-section 
dimension. 

a. Using the results of Prob. 10, show that, if the air gaps are closed, the 

field energy increases by 

(m.] [i.m.f.)*/ 1 1 \ 

8t \(Fl2 dll/ 

Fin. 147. 

where (R2 is the reluctance of the circuit without air gaps and (Hi its value 
with the air gaps. The current in the wind¬ 

ing is kept constant. 

h. Using Faraday’s induction law, show 
that the sources of e.m.f. maintaining the cur¬ 

rent constant do an amount of work on the 
system equal to twice the above expression 

Avhile the air gap is being closed. What 

happens to the difference of these energies? 
12. Starting with the magnetic circuit 

shown in Fig. 147, suppose the top half is held 

fixed and the bottom half is allowed to move 

up an infinitesimal distance dx. Derive an 
(‘xpression for the increase of field energy during this displacement, keeping 
the current in the magnetizing coil constant, and, using the results of Prob. 

11, show that the force with which the two sections attract each other is 

given bv 

F « 2-— 
OTT/iO 

13. Two long iron plungers of permeability 2,000 are inserted into a very 
long solenoid, the plungers each of 4 cm.* cross section and fitting tightly 

in the solenoid. If the magnetic induction in the iron is 5,000 gauss, com¬ 

pute the force in pounds with which one must pull to separate the plungers. 
o_ 14. A long solenoid of 10 turns per centi- 

■ z/77/77. , . f 
meter contains an iron rod, 2 cm. in diame¬ 

ter cut in two, and carries a current of 3 
amp. in its winding (the primary). Com- 

A-30cm. pute the force necessary to separate the 

two halves if the following experimental 

data are known: On reversing the current 

in the primary a charge of 60 microcou¬ 

lombs flows through a secondary circuit 

consisting of a coil of 10 turns and 100 

ohms resistance, wound on the same core. 

16. A magnetic circuit has a core of 
mean length 30 cm., cross section 6 by 6 cm., and an air gap 2 mm. long, 

as shown in Fig. 148. The magnetizing coil has 100 turns and carries a 

steady current of 1 amp. A slab of iron 6 by 6 by 0.2 cm. is inserted into 
the air gap as shown. Assuming the relative permeability of the core mate- 

lamp. 

Fio. 148. 
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rial and slab to be constant and equal to 1,200/xo, compute the work done 
in pulling the slab into the air gap. 

16. Consider a region of space in which there exists a magnetic field which 
is not quite uniform. A rigid magnetic body of permeability m, volume v, 
is brought into the field at a point where the magnetic induction was B. 
Suppose the volume t; of the body is small enough so that B does not vary 
appreciably throughout this volume and that the susceptibility of the body 
is extremely small compared to unity (this is always true of ordinary para¬ 

magnetic and diamagnetic media), so that we maj^ consider the induction B 
xinaltered by the presence of the body. Show^ that the decrease of magnetic 
field energy caused by this insertion is given very nearly by 

V B* V 
—(m — — (m — 
OTT /Iq StT 

where H is the magnetic intensity at the point where the body is located 

prior to its introduction. 

Now consider a small displacement of the body to a point where the mag¬ 
netic fiedd has a slightly different value. Compute the decrease in field 

energy due to this displacement, and, equating this to the work done by 
mechanical forces on the body, show that the mechanical force F acting on 

the magnetic body is given by 

11 
F =» -XwMo grad 

where xm is the magnetic suscepti- 

OJmnt, bility of the body. 
17. An electromagnet as shown in 

Pig. 149 is designed to support a 

weight of 100 lb. (including the 

weight of the keeper K). The cross 

section of all parts of the magnetic 

circuit is 26 cm.*, the length of the 

magnetic path in thb iron (including 

the keeper) is 60 cm,, and the air gaps are each 0.1 mm. long. The per¬ 

meability of the iron is 1,800mo. If the wire of the magnetizing coil can 
carry I amp., compute the least number of turns needed in the coil to sup¬ 

port this weight. 
18. Suppose that the iron in Prob. 17 has not a constant permeability but 

that ix varies with B according to the following table: 

O.lmmA 

25cm. 

B, gauss. 3,500 4,000 4,400 4,900 5,300 6,800 

. 1,650 1,600 1,560 1,600 1,460 1,380 

Compute the least number of turns needed in the coil, assuming a maxi¬ 

mum current of 1 amp. 
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19. A magnetic core of constant length and uniform cross section has 
an adjustable air gap. On this core there is wound a coil. When the air 
gap is reduced to zero, the self-inductance of the coil is 3 heiirys. When 

the length of the air gap is 0,05 in., the inductance is 1 henry. To what 

length must the air gap be increased to reduce the inductance to 0.2 henry? 

Assume a constant permeability of the magnetic core. 
20. Two coils are wound side by side on the same magnetic circuit. The 

first has 500 turns, a resistance of 2.5 ohms, a self-inductance of 0.5 henry; 

and the second has 1,000 turns and a resistance of 50 ohms. If an e.m.f. of 
4.3 volts (direct current) is impressed on the first coil, what voltage must be 

impressed on the other coil so that the total flux in the core will be reduced 

to zero? What will be the flux in the core when a voltage of 15 volts is 
impressed on the second coil alone? 

21. Starting from the fact that 

== 47r(ftot*i) 

where itotai is the sum of the true and Amperian currents flowing across any 
surface of which the closed path of integration is a boundary, prove, with 

the help of the general d(;finit,ion of that 

where ia is the Amperian current flowing across the above mentioned sur¬ 
face and ja is the volume density of Amperian currents, M is the intensity 

of magnetization. 

22. Consider the volume enclosed by a hemispherical surface in a region 

where a magnetic field changes with time. Compare the expressions for the 

e.m.f. induced around the equator of the hemisphere by considering (o) the 

magnetic flux crossing the plane surface of the hemisphere and (6) the mag¬ 

netic flux crossing the curved surface. Equating these expressions (they 

both express the same e.m.f.), prove that 

^BndS = 0 

closed 
surface 

I.C., that the field of B, not of H, is solenoidal. 



CHAPTER XTII 

ELECTROMAGNETIC WAVES IN MATERIAL BODIES 

In Chaps. VIII and IX W(^ have K(H>n how th(i introduction 

of the concept of displacement current into the fundamental 
laws of electromagnetic theory led to the prediction of the possi¬ 
bility of electromagnetic waves, traveling in empty space with a 

velocity 

c = —== 3 X 10^** cm./sec. (the velocity of light) 
'V €oMo 

We have shown that, at least for plane waves, the waves are 
transverse, both £ and II having no components in the direction 
of propagation, and that 6 and H are perpendicular to each other. 
The energy transported by these waves can be expressed by 
means of the Poynting vector S = (c/47r)(£ X H), this ve(dor 
giving the direction of propagation as well as the intensity. In 
this chapter we shall study the behavior of such waves when they 
are propagated in material media, especially in dielectrics, and 
in particular we shall examine their behavior as they impinge on a 
boundary surface which separates two dielectric media. Accord¬ 
ing to the electromagnetic theory of light, we should expect that 
the laws so found will be valid in describing optical phenomena, 
and we shall concern ourselves largely with applications to the 
field of optics. Throughout this chapter, and in all our discussion 

of optical phenomena, we shall use Gausdan units exclusively. 
Reformulation of the laws in m.k.s. units (or any other) is left 
as an optional task for the student. 

61. Plane Waves in Dielectrics.—We start with a discussion 
of electromagnetic waves in uncharged nonconducting stationary 
bodies for which the fundamental laws governing the electric and 
magnetic field vectors may be written in exactly the same form 
as we wrote them for empty space, since* the density of true 
charge p and the real current density j vanish in both cases. In 
Gaussian units these laws may be written in the form ^ 

248 
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closed 
surface 

Jb„ d<S * 0 

closed 
surface 

(1) 

(2) 

In addition to those we have the relations D = efi and B = fiH. 
For all but ferromagnetic bodies—and these are conductors—the 
magnetic susceptibility is so extremely small compared to unity 
that we may take = 1 (e.m.u.) without appreciable error. Wo 
shall, however, write most of our equations in a general form, 
retaining an arbitrary value of n. 

Let us first revic'w briefly the arguments leading to the equation 
for linearly polarized waves traveling along the x-axis. We have 
seen that Eqs. (1) demand that 
the a:^-compon(uits of all the 
vectors be zero (or at th(^ most be 
constant and hence not of inter¬ 
est for the study of waves) and 
that both € and H (also B and D) 
must lie in planes normal to the 
x-axis. Equations (2) were then applied to the elementary (drcuits 
shown as I and II in Fig. 150. The first of Eqs. (2) applied to 
circuit I led to the relation 

Fig. 160. 

^ _1 
dx c dt (3) 

and the second of Plqs. (2) applied to circuit II gave 

dHz __ __ 1 dPy 

dx ^ c dt (4) 

These equations are to be supplemented by two more in tlie 
general case of plane waves traveling along the :r-axis with 
arbitrary polarization, and these are 

dfig I ^ dHy _ ,1 dDz 

although we shall not need to make explicit use of these last 
relations. The only difference in the argument from that of 
Chap. IX is now to replace B by fiH (instead of ijlM) and D by 



250 ELECTRICITY AND OPTICS [Chap. XIII 

cfi (instead of €o€). There then follows the wave equation for £y, 

_ €JX d^€y 

dx^ dt^ ^ ^ 

with an identical equation for Ht. If we consider linearly 
polarized waves, then only 6y and Hz are different from zero, all 
other components of these vectors being zero. Equation (6) 
may be written in the form 

d^€y _ 1 d^^€y 

dx^ dt^ 
(6a) 

where v = c/Ve^ the velocity of th(5 wave which is now 
different from its velocity c in empty space. In the case of 
nonmagnetic bodies we may set m = 1 and find the relation 

c _ c 
n (7) 

where k is the dielectric constant of the medium. In optics it is 
usual to denote the ratio of the velocity of light in empty space 
to its value in a material medium as the index of refraction n of tluj 
substance. Hence we predict the relation 

n = \/k (8) 

between the index of refraction and dielectric constant of a 
dielectric. Experimentally it turns out that this equality is not 
true in general, and there are violent exceptions. For example, 

water has an index of refraction of about 1.3, whereas \/k = 9. 
The reason for the discrepancy lies, not in the inadequacy of the 
fundamental laws of electromagnetic theory, but rather in the 
tacit assumption that the dielectric constant, of a dielectric is 
strictly constant, independent of frequency. This assumption 
is not justified when dealing with waves of optical frequencies, 
and we shall investigate the theory of the variation of k with 
frequency in a later chapter on the dispersion of light, i.e., the 
variation of index of refraction with frequency (or wave length). 
Equation (6a) is satisfied by traveling sine waves of the form 

€y == ^0 sin ^ (9) 
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or, similarly for H„ 

H, = sin 2jrr(f - (10) 

These represent plane waves traveling along the positive a:-axis 
and have a wave length \ — v/v, the surfaces of constant phase 
being given by the equation x = constant at a definite instant of 
time. For example, let us consider one of these y-z planes, as 
shown in Fig. 151, in which, at a given instant of time, fi and H 
have their maximum values 6© and We have the same values 
of 6 and H at eveiy point in this plane, and this represents a 

crest of the wav(\ The plane containing thes('. maximum 

Fio. 151. Fig. 152. 

values of 6 and H moves to the right with the phase velocity v 
as is evident from the form of Eqs. (9) and (10). Thus we can 
schematically represent a traveling plane wave by a figure such as 
Fig. 152, in which the vertical lines represent the intersection 
of the crests with the plane of the paper. 

In Chap. IX we derived the relation between the amplitudes 
fio and Ho which must (ixist in plane waves, and, since this relation 
is fundamental for our later considerations, we repeat the argu¬ 
ment here for the case of dielectric media. Equations (9) and 
(10) can represent the electric and magnetic vectors of the same 
wave only if Eqs. (3) and (4) are satisfied. This imposes a 
restriction on the relative values of fi and H. From Eq. (9) we 
find 

dx 
cos 2Trv 

and from Eq. (10) 

= 2irpHo cos 27ri' 
dH, 
dt 
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Now Eq. (3) demands that the first of these expressions be equal 
and opposite in sign to the product of the second and m/c. This 
yields 

V c 

and, using the relation v == c/\/^, this can be written as 

Vefi = (11) 

For nonmagnetic media, Eq. (11) takes the moni e.onvenieiit form, 

n€ = H (12) 

since n = \/a = and fi — fia = 1. It is left as an exercise 
for the student to show that this relation (;an also be obtained 
by using Eq. (4) instead of Eq. (3). 

We shall need expressions for plane waves traveling in an 
arbitrary direction, not only along the o^-axis, and we must 

investigate the form taken by 
Eq. (9), for example, for this case. 
First, we note that in Eq. (9) the 
planes of constant phase are 
determined by the (‘.quations = 
constant. Hence, in the expres¬ 
sion for a plane wave traveling in 
an arbitrary direction, we must 
replace, x by an expression such 

that, when placed equal to a constant, it yields the equations of the 
constant-phase surfaces, i.e.y planes whose normals make arbitrary 
angles with the a;-, ?/-, and 2;-axes. Thus we must investigate the 
general expression for the equation of a plane. Let AA be the 
intersection of such a plane with the plane of the page, k a unit 
vector the direction of which is perpendicular to the plane, and r 
the radius vector from the origin to any point P in the plane (Fig. 
153). It is clear that the projection of the radius vector r along 
the direction k (normal to the plane) has the same value (OQ) no 
matter where the point P lies in the plane. Thus the plane is the 
locus of all points, the radius vectors of which have the same pro¬ 
jection OQ along the normal. Hence the equation of the plane 
can be wnritten in the convenient vector form 

Fio. 153. 

r • fc = OQ = constant (13) 
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Now let the components of the unit vector k along the x, y, and 

z axes be /, and h, respectively. The components of r are 
X, y, and z (the coordinates of the point P). From the rules for 
forming the scalar product of two vectors, we have 

—> —^ 

r ^ k =- fx + gy + hz 

/, Qj and h are the cosines of the angles which the normal to the 

plane (k) make with the positive j-, y-, and 2:-axes, respectively. 
It then follows that the equation of a plane in Cartc^sian coordi¬ 
nates is 

# + gy + hz = constant (14) 

—T 

The equation of a plane wave (of €) traveling in th(', direction 

k normal to the planes of constant phase (^an now be w’ritten. 
Tj. 

where the vectors € and €q are perpendicular to the direction of 
propagation, as they must be for a transverse wave. An exactly 

—^ 

similar expression can be written for H. Utilizing Eq. (13), we 
can write Eq. (15) in the more concise fashion 

£ = 6o sin 2irv^ — (1^) 

Note that, if k points along the positive x-axis, / = 1, gf = A == 0, 
and Eq. (15) reduces to the form of Eq. (9), as it must. 

62. Reflection and Refraction of Plane Waves.—Supposi^ a 
plane electromagnetic wave traveling with a velocity Vi in a dielec¬ 
tric medium impinges on a boundary surface sc^parating this 
medium from a second dielectric in which the velocity of electro¬ 
magnetic waves is V2. In accordance with the general boundary 
conditions developed in Chaps. XI and XII, waves will be set up 
in both bodies. The normal components of B and D and the 
tangential components of € and H must be continuous at tlui 
boundary surface at all points of the latter and for all valuers of L 
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In general, it will not be possible to satisfy these conditions by 
postulating only a wave traveling in the second medium, but one 
must also require that a reflected wave be set up in the first 
medium. Application of the boundary conditions then yields 
the relations which must exist among the amplitudes, frequency, 
and directions of propagation of these various waves. 

For the sake of simplicity let us consider a plane boundary. 
which wo choos(! as the plane 

(1) “ (2) 

^ef/eefeof 
wcri/e 

Refracted 
_ 

0 X 

^^ncto/eni’ 
wave 

Ku; . 164. 

/=cosi; g 

X = 0, the x-axis normal to this 
plane; and let the plane deter¬ 
mined by the x-axis and the 
Poynting vector of the incident 
wave be the x-y plane* as shown 
in Fig. 154. Jn this figure are 
shown the directions of propaga¬ 
tion of the incident, reflected and 
refracted waves, denoting the 
angles between these directions 
and the x-axis by i, r', and r, 
respectively. Since, for the inci¬ 
dent wave, we have the relations 

= sin i; A = 0 

the electric vector of this wave may be written in accordance 
with Eq. (15) as 

^ ' n (* X cos 1 + 2/sill A 
Cl = Coi sin 2irPiU-_ j (17) 

where vi and Vi are the frequency and the velocity of the wave 
in medium 1. 

Now consider the refracted or transmitted wave. The wave 

normal k of this wave has direction cosines 

/ = cos r; gf = sin r; A = 0 

as is evident from Fig. 154. Hence the electric vector of this 
wave may be written in the form 

• ci (* X cos r-f-2/sin A 
C2 — C02 sin 27rP2l ^ ““ --- 1 (IS) 

where and are the frequency and velocity in the second 

* This plane is known as the plane of incidence. 
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medium. Now the boundary conditions, e,g,y the continuity 
of the tangential components of fi, must hold at all points of the 
boundary surface, i.e., for all values of y and z when x = 0, and 
also at all instants of the time t. Comparing Eqs. (17) and (18), 
in which we place x = 0, we see that this can be true only if 

= V2 

and if 
sin i _ sin r 

Vi Vi 

no matter how we choose the amplitudes £oi and £02* From 
the first of these conditions we see that the frequencies of the 
waves must be the same in both media; hence the wave lengths 
are different. The second relation fixes the direction of propa¬ 
gation of the refracted wave if that of the incident wave is given. 
Using the relations vi = c/ni and V2 = c/ui, ni and 712 being the 
indices of refraction of the two media, this relation takes the form 

(19) 
Sin r ft] 

The ratio of the sine of the angle of incidence {i) to the sine of the 
angle of refraction (r) equals the ratio of the indices of refraction. 
This is the well-known law of refraction in optics, and is called 
SnelVs law. 

Finally, let us consider the reflected wave. Its wave normal 
has the direction cosines 

f = cos (it — r') = — cos r'; g — sin (tt — r') = sin r'; 
A = 0 

remembering that the angles are measured with respect to the 
positive x-axis. Hence Eq. (15) for the electric vector of Ihis 
reflected wave takes the form 

^ ^ • o A , x cos r' - y sin r'\ . 
€[ = sm 2xri( < H--I (20) 

and we can repeat the arguments of the previous paragraph. 
Since the boundary conditions must hold at all points on the 
surface x * 0, we must have, comparing Eqs. (17) and (20), 

sin i = sin r' 
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or 
i = / (21) 

The an^le of incidence equals the angle of reflection, another 
familiar law of elementary optics. 

Let us now examine some of the consequences of SnelFs law, 
lOq. (19). There are two cas(»s to consider: (1) the case for which 
^2 > nx and (2) the case for which Ux > n^. In the first case, 
speaking of optical waves, we say that the wave travels from an 
optically ^^rarer” medium to an optically ^^denser’’ medium, and 
conversely for the second case. Since sin i can take on all values 
from zero to unity, sin r [which is equal to {n\/n^ sin i] takes on 
corresponding values lying between zero and Uxfn^. Now in the 
case for which ni/n^ < 1, this corresponds to a real angle of 
refraction for every angle of incidences On the other hand, for 
waves traveling from an optically dense^r medium into a rarer one, 
ni/n>i > 1, and in this case refraction cannot take place for all 
angles of incidence. If the angle of incidence is smaller than 
siii"”^ (n2/ni), then sin r has a value l>etweeii zero and unity, and 
a refracted wave exists. For angles of incidence larger than this 
value, i.e., if sin i > n^/n\, the angle of refraction becomes 
imaginary, and there is no refracted wave, only a reflected one. 
For such a case one speaks of total reflection. 

When one applies the boundary conditions to the waves 
described by Eqs. (17), (18), and (20), and to the corresponding 
expressions for H, the resulting equations fix the relative values 
of the amplitudes and hence the intensities of the incident, 
reflected, and refracted waves. The laws of reflection and 
refraction, embodied in Eqs. (19) and (21), must hold in any 
case, provided these waves are present. These laws yield 
information as to the relative directions of the waves but leave 
the question of relative intensities untouched. We can, however, 
answer the last question with the help of the method indicated 
above and thus see that our fundamental electromagnetic equa¬ 
tions embody, not only the laws of so-called geometrical optics, 
but also those of physical optics. 

63. Intensity Relations for Normal Incidence.—In this sec¬ 
tion we shall carry through the calculations for intensities in the 
special case of normal incidence, i.e,, when the wave normal 
of the incident wave coincides with that of the boundary (Fig. 
156). Let €i be the electric vector of the incident wave and £[ 
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and £2 those of the reflected and refracted (transmitted) waves, 
respectively. At a given instant of time the magnetic vectors, 
Hi, H[, and H2 all point into the plane of the paper, and the 
corresponding directions of the electric vectors are shown. In 
the reflected wave €[ must be opposite to £1, so that the Poynting 
vector S represents a wave traveling along the negative a:-axis. 
One must have either € or H reversed in phase for the reflected 
wave, and we choose £ arbitrarily as the one which is changed. 
Our final equations will answer uniquely the question as to 
which vector suffers a 180° phase change on reflection. 

Fia. 155. 

The following conditions must be satisfied at the boundary 
X = 0: 

1. Th(^ normal (components oi I) must be continuous at th(i 
boundary. 

2. The normal components of B must b(' continuous at- the 
boundary. 

3. The tangential components of £ must be continuous at 
the boundary. 

4. The tangential components of H must be continuous at 
the boundary. 

In our special cas(‘ of normal incidence the first two conditions 
are obviously satisfied, since all the vectors are parallel to the 
boundary surface. Condition 3 yields 

£i - £( = £2 (22) 
and condition 4 gives 

//i + H\ = H2 (23) 

In these equations the £^s and denote the magnitudes of the 
vectors for x = 0 at any instant of time. Since the vectors 
£1, £i, and £2 are given by 
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€i = £o sin 2wv^ — 

€[ = €q sin 2Trv(^ + 

«2 = £02 sin 

in accordance with the general Eqs. (17), (18), and (20), we see 
that only at the boundary, a: = 0, can Eq. (22) be satisfied for all 
values of U Now we make use of the relation between the 
magnitudes of € and H in a plane wave and have from Eq. (12) 

Hi = ni£i; H[ = ni£J; == ^262 

E(iuation (23) can then be written in the form 

«, + £!- '^e, (24) 

Equations (22) and (24) show the necessity of assuming the 
existeri(?e of both reflected and re^fracted waves. Were either 
assumed missing, we could not simultaneously satisfy both these 
equations. From these equations there follows. 

n2 - nig 

rii + n2 ^ 
(25) 

giving the electric vector of the reflected wave in terms of that 
of the incident wave. For the transmitted wave one finds 

€2 = 

2ni g 
rii + 712 ^ 

(26) 

Equation (25) now shows us that, if riz > ni, the wave impinging 
on an optically denser medium, the electric vector at the surface 
sniffers a phase change of 180® upon reflection, and the magnetic 
vector undergoes no phase change, as we assumed. On the other 
hand, if n2 < ni, as one would have when a beam of light travels 
from glass to air, the electric vector of the reflected wave is in 
phase with that of the incident wave at the surface, whereas the 
magnetic vectors are 180® out of phase with each other. 

One is generally more interested in the intensity relations than 
in the amplitude relations. Tte energy incident per unit area 
on the boundary surface per unit time is given by the Poynting 
vector of the incident wave and is 
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-Sx - X H,) = ^e\ 

since Hi « ni6\. 
The reflected intensity is 

51 = ^(£5 X H[) = gei* 

xso that the ratio of the reflected to incident inten^sities is given by 

R = 
Si ei 

R is known as the reflecting power of the surface. Using Eq. 
(25), we then have for R 

as the reflecting power at normal incidence. The reflecting power 
is always less than unity and approaches this value as becomes 
large compared to ni, or vice versa. For a glass-air boundary, 
the glass having an index of refraction of about 1.5 and setting the 
index of refraction of air equal to 1, we obtain as the reflecting 
power of the glass surface 

Thus about 4 per cent of the intensity of a light beam falling 
normally on a glass surface is reflected. 

The calculation of the intensity relations at boundaries for the 
case of an arbitrary angle of incidence follows the same scheme 
as for normal incidence. It is more involved however, since the 
reflecting power depends on the polarization of the incident light, 
ix.j on whether the electric vector oscillates in, or at right angles 
to, the plane of incidence, and we shall not carry it through. 

The propagation of electromagnetic disturbances in conducting 
media, such as metals, is a much more complicated phenomenon 
than in dielectrics, so that we must content ourselves in this 
treatment with a few qualitative remarks. If we consider 
metals and assume the validity of Ohm\s law, the Ampere cir¬ 
cuital law must be extended from the special form employed in 
this chapter to take into account conduction currents. Thus 
it would take the form 
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The effect of the last term on the right would be to modify our 
equations so that, even in the simple case of an electric field with 
but one component, say which depends only on x and <, 6y 
does not satisfy the wave equation but a more complicated 
equation. It is still true that the disturbances will be transverse, 
and they will to some extent resemble ordinary transverse waves. 
The essential differences for plane electromagnetic waves in 
metals as compared to those in dielectrics may be summarized as 
follows: 

1. The amplitude of the vector (6 or H) decreases exponentially 
as X increases. Thus the Poynting vector decreases as the wave 
travels, and the rate of decrease of this vector is a measure of the 

joule heating produced in the metal. We say that we have a 
space-damped wave. 

2. The velocity of propagation depends on the frequency, even 
if € and <t are assumed independent of frequency. 

3. The magnetic and electric vectors are not in phase with 
each other, as they are in the case of plane wayes in dielectrics. 

In Fig. 156 is shown the variation of the amplitude of the 
electric vector with distance in the direction of propagation of 
an electromagnetic wave in a metal. 

Problems 

1. Assuming linearly polarized plane waves traveling in a nonconducting 

medium of the form of Eqs. (9) and (10), show, by using Eq. (4) of the text, 

that the electric and magnetic vectors are related by the equation 

*= 



WAVES IN MATERIAL BODIES 261 

2. Given a cube of edge a, the edges lying along the a;-, j/-, and z-axes, 
and the origin 0 at one comer of the cube. 

а. What is the angle between the body diagonal from the origin O to the 
opposite corner P and an edge of the cube? 

б. Find the equation of a plane perpendicular to this body diagonal which 
(contains the point P. 

c. At what points does this plane intersect the y-j and z-axes? 
3. A plane wave of light is incident on one side of a glass plate of thick¬ 

ness d. 
а. Show that the plane wave emerging from the other side of the plate 

has the same direction of propagation as the incident wave. 
б. Consider a given normal of the incident wave. Prove that, as the 

wave passes through the glass, this normal undergoes a lateral displacement 
given by 

d sin {i — r) 

cos r 

where i and r are the angles of incidence and rt‘fraction at the first glass 
surface. 

4. A plane of light falls on the face AB of a glass prism at normal inci¬ 
dence, as shown in Fig. 157. The index of refraction of the glass is 1.50. 
Find the smallest or largest value of the angle a such that the wave will be 
totally reflected at the surface ACi 

a. If the prism is surrounded by air. 
b. If the prism is surrounded by a liquid of 

refractive index 1.40. 
5. Liquid of refractive index 1.63 stands at 

a height of 2.00 cm. in a flat-bottomed glass 
vessel. The refractive index of the glass is 
1.50. Show whether or not a plane wave of 
light incident on the top surface of the liquid 
can be totally reflected at the bottom surface. 

6. Find the largest value of the angle </> of the glass prism in Fig. 158 
such that a light wave incident as shown will pass through the prism: 

o. When the prism is surrounded by air. 
6. When the prism is surrounded by water. 
The angle a is small enough so that cos « is practically equal to unity. 

The index of refraction of the glass is 1.55 and that of water is 1.33. 
1. A plane light wave passes normally through a glass plate with plane 

parallel faces. 
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a. Compute the ratio of the intensity of the transmitted to that of the 
incident wave taking into account only one reflection at each of the glass 
faces. 

h. Set up a general expression for the above ratio, taking into account all 
the internal reflections inside the glass. 

8. A plane light wave is normally incident on the liquid surface in Prob. 5. 
If the electric vector of the incident wave has a maximum value of 10~^ 
volt/meter, compute the intensity of the wave transmitted through the glass 
vessel. (Consider only one reflection at each interface.) 

9. Two dielectrics of indexes of refraction ni and W2 are separated by a 
plane boundary. A plane wave in the medium of index n\ falls on the 
boundary at normal incidence. Compute expressions for the Poynting vec¬ 
tor for the incident, reflected, and transmitted waves, and show that the 
energy incident on the boundary per unit time is equal to the sum of the 
energies carried away from the boundary per unit time by the reflected and 
transmitted waves. 

10. a. Show, for the case of an electromagnetic disturbance traveling 
along the «-axis in a metal, that Eqs. (3) and (4) of the text become 

d€y IdB, 

dx C dt 

dHz 1 dDy 
dx c dt c ^ 

where <r is the conductivity of the metal. 
b. From these equations show that €y and H, both satisfy equations of 

the form 

d^€y 4?rO’^ d€y 

* c* ^ liT 

11. Following the argument of Sec. 44, Chap. VIII, show that in a metal 
the rate of decrease of field energy in a volume element dx dy dz is equal to 
the net rate at which energy flows out of this element (computed from the 
Poynting vector) plus the rate of joule heating in this element. Use the 
equations of Prob. 10, part a. 



CHAPTER XIV 

GEOMETRICAL OPTICS AND SIMPLE OPTICAL 
INSTRUMENTS 

In Chap. XIII we have seen how the fundamental laws of 

electromagnetism led to the laws of the reflection and refraction 

of plane waves at a boundary separating two dielectric media. 

By far the most important practical application of these laws is to 

the case of the reflection and refraction of light waves, electro¬ 

magnetic waves of wave lengths ranging from about 4 X 10““® cm. 

to about 7 X 10”® cm. in air, at the surfaces of mirrors and 

lenses. In this chapter we shall concern ourselves specifically 

with this type of problem. The general problem of following the 

propagation of electromagnetic waves is far too complicated to 

allow a complete analysis in this book. We may, however, make 

a few remarks concerning some 

of the simpler aspects of the I 
general method, which is embod- A' 

ied in a principle known as 

Huygens^ 'principle. Suppose 

that we know the shape of one 

of the constant-phase surfaces of 

a wave, e,g.j one of the crests of 

the wave, at some instant of time. We can find the shape of 

this wave surface at a later time At by considering each point 

on the original wave surface as a source of secondary spherical 

waves which diverge from these points. If one constmets 

spheres of radii equal to r A^, t; being the phase velocity of the 

waves, with centers at the various points on the initial wave; 

surface, the envelope of these spherical wavelets then yields the 

shape of this wave surface at a time At later. Thus in Fig. 159 

there is shown the trace of the initial wave surface AA and its 

trace at a time later. This geometrical constmetion (Huy¬ 

gens^ construction) is only part of the story, however, and offers 

no advantage over the simpler method of rays which we shall 

discuss shortly. To complete the analysis, we must know how 
263 

Fig. 169. 
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the amplitudes of these secondary wavelets vary with direction, 
and it turns out that this variation of amplitude with direction 
of propagation is rather complicated. It is just the solution of 
this part of the problem which is prohibitively difficult. 

In our study of plane waves we have seen that the constant- 
phase surfaces could be described by constructing the normals to 
these surfaces (the wave normals or rays)^ and one can follow the 
motion of these surfaces by moving along the directions of these 
rays. This mode of description is evidently possible for waves 
other than plane waves. For example, in the case of spherical 
waves in a homogeneous medium, the rays consist of straight 
lines radiating in all directions from a common point, and the 
surfaces of constant phase are concentric spherical surfaces. 

If the Poynting vector is directed 
outward from the center, one speaks 

^ diverging wave, if toward thc^ 
center, of a converging wave. One is 
often interested in following the 
motion of a limited portion of a wave 
surface, and one can construct a 
bundle or pencil of rays through this 

^ portion of the surface. Such a pencil 
of rays is called a beamy and for plane 

waves the beam consists of a parallel bundle of rays. For a spheri¬ 
cal portion of a wave surface the rays divergt^ from (or converge 
on) a point F, known as the focal point of the pencil, as indicated in 
Fig. 160. Such a pencil is called stigmatic. The pencil of rays 
from a portion of a wave surface which has different radii of curva¬ 
ture in two mutually orthogonal directions (such as one shaped like 
a blowout patch) form an astigmatic pencil and do not pass 
through a common point. In the case of the propagation of 
waves in a homogeneous medium the rays always are straight 
lines, and the wave surfaces do not change shape as the wave 
propagates. If, however, the velocity varies from point to point, 
the rays will be curved lines, and the wave surfaces will not 
maintain an unaltered shape. 

Thus far our remarks are valid for waves of any wave length, 
and the advantage gained by describing wave motion in terms of 
rays becomes evident if we consider what happens when wo 
try to form a narrow beam from a plane wave by allow- 
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ing the latter to fall on a screen, in which there is a hole, 

placed perpendicular to the direction of propagation. The 

waves emerging from the hole will, in general, not form a section 

of a plane wave with a parallel bundle of rays, but will spread out 

more or less in all directions. As we shall see later, if the wave 

length of the waves is very small compared to the linear dimensions 

of the aperture, this spreading effect, or diffraction, as it is 

(tailed, becomes extremely small, and, just in the case of 

light waves, the wave length is very small compared with 

the dimensions of ordinary objects. In this chapter we shall 

neglect diffraction effects and treat the bundle of light rays 

emerging from the aperture as strictly parallel. Similarly, 

we shall assume that an obstacle placed in the path of a beam 

of light casts a sharply defined geometrical shadow. The laws 

of optics and optical systems, to the approximation in which one 

can neglect typical wave effects such as diffraction and inter- 

ferenc(i, comprises th(^ s\ibject of geometrical optics and in this 

chapter we shall concern ourselves with this study. 

64. Fermat’s Principle.—The calculation of tlu*. path of rays of light may 

be effected with the help of a general principle due to Fermat, bearing his 
name. The principle states that the 

path of a ray between any two points P\ --- p 

and P2 will be such that the time required ^— 

for light to traverse the path will be a 

minimum. This principle is valid for ' 

media with varying indices of refraction ^ 

or for the case in which the light ray passes from one medium to a 

second with a different index of refraction. Let us formulate this principle 

quantitatively. Consider an arbitrary path connecting two points Pi 

and P2 as shown in Fig. 161, and let us compute the time necessary for 

light to pass along this path from Pi to Pi. The time needed to traverse a 

portion of length ds is ds/v, where v is the velocity of light at the point where 

ds is situated. The total time is then 

(1) 

where we have set v ^ c/n, n the index of refraction of the medium. The 

integr&tj^*n ds is called the optical length of the path from Pi to P2. In 

Eq. (1) the integral is a line integral and will have different values for differ¬ 

ent paths connecting the end points Pi and P2. Now suppose we choose a 

path only slightly displaced from the one shown in Fig. 161. The difference 

of time of traversal for the two paths will, in general, be of the same order of 
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magnitude as that of a quantity determining the displacement of the paths. 

Fermat's principle states that, if we have the correct path, the difference of 
time of traversal of it and a neighboring path will be of the order of magni¬ 
tude of the square or higher powers of the quantity measuring the displace¬ 

ment of the two paths. This is analogous to the statement in ordinary 

calculus that a function f{x) has a minimum (or maximum) at the point 
a; — a. Suppose we wish the value of this function at a point x close to 

r = a. Then by Taylor’s theorem we can write 

/(x) = /(O) + I (x - a) + (X - ay -I- 

and, if the function has a minimum at x « a, we have df/dx ~ 0 for x ~ a, 

and find: 

fix) --/(a) 
2\dx*/x- 

(X - a)* + 

so that the difference in the value of the function at x and at a is of the order 

of magnitude of (x — o)*. On the other hand, if there is no minimum at 

X = a, fix) — /(a) is of the order of magnitude of (x — o). 

Let us see how this principle works for the simple case of a light ray in a 
^ homogeneous medium. Then the time of 

I traversal is simply 
vJPi 

and this is a 

Fig. 162. 

162). The length of the path P1AP2 is 

21 = 2-v/a* + X* 

minimum for the straight-line path con- 
2 necting Pi and Pi. Now consider a 

slightly varied path such as P1AP2 (Fig. 

and the time of traversal is 

t' 
V t; L V*/ 

The traversal time for the correct path is 

so that the difference is 

Using the binomial theorem, we can expand 

t' - i -=(^ ) 
and find 
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which is of the order of magnitude of the square cJ the small quantity x. 
Thus the straight line is the correct path. Let us carry out the same sort of 

calculation for two neighboring incorrect paths as shown in Fig. 163, where x 
is a small quantity. The difference of time is clearly 

t' - t ^ -(r -1) 
V 

Now (/' — /) ^ AB and AB in very nearly equally x sin so that 

^ 2x sin 0 

V 

which is now of the order of magnitude of x, provided sin 0 0. 

In applying Fermat’s principle to find the correct path of a light ray, we 

proceed as fpllows: Compute the times needed for light to pass from oiuj 
point to another along any two neighboring paths. Form the difference of 

these times, retaining only terms of the order in small quantities. Sot¬ 

ting these equal to zero then giv(« the correct path.** 

As an example of this procedure we shall derive the law of refraction for a 

ray of light passing across a boundary 

which separates two media of refractive 

indices n\ and Ut. In Fig. 164 we show 

two rays starting from a point Pj in medium 
1 and reaching a point P2 in medium 2, 
The ray PiAP^ travels a longer distance 

BA in medium 1, but the ray POP2 travels 
a longer distance OC in medium 2. Thus 

t he difference of time At is 

BA OC 
■ At -- 

Vi Vz 

The distance BA is equal to x sin t and OC 
is X sin r. These expressions are approximate but differ from the exact ex¬ 

pressions by terms which involve higher powers of x than the first, and 
hence these suffice for our purpose. Thus we find 

Fig. 164. 
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where the dots indicate terms involving a;* ahd higher powers. Thus the 

correct path occurs when 

sin i sin r 
-=* 0 

Vl Vi 

or 

Til sin i ~ M2 sin r (2) 

and this is the law of refraction which we derived in Chap. XIII. Further 

examples are left to the problems. 

66. Reflection of Light.—We have derived the law of reflection, 
angle of incidence equals angle of reflection, for the case of plane 
waves reflected from a plane surface. It is justifiable, however, 
to use it for other types of waves, e,g., spherical waves, reflected 
from curved surfaces. We can see this as follows: Consider an 
infinitesimal element of area on the wave surface of an arbitrary 
wave. The normal to this elementary area gives the direction of 
the ray at the point where the element is located, and, since we 
are dealing with an infinitesimal area, it may be considered as 

plane. Now, if this wave impinges 
on a curved surface, our elemen¬ 
tary area will come in contact with 
an infinitesimal section of the 
reflecting surface, and the latter 
may be considered as plane. Thus 
we can apply the law of reflection 
to this particular ray, and we must 
simply take into account the fact 
that different rays of the same 
beam have different directions and 

that the normal direction to the reflecting surface varies from 
point to point. 

For example, consider a spherical wave diverging from a point 
source of light S and incident on a plane mirror. In Fig. 165 W(i 
show a diverging beam of rays from S incident on the mirror MM 
and the reflected beam of rays which appear to be diverging from 
a source S' in back of the mirror. This focal point S' of the 
reflected rays is called the image of the source /S, and we say that 
it is a virtual image since the rays do not actually pass through 
this point. There are cases where a pencil of rays actually do 
pass through a definite point in a medium and then diverge from 
that point. In such cases one speaks of a real image. One can 

W i // ! // 
''W 

s' 
Fi(}. Ifi5. 
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readily show that an object of finite size is imaged in a plane 
mirror in such a manner that each point of the image is just as 
far back of the surfaces as the corresponding point of the object 
is in front of it and that the linear dimensions of object and image 
are identical. Thus the linear magnification, the ratio of linear 
dimension of image to object, is unity for a plane mirror. 

An important case of reflc'ction is that in which the reflecting 
surface is a portion of a spherical surface, a so-called spherical 
mirror. In th(i elementary discussion of spherical mirrors one 
learns that a bundle of rays parallel to the mirror axis (the normal 
to the mid-point of the mirror) is brought to a focus at a point 
halfway between the center of 
curvaturci of the mirror and the 
intersection of the mirror sur¬ 
faces and the axis (the so-called 
vertex). This statement is true _ 
only if the rays lie very close to ^ 
the mirror axis, so that in 
practice it can be applied only 
to mirrors of small aperture, f.c., 
wh(m the mirror forms only a 
very small part of the whole*, sphcirical surface. Let us examine 
the general case. In Fig. 166 are shown the mirror and an incident 
ray parallel to the axis, which we call the x-axis. The vertex 
of th(i mirror is taken as an origin, and we wish to find an expres¬ 
sion for the distance x, the point Q being the point where the 
reflect(^d ray crosses the mirror axis. In the triangle CPQ we 
have immediately from the law of sines 

i2 — _ _sin i _ sin i __1 
R sin (tt — 2f) sin 2^ 2 cos i 

and solving for x, we find 

x = (3) 
\ 2 cos ^/ ^ ' 

Thus we see that the point at which a reflected ray crosses the 
axis depends on the angle of incidence of the ray, the value of 
X decreasing as the angle of incidence increases. Only in the case 
of angles small enough so that we may place cos i == 1 do we 
find the reflected rays all passing through a single point. For 
this case we have from Eq. (3) 
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(4) 

and this point Xo is called the principal focus of the mirror and the 
distance xo is called the focal length of the mirror. The departure 
from sharp focusing of a bundle of paraxial rays coming from 
infinity by a mirror of large aperture is called spherical aberration. 
If the mirror surface is in the form of a paraboloid of revolution, 
objects very far from the mirror (at infinity) will be brought to a 
sharp focus. In astronomical mirrors one is always iiit(irested in 
imaging objects which are practically at infinity, so that 
paraboloidal mirrors are invariably used. 

If we restrict ourselves to the case of spherical mirrors of sindi 
small aperture that all the rays diverging from an obj('ct (whicli 

may be at a finite distance from the mirror) make very small 
angles with the mirror axis, then the image will be sharp. We 
shall compute the position of the image by considering the object 
as a point on the mirror axis. First we note that a ray from the 
object coincident with the mirror axis is reflected on itself, so 
that the image must lie on the mirror axis. 

In Fig. 167 we show an incident ray from the object A making 
an angle 6 with the noirror axis, and the reflected ray intersecting 
this axis at B, The distance OA is denoted by u and is called 
the object distance and OB — v the image distance. In the 
triangle CPB we have from the law of sines 

R -- V _ sin i_ _ sin i 
R sin [r — (2i + ^)] sin (2i + $) 

and using the triangle APC there follows 

u — R sin i 

(5) 
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By eliminating the angle i from Eqs. (5) and (6), we can follow 
the reflected ray for every value of S, and in general v will depend 
on 6, If the angles i and $ are small enough so that we may set 
sin i = i and sin 6 ^ 6^ simultaneous solution of Eqs. (5) and (6) 
yields easily 

1+1=2 
u V R (7) 

which is the usual expression relating image and object distances 
for a spherical mirror. Essentially the same formulas hold for 
the case of a convex mirror, and the derivations for this are left 
to the problems. 

In any case it is clear that one may always find the image of 
any object by graphical construction, tracing a bundle of rays 
diverging from the object and, using the fact that the angle of 
incidence equals the angle of reflection, then tracing the corre¬ 
sponding reflected rays. 

66. Refraction of Light at a Spherical Surface.—The refraction 
of light at a spherical interface between two transparent media 
is fundamental in the study of optical instruments, since plane 
and spherical surfaces are the only ones which can be produced 
at sufficiently low^ cost for most practical purposes. In problems 
of this type, we have to do with incident light in a medium of 
refractive index ni, let us say (the so-called object space), and 
refracted light in a medium of refractive index n2 (the so-called 
image space). In order to minimize the chance of algebraic 
errors, it is essential to adopt a set of conventions for the coordi¬ 
nate systems to be employed and for the algebraic signs of the 
distances appearing in the calculations and to adhere rigidly to 
them. We shall adopt the following conventions: 

1. Draw all figures with the light incident on the refracting 
surface from the left. 

2. In object space measure positive object distances to the left 
along the axis of the system from an origin which, in the case of a 
single refracting surface, is located at the vertex of the refracting 

surface. 
3. Jn image space measure positive image distances to the 

right along the axis of the system from an origin which, in the case 
of a single refracting surface, is located at the vertex of the refract¬ 

ing surface. 
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4. Treat radii of curvature as positive distances when the 
center of curvature lies to the right of the vertex and as negative 
when the center of curvature lies to the left of the vertex. 

Consider the refraction of a pencil of rays diverging from an 
object point A on the axis of symmetry of a spherical refracting 
surface, as shown in Fig. 168. 

Let AP bo one of the rays intercepted by the refracting surface; 
of radius R (positive for the case of Fig. 168), and let its direction 
relative to the axis be Bu The refracted ray crosses the axis 
at the point B, and the problem is to determine the position of 

Fui, 168. 

this point for an arbitrary ray coming from the object A. 
ing the law of sines to the triangle APCj we have 

u + P _ sin (tt — i) _ sin i 
R sin sin B} 

and, using the triangle J5PC, 
V — R _ sin r 

R sin B2 

Apply- 

(8) 

(9) 

If we divide Eq. (8) by Eq. (9) and ust; the law of refraction 
(ni sin i = 712 sin r), there follows 

u + R _ ^2 sin B2 

V R n\ sin Bi 
(10) 

Finally, the angle B2 may be expressed in terms of the angles 
$ij i, and r by equating the sum of the angles in the triangle 
APB to T. If this is done, we see in general that the image 
distance v will be different for different angles Bi of the incident 
ray, and this gives rise to spherical aberration of the same^sort 
as we encountered in the case of reflection. 

For the special but extremely important case that all the rays 
from A intercepted by the refracting surface make very small 
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angles with the axis (the so-called paraxial rays), we find thai. 
the image distance is the same for all rays coming from A. In 
this approximation the object A is focused at B, If the angles 
6i and 62 are sufficiently small, we may write approximately (see 
Fig. 168) 

• ^ h • ^ h 
sin sin ^2 = - 

u V 

so that 
sin O2 _ u 
sin Bi V (11) 

Substituting this value in Eq. (10), there follows 

u + R ^ ^ u 
R - V ni V 

(12) 

an equation from which the angle 61 has disappeared. This 
c^quation, although derived for rays making small angles with the 
axis, is still valid for large angles when the surface has been cor¬ 
rected for spherical alxjrration, and is fundamental in geometrical 
optic.s. Equation (12) is usually written in the more convenient 
eciuivalent form 

n, 712 ^ na ~ rii . . 
u V R 

Although we have derived Eq. (13) for the case of a convex 
n^fracting surface {R positive), it holds equally well for a concave 
surface {R negative), as can be n^adily demonstrated. Th(^ 
convention as to the algebraic signs of u and v must be kept in 
mind when applying Eq. (13). 

In optical systems one is frequently confronted with a situation 
in which a series of refracting surfaces are employed. The 
method to be employed in computing, let us say, the position 
of the image of an object in such a case, is to successively apply 
Eq. (13) to each refracting surface, treating the image formed 
by the first surface as the object for the second, and so on. 
If the image which would be formed in the presence of the first 
refracting surface alone lies to the left of the second refracting 
surface (using our conventions), it acts as a real object for the 
second surface, whether it is a real or virtual image of the original 
surface. If, however, the second refracting surface is so placed 
that a converging pencil of rays from the first surface is inter- 
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cepted before coming to a focus, the object distance for the second 
refracting surface is to be taken as negative and equal numerically 
to the distance from the vertex of the second refracting surface 
to the focal point of the pencil of rays from the first refracting 
surface. Such a case is shown in Fig. 169, in which O'A is the 
object distance to be used in computing the refraction at surface 2. 

Concisely stated, we treat the image space of the nth surface 
as the object space of the (n + l)st surface, using the appropriate 
indices of refraction in Eq. (13). 

Consider an object of linear dimension y perpendicular to 
the axis of a single refracting surface, as shown in Fig. 170, and 
let the corresponding linear dimension of the image be y\ The 
linear dimension y' may be found by constructing the ray shown 

Fig. 170. 

which passes through the center of curvature C of the refracting 
surface. This ray is not refracted as it is normally incident on the 
surface. We shall treat y as positive and y' as negative, corre¬ 
sponding to the ordinary conventions of coordinate geometry. 
Furthermore, we define the linear magnification (more precisely, 
the linear lateral magnification) m as the ratio of y' to y. From 
Fig. 170 it is evident that 
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and, using Eq. (10), we may write for the magnification 
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yL — ni sin 
y 712 sin $2 

(14) 

This equation is known as “Abbe’s sine condition.” To the 
approximation of paraxial rays, we may utilize Eq. (11) instead 
of Eq. (10) and obtain 

y n2U 
(15) 

67. Thin Lenses.—By far the most important application of 
the results obtained in the preceding section is to the case of 
lenses in air. By a lens one means a portion of glass, or some 
other transparent substance, which is usually bounded by plane 
or spherical surfaces. It is assumed that the reader is familiar 

Fig. 171. 

with the qualitative behavior of the different types of con¬ 
verging and diverging lenses. In our discussion of the behavior 
of lenses we shall assume that the apertures are sufficiently small 
or that aberrations have been corrected, so that Eqs. (13) and (15) 
may be used to describe the refraction at the lens surfaces. 

For the sake of simplicity, we shall examine in this section the 
so-called thin lens, f.e., one for which the thickness t between the 
vertices of the lens surfaces is small compared to the object and 
image distances entering into the discussion. In Fig. 171 is 
shown such a thin double convex lens with surfaces of radii of 
curvature Ri and R2 as shown. 

An object A will be imaged by the left-hand lens surface at the 
point A', and, according to Eq. (13), we have 

1 , n _ n — 1 
w Ri 

(16) 

where v' is the image distance in the image space of index n for 
this surface and is negative as shown in the figure. This image 
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A' now serves as the object for the right-hand lens surface in an 
object space of index n. The object distance A '0' == w/ is posi¬ 
tive according to our conventions, and for a thin lens we may 
place it equal to — v', neglecting t compared to e'. Thus, apply¬ 
ing Eq. (13) to the second surface, we find 

n , 1 _ 1 ~ n 

y' i; ~ R2 
(17) 

Since is negative and since m > 1, the right-hand side of 
Eq. (17) is positive. If we now add Eqs. (16) and (17), we find 

h. ‘ u .> .V.-.*\ 
k-U ->1 1 k—-V —--j 
1 1 

_M_] rilzi |b 

\ 
Fig. 172. 

the usual equation for the object-image distances for a thin lens. 
This is 

where w(» have set 

i = (n - 1)Q- - ^ 

(18) 

(19) 

and u and v are measured from either vertex or from the center of 
the lens. / is known as the focal length of the lens, and it depends 
only on the material and dimensions of the lens. Positive values 
of / correspond to converging lenses and negative values to diverg¬ 
ing lenses. If an object is placed at a distance / to the left of 
the lens [u = / in Eq. (18)], the emerging rays will form a parallel 
beam, and we say that an image is formed at infinity. This 
point is called a principal focm or focal point Fi of the lens. 
Similarly, parallel rays incident on the lens from the left (cor¬ 
responding to an object at infinity) are focused at the second 
principal focus of the lens, F2, a point which lies at a distance / 
to the right of the lens. These principal foci are shown in Fig. 
172. Any corresponding object and image points, such as A 
and 5, are called conjugate points. 
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There is an important and interesting way of rewriting Eq. 
(18) (the so-called Newtonian form) which, in many respects, 
is more useful than the equation we have derived. This form 
of the equation is obtained by using the focal points of the lens 
as origins, Fi for object space, and F2 for image space, instead 
of the vertices of the refracting surfaces. If we denote by (J 
the object distance measured from the first focal point and by V 
the image distance measured from the second focal point, we 
liave from Fig. 172 

r = u-f\ 
V = v- fj 

(20) 

Substituting in Eq. (18), we find 

or simplified 
u +f'^ V+f 

I 

f 

uv (21) 

This is the Newtonian form of the lens equation. 
The lateral magnification of a thin lens may be readily com¬ 

puted with the help of the results of the preceding section. If 
the linear dimension of an object at A in Fig. 171 is the cor- 
r(‘sponding linear dimension of the image formed by the first 
surface at A' is, according to Eq. (15), 

== rniy 

Similarly, the corresponding linear dimension y” of the image of 
A' formed by the second surface at B is 

Thus the magnification of the lens is 

V 

u 
(22) 

In any case we have the relation 

m «= mm^ (23) 

If we now express the magnification in terms of the focal 
distances U and F, we have from Eqs. (22) and (20) 
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m ^ ^±J 
u U+f 

or the more convenient form, using Eq. (21), 

m (24) 

It is customary in optometry to speak of the power of a 
lens instead of its focal length. The power of a lens is defined 
as the reciprocal of the focal length, and the conventional unit 
is called a diopter^ which is 1 meter""^ Since the lens power 
1//, according to Eq. (19), is the sum of two terms, each cor¬ 
responding to one of the lens surfaces, one speaks also of th(^ 
‘^power’^ of a lens surface. The sum of the surface powers is then 
the power of the lens in accordance with the above-mentioned 
equation. 

68. The Thick Lens in Air.—We shall now drop the restriction 
that the axial thickness of the lens be small compared to object 
and image distances from the lens vertices, and we shall analyze 
the behavior of a thick lens in air for paraxial rays. For con¬ 
venience we redraw Fig. 171, relabeling the distances as shown in 
Fig. 173. The object distance from the vertex 0 of the left- 
hand lens surface (radius of curvature Ri) is now denoted by 
Xiy and the image distance from the vertex 0' of the right-hand 
lens surface (radius of curvature R^) is now The relation 
between the object distance xi and the image distance d = A'O 
for the first lens surface is, according to Eq. (13), 

Jl n _ n — 1 _ 1 
xi d ^ Ri ^ fi 

(25) 

where/i is used as an abbreviation for Ri/(n — 1). Using A' as 
an object for the second surface, the relation between d and X2 is, 
using Eq. (13) again and remembering that d is negative for the 
case of Fig. 173, 
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n ^ ^ _ 1 

t d X2 R2 j/*2 
(26) 

where/2 is defined as R2/ (1 — n). For th(^ double convex lens of 
Fig. 173 both fi and /2 are positive, but our results will hold 
equally well for other types of lenses. Equations (25) and (26) 
may be written in the forms 

d == - 

t d 

Xl - fi 

_ nf2X2 

X2 

(25a) 

(26a) 

Eliminating d between these equations, one finds readily 

XxX2 — ax] — 60:2 — c = 0 (27) 

where we have placed 

In these relations t is essentially a positive quantity. Writing 
Eq. (27) in the form 

(xi — b)(x2 — a) = ab + c (29) 

we see that the first principal focus of the lens, Fi, lies at a distance 
b to the left of the vertex 0 as shown in Fig. 173. For the object 
A placed at Fi, Xi = 6 and X2 = «» according to Eq. (29). 
Similarly, the second principal focus F2 lies at a distance a to 
the right of the vertex O', since an object at infinity (xi == qo)^ 
(jorresponding to parallel rays incident on the left-hand lens 
surface, gives rise to an image at F2(x2 = a). We have thus 
found the positions of the focal points of the thick lens. The 
planes perpendicular to the lens axis through these focal points 
Fi and F2 are called the focal planes of the lens. 

Now let us measure object and image distances from the focal 
planes at Fi and F2, respectively, and denote them by U and E, 
just as we did in the case of the thin lens. We have evidently 

(see Fig. 173) 
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V = 

V 

(30) 

ami Eq. (29) takes the familiar Newtonian form 

UV = ab + c (31) 

utilizing Eq. (28) and dt^finingby this equation. The positive 
squan' root of this expression for p is called the focal length of 
the lens, and we have 

/ = 
/1/2 

/1+/2 n 

(32) 

The Newtonian form of the lens equation which we have 
derived for the thick lens suggests strongly that it should be 
possible to obtain an equation of the form of Eq. (18) for the 
thin lens. This is possible by proper choice of origins, and 
these new reference points from which one may measure object 
and image distances are called the principal points of the lens and 
are denoted by H\ and respectively. We determine the 
positions of these principal points as follows: Let Ui and Fi be 
the coordinates of the principal points Hi and in object and 
image space, respectively, referred to the focal points as origins. 
If, then, u and v are object* and image distances measured from 
the principal points, we have evidently 

where U and V are the object and image distances from the focal 
points. If now the thin lens equation 

1 

7 
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is to be valid, we must have 
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t/ - {/, F - Fi / 
or, rewritten, 

fV ~ /Fi + fU - /f/i = /2 - f/Fi ~ FC/i + (/,Fi 

where we have used the fact that UV — p. This equation is 
evidently satisfied if we place 

so that the principal points are also conjugate points of the 
lens. We thus have the important result that the thin hm 
equation holds equally well for a thick lens, provided the principal 
points Hi and H2 are used as origins for object and image dis¬ 
tances, respectively. Clearly the separation between either 
focal point and the corresponding principal point is the focal 
length of the lens. 

Let us compute the positions of the principal points (or planes) 
relative to the vertices of the lens surfaces whicdi we used orig¬ 
inally as reference points. xi is the object distance from the 
left-hand vertex 0, and u is the object distance from the first 
principal point //j. The relation between u and x\ is given by 

u ^ V Ui == xi - h +/ = xi + 
n 

h+h-i 
(35) 

using Eqs. (30), (32), and (34). 
Similarly, the image distance v as me^^sur(^d from the second 

principal point H2 is related to the image distance X2 measured 
from the right-hand vertex 0' by 

t 

= y — y j — a + / = X2 + 
/l +/2 

I 
n 

(36) 

Note that for a thin lens u ^ Xi and v == X2, so that the principal 
points coincide and lie at the center of the lens. Equations 
(35) and (36) locate the principal points of a thick lens with 
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respect to its vertices. Thus lies at a distance 

hi 
k 

(37) 

from the left-hand vortex in object space (in our case to the rigiit 
of 0), and H2 lies at a distance 

/i + /2 — 
I 
n 

(38) 

from the right-hand vertex in image space (in our case to the 
left of 0')* 

For the sake of completeness, we redraw the lens of Fig. 173, 
showing the principal points, focal points, focal length, and object 
and image distances (Fig. 174). 

Not only the object-image distance equations but also the 
magnification formulas are identical in form for thick and thin 
lenses. The magnification of the lens is the product of the 
magnifications of the two surfaces, and this is, using Eq. (15) 
(see Fig. 173), 

From Eqs. (25a) and (26a), we have 

d ^ Xz — fi ^ fjXj 

t — d — /i fzXi 
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- . ^2 — /2 _ /l y + a — /2 

h /2f/ + 6~/l 

the last equality following from Eq. (30). 
Using the definitions of a and h and of the focal length / 

[Eqs. (28) and (32)], one finds readily that 

so that 

a-/2= -^/ and b — fi = -yf 

m 
V' — -/ 

fl. /■ 

h 

and, since UV == P (h]q. 31), this becomes 

^ ~ -I 
V f 

m (39) 

which is identi(^al with Eq. (24). It immediately follows that 
Eq. (22) also holds for the thick lens, remembering that u and 
V are measured from the principal points. Equation (39) for the 
magnification holds for all object-image pairs, U and V being 
object and image distances as measured from the focal points 
Fi and F2. For the special case for which object and image 
lie at the principal points f/ = F = —we have unit magnifica¬ 
tion and a virtual image. 

It is a property of the principal points that an incident ray 
through one of them emerges through the other parallel to the 
incident ray. The proof of this is left to a problem. Finally, 
it should be pointed out that all our results are valid for any 
lens or combinations of lenses, provided the object and image 
space have the same index of refraction. If this is not so, theji 
only the form of the magnification formulas becomes modified, 
and the conjugate points for unit magnification (the so-called 
nodal points) no longer coincide with the principal points. 

69. Lens Aberrations.—^Thus far our considerations have been restricted 

largely to what may be termed the ‘‘first-order^' theory of the behavior of 

both thin and thick lenses. There have been two fundamental assumptions 

in the theory: (1) The objects and images have been treated as if they were 

situated on the axis of the lens, so that at best the theory gives a good 
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approximation for objects and images, all the points of which lie very close 

to the axis; and (2) the rays from a point object on the axis have been con¬ 

sidered as a very narrow pencil, so that the angular opening of the cone of 

rays is small enough to allow us to replace the sine of the angle by the angle. 

Thus we speak of paraxial'^ rays. 

In general, a lens must image points not on its axis, and the cone of rays 

from any point of the object will be of finite angular opening. Further¬ 

more, even if individual object points were sharply focused at corresponding 

image points, we might still obtain distortion of the image in the sense that 

the geometrical shape of the imAge would not coincide with that of the 

object. Finally, we have dealt with the index of refraction as a constant.. 

While this is true for light of a given frequency (monochromatic light), whit(‘ 

light is a mixture of waves of many wave lengths and the index of refraction 

of glass, for example, varies with wave length (and frequency). Thus, even 

in the first-order theory, one encounters so-called chromatic aberration, 

variation of focal length with color of the light. The various defects of the 

image formed by a perfectly spherical lens are termed aberrations, and we 

shall briefly examine these various types of aberrations. A quantitativ(^ 

study of these aberrations and methods of minimizing them are far beyond 

the scope of this book. For the sake of simplicity we shall consider tlu^ 

aberrations for the cast; of a thin lens in air, although the sam(‘ general 

considerations hold for thick lenses and combinations of Icmses. 

We classify the various aberrations as follows: 

1. If a narrow pencil of rays (parallel or stigma tic) lies along the lens axis, 

we have the conditions of our first-order theory satisfied and hav(' no 

aberration. 

2. If a narrow pencil of rays passes obliquely through the lens, as does a 

portion of the cone of rays from a point object not located on the lens axis, 

this pencil becomes astigmatic after it passes through the lens. This 

astigmatic pencil does not focus at a point, but all the rays pass through two 

mutually orthogonal lines which are displaced from each other (focal lines). 

This aberration is called astigmatism. 

3. If a wide pencil of rays has its axis coincident with that of the lens or if 

we have a broad beam of parallel rays which are parallel to the lens axis, the 

rays of the pencil emerging from the lens will not pass through a single point. 

This aberration is called axial spherical aberration. 

4. If a wide atigmatic pencil of rays (or broad parallel beam) passes 

obliquely through a lens, it becomes greatly confused upon emerging from 

the lens, and this type of aberration is denoted as comatic aberration, or 
simply as coma. 

5. For objects of finite size, e.g., an object in the form of a straight line 

perpendicular to the lens axis, there will result an image which is curved, 

and this aberration is known as curvature of the field. It is intimately con¬ 

nected with astigmatism, being essentially due to the astigmatic nature of 

the narrow pencils of rays from the various points of the object. 

6. Image distortion is an aberration arising from a variation of magnifica¬ 

tion with distance of the various object points from the lens axis. 
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7. Chromatic aberration, as we have already mentioned, is due to the 
variation of index of refraction with the frequency of the light and results in 

the formation of a series of images at different distances and of diflferent 

magnifications, one for each color present in the incident light. 

We thus have classified six types of aberration of a simple thin lens. It 
should be kept in mind, however, that the monochromatic aberrations are 
classified into the types 2-6 for the sake of convenience, but they are not 

Position of circle 
\ of leas! confusion 

\y Secondary 
focaf fine 

Fig. 175. 

‘Primary focal line 

independent, and in general it is only approximately correct to consider 
any one type as being present to the exclusion of all the others. We shall 
now describe the above aberrations in more detail. 

Astigmatism and Curvature of the Field—Lai us first remind ourselves as 

to the properties of an astigmatic pencil of rays. These rays are the normals 

to a small portion of a surface of constant phase which has two different 

radii of curvature in two mutually orthogonal directions. The pencil of 

rays is indicated in Fig. 175. All the rays of the pencil pass through two 

Side View 
A 

focal lines, as shown in the figure. The cross section of the pencil is in 

general elliptical for an elliptical boundary on the wave surface, the ellipse 

degenerating into straight lines at the positions of the focal lines. Between 

these two positions there is a position where the cross section of the beam is 

circular, the major and minor axes of the ellipse becoming equal, and this 

circle is known as the circle of least confusion, giving the best image formed 

by an astigmatic pencil. As we have stated, a narrow pencil of rays passing 
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obliquely through a thin lens gives rise to an astigmatic transmitted pencil. 
In Fig. 176 are shown two views (top and side) of such a pencil of rays 
(exaggerated for the sake of clarity) from the tip of an arrow used as an 
object for a thin lens. A' and A" are the locations of the focal lines of the 
pencil, and BB is the location of the circle of least confusion. A' and A'* 
are often called the primary and secondary images of A. 

If one considers all the points of the arrow, instead of only the tip, the 
locus of all the primary images will form a curves, as will the locus of the sec¬ 
ondary images. These two curves will be tangent to each other at the axis, 
and somewhere between them lies a surface containing the circles of least 
confusion for all the points of the object. This is the surface of best focus^ 
and in general it is not a plane, giving rise to the curvature of the best possi¬ 
ble image of the object. The shape of the image surfaces depends on the 
shape of the lens and on the positions of stops or apertures on the lens axis. 
It is not possible to eliminate both curvature of the field and astigmatism 

with a single lens, but either may be readily corrected. A narrow aperture; 
lens corrected for astigmatism is called anasligmalic. 

Spherical Aberration.—In Fig. 177 is shown the eifect of spherical aberra¬ 
tion. A finite cone of rays from a point A on the lens axis is not imaged at a 
single point. All the rays making a given angle with the axis are imaged at 
the same point, the widest angle rays at A' and the small angle or paraxial 
rays at A". The cross section of the beam is everywhere circular, and the 
circle of least radius is the circle of least confusion, the best image of A. 
Spherical aberration may bo reduced by ‘^stopping down’^ the lens (using 
only the central portion), but only at the expense of the amount of light 
transmitted by the lens. A lens of given focal length may be designed for 
minimum spherical aberration by choosing appropriate radii of curvature 
for the two surfaces. In general, this type of aberration is cut down by 
dividing the deviation of the rays equally between the two surfaces. 

Coma.—^The image of a point object not on the lens axis, when the lens 
intercepts a cone of rays of large angle, is very confused and is called comatic. 
Let us assume that astigmatism may be neglected, so that there is a well- 
defiu^ plane of best focus. The finite cone of rays from the point object 
may be considered as a sum of very narrow pencils with a common focal 
point. As we have seen, each of these narrow pencils gives a best image in 
the form of a circle of least confusion. In general, the centers and radii of 
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these circles of least confusion will be different for the different narrow pen¬ 

cils making up the cone of rays, so that the final image may be thought of as 
a superposition of (urcles of different radii and centers. The resultant 

figure is shaped somewhat like a comet (hence the name coma) and is illus¬ 

trated in Fig. 178. Coma may be eliminated completely for a single thin 
lens for one pair of object-image points by proper choice of the radii of 
curvature of the lens surfac^es. Such a lens will then necessarily show axial 

Plane of besi 

Fio. 178. 

spherical aberration, since the condition for no coma is not the same as for 
minimum spherical aberration. A very wide aperture lens may be cor¬ 

rected for axial spherical aberration and for coma for slightly oblique rays. 

It is then said to be aplanatic, and the single pair of object and image points 

for whi(^h this correction is valid are called the aplanatic points of the lens. 

Image distortion^ caused by the variation of magnification with lateral 

distance of an object point from the lens axis, may be of two types, depend¬ 

ing on whether the magnification increases or decreases with distance from 

nn 
Object Image 

(pin cu^ion 
distortion) 
Fig. 179. 

the axis. In the former case the distortion is known as pincushion^' dis¬ 

tortion and in the latter case as ‘^barrel" distortion. A rectangular object 

will give rise to the two images shown in Fig. 179 for these two types of 

distortion. 
Chromatic aberration and the methods of minimizing it will be discussed 

in the chapter on dispersion of light. 
It is clear that it is impossible to eliminate or even to minimize simul¬ 

taneously all the aberrations discussed above for a single lens, but it is possi- 
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hie, by combining a number of lenses to form a compound lenSj to balance the 
aberrations of one part of the system against the other. The larger the 

number of elements of a compound lens, the higher the degree of correction 

which may be obtained. In practice, attention is directed toward correct¬ 

ing those aberrations which would be most disturbing for the particular 

purpose to which the lens is put. When wo discuss chromatic aberration, 

we shall illustrate the manner in which a compound lens may be designed to 

compensate for chromatic aberration. 

Fi«. 180. 

70. The Eye.—The ossontial parts of the human e>ye, treated 
as an optical instrument, are shown in Fig. 180. The eye is 
roughly sphouical, the front surfac(i of the (jyeball being somewhat 
more sharply curved and covered with a tough transparent 
membrane C, the cornea. Between the cornea and the Uns L 
is a watery liquid known as the aqueous humor. The remainder 
of the eyeball is filled with a transparent viscous liquid, known 

as the vitreous humor. The front sur¬ 
face of the cornea and the lens surfaces 
are nearly spherical and constitute 
essentially a compound lens which pro¬ 
jects images of external objects upon a 
sensitive membrane, the retina R, in 
which terminate the ends of a great 
many nerve fibers entering the eye at 0, 
the nerve bundle being known as the 
optic nerve. The pupil P is an aperture 

in a muscular membrane called the iris and serves to cut down 
or increase the amount of light entering the eye. 

The lens of the eye may be compressed into a more nearly 
spherical shape by the action of a muscle attached to it and 
thus may have its focal length varied. The process of focusing 
the eye on objects at varying distance from it is called accommoda¬ 
tion^ and the range over which distinct vision is possible deter¬ 
mines the so-called near and/ar points of the eye. For the normal 
eye the far point may be taken as infinity. The position of the 
near point depends on how much the curvature of the lens may be 
increased by accommodation, and the power of accommodation 
diminishes with increasing age. For the normal eye we shall 
take the near point as about 15 cm., and the distance of most 
distinct vision as 25 cm. (or 10 in.). 

71. The Simple and the Compound Microscope.—^When looked 
at directly with the eye, an object seems large when the retinal 
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image is large, and the angle subtended at the eye by the object 
(the so-called visual angle) is a measure of the apparent size 
of the object. In Fig. 181 the angle B is the visual angle. In 
order to examine an object in detail, it is brought as near to th(; 
eye as possible to obtain a large visual angle. Since the eye 

(;annot focus sharply on objects closer than the near point, th<* 
maximum visual angle obtainable by the unaided eye is limited 
by the power of accommodation. By placing a converging lens 
in front of the ey(^, one can in effect increase its effective accom¬ 
modation. The eye then looks at an (uilarged virtual image as 
indicat(5d in Fig. 182. Such a device is known as a magnifying 

glass or simpler microscoi)e. The magnifying power M of a 
magnifying glass is defined as the ratio of the angle subtended at the 
eye by the image to that subtended by the object when the latter is 
placed at the distance of most distinct vision do, which we shall 
take as 25 cm. 

If 6 is the angle subtended at the eye by the image of Fig. 182 
and yi its length, we have 

^ = d tau (40) 
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If the object has a length i/o and is located at the distance of 
most distinct vision do, it subtends an angle at the eye, where 

I = do tan (41) 

For small angles we may replace the tangents of the angles by 
the angles and have for the magnifying power 

11 1! (42) 

We have further from Fig. 182 

Vi ^ d- e 
(43) 

yo 11 
so that P]q. (42) becomes 

M = (] 1 - dj u 
(44) 

In general, the eye is placed close enough to the magnifier that 
the distance e in Eq. (44) may be neglected compared with d, and 
hence we have simply 

JW = (45) 
u ' 

If the image is formed at the distance of most distinct vision, 
we have t; = —do, and from the lens equation we have 

Thus the magnifying power is somewhat greater when the image 
is formed at the point of most distinct vision. 

According to the above results, a high-power magnifying 
glass must have a very short focal length, and it must be held 



Sec. 71] GEOMETRICAL OPTICS 291 

close to the object under examination and near to the eye. 
The diflSculty of accurately grinding a lens of small focal length 
and freeing it as far as possible from aberrations, in addition to 
the inconveniences of operation just mentioned, place a practical 
upper limit of about 20 X on the magnifying power of a simple 
microscope. For higher powers one utilizes a compound micro- 
scopcj consisting essentially of a lens, called the objective^ which 
produces a real enlarged image of the object, and a magnifying 
glass or ocular for viewing this image. The arrangement is 
shown in Fig. 183 in which both objective and ocular are treated 
as simple lenses, although in an actual microscope both would be 
highly corrected compound lenses. The object O is placed 

To arrow iaH of image 

just outside the first focal point F\ of the objective, yielding an 
enlarged real image /. This image lies just inside the first focal 
point F[ of the ocular, giving rise to a virtual enlarged image /' 
of I (not shown in the figure). The position of /' may be taken 
at the point of most distinct vision of the eye. 

The magnifying power of the compound microscope is the 
product of the magnifying powers of the objective and ocular. 
Since the objective forms a real image which is examined by 
the ocular, its magnifying power is just the linear magnification 
mi, which, according to Eq. (39), may be written as 

mi = (48) 
h 

where V is the focal distance of the image 1 (the distance from 
Fi to I) and/i the focal length of the objective. The magnifying 
power of the ocular is, according to Eq. (46), 

jif, = +1 (49) 
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where /2 is the focal length of the ocular. Thus the magnifying 
power of a compound microscope is 

M = wxilfi = + l) (50) 

or 

M = miM'i = 

the latter equation being valid when /' is formed at infinity. 
It has become standard practice to make V = 18 cm., so that, 
using the value of 25 cm. for do, we may write in place of Eq. (50a) 

where/i and /2 are expressed in centimeters. 
72. Oculars.—In actual practice the magnifying glass shown 

in the compound microscope of Fig. 183 is replaced by a com¬ 

pound lens. When a compound lens is used to examine the image 
formed by a system of lenses (or mirrors), it is called an ocular or 
eyepiece. In addition to the primary purpose of magnification, 
a well designed ocular increases the field of view and, of course, 
lends itself to a better reduction of aberrations than a simple 
lens. The fundamental difference between a real object and an 
image used as an object lies in the fact that the rays from the 
former diverge in all directions, whereas in the latter the pencil of 
rays from any point forms a cone of limited opening. This 
is illustrated in Fig. 184 in which are indicated the cone of 
rays coming from the head and tail of an image which is being 
examined by a simple magnifier. If the eye is placed at 4, it 
is clear that none of the rays from the arrowhead reach it, so 
that the arrowhead lies outside the field of view. Similarly at B 
the tail of the arrow is not visible. By placing the eye at C, one 
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can see the whole arrow, but in most instruments it is desirable 
to have the eye close to the eyepiece. 

The method employed to increase the field of vi('w for an 
(ye placed near the ey('piec(‘ consists (essentially of th(^ us(‘ of 
two lenses in the ocular. The function of the first k^ns, called 
the field lenSy is to alter the direction of the rays from the various 
points of the image under examination, so that pencils of rays 
from each of these points pass through the central portion of 
th(i second or eye lens and hence can all enter the pupil of an eye 
placed near this eye lens. Two common typos of oculars are 
shown in Figs. 185 and 186. In the Ramsden ocular the lenses 
are of e(pial focal length and the image is formed in front of tlu^ 

'From oiyeefive 

field lens as shown. If cross hairs or a scale are to be mounted 
in the ocular, so that measurements may be made, they should 
be placed in th('. plane of the image /. In the Huygens ocular 
the field lens inti^rcepts the rays from the objective before the 
image is formed, and thus we have a virtual object /' for this 
field lens, giving rise to the image J, wdiich is then examined with 
the help of the eye lens. Clearly the Ramsden ocular may be 
used to examine a real object but the Huygens ocular cannot 
be so employed. 

73. Telescopes.—The simple astronomical telescjope consists 
essentially of an objective converging lens of long focal length 
and an ocular for examining the image of a distant object formed 
by the obj(?ctive. A schematic sketch of the optical system 
is given in Fig. 187, in which no attempt has been made to show 
the paths of the rays. Since the object is practically at infinity, 
the image 1 is formed at the second focal point of the objective, 
and, if the image formed by the ocular of I is also at infinity, I 
lies at the first focal point of the ocular. The angles $ and 
are the angles subtended by the object at the objective and by 
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the image at the ocular. The magnifying power M of a telescope 
is defined as the ratio of these anyleSy and, since in the telescope 
shown we have an inverted image, we write 

M ^ - 
d 

and, because in general the angles are small, this can be written 
in the form 

(52) 

as is evident from Fig. 187, where / is the focal length of the 
objective and /' that of the ocular. 

Olyecf/ve 

Fia. 187. 

Ocu/ar 

The inverted image formed by the simple telescope described 
above is not disadvantageous for astronomical work, but for 
terrestrial purposes it is desirable to have an upright image. This 
can be accomplished by the addition of an erecting lens to the 
astronomical telescope as shown in Fig. 188 to form a terrestrial 

telescope or spyglass. The disadvantage of this arrangement 
is that the length of the instrument becomes unwieldy. Since 
the shortest object-image distance for a thin convex lens which 
forms a real image is four times its focal length, the minimum 
length of the telescope tube becomes the sum of the focal lengths 
of objective and ocular and four times the focal length of the 
erecting lens. 
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This disadvantage may be overcome by using a diverging 
instead of a converging lens for the eyepiece, and a telescope so 
constructed is called a Galilean telescope. The ordinary opera 
glass is such a tcdescope. Figure 189 shows a diagram of the 
elements. It is readily seen that the magnifying power M is 

indicates the upright- image. The length of the telescope is 
the difference of the focal lengths of the two lenses instead of the 
sum, as in the case of the astronomical telescope, thus yielding a 
compact instrument. 

Fut. 190. 

74, The Projection Lantern.*—P'igure 190 shows the essential 
parts of the optical system of a projection lantern. The con¬ 
densing lens Cj usually consisting of a pair of plano-convex 
lenses as shown, serves to deviate the rays from the source 
through the lantern slide SS so that they are all intercepted 
by the projection lens P. Its function is thus very similar to 
that of the field lens in an ocular. The projection lens usually 
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consists of two separate lenses as shown, each of which is a com¬ 
pound lens with two kinds of glass (to correct for chromatic 
aberration as we shall see later) and must be corrected for curva¬ 
ture of the field and for image distortion. Since the final image 
is produced by the projection lens only, it is not necessary to 
correct for aberrations in the condensing lens. 

The simple optical instruments which w'e have discussed are 
all of the image-forming type, and we postpone discussion of th(^ 
so-called analyzing instruments, i.e., those employed to deter¬ 
mine the spectral composition or intensity of a beam of light, until 
we have occasion to study th<‘ r(\sults obtained by their use. 

Problems 

1. What is the apparent depth of a svviinniiug pool in which there is 

water of depth 6 ft., 

a. When viewed from above at normal incid(uice? 

h. When viewed at an angle of 60° with the surface? 

The index of refraction of water is 1.33. 

2. A layer of ether (n =* 1.36) 2 cm. deep floats on water (n — 1.33), 

4 cm. deep. What is the apparent distance 

from the ether surface to the bottom of the 

water when viewed at normal incidence? 

3. To measure the refractive index of a 

crystal in the form of a flat plate 12.62 mm. 

thick, a microscope is focused on a scratch on 

the top surface and then lowered a distance of 

5.43 mm. to focus on a scratch on the bottom 

surface. Compute the refractive index of the crystal. 

4. Derive the law of reflection using Fermat's principle. 

5. Light is deviated by a glass prism of index n as shown in Fig. 191. 

The ray in the prism is parallel to the base. Show that the index of refrac¬ 

tion is related to the angle of deviation S and prism angle <f> by the equation 

Fig. 191. 

sin (4>/2) 

for this angle of incidence. The deviation angle 5 is a minimum for this 

angle of incidence and is known as the angle of minimum deviation. 

6. What is the relation between the size of an observer and the minimum 

size of a pldbe mirror, if the observer is to see his complete image? 

7. A concave spherical mirror has a radius of curvature of 50 cm. Find 

two positions of an object such that the image be four times as large as the 

object. What is the position of the image in each case? Is it real or 

virtual? 
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8. Derive the appropriate form of (7) of the text for the ease of a 
convex mirror. 

9. A convex mirror has a focal length of JO in. Compute the position of 
the image of an object 6 in. in front of the mirror. What is the magnifica¬ 
tion for this case? 

10. A glass rod, index of refraction n, has its (*nds ground spherically, the 
radii being Ri and Ro as shown in Fig. 192. The length of the rod is i = 2ft, 

and a small oViject is placed at A. Show that the image of A lies at a dis- 

iHiwm « ^ frnT.i flu. rurl*f. 1^!=^ = ft 
\3w - 4/ 

from thc^ right- 

(Assume small hand vertex O'. (Assume small 
angles of incidence.) ^ ^ ^ 

11. A narrow pencil of parallel 

light rays is normally incident on a solid glass sphere of radius ft and refrac¬ 
tive index n. How far from the center of the sphere are thc^ rays brought- to 

a focus? 
12. A narrow pencil of parallel light rays is normally incident on a hollow 

glass sphere of inner radius 2 in. and outer radius 2.5 in. If the index of 

refraction of the glass is 1.00, where will these rays be brought to a focus? 

Make a careful drawing of th<^ pencil of rays. 
13. Prove that Kep (13) of the text is valid for refraction at a surface of 

negative radius of curvature (concave toward the object). 

14. The focal length of a thin lens is determined as 25 cm. by using a 
lamp as an object, placing the lamp far from the lens, and measuring the 
image-lens separation. How far away must the lamp be placed to attain a 

precision of 3 per cent? 
16. A thin glass lens of focal length 12 in. and refractive index 1.52 is 

immersed in water of refractive index 1.33. What is the focal length in 

water? 
16. Prove that, when two thin lenses of focal lengths /i and fz are placed 

in contact, they are equivalent to a single lens of focal Icmgth/ equal to 

17. Prove that the focal length of a double convex thin lens of diameter d 

and axial thickness t is given by 

/_!!1_ 
S(n - 1)^ 

where n is the refractive index of the lens material. 
18, Derive the appropriate form of Eq. (18) of the text for a double con¬ 

cave lens. 
19. A thin double convex glass lens (n « 1.50) has a focal length of 

3.00 cm. and a diameter of 2.00 cm. An object in the form of an arrow 

2.00 cm. long is placed perpendicular to, and bisected by the lens axis at a 

distance of 5.00 cm. to the left of the lens. Locate the image, and construct 

a careful diagram of the pencil of rays intercepted by the lens. 
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What fractional part of this im^ge will be visible to an eye on the lens axis 

at a point 22.5 cm. to the right of the lens? 

20. Make a careful plot of image distance as a function of object distance: 

a. For a thin converging lens. 

h. For a thin diverging lens. 

21. A thin convex and a thin concave lens each of 20 cm. focal length are 

placed coaxially at a separation of 6 cm. Find the position of the image 

formed by this lens system of an object at a distance of 30 cm.: 

a. Beyond the convex lens. 

5. Beyond the concave lens. 

22. A thin convex lens of focal length/produces a real image of magnifica¬ 

tion w. Show that the object distance is 

m + 1 ^ 
u --/ 

m 

23. An image of height a is formed on a screen by a thin convex lens. It 

is found by moving the lens toward the screen that there is a second huis 

position in which it forms a second sharp imago on the screen of height b. 

Show that the height of the object is 

24. Prove that the distance between an object and its real image formed 

by a thin convex lens is always greater than four times the focal length of 

the lens. 
26. The radii of curvature of a double convex lens have magnitudes of 

20 and 30 cm. The glass of which it is made has a refractive index of 1.52. 

Find the focal length of the lens. 

What is the focal length of a convex meniscus lens with the same radii 

of curvature and made of the same glass? 

26. Each of two similar thin converging lenses has a focal length of 10 in. 

They are mounted coaxially, and are separated by a distance of 10 in. Find 

the positions of the images of a small object placed on the axis at a point 

20 in. to the left of the first lens. 

27. A plano-convex lens of glass of refractive index 1.5 and radius of 

curvature 24 cm. is 2 cm. thick along the axis. Calculate its focal length, 

and find the position of the image when the object is 50 cm. from the convex 

surface: 

(а) When on the convex side. 

(б) When on the plane side. 

What is the magnification in each of these cases? 

28. An object is displaced a small distance du along the axis of a lens. 

Find an expression for the corresponding displaceinent dv of the image. 

Treating du as an object length along the axis and dv as the correspond¬ 

ing image length, the ratio dv/du is often referred to as the longitudinal 

magnificalicm. Prove that it is equal to the square of the ordinary lateral 

magnification. 

29. Prove that the focal length / of a compound lens consisting of two 

coaxial thin lenses separated by a distance a is given by 
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1 1 , i _ 
/ “/i /2 /1/2 

where/j and/2 are the focal lengths of the two lenses, respectively, 
30. Prove that, if an incident ray on a thick lens is directed so that it will 

pass through one of the principal points, the emergent ray has a direction 
which is parallel to the first and passes through the other principal point. 

31. Derive expressions for the positions of the principal points and of 

the principal foci for two coaxial thin lenses separated by a distance a and 
of focal lengths fi and fi, respectively. 

32. Two thin convex lenses of focal lengths 30 and 10 cm. are mounted 

coaxially, the 30-cm. focal length lens being on the left. Compute the 

positions of the principal points and of the principal foci for the following 

separations; 5 cm., 15 cm., 25 cm., 40 cm., 55 cm., and 70 cm. 
Construct a diagram in which these points are located approximately to 

scale, plotting the six configurations one under the other with the left-hand 

lens always at the same position. 
33. A glass hemisphere of radius 5 cm. and refractive index 1.5 is used as 

a lens, rays passing through it very nearly coinciding with its axis. Where 

are the principal points of this lens, and what is its focal length? 

34. Sketch the lenses described below and locate the positions of their 

principal planes. The radius Ri is that of the left-hand surface, R2 of the 
right-hand surface, t the thickness. Take n = 1.5. 

j Lens a Lens h Lens c Lens d Lens e 

Rif cm. 
1 1 

.! +10 i -10 00 4- 5 -10 
Rif cm. .i -10 ‘ 4-10 ‘ -fio 4-10 - 5 

tf cm. .i 2 ! 2 1.5 1.5 1.0 

36. An image is formed in a space of refractive index 712 of an object in a 
space of index ni by a thick Urns of index n. Prove that the lateral magnifi¬ 

cation is given by 

whore/ is the focal length of the lens and I' is the object distance measured 

from the first principal focus of the lens. 
36. Prove that, if an object is located inside a transparent sphere 

of radius R and index n at a distance R/n from the center, the lens is free 

from spherical abfirration. Derive a formula for the position of the image. 

Is it rejal or virtual? 
37. Discuss the axial spherical aberration of a convex mirror for a wide 

beam of parallel rays which are parallel to the mirror axis, computing the 

length of that part of the axis which is crossed by the reflected rays. 

38. a. If the near point of an eye is 100 cm., what sort of lenses are needed 

in spectacles for reading? What focal length should these lenses have? 
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6. If spectacles with diverging lenses of focal length of 40 cm. are pre¬ 

scribed to correct defective vision, what is the far point for the eye? 

39. A magnifying glass has a focal length of 4 cm. How far from the 

lens should an object be placed so that it is seen clearly by an observer whose 

eye is accommodated for a distance of 25 cm.? What is the magnifying 

power of the glass? 

40. What is the magnifying power of a glass ball 2 cm. in diameter, if the 

index of refraction of the glass is 1.5? 

41. A compound microscope comes equipped with objectives of focal 

lengths 2 and 6 mm. and with oculars of magnifying power 4X and 10X. 

Find the possible magnifying powers obtainable. What are the focal 

lengths of the oculars? 

42. A properly focused telescope is sighted at the sun. How far and in 

what direction must the eyepiece be moved to project a sharp image of the 

sun on a screen 2 meters back of the eyepiece? The focal length of the 

eyepiece is 5 cm. 

43. The objective of a field glass has a focal length of 24 cm. When used 

to examine an object 2 meters away, its magnifying power is 2.5. What is 

the focal length of the ocular? What will the magnifying power be when 

viewing an object at infinity? 

44. The objective of an astronomical telescope has a focal length of 40 cm. 

and the ocular a focal length of 5 cm. Plot the magnifying power as a func¬ 

tion of object distance if the latter varies from 5 meters to infinity. Through 

what distance must the ocular be moved to maintain a sharp focus for this 

variation of object distance? 

45. What focal-length projecting lens is required to enlarge a 3- by 4-in. 

lantern slide to a 3- by 4-ft. image on a screen 25 ft. from th(» lens? Where 

should the slide be placed? 



CHAPTER XV 

DISPERSION AND SCATTERING 

In this chapter we shall examine the question of the variation 
of the velocity of sinusoidal electromagnetic waves in dielectrics 
with the frequency of these waves. In the realm of optics, 
this effect is called the dispersion of light and makes itself 
evident in the variation of refractive index (and hence of the 
velocity of light) of nonconducting media with wave length 
or color. This study, when carried out in terms of an atomic 
picture, will lead us to an understanding of another phenomenon, 
the so-called scattering of light, as w(dl as to a deeper insight 
into the nature of the refracted light wave, both in isotropic? 
and in crystalline media. In Chap. XI we have given an atomic 
explanation of the electrostatic behavior of dielectrics, and we 
must now extend the ideas presented there to the ease of electro¬ 
magnetic fields varying with time. Wc have seen that the 
polarization of a dielectric by an electrostatic field resulted 
either from the orientation of permanent molecular dipole 
moments or from the atomic dipole moments induced by the field. 
Let us now inquire as to how we would expect these effects to 
vary as the frequency of an alternating field impressed on the 
dielectric is increased. For both types of polarization we may 
justifiably introduce the idea of a natural frequency (or fre¬ 
quencies). For the permanent dipoles the effect of temperature 
motion is to tend to restore a random orientation, very much as 
the restoring torque of a torsion pendulum tends to restore the 
equilibrium orientation of the pendulum. For the induced 
dipoles the restoring force, as we have seen in Sec. 52, may be? 
taken as a linear restoring force, as if we had springs holding 
the electrons to the atoms. 

In both the above cases the natural frequencies will depend 
on the stiffness coefficients of the force (or torque) and on the 
masses involved. In the case of the permanent dipoles the, 
masses are extremely large compared to the electronic mass, and 

301 
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consequently the natural frequencies for these dipoles are very 
much smaller than for the elastically bound electrons. For fre¬ 
quencies low compared to the natural frequencies, the steady- 
state motions of the permanent dipoles or of the electrons will 
be sinusoidal with amplitudes practically equal to the static 
displacements, as one always obtains when a system is set into 
forced oscillation by an external force of frequency very much 
below its natural frequency. As the frequency increases, the 
induced moments increase slowly until we reach frequencies not 
far from the lowest natural frequency. Here we encounter the 
phenomenon of resonance, a sharp increase of the amplitude of 
the forced motion with friction alone limiting the motion. In 
this range we have absorption of energy from the electromagnetic 
field, this absorbed energy heats the substance, and wc say that 
we have an absorption hand in the neighborhood of this natural 
frequency. The dielectric constant behaves ‘‘anomalously^^ in 
this region of frequencies, and, if these frequencies lie in the 
optical region, the substance is no longer transparent, the 
energy of the electromagnetic field being continually dissipated. 
Let us increase the frequency still more, passing well beyond 
the natural frequencies of the permanent dipoles. In this case 
the permanent dipoles no longer contribute to the dielectric 
constant (or index of refraction) of the body, since they can no 
longer follow the rapid variations of the field. For a substance 
like water, for which the abnormally high static dielectric con¬ 
stant of 80 is due to the permanent dipole moment of the water 
molecule, the permanent dipoles are completely ineffective 
at optical frequencies, with the result that the dielectric constant 
is much the same as that of a nonpolar substance at theses 
frequencies. 

Proceeding farther in the direction of increasing frequency, 
we must get into the infrared, visible, or ultraviolet region of 
the spectrum before the natural frequencies of the electrons 
which are responsible for the induced dipole moments become 
evident. We then have resonance phenomena, strong absorption 
of the electromagnetic waves at one or more frequencies, and 
regions of “normaP’ transparent behavior of the substance 
between these absorption frequencies. This is the region of 
the electromagnetic spectrum which concerns us in the study 
of optics, and we can entirely disregard the effects of the per- 
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manent dipoles in this connection. Our problem is the study 
of the motion of bound electrons under the influence of a sinu¬ 
soidal electromagnetic wave. From the motion we can calculate 
the induced dipole moment as a function of the time, from this 
the polarization vector and the dielectric constant, leading us 
to a theory of the variation of index of refraction with frequency 
or wave length. 

75. Dispersion in Gases.— In th(‘ case of a gas, in which tluj 
atoms are relatively far enough apart at moderate pressures so 
that we may negku^t th(^ interactions b(^tween particles, th(^ 
calculation outlined above may be readily carried out. In the 
case of solids and liquids, the resultant force acting on an electron 
is the sum of the external force and those due to the neighboririg 
induced dipoles; hence the calculation becomc's more delicate'. 
If an electromagnetic w^ave travels in a gas, the electrons in tlui 
atoms are set into an induced motion, and the resultant for(*e 
acting on an electron is given by c [£ + {v X iB)], w^hcre e is th(‘ 
('-harge on the electron, v its velocity, and £ and B are the electric 
int(msity and the magnetic induction vectors of the electro¬ 
magnetic wave at the point w’^here the electron is located. Since 
the electron velocities are very small compared to the velocity 
of light in the case at hand, we may neglect the magnetic force 
because it is of the order of magnitude of v/c times the electric 
force. 

For the sake of simplicity, let us consider a plains electro¬ 
magnetic wave, linearly polarized so that its electric vector has 
only an a;-component, traveling in the ^-direction. We have 

£* == £o sin 2Ty^t — ^ (J) 

and, if wt. consider an atom located at a position s = 0, hX us 
say, the force acting on an electron in this atom will be given by 

Fx = e6x == ('^0 «in 2Trvt (2) 

Here we have assumed that the phase of the ele(;tromagnetic wav<' 
does not change (at a given instant of time) over the region of 
space occupied by the atom. Since the diameter of an atom is 
about cm. and the wave length of light about 5 X 10“"® cm. 
in the visible, we see that this is a justifiable procedure. It 
would be wrong, however, to proceed as above for the case of 
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X rays. Let us suppose that we arc not in the immediate neigh¬ 
borhood of an absorption band (the natural frequency of the 
electron) and can therefore neglect friction^' effects. If the 
electron is displaced a distance x from its normal position, therci 
will be a restoring force — fcx acting on it in addition to the force 
given by Eq. (2), and its equation of motion is 

d*^x 
+ Aa; = eSa sin 2Trvt (3) 

This is the equation of the forced motion of a simple harmonic 
oscillator, and we are interested only in the steady-state motion 
which ensues with the same frequency as that of the external 
force. To find this motion, let us try a solution of the forra^ 

a: = sin 2nrvt (4) 

being prepared to reject it if it fails, i.e., if A does not turn 
out to be independent of t. From Eq. (4) we find for Xho 
acceleration 

sin 27r>'< (5) 

and substituting the values of x and d^x/dt'\ as given by Eqs. (4) 
and (5), back into Eq. (3), we find readily 

A = 
eCof^ir'^m 

(fi) 

1 rk 
where 

Thus the requirc'd solution is 

^ the natural frequency of the electron. 
m 

e€o sin 2Tvt _ e6*/47r“m 
4^'hn(vl — 

(7) 

The dipole moment of the atom, due to the motion of this 
electron, is thus 

v% — m 

and the total induced dipole moment of the atom p* is given by 

V* (9) 

1 Compare the following discussion with that given in Frank^s * introduc¬ 

tion to Mechanics and Heat,^^ 2d ed., pp. 116-119. 
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where the summation is over all the electrons in the atom, differ¬ 
ent electrons having different natural frequencies. For th<j 
sake of simplicity we shall consider only one electron contributing 
appreciably to the induced dipole moment and have for the 
polarizability of the atom [compare Eq. (16), Chap. XI] 

^ e-_ 
6x — v^) 

(10) 

Note that, for electrostatic fields {v = 0), this is the same 
n^sult as is expressed in Eq. (16), Chap. XL If there are N 
atoms per unit volume (or, far more precisely, N electrons of 
natural frequency per unit volume), the polarization vector P 
has the magnitude 

P = NaS 
so that 

from which 

£) z=z — €{)£ + ^irNaS 

n2 = I + (11) 

[compare Eq. (17), Chap. Xlj. Using the value of a as given by 
Eq. (10), there follows for the dielectric constant k and the 
index of refraction n, 

K 1 + Ne^jirm 

J'o 
(12) 

which predicts the variation of index of refraction with frequency 
j', when only one type of electron plays an essential part. For 
the more general case, one has a sum of terms each similar to 
the right-hand term of Eq. (12), instead of the single term. 
For the case of gases, n is very nearly equal to unity (for air, 
n = 1.0003), so that we may write instead of Eq. (12) 

, Ne^l2wm 
n - 1 = —n-tt (13) 

In Fig. 193 is shown a plot of Eq. (13). According to our 
equation n — 1 becomes infinite for v = vq, but, as we have 
stated, in this region strong absorption takes place; consequently 
our equation is essentially correct for frequencies less than va 
and greater than vb as indicated in the figure, but not in between. 
Notice that, in the range for which Eq. (13) is expected to hold, 
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the index of refraction increases with increasing frequency^ i,e,. 
with decreasing wave length. This is the so-called normal 
dispersion, whereas the behavior in the neighborhood of p = Po 
is called “anomalous/^ since it can be shown that the refractive 
index decreases with increasing frequency in this region. It is 
customary for experimentalists to write formulas for dispersion 
in terms of wave length rather than frequency. One of the 

common empirical formulas, known as the Cauchy formula, is as 
follows: 

n = A + ~ ^ (14) 

One can easily show that Eq. (13) or (12) leads to this form 
for p << Po, i.e.j when the absorption is in. the ultraviolet 
region of the spectrum. 

76. Dispersion in SoUds and Liquids; The Prism Spectroscope. 
The theory of dispi^rsion in solids and liquids proceeds along 
the lines of that ^ven for gases, with the exception that Eq. (2) 
for the force on an electron must be replaced by an appropriate 
expression involving the effect of the neighboring atoms. We 
shall not enter into this question but wish to point out that the 
empirical formula (14), which works well for ordinary optical 
materials in the visible region of the spectrum, can be justified 
on theoretical grounds. In Fig. 194 is shown the variation of 
index of refraction with wave length for two common types of 
optical glass, both showing normal dispersion. As a general 
nile, the rate of increase of n with decreasing wave length is 
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larger at short wave lengths, and for different substances, the 
curve is usually steeper at a given wave length, the larger the 
value of w. 

The dispersion of optical materials is utilized in analyzing 
the spectral composition of light in the instrument known 

Fia. 194. 

as the 'pnsm spectrometer. A beam of light, in general, con¬ 
sists of an electromagnetic wave field which is the superposition 
of many elementary waves of different frequencies (colors), 
amplitudes and polarization, and the study of the wave lengths of 
the various component waves is fundamental in obtaining 
information concerning the structure of atoms and molecules. 
We start with the problem of the deviation of a very narrow 
pencil of light rays by a prism of angle A, as shown in Fig. 195. 
Let us suppose that we have monochromatic light, i.c., light of a 
single color. For a fixed prism angle ^4, the angle of deviation 
6 varies with the angle of incidence ti, and there is one angle of 
incidence for which the deviation is a minimum. From the figures 
it is evident that 

5 = - ri + rg ~ u = ii + r^ - A (15) 

If the deviation d is to be a minimum, we must have d6/dti == 0, 
orirom Eq. (15) 

(16) 
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80 that we must express in terms of tV This is most easily 
done in differential form and suffices for the condition imposed 
by Eq. (16). At each surface of the prism, we have from the 
law of refraction 

Fia. 195. 

Differentiating these expressions, we obtain 

cos ii dii = n cos ri dri 
n cos 12 di2 = cos r2 dr2 

and since ri + = A, we have the relation dri = — Thus 
there follows 

, cos ^2 ,. 
dr 2 == n-di2 = 

cos r2 

or, rewritten, 

cos ^2 , cos ^2 cos ^l 
-n-ari =---ati 

cos r2 cos r2 cos ri 

cos ti cos t2 

cos r2 cos Vi 

and Eq. (16) requires that 

cos ii cos {A — ri) 

where we have used the relation ri + ^2 = A, Equation (18) is 
evidently satisfied if i\ = r2 and ri = A/2, i.e., when the ray 
passes symmetrically through the prism. When this condition 
is satisfied, we have from Eq. (15) 

A + 5 
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so that the first of Eqs. (17) gives the condition 

309 

sin = n sm (19) 

giving the minimum deviation 5 in terms of the prism angle A 
and the refractive index n. For small angle prisms, we may 
replace the sines of the angles in Eq. (19) by the angles, so 
that Eq. (19) becomes 

A + d 
n = 

or 

6 = (n ~ 1)^ (20) 

which is a convenient approximation. Note that the deviation 
increases with increasing refractive index, so that the shorter 
the wave length, the greater the 
deviation for a given prism. If 
th<^ light incident on the prism is 
white light, a mixture of all visi¬ 
ble wave lengths, the emergent 
light will be spread or ^dis¬ 
persed into a spectrum, as shown in Fig. 196. One defines 
the angular dispersion D as the rate of change of the deviation 
with wave length, i.e.j 

Red 

Vio/ei 
Fio. 196. 

D = 
iU 

d\ 
dn 
Jx 

and last equality holding for small angle prisms. The actual 
dispersion of a prism spectroscope (see below) is measured by 
the separation in angstroms per millimeter in the field of the 
telescope or on the photograph 6f the spectrum. This quantity 
dcqiends not only on the angular dispersion D but also on the focal 
length of the telescope or camera objective. 

It is customary to define the dispersive power d of a small 
angle prism as the ratio of the difference in deviation for two 
extreme colors in the visible spectrum to the mean deviation 
of the spectrum as a whole. In this connection, it has become 
common practice to utilize the following wave lengths as refer¬ 
ence wave lengths: 
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Xj ■= 6,660 A. (the Fraunhofer C-line; red) 
Xj = 4,860 A. (the Fraunhofer F-line; blue) 
Xo = 5,890 A. (the Fraunhofer IX-line; yellow) 

Using Eq. (20), we find immediately for the dispersive power of 
a small angle prism 

d = (21) 
00 W-0 — 1 

where the n^s are the refractive indices for the above colors. 
The refractive indices and dispersive powers are tabulated for 
two kinds of glass: 

no ni Hi d 

Silicato flint glasis. 1.620 1.613 1.632 0.031 
Silicate crown glass.| 1.508 1.504 1.513 0.018 

Since, in general, the dispersive power of various optic^al 
materials is not proportional to the mean refractive index, it is 

possible to combine two or more prisms to obtain no net deviation 
of a given wave length, such as the D-line, and yet obtain a 
spectrum. Such a device is known as a direct-vision 'prism 
(Fig. 197) and is used in the direct-vision spectroscope, a con¬ 
venient small instrument which may be held in the hand and 
pointed directly at the light source. 

It is also possible to combine two prisms so that the dis¬ 
persions are compensated (strictly speaking, for two wave lengths 
only), but the deviations are not. Such a prism is called achro¬ 
matic/’ This principle is utilized in designing achromatic 
lenses, and we shall illustrate the method in the next section. 

The ordinary form of the prism spectroscope is shown in Pig. 
198. The essential parts are as follows: A narrow slit, >S, illumi- 
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nated by the light to be examined; a collimating lens C which 
produces a parallel beam of light incident on the prism P\ a 
telescope lens T which produces real images of the slit at the first 
focal point of the eyepiece E, The observer sees a series of 
images of the slit side by side, each of different color. If white 
light is used, the images overlap and a continuous spectrum is 
observed. If the incident light is a mixture of a finite number of 
wave lengths, a series of bright lines, one of each color present 
in the incident light, will appear and a line spectrum is observed. 

A stigmatic pencil incident on a prism becomes astigmatic 
upon emergence unless the angle of incidence is that for minimum 
deviation, so that the collimating lens is necessary to produce 
sharp images. This lens must be achromatic (corrected for 
chromatic aberration). 

77. Chromatic Aberrations and Their Correction.—The phe¬ 
nomenon of dispersion results in the chromatic aberration 
of simple lenses, as mentioned in the last chapter. Since the 
focal length of a lens depends on its index of refraction, a single 
lens will produce series of colored images of an object at different 
positions and of different magnifications. It is possible to 
design a lens which will have the same focal length for two 
wave lengths. It is then said to be ‘‘achromatized” for these 
two colors. The following method illustrates how an “achro¬ 
matic doublet,” consisting of two thin lenses of different kinds of 
glass in contact, may be designed to be achromatic for the C and 
F Fraunhofer lines mentioned in the previous section. For one 
of these lenses we have for any single wave length 
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"rh(! focal loagth/ of the two Itaiaes is related t<»/' and/" l)y 

j = ^ + y'/ = c'(«' - 1) + c"{n" - 1) (23) 

and, if f is to be the same for both tlie C- and /'-lines, we. must 
have 

c'{ni - 1) + - 1) = c'(/4 - 1) + - 1) 
or 

c'_?slr C9a^ 

The focal lengths of the two lenses for the intermediate D-line 

so that 

•/7 = W - and jr, = « “ l)c" 
7 0 Jo 

£l ^ < Z 1 /i 
c" n; ~ 1 75 

('ombining Eqs. (24) and (25) one finds readily, using Eq. (21), 
f" //" 

r. - -7 

where d" and d'’ are the dispersive powers of the two kinds of 
glass utilized. Since d' and d" are positive, the doublet must 
consist of a positive and a negative lens. If the faces of the 
lenses in contact are to be cemented together, we must have 

^ We now have three conditions imposed on the 
four radii of curvature. 
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A fourth condition may be imposed arbitrarily and may be 
utilized for other corrections such as minimizing spherical 
aberration. For simplicity, if we choose R — ^ making the 
first lens plano-convex with the plane side toward the light source, 
we obtain tlui lens illustrated in Fig. 199. Numerical examples 
are left to the problems. 

It is also possible to achromatize for focal lengths by con¬ 
structing a compound lens of two simple lenses of the same 
kind of glass separated from each other by an appropriate dis- 

■ .. 

... 

Fi«. 199. 

tance a. The equivalent focal length of the combination, /, 
is given by 

1 _ J_ 

/ rr (28) 

whercj/' and/" are the focal l(*ngtlis of th(‘ two lenses employed. 
Since 

and 

w(* have 

r = ~ ~ 

p = c"(n - 1) 

j = (c' + c")(n — J) — ac'cl'in — 1)- (29) 

If /is to be independent of wave length, we must have 

This yields 

(c'+c”)f-2«/c"(n- 1)^-0 

or 

^[c' + c" - 2oc'c"(n - 1)] = 0 



314 ELECTRICITY AND OPTICS [Chap. XV 

Since dn/d\ ^ 0, we must have 

+ ^(i//o + (i/r)_r+r 
^ ~ 2c'c"(n ~ 1) ~ 2//7" “ 2 

(30) 

so that the separation of the lenses should be equal to one-half 
the sum of their focal lengths. The correction can be made 
exactly only for one wave length, namely, for that wave length to 
which /' and /" refer. However, the departure from perfect 
achromatization is small for wave lengths not far from the one 
for which Eq. (30) is satisfied, and this method is employed in 
many types of oculars. 

78. The Scattering of Light.—In our calculation of the index of 
refraction of a gas as a function of frequency in Sec. 75, we were 
concerned solely with the magnitudes of the dipole moments 
induced by a light wave traveling through the gas. We must 
now consider the fact that the induced oscillating dipoles arc 
themselves radiators of electromagnetic waves, and these 
secondary waves are responsible for the so-called scattering of 
light by matter. Suppose a linearly polarized monochromatic 
wave is incident on an electron bound to an atom of a gas. The 
electron performs forced simple harmonic motion and gives rise 
to an oscillating dipole moment given by Eq. (8), viz.y 

e^€o sin 2irvt 
T, - ex - 

w^here e and m are the electronic charge and mass, respectively, 
£o is the amplitude of the electric vector of the incident wave 
and Po is the natural frequency of the oscillating dipole. Absorp¬ 
tion is neglected as before. This oscillating dipole will radiate 
according to Eq. (19), Chap. IX, and the light emitted by all 
the induced dipoles constitutes the scattered light. The ampli¬ 
tude P of the oscillating dipole is evidently 

P - 
4T®m(po 

(31) 

so that the average rate of emission of energy of this electron 
is, using Eq. (19) of Chap. IX, 

(32) 
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Owing to the random thermal motion of the atoms of a gas and 
the consequent random positions of these atoms, there will be no 
fixed relations among the phases of the waves emitted from the 
various atoms—with the important exception of the light emitted 
in the direction of the incident wave—so that the intensity of 
the scattered light will be the sum of the intensity contributions 
from the individual dipoles. If there are N dipoles per unit 
volume, the intensity of the scattered light will be N times the 
expression (32). As a measure of the scattering power, we 
take the ratio of the light scattered per unit volume to the 
intensity of the incident light wave. Since the latter has the 
average value c61/Stc, we find for the scattering power, 

Scattering power = 
SirNe^ 1 
3wV 

(33) 

If the natural frequency vo lies in the ultraviolet, as it does 
for a normal atom, then for visible light we may set vl/v^ >> 1, 
so that Eq. (33) takes the form 

Scattering power = 
SmVpo 

SirNe^ 
(34) 

where X is the wave length. This is the so-called Rayleigh 
scattering formula which predicts that blue light should be 
scattered much more than red light because of the inverse fourth 
power dependence on wave length. This provides an explanation 
of the blue color of the sky, the air molecules scattering the 
blue light much more than the red. The transmitted light is 
correspondingly deficient in blue light as is evidenced in the 
red color of the sun at sunset, when the sunlight reaches us 
through a long air path. 

On the other hand, for high frequencies for which >'* > > vj, 
E!q. (33) takes the form 

UrMe* 
Scattering power = 3^5^ (35) 

independent of wave length. This is the Thomson scattering 
formula, and it finds important application in the field of X rays. 
Finally, if v is almost equal to I'd, the scattered light becomes 
very intense, and then we may no longer neglect absorption 
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(^‘frictional efifeets^O* This scattering is called resonance 
scattering. 

Since all th(', inducted dipoles vibrate in the direction of the 
electric vector 6o of the incident light, the scattered light will 
be linearly polarized if the incident light is so polarized. There 
will be zero intensity of scattered light in the direction of the 
vector €o and a maximum at right angles to this direction, botl) 
directions being normal to the direction of propagation of the 
incident wave. If the incident light is unpolarized, the light 
scattered in a direction perpendicular to the direction of propaga¬ 
tion of the imddent light will be lim^arly polarized, only the 
components of the electric vectors of the elementary waves, of 
which unpolarized light is composed, which are normal to both 
the above directions b(dng effective in producing scattered light 
in this given direction. The fundamental experiments performed 
by BarklOj which showed that X rays an^ electromagnetic waves, 
depended on these facts. 

We have already memtioned the fact that the atoms of a 
substance scatter independently of one another (so that one 
may add intensities rather than amplitudes), because of thermal 
agitation, in all directions (except that of the incident wave. 
In this forward direction the scattered light combines with the 
incident light to form the refracted light wave. It is evident 
that the relative phase of the incident wave and tlie wave 
scattered by a givcm atom at a point lying ahead of this atom 
does not depend on the exact position of the scattering atom, 
so that there are fixed phase relations between the incident 
wave and the waves scattered in the forward direction. Thus 
we must add amplitudes rather than intensities, and interference 
effects become important. Owing to the phase retardations of 
the secondary scattered waves relative to the primary incident 
wave, the resultant refracted wave suffers a phase retardation 
relative to the primary wave proportional to the distance trav¬ 
ersed, i.e.y to the number of scattering atoms in this path, with 
the result that this resultant wave progresses with a phase 
velocity less than that of electromagnetic waves in empty space. 
This yields a simple and effective picture of the manner in 
which the refracted wave is produced and of the reason for the 
reduced velocity of light in material media. 
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To clarify the preceding statements, let us consider a simpkj 
model in which we imagine the atoms arranged in layers perpen¬ 
dicular to the direction of propagation of the incident plane wave 
WW in Fig. 200. This incident wave excites the electrons in the 
layer AA^ and they emit a secondary plane wave out of phase 
with the primary wave. We can find the phasfe of this secondary 
wave by a simple vector diagram. At the point B the electric 
vector oscillates sinusoidally with time, so that we can use the 
vector diagram of a.(^ circuits. Furthermore, the amplitude 
of the secondary wave emitted by a single layer of atoms is 
exceedingly small compared to that of the primary wave, and, 

Fni. 200. 

since there is no absorption, th(i amplitude of the resultant 
wave must equal the amplitude of the incident wave. In Fig. 
2b 1 €.p represents the amplitude of the primary wave at the point 
By assuming no layer of atoms. €« is the amplitude of the 
secondary wave, which we take as infinitesimal, and the sum of 
these yields 6r, the amplitude of the resultant wave. Since 
€p and €r are equal in magnitude, the vector £« must be prac¬ 
tically at right angles to either, so that the secondary wave is 
very lu'arly 90° out of phase with the primary wave. This 
does not contradict the fact that the secondary wave emitted 
by a single atom is 180° out of phase with the primary wave 
(the acceleration being 180° out of phase with the displacement 
of the electron), since we are considering the contribution at 
B of all the atoms in the layer A Ay and the individual secondary 
waves arriving at B from the individual atoms have different 
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amplitudes and phases. The sum of these individual spherical 
waves then yields the plane secondary wave of the phase which 
we have calculated. In Fig. 200 are shown the relations between 
primary, secondary, and resultant waves. The phase shift 5 
shown in Fig. 201, produced by one layer of atoms, is proportional 
to the amplitude of the secondary wave, and, as the wave 
progresses through the medium, the total phase shift in a dis¬ 
tance X will be proportional to the number of atomic layers in 
this distance and hence to the distance x for a homogeneous 
substance. 

Summarizing, w(i have the result that the refracted wave in a 
material medium is the superposition of the incident wave and 

the light scattered in the forward direc¬ 
tion, whereas in other directions wo hav(^ 
thfv ordinary scattered light as expressed 
in Eq. (33). 

79. The Propagation of Light in 
Crystals; Double Refraction.—In iso¬ 
tropic media the velocity of light is 

independent of th(j direction of propagation and of the polarization 
of the light waves. According to the theory set forth in this 
chapter, this fact indicates that the natural frequencies fo of the 
electrons which are set into oscillation in such media arc inde¬ 
pendent of the direction in which these oscillations occur. The 
dependence of refractive index on these natural frequencies is 
given essentially by the right-hand term in Eq. (12) (the equation 
itself must be modified for the case of solids), and in the region of 
normal dispersion the velocity of light should increase with 
increasing fo, the stronger the binding forces acting on the 
electrons. There exist many transparent crystals which are 
anisotropic, the binding forces and natural frequencies fo of the 
electrons being different in different directions, and a number of 
remarkable and important optical phenomena occur when light 
passes through such crystals. 

We shall confine our attention to the case for which there 
is one preferred direction in the crystal, let us say the a;-axis, 
so that all directions in planes normal to this :r^axis (the y-z 
planes) are equivalent. Thus, if the electrons are set in motion 
along the a:-axis, they will behave as simple harmonic oscillators 
of natural frequency Fo», whereas, if they are set into motion in 

Fig. 201. 
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any direction in a y-z plane, they behave as harmonic oscillators 
of a different natural frequency v^y == Voz^ Crystals for which 
there is one preferred direction are called uniaxial, and this 
preferred direction is called the optic axis of the crystal. Con¬ 
sider a plane linearly polarized light wave traveling in the direc¬ 
tion of the optic axis, i,e,, along the a;-axis. Since the electric 
vector oscillates in the y-z plane, the amplitudes of the induced 
oscillating dipoles and consequently the velocity of propagation 
of the wave do not depend on the direction of polarization. 
Hence we may introduce an ordinary index of refraction no 
(depending on voy) for propagation along the optic axis and the 
velocity of propagation Wo for this case is given by 

t-« = - (36) 
no 

Thus if light is normally incident on a crystal surface which is 
p(^rpendieular to the optic axis, it propagates through the crystal 
with a velocity Vo independent of the state of polarization of the 
light, and the crystal behaves like an isotropic substance, such 
as glass. 

The state of affairs is quite different, however, if the direct,ion 
of propagation is not along the optic axis. Consider a plane 
wave propagating in a direction 
perpendicular to the optic axis, let 
us say along the 2-axis, such as one ^ 
may obtain by allowing parallel f ^ 
light to fall at normal incidence on ^ 
a crystal surface which has been ^ 
ground parallel to the optic axis. 
In this case it is evident that the 
state of polarization of the wave 
plays an important role in determining the nature of the refracted 
wave. First, let us consider the case for which the incident wave 
is linearly polarized, the direction of oscillation of the electric 
vector being along the y-axis (the direction .4^1 in Fig. 202) per¬ 
pendicular to the direction of the optic axis. The electrons in the 
crystal are set into oscillation in the y-direction, and the phase 
velocity of this wave inside the crystal depends on the natural fre¬ 
quency Vvy in accordance with the foregoing discussion. Evidently 
this wave will propagate with the velocity vo given by Eq. (36). 
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On the other hand, if the incident wave is polarized along the 
optic axis (the direction BB in Fig. 202), the electrons in the 
crystal are set into oscillation along the x-axis. Thus the phase 
velocity of this wave inside the crystal depends on the natural 
frequency i/o«, which is different from Voy, We may now intro¬ 
duce a second index of refraction for this type of wave, so that- 
its velocity Ve is given by 

.. - I (37) 

no and n« are called the principal indices of refraction of the 
crystal. If > Ve(no < n*.), the crystal is called positive uni- 
axialf whereas, if Vo < Ve{no > n^), it is called negative uniaxial. 
For the crystal calcitc (CaCOs), a crystal important in many 
applications to optical instruments, the principal indices have the 
values (for the sodium Z)-lines) 

no = 1.6584 
He = 1.4864 

so that calcite is a negative uniaxial crystal. 
Now let the incident light have an arbitrary direction of 

polarisation relative to the optic axis, as indicated in Fig. 203. 
We can resolve the electric 
vector of the incident wave into 
X- and y-components (Fig. 203), 
and these oscillate in phase for 
the linearly polarized wave 
under discussion. [For ellipti- 
cally (or circularly) polarized 
light we would have the same 
vector diagram as in Fig. 203, 
but the two components would 

then oscillate out of phase with each other.] After passing through 
the crystal the x- and y-coraponents of € will no longer be in 
phase because of the different velocities of propagation for these 
two types of polarization. The phase difference thus obtained 
depends on the thickness of the crystal, and in general the 
emergent light will be polarized differently from the incident 
light. Suppose, for example, that the crystal of Fig. 202 is just 
thick enough to produce a phase difference of X/2 (or 180®) 
between the x- and y-components of €. For the emergent light 

Fig. 203. 
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we then can construct the vector diagram corresponding to Fig. 
203 for the incident light. This is shown in Fig. 204. The 
resultant €' of the emergent light now makes a negative angle d 
with the optic axis. The effect of the ciystal has been to rotate 
the direction of polarization through an angle of 26, We can 
readily derive a formula for the thickness of such a half-wave 

plate. The phase lag for th(‘ ^-coinpoinuit of 6 produccHl by a 
plate of thickness d is given by 

2Trvd _ 27rrdno 

V{i c 

whereas for the ^--component it is 

2irvd ^ 2irvdne 

Ve C 

Remembering that c/i' is the wave length of th(^ light (in vacuum), 
the relative phase retardation between these two components of 
6 becomes 

6 = ^(no - rie) (38) 

For a half-wave plate we set 5 = ir and have from Eq. (38) 

2 no — He 

Evidently the same results would be obtained for a given wave 
length if the phase retardation is an odd number of half wave 
lengths. In the special case of 6 = 45° in Fig. 203, a quarter- 
wave plate will produce circularly polarized emergent light. 
Further details are left to the problems. 
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There are a number of uniaxial crystals, such as tourmaline, 
which, when used as in Fig. 202, have the remarkable property 
of absorbing light polarized along the 2/-axis and transmitting 
light polarized along the a;-axis (the optic axis). Such crystals 
are called dichroic, A tourmaline plate used as indicated in 
Fig. 205 forms a simple polarizer. Incident unpolarized light 
falling on the plate emerges as linearly polarized light as indicated. 
Although the resultant electric vector of unpolarized light may 
be represented by two equal components at right angles, it must 
be remembered that, since the electric vector is the sum of many 
elementary vectors of random orientation and phases, there are 
no definite phase relations between these two components. The 
commercial material ‘^polaroid,'' compased of many small 

A 

dichroic crystals which arc lined up, acts in the above manner 
and provides a very useful and simple polarizer. 

Finally, we must consider what happens when light is incident 
on a crystal surface which is neither parallel to nor perpendicular 
to the optic axis. For simplicity, we shall consider the case 
of normal incidence on one of the natural cleavage planes of 
calcite. The natural cleavage planes of calcite yield a rhombo- 
hedral crystal as shown in Fig. 206, in which A A' gives the direc¬ 
tion of the optic axis when the crystal is of such a length BC that 
A A' makes equal angles with the three edges at A. If a narrow 
beam of natural unpolarized light falls at normal incidence 
on the face A BCD of the crystal, one observes that two refracted 
beams are formed inside the crystal and two parallel beams 
emerge from the opposite face, and these two beams are linearly 
polarized at right angles to each other. 

This phenomenon of douhU refraction or hirefringence is illus¬ 
trated in Fig. 207. The incident beam I is normally incident 
on the left-hand face at C. Inside the crystal it breaks up into 
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two beams, one of which, 0, traverses the crystal without being 
bent and the other, is refracted upon entrance in the direction 
CD and emerges parallel to the first beam. The ray 0 which 
goes straight through the crystal behaves in the crystal, in this 
experiment and in any others which one may perform, just as if 
it were in an isotropic medium. It is called the ordinary ray and 

obeys SnelFs law when the light is not normally incident on the 
surface. Its velocity is as given by Eq. (36) and is inde¬ 
pendent of its direction of propagation. On the other hand, the 
ray E evidently does not follow SnelFs law, as it is refracted for 
normal incidence. It is called the extraordinary ray, and its 
velocity may have any value between Vo and Ve as given by Eqs. 
(36) and (37). To answer the 
question as to the direction in 
which the extraordinary ray is 
refracted, one observes that if 
the crystal in Fig. 207 is rotated 
about ICO as an axis, the posi¬ 
tion of the ordinary ray 0 is 
unaltered but the ray CDE 
rotates about this axis. Hence 
CD is fixed in the crystal in the shaded plane which contains the 
optic axis and the incident ray. This plane is called a principal 
section of the ciystal for this ray, and the extraordinary ray lies in 
this plane. Figure 208 indicates the process somewhat more 
simply than Fig, 207, and in it the plane of the page is chosen to 

Fig. 208. 



324 ELECTRICITY AND OPTICS [Chap. XV 

coincide with the principal section. The ordinary ray is polarized 
in a direction perpendicular to the principal section, i.e., to the 
plane of the page, whereas the extraordinary ray is polarized in the 
plane of the page in this figure. For light not normally incident 
on the surface of a crystal, one obtains a very similar picture to 
the one which we have discussed, the ordinary ray obeying SnelFs 
law with an index no and the extraordinary ray behaving 

Fig. 209. 

anomalously. Since a quantitative investigation of double refrac¬ 
tion would lead us far beyond the scope of this book, we shall 
content ourselves with the above brief description. 

The Nicol Prism,—A beam of linearly polarized light may be 
obtained conveniently with the help of a Nicol prism or ‘-^Nicor^ 
which is constructed from a long calcite rhombohedron as follows: 
In the principal section of a calcite crystal (Fig. 209) the angles 
at B and D are 71°. The two end faces AB and CD are cut down 
so that these angles are reduced to 68°. The crystal is sliced 
along AC in a plane perpendicular to the ends and to the plane 

of the paper (the principal section), and 
surfaces thus formed are 

cemented together with Canada balsam 
of refractive index 1.55 which is less 
than that for the ordinary ray in calcit(i 

Fio. 210. greater than that for the extra¬ 
ordinary ray shown in the figure. The 

passage of a ray of light through the prism is shown in Fig. 209, 
the ordinary ray being totally reflected from the Canada balsam 
and the extraordinary ray beingj transmitted with but small loss 
in intensity. The emergent light is linearly polarized in the plane 
of the paper as indicated and the direction of oscillation is along 
the short diagonal of the diamond-shaped end face of the Nicol 
prism (Fig. 210). 

Problems 

1. The observed values of (w — 1) for hydrogen at a number of wave 
lengths are as follows: 
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X, angstroms. 6,460 4,080 3,340 2,890 2,640 2,300 1,900 
(n - 1) X 10». 1,400 1,426 1,461 1,499 1,547 1,594 1,718 

Make a plot of these data, and from two points on the curve compute the 
values of N and (or the corresponding wave length Xo) of Eq. (13) of the 
text. How does the value of N compare with the number of hydrogen 

molecules per cubic centimeter under standard conditions? 

Using these values of N and vo. plot (n — 1) as a function of wave length 
according to Eq. (13), and compare with the experimental curve. 

2. Show that the Cauchy dispersion formula [Eq. (14)] follows from 
Eq. (13) if v < < vq. Prove that the Cauchy formula [Eq. (14)] is true for a 

gas with more than one kind of electron per atom (different >/o^s) providing 

all the i^o’s are larger than v. 

3. Compute the prism angle for a crown-glass prism needed to construct 

a direct-vision prism in conjunction with an 8° flint-glass prism, if the 

Fraunhofer H-linc is to have no net deviation. 
Find the angular separation of the Fraunhofer O'- and F-lines. 
Use the data given in the text for the refractive indices of crown and 

flint glass. 
4. What is the proper angle for the crown-glass prism of Prob. 3 if, 

when used with the 8° flint-glass prism, there is to be no net dispersion 

(angular separation) of the C- and F-hnes? 
Compute the net deviation of the F-, D-, and C-lines. 
6. The following table gives the index of refraction as a function of 

wave length of two types of glass. 

Wave length, 
angstroms 

n (light 
crown glass) 

n (heavy 
flint glass) 

4,000* 1,5238 1.8059 

4,500 1 1.5180 1.7843 
5,000 1.5139 1.7706 

5,500 ! 1.5108 1.7611 
6,000 1.5085 1.7639 

6,500 1.5067 1.7485 

7,000 1.5061 1.7435 

7,500 1.5040 1.7389 

Using these data, compute the design of an achromatic doublet of focal 
length -- 20.0 cm., achromatized in focal length for wave lengths of 4,600 and 

6,600 A. Take one of the lens surfaces as plane. 
Compute and plot the focal length of the lens so designed as a function 

of wave length from 4,000 to 7,600 A. 
6. Prove that two simple harmonic motions at right angles of arbitrary 

amplitudes and phases but of equal frequency yield elliptical motion. 
Under what conditions does this ellipse become a circle? A straight line? 
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7. Compute the thickness of a quarter-wave plate of calcite and of 
quartz for the wave length X = 5,893 A. (the /)-line). The principal indices 
of refraction for quartz at this wave length are 

no *= 1.5443; n* = 1.5534 

8. Light., polarized linearly at an angle ol 30° with the optic axis of a 
quartz plate 0.43 mm. thick, is normally incident on a surface which is 
parallel to the optic axis. Assume monochromatic light of wave length 
5,893 A, 

a. What is the phase retardation in degrees due to the plate for the com¬ 
ponents of the electric vector parallel to and perpendicular to the optic axis? 

h. What is the state of polarization of the emergent light? 
9. Prove that linearly polarized light at 45° with the optic axis which is 

normally incident on a quarter-w^ave plate becomes circularly polarized 
upon emergence. What factors determine whether one obtains right- or 
left-handed circularly polarized light? 

10. If two Ni(!ols or tourmaline plates are mounted as polarizer and 
analyzer, prove that, when the angle between the principal sections of 
polarizer and analyzer is the ratio of the intensities of the light emerging 
from each is given by cos® <t>, 

11. Two Nicols are used as polarizer and analyzer with their principal 
sections at an angle of 10° with each other. What is the relative intensity 
of transmitted light if the angle is changed to 75° ? 

12. Two light sources are observed in sequence with a polarizer and 
analyzer. The emergent light is found to have the same intensity for 
angles of 30° and 60° between the principal sections of the polarizer and 
analyzer, respectively. 

Compute the relative intensities of the two sources. 
18. Linearly polarized light of amplitude £o from a Nicol prism falls 

normally on a quartz quarter-wave plate with the direction of €o making an 
angle of 30° with the optic axis of the plate. The light then passes through 
a second Nicol oriented at 60° relative to the first Nicol. 

o. What is the polarization of the light emerging from the quarter-wave 
plate? 

b. What are the intensity and direction of polarization of the beam from 
the second Nicol? 



CHAPTER XVI 

INTERFERENCE AND DIFFRACTION 

We now turn our attention to a number of optical phenomena 
which are entirely foreign to those which can be described with 
the help of geometrical optics, and these require for their explana¬ 
tion a more exact theory, viz,^ the electromagnetic theory of 
light. In particular, experiments performed before the time 
of Maxwell involving interference effects (the addition of two 
light beams to produce darkness) made it evident that some sort 
of wave theory w^as required to explain them. Wc shall approach 
these problems from the standpoint of electromagnetic theory 
and at least indicate, in those cases for which the analysis becomes 
prohibitively involved, how one can understand these phenomena 
with the help of electrodynamic laws. 

Fundamental in the study of wave optics is the 'principle 
of superposition, according to wliich the various wave trains 
which, in their totality, make up a light beam may be con¬ 
sidered as being mutually independent, so that the behavior 
of the beam as a whole may be computed as the sura of the effects 
of the elementary waves, treating the latter as if each existed 
alone. This is characteristic of all wave motion and follows 
from the fact that the equations for wave motion arc linear 
equations. The sources of electromagnetic waves of optical 
wave lengths are atoms, and a light beam is a complicated wave 
field involving the superposition of many millions of elementary 
wave trains emitted by the atoms in the source. The time 
during which an atom radiates light is of the order of 10“** sec.; 
hence even a nearly monochromatic beam of light consists of 
multitudinous elementary wave trains, each about 1 meter long, 
of random polarization and phase. In particular, the random¬ 
ness of the phases of these elementary waves is characteristic 
of any electromagnetic radiation emitted by atomic or molecular 
sources over which we have no individual control, and such 
radiation is called incoherent in contrast to so-called coherent 

327 
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radiation in which the phases of the various elementary waves 
can be controlled to have fixed values relative to each other. 

We have already mentioned the fact that one may follow 
the propagation of electromagnetic waves with the help of 
Huygens^ principle, and we must formulate this principle (which 
can be derived from the fundamental electromagnetic equations) 
in a more precise form than we have done hitherto. In its 
most naive form, Huygens^ principle states that, if one knows 
the shape of a constant-phase surface or wave front of a wave, 
the position of this wave front at a later time M may be obtained 
by treating each point of the wave front as a source of secondary 
spherical wavelets. The wave front at time M is obtained by 
constructing spheres of radii v M {v the velocity of the waves), 
using each point of the original wave surface as a center. The 

envelope of these wavelets gives 
the wave surface at time A<. In 
this form then^ is obviously a 
serious defect, inasmuch as one 
finds a wave traveling backward 

-'^4 ^ as well as one traveling forward, 
although the former does not 
exist. This is illustrated in Fig. 
211, in which we show a spheri¬ 
cal wave front A A emitted by 
a source S, the outward travell¬ 
ing wave front BB at a later 
time A^, and also the inward 

traveling wave front CC, as given by Huygens’ construction. 
The correct formulation of Huygens’ principle states that one 

can obtain the electromagnetic field at any point by considering 
each point on any closed surface (it may be taken as a wave 
front for convenience) as a source of secondary wavelets and 
superposing the effects of these secondary waves at the point in 
question. These secondary waves, however, have different 
amplitudes in different directions, and, when one takes the proper 
dependence of amplitude and phase into account, the '^back” 
wave turns out to have zero amplitude. We shall not attempt 
a rigorous formulation of the principle but shall use an approxi¬ 
mate form which is justifiable for optical wave lengths since 
they are always very small compared to the dimensions of the 
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apparatus employed in the experimental study of optical 
phenomena. 

The fact that the resultant amplitude at a given point of 
an electromagnetic field is obtained by adding the amplitudes 
of the various waves which are passing the point in question 
at any instant of time gives rise to the possibility of constructive 
or of destructive interference, just as we have encountered in 
acoustics. It is usual to divide phenomena of this sort into 
two classes, denoted by diffraction or by interference. In diffrac¬ 
tion effects one is concerned with the interference effects caused 
by a limitation of the cross section of a wave front. These 
effects are due to the fact that, in directions other than that 
of the incident wave, the mutual cancellation by destructive 
interference of the secondary Huygens^ wavelets is not complete. 
On the other hand, if one causes two (or more) beams of light 
from two separate portions of the wave front to recombine, the 
resulting variations of intensity with position are termed inter¬ 
ference effects. It must be remembered, however, that both 
these phenomena are fundamentally ascribable to the same 
process, the addition of wave amplitudes. 

80. Conditions for Interference.—There are certain funda¬ 
mental conditions which must be satisfied to obtain interference, 
some of which are inherent in the nature of light and others of 
which are necessary if the effects are to be observable experi-' 
mentally. For simplicity let us suppose that we have two 
sinusoidal electromagnetic waves which are to give destructive 
interference at a given point through which both waves pass. 
If we are to have a steady interference pattern, in the sense that 
the intensity is to stay zero at the point in question, then it is 
clear that the following conditions must be satisfied: 

1. The waves must have the same frequency and wave length. 
2. The phase difference between the waves at the point in 

question must not change with time (in our case they must be 
180® out of phase). 

3. The amplitudes of the two waves must be equal or nearly so, 
4. The waves must have the same polarization. 
In the case of the interference of light waves it therefore 

becomes essential that the two waves which combine to give 
interference must come from the same source. This is due to 
the incoherent nature of light waves. Light from two different 
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sources can never give interference patterns. For successful 
observation of interference patterns produced by light, there 
are two more conditions which must be satisfied: 

5. The difference of optical path between the two beams 
which combine must be very small, unless the light is mono¬ 
chromatic or nearly so, 

6., The directions of propagation of the two interfering waves 
must be almost the same, i.e.y the wave fronts must make a 
very small angle with each other. 

These two conditions are imposed because one deals in general 
with beams of light which are a mixture of many wave lengths, 

and it is necessary that the destructive interference at 
any one wave length be not masked by the partial or 
complete constructive interference of other wave 
lengths in the same beam. In Fig. 212 are shown two 
wave fronts traveling to the right, inclined at a slight 
angle to each other. Both waves have come from the 
same source, and let us suppose that we are dealing 
with a mixture of wave lengths. Suppose now that the 
optical path from the source to the point A is the same 
for both waves. At this point we have constructive 
interference for all wave lengths, since the phase 
difference between any two elementary waves of the 
same wave length is zero. At a point B the optical 

difference in path will be X/2 for some wave length; hence we 
obtain destructive interference for this color. However, there 
will be partial constructive interference for other wave lengths 
at this point, but this will not amount to much for waves of wave 
length nearly equal to X. On the other hand, if the path differ¬ 
ence BB is a large integer times X/2, one still obtains destructive 
interference for the color X, but the waves of wave length almost 
equal to X now completely reinforce each other and mask the 
effect. 

Condition 6 may be understood more clearly with the help 
of Fig. 213. In this figure are shown two plane waves traveling 
to the right with a small angle 6 between them. The solid lines 
represent crests of the waves and the dotted lines troughs. 
The horizontal solid lines show the regions of complete destructive 
and constructive interference, i.e., the widths of the so-called 
interference fringes. The larger the angle between the two 

Flo. 212. 
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waves^ the narrower becomes the spacing of the fringes until 
they cannot be separated even when magnified. 

There are two general classes of devices utilized in producing 
interference phenomena: (1) There are those which change 
the direction of two parts of the same wave front so that they 
later recombine at a small angle. In all such devices diffraction 

will also be present, since limited portions of the wave fronts are 
employed. (2) There are devices which divide the amplitude 
of a wave front into two parts and later reunite these two parts 
to produce interference. These devices may employ a large 
section of a wave front and minimize diffraction effects. 

81. Young’s Experiment.—^The first experiment showing inter¬ 
ference of light was performed by Young about 1800. The appa- 

Fio. 214. 

ratus is shown schematically in Hg. 214. Sunlight was allowed 
to pass through a pinhole S and then through two pinholes 
8\ and Sa. The two spherical waves emerging from Si and Sa, in 
accordance with Huygens’ principle, then interfere with each 
other to form an interference pattern on the screen, symmetrical 
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about the point A. In accordance with modern technique we 
shall consider the pinholes replaced by narrow parallel slits and 
assume that monochromatic light is employed. We now proceed 
to a calculation of the intensity of light at the point P of the 
screen as shown in Fig. 215. The slit separation d is always 
very small compared to D, as are the coordinates x of the points 
P at which the pattern is observed. Thus we have 

d << D and x << D. 
P 

If the slits /Si and S2 are equidis- 
X. tant from the source slit /S, the 
Q electric vectors at these slits will 

be ill phase and of equal amplitude. 
Either may be written as 

A sin 2rrvt 

Th(i electric vector ai P will be the 
sum of the amplitudes of the waves 

coming from Si and from S2 according to Huygens^ principle. 
Thus we have 

€\ sin 2Tr(^t — + €2 sin 2‘K^t — 

which may be written in the form 

€p == €0 sin {2'Kvi — <t>) 
with 

+ 2€i€2 cos 

(1) 

(2) 

(3) 

as one may show by vector addition of the two sine waves of 
Eq. (1). The phase <#> is of no interest in the calculation of 
relative intensities. Since ri and are practically equal and 
are very large compared to all values of x in which we are inter¬ 
ested, we may place fii — £2 = thus neglecting the variation 
of amplitude of the Huygens^ wavelets with direction and 
distance, a procedure which is justifiable in this case. Equation 
(3) then becomes 

= 2€^ 1 + cos ^(r2 — (4) 

The angle (2ir/X)(r2 — ri) is just the phasic difference of the 
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two waves arriving at P from <82 and Si, respectively. Since 
the intensity is proportional to we may rewrite Eq. (4) in 
the following form, calling Ii the intensity due to one slit, 

/i 
= 4 cos^ 

^(^2 “ ri) 
(5) 

There nmains the task of expressing (7*2 — Vi) in terms of the 
distances shown in Fig. 215. We have 

>1 - D< + (» + 

ri.O- + (x-^y 
SO that 

r| — rf ^ 2r(r2 — Vy) = 2xd (6) 

when^ we have set ri + = 2r. Since x < < Dy we may replacH^ 
r by jD without appreciable error and have finally 

fi- ri = (7) 

SO that Eq. (5) becom(\s 

which gives the intensity distribution along the x-axis on the 
screen. The intensity is maximum for 

or at the points 

Xk = 
k\D 

d 
(fc - 0, 1, 2, • • • ) (9) 

so that the maxima are uniformly spaced. 
The minima of the intensity are of intensity zero and lie at 

the positions given by 

= (fc+iV (A = 0, 1,2,3, • • • ) 

or 

xk = {k + i)^ (10) 
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The integer k is called the order of the interference. The dis¬ 
tance between two neighboring maxima (or minima) gives Ihc 
spacing S of the fringes and is equal to 

d 01) 

and this affords a direct method of determining the wave length 
of light. 

The maxima and minima may be located by an elementary 
argument. Maxima will occur whenever the difference of path 
(r2 — Ti) is equal to a whole number of wave lengths, giving us 
eonstnictive interference. Thus wt^ must have {n — 
or, using Eq. (7), 

k\D 
d 

in agreement with Eq. (9). The location of the minima proceeds 
in exactly the same manner, setting (r2 — ri) equal to an odd 

number of half wave lengths 
so as to produce destructive 
interference. 

82. Interference in Thin 
Films; Newton^s Rings.—The 
brilliant colors of a thin film of 
oil floating on water or of a thin 
soap film are due to interference 
effects of the type where the 
amplitude of the incident wave 
is divided by reflection and 
refraction at the boundaries of 
the film. Suppose a plane wave 
Part of the wave is reflected 

at the first surface and part transmitted. This second wave is 
partially reflected (internally) at the second interface and 
partially transmitted through the film. When the internally 
reflected wave impinges on the first surface, part of it is trans¬ 
mitted and part internally reflected, and so on. The phase 
differences between the first reflected wave and those emerging 
from the top surface after successive internal reflections give 
rise to interference patterns. The multiple reflections between 
the boundaries of a thin film with parallel faces is illustrated in 
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Fig. 216, the various reflected rays being focused at P by the 
lens L. 

To find the phase differences between these reflected waves, 
we must compute the path difference for a pair of successive 
waves, such as 1 and 2 in Fig. 216. In so doing we must remem¬ 
ber that there is a phase difference of 180° between the incident 
and reflected electric vector produced when a wave is reflected 
at the surface of an optically denser medium and that no phase 
change occurs when reflection takes place at the surface of an 
optically rarer medium [see Eq. (25), Chap. XIII]. Thus we 
can understand why a very thin soap film (of thickness small 
compared to the wave length of 
light) appears black by reflected 
light. 

In Fig. 217 let d be the thick¬ 
ness of the film of refractive 
index n, and let i and r be the 
angles of incidence and refrac¬ 
tion, as shown. We are to 
calculate the phase difference 
between the corresponding 
points A and B on the reflected rays, where AB is drawn perpen¬ 
dicular to the rays (1) and (2). The distance traveled by the 
internally reflected ray OCA is evidently 

cos r 

The time of traversal of the path OCA is hence 

^ c/n c cos r 

The time of traversal of the distance OB = x sin i 
is similarly 

21 sin r sin i t, = —^— 

The difference of time of traversal gives rise to a phase difference 
equal to 2rv{t2 — <i), from which we must subtract ir since 
the electric vector undergoes this change of phase at reflection 
of ray <1), whereas there is no such change at point C for internal 
reflection.* The difference of time is thus 

(12) 

= 21 sin r sin ^ 

(13) 
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<2 — = ^{n sin i sin r) 
0 

or, since sin t = n sin r, 

. . 27iZ., . „ . 2nd 
<2 — Zi = —(1 ~ sin^ r) =-cos r 

c c 

and the phase difference becomes 

or, since p/c = 1/X, 

. , An-vnd 
=-cos r — w 

^ , 4irnd 
A</> = —COS r — TT 

A 

(14) 

(15) 

The necessary condition for interference maxima is that 

A<^ = 27rik, where k is an integer, so that for maxima 

irnd 
”T“ 

cos r — TT 

or 
2nd cos r = (k + 

whereas for minima 

2nd, cos r == k\ 

2kT 

(maxima) 

(minima) 

(16) 

(17) 

where, in Eqs. (16) and (17), k is any integer or zero. 

If Eq. (17) is satisfied, so that rays 1 and 2 are out of phase, 

it is easy to see that the other reflected rays 3, 4, 6, etc., of Fig. 

216 emerge in phase with 2. This follows from the fact that the 

phase difference between any succeeding rays, such as 2 and 3, is 

evidently given by (27r/X)(2nd cos r), and, if Eq. (17) is satisfied, 

this is 2Trk, On the other hand, when the condition of construc¬ 

tive interference, as given by Eq. (16), is attained for rays 1 

and 2, we see that rays 2, 4, 6, etc., will be in phase with 1, 

whereas rays 3, 5, 7, etc., will be half a wave length out of phase 

with 1. Since the amplitude drops off strongly on successive 

reflections, there will still be a maximum intensity under these 

conditions. For the minima of intensity, ray 2 is considerably 

weaker than ray 1, so that it alone cannot completely annul 

it. However, one can show that the suni of the amplitudes of 

all the successive waves 2,3,4, etc., is just equal to the amplitude 

of wave 1, yielding complete darkness »t the minima. 
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Equations (16) and (17) show that for normal incidence 
(cos r ~ 1) strong reflection occurs when the film thickness is an 
odd multiple of a quarter wave length in the film, whereas no 
reflection occurs if the thickness is an even number of quarter 
wave lengths. This is the principle underlying the behavior of 
so-called ‘‘invisible/^ glass made by evaporating a thin trans¬ 
parent film on its surface. 

If the convex surface of a plano-convex lens is placed in 
contact with a plane glass plate, a thin film of air of varying 
thickness will be formed between 
the surfaces. The loci of points of 
equal thickness will be circles con¬ 
centric with the point of contact. 
Such an air film shows circular 
interference bands, known as 
Newton's rings. When viewed by 
reflected light, the center of the 
pattern is black and, when viewed 
by transmitted light, it is white. 
To obtain a relation between the radii of the interference rings, the 
wave length, and the curvature of the lens surface, we have from 
Fig. 218 

d = R(1 — cos 6) = 2R sin^ | 

For small angles $ we may set sin^ (0/2) equal to and place 
6 = r/R m that d is very nearly given by 

d = 
^2 

(18) 

Hence we shall observe a dark ring by reflected light if, according 
to Eq. (17) (w = 1 for the air film), 

2d cos r = k\ 

so that, using Eq, (18) and placing cos r = 1, since the angle r 
as measured with normal to the film surface is very small, 

or 
rl = fcfiX (* = 0, 1, 2, • • • ) (19) 
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giving the radii of the dark rings. Similarly, the radii of the 
bright fringes are given, according to Eq. (16), by 

* (A + i)iex (ft « 0, 1, 2, • • • ) (20) 

83. Interferometers.—The Michelson interferometer is an 
instrument which can be used to measure exceedingly small 
distances in terms of the wave length of light. The essential 
parts are shown in Fig. 219. light from a source S is collimated 
by lens L and falls on a plate Pi which is inclined at an angle 
of 46® with the beam and is lightly coated with silver on its back 
surface, so that approximately half the light is transmitted to 

M, 

mirror M% and the other half is reflected to mirror Mi, The 
plate Pg is identical with and parallel to plate Pi, except that it 
is not silvered. It is used so that the optical paths PiMiPi and 
PiMJPx contain the same thickness of glass. This is important 
whenever light of many wave lengths is used because of the 
dispersion of glass. 

The interference pattern is observed at E with the help of 
a telescope. One sees the surface of the mirror Mi through the 
half-silvered plate Pi and the surface of the mirror JIfg reflected 
in Pi. If the distances from Pi to the two mirrors are exactly 
equal and if the mirrors Mi and Mt are exactly at right angles to 
each other and at 45® with Pi, the image of Mi coincides with the 
surface of Mi, If the adjustment is not exact, thdn in effect 
a thin air Sim exists between the surface of Mi and the imi^e 
of Mg and causes the interference pattern observed. As the 
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mirror M2, let us say, is moved, the system of fringes is displaced, 
and a displacement of the mirror of one-half wave length causes 
each fringe to move to the position formerly occupied by an 
adjacent fringe. Thus, by counting fringes, extremely small 
distances may be measured. 

The Fabry-Perot interferometer utilizes the fringes produced 
in the light transmitted by an air film between two lightly silvered 
surfaces of plane parallel plates Pi and P2 of Fig. 220. The 
separation d between the reflecting surfaces is of the order of one 
(3entimeter, and the observations are made near normal incidence. 
To observe the fringes, monochromatic light from an extended 
source, of which S is one point, is made parallel by the lens Li, 
and the transmitted light is brought together to produce inter- 

L| P| P2 L2 P 

d 
Fm. 220. . 

ference by the lens L2. In Fig. 220 a ray from S is incident 
at an angle d, producing a series of parallel rays at the same 
angle, which are focused at P by the lens L2. The condition 
for constructive interference will be the same for all points on 
a circle of radius OP, so that circular fringes will be observed. 
In the actual instrument one of the plates is fixed and the other 
may be moved toward or away from it to vary the distance d. 

84. Fresnel and Fraunhofer Diffraction; Fresnel Zones.— 
When the cross section of a beam of light is limited by allowing 
the light to pass through an opaque screen containing one or 
more apertures, the distribution of intensity in the transmitted 
beam as observed on another screen or with the help of a telescope 
is called a diffraction pattern. If the diffracting screen (or 
obstacle) is placed between source and observing screen and no 
lenses or mirrors are employed, the resulting phenomenon is 
called Fremel diffraction. In general, both source and observing 
screen are at finite distances from the diffracting screen. If, on 
the other hand, one employs a plane wave of incident light, 
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either from a distant source or collimated with the help of a lens, 
and the diffracted waves are observed with the help of a telescopes 
focused on infinity or observed on a very distant screen, the result¬ 
ing pattern is known as a Fraunhofer diffraction pattern. Funda¬ 
mentally, both types of diffraction are only different asp)ect8 of 
the same basic phenomenon and are explicable in terms of 
Huygens' principle. Our first task, then, is to examine this 
principle more closely than we have up to this point and to seci 
how it explains the rectilinear propagation of light for unob¬ 
structed waves. 

Consider a spherical wave diverging from a source 0, and 
suppose we wish to compute the amplitude of this wave at a 
point P, which lies at a distance R from the source 0, utilizing 

Fig. 221. 

Huygens' principle. First we construct a spherical surface of 
radius ri < R with its center at 0, This is a wave front, and 
we must consider each element of area dS on this surface as the 
source of secondary waves which in their totality combine at P 
to give the resultant wave motion at P (Fig. 221). The relative 
phases of the secondary waves arriving at P may be readily 
obtained by noting that it takes a time r/c for a disturbance at 
dS to reach P. Thus the relative phases of these waves are given 
by 27rr/X. It is not evident what the relative amplitudes of 
these waves will be. We would expect them to be proportional 
to dS, the area of the elementary source on the wave front, 
inversely proportional to r, and this is true. In addition, how¬ 
ever, it turns out that they depend on the angle 6 in Fig. 221 
in the form (1 *4- cos ^), where 6 is the angle between the normal 
to the spherical surface and r, so that cos B varies from -f 1 at 
A to — 1 at B. This so-called obliquity factor eliminates the 
^^back" wave in the elementary Huygens' construction. 
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As we shall see presently, for an unobstructed wave the 
secondary waves from all elements of area dS mutually destroy 
each other by interference at P, except for those originating in 
a very small region around the point A; hence to all intents and 
purposes the effect is the same as if the light traveled in a straight 
line from 0 to P. 

If now some sort of obstacle, such as the opaque screen indi¬ 
cated in Fig. 221, is inserted between 0 and P, we no longer 
have the possibility of the mutual cancellation of the secondary 
waves from dS and dS' (let us say), since the screen prevents the 
waves from dS^ from reaching P. This gives rise, then, to 
diffraction, and one may obtain even larger intensities at P 

than without the screen. Fresnel has given an ingenious method 
of computing approximately the contributions from the various 
secondary waves which enables one to obtain the essential 
results without complicated integrations. Let us consider this 
method for the case of a plane wave to compute the effect 
produced at a point P ahead of the wave (Fig. 222). In a 
plane wave front we describe a series of circles about 0 as a 
center (Fig. 222) of radii ri, r2, Vz, etc., such that the distances 
from P to these various circles increase by X/2 as we go from 
one circle to its neighbor. The line PO = d is perpendicular 
to the plane. We have thus divided the wave front into zones 
called Fresnel zones or half-period elements, and a similar con¬ 
struction may be readily carried^ out for the case of a spherical 
wave, as in Fig. 221. Now the phase difference between the 
waves arriving at P from 0 and from the edge of the first zone 
(at ri) is just 
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SO that all the waves arising from points lying within this first 
zone give contributions, at a given instant of time, of the same 
algebraic sign (let us say positive). Similarly, the phases of 
the waves coming from the second zone (relative to that coming 
from 0) lie between w and 2ir, and these waves give negativcj 
contributions, those from the third zone positive contributions, 
and so on. The resultant amplitude at P will then be the sum 
of the contributions from the various Fresnel zones, a sum of 
terms of the form 

A == ai — a2 + az — Ui + • * * + an (21) 

where successive terms alternate in sign and have magnitudes 
which decrease very slowly, as we shall see, as we proceed from 
one term to the next. The magnitudes an vary because of throo 
effects; (1) the areas of the zones change slightly from zone 
to zone, (2) the distance from the zones to P increases slightly 
with increasing zone number, and (3) the angle $ referred to in 
the obliquity effect increases slowly with increasing zone number. 
The net effect is that there is a slow decrease of magnitude of 
an with n. This is also true for the spherical wave case. 

Let us compute the areas of these zones for the case under 
discussion. From Fig. 222 we see that, for the r^th circle, we 
have 

d* + r* = = d^ + n}d + ~ 

or 

rj = ndX + ^ (22) 

and for the (n — l)st circle 

= (n-l)dX+(n-l)»^* (23) 

The area of the nth zone is accordingly 

Sn-vrl- = vd\ + ^(n ~ 

or 

(24) 
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Now, in general, X < < d, so that the second term inside the 
parentheses of Eq. (24) is negligible, and we have very nearly 

Sn = TTdX (26) 

independent of the zone number. 
Returning to the question of the amplitude A as given by 

Eq. (21), we shall show that it is very nearly given by 

A — iidi 4“ dn) (26) 

ix.j that the sum of an alternating series is approximately 
half the sum of the first and last terms if the magnitudes of 
successive terms are almost equal. To see this, let us rewrite 
Eq. (21) in the form 

A di . fdi d^ I /®S ^ I , , 

(dn—2 , dt\ . dn 

and, since the amplitude from any zone is nearly equal to the 
average of those of the preceding and following zones, we may 
write 

« _ + fls 
a* = —2— 

aj + a* 

etc., 

so that all the terms in the parentheses vanish, and we are left 
with the result expressed by Eq. (26). 

If we are concerned with a problem in which a very large 
number of zones contribute, the effect of the last zone is in 
general negligible, and we have 

A = ^ (27) 

showing that the amplitude at P is essentially one-half the con¬ 
tribution from the first zone. Thus, for example, in the case 
of the unobstructed spherical wave of Fig. 221, the amplitude at 
P may be thought of as coming practically from the point A of 
that figure, so that the concept of a ray is justified from the 
standpoint of wave theory. 
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86. Application of Fresnel Zones to Fresnel Diffraction.—The 
general method of calculation of the diffraction pattern due 
to the interposition of a plane opaque screen, in which there 
are one or more apertures between the source and the observing 
screen, is to assume that the amplitude of the light wave at all 
points of the apertures is the same as if the diffracting screen 
were absent and then to sum up the contributions at the observing 
screen of the various Huygems^ soicondaiy waves emitted from the 
points within the apertures. For the Fresnel case this is a 
(iomplicated task, and we shall not attempt quantitative solu¬ 
tions, but shall examine the qualitative nature of the phenomena 
with the help of Fresnel zones. Suppose, for simplicity, that 
there is a singl(». aperture in the diffracting screen in the form of a 
rectangular slit. In tins screen we imagine the Fresnel zones 

constructed and can then ex¬ 
amine the diffraction pattern, 
the nature of which dc^pends on 
which zones are uncovered and 
can transmit waves and on 
which zones are obscured by the 
8(;reen. 

Suppose first that the center of the zone system lies well 
within the apertu^’e, corresponding to an observation point P 
which should he fully illuminated according to geomc^trical optics. 
The central zone is fully uncovered as well as a number of others, 
but, as we proceed to larger zones, they become partially covered 
and finally completcdy covered. This is indicated in Fig. 223. 
The amplitude A at the observation point is the sum of contribu¬ 
tions from the various exposed zones, and, while the areas 
decrease somewhat more rapidly when we reach the partly 
covered zones than for an unobstructed wave, we still may use 
the result that A is given by half the sum of the first and last 
terms. Since the last zone is almost entirely covered, we have 
left just half the contribution from the first zone, so that we 
obtain the same intensity as if the screen were absent. 

As a second case, suppose the observation point P is near 
the edge of the geometrical shadow, making the center of the zone 
system near the edge of the aperture. The first zone may be 
partly obscured so that the intensity is less than without the 
screen. If the first zone is completely uncovered but the next 
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ones partially obscured, the contributions 02, as, etc., may vary 
so rapidly that it would be incorrect to take half the sum of the 
first and last zone contributions. In such a case one might well 
obtain an amplitude A greater than ai/2, so that the intensity 
would be greater than in the absence of the screen. As one moves 
past the edge, successive zones become covered, and there is 
periodic variation of intensity; these are the diffraction fringes. 

Finally, if we move the point P well into the geometrical 
shadow, the first few zones are obscured. A certain zone is 
partially uncovered and succeeding zones become more uncovered 
to a considerable extent. The larger zones again become more 
and more obscured, and, in the sum of the contributions 
ai • • • an, the first and last terms an^ zero, so there is no intensity 

at this point. I'his is well within th(‘. geometrical shadow, 
and, speaking physically, the waves from the partially uncovered 
zones mutually cancel by interference. 

Having obtained a gem^ral picture, let us examine a few 
special cases more closely. Consider first the diffraction pattern 
formed by a circular opening in the diffracting screen as shown in 
Fig. 224. Suppose that the size of the circular opening is such 
that only the first zone (the point P being on the axis) is uncov¬ 
ered. Then the amplitude at P would be oi, or twice the ampli¬ 
tude in the absence of the screen. This means that the intensity 
is four times as great. If we imagine the opening now increased 
until two zones are uncovered, we have an amplitude given by 
ai — a2, and this is practically zero since ai and a2 are almost 
equal to each other. Thus it becomes clear that the intensity 
at P is a maximum when an odd number of zones is uncovered and 
a minimum when an even number, of zones is uncovered. The 
same effect may be obtained by moving the observation screen 
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with a fixed aperture. We have seen [Eq. (22)] that the radius 
of the first zone is given by V^, and, as 2) is varied, one can 
obscure or uncover a larger number of zones, leading to alternat¬ 
ing intensities along the axis. Similarly, one can follow the 
alternations in intensity as the point P moves laterally into the 
geometrical shadow. One can also discuss the diffraction pattern 
caused by a circular obstacle by exactly the same scheme. One 
obtains the surprising result that, if the obstacle obscures only 
a few Fresnel zones, a bright spot should appear at the center of 
the shadow. This has been observed experimentally and 
provides a most convincing argument in favor of a wav(^ theory 
of light. Diffraction by a straightedge may be examined with 
the help of an appropriate Fresnel zone construction, differing 
only in detail from the examples given above. Details arc 
left to the problems. 

86. Fraunhofer Diffraction*—^We shall now examine the 
Fraunhofer diffraction pattern produced by a single rectangular 
slit. For the sake of simplicity let the diffracting screen con¬ 
taining the slit be perpendicular to the incident plane wave of 
monochromatic light. The pattern is observed on a screen very 
far from the slit (at infinity) or with the help of a telescope 
focused on infinity, so that the intensity at any point of the pat¬ 
tern is due to the superposition of all the diffracted rays leaving 
various points of the aperture in a given direction. Let us choose 
a coordinate system, as shown in Fig. 225, with the origin at the 
center of the rectangular slit of width a and length 6. We start 
with the observation screen at a finite distance Zo^rom the slit 
and consider the wave arriving at P (coordinates xo^yoZo) as 
the superposition of elefSelstary waves coming from the various 
infinitesimal elements OMi^a dS of the aperture. Since we are^ 
only interested in the limiting case of infinite distance from slit 
to P, we may take the relative amplitudes of the various waves 
arriving from elementary areas dS (of equal size) as equal. In 
so doing, we neglect the slight variation with angle (the obliquity 
effect); consequently our results will be valid for small angles, 
i.€,f near the center of the pattern O'. The variations of intensity 
in the pattern are thus due practically only to the relative differ¬ 
ences of phase among the various waves. The contribution du 
to one of the components of the electric field, let us say, at P from 
the wave coming from dS is 
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du A dS sin 

corresponding to an oscillation 

i4' dS sin %rvt 

(28) 

at dS, and the sum of all the contributions from the various 
elementary areas dS of the slit is clearly 

A sin 2ir| ("-0 dS (29) 

where the integration is carried out over the whole slit area. 
In order to carry out the integration, we must express r, the 

distance from dS to P, in terms of the coordinates of dS and of P. 
We have 

r2 = (a; - xqY + {y - yoY + zl 

or, expanding and placing xl + yl + zl ^ (see Fig. 225), 

r2 = — 2xxq — 2yyo + + y® (30) 

Now xa/R is the cosine of the angle between R and the x-axis, 
which we denote by Z, and y^/R ~ m is the cosine of the angle 
between R and the Using this notation, Eq. (3*0) becomes 

Now x/R is very small compared to unity if B becomes very large 
(the Fraunhofer case), so that we may neglect terms of the order 
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x^/R^, y^lR^j and higher powers. Therefore we drop the last 
term in the parentheses of Eq. (31), take the square root, and 
expand according to the binomial theorem. The result is 

r = E — (fx + my) (32) 

Setting dS = dx dy and inserting Eq. (32) into Eq. (29), there 
follows 

U = A f jjj wn - I + (33) 

vt — ~ j by the integrand may be written in 

th(^ form 

. r/, , 2tZx\ , 2Tmy~\ . / . , 27rZx\ %rmy , 
[v*+—j'’“x + 

(34) 

When integrated with respect to 2/, the second term on the right- 
hand side of Eq. (34) gives zero, since 

If we denote 27r 

cos 
2nrmy 

h 
2 

= 0 

The first term on the right-hand side of Eq. (34) may itself bo 
rewritten as 

(, , 27rZx\ 27rww . . 27rZx 2nrmy , 
i—^ I cos —^ =s sm <#> cos c^os —^ + 

, . 27rZx %rmy 
cos <l> sin “Y- cos —~ 

A. A 
(35) 

and the second term becomes zero when integrated with respect 
to Xj since 

Thus we are left with the first term of Eq. (35) which, when 
reinserted into Eq. (33), gives us 
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tt = sin 27r| (36) 
2 

the product of two identical integrals. The integral with 
respect to x becomes 

X 
'2iri\ 

r . 2tZx 12 
x-J_.= 

2 

and similarly the other one is 

X . irla 
“% sin “T- 
Tl X 

X r . 2irm'wl 2 X irmb 
ZL— Sin —= — sin —- 

^L ^ ^ 
2 

2irm 

so that Eq. (36) yields 

u — A ' ah ' sin 27r| X - lY sin (irZa/X) sin {irmh/\) 
Trla/\ rmb/X 

(37) 

and, since the intensity of light is proportional to the square 
of u, we may write 

I __ 6sin2 a sin* jS 

h ^ 
where we have* ^set 

irla 
^ - 

vmb 

(38) 

(38a) 

and /o is the intensity for a = = 0, i.e.y at the point O' in 
Fig. 225. Equation (38) gives the variation of intensity with 
position (given by the direction cosines I and m) in the pattern. 
Since the variation is identical in the x-z plane (transverse to 
the length of the slit) with that in the y-z plane (along the slit 
length), it will be sufficient to examine the variation of intensity 
in the x-z plane. For all points P in this plane, m = 0 {since the 
angle between R (of Fig. 225) and the y-axis is 90°. Thus 
i3 = 0 and 

sin* /3 _ 

For this case, Eq. (38) becomes 

I _ sin* a 
a* 

(39) 
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and this is shown plotted in Fig. 226. The maximum intensity 
occurs at the center, falls off to zero for a = ir, 2ir, 3ir, etc., with 
secondary maxima approximately halfway between. If we 
take the positions of the maxima at the points 

val 3ir 5ir . 

the relative intensities at these points arc 

(I?)*’ 
Thus we see that the intensities of the secondary maxima fall 
off very rapidly as one proceeds away from the central maximum, 

so that practically all the light is concentrated in the central 
diffraction band. The half angle B subtended at the slit by 
this band is given by 

• A I gm ^ t = - 
a 

a 

or, for small angles. 

(40) 



8j&c. 86] INTERFERENCE AND DIFFRACTION 351 

This is shown in Fig. 227, in which we may imagine the slit 
dimension 5 to be so large compared to a that we have essentially 
a one-dimensional pattern. Note that the pattern becomes 
more extended the longer the wave length, or the narrower the 
slit dimensions. The general expression for the location of the 
minima is given by 

= hr (A; = 1, 2, 3, • • • ) 

or for the angles 

sin # = « = A- ()fc = 1, 2, 3, • • • ) (40o) 
CL 

In considering Young’s experiment on the interference of 
light by two narrow slits close together, the assumption was 

tacitly made that the slits were narrow enough and close enough 
together to cause considerable overlapping of the central maxima 
of the diffraction patterns of each slit. We shall now examine 
the problem of the Fraunhofer diffraction pattern due to two 
sUtSj each of width a and separation d between centers. We 
shall, for simplicity, consider the slit lengths large compared to 
their widths, so that we may be concerned only with the one¬ 
dimensional pattern, i.e., with the variation of intensity in the 
a:-direction on the observation screen. Even for slits not long 
compared to their width, the pattern is altered from the single 
slit pattern only in this dimension, so that we lose no generality 
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by taking m = 0 (^o = 0) for the points P at which we compute 
the intensity. 

The method of calculation is identical with that employed 
for a single slit, except that we must now carry out the integration 
over two slits instead of one. Thus we may take over Eq. (33) 
as it stands, setting m = 0, and have 

R 
X 

dx + 

(41) 

since, with an origin at the center of the first slit, the second 

extends from (d - ^ to (d + 

set x' == a; — d, it becomes 

If in th(5 second integral wc 

dx' 

Proceeding as before, each term in Eq. (41) yields a term of the', 
form of Eq. (36) with m = 0, and we obtain in place of Eq. (36), 

\l / R\ 
+ f ^ 2'kIx, \r. «/, 

= Ah[ I ^ cos -y- dx I sin 2ir\vt —^ I 

sin 27rl (42) 

The term in the square brackets may be written in the form 

B sin {2Tvt — 5) 
with 

= 2^1 4- cos ^ = 4 cos*^ (43) 

The phase b does not interest us since it does not contribute 
to the relative intensity. Note that Eq. (43) corresponds 
exactly to Eq. (8) for the interference pattern relative intensity 
in Young's experiment, since I ^ x/D. The remaining terms 
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in Eq. (42) yield exactly the relative intensity in the diffraction 
pattern of a single slit as expressed in Eq. (39). Thus we may 
write for the relative intensity in the double slit pattern 

h 
sin^ a * 

cos^ 7 (44) 

with a = 7ria/X as before, and y == Tld/\» 
Thus th(i intensity pattern is given by the product of two 

factors, one the diffraction pattern of a single slit and the other 

lb(j interference pattern of two slits, or, in other words, the 
diffraction pattern is modulated by the interference pattern. 
The minima occur when either 

or wIku) 

8inc(? 

a 

7 = (A; + |)x (k = 0, 1, 2, 3, • • 

« = (.7 + i )^ (i = 0, 1, 2, 3, • • ■)) 

irla ira . 
= sin d 

X A 

, vld 
and y = II 

(45) 

where 6 is the angle which the diffracted rays make with the direc¬ 
tion of the incident light, the conditions for minima, expressed 
by Eq. (45), may be written in the form 

d sin 0 = (k + •y)X'i 
a sin ^ — ij + l)x| 

(46) 
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The positions of the maxima ate not given by any simple relation, 
sin^ cc 

but, near the center of the pattern, we may take constant. 

Then the maxima occur approximately at the positions 

d sin 0 == fcX (47) 

Figure 228 shows a plot of the intensity curve for a double slit 
with d = 3a. 

87. The Diffraction Grating; Many Slits.—In the last section 
we have seen that the interference effect between two slits 
produces comparatively sharp maxima in the otherwise slowly 
varying diffraction pattern of a single slit. This effect can be 
enhanced tremendously by utilizing a large number N of slits, 
and in this form one has a plane diffraction grating which is 
remarkably effective in enabling a spectral analysis of light 
consisting of a mixture of wave lengths. 

Suppose we have a number N of similar parallel slits of width 
a along the a;-axis, with a spacing between centers equal to d. 
This is the generalization of the double slit problem. The 
analysis proceeds along exactly the same lines as that of the 
double slit, and we shall omit the details of the calculation, 
since it becomes unnecessarily involved when complex numbers 
are not employed. The result takes a form just like the result for 
a double slit, i.e., the relative intensity distribytion is that 
of the diffraction pattern of a single slit multiplied by the inter¬ 
ference intensity distribution due to a system of N slits. This 
can be expressed in the formula 

/ _ /sin^ a\ sin* {irNld/\) , 
To “ \ ^) sin* (tW/X) 

Note that this reduces to Eq. (44) for the special case iST = 2. 

The factor has already been discussed; hence we need 

only concern ourselves with the second factor in Eq. (48). 
Different points of the intensity pattern correspond to different 
values of {, and, as I is varied, both the numerator and denomina¬ 
tor of Eq. (48) take on values between zero and unity. The 
oscillations of the numerator 

(n) 
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pve rise to a pattern of interference fringes which are very 
closely spaced, since the function becomes zero whenever I has 
values given by 

i = sin O' = 0, 1. 2, • • ■ ) (49) 

In between these minima there will be maxima of the interference 
fringes which will have different values because of the variations 
of the denominator, which is 

and because of the factor 

tions of 

disregard the varia- 

/sin* «\ 
the hast intense maxima occur when the 

denominator (d) equals unity, i.e,, when 

irld 
= 0‘ + iV 0‘ = 0, 1,2, ) (50) 

For values of I satisfying Eq. (50), the numerator (n) is also 
unity, and the intensity of these weakest maxima is given by 

sin* cY 
I = Iq —^ - = /() (least intense maxima) (51) 

This equation holds very nearly in the region of the center of 

the diffraction pattern where we may set equal to unity. 

This region of validity of Eq. (51) becomes larger, the smaller the 
individual slit width a. 

In the same approximation the most intense maxima occur 
when the denominator (d) is equal to zero, and these are called 
the principal maxima of the interference pattern. Their location 
is determined by 

or for angles $ given by 

J * sin 9 = (fc = 0, 1, 2, • • • ) (52) 
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as 

Now since we have the relation 

^ sin® (vNld/\) 
sin® (ttW/X) 

we have for the intensities of the principal maxima 

sin® a 
I = N®/o: (principal maxima) (53) 

Thus the ratio between the intensity of the most* and least 
intense maxima is N®, and this can be made extremely large by 
making N very large 

In a diffraction grating, N is very large, of the order of magni¬ 
tude of 10^ or 10®, so that the secondary maxima are extremely 
w(iak compared to the principal maxima. Th(‘. latter, for 
monochromatic light, appear then as a series of very sharp 
lines with intensities given approximately by Eq. (53). These 
lines occur at angles d with the normal to the grating giv(m by 
hlq. (52), and this is the ordinaiy diffraction grating formula, 
with k determining the so-called order of the spectrum. The most 
intense secondary maxima will be adjacent to the principal 
maxima, and we can compute the nilative inbmsities. The 
intensity of the A;th principal maxima (every Nth maximum is a 
principal maximum) as given by Eq. (53) occurs for 

Nl = 
kN\ 

d 

INd 
= kN 

and the neighboring secondary maximum occurs for 

‘f-m + l 
Its intensity is very nearly given by 

/ = /( 
sin^ a 1 

lo 
sin® a 1 

and, since N is very large, 

(54) 
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so that Eq. (54) becomes 

with the result that the intensity is (4/9ir2) times that of the 
neighboring principal maximum. This is about 4.5 per cent, 
and, though small, it is not entirely negligible. 

Finally, we must consider the resolving power of such a 
grating, i.e.^ its ability to produce separated spectral lines for 
two almost equal wave lengths. This is determined by the 
width of the principal maxima, and the customary criterion of 
resolving power is to consider tAvo spectral lines just distin¬ 
guishable, if the center of the principal maximum for one lies 
at the minimum adjacent to the principal maximum of the other. 
This is called the Rayleigh criterion and is an arbitrary critc^rion, 
since the relative intensities of the lines in the incident light 
play a roki as W(dl as the positions of the principal maxima in 
practice. The position of the ccmter of a principal maximum 
occurs for I = fcX/rf ac(;ordirig to Eq. (52). This may be written 
in the form 

Now the neighboring minimum occurs wh(ni 

irVNd . .V 
—== {Nk -h l)7r 

[this makes sin- {rVNd/\) vanish without having sin^ {irVd/X) 
vanish] or, rewritten, 

VNd 
X = iVT/fc + 1 

Hence the angular separation of these two positions is given by 

- i = AZ = A , (55) 

The condition that two corresponding principal maxima for two 
different wave lengths X and (X + AX) have an angular separation 
AZ is given by Eq. (52) as 

Al = ^AX 
a 
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and, substituting in Eq. (56), we find 

(56) 

This ratio is called the resolving power (more precisely, the 
chromatic resolving power) of the grating and increases both with 
the order k of the spectrum and with the number of lines N in 
the grating. 

88. Resolving Power of Optical Instruments.—In our study 
of optical instruments we have entirely neglected diffraction 
effects, and we must now examine the limitations of these 
instruments due to these effects, to the wave nature of light. 
A lens, for example, will not produce a point image of a point 
object, even if all aberrations are con-ected, since the lens, being 
of finite cross section, transmits only a limited portion of a wave 
front incident on it and thus produces a diffraction pattern. 
An optical system is said to be able to resolve two point objects 
if the corresponding diffraction patterns are small enough or 
separated enough to be distinguished as two separate patterns 
in the image. 

Let us consider the case of a telescope objective focused on 
infinity, and for the moment let us suppose that the lens is square, 
rather than circular, and of side a. The central diffraction 
pattern of a point object on the axis of the telescope, such as a 
very distant star, will subtend a half angle a at the objective 
given by [compare Eq. (40)] 

Since most of the light falls in this central pattern, we may 
disregard the presence of the outer diffraction pattern. For a 
circular lens the computation proceeds along lines similar to 
that given for the rectangle, but the integration is more difficult. 
The result turns out to be that the diffraction pattern consists 
of a central circular disk, on which falls about 86 per cent of the 
light, surrounded by a series of light and dark rings of rapidly 
diminishing intensity. The half angle subtended by this central 
disk is given by 

a 1.22| 0.61X 
r 

(58) 
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where Z> is the diameter of the lens and r its radius. Suppose 
we agree that two point objects can just be resolved if the center 
of the diffraction disk of one just lies at the periphery of the 
diffraction disk of the second. One then sees immediately that 
two stars, for example, will be resolved by a telescope objective 
if their angular separation 0 at the objective is equal or greater 
than a as given by Eq. (58). Thus we must have 

1.22X 
D 

(59) 

in order to have resolution of the two images. We see that the 
larger the diameter of the objective, the greater will be the resolv¬ 
ing power. 

The eye itself may be considered as a telescope. If wc take 
the diameter of the pupil to be 2 mm., then, for light of wav('. 
length 5,500 A. Eq. (59) shows 
that the minimum angular sep¬ 
aration of two point objects 
just resolvable by the eye is 
about 1 minute of arc. 

Let us compute the radius p 
of the central diffraction disk 
formed by a lens of a point ob¬ 
ject at a distance I from the lens 
(Fig. 229). From the figure 
tan 82 == D/2lf so that, using Ec 

Fig. 229. 

wc see that a = p/I and that 
[. (58), we have 

P ^ 0.61X 
I I tan dz 

If the medium in which the image is formed has a refractive index 
712, then the wave length X is related to the wave length Xo in air 
by X = Xo/n2. Thus we may write 

O.6IX0 

712 tan Bz 
(60) 

The resolving power of a microscope is conveniently expressed in 
terms of the linear separation, rather than angular separation, 
of two point objects which can just be resolved. The distance 
given by Eq. (60) gives the separation of the centers of the 
diffraction disks which are the images of two point objects 
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separated by a distance po. The object separation po is related 
to the image separation p by the magnification of the lens, which, 
according to Abbe\s sine condition [Eq. (14), Chap. XIV], is 

_P _ ni sin Bi 
Po n2 sin 02 

where ni is the refractive index of the medium in which the object 
is located and Bi is the half angle subtended by the lens at the 
object. Since 02 is a small angle (for a microscope objective 
it is the order of 10“^ radian), we may replace tan 02 in Eq. (60) 
by sin 02 and obtain from Eq. (61) 

O.6IX0 

ni sin 
(62) 

The quantity ui sin 0i is called the numerical aperture of the lens. 
The larger the numerical aperture, the better the resolving 
power of the lens. For air the upper limit is about 0.95 in 
practice, but, by immersing the object in oil as is done in high- 
powered microscopes, the numerical aperture may be increased 
to 1.60. Physically, the effect of the oil is to enable one to use 
waves of shorter wave length than in air. 

The numerical aperture of the unaided cycj, using a pupillary 
radius of 1 mm. and an object distance in air of 25 cm., is 

N.A. = m sin = 1 ■ = 0.004 

so that the smallest separation of two points just distinguishable 
as separate objects at a distance of 25 cm. is, according to Eq. 

(62), 

po 
0.61 X 5 X 10- 

4 X 10-3 
= 0.075 mm. 

for light of wave length 5,000 A. 
On the other hand, for a microscope objective with a numerical 

aperture of 1.60, this distance is smaller in the ratio 

1.6 
0.004 

= 400, 

so that it is about 2 X 10"“® cm., about half a wave length of 
light. Since the microscope gives 400 times the resolving power 
of the naked eye, the magnifying power should be at least 400 
times to take advantage of this. The ratio of the numerical 
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aperture of a micromope objective to that of the eye is called the 
normal magnifying power of a microscope, A lower magnifyinp; 
power will not take full advantage of the resolving power avail- 
able, and a larger magnifying power gains nothing in detail 
and loses in brightness of the image. However, if enough 
light is available, one frequently employs higher magnifying 
powers for ease of observation. One defines the normal magnify¬ 
ing power of a teles(;ope in a similar manner. 

Problems 

1. Two plane waves, each of wave length 6,000 A., travel at an 
angle 6 as show^n in Fig. 213 and form interference fringes. If the smallest 
separation between neighboring light and dark fringes is to be 0.01 mm., 
what is the largest anghi $ allowable if the fringes are to be observed? 

2. In Young’s experiment the separation of the slits is 0.1 mm., and the 
distance from slits to screen is 1 meter. Compute the distance between 
neighboring dark fringes: 

a. For blue light of wave length 4,000 A. 
h. For red light of wave length 7,000 A. 
3. Plot the relative intensity of light on the screen in Young’s experi¬ 

ment as a function of x, the coordinate of the point P of Fig. 215. Prove 
that the average intensity is the same as would exist in the absence of inter¬ 
ference, so that no energy is lost in the process of interference. 

4. Suppose that the light employed in a Young’s experiment consists of 
a mixture of two wave lengths Xi and \2, almost equal to each other. Derive 
an expression for the difference of these wave lengths such that one of the 
maxima for one wave length is located at the position of a neighboring 
intciiisity minimum of the other. 

6. Find the thickness of a plane soap film of refractive index 1.33 for a 
strong first-order reflection of the red hydrogen line of wave length 6,563 A. 
at normal incidence. What is the wave length of the light inside the film? 

6. Two pieces of plane plate glass are placed together with a piece of 
paper between the two at one edge. When viewed at normal incidence 
with sodium light (X = 5,893 A.), eight interference fringes per centi¬ 
meter are observed. Find the angle of the w^edge-shaped air film between 
the plates. 

7. If the radius of curvature of the convex surface of the plano-convex 
lens used in producing Newtnn’s rings is 5 meters, what will be the diameters 
of the fifth and tenth bright rings for the red hydrogen line, X = 6,563 A.? 

8. Newton’s ring experiment is performed with violet light using a con¬ 
vex lens surface of radius of 10 meters. The radius of the kth dark fringe 
is 4.0 mm. and that of the (k + 5)th dark fringe is 6.0 mm. Find the wave 
length of the light used and the ring number k, 

9. Prove that the sum of the amplitudes of all the reflected rays except¬ 
ing the first in Fig. 216 is equal to the amplitude of the first reflected ray. 
Assume normal incidence. 
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10. A so-called ^‘zone plate** is constructed by constructing 20 Fresnel 
zones of the type discussed in Fig. 222 and by blocking off the light from 
every other zone. This zone plate, when held in the light from a distant 
point source, produces a bright spot on its axis 100 cm. from the plate. 

Assuming a wave length of 5,000 A. compute: 
a. The areas of the zones on the plate. 

h. The radius of the zone plate. 
c. The intensity of light at the bright spot relative to its value at this 

point in the absence of the zone plate. 
11. Plot a graph of the intensity of light at the point P of Fig. 224 as a 

function of distance D from a fixed circular aperture. A qualitative result 

is all that is wanted. 
How would this graph he altered if the circular aperture were replaced by 

an opaque circular obstacle of the 

same radius? 

12. Consider light from a line 
source S perpendicular to the plane 
of the paper in Fig. 230, passing a 

straightedged obstacle B to a screen, 

as shown, the wave fronts being 

cylindrical. Show that the Fresnel 
zones are strips on the wave front cc. 

Find expressions for the angles sub* 

tended by these zones at the source 
S, 

13. In the experiment of Fig. 230 
discuss qualitatively the variation of intensity on the screen as a function of 

X, the coordinate of P, when the obstacle AB is in the position shown. Show 

that the diffraction pattern consists of a scries of parallel light and dark 
fringes, the maxima being located at values of x (positive) given approxi¬ 
mately by 

® = y^(.a + b)M2k + 1) 

and the minima at 

X * -W &)2A;X 

Make a rough plot of intensity as a function of x for both positive and 
negative values of x, 

14. One wishes to observe the bright spot at the center of the shadow of a 

circular disk of radius 2.0 mm. which is placed in the beam of light coming 

from a point source far enough away so that the incident light on the disk 

may be taken as a plane wave. For a wave length of 6,500 A., how 
far must the screen be from the disk so that the first two Fresnel zones are 

covered by the disk? 

16. A single slit Fraunhofer diffraction pattern is formed with white 
light. For what wave length of light does the third maximum in its diffrac- 
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tion pattern coincide with the second maximum in the pattern for red light 
of wave length 6,500 A.? 

16* A plane light wave of wave length 5,000 A. is normally incident 

on a slit 1 mm. wide and 4 mm. long. A lens of focal length 100 cm. 

is mounted just behind the slit and the light focused on a screen. Find the 

dimensions of the central part of the diffraction pattern in millimeters. 

17. In the double-slit pattern show that, if the slit separation is twice the 

width of either slit, all the even-order interference maxima will be missing. 

What orders will be missing if the ratio is 3:1? 

18. Compute*the relative intensities of the first five principal maxima of a 
double-slit diffraction pattern for which d = 5a. Sketch the intensity dis¬ 

tribution for a sufl5ciently large angular range to include these five maxima. 

19. Plot the intensity distribution in the diffraction pattern formed by a 

grating of four equally spaced slits with d = 3n. 

20. The limits of the visible spectrum are nearly 4,000 to 7,000 A. 

Find the angular breadth of the first-order visible spectmm formed by a 

plane grating with 12,000 lines per inch. 

Does the violet of the third-order visible spectrum overlap the red in the 

second-order spectrum? If so, by how much (approximately)? 

21. Light containing two wave lengths of 5,000 and 5,200 A. is 

normally incident on a plane diffraction grating having a grating spacing of 

10”’’ cm. If a 2-meter lens is used to focus the spectrum on a screen, find 

tlie distance between these two lines (in centimeters) on the screen: 

a. For the first-order spectrum. 

h. For the third-order spectrum. 

22. The sodium yellow line 5,893 A. is a doublet with a separation 

of 6 A. between the two lines. What is the minimum number 

of lines of a grating which will just resolve these lines in the third-order 

spectrum? 

23. Compute the approximate radius of the central diffraction disk 

formed on the retina of the eye by a distant point object, assuming a pupil¬ 

lary diameter of 2.0 mm. The distance from the cornea to the retina is 

about 1 in., and the index of refraction of the vitreous humor, the medium in 

which the image is formed, is 1.33. 

24. Find the angular separation in seconds of arc of the closest double 

star which can be resolved by the 40-in. diameter Yerkes refracting telescope. 

26. Two pinholes, 1 mm. apart, are made in a screen and placed in front 

of a bright source of light. They are viewed through a telescope with its 

objective stopped down to a diameter of 1 cm. How far from the telescope 

may the screen be and still have the pinholes appear as separate sources for a 

wave length of 5,000 A.? 
26. An oil-immersion microscope will just resolve a set of test lines drawn 

112,000 to the inch, using blue light of wave length 4,200 A, Find 

the numerical aperture of the objective. 

27. Ultraviolet light of wave length 2,750 A. is used in photo¬ 

micrography in conjunction with a quartz-lens microscope. Assuming a 

numerical aperture of 0.85, what is the smallest separation of t jro points 

which can be resolved? 
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28. If the focal length of a microscope objective is 5.00 mm. and its 
numerical aperture is 0.85, what focal-length ocular should be used? What 
is the smallest separation of two objects just resolvable with this microscope? 

29. Prove that the maxima of the function (sin* a)/a* occur at values of a 
given by 

a = tan a 

Find the first three roots of this equation (excluding a = 0), compute the 
corresponding values of the function, and compare with the approximate 
values (2/3ir)®; (2/5ir)2 and (2/7ir)2, obtained by taking the maxima at posi¬ 
tions halfway between the minima. 



CHAPTER XVII 

HEAT RADIATION 

Wo have repeatedly stressed the fact that the radiation 
emitted by matcirial bodies as heat, light, X rays, etc., is due 
to the combined effects of many molecules and atoms and is 
incoherent. The nature of this radiation depends, in general, on 
the mode of excitation of the emitting atoms and molecules and 
on their specific properties. By the nature of the radiation 
we mean its spcujtral distribution, polarization, intensity, etc;. 
In this chapter we shall concern ourselves principally with that 
fonn of radiation known as heat or thermal radiation because of 
the mode of excitation. It is a familiar fact that material 
bodies begin to emit invisible heat radiation (infrared waves) 
as they are heated; then, as the temperature is increased, they 
emit visible radiation with increasing intensity in the short 
wav(;-length region. Furthermore, the total rate of emission of 
energy increase's veiy rapidly with increasing temperature. 

The transfer of energy by thermal radiation is a process 
which differs fundamentally from the corresponding transfer of 
energy by thermal conduction. In the latter case one can 
describe uniquely the process by a single vector (the heat cur¬ 
rent density) at each point of the medium, and this vector 
depends on the local temperature gradient. On the other hand, 
thermal radiation at a given point of space or of a material 
body cannot be represented by a single vector and does not in 
general depemd on the temperature or temperature gradient at 
the point in question. In fact, it is necessary to employ the 
concept of an infinite number of rays passing through a point in 
all conceivable directions to describe the radiation state, and 
these rays are all mutually independent with regard to their 
intensities, frequencies, and polarizations. Even two rays of 
equal frequency and polarization and opposite directions of 
propagation do not combine to form a single ray but maintain 
their individual identities. 

365 
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89. Emission and Absorption; Eircbhoff’s Law.—In building 
appropriate definitions to describe the state of radiation, we 
must keep in mind the fact that radiation of finite energy content 
can never be emitted from point sources but must come from 
bodies of finite size, and, inasmuch as the radiation emerges 
througli the surface of a radiating body, one may say that radia¬ 

tion always comes from, impinges on, or passes 
through an element of surface but not a point. 
We shall, in our study, employ the approxima¬ 
tion of geometrical optics, so that we may 
follow the propagation of energy in terms of 
bundles of rays. This implies that we may 
choose elementary areas large compared to the 
wave lengths under consideration (dA > > X^) 
but very small compared to ordinary dimen¬ 
sions. Furthermore, it should be pointed out 
that one can never realize a beam of strictly 
parallel rays, but the bundle of rays must form 

a converging or diverging cone of given direction and small solid 
angle. 

Let us consider a material medium or a region of empty 
space which is being traversed by radiation and focus our atten¬ 
tion on an elementary area dA at a given point. This area 
will be traversed by rays propagating in all directions, and th(^ 
energy crossing this area per 
unit time in a direction making 
an angle B with the normal to 
this surface (Fig, 231) will 
evidently be proportional to 
dA cos By ix.y to the projection of 
dA on a plane which is perpen¬ 
dicular to the chosen direction. 
The bundle of rays traversing 
dA in this direction forms a small cone or narrow pencil with vertex 
at dA, and the energy flow from or to dA per unit time will be pro¬ 
portional to the solid angle dw at the vertex of this cone (Fig. 232). 
Thus we may write for the energy per unit time (the energy flux 
dF) crossing dA in a bundle of rays subtending a solid angle dw 
at dA, when the bundle has a direction B with the normal, 

dF ^ K CO& B dA dia (1) 



Sec. 89] HEAT RADIATION 367 

The proportionality constant K is called the specific intensity 
or brightness of this pencil of rays. This brightness K may 
be further resolved into the specific intensities of those rays 
in the bundle corresponding to different frequencies or wave 
lengths in the radiation and hence has a definite spectral composi¬ 
tion. If we consider those rays, the frequencies of which lie 
between v and -f rf*', we may write as the contribution to K 
from this spectral range dv^ 

dK ^ K, dp 
so that 

K = f’K,dv (2) 

Now let us consider the nature of the radiation which is 
in thermal equilibrium with a material body. For this pur¬ 
pose consider an evacuated enclosure or cavity of arbitrary 
shape, and let us suppose that we have attained thermal equilib¬ 
rium. The walls of the enclasure will all be at the same tempera¬ 
ture Tj and they will be constantly emitting and absorbing 
radiation. If the walls are constructed of material which 
absorbs aU the radiation incident on them and reflects none, we 
say that they are black. The radiation in the cavity will then 
be isotropic and homogeneous, the specific intensity K will be 
independent of position and direction at any point in the radiation 
field, and there wall be no preferred state of polarization. The 
energy density of the radiation, which has the same value at every 
point, will depend only on the temperature of the w^alls, and there 
will be a definite spectral distribution of this energy density at 
each temperature. Under these conditions w^e say that the radia¬ 
tion is blacky or that it is bhek^hody radiation. 

There is a simple relation between the brightness K and 
the energy density u of radiation at a given point for the case 
of isotropic radiation. To obtain this relation, we must consider 
the energy arriving at the point under consideration coming 
from all directions. Consider the energy arriving at an ele¬ 
mentary area dA in a direction B with the normal to dA. In 
time dt the energy transported across dA by these rays fills an 
infinitesimal cylinder of slant height cdt (Fig. 233), where c is 
the velocity of propagation, and of base dAy so that it fills a 
volume equal to c cos BdtdA. According to Eq. (1), this energy 
is equal to 
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dF • dt = K COS 6 dA doo dt 

Hence this bundle yields a contribution du to the energy density 
equal to 

, K cbs $ dA do)di I tt , /o\ 
du ==-— = - Kdca (3) 

c cos 6 dtdA c 

The total energy density u is the sum of the contributions from 
all the pencils crossing dA in all directions, and this is evidently 
obtained by integrating Eq. (3) over all these directions. Hence 
we may write 

-IP 
and, since for isotropic radiation K is independent of direction, 
this becomes 

kC 
u = — \ c C J 

Fia. 233. 

using the fact that the solid angle encompassing all directions 
at a point is 47r. 

Now consider the case for which the walls 
of our enclosure are perfectly reflecting sur- 

/ faces (diffuse reflectors) for all wave lengths, 
/ so that no energy is absorbed. In this case 

/ the radiation in the cavity may have any 
composition whatsoever, since the various 

/-cdt rays do not interact with each other and 
^ A ^ there is no mechanism by which the existing 

Fia 233. spectral distribution or the state of polariza¬ 
tion may be altered. If we introduce a 

tiny black body which is at the same temperature as the 
walls, it will absorb and reemit radiation so that, after thermal 
equilibrium for the whole system is established, we again have 
black-body radiatioii at temperature T, Since the black body 
so introduced may be made as small as we please, its contribution 
to the energy of the system may be disregarded, and it acts 
simply as a catalyst which insures the black-body distribution 
and composition of the radiation in the cavity. The black-body 
radiation in a perfectly reflecting enclosure (with a speck of black 
body at temperature T) may be said to have a temperature 
T equal to that of the black body with which it is in equilibrium, 
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since its space distribution and spectral composition are deter¬ 
mined uniquely by this temperature. If we place an arbitrary 
body (not black) of the same temperature in the cavity, the state 
of the radiation must remain unchanged (thermal equilibrium). 
Now the total rate of energy flow' across a closed surface surround¬ 
ing this body must be zero; hence 

A’ = j*Sn dA = a 

closed 
surface 

where Sn is the normal component of the Poynting vector at dA. 
F is composed of the incident radiation /^o which enters the sur¬ 
face from outside; the reflected radiation Fr\ the radiation 
F,, emitted by the body; and finally the radiation Ft which is 
transmitted through the body and emerges through the other side 
of the surface. Henec' we must have 

F, = Fr + Fe+ Ft (5) 

In traversing the body, a fraction a of the incident radiation 
is absorb(>d. a is called the ahsorptiori power of the body. 
Evidently for the radiation absorbed, we must have 

aFo = Fo - Fr ~ Ft (6) 

From Eqs. (5) and (6) there follows immediately 

aFo =7 F. 

or, dividing by A, the ania of the body. 

E is the emissive power of the body at temperature T, and we see 
that it is greatest when a = 1, f.e., for a black body which 
absorbs all incident radiation. For this reason, a black body is 
often referred to as an ideal radiator, and it yields the maximum 
thermal radiation which can be obtained at a given temperature. 
For such a black body, Eq. (7) becomes 

^ J (8) 

where S is the emissive power of the black body. Using this 
relation, Eq. (7) may be written as 
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(9) E^aM 

The above relations hold, not only for the total radiation of .aT 
frequencies, but also for that portion of the radiation in 
spectral range dp, i.e., for frequencies lying between v and v + cti. 

We have thus obtained a fundamental result known as Kirch- 
hoffs law: The emissive power of a body is equal to its absorption 
power multiplied by the emissive power of a black body at the 
same temperature. It simplifies the discussion of radiation 
considerably, since the emission of radiation by any material can 
be referred to that emitted by an ideal black body, and the proper¬ 
ties of the body which one requires are simply its absorption 
power. If a body is transparent for any range of frequencies or 
wave lengths, it cannot radiate energy of these wave lengths. 
The ratio of the emissive power JB of a body to that of a black 
body E is termed the emissivity €. It is equal to the absorbing 
power a of the body. 

Finally, let us consider the dependence of the emissive power 
of a surface element on the angle B which the emitted bundle 
of rays makes with the normal to the surface. The energy 
incident on the area element dA per unit time in this bundle of 
angular opening dw is given by Eq. (1), so that we have 

dFo == K cos 6 dA d<a 

If dA is an element of area of a black body, all this incident 
energy will be absorbed, and, if the radiation state is not dis¬ 

turbed (thermal equilibrium), 
the body must emit a similar 
bundle; hence 

dFe — K coBd dA do) (10) 

The specific intensity or bright¬ 
ness K is that corresponding 
to black-body radiation and is 
related to the energy density 
thereof by Eq. (4). To calculate 
the total emission rate from this 

surface element, consider the radiation emitted in the hollow 
conical bundle between 6 and 6 + d0 (Fig. 234). The solid 
angle of this hollow cone is dw « 2ir sin $ dOy since, on a sphere of 
radius r, the area of the ring is 
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27rr2 sin B dB 

\ by definition dw is this area divided by r-. Thus from 
4. (10) we have 

Fe = 2irK <*os B sin B dB (11) 

as the emission rate from one side of the surface element dA 
(the outside). The value of the integral is so that we obtain 

F, = irKdA (12) 

The energy radiated per unit time per unit area is the (;missive 
power E of the surface, so that 

E = tK (13) 

Equation (13), when appluul to soure(\s emitting visible radiation, 
is known as Lamberfs law, and, although ,we have shown it to be 
true for black bodies, it turns out (experimentally to be very nearly 
true for some sourc(^s which are not black. When applied to such 
cases, the brightness K of the source will in general be different 
from that of a black body. 

90. Radiation Pressure.—When an electromagnetic wave 
impinges on the surfaces of a material body, it exerts a mechanical 
force on the body in the direction of propagation of the wave. 
In g(meral, one must deal with both normal stresses (pressures) 
and shearing stresses on the surfaces of bodies on which radiation 
is incident (or from which radiation is (unitted). For the case 
of normal incidence, or for the cas(i of isotropic radiation which 
is fundamental in our study of heat radiation, one has to do with 
th(i pressure of radiation, and, before proceeding fartiier with tlui 
question of the laws of emission of thermal radiation, we must 
derive the relation betw^een radiation pressure and the energy 
density of the radiation exerting the pressure. 

Let us start with the simple case of a plane electromagnetic 
wave normally incident on the surface of an ideal metal of 
infinite conductivity. Inside the metal there can be no electric 
field and hence no magnetic field nor electromagnetic wave; 
therefore the metal is a perfect reflector. There will be a surface 
current of surface density j induced on the conductor surface, as 
shown in Fig. 236, and this alternating current emits the reflected 
wave. The magnitude of j will be such that its magnetic field 
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inside the metal just cancels that of the incoming wave and 
doubles the magnetic field just outside the conductor surface. 
The electric vectors of the incident and reflected waves must be 
equal and opposite at each instant of time just outside the metal 
surface, since the tangential components of 6 are continuous at 
any boundary. The mechanical force on the induced surface 
current exerted by the magnetic field of the incident wave is 
directed into the metal, as is evident from Fig. 235, and this is the 
origin of the pressure of radiation for this case. 

Consider an element of area of width dw and length ds as 
shown in Fig. 235. The current flowing on this elementary 

area forms a current element 
i ds = j dw ds = j dAf and, since 
the magnitude of the force on this 
current element is given by 

dF = i ds Bi = jBi dA 

we have, for the pressure p, 

P = jBi = fxojHi (14) 

where Bi is the magnetic induc¬ 
tion vector of the incident wave just at the metal surface. There 
remains the task of computing the surface-current density j, and 
this can be readily accomplished with the help of the Ampere cir¬ 
cuital law. The lines of H produced by the surface current run 
parallel to the surface at right angles to j, and they are in opposite 
directions just outside and inside the surface (compare Prob. 40, 
Chap. V). Hence we employ the closed path shown in Fig. 235 
to compute the m.m.f. and find for the magnitude of the magnetic 
intensity produced by the surface current on either side of the 
surface 

Hr = 2nrj (15) 

where we have written Hr to indicate that this is the magnetic 
vector of the reflected wave just at the surface. Inside the 
metal we have Hr equal and opposite to Hi, so that no wave exists 
in the metal, whereas just outside the surface we have for the 
resultant magnetic intensity 

H ^ Hi + Hr ^ 2Hi - 2Hr 

Using Eqs. (15) and (16) in Eq. (14), we then find 

(16) 
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V = St (17) 

and, since the electric energy density is zero just at the con¬ 
ductor surface, we may write 

= w (18) 

where u is the electromagnetic energy density just at the sur¬ 
face of the reflector. It is interesting and instructive to consider 
the mc^aning of this result in terms of the energy densities of the 
incident and n^flected waves. The incident wave has an energy 
density given by 

+ (i») 

where Si is the magnitude of the Poynting vector, and we hav(‘ 
used the fact that for a plane wave Similarly, 
for the reflected wave 

- &(••«+««) - T=f w 

According to Eq. (16), //< = Hr at the conductor surface; h(‘n(H‘ 
we may write for the pressure as given by Eq. (17), 

^ 27r 27r 

or 
go//? . Mo//? 
4t 4t 

== Ut -j- Ur (21) 

so that the radiation pressure on the metal equals the sum 
of the energy densities of the incident and reflected wav(?s 
at its surface. 

Thus we are led to the conclusion that electromagnetic waves 
transport not only energy (the flow given by the Poynting 
vector) but also momentum. The momentum carried by thes(i 
waves may be thought of as distributed throughout space in a 
manner similar to the energy; hence we may introduce the 
idea of a space density of electromagnetic momentum g. Con¬ 
sider an element of area AA of the conductor surface* In time 
dt, the momentum incident on this surface is given by 

giAAcdt 
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and the momentum carried away from this surface element by 
the reflected wave in time dt is similarly given by 

Qr Ailc dt 

where gi = Qr for the case under consideration. The chang(} 
of momentum in time dt is the sum of these two expressions, 
and consequently the force on the area AA is, by Newton’s 
second law, 

AF = c(gi + gr) A/4 

and the pressure 
p = cgi + cgr (22) 

Comparing this with Eq. (21), w^e see that the momentum density 
in an electromagnetic; wave is related to the energy density, 
and hence to the Poynting vector, by 

More generally, the vector relation between g and S is 

(23) 

(23a) 

I’lic; con(u;pt of electromagnetic momentum now enables us 
to compute the pressure of isotropic radiation. Before doing 
so, however, we must emphasize the fact that the relation 
given by Eq. (18) for normal incidence is true, not only for 
perfect reflectors, but for arbitrary surfaces, if by u wl mean 
the total electromagnetic energy density at the surface. For 
example, let us suppose that we have a perfectly absorbing 
surface, so that there is no reflection, and that this surface 
is at such a low" temperatures that it emits negligible radiation. 
Then Eqs. (22) and (23) show that the pressure of normally 
incident radiation is still equal to the energy density at the 
surface (p = Ui and Ur = 0), but, since the energy density is 
now that of the incident wave alone which, according to Eqs. 
(21) and (16), is half as large as for the case of perfect reflection, 
the pressure is reduced by half also. Now let us consider radia¬ 
tion impinging on an element dA of the surface of a body at an 
angle 6 with the normal. The momentum transferred to the 
surface element in time At is that contained in a slant prism of 
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hmc and slant height c At (Fig. 236), This gives rise to a 
lor(5(^ AF in the direction shown giv^en by 

AF = gc cos 0 AA 

or, since by Eq. (23) g = w/c, this can be written as 

= u cos 6 AA (24) 

Tliis gives rise to a component normal to the surface 

AF„ == u cos^ 6 AA (25) 

and a tangential (component 

AFi = u cos 6 sin d AA (26) 

or isotroj>i(r radiation (u independent of direction) the tangential 
components of AF as given by Eq. (26) sum up to zero, and the 

])ressiire is obtained from Eq. (25). Since the average value 
of cos- 6 ovi)r a hemisphere is this yields for the pressure of 
isotropic radiation 

P = I (27) 

This is a fundamental equation in radiation theory. One more 
remark may be appropriate at this point. Led us suppose that 
we have a hollow enclosure containing black-body radiation at 
a temperature T, and let the temperature of the walls (which may 
be of arbitrary composition) be T, so that the system is in thermal 
equilibrium. From the second law of thermodynamics we 
must also have mechanical equilibrium for this system, since 
otherwise mechanical work could be obtained at the expense of 
the internal energy of an isolated system, all parts of which 
are at the same temperature. It thus follows that the pressure 
must be the same at all points of the walls, independent of 
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thoir absorbing or reflecting powers, and related to the energy 
density by Eq. (27). 

91. The Stefan-Boltzmann Law.—We have already pointed 
out that the energy density of black-body radiation depondvS 
only on its temperature. The law expressing this dependences 
was found experimentally by Stefan and later deduced theo¬ 
retically by Boltzmann. This law states that the emissive 
power of a black body is proportional to the fourth power of 
its absolute temperature. If, as before, E denotes the emissive 
power of a black body, we can write 

E = (tT^ (28) 

where <r, the Stefan-Boltzmann constant, has tlui valuci 

<T = 5.74 X erg/cm.2-sec.-®C.^ = 
1.37 X 10“'" cal./cm.2- sec.-°C.^ (28a) 

We have written Eq. (28) for the emissive power E, but we can 
readily see that a similar expression holds for the, radiation 
density u. Using Eq. (13) to express E in terms of K, and 
Eq. (4) to express K in terms of u, we find readily that- 

u = —K = -E = —T* = aT* (29) 
c c c 

The thermal radiation from many real surfaces which are not 
black is found experimentally to be very nearly proportional 
to the fourth power of the absolute temperature, but with a 
proportionality constant which is smaller than or as given by Eq. 
(28a). This is the case for metals such as platinum and tungsten 
and also for carbon. For such surfaces, one can write 

E = eaT^ (30) 

where €, the emissivity, has already been referred to and is 
equal to the absorbing power of the body (Eq. 9). The emissivity 
of a hot tungsten-lamp filament is about i. 

The Stefan-Boltzmann law can be derived theoretically from 
the second law of thermodynamics in the following manner; 
Consider a cylinder with a tightly fitting frictionless piston 
and perfectly diffuse reflecting walls which contains black- 
body radiation at temperature T. Let the volume in which the 
radiation is present be V and the walls be at the temperature T 
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(Fig. 237). As we have shown, the radiation exerts a pressure 
p = on the piston and the energy density u is uniformly 
distributed throughout the volume. The internal energy of the 
system is uV, where u depends only on the temperature T, Now 
let an amount of heat dQ flow reversibly into the system. Th(^ 
first law of thermodynamics requires that 

d(uV) ^dQ-vdV 

where dV \b the volume change corresponding to a small motion 
of the piston. Since 

d{uV) = udV + Vdu 

the above equation may be written in the form 

6/(2 = F du +{p + u) dV 

and since p = w/3, this takes the form 

dQ dT + 5M dV 
O 

(31) 
Fig. 237. 

where we have used the fact that u is a function of T only and 
not of V. 

Now the second law of thermodynamics requires that the heat 
dQ added in a reversible process divided by the absolute tempera¬ 
ture T (the change of entropy) depend only on the initial and 
final states of the system and not on the intermediate stages of 
the process. This is equivalent to saying that, if we divide 
each term of Eq. (31) by the left-hand side becomes a total 
differential. Thus in the equation 

dS = 
dQ 

the coefficient of dT, 

\dT) 

’ (H) 

dT + ^^dV (32) 

414 • 
and ^ the coefficient 

V 6 1 

, is Since, in general, the rules of partial dif- of dV 

ferentiation demand that 
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there follows 

Remembering that u depends only on 1\ this becomes 

I du _ A du A u 
Tdf'~ srdf 

or 

Separating variables, 

and integrating 

or 
In u 

du __ M 
dT ~ ^ 

du .dT 
T”‘‘T 

In + (*onstant 

u = aT^ (33) 

which is identical with Eq. (29). 
92. The Planck Radiation Law; Wien’s Displacement Law.- - 

There still remains the fundamental question of the spc^ctral 
composition of black-body radiation. The Stefan-Boltzmann 
law gives the temperature dependence of the total ernu’gy density 
u, but places no limitations whatsoever on the possibhi spectral 
distribution of this energy density among the various wave 
lengths or frequencies of the electromagnetic spe(;trum. Indeed, 
thermodynamics alone cannot provide a unique answer to this 
question. The situation is somewhat analogous to the theory 
of gases. Here thermodynamics can provide us with a number 
of relations involving the internal energy of the gas, but the 
velocity distribution of the molecules is a matter for atomic 
theory. The researches of Planck, about 1900, in connection 
with this problem led to the foundations of the now famous 
quantum theory. Classical physics led to an impossible law, 
as we shall point out shortly. It would be far beyond the scope 
of this book to attempt a discussion of the quantum theory, 
and we must content ourselves with a statement and discussion 
of the results. 

If we denote the energy density per unit frequency range of 
the spectrum by then in the frequency range dv there will 
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be a eontributioa to the total energy density equal to Up dv^ and 
consequently 

n = Up dv (34) 

As we have seen in connection with the Stefan-Boltzmann law, 
th('- brightness K and the emissive power of a black body E are 
proportional to u. Similarly a proportionality exists between 
these quantities per unit frequency or per unit wave-length 
range. Although it is more convenient from a theoretical 
standpoint to deal with frequency distribution, it is more con¬ 
venient experimentally to deal with the distribution with 
n\spect to wave length, and we must say a word or two concerning 
th(*se two modes of description. For the sake of concreteness, 
consider the emisvsive power of a black body. This can Ixi 
written as 

E ^ £ Exd\ = £ E,dv 

where E\ and Ep are the emissive powers per unit wave length 
and frequency range, respectively. The spectral distribution 
of black-body radiation can be specified by giving either E\ 
as a function of X or by giving Ep as a function of v. The result¬ 
ing formulas will not be identical in form, as we can see from the 
following: Consider a range of frequencies between v and v + dv 
and a corresponding range of wave lengths d\. The energy 
of these wave lengths radiated per unit time per unit area by a 
black body is given by ' 

dE = Epdv -= Ex dX 

and, since the relation between frequency and wave length is 

c 
~ X 

we have immediately 

so that Ep and Ex are related by the equation 

Ex = 

c 
Similarly for energy densities, w(' have ux — Up. Equation 
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(35) must be kept in mind when translating experimental results 
from a wave length to a frequency scale. Figure 238 shows the 
shape of the curves for E\ for black-body radiation as a func¬ 
tion of wave length, as obtained from experiment. In these 
curves Ti > T2 > Tz. Note that the maxima of these curves 
moves toward shorter wave lengths as the temperature is 
increased, as one would expect from the color changes which occur 
when the temperature of a body is raised. The curves of Fig. 

238 may be looked upon as plots 
of ux as function of X, since there 
would only be a difference of a 
scale factor. 

The equation describing the 
normal spectrum (black-body 
spectrum) obtained by Planck is 
as follows: 

hv 

- 1 

(36) 

Here X is a fundamental atomic 
constant known as Planck’s con¬ 
stant and has the value 

h = 6.65 X erg-sec. 

k is Boltzmann’s constant (1.37 
X erg/°C.) and T the abso¬ 
lute temperature. For the wave¬ 

length distribution we have, using the fact expressed by Eq. (35), 

Svhc 1 Ci/X^ 
Ux = he 

^ 1 
(37) 

gxr _ 1 

which is the form usually employed by experimentalists. There 
are two limiting cases for which we may rewrite Eq. (36) which 
have interesting historical significance. For long wave lengths, 
i,e,y for a frequency range such that hv << kTj we may expand 
the exponential in Eq. (36) and neglect powers of hvjkT higher 
than the first. We have 

hv hv {hvY 
= 1 4. ~ - -I_ 

^ kT^ 2l(kTy + 
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so that very nearly 
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Kv 

ekT ^ 1 hv 
kf 

Using this value in Eq. (36), there follows 

Up (38) 

which is valid for the long wave-length portion of the spectrum. 
It is of interest to note that this is the law predicted by classical 
th('ory for the whole spectral range and is known as the Rayleigh- 
Jeans law. It is obviously an impossible law, since it predicts an 
infinite energy density at any finite temperature. 

On the other hand, for the high frequency, short wave-length 
region of the spectrum in vrhich hv > > kl\ we may set 

and obtain 

hv hv 

^kT 

Up (39) 

This is the form of the radiation law obtained by Wien by semi- 
('mpirical methods and is known by his name. It is more con- 
^'enient than the Planck law for calculation purposes in the short 
wave-length rc^gion of the spectrum. 

The Stcfan-Boltzmann law may be derived from Planck's law 
by performing the integration indicated by Eq. (34). We have 

Swh r ” v^ dv 
u = “ITT- 

and, if we set hvjkT = a;, we find 

dv = 

and substituting 

»Kk*T* C” x^dx 

“ cW Jo 6* - i a'n (40) 
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where 

_ x^dx 
“ c«A»Jo - 1 

The integral has the value irVlS, so that 

_ 
" 15cW 

Finally, the position of the maximum of any one of th('. curv(*s 
of Fig. 238 may bo obtained by differentiating Eq. (37). Flie 
result may be expressed in the form 

\mT = constant = 6 (41) 

where Xm is the wave length for which E\ is a maximum and tlici 
constant h has the numerical value 

h = 0.288(cm.-°C.) 

This important law is known as Wien^^ displacement law and was 
derived by Wien with the help of thermodynamic considerations. 

93. Photometric Units; Visibility of Radiant Energy.— 
Photometry is the study of the measurement of radiant energy 
in the visible region of the spectrum and, although bearing an 
intimate relation to the general theory of radiation discussed 
in the preceding sections, it possesses its own peculiar units which 
differ somewhat from those which we have been employing. 
There are two reasons for the unique procedure adopted when 
dealing with visible radiation; (1) Photometric units were 
introduced independently of those employed in other branches 
of physics, very much as the calorie is introduced in heat as an 
energy unit; and (2) the human eye is not equally sensitive to 
radiations of different wave lengths (even in the visible range), so 
that the so-called relative visibility of radiation must be included 
in the definition of photometric units. 

Suppose we consider an experiment in which an observer 
looks at a number of essentially monochromatic sources. The 
energy radiated from the sources is varied so that they all seem 
equally bright to a normal observer. It is found that the least 
radiant power (£x) is needed for the source of wave length 
5,550 A. The ratio of E\ for this source to its value 
for any other source at wave length X to produce the sensation 
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of equal brightneHS for a normal eye is called the relative visibility 
of this wave hmgth. Figure 239 is a plot of this relative visi¬ 
bility as a function of X for a normal eye. Because of this 
selective action of the eye, a statement of the emissive power E 
in absolute units of a light sour(»e is insufficient to determine its 
visual effect. For this reason it is conventional to introduce a 
photometric unit of the total rate of emission of energy (energy 
flux) called the lumen. For a normal observer it is equivalent 
to watt at the wave length 5,550 A. The numerical 

factor of 621 arises from th(j arbitrary definition of a unit of light 
intensity (see below), the candle. Thus 1 watt radiated at 5,550 
A. equals 621 lumens of light flux, and at any other wave 
length the luminous flux Fi in lumens is given by 

Fi - v(\) ^ 621F (42) 

where F is the radiated power in watts from a monochromatic 
source of wave length X, and v{\) is the relative visibility of 
this wave length. The ratio Fi/F is called the luminous efficiency 
of the source. If the source is not monochromatic, then one 
must integrate over the spectrum to obtain the luminous effi¬ 
ciency. The number of lumens radiated per unit area of the 
surface of the source is called the luminosity of the source, L, 
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It is clf'ar that the contribution to L from the wave-length range 
rfX is giv(»n by 

(/L.= mv(\)Exd\ 

when', E\ d\ is in watts per square centimeter, so that the lumi¬ 
nosity becomes 

L = 62l£‘°v(X)ExdX (43) 

in lumens p('r square centimeter, and the luminous efficiency is 
given by 

dx 
Eff. = 621* (44) 

jjExdX XOO 

E\ d\ is equal to iJ, the emissive power of the surface 

in watts per square centimeter. 
The intensity / of a light source of dimcnisions sufficiently 

small that it may be considered a point source is defined as 
follows: Consider a pencil of rays 
coming from the source of solid 
angular optming do) (Fig. 240). 
Then the intensity of the source 
in the direction n is defined as 

Fig. 240. luminous flux crossing th(^ 

area dA^ divided by the solid angle do). Thus we have 

dFi 

Source 

I = 
do) 

and, if the source radiates uniformly in all directions, 

47r 

(45) 

(46) 

where Fi is the total flux coming from the source. The photo¬ 
metric unit of intensity is an arbitrary unit, the candle, defined 
as a source which (emitting uniformly in all directions) emits 
47r lumens, so that 1 candle equals 1 lumen per unit solid angle. 
Actually the standard candle was chosen arbitrarily, the unit 
flux obtained from Eq. (46). Experiment then yielded the 
numerical factor 621 used above. 

Consider the area dA' of Fig. 240. The illumination E' on 
this surface is defined as the ratio of the luminous flux incident 
on it to its area. Thus 
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re — ^El ^ 
dA^ dco ' dA' 7^ 

(47) 

using Eq. (45) and the fact that dA' = do> for the case in 
which dA' is normal to r. If the normal to the surface element 
makes an angle B with the direction of the pencil, then Eq. (47) 
evidently ])ecomes 

E' = ^ cos ^ (48) 

Finally, the brightness of a pencil of rays has already 
been defined by Eq. (1). The same definition is utilized in 
photometry except for a change^ in units. If, in Eq. (1), one 
(expresses dF in lumens, then we have 

„ 
cos B AA (49) 

where A/ = dF/dw in candles, and K is measured in candles 
per square centimeter. Equation (49) gives the brightness of 
the radiation at the surface AA. If the surface element A A 
is self-luminous, then K is called the brightness of the surface. 
If such a surface obeys Lambert\s law [Eq. (12) or (13)], it is 
convenient to define a new unit of brightness jB, the lamhert, 
defined by the relation 

B =-irK (50) 

where K is in candles per square centimeter. Thus the lambert 
is 1 /tt times as large as the candle per square centimeter. 

In terms of this new unit, Eq. (13) becomes 

E E' B (51) 

since, for a black surface, the illumination (energy incident 
per unit time per unit area) equals the emissive power E. For 
surfaces which diffusely reflect or transmit light and obey a 
law similar to Eq. (10) for the reflected or transmitted light 
(this is essentially Lambert^s law), one writes for the vsurface 
brightness 

B =: kE' (52) 

where k is the fraction of the incident light reflected or trans¬ 
mitted and J5' is the illumination of the surface. 
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Problems 

1. Consider a black body of surface area A, the surface of which is 
everywhere convex, so that none of the radiation leaving any point of this 
surface impinges on any other point of the surface. If this body is com¬ 
pletely surrounded by an enclosure and both the body and the walls of the 
enclosure are at absolute temperature T\^ show that the rate at which 
radiant energy falls on the body is given by 

(rAT\ 

independent of the area and nature of the walls. 
Using the above result, show tliat, if the temperature of the black body is 

maintained at T2 and that of the surrounding walls at T\^ the net rate of 
gain or loss of ('nergy by radiation of the black body is given by 

Aa{T\ - T\) 

What condition must be satisfied in order that this law be valid? 
2. Taking an average temperature of the entire earth^s surface as IS^'C. 

and assuming the earth as a whole (including the atmosphere) to a])sorb the 
surVs radiation like a bla(?k body and to radiate like a black body, compute 
the absolute temperature of space (f.e., of the radiation in empty space 
around the earth). The solar energy falling on the earth's 8urfa(;e is to be 
taken as 2 cal./cm.^-min,, when the sun is directly overhead. 

3. A closed graphite crucible at 27°C. is placed inside a furnace whose 
walls are maintained at a tcmiperature of 1730*^0. Treating the crucible as 
a black body of surface area 40 cm.2, compute the initial rate at which the 
crucible gains heat by radiation from the furnace walls, using the result of 
Prob. 1; 

If the crucible has a mass of 100 grams and a mean specific heat of 0.3, 
how long will it take for the crucible to reach a temperature of lOO^C.? 
(Note that the ratio of crucible to wall temperature is small compared to 
unity for the temperature range in question.) 

4. A small hole of area aA is made in the walls of a furnace containing 
black radiation at temperature T. A black sphere of radius r is placed in 
front of the hole at a distance R from it. Neglecting the radiation from the 
furnace walls, show that the energy falling on the black sphere per unit time 
is given by 

y.2 

5. A black sphere of 8 cm. diameter is placed in front of a small opening 
(area ~ 10 cm.*) in the walls of a furnace with its center 40 cm. from the 
opening. The walls of the furnace are so shielded that only the radiation 
from the opening is incident on the sphere. The steady temperature 
reached by the sphere is the same as that which can be maintained by sup¬ 
plying 2.80 watts of electrical power to a heating unit inside the sphere, when 
the hole in the furnace walls is covered. 

Compute the temperature of the furnace radiation, assuming it to be 
black. 
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6. Prove that the not rate of heat transfer per unit area by radiation 
})etween ^wo plane parallel surfaces of s(*paration small compared with the 
linear dimensions of the surfaces is given by 

rj) 

<1 t2 

where ti, and €2, are the einissivities and absolute temperatures of the 
two surfaces, a is the Stofan-Boltzmann constiint. 

7. The temperature of the water in a thermos bottle is observed to fall 
from 100 to 99°C. in 30 min. when the outer shell of the bottle is at 25°C. 

Kind the time required for the temperature of the same amount of ice water 

at O'^C. in the bottle to rise to 1°C. if the outer shell is at 20'’C. Neglect 

the heat loss through the (M>rk stopper. 

8. The inner Ijot tie of a thermos bottle (unsilvered) contains 1 liter of ice 

water and th(i outer shell is at 25"’('. The (‘niissivity of a glass surface is 
0.85, and the ar(‘a of the o\iter surface of the inner bottle (and also the inner 

surface of the outer shell) is 175 cni^. Neglecting heat losses through the 
<tork, find how long it takes for the wateKs temperature to rise from 0°C: 

a. To 1X\ 
h. To 10"C. (Use reasonable approximation ineihods to obtain the 

answer to part 6.) 
9. Prove that Wien’s displacement law follows from 1h(^ Planck formula 

(36) or (37) or from Kq. (39). 
10. The wave huigth of maximum intensity in the solar spectrum is 

5,000 A, Assuming tln^ sun to radiate lik(^ a black body, compute 

its surface temperature, 

11. To what temperature would the blackened spherical bulb of a ther¬ 
mometer rise in bill sunlight if the bulb were surrounded by a perfectly 

t ransparent, evacuated glass bulb? The surroundings are at 25“C. Assume 

the thermometer bulb to behave like a black body. 
12. Compute the ratio of the im^reasc^ of brightness of black-body radi¬ 

ation at a >vave length of 6,410 A. for an increase of temperature from 

1200 to loOO'^abs. 
13. Starting from Planck’s hiw'^ or from Wien’s law fEq. (39)], prove that 

the maximum value of the emissive pow(^r per unit wave-length range 
(Ex) for bla<;k-body radiation varies with the fifth powder of the absolute 

temperature. 
What is the. corresponding law for 
14. What is the radiation pressure of black-body radiation at a temper¬ 

ature of 6000®abs.? 
16. Starting from Planck’s law, compute the value of h in Wien’s dis¬ 

placement law [Eq. (41)]. 
Repeat the calculation starting from Wien’s law [Eq. (39)], and compare 

your result with the experimental value. 
16. Find the brightness of a sheet of paper which is placed on a desk at a 

distance of 1 meter below a 250 cp. point source. The paper diffusely 

reflects 80 per cent of the light incident upon it. 
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of, 311-314 

Hpheric.al for splierical mirrors, 270 

Aberrations, lens, 283jf. 

Abhenry, 128 

Absorption band, 302 

Absorption power, 369 

Abvolt, 86 

Accommodation, 288 

Achromatic doublet, d(‘Hign ol, 311- 

313 

Achromatic prism, 310 

Action at a distance, 1 

Alternating‘<*nrrent circuits, ele- 

mimtary, 137^. 

Alt(jr.nating-(Hirrent s(*ries circuit, 

143-145 

resonance of, 144 

Ammeter-volt nmter method of resist¬ 

ance measurement, 67-68 

Amp6re, 81, 94, 223 

Ampere, definition of, 98 

as unit of current, 57 

Amp^.re’s circuital law, 103^. 

Ampere’s constniction, 110 

Amp^re^s rule, 94j^. 

Araperian currents, 229 

Anastigmatic lens, 286 

Angular dispersion, 309 

Anomalous dispersion, 306 

Antenna, forced oscillations of, 180- 

181 
Aperture, numerical, 360 

Aplanatic lens, 287 

Aqueous humor, 288 

Astigmatic pencil of rays, 264 

Astigmatism, 284-285 

Atomic magnetic moments, perma¬ 

nent, 227 

Atomic number, 187 

B 

Back electromotive force, 76-77 

Barkla, 316 

Barrel distortion, 287 

Beam of light, definition of, 264 

Biot-8avart law, 99ff. 
Birefringence, 322/. 

Black body, emissive and absorp¬ 

tion pow(‘r of, 369 

Black-body radiation, 367 

relation of brightness to, 368 

Black-body spectrum, law of, 380 

Boltzmann, 376 

Boundary conditions, on I) and 

214-215 

on H and B, 235-236 

Branch points, 71 

Brightness, of radiation, 366-367 

relation of radiation energy 

density to, 368 

of a surfa(!e, 385 

C 

Candle, as photometric unit, 384 

Capacitive reactance, 141 

Capacitor, 45 

Capacity, coeffiiuents of, 44 

of a cylindrical condenser, 47-48 

definition of, 45 

of a parallel-plate condenser, 47- 

48 

of a spherical condenser, 47 

units of, 45 

Cauchy dispersion formula, 306 

Cavity definitions, of D and £, 211 

of H and B, 243 

389 
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Cell, electromotive force of a, 60 

Charj^e, conservation of, 2, 42 

dimensions in e.s.ii. and in e.in.u., 

97 

ratio of electrostatic to electro¬ 

magnetic unit of, 98 

Charge density, polarization, 208 

siirface, 29 

Charges, induced on conductors, 15, 

41/. 
on dielectric surfaces, 207-208 

Chromatic aberration, 284, 285 

correction of, 311-314 

Cinde of least confusion, 285 

Circuit, free oscillations of an LC, 

148 
series a.c., 143-145 

transients, in an RC^ 151 

in an i2L, 149-150 

Circuits, coupled, 131 

elementary a.c., 137/. 

power in, 145-147 

magnetic, 240-241 

Circular mil, 69 

Circularly polarized waves, 163 

Coaxial cable, capacity of, 47-48 

inductance of, 130 

Coefficient, of capacity, 44 

of coupling, 132 

Coercive force, 233 

Coherence of radiation, 170, 327 

Cold emission, 189 

Coma, 284, 286-287 

Compound lens, 288 

Compound microscope, 291-292 

Condenser, cylindrical, capacity of, 

47-48 

definition of capacity of, 45 

discharge of, 151 

energy stored in, 50/. 

force of attraction between plates 

of, 51 

parallel-plate, capacity of, 45-46 

spherical, capacity of, 47 

Condensers, 44/. 

in parallel, 48 

in series, 49 

Conduction current, 55 

ratio to displacement, current in 

conductors, 158-150 

C^oiiduction electrons, 188 

Conductivity, electrical, 68/ 

temperature dependence of, 69 

theory of, 195-197 

Conductors, electric field at surface 

of, 29 

of electricity, 14 

electromagnetic waves in, 259-260 

stress on charged, 51 

Confusion, circle of least, 285 

Conjugate points of a lens, 276 

Conservation, of charge, 2, 42 

of mechanical energy, 16 

Conservative nature of the electro¬ 

static field, 34-35 

Continuity equation, for charge and 

current, 154-155 

for polarization (charge and cur¬ 

rent, 219 

for steady state, 57/. 

for waves on transmission line, 173 

Continuous spectrum, 311 

Convection current, 55 

Converging wave, 264 

Cornea, 288 

Coulomb, 23 

as unit of charge, 3 

definition of, 25, 98 

Coulomb\s law, 23/. 

in dielectrics, 206 

Couj.’ed circuits, 131 

Coupling, coefficient of, 132 

Cross product of vectors, 84-85 

Crystals, dichroic, 322 

uniaxial, 319 

Current, dimensions of, in e.s.u. and 

in e.m.u., 97 

displacement, 155-159 

effective, or r.m.s., 146 

ratio of conduction to displace¬ 

ment in conductors, 158-159 

ratio of electrostatic to electro¬ 

magnetic, 98 

Current density, electric, 56 
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Current loop, magnetic moment of, 

108 

torque on, 111-112 

Currents, Amperian, 229 

eddy, 122 

(electronic, 188 
limited by space charge, 190-195 

nature of the vector field of 

steady, 58~59 

transient, in RC circuit, 151 

in /2L circuit, 149-150 

Curvature of the field, 284, 286 

C-ylhidrical condenser, 47-48 

D 

l)<‘nsity, of electron!agn(‘tic momen¬ 

tum, 373-374 

of (energ>', in (dectric field, 52 

in magnetic field, 133 

Derivative, directional, 7 

D(^viation of a prism, minimum, 

307-309 

Diamagnetism, 226, 232 

Dichroic (crystals, 322 

Dielectric constant, 206 

of gases, 212-213 

Dicdectric; sphere, mechanical force 

on, 222 

Dielectrics, Coulomb^s law for, 206 

displacement current in, 218 

induced charges on, 207-208 

plane electromagnetic weaves in, 

248-253 

polarization of, 204-205 

Differential form of Ohrri^s law, 70 

Diffraction, 265, 339ir. 

application of Fresnel zones to, 

344r-346 

Fraunhofer, 340, 346^. 

Fresnel, 339 

Diffraction grating, 354-358 

Diffraction pattern, of a double 

slit, 351-354 

of many slits, 354-358 

of a single slit, 346-351 

Diopter, 278 

Dipole, extended, 180 
fixed electrostatic, 36 

magnetic, 108 

potential and field of, S5ff. 
radiation from oscillating, 178-185 

Dipole moment, dcifinition of, 37 

permanent atonne, 205 

Dipoles, induced, 204, 205 

Direct-(uirront circuits, powder input 

to, 75 

Directional derivativ(i, 7 

Direct-vision prism, 310 

Discharge of a (*()ndenKer, 151 

Dispersion, angular, 309 

of light, in gases, 303j9’. 

in solids and li(piids, 306^. 

Dispersive power of a small-anghj 

prism, 309-310 

Displacement current, 155-159 

in conductors, 158 159 

in di(d('ctrics, 218 

Displacenumt vector, eh^ctric, 23/r. 

Distance of most distinct vision, 288 

Distoiiion, image, 287 

Diverging wave. 264 

Dot product of vectors, 84 

Double layer, 40 

Double refraction, 318.^. 

E 

Eddy currents, 122 
Eddy-(airrent brake, 126 

Effective curnmt or voltage, 146 

Effective resistance, 77 

Electric current , 55^. 

density of, 56 
Electric displac(nnent vector, 2SJ)‘. 
Electric field, intensity of, 3jf. 

law^ of refraction of, 216 

motion of charged particles in, 

IfiiT. 
Electric intensity, at conductor sur¬ 

faces, 15 

equation for lines of, 10-11 

lines of, 4 

relation to magnetic intensity in 

plane waves, 164 

units of, 4-5 
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Electric susceptibility, 210 
Electrical conductivity of metals, 

195-197 

Electrical images, method of, 42/, 

lOlectrical resistance, 61 

Electricity, conductors of, 14 
Electromagnetic momentum, den¬ 

sity of, 373~374 

Electromagneti<r reaction, 123 
Electromagnetic system of units, 

86, 97 
Electromagnetic waves, circularly 

polarized, 163 

in conductors, 259-260 

elliptically polarized, 163 

intensity of, 165 

linearly polarized, 163 
plane, in dielectrics, 248-253 

in vacuum, 159-164 

transverse nature of, 161-162 

traveling plane, 253 

on wires, 171-178 

Electromotive force, 5 

back, 76-77 

of a cell, 60 
induced, 120/. 

motional, 123/. 

seat of, 59 

sources of, 59/. 

thermal, 197 

units of, 8 

Electron, 2 

charg(? on, 3 

spin of, 227 

Electron theory of Ohm\s law, 195- 

197 

Electronic currents, 188 
Electronic origin of magnetic prop¬ 

erties, 225-228 
Electrons, free or conduction, 188 

secondary, 189 

Electrostatic energy, density of, 52 

Electrostatic field, 1/. 
at conductor surfaces, 29 

conservative nature of, 5 

energy of, 52 

of fixed charge distributions, 30/. 

inside metals, 15 

Electrostatic field, of a long straight 

wire, 29-30 

sources of, 22/. 

of a uniformly charged metal 

plate, 28-29 

use of potential in calculation of, 
33/. 

Electrostatic potential, 5/. 

units of, 8 

Electrostatic unit of (^harg(^, 3 

Elliptically polarized waves, 163 

Emissive power, 369 

Emissivity, 370 

Energy, in a condenser, 50/. 

of the electrostatic field, 52 

in a magnetic circuit, 244 

in a magnetic field, 132-134 
Energy density, of electric field, 52 

of magnetic field, 133 

of radiation, relation to l>rightness, 

368 
Equation of continuity, for non- 

steady state, 154-155 

for polarization charge and cur¬ 

rent, 219 
for steady currents, 57/. 

for waves on transmission lim^, 

173 

pjquipotentials, 6/. 

metals as, 14/. 

P^xtraordinary ray, 323 

P:ye, 288 

resolving power of, 359 

Eye lens in oculars, 293 

F 

Fabry-Perot interferometer, 339 

Farad, 45 
Faraday, 2, 42, 120, 223 

induction law of, 121-123 

P\‘rmat, 265 

Fermat’s principle, 265-268 

Ferromagnetism, 232-234 

Pleld (see Electric field; Electrostatic 

field; Magnetic field) 

Field lens, 293 

Flow, lines and tubes of, 57 
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Flux, of D, 26#. 

of magnetic induction, 86*87 

Flux linkages, 122 

Focal length, of a spherical mirror, 

270 

of thick lenses, 280 

of thin lenses, 276 

Focal lines, primary and secondary, 

285 
Focal planes of a thick lens, 279 

Focal point of a pemril of rays, 

264 

Force, on a dielectric sphere, 222 
on a magnetic body, 246 

Forced oscillations of an antenna, 

180-181 
Forces, action-at-a-distanc(i, 1 

chemical, 60 

between condenser plates, 51 

gravitational, 1 

nonelectrical, 60 

Fraimhofer diffraction, 340, 346#. 

Fraunhofer lines, 310 

Free elections, 188 

Free oscillations of an LC circuit, 

148 

Fresnel, 341 

Fresnel diffraction, 339 
use of Fresnel zones for, 344-346 

Fresnel zones, 341# 

G 

Galilean telescope, 295 
Galvanometer, d^Arsonval, or mov¬ 

ing-coil, 93-94 

tangent, 112-113 

Gases, dielectric constant of, 212- 

213 

Gauss, 86 
Gaussian units, 91 

Gauss\s law for D, 26# 

Generators, a.c. and d,c., 125-126 

Geometrical optics, limitations of, 

265 
Glass, '^invisible,'' 337 

Gradient, 7, 8 
Grating, diffraction, 354-358 

H 

Half-period elements, 341 

Half-wave plate, 321 

Heat radiation, 365# 

Heating in resistances, 75 

Helmholtz coils, 118 

Henry, 120 

as unit of inductance, 128 

Huygens' construction, 263 

Huygens ocular, 293 

Huygens' principle, 263, 328 

obliquity factor in, 340 
Hysteresis, 234 

I 

Ice-pail experiments, 42 
Illumination, 384-385 

Image distortion, 284, 287 

Image space, 271 

Images, electrical, method of, 42# 

primary and secondary, 286 

real and virtual, 268 

Impedance, 144 

Incidence, plane of, 254 

Index of refraction, definition of, 250 

Indices of rcdraction, principal, for 

crystals, 320 

Inducted charges, 41# 

on dielectrics, 207-208 

on metals, 15 

Induced dipoles, 204-205 

Induced electromotive forces, 120# 

Inductance, mutual, 130 

self-, 127 

of a coaxial (!able, 129, 130 

of a solenoid, 129 

units of, 128 
Inductioti, electrostatic, 15-16 

Induction law of Faraday, 121-123 

Inductive capacity, 24-25 
Inductive reactance, 140 

Influence, electrostatic, 15-16 

Insulators, 14 

Intensity, of electric field, 3# 

of electromagnetic waves, 165 

of a light source, 384 
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Intensity, lines of electric, 4 

of magnetic field, 96 

of magnetization, 228 

circuital law for, 247 

of plane waves, averag<? value of, 

167 
specific, of radiation, 366-367 

Interference, conditions for, 329-331 

in thin films, 334-338 

Interferometers, 338-339 

Internal resistance, 62 

“Invisible” glass, 337 

Ions, 188 

Iris, 288 

Isotropic radiation, pressure of, 375 

relation of brightness to energy 

density of, 368 

J 

,Joule’s law, 75 

K 

Kelvin, 42 
Kirchhoff’s law for radiation, 370 

Kirchhoff’s rules, 71/. 

for a.c. circuits, 137-138 

L 

Lambert, as unit of brightness, 385 

Lambert’s law, 371 

Langmuir-Child equation, 195 

Larmor procession, 227 

Lateral magnification, of a thick 

lens, 282-283 

of a thin lens, 277-278 

Lens, numerical aperture of, 360 

power of, 278 

Lens equation, Newtonian form of, 

277 

Lenses, aberrations of, 283/. 

thick, 278-283 
thin, 275-278 

Lenz’s law, 121 

Line spectrum, 311 

Linear lateral magnification, for a 

spherical surface, 274 

Linearly polarized waves, 163 

Lines, of current flow, 57 

of electric intensity, 4 

Longitudinal magnification, 298 

Ijorentz force, 123, 226 

Lumen, 383 

Luminosity, 383 
Luminous efficiency, 383-384 

M 

Magnetic circuit., 240-241 

cmergj’^ in, 244 

Magnetic dipole, 108 

torque on, 112 

Magnetic field, of a circular loop, 101 

of the earth, determination of, 

224-225 

energy in, 132-134 

intensity of, 96 

of a long straight wire, 100 

motion of charged particles in, 

88/ 
of a solenoid, 102-103, 106-107 

of steady currents, 81/ 
Magnetic field energy, in magnetic 

circuit, 244 

Magnetic flux, 86, 87 

Magnetic focusing, 89 

Magnetic force, on a current element 

or moving charge, 82-86 

Magnetic induction, solenoidal char¬ 

acter of the field of, 86-88 

units of, 86 

Magnetic induction vector B, 81/ 

Magnetic intensity, 96 

definition for material bodies, 

231-232 

relation tiO electric intensity in 

plane waves, 164 

Magnetic moment, of a bar magnel, 

224-225 
of a current loop, 108 

Magnetic moments of atoms, perma¬ 

nent, 227 

Magnetic permeability, 96, 232 

Magnetic poles, 238 

strength of, 239 
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Magnetic potential, scalar, 109 

Magnetic properties, electronic ori¬ 

gin of, 225-228 

Magnetic saturation, 233 

Magnetic susceptibility, 232 

Magnetization intensity, 228 

circuital law for, 247 

Magnetometer, 112 

Magnetomotive force, 103, 241 

Magnetron, 114 

Magnification, lateral, of a thick 

lens, 282-283 
of a thin lens, 277-278 

linear, of a spherical surface, 274 

longitudinal, 298 

Magnifying glass, 289-200 

Magnifying power, normal, 3f)1 

Mass spectrograph, 90 

Maxwell, 87 

Maxwell etpiations, for empty space, 

159 

Mean free path, of el(‘ctrons in 

metals, 190 

Mechanical energy, conservation of, 

16 

M(?tals, charg(Hl, surface' stnssses on, 

51 

electrostatic^ field in and at surf.nce 

of, 15 

as (iquipotentials, 14^. 

surface charges on, 15 

Motastable atoms, 189 

m.k.s. units, magnitude and dimen¬ 

sions of permeability in, 98 

magnitude and dimensions of 

permittivity in, 26 

Michelson interferometer, 338 

Microscopes, magnifying power of, 

289-290, 292 

normal magnifying power of, 361 

resolving power of, 359 

Mil, circular, 69 

Minimum deviation of a prism, 307- 

309 

Mirrors, reflection in, 268-271 

Momentum, electromagnetic, den¬ 

sity of, 373-374 

Motion of charged particles, in 

electrostatic fields, 

in magnetic fields, HSff. 
Motional electromotive forces, 123^. 

Mutual inductance, 130 

N 

Near and far points of the eye, 288 

Neutral temperature of a thermo- 

coiiphi, 203 

Newton, as unit of force, 86 

Newtonian form of the; lens ecpiation, 

277 
Newton\s rings, 337-338 

Nicol prism, 324 

Nodal points of a lens, 283 

Normal dispersion, 306 

Normal magnifying power, 361 

Numerical aperture, 360 

0 

Object spa(^(*, 271 

Obliquity factor in Huygens^ prin¬ 
ciple, 340 

Oculars, 292, 293 

Oerstc^d, 81, 223 

Ohm, 62 

Ohm\s law, 

in (lilTerential form, 70 

electron theory of, 195-197 

Oil-immersion microscope, 360 

Optic axis, 319 

Opti(;al instniments, resolving power 

of, 358-361 

Optical length of path, 265 

Order of spectra for a grating, 356 

Ordinary ray, 323 

Oscillating dipok*, pow(*r radiated 

from, 185 

radiation from, 178-185 

Oscillations, forced in an antenna, 

180-181 

of an LC cinaiit, 148 

P 

Parallel-plate condenser, 45-46 

Paramagnetism, 226, 232 
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Paraxial rays, 273, 284 

Poltier effect, 198 
atomic interpretation of, 201 

Pencil of rays, 264 

Permeability, magnetic, 96, 232 

m.k.s. unit of, for empty spa<H^, 98 

Permittivity, 24 

m.k.s, unit of, for empty space, 25 

Pliase angle in a.c. circuits, 144 

Phase velocity, 163 

Photoelectric effect, 189 

Photometric units, 382-385 

Pincushion distortion, 287 

Planck, 378 
radiation law of, 380 

Planck’s constant, 380 

Plane, equation of, 252-253 

of incidence, 254 

Plane electromagnetic waves, in di¬ 

electrics, 248^-253 

reflection and refraction of, 253- 

256 
traveling, general equation for, 253 

in vacuum, 159-164 

Point charge, potential and field of, 

35 

Poisson’s equation in one dimen¬ 

sion, 191 

Polar molecules, 205 

Polarizability, 205, 212 

Polarization, of a dielectric, 204— 

205 
of electromagnetic waves, 163 

of scattered light, 316 

vector intensity of, 207 

Polarization charge density, 208 

Polarization current, 218 

Polaroid, 322 

Poles, magnetic, 238-239 

Positron, 2 

Potential, of a dipole, 35^. 

electrostatic, 5#. 

scalar magnetic, 109 

of a spherical charge distribution, 

35 

Potential difference, as a measure of 

battery e.m.f., 61 

Potential gradient, 7 

Potential minimum for space-charge 

limited currents, 193 
Potentiometer, 80 

Power, in a.c. series circuit, 145- 

147 

in d.c. circuits, 75 

of a lens or lens surface, 278 

radiation of, from an oscillating 

dipole, 185 

wattless or reactive', 147 

Power factor, 147 

Poynting vector, 166 

Pressure of radiation, 371-376 

Principal foci, 276 

Principal indices of refraction, 320 

Principal maxima, for a diffraction 

grating, 355-356 

Principal points of a thick lens, 280 

Principal s(Jction of a crystal, 323 

Principle of superposition, 327 

Prism, achromatic, 310 

direct vision, 310 

minimum deviation of, 307-309 

Nicol, 324 

Prism spectroscope, 310-311 

Projection lantern, 295 

Proton, 187 

Pupil, 288 

Q 

Quasi-stationary phenomena, 138 

R 

Radiation, black body, 367 

coherence of, 327 

heat or thermal, 365^. 

Kirchhoff’s law for, 370 

from oscillating dipole, 17&-186 

relative visibility of, 382-383 

Radiation pressure, 371-376 

Ramsden ocular, 293 
Rayleigh criterion for resolving 

power, 357 

Rayleigh scattering formula, 315 

Rayleigh-Jeans law, 381 

Rays, 264 
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Rfittctanc.e, 140, 141 

lieactivt! power, 147 

f?eflecii»$? power for normal inci¬ 

dence, 259 

lleflection, law for plane waves, 256 

by mirrors, 268-271 
phase changes upon, 258 

total, 256 

Ili'fracied light wave, ndation to 

scattering, 316-318 

JififFaction, double, 318jf. 

of electric field lines, 216 
of light, at a spherical surface, 

271-275 

of magnetic field lines, 236 

of plane waves, 255 

principal indices of, 320 

Refractive index, 250 

Helative visibility of radiation, 382- 

383 

Relaxation time, 168 

Reluctance, magnetic, 241 

Rernanence, 233 
Itesistance, 61 

d,c. or ohmic, 77 

effective, 77 

internal, 62 

units of, 62 

Resistances, heating in, 75 

in series and parallel, 64-65 

Resistivity, temperature dependence 

of, 69 

units of, 69 

Resolving power, of a diffraction 

grating, 358 

of the eye, 359 

of a microscope, 359 

of optical instruments, 358-361 

Rayleigh criterion for, 357 

of a telescope, 359 

Resonance, of a,c. series circuit, 144 

Resonance scattering, 316 

Retardation effects in wave propaga¬ 

tion, 179 

Richardson *s equation, 190 

r.m.s. current or voltage, 146 

Rowland, 81 

S 

Saturation, magnetic, 233 

Saturation current, 190 

Scala'r magnetic potential, 109 

Scalar ..product of vectors, 84 
Scattering of light, 314jJ‘. 

S(^attering power, 315 

Secondary electrons, 189 

Secondary maxima for diffraction 

grating, 355-56 

Seebe(^k coefficients, 200 

Sc^cbeck effect, 197 

Self-inductance, 127-130 

Series a.c. circuit, 143-145 

energy considerations for, 145 

resonance of, 144 
vector diagram for, 143 

Side thrust , nmgiietic, 91j9*. 

Sinusoidal functions, vector repre¬ 

sentation of, 141-142 

Snell's law, 255 

Solenoid, magnetic field within, 102- 

103, 106-107 
s(4f-inductance of, 129 

Space charge, 189 

Space-charge limited currents, 190- 

195 
Space-damped waves, 260 

Specific^ intensity of radiation, 366- 

367 

Spectroscope, prism, 310-311 

Spectrum, continuous and line, 311 

Spherical aberration, 286 

of a mirror, 270 

of a single refracting surface, 272 

Spherical condenser, 47 

Spherical mirror, 270-271 

Spherical waves, 171 

Spin, electron, 227 
Spyglass, 294 

Standing waves on a transmission 

line, 177 

Statampere, 57 

Statcoulomb, 3 

Statfarad, 45 

Statohm, 62 

Statvolt, 8 
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Steady electric currents, 55ff. 
Stt^ady state, of a.c. series circuit, 

1*43-144 

8teep(jst descent, lin(i of, 8 

Stefan, 376 
Stefan-Boltzmann law, 376-328 

Stigniatic pencil of rays, 264 

Stress on charged surfaces, 51 

Superposition, principh^ of, 327 

Surface (charge, density of, 29 
indiKred on dielectrics, 207-208 

on metals, 15 

Susceptibility, electric, 210 
magnetic, 232 

T 

Tangent galvanometer, 112-113 

Telescopes, 293-295 

resolving power of, 359 

Temperature coefficient of resis¬ 

tivity, 69 

Test (iharge, 3 

Thermal electromotive force, 197 

Thermal radiation, 365^. 

Thermionic emission, 189 

Tliermocouple, 197 

neutral temperature of, 203 

Thermoelectric effects, 197-202 

Thick lens, 280-283 

Thin films, interference of light by, 

334-338 
Thin lens, 275-278 

Thomson, Sir William (Ixird Kelvin), 

198 
Thomson effect, 198-199 

atomic interpretation of, 201-202 

Thomson scattering formula, 315 

Time constant, 150-151 

Torque, on a current loop, 93 

on a magnetic dipole, 112 

Total reflection, 256 

Transients, in RC circuit, 151 

in RL circuit, 149-150 

Transmission line, standing waves 

on, 177 

traveling waves on, 175 
wave equation for, 174 

Traveling plane waves, general equa¬ 

tion for, 253 

Tubes of flow, 57-58 

V 

Uniaxial crystals, 319 

Units, electromagnetic, 86, 97 

electrostatic, 25 

Gaussian, 91 

m.k.s., 25-26 

V 

Vector diagram for a.c. series cir¬ 

cuit, 143 

Vector field, 4 

Vcictor product, 84-85 

Vector n^presentation of sinusoidal 

functions, 141-142 

Vectors, scalar and vector products 

of, 84-85 
Visibility of radiation, relative, 

382-383 
Visual angle, 289 

Vitreous humor, 288 

Volt, 8 

W 

Wattless power, 147 

Wave equation, 162 

for waves on a transmission line, 
174 

Waves {see Electromagnetic waves) 

Weber, 87 

Wheatstone bridge, 74 

Wien, radiation law of, 381 

Wien’s displacement law, 382 

Work function, 189 

V 

Young’s experiment, 331-334 

Z 

Zone plate, 362 

Zones, Fresnel, 341jf. 








