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PREFACE TO THIRD EDITION 

In presenting this long overdue revision the authors wish to express 
their appreciation of the continued use of the book. No radical changes 
have been introduced in the arrangement of the text but effort has beer 
exerted to bring each topic up-to-date without making it too comple? 
and difficult for the student and ordinary practicing engineer. As ir 
other editions, catalogue material and data that are subject to rapic 
change have been excluded, as such material and pictorial illustrations 
can best be prevsented by the teacher. New subject matter has beer 
added where necessary but without increasing materially the size oi 
the book. The notation has been changed so as to be more in line with 
modern practice. Some obsolete sections have been eliminated. The 
authors will be grateful, as heretofore for criticisms and corrections thal 
will make the book accurate and more useful. 

D. S. K. 
Ithaca, N. Y., Sept., 1935. J. H. B. 

PREFACE TO THE SECOND EDITION 

The cordial reception accorded to this book by teachers, and the 
somewhat extended use of it by practical men, have encouraged the 
authors to issue it in revised form. In making this revision, certain 
changes in arrangement have been made, based upon experience in the 
use of the book, and a chapter on the fundamental principles of balancing 
has been added. It is hoped that the changes and additions that have 
been made will extend the usefulness of the work, by bringing it into 
accord with modem practice. The authors are greatly indebted to 
Professor C. D. Albert, Professor of Machine Design at Cornell Uni¬ 
versity, and to Professor E. F. Gamer of the same institution, for much 
helpful criticism in making the revision, and for assistance in reading 
the proof sheets. 

Ithaca, N. Y., Jan., 1923, 

D. S. K. 
J. H. B. 





PREFACE TO THE FIRST EDITION 

This book is the outgrowth of the experience of the authors in 
teaching Machine Design to engineering students in Sibley College, 
Cornell University. It presupposes a knowledge of Mechanism and 
Mechanics of Engineering. While the former subject is a logical part 
of Machine Design, it may be, and usually is, for convenience, treated 
separately and in advance of that portion of the subject which treats 
of the proportioning of machine parts so that they will withstand the 
loads applied. The same logical order is usually followed in actual 
designing, as it is, ordinarily, necessary and convenient to outline the 
mechanism before proportioning the various members. 

With the mechanism determined, the remainder of the work of 
designing a machine consists of two distinct parts: 

(а) Consideration of the energy changes in the machine, and the 
maximum forces resulting therefrom. 

(б) Proportioning the various parts to withstand these forces. 
This logical procedure, and the fundamental principles underlying 

the first part (a), are seldom made clear to the student, in works of this 
character; and such information as is given on energy transformation 

in machines is, in general, that relating to special cases or types. A 
thorough understanding of these general principles is, however, in most 
cases, essential to successful design, since a consideration of the machine 
as a whole necessarily precedes consideration of details. A very brief 
discussion of typical energy and force problems is given, therefore, in 
Chapter II, in the hope of making this important matter somewhat 
clearer to the beginner. 

While the treatment presented presupposes a knowledge of Mechan¬ 
ics of Materials, a brief discussion of the more important straining 

actions is given in Chapter III, partly to make the application of the 
various formulae to engineering problems somewhat more definite, and 
partly to present such rational theory as is of assistance in selecting 
working stresses and factors of safety. This discussion serves also to 
show why certain equations have been selected in preference to others, 
and also to collect in concise form the more important equations relating 
to stress and strain with which the designer needs to be familiar. 

vii 
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The general principles of lubrication and efficiency are discussed in 
Chapter IV, Both of these are of prime importance to the engineer; 
and while the discussion is necessarily brief it is believed that the 
fundamental principles are fully covered. 

The remainder of the book is devoted to the discussion of some of 
the more important machine details, with a view of showing how the 
theoretical considerations and equations discussed in the first part of 
the work are applied and modified in practice. The treatise is, in no 
sense, a handbook, neither is it a manual for the drafting room; but 
is a discussion of the fundamental principles of design, and only such 
practical data have been collected as are needed to verify or modify 
logical theory. It is hoped that the illustrative numerical examples 
which are introduced throughout the work may, in conjunction with the 

analytical methods given, suggest proper treatment of practical prob¬ 
lems in design. The treatment of .all topics is necessarily brief, as it was 
desired to obtain a text book which could be conveniently covered in 

one college year and yet present the salient features of the subject 
needed by the student as a preparation and basis for more advanced 
work. While intended primarily for engineering students, it is hoped 

that it may also prove of some interest to the practicing designer. It 
has been the endeavor, in the preparation of the book, not only to 
develop rational analytical treatment, with due regard to constructive 
considerations and other practical limitations, but to reduce the 
analysis to such forms and terms that definite numerical results can be 
obtained in concrete problems. 

Considerable of the matter contained in the book has already been 
published, specially for the use of students in Sibley College, under the 
title of Special Topics on the Design of Machine Elements,by John 
H. Barr, and also in Elements of Machine Design,’^ Part I, by the 

Authors. The writers have availed themselves freely of the work of 
many others in the field, for which due credit is given in the text. 

The authors are especially indebted to Professor G. F. Blessing of 
Swarthmore College, Professors W, N. Barnard, L. A. Darling, and 

C. D. Albert of Sibley College, Cornell University, all of whom have 
given instruction in the course at various times, and also to Mr. A. J. 
Briggs, for many helpful suggestions and criticisms. They will be very 

grateful for further suggestions or criticisms which will improve the 
book. 

Ithaca, N. Y., June, 1909. 

D. S. K. 
J. H. B. 
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MACHINE DESIGN 

CHAPTER I 

INTRODUCTORY 

1. The purpose of machinery is to transform energy obtained 
directly or indirectly from natural sources into useful work for human 
needs. Useful work involves both motion and force; hence the basis of 
machine design is the laws that govern motion and force. 

The term useful work carries with it the idea of definite motion 
and definite force, for work itself is always of a definite or measurable 
character. An examination of any machine will show that its parts are 
so put together as to give definite constrained motion suitable for the 
work to be done. The constrainment of motion is determined by the 
moving parts, the stationary frame, and the nature of the connections 

between them. 
Mechanics is the science which treats of the relative motions of 

bodies, solid, hquid, or gaseous, and of the forces acting upon them. 
Mechanics of machinery is that portion of pure mechanics which is 

involved in the design, construction, and operation of machinery. It 
has been noted that the consideration of a machine involves constrained 
motion; hence that portion of pure mechanics is mostly needed in 
machine design which deals with stationary structures and constrained 
motion. 

Machine design, therefore, may be defined as the practical applica¬ 
tion of mechanics of machinery to the design and construction of 
machines. It involves the determination of the structure, form, size, 
and relation of the various parts of a machine, in advance of its con¬ 
struction. The laws of mechanics of machinery give us the underlying 
principles on which maching action rests, but their practical applica¬ 
tion depends upon many modifying conditions. In some problems of 
machine design it is difficult, if not impossible, to apply the laws of 
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mechanics with accurate results, and recourse must often be had to 
judgment and experience. 

A mechanism is a combination of material bodies so connected 
that motion of any member involves definite, relative, constrained 
motion of the other members. A mechanism or combination of mech¬ 
anisms which is constructed not only for modifying motion but also for 
the transmission of definite forces and for the performance of useful 
work is called a machine. A machine consists of one or more mech¬ 
anisms; a mechanism^ however, is not necessarily a machine. Many 
mechanisms transmit no energy except that required to overcome their 
own frictional resistance, and are used only to modify motion, as in the 
case of most engineering instruments, watches, models, etc. 

A brief reflection will show that the same mechanism will serve 
for different machines (see any treatise on kinematics), and, within 
limits, the design of the mechanism for a given machine may usually 
be carried out, so far as motion is concenied, with little regard to the 
amount of energy to be transmitted. This, of course, does not apply 
to such mechanisms as centrifugal governors, or, in general, where 
inertia or other kinetic actions affect constrainment of motion. Except 
for such limitations as those just noted, the design of any machine may 
be divided into two main parts: 

(1) Design of the mechanism to give the required motion. 
(2) Proportioning of the parts so that they will carry the necessary 

loads due to transmitting the energy, without undue distortion or prac¬ 
tical departure from the required constrained motion. 

(1) The design or selection of the mechanism for a machine is 
governed by the manner in which the energy is supplied and the char¬ 
acter of the work to be done, for energy may be supplied in one form of 
motion and the work may have to be done with quite a different one. If 
mechanisms already exist which will accomplish the desired result, the 
problem is one of selection and arrangement of parts. But if a new type 
of machine is to Jbe built, or a new mechanism is desired, the solution 
of the motion problem borders on, or may indeed be of the nature of, 
invention. Although it is true that usually the mechanism and the 
relative proportions of its parts can be designed to suit the work to be 
done, without reference to the energy transmitted, in general it is neces¬ 
sary to know something about the energy transmitted before any definite 
dimensions of the parts of the mechanism can be fixed, and frequently 
before the nature of the mechanism is determined. Furthermore, the 
methods and available facilities of construction control the design to a large 
extent. Thus, in designing a steam engine, the size of the cylinder must 
be fixed before the length of crank and connecting-rod can be determined, 



MECHANISM 3 

and, in general, even though the mechanism can be treated apart from 
the energy problem, it is necessary to keep the latter constantly in mind. 

(2) The problem of proportioning the various parts of a machine, so 
that they will carry their loads without excessive or undue deformation, 
may conveniently be divided into two parts: 

(a) Solution, as a whole, of the energy and force problem in the 
mechanism. 

(b) Assigning of dimensions to the various parts, based on the forces 
acting upon them. 

(a) When the type and proportions of the mechanism have been 
fixed, the relative velocity of any point in the mechanism may be found. 
If, then, the energy which the mechanism must transmit is known, it is 
generally possible to find the forces acting at any point, since the law of 
conservation of energy underlies all machines; or, the product of 
velocity and force is constant throughout the train. If the forces 
acting on a machine member and the manner in which it is connected 
are known, these may serve as a basis for the assigning of definite dimen¬ 
sions to the part. A fuller discussion of tliis important principle is given 
in Chapter HI. 

(b) If an accurate theoretical analysis of the forces acting upon a 
machine memlxir can be made, the form and size of the member may be 
satisfactorily determined by the application of rational formulas based 
upon the laws of mechanics. And even when these forces can be deter¬ 
mined with only a fair degree of accuracy, a satisfactory solution of the 
size and form of the member can oft(m be obtained by the application 
of rational formulas or of semi-rational formulas—that is, rational 
formulas with coeflBicients that have been determined experimentally 
or by practical experience. Thus, a machine member subjected to a 
simple tension within known limits can be intelligently proportioned by 
the use of the well-known rational tension formulas. But in many cases 
the forces acting on a machine memter are very complex, the theoretical 
design is not always clear, and our knowledge of materials and their laws 
is limited in many respects. Recourse must therefore often be had to 
judgment or to empirical data, the result of experience. Even when the 
conditions are clear, theoretical design must always be tempered with 
practical modification and by constructive considerations, etc. The 
logical method of proportioning machine elements where theory is 
applicable is, therefore, as follows: 

(a) Make as close an analysis as possible of all forces acting, and 
proportion parts according to theoretical principles. 

(b) Modify such design by judgment and by a consideration of the 
practical production of the part. 
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For details and unimportant parts, judgment and empirical data are 
commonly the best guides. 

Summing up, then, the logical steps in the design of a machine are as 
follows: 

(I) Selection of the mechanism. 
(n) Solution of the energy and force problem. 

(in) Design of the various machine members, with a view to prevent¬ 
ing undue distortion or breakage under the loads carried. 

(IV) Specification and drawing. 

The design of all machine members involves the selection of the 
material best fitted to withstand the forces applied to it and the condi¬ 
tions surrounding it. Ordinarily this is not a difiScult problem, but it 
should be borne in mind that in many cases it may be very diflScult, 
demanding an extensive knowledge of the properties of materials of 
constmction and the several uses to which they have been successfully 
applied in the past. Strength and rigidity are usually basic require¬ 
ments, but durability, resistance to corrosion, magnetic qualities, anti¬ 
friction qualities, and others may be of importance in deciding just what 
material should be employed. 

The actual design of a machine, furthermore, involves many con¬ 
siderations other than the properties of materials and the computa¬ 
tion of strength and rigidity. Thus, proper provision must be made for 
lubrication; convenience and safety in operation may be important; the 
facilities for fabricating the machine should always be taken into account; 
and considerations involving special tools and fixtures quite frequently 
affect the design. Again, the possibility of using standard parts or 
parts and material on hand may modify the design somewhat. The 
cost of the machine is almost always an important factor and is never 
to be lost sight of by the designer. Care must also be used that the 
completed machine be accessible for adjustment and repairs. 

This last feature of machine design is closely connected with the 
problem of assembling the machine. Obviously, the designer must be 
sure that the machine can be assembled with a minimum of difficulty. 
In complex machines, such as typewriters, automobiles, and cash reg¬ 
isters, this may require considerable forethought, especially if the 
machines are to be made in large quantities and a high degree of division 
of labor is the practice in the assembly. In such machines the use of so- 
called “ unit assembly has become quite common. A well-designed 
automobile, for instance, is made up of a number of self-contained units, 
each of which can be assembled as an independent structure. Thus, the 
motor is one unit, the gear case another, th^ rear axle with its differential 
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another. The actual assembly of the automobile consists, therefore, of 
the assembling of a number of units, some of which may contain many 
pieces and may be quite complex in themselves. Obviously, such a 
method of construction simplifies repairs, if the design is such that 
unit assemblies can be removed without disturbing many of the adja¬ 
cent parts or other units. This principle, though it is coming into 
extended use in the production of automobiles, typewriters, and other 
machines that are made in large quantities, has not received the con¬ 
sideration that its importance deserves. An extended discussion of these 
several important practical factors that affect the design of a machine is 
beyond the limits of this work, but the student of design will profit by a 
careful consideration of them. 

Specification and drawing are necessary and important adjuncts to 
the process of design; they are powerful aids to the designer's mental 
process and are the best means of showing the workman what is to be 
done to construct the machine in question, and also of making a record 
of what has actually been done. Specification and drawing are not, in 
themselves, machine design, however, as machines may be designed 
and built without any drawings. They are, nevertheless, an indispen¬ 
sable part of the designer's equipment. Very often written specifica¬ 
tions accompan3dng the drawings are not only useful but even necessary. 
In fact, the highest skill on the part of the designer is often needed to 
specify clearly and fully, in writing, just what is to be done, as the writing 
of sp)ecifications presupposes the most intimate knowledge of theory of 
design and selection of materials. 

From the foregoing it is seen that the part of machine design in¬ 
cluded in mechanism can be and generally is, for convenience, taught 
as a separate subject, and the student is expected to have a knowledge of 
mechanism, mechanical drawing, mechanics of engineering, and mate¬ 
rials of engineering as a preparation for the work contained in this book. 
The chapters that follow deal, therefore, with the solution of the energy 
and force problem and the design of machine elements. 



CHAPTER II 

THE ENERGY AND FORCE PROBLEM 

2. From the law of conservation of energy it is known that energy 
can be transformed or dissipated but not destroyed. Therefore, all the 
energy supplied to any machine must be expended as either useful or 
lost work. Since frictional resistances, and frequently other losses, occur 
in all machines, the useful work done must always be less than the 
energy received. The useful work delivered, divided by the energy 
received, is called the eflEiciency of the machine. This factor is different 
for different machines and is evidently a fraction, or less than unity. In 
the discussion which follows in this chapter, frictional losses are neg¬ 
lected, unless otherwise stated. 

A kinematic cycle is made by a machine when its moving parts start 
from any given set of simultaneous positions, pass through all positions 
possible for them to occupy, and ultimately return to their original 
positions. 

The energy received by a machine during a kinematic cycle may or 
may not be equal to the work done plus frictional losses. Thus, the 
energy supplied during a number of cycles may be stored in some heavy 
moving part and then be given out during some succeeding kinematic 
cycle, as in a punching machine with a heavy flywheel. 

An energy cycle is made by a machine when its moving parts start 
from miy given set of simultaneous energy conditions, pass through a 
series of energy changes, and ultimately return to their original energy 

conditions. 
Thus the complete mechanism of a four-stroke gas engine makes one 

kinematic cycle every two revolutions of the crankshaft. The slider- 
crank mechanism of the engine, considered separately, makes a com¬ 
plete kinematic cycle every revolution of the crank. The engine makes 
one energy cycle every two revolutions of the crank. If a punching 
machine, driven by a belt and running continuously, punches a hole 
every fourth stroke of the punch, it will be making a complete kinematic 
cycle every stroke and a complete energy cycle every four strokes. 

Therefore, during a kinematic cycle, 

Energy received = Useful work + Lost work d: Stored energy 
6 
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And during an energy cycle, 

Energy received = Useful Work + Lost work 

Generally speaking, the useful work to be done and also the char¬ 
acter of the source of energy are known, and the problem of design is, 
therefore, to select the mechanism which will transform the motion of 
the source of energy into the required motion, to determine the capacity 
of the driving device, and to proportion the machine members. 

The proportions of any machine part depend, as regards strength 
and rigidity, on the maximum force it must carry; and this maximum 
force may be due to the direct action of the driving device, or it may 
result from the inertia effect of some member which has a capacity for 
storing energy, and in such a case may be greatly in excess of any direct 
force that the driving device may deliver. Before this maximum force 
can be determined for any member, it is therefore necessary to make a 
complete solution of the energy problem, including the determination of 
the driving device. 

A knowledge of the quantity of energy required to do the desired 
work during a complete energy cycle is not always sufficient information 
upon which to base the design of the machine or the capacity of its 
driving device. 

A machine may receive energj’^ at either a uniform or variable 
rate and may be called upon to do work at either a uniform or variable 
rate. Power, or rate of doing work, being the product obtained by 
multiplying together simultaneous values of velocity and force, it follows 
that in making any energy transformations both the force and the 
velocity factors must be kept in mind. Although the mechanism chosen 
may transform the motion of the source of energy into the desired 
motion, it may not necessarily so modify the energy as to give a distri¬ 
bution of force, at the point where work is being done, which exactly or 
even approximately fulfills the required conditions. Again, some of the 
moving machine parts may have to be very heavy in order to carry the 
required loads, and during one part of the cycle they may absorb energy, 
thus reducing the operating force, whereas at another part of the cycle 
they may give up energy, thus increasing the operating force. Such a 
condition may make an entirely different distribution of the forces 
acting on the members of the mechanism from that which would occur 
were the parts light or the motion of the machine very slow, and may 
materially modify the design. 

If it is predetermined that some device is to be used for storing 
energy when the effort is in excess, and for giving it out when the effort 
is deficient, the capacity of the driving device need only be such as will 
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supply, during the energy cycle, an amount of energy equal to the useful 
work and lost work during that cycle. But in many machines such 
devices are not desirable and in many others they cannot be applied. 

Two examples may be noted, (a) In many machines under 
continuous operation, where flywheels are not desirable, it is found 
that, if the driving device is proportioned so as to supply energy at a 
uniform rate equal to the average rate required throughout the energy 
cycle, the force at the operating point is sometimes greater and some¬ 
times less than that required. If simultaneous values of the force 
and velocity at the working point are multiplied together, their product 
is the rate at which work will be done at the point considered. The 
maximum product thus obtained will be the maximum rate at which 
work will be done and also at which energy must be supplied by the 
source. It is evident that the capacity of the driving device will be 
greater in such a case than if based on the average rate of energy 
required per energy cycle. If the driving device under the above con¬ 
ditions should be too large or expensive, as it is likely to be in large 
work, recourse must be had to a different mechanism or to the use of 
flywheels or other means of storing and redistributing energy, (b) 
Again, consider any hoisting mechanism. Not only must the driving 
device supply, during the cycle of operations (the raising of the load), 
energy equal to the work done, but it must also be able to start and 
sustain the load at any point. It is evident that the torque of the driving 
device on the hoisting drum must be at least equal to that of the load, 
and if the torque of the driving device should be variable, its minimum 
torque must be equal to that of the load when referred to the same shaft. * 
If this minimum torque should be small compared to the maximum, the 
driving device chosen might have to be excessively large and this condi¬ 
tion might preclude the use of the driving device first selected. 

In any of these cases, after the form and capacity of the driving device 
have been determined, the maximum force that may come on any mem¬ 
ber may also be determined. 

It is to be noted that the choice of mechanism and the capacity of 
the driving device are governed largely by the relative manner in which 
energy is to be received and work done, and it may be well to enumerate 
the combinations that can occur, before applying the above principles 
to the discussion of illustrative problems. 

In any machine under continuous operation energy may be received 
and work may be done in one of the following ways: 

* In certain hoisting devices friction is utilized to sustain the load or prevent 

overhauling; this statement does not apply broadly to such devices. 
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(a) Energy may be received at a constant rate and work be done at 
a constant rate. 

(b) Energy may be received at a constant rate and work be done at a 
variable rate. 

(c) Energy may be received at a variable rate and work be done at a 
constant rate. 

(d) Energy may be received at a variable rate and work be done at a 
variable rate. 

3. Case (a). As an example of a machine in which energy is received 
at a constant rate and work done at a constant rate, consider a steam 
turbine driving a centrifugal pump raising water to a fixed level. 
Evidently the rate at which energy is supplied must just (^qual the rate 
at wliich work is done, plus frictional and other losses, for any given 
period, and the capacity of the turbine is very easily determined. 

4. Case (b). As an example of this case (energy received at a 
constant rate and work done at a variable rate) consider a machine for 
ounching holes in boiler plate. Here the driving belt can supply energy 
at a constant rate, while the useful work, which is of considerable magni¬ 
tude, is delivered intermittently. If the driving belt were designed 
with sufficient capacity to force the punch through the plate by direct 
pull, it would hvave to be very large. The machine runs idly a large 
portion of the time, while the plate is being shifted, and in a machine of 
this kind a device for storing energy, such as a flywheel, can be used to 
advantage. The total capacity of the driving belt need only be sufficient 
to supply, during the energy cycle, an amount of energy equal to the 
useful work plus the lost work. When a hole is punched the velocity of 
the wheel is reduced, the wheel giving up stored energy. During the 
time that the machine is running idly the belt can store up energy in 
the flywheel by bringing its velocity up to normal. The maximum force 
that may be transmitted by the machine members will be based on the 
maximum force at the tool and will be transmitted only by the members 
that lie between the tool and the flywheel. 

As a second example of these conditions, take the design of a small 
shaping machine. Here the useful work is done during the forward 
stroke of the ram. During the return stroke frictional resistances only 
are to be overcome. The resistance of the cut during the forward stroke 
is uniform, and the speed of cutting is limited by the character of the 
metal to be cut. During the return stroke, however, the velocity 
may be greatly increased, the limiting velocity depending on the mass 
of the moving parts, as these should be brought to rest at the end of the 
stroke without shock. The machine is driven by a belt which can 
supply energy at a marimum uniform rate. As noted above, the work 
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is done at a variable rate, and if a flywheel is used the conditions are 
identical with the preceding problem. It is usually not desirable to 
use a flywheel as its inertia interferes with starting and stopping the 
machine readily. The problem, therefore, is to design the driving belt 
and proportion the machine members on the basis of the maximum 
continuous pull that the belt may be able to exert. 

Numerous mechanisms have been demised to meet these conditions. 
Suppose that a mechanism such as shown in Fig. 1 has been selected. 
The maximum length of stroke is fixed by the work to be done, and the 
minimum length of stroke should be 3 or 4 in. Continuous rotary 
motion is imparted to the crank a through the gear b of which it forms a 
part. The gear 6 is in turn driven by the pinion c which is rigidly 
attached to the shaft d. On the other end of d is a stepped pulley hav¬ 
ing diameters Z>i D2 Dz Z>4. On the countershaft overhead is a mating 
stepped pulley so placed that, when the belt is on the largest step of the 
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machine Di, it is also on the smallest step of the countershaft pulley. 
The crankpin on a is adjustable and can be moved from the outer posi¬ 
tion as shown toward the center of the crank, so that the vibrator e can 
be made to give the ram R any length* of stroke from the maximum 
(20 in. in this example) to a minimum of 3 or 4 in. The range of velocity 
of the tool for any length of stroke must be such that it can be lowered 
to the cutting velocity of hard cast iron or tool steel and raised to the 
economical cutting velocity of brass. With the pin in its extreme 
outer position and the belt on the large step Di the speed of the ram will 
be a maximum for that position of the belt. As the crank is drawm 
toward the center (the belt remaining in its original position) the 
velocity of the ram is obviously decreased. If now the belt is shifted 
to a smaller step as 7)2, the velocity of the ram will be increased, so 
that at any stroke variable speed may be obtained to suit the metal 
to be cut. 

The mechanism transforms the uniform rotary motion of the line 
shaft into the required reciprocating motion. Consider the crankpin 
at its extreme outward position and the belt on Di. The velocity dia¬ 
gram for full forward stroke under these conditions is shown, the ordi¬ 
nates of the diagram * representing the velocity of the ram to the scale 
that the crank length represents the uniform velocity of the crankpin. 
The diagram for the backward stroke is not drawn since it is not needed 
in the solution of the energy problem; but it should in general be drawn 
to make sure that the change in velocity at the extreme ends of the 
stroke is not excessive. If the belt supplies energy at a constant rate 
the force w^hich it can deliver at the tool will vary inversely as its cutting 
velocity. The cutting resistance, however, is uniform, so that though 
the mechanism produces the desired transformation in motion it may not 
give the distribution of force desired. 

To design the driving device (or belt) for such a mechanism, the oper¬ 
ating conditions of the machine when the belt has both its maximum and 
minimum velocity must be investigated. The maximum pull which 
a belt can give is Ti — 72, where Ti is the allowable tension on the 
tight side of the belt. (See Chapter XV.) The 'power f that a belt 
can give out is therefore V{Ti — 7^2), where V is the velocity of the 
belt. Since T\ — T2 has, at all moderate belt speeds, a constant 
maximum value for a given belt, the power that a belt can deliver 

* For a fuU discussion of these so-called qitick-return mechanism and the methods 

of drawing velocity diagrams see “Kinematics of Machinery^' by Barr and Wood, 

“Machine Design^' by Smith and Marx and “Kinematics of Machinery'^ by Albert 
and Rogers. 

t A full discussion of the power transmitted by bdting is given in Chapter XV. 
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will vary directly with its velocity. The belt receives its energy from 
a shaft running at constant speed, and when the belt is on the smallest 
step of the countershaft cone it will also be on the largest step Di 

of the machine cone and will in consequence be running at its lowest 
velocity, under which condition its capacity for delivering energy is a 
minimum. 

The maximum power required for small machine tools is approxi¬ 
mately constant at all speeds, for, since the heating effect which governs 
the cutting capacity of the tool is proportional to the work done, it 
follows that as the cutting speed is increased the resistance of the cut 
must be decreased, and vice versaj thus keeping their product approxi¬ 
mately constant. If then the belt is designed to have sufficient capacity 
when the ram is making full stroke and the belt is on Di, and hence at 
the lowest belt velocity, it will have excess capacity when in any other 
position. If a softer metal is to be cut the velocity of the ram may be 
increased, but this can be done only by shifting the belt to a position 
where its velocity and hence its capacity will be greater. 

As before noted, the effect of moving the crankpin inward, the belt 
remaining in the same position, is to decreavse the average velocity of the 
ram. Therefore as the stroke is made shorter the velocity of the crank, 
to maintain a given cutting speed, must be increased by shifting the 
belt to a smaller step of the machine cone. The other limiting condi¬ 
tion is when the ram is making its shortest stroke and giving a cutting 
velocity high enough for the softest metal to be worked. The belt 
should then be on the smallest diameter Z>4, and hence at its highest 
speed. 

An inspection of the velocity diagram when the ram is making 
full stroke shows that its velocity is a maximum when the ram is in 
mid position. Neglecting friction and inertia, which here are small, 
the force exerted on the ram will be a minimum where the velocity of 
the ram is a maximum at any given belt velocity, because, for a given 
belt pull, since no flywheel is used, force at belt X velocity of belt == 
force at tool X velocity of tool. If, therefore, with the ram making full 
stroke, the capacity of the belt when running on Di is made great enough 
to give a force at mid position of the ram equal to the required cutting 
force, it will have excess capacity at any other position; and if this con¬ 
dition does not give too large a belt the driving device will be satisfac¬ 
tory. The maximum force that any member may have to sustain will 
be based on the maximum torque of the belt, which will occur when it is 
running at Di; for since the inertia forces are small this torque will be 
transmitted directly to the members, and the resulting stresses may be 
easily computed. 
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Example. 
Let the greatest resistance of cut == 800 lb 

“ maximum stroke of ram = 20 in. 
minimum stroke of ram = 4 
maximum length of crank = 6§ “ 

“ minimum length of crank = l| “ 
** maximum cutting speed on shortest stroke and highest belt 

speed = 60 ft per min. 
maximum cutting speed on full stroke and lowest belt 

speed = 25 ft per min. 

Then, in general, 

Linear velocity of crank _ Maximum linear velocity of ram 

Length of crank Maximum ordinate of diagram * 

Hence, in this example when the ram is making full stroke at lowest 
speed, 

Linear velocity of crank = 

rpm of crank = 

23.5 ft per min 

2 X IT X 

In a similar way, when the ram is making the shortest stroke at 
highest speed. 

Linear velocity of crank = 42.5 ft per min 

Therefore, rpm of crank = = 54.1 
2 X TT X 1-1 

Let the gear ratio be 8 to 1. Then the minimum and maximum rpm 
of shaft d = 55.2 and 432.8, respectively. A 14-in. pulley is a convenient 
diameter for Di. 

Velocity of belt on low speed = = 204 ft per min 

If the efficiency of the machine be 85 per cent, the maximum rate 
of doing work at this position of belt is the cutting resistance multiplied 
by the maximum velocity of the ram, divided by the efficiency, or 

X 25 = 23,500 ft-lb per min 
.85 

23 500 
Effective pull at belt == = 115 lb approximately. 

• In the mechanism here chosen the position of the ram for maximum velocity 
can be located by inspection and the value of the velocity determined without 
drawing the complete diagram. In general, however, the diagram must be drawn 
in order to locate the maximum ordinate. 
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The effective pull of single-ply belt per inch of width may be taken at 
40 to 45 lb. 

lie 

/. Width of belt = — = in., nearly 

If the cone pulleys on machine and countershaft are alike, as is usual 
in metal-working tools, then 

D\ __ /Max rpm of machine cone 

D4 ^ Min rpm of machine cone 

Z)4 
Min rpm of machine cone 

Max rpm of machine cone 

/ 55^2 
and hence, in the example if Z>i = 14,1)4 = \ 432 g ~ ^ nearly. 

The maximum force that may be applied to any member will be 
based on the maximum torque of the driving belt, which occurs when the 
belt is on Di, the largest step of the machine cone. The difference in 
this respect between this case and the punching machine discussed above 
should be noted, for, while the driving mechanisms of both can deliver 
energy at a uniform rate and while both do work at a variable rate, the 
maximum load is applied in entirely different ways. 

During the complete energy * cycle of the machine the total work 
done, neglecting friction, is equal to the length of stroke multiplied 
by the uniform resistance of the cut, or 

90 
800 X — = 1333 ft-lb 

12 

For every cycle of the machine the shaft d makes 8 revolutions; hence 
the amount of energy that the belt could deliver if work were done 
uniformly during one cycle is 

8 X X 115 = 3370 ft-lb 
12 

The capacity of the belt is therefore two and one-half times as great 
as it would need to be if a device for equalizing the energy, such as a 
flywheel, had been used. If a small machine is belt-driven, as the one 
under discussion, this added first cost is not serious. But when the 
power needed is great, or in such cases as direct driving by electric motor, 
the additional cost of a driving device so greatly in excess of average 
requirements needs to be carefully considered. This, in fact, is one of 
the most important elements to be considered in fixing the size of 

* The kinematic and energy cycle are, in this example, simultaneous. 
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motors needed for direct-driven machine tools, sometimes making it 
desirable to introduce a flywheel to reduce the size of motor. 

6. Case (c). One of the best examples of Case (c), where energy is 

received at a variable rate and work is performed at a uniform rate, is 
found in the reciprocating steam engine, and since this machine is of 
such great importance to the engineer it will be discussed somewhat in 
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detail. Here the energy is supplied in the form of steam pressure, and 
after cutoff occurs and the steam expands in the cylinder the pressure 
falls from the initial or boiler pressure to somewhat above exhaust 
or atmospheric pressure. The energy is therefore supplied at a varying 
rate. But the engine is required to dehver energy at the driving belt at a 
uniform rate. The mechanism used will produce the required transfor¬ 
mation of the reciprocating motion of the piston into the rotary motion 
of the crankshaft. But the distribution of the driving force in the form 
of torque or tangential effort will not be uniform; it will be a maximum 
somewhere near the position at which the crank is at right angles to the 
connecting-rod, and it will become zero when the crank is on the dead 
center. The turning effort will therefore sometimes be greater and 
sometimes less than the resisting effort of the driving belt, and the 
machine will stop unless a redistributing device, such as a flywheel, is 
used. The reciprocating parts, such as the piston and crosshead, and 
also the connecting-rod, are heavy, and their maximum velocity is con¬ 
siderable; hence the forces due to their inertia cannot be neglected. 

Referring to Fig. 2 (a), the crank a is required to rotate around the 
center 0 with uniform velocity and to give a uniform force at the driving 
belt. The moment at the driving belt is equal to the average moment 
at the crankpin, hence the equivalent uniform force at the crankpin 
may be derived from that at the belt. This required driving force at 
the crankpin may be plotted radially from the crank circle as a base, 
forming a radial diagram of the required force at the pin, as shown by 
circle S. The crosshead C moves at a varying rate of speed. If the 
velocity of the crankpin be represented by the length of the crank, the 
intercept Op made by the connecting-rod on the vertical through 0 will 
represent the simultaneous velocity of the crosshead to the same scale. 
These intercepts may be plotted at the corresponding positions of the 
crosshead, thus outlining the curve whose ordinates represent the veloc¬ 
ity of the crosshead at any point. 

The forces which act upon the piston and which must be transmitted 
to the crank are: 

(1) The steam pressure which is represented at any point by the 
ordinates of the curve T, Fig. 2 (b). 

(2) The back presstire * on the other side of the piston, acting 
against the steam pressure, and represented by the exhaust pressure line 
zz and the compression curve U. 

(3) The inertia forces due to accelerating and retarding the heavy 
reciprocating parts. 

* This generally amounts to 2 or 3 lb per sq in. above atmospheric pressure in 

non-condensing engines. 
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During the first part of the stroke these inertia forces tend to reduce 
the effective pressure transmitted to the crankpin, and during the latter 
part they increase the effective force on the rod. They can be repre¬ 
sented graphically by such a curve as V. The first two curves can be 
found by the well-known methods of drawing indicator cards, and the 
third can be found either by mathematical deduction or by graphic 
methods * based on the velocity diagram. It is believed that the 
analytical method is the most satisfactory, and such a method is pre¬ 
sented in a succeeding article. 

If the acceleration is known, the force necessary to produce the 
acceleration is also known, since accelerating force = mass X accelera¬ 
tion, and the force at any point (reduced to pounds per square inch of 
piston) may be plotted as shown by curve F, Fig. 2 (b). When the recip¬ 
rocating parts reach their maximum velocity their acceleration is zero, 
hence the curve of acceleration forces crosses the axis at a point g cor¬ 
responding to the point of maximum velocity. This point is very 
nearly al the position where the crank and the connecting-rod are at 
right angles, and the error introduced by assuming this to be so is small 
with ordinary ratios of crank to connecting-rod length. Beyond g the 
reciprocating parts are retarded, hence the inertia forces increase the 
effective crankpin pressure from that point on. The compression 
curve (U) tends to decrease the effective pressure on the piston and 
hence its ordinates must be subtracted from the forward pressure. 
The algebraic sum of the curves T, t/, and V will give a resultant 
pressure curve IF, Fig. 2 (c), whose ordinates at any point represent 
the effective pressure acting at the crosshead pin. This effective 
pressure is transmitted to the crank by the connecting-rod b. The pres¬ 
sure of the rod against the crankpin may be resolved into two compo¬ 
nents, one tangential to the crank circle and tending to produce rotative 
motion, and one radial along the crank tending to produce compression 
or tension in the crank and friction in the main bearing. Only the 
tangential force can do useful work. If friction be neglected the rate 
at which work is done by this force at the crank must equal the rate 
at which work is being done at the piston. Now the curves R and IF, 
Fig. 2 (a) and 2 (c) respectively, give the simultaneous values of velocity 
and force at every point of the stroke. If such simultaneous values 
be multiplied together and divided by the uniform velocity of the crank 
(all in the proper units) the quotient is the tangential force at the pin, 
and this may be plotted radially on the crank circle as a base thus 

* For a full discussion of this matter, see “Kinematics of Machineryby J. H. 

Barr and E. H. Wood, page 70 and “Kinematics of Machinery” by Albert and 
Rogers, pages 74 to 86. 
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giving what is called a radial crank-effort diagram, Fig. 2 (c), 
Curve Z. 

It is easier to find these values of the tangential force graphically. 
It will be remembered that the ordinates of the velocity diagram (R), 
as drawn in Fig. 2 (a), represent the velocity of the crosshead to the 
same scale as the length of the crank represents the velocity of the 
crankpin. In Fig. 2 (c), the connecting-rod extended, if necessary, 
cuts the perpendicular through 0 in the point h. Therefore Oh = 
velocity of crosshead when Oj — velocity of crankpin. Neglecting fric¬ 
tion, the rate of work at the crankpin is equal to the rate of work at 
the crosshead; hence th#^ velocity of the crankpin multiplied by the force 
at the crankpin is equal to the velocity of the crosshead multiplied by 
the force at the crosshead, or the tangential force X Oj = eifi X Oh. 

/. Tangential force = 
Oj 

Lay off Oi = eifi and draw ik parallel to b. Then 

Ok _ Oi 
Oh''Oj 

Therefore, 
Oi X Oh eifi X Oh . , . Q]c =- = - = tangential force 

Oj Oj 

Therefore Ok may be laid off radially from j as an ordinate of the re¬ 
quired curve as jk\ The construction for the return stroke is per¬ 
formed in a similar manner. 

It will be noted that the distribution of force, as represented by this 
diagram, is less uniform than the original curve of pressure at the cross¬ 
head. By the conditions of the problem, however, the mechanism 
must produce a uniform turning effort at the driving belt or such as 
would be given by a crank-effort diagram like S, Fig. 2 (a). A flywheel 
must therefore be used to store energy when the crank effort is in excess 
and to give out energy when the crank effort is deficient. Fig. 2 (d) 
shows the crank-effort diagram rectified with rectangular ordinates 
equal to the radial ordinates of curve X. The base FF is equal to the 
circumference of the crank circle, and the ordinates of the line Im are 
equal to the ordinates of the required uniform crank-effort curve S. 
Since the abscissas represent space and the ordinates represent force, 
the areas I, K, J, I\, K\, etc., represent work. The work represented 
by K + Ki is that which the flywheel must absorb, and the area rep¬ 
resented by/ + / + /i + Ji that which it must give up in one revolu- 
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tion. Manifestly / + / + /i + must equal K + K\, A full dis¬ 
cussion of the design of the flywheel will be given in a later chapter. 

The maximum force that may come upon the crosshead can be seen 
from an inspection of the force diagram W. It is to be noted in this 
regard that, if the engine is designed for variable cutoff, an indicator 
diagram at late cutoff should be drawn for the purpose of locating this 
maximum force, as an earlier cutoff will not give the maximum value. 
The method of analysis developed above will enable the designer to 
determine the maximum straining action on any member of the mech¬ 
anism. 

The graphical methods of finding the inertia curves, though con¬ 
venient, are open to criticism on account of their inaccuracy, because the 
tangents or sub-normals to the curve, on which these graphic methods 
depend, are difficult to construct with accuracy and are at some points 
indeterminate. In general, therefore, it is thought that the following 
method or some similar one is more satisfactory. 

Referring to Fig. 3 (page 15) 

Let a 
R 
L 
N 

6 and 0 

k 

X 

n 
V 

t 

CO 

= acceleration of reciprocating parts in ft/sec/sec. 
= length of crank in feet. 
= length of connecting-rod in feet. 
= rprri. 
= angles made with center line by the crank and connecting- 

rod respectively at any position measured from the crank 
position Or. 

= distance from center of crankshaft to mid position of cross¬ 
head in feet. 

= displacement of crosshead from mid position in feet. 
= L/R. 
= velocity of crosshead in ft/sec for any displacement z. 
*= time elapsed in seconds. 
= angular velocity in radians per second. 

Then X + k = OB -t- BC = R cos B + L cos <t> 

But L cos <t> = — R^ sin^ 6 = R\ —-sin^ B 

= R\^— sin^ B 

/. X + A = R(cos B + — sin^ B) (1) 

Expanding the radical by the binomial theorem and omitting all terms 



S
o

lt
^

 
20 THE ENERGY AND FORCE PROBLEM 

beyond the second (which can be done without appreciable error * 
with the limiting proportions ordinarily used), equation (1) becomes 

X k Ti cos 6 + 
sin^ 

) 
(2) 

Now X = the distance moved through by the crosshead, from mid stroke 
and velocity at x = dx/dt; and therefore ditTerentiating (2) with refer¬ 
ence to t 

ch 

dt 
?^si /?( sin 6 + 

sin 

2n ) dt 
(3) 

The acceleration = 

dv 
dt 

- - -r(: 
di^ \ 

cos 6 + 
cos 26 

)©' 

but 

hence 

” = angular velocity in radians per second = 

(2irN\\J cos 2A 

V 60 / \ n / 

(4) 

(5) 

which is the general expression for acceleration of the reciprocating parts. 
If the weight of the reciprocating parts be called TF, from mechanics 

it is known that the force necessary to produce an acceleration (a) is 

P ^ P — — a 

where g = 32.2 in English units; therefore. 

Q 

where R is in feet. Or reducing, 

WrN^/ 

P=_E,^(My(eos. + ^^) 
(7 \ 60 / V n / 

P = — 
35,200\ 

( cos 6 + 
cos 26 

) 

(6) 

(7) 

where r is in inches. 
When the solution of the above expression gives a negative result 

the force of inertia is acting away from the crank, and when positive, 
W 

toward the crank. It is also to be noted that the expression — R 
g 

* This error is less than one-quarter of one per cent of the acceleration when 

L 
= 4 and still less when “ > 4. 
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is the centrifugal force of a weight equal to that of the reciprocating 
parts concentrated at the crankpin since centrifugal force in general 
is equal to jg. 

By means of equation (7) all points on the acceleration curve could 
be found and plotted. In general, however, the exact characteristics 
of the curve are not essential and it is sufficient to make the three most 
simple solutions as follows, and a curve drawn through the three points 
thus located is sufficiently accurate for all ordinary purposes. In cases 
of extremely high speed with small ratios of connecting-rod to crank, a 
more accurate determination of the curve may be desired. 

When 6 = 0, 
„ / WriV2\ / 1\ 

\35,200/ n/ 
(8) 

When 6 = 180°, 
/ wvwA / 1\ 

“ "^(35,200/ n) (9) 

When 6 = 90® or 270°,* 
/WriVA/l\ 

\35,200/ \n/ 
(10) 

It will be noted that the motion of the connecting-rod is complex, 
the end attached to the crosshead having a reciprocating motion, while 
the end attached to the crankpin has a motion of rotation around the 
axis of the shaft. The exact effect of the inertia of the rod upon the 
crank-effort diagram is not readily computed. It is found, however, 
that if one-half f the connecting-rod is considered as having a recipro¬ 
cating motion and if one-half of its weight is added to the weight of 
the parts that have a true reciprocating motion, the results obtained 
are sufficiently accurate for most cases. 

In vertical engines with heavy unbalanced reciprocating parts, the 
effect of gravity upon these unbalanced parts may affect somewhat the 
crank-effort diagram, and it may be necessary to consider this disturbing 
factor. In horizontal engines the effect of gravity upon the connecting- 
rod, so far as its influence upon the crank-effort diagram is concerned, is 
usually neglected. 

If the inertia forces are to be combined with the steam pressure, 
as shown graphically in Fig. 2 (b), they must be reduced to pounds 
per square inch of piston to give correct diagrams. 

An example may serve to make these points clearer. Let it be 

* The piston is not at half stroke. 
t See ^‘Influence of the Connecting Rod upon Engine Forces” by Sanford A. 

Moss, Trans. A.S.M.E., vol. 26, page 367. 
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required to design a steam engine to deliver 150 hp with the following 
data: 

Steam pressure = 90 lb gage. Cutoff at f stroke. 
Ratio of crank to connecting-rod = 1 to 5. 
Piston speed = strokes per minute multiplied by length of stroke = 

640 ft. 
Here something must be known about the size of cylinder necessary, 

before definite dimensions are assigned to the various members. Let 
a theoretical indicator card be drawn as in Fig. 2 (b), neglecting for 
the present the inertia curve V since this only tends to redistribute 
the energy and does not affect its quantity. The distance zz repre¬ 
sents the piston travel, and the ordinates of the curve T represent piston 
pressures; therefore the area between zz and the curve T represents the 
work done by the steam pressure during the stroke. In a similar way 
the area under curve IJ represents the work of compression due to back 
pressure. The difference of these areas is the net work done per stroke 
of piston, and the mean ordinate corresponding to this area represents 
to the proper scale the average pressure per square inch on the piston 
during stroke. In the example given, zz ^ 2 m. Area under T minus 
area under f/ = 1.75 sq in. Therefore, mean ordinate = 1.75/2 = 
0.875 in. The scale of pressures taken is 1 in. = 70 lb. Therefore 
mean pressure during stroke = 70 X 0.875 = 62 lb, nearly. 

Let A = area of piston. 
P = mean effective pressure per square inch. 
L = length of stroke in feet. 
N = number of revolutions per minute. 

HP = horsepower required. 

Then 

33,000 

Here P, N X L and HP are known. Whence 

HP X 33,000 _ 150 X 33,000 

P X 2NL “ 62 X 640 
132 sq in. 

or a diameter of cylinder of 13 in. 
If the stroke be taken at about twice the diameter of the cylinder, 

or say 24 in., the proportions will be good. 
Hence since 2L X N = 640, N = 160 rpm. The mechanism can 

now be laid out to scale. This has been done in Fig. 2 (a and c),* the 
space scale being 1 in. == 1 ft. 

* Reduced in reproduction about one-half. 
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As before stated, the location of the throe points, namely, where 6 is 
respectively 0®, 180®, and 90® or 270® (Fig. 3), is sufficient to locate the 
inertia curve. In the above example W = 3.5 lb sq in., n — 5, and 
N = 160. 

The general expression for the inertia force is, for ^ = 0, 

P = 
WrN^ 
35,200 

where C is a constant and here equal to 
fore. 

3.5 X 12 X 160^ 

35,200 
30.5. There- 

When 0 = 0®, 
P = 30,5(1 + i) = 36.6 lb per sq in. 

When 0 = 90®, 
P = 30.5(i) = 6.1 lb per sq in. 

When 0 = 180®, 
P = 30.5(1 — i) = 24.4 lb per sq in. 

These values serve to locate the curve as in Fig. 2 (b). 

The resultant of TU and F, curve IF, Fig. 2 (c), can now be drawn 
and the crank-effort diagram X plotted. The crank-effort curve can 
be rectified as in Fig. 2 (d) and the mean ordinate Yl drawn. The 
area I + J = K will be proportional to the energy to be absorbed and 
delivered by the flywheel. One inch of ordinate here = 70 lb per sq in. 
of piston and 1 in. of abscissa = 1 ft; therefore 1 sq in. of area = 70 
ft-lb. 

The area of K = 0.5 sq in. and area of piston = 132 sq in. Hence, if 
E = energy to be absorbed; 

P = 0.5 X 70 X 132 = 4620 ft-lb on which the design of the fly¬ 
wheel can be based. 

The maximum pressure that can occur on the piston is the initial or 
boiler pressure, as the ordinates of IF are at all points less than those of 
r. Hence, when running, the parts will be subjected to less load than 
in starting up, when fuU boiler pressure may be applied before inertia 
forces become noticeable. 

6. Case (d), A good example of energy supplied at a varying rate 
and work done at a varying rate is founded in a direct-driven air com¬ 
pressor. Here the varying steam pressure in the steam cylinder is 
opposed by a varying air pressure in the air cylinder as shown in Fig. 
4 (a). The areas of the cylinders are, for simplicity, assumed to be 
equal. The steam cylinder takes steam at 80 lb. pressure, and the air 
compressor cylinder delivers air at 100 lb. pressure. The efficiency of 
the system shown is taken at 80 per cent, and hence the area of the com- 
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pressor card is 80 per cent of the steam card.* If both the pistons 
are rigidly attached to the same rod it is evident that the maximum 
steam pressure will occur where the air pressure is a minimum. If, 
however, each cylinder is independently connected to a common shaft 

r * 

V k/ 
/ 1 \ 

V 
1_5 

1 j 

Fig. 4 (d). 

by means of a crank and connecting-rod mechanism, the maximum and 
minimum pressures of the cards may be made to coincide more closely 

♦ In the general case, where the cylinders are of different diameter and area, 

the diagrams which represent pounds per square inch of piston area would not 

have a ratio equal to the efficiency. The mean effective pressure of the air cylinder 

multiplied by the area of the air cylinder, divided by the mean effective pressure 

of the st-eam cylinder multiplied by the area of the steam cylinder, would, in this 

instance, equal the efficiency. 
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by placing the crankpins at the proper angular distance apart. In 
other words, the mechanism may be so designed that energy will be 
delivered at the working point more nearly at the rate required by the 
work to be done. The loss by friction, etc., is about 20 per cent. Part of 
this is lost on the steam side and part on the air-compressor side. It can 
be assumed, without great error, that the losses can be evenly divided 
between the two slider-crank chains and also that the loss is at a uniform 
rate throughout the stroke. Thus the loss on the steam side can be 
represented by the line ah, Fig. 4 (a), which reduces the effective pressure 
at every point by a fixed amount. In a similar way ordinates to the line 
cd increase the effective resistance of the air diagram. The area of the 
diagrams modified in this way will be equal and all energy supplied will 
be accounted for. 

Since the moving parts of both slider-crank chains will be heavy, 
the effect of inertia cannot be neglected. In Fig. 4 (b) the air and 
steam cards are shown with the inertia curve, the friction line, and the 
compression curves in their correct relationship. Fig. 4 (c) shows the 
resultant pressure curves, the curve of air pressures being plotted below 
the base line for convenience. The crank-effort curve of the steam 
cylinder is represented by X, and the resisting crank-effort curve of the 
air cylinder is represented by F. The cranks are here placed 90° apart, 
the steam crank being in advance, a common arrangement in practice. 
It is evident, however, that this is not the most advantageous angle, for 
if the point e on the air curve is made to correspond with / on the steam 
curve, Fig. 4 (c), the excess and deficiency of effort will be still further 
reduced. This would place the cranks at 45° apart. This is even 
more clearly shown in Fig. 4 (d), on the rectified curve of crank effort. 
Here the area K + Ki is the amount of energy to be absorbed, and 
J + J + /i + Ji the amount to be given up by the flywheel during 
one revolution. In the steam slider-crank mechanism the greatest 
pressure is, as before, that due to the initial steam pressure, while on 
the air side it will be that due to the terminal air pressure. 

In the four cases discussed above the action of the machine has in 
all instances been supposed to be continuous, and all machines which 
operate continuously will belong to one of these classes. Where the 
action of the machine is intermittent or irregular, these general solutions 
will not always hold, and the design of the machine cannot be based 
on the energy given or received, but will depend on the maximairi force 
or maximum torque or, in other words, on the mechanical advantage 
which the motor must possess. Thus the motor on an automobile has a 
certain maximum capacity for delivering power. On a level road it 
can propel the car at a high rate of speed, the engine making only a few 
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turns to every revolution of the wheels. But on a steep hill the gears 
must be shifted so that the engine has a greater mechanical advantage, 
and gives a greater torque on the axle, the engine making many revolu¬ 
tions to every one of the wheels. Another example of this is the case of 
hoisting mechanisms already discussed briefly (see Article 2). An 
engine or a motor might be capable of giving out energy at a rate equal 
to that required to lift the load in a given time, and it might be able, 
running continuously, to raise the load to the required height. But its 
ability to start and svstain the load at any point will depend on whether 
it has a mechanical advantage at that point and not on its capacity. 

In deep mine hoisting the winding drum is frequently made conical 
in form. When the hoisting cage is at the bottom of the shaft, the 
rope is at the smaller end of the drum, and the torque on the drum shaft 
is equal to the weight of the loaded cage plus the weight of the rope 
multiplied by the radius of the small end of the drum. In a deep mine 
the weight of the rope forms a large part of the load, when hoisting from 
the bottom of the shaft. When the rope is all wound in and the loaded 
cage is at the surface, the torque on the drum shaft is equal to the weight 
of the loaded cage multiplied by the radius of the larger end of the drum. 
Obviously the radii of the larger and smaller end can be so chosen as to 
make the torque on the shaft equal when the loaded cage is either at the 
bottom of the shaft or at the surface. During the period of hoisting, 
however, the radius on which the rope is wound is constantly increasing, 
while the weight of the load is constantly decreasing because of the 
lessening length of the hoisting rope. With a truly conical drum, 
this results in a varying torque on the drum shaft, which is often con¬ 
siderably greater when the load is part way up than it is when the load 
is at either of the extreme positions. It will be noted, however, that the 
minimum torque of the engine or motor must always exceed the max¬ 
imum torque of the load, when referred to the same shaft, if it is to 
maintain and start the load at all positions. It is possible, of course, to 
make a drum of such shape that the radius will vary so as to maintain a 
constant torque, but the longitudinal cross-section of the surface of such 
a drum is usually a complex curve which is difficult to construct. The 
mathematical discussion of this problem is beyond the scope of this 
treatise, but the general principle must be observed in designing all 
hoisting engines and similar machines which act intermittently and 
slowly, and where devices for storing and redistributing energy are 
undesirable or impossible. 

7. Redistributioii of Energy and Inertia Effects. Devices for 
storing and redistributing energy are very common in transmission 
systems. Thus, in hydraulic distribution, the excess supply of power is 
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stored in an accumulator, and given out again when the supply is 
deficient. In electrical distribution a storage battery is sometimes used 
for the same purpose. In transmission of power by compressed air a 
large reservoir is sometimes employed as a storehouse of energy. In 
a single machine, the redistribution is effected by compressing a gas, 
by using a spring, or by accelerating and retarding some heavy moving 
part. Thus in the steam engine the piston compresses steam in the 
clearance space at the end of its stroke, and the energy so absorbed 
is returned to it during the next stroke. Again, when the energy sup¬ 
plied by the steam is in excess of the effort required, the fiywheel absorbs 
the excess and thereby has its velocity (and hence its kinetic energy) 
increased. When the effort is in excess, the wheel gives up the stored 
energy at the expense of its velocity. 

It does not necessarily follow, however, that all heavy moving parts 
simply redistribute the absorbed energy as useful work, as the action 
may be a positive source of loss. In Fig. 5 let A be the platen of a large 
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Fig. 5. 

planing machine, and suppose it to be making its return stroke, moving 
from left to right. The force just necessary to slowly move the platen 
may be represented by the vertical ordinates of the diagram abed. Sup¬ 
pose now, that a greater force is applied, in order to hasten the operation, 
so that at the position A', the platen has been accelerated till its kinetic 
energy is equal to the rectangle eghc. Evidently the platen will not 
stop at the end of the stroke if the actuating force be removed at A', as 
the work of friction during the remainder of the stroke is less than the 
stored energy. If, therefore, the return belt is removed at A' and 
the driving belt applied, the latter will slip upon the driving pulley 
till the excess of energy is absorbed and dissipated as heat. If the point 
A' has been properly chosen the platen will just stop at the end of the 
stroke and the energy absorbed by the belt will equal the area fghb. If 
a spring, S, were fitted to the machine, so that the work of compression 
from the position A' to the end of the stroke just equaled the excess 
kinetic energy of the platen, at that position, the return belt could be 
thrown off at A', and the platen would stop at the end of the stroke. The 
energy stored in the spring would then be returned to the platen on the 
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forward stroke. This latter action is identical with that of compression 
in the steam-engine cylinder, Fig. 2, the energy under the curve U being 
returned to the reciprocating parts on the next stroke. It is to be noted 
in this last case, that even if the work of compression is not quite equal 
to the energy to be absorbed during the latter part of the stroke, there is 
no loss of energy (friction neglected), as what is not absorbed by com¬ 
pression is absorbed at the crankpin in useful effort. 



CHAPTER III 

STRAINING ACTIONS IN MACHINE ELEMENTS 

8. Nature of Forces Acting in Machines. From the foregoing chapter 
it is clear that machine members which transmit energy are subjected 
to forces of a varying character and intensity. Since the various parts 
of a machine must be constrained to move in fixed patlis it is important 
that they should neither break nor be distorted appreciably under the 
loads carried; that is, the members must be not only strong but also 
stiff. The proportioning of machine elements as dictated by various 
methods of loading is therefore most important, and will be considered in 
this chapter. 

The forces acting on a machine element may be one or several of 
the following: 

(a) The useful load due to the energy transmitted. 
(b) Forces due to frictional resistances. 
(c) The weight of the part itself or of other parts. 
(d) Inertia forces due to change of velocity. 
(e) Centrifugal or inertia forces due to change in direction of 

motion. 
(f) Forces due to change of temperatiare. 
(g) Magnetic attractions, as in electrical machinery. 
(h) Vibratory forces due to lack of balance in moving parts, etc. 
These forces or loads may be applied to a machine in several ways. 

They may act steadily in one direction; they may act intermittently 
in one direction, or they may be applied first in one direction and then in 
the reverse; they may be applied gradually, or suddenly in the nature 
of a shock. 

A steady or dead load is one which is always applied steadily in the 
same direction. Such a load induces stresses that do not vary either in 
character or in magnitude. A live load is one which is alternately 
applied and removed. Such a load induces stresses that vary in mag¬ 
nitude or that vary in both magnitude and character. A live load 
imposed suddenly but without initial velocity is called a suddenly 
applied load. When a live load is applied with initial velocity, as a blow 
from a falling body, the member is subjected to impact. 

29 
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9. Nature of Straining Actions, Stress and Strain. Since all materials 
of construction are more or less elastic, a machine element must change 
its form to some extent whenever subjected to a load. This change of 
form may be very small and temporary; it may be a permanent dis¬ 
tortion ; or if the load applied be sufficiently heavy the element may even 
be ruptured. Such change of form, whether temporary or permanent, 
is called a strain. V/hen a machine member is thus distorted under a 
load certain molecular reactions, equal and opposite to the load applied, 
are set up within the material and resist the deformation. Stress is 
the term applied to this internal reaction and is to be clearly distin¬ 
guished from strain, stress being in the nature of a force and strain being 
a dimension. 

The character of the straining action and of the stress which results 
from a given load depends upon the direction and point of application 
of the load (or forces), and upon the form, the position, and the arrange¬ 
ment of the supports of the member. A given load may produce ten¬ 
sion, compression, shearing, flexure, or torsion, or a combination of these. 
Of course tension and compression cannot both exist at the same time 
between the same set of molecules. Flexure is a combination of tensile 
and compressive stresses between different sets of molecules; or, as it is 
often expressed, in different fibers * of the same body. Torsion is a 
special form of shearing stress. 

The stresses due to tension, compression, and flexure are essen¬ 
tially molecular actions normal to the planes separating adjacent sets 
of interacting molecules; that is, the stresses increase or decrease the 
distances between these molecules along lines connecting them. 

The primary straining effect of shearing and torsional actions is 
a displacement of adjacent molecules, tangentially to the planes separat¬ 
ing such molecules. In uniform shear the interacting molecules move 
or are strained relatively with a rectilinear translation. In torsional 
action the adjacent molecules each side of a plane of stress have a 
relative motion or strain about an axis. A brief reflection will show that 
in reality only two kinds of strain exist, namely, elongation (contrac¬ 
tion if negative) and shearing. In a similar way only two corresponding 
kinds of stress are met with, namely, normal or direct, and tangential 
or shearing. 

Machine members are often subjected to combinations of these 
simple stresses, as flexure and torsion. Such stresses, called compound 
stresses, will be more fully treated later. 

When a load is applied to a piece of material the strain or deforma- 

* It should be noted that the term fiber is used in a conventional sense when 

discussing homogeneous metals, such as iron and steel. 
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tion which results is a function of the load and of the character of the 
material involved. In general, for a given loading the deformation is 
different for different materials but constant in its relation to stress 
for any one material. These relations have been determined experi¬ 
mentally for all the ordinary materials used in engineering, and works on 
mechanics of materials treat of the subject fully. Enough will be insert-ed 
here to make the discussion complete. 

If a bar of metal is tested under an increjising tensile load and the 
strain caused by each successive load is accurately observed, the relation 
between the unit stress and the unit strain can be shown graphically 
as at Oade, Fig. 6; such a diagram is called a stress-strain diagram. 

If axes OX and OY are chosen and the stresses plotted as ordinates 
and strains as abscissas, it will be found that up to a certain point as a, 
either in tension or compression, the curve so formed is sensibly a straight 
line; that is, stress is proportional to strain. Further, if at any point 
below a the stress is released, the piece returns to its original shape. 
But above a this relation ceases, 
strain usually increasing * faster 
than stress. The point a is 
called the elastic limit and is 
fairly well defined in the ductile 
materials. In testing ductile 
materials, such as mild steel 
and soft brass, the stress-strain 
diagram usually shows a sharp 
break shortly after passing the 
elastic limit, small increases of 
stress resulting in much greater 
increases in the strain. The 
point where this change occurs 
is called the 3rield point and is indicated on Fig. 6 by y. The applica¬ 
tion of the stress between the points a and y results in an increasing 
but very small permanent deformation of the piece tested. Beyond 
the point the permanent deformation is more marked, small increases 
of stress causing large increases of strain. If the stress is released at y, 
the stress-strain diagram does not retrace itself but will be along a line 
yC very nearly parallel to Oa. The distance OC is the permanent defor¬ 
mation. Similar results will be found for any point beyond y. The yield 
point is quite easy to locate in making a test of a specimen, but the 
elastic limit is not easy to locate with great accuracy. Usually, how- 

* Ordinaiy rubber is an exception to this general rule, strain decreasing as stress 

increases. 
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ever, they are so close together that the difference in their values is 
negligible, and commercially the yield point is frequently used instead 
of the elastic limit in specifying the properties of ductile materials. 
Cast iron and the hriitle materials have no well-defined elastic limit and 
little permanent elongation. 

If at any point on the curve below a the stress be divided by the 
strain a ratio is obtained which is constant for all points below a. This 
ratio is called the modulus or coefficient of elasticity. If, therefore, 
this modulus o** elasticity is known for a given material, the strain corre¬ 
sponding to any given stress may be calculated, providing it does not 
exceed the value corresponding to the point a. The value of the modu¬ 
lus of elasticity for tension, or the tension modulus, is practically the 
same as the modulus for compression. The modulus of elasticity in 
shearing action is different from that in tension for the same material, 
and is called the shear modulus. It is measured by dividing the shearing 
stress by the relative twist of the specimen. When the term modulus 
of elasticity is used without further specification, reference is made to 
the tension modulus. The modulus of elasticity is a measure of the 
stiffness, or rigidity, of the material, and not of its strength. It should 
be noted that the stiffness of a strong material may be no higher than 
that of a relatively weak material. Thus, the coefficient of elasticity of 
all grades of steel, from the softest to the hardest, is about the same— 
30,000,000. For a given intensity of stress within the elastic limit, 
therefore, the corresponding strain is about the same for all grades of this 
material. If, therefore, it is desired to replace a steel machine member 
with a more rigid one of the same dimensions, nothing is gained by using 
a harder grade of the same material. Either the unit stress must be 
reduced by using larger dimensions or a material must be employed that 
has a higher modulus. 

If sufficient tensile stress is applied to a test piece its elongation 
increases until finally it “ necks down '' at its weakest point and rupture 
occurs. The load per unit of original area under which a bar breaks is 
called its ultimate strength, and the corresponding stress or reaction per 
unit of original area is called the ultimate stress. Similar phenomena 
are observed when a piece is tested in compression or torsion, etc. 

It is evident that the working stress of a machine member must be 
less than the elastic limit if the piece is to retain permanency of form. 
The stress at which a member is designed to be operated is called the 
working stress, and the ratio of the ultimate stress to the working stress 
is called the factor of safety. It is to be especially noted that the working 
stress in the member must not only be kept below the value where per¬ 
manent deformation takes place, but must also be so low that the result- 
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ing strairiy whatever it may be, shall be so small as not to destroy the 
proper alignment of the piece, or cause unnecessary friction through 
distortion. A machine member may be amply strong enough to carry 
the load with perfect safety, and yet distort so badly under the load 
as to render it unfit for the service desired. Both strength and stiffness 

should therefore be kept in mind in designing a mach ne part, as some¬ 
times one and sometimes the other will dictate the form and dimensions 
to be used. A short discussion will now be given of the relations which 
exist between load, stress, and strain for the cases most often met and 
of their bearing on the selection of the form and s ze of a machine mem¬ 
ber. In this discussion it will be assumed that the load is a dead load 
applied without shock, and the modifying effect of suddenly applied 
and repeated loads will be considered after the fundamental relations 
between load and stress are established. 

10. Tension. Let St be the stress in the section, P the load, and A the 
area of cross-section. The relation which exists between them in sim- 
pl*^ tension is 

= j (A) 

If I be the length of the member and A the total elongation, the 
unit elongation or unit strain will be A/l. Hence, if E be the coefficient 
of elasticity, 

^ Unit stress P A PI 

Unit strain A I AA 

If, then, a tension member is to be designed to join two machine 
parts, the formula for strength dictates a piece of uniform cross-section 
without regard to any particular form. Hence the most convenient or 
cheapest form would be used, avoiding thin, wide sections where con¬ 
centrated stress at the edge might cause undue elongation. 

Suppose it is required to hold the two surfaces within certain limits, 
as in machine tools where accuracy is desired. If the tension member 
is long it may yield more than is desirable, though the working stress 
may be well below the elastic limit and a greater area may be necessary 
to reduce A to the desired value. 

Example. Let P = 20,000 lb, let the allowable stress St = 10,000 
lb, let E = 30,000,000, let Z == 40 in., and let it be required to keep A 
within 0.001 in. If the design is based on allowable stress alone, 

A 
P _ 20,000 

St 10,000 
2sqin. 
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But for A = 0.001, 

PI _ 20,000 X 40 _ . 

~ AE~ 0.001 X 30,000,000 ~ 

In general, therefore, where tension members are of any considerable 
length and distortion under load is of importance, they should be checked 
as in the foregoing. 

11. Compression. If the member under consideration be subjected 
to compression, the remarks of the last paragraph apply equally well if 
the member can be considered a short column, i.e., one whose length is 
not greater than six times its least diameter. If longer than this it 
must be considered as a long column and the conditions governing its 
design will be more fully treated hereafter. (See Article 23.) 

12. Shear. If the member is subjected to simple shear the expres¬ 
sions for the relations existing between the stress, area, and load are 
similar to those for tension, or 

13. Torsion. If the member is subjected to a torsional stress, 
the following relations exist: 

Let P = load applied in pounds. 
a — arm of load in inches. 
d = diameler of circular shaft in inches. 
b = side of solid square member in inches. 

Sa = shearing stress in pounds per square inch at outer fiber, 
c = distance from neutral axis to outer fiber in inches. 
I = length of member in inches. 
6 = angle of deformation in radians. 
T = twisting moment applied to member in inch-pounds. 

Ea = transverse coefficient of elasticity. 
J = polar moment of inertia. 

Then for torsional strength of solid circular shafts, 

Pa = T^Sa~^-^ (D) 

and for torsional strength of solid square members of side 6, 

T = 0.20863s. (E) 

For a hollow circular section whose outside and inside diameters are 
di and d2 respectively, r ^ 

T = Sa - = 
c 

SaTidl"^ d2^) 

IQdi 
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For deformation under stress for a solid circular section, which is the 
most common case, 

Tl 

^ ~ EJ 

where J is the polar moment of inertia. Hence, for solid circular sec¬ 
tions, 

e = - ((?) 

and for a hollow circular section, 
m 

e = 
3277 

irEsidi^ - d>^) 
(H) 

Examination of equations (D) and (F) shows that for circular sec¬ 
tions torsional strength is proportional to the third power of the outer 
diameter. Equations ((7) and (H) show that torsional deformation is 

inversely proportional to the fourth power of the outer diameter, hence 
torsional stiffness is directly proportional to the fourth power of the outei 
diameter. 

For a given amount of material that section in which this material 
is distributed farthest from the gravity axis will be strongest and stiffest 
as long as the walls of the section do not become so thin and weak 
as to yield locally from other causes. The hollow circular and hollow 
rectangular sections, commonly called the box section,Fig. 7, are 
best adapted, therefore, to resist torsional strains. The box section is 
peculiarly useful in machine construction, as many machine members 
must carry a combination of stresses. Machine frames may be sub¬ 
jected to tension, compression, or shearing, combined with torsion, and 
the box section, while equally good for simple stresses, is, as has been 
noted, vastly superior in torsion. Furthermore, the box section is 
well adapted to resist combined flexure and torsion. The flat sides of a 
box section also afford facilities for attaching auxiliary parts, and its 
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appearance is one of strength and stability. The thickness of the walls 
being less in hollow than in solid forms insures a better quality of 
metal in castings and also more skin surface, where the greatest strength 
of cast iron lies. An advantage not to be overlooked in some lines of 
work is the ease with which hollow sections can be strengthened by 
increasing the thickness of the walls by changing the core without 
changing the external dimensions. The cost of pattern work is about 
the same, in general, for hollow sections as for I or other sections, while 
the work in the foundry is, in general, a little greater. 

Example. A circular cast-iron boring bar 60 in. long carries a solid 
circular boring head 60 in. in diameter. The bJr is subjected to a tor¬ 
sional moment of 60,000 in.-lb which is applied at one end. It is 
desired to keep the torsional deflection of the tool below 3V in. when the 
bar is transmitting power through its entire length, in order to prevent 
chattering of the tool. What should be the diameter of the bar if the 
working stress be taken as 3000 lb. per sq in. and be taken as 6,000,000. 

For torsional strength from formula (D), 

e . X - 100 
3000 X IT 

d = 4.6 in. 

For torsional stiffness, 
1 

_ ^2^ _ 1 
e 

since 6 is in radians and the length of an arc = rd, where r = radius. 

32 X 60,000 X 60 _ 
From Gy 

TT X 6,000,000 X TCxr 

hence d = 8.8 in. It is evident that the shaft will be amply strong if 
designed for stiffness; therefore the last value would be used. 

If the section is made hollow less metal can be used. Then either 
the inside or outside diameter or the ratio between them can be assumed. 
Let 

whence, 

d2 3 , 3di 
— = - or d2 = — 
di 4 4 

j . 81di^ j j . , . 175 , A 
(^2^ =- and di^ — d2^ = — di^ 

256 256 
27r 

* The angular deflection in radians = (angular deflection in degrees); hence, 

the angular deflection in degrees ^ 57.296 (angular deflection in radians). 
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Substituting in F, 

^4 ^4 175 ^ . 32 X 60,000 X 60 
Ul — 02 = - Ol = - 

256 ^ X 6,000,000 X Th 

/. = 8550 and di = 9.6 in. 

hence d2 = 7.2 in. 
The area of the hollow shaft = 31.67 sq in.; that of the solid shaft 
60.84 sq in., so that with a small increase in diameter one-half the 

metal secures, by using the hollow section, the same stiflfness. 
14. Compound Stresses. In the simple loadings just discussed only 

one form of stress is brought on the member and the design of the 
cross-section can be safely based on this stress. When, however, 
the loads applied induce stresses of several kinds, it is no longer possible 
in general to base the design on any one stress, but regard must be had 
to the combination of stresses that may occur. In many cases one or 
mor(‘ of the stresses are so small, or their action is such, that they may be 
nt glccted in designing the member, though they should always be bonie 
in mind. The stress on which the design of the member is bfised may 
be called the predominating or primary stress, and it may be a simple 
stress or a combination of simple stresses. The latter will be called a 
compound stress. 

15. Flexure. When a beam is subjected to simple bending the 
principal stresses that are induced are (a) a tension on one side of the 
neutral axis, (b) a compression on the other side of the neutral axis, and 
(c) a shearing stress which acts on every section of the beam at right 
angles to the tension and compression. Generally speaking, the shearing 
stress is small compared with the tension or compression and can often 
be neglected. It must never be forgotten, however, and where the beam 
is designed to withstand the bending moment only, care should be exer¬ 
cised that the sections which are subjected to a small bending moment 
are not made so small as to yield under shear. The predominating 
stress in general will be the tension or compression, depending on the 
material and the form of section. 

In determining the stresses in machine members, it is customary to 
consider the member as stationary at the moment when the particular 
forces that induce the stresses are acting, whether the member is actually 
stationary or not. It will be helpful, in the discussions that follow, to 
remember that for static equilibrium the sum of all the vertical forces 
must equal zero, the sum of all the horizontal forces must equal zero, 
and the sum of all the applied moments about any point must also equal 
zero. These principles are of great importance in determining unknown 
values of forces and reactions acting upon the member. 
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The bending moment at any section of a beam is the algebraic sum 
of all the moments of the external forces acting on either side of the 
section under consideration. The shear at any section of a beam is the 
algebraic sum of all external forces acting on either side of the section, 
and where the shearing force passes through a zero value the bending 
moment is a maximum or a minimum. 

When a beam is subjected to simple flexure: 

Let M — bending moment at any section in inch-pounds. 
I = moment of inertia of section in biquadratic inches. 
c — distance from neutral axis to outermost fiber in inches. 

A = deflection at any point in inches. 
P = load applied in pounds. 
s — maximum stress at outer fiber in pounds per square inch. 

E = coeflScient of elasticity. 

Then for strength, in general, within the elastic limit, 

M = - * (/) 
c 

Every beam when loaded deflects somewhat, depending on the shape 
of its cross-section, the material, the way in which it is supported, 
and the load applied. The curve assumed by a beam loaded within 
the elastic limit is called the elastic curve and is of course different 
for different combinations of the above conditions. The general 
equation of the elastic curve, whatever the shape of the beam may 
be, or the manner in which it is loaded and supported, is 

dx^ El 

To find the particular equation for any case, M must be expressed 
in terms of x and the expression integrated twice. The ordinate y, 
which is the deflection, can then be found for any value of x, and its 
greatest value is the maximum deflection. This integration has been 
performed for all the cases usually met with in practice, and the results 
are tabulated in Table I. It is to be noted that this tabulation is for 
beams of uniform section and for stresses within the elastic limit. Here, 

* The expression 7/c is sometimes called the modulus of the section and is generally 

indicated by the letter Z. It should be noted, however, that this expression is 

applicable only to symmetrical sections, as c may have iwo values for other sections. 

si/c is termed the resisting moment. 
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as in other classes of machine members, the design of the part may be 

based on strength or stiffness, depending on the conditions, and in gen¬ 

eral both should be considered. 

Example. A steel I-beam 20 ft long and supported at the ends is 

used as a track for a crane trolley carrying 4000 lb. Select a standard 

rolled I-beam that will carry the load with a deflection of not more than 

1^6 in. at the center and a maximum stress of not more than 8000 lb. 

From Table I, 

A = = ~ = 4000 X 240^ 

16 48i7 48 X 30,000,000 X / 

whence 

j ^ 4000 X 240'^ X 16 ^ ^05 

48 X 30,000,000 X 3 

From handbooks on structural shapes it is found that the moment 

u! inertia of a 12-in. I-beam weighing 31.5 lb per ft is 215.8. Let 

such a beam be chosen. Then from formula (/), the stress 

^ ^ 2000 X 10 X 12 X 6 

/ 215.8 
6700 lb, nearly 

The section therefore is satisfactory. 

16. Beams of Uniform Strength. The values in Table I refer to 

beams of uniform cross-section. In nearly all cases the bending moment, 

which is usually the basis of design, varies, and if, therefore, the beam is 

made strong enough at its most strained section and uniform in cross- 

section throughout its length it will have an excess of material at every 

other section. * Sometimes it is desirable to have the cross-section uni¬ 

form; in other cases the metal can be so distributed that every section 

shall have the necessary strength to resist the bending moment and 

no more. In the latter cases the shearing stress must be looked after 

carefully. Table II gives a few of the forms most usually met, and 

an example may make their application clear. 

Example. A cantilever of rectangular section 30 in. long carries at 

its outer end a load of 1000 lb. It is to have a uniform thickness. 

What is its vertical outline so as to have uniform strength? 

Let the thickness = b and the variable height = 1/. Then the mo¬ 

ment at any section at a distance x (Fig. I, Table 2) is Px, and this 

* This of course does not cover the possible case where the effect of shearing or 

other stresses may exceed that due to flexure. 
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TABLE I 

Beams of Uniform Section 



iff « load per unit length. W = total distributed load. P == concentrated load. 



load per unit length. W =* total distributed load. P = concentrated load. 
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TABLE II 

Beams of Uniform Strength 

» load per unit length. W = total distributed load P =* concentrated load. 
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must be equal to the resisting moment of the section at each point; hence 

Px = 
si 

c 

shy^ 
or 

6^ 
sb 

which is the equation of a parabola whose vertex is at the outer end of 

the beam. In the problem assumed, let b — 1.5 in. and let s = 4000 lb. 

Then when x = 30j y = h = 5.5 in. In a similar way other points may 

be found or the curve may be laid out by graphical method. The shear¬ 

ing load at any point is P, and hence the shearing stress increases as the 

cross-section of the beam decreases. When x = 0, y = 0, and in general 

when X is small, y is very small; therefore the outer end of the member 

must be modified so as to carry the shearing stress safely. Reference 

will be made to this again under the section dealing with machine attach¬ 

ments (see Chapter XIX). It is to be especially noted that these theo¬ 

retical shapes are based on certain assumptions and unless these are 

observed in the design, the theoretical outlines do not apply. Thus in 

the cantilever example above, if the thickness of the beam is not kept 

uniform the outline for uniform strength is noi a parabola. The mistake 

of using a parabola when the thickness is not uniform is often made when 

I OT T sections are used instead of uniform thickness or depth. It is 

evident that, whatever may be the form of section adopted, by means 

of the bending moment and shearing load the correct depth of section 

can be found for a number of points and a curve plotted that will answer 

the requirements of uniform strength. 

17. Combined Flexure and Torsion. Let the force P, Fig. 8, act 

upon a rod with an arm a at a distance from the support equal to 1. 

Then the stresses induced in the section close to the support are 

(a) Tension and compression stresses due to the bending moment PI. 

(b) Shear stress due to the twisting moment Pa. 

(c) Shear stress due to bending. 

The shear stress due to bending is zero where the tension and com¬ 

pression stresses due to bending are a maximum and can be neglected; 

the predominating stress therefore is that due to the combined action 

of the bending and twisting moments. 

It can be shown that if a bar or rod is subjected to a longitudinal 

tensile or compressive stress and at the same time to a shearing stress 

at right angles to its length, the combination of these stresses may pro¬ 

duce similar stresses greater than either and acting along planes other 

than those along which the original stresses act.* 

♦ See any standard treatise on mechanics. 
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If $t be the tensile or compressive stress and Sa the shearing stress 
applied to the bar at right angles to Stj then the maximum tensile or 
compressive stress due to St and s, is given by the following equation: 

max. s\ = max s'c — + 45.^] (1) 

and the maximum shearing stress s\ due to St and s, is 

max. s'a — + 4:Sa^ (2) 

It is evident that the numerical value of max. s't will always exceed 
that of max. s',, and therefore if the material used has approximately the 
same tensile and shearing strength the design can be safely based on (1). 
But should the allowable shearing strength of the material be less than 
the allowable tensile strength, as is usual, it may happen that the shear¬ 
ing stress as found by (2) would dictate a larger section than that 
dictated by formula (1). 

If the tensile stress is due to a bending moment and the shearing 
stress is due to a twisting moment the values of St and s, can be found 
from equations (J) and (D) respectively and max. s\ and max. s'a ob¬ 
tained as above in equations (1) and (2) respectively. 

Example. A certain section of a circular steel shaft is subjected 
to a bending moment M of 10,000 in-lb and a twisting moment T of 
60,000 in-lb. The allowable tensile stress is 10,000 lb per sq in. and the 
allowable shearing stress is 8000 lb per sq in. It is required to design 
the cross-section of the shaft. 

From (/), 
Me 32Af 32 X 10,000 101,910 

“ 7 - - TT X 
and from (Z)), 

Tc ler 16 X 60,000 305,730 

®‘ ~ J ~ 7rd3 “ 

hence from (1) 
, 360,915 

max. S t = ——— 

and since the allowable tensile stress = 10,000 

360,915 

10,000 

or 
d = 3.3 in. 

From (2), 

max. s'. 
309,960 
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and since the allowable shearing stress = 8000, 

„ 309,960 

-TooT 
d = 3.4 in. 

or xV in. greater than that given by (1). It is evident that the last value 
should be taken. 

Equations (1) and (2) are general and applicable to any and all sec¬ 
tions, but for circular shafts operating under conditions that produce 
both bending and twisting it has been found convenient to make use of 
what may be called an equivalent or ideal bending moment which may 
be derived from equation (1) as follows: 

Let Mi — the equivalent bending moment which will produce the 
same maximum tensile or compressive stress as will be 
produced by the combined action of M and T. 

M = the bending moment producing the tensile or compressive 
stress St. 

T — the twisting moment producing the shearing stress s^, 

r = radius of shaft. 

From (/), 

nr j nr M — — and Me = — 
r r 

and from (Z)), 

r r 

(Since J = 21 for circular or other sections for which the moments of 
inertia about two perpendicular axes are equal.) 

Multiply equation (1) through by I/r, whence 

In a similar manner an equivalent twisting moment can be deduced from 
(2), thus 

Oo' 7 __ 

_i- = r, = {Ki) 
r 

Thd quantities M and T are usually large, and the numerical work 
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involved in solving (K) and (Ki) can be simplified by transforming 
them into the equivalent forms: 

Te= M (K^) 

It is to be especially noted that Me and Tc are equivalent moments in a 
numerical sense only; that is, if a bending moment M and a twisting 
moment T are applied to a shaft, producing a tensile stress St and a 
shearing stress Ss respectively, then Me is a bending moment which will 
give a stress equal to the maximum resultant tensile or compressive 
stress max. s't, and Te is a twisting moment which will give a stress equal 
to the maximum resultant shearing stress max. reference being made 
to the same section. 

The application of these equations to the investigation of any 
existing shaft subjected to a bending moment M and a twisting moment 
T is obvious, and it remains to consider their application to the design 
of new shafts. It has been noted that the greater numerical value 
given by equation (1) does not necessarily indicate that a larger section 
will result from its adoption than from the use of equation (2). For 
the same reasons the greater numerical value of Me, obtained from 
(K)y may not give a larger section than would be obtained from Te 
by applying It is necessary, therefore, to determine under what 
conditions each should be used for designing in order that the maximum 
diameter of shaft shall be found in all cases. 

From (J), 
s'tir(P 

32 

(3) 

(4) 

Since in any given problem M and T are always known, Me and Te 
can always be found from {K) and {Ki) or {K2) and and since 
the allowable values of s't and s'e can always be assigned, the diameter of 
the shaft d can always be determined from both equations (3) and (4) 
and the larger value selected as in the problem previously solved. It is 
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desirable, however, to know, for any set of conditions, whether equa¬ 
tion (3) or equation (4) will give the greater value of d without the 
necessity of solving both equations. 

It is evident that in order that equations (3) and (4) may give the 
same diameter of shaft 2MJs\ must equal Te/s'^ or 

2Me __ s\ 
Te 

and that for conditions other than these, either equation (3) or equa¬ 
tion (4) may give the greater diameter. It is therefore necessary to 
investigate the relations existing between 2Me/Te and s\/s\ for three 
sets of conditions: 

(1) When equations (3) and (4) will give equal values of d. 
(2) When equation (3) will give the greatest value of d, 
(3) When equation (4) will give the greatest value of d. 

(1) It has already been shown that equations (3) and (4) will give 
equal values of d when 

__ 2Me 

or if s\/s\ be called i/, then 

2Me M +Vi»f2 + J’2 

is the equation of a curve which expresses all the simultaneous values 
of and 2Me/Te for which equations (3) and (4) will give equal 
values of d. The values of either Af or T in equation (5) may vary from 
zero to infinity, and the most convenient manner of plotting simulr 
taneoiis values of M and T is to plot their ratio. If, also for simplicity, 
X = T/Mj equation (5) becomes 

2M. ^ 1 +Vl + 
Te \/l + 

(6) 

which is the equation of a curve expressing all the simultaneous values of 
y (or s't/s\) and x (or T/M), for which equations {K2) and (^Ta) will 
give equal diameters of shaft. 

It is desirable, before plotting, the curve to examine the limits 
between which x and y may vary. It is clear that for Af = 0, x = 00. 
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and for T = 0, a: = 0; hence the limits of x are 0 and oo. Using these 
same limits for M and T in equation (5), it is found that 

when 

and when 

Af = 0, y — 1 and Me — — 
2 

r = 0, 2/ = 2 Sind Me = Te 

That is, for all materials where the ratio of allowable tensile stress 
to shearing stress lies between 1 and 2, there are always simultaneous 
values of M and T for which equations (3) and (4) will give equal values 

Fig. 9. 

of d. The curve showing these simultaneous values is shown in Fig. 9 
and has been plotted from equation (6). 

(2) If for any given value of s't/s'e within the limits 1 and 2, a 
ratio T/M be taken less than the simultaneous value given by the curve 
(or, in other words, if the coordinates chosen intersect below the curve), 
equation (3) will give the largest value of d, for values of T/M can be 
decreased only by making M greater relatively to T, and an examina¬ 
tion of {K) and {K\) shows that increasing M increases {K) more 
rapidly than it does {K\). Hence, in such cases, {K) or {K2) applies, 
and equation (3), which is based upon them, will give the largest value. 

Furthermore, for values of equal to or less than unity, equa¬ 
tion (3) will also give the largest value of d, for it has just been shown 
that Me can never be less than Te/2 and equals this value only when 
Af = 0. For all finite values of Af, therefore^ Me must be greater than 
Te/2; and it is evident from equations (3) and (4) that for values of 
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s't ~ s'* and Me > Te/2 equation (3), which is based upon (K) or (K2) 
will give the greater value of d. 

(3) In a similar manner it can be shown that for all simultaneous 
values of s't/s\ and T/M which intersect above the curve and within 
the limits y — I and ?/ = 2, or for all materials where s\/s\y is greater 
than 2, equation (4), which is based upon Ki (or K3) will give the 
greatest value of d. 

Summary.—Equations (K2) and (K3) are the most convenient 
forms of equivalent moments and will be used in this work. It is 
to be particularly noted that they are applicable only to circular sec¬ 
tions. Equation (K2) should be used where the simultaneous values of 
s't/s\ and T/M intersect below the curve, as they always do whenever 
s\/s\ < 1. Equation (Ks) should be used where the simultaneous 
values of s\/s\ and T/M intersect above the curve, as they always do 
whenever s\/s\ > 2. 

Example 1. An engine cylinder is 16 in. by 24 in. (piston 16 in. in 
diameter and stroke of 24 in.), steam pressure = 100 lb per sq in. The 
center of the crankpin overhangs the center of the main journal by 15 in. 
(measured parallel to the axis of shaft). Assume that the pressure on 
the crankpin may be equal to 100 lb unbalanced pressure per square 
inch of the piston when the connecting-rod is perpendicular to the crank 
radius. Allowing 8000 lb as the maximum allowable normal stress and 
6400 as the maximum allowable shearing stress, compute the diameter 
of the shaft. 

Area of piston = 200 sq in.; radius of crank (arm of maximum twist¬ 
ing moment) r = 12 in.; arm of bending moment a = 15 in. 

A r = 200 X 100 X 12 = 240,000 in-Ib 

Also ilf = 200 X 100 X 15 - 300,000 

T 12 8000 
X = — = — = 0.8 and y = — = — = 125 

Af 15 s'. 6400 

By referring to Fig. 9, it is seen that for y = 1.25 and x = 0.8 the 
ordinates intersect below the curve; hence {K2) should be used. 

From {K2)i 

Afe = 

From (3), 

d3 = 

[1 +Vl + (0.8)2] = 342,000 in-lb 

32 X 342,000 

T X 8000 

A d = 7.58 in. 
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Example 2. A circular steel shaft is subjected to a twisting moment 
of 250,000 in-lb and a bending moment of 62,500 in-lb. The allowable' 
tensile stress is 8000 lb per sq in, and the allowable shearing stress 
5600 lb. Determine the diameter of the shaft. 

Here 

y = 

8000 

5600 
= 1.43 and x = 

250,000 

62,500 
= 4 

From the curve. Fig. 9, it is seen that for y — s'/s', = 1.43 and 
X == 4, the intersection of the ordinates falls above the curve; hence 
(IQ) should be used. Then 

= 62,500[Vl + 42] = 257,500 

16 X 257,500 

X X 5600 
234.25 

d = 6.16 in. 

Suppose, however, that (1^2) should be used. Then 

= 

(P = 

62,500 
[1 +Vl + 42] = 160,000 

32 X 160,000 

X X 8000 
203.75 

d = 5.87 

or 0.29 in. less than the value given by (K2). 
18. Other Formulas. Equation (K) is sometimes transformed into 

an equivalent twisting moment. Since in general 

M = 
r 

and T 
2sJ 

r 

for an equal intensity of stress (that is, Si — Ss) T = 2M for the same 
section. If therefore, it is considered more convenient to use an 
equivalent twisting moment instead of an equivalent bending moment 
it is allowable to substitute for Me (the bending moment, equivalent 
to the combined bending and twisting moment), ^Te (a twisting moment 
equivalent to the combined bending and twisting moments), provided 
that the same allowable direct stress is used with Te in solving for the 
diameter of shaft. 

(i^4) A T. = 2M. = M 
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Equations and {K^) are all different forms of Rankine’s 
formula for combined bending and twisting. Other authorities give 
slightly different coefficients. Thus Grashof gives 

Me = %M + l Vm^ + 7*2 (7) 

and others give _ 

M. = 0.35M + 0.65VM2 + (8) 

The diameter of shaft given by equations (7) and (8) will not differ 
much from that given by (Al2), for any set of conditions, except where 
the bending moment is very small. At the limit where the bending 
moment M is equal to zero, Grashof's formula gives a value of 
25 per cent greater than that given by (A2). But it may be noted that 
in general for all materials whose shearing strength is less than their 
tensile strength (and this is true of most materials used in engineering) 
that when M is small or, in other words, when the shearing stress 
predominates, it is safer to use (A3) in preference to (A2). It will 
be found that, for the range where equations (7) and (8) give values 
greater than (A2), these values will still be less than those obtained 
from (As) or at least not enough greater to warrant the use of a different 
formula in place of (As). Take for example steel, where 

~ = 1.25 and a: = 10 
5. 

which is down close to the limit where Grashof^s formula gives the great¬ 
est value compared to (A2). Expressing in terms of (Af) as in 
equations (3) and (4), 

From (A2), 

From (As), 

d = 3.83 
^ 8 

^ 8 

From Grashof^s formula, 

from which it is seen that the difference between d as determined by 
(As) and by Grashof's formula is negligible. The same evidently 
applies to equation (8), which differs but little from Grashof’s. As the 
value of X decreases, the difference between these equivalent bending 
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moments decreases, and any variation is more than covered by the 
factor of safety which must be used. 

19. Combined Torsion and Compression. Propeller shafts of steam¬ 
ers and vertical shafts carrying considerable weight are subjected to 
combined twist and thrust. The span, or distance between bearings, 
is frequently so small that the shaft may be considered as subjected to 
simple compression, so far as the action of the thrust is concerned. 

The intensity of this compressive stress in such cases is 

4P 

“ irdP 

in which P = the thrust, and d = the diameter of the (solid circular) 
shaft. 

liT — the twisting moment on the shaft, r ^ \d ^ the radius of the 
shaft, J — the polar moment of inertia = 21 ( = 2 times the rectangular 
moment of inertia), and Ss = the intensity of shearing stress due to P, 
ihen 

^ sj issi Td 16P 

for solid circular shafts. 
The resultant maximum stresses are those due to the combined 

actions of a normal stress (compression) and a tangential stress (shear) 
as in the case of combined bending and twisting (Article 17); hence equa¬ 
tions (1) and (2) of the preceding article apply and may be used to find 
the maximum compressive or maximum shearing stress; or if Sc be the 
compressive stress due to P, 5, be the shearing stress due to P, s'c the 
maximum resultant compressive stress, and s\ the maximum resultant 
shearing stress, then 

s'c 

or 

s'c 

or 

and 

he + + 4s,2 and 8\ = + 45,^ 

2P . 1 /16P2 '4(16)2P2 ^ 1 /16P2 , 4(16)2p^ 

(L) 

(Li) 

It is difficult to find the value of d for a given value of s', or s', from the 
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above equations, and it is much more convenient to assume a trial 
diameter d and then check for the values of s'c and s'^ to see that they do 
not exceed the allowable compressive and shearing stresses of the mate¬ 
rial under consideration. 

If the span of the shaft between bearings is so great that the shaft 
must be considered as a column likely to buckle, the trial diameter of 
the shaft may be taken so as to bring the mean compressive stress So 
well below the allowable value, and after solving for s'c and 5', the shaft 
may also be checked as a long column (Article 23). In steel shafting it 
is necessary usually to apply equation (L) only, but it is well to check the 
shearing stress s'a against the allowable stress by applying (Li). 

20. Flexure Combined with Direct Stress. If a short straight prism 
be acted on by a force P at a distance from its gravity axis 0 equal to a, 
the stresses induced in the section will be: 

(a) A uniformly distributed stress duo to the load P and equal to 
P/A per unit area. This will be tensile or compressive, depending on 
the direction of P. 

(b) A flexural stress due to the bending moment Pa, This flexural 
stress will be a tensile stress on one side of the gravity axis which is at 
right angles to a, and compressive on the other. 

The vertical portion of the clamp in Fig. 10 (a) may be considered to 
be such a prism. Let XY be any section of this prism. If the direct 
stress induced in the section by the load P is tensile, then the flexural 
stress on the side toward the load is tensile. If the direct stress induced 
is compressive, the flexural stress on the side toward the load is com¬ 
pressive. The maximum stress will be the greatest algebraic sum of 
these combined stresses at the outer fibers at X or F. The distribution 
of these stresses for both cases is shown graphically in Fig. 10 (b), where 
tensile stresses are plotted above the line VV and the compressive stress 
below, the ordinates under rs representing the flexural stresses and those 
under mn the direct stresses. An inspection will show where the alge¬ 
braic sum is greatest. In the case shown the combined compressive or 
combined tensile stresses at X are the greatest which may come on the 
section, depending on the direction of P, This is not necessarily so, 
as a brief reflection will show that if 0 be located near enough to X the 
reverse of the above conditions may exist. The form of section and 
location of the gravity axis should be fixed with reference to the relative 
tensile and compressive strength of the material used. 

Let 5i = the direct stress due to P. 
82 = the tensile or compressive stress due to Pa. 
s' = the maximum stress in the section at X or F. 
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Then from formula (A), 

51 

and from formula (/), 

52 

Therefore, 

s' 

where c is the distance from 0 to the outer fiber at either X or F, depend¬ 
ing on which is under consideration. 

P 

A 

Pac 

~T 

P Pac * 
Si -f S2 = — -f -r- * 

A / 

Fig. 10 (a). Fig. 10 (b). 

It is obvious that tensile or compression stresses, other than these 
caused by the force which creates the bending moment, may be induced 
in such a section. The most general form of this equation is, therefore, 

/ I Pi Me s' = Si + S2 {M) 
A I 

where P is the sum of all tensile and compressive forces acting upon the 
section, and M is the sum of the bending moments applied. It is 
assumed that all bending moments act in the same plane with reference 
to the section. 

If the material used is equally strong in tension and compression 
the gravity axis should not be far from central, but where cast iron is used 

* See any work on mechanics. 
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it is advantageous to distribute the metal more toward the tension side, 
thus drawing the gravity axis toward that side. This increases c on 
the compression side, and hence increases the compressive stress. It 
decreases c on the tension side, and hence decreases the tensile stress. 
Cast iron is much stronger in compression than in tension, and therefore 
a greater moment can be withstood by a given cross-sectional area when 
distributed in this manner. 

It is not practicable, in general, to solve equation (M) for the direct 
determination of the dimensions of a cross-section to sustain a given 
eccentric load P with an assigned intensity of stress s', because A, I, 
and c are all functions of the required dimensions; and with any but the 
simplest sections complicated functions result. With solid, square, or 
circular sections, or in general where only one dimension is unknown, 
it is possible to reduce {M) to a form which can be solved; but the alge¬ 
braic expression is a troublesome cubic equation. The practical way is 
to assume a trial section, and check this for P or s'. 

Example. A small crane (Fig. 11) has a clear swing of 28 in. The 
lower part of the crane is a straight prism. The radius of curvature of 
the upper part is large compared with the depth of the cross-section, 
and the moment arms on the sections of the curved part are less than that 
applied to those of the lower portion. Equation (Af) can be applied, 
therefore, with safety. The section at mn is shown by Fig. 11 (b). 
Find the load corresponding to a maximum fiber stress (compression) of 
9000 lb per sq in. at n. 

s' — -f. • p — 
A I 7 + Aac 

28 + 2 = 30, A = 2 X 4 - 1.5 X 3 = 3.5 

A(2 X 64 - 1.5 X 27) = 7.3 

9000 X 3.5 X 7.3 

7.3 + 3.5 X 30 X 2 ^ 

For many years equation (M) was the only one in use for all cases of 
combined bending and direct stress. It is applicable with accuracy, 
however, only to straight, short prisms and does not give accurate results 
for a curved member. It does not apply, for instance, to such a mem¬ 
ber as is illustrated in Fig. 12, or to such sections as X'Y' in Fig. 10. 
Even now, when the theory of curved beams is better understood, this 
equation continues to be much used, partly because of its simplicity 
and partly because, through long-continued use, such low allowable 
stresses have been established in connection with it as to give safe 
results. The use of this equation for curved members, however, is 
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always attended with more or less uncertainty, as in general, it indicates 
much lower stresses than those given by the modern theory which is to 
be described. This is particularly true of curved members whose out¬ 
lines have not been fixed, to some extent, by experience and usage. 

21. Flexure and Direct Stress in Curved Beams. Figure 12 shows 
a clamp similar to that shown in Fig. 10, but of such a curved form as to 
make the application of equation (M) of doubtful accuracy. It is 
acted upon by a load, P at a distance a from the gravity axis, 0. Let R 
be the radius of curvature passing through 0 and having a center at C; 

it is desired to find the maximum stresses in the section XY. As in 
a straight prism \^ith an eccentric load, the unit normal stress at any 
point of the cross-section is considered to be the sum of a unit direct 
stress and a unit bending stress. The unit bending stress does not vary 
uniformlyf as in a straight prism, but is distributed somewhat as shown 
in Fig. 12 (c). The maximum tension s't in the fibers at x is 

* See Strength of Materials,” by Morley, page 378. 
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whore a is the moment arm of the force P, Ct the distance from the 
gravity axis to the outer fiber at and A' a derived area whose value is 

♦ 

This area may be computed analytically for regular geometric figures 
and can be derived graphically for any section. Thus, for a rectangle 
whose dimension parallel to the neutral axis is 5, and whose length at 
right angles to that axis is A, 

I ^ 

hby 
— Rb loge 

2P -f* h 
2/e - h 

2 

the integration being performed with reference to the gravity axis and 
y being the distance of any infinitesimal area from this axis. 

In punching and shearing machines and similar constructions, the 
main frame is often a casting of curved outline and of a complex cross- 
section. Usually these cross-sections can be subdivided into rectangles 
and triangles whose gravity axes do not, in general, coincide with the 
gravity axis of the entire section. In such cases it is very convenient 
to have the value of for each subdivision expressed in terms of its 
dimensions, and the distance of the cross-section from the center of 
curvature. Thus, in Fig. 12 (d), let the rectangular figure be consid¬ 
ered as a portion of a larger cross-section whose gravity axis is AX, 
the center of curvature of this axis being in the line CC, Then 

A' -raiog.[|_ 

and, in a similar manner, for a triangle or trapezoid. Fig. 12 (e), 

Example. In Fig. 12 (b) the cross-section may be considered as a 
triangle. Let 6 = 2 in., A = 6 in., R = S in., and a = 13 in. Whence 
H2 = 6 in., L = 12 in., and Ct = 2 in. If P = 2000 lb, what is the 
maximum tensile stress on the inner fiber at X? 

Here 

A' = 8 X |[12 loge (^) - 6J = 6.18 

Whence by (Mi), 

s't = 

2000 r 13 /2 6.18 

6 ^ 8 - 2\8 ^ 6.18 ~ 6 
5800 lb 

* 2/ is positive if measured from the gravity axis toward and negative if measured 
away from the center of curvature. 
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By equation (M), 

2000 2000 X 13 X 2 

6 12 
= 4666 lb 

The maximum compressive stress at Y may be found by replacing Ct 
in equation (Mi) with Cr, using a minus value for the latter, and pro¬ 
ceeding as in the foregoing example. 

22. Graphic Derivation of A'. Let the solid outline of Fig. 12 (f) * 
represent the cross-section of a curved member for which it is desired 
to find the value of Ai Let C be the center of curvature of the member 
and let 00' be the gravity axis of the section. At any distance y 

Fig. 12 (f). 

from the gravity axis, draw a line parallel to it, intersecting the outline 
of the cross-section at E and E'. From C draw straight lines through 
E and E' cutting 0, 0' in B and From B and B' draw lines parallel 
to A^C intersecting EE' at D and D'. Taking other distances on both 
sides of 00' repeat this construction until enough points, such as D 
and D'y are obtained to outline the figure shown by the broken line. 
The area inclosed by this broken line represents 

as can be seen by the following: 

See also “Strength of Materials/’ by Morley. 
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Let X — the distance between E and E\ 
x' = the distance between D and D\ 

Then, from similar triangles, 

-• • • x == R —- 
R R — y R — y 

But the area inclosed by the broken line is 

the value of x' from the foregoing, this area is 

dy and, substituting 

23. Stresses in Columns or Long Struts. When a short bar is sub¬ 
jected to an axial compressive load the stress induced in each section is 
simple compression (see Article 11), and the value of the stress Se is 
given by formula (A) or 

P 

If, however, the bar is more than four to six times as long as its least 
diameter, the above equation does not apply, as the bar will, if so pro¬ 
portioned, deflect laterally under the load and will ultimately break 
under a compound stress due to compression and lateral bending. 
Such a member is called a colunm. 

Theoretical equations for the design of columns were first developed 
by Euler. Other formulas were later developed experimentally by 
Hodgkinson and Tredgold. Gordon and Rankine have also proposed 
equations for the design of this class of members. The student is 
referred to any good treatise on the mechanics of materials for a fuller 
discussion of these expressions than can be given in this work. 

Let I = the length of the column in inches. 

p = the least radius of gyration of cross-section = V^//A. 
I = the least moment of inertia of cross-section. 

A = the area of the cross-section in square inches, 
m = a coefficient depending upon the end conditions. 
n = the factor of safety. 

Pc = the/afZwre load on the column in pounds. 
s'e = the mean intensity of stress under the failure load, or the 

unit failure load, = PcA 
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Sc = the crushing strength of the material, or unit stress at the 
yield point. This is the maximum intensity of stress in 
the column when the mean intensity of stress is 

P = the working load on the column in pounds, Pc n. 
s' = the mean intensity of working stress, or unit working load 

= s'c n = P ~ 
s = the intensity of working stress in the column ( = Sc n). 

This is the maximum intensity of stress in the column 
when the mean intensity of stress is s'. 

Then Euler’s formula for long columns is 

Pc 
ir-EI 

= m--- (1) 

It is to be especially noted that Euler^s equation is rational and 
deduced from the theory of elasticity. The coefficient m is also rational 
and applicable to other forms of column formulas, though, as will be 
shovvn later, the Euler equation is strictly applicable only to very long 
columns. 

The relation of the factor m to the form of the ends of the column, 
and the manner in which the load is applied, should be carefully noted. 
These relations are shown in Table III. “ Round ends " are those that 
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are free to turn upon the surfaces which transmit the load “ Pin- 
ended '' columns permit rotation of the ends m one plane and are vir¬ 
tually equivalent to round-ended columns as far as carrying strength m 
one plane is concerned Pound-ended columns are seldom used in 
machines, pm-ended columns are quite common A column with 
fixed ends is one whose ends are built m or restrained, so that the 
tangent to the elastic curve remains vertical at the ends when a lateral 
deflection occurs Square or “ flat-ended columns have flat ends 
that simply abut on the plane surfa^^es that transmit the load, without 
being fixed Professor Merriman says that the strength of such a column 
appioximates that of a column with fixed ends when it is short, and that 
of a pm-ended column when it is long In the discussion that follows, 
the weight of the column itself is neglected When the column is placed 
m a vertical position the increase m stress due to the weight is usually 
small compared to other stresses If, however, the column is placed 
horizontally, the stress due to its weight may be consideiable and should 
be taken into account 

Very short compression members, of ductile material, fail under 
stresses corresponding to, or only slightly m excess of, the apparent 
elastic limit, or yield point, for when this stress is reached the metal 
flows, although it does not actually break Very long columns may 
approximate the resistance as given by Euler’s formula Columns of 
lengths intermediate between compression members which yield by 
simple crushing and those which fail by pure flexure are weaker than the 
former and stronger than the latter If a column is initially exactly 
straight, perfectly homogeneous, and subjected to an absolutely con¬ 
centric load (that is, if it is an ideal column) there seems to be no reason 
why its strength should dimmish rapidly with an mcrease of length, 
other conditions remaining the same 

However, even an ideal very long column would reach the condition 
of unstable equilibrium when subjected to a certain critical load (the 
greatest load consistent with stability) If the load is increased beyond 
this limit and a deflection is caused m any way, the deflection will 
increase until the stress due to flexure produces failure of the column. 
If a deflection is caused while the column is under a load less than 
this greatest load consistent with stability, the elasticity of the material 
tends to make the column regain its normal form Initial defects m the 
form or structure of a column or eccentric application of load tend to 
produce such a deflection, hence long struts fail under smaller loads 
than short struts of similar material and cross-section, for the ideal con¬ 
ditions are not realized m practice Or, in other words, for equal safety 
under a given load long columns must have a greater cross-section, and 
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lower mean stress. * F^ven in columns of moderate length, if of ductile 
material, the flow at the yield point causes buckling. 

Merriman says that if the length of a compression member be only 
from four to six times its least “ diameter,'' it may be treated as one 
which will yield by simple compression. Johnson gives limits within 
which the Euler formula should not be applied as Z -f- p = 150 for pin- 
ended, and =200 for square-ended columns. Other authorities give 
somewhat different limits; but nearly all agree that most of the columns 
in ordinary structures and machines are intermediate between simple 
compression members and those to which Euler’s formulas apply. A 
great many column formulas have been proposed. A graphical repre¬ 
sentation of several of them is shown in Fig. 13. In this diagram, 

F F, 

abscissas represent ratios of the length of column to the least radius 
of gyration of the cross-section, and the ordinates represent the nominal 
(mean) intensity of compressive stress. Or 

X = I p = I 4-V/ ~ A and y = s'c = Pc A 

The diagram is drawn for the ultimate resistance of pin-ended col¬ 
umns of steel having a yield-point strength in compression of 36,000 lb 
per sq in., and a modulus of elasticity, Ey of 29,400,000. The value 
of s'c is 36,000 for a very short compression member, and it is evi¬ 
dent that a long column could not be expected to have a greater strength; 
hence no formula should be used which would give a value of s'c in excess 

* Owing to the flexure of the long column, the stress is not uniform across the 

section. The maximum intensity of stress must be kept within the compressive 

strength of the material; hence the mean stress is less than for shorter compression 

members, in which the mean stress is more nearly equal to the maximum. 
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of the crushing resistance Sc. Referring to the diagram, it will appear 
that the Euler formula (represented by the curve EE1E2) cannot apply 
to pin-ended columns (of this particular material) in which Z ^ p < 90. 
If columns with a ratio of Z to p less than this limit yielded by simple 
crushing, and those with a greater ratio of Z to p followed Euler’s formula, 
the straight line FFi and the curve F1E1E2 would give the laws for all 
lengths of columns. It is not reasonable to expect such an abrupt change 
of law in passing this limit (Z -r^ p = 90); and, as already stated, columns 
of moderate length fail under a mean stress considerably less than the 
simple crushing resistance of the material; or the strength of columns is 
inversely as some function of the length divided by the “ least diameter.” 

Mr. Thomas H. Johnson has developed a formula which is based on 
the assumption that the strength of the column may be taken inversely 
as Z p. This expression is 

in which the coefficient k has the value 

_ Sc I iSc 

This formula is represented by the straight line THJ2 in Fig. 13. 
For this reason it has become known as a straight-line formula. It will 
be noted that this line is tangent to the Euler curve at J2, and the 
equation of the latter is to be used, should the columns exceed the 
length corresponding to this point of tangency (Z p > 150). This 
expression is quite simple, after k has been determined. It is very con¬ 
venient in making a large number of computations for columns of any 
one material, and it is employed in structural work to a considerable 
extent. It does not appear to have any advantage, on the ground of 
simplicity, when some particular value of k does not apply to several 
computations. 

All expression for the safe mean stress s' corresponding to the safe 
load P and the maximum stress s may be obtained by dividing equa¬ 
tion (2) by a factor of safety n, thus 

P 

A n 

kl 
— = s 

np 

4sc I 

Smir^E p 
(3) 

The Rankine or Gordon formula has been extensively used for col¬ 
umns. It may be expressed as follows: 

Se = 
A 

8c 

m 

(4) 
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The above formula is based upon experiments on the breaking 

strength of columns. The coefficient is purely empirical, and this 
fact limits its usefulness, for it leaves much uncertainty as to how this 
coefficient should be modified for materials different from those which 
have been actually tested as columns. 

An expression for the safe mean stress s' may be obtained by dividing 
equation (4) by a factor of safety n, thus 

= ^ = 

1+-- ^(-Y 
m \p/ 

(5) 

The form of the Rankine expression is rational, but the coefficient 
is not. Merriman recommends the following values of ^/m: 

Material 
Both Ends 

Round 

Both Ends 

Fixed 
One End Round, 

One Fixed 

Timber. 
1 1 1.95 

750 3,000 3,000 

Cast iron.i 
1 1 1.95 

1250 5,000 5,000 

W^Tniicrl’if 
1 1 1 95 

fV IX Uli. 

900 36,000 36,000 

1 1 95 

6250 25,000 25,000 

Professor Merriman says, in his Mechanics of Materials (Tenth 
Edition, page 129): “ Several attempts have been made to establish 
a formula for columns which shall be theoretically correct. . . . The 
most successful attempt is that of Ritter, who, in 1873, proposed the 

formula 

A 
1 + 

mir^E\p & 
(6) 

The form of this formula is the same as that of Rankine^s for¬ 
mula, . . . but it deserves a special name because it completes the 
deduction of the latter formula by finding for a value which is closely 
correct when the stress s does not exceed the elastic limit Se-” The 



66 STRAINING ACTIONS IN MACHINE ELEMENTS 

Merriman notation is changed to agree with that previously used in this 
article. For ultimate strength, this formula might be written: 

1 + ^(iY 
(7) 

but the first form [equation (6)] is the more important. The curve 
RiTRz (1^'ig. 13) is the graphical representation of the last expression, 
equation (7).* 

Merriman gives the Euler formula for safe load and stress thus: 

P _ niT^Ep^ 

A ” ^ ’ 
(8) 

Failure occurs if s ^ Sc. The Ritter formula equation (6) reduces to 
this last expression for columns so long that the term unity in the denom¬ 
inator is negligible; strictly speaking, this is so only when Z -f- p = 
infinity. Professor Merriman also shows, mathematically, that the 
two curves, EEiEz and RiTRz are tangent to each other when I p ^ 

infinity. If Z p == 0, the Ritter formula reduces to s' = P A, 
which is the ordinary formula for short compression members. 

It will be rioted from Fig. 13 that the Ritter and Rankine formulas 
agree very closely for the material taken for illustration; but the fact 
that the curve of the latter crosses the Euler curve near the right-hand 
limit of the diagram indicates that its constant is not theoretically 
correct. The facts that the Ritter formula is rational in form, that it 
gives correct values at the limits Z p = oo and Z p = 0, and that it 
covers the entire range of length of columns, have led to its extended use 
in machine design. It will be noted from Fig. 13 that it gives values well 
on the safe side as compared with other formulas, but these values do 
not agree closely with the actual results of experimentation. 

The late Professor J. B. Johnson derived a formula from the results 
of the very careful experiments of Consid^re and Tetmajer. His 
formula is: 

^mir^Ep^. 
m 

The curve FBJi (Fig. 13) represents this expression. This curve is a 
parabola tangent to the Euler curve, and with its vertex in the axis of 
ordinates at F, the direct crushing stress of the material. For columns 

* Professor Merriman developed equation (7) independently# but later than 

Ritter. He gives Ritter sole credit for the formula in the 1897 edition of his 
Mechanics of Materials.’^ 
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having Z -f- p greater than the value corresponding to the point of tan- 

gency Ji (should such be used), the Euler formula is to be employed. 

The formula of Professor Johnson^s is empirical, but it agrees remarkably 

well with carefully conducted experiments on breaking loads. John¬ 

son ^s * theory that the strength of short columns is limited by the yield 

point of the material has been corroborated by tests on large columns 

at the U. S. Bureau of Standards. Tests made by Johnson himself, 

and others made elsewhere, agree remarkably well with this formula. 

An expression for the safe load and stress may be obtained by dividing 

equation (A^i) by a factor of safety n, thus 

Or, if 
4m7r^£'p“J 

niT^E 

the equation may be written 

(N) 

and equation (Ni) may be written 

Sc = 
Ti ^ 1 

which, as will be seen, are very convenient forms for solving. 

The Euler equation may be written, 

^ «2 p ^2 

5' 
A ^ Zb 

, Pc _ p" 
" A k 

The Euler and Johnson formulas therefore will give equal values when 

That is, the Euler equation should be used when — > 2, and the Johnson 
P" 

equation should be used when “ ^ 2. 

24. Conclusions. The following deductions may be drawn from 

the foregoing. The Euler equation applies with accuracy to very 

long columns, which, in general, are not frequently found in machine 

design. There appears to be no particular justification, either theoretical 

*See Johnson’s “Materials of Construction,” 1918 edition, page 20. Also 

G. B. Upton’s “Materials of Construction,” page 96. 
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or practical, for the use of the T. H. Johnson equation. The Rankine 
equation, though empirical, has long been in use for designing bridges 
and other structures where cast-iron columns and those made up of 
steel structural forms are employed. The empirical constants that have 
been developed and tested practically in this class of work will, no doubt, 
j>erpetuate the use of this equation in this field until some more rational 
equation has been fully tested and approved by practice. The Ritter 
equation, though rational, gives values considerably on the safe side. 
This disagreement with other well-tried equations is not excessive for 
wrought iron and steel, but the difference for cast iron and wood is 
so great that, as Professor Merriman remarks, Ritter’s formula can¬ 
not be regarded as satisfactory.” The J. B. Johnson formula, although 
also empirical and though giving the smallest dimensions of column for a 
given failure load, appears to agree more closely with actual experi¬ 
ments than any other, within the range to which it applies. Taken 
in connection with the Euler equation, it probably offers as accurate 
and simple a solution of the design of columns, as used in machines, as 
exists at present, and it is therefore adopted in this work. 

Example. The connecting-rod of a steam engine is 5 ft long and is 
subjected to a load of 25,000 lb. If the maximum allowable stress is 
6000 lb per sq in., determine the diameter of a circular section at the 
middle of the rod. Take E = 30,000,000, and the elastic limit Sc = 36,000 
lb per sq in. The rod may be considered a pin-ended column. Hence 
m = 1. 

If the rod were designed as a short column, the required area would 
be 

, 25,000 
^ ~ 6000 ~ ^ diameter of 2/v in. 

and it is evident that for a long column the diameter must be greater 
than this. Assume 2| in, as a trial diameter. Then, 

A = 5.94, p2 = 0.473, Z = 60 in. 
whence ^ 

k = 0.437 and “ = 0.913 

and the Johnson formula applies. Then, in equation (N), 

0.437 1 

4 X 0.473 J "" 
P = 4614 X 5.94 = 27,406 

which is somewhat more than the applied load, and the section will 
fulfill the requirements. 
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By the Ritter equation, 

and 
= 3136 lb 

P = 3136 X 5.94 = 18,637 

which is considerably lower than the applied load and indicates that 
if the Ritter equation is followed the cross-section must be increased 
to have sufficient carrying capacity. 

In the foregoing discussion and example it has been assumed that 
the column will fail on the concave side, where the stress is a maximum, 
and this will be true of ductile materials. In cast-iron columns, failure 
may occur on the convex side through tension, since cast iron is much 
weaker in tension than in compression. The value of the unit stress 
on the convex side, using the J. B. Johnson equation is 

pr2k - 4p2' 

A _ 4p^ — k . 
m 

where k = ScP/mir^E as before. If st is positive, the stress is tensile; 
if negative, the stress is compressive. 

25. Other Column Formulas. The most extended experience with 
columns has been in structural work and even though columns made of 
rolled shapes are uncommon in machine design brief reference to some 
of the modifications of column formulas as appearing in structural work 
may help to visualize the complexity of the problem. As stated in the 
foregoing, the straight-line type of formula has been much used in 
structural work, and Prof. J. E. Boyd * cites the following simplifications 
of this equation; 

(1) The Chicago building laws for structural steel specify 

- = 16,000 - 70 - (9) 
A p 

The maximum value of P/A is fixed at 14,000 lb per sq in., and 
the value of Z/p is not to exceed 180. 

(2) The American Railway Engineering Association recommends 

- = 15,000 - 50 - (10) 
A p 

The maximum value of P/A is not to exceed 12,500 lb per sq in., 
and Z/p is not to exceed 100 for main structures nor 120 for wind and 
stay bracing. 

•For a fuller discussion of column formulas see “Strength of Materials” by 

James E. Boyd, fourth edition, page 374. 
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(3) The American Bridge Company uses 

- = 19,000 - 100 - (11) 
A p 

with a maximum value of P/A ~ 13,000 for values of Z/p not greater 
than 120 and 

^ = 13,000 - 50 - (12) 
A p 

for values of / p between 120 and 200. 
In a similar manner the American Institute of Steel Construction 

has recommended the following simplification of the Rankine formula 

P 
A 

(13) 

The maximum value of P/A is set at 15,000 lb per sq in,; I p is not 
to exceed 120 for main members nor 200 for secondary members. It 
should be remembered that round-ended columns are not used in 
structures. 

26. Eccentric Loading of Long Columns. In the preceding dis¬ 
cussion of columns it has been assumed that the load has been applied 
axially. This is obviously the best way of applying the load, but 
cases often occur where it must be applied al a distance a from the 
axis of the column. In such a case the column is said to carry an 
eccentric load, and the arm a is called the eccentricity. If the length of 
the column be less than four or six times its least diameter, that is, if 
the ratio l/p be less than about 25, the member may be treated by the 
method outlined in paragraph (20) and formula (Af) will apply or 

If, however, the column be longer than four to six times its least 
diameter, it can no longer be assumed that the direct stress P/A due to 
the load is uniformly distributed over the section, as it has been shown 
by the discussion on long columns that such is not the case. 

In addition, if the load is applied eccentrically, it is obvious that the 
column will deflect somewhat more than it would if the load were applied 
axially. This will have the effect of adding to the original lever arm a 
an additional amount, a, due to this deflection. 

The stresses, therefore, acting on an eccentrically loaded column are: 
(a) A compressive stress si, such as would be induced if the load 

were axial. 
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(b) A flexural stress ^2, due to the eccentricity and proportional to 
the bending moment P{a + a) 

For the first, from the J B Johnson equation (A), 

4p2 

4p“ — k_ 

and for the second from (/), 

S2 
P(a + a)c _ P(a + a)c 

T Ap'^ 

Iherefore, the maximum compressive stress in the section is 

£ Si + ^2 
4p- (fl + cx)c 

4p^ - k'^ P^ 

(0) 

The stress induced on the convex side of in eccentric illy loaded col¬ 
umn may be either tensile or compressive, but will always be less than 
the stress on the concave side For ni iterials whose elastic strength is 
about the same in either tension or compression, the stress on the convex 
side IS of no importance If, however, the column is made of a material 
such as cast iron whose tensile strength is much less than its compres¬ 
sive strength, the character and m ignitude of the stress on the convex 
side should be investigated If c' be the distance from the neutral axis 
to the outer fiber on the convex side, then the magnitude of the stress 
on the convex side is 

P 
6 = — 

A 

If s IS positive the stress is tensile, if s is negative the stress is 
compressive 

For columns whose ratio of 1/ p is less than 100, and working stresses 
such as must be used m machine design, the deflection a may be 
neglected For columns longer than this, or where the stress is neces¬ 
sarily high, a can be determmed by the theory of elasticity For a full 
discussion of the manner of computation see Merriman’s ‘‘ Mechanics 
of Materials For the ordmary problems of machine design this re¬ 
finement may be omitted 

Example 1. A circular wooden pole 8 ft 3 in high is required to 
carry a transformer weighing 2400 lb, with an eccentricity of 10 in 
What must be the diameter at the middle in order that the stress 
due to this load shall not exceed 500 lb per sq in Let Sc = 3000 lb 
per sq m and E = 1,500,000 Also m == L (See Table III "I 

2^ - 4p2 (a + ay 

4p^ - A; p^ 
(O') 
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Assume a diameter of 8 in. Then. 

2 _ 4, A — 50.26 and k = 
3000 X 992 

i X X 1,500,000 

whence Johnson^s formula applies and 

— 8 and = 2 

4X4 2400 

50.261 (4 X 4) - 8 
+ -i 1 = 573 lb 

If the excess is considered too great, a second approximation must be 
made. 

Example 2. It should be noted that when k > 2 the Johnson 
formula does not apply and the Euler equation should bo used. Thus, 
in the foregoing example, let I = 300 in. and P = 900 lb, all other 
values remaining the same. Whence 

3000 X 3002 

i X T- X 1,500,000 
72 and 

P“ 
18 

Then, from the Euler equation and equation (J), neglecting the deflec¬ 
tion of the pole. 

s + af] 
Ap2 

900 

50.26 X 4 
[72 + 10 X 4] = 501 lb 

27. Stress Due to Change of Temperature. Practically all metals 
expand when heated, and contract again vdien cooled The amount 
which a bar expands per unit of length, for a rise of 1° in temperature, 
is called its coefficient of linear expansion, and will bo denoted by C. 
The following table gives values of C for various substances for 1° F: 

Hard steel. C = 0.0000074 
Soft steel. a = 0.0000065 
Cast iron. C = 0.0000062 
Wrought iron. C = 0.0000068 

If a bar of metal is held at the ends, so iis to prevent it from expanding 
or contracting, stresses are produced in it which are called temperature 
stresses, the effect being the same as though the bar had been com¬ 
pressed, or elongated, an amount corresponding to its expansion or con¬ 
traction due to the change in temperature. 

Let t == change in temperature in degrees. 
s = stress induced per unit area. 

Since 
Stress _ s 
Strain Ct 

A 5 = CtE 
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Example. A bar of wrought iron 2 in. square is raised to a tempera¬ 
ture 100° above its normal. If held so that it cannot expand, what 
stress will be induced in it, and what force must oppose it to prevent 
expansion? 

Let £ = 30,000,000. 

s = CtE = 0.0000068 X 100 X 30,000,000 == 20,400 lb per sq in. 

and the total opposing force P will be 

P = 20,400 X 4 = 81,600 lb 

28. Resilience. In all the previous discussions on the various 
straining actions to which a member may be subjected, it has been 
assumed that the load was a simple dead load and ai)plied without initial 
velocity or impulse. But, as already pointed out, the load may be 
applied impulsively; or it may be applied in any way, and removed 
and applied again and again repeatedly. The application of a load in an 
impulsive manner, or the repeated application of a load, does not affect 
the character of the straining action, but docs affect the magnitude of the 
stress or strain. In order to discuss more clearly the effect of impulsive 
loading it will be necessary to consider the straining effect of a load 
somewhat more fully; the discussion of repeated loads will be given in a 
succeeding section. 

If a material is distorted by a straining action, it is capable of doing a 
certain amount of work as it recovers its original form. If the deforma¬ 
tion does not exceed the elastic strain, the amount of this work Ls equal to 
the work done upon the material in producing such deformation. If the 
material is strained beyond the elastic limit, it returns work only equal 
to that expended in producing elastic deformation; and the energy 
required to cause the plastic deformation, or set, is not recovered, as it is 
not stored but has been expended in producing such permanent change of 
form. Ordinary springs illustrate the first case; the shaping of ductile 
metals by forging, rolling, wire-drawing, etc., are processes in which 
nearly aU the energy is expended in producing permanent deformation. 

The work done in straining a member is called the work of defor¬ 
mation. If the strain produced is equal to the deformation at the true 
elastic limit, the energy expended is called elastic resilience.* If the 
piece is ruptured, the energy expended in breaking it is called total 
work of deformation. If Oade (Fig. 6) is the stress-strain diagram for a 
given material, the area Ooa' represents the elastic resilience, and Oadee' 

represents the total work of deformation per cubic inch of the maieriaL 

* When the term resilience is used without qualifying context, elastic resilience 

is to be understood. 
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In such materials as have well-marked elastic limits (proportionality 
between stress and strain through a definite range) the line Oa is a sen¬ 
sibly straight line, and the elastic resilience Oaa' = laa' X Oa'; er, the 

elastic resilience equals the elastic strain {Oa') multiplied hy one-half the 

elastic stress Haa'). The area Oadee' equals the base {Oe') multiphed by 
the mean ordinate {y) of the curve Oade] or, if the quotient of this moan 
ordinate of the curve divided by the maximum ordinate be called k, 

the work of deformation equals the ultimate strain multiplied by k 

times the maximum stress. It is evident that for a straining action 
beyond the elastic limit. A; > 2 and A; < 1. 

The curve OADEE' represents the stress-strain diagram of a material 
having higher elastic and ultimate strength than the former. The 
greater inclination of the elastic line {OA) with the axis of strain {OX) 

shows, in the second case, a higher modulus of elasticity, as this modulus 
equals the elastic stress divided by the elastic strain. In the first case 

in the second, 

E 

E2 
A^ 
OA' 

The stress-strain diagram OADEE' shows that of two materials one 
may have both the higher elastic and ultimate strength, and still have 
less elastic resilience and less total work of deformation. If the curve 
Oa"d"e" is the stress-strain diagram of a third material (having a mod¬ 
ulus of elasticity similar to the first) it appears that this third material 
possesses greater elastic resilience, but less total work of deformation 
than the first. 

A comparison of these illustrative stress-strain diagrams (for quite 
different materials) also shows that, for a given stress^ the more ductile, 
less rigid material may have the greater resilience. Hence, when a 
member must absorb considerable energy, as in a severe shock, a com¬ 
paratively weak yielding material may be safer than a stronger, stiffer 
material. This is frequently recognized in drawing specifications. 
The principle is similar to that involved in the use of springs to avoid 
undue stress from shock. In fact, springs differ from the so-called 
rigid members only in the degree of distortion under load, or in having 
much greater resilience for a given maximum load. 

If a material is strained beyond its elastic limit, as to a' [Fig. 14 (a)], 
upon removal of the load it will be found to have such a permanent set 
as 00'. .Upon again applying load, its elastic curve will be O'a'; but 
beyond the point o' its stress-strain diagram will fall in with the curve 
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which would have been produced by continuing the first test (i.e., a'de). 

Similarly, if loaded to a", the permanent set is 00", and upon again 
applying load, the stress-strain diagram becomes 0"a"de. The elastic 
limit a" of the overstrained material is evidently higher than the original 
elastic limit, a; and the original total work of deformation, Oade, is 
considerably greater than the total work of deformation of the over¬ 
strained material, 0"(i"de, The effects of strain beyond the elastic 

limit are thus seen to be; 

I. Elevation of the elastic strength and increase of the elastic resil¬ 

ience. 
II. Reduction of the total work of deformation. 
These facts have an important influence on resistance to repeated 

shock. The above-noted elevation of the elastic limit by overstraining 
can usually be largely or wholly removed by annealing. 

29. Suddenly Applied Load, Impact, Shock. It will perhaps be well 
to first consider the general case of a load impinging on the member, 
with an initial velocity, this velocity (t>) corresponding to a free fall 
through the height h. For simplicity, the discussion wfll be confined 
to a load producing a tensile stress; but the formulas will apply equally 
well to uniform compressive and shearing stresses, and (1), (2), (3), and 

(4) apply directly to torsion and flexure. 

P = static value of load applied to member. 
h — height corresponding to velocity with which load is applied. 
5 = total distortion of member due to impulsive load. 
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s = maximum intensity of resulting stress. 
A = area of cross-section of the member. 
S — sA — maximum value of stress due to sudden or impulsive action. 
X = total distortion of member due to static load P. 

A: = a constant; its value is | if E. L. is not passed; but if E. L. is 
exceeded k > ^ and A: < 1. 

The energy to be absorbed by the member due to the impulsive 
application of the load is P{h + 5); the work of deformation is kSb, 

(See preceding article, Resilience.) 
Case 1.—Maximum Stress within Elastic Limit. 

P(h + 5) = kS8 = IS8 (1) 

8 \ S : P. 8 = — (2) 

„ 2Ph „ 2P2h „„ 
5 = ~ + 2P = — - + 2P 

0 O A 
(3) 

2P^h ( 
^ + 2PS. 5 = P (^1 + (4) 

(5) 

5=f = x(l + ^l + 20 (6) 

If L = length of the member, 
^ ^ stress LP 

\ = L X stram = L X —“ 
E AE 

(7) 

As X is small for metals (except in the forms of springs) a moderate 
impinging velocity may produce very severe stress. It will be evident 
that X and 5 are directly proportional to the length of the member; 
hence the stress produced by a given velocity of impact (height h) is 
reduced by using as long a member as possible. 

If the load is applied instantaneously, but without initial velocity, 
A = 0; whence 

S = P(1 +Vl + 0) = 2P 

S 2P 

(40 

(50 

S = \(1 +Vl + 0) = 2X (60 
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It should be noted that in determining these expressions for sud¬ 
denly applied and impact loads the yielding of members supporting 
the bodies subjected to these loads is neglected. These expressions 
therefore give results that are on the safe side. 

Case IL—Maximum Stress beyond the Elastic Limit. If the maxi¬ 
mum stress exceeds the elastic limit, the constant k of equation (1) is 
between \ and 1 (see Article 28, Resilience), and its exact value cannot 
be determined in the absence of the stress-strain diagram for the par¬ 
ticular material. Thus (P"ig. 14 (b)), P(/i + 5), is represented by the 
rectangle mricq] and this area must equal the area Oahc\ the latter being 
greater than the elastic resilience, Oaa', and less than the total work of 
deformation Oadee'j in this illustration. 

When the stress-strain diagram is known, the following problems 
can readily be solved: 

(a) Determination of the velocity of impinging of a given load (or 
corresponding value of h) to produce a given stress, or strain. 

(b) Determination of the load which will produce any particular 
stress, or strain, when impinging with a given velocity. 

(c) Determination of the stress, or strain, produced by a given 
load impinging with a given velocity. 

Let the work of deformation corresponding to the known stress, or 
strain, in (a) and (b), be called R = kS8. Since the stress-strain diagram 
is for stress per unit of sectional area and strain per unit of length of the 
member, let P' be the load per unit of sectional area; h' the height 
due to the velocity of impinging divided by the total acting length of 
the member; 8' the distortion per unit of length of the member due to 
impulsive load; and R' the resilience for unit of volume, or the modulus 
of resilience. 

(a) P'ih' + 3') = hid' = R'. ft' = - S' (8) 

(b) P' = 
R' 

ft' + S' 
(9) 

(c) The solution of this problem is not quite so definite, in the 
general case, as the preceding; but it can be easily accomplished, graphi¬ 
cally, with suflGicient accuracy. Draw the line gq (Fig. 14 (b)) (indef¬ 
initely), parallel to Oe', and at a distance from it equal to P'; take out 
the area fig == gOt, Whatever the value of 5', the shaded area OcqfigO 

= P'6'; hence the unshaded area under the stress-strain curve must 
equal P'A'. A few trials will suflSce to locate the limiting line bqc which 
will give fibqf — mnOt == P'h'. 

The case in which the maximum stress is within the elastic limit is 
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by far the most important, as it is almost always desired to keep the 
maximum intensity of stress, aS' within the elastic limit, especially 
as every overstrain (beyond this limit) raises the elastic limit and 
decreases the total resilience (see Fig. 14 (a)). The effect of a shock 
which strains a member beyond the elastic limit is to reduce its margin of 
safety for subsequent similar loads, because of reduction in its ultimate 
resilience. Numerous successive reductions of the total resilience by such 
actions may finally cause the member to break under a load which it 
has often previously sustained. 

No doubt many failures can be accounted for by the effects just 
discussed; but there is another and quite different kind of deteriora¬ 
tion of material, which is treated in the following article. 

Dr. Thurston has shown that the prolonged application of a dead 
load may produce rupture, in time, with an intensity of stress consider¬ 
ably below the ordinary static ultimate strength but above the elastic 
stress. It is well known that an appreciable time is necessary for a duc¬ 
tile metal to flow, as it does flow when its section is changed under 
stress; hence, a test piece will show greater apparent strength when the 
load is applied quickly than when it is applied more slowly, provided 
the application of load is not so rapid as to become impulsive. 

The kind of failure which is the subject of the next topic is due to 
a real, permanent deterioration of the metal, and to entirely different 
causes from those mentioned above. 

30. On the Peculiar Action of Live Loads. Fatigue of Metals. 
It has been found by experience and experiment that materials which 
are subjected to continuous variation of load cannot be depended upon 
to resist as great stress as they will carry if the load is applied but once, 
or only a few times. When the load is suddenly applied, and frequently 
repeated, the decline of strength or of the power of endurance may 
perhaps be ascribed, in part at least, to the elevation of the elastic limit 
and reduction of the ultimate resilience, as discussed in Article 29. But 
apart from this cause, with repeated loads, even in the absence of appre¬ 
ciable shock, a decided deterioration of the material very frequently 
occurs. This effect has been called the fatigue of materials, although 
some authorities restrict this term to the kind of deterioration already 
referred to as the simple result of a decrease of resilience. The term 
fatigue implies a weakening of the material due to a general change of 
structure. It was formerly supposed that the repeated variation of 
stress caused such change of the general structure, possibly owing to 
slight departure from perfect elasticity under stress much below that 
ordinarily designated as the elastic limit. The crystalline appearance 
of the fracture sustained this view; but numerous tests of pieces from a 
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member ruptured in this way (taken as near as possible to the break), 
fail to show such crystalline fracture, and it is difficult to reconcile the 
normal appearance and behavior of such test pieces with the theory of 
general change of structure. 

The theory that fatigue is due to crystallization has therefore been 
generally discarded. All metals are crystalline in structure. Investiga¬ 
tion, under the microscope, of the structure of metals that have been sub¬ 
jected to repeated stress reveals microscopic cracks within the crystals 

of the material. These micro-flaws or slip-lines begin to appear with a 
comparatively small number of repeated stresses, and possi})ly start with 
minute imperfections in the crystals. If a cycle of stress is repeated a 
great many times, these micro-flaws tend to extend across the section 
under variation of stress and may, in time, reduce the net sound section 
so greatly that the intensity of stress in Ihe fibers that remain intact 
becomes equal to the normal breaking stress of the material. Professor 
Johnson suggested the gradual fracture of metals as a more appro¬ 
priate term than ‘‘ fatigue.However, the latter term is widely used 
and will be adopted here. The theory of gradual fracture through 
the extension of micro-flaws seems to accord with the observed facts 
more closely than the older theory of general change of structure. 

The theory of the subject is, as yet, too incomplete to permit of 
derivation of rational formulas to account for the effects of repeated live 
loads; and if the micro-flaw theory is correct, it is not probable that 
such rational analysis can ever be satisfactorily applied. 

All the formulas that have been derived for computation of breaking 
strength under known variations of load, or stress, are empirical ones 
which have been adjusted to fit the experimentally determined facts. 

Experiment has shown that the breaking strength under repeated 
loading, or the carrying strength,” is a function of the magnitude of 
the variation of stress and of the number of repetitions, of such varying 
stress. Furthermore, this function is different for different materials; 
and authentic observations are on record which go to show that, as 
between different materials, the one with the higher static breaking 
strength does not always possess the greater endurance under repeated 
loading. In general, however, the carrying strength under repeated 
loads is a function of the static strength. Thus it appears that the 
raising of the elastic limit by heat treatment does not materially affect 
the endurance limit. This appears to be reasonable since the relation 
of strain to stress under the elastic limit is constant for ferrous materials 
and endurance is a function of strain rather than stress. (See The 
Fatigue of Materials ” by Moore and Kommers, page 160.) 

The allowable working stress usually depends upon: (a) The number 
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of applications of the load Tins should be considered as indefinite, or 
practically infinite, in many machine members (b) The range of load 
This IS frequently either from zero to a maxmium, or between equal plus 
and mmus values (c) The static breaking strength or the elastic 
strength 

The first systematic experiments upon the effect of repeated loading 
were conducted by Wohler (1859 to 1870) He found, for example, that 
a bar of wrought iron, subjected to tensile stress varying from zero to 
the maximum, was ruptured by: 

800 repetitions from 0 to 52,800 lb per sq m 
107,000 repetitions from 0 to 48,000 lb per sq m 
450,000 repetitions from 0 to 39,000 lb per sq m 

10,140,000 lepetitions from 0 to 35,000 lb per sq m 

Wohler’s experiments, which are the most extensive that have been 
conducted along these lines, have been corroborated by the work of 
Spangenberg, Bauschiiiger, and others In this country the work of 
Prof H F Moore is noteworthy The most important deductions 
that can be drawn from these experiments, withm the field to which they 
apply, are: 

(1) The number of repetitions of stress necessary to produce rupture 
depends, within certain limits, upon the range of unit stress, and not 
upon the maximum unit stress (By range of stress is meant the alge¬ 
braic difference between the maximum and mmunum unit stresses 
applied ) 

(!?) If the stresses are reversed (that is, alternately tensile and com¬ 
pressive) unit stresses considerably below the elastic limit will produce 
rupture if repeated a great many times 

It was found, for example, that the stress could be varied from zero up 
to something less than the elastic limit an indefinite number of times 
(several millions) before rupture occuired, but with complete reversal 
of stress, or alternate equal and opposite stresses (tension and com¬ 
pression), it could be broken, by a sufficient number of applications, 
when the maximum stress was only about one-half to two-thirds the 
stress at the elastic limit 

A number of efforts have been made to deduce, from the experiments 
of Wohler, formulas which could be applied to the design of machine 
members. One of the best of these formulas is that of Professor John¬ 
son as it IS easily applied to all cases that will arise; it is simpler than 
most of those previously proposed 

Two formulas which have been very generally accepted for computmg 
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the pro])able carrying strength, according to the work of Wohler, are: 

LaunhardPs for varying stress of one kind only, and We3nrauch’s for 

stress which changes sign. 

Suppose a material to have a static ultimate strength Su of 60,000 lb 

per sq in. If the minimum unit stress be plotted as a straight line, 

AOB (Fig. 15), the locus of the maximum unit stress, from the Laun- 

hardt formula, is the broken curve from B to D. That is, for example, 

when the minimum tensile stress is 12,500, the maximum tensile carry¬ 

ing stress would be about 40,000; or the material could b(‘ expected 

to stand an indefinite number of loadings if the range of stress did not 

exceed 12,500 to 40,000 lb per sq in. in tension. In a similar way, 

B 

the broken curve from D to C is the locus of maximum tension, from 

the Weyrauch formula, when the locus of minimum stress (negative 

tension, or compression) is the straight line AO. It will appear that the 

straight line CDB agrees fairly well with these two curves. Inasmuch as 

it seems unreasonable to expect an abrupt change of law when the min¬ 

imum stress passes through zero, and as there is no rational basis for 

the Launhardt and Weyrauch formulas, it appears reasonable to adopt 

the upper straight line as the locus of the maximum stress. Owing 

to the discrepancies in the observations (which must be expected from the 

probable cause of the deterioration of the metal), this straight line may 

be accepted as representing the law as accurately as could be expected 

of any empirical line. These are, in substance, the reasons given by 

Professor Johnson for basing his formula on the straight line CDB. 
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For full discussion and derivation of the following formula,* see John- 

son^s Materials of Construction,^' seventh edition, page 783. 

Let S2 = carrying strength or maximum intensity of stress that will 

cause failure. 

Si = minimum intensity of stress. 

— = ratio of the minimum to the maximum intensity of the 

varying stress. 

Su = ultimate (static) intensity of stress. 

Then, in general, 

S2 iP) 

As the expressions contain the ratio of the minimum to maximum 

intensities of stress, instead of their difference^ they are applicable when 

the area of cross-section of the member is unknown; for whatever this 

area, the ratio of the stresses is the same as the ratio of the loads pro¬ 

ducing these stresses. In substituting values of si and 6*2, care must 

be taken to use proper signs; thus, if tension is taken as positive, com¬ 

pression is negative; or, if the stress varies between tension and com¬ 

pression S2 is positive and si is negative. 

For dead load si = S2. 

/. S2 = (1) 

For repeated load when si = 0 

Si 
= 0. 

S2 

S2 — 
2^u 

1-0 
— JSw (2) 

For complete reversal of load 5i = — 52. 

S2 = 
2 5,4 \^U 

1+1 
+ 52 

* Developed also independently by John Goodman. 
Engineering.” 

- hu (3) 

See ‘^Mechanics Applied to 
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The three special cases (1), (2), and (3), are those most commonly 

met with in designing, but the general expression (P) should not be lost 

sight of 

If unit stresses be plotted as ordinates and the corresponding number 

of repetitions causing rupture be plotted as abscissas, the curve so out¬ 

lined drops quite rapidly at the beginning, but at about 3,000,000 repe¬ 

titions of the stress begins to be so nearly parallel to the axis as to sug¬ 

gest that a limit had been reached where the corresponding stress might 

be applied indefinitely without causing rupture Earlier writers on 

mechanics of materials assumed that such a limit could be reached after 

a few million repetitions and gave the name of endurance limit to the 

corresponding stress This theory, it will be noted, is in accord with 

the deductions that have been drawn from Wohler experiments In 

all probability, however, this curve becomes parallel to the axis only 

for zero unit stress, and recent studies of the subject would indicate 

that there is no stress range above zero for which any material will 

witlntand an infinite number of repetitions of stress 

Many machine members are subjected to a much greater number 

of repeated stresses than is indicated m the range of present experimen¬ 

tation Several attempts have been made to extend this present ex¬ 

perimental basis to cover such cases In the second edition of this book 

an equation of this kind suggested by Moore and Seely is recorded, but 

the proposers of the equation note that it can be considered tentative 

only because of lack of conclusive data In The Fatigue of Metals 

by Moore and Kornmers, definite limitations to the use of this equation 

are presented, and it is omitted from this work Furthermore, it should 

be noted that the number of stress cycles to which a machine member 

may be subjected is usually a matter of conjecture or judgment, and the 

careful designer can provide for this possibility as he does for other 

unknown contingencies by means of a factor of safety To the experi¬ 

enced designer this may not be a difficult matter, but the following 

suggestion may be helpful to the beginner 

Professor Kommers has suggested a reasonable method of extendmg 

the Johnson equation beyond the field of experimentation on which it is 

based This method assumes that the character of the stress-repetition 

curve does not change materially when extended to represent a very 

large number of repetitions, that is, it assumes that the plot of the 

logarithm of the stress to the logarithm of repetitions remams a straight 

line when extended beyond the field of experimentation It assumes 

also that, when the stress is reduced 9 per cent, the number of repetitions 

necessary to cause rupture is doubled, as stated by Moore and Seely. 

Thus, if the stress is progressively reduced, 9 per cent until its value is 
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51.7 per cent of the original stress, the number of repetitions can be 

made 128 times the original number. This corresponds to a factor of 

safety of 1.934 on the original stress and of 128 on the original number of 

repetitions. Professor Kommers has shown that the general relation 

which exists between the ratio r of the number of repetitions and the 

corresponding ratio c of the induced stresses is 

0.136 log r = log c (4) 

The Johnson formula is based on stresses that caused rupture in 

from 4,000,000 to 10,000,000 repetitions, and Professor Kommers recom¬ 

mends that 5,000,000 repetitions be assumed as a safe value to be used 

with the Johnson equation. 

If, then, it is desired to apply this equation to a larger number of 

repetitions, the ratio of the larger number to 5,000,000, gives r of equa¬ 

tion (4) from which c may be computed. It should be remembered, 

again, that accurate experimental data on the effect of very large num¬ 

bers of repetitions of stress are lacking. It is known also that imperfect 

working or faulty heat treatment of the material, particularly of steel, 

greatly affects the life of the member. A liberal allowance in the way 

of a factor of safety must be made, therefore, in computing working 

stresses. For convenience, a table of cycles of stress with the corre¬ 

sponding factors, c, is subjoined. 

TABLE IV 

Number of Repetitions 

of Stress 

Faetor 

c 

Number of Repetitions 

of Stress 

Factor 

c 

5,000,000 1.00 8,000,000,000 2 72 

10,000,000 1.10 9,000,000,000 2.77 

50,000,000 1.37 10,000,000,000 2 81 

100,000,000 1.53 20,000,000,000 3.08 
500,000,000 1.87 30,000 000 000 3.26 

1 000 000,000 2.06 40,000,000,000 3.39 

2,000,000,000 2.26 50,000,000,000 3 49 

3,000,000,000 2.39 60,000,000,000 3.59 
4,000,000,000 2.48 70,000,000,000 3.67 
5,000,000,000 2.56 80,000,000,000 3.72 

6,000,000,000 2.62 90,000,000,000 8.78 
7,000,000,000 2.68 100,000,000,000 3.85 

Example. A bar of steel whose ultimate static strength is 70,000 lb 

per sq in. is to be subjected to 2,000,000,000 stress cycles, where the 

minimum stress is one-half the maximum. What should be the value 
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of the carrying strength or maximum stress, neglecting shock and 

other uncertainties of operation, to avoid failure below this number of 

repetitions. 

Since the stress will be proportional to the load, si = S2/2. Hence, 

substituting in equation (F), 

for 5,000,000 stress cycles. From Table IV, c = 2.26. Hence, for 

2,000,000,000 stress cycles, the carrying strength is 

47,000 

2.26~ 
20,640 lb 

It should be noted that if this member were designed for 5,000,000 

stress cycles the carrying strength would bo 46,666 lb. This is consid¬ 

erably above the elastic limit of most materials, and even if there were 

no uncertainties as to the conditions under which the member is to 

operate a factor of safety should be used to reduce the maximum stress 

well below the elastic limit. 

31. Other Formulas for Repeated Stresses. The Johnson equation 

assumes a fixed value for the ratio of the endurance limit for = 0 

and Su which may or may not be true for all materials. Moore and 

Kommers * have suggested the equation 

1.5s' S2 3 
^2 =-or — =- 

1 - 0.5r s' 2 - r 

where s' = the endurance limit for complete reversal of stress and 

r = si/s2- s' is to be determined expermentally for various metals. 

If r = 0, S2/s' = 1.5 as in the Johnson formula. 

Howell, on the basis of tests made at the University of Illinois, 

has suggested the formula 

S2 r + 3 /r + 3\ 

s' 2 \ 2 / 

Since all these equations rest upon incomplete information, and 

as in any case the working stress must be kept well below S2, the Moore 

and Kommers and the Howell equations would not appear to possess 

manifest advantages over the Johnson formula. They may be of use 

with certain metals differing from steel in their characteristics. 

♦ See ‘*The Fatigue of Metals” by Moore and Kommers, page 185. 
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32. Repeated Stresses in Torsion. Experimental data on repeated 
stresses m shear arc very scanty Moore and Kommers record the 
results of a few tests made by McAdam at Annapolis and by Moore 
and Jasper at the University of Illmois These would indicate that the 
stress range for torsional shear does not follow the Johnson formula 
but IS much more constant in character Moore and Kommers con¬ 
clude that for repeated torsional shearing stresses, particularly for 
stresses below the elastic limit, the assumption that the stress range is 
constant involves no great error They suggest the following formula: 

S2 = 2^' + Si or 
2s' 

S2 

where s' is the endurance limit for complete reversal of stress in torsion 

and ~ IS a minus quantity if the stress is completely reversed. If the 

range of stress and s' are known, S2 may be computed. More expern 
mental data are needed to verify the assumption on which this equation 
is based. 

33. Other Considerations. Wohler^s experiments were conducted 
at comparatively low speeds, 60 to 80 cycles per minute. Other 
experimenters have conducted experiments at much higher rates; but the 
results reported are so contradictory as to throw little light upon the 
influence of the rate at which the stresses are repeated upon the theory of 
fatigue. 

Messrs Stanton and Bairstow have shown that the form and finish 
of the member under stress may greatly affect its life, under repeated 
loading Sharp corners and abrupt changes in form should be avoided. 
These experimenters estimate the followmg relative values of strength 
for the several shapes listed: 

Rounded fillets 100 
Standaid screw threads 70 
Sharp corners 50 

These general conclusions are borne out by all practical experience. 
If such weak shapes cannot be avoided, ample allowance should be 
made for them by a reduction in the stress. 

As already noted m Article 27, ductile metals will slowly elongate 
when a steady dead load is applied to them even though the inten¬ 
sity of stress may be well below the ultimate strength or even the 
elastic limit Seely defines the creep limit as follows: *‘the creep limit 
for a material at a given temperature is the maximum unit stress that 
can be developed in the material during a specified length of time without 
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causing more than a specified deformation; a time period of 100,000 
hours and a deformation of 1 per cent of the gage length has been used 
rather widely/' For the ordinary problems in machine design both the 
stresses and temperatures involved render consideration of creep 
unnecessary. But where higher temperatures are encountered, as in 
steam turbines, heated pressure vessels, and the like, this phenomenon 
deserves careful consideration for it naturally is accelerated by increased 
temperature. For a fuller discussion see The Fatigue of Metals " 
by Moore and Kommers, page 44. 

34. The Factor of Safety. The preceding paragraphs (Articles 9 
to 32) have considered the effect that different methods of applying 
the load will have on a member, and the relations which exist between 
a given dead load and the resulting stress and strain. It has been shown 
in Article 29 that if the load is applied suddenly the resulting stress and 
strain theoretically will be twice as great as for a dead load. And finally 
in Article 30 it has been shown that the maximum stress that can with 
safety be induced repeatedly in a member will depend on the range of 
stress. It would seem as though a member designed in accordance with 
these logical theories would be satisfactory. But it must be remembered 
that these theories are not absolute; that the information regarding the 
characteristics of materials Ls still very incomplete; that flaws and hid¬ 
den defects always exist; and finally that there is always danger of 
accidental overloading. 

Most of the formulas of mechanics which are applicable to the design 
of machine members are based on theoretical treatment of the stresses 
induced by the action of given forces within the elastic limit upon the 
member under consideration; and the theoretical conclusions so reached 
are amply verified by practical experiment. When, therefore, the con¬ 
ditions under which the member is to work can be analyzed, and the 
laws of mechanics applied to its design, such methods as those outlined 
in this chapter are perfectly rational, if intelligent allowance is made for 
contingencies. Many machine members, however, are subjected to 
such a complicated system of stress that analysis cannot be strictly 
applied, and less satisfactory approximations or assumptions are 
unavoidable in the present state of knowledge. Under these circum¬ 
stances, the designer must either base the design on the predorninaiing 

stress, if there is one, allowing such a margin or factor of safety as 
experience or experiment may show, to provide for the minor uncertain 
stresses; or, if the case considered be beyond such treatment, recourse 
must be had to empirical methods or judgment. (See Article 1.) 

In most problems of design, as has been noted, rigidity is of greater 
importance than strength, and usually a member is strong enough if it 
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has sufficient rigidity. Nevertheless, the matter of strength cannot be 
neglected, particularly where there may be danger to life and limb. 

In addition, it is generally essential that a machine member be not 
only strong enough to avoid breaking under the regular maximum 
working load, but also that it shall not receive a permanent set, for a 
machine member ordinarily becomes useless if it takes such set after it 
has been given the required form. Frequently a temporary strain, 
even considerably below that corresponding to the elastic limit, would 
seriously impair the accuracy of operation; and in such cases the mem¬ 
ber often requires great excess of strengi h to secure sufficient rigidity. It 
follows, therefore, from these considerations that if the design of a 
machine member were based on the maximum allowable stress or carry¬ 
ing strength, as indicated by Wohler’s experiments (such stress being 
modified by the theory of suddenly applied loading, should it be pres¬ 
ent), there would be no margin to allow for the uncertainties and 
unknown defects enumerated above; and often there would be no 
assurance that the elastic limit would not be exceeded. Therefore, 
although stresses fixed m accordance with these theories form a good 
basis, they must in general be reduced by me^ans of a factor of safety so 
that the working stress is low enough, in comparison to the carrying 
strength, to provide for these uncertainties. 

The factor of safety is usually defined as the quotient of the ultimate 
static strength divided by the working stress. A consideration of 
Wohler’s experiments shows that such a definition is misleading. A 
factor of safety of 2, for instance, might be perfectly safe for a dead load; 
but for a repeated load with stress in one direction it would leave no 
margin at all for contingencies. The apparent factor of safety would 
seem to be a better term, and, inasmuch as the working stress should 
never exceed the elastic limit, it would be simpler and more logical to 
base the design of machine members carrying steady loads upon the 
elastic limit itself, and the design of members carrying live loads upon the 
carrying strength, as fixed by Johnson’s equation. It is universal prac¬ 
tice, however, to base the factor of safety upon the ultimate strength, 
and this conventional method will be adhered to here. 

In steady or dead loading, the apparent factor of safety may be 
considered as consisting of two factors a and e, the first being used 
to insure the reduction of the working stress to a value below the elastic 
limit, and the second or real factor of safety providing for the unknown 
conditions and contingencies under which the member must work. 
For carbon steels that are not heat treated, the ratio of the ultimate 
strength to the elastic limit is about 2. Cast iron has no real elastic 
limit, but the stress-strain curve of cast iron approximates a straight 
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line up to one-third or one-half of the ultimate strength. A factor of 

from 2 to 3 is sufficient, therefore, to insure elastic action for cast iron. 

For timber a factor of 3 may be safely assumed. For other materials 

and other kinds of steel, the designer should consult such tables as 

Table VII, where the elastic limits of such materials are hsted. 

For the real factor of safety, values of to 2 for mild steel and 

wrought iron, 2 to 2^ for cast iron and other brittle materials, and 2 to 3 

for timber may be taken as average values, as found in practice and 

verified by experience. Hence, average values of the apparent factor 

of safely for steady loading are 3 to 4 for ductile materials, 4 to 5 for 

brittle materials, and 7 for timl>er. 

In a similar manner, a clearer understanding of the apparent factor 

of safety for live loads may be obtained by considering this factor as 

made up of four factors,* namely: a factor b for obtaining the carrying 

strength for about 5,000,000 cycles of stress, as indicated by equation 

(P); a factor c to allow for a greater number of cycles if such be con¬ 

templated; a factor d to provide for shock if it is to be provided for; 

and lastly, a real factor of safety c, as before, to provide for uncertainties. 

For repeated loading from zero to a maximum, Johnson’s equation 

indicates that the stress should not exceed one-half the ultimate strength, 

hence, for this case h would be 2. For reversed stresses of equal intens¬ 

ity, h would have a value of 3. The factor c may be taken from Table 

IV. It was shown in Article 29 that, theoretically, shock doubles the 

stress due to steady loading. This effect is considerably modified, no 

doubt, by the yielding of the supports of the member, and unless the 

construction is very rigid the factor d may be safely taken as 1.5. The 

real factor of safety to provide for uncertainties may be taken, as before, 

as 1 ^ to 2 for ductile materials, 2 to 2^ for brittle metals, and 2 to 3 for 

timber. 

It should be noted that where the range of the repeated stress and 

the number of repetitions are low the apparent factor of safety 

(6 X c X c) or (6 X c X d X e) may give a value less than the apparent 

factor of safety (a X e) for a dead load. Although such a result may 

not be in error so far as strength is concerned it may be in error so far as 

rigidity and the margin of safety are concerned. The apparent factor 

of safety for a live load should never be taken as low as the safe minimum 

for a dead load. 

Example. The shaft of a Doble water wheel, running under a high 

head and liable to shock because of suddenly varying water pressure, is 

* “See Factors of Safety and Allowable Stress” by C. D. Albert, American 

Machinist, Vol. 57, page 54. Also see “Factor of Safety and Working Stresses” by 

C. R. Soderberg, Trans. A.S.M.E., vol. 52. 
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to make 250 rpm for 12 hours a day, 300 days in the year, for an ex¬ 

pected life of 20 years. The material is to be steel having an ultimate 

strength of 70,000 lb per sq in. What is the maximum allowable fiber 

stress. 

Here the stress is reversed tension and compression, shearing being 

neglected for simplicity; hence, from Johnson’s equation, b = 3. The 

shaft will make approximately 1,000,000,000 revolutions during its 

expected life; hence, c = 2. The shock factor d may be taken as 1.5, 

and the real factor of safety, to cover uncertainties, may be safely 

assumed as 1.5. Hence, the apparent factor of safety is 

5 X c X d X 6 = 3 X 2 X 1.5 X 1.5 = 13.5 

and the allowable stress is 70,000 13.5 = 5180 lb per sq in. 

Few machine members are required to withstand as many stress 

cycles as the shaft in the foregoing example, the majority probably 

being required to withstand less than half that number. Table V con¬ 

tains factors of safety which agree quite closely with the foregoing 

theory and which also agree quite well with such factors as are used in 

practice. They are, of course, average values and must be applied with 

judgment; but, in the absence of trained judgment or as an aid to its 

development, they may be found useful. 

TABLE V 

Factors of Safety 

Character of Dead 

Repeated Stress in 

One Direction, 

5(K),000,000 Cycles 

Repeated Reversed 

Stress, 

500,000,000 Cycles 

Material Load 

Gradually 

Applied 

Ixiad 

Suddenly 

Applied 
Load 

Gradually 

Applied 

Ixiad 

Suddenly 

Applied 

Load 

Wrought iron, steel, or 
other ductile metals. , . 3 to 4 6 10 8 12 

Cast iron or other brittle 

metals. 4 to 5 7 12 10 20 

Timber . 7 10 15 15 20 

It may be observed that an increased factor of safety may not always, 

for cast metals, give a stronger member. If the increased dimensions 

give sections so thick that sponginess results, the gain in strength may 
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be negative; and when internal pressure, such as is found in hydraulic 

work, is to be withstood, it is often necessary to do with a smaller 

factor of safety to insure soundness. 

The factor of safety has been called the factor of ignorance,^’ and, 

as it is too often applied, it is perhaps little else. Thus very often it is 

specified that all the members of a machine shall be designed with a 

certain fixed factor of safety without regard to the conditions under 

which the various members may have to act. A factor of safety applied 

in this manner is, generally speaking, a factor of ignorance. It is prob¬ 

able that the factor of safety will always retain an element of uncer¬ 

tainty, for it can hardly be hoped that the powers of analysis will ever 

permit the prediction of the exact effect of every possible straining 

action, due to regular service and accident. Neither can it be expected 

that the methods of manufacture, and inspection, will become so per¬ 

fect as to eliminate or measure precisely every possible defect in mate¬ 

rials or workmanship. But a careful study of the conditions of each 

particular case and a proper attention to the effects which may be 

weighed (at least approximately) should, with the knowledge now to be 

had, enable the designer to make a fairly accurate application of the 

factor of safety, an intelligent choice of which is the most important part 

of design. Tables VII and VIII contain values of the ultimate strength 

and elastic limits of the materials most used in engineering. They also 

are average values such as the designer must use in the absence of exact 

information regarding the material to be employed, and in general such 

exact information is lacking. 

It should be remembered likewise that the foregoing discussion is 

based upon experiments on ordinary untreated steel. In recent years 

great advances have been made in the art of heat treatment and also 

in the production of alloy steels of markedly different qualities as com¬ 

pared to ordinary steel. In these new alloys and in heat-treated steels 

the relation of the elastic limit to the ultimate strength may vary con¬ 

siderably as compared to ordinary steel, the elastic limit in many cases 

being proportionately much higher. This must be taken into considera¬ 

tion by the designer if he is working with these new materials. The 

National Metals Handbook and the S.A.E. Handbook give full infor¬ 

mation as to the characteristics of engineering materials. 

36. Limitations of Analytical Methods. The equations presented in 

the foregoing have been verified by many laboratory experiments and 

they have been widely and successfully used in actual practice. Yet 

they have certain limitations that should be observed. First, they 

assume that machine members conform in physical proportions to the 

simple beams and other shapes on which they are based, an assumption 
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that may be far from true. Second, they assume that the material of 

the member is homogeneous and free from internal stresses, which may 

be far from the actual conditions. Third, even though they may give 

a good idea of the maximum stress due to the load at the most greatly 

strained point they do not convey a convincing picture of the distribu¬ 

tion of stress over the most dangerous area. And lastly, for many 

complex structures the values of the stress that they indicate may be 

suggestive only. If extreme care must be used in the design of a few 

important members or if a very large number of a given piece of compli¬ 

cated form is to be made supplementary methods of stress determina¬ 

tion are often helpful. Only the briefest mention of these methods 

can be made here.* In one method a model of brittle material such as 

pottery-plaster is made exactly like the piece that is to be manufac¬ 

tured and a simple test piece is made from the same material. Both 

are tested to destruction. The test of the simple test specimen gives 

approximately the ultimate strength of the material, and the test of the 

model gives some idea of the load which produces this ultimate stress 

in the model. From these test values a fair idea can be obtained of 

the maximum allowable stress in the actual machine part. 

Another method much used for examining bodies that are stressed 

in one plane is to expose a transparent model of the part to be exam¬ 

ined to polarized light, the model being subjected to the same kind of 

stress as the original part. The transparent model may be made of 

glass, celluloid, or transparent Bakelite. The light after passing through 

the model falls upon a screen. When such a model is thus exposed it 

takes on color in its various sections depending upon the state of strain 

in its material. If the distribution of stress is uniform the color will 

be uniform; if the stress is variable the colors will vary accordingly. 

Such projected figures can of course be photographed, and they are 

highly instructive in showing the distribution of stress, particularly 

around changes of outline and in irregular sections. Figure 145 shows 

a photograph of a pair of celluloid gear teeth. Note particularly the 

compressive stresses at the point of contact of the teeth. See also 

Article 162. 
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TABLE VI 

Character of Stress or Strain Formula 

A Stress in tension oi compression 
P 

'"“a 

B Strain in tension or compi ession 
PI 

^~AE 

C Stress in shear 
p 

D Toisional stress, solid circular shaft 
16 

E Toisional stress, solid square shaft Pa = 7’={)208&'», 

F Torsional stress, hollow circular shaft 
\M\ 

G 1 Torsional strain, solid circular shatt 
32 T/ 

0 =-- 
TrEsd^ 

H Torsional strain, hollow circulai shaft 
‘iZTl 

TE,(d,*-d •) 

I Deflection in hendinK See T.ilile 1 

J Stress due to flexure 
.si 

M — — See Table I 
c 

K> Combined bending and twisting ”ii
 

to
 1 

1
-
1

 

1
,_

1
 

K, Combined bending and twisting 
/ 

L Combined torsion and compression 
2P\ 

L. Combined torsion and compression 
2P [ 

M Combined flexure and diiect stress 
, P Me 

Mx 
Flexure and direct stress m curved 

members 

P ^ (1 (Cl A' 

)] 
N, Long column 

, p Sc ny] 

0 

■ 

Eccentrically loaded column 
P 

,<?'=Sx+Sj = “ 
A 

4p2 ac 

p Repeated stress 
su 

«2== 

S2 
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TABLE IX 

Phoperties of Sections 

Shape 

of 

Section 

Moment 

of 

Inertia 

I 

Moduhia 

of 
Section. 

J_ 
c 

Square of 

Radius of 

Gyration. 

Polar 

Moment of 

Inertia 

J 

2^= Mod* ^1=.008D» 
16 32 

Q ± 

jT, 
SeL D J 

•D^-Vd? 

16 
ir(T)^dO 

32 

f 
r- B 

|r h 

ini 

4 > 
*> 

BH* 

12 

BTI® 

12 

bh(b^+h®) 

12 

Hb>, 
B 

4 He 

_ 

L [bh’-Mi”] 5l[B.I«-b,^J 
1 [BirS-bh*] 

u [bh —blvj 

* 
- B ^ 

•L[BH>-bh*] ^^[Brf-bh”] 
1 rBH*-bh®] 

12LbH bhj 

^[BH»-bh^ 4[BH*-bh*] 
1 rBH*-bh®l 

12LBH—bh J 

11 (‘BH^-bh2)*--'lBHbh (H-h)* 

I_(BH2-bh*)?-4BHbh(H-h)* 

Cl 6(BH--bh ) 

1 _(BH*-bh*)S-4BH bh (H-h)* 

Ci 6(BH2~2bhH+bh^) H B ^ 

12(BH-bh) 

-i[bH'+Bh’] ^[bH*+Bh-] 
bH*+B*h* 

12CbH+Bh) 

r< B* 

iH 
i Co 

T -T^ 

BH® 

IT 

Cl 24 

I BH* 
12 

JH* 

18 

irBH® 7r(BH®+HB*) 

di ■1 64. 



CHAPTER IV 

GENERAL THEORY OF FRICTION, LUBRICATION, AND 
EFFICIENCY 

36. Friction in General. When two solid surfaces are held in 

contact by any appreciable force, any effort tending to move them 

relatively to each other is met by a resisting force acting tangentially 

to the surface of s(‘paration of the two bodies. This resistance to rela¬ 

tive motion is due to the interlocking of the minute depressions and 

elevations which exist even in the smoothest surfaces and will, of course, 

vary with different properties of materials and different qualities of 

finish. Thus, unsurfaced cast iron will show a very great resistance to 

relative motion, but two hardened and ground surfaces of steel will 

move over each other with much greater ease. If the two surfaces are 

very carefully fitted together without any foreign matter between, 

they will, in the case of many substances, adhere firmly together, which 

still further increases the resistance to relative motion. If oils or lubri¬ 

cants of any kind are interposed between the surfaces, the resistance to 

relative motion is, to a considerable extent, overcome. 

This tendency to resist relative motion is sometimes a desirable 

feature and sometimes not. In bearing and rubbing surfaces generally, 

such frictional resistances result in loss of power and should be reduced 

to a minimum; in friction clutches, brake straps, keys, screw fastenings, 

etc., frictional resistance is of great utility and every effort is made to 

insure its presence. The laws of friction, and the manner of their 

application, therefore, are of prime importance to the engineer. 

These laws are at present rather imperfectly understood, though 

considerable experimental work has been done. It has been found that 

many of the older theories based on experimental work are true only 

for the range of conditions covered by the experiments, and that con¬ 

ditions different from these show entirely different results. 

The ratio of frictional resistance F to the normal load P is called 

the coefficient of friction; or if this ratio be denoted by/, then/or/ai 

surfaces 

or F = fP 
P 

97 
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On circular surfaces, such as journals and bearings, the distribution 

of the normal pressure is variable and dependent on the manner in which 

the surfaces an' fitted together. In such cases it is customary for 

convenience to define the coc'fficient of friction as the frictional resistance, 

F, at the surface of the journal divided by the load P normal to the axis 

of the journal, ddie coefficient of friction for circular surfaces will be 

denoted by fi. Henc^' 

F 
or F = gP 

P 

The intensity of normal i)ressure on circular surfaces, as before 

stated, is difficult of accurate determination and it is therefore custom¬ 

ary to use as the normal pressure the intensity of pressure per unit 
of projected area. Or, if d = diameter of shaft, and I = length of bear¬ 

ing, then the intensity of pressure per unit of projected area 

P 

The energy absorbed by frictionnl resistance is transformed into heat 

which is carried away by conduction and radiation to the air, or, in 

certain kinds of bearings, by water circulation or other means. The 

work of friction is often th('refore an important factor in the design 

of rubbing surfaces. I'or flat plates the foot-pounds of energy absorbed 

per minute is E = /PF, where V the velocity is in feet per minute and 

P is in pounds. For circular surfaces, if N be the number of revolu¬ 

tions per minute, and d the diameter of shaft in inches, 

*E — Frictional resistance X A^elocity = (gP) X 0.2618gdiV'P 

If then / or g be known, for any pair of rubbing surfaces, the fric¬ 

tional resistance and the energy absorbed for any load P may be cal¬ 

culated. Values of / and g have been obtained experimentally for many 

of the materials and conditions met with in engineering, but the data 

so far available are still incomplete. 

The consideration of the laws of friction, as applied to machinery, 

naturally divides itself into two parts: 

(a) Friction of dry or unlubricated surfaces. 
(b) Friction of lubricated surfaces. 

* For other forms of surfaces, see Kent’s ‘'Mechanical Engineer’s Pocketbook,” 
also Thurston’s “Friction and Lost Work,” page 40. 



FRICTION OF UNLUBRICATLD SURFACES 99 

37. Friction of Unlubricated Surfaces. The experiments of Morin, 

Rennie, Coulomb,* and many others, furnish the following laws for dry 

or very slightly lubricated surfaces 

(1) The frictional resistance is approximately proportional to the 
normal load. 

(2) The frictional resistance is approximately independent of the 
extent of the surfaces. 

(3) The frictional resistance, except at very low speeds, decreases 
as the velocity increases. 

It was formerly supposed that an abrupt change took place in the 

value of / when the body ptssed from a state of motion to one of rest 

It seems now, however, that while the coc^fhcient of rest is m general 

greater than that of motion, the change m value is gradual and the value 

at rest is not far different from that at very slow motion As the velocity 

increases, the value of / iriateri illy decreases and this must be taken 

account of in designing machinery wheie friction is involved Unfor¬ 

tunately the information regarding high oi even model ate specals is 

also very incomplete 

The following values of / must, m view of the incomplete information, 

and also because of variations which come with slight changes of condi¬ 

tions, be looked on as approximate values only Unless it is positively 

known that the surfaces will be kept free from even slight contamination 

by oily substances, these values must be used with judgment 

Coefficients of Fiuciion (/) for Dry or Slightiy Lubricati!d Surfaces 

Vv ood on wood— Static or very low velocity 0 3 to 0 5 

Wood on metals— ‘ ^ ‘ “ 0 2 to 0 6 

Leather on m( t ils— * ^ ‘ 0 3 to 0 6 

Leather on wood— 0 3 to 0 5 
Metal on metal— ^ ‘ “ (iver iji;e) 0 3 

Cast iron on steel—Vdoeity = 410 ft per niin 0 32 
“ “ “ = 2040 “ “ 0 2 

- 6280 0 06 

There are no expierimental data giving the decrease m the value of 

/ at high speeds, for combinations such as wood or leather on metals 

The data for cast iron on steel will, however, serve as a rough guide to 

what may be expected to occur It is to be particularly noted that, m 

designing brake shoes or other friction machinery where great velocities 

are involved, allowance must be made for the decrease in the value of 

the coefficient. 

♦See ^‘Lubrication and Lubricants,*' Archbutt and Deely, for a full discussion 

of these points 
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38. Dry Rolling Friction. It has been found that, when a curved 

body rolls upon a plane or curved surface, the so-called frictional resis¬ 

tance due to the rolling action is much less than that due to sliding, for 

the same load. 

If P = the load; 

F = the horizontal force required at the axis of a circular body 

to produce and sustain uniform motion; and 

r = radius of rolling body, it has been found that 

r 

where fc is a coefficient to be determined experimentally. If r be 

expressed in inches k is found to have a value of about 0.02 for iron or 

steel rolling on iron or steel. 

Neither the coefficient k nor the exact theory of rolling friction is at 

present very accurately known. The most important use of rolling 

Fki. 10. Fig. 17. 

friction is, as far as the present discussion is concerned, in connection 

with roller bearings for shafting, and a fuller discussion of these will be 

given later. 

39. Friction of Lubricated Surfaces. When a lubricant is inter¬ 

posed between a pair of rubbing surfaces, the frictional resistance is 

materially reduced because the surfaces are wholly or partially separated 

from each other by the lubricant. The lubricant may be fed to the sur¬ 

faces in a number of ways. If the motion is intermittent, and other 

conditions will allow, a simple oil hole leading to the rubbing surfaces is 

often used. If the motion is continuous, some form of oil cup which 

will give a continuous supply is better. Fig. 16 (a) shows a cup of the 

simpler type where a wick of cotton or wool draws up the oil by capillary 

attraction and feeds it slowly into the oil hole. This is sometimes called 

siphon feed. Fig 16 (b) shows a so-called sight feed cup where the oil 

falling by gravity from the cup can be seen as it passes the hole e and 
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the flow can be regulated by the screw d. Centrifugal action is also used 

to some extent to feed oil to rotating parts. Sometimes an opening is 

made in the bearing so that a pad saturated with lubricant can be 

kept pressed up against the moving surface, thus lubricating the whole 

length of the journal continuously. For heavy lubricants, such as 

greases, where very heavy pressures are carried on the rubbing sur¬ 

faces, so-called compression cups are often used and are constructed 

so as to force the lubricant in between the surfaces. Fig. 16 (c) shows a 

ring oiled ” bearing. The ring r running loose on the shaft s dips 

into the pocket below the shaft. The friction of the ring on the shaft 

causes it to rotate and draw up oil from the pocket. Sometimes chains 

are used instead of solid rings. For the most efficient lubrication the 

journal itself runs in a bath of oil (Fig. 17) or is flooded with oil sup¬ 

plied under pressure. The relative merits of these various methods of 

supplying the lubricant will be more apparent after a discussion of the 

general laws of lubrication. 

The effect of friction, and the eflSciency of lubrication of so-called 

lubricated surfaces, may conveniently be treated under three heads: 

(a) Static friction of lubricated surfaces. 

(b) Friction of imperfectly lubricated surfaces. 

(c) Friction of perfectly lubricated surfaces. 

40. Static Friction and Lubrication. When a pair of lubricated sur¬ 

faces are pressed together by a load, the pressure tends to expel the 

lubricant slowly from between the surfaces. Experiments and experi¬ 

ence show that it is very difficult, even with limited areas and heavy 

pressures, to expel the lubricant completely. If ordinary machinery, 

however, is allowed to stand at rest for a short period of time, this action 

is sufficient to expel so much of the lubricant that may have been between 

the surfaces while running as to allow the metallic surfaces to come more 

or less into contact. The static coefficient of friction of lubricated sur¬ 

faces is hence very much higher than that of surfaces which move even 

very slowly, for it will be seen presently that even at low velocities the 

surfaces tend to draw in the lubricant by their motion. It is a well- 

known fact that heavy machinery always offers a great resistance to 

starting after lying idle a short time, and often the rubbing surfaces, if 

not oiled before starting, will abrade each other before the lubricating 

action due to running begins to take effect. The materials, therefore, 

for the rubbing surfaces of heavy machinery should be carefully chosen 

for their anti-friction qualities, and oil grooves should be carefully 

provided so that lubricant can be applied as near the point of greatest 

pressure as possible before motion begins. 

The coeflScient of static friction for lubricated surfaces is not very 
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accurately known, it varies somewhat with the pressure and character 

of the lubricant. A fair average value for metal surfaces and pressures 

ranging from 75 to 500 lb per sq in. is 0.15.* 

41. Imperfect Lubrication. When one lubricated surface slides over 

another, the moving surface, even at low velocities, tends to carry the 

lubricant, if projxirly applied, in between the surfaces. Thus the layer of 

oil which touches the surface of a journal adheres to it and is carried 

along under the bearing. This layer in turn tends to carry along the 

layer which next adjoins it, because the viscosity of the lubricant opposes 

the shearing action wljich results between layers on account of the action 

of the moving surface of the journal. In plane sliding surfaces the 

lubricant is generally applied to the stationary surface and tends to cling 

to it in spite of the tendency of the slider to rub it off. The action of 

the sliding surfaces in drawing in the lubricant is similar to that of the 

rotating journal, but in a much less marked degree, as would naturally 

be expected. If the velocity of rubbing be very low, or the pressure very 

high, or the supply of lubricant limited, the quantity of lubricant that is 

carried in is very small and the surfaces in contact are very slightly 

lubricated and may even be in actual metallic contact. The materials, 

therefore, for the rubbing surfaces of slow-moving machinery should 

also be carefully chosen for their anti-friction qualities, as even after the 

machinery has been successfully set in motion metallic contact may 

occur between them. 

If the velocity of rubbing and the supply of lubricant be increased, 

the load remaining the same, more and more lubricant is thrust between 

the surfaces by the action noted above till, at a point depending on the 

pressure, velocity of rubbing, and viscosity of the lubricant, the metallic 

surfaces are completely separated and the friction becomes only that 

due to the fluid friction of the lubricant itself. This last state is known as 

perfect lubrication. The formation of this separating film with increas¬ 

ing speed is probably gradual and the character of the contact most 

probably passes through a gradual change, from contact which is nearly 

metallic through successive states of partially fluid contact to complete 

fluid separation. The exact point at which perfect lubrication occurs 

for any given load, velocity, and lubricant is not accurately known, 

but what data are available will be given in connection with the dis¬ 

cussion of perfect lubrication which follows. It is known, however, 

that perfect lubrication cannot be obtained without a plentiful supply of 

the lubricant, as where a journal runs in an oil bath, or is flooded with 

the lubricant from a continuous supply. It is impossible or inconvenient, 

however, to lubricate the greater part of the rubbing surfaces of machines 

* See Thurston^s ‘'Friction and Lost Work/' pages 316-317. 
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in this manner, and, therefore, all surfaces lubricated by such means 

as simple oil holes, oil cups, oily pads, etc., where the supply of lubricant 

is in any way restricted, must be considered as imperfectly lubricated. 

As already noted, the exact condition which will exist between 

such surfaces depends on the pressure, the velocity of rubbing, the 

supply and character of the lubricant, and the temperature of the 

bearing as affecting the viscosity of the oil. Naturally where so many 

variables exist, experimental results are very discordant, and although 

an immense amount of work has been done, the results serve only to 

emphasize the great varLation in conditions with change of these vari¬ 

ables. It is evident, lor instance, that if velocity and pressure remain 

constant, almost any condition may be produced from metallic contact 

to perfect lubrication simply by varying the supply of lubricant, d'he 

law of variation of the coefficient of friction, with either varying pressure 

or velocity, is also found to be modified by the rate at which oil is sup¬ 

plied. The generally accepted theories for imperfectly lubricated bear¬ 

ings running under average conditions, i e , at normal temperature, and 

with good oil supply from cups or pads, are as follows:* 

(a) Starting from rest with constant load, the coefficient of friction 

first increases slightly with increasing velocity and then decreases, 

rapidly until at a velocity somewhere below 200 ft per min (and depend¬ 

ing upon the oil supply) a minimum value is reached (see Fig. 18).f 

With further increase of velocity the coefficient increases till the tem¬ 

perature affects the viscosity of the lubricant to such an extent that 

abrasion and failure occur. 

(b) With constant velocity and very light loads (see Fig. 19) the 

coefficient of friction is very high. As the load is increased, the coefficient 

decreases very rapidly at first, and then more slowly till pressures of 

about 100 to 200 lb per sq in. are obtained, when the coefficient again 

slowly increases. 

(c) The law of variation of friction with temperature is very com¬ 

plex and not well defined. Its general characteristics, however, may 

be expressed as follows: every combination of pressure and velocity 

requires a lubricant of a certain viscosity for best results. At high 

speeds and light loads, a light, thin oil will be readily drawn in between 

the bearings, and its fluid friction, which constitutes the greater part of 

the resistance in such cases, will be less than that of a heavier oil. 

Increasing the temperature of a lubricant decreases its viscosity and, in 

* See Archbutt and Deeley, page 58, and Thurston^s ^‘Friction and Lost Work,'' 

pages 296-312. 

t It is to be noted that this discussion and the coefficients given refer to circular 

bearings and friction of rotation. 



104 GENERAL THEORY OF FRICTION, LUBRICATION, ETC. 

the above case, therefore, would cause a decrease in friction. With 

heavier loads and lower velocities usually met with in machines, an 

increase of temperature decreases the viscosity and may, owing to the 

expulsion of the lubricant, give an increase in friction. 

Care should be used therefore to obtain an oil suited to the conditions, 

for sometimes a change of lubricant is sufficient to cause great trouble, 

or, on the other hand, to reduce the temperature of a bearing that is 

heating. The failure of imperfectly lubricated bearings generally results 

from the lowering of the viscosity by increased temperature, so that the 

oil film is no longer maintained and metallic contact and abrasion ensue. 

From the foregoing it is evident that the coefficient of friction for 

imperfect lubrication will necessarily be a variable quantity. Figs. 18 

Fia. 18. Fig. 19. 

and 19 show the variation of g for varying velocities and pressures. 

With good lubrication and moderate velocity it may be as low as 0.005, 

and again with low velocity and poor lubrication it may rise to 0.05 or 

more. When the velocity is exceedingly low, the coefficient approaches 

that of static friction of lubricated surfaces, the average value of which 

is 0.15. A fair average range for pressures from 50 to 500 lb, and 

velocities from 50 to 500 ft per min, is from 0.02 to 0.008 and, for pur¬ 

poses of design of ordinary machinery, may be taken at 0.015. It is 

to be noted that with imperfectly lubricated surfaces and low velocities 

the coefficient of friction is less dependent on the character of the 

lubricant and more dependent on the character of the rubbing surfaces. 

The curves Figs. 18 and 19 are composite curves taken from a number 

of actual experimental results. They are not to be considered as giving 

exact values of the coefficient /z, but serve to show graphically the 

general laws by which it varies. In interpreting such curves as Fig. 19 
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it must be kept in mind that, while the coefficient is decreasing or in¬ 

creasing, the actual frictional resistance may not be changing in like 

manner. The frictional resistance is the product of the load and the 

coefficient of friction. If, for instance, the coefficient decreases as fast 

as the load increasesy the frictional resistance will remain constant. 

The curves, however, show where best results may be expected when 

designing new machinery, and throw some light on proposed changes in 

running speed of machinery already installed. They also indicate the 

complexity of the relation which exists between velocity, pressure, and 

the coefficient of friction. When it is considered that the temperature 

also greatly affects these relations, it is evident that a statement of these 

relations for imperfect lubrication, in the form of a general law or mathe¬ 

matical expression is impracticable, and all such expressions are mis¬ 

leading. 

42. Perfect Lubrication. It has been shown in the last article that 

any rotating journal will, by means of the molecular attraction between 

it and the lubricant, combined with the viscosity of the lubricant, draw 

more or less of the lubricant in between the journal and bearing, the 

amount so drawn in depending on the velocity and pressure. If the 

journal be allowed to run in an oil bath, or is otherwise plentifully sup¬ 

plied with oil well distributed lengthwise of the journal, and the velocity 

be high enough for the pressure carried, it is found that this action is 

so marked that the rubbing surfaces are completely separated by a thin 

film of lubricant and the friction becomes only that due to the fluid 

friction of the lubricant itself. 

Mr. Beaucamp Tower, experimenting with journal friction (see 

Proceedings of the Institution of Mechanical Engineers, 1883) found that, 

with a journal and bearing arranged as in Fig. 17, the above action was 

so marked as to form a film of oil under pressure such that the load was 

completely fluid borne. The distribution of the pressure in this film 

was found to be as indicated by the diagrams above the cross-sections, 

rising to a maximum at the middle and falling to zero at the edges of the 

bearing. Mr. Tower succeeded in this way in carrying a load of 625 lb 

per sq in. of projected area at a velocity of 471 ft per min. With a 

load of about 330 lb per sq in., and a velocity of about 150 ft per min, 

a maximum oil pressure of 625 lb was found near the middle point of 

the bearing. It has been proved mathematically, and verified experi¬ 

mentally, that the situation which exists in a bearing running under 

these conditions is as follows: the journal, being slightly smaller than 

the bore of the bearing, tends to be crowded back from the side where 

the lubricant is carried in, as shown in an exaggerated manner in Fig. 35, 

giving a wedging effect. The pressure is consequently greatest at a 
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point a little more than halfway beyond the center of loading where 

the distance between surfaces is least. 

The exact relation that must exist between velocity and pressure 

to allow a perfect oil film to form is not known, nor is it likely that 

exact limits can ever be set. Enough is known, however, to serve as a 

general guide for average conditions. Professor H. F. Moore found 

that for circular journals the limiting values of velocity and pressure 

at which the film would just form could be expressed by the equation 

p — 7.47VV, where p is in pounds per square inch of projected area and 

V is in feet per minute. Moore^s experiments were carefully conducted. 

but the maximum speed used was only 140 ft per min. Curve 1 in 

Fig. 20 represents Moore's equation extended to 1600 ft per min. In 

Tower's experiments sets of simultaneous low values appear where the 

frictional resistance is a minimum, indicating that the film was at least 

well formed. These relations can be expressed approximately by the 

equation p = 12\/F, and Curve 2 (Fig. 20) shows these relations ex¬ 

tended beyond the range of Tower's experiments. Tower kept his 

experimental bearing at a temperature of 90° by artificial means, and 

hence a second set of limiting values appears at higher speeds and pres¬ 

sures, where lubrication failed through squeezing out of the lubricant. 

These upper values correspond roughly to the equation p = 20\/F, 

and Professor Guido H. Marx reports the same values from an examina¬ 

tion of the work of Stribeck. Professor Marx, after a study of the 
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several series of experiments, is of the opinion that the equation p = 

10\/y can be safely assumed to express these limitations up to velocities 

of 500 ft, which IS about the maximum velocity attained by Tower in 

the majority of his experiments The curves of Fig 20 would appear 

to indicate that this deduction is reasonable. Tower finding stable con¬ 

ditions of the oil film at lower values4han those indicated by Curve 2. 

And though there is no experimental basis for extending Moore^s curve, 

it does appear to corroborate other results 

Professor Marx also states that, for speeds above 500 ft per min the 

equation p = 30^F agrees quite closely with such expermiental data 

as are available There would appear to be no reason for a marked 

change in these relations at 500 ft per mm, and m all probability more 

extended investigations will develop a single equation that will express 

these relations accurately over the entire range The General Electric 

Company has used the equation * p = 15 5 v/p with success, in the 

design of motor and generator bearings This curve is shown also m 

Fig 20 If Professor MarxS equation, p = 30represents limiting 

conditions, the equation of the General Electric Company would corre¬ 

spond to a factor of safety of nearly 2, which would not seem to be 

excessive 

The greater portion of our experimental data concerning perfect 

lubrication is obtained from the work of Tower, Lasche, Stribeck, and 

Kmgsbury Tower’s experiments cover a range of velocity from 105 to 

471 ft per mm and a range of loading from 100 to 625 lb per sq m of 

projected area His results are very concordant and conclusive and 

show that the laws of friction for perfectly lubricated surfaces are quite 

definite, the coefficient of friction varying as the square root of the 

velocity and inversely as the pressure, very nearly Thus, for olive oil 

the relation is expressed very closely by 

Vv 
M = 0 038 

V 

and for values obtained with rapeseed oil, as given m Tables X and XL 

a/f 
p = 0 03-, very closely 

V 

It follows also from these relations that, for any fixed velocity and tem¬ 

perature, the product of p and p will be a constant That is, the fric¬ 

tional resistance is practically constant with change of load for fixed 

velocity and temperature of operation This was found to be the actual 

result m the experiments, a variation of pressure from 100 to 500 

• See Bearings,^* by L P Alford, page 81. 
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lb per sq in. not appreciably affecting the frictional resistance, as shown 

in Table XL 

Tables X and XI will serve to show the remarkable regularity of the 

results, and the low values of the coefficient of friction as compared 

with imperfectly lubricated surfaces. Much lower values have been 

attained m more highly perfected testmg machmes under more ideal 

conditions, but such low values must not be considered as attainable 

under ordinary working conditions. There is no good reason, however, 

why such coefficients as are given in Table X cannot be obtained in 

well-constructed machinery. 
TABLE X 

Bath of Rapeseed Oil 

Ix)ad Coefficients of Fiiction for Speeds as Below 

m Lb _ 

pel 

Sq 

In 

105 Ft 
per Mm 

157 Ft 
per Mm 

209 Ft 
per Min 

262 Ft 

per Mm 
314 Ft 

per Mm 
366 Ft 

per Min 
419 Ft 

per Mm 
471 Ft 

per Mm 

573 0 00102 0 00108 0 00118 0 00126 0 00132 0 00139 

520 0 00095 0 00105 0 00115 0 00125 0 00133 0 00142 0 00148 

415 0 00093 0 00107 0 00119 0 00130 0 00140 0 00149 0 00158 

363 0 00084 0 00096 0 00110 0 00122 0 00134 [ 0 00147 0 00155 

258 0 00107 0 00139 0 00162 0 00178 0 00195 0 00213 0 00227 0 00243 

153 0 00162 0 00200 0 00239 0 00267 0 00300 1 0 00334 0 00367 0 00396 

100 0 00277 0 00357 0 00423 0 00503 0 00576 0 00619 
1 

0 00663 0 00714 
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Tower^s experiments at different temperatures show that the coef¬ 

ficient of friction, for the above range of pressure and velocities, decreases 

as the temperature increases. His principal experiments, from which 

Tables X and XI were taken, were conducted at 90° F and without arti¬ 

ficial means of cooling the bearing. The difference between the coeffi¬ 

cients of friction obtained at 90° F and those obtained at temperatures 

as high as are usually allowed in practice can be neglected, as far as 

designing is concerned, especially since those at 90° are on the safe side. 

Tables X and XI may, therefore, be taken as representing fairly well 

the relation existing between pressure, velocity, and frictional resistance 

for this range, which forlunalely covers the most usual conditions in 

practice. It is to be noted that, at the greatest pressure and highest 

velocity, the bearing seized, indicating that with such velocity a lower 

pressure must be assigned, if a perfect oil film is to be maintained, or 

that with this greatest load a lower velocity must be assigned, if the 

bearing is to radiate the heat of friction. 

Mr. Axel Pederson has shown that the entire range of the coefficient 

of friction, as found by Tower's experiment, including temperature 

variation, can be expressed by the formula 

2.3VV 

where t is the temperature in Fahrenheit degrees attained by the bearing. 

For a temperature of 90°, by the equation, 

VT 
IX = 0,0396^^ 

which agrees closely with the value given in the foregoing for olive oil. 

Pederson's equation gives values of the coefficient that agree remarkably 

well with those given by Tower to illustrate the variation with tempera¬ 

ture when lard oil is used as a lubricant. 

It is to be especially noted that, within the limits of pressure where 

a perfect oil film will form, the frictional resistance, for a given velocity, 

is practically constant and independent of the pressure. (See Table XI.) 

The frictional resistance, and coefficient of friction, for bearings run¬ 

ning at velocities of over 2000 ft per min with perfect lubrication, have 

been quite fully determined by Wm. O. Lasche.* The experimental 

work was very extensive; the results were very conclusive and should be 

carefully read by designers of high-speed machinery. A discussion of 

these experiments is beyond the scope of this treatise, but a few of the 

most important results will be considered. Lasche found that at these 

* Traction and Transmission^ January, 1903. 
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high velocities the coefficient of friction was practically independent of 

the velocity, but varied inversely with the pressure as in the Tower 

experiments, and also varied inversely with the temperature. He found 

that, if p be the bearing pressure in pounds per square inch, and t the 

temperature of the bearing in Fahrenheit degrees, then 

or 

pp{t - 32) = 51.2 

pp 
51.2 

(t - 32) 

(2) 

(3) 

For velocities between 500 and 2000 ft per min the coefficient of 

friction varies about as the fifth root of the velocity, as shown by the 

experiments of Stribeck. As far as designing is concerned, tlie dif¬ 

ference between the coefficients for this range, and those found by 

Ijasche for the higher velocities, may be neglected, and Lasche’s equation 

may be applied, without serious error, to all velocities above 500 ft per 

min. 

Tower\s experiments were conducted with a half bearing, so arranged 

that the oil ffim could force the bearing and journal apart as far as it 

was able. It will be clear, however, that if the journal is closely con¬ 

fined by the bearing on all sides, and if the difference between the bore 

of the bearing and the diameter of the shaft is very small, the thickness of 

the oil film and the consequent frictional resistance will be affected 

thereby. The most important application of the laws of friction is in 

connection with the design of bearings and is more fully discussed in 

the next chapter. 

43. Summary. From the foregoing discussion the following state¬ 

ments may be made: 

(a) The friction of imperfectly lubricated surfaces depends partly 

on the character of the surfaces themselves, and in a greater degree on 

the character and amount of the lubricant supphed. 

(b) The load that can be successfully carried on an imperfectly 

lubricated surface will vary greatly with the amount of lubricant sup¬ 

plied, and must be kept very low where this supply is restricted. 

(c) The friction of perfectly lubricated surfaces depends very little 

on the character of the rubbing surfaces, but depends largely on the 

character of the lubricant. 

(d) The coefficient of friction of perfectly lubricated surfaces varies 

inversely with the load when the temperature and velocity remain 

constant; that is, the frictional resistance per unit area is a constant for 

these conditions, hence. 
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(e) The frictional resistance of perfectly lubricated surfaces is, 

within the ordinary limits, independent of the intensity of pi'essure and 

dependent only on the velocity. 

(f) The coefficient of friction of perfectly lubricated surfaces varies 

inversely with the temperature of operation. 

(g) The coefficient of friction of perfectly lubricated surfaces, for 

any given pressure and temperature, varies very nearly as the square 
root of the velocity for velocities up to 500 ft per min; approximately 

as the fifth root of the velocity for velocities betw(‘en 500 and 2000 ft 

per min; and is practically independent of the velocity for values above 

2000 ft per min. 

44. Efficiency. It has been noted that not all the energy supplied 

to a machine is transformed into useful work, but that some of it is 

always lost in overcoming frictional resislances and doing useless work. 

There are many ways in which energy losses may occur in machines, and 

a careful distinction must be made between certain of these ways in order 

to get a clear definiticm of the term efficiency. Thus, the steam engine 

receives its supply of heat in the form of steam under pressure. A 

considerable portion of th(' heat so received is lost by condensation of 

steam on the cooler cylinder walls, and some escapes by radiation with¬ 

out doing any work whatever on the piston. Of the energy actually 

applied to the piston, part is transformed into useful work at the driving 

belt, and part is lost in overcoming the frictional resistances just dis¬ 

cussed at the various constraining surfaces. 

The gas engine is subject to similar losses; a large part of the heat 

of combustion escaping to the jacket water or to the atmosphere by 

radiation, and doing no work on the piston, while only a part of the 

energy actually applied to the piston reappears as useful work. Hy¬ 

draulic and electric machinery has similar elements of loss. The first 

class of these energy losses might be called leakage losses, as they are 

of the same character as losses by actual leakage of the medium which is 

used to transmit the energy. The losses in the machine itself are known 

as frictional losses and are common to all machines; no machine can 

transform all the energy supplied into useful work, but must lose some 

of it in friction or other wasteful resistances. 

Efficiency has been defined (Article 2) as the ratio of useful work to 

energy supplied; and from the above it appears that a machine may 

have two efficiencies, depending on whether reference is had to total 

energy supplied, or only to that portion of the total energy which the 

machine transforms into useful and useless work. These efficiencies 

are respectively known as the absolute efficiency and the mechanical 
efficiency. Thus, if a gas engine is supplied with 1000 thermal units. 
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and transforms 200 units into useful work, and 50 units into the useless 

work of friction, its absolute efficiency is ^ 20, and the mechan¬ 

ical efficiency is = 0 80 The consideration of absolute efficiency is 

beyond the scope of this work, for the design of many machines it does 

not need to be considered, but the mechanical efficiency can seldom 

be neglected, smce, m general, the amount of work to be done is fixed, 

and the source of energy must supply enough energy in excess of this 

amount to compensate for the fiictional losses of the machme 

The mechanical efficiency of any tram of mechanism is the contmued 

product of the efficiencies * of all the several pairs of constraining sur¬ 

faces in the tram at which frictiontil losses occur Let any machine 

ha\e n pairs of such surfaces, and let their respective efficiencies be 

e, ei, 62, ea, 64,-6„ Let E be the mechanical efficiency of the 

whole machme, and let K be the total amount of energy available for 

transformation mto either useful or useless work Then, the amount of 

energy which the first pair of constrammg surfaces delivers to the second 

IS X X e, and the amount which the second delivers to the third is 

Ke X ei^ and so on, until the amount of energy delivered by the last ele¬ 

ment (or the work done) i^K(eX eiX €2-6n) But the mechan¬ 
ical efficiency of the tram is 

E - Work done _ K(e X ei X 62-6n) 

Energy supplied K 

= (eX ei X 62-6n) 

A machme may consist of several trams of mechanism. If these 

several trams are arranged m series so that the energy passes from one 

to another consecutively, the efficiency of the whole machine, by reason- 

mg sunilar to that m the last paragraph, is the contmued product of the 

efficiencies of the several trams of mechanism If, however, the trains 

are arranged m parallel so that the total energy is transmitted simul¬ 

taneously through several trams of mechanism, each tram transmittmg 

only a portion of the energy, the above reasonmg for the efficiency of the 

whole machme does not hold If the amount of energy supplied to 

each tram is known, the amount of work which it wiU deliver can be 

* It may be noted m passing that the term efficiency is used in a number of ways 

other than as the ratio of work done to energy expended Thus the strength of a 

riveted joint, compared to the strength of the original impunched plate, is called 

the efficiency of the jomt, when what really is meant is its relative strength Agam, 

in an air compressor, the ratio of the air actually discharged per stroke, to the whole 

amount raised to the required pressure per stroke, is called the volumetric efficiency 

It IS evident that such efficiencies are of a different character from those discussed 

above and do not enter into the calculations of the efficiency of the machine, as a 
whole, m the manner indicated above 
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computed as above The sum of all the work, delivered by all the trams, 
divided by the total energy supplied, will be the efficiency of the whole 
machine 

If, therefore, the efficiencies of the several constraining surfaces of a 
machine are known, the mechanical efficiency of the whole machine can 
be calculated The mechanical efficiency of any machine element is, 
however, a variable quantity, for the coefficient of friction of any pair 
of constrainmg surfaces will vary with the lubricant and its method of 
application, the temperature, the alignment of the surfaces, the velocity 
of rubbing, and the bearing pressure Furihermore, when all other 
conditions are const ant, the s xme pair of constraining surfaces will have 
an entirely different efficiency for the same amount of power trans¬ 
mitted, depending on the manner m which the load is applied Thus, 
consider a simple wheel and axle diiven by a belt on the periphery of the 
wheel With a given diameter of wheel, the transmission of a given 
amount of power will bring a certam definite frictional load on the bear- 
mgs If, however, the diameter of the wheel is doubled, the belt speed 
IS increased in a like ratio, and the belt tension will, for the same power 
transmitted, be one-half of the former value, and, as a consequence, 
the frictional resistance at the bearmgs will be reduced to one-half the 
original value, the revolutions remaining constant 

In general, therefore, it is impossible to calculate precisely from the 
analysis of a design what the mechanical efficiency will be, particularly 
if the mechanism is at all complicated, though a reasonable approxima¬ 
tion is possible If machines of a similar type have been built, it is far 
more accurate to base the design of new ones on efficiency tests made 
on those already m existence Such tests have been made for all stand¬ 
ard machines, and the recorded results form a valuable basis for the 
design of new machines of like characteristics But when a machine 
of a new type is to be designed, and no recorded tests are to be had 
that will give any information as to the probable efficiency, an estimate 
must often be made and the efficiency calculated as outlmed above In 
general, a close approximation can be made, and the makmg of such 
estimates is a great aid to the development of that judgment m such 
matters, which comes only with experience In such cases a knowledge 
of the efficiencies of vanous machme elements becomes necessary If 
the coefficient of friction for any constraining surface could be accurately 
determined, it would be possible to calculate its efficiency with some 
degree of certainty But, as before noted, this quantity vanes with 
the velocity of rubbmg, with changes m bearing pressures, etc , and 
such methods of computation are necessarily cumbersome and to be 
attempted only where a very close estimate is required. 
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The following are rough average values of the efficiencies of the most 
common elements For more accurate values the student is referred to 
the respective discussions of these various elements which follow: 

Common bearing, singly 06-98 
Common bearing, long Iiik s of shafting 95 
Roller beaimg 98 
Ball be 1 rings 99 
Spur geai cast teeth, including bcanngs 93 
Spur gear cut teidh, in( luding bearings 96 
Bevel geir cist teeth, iruluding bearings 92 
Bevel gear cut teeth, including fieaimgs 95 
Worm gear, varies with thread angle, sec Article 50 
Belting 96-98 
Pm-connected chains, as used on bicycles 95-97 
High grade transmission chains 97-99 
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CHAPTER V 

CONSTRAINING SURFACES 

46. General Considerations. As the various members of a machine 

must move with definite relative motion, they must be retained in 

correct position by constraining surfaces. Thus a shaft is held in position 

by bearings which locate its axis of rotation, and by collars which pre~ 

vent motion endwise. The relative motion of a pair of constrained 

members may be that of sliding, as an engine crosshead and its guide; 

rotation, as a shaft journal and its bearing; rolling, as in roller and ball 

bearings; or a combiAiation of some of these as illustrated in certain 

forms of cams, where both sliding and rolling exist. Dry metallic sur¬ 

faces, under any appreciable load, even though smoothly machined, will 

not slide over each other without abrasion. It is necessary, therefore, 

to keep rubbing surfaces separated by a thin film of some kind of lubri¬ 

cant, and the whole subject of the design of constraining surfaces is 

closely coimected with the theory of lubrication.* 

It has been noted in Chapter IV that, when bath or flooded lubri¬ 

cation is maintained, the friction between two rubbing surfaces is inde¬ 

pendent of the character of the material of which the surfaces are com¬ 

posed; but when the surfaces are imperfectly lubricated the fric¬ 

tional resistance depends somewhat on the metals used. Experience 

has shown that like metals usually do not rub together well. Thus, 

steel on steel (except when hardened), steel on wrought iron, bronze 

on bronze, babbitt metal on babbitt metal, or cast iron on cast iron, 

are poor combinations unless the velocity is low and the pressure light. 

If two rubbing surfaces of cast iron can be run together for some time 

without cutting they take on hard glazed surfaces which will run well 

together. This is well illustrated in slide valves and pistons of steam 

engines. Care must be exercised that the surfaces are well lubricated 

when first put in service. Both soft steel and wrought iron will run 

well on hardened steel, and hardened steel may be run on hardened steel 

at very high pressures and velocities, if the surfaces are ground true and 

polished. Steel and wrought iron will run very well on brass or bronze. 

The alloys of copper, tin, zinc, antimony, lead, etc., commonly known 

♦ See Chapter IV. 
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as anti-friction or babbitt metals, run extremely well with steel oi 

wrought-iron journals.* Innumerable alloys of this kind are upon the 

market under different names. They can be made of any degree of 

hardness, depending largely upon the proportion of antimony used. 

Very hard alloys of this kind are sometimes known as white brass. In 

using babbitt metal for heavy pressures, care should be exercised that 

the particular alloy selected is hard enough so as not to flow under the 

applied pressure. Other materials, such as wood, are sometimes used 

for rubbing surfaces. An innovation is Ihe use of a compound of rub¬ 

ber in pump bearings and similar places where muddy and gritty water 

is to be handled. Water is used as a lubricant for these bearings. The 

conditions which influence the selection of materials for rubbing sur¬ 

faces, and the practical considerations governing their application, 

will be more fully discussed in connection with the several forms of 

constraining surfaces. 

The most common forms of motion in machines are rectilinear 

translation and rotation; therefore the most important forms of con¬ 

straining surfaces are 

(a) Sliding surfaces, for the constrainment of rectilinear motion. 

(b) Journals and bearings, for the constrainment of motion of rota¬ 

tion. 

SLIDING SURFACES 

46. Forms of Sliding Pairs. The stationary member of a pair of 

surfaces, which have relative sliding motion, is usually called the guide, 
the moving part has various names depending on the service, as the 

ram of a shaping machine, the table of a planing machine, or the cross¬ 
head of an engine. The general term sliding member will be used 

here to denote the moving member. Sliding pairs may be classified by 

the degree of lateral constrainment afforded the slider by the guides, 
and this may be: 

(a) Partial lateral constrainment. 

(b) Complete lateral constrainment. 

In either case the rubbing surfaces of the guide and sliding member 

may be either square, angular, or circular. Thus Fig. 21 shows a 

form of angular guide much used on planing machines, and Fig. 22 

shows a set of square guides for a similar purpose. In each the lateral 

constrainment is only partial, the tendency of the platen to rise being 

resisted by gravity. Figure 23 (a) shows the crosshead of a steam 

♦See Kent’s “Mechanical Engineers’ Pocket Book” for detailed analysis and 

properties of some of the best known alloys. See also the National Metals Handbook 
of the American Society for Steel Testing, 
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engine with an angular guide. Here, lateral constrainment is com¬ 
plete. Figure 23 (h) is also a steam-engine crosshead with circular 
guiding surfaces. This form of surface may be considered a special 
form of the angular type. If the circular guiding surfaces have a com¬ 
mon center at 0, the crosshead is prevented from rotating around 0 

only by the connecting-rod; and as long as it is so held from rotating 
the lateral constrainment is complete. If the surfaces have different 

Fig. 21, Fig 22. 

centers as O1O2, it is obvious that rotation cannot take place. Figures 
24 (a) and 24 (b) show square and angular guides where constrainment 
is complete. 

The characteristic which distinguishes the square guide from the 
angular one is that in the square guide two sets of adjustments must 
be made to compensate for wear, whereas in the angular guide one set 
only is needed. Thus in Fig. 24 (a), vertical wear must be compensated 
for by lowering the piece A; lateral wear is taken up by the set screws C 

which press against the wearing strip or gib B. In Fig. 24 (b) both 
lateral and vertical wear are compensated for by the set screws C which 
press upon the gib D. Sometimes D is made tapering and provided 
with a screw adjustment so that it can be moved endwise, thus com¬ 
pensating for wear. In such cases the set screws C are omitted. 

As to the relative merits of square and angular guiding surfaces, it 
may be said, in general, that square surfaces are easier to machine and 
fit than the angular ones. There are many places, however, such as the 
cross slides of lathe carriages, where the angular guide is much more 
convenient. In places such as lathe beds the V guides commonly used 
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have the advantage of automatically taking up lost motion, no matter 
how badly they are worn. But, as a rule, the bearing surfaces of such 
V guides are very small and wear soon begins to be apparent, especially 
as the wear from the carriage is usually concentrated on a short portion 
of the bed. There is a tendency among manufacturers to discard the 
V guide in favor of flat surfaces. A combination of V and flat guides 
is also often used. 

47. General Principles. If a short block, Fig. 25, slides backward and 
forward upon another member B, carrying a fixed load P, it is evident 
that, if the material in A and B were homogeneous and the velocity 
were uniform throughout the stroke, the frictional resistance and con¬ 
sequent wear would be practically uniform over the entire surface of B. 
These conditions are difficult to attain and seldom occur in practice. 
Since A must be stopped and started at each end of the stroke, it follows 
that the velocity cannot be uniform, although in some machines such 
as plate planers this condition is approximated. Usually, however, the 
velocity varies from zero at the beginning to a maximum somewhere 
near the middle of the stroke, as in engine crossheads, shaping machines, 
etc. Again, the load P may vary greatly. Thus in the steam engine, 
the normal pressure P between the crosshead and its guide is zero at 
each end of the stroke and a maximum near mid-stroke. The velocity of 
the crosshead also varies from zero at each end of the stroke to a maxi¬ 
mum near mid-stroke. Ordinarily the greatest frictional resistance * 
and wear will occur near mid-stroke, because both velocity and normal 
pressure between the bearing suifaces are greatest at this position. If 
the crosshead could be made the same length as the guide, the unit 
bearing pressure, at the middle of the stroke, would be practically uni¬ 
form over the entire surface, and would be small compared to the unit 
normal pressure attained when the crosshead is short. For positions 
of the crosshead near mid-stroke the wear would be approximately 
equal over the entire surface, and much less than when the crosshead 
is very short, but still theoretically greater than at the end position, 
when both velocity and normal pressure are zero. It has been found 
by experience that, when the sliding block and guide are made the same 
length, the wear, even under varying load and velocity, is very small 
and more uniform over the entire contact surfaces. 

It is seldom possible, however, to make the sliding member the same 
length as the guide. Thus, in lathe carriages, the rams of shaping 
machines, and the tables of planing machines, the sliding member is, in 
some machines, shorter than the guide, and in other machines longer. 
In most cases of this kind the wear is likely to be greater on one part of 

* See Article 41. 
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the guide, or sliding member, than on another. Thus in a shaping 
machine the ram seldom operates at full stroke, and the wear on the 
back end of the ram is very small, the result being that, when appre¬ 
ciable wear takes i)lace on the forward end of the ram and the guides 
are readjusted to compensate for the same, the back end of the ram will 
not pass through the guides at all, hence the adjustment must be some¬ 
what slack, and accurate work cannot be done. In other machines the 
excessive local wear comes on the guide, and a similar result occurs. 
Professor SWeet * corrected this difficulty, in certain machines which he 
built, by reducing the wearing surface on that portion of the sliding 
member or guide, as the case may be, where the tendency to wear is 
least. He suggested the following convenient method of laying out the 
wearing strips on the surface of a sliding member. Figure 26 shows a 
sliding surface such as is found on the ram of a shaping machine, where 

Fia. 26, Fia. 27. 

little wear occurs on the back or right-hand end, as here shown. The 
shaded portions represent the parts of the surface which have been 
relieved, leaving the wearing strips S, Si, and etc. To lay off the 
surface, draw the diagonal ab across the surface to be relieved. From a 

draw the line ac, making any convenient angle with the horizontal. 
Lay off ce equal to the width of the face x. Draw de parallel to ac and 
take the vertical distance above the point of intersection of ab and de 

for the first gap, and the corresponding vertical distance below the point 
of intersection for the first wearing strip, repeating this operation to the 
end of the surface. Similar wearing strips should be cut in the opposite 
direction on the other member, if it is comparatively long; but where a 
short block slides in a long guide, the guide only need be relieved. 

48. Bearing Pressures on Sliding Surfaces. It is noted in Arti¬ 
cle 40 that the tendency of a loaded flat surface to expel the lubri¬ 
cant is resisted to a certain degree by the viscosity of the lubricant and by 
its power to adhere to the stationary member. This resisting power is 

* Professor Sweet embodied some of his experience along this line in a little book 

called “Things That Are Usually Wrong,” which will well repay reading. 
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much less marked in sliding surfaces than in rotating surfaces, as here 
the motion is intermittent. It is difficult therefore to lubricate sliding 
surfaces as efficiently as rotating surfaces, and, in general, they must be 
considered as “ imperfectly lubricated surfaces. The unit bearing 
pressure that can be sustained by sliding surfaces is, therefore, much less 
than can be borne by rotating journals. Further, it is difficult to 
obtain initially true sliding surfaces and, as noted in the foregoing, very 
difficult to maintain their accuracy under service. The sliding part, 
and also the guides themselves should, therefore, be designed for rigidity; 
in fact, considerations of strength seldom need to be taken into account, 
but the guides should be so stiff that localized pressure will not occur. 
It is not surprising, in view of these considerations, that the allowable 
bearing pressures as fixed by practice vary greatly, even with similar 
classes of work. Owing to the difficulties of lubrication and compensa¬ 
tion for wear, it may be stated, as a general principle, that the bearing 
pressure must be kept so low that wear is inappreciable, if accurate sur¬ 
faces are to be maintained. 

The following are average values of bearing pressures for different 
forms of sliding surfaces, as fixed by practice: 

Crossheads,* stationary slow-speed engines .. 30 lb to 50 lb 
Crossheads, stationary high-speed engines. . 10 lb to 30 lb 
Crossheads, marine engines. 50 lb to 75 lb 

49. Lubrication of Sliding Siufaces. Sliding surfaces are very diffi¬ 
cult to lubricate efficiently on account of the “ wiping action of the 
sliding member and because the relative motion is not continuous and 
in the same direction as in rotating bearings. In high-speed engines, 
bath lubrication is commonly obtained by enclosing the running parts, 
and allowing them to run in what practically amounts to an oil bath. 

Where this cannot be done, care must be exercised in the manner in 
which the lubricant is supplied. If possible, when the guide is hori¬ 
zontal, the lubricant should be supplied near the middle of the guide. 
The oil grooves in the moving part should also be given careful consid¬ 
eration. From the theory of lubrication it is evident that the oil chan¬ 
nels on all constraining surfaces should be at right angles to the direction 
of motion, wherever the velocity is great enough to draw lubricant 
between the surfaces. If made otherwise their effect is to relieve any 
tendency to form a pressure film. The grooves in crossheads, and other 
sliding members, should, therefore, be made as in Fig. 27 (a) and not 
as in 27 (b). In either case the grooves should be stopped some distance 

* See Trans. A.S.M.E., vol. 18, page 753 
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from the edge of the surface so as not to facilitate the escape of the oil. 
When the load is so heavy that forced lubrication must be used, the 
system of grooves shown in Fig. 27 (b) is correct, the oil being forced in 
at 0. Care should also be taken that the outer edges of the slider, and 
the edges of the oil grooves, are chamfered so as to assist the entrance 
of the lubricant. If the edges are square and sharp their scraping effect 
may seriously impair the lubrication. Where the guiding surfaces are 
very long, as in planing machines, oiling devices, such as rollers dipping 
in an oil pocket, placed at intervals along the guides, are very effective. 
In certain forms of thrust bearings perfect lubrication is obtained under 
flat sliding surfaces by a peculiar arrangement of the rubbing surfaces 
which is fully discussed in Article 66. 

JOURNALS AND BEARINGS 

Bearings 

60. Forms of Bearings. The part of a machine frame, or other 
member, which constrains a rotating member, such as a shaft, is known 
as a bearing. That portion of the rotating member which engages with 
the bearing is known as a journal. Journals are necessarily circular in 
all cross-sections, but their profile may be cylindrical, conical, spherical, 
or even more complex in form, as thrust bearings. (See Art. 61.) 

One or more of the following considerations affect the design of the 
bearing proper: 

(a) Rigidity, in order that the alignment may not be seriously 
affected by deflection. 

(b) Strength, to resist rupture under the greatest loads. 
(c) Adjustment, to compensate for wear. 
(d) Formation and maintenance of an oil film. 
(e) Automatic adjustment, to insure alignment. 
(a and b). The inside diameter or bore of the bearing, and also its 

length, are fixed by the dimensions of the journal which engages with 
it; and the required strength and rigidity may be secured by a proper 
distribution of metal in accordance with the general principles discussed 
in Chapter III, which apply to aU forms of bearings, as far as strength 
and stiffness are concerned. 

Usually the question of strength does not enter into the design 
of the main part of the bearing. If, however, the cap A, Fig. 28, should 
be called upon to carry the load as it often is in practice, its dimen¬ 
sions should, in general, be checked for strength, and its design should 
be such that stiffness is secured. The exact distribution of the pressure 
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over a bearing is not known; * but the assumption that the cap is a beam 
loaded at the center and of a length equal to the distance between the 
cap bolts will give dimensions on the safe side for strength and deflec¬ 
tion. The greatest bending moment and deflection for such beams are 
given in Case IX, Table 1. It is impossible to adjust the cap bolts so 
as to be sure that the load is uniformly distributed among them, and 
the uncertainty of the initial stress due to screwing up the nuts makes 
the problem more difficult. For this reason the cap bolts should be 
designed to carry more than the apparent load. If only two bolts are 
used each should be designed for two-thirds of the total load; if four are 
used each should be able to carry one-third of the load with an apparent 
stress of not more than 6000 lb per sq in., or each bolt may be assumed 
to carry its proportionate share of the load and allowance made in the 
assumed stress for the initial load due to screwing up. 

The last three items, c, d, and e, affect the form of the bearing. Con¬ 
sider first c and d. It is evident that the metal of the bearing will wear 
away most rapidly in the line of greatest pressure^ hence adjustment for 
wear should also be along this line. It follows also that the bearing 
should be parted at right angles to the line of greatest pressure. Thus, 
if the load on the shaft be a simple vertical load P, as in Fig. 28, wear will 
take place only on the bottom half of the bearing. If this wear is so 
small as not to interfere with the alignment of the shaft, or if all the bear¬ 
ings on the shaft wear uniformly, adjustment may be made by lowering 
the cap A, If the shaft must occupy a fixed position relative to the 
frame of the machine, alignment must be maintained by raising the 
lower bearing surface. Where this is desirable the lower wearing sur¬ 
face is usually made separate from the pillow-block, as in Fig. 30, 
thus allowing the bearing to remain fixed in position, while the wearing 

* See Article 36. 
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part may be raised to compensate for the wear. If the load P, Fig. 28, 
be in a upward direction, all necessary adjustment may be made by 
means of the cap. 

It was shown in Articles 41 and 42 that a journal will automatically 
tend to form a film of lubricant between itself and the bearing. If the 
conditions under which the lubricant is supplied are correct, fluid pres¬ 
sure may thus be created between the journal and bearing, provided the 

surface of the hearing is continuous for some distance on each side of the 

line of action of the load. The greatest pressure will be found near this 
line of action. It is evident that the bearing shown in Fig. 28 fulfills 
both these requirements for vertical load either upward or downward; 
but is unsuited for lateral pressure from the standpoints both of adjust¬ 
ment for wear and lubrication. 

Suppose, however, that the journal carries a heavy vertical load P 

(Fig. 29), and is subjected at the same time to a heavy horizontal belt 

pull Pi. The resultant of these forces is P2, and the arrangement of 
parts shown in Fig, 29 is correct for motion of rotation in either direc¬ 
tion. If Pi be reversed in direction the resultant of Pi and P2 will be 
P3, and the arrangement is not correct for adjustment against wear, 
and very defective as far as lubrication is concerned, as the surface is 
broken near the point where the greatest film pressure should exist. 
Bearings of this form are often used in steam-engine work, and in such 
cases the force Pi due to the steam pressure on the piston, is continu¬ 
ally reversed in direction. Another adjustment for a similar case is 
shown in Fig. 30. Here the shoe or bottom brass ” can be raised up 
by introducing thin shims,or liners, underneath it; lateral wear can 
be taken up by setting out the cheek pieces ” P, by means of the 
wedges D. Provision is thus made, by this arrangement, for taking up 
wear in all directions and keeping the shaft accurately aligned and 
located. For horizontal pressures in either direction the resultant P3 

passes close to the point at which the bearing is parted; and hence the 
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best conditions for lubrication do not exist. Pressure films more or 
less perfect, depending on the oil supply, will form on the lower shoe, 
but the continual reversing of the lateral pressure, P, hardly allows time 
for the formation of pressure films on the cheeks. These reversals in 
pressure, however, allow the lubricant to be carried by the shaft, first 
under one cheek, and then under the other, thus lubricating them 
effectively. 

Sometimes a bearing consists of a conical bushing split at some con¬ 
venient place, as shown in Fig. 31. By releasing the nut A, and screw¬ 
ing up on By the bushing may be forced into the frame C, thus closing the 
bore of the bushing slightly and compensating for wear. It is obvious 
that, once the bore of the bushing is worn eccentrically, no amount of 
taking up can rectify its shape; in fact, taking up wear in this manner 
tends to destroy the fit of the journal in the bearing. Occasionally the 
journal itself is made conical, and adjustment for wear is made by 
moving the shaft endwise. The application of such bearings is limited 
to short shafts, such as machine-tool spindles. 

Machine bearings are made in many forms, depending on the loca¬ 
tion and service. The bearings are sometimes split into three pieces, 
and various other means of compensating for wear are used, but the 
fundamental principles outlined above, regarding the point where the 
bearing should be parted, apply to all forms. 

Consider the last item (e, automatic adjustment). In long lines of 
shafting, which tend rapidly to get out of alignment, it is desirable that 

the bearing be so constructed as 
to adjust itself automatically to 
the changing position of the shaft, 
in order to avoid localized pressure, 
which would result in heating. In 
fast-running machinery, also, such 
as countershafts, dynamos, and 
motors, where perfect alignment is 
necessary, self-adjusting bearings 
have been found almost essential. 
Figure 32 shows a bearing of this 
kind as used in dynamo and motor 
bearings. The sleeve A has a spher¬ 

ical surface turned upon the outside, the center of the surface being at 0. 
This surface engages with a similar surface bored in the outer casing B, 

The sleeve may swivel in any direction, but the center line of the shaft 
must always pass through 0. If a shaft has only two bearings of this 
kind it is evident that perfect alignment can be secured, within the 
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range of motion of the sleeves. Similar devices are used in long shaft¬ 
ing, where many bearings are required. It is obvious that the funda¬ 
mental principles regarding adjustment for wear, and maintenance of 
the oil film, apply to all bearings of this form also. 

In constructing large and heavy revolving parts, it is not always 
possible to make the gravity axis of the structure coincide with the 
geometric axis, and when such a construction runs at high speed it 
tends to rotate around the gravity axis rather than the geometric axis, 
thus setting up vibrations. To obviate this difficulty, the bearings of 
high-speed machinery, such as steam turbines, are sometimes made up 
of several concentric tubes with very small clearance between them, 
the tubes being mounted in a rigid outer shell. These small clearances 
are filled with oil, thus forming an adjustable resistance to small lateral 
movements of the shaft and permitting the entire structure to find its 
true center of rotation. 

61. Practical Construction of Bearings. It was shown in Article 45 
that metals like brass, bronze, and the white alloys make excellent 
bearing surfaces for wrought-iron or steel journals, on account of their 
anti-friction and good wearing qualities. It is to be noted that even 
with perfect lubrication, where the character of the rubbing surfaces is 
less important once the oil film is established, care must be exercised in 
the selection of the material for the bearing surface, in order that abra¬ 
sion may not occur before the film is formed or if the film should fail. 
A further advantage in having the bearing surface softer than the jour¬ 
nal is that it is very desirable to have the journal maintain its form 
against wear, which it is more likely to do when rubbing against a soft 
surface than when rubbing against one harder than itself. The bearing 
itself should be rigid, so as to insure proper alignment of the shaft. 
Rigidity, against even moderate pressure, could not ordinarily be at¬ 
tained if the entire bearing member were made of the white alloys, and 
economy prohibits the use of brass and bronze for the entire bearing. 
It is customary, therefore, to make the main body of the bearing of 
cast iron (or sometimes a steel casting), and to fit into it wearing sur¬ 
faces of the softer metals. These wearing surfaces may be either rigidly 
attached to the main castings or may be removable. In Fig. 28 is shown 
a bearing of the type commonly used for heavy shafts when the babbitt- 
metal lining is rigidly attached by means of dovetail shaped recesses, 
into which the babbitt is poured in a molten state. The necessary 
shrinkage due to cooling, which would leave the lining loose in the 
recesses, is usually overcome by hammering the babbitt, when cold, till 
it again fills the recesses, and then boring the babbitt to size. For cheap 
work the lining is often cast to size on a metal mandrel and no further 
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work put upon it, but for all good work the bore of the lining is cast 
small enough to allow of hammering oi peening, and then boring to a 
smooth surface Figuie 29 shows removable Imings of brass or bronze 
which are circular in section, and are prevented from turning when in 
place by the pxrting piece B This parting piece, or “ liner, also per¬ 
mits taking up wear by reducing its thickness as occasion requires 
Figure 30 shows an arrangement of wearing surfaces common on hori¬ 
zontal steam-engine bearings The cap C is babbitted with some form 
of cheap metal since there is no wear upon it, all the pressure being 
either downward or sidewise The quarter boxes J5, and the lower 
box or shoe ^4, may be of brass or bronze or of cast iron lined with 
babbitt Where there is danger of the boxes breaking, through pounding 
by the shaft, and where it is desired to use a babbitt metal, they may 
be made of brass oi bronze and babbitt-lmed When cast-iion wearing 
surfaces are used, and compensation for wear is important, as m the 
case of machine tools, it is customary to make the wearing surfaces 
removable, as indicated in Fig 29 For less accurate work the bearing 
surface is part of the main casting itself, machined to the required size 
Hardened-steel bearing surfaces are obtained by making circular shells 
or bushings,of the required internal diameter, and of sufficient 
thickness to insure strength These bushings are forced into openings 
in the mam casting and no provision for taking up wear is made If 
the forcing operation closes the bore of the bushing, it is lapped ” 
out with emery and oil to the required size Where the bearing must 
work under water, as a propeller shaft or the lower bearing of a vertical 
turbine water wheel, a lining of lignum vitae or other hard wood is often 
used The surrounding water furnishes the only lubricant necessary. 
A detailed description of the many arrangements of bearing surfaces is 
beyond the scope of this treatise 

If the bearing must work under trying conditions, as on shipboard 
or in a heated room, and there is some question as to whether the 
heat of friction will be dissipated by radiation, the bearing is cast hollow 
so that water may be circulated around it thus carrying off the heat and 
maintaining the lubrication. In an emergency, water may be allowed 
to run over the outside of the bearing, accomplishing the same purpose. 
High-grade marine work, and large stationary-engine installations, are 
often equipped with a complete system of water circulation on the most 
important bearings. 

Quite frequently the conditions of service render the wear so slight, 
and the adjustment to compensate for wear so unimportant, that the 
bearing can be made in one piece The bearings are then called solid 
bearings, and are usually lined with thin cylindrical bushings, of brass. 
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babbitt metal, or some other bearing material, driven into the circular 
bore of the bearing. Usually the bushing is driven tight enough to 
prevent turning under the action of the journal, but sometimes pins or 
set screws are used to insure against any turning of the bushing in the 
bearing. P]xcessive wear is compensated for by replacing the worn 
bushing with a new one. 

Journals 

52. Theoretical Design of Journals. The considerations affecting 
the design of any journal are one or more of the following; 

(a) Strength to resist rupture. 
(b) Rigidity, or stiffness, to prevent undue yielding. 
(c) Maintenance of form against wear. 
(d) Maintenance of lubrication. 
(e) Radiation of the heat due to frictional resistance. 
The first two considerations, strength and rigidity, are covered by 

the gr^neral principles laid down in Chapter III, and are more fully 
considered in Chapter VII, where the special problems in connection 
with shafts are discussed. Economy of material dictates that the shaft 
be of the minimum diameter consistent with the applied bending and 
twisting moments. 

The third consideration (c) particularly affects such journals as 
those on the spindles of grinding machines and machine tools generally, 
where the accuracy of the product depends on the accuracy of the jour¬ 
nals. Usually, in such cases, the wearing surface must be so great, 
in order to reduce the wear to an inappreciable amount, that the consid¬ 
eration of strength does not enter into the computations. 

The considerations (d) and (e) are closely correlated. It was 
shown in Articles 41 and 42 that, if the unit bearing pressure on the 
journal is not too great, the lubricant, because of its viscosity, may 
be drawn in between the journal and the bearing, thereby reducing the 
frictional resistance. This frictional resistance can never be reduced 
to zero even with perfect lubrication. The energy thus absorbed appears 
as heat, and is radiated to the surrounding air by the metallic surfaces of 
the bearing, the temperature of which rises till the rate of radiation equals 
that at which heat is being generated. In well-designed machinery 
the temperature of the bearing should not exceed 150° F. The raising 
of the temperature of the bearing has a tendency to lower the viscosity 
of the lubricant, and if the bearing becomes too hot, the lubricant 
becomes so thin that the pressure squeezes it out completely, and failure 
of the bearing by abrasion occurs. It is evident, therefore, that a journal 
of given dimensions may carry a given load very satisfactorily under 
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certain conditions, and fail absolutely under others, the same lubricant 
being used in each case. The consideration of the proper radiation of 
the heat generated is, therefore, most important. It may be assumed, 
without serious error, that the rate of radiation of heat is proportional to 
the projected area of the bearing. The number of heat units which will 
be radiated from a unit of surface, at any given difference in temperature 
between the bearing and the surrounding air, is a fixed quantity for any 
set of conditions; and if the heat of friction per unit area is greater than 
can be radiated at the desired bearing temperature, the temperature of 
the bearing must rise till equilibrium is obtained. It follows, therefore, 
that for any desired bearing temperature the work of friction per unit 
of projected area of bearing must not exceed the rate of radiation per 
unit of projected area, or 

tipv = K or pF = - (1) 
M 

where /x is the coefficient of friction, p the load in pounds per unit of 
projected area, V the velocity of rubbing in feet per minute, and K the 
rate of radiation per unit of projected area in foot-pounds per minute, to 
be determined experimentally. 

It is to be especially noted that, if ^ be considered as constant, 
increasing the diameter of a journal (the number of revolutions and the 
total load remaining constant) does not materially affect the develop¬ 
ment or dissipation of heat, since the velocity of rubbing is increased in 
the same ratio as radiating surface is increased. If, however, the 
bearing be lengthened, the radiating surface is increased and the work 
of friction remains unchanged, with the same total load as before. This 
last statement, true for imperfectly lubricated surfaces, is only approx¬ 
imately true for bearings with perfect lubrication, as will be seen 
presently. 

63. Radiating Capacity of Bearings. The amount of heat which will 
be radiated from a bearing has been experimentally determined by 
Lasche. * The curves shown in Fig. 33 are those shown in his Fig. 57, 
transformed into English units, and with the scale of radiation further 
modified so as to read in foot-pounds per square inch of projected area 
per minute, instead of per square inch of actual bearing surface. Curve 1 
represents actual exper mental results, with bearings of the usual pro¬ 
portions, in still air. Curve 2 is for bearings which are connected to 
large iron masses, or which are ventilated by air currents. Curve 3 
was calculated from theoretical considerations. It gives the radiation 

* See Traction and Transmissionf January, 1903, page 52. See also ‘‘Performance 
of Oil-Ring Bearings" by G. B. Karelitz, Tram, A.^M.E.^ 1930. 
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from a very thin bearing or sleeve and indicates that radiation is more 
effective as the bearing becomes thicker, as might be expected, for 
metal is a better conductor of heat than air, and hence the thick bearing 
more easily carries the heat away to a greater radiating surface. The 

Pig. 33. 

values obtained from these curves may therefore be used for K in 
equation (1). Lasche points out that, though these experiments repre¬ 
sent only a limited variety of conditions, they are probably on the safe 
side and will serve at least as a very useful check in designing. 

If, in designing a journal, the value of /u can be determined, equation 
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(1) and Fig. 33 give the relations which must exist between the veloc¬ 
ity and pressure in order that the safe bearing temperature may not be 
exceeded; or if the pressure and velocity are fixed by other circum¬ 
stances, Fig. 33 indicates whether radiation must be assisted by arti¬ 
ficial means, such as water circulation or currents of air. 

If the work of friction cannot be radiated by the bearing and con¬ 
nected parts, cooling oil may be pumped into the bearing under pressure 

Development of Lower Half showing Cooling Coil assembled 

Fig. 34.—Turbo-generator Bearing. 

thus, carrying away the excess heat by oil circulation. This method has 
been used even where flooded lubrication was not necessary, because of 
excessive bearing pressure. Care should be taken in such cases that the 
oil is delivered to the areas where the heat is generated, in order to 
reduce the necessary amount of oil to a minimum. Since the specific 
heat of oil is known, or can be determined, it is possible to compute the 
amount of cooling oil that must be delivered to a given bearing if the 
work of friction is known. 
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The most efficient method of carrying away the excess heat from a 
bearing is by a water jacket, as described in Article 51. Water circula¬ 
tion is usually obtained by casting water passages directly in the cap 
and bearing proper, through which water can be circulated under 
pressure. 

It is obvious that these water passages should lie as close to the rub¬ 
bing surfaces as possible. Figure 34 shows a bearing constructed by the 
General Electric Company for large turbo-general ors. In this bearing 
a copper cooling coil is embedded in the babbitt lining, thus bringing the 
circulating water very close to the source of heat. Provision is made 
also for circulating the oil so as to insure perfect film lubrication. This 
bearing, therefore, represents very advanced practice for conditions 
where a large amount of heat is to be dissipated. A publication of the 
General Electric Company states that, with good water jacketing, one 
gallon of water will carry away from 3 to 5 horsepower (127.3 to 212.2 
thermal units per minute), and where the jacketing is carefully arranged, 
as in Fig. 34, from 10 to 15 horsepower can be carried away by a gallon 
of water. For bearings cooled by forced circulation and cooling of the 
oil, from 0.05 to 0.15 gallon of oil per minute for each square inch of 
bearing surface represents average practice. 

54. Imperfectly Lubricated Journals. It has been shown in Articles 
41 and 42 that the value of /x, for imperfectly lubricated surfaces, is a 
very variable quantity, even for the same simultaneous values of 
velocity and pressure. Not only does it vary with velocity, pressure, 
and temperature, but the regularity of the oil supply (over which the 
designer has little control) affects it much more seriously. Furthermore, 
bearings running under the same nominal load and velocity give widely 
different values of frictional resistance and temperature rise, depending 
on whether the load is constant or intermittent, or whether the motion 
is steady or vibratory, etc. Notwithstanding this, equation (1) may 
be made to serve as a useful check in doubtful cases by assuming a safe 
value of /X. 

The assumption is sometimes made that /x is a constant; and for¬ 
mulas of the form 

rv.^.c 

where C is a constant that has been determined from practice, are much 
used. Thus if p be expressed in pounds per square inch of projected 
area and V in feet per minute, Mr. Fred W. Taylor * gives for mill work 
C = 24,000, and says that C = 12,000 is not safe for cast-iron bearings 

♦ Trans. A.S.M.E., vol. 27. 
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with ordinary lubrication. If the rise of temperature in the bearing 
be taken as 75° and n be taken as 0.015, which is ordinarily a safe value, 
then from Curve 1, Fig. 33, K == 222, whence 

C 
K _ 222 

/i 0.015 
= 15,000 

From Curve 2, X = 384, whence for ventilated bearings 

C = 
384 

0.015 
= 25,600 

These values agree with Mr. Taylorlimits better than would be 
expected. 

All formulas of this empirical form must be considered, so far as 
imperfectly lubricated journals are concerned, as applying only to the 
conditions and range for which they have been found true, and for which 
/X is apparently constant. This is more evident when the wide varia¬ 
tion of the value of such constants as determined by practice is consid¬ 
ered. Thus, Mr. H. G. Reist gives, as the practice of the General Elec¬ 
tric Company on generator bearings with ordinary ring lubrication, a 
limiting value of C = 50,000 for bearing pressures from 30 to 80 lb per 
sq in. Mr. H. P. Been gives the practice of one of the largest Corliss 
engine builders as C = 60,000 to 78,000 for bearing pressures not higher 
than 140 lb per sq in. 

The great variation in these values of C is no more than might be 
expected in view of the foregoing, and also in view of the difference in 
lubrication and in radiating capacities of bearings, due to material, form, 
and location. Therefore, although these coefficients may form a guide, 
and although doubtful cases may be checked for heating by equation (1), 
care should be exercised that the bearing pressure is kept within the 
limits which will admit of good lubrication. The allowable bearing pres¬ 
sures as fixed by practice for various classes of machines are given in the 
following table, and it may be noted that these are more accurately known 

than the values of jjl, or the values of the coefficient of radiation, K, 

Economy in the use of material and the importance of minimizing 
the work of friction suggest that the diameter of the journal shall be as 
small as is consistent with strength and stiffness. With the diameter 
of the journal determined by these considerations, it is evident that the 
length of the journal must be such that the bearing pressure is within 
the allowable limit. It may be, however, that the length of the journal 
thus determined will be so great that localized pressure may result; 
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or it may be that the type of machine will not allow space enough for 
such a length of bearing In such cases the diameter must be made 
larger and the length may be correspondingly decreased. 

TABLE XII 

Bearing Pressures for Various Classes of Bearings 

Allowable Bearing 

Class of Bearing and Condition of Operation Pressure in Pounds 
per Square Inch 

Bearings for very slow speed as in turntables m bridge woik 

Bearings for slow sfieed and intermittent load as in punch presses 

Locomotive wrist pins 

Locomotive crankpins 

Ixicomotive driving journals 

Railway car axles 

Marine engine mam bearings 

Marine engine crankpins 

Stationary high-speed engine 

Stationary high-speed engine 

Stationary high-speed engine 

Stationary slow-speed engine 

Stationary slow-speed engine 

Stationary slow-speed engine 

Gas engines, mam bearings 

Gas engines, crankpins 

Gas engines, wrist pins 

Heavy line shaft brass or babbitt lining 

Light line shaft cast-iron bearing surfaces 

Generator and d3mamo bearings 

( Naval practice 

I Merchant practice 

, [For dead load * 
mam bearings < ^ , , 

I For steam load 

, f Overhung crank 
crankpins t ^ ^ i 

I Center crank 

wrist pins 
, f For dead load * 

mam bearings < , , , 
I For steam load 

crankpins 

wiist pins 

7000 to 9000 
3000 to 4000 

3000 to 4000 

1500 to 1700 
190 to 220 
300 to 325 

275 to 400 
400 to 500 

400 to 500 

bO to 120 

150 to 250 
900 to 1500 

400 to 600 

1000 to 1800 

80 to 140 

200 to 400 

800 to 1300 

1000 to 1500 

500 to 700 

1500 to 1800 

1500 to 2000 

100 to 150 

15 to 25 

30 to 80 

* In horizontal engines the dead load which consists of the weight of the shaft, flywheels, etc 
governs the design of the lower bearing surfaces while the steam load governs the design of the 
quarter brasses In a vertical engine the sum of the dead load and the live load comes upon the 
lower bearing surface 

Although practice shows wide variations, it is found that the ratio of 
the length of the journal to its diameter (l/d) is fairly well defined for 
any given class of machinery. It often occurs, therefore, that, when 
journals are designed with the ratio as fixed by practice, they have an 
excess of strength while barely satisfying the conditions as to bearing 
pressure. 
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The following are average values of l/d as found in good practice: 

TABLE XIII 

Tvj)C of Values of l/d 

Marine engine, mum bearings 1 to 1 5 

Marine engine, crankpins 1 to 1 

Stationary engine, main journals 1 5 to 2 5 

Stationary engine, eiankpms 1 

Stationary engine, (ro.sshead pins 1 to 1 5 

Oidinary heavy shafting with fixed bearings 2 to 3 

Oidinary shafting with self-adjusting bearings 3 to 4 

Generator bearings 3 

66. Summary. From the foregoing the following statements may be 
made regarding imperfectly lubricated journals: 

(a) The minimum diamet(T of a journal is fixed by the considera¬ 
tions of strength and stiffness under the loads applied. 

(b) The smaller the diameter of the journal for a given coefficient of 
friction, the less is the work of friction and consequent liability to heating. 

(c) The tendency of the bearing to heat, other things being equal, 
is not materially affected by changing the diameter of the journal, but 
is reduced by increasing the length. 

(d) The projected area of the journal must be such that the bearing 
pressure will be kept within the allowable limits for the particular 
conditions; and the ratio of length to diameter must not be so great that 
severe localization of bearing pressure can result. These considerations 
may require a larger bearing than the previous requirements alone would 
demand. 

(e) The work of friction, per unit area, must not exceed the rate of 
radiation, per unit area, for the allowable bearing temperature. 

66. Perfectly Lubricated Journals. It was shown in Article 42 that 
if a journal is supplied with sufficient lubricant, of proper viscosity, 
and proper distribution axially is provided, the journal itself may 
draw in the lubricant till a film is formed under such a pressure that the 
load will be entirely fluid-borne. With any given set of conditions, 
therefore, and perfect lubrication, a definite journal velocity will per¬ 
mit the carrying of a definite load per unit area upon the journal, and 
once the relation is established between the load, velocity, temperature, 
and coefficient of friction, it is constant, and not unstable, as in the case 
of imperfectly lubricated surfaces. 
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It was further shown that the following st atements are true regarding 
perfectly lubricated surfaces: 

(a) The friction of perfectly lubricated surfaces for a given velocity 
depends very little on the materials which form the rubbing surfaces, 
but does depend largely on the character of the lubricant. 

(b) The frictional resistance of perfectly lubricated journals for any 
given velocity is, within the limits of pressuie under which the oil film 
may be maintained, independent of the pressure (that is, jup = a con¬ 
stant). 

(c) The coefficient of friction for perfectly lubricated bearings 
varies inversely with the temperature of the bearing. 

Perfect lubrication can be attained in horizontal bearings in a limited 
number of ways. The first is by bath lubrication as used by Tower 

and illustrated in Fig. 35 (a), the load P resting upon the bearing as 
indicated and the shaft thrusting an oil film between itself and the 
bearing. The general character of the pressure curves is as indicated, 
the pressure falling to zero at the lower edges of the bearing both at 
ends and sides. (See also Fig. 17.) In the second and more usual 
case the load on the shaft is carried on the lower half of the bearing, 
as in Fig. 35 (b). Oil either is supplied plentifully at the point N on 
the on side where the pressure is zero or is applied plentifully at iV' 
and conducted by ample oil grooves to the longitudinal distributing 
channels at R. The cap usually has liberal oil grooves cut diagonally 
in its surface so that no film is likely to form and the pressure curve 
is approximately as shown. In the third case. Fig. 35 (c), the bearing 
is a solid sleeve, the oil pressure curve that supports the load being 
approximately as shown, but there may be a negative pressure on 
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the lower side of the shaft. Oil is supplied at Ry the point of zero pressure, 
or it is sometimes fed to the lower side from the end of the bearing. 
In each and every case there must Ix' a plentiful supply of the lubricant 
to obtain a complete fluid film between shaft and bearing. It will be 
noted that in each case in Fig. 35 once the film is formed Ihe journal 
is no longer concentric but is somewhat nearer the bearing slightly past 
the line of the load, thus reducing the clearance at that point and 
marking the place of greatest pressure. In the illustrations of Fig. 35 
the clearance between shaft and bearing is greatly exaggerated for 
clearness. 

Since the load is entirely fluid-borne the laws of fluid friction should 
apply, and this is found to be the fact. Much work has been done 
upon the mathematical theory of lubrication, l)eginning with the 
masterly work of Osborne Reynolds,* who verified Tower^s experimental 
work mathematically. These mathematical deductions, though they 
have illuminated the general theory of lubrication, are quite complex, 
and in general their results have not been reduced to such forms as to 
make them readily applicable by practical designers. A brief bibliog¬ 
raphy of the more important contributions of this sort is given at the 
end of this chapter. More recent experimental work has, however, 
aided greatly in determining values of the coefficient of friction and 
also in determining the effect of certain variables that are met with in 
bearing design. 

From the theory of perfect lubrication (Article 37) it will be clear 
that the coefficient of friction in perfect lubrication will vary directly 
with the viscosity of the lubricant, the dimensions of the journal, and 
the number of revolutions of the shaft. It will vary inversely with the 
load and the clearance between journal and bearing. It is most con¬ 
venient to express this last as the clearance per unit of diameter or 
c/d. Then if d = diameter, I = length, N = number of revolutions 
per minute, z = the absolute viscosity of the lubricant, and p the load 
per square inch = P/ldj 

zNdl zNdl zN zN/d 
p vanes as-or as-or as — or as —( - 

^d "d 

For any given bearing c/d is a constant, and if therefore experimental 
values of p and zN/p are plotted as in Fig. 36 a cliaracteristic curve is 
established for all bearings of the same proportions. It will be noted 
that beyond the critical point M where the film first forms the locus of u 

* Philosophical Transactions^ Part 1, 1886. 
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is a straight lino. If all other conditions are kept constant and the 
clearance is varied then the simultaneous values for different ratios of 
c/d are as shown in Fig. 87. These diagrams are reproduced from the 
work of Messrs. S. A. McKee and T. R. McKee,* upon small bearings 

in which the ratios of l/d were 0.25; 0.50; 0.75; 1.00; and 2.8. The 
effect of end leakage was quite marked with ratios oi l/d below unity, 
but above that value the effect of length was small. Thus the line for 

♦ See Trans. A.S.M.E., 1929, page 161. 
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c/c? = 0 001 m Fig 36 gives practically the same values of the coefficient 
as the corresponding line m lig 37 Yet the value of I d is unity in 
Fig 36 and 2 8m Fig 37 

The Messrs McKee also determined the constants for equation (2) 
when d/c IS also a variable to be 

0 002 + 
473 

lO^A P A (3) 

Although these results are veiy helpful m visualizing the effect of 
several factors upon the coefficient of friction, as the Messrs McKee 
state they should not be taken too literally 1 he bearings experimented 
upon were small, carefully finished, and comparatively lightly loaded, 
thus eliminatmg the disturbing factors usually found in larger beaimgs 
such as distortion of the shaft and roughness and maccuiacies m the 
bearing The speed of rubbing was also model ale Furthermore, the 
temperature was kept constant by circulating \\ater through the bearing, 
thus controlling the viscosity of the lubricant Ciiticism of similar 
character applies to most of the theoretical discussions based upon ex¬ 
perimental work Many experiments have been conducted as these were 
under ideal conditions and upon complete cylindrical bearmgs with 
unbroken surfaces such as Fig 35 (c), which is not the most common 
form met with m practice Within the lange of the experimental work 
on which they are based the results are no doubt significant and illustrate 
how in any given case, especially where a large number of bearmgs 
are to be built, quite accurate predictions as to performance can be 
made It may be well therefore to consider some of the results of 
practical experience m designing perfectly lubricated bearmgs 

Referring to Article 42, it has been noted that the relation between 
the coefficient of friction of perfectly lubricated surfaces, the unit load, 
the velocity and the temperature, for velocities up to 500 ft per mm, 
can be expressed closely by the equation 

3VT 
Pit - 32) 

and for velocities above 500 ft per mm the relation between the coefficient 
of friction, the umt load, and the temperature can be expressed closely 
by the equation 

512 

V{t - 32) 
(6) 

these relations bemg practically independent of the velocity. 
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Equations (4) and (5) may be written 

(6) 

(7) 

where V is the velocity of rubbing in feet per minute. Since upV is the 

frictional loss per unit of projected area in foot pounds per minute, 

ecpiations (6) and (7) may be used to compute the heat that a perfectly 

lubricated journal must radiate per square inch of projected area per 

minute, if a temperature of t is to be maintained. 

P'or the relation between unit pressure and velocity in feet per 

minute that will insure the formation of an oil film, the practice of the 

General Electric Company, as expressed in equation * (8) which follows, 

may be safely adopted, if it be remembered that the expression includes 

a factor of safety of 2. 

p = 15.5^X? (8) 

The radiating capacity of bearings may be taken from Fig. 33. 

The equations listed in this section established the relations that must 

exist between the unit pre.^sure on the bearing and the velocity and tem¬ 

perature, if perfect lubrication is to be maintained. It should be care¬ 

fully noted, however, that, in general, these equations are not sufficient 

for the design of bearings. The vwiimum diameter of a bearing* is 

fixed by the bending and t wisting moments applied to it, and there is no 

definite relation between these moments and the direct load on the 

bearing, each case being an independent problem. It should be remem¬ 

bered also that the relations between diameter and length of bearing 

established in Article 56 apply to perfectly lubricated bearings. Aside 

also from considerations of strength and rigidity, it is important to 

determine the minimum diameter of the bearing in order to reduce fric¬ 

tional resistance to a minimum, for it should be noted that with perfect 

lubrication the product gp for any velocity is a constant quantity. It 

follows, therefore, that for any given total load P, the unit bearing 

pressure should be kept as high as possible, provided it does not exceed 

the maximum allowable value for the given conditions. For if the unit 

bearing pressure is decreased, by increasing either the diameter or length 

of the bearing, the coefficient of friction is correspondingly increased; 

hence the total frictional resistance pP is also increased. Care should, 

• See also Article 42 and Fig. 20. 

and 

y.pV 
2.3 F' 

t - 32 

ixpV = 
51.2F 

^-32 
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of course, be exorcised in any case that the heat of friction is properly 

carried away. The examples that follow in Article 59 may serve to 

make the application of all of the foregoing theory more definite. 

67. The Limiting Values of Pressure and Velocity. The limiting 

values of the pressure and velocity under which a perfect oil film can 

be maintained, at high velocities, have not bt'cn fully determined. In 

Lasche’s experiments a load of 213 lb per sq in. of projected area was 

carried at a velocity of 1963 ft per min. In Kingsbury^s * experiments, 

loads from 80 to 86 lb per sq in. wTre repeatedly carried at velocities 

up to 1990 ft per min. In both Kingsbury^s and Lasche’s work either 

the oil circulation, or the bearing itself, was artificially cooled, thus 

materially assisting the radiation. 

The values given by these experiments were obtained on experi¬ 

mental machines and may be looked upon as limiting values. Suc¬ 

cessful practice in the design of steam turbine bearings gives velocities 

ranging from 1800 to 3000 ft per min, with pressures inversely as the 

velocity ranging from 80 to 50 lb per sq in. Where the pressure is as 

high as 90 lb per sq in., it is found that the velocity must be kept below 

1800 ft t per min. The empirical equation pV = 150,000 is much used 

for this class of work, and gives values agreeing with those just quoted. 

It is evident that with these high velocities the radiation must be 

assisted. Thus let V — 2000 and p — 75 in accordance with the 

empirical rule just given, and let it be re(]\iired to keep the temperature t 
at 150° F or a tempi'rature of say 75° F above the atmosphere. 

Then by equation (7) the frictional work is 

51.2 X 2000 

(150 - 32) 
867 ft-lb per min 

whereas the bearing alone, if connected to a* heavy iron frame, will, 

from Curve 2, Fig. 33, radiate only 384 ft-lb per min. Since the 

specific heat of both water and oil are known, the supply of either 

necessary to carry off the excess heat of friction can be calculated. 

68. Bearing Clearance and Film Thickness. In Tower's experiments 

the bearing was free to move away from the journal as the oil film was 

built up, and the film, therefore, could assume the full thickness con¬ 

sistent with the conditions. It will be obvious, however, that if the 

bearing surrounds the journal completely and fits it very closely, the 

full film thickness may not be formed. It is important, therefore, 

that sufficient clearance be allowed between the bearing and the journal 

for this purpose. Small bearings are sometimes fitted very closely and 

* Trans. A.S M.E., vol. 27, page 425. 

t See “Steam Turbines,^' by Frank Foster, page 181. 
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yet operate well if liberally oiled. In such cases the film pressure is 

probably great enough to spring the cap or stretch the bolts sufficiently 

to permit of lubrication, whereas in large bearings such results would 

not be attained. It has been shown experimentally and verified mathe¬ 

matically that the friction increases as the clearance is decreased. 

Careful designers, therefore, specify what the clearance shall be and do 

not trust to chance. The following table shows the practice of the 

General Electric Company in this respect and shows also the allowable 

variation or tolerance from the nominal dimensions: 

69. Examples of Journal Design. Journals generally form an inte¬ 

gral part of a shaft or spindle, and the determination of the stresses 

acting upon them is a part of the solution of the stresses in the shaft 

itself. It is desirable, however, to point out some of the special features 

of journal design. 

The actual distribution of pressure over the length of a journal is 

not known; but there is every reason to believe that the distribution 

is fairly uniform. Thus bearings, as a rule, wear quite uniformly 

over their entire length, where fair alignment is maintained. It is 

customary, in the absence of exact data, to assume for computations 

as to strength and rigidity that the load on the journal is concen¬ 

trated at the middle of its length. This assumption is on the safe side, 

and will sometimes give shaft diameters excessively large so far as 

strength is concerned. 

The following examples (a, b, c, and d) illustrate the most important 

cases of journal design. 

Example (a). This case is illustrated in Fig. 38. Here the center 

of the bearing is fixed at 0, by the construction of the machine. The 

center line of the pulley M is also fixed at XX^ by the location which the 

belt must occupy, so that the pulley overhangs the bearing by the dis¬ 

tance a. The diameter of the pulley d is 40 in., a = 10 in., the pull on 

the tight side of the belt is 500 lb, and the pull on the slack side is 300 
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TABLE XIV 

Clearances and Limits for Journals and Bearings 

Nominal 
Dimen 

Bions 
Max Allowable . 
imum Variation 
Dmm Below 
eter Maximum 
Inch Diameter 

Allow ible 
\ 8 nation 

above 
Minimum 

B )ro 

Mini 
mum 
Bore 
Inch 

Allowable 
Variation 

above 
Minimum 

Bore 

Mini¬ 
mum 
Bore 
Inch 

Allowable 
\ ariation 

above 
Minimum 

Bore 

0 37(i 0 001 0 3755 0 0005 
0 ^01 0 001 0 500o 0 0005 
0 026 0 001 0 0255 0 0005 
0 751 0 001 0 7505 0 0005 
0 870 0 001 0 8755 0 000a 
1 001 0 001 1 0005 0 0005 
1 127 0 001 1 126 0 0005 
1 2o2 0 001 1 2>1 0 0005 
1 502 0 003 1 501 0 0005 
1 7 )2 0 001 1 751 0 0005 
> 00> 0 001 2 001 0 0005 
2 2 2 0 001 2 251 0 0005 
2 oOl 0 001 2 501 0 0005 
2 7a 1 0 002 2 7515 0 0005 
j 003 0 002 3 0015 0 0005 
3 501 0 002 3 501H 0 0005 

4 002 
4 502 

5 002 > 
5 503 
6 003 
7 0035 
8 004 
9 0045 

10 005 
11 0055 
12 006 
13 0005 
14 007 
15 0075 
16 008 
17 008 
18 008 
10 008 
20 008 
22 008 
24 008 

Axle I inings for 
Railway Motors 

Allowable 
\ ariation 

above 
Minimum 

Bore 
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lb. It is required to determine the dimensions of the journal. Lubri¬ 
cation is to be by ordinary oil cup. 

The stresses induced in (he journal are torsional stress, due to the 

twisting moment {Ti - T2) f, and flexural stre.ss due to the bending 

moment (Ti + ^2)0. The journal is subjected to combined bending 
and twisting. 

Kormula (/1L2) or (Ks) (page 93), therefore, applies. 

The bending moment 

M = (Ti + T2)a - (500 + 300)10 = 8000 

The twisting moment 

d 
T = {Ti - T2)- = (500 ~ 300)20 = 4000 

Hence 

Z _ _ 1 
M ~ 8000 “ 2 

and taking 

- = 1.25 
5* 

it is found from Fig. 9 that equation (K2) applies. 

8000 

From equation (J), page 93, 

[1 + Vl -f (i)^ = 8480 in-lb 

sl sird^ 

or 

cP = 
32M, 32 X 8480 

- 8.63 
ITS TT X 10,000 

/. d = 2.05 in., or say 2^ in. 

If the length of the bearing be taken at 7 in. (see Table XIII), the 

bearing pressure will be 

Ti + T2 500 + 300 

X 7 

which is a safe value. 

15.75 
== 50 Ib, nearly 
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If the number of revolutions be 300 per min, and /x be taken as 

0.015, the work of friction per unit of projected area will be 

TT X 2.25 
50 X 0.015 X 300 X-r— = 133 ft-lb per min 

i^ 

From Curve 1, Fig. 33, it is seen that to radiate this amount of energy 

the temperature of the bearing will rise about 50° above the surrounding 

air. This is a safe value and the design is satisfactory. 

Example (b). Let the line of action of the load pass through the 

center line of the journal, as in the steam-engine crankpin in Fig. 39. 

Let the length of the crank be 18 in., and the total maximum pressure 

on the crankpin be 25,000 lb. What should be the dimensions of the 

crankpin in order to be safe against rupture and overheating? 

Re^ferring to Table XIII, it is seen that journals of this character are 

short compared to their diameter, and hence are usually strong enough 

and stiff enough if designed for a bearing pressure low enough to prevent 

overheating. Let I d be taken as 1.25. From Table XII, it is seen 

that 900 lb per sq in. may be safely carried on this type of pin. If d 

be the diameter of the pin and I the length, then the projected area 

of the pin is i X d = 1.25d X d = 1.25d^. Whence 

or 

and 

1.25d2 X 900 = 25,000 

d2 = 22.2 

/. d = 4.7 or say 5 in. 

Z = 5 X 1.25 = 6.25 in. 

The pin may now be checked for strength. In a short pin of this 

kind it is more accurate to assume the load uniformly distributed along 

the pin, than to assume it as concentrated at the middle. The pin may, 

therefore, be considered as a cantilever uniformly loaded with a load 

W = 25,000. 

Whence, from Table I, case 3, the maximum bending moment 

25,000 X 6.25 

2 
78,125 in-lb 

Therefore, from equation (/), page 93, 

sj Me 32M 32 X 78,125 ..... „ , 
Af = — or = — =-or St =--— = 6400 lb, nearly, 

c I ird^ TT X 5^ 

which is a safe value. 
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In a similar way the pin may be checked for deflection, if desired, 

by means of case 3, Table I. 

Example (c). Sometimes the location of the bearing is dependent 

on the diameter of the shaft, which is unknown, and in such case a 

tentative method must be adopted. Thus in Fig. 39 neither the 

length of the bearing /i, nor the thickness of the crank hub t, can be 

definitely decided upon till something is known about the diameter 

of the journal. The diameter must therefore be assumed, and then 

checked by the equations which apply. Usually a close estimate can 

be made from existing machines of similar type. In the case of the 

steam-engine shaft, for example, it is known that the main journal 

is frequently about one-half the diameter of the cylinder, l^he data 

taken in example (b) correspond to a cylinder diameter of about 18 in., 

and the journal diameter may therefore be assumed as 9 in. From 

Table XIII, Ihe length of the journal may be taken as 20 in. The 

length of the hub should be at least 8 in., for this diameter. The 

boss under the pin may be taken as in. in height, and since the pin, 

from case (b), is 0.25 in. long, the total distance from the middle of 

the crankpin to the middle of the bearing may be assumed as 21^ in. 

The projected area of the journal is 9 X 20 = 180 sq in., which gives a 

bearing pressure of 25,000 180 = 140 lb per sq in.; and from Table 

XII, it is seen that this is a safe value as far as the load due to steam 

pressure is concerned. If the shaft also carries a heavy flywheel this 

must be taken into account (see Chapter VII). 

The stresses induced in the journal are of the same character as in 

case (a). Taking the length of crank Z = 18 in., and the pressure on the 

pin = 25,000 as before, then the bending moment 

M = 25,000 X 21^ = 537,500 in-lb 

the twisting moment 

T = 25,000 X 18 = 450,000 in-lb 

whence 

— = 0.8375 
M 

and taking St/s^ = 1.25, equation {K2) is found by Fig. 9 to apply to the 

case. 

+ Vl + 0.83752] 
2 

= 616,500 in-lb' 
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From (J) [as in Example (a)l, 

' = = 32 X 616,500 ^ 

Tr(P TT X 9*^ 

which is a safe value and the design is satisfactory, so far as strength 

is concerned. 

If ordinary lubrication is used and if the velocity of the rubbing sur¬ 

faces is determined, the rise in temperature may be computed as in 

Example (a). 

Example (d). The bending and twisting moments applied to a 

certain journal indicate that a diameter of 4 in. is nc^cessary to provide 

the requisite strength and rigidity. The conditions of service permit 

the journal to be 10 in. in length. The total load on the bearing is 4000 

lb and the rotative speed 1500 rpm. Is perfect lubrication possible? 

And, if so, how many thermal units must be carried away by either the 

lubricant or jacket water in order that the temperature of the bearing 

shall not exceed 150° F when the room temi)erature is 75° F? 

Here V = 1570.8 ft per min, and p = 100 lb, and from (8) it is 

found that for this velocity the allowable bearing pressure, for a factor of 

safety of 2, is 180 lb; hence, perfect lubrication is easily possible. 

The work of friction per square inch of projected area is, from 

equation (7) 

51.2F 51.2 X 1570.8 
ppV =-=- 

i -32 150 - 32 

= 681.56 ft-lb per min 

The difference in temperature between bearing and atmosphere is 

150° — 75° = 75°. From Curve (2), Fig. 33, it is seen that with this 

difference a standard bearing will radiate about 225 ft-lb per min, 

leaving 681.56 — 225 = 455.56 ft/-lb to be carried away either by 

circulating cooled lubrication oil or by means of a water-jacket. 

Since p = 100 and V == 1570 

681.56 

100 X 1570 
0.0043 

which agrees fairly well with the values of Table X. 

Checking by equation (3) of Article 56 and selecting the allowable 

clearance shown in Table XIV, c == 0.006. Since the pressure is not 

excessive and the velocity fairly high a medium oil in which 2: = 15 

may be selected. 

Then M = 0.002 + 
473 /15 X 1500\ 4 

lO'O \ 100 /0,006 
0.009 
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This is considerably higher than the value found from the work of 

Tower, Lasche, and Stribeck, but it should be noted that the coefficient 

of friction varies inversely with the temperature. The McKee experi¬ 

ments were all conducted at a temperature of about 77° F, with the 

aid of water circulation. Had higher temperatures been used, the 

value of the coefficient would no doubt have been much smaller than 

those reported, and this should be considered in interpreting and using 

their results. 

Furthermore^, it should be noted that the coefficient of friction varies 

directly with the viscosity of the oil, and this again varies with the 

temperature. A direct solution for the coefficient of friction is there¬ 

fore not usually possible, but as in most cases of machine design assump¬ 

tions must be made and checked by the equations until a satisfactory 

value is obtained. 

60. Lubrication of Journals. The point of application of the lubri¬ 

cant is of utmost importance, and the method of supplying the lubricant 

to the journal sometimes materially affects the design of the bearing. 

The most common methods of feeding lubricants to rubbing surfaces as 

given in Article 39 apply fully to journals and may be classified as 

follows: 

Imperfect Lubrication 

Common oil hole. 

Common wick or siphon feed cup. 

Common drop sight feed cup. 

Oily pad against journal. 

Ring or chain feed. 

Centrifugal oiler. 

Compression grease cup. 

Perfect Lubrication 

Bath lubrication. 

Flooded lubrication. 

Forced lubri(*ation. 

In flooded lubrication (sometimes erroneously called forced lubri¬ 

cation), the oil is supplied to the bearing under a low pressure which 

insures that the journal is always flooded at the point of application, 

as in bath lubrication, but it does not force the lubricant between the 

surfaces. In forced lubrication the oil is supplied at a pressure in excess 

of the film pressure at the point of application, and is thus forced in 

between the surfaces, no reliance being placed on the tendency of the 

journal to draw in the lubricant. The compression grease cup, while 

supplying the lubricant under slight pressure, gives only imperfect lubri¬ 

cation, as the supply of lubricant is not copious as in forced lubrication. 

In applying any of these methods of lubrication, therefore, except 

xhe compression grease cup and forced lubrication, care should be exer- 
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cised that the point of application is in the region of lowest pressure 

and at the place where the journal will naturally draw in the lubricant. 

Thus, in Fig. 28, if the pressure is always downward, lubricant can be 

supplied at H for motion in either direction. If the pressure were 

upward, an oil hole at H would not only be useless for supplying lubricant 

but would actually be fatal to good lubrication, as any tendency for a 

pressure film to form would be destroyed by relief of the pressure at the 

hole. In such a case the lubricant should be supplied from under¬ 

neath, or if the direction of rotation were anti-clockwise an oil hole, as 

shown at 7, would })e good design. In forced lubrication the point of 

application should be the region of greatest bearing pressure, and the 

hydraulic pressure under which the oil is supplied should be greater than 

the maximum bearing pressure. 

While the decreased friction due to perfect lubrication is evident, 

it does not follow that an effort should be made to design every bearing 

so as to secure this advantage. In some places a simple oil hole is suf¬ 

ficient, in others a constant supply from a wick feed will suffice, while 

again, with greater speeds, a ring oiling device is necessary. In many 

modern power installations, with either steam turbines or reciprocating 

engines, very complete apparatus for supplying flooded lubrication will 

be found. The bearings are constructed so as to catch all the oil, as it 

leaves the journal, and pipes convey it to a central receiver. A pump 

continually circulates the oil to the various bearings, and in the best 

installations the oil is filtered and cooled during the circuit. The same 

results are obtained by flooded lubrication as with bath lubrication 

Forced lubrication is resorted to only where the bearing pressures are 

excessive and beyond those which can be supported by the natural 

action of the film formed by rotation of the journal. (See Article 42.) 

The location and character of the oil grooves deserve special atten¬ 

tion. If the velocity of the journal is so low as to draw in little lubricant 

the oil grooves should be so cut as to allow the lubricant to flow near 

the region of greatest pressure. Grooves, or scores on the journal itself, 

have been found helpful in drawing in the lubricant under such circum¬ 

stances; especially where the lubricant is heavy. But where the 

velocity is above 25 ft per min (see Fig. 18), and for ordinary pressures, 

care should be used that no oil grooves are cut that will tend to prevent 

the formation of the pressure film. If the lubricant is delivered at H, 

Fig. 28, and the pressure is downward, oil grooves of any kind running 

from H which will distribute the oil over the surface of the journal, are 

allowable so long as they terminate at a little distance from the edge of 

the bearing. If the oil is delivered at /, and the pressure is either down¬ 

ward or upward, the grooves should be cut ai right angles to the direction 
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of motion^ so as to distribute the oil along the entire length of the bearing 

If cut diagonally they will extend under the journal toward the region 

of greatest oil piessuie, thus relieving any tendency to the formation 

of a pressure film, and the lubrication will not be as good as it would 

be if no giooves were present 

The sharp edges of all oil grooves should be carefully removed to facil¬ 

itate the passage of the oil under the journal The sharp edges of the 

bearings themselves should also be filed or scraped away for the same 

reason Where one bearing surface encircles nearly one-half of the shaft, 

as in Fig 28, the surfaces should be relieved for some little distance from 

the parting line to help the wedging action of the oil and to insure the 

journal against side pressure due to springing of the bearing under the 

load. A bearing which binds sidewise will not lubricate properly 
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CHAPTER VI 

CONSTRAINING SURFACES— 

THRUST BEARINGS 

61. General Considerations, When a shaft is subjected to a heavy 

end thrust, either from the weight of the parts carried or on account of 

the power transmitted, the simple collars which are used to prevent end 

thrust in ordinary shafting will not suffice, and bearings of special form, 

known as thrust bearings, must be provided. If the bearing is designed 

so that the thrust is taken on the end of the shaft it is called a step¬ 

bearing or footstep-bearing. If the thrust bearing must be placed at 

some distance from the end of the shaft it is called a collar bearing. 

62. Step-Bearings. If the motion of rotation is very slow, as is the 

case in swinging cranes and smiilar work, a simple cast-iron step, as 

shown in Fig. 40, will meet the requirements, even if the pressure is 

heavy. If, however, the velocity is high, this simple arrangement will 

not give good results, even when the 

pressure per unit area is low. It 

may be assumed, without great error, 

^ that the unit pressure between the 

faces of a newly fitted step-bearing 

is uniform at all points. The velocity 

of rubbing, however, is a maximum 

at the outer edge, and, theoretically, 

it is zero at the geometric center of 

the pivot. Since the wear is propor¬ 

tional to the product of pressure and 

velocity, it follows that the surface will wear unevenly, the greater 

wear taking place at the outer edge. This will bring a concentrated 

pressure at other points, and heating and cutting may result. It is 

always advisable in heavy work, for this reason, to remove the wearing 

surface near the center, where the motion is slowest, and where eventu¬ 

ally the greatest concentration of pressure is likely to be produced 

(see Fig. 40). Decreasing the bearing pressure by increasing the 

surface, is effective within limits, since the area increases as the square 

of the diameter while the velocity of rubbing increases directly as the 

150 

Fig. 40. Fig. 41. 
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diameter. Increasing the radius, however, increases the average moment 
arm of the frictional resistance, and hence increases the lost energy. 
It is often better, therefore, to carry a higher bearing pressure, and 
thus keep the diameter of the pivot small. 

If a number of discs are placed between the step, or pivot, and the 
bearing (Fig. 41), they have the effect of reducing the relative velocity 
between adjacent surfaces; and if the rotative velocity of the pivot is 
high, they are very useful as a safeguard against cutting; for, if abrasion 
should begin between any pair of discs, motion will cease at that point 
till the lubrication becomes effective again. These washers are usually 
made alternately of steel and brass, or some other metal, and the upper 
and lower washers are fastened to the shaft and bearing respectively. 
An oil hole passes through the center of the washers, and radial grooves 
cut across the faces permit a flow of oil between the surfaces, centrifugal 
action assisting the lubrication. If the top of the bearing is connected 
to the bottom by an oil passage, as shown at N (Fig. 41), the centrifugal 
action will set up a continuous circulation of the oil, making the lubrica¬ 
tion effective. The unit pressure between washers is the same as 
between the shaft and the first washer, but the relative motion between 
the surfaces is decreased and the wear thus reduced. A combination 
of hardened and ground steel washers, alternating with brass or bronze 
washers, makes an effective bearing. Sometimes the washers are made 
lenticular in shape, as shown in Fig. 42, in order to allow the shaft auto¬ 
matically to adjust its alignment. For very light work the shaft some¬ 
times rests on a pair of hardened steel buttons, or a hardened steel ball 
which runs between hardened steel surfaces is introduced. In the sub¬ 
merged step-bearings of water turbines, the shaft, which is often capped 
with bronze, rests on a lignum vitae step and lubrication is effected by the 
surrounding water. 

If the outline of a step-bearing be made that of a tractrix * (Fig. 43) 
it is found that the tendency to wear in an axial direction is uniform at 
all points; in fact, if two homogeneous flat surfaces are rotated together 
they tend to wear into the form of a tractrix, as has been proven by 
experiment. This is, therefore, the correct shape, theoretically, for all 
step-bearings; but on account of the difficulty and expense of machining 
the surfaces it is seldom used. The tractrix has been called Schiele’s 
antifriction curve, after the discoverer of the above property. This is a 
misnomer, however, for the friction of a tractrix-shaped step is much 
higher than that of a plain pivot. 

It is evident that the rubbing surfaces of all the step-bearings which 
have been discussed can be submerged in an oil bath. The lubrication 

* See Church's ** Mechanics," page 181. 
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thus obtained is not to be confused with that obtained on horizontal 

rotating bearings discussed formerly While centrifugal force does 

drive the oil from the center to the outside, there is little action on the 

part of the surfaces themselves tending, on account of its viscosity, to 

Fig 42 Fig 43 Fig 44 

draw the lubricant between them, as m horizontal bearings Such lubri¬ 

cation cannot therefore be looked on as perfect lubrication although 

giving excellent results The experiments of Beaucamp Tower * on a 

steel foot step, 3 in in diameter, gives considerable information on this 

subject It was found that a single diametral oil groove was better 

THRUST BEARING OF CURTISS 
VERTICAL STEAM TURBINE 

than more, and pressures up to 160 lb per 

sq m were successfully carried at 128 rpm 

The foot step was freely lubricated, and 

rested directly on the bearing, no washers 

bemg interposed At 240 lb per sq m the 

bearmg seized. 

If under heavy loads the maintenance 

of lubrication is important, the lubricant 

should be supplied at the center of the step- 

bearmg under a pressure such that the 

metallic surfaces are forced apart and the 

load IS fluid-borne. Fig 45 shows a form 

of the step-bearmg once used on the Curtiss 

steam turbine. The vertical shaft A, which 

supports the heavy rotating parts of both 

turbine and generator, is carried on the 

Fig 45. disc B which rotates with it The lower 

disc C can be adjusted vertically, by means 

of the screw jB, and is prevented from rocking on E by the screws F, 

Oil is forced between the discs through the central pipe Exf forcing the 

Trans Institution of Mechanical Engineers, 1891, page 111. 
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discs apart and escaping; into the cavity G. The load is thus completely 
fluid-borne and perfect lubrication is maintained. The oil passes from 
G upward through the guide bearing escaping at H. 

63. Collar Thrust Bearings. When the thrust bearing must be 
placed at some distance from the end of the shaft, the shaft is provided 
with collars integral with i1 self, wdiich bear against the resisting surfaces 
as shown in Fig. 46, which illustrates a thrust bearing as used for marine 
work. In cheap work, or where the load is small, a single collar is some¬ 
times used. Occasionally a series of washers, as in Fig. 41, are inter¬ 
posed between the collar and the bearing ring. The objection to this 
form of single-collar bearing for heavy loads is that the large diameter 
necessary to obtain a practical bearing pressure increases the work of 
friction, due to the increased velocity, and the difference between the 

rubbing velocities of the ring at the shaft and at its outer diameter 
results in unequal wear. The outer diameter of the ring, or collar, is 
usually, therefore, not more than one and one-half times the diameter of 
the shaft, which limits the width of face of the collar even in large shafts 
to a few inches; and the necessary area is obtained by using a number 
of rings. 

In small or cheap work, the bearing surfaces of the thrust block are 
sometimes made integral with the bearing proper; but usually they are 
made detachable. Thus the main casting of the block may be of cast 
iron, and the bearing rings of brass are inserted and held in place by 
radial grooves cut in the block. These rings must be scraped until each 
collar on the shaft bears properly against its mating ring, so that the 
thrust is uniformly distributed. The most modem practice in marine 
work is to make the bearing rings horseshoe-shaped, as in Fig. 44, so 
that each ring can be withdrawn without disturbing any other portion 
of the bearing or shaft. Occasionally the horseshoe collars are adjust¬ 
able along the shaft so as to be more easily brought to a proper bearing. 
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In first-class work each horseshoe has its own independent water circu¬ 
lation, to that local heating may be prevented, and the lower part of 
the bearing constitutes an oil bath into which the collars dip. This oil 
bath also has a water circulation for cooling the oil. 

64. Friction and Efficiency of Thrust Bearings. If P be the total 
uniformly distributed load on a flat circular pivot of radius n and g 
be the coefficient of friction, then the equivalent frictional radius 
Rf * = |ri, and the frictional moment resisting rotation is 

M = (1) 

The energy, E, lost per minute in friction is the product of the 
rubbing velocity, F, and the frictional force, and if ri be in inches 
and P in pounds, then 

E = FV = iixP) 
(^) - X 3 (^) - ® 

where N is the number of revolutions per minute. 
In a similar manner, the eciuivalent frictional radius for a thrust 

2i (— T2'^\ 
collar with outside radius ri and inner radius r2 is - ( —-- 1, and the 

3 \rr — r2V 
frictional moment is 

whence 

E - (mP) X 
\ frp - r2A 

\ri^ — r<p/ 12 
0.349gP^ 

/rP ~ r2A 

Vri^ — r2^/ 

(3) 

(4) 

The efficiency of a thrust bearing cannot always be expressed as a 
function of the power transmitted. Thus, for a vertical shaft carrying 
a heavy load of gears, the frictional resistance of the step has little 
to do with the power transmitted. For the thrust bearing of a steam¬ 
ship the frictional moment and energy loss are directly proportional 
to the driving force P. In either, however, the frictional moment or 
the energy loss must be added to the turning moment or the energy 
supplied, as the case may be. 

See Churches Mechanics,” page 180. 
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The following coefficients of friction are taken from Tower’s experi¬ 
ments: 

TABLE XV 

Pressures 
in Pounds 

per 

Coefficients of Friction of Flat Piv^ots for the Revolutions per 
Minute as Given Below 

Unit 
Area 50 rpm 128 ipm 194 rpm 290 r])m 353 rpm 

20 0 0196 0 (K)S0 0 0102 0 0178 0 0167 

40 0 0M7 0 0054 0 0061 0 0107 0 (X)96 

80 0 0181 0 0063 0 0045 0 (X)64 0 0063 

120 0 0221 0 0083 0 0052 0 (X)48 0 0053 

140 0 0093 0 0062 0 0046 0 0054 

At 50 and 128 rpm, the oil supply was rosirietod; but at the other 
velocities the bearing was floodc'd. In all cases the coefficient increased 
at revolutions below 40 rpm, which w^as probably due to the decrease 
of the centrifugal force (the bearing being oiled from the center). This 
would seem to indicate that devices for reducing relative rubbing veloc¬ 
ity, such as multiple washers (Article 62), may be carried to an extreme, 
causing more friction than a plain flat pivot where centrifugal action is 
effective. In the case of thrust collars, such as shown in Fig. 44, run¬ 
ning in an oil bath, the surfaces themselves tend to draw in lubricant 
in a way similar to that of the ordinary journal. The coefficients of 
friction for this class of thrust should therefore be as low at least as 
those given above. 

65. Sealing Pressures on Ordinary Thrust Bearings. Where the 
velocity of rubbing is very low and wear is not important, as in swinging 
cranes, very heavy unit loads may be put upon pivot bearings, especially 
if they rotate in an oil bath. Where the velocity is high, or even 
moderate, and wear is important, much lower pressures must be carried 
with imperfect lubrication, than on ordinary bearings, running at 
the same velocity. With forced lubrication, as in the step-bearing 
shown in Fig. 45, it is evident that very heavy pressure may be main¬ 
tained. If, on the other hand, too many collars are used on a collar 
thrust bearing, in an effort to keep the bearing pressure down to a low 
value, there is danger that all the collars will not bear simultaneously. 
The following are average values of bearing pressures, for thrust bearings, 
as found in practice: 
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TABLE XVI 

Mean Velocity in Feet per 

Minute 
Character of Lubrication 

Beaimg Pressure in 

Pounds per 

Square Inch 

Very slow as in hand ermes Bath as in Fig 40 2000 to 3000 
Up to 50 ft Bith as in I ig 41 200 

50 to 125 Bath as in 1 ig 41 150 

125 to 200 Bath as in 1 ig 41 100 
200 to 500 Bath as in Fig 41 50 
500 to 800 Thrust bearing and bath 

lubrication as in I ig 46 75 to 50 

Example. Design the thrust journal for a steamship having the 
following data, and estunate the frictional loss in the thrust bearing: 

Speed in knots (1 knot = 6080 ft per hr) 15 

lndi( ated horsejiower of one engine 50(K) 

Inside di irneter of thrust collars 14 in 

Outside diameter of thrust coll xrs 21 m 

Allowable pressuie per squaie inch of surface 40 lb 

Revolutions of the shaft per minute 120 

Owing to frictional losses in the engine, propeller, and shaft only about 
two-thirds of the indicated power is delivered to the thrust block The 
pressure against the thrust block multiplied by the distance through 
which the ship moves per minute must equal the energy delivered by 
the propeller to the block per minute, or if P be the thrust, S the speed 
of the ship in knots per hour, and the indicated horsepower be denoted 
by 1 h p , then 

- X1 h p X 33,000 = 
o 

PX SX 6080 

60 
or 

2 X 1 h p X 33,000 X 60 

3 X >S X 6080 

ihp X217 

S 

Hence, m the above example, 

P = 
5000 X 217 

15 
= 72,300 

The area of each thrust collar = 7 (21^ — 14^) = 192 sq m. Therefore, 
4 

the total allowable pressure on each collar = 192 X 40 = 7680 and the 
number of collars = 72,300 — 7680 = 9 5 or, say, 10 

If the bearing runs m an oil bath, the coefficient of friction will not 
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be more than 0.01 under the worst ordinary conditions, 
from (4), 

r2 

r2“J 

27^ 

Therefore 

= 0.349.PAr|^^J 

= 0.349 X 0.01 X 72,300 X 120 
10.5-^ - 

10.5-^ - 7^_ 

= 405,000 ft-lb per min or 12.3 hp 

66. Collar Thrust Bearings 
evident that in collar thrust 
bearings, such as have been 
described, perfect oil films will 
not form naturally, even when 
the collars dip into an oil 
bath. In a few instances, 
forced lubrication has been 
successfully applied to such 
rings by constructing oil pas¬ 
sages from the rubbing sur¬ 
faces to a hole bored axially 
in the center of the shaft and 
forcing oil through these pas¬ 
sages under a pressure suffi¬ 
cient to separate the surfaces 
when loaded. Perfect film 
lubrication of collar thrust 
bearings is attained, however, 
in the Kingsbury, the Michell,* 
and the Reist thrust bearings. 

The Kingsbury bearing, as 
applied to vertical shafts, is 
shown diagrammatically in 
Fig. 47. The thrust collar, A, 

transmits the load to the re¬ 
movable runner, B, which 
rotates with it. The ring B is 
carried on a number of segmen¬ 
tal shoes C which have bab- 

with Perfect Lubrication. It will be 

Fig. 47.—Diagrammatic Arrangement of 

Kingsbury Bearing. 

* Kingsbury and Michell developed this type of bearing independently about the 
same time. 
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bitted wearing surfaces; these shoes are supported and held in position 
by cylindrical supports with spherical supporting surfaces on which the 
shoes may rock freely within the limits permitted by the engaging 
wearing surfaces. These supports are placed slightly back of the center 
of the shoes, in the direction of rotation. This causes the shoe to 
incline slightly when at rest and thus offers a wedge-shaped opening 
between the rubbing surfaces, in which a perfect oil film can form in 
the same manner as in a rotating journal. The supporting ring, 
engages the base plate, F, through a spherical surface, so that align¬ 
ment is automatic. In actual construction the supports, Z), rest on flat 
wedges so that the clearance Ixitween the shocks, C, and the runner B can 
be adjusted. These details are omitted from Fig. 47 for the sake of 
clearness. The wearing surfaces run in an oil bath. 

These bearings have operated very successfully under both vertical 
and horizontal loading. They have been applied to large vertical water 
wheels, a load of 350 lb per sq in. being carried successfully at a mean 
speed of 900 ft per min with a coefficient of friction as low as 0.001. 
They have been extensively applied in connection with steam turbine 
installations, where a pressure of 500 lb per sq in. has been success¬ 
fully carried at a velocity of 4500 ft per min. Much higher velocities 
and pressures have been carried on experimental installations, and 
apparently these bearings have a great overload capacity. Other 
experiments * have shown that they are also very efficient at low speeds; 
a bearing erected in 1911 carried successfully a load of 980 lb per sq in. 
at a speed of 126 ft per min. 

The Heist thrust bearing, shown diagrammatically in Fig. 48, is 
based upon a different theory. The thrust collar on the shaft (not 
shown in the drawing) transmits the load to the runner. A, which moves 
with the collar. The runner rests upon a stationary steel ring, JS, which 
has a babbitted wearing surface. This ring is comparatively thin and 
is parted at one point by a narrow saw-cut, so as to eliminate any ten¬ 
dency to dish with change in temperature. It rests upon a nest of helical 
springs, which in turn are supported by the base, C. The ring, By is pre¬ 
vented from turning by pins or dowels, D, fixed in the base, C. The 
springs are designed to close about ^ in. under the assigned load; any 
undue pressure at any point will, however, compress the springs at that 
point a greater amount and the bearing will thus automatically align 
itself and compensate also for any inaccuracies in finish. Oil grooves 
are always provided in the stationary ring, B, and sometimes in the 
runner. A, When both rings are grooved, the number in the runner is 
different from that in the stationary ring. 

* Trans, A.S.M.E., vol. 41, page 686. 
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These bearings have also been operated very successfully under both 
horizontal and vertical loading. The usual load is from 300 to 400 lb 
per sq in., and a coefficient of friction as low as 0.0018 has been recorded. 
Like the Kingsbury and Michell bearings, they are lubricated by an 

oil bath. Thrust bearings of the Kingsbury, Michell, and Reist types 
will, no doubt, supersede the old multi-collar type wherever frictional 
loss is an important factor. Michell has applied this principle to bear¬ 
ings for supporting radial loads, but except possibly for some very 
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special case there would not appear to be any advantage in such an 
application. 

ROLLER AND BALL BEARINGS 

67. General Consideration of Rolling. It was noted in Article 
38 that the resistance due to rolling friction was much less than that 
due to sliding friction, for a given load. The application of this principle 
to very heavy loads and low speeds, as the moving of heavy bodies 
on rollers, is of groat antiquity; but only in recent years have mechanics 
been able to produce surfaces of such a character as to carry even very 
light loads at high speeds on either roller or ball bearings. At present, 
however, bearings of this character can be obtained which will run well 
under very severe conditions. 

WTien a curved surface rolls upon any other surface with which it 
theoretically makes line or point contact, the two surfaces tend mutually 
to deform each other, the amount of deformation depending on the 
character and hardness of the materials fonning the surfaces, and the 
intensity of the load sustained. If the surfaces of both members are very 
hard, and the load is very light, the deformation is negligible and true 
rolling can be practically attained. When, however, any appreciable 
load is to be carried, the mutual deformation of the surfaces destroys 
the theoretical line or point contact and the load is borne on a small 
surface. This occurs even when the surfaces are very hard, and the 
action, instead of being that of pure rolling, is a combination of rolling 
and sliding.* The true theory of this action, which is very complex, 
has not been fully demonstrated and is beyond the scope of this treatise. 
It can readily be seen that it is closely connected with the elastic proper¬ 
ties of materials, on which much research work has been done. Un¬ 
doubtedly the work of this character which is of most value in the design 
of roller or ball bearings, is that of Professor Stribeck, whose masterly 
report has been translated into English by Mr. Henry Hess,t and to this 
translation reference will be made hereafter. 

If the intensity of pressure be such that the elastic limit of the 
materials is exceeded, permanent deformation will occur. In roller 
or ball bearings, this may result in the destruction of the surfaces 
either by flaking off locally, or by simply crushing out of shape. In 
either case continued action of this character is destructive to the 
bearing. Experiments on either balls or rollers to determine the ulti¬ 
mate crushing load are, therefore, misleading and useless as far as the 

* * The student may demonstrate this action by rolling a round lead pencil on a 

piece of soft rubber under pressure. 

t See Trans. A.S.M.E., vol. 29, pages 367 and 420. 
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design of such bearings is concerned. It appears from experiment and 
experience that bearings of this character can be constructed to carry 
fairly heavy loads at high vSpeeds for a long period of time, provided the 
intensity of pressure is not too great. It will be evident also that both 
balls and ball races are subjected to repeated stress as they rotate 
(Article 28) and therefore the working life will be a function of the 
speed of rotation for a given load. Or as the load is increased the 
speed must be decreased for a given length of life. It is obvious from 
the foregoing that the materials used in such bearings must be homo¬ 
geneous, and of uniform hardness. The success of the modern ball 
and roller bearing has been made possible by improved materials and 
workmanship rather than by new theories. 

Referring to Fig. 50, it is evident that when two adjacent rollers or 
balls, A and /i, touch each other, the directions of motion of the common 
points of contact are in opposite directions. It is often stated that this 
results in considerable frictional loss; and sometimes small intermediate 
balls, or rollers, are used as shown at C, Fig. 50 to obviate the supposed 
loss. Such intermediate balls or rollers must be kept in place by a 
cage such as Fig. 50, and this cage will give rise to a greater frictional 
loss than that which it is expected to remedy. A brief reflection will 
show that very little pressure can possibly exist between A and B, 

The only pressures that can be exerted by the guiding surfaces upon the 
balls or rollers are in a radial direction or normal to the surfaces, and 
these have no component tending to force the adjacent rollers or balls 
together. Sometimes the rollers or balls are separated by a guiding 
cage (see Fig. 49), and if any appreciable pressure could exist between 
adjacent rollers or balls the same would necessarily exist between them 
and this guiding cage. This theory is not borne out by experience, as 
these cages, in well-built roller bearings, do not wear appreciably. The 
frictional loss from this source is undoubtedly very small. 

The friction of roller and ball bearings while at rest is very small, 
and this is a very important point in the design of heavy, slow-moving 
machinery where, with ordinary sliding bearings, it often takes a much 
greater effort to start the machinery from rest than to maintain motion 
at full speed. 

Roller Bearings 

68. Forms of Roller Bearings. Roller bearings, in common with the 
ordinary bearing, are classified as radial or thrust bearings, according 
to the manner in which the load is sustained. A typical form of con¬ 
struction of roller bearings for radial loading is shown in Fig. 49. A shell 
of hardened steel, B, surrounds the shaft, A, and is secured firmly to it. 
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The rollers, C, bear against this shell, 5, and against an outer shell, D, 
which is secured to the bearing proper, E. Both rollers and shells are 
usually made of high-carbon steel hardened and ground, or of mild steel 
case-hardened. The rollers are held parallel with the axis of the shaft 
by means of a cage, F, which is made of brass or other soft material. 
Some form of cage is necessary in all roller bearings on account of the 

tendency of the rollers to twist out of line with the shaft, thus replacing 
the theoretical line contact with point contact, and also causing an end 
pressure and cramping on the rollers. This tendency to end thrust is 
sometimes provided for by putting a small ball at each end of the roller 
to act as a thrust bearing. If the axis of the roller is not parallel to that 
of the shaft, it cannot make line contact with the shaft unless it assumes 

Fig. 51. Fig 52. 

a helical form. If the surfaces which confine the roller are accurately 
made, and the clearance is very small, as it should be, the roller cannot 
get out of parallelism with the shaft without being bent into a helical 
form. If the rollers are hardened this may result in fracturing them, 
especially if they are relatively long. To obviate this trouble the rollers 
are sometimes made in short lengths, as shown at Hy in Fig. 49, or the 
roller is made flexible, as illustrated by the Hyatt roller shown in Fig. 
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51. This roller is made by winding steel strip helically upon a mandrel, 
thus making a hollow flexible roller. If is to be especially noted that 
neither of these methods will compensate for inaccurate workmanship. 
For continuous line contact the outer and inner shells must be machined 
with great accuracy and placed in very accurate alignment, and the 
rollers must be guided so as to remain perfectly parallel to the shaft. 
These conditions are difficult to obtain initially, and almost impossible 
to maintain with great accuracy under continuous service. The rollers 
in bearings for radial loading may be cylindrical or they may be con¬ 
ical, as in the Grant bearing shown m Fig 52 or in the Timken bearing 
so widely used on automobiles. "J"he construction here shown permits 
of adjustment for weai, which is difficult to obtain where the roller is 
cylindrical. 

If the direction of the load to be cariied is axial, roller thrust bearings 
of the form shown in Fig. 53 are often used. The shaft, A, carries a 

thrust collar, B, and the thrust is taken on the frame of the machine by 
a corresponding collar, C. A hardened steel ring, Z), is attached to B 
and rotates with it, while a similar ring, A", is fastened to the stationary 
part, C. The conical rollers, G, roll between these rings, carrying with 
them the cage, F. A thrust ring, i7, prevents the rollers from moving 
radially outward. The apex angle of the roller should not exceed 15°, 
and usually is kept down to 6° or 7° to prevent serious end pressure 
against this retaining ring. It is evident that, where the roller is conical 
in form, the apex of the cone lying in the center line of the shaft, the velocity 
of any point in its perpphery is proportional to its distance from the axis 
of the shaft, and, theoretically, true rolling will be obtained. 

Bearings of this character with conical rollers are expensive to make 
in an accurate manner, and a simpler form, as shown in Fig. 54, is some¬ 
times used. Here the rollers are cylindrical in form and are made in 
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short lengths so as to reduce relative slipping. The outer rollers rotate 

faster than the inner rollers, and the lengths and arrangement of the 

rollers are such that ridges are not worn in the seat. 

Space does not permit of discussion of the many forms of roller 

bearings on the market; but their fundamental principles are the same, 

and the student is referred to current trade catalogues for variations in 

methods of construction. 

69, Allowable Bearing Pressures. It is evident that the bearing 

pressure in roller bearings must not be great enough to stress the mate¬ 

rial of either roller or bearing surface beyond the elastic limit, but 

theoretical considerations are of little service in the actual designing of 

such bearings. The most reliable experimental data bearing on the 

subject are the results of Stribeck’s work. In roller bearings under 

radial pressure, the quantity equivalent to the projected area of the 

ordinary bearing, so far as carrying capacity is concerned, is considered 

as the product of length and diameter of a single roller, multiplied by 

one-fifth the total number of rollers in the bearing. Thus, according to 

Stribeck, for cylindrical l)earings, if 

N = total number of rollers; 

W = total load on bearing in pounds; 

w = load on one roller in pounds; 

d = diameter of roller in inches (mean diameter for conical rollers); 

I = length of roller in inches; 

fc = a constant to be determined experimentally, 

then 

w = kid (1) 

and 

W = kid ^ (2) 
5 

From Stribeck ^s * experiments k has a value of 550 for unhardened 

rollers and bearing surfaces and 1000 for hardened surfaces. 

In thrust bearings, the load may be considered as distributed over 

the total number of rollers. Bearings of the type shown in Fig. 54 have 

been constructed to carry a load of 156,000 lb at 250 rpm. 

The manufacture of roller bearings is highly specialized, and the 

experience of manufacturers is the best guide in selecting such bearings. 

The Timken Roller Bearing Company f which has had wide experience 

*See Trans, A.S.M.E., vol. 27, page 444. 

t See '‘The Design of the Timken Bearing," Timken Journal, 
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in this field has established standards of selection based upon 500 rpm. 

The life expectancy is provided for by one factor and the conditions of 

service are provided for by another. Then the catalogue rating required 

is given by the equation: 

Required rating = 
Load on bearing X Life factor X Application factor 

Speed factor 

In the actual use of these factors the life factor and the application 

factor are combined into a service factor. 

Ball Bearings 

70. Theoretical Considerations. I^et the ball A, Fig. 55 (b), roll 

along the circular path * R, with pure rolling motion, making point con¬ 

tact with the path. Let the path B be parallel to the plane CD, and 

suppose also that the ball as it rolls remains a fixed distance from this 

same plane. Then it is evident that, if A rolls with pure rolling motion 

along B, it will rotate around some one of its diameters, at right angles 

to B, as an axis, and will make contact with B along the edges of such a 

disc as would be cut from it by a plane passing through the point of 

contact b perpendicular to the diameter around which the ball rotates. 

Thus the ball may rotate around Ok as an axis, and roll along the edges 

of the disc bz. It is clear, however, that the ball can rotate around only 

one diameter at a time, and preserve true rolling contact with B. If 

the ball has two concentric paths of contact as B and B, Fig. 55 (b) 

whose points of contact with the ball are b and e [Fig. 55 (a)] respectively, 

then it must roll along two discs bt and el, and these discs must have a 

common axis of rotation Ok perpendicular to their planes and passing 

through the center of the ball. Further, the discs must be so placed that 

* The guiding surfaces of ball bearings are almost invariably circular in form. 
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the lines il and he intersect on the line om, passing through the common 

center of B and E\ for then 

pe rb 

el hi 

or the circumferences of the rolling discs are proportional to the circum¬ 

ferences of the paths of contact, and true rolling may be attained. It is 

not possible to have more than two points of contact between the ball 

and one of its guiding surfaces, with pure rolling, as the proportionality 

given above is not true for any other points on the line oh except those 

given. The above principles are fundamental and apply to all ball bear¬ 

ings with circular guiding surfaces. 

71. Spinning. Usually one of the guiding members is fixed and the 

other rotates, the friction between the moving member and the ball 

causing the latter to roll. If the load carried is so small that no dis¬ 

tortion of the surfaces takes place, and true point contact exists, this 

frictional force will act tangemtially to the outer circumference of the 

disc of contact and be parallel to its plane. Such theoretical conditions 

never exist in practice, as the surfaces of contact are deformed, even 

under light loads, and the load is carried on a small area instead of a 

point. The frictional force rotating the ball is, hence, indeterminate 

and in general has components which tend to rotate the ball about 

other axes than the one which will give pure rolling motion. It is clear 

that inaccurate workmanship will give the same result. This action 

is known as spinning and is necessarily accompanied by friction. 

72. Forms of Ball Bearings. Ball bearings are divided into three 

types, according to the character of the load and the way it is sustained 

by the bearing: 

(a) Radial bearings, for loads acting at right angles to the shaft. 

(b) Thrust bearings, for loads acting parallel to the axis of the shaft. 

(c) Angular bearings, for taking loads both perpendicular and paiv 

allel to the axis of the shaft. 

Each of these types may be either a two-point, three-point, or four-point 

bearing, depending on the number of points of contact made by the ball 

on the guiding surfaces. 

73. Radial Bearings. Figures 56 (a) and (b) show a two-point radial 

bearing. The race B is secured to the shaft, A, while the race F is secured 

to the other member, C. Either A or C may be the rotating part. In 

order to place the balls in the raceway an opening is often cut in the 

side of one of the races, as shown at E, and the opening then closed 

with a filling piece as shown. If the race F is stationary this filling piece 
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can be located on the unloaded side and no wear brought upon it. If 

B is stationary the opening must be cut in it, and the same care used in 

locating the filling piece with reference to the load If both the shaft A 

and hub C rotate, this cannot be accomplished, and the full load is 

brought upon this filling piece, thus decreasing the capacity of the 

bearing to sustain a load, on account of the break in the surface of the 

race. If the velocity of the rotating member is high this break in con¬ 

tinuity of the race is destructive to the bearing. 

If about half the total number of balls necessary to fill the race 

completely is used, each race may be made of one solid piece. In such 

cases the bearing is assembled by moving the inner race over eccen¬ 

trically to the outer race, filling in the balls and then distributing them. 

It is desirable of course to have as many balls in the bearing as possible; 

at the same time it is undesirable to have adjacent balls rub against 

each other (see Article 63 and Fig. 50). The balls are therefore held 

apart by a light metallic cage // made in two circular sections which can 

be put in place after the balls are placed in the race. This cage lessens 

the number of balls that can be inserted, but this is compensated for by 

using balls of greater diameter and hence greater carrying capacity. 

In general it has been found that a single row of balls capable of 

carrying the load is better than two or more because of the difficulty in 

distributing the load. However, in view of the more highly developed 

manufacturing processes of today this is less true than formerly and 

bearings with two rows of balls are quite common. Figure 57 illustrates 

a so-called self-aligning bearing with two rows of balls. The outer race 

is spherical in form and common to both rows, thus allowing a limited 

amount of deflection of the shaft without serious disturbance of running 

conditions. 

The carrying capacity of radial ball bearings, according to Stribeck’s 
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experiments, is not affected materially by velocity, within reasonable 

limits, so long as the velocity of rotation is uniform; but sharp varia¬ 

tions of velocity at high speed reduce the capacity. 

74. Thrust Bearings. Figure 58 illustrates a four-point thrust bearing. 

Here there is no difficulty in filling in the balls when the races are solid. 

In Fig. 58 the angles </> and </>' are equal, but this is not necessary as it is 

evident that any line drawn through 0 and intersecting the ball circle 

will locate a pair of rolling discs which will roll on B, without interfering 

with the pair shown which may roll on A. 

The surfaces C and D are sometimes made both flat and parallel. 

It is difficult, however, to obtain absolute parallelism, initially, between 

C, D and the ball races, and much more difficult to maintain this paral¬ 

lelism under running conditions. An error in alignment, either from 

poor workmanship or deflection under load, of less than one-thousandth 

of an inch will cause concentrated loading of the balls on one side. If 

possible, therefore, such bearings should be seated on spherical surfaces, 

as shown at D, thus allowing the races to adjust themselves correctly. 

Mr. Henry Hess states that speed is an important factor in such bearings 

and he gives 1500 rpm as a maximum. 

A simple form of ball thrust bearing is shown in Fig. 59. Here the 

balls run against flat hardened surfaces A and B, and are kept in position 

by a cage C made of some soft alloy. The cage may be made to retain 

the ball loosely by drilling the openings for the balls almost through as 

shown in Fig. 59 (b), inserting the ball and then closing down the upper 

edge a little with a set as shown at e, Fig. 59 (b). 

76. Angular Bearings. If possible, radial loads should be supported 

by radial bearings, axial loads by thrust bearings, and angular bearings 

should be avoided. Radial bearings should not sustain heavy axial 

loads, and thrust bearings should not be loaded radially. For light loads 

the angular bearing will sustain pressure in either of these directions. 
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There are innumerable forms of angular hearings. Figure 60 (a), (b), 

(c), and (d) may be taken as typical of two-, three-, and four-point 

angular bearings with pure rolling action. The races can be made 

continuous in all cases, and are often adjustable. This last feature, 

though sometimes necessary and often claimed to be an advantage, 

is really a detriment as it puts the bearing at the mercy of an unskilled 

person. Properly designed ball bearings do not wear appreciably, 

and if wear does take place it will occur on the loaded side only; and 

adjustment cannot compensate for this, but only hastens the failure 

of the bearing. 

II is evident that all the arrangements shown in Fig. 60 fulfill the 

requirements for pure rolling contact as outlined m Article 69. The 

path of the ball is not so definitely determined at a, Fig 60, as in the 

other forms. For this reason the radius of the ball races, in order to 

prevent wedging of the ball, should not be greater than three-quarters 

the diameter of the ball. For the same reason the angle 0 in Fig. 60 (b) 

should not be less than about 25°. In Figs. 60 (b) and 60 (c) the point a 

may, theoretically, be anywhere, as long as it lies between the discs 

which roll on the outer raceway. It should be so placed, however, as 

nearly to equalize the loads at h and c. 

There are many cases where both radial and thrust loads must be 

withstood and where it is not convenient or desirable to install a thrust 

bearing. For such purposes the New Departure Manufacturing Com¬ 

pany recommends a bearing such as shown in Fig. 61 (a). The radii of 

the ball races are not much greater than the diameter of the ball, and the 

shoulders of the races on the thrust sides are higher than in the simple 

radial bearing. In theory they are like Fig. 60 (a). They can be used 

for combinations of thrust and radial loading. Most usually they are 

applied in pairs as shown in Fig. 61 (b). In order to accommodate 

different ratios of thrust and radial pressure these bearings are manu- 
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factured with three different angles of contact between balls and races. 

They are particularly adapted to preloading, which will be described. 

76. Preloading of Ball Bearings. The principle of preloading was 

largely an outgrowth of an effort to apply ball bearings to the spindles 

of machine tools where great precision is essential. All bearings have 

an initial “ give or softness when put under load, the ordinary 

journal, from the nature of its construction if well made, having greater 

initial resistance. Ball bearings from the fact of point contact of the 

ball and race nahirally “ give ’’ more proportionally when first loaded. 

Preloading consists of applying an initial load to the bearings before any 

pressure from the wairk to be done is put upon them. Figure 61 (b) 

shows a preloadmg arrangement as applied by the New Departure 

Manufacturing Company to a lathe spindle. If the sleeve B is moved 

to the right by the preloading nut N the outside races will be forced 

apart and load applied to the balls, motion on the part of the inside 

races being resisted by the shoulders of the spindle at M and M, This 

action also forces the balls outwardly and thus centers the spindle more 

firmly and takes up any initial softness in a radial direction. 

In the practice of the S. K. F. Company the inner race is made 

slightly thinner than the outer race, thus allowing it to crowd over and 

load the ball by pressure against the outer race. Two such bearings are 

placed side by side and the inner races pressed together. The exact 

amount of loading is predetermined during the process of manufacture 

and therefore remains constant until wear occurs. 

77. Allowable Load. The allowable load that may be put upon a 

ball bearing will depend on the following: 

(a) The character of the materials forming the balls and races. 
(b) The shape of the raceways. 
(c) The diameter of the balls. 
(d) The velocity of rubbing. 
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(a) Ball bearings fail by overstressing the material of the raceways or 

balls. If the stress induced is far beyond the elastic limit, and often 

repeated, the surfaces will flake off and failure will occur. lOxperiments 

on the crushing strength of balls or races are useless and misleading, as 

the life of the bearing depends upon the elastic and not the crushing 

strength. Evidently none but hard materials can be used for appreci¬ 

able loads, and these must be homogeneous in texture. Case-hardened 

materials are of doubtful value for severe service. For most trying 

circumstances special steels and alloys are much used. 

(b) Theoretically, a ball supports the load on a point, but practically 

the unavoidable distortion of the material increases the point to a small 

surface. It can be demonstrated mathematically, and is evident on 

reflection, that a greater bearing surface will be formed for a given dis¬ 

tortion of ball and ball race the more closely the cross-section of the ball 

race corresponds to the cross-section of the ball. On the other hand, 

and as a direct consequence of this increase of surface, it is found that the 

friction increases as the cross-section of the races approaches the cross- 

section of the ball, a result to be expected. 

It is almost impossible to machine and adjust ball bearings of three- 

or four-point contact so that the load is uniformly distributed at the 

various points of contact. It is borne out by experiment, and it is well 

known, that two-point bearings can carry heavier loads than any other 

form for a given diameter of ball. 

(c) The allowable load which a ball can carry varies with the square 

of the diameter. 

These statements have been proved experimentally by Stribeck, 

who found that the carrying capacity of a ball could be expressed by 

w = kdP (1) 

where w ~ greatest load on one ball in pounds. 

fc = a constant depending on the material and shape of ball races. 

d = diameter of ball in inches. 

Stribeck showed that the total load that may be carried on a single-row 

ball bearing is equal to one-fifth of the allowable load on one ball mul¬ 

tiplied by the number of balls. If, therefore, W be the total load in 

pounds on one row of balls, and N the total number of balls, 

w = w^ = k<p^ 
5 5 

(2) 
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For hardened-steel races made of good quality of steel: 

k — 450 to 750 for flat or conical races, three- or four-point contact; 

k = 1500 for two-point contact and raceways, whose radius of 

curvature equals 

With more perfect materials Stribeck states that these values may be 

increased 50 per cent. Since his experiments were performed great 

progress has been made both in the quality of steel used for ball bearings 

and also in the accuracy with which the surfaces are finished. It will 

be noted that the load is not uniformly distributed over the balls that 

are under load at any time. It is greatest upon the ball directly under 

the load and decreases as the ball moves away from this position. 

(d) As noted in Articl(‘ 67 tlie contact surfac€\s of both balls and races 

are subjected to repeated compressive stresses which in ordinary opera¬ 

tion are very high. The working life of the l)earing before the surface 

flakes will depend upon the speed of rotation. For a given life of the 

bearing the load must be reduced as the speed is increased and it may be 

increased as the speed is decreased. 

It is possible to write a rational equation for the carrying capacity 

of ball bearings in terms of these variables, but the coefficients must 

be determined experimentally. Manufacturers have developed tabu¬ 

lated statements of the carrying capacities of their product in terms of 

rotative speed, and these form the most reliable sources of information 

on this point. Manufacturers' literature also contains extended in¬ 

formation concerning the mounting of ball bearings since proper mount¬ 

ing has much to do with their successful operation. 

78. Practical Considerations. It is clear that in order to insure an 

even distribution of load, initially, the workmanship on both balls and 

races must be very accurate; and in order to maintain this distribution 

the material must be uniform in quality and hardness throughout. It is 

also found that, for best results, the surfaces must be highly polished and 

free from scratches. The bearing must be kept free from acid and rust, 

and provision must be made for excluding dust and grit and for retaining 

a supply of lubricant, the function of the lubricant being largely to pre¬ 

vent rusting and to reduce the frictional loss due to the small amount of 

unavoidable sliding. As has been stated, modem manufacturers have 

succeeded in producing special steels for ball bearings that are homo¬ 

geneous to a high degree. The accuracy and finish of the surfaces are 

also remarkable. Mr. Brunner * states that the dimensions of the 

balls may be held to an accuracy of 0.000025 in. 

Tram. A.S.M.E., vol. 54, M.S.P. pages 54-3. 
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The coefficient of friction of ball bearings is virtually independent of 

the load as would be expected. It will range from 0.0005 to 0,003 with 

an average around 0.001 to 0.002, From Table X it will be seen that 

this is about the range of perfectly lubricated cylindrical bearings when 

in full operation. The ball bearing has a great advantage in starting 

and in places like line shafting where perfect lubrication is not attainable. 

Ball bearings, like roller bearings, are highly specialized products 

and should therefore be selected for important work with the advice of 

the manufacturer not only as to carrying capacity but also as to the 

manner of lubrication, mounting, etc. Trade catalogues of reputable 

manufacturers contain full information for most general purposes. 
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CHAPTER VII 

AXLES, SHAFTS, AND SHAFT COUPLINGS 

79. General. The terms axle, shaft, and spindle are applied some¬ 

what indiscriminately to machine members which are so constrained by 

journals and bearings as to admit of motion of rotation. These rotating 

members may be subjected to simple torsion or bending, or to combina¬ 

tions of torsion and bending. Shear, also, usually exists as in loaded 

beams. Rotating members may be classified roughly as follows, 

according to the predominating stress (see Article 14), or to the particular 

purpose for which they are intended. 

(a) Axles, loaded transversely and subjected principally to bending. 

(b) Shafts, subjected to torsion or combined torsion and bending. 

(c) Spindles, or short shafts which directly carry a tool for actually 

doing work, and which as a consecpience must have accurate motion. 

The axles of railway freight cars are good examples of case (a); 
transmission shafting in factories, or the shafts of steam engines are 

good examples of (b); lathe and milling-machine spindles illustrate (c). 

Considerations of strength seldom enter into the design of spindles. 

In these members torsional and flexural stiffness and accuracy of form in 

the bearings are, usually, the most important considerations. When 

the spindle is designed with these latter requirements in view, there 

is usually an excess of strength against rupture. The discussions 

given in Article 13 apply in this ciise, and it will not be considered further 

here. 

80. Axles. Let A (Fig. 62) be an axle which carries the loads 

Pi, P2, and P 3, but is not subjected to any torsional stress except that 

due to negligible bearing friction. Suppose the axle to be supported 

by the bearings N and N. The distribution of the bearing reactions 

is indeterminate, as explained in Article 50, and the assumption is usu¬ 

ally made that they are concentrated at the middle of the bearings, as 

indicated. This assumption is on the safe side, so far as the strength 

of the shaft is concerned, as the slightest deflection of the shaft tends 

to concentrate the reaction at the inner edge of the bearing. The axle 

can, therefore, be treated as a simple beam (Article 15). If the load P2, 

were zero, and the loads Pi and P3 were equal and symmetrically placed 

174 
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(which is the most usual condition, as in car axles), the case would be 

identical with Case XIV of Table 1. It will be instructive, however, 

to make a solution of the general case given above. 

The principal stress to which the axle is subjected is simple bending. 

Shear also exists in every section; but from the general theory of beams 

(Article 15) it is known that, usually, this latter may be neglected in the 

body of the shaft. If, however, the shaft is short, and consequently 

need not be large to withstand the applied bending moment, the section 

of the bearing at XX should be cheeked for shearing stress. The 

dangerous section of the shaft will be where the bending moment is a 

maximum, and hence it is necessary to determine this maximum moment, 

which also involves the determination of the unknown reactions. The 

reactions may be determined mathematically by taking moments 

around K2. Then, 

Ril = + P2I2 + P'sh 

Ri = 

P]li + P'jh + • j = 1640 lb 

and 
7^2 = Pi + P2 + P3 - = I860 lb 

The bending moment at any section is the algebraic sum of the moments 

of the external force's on either side of the plane considered. Thus the 

bending moment at P2 = M2 = Pi(l — h) “ Pi{h — h)y and this 

value may be used in equation (J) of Table VI {M2 == si/ c) to determine 

the stress for a given cross-section or to determine the cross-section for 

an assumed stress. 

A graphical solution is oftem more convenient as it shows at once 

where the maxinmm bending moment is located. In Fig. 62 denote 

the forces Pi, P2, and P3 thus: ah, he, cd. Draw' the force diagram 

taking 1 in. equal to 1200 lb. To this scale take AE equal to Pi and 

ED equal to P2. At E draw a horizontal line to some convenient 

distance, here taken as 2 in., and locate the pole 0. This procedure it 

will be noted insures that the closing line of the moment diagram eo is 

horizontal, which is convenient for purposes that follow. Lay off 

AB = Pi, BC = P2, and CD = P3, and draw AO, BO, CO, and DO, 

It will be noted that these forces are drawn consecutively downward 

since they act in that direction and their sum AD must equal the sum of 

the reactions or upward forces. From any point on ah in the moment 

diagram draw oa and oh parallel, respectively, to OA and OB in the 

force diagram. From the intersection of oh and he draw oc parallel 

to OC, and in similar manner draw od. Join the intersection of oa 
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and eo. with the intersection of od and dc, thus locating the closing string 

oe. Since OE has already been located in the force diagram, oe should 

be parallel to it, in this case horizontal. It should be noted that it is 

not necessary to determine the reactions mathematically, and no matter 

where the pole is taken a line through 0 parallel to will locate the 

point thus determining the value of the reactions graphically. 

The vertical ordinates of the moment polygon are proportional to the 

bending moments at any point. The numerical value of any bending 

moment is the continued product of the force scale, the space scale, 

the pole distance, and the ordinate of the moment diagram at the point 

under consideration. Thus the force scale is 1 in. = 1200 lb; the 

space scale is 1 in. == 24 in.; the pole distance = 2 in. Hence the scale 

of the moment diagram is 

1200 X 24 X 2 = 67,600 in-lb 
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The maximum bending moment occurs under P2 where the intercept 

on the moment diagram is 1.4 in. Its value is therefore 

57,600 X 1.4 = 81,000 in-Ib 

If the stress is limited to 10,000 lb, then from equation (5), page 93, 

whence 

M = s - = 81,000 = 10,000 X 0.098<i3 
C 

^3 ^ 81,000 

10,000 X 0^ 

d - 4.4 in. or say, 4.5 in. 

Article 14 discusses the general theory of deflection in beams, 

and Table I shows the location and value of the deflection in simple 

cases. For more complex loading graphic methods are often helpful. 

In Fig. 62 the moment diagram is divided into a number of small parts 

so as to obtain a smoother deflection curve. The verticals through the 

centers of gravity of these smaller divisions are designated at the bottom 

of the diagram as fg^ gh^ hi, etc.; and the areas in square inches are shown 

on these lines directly lielow the moment diagram. The imaginary 

reactions nf and mr? are also indicated. A force scale of 1 in. = 1.5 sq in. 

has been assumed. To this scale FN is laid off equal to the left-hand 

reaction and NM equal to the right-hand reaction. The pole 0 is 

taken 2 in. on a perpendicular from N, thus again insuring a horizontal 

closing line no. The deflection diagram is constructed in the same 

manner as the moment diagram. The deflection scale is computed 

by multiplying together the moment scale, the linear scale squared, 

the moment area scale, and the pole distance. In Fig. 62 the moment 

scale is 1 in. = 57,600 in-lb; the linear scale is 1 in. = 24 in., the moment 

area scale is 1 in. = 1.5 sq in., and the polar distance = 2 in. 

Hence the deflection scale = (see Article 14). 
IE 

If E = 30,000,000 the scale = 
3.31 

I 
per inch of ordinate. 

For a 4.5-in. shaft I = 0.049# = 20.1. The maximum deflection 

occurs at ij, and the ordinate scales 1.3 in., hence the 

Maximum deflection = ^ = 0.21 in., which is somewhat large. 
20.1 
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Practice limits the deflection of shafting to 0.01 in. per ft of length. 
The allowable deflection in this case is therefore 0.01 X 10.5 = 0.1 in. 
For this deflection since I = 0.049d^ 

^ j ^ 1.3 X 3.31 ^ 1.3 X 3.31 

1 0.049d^ 

whence = 878 
0.049 X 0.1 

and d — 5.4 in. or say, 5.5 in. 

The shear diagram shown at the bottom of Fig. 62 indicates that, 
as would be expected, the shear can be neglected. If the bending load 
on such a shaft is uniformly distributed it may be considered as a 
number of concentrated loads and the same procedure followed as in 
the foregoing. 

It should be particularly noted that in this example I is a constant 
quantity since the diameter of the shaft is constant throughout its 
length. If the diameter varies irregularly then the deflection diagram 
must be modified by dividing its ordinates by the value of I which 
belongs to each diameter. This as can be seen results in a diagram 
with a serrated outline.* 

81. Shafts Subjected Principally to Torsion. The fundamental 
relations existing in a shaft which is subjected to torsion only have 
been fully discussed in Article 13, and for such cases or where other 
stresses such as those due to bending, are negligible, Article 13 is applica¬ 
ble. Shafts subjected to pure torsion rarely occur in practice, as bending 
is almost always present, being due to the weight of the shaft itself, and 
to the weight of pulleys which it supports, as well as to belt pulls, etc. 
There are many cases, however, where the torsional stress is predomi¬ 
nant, or where it is difficult if not impossible to compute the bending 
effect. Thus, in long factory shafting, where the power is supplied to 
the shaft at one point, and is given off in small increments at short 
intervals all along the shaft, the bending due to the pull of the belts 
is small. This is especially true if care is exercised to place the pulleys 
as close to the bearings as possible. 

If the shaft is of considerable length, the angular distortion is of 
importance, and it may often occur that a shaft having sufficient tor¬ 
sional strength will not have proper torsional stiffness. If the power is 
applied at one end of the shaft, and taken off at the other end, compu¬ 
tations for both strength and stiffness are easily made and may be of 

* See “Vibration Problems in Engineering” by S, Timoshenko, page 64. 
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service. In nearly all cases, however, power is delivered in varying 
quantities all along the shaft, and such computations are not only 
difficult to make but would indicate that the diameter of the shaft 
should vary at different parts of its length. This w^ould be undesirable, 
as it is important that shafting, hangers, etc., should, as far jis possible, 
be uniform and interchangeable for convenience and economy; and the 
practice of reducing the diameter of the shaft as it extends from the 
driving point is confined to larger shafting (say over 3 in. in diameter). 
The design of shafts subjected principally to torsion, therefore, is usually 
based on the formula for torsional strength, modified by practical 
coefficients which experience has shown will provide for stiffness against 
torsion and bending. 

Referring to equation 7), Article 13, 

(1) 

If P be the equivalent force applied at the periphery of the shaft, so 
that T — Ptj where r is the radius of the shaft in inches; and if N be 
the number of revolutions of the shaft per minute; then the horse¬ 
power transmitted will be 

2PrwN_2TtN 

33,000 X 12 “ 33,000 X 12 

33,000 X 12 X Hp 63,024 Up 

2TrN ~ N 

Substituting this value of T in (1) above. 

where /c is a constant depending on the stress assigned. If shearing 
stress alone were to be considered, might be taken as high as 9000 lb 
per sq in., for steel shafting. In order to secure stiffness, and to pro¬ 
vide for the indeterminate bending in line shafts, it is customary to 
assume a lower stress (or higher factor of safety), depending on the 
material used, and the service for which the shaft is intended. The larger 
and more important the shaft, the lower should be the working stress, 
as the failure of a head shaft or shaft of a prime mover is accompanied 
by great inconvenience and expense. The following factors of safety are 
indicated by successful practice: 
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For head shafts. . 15 
For line shafts carrying pulleys . 10 
For small short shafts, countershafts, etc. . . .7 

For steel shafting, the allowable stress for the above factors would be 
about 4000, 6000, and 8500, respectively, whence 

For head shafts, 

d = 4.3^ (3) 

For line shafting carrying pulleys, 

d = 3.75^ . (4) 

For small short shafts, countershafts, etc., 

d = 3.36^/^Tp (5) 

The Code for Design of Transmission Shafting of the A.S.M.E. 
recommends for shafts in simple flexure: 

16,000 lb per sq in. for commercial steel shafting without allow¬ 
ance for key ways. 

12,00p lb per sq in. for “ commercial steel shafting with allowance 
for keyways. 

60 per cent of the elastic limit in tension but not more than 
36 per cent of the ultimate tensile strength for shafting 
purchased under definite physical specifications. 

For shafts subjected to simple torsion: 

8000 lb per sq in. for “ commercial steel shafting without allow¬ 
ance for keyways. 

6000 lb per sq in, for “ commercial steel ” shafting with allowance 
for keyways. 

30 per cent of the elastic limit in tension but not more than 18 
per cent of the ultimate strength for shafting steel purchased 
under definite physical specifications. 

It must be borne in mind, however, that a universal rule cannot be 
laid down for any class of shafting; and cases will arise that need further 
consideration than that given by the foregoing equations and discussion. 
For example, in the span of shafting where the power is applied by a 
large belt the bending action may be excessive, and this particular span 
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may have to be of a larger diameter than the remainder of the shaft. 
It is to be especially noted that a shaft carrying a transverse load 
which applies a bending moment to the shaft is subjected to a reversed 
stress as it rotates. If, in addition, the twisting moment varies in 
magnitude, the factors of safety owing to complete or partial reversal 
of stress (see Articles 30 to 35) must be high, and this accounts for the 
low stresses allowable in such shafts. 

82. Shafts Subjected to Torsion and Bending. In engine shafts, 
head shafts driven by heavy belts, and many others, the torsional stress 
is not predominant and may, in fact, be less than that due to bending. 
A full discussion of the relations which exist in this case has been given 
in Article 17 and it remains to show the application of this discussion to 
actual designs. 

From Article 17 (equations K, Ki and Fig. 9), it appears that, if the 
bending and twisting moments can be determined for any section, the 
theoretical diameter of the shaft at that section can be found. Usually 
the twisting moment can be determined without difficulty, but the 
bending moment is often difficult to determine, and sometimes the 
designer must be content with an approximation. One of the greatest 
sources of uncertainty is the location of the reactions at the bearings. 
Usually, as already pointed out, the safe assumption is made that these 
reactions are concentrated at the center line of the bearing. When the 
shaft is of appreciable length (15 or 20 diameters), the error is small; 
but in such cases as the crankshafts of multiple-cylinder engines, where 
the distance between the centers of bearings is only four or five diameters, 
or less, it is evident that the assumption is in the direction of excessive 
safety. 

In line shafting, particularly with the usual swivel bearings, the error 
from this source is small, and at first sight the conditions of such shafting 
would appear to approximate those of a continuous beam. Although 
such an assumption might be safely made when the shafting has been put 
in perfect alignment, it would not be safe as a general principle, as per¬ 
fect alignment, even under best conditions, is of short duration, and 
bending stresses soon appear as a result of lack thereof. It appears, 
therefore, that, in this case, the safest procedure would be to treat each 
span as if disconnected at the bearing, when computing bending mo¬ 
ments. 

A typical example of combined twisting and bending is the engine 
shaft shown in Fig. 63 (a), the data taken being those of the example in 
Case (c), Article 5. Here the shaft is supported by the bearings at the 
points X and Z', as indicated, and carries a heavy generator spider at Y. 
The weight of this spider, and that of the shaft itself, with the probable 
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magnetic pull which may occur when the shaft wears downward a little, 
is estimated at 22,000 lb. The maximum pressure (P) on the crank- 
pin, due to the steam pressure, is 25,000 lb. This force is a maximum 

when the crank is about vertical, and, at that position, it exerts a twist- 
mg moment on the shaft from the crank to the point Y * where power 

The reinforcing effect of the hub of the spider is neglected. 
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IS delivered, and also a bending moment on the shaft m a horizontal 
diiection The weight of the generator, etc, exerts a simple bending 
moment m a downward direction, and at right angles to that induced by 
P. Figure 63 (b) shows, isornetrically, the direction and point of appli¬ 
cation of the various foices and reactions, and it is required to find the 
maximum equivalent bending moment on the shaft. 

It was shown m Example (c), Article 59, how a tentative solution 
could be made for the diameter and length of the mam journal, thus 
fixing the distance of its center line from the center line of the crankpin 
at 212 in Other data fix the distance between bearings as 7 ft 9 m 

Graphical Analysis is here very convenient, and the oider of procedure 
will be as follows: 

(a) Find tlu^ bending moment due to the steam pressure P. 

(b) Find the bending moment due to the dead load IF 
(c) Combine these bending moments to find the maximum resultant 

bending moment 
(a) Consider, for convenience, that the force P, and all the reactions 

due to it, have been lotated into the plane of the paper so that P is 
represented as acting vertically Driw the foice * diagram, O'B'A'C' 

for force P, and the rcictions due to it, to a convenient scale, here taken 
as 8000 lb per iii, taking O' on a horizontal line through Athus making 
the closing string of the moment diagram also horizontal, which is con¬ 
venient lor later woik Draw the moment diagram, MNP for force P, 
and the reactions due to it, as shown The space scale is f m to 
1 ft or 1 m = 16 m. 

(b) In a similar manner construct the force diagram ABCO, for 
force Wj and the corresponding moment diagiam JITJIy for the force IF, 
making the pole distance — OB, takem here as 3 in f 

(c) To combine the bending moments at any section, as Z, take the 
intercept ST, on HU, and lay it off as S'T' on the diagram MNP, 

The distance T'U is proportional to the combined bending moments 
and may be used as an ordinate VV'm the diagram of combined bending 
moments DGFE 

It often occurs that the shaft carries a heavy flywheel at F, instead 
of a generator, and a heavy belt may also run on the wheel It is 
evident that the resultant force due to the weight of the wheel and the 
pull of the belt can be determined, both in magnitude and direction 
In general the direction of this force will not be vertical, but will make an 
angle, <?>, less than 90° with the direction of the force P In such a case 

♦ See also Article 80 

t Reduced to one-half size m cut. 
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the moments may be combined by the triangle of forces, taking into 
consideration the angle <^. 

The numerical value of any moment is the continued product of the 
ordinate which represents it, the pole distance, the scale of the space 
diagram, and the scale of the force diagram. Thus the maximum bend¬ 
ing moment, which occurs at 

F = in. X 3 X -y- X - 485,400 in-lb 

The twisting moment is seen by inspection to be uniform over the 
whole length of the shaft which it affects. Its numerical value is, as 
before, 25,000 X 18 = 450,000 in-lb; and these two moments may be 
combined, to determine the safe diameter of the main part of the shaft 
according to the methods of Article 17. Since the shaft is of mild steel 
in which the ratio of the allowable tensile stress to the allowable shearing 
stress is approximately 2 it will be advisable to use the equivalent 

twisting moment Te — + T‘^. 

The methods outlined in the foregoing are clearly applicable to any 
shaft which has not more than two points of support, since in such cases 
the reactions can readily be found. If the shaft has more than two 
points of support it becomes a continuous beam, a discussion of 
which is beyond the limits of this book. In practice it is customary in 
long small transmission shafts to neglect the effect of continuity and 
treat each span of the shaft as though it were a simple beiim, this 
procedure being on the safe side. 

The equivalent bending and twisting moment formulas given in 
Article 17, namely, 

M. = (K) 

and 

T, =VaP + {Kx) 

are those in most general use and are commonly referred to as based 
upon the theory of failure through maximum stress in tension, com¬ 
pression, or shear. There are, however, other theories of failure under 
combined stress, such as the maximum strain theory which assumes that 
failure takes place when the strain or deformation reaches a certain 
value. These theories are discussed in all good treatises on mechanics 
of materials. The A.S.M.E. Code for Design of Transmission 
Shafting, to which reference has been made, reviews these theories as 
they apply to shafting and concludes that equation (Jfi) is on the 
whole the safest for steel shafting. In arriving at this conclusion the 
assumption is made that the allowable stress in tension is twice the 
allowable elastic stress in shear. For most mild steels this assumption 
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is approximately true, and the discussion in Article 17 and the curve of 
Fig 9 bear out the conclusions reached in the Code However, it 
should be particularly noted that this conclusion is universally true 
only when is equal to 2 as shown in Fig 9 For other values of 
Si/s, equation {K) may give a greater diameter for the shaft, and the 
conclusions of the Code do not apply to other materials or even to 
wrought iron 

As noted m Article 81, the factor of safety that should be used in 
the design of a shaft depends upon its relative importance The 
A S M E Code to which reference has been made recommends that 
the maximum shearing stress m combmed stresses be limited as follows; 

8000 lb per sq in for “ commercial steel shafting without allow¬ 
ance foi keyways 

6000 lb per sq m for commercial steel with allowance for key- 
ways 

30 per cent of the elastic limit m tension, but not more than 
18 per cent of the ultimate tensile strength for shafting steel 
bought under definite physical specifications 

The Code also quite properly notes that suddenly applied loads or shock 
may be applied to the shaft by either or both of the bending and twisting 
moments and recommends that independent shock and fatigue factors 
be applied to these moments as the conditions may dictate These 
factors are defined as follows: 

Kt = numerical combmed shock and fatigue factor to be applied to 
the computed torsional moment 

Ktn = numerical combined shock and fatigue factor to be applied 
to the computed bending moment 

Smee in all cases Kt and Km are equal to or greater than unity, the 
effect of multiplying the bending moment or twisting moment by 
these factors is to increase their numerical value and consequently the 
diameter of the shaft. The recommended values of Kt and Km are as 
follows: 

Stationary shaft: Km Kt 

Gradually applied load . . 1 0 1 0 

Suddenly applied load 1 5 to2 0 1 5 to2 0 

Rotating shafts: 

Gradually applied or steady load 1 5 1 0 

Suddenly applied loads, minor shock 1 5 to 2 0 1 0 to 1 5 

Suddenly applied loads, heavy shock 2 0 to 3 0 1 5 to 3 0 
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These values, of course, should be considered as suggestive only, 
for conditions vary widely and in each case the result should be checked 
by the basic discussion of Article 30. 

83. Shafts Subjected to Torsion and Compression. The general 
equations for combined stress of this sort are given in Article 18, and 
reference may be made to that section. 

84. Effect of Keyways on Strength and Rigidity of Shafting. It is 
evident that keyways must decrease both the strength and the rigidity 
of shafting, but conclusive data as to the influence of keyways are lack¬ 
ing, practically the only information available being the results of tests 
conducted by Professor H. F. Moore and reported in Bulletin 42 of 
the Experiment Station of the Universit}^ of Illinois. These tests 
were conducted on shafting varying from 1^ to 2\ in. in diameter; 
the keyways were of the usual proportions as found in average prac¬ 
tice. A few tests were made on shafts having Woodruff keyways of 
usual proportions, the results not differing markedly from those obtained 
with the ordinary keyways. 

Although the number of experiments was not very great and the 
range of shaft diameters was comparatively limited, certain results were 
clearly developed. It appears that the ultimate strength of shafting, 
either under torsion or under torsion and bending, is not materially 
affected by ordinary keyways. The strength at the elastic limit, how¬ 
ever, is lowered, and Professor Aloore states that the relative strength 
or ratio of the elastic strength of a shaft having a keyway to the elastic 
strength of a solid shaft of the same diameter is expressed by the equation 

e = 1.0 - {),2w - l.\h (1) 

where e is the relative strength, w the ratio of width of keyway to shaft 
diameter, and h the ratio of the depth of keyway to the shaft diameter. 
Tests of shafts having keyways much longer than ordinarily used did not 
show any marked diminution of strength as compared to shafts having 
keyway of ordinary length. A test of a single shaft having two keyways 
90° apart showed a reduction of elastic strength nearly three times as 
great as that in a similar shaft having one keyway only. 

It was found that keyways reduced the rigidity of the shaft; that 
is, the angle of twist was increased in those 'portions of the shaft where 

the keyways were cut. Professor Moore states that the relative rigidity, 
fc/r, or ratio of angle of twist of that portion of the shaft that carries 
the keyway to a similar length of the solid shaft is expressed by the 
equation 

jfc = 1 + QAw + 0.7A (2) 
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where w and h have the same significance as in (1); Professor Moore 
stales that since equation (1) depends entirely upon experiments of 
limited range it should not be used for work far outside the limits of 
these experiments. 

86. Torsional Stiffness and Deflection of Shafting. W hen a shaft 
has considerable length, the matter of torsional stiffness is important. 
A rule, common in practice, is to limit the twist in the shaft to one degree 
for every 20 diameters in length. Another rule limits the twisting to 
0.075 degree for every foot in length. The lateral deflection of the shaft 
should not exceed ^ in. per foot of length, to insure proper contact at 
the bearings. Theoretical considerations, however, do not enter so 
largely into the spacing of bearings of line shafting, as does the con¬ 
struction of the framework to which the bearings are fastened. Care 
should be exercised in laying out such structures, that provision is made 
for fastening the hangers close enough together to avoid excessive 
defection. For the average range of velocities found in practice the 
following formula * can be used for ordinary small shafting: 

L = for shaft without pulleys (1) 

L = for shaft carrying pulleys (2) 

where L = distance between hangers in feet and d = diameter of shaft in 
inches. In large and important shafts that carry heavy loads the 
deflection can usually be computed by the formulas of Table I or the 
graphic methods of this chapter. For small shafts that are in effect con¬ 
tinuous beams each span may be considered as a simple beam without 
serious error, and that will be on the side of safety. 

If T be the twisting moment in foot-pounds applied to a shaft, 
then the power transmitted at N revolutions per minute is 2TTrN] 

from which it appears that, the greater the velocity of the shaft, the 
smaller is the required turning moment, for a given amount of power 
transmitted. 

86. Critical Speed of Shafting. If a slightly deflected shaft is rotated, 
centrifugal force, acting on the eccentric mass of the shaft, tends to 
equalize the forces which hold the shaft deflected in one plane and to 
whirl the shaft as a whole around the axis of rotation. At low speeds 
the action of centrifugal force is small, and the deflecting force will hold 
the shaft deflected in its plane. As the effect of centrifugal force 
increases with the velocity, while the effect of the deflecting force is 
constant, it is clear that as the speed is increased the centrifugal force 

* See also Kent^s ** Mechanical Engineers* Pocket Book.** 
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will, at some speed, balance the effect of the deflecting force, and the 
shaft will become unstable. Beyond this speed the shaft will whirl 
about the central axis. For a given diameter and length of shaft there 
is one definite speed within which it will maintain a stable condition 
with a given deflection. 

In high-speed machines, such as modern steam turbines and certain 
types of rotating electrical apparatus, the critical speed luis become a 
problem of great importance. It is practically impossible to obtain 
truly homogeneous materials and very difficult to balance perfectly a 
rotating body, so that its gravity axis, or axis of mass, coincides wath its 
geometric axis. As the body begins to rotate the gravity axis will 
rotate in a very small circle around the geometric axis, creating a cen¬ 
trifugal force. This centrifugal force, acting radially through the 
gravity axis and rotating with it, will bend the shaft until this tendency 
is balanced by the elastic action of the shaft. If the speed of rotation 
is low, the vibrations caused by the unbalanced mass may not be seri¬ 
ous. If the speed be increased, however, the shaft will assume a con¬ 
dition of unstable equilibrium and violent vibrations may ensue. The 
speed at which this unstable equilibrium occurs is called the critical 
speed. If the speed is increased beyond this point the body will rotate 
around its gravity axis, the shaft whirling in a bowed form to permit 
this action; the vibrations will die away and the system will run 
smoothly. No satisfactory explanation has been given of the manner 
in which the gravity axis passes from the outside of the bow of the 
shaft to the inside of the bow at the critical speed. Theoretically, also, 
the deflection of the shaft at the critical speed becomes infinite; prac¬ 
tically this does not occur, perhaps, as has been suggested, because of 
the resistance of the air, and possibly because in practice the critical 
speed is passed through quickly. Many machines have been success¬ 
fully operated above the critical speed, the vibrations due to unbalance 
being obviously less than at speeds below the critical speed. The 
actual working speed should, in any case, be 15 or 20 per cent above 
or below the critical speed. De Laval, recognizing this phenomenon, 
purposely designed his turbines with a small or flexible shaft, so that 
the rotor could readily find its gravity axis, and his rotative speeds 
were far above the critical speed of the rotating system. 

This phenomenon can be demonstrated readily by mounting a small 
wooden disc, say f in. thick and 8 in. in diameter, eccentrically, as 
shown somewhat exaggerated in Fig. 64 (a), upon a piece of circular 
dowel rod f in. in diameter and about 3 ft in length. One end of the 
rod should be made conical so that it may be fitted into a small hole 
in the floor. If the rod is rotated very slowly between the palms of 
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the hand the entire system will rotate around the geometric axis of the 
rod. If the speed is increased, centrifugal action will carry the center 
of gravity of the disc outside the axis of the rod as shown in Fig. 64 (a), 
a critical speed will be reached, the system will become unstable and 
'' whirl as a whole around the axis AB. If the speed is still further 
increawsed the center of gravity of the disc will pass back inside the rod 
as shown in Fig. 64 (b) and the entire system will rotate around its 
gravity axis, which in this case will be close to the gravity axis of the 
disc, the shaft bending as it rotates as in Fig. 64 (b). So long as this 

(b) 
Fig. 64. 

higher speed is maintained the entire system will rotate quietly and 
smoothly. 

The mathematical determination of the critical speed of rotating 
bodies is somewhat involved and beyond the scope of this book. Refer¬ 
ence will be made, however, to two of the most common cases. It can 
be shown * that for a single disc mounted in the center of a vertical 
shaft the critical speed is 

30 /48 X E X I X g X 12 720 IE X I X 32.2 

where E = modulus of elasticity, 
I =» moment of inertia of the cross-section, 

* See “Vibration Problems in Engineering’* by S. Timoshenko, page 60. See also 

**Vibration Prevention in Engineering” by A. L. Kimball, page 63. 
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I = the length of the span in inches, 
Nc = the revolutions per minute, 
W = the weight of the disc in pounds. 

The more usual case is a horizontal shaft carrying a series of weights 
Wiy 1^2, etc., as shown in Fig. 64 (c), these weights being deflected 
from the true axis by distances a*i, ^2, etc. Then it can be shown 
that the critical speed of such a system in revolutions per minute is 

Nc = 

30Vg X 12 ri:Wx 

or for the case shown in Fig. 64 (c) 

^oVg X 12 
Nc 

WiXi + W2X0 4- + W4X4. 

IWlXl^ + 1^20*2- +’TT3^3" + 

It is to be noted that if x is expressed in inches g must be reduced to 
inches as indicated. The solution of these equations depends upon the 
determination of the several deflections under the loads. The methods 
of finding these deflections is explained in Article 80. The foregoing 
discussion assumes that the bearings offer rigid support to the shaft. 
In actual practice this is far from being true, especially in heavy 
turbine or electric rotors in which a certain degree of elasticity must be 
expected. Mr. A. L. Kimball states that the lowering of critical speed 
in such cases is frequently as much as 25 per cent and may in extreme 
cases be over 50 per cent.^^ 

Example. What is the critical speed of the 5.5-in. shaft of Article 80 
when carrying the loads shown in Fig. 62? 

Here the deflection scale = 3.31/7 per inch and / = 0.049 X 5.5^ = 
44.8, whence the deflection scale = 0.0738 per inch. The deflection 
intercepts under the three loads scale 0.85 in., 1.2 in., and 0.6 in., respec¬ 
tively, whence the deflections at these places are xi = 0.738 X 0.85 = 
0.063; 0:2 = 0.0738 X 1.2 = 0.088; and 0:3 = 0.0738 X 0.62 = 0.046. 
Then 

^ _ 30Vg X 12r 1000 X 0.063 + 2000 X 0.088 + 500 X 0.046 

r L100 X 0.63"^ + 2000 X 0.0882 + 500 X 0.046^ 
or 

Nc = 647.4 rpm 

87. Practical Considerations; Hollow Shafting, etc. Shafts may 
be and often are made of cast iron, bronze, and other material. By 
far the greater number, however, are made of machinery steel, so called. 
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or steel containing 0.20 to 0.40 per cent of carbon. Large shafts are 

forged or rolled hot and finished by turning in a lathe. Large and 

important shafts are often made of alloy steel such as nickel steel. Most 

commercial shafting up to about 3 in. is made by cold rolling or cold 
drawing, though turned shafting can still be obtained in small sizes. 

The effect of cold rolling or cold drawing of steel is of course to over¬ 

stress the metal and elevate both the elastic limit and the ultimate 

strength. The elevation of the elastic limit may be as great as 40 per 

cent of the original value. This naturally increases the elastic or shock- 

n'J'isting quality (see Article 2S). CVdd rolling, it should be noted, is not 

simply a surface effect but in bars of comparatively small size the effect 

penetrates deeply into the bar. Cold-rolled or cold-drawn shafting is 

made in sizes from -^-in. diameter to 1-in. diameter in increments of 

in., and from 1-in. to 3-in. in increments of in. Beyond this 

size commercial shafting is finished by turning in a lathe. Cold-rolled 

and cold-drawn shafting is very straight and accurate to diametral size. 

Because of internal stresses, however, it deforms * badly if the surface 

is cut at any place. For this and other reasons pulleys and couplings 

for small shafting are usually fastened by clamping of some sort. 

The use of hollow shafts not only reduces the weight for a given 

strength, but the removal of the metal from the core of a steel shaft 

(or of the ingot from which it is made) very greatly increases its relia¬ 

bility under repeated application of stress. 

Shortly after a steel ingot is cast, the exterior solidifies and becomes 

comparatively cool while the internal portion is still fiuid. The subse¬ 

quent contraction, during complete cooling, is much less in the exterior 

walls than it is m the hotter interior mass. Unless the interior is fed,’' 

during this period, it will be less dense than the outer portions and 

shrinkage cavities are apt to be present near the center of the ingot. 

Numerous expedients have been adopted to reduce this evil, among 

which is “ fluid compression," or subjecting the ingot to heavy pres¬ 

sure immediately after it is poured. The difficulty is not entirely over¬ 

come by such means, however, as the walls of large ingots become too 

rigid to yield to the pressure before the interior is entirely solidified. 

The external walls freeze," after which the internal shrinkage is made 

up by metal flowing from the upper portion toward the bottom as long 

as any of it remains fluid. This leaves a shrinkage cavity at the upper 

end of the ingot. Gas liberated during cooling collects in this cavity 

also. The result of these two actions is to form what is called the 

pipe," which frequently extends to a considerable depth. The top 

See Article 13. 
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end of the ingot is cut off and remelted, but this does not insure removal 

of all of the pipe, and it also involves much expense. If the portion 

cut off is not sufficient to remove all of the pipe, a piece rolled or forged 

from the ingot contains a flaw near the center which is drawn out into 

a long crack if the ingot is worked into a long piece. The rolling and 

forging may squeeze the sides of the cavity together so that it is not 

easily detected at any section, but as this work is done at a temperature 

much below that corresponding to welding, the defect is not removed. 

This flaw is more or less irregular or ragged; hence its form is favorable 

to starting a fracture, under variations of stress, which may finally 

extend far enough to cause rupture. 

If the ingot is bored out, the pipe is effectually removed, and the 

metal remaining is superior to that of a solid shaft. It will be evident 

that casting a hollow ingot is not the equivalent of boring out one which 

was cast solid; for if the ingot is cast hollow the outer and inner walls 

cool before the intermediate mass does, and the shrinkage effect takes 

place in the latter. In fact, a shaft made from a hollow ingot is worse 

than the solid shaft, in the respect that the former has the defective 

material nearer the outer fibers where the stress is greater. 

COUPLINGS AND CLUTCHES 

88. General Description. Couplings are machine members which 

fasten together the ends of two shafts, so that rotary motion of one 

causes rotary motion of the other. Where the connection is to be 

broken only at rare intervals, as in making of repairs, the couplings are 

generally constructed so that they must be partially or wholly dis¬ 

mantled to separate the shafts. Such couplings are known as permanent 
couplings. When it is desired to disengage the shafts at will, the coupling 

is of a different construction and is generally known as a clutch coupling. * 
The use of clutches is not, however, confined to securing together the 

ends of shafting, but they are much used for engaging and disengaging 

pulleys at will, in connection with the shafts on which they are placed. 

For this service clutches making use of friction are much used, and this 

particular type is discussed in Chapter XVII. 

Couplings should be placed near a bearing, so as to bring the joint 

in the shaft near a supported point, and should be placed on the side of 

the bearing farthest away from the point where power is applied, so that 

when the shaft is disconnected the running part is supported near the 

end. 

* See Trans. A.S.M.E., 1908, for a full description and discussion of various 
forms of clutches. 



PERMANENT COUPLINGS 193 

89. Permanent Couplings. Where the axes of the two shafts to be 

connected are parallel and coincident, couplings such as are shown in 

Figs. 65 (a), 65 (b), 66, and 67 are used. Figure 65 (a) illustrates a type 

of coupling known as a split-muff coupling. The parts A and B are 

separated by a small space and can, therefore, be clamped to the shaft by 

the holts C. For heavy work a key as shown is provided, but in lighter 

shafting friction alone may suffice to prevent relative rotation. 

Fig. 65 (a). Fig 65 (b). 

Figure 66 shows the Sellers muff coupling. Here the circular tapered 

wedges, 5, B, are drawn inward by the bolts, C, The wedges are split 

as shown at D, hence the tighter they are drawn inward the more firmly 

they clasp the shaft. For light work no key is necessary, but for the 

full capacity of the shaft keys are advisable. 

Couplings such as shown in Figs. 65 (a) and 66 are regularly manu¬ 

factured in standard sizes, and the student is referred to the trade 

Fig. 66. Fig. 67. 

catalogues of manufacturers for dimensions and capacities of such 

couplings. 

The flange coupling, Fig. 65 (b), is one of the most common and also 

one of the most effective forms of permanent couplings. The general 

proportions are usually designed empirically, but the bolts should be 

designed so that their combined resistance to the turning moment 

will be at least as great as the torsional strength of the shaft itself; 

and the bolts should be accurately fitted so as to distribute the load 

evenly among them. 
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Let D = diameter of the shaft in inches. 

d = diameter of the bolt in inches. 

n — the number of bolts. 

r ~ radius of bolt circle in inches. 

Ss — allowable shearing stress per square inch, for steel. 

Then 

16" 

whence 

Good practice gives 

n = 3 + - 

(1) 

but this number may be modified for convenience in spacing, etc. 

The bolts should be carefully fitted to insure that each one carries its 

full share of the load. The projecting outer flange is an important 

feature as it covers the revolving bolt heads, thus protecting workmen 

from becoming entangled. For best results the flanges should be 

pressed on to the shaft and the faces trued up in place, thus insuring 

greater accuracy of alignment. This is done in all good work. 

When great strength and reliability are desired, as in marine work, 

the flange is sometimes forged solid with the shaft, as in Fig. 67. Here 

the bolt holes are sometimes bored tapering, and reamed after the 

flanges are placed together, thus insuring a perfect fit for the bolts, and 

also facilitating their withdrawal. 

When the axes of the two shafts are parallel, but not coincident, or 

when there is danger of par¬ 

allel and coincident axes wear¬ 

ing out of coincidence, Old¬ 
ham’s coupling, Fig. 68, is 

often used. It consists of two 

heavy flanges (A and B), each 

keyed fast to its own respective 

shaft, and an intermediate 

disc, C. The disc has a tongue 

running diametrically across 

each face, these tongues being placed at right angles to each other 

and fitting into grooves cut in the flanges. With this coupling the rate of 

rotation of the driven shaft is identical with that of the driver, or, in other 

words, the angular velocity is the same. 
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If the axes of the two shafts, A and B, Fig. 69, intersect and make an 

angle 6 with each other they may be coupled together by means of a 

Hooke’s coupling or universal joint, as it is often called. In this 

coupling each shaft is fitted with a jaw, />, which is pin-connected to an 

intermediate member, F. The holes in this intermediate member for 

receiving the pins G are at right angles to each other. With this arrange¬ 

ment the angular velocity of the driven shaft is not the same at all points 

of the revolution as that of the driver.* The construction shown in 
Fig. 69 is sometimes used, but the difference between the angular 

ve^locity of the driver and iliat of the driven sliaft is less when the con¬ 

struction is such that the axes of the pins, G, intersc'ct. The construction 

shown in Fig. 69 is that usually adopted where it is desirable to use 

bolts at Gj because of the hc^avy load transmitted. The construction 

required to make the axes of the pins intersect is usually somewhat more 

complicated than in Fig. 69, and there' is a great variety of designs by 

which this result is attained. 

If another shaft, (7, be coupled to B so that A and C make the 

same angle 0 with B; if also the pins, (?, G, in B are parallel to each 

other and all three shafts lie in the same plane; then the angular velocity 

of C will be identical with that of and vice versa. Empirical practice 

makes the diameter of the pin G equal to one-half the diameter of the 

shaft. The universal joint in the form illustrated in Fig. 69 is some¬ 

what cumbersome for some purposes, and many adaptations of the 

principle have been made in order to secure compactness. The many 

forms of universal joints in use in automobile propeller shafts are good 

examples of such adaptations. 

90. Positive Clutches. Positive or jaw clutches are much used for 

starting and stopping such machines as punch presses which must work 

intermittently. They are made in so many forms that a description of 

them would be beyond the scope of this work. A very full description 

of many forms is given in the Transactions of the A.S.M.E., vol. 30, 

* See “Kinematics of Machinery,'^ J. H. Barr and E. H. Wood, page 214. See 

also “Kinematics of Machinery,*^ by Albert and Rogers, page 378. 
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to which reference has already been made. Figure 70 illustrates the 

most common form of disengaging coupling for heavy work. The part 

B is made fast to the shaft to be driven; part Ay which is compelled to 

rotate by the feathers, F, can be moved axially along the driving shaft. 

A ring, Ry fitting the groove, (7, loosely in a radial direction, is con¬ 

nected by the pins, P, to an operating lever which is not shown. When 

the part A is moved forward till the jaws, J, engage, A will drive B 
positively in either direction. In order to facilitate the engaging of the 

jaws they are often made as in Fig. 71, but in this case the driving can 

be in one direction only. The total cross-sectional area of the jaws 

must be such that they will not shear off under the load, and the area 

of the jaw faces must be sufficient to prevent crushing. 

Fig. 70. Fig. 71. 

Frequently, for light work, only one feather is used, but two feathers 

are, in general, better, both on account of the driving effort and for ease 

of operation. 

91. Flexible Couplings. Where it is desirable to have a small 

amount of flexibility in a shaft, a flexible coupling is employed. These 

members are much used for connecting rapidly revolving machines to 

prime movers, as in the case of a dynamo directly coupled to a steam 

engine, the object being to prevent undue stress, or bearing pressure, 

from lack of accurate alignment of the two shafts. Figures 72, 73, and 

74 show typical forms of flexible couplings in common use. 

In the construction shown in Fig. 72, the shafts, A and P, are fitted 

with heavy flanges, P, which carry pins, P. Links of leather, L, con¬ 

nect pins on one flange with pins on the other, each set of links 'having a 

thickness equal to one-half the length of the pin. The pins on one disc 

are sometimes placed on a smaller diameter than those on the other, so 

that in case of failure of the links the pins will not strike and cause 

breakage. The working stress in the links may be taken at 400 lb per 

sq in. of cross-section. In small couplings of this type, a single disc of 

leather is used, this disc being fastened by a ring of bolts alternately to 

one flange and then to the other. 

In the coupling shown in Fig. 73, which is manufactured by the 
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General Electric Company, the shaft flanges are fitted with steel rims, 
Ry one of which is somewhat smaller in diameter than the other. Each 
rim carries a series of axial slots having well-rounded edges; through 
these slots an endless leather belt is laced and forms the driving con¬ 
nector. The coupling is readily disconnected by unbolting one of the 

steel rims from the main flange. The leather used in these couplings is 
specially prepared and can be stressed to 400 lb per sq in. of section 
when in operation. 

Couplings with leather connectors and other forms of flexible coup¬ 
lings employing rubber distance pieces between the driving pins serve 

also to insulate electric motors or generators from other machines. 
They should not be used in damp places or where the connectors may 
be injured by acids, oils or vapors. In the Francke flexible coupling, 
Fig. 74, the driving connectors are flexible pins made up of thin lamina¬ 
tions of steel. These laminated pins are held in place by steel yokes, 
the laminations being placed edgewise in a radial position. The steel 
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yokes in turn are held in place by spring retainer rings, B (Fig. 74), 
which snap into a groove in the main member. Retainer pins, C, hold 
the laminations in place in the yokes, A. One of the holes made through 
the bundle of laminations to take the retaining pin is slotted, so that a 
small amount of endwise motion is permitted between the bundle of 
laminations and the yoke, dliis permits the coupling to adjust itself 
to a small lack of alignment due to the shafts being out of parallel, with 
each other. The flexible pins permit a small adjustment, if the con¬ 
nected shafts are out of line though parallel with each other. This 
coupling has proved to be a very satisfactory connection in many lines 
of work. For very heavy work the manufacturers of this coupling 

have developed a coupling with two sets of flexible pins; a floating ring 
is placed between the coupling flanges that engage the shafts, and each 
coupling is engaged with the floating ring by one set of pins. This 
arrangement gives greater flexibility than can be obtained with the type 
shown in Fig. 74. In the larger sizes of these couplings, the yokes that 
retain the flexible pins are fastened in place by bolts instead of snap 
rings, as shown in Fig. 74. Several other flexible couplings are manu¬ 
factured commercially, descriptions of which may be found in current 
advertisements. 
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CHAPTER VIII 

SPRINGS 

92. Distinguishing Characteristic of Springs. Springs are charac¬ 
terized by a considerable distortion under a moderate load. Every 
machine member is, in a sense, a spring, for no material is absolutely 
rigid and the application of a load always produces stress and accom¬ 
panying strain. By proper selection and distribution of material it is 
possible to control (within wide limits) the degree of distortion under a 

given load. 
An absolutely rigid material would be practically unfit for the 

construction of any member subject to other than a perfectly quiescent 
load; for (as shown in Article 26) the stress due to a suddenly applied 
load would be infinite if the corresponding distortion of the member were 

zero. 
It is usually desirable to restrict the distortions of most machine 

parts to very small magnitudes, but there are many cases in which 
considerable distortion under moderate load is desirable or essential. 
To meet this last reciuirement the member is often given some one of the 
forms commonly called springs. 

93. The Principal Applications of Springs. Springs are in common 

use: 
I. For weighing forces; as in spring balances, dynamometers, etc. 
II. For controlling the motions of members of a mechanism which 

would otherwise be incompletely constrained; for example, in main¬ 
taining contact between a cam and its follower. This constitutes what 
Reuleaux has called “ force closure.^' 

III. For absorbing energy due to the sudden application of a force 
(shock); as in the springs of railway cars, automobiles, etc. 

IV. As a means of storing energy, or as a secondary source of energy; 
as in clocks, etc. 

An important class of mechanisms in which springs are used to weigh 
forces is a common type of governor for regulating the speed of engines 

or other motors. In those governors which use springs to oppose the 
centrifugal, or other inertia actions, the springs automatically weigh 
forces which are functions of speed, or of change of speed. The links, or 

199 
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other connections, which move relative to the shaft with any variation 
of the above forces, correspond to the indicating mechanism of ordinary 
weighing devices. 

The first of the above-mentioned applications—the weighing of 
forces—is usually the most exacting as to the relation between the load 
and the distortion of the spring throughout the range of action. In the 
second and third classes of application, it is frequently only required 
that the maximum load and distortion shall lie within certain limits, 
which often need not be very precisely defined. The use of springs for 
storing energy (as the term spring is ordinarily understood) is almost 
wholly confined to light mechanisms or pieces of apparatus requiring but 
little power to operate them. 

General Summary of Springs 

Kind of Spring Load Act ion Predominating Stress 

Flat or leaf spiings Flexure or bending Tension and compression 

Helical spring under axial load Torsion of wire Shear 

Helical spring under turning moment 

tending to wind or unwind it 

Flexure Tension and compiession 

Spiral spring under turning moment 

tending to wind or unwind it 
Flexui e Tension and compression 

Helico-spiral spring under axial load Flexure combined 

with torsion 

Tension and compression 

and shear 

94. Materials of Springs. Springs are usually of metal; although 
other solid substances, as wood, are sometimes used. A high grade of 
steel, designated as spring steel, is the most common material for heavy 
springs, but brass (or some other alloy) is often used for lighter ones. 
Of late, springs made of chrome-vanadium, silicon-manganese, or other 
alloy steels have come into use, but the majority of springs are still 
made of carbon steel, partly because of the higher cost of these alloys. 
The design of springs has received much attention by automotive 
engineers, and reference is made to publications of the S.A.E. for par¬ 
ticulars. 

A confined quantity of air is used in many important applications 
to perform the function of a spring. The air-chamber of a pump with 
its inclosed air is a familiar example of what may be called a fluid 
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spring used to reduce shock water hammer ”). The characteristic 
distortion of the solid springs is a change in/on/?, rather than of volume; 
the fluid springs are characterized by a change of volume with incidental 
change of form. 

Soft-rubber cushions, or buffers, are not infrequently employed 
as springs, and these are in some respects intermediate in their action 
between the two classes mentioned above. It is usually not necessary, in 
these simple buffers, or cushions, to secure a very exact relation between 
the loads and the distortions under such loads. The discussion of the 
confined gases (fluid springs) is not within the scope of the present work; 
hence the following treatment will be limited to solid springs. 

96. Flat or Single-leaf Springs. Flat or leaf springs are essentially 
beams, either cantilevers or beams with more than one support. These 

Fig. 75. Fig. 76. Fig. 77. 

1 . 

Fig. 78. Fig. 79. Fig. 80. 

springs are subjected /o flexure when the load is applied, and the 
resultant stresses are tension on one side of the neutral axis and com¬ 
pression on the other, with a transverse shear as in all beams. The 
shear may usually be neglected in computations for strength. 

The six forms of rectangular-section beams shown by Figs. 75 to 80, 
inclusive, are those most commonly used as simple flat springs. These 
will be designated Types I, II, III, etc., as in the following table. 

Let P = load applied to the spring. 
I = free length of the spring. 
s — intensity of stress in outer fibers. 
I — moment of inertia of most-strained section. 
h = dimension of this section in plane of flexure. 
h = dimension of this section perpendicular to plane of flexure. 

E = modulus of elasticity of the material. 
b = deflection of the spring. 

The general theory of flexure in beams, gives for strength, 

M = S-, 
c 
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which, for beams of rectangular cross-section carrying a single con¬ 

centrated load, as is most usual with springs, may be expressed, 

M = PI - CshK^ (1) 

where (7 is a constant dependent upon the beam and the manner of 

loading. For the deflection of such beams the same theory gives 

5 = K' 
PP 

El 
(2) 

where again K is a constant dependent upon the beam and ttie manner 

of loading. The following table gives the values of C and K for the 

cases considered: 

TABLi: XVII 

Type I II III IV V VI 

Figure 75 76 77 7S 79 80 

C 2 2 
3 

2 1 
6 

1 
b 

1 
6 

K 1 
4 

3 
8 

1 
2 4 6 8 

Formulas (1) and (2) can be used to check the strength and deflection 

of any existing spring, since both involve the length, breadth, and thick¬ 

ness of the material. In the most usual problem of design, however, the 

length of the spring, the load, the the allowable deflection are the only 

known quantities, and the breadth and thickness are to be determined. 

If either the breadth or the thickness are assumed, the other dimension 

can be determined from equation (2) and the resultant stress can then be 

checked by (1). This stress, of course, must be within the elastic limit. 

If the first estimate gives unsatisfactory results, other assumptions must 

be made until satisfactory dimensions and stresses are obtained. A 

more general method will now be deduced by which it is possible to 

determine the proper dimensions for the requirements given in the fore¬ 

going without the necessity of making trial assumptions. 

From equation (1), 

bh^ = 

From equation (2) 

El 
Cs ■ 

KPl^ 

bh^ = 
Plh 

Cs 
(3) 
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From equations (3) and (4), 

im ^ KPP 

Cs ' Ed 

(5) 

(6) 

From equation (1), 

CKsP 

E5 

PI 
Csh^ 

The two equations (5) and (6) are in convenient form for designing 

a flat spring when the span (Z), deflection (6), load (P), and the material 

are given. 

Example. The span of a prismatic flat spring of rectangular section 

(Type I) is 30 in.; and a load of 1000 lb applied at the middle is to 

cause a deflection of 1.5 in. 

If the modulus of elasticity be 30,000,000 and the safe maximum 

working stress be taken at 50,000 lb per sq in,,* required the dimen¬ 

sions of the cross-section, h and 6. 

From equation (5), 

2^ 1 50,000 X 900 1 . 

E8 3 4 30,000,000 X 1.5 6 

Taking A = ^ in., to use a regular size of stock, s will be somewhat 

less than 50,000, or since from (5) the stress is proportional to the 

thickness, A, for a given deflection. 

s 50,000 y, s — 47,000 

From equation (6), 

PI 3 _ 1000 X 30 X 1024 

Csh^ “ 2 ^ 47,000 X 25 
39.2 in. 

If this width is inadmissible, laminated or plate spring may be used. 

See next article. 

It will be noted that equation (5) does not directly involve either 

the load P or the breadth of spring b. It is evident that if a beam (flat 

spring) of given span (Z), and thickness (Zi), is deflected a given amount 

(5), the outer fibers will undergo a definite strain which is not dependent 

* If the spring is provided with stops to prevent deflection beyond a certain 

amount, the stress due to such deflection may be nearly equal to the elastic limit 

of the material. A very small factor of safety is all that is necessary. 
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upon the width of the beam (b), nor upon the force required to produce 

this change in relative positions of the molecules. As the unit strain 

multiplied by the modulus of elasticity equals the unit stress, it follows 

that this stress may be computed from Z, A, and 5 (which determine 

the strain), in connection with E. If the breadth of the beam (6) is 

increased, the force (P) required to produce the given deflection (5) 

will be proportionately increased, but the intensity of stress is not 

affected by these changes alone. 

This same conclusion may be reached from the following relation, 

in which p = the radius of curvature due to load: 

s = 

El 

M 

2p 

El 
6/ _ M 

~ 2s 
(7) 

(8) 

It appears from equation (8) that the stress is simply proportional 

to the thickness (h) and the radius of curvature (p), for any given value 

of E. The span I, and the deflection 5, determine p, so that equation 

(7) or (8) may take the place of equation (5). 

96. Laminated, or Plate, Springs. It was shown in the preceding 

article that the maximum thickness of a simple flat spring is fixed when 

the span, deflection, and modulus of elasticity are known, and the inten¬ 

sity of working stress has been assigned. (See equation (5).) With 

the value of the thickness (h) thus limited it will frequently happen that 

a simple spring of rectangular outline will require excessive breadth (6) 

to sustain the given load, and it is often necessary to use a spring built 

up of several plates or leaves. 

Example. P == 1000 lb; Z = 30 in.; s = 60,000 lb per sq in.; 

8 = 2 in., and E = 30,000,000. A simple prismatic spring of rectangular 

section, with load at the middle of the span (Type I), to meet the above 

requirements would have: 

h = 
E8 3 4: 30,000,000 X 2 

PI 3 ^ 1000 X 30 . 
i) —-— — X -- ^ 33 3 iQ, 

Csh^ 2 60,000 X 0.0225 

This spring, consisting of a plate 0.15 in. thick and 33^ in. wide, 

with a span of 30 in., is evidently an impracticable one for any ordinary 

case. Suppose this plate be split into 6 strips of equal width, each 

33.3 6 = 5.5 in. wide, and that these strips are piled upon each other 
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as in Fig. 81; then, except for friction Ijetween the various strips, the 
spring would be exactly equivalent, as to stiffness and intensity of stress, 
to the simple spring computed above. Although the form of laminated 
spring which has just been developed might answer in some cases, 
another form, based upon the “ uniform strength beam (Type II), 
is much better for the ordinary conditions. 

It may be developed as follows, taking the same data as the preceding 
example, except that the spring is to be of Type II, Fig. 76. 

In the simple spring, Type II, 

A = CA — = X X 
Eb 3 8 ^ 30,000,000 X 2 

0.225 in. 

h 
jn 
CW 

3 ^_1000 X 30 

2 60,000 X 0.0506 
14.8 in. 

A laminated spring for the case under consideration may be derived 
from this simple spring by imagining the lozenge-shaped plate to be 
cut into strips which are piled one upon another as indicated in Fig. 
82. The thickness of 0.225 in. does not correspond to a regular com¬ 
mercial size of stock, however, and it will usually be better to modify 
the spring to permit using standard stock. If a thickness of J in. be 
assumed for the leaves or plates, the stress, as found from equation 
(5) of the preceding article, becomes: 

hEb 4 X 0.25 X 30,000,000 X 2 _ 
8 = - = - = 00,7UU 

CKl^ 900 

If this stress is considered too great, steel in. thick might be used, 
when 

_ 4 X 3 X 30,000,000 X 2 _ . 

16 X 900 
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With h — in. and 6* = 50,000, 

, PI 3 ^ 1000 X 30 X 256 ^ . 
0 = - = X-= 25.6 in. 

Gsh^ 2 50,000 X 9 

If this spring, 30 in. span, in. thick, and 25.6 in. wide at the 

middle, be replaced by 5 ecpiivalent strips, each 25.6 -r- 5 = 5.11 in. 

wide (nearly 5^ in.), see Fig. 82, a laminated spring of good form and 

practical dimensions will result. If the maximum allowable width of 

spring is fixed, a larger number of plates may be necessary. Thus, 

in the preceding problem, if the spring width must be kept within 4y in., 

it is necessary to use 6 plates, each 25.6 6 = 4.27 in. wide. 

In laminated springs as actually constructed, the full-length, or base, 

leaf must usually have a square end of some kind, either to support 

the spring or to fasten it to some other part. It is not unusual for the 

ends of the shorter leaves to be cut squarely across, as shown in Fig. 

83. While such springs may be designed with safety by equations (5) 

and (6), the computations will necessarily be less accurate than when 

the ends are pointed. Some spring manufacturers make the ends of 

the shorter leaves semicircular * and thin them somewhat, so as to 

attain the same effect as when the end is pointed. Others compromise 

by making the ends semi-pointed or trapezoidal in outline. The error 

introduced by making the end of the base leaf square is probably not 

great where only one such base leaf is used. If, however, several full- 

length base leaves are used, the error may be so great as to make equa¬ 

tion (5) inapplicable. In laminated springs as actually constructed, 

furthermore, the laminations must be held together at the center by 

a band of some kind, as shown in Fig. 85. The free length of the 

spring, Ij used in computations should be as shown in Figs. 84 and 85, 

* See “A New Theory of Plate Springs'' by I^andau and Parr, Journal Franklin 

Institute, December, 1918. 
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and the plate spring equivalent to a laminated spring with one or more 

full-length leaves with square ends is trapezoidal in outline, as shown 

also in Fig. 84. 

Professor Peddle has shown that if the usual mathematical methods 

of finding the deflection of beams is applied to cantilevers of length, Z, 

and of trapezoidal outline as shown in Fig. 84, then for serni-elliptic 

springs, as shown in Fig. 83, 

P - 
snhh? 

3Z 
(1) 

and 

2Psk 

^ ~ hE 
(2) 

where h — breadth of the leaves, 

n = number of leaves. 

k = 
1 

(1 - tY 
— 2r(l — r) — log^ r 

number of full-length leaves 

total number of leaves 

(3) 

The strength of a full-elliptic spring is, of course, the same as that 

of a semi-elliptic spring, but the deflection for the same load will be 

twice as great. 

The preceding discussion has been based upon the assumption that 

a laminated spring is made from a trapezoidal plate, as shown in Fig. 

84, and that all the leaves are given the same radius of curvature. 

If there are several full-length leaves the spring really consists of two 

fundamental parts, namely, a beam of uniform cross-section and a 

beam of uniform strength. Now, the deflection of a beam of uniform 

strength is 50 per cent greater, for the Siime load, than a similar beam 

of uniform cross-section. It is not reasonable, therefore, to assume 

that in such a composite beam each leaf will carry its proportional 

share of the load, and be stressed to the same amount as the adjacent 

leaf. Mr. E. R. Morrison has suggested f that if the two fundamental 

parts of such a composite beam are separated at the middle, before 

being banded together, by a space equal to the difference in deflection 

* Equation (3) is somewhat cumbersome, but Professor Peddle has devised 
charts which make its solution easy. See American Machinist^ April 17, 1913, 

and also Halsey's “Handbook for Designers and Draftsmen," page 201. 

t See Machinery, January, 1910, page 343. See also Journal S.A.E., June, 1919, 

for a discussion of stresses in springs when a space, or “nip," is allowed between each 

adjacent pair of leaves. 
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of tKe two fundamental parts at full load, the fiber stresses under full 
load will be the same in each leaf When this construction is followed 
there must be, of course, an initial stiess in the leaves when unloaded, 
due to the action of the band 

The spring shown in Fig 83 is initially curved (when free), which is 
common practice The best results are obtained by having the plates 
straight when the spring is under its normal full load (if this is prac¬ 
ticable) because the sliding of the pbtes upon each other, with the 
vibrations, is then reduced to a minimum It is not uncommon to 
make the longest plate thicker than the others, if but one plate is given 
the full length of the spring This cannot be looked upon as desirable 
practice, however, as all the plates are subjected to the same change 
m radius of curvature, hence the thicker plate is subjected to the 
greater stress. See equation (8). In applying the equations that have 

been developed, it should be remembered that there is always liability 
of considerable variation m the modulus of elasticity, hence, such com¬ 
putations can only be expected to give approximations to the deflec¬ 
tions which will be observed by tests of actual springs These compu¬ 
tations will be sufficiently exact for many purposes, but when it is 
important to determine accurately the scale of the spring (ratio of 
deflection to load), actual tests must be made 

97. Helical Springs. If a rod or wire be wound into a flat ring with 
the ends bent m to the center. Fig 86, and two equal and opposite 
forced +P and —P, be applied to these ends (perpendicular to the plane 
of the rmg) as indicated, the rod will be subjected to torsion 

If a longer rod be wound into a helix, with the two ends turned in 
radially to the axis, the typical helical spring is produced If two equal 
and opposite forces, +P and — P, act on these ends, along the axis of 
the helix, they mduce a similar stress (torsion) in the rod, but as the coils 
do not he m planes, perpendicular to the line of the forces, there is a 
component of direct stress along the rod This direct stress increases 
as the pitch of the coils increases relative to their diameter; but with 
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ordinary proportions of springs, the torsion alone need be considered, 
when the external forces lie along the axis of the helix. 

The following notation will be used in treating of helical springs 
of circular wire, subjected to an axial load: 

P = the force in pounds acting along the axis, 
r = the radius of the coils, to center of wire. 
d — the diameter of wire in inches. 

Sg = the maximum intensity of stress in wire (torsion). 
J — the polar moment of inertia of wire. 

Eg — the transverse modulus of elasticity. 
5 = the “ deflection (elongation or shortening) of spring in inches. 
n — the number of effective coils in the spring. 
I — the length of wire in inches in the helix = 27rrn (approximately). 

Suppose a helical spring under an axial load to be cut across the 
wire at any section, and the portion on one side of this section to be 
considered as a free body. Fig. 87. Neglecting the direct stress, equilib¬ 
rium demands that the moment (Pr) of the external force shall equal 
the stress couple, or moment of resistance (6‘«7rd^/16 for circular section). 
Therefore, the equation for the strength of helical springs of solid circular 
cross-section is 

and 

(1) 

Ss = 

16Pr 

Trd^ 
(2) 

These equations have been used extensively in the design of springs 
but have not always proved satisfactory. M. A. M. Wahl,* as the 
result of analytical and experimental studies, states that the shearing 
stress is not uniformly distributed over the area but is greatest in the 
inner surfaces of the coil. He recommends the following equation: 

lePrf"4c ~ 1 0.615] 16Pr 

His equation therefore is equation (2) multiplied by a factor which is a 
function of c which is defined as 2r/d. Mr. Wahl also noted that if the 
load is not applied axially but is applied so as also to produce a bending 
moment upon the spring an additional allowance must be made for the 
stress due to the moment. 

* Stresses in Heavy Closely-Coiled Helical Springs,'' Trans, A.S.M.E., vols. 51 
and 52. 
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If the free portion of the helix is straightened out, as indicated by 

the broken lines in Fig. 87, till its direction is perpendicular to the 

radial end, it will appear that the moment Pr still equals the moment 

of resistance, s* 7rd^/'16. Since the stress and strain are the same in this 

helix and the straight rod, it appears that the energy expended ageinst 

the resilience is the same in both cases (the length of wire affected 

remaining constant). Or, as the force (P) and the arm (r) are the same 

in both conditions, the distances through which this force acts to produce 

a given torsional stress (.sj are equal. If a straight rod of length I 
is subjected to a torsional moment Pr, the angle of twist in radians 

being a, then 

^ olJE^ 

The energy expended on the rod is the mean force applied multi¬ 

plied by the distance through which this force acts. If the load is 

gradually applied, this energy is \Pra. In the corresponding helical 

spring, the mean force (^P) acts through a distance equal to the de¬ 

flection of the spring (5), or the energy expended is ^P6. As has been 

noted, the energy expended in the two cases is the same, or 

§Pra = |P5 a = - 
r 

aJ Es S Tr(P Es 
, p,___ 

• p — 
64r^7i 

64r^/i 

(4) 

Equation (4) expresses the relation between the external load and 

the deflection, in terms of the diameter of the. wire, the number of 

turns in the coil, and the mean radius of the coil. Mr. Wahids experi¬ 

ments indicated that this equation was fairly accurate. This equation 

for rigidity holds good only within the elastic limit of the material, as E^ 
is simply a ratio between stress and strain within this limit. It therefore 

becomes necessary to check the above indicated computation for 

strength, and it will often be found, after thus checking, that the stress is 

either too high for safety, or too low for economy. 

Example. The load on a helical spring is 1600 lb, and the corre¬ 

sponding deflection is to be 4 in. Transverse modulus of elasticity of 

material = 11,000,000, and the maximum intensity of safe torsional 

stress = 68,000 lb, wire of circular section. To design the spring, 
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assume d — % in., and r = ij in., whence 2r/d = c — 4,8 and K = 
1.33; from equation (4), 

4 X 625 X 11,000,000 X 8 ^ 

4096 X 64 X 1600 X 27 

Checking for the stress by equation (3), 

16 X 1600 X h5 X 512 X 1.33 

TT X 125 
= 66,7661b 

This stress is found to be safe, but is somewhat below the limit 
assigned, and it may be desirable to work up to a rather higher stress. 
Another computation can be made (with a smaller d or larger r), and 
by a series of trials, the desired spring can be found. The following 
order of procedure may be convenient. The load being given, assume 
a diameter of wire and value of safe stress, then solve in equation (1) 
for the radius of coil. Give this radius some convenient standard 
dimension (not exceeding that computed if the assumed stress is 
considered the maximum safe value). Next substitute these values of 
d and r (with those given for P, 6, and E^) in equation (4) to find 
the number of coils. Then cla^ck the stress by equation (3). 

The weight of a spring is a matter of some importance, as the mate¬ 
rial is expensive. The following discussion shows that the weight varies 
directly as the product of the load and the deflection, inversely as the 
square of the intensity of stress in the wire, and directly as the transverse 
modulus of elasticity. Hence, for a given load and deflection, economy 
calls for a high working stress and a low modulus of elasticity. Fromi 
equation (1): 

also for a member under torsion, 

_d aEs 
__X — 

s, = - X - X —- 
2 r 2vrn 

d5E, 

47rr^n 

4xr^ns, 

dE. 

PS = 
v^d^rns,^ 

iE. 
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But the volume of the spring is 

\irdn = lir'Hhn 

Pd = 
Ss^V 

2Ej S.^ (5) 

The weight is directly proportional to the volume; hence, for given 
values of Es and the weight varies simply as the product of the load 
and the deflection. All possible helical springs (of similar section of 
wire) have the same weigiit for a given load and deflection, if of the same 
material and worked to the same stress. It can be shown that a helical 
spring of square wire must have 50 per cent greater volume than one 
of round wire, the stress and modulus of elasticity being the same in 
both. The round section is generally admitted to be best for helical 
springs under ordinary conditions. 

A small wire of any given steel usually has a higher elastic limit than 
a larger one, while there is no corresponding change in the modulus 

of elasticity with change in diameter. This suggests the use of as light a 
wire as is consistent with other requirements. 

Two or more helical springs are often used in a concentric nest 
(the smaller inside the larger), all being subjected to the same deflec¬ 
tion. This is common practice in railway trucks, where the springs are 
under compression when loaded. If these springs have the same 
“ free height (when not loaded), and if they are of equal height when 
closed down, “ solid,” it can be shown that the length of wire should be 
the same in each spring of the set for equal intensity of stress. The 

solid ” height of a spring is H = dn, and the length of wire is I = 2Tm; 
hence the number of coils of the separate springs of the set are inversely 
as the diameters of the wire and inversely as the radii of the coils; or 
the ratio of r to d is the same in each spring of the nest. This con- 
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elusion may be somewhat modified when it is remembered that the wire 
of smaller diameter may usually be subjected to somewhat higher work¬ 
ing stress than the larger wire of the outer helices; and also that the 
wire of these compression springs is commonly flattened at the end to 
secure a better bearing against the seats. See Fig. 88. 

Two common methods of attaching “ pull springs are shown in 
Fig. 89. One end of the spring shows a plug with a screw thread 
to fit the wire of the spring. This plug is usually tapered slightly, and 
the coils of the spring are somewhat enlarged by screwing it in. The 
other end of the spring shows the wire bent inward to a hook which lies 
along the axis of the helix. The former method is usually preferable 
for heavy springs. 

Springs of circular cross-section, as has been noted, are usually pref¬ 
erable to those of rectangular cross-section. For helical springs of 
square cross-section. 

Pr = 0.20Sb'^Ss /. P = 
0.208h^Ss ^ 

r 
(6) 

and 
Pr i.SPr 

~ 0.2086J “ ¥ 
(7) 

Mr. Wahl recommends for axially loaded springs of rectangular 
section with the long side parallel to the load line 

Ss = K 
PrjSh + 1.80 

(8) 

where K has the same value as in equation (3). 
the section is square, equation (8) reduces to 

s. = K 
4.8Pr 

11 b — t, that is, if 

(9) 

which is equation (7) multiplied by the factor K. 
mends for the deflection of rectangular springs 

19.6Pr^n 

“ "" Ej:Kh - 0.56<) 

When h = t the equation reduces to 

44.6Pr^n 
« = ———— 

EM 

Mr. Wahl recom- 

(10) 

(11) 

which is the usual form for square sections. 

* See ^‘Strength of Materials^' by Arthur Morley, pages 302 and 398. 
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98. Spiral Springs. Spiral springs properly so called are those of the 
form of the familiar clock spring. These are best adapted for a twist 
relative to the axis of the spiral, and are usually employed when a very 
large angle of torsion between the two connections is necessary. In 
this form of spring, the stress in the material is that due to flexure, or 
tensile and compressive stress on opposite sides of the neutral axis. 

If P = the turning force in pounds applied to the central spindle; 
r = the lever arm in inches of force P; 
h — breadth of spring in inches; 
h — thickness of spring in inches; 
b — distance in inches moved through by force P; 
0 = angle, in radians, through which spindle turns; 
s = stress in outer fibers of spring; 
I = total length of spring in inches; 

then, for moderate loads, 

P 

and for heavy loads, 

P 

and for moderate loads, 

b 

sbh^ 

~l2r 

shh^ 

6r 

P/r2 _ 12P/r2 ^ 

El Ebh^ 

(1) 

(2) 

(3) 

99. Helico-spiral Springs. The form of spring represented by the 
common upholstery spring may be looked upon as a spiral spring which 
has been elongated, and given a permanent set, in the direction of its 
axis; or it may be considered as a modified helical spring in which the 
radii of the successive coils are not equal. It is thus intermediate 
between the two preceding classes. This last form is not usual in 
machine construction, though it has the advantage over the common 
helical spring of considerable lateral resistance, and it may be employed 
to advantage where it is diflScult or undesirable otherwise to constrain 
the spring against buckling. This spring is used only as a push spring, 
to resist a compressive action. The springs used on the ordinary disc 
valves of pumps are often of this form, as they will close up flat between 
the valve and guard. Car springs are sometimes made of a flat strip 
or ribbon of steel wound in this general form, with the flat sides of the 
strip parallel to the axis of the spring. 

* See ‘"Strength of Materials^^ by Arthur Morley, pages 302-398. 
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100. Allowable Stresses in Springs. Experience shows that thin 
plates have a higher elastic limit than thick plates of similar grade of 
material In the practice of a prominent eastern railway company, 
the values allowed for the maximum intensity of stress m flat steel 
springs are as follows * 

90,000 lb per sq m 
84,000 
80,000 
77,000 
75,000 

The above values aie satisfied by the equation 

s = 60,000 + 
h 

For plates \ in thick, s = 
- s - 

S — 

'' s = 

1 (I 
1 

8 

*r6 

(1) 

m which h is the thickness of plate in inches 
These values are for the greatest stress to which the material can 

be subjected, as when the spiing is deflected down against the stops 
The modulus of elasticity, Ey may vary considerably, but its value 

may be assumed at about 30,000,000 in the absence of more definite data 
An extensive set of tests of springs, conducted by Mr E T Adams, 

in the Sibley College Laboratories, indicates that the steel used in helical 
governor springs may be subjected to stress varying from about 60,000 
lb per sq m with 2-in wire to 80,000 lb per sq in (or more) in wire of 
f-in diameter The following expression may be used to find the 
maximum safe stress in such springs: 

8, = 40,000 + 
15,000 

d 
(2) 

Mr J. W. Cloud presented a most valuable paper on helical springs 
before the American Society of Mechanical Engineers {Trans, vol 5, 
page 173), in which he shows that for rods used m railway sprmgs (f-m 
to 1^^-in diam), the stress may be as high as 80,000 lb per sq m , 
and that the transverse modulus of elasticity is about 12,600,000 

For chrome-vanadium steels, s, may be taken as high as 60,000 to 
180,000 lb per sq in , depending upon the treatment; for phosphor 
bronze wire as used in helical springs, s* may be taken as 30,000 to 
40,000 lb per sq in Springs that may be overstressed should be pro¬ 
vided with stops to limit their deflection; and if they are to be in con¬ 
stant service, as the springs on the valves of gas engines, the stresses 
should be kept low. 
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CHAPTER IX 

TUBES, PIPES, CYLINDERS, FLUES, AND THIN PLATES 

101. Resistance of Thin Cylinders to Internal Pressure. If a hollow 
circular cylinder, whose walls are very thin compared to its diameter, 
is subjected to an internal bursting pressure, a tensile stress is induced 
in the walls. This tensile stress is reduced near the ends by the action 
of the ends themselves, which tend to hold the walls together. Let 
Fig. 90 represent one-half of a portion of a thin cylinder, so far removed 
from the ends that their effect may be neglected. 

Let p = 
d = 
r = 
t = 
5 = 

St = 

I = 

the unit internal pressure in pounds. 
the internal diameter of the cylinder. 
the radius of the cylinder in inches. 
the thickness of the cylinder walls in inches. 
the unit tensile stress in the longitudinal section. 
the unit tensile stress in the transverse section. 
the length of the part considered in inches. 

Fig. 90. Fig. 91. 

Consider the half of the cylinder as a free body, and resolve all forces 
perpendicular to the cutting plane. The normal pressure on a longitu¬ 
dinal strip of length I and width rdB is plrdd. The component of this 
force perpendicular to the cutting plane is plrdB sin B, The total 
pressure normal to this plane is 

plrdB sin B = plr I sin ^ == 2plr = pld 

217 
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For equilibrium this normal force must equal the resisting stress in 
the two sides of the cylinder. Hence, 

or 
2sil = pld 

pd 

^ “ Ye (1) 

or 

(2) 

(3) 

In other words, the unit longitudinal stress in the walls of a thin 
cylinder is equal to the product of the diameter and the imit internal 
pressure, divided by twice the thickness of the cylinder walls, and is 
independent of the length of the cylinder. 

If a transverse section of the cylinder (Fig. 91) be considered, it 
will be seen that the total pressure on the head, which tends to cause 
rupture along a transverse section, is 7rd^p/4, and this must be equal 
to the intensity of the transverse stress produced multiplied by the 
area of the metal in such a section, or. 

(4) 

or 

(5) 

(6) 

A comparison of equations (1) and (4) shows the stress in transverse 
sections to be only one-half of that in longitudinal sections. For this 
reason it is very common practice to make the circumferential seams of 
a boiler shell with a single riveted joint, when the longitudinal seams 
are double or triple riveted. 

Equations (1) and (4) and their several forms, as shown in the fore¬ 
going, are commonly accepted and used for the design of thin cylinders, 
so called, subjected to internal pressure They assume that the stress is 
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uniform throughout the cross-section of the wall of the cylinder, an 
assumption tliat can be made with safety for very thin walls only. 
Professor R. T. Stewart, as a result of testing * several hundred steel 
and wrought-iron pipes, of commercial sizes up to 10 in. in diameter, 
recommends the use of Barlow^s formula for the design of cylinders and 
tubes of this character. If d2 be the outside diameter of the cylinder, 
then by Barlow’s equation 

(7) 

t = 
2^ 

(8) 

(9) 

The relation between the circumferential stress and the longitudinal 
stress may be assumed to be the same as in the foregoing discussion. 

102. Thin Spheres. Since all the meridian sections of a sphere are 
the same as the transverse section of a cylinder of equal diameter, it is 
evident that the stress in the walls of a sphere is given by (4). If 
spherical heads, of the same thickness as the shell, are placed on a 
cylinder which is to withstand internal pressure, they will be subjected 
to a maximum stress equal to the transverse stress in the shell. 

103. Resistance of Non-circular Thin Cylinders to Internal Pressure. 
Suppose a cylinder to have a cross-section made up of circular arcs, as 
in Fig. 92. Take the upper half as a free body (section along the 
major axis). Let the resultants of the components of pressure which 
are normal to the plane of the section be Pi, P2, P3, for the portions 
marked I, II, III, respectively. Then these resultant forces per unit of 
length of the cylinder are as follows: 

P2 

Pa 

-prT 
•^0 

=pR r 
= pr f 

sin (t> d<t> = pr(-~cos </>' + cos 0) = pnii 

sin 6 do = pR(—cos 6' + cos 0") == pm2 

sin d(t> — pr{ —cos tt + cos <#>") = pma 

Therefore, 

Pi + P2 + Pa = p{mi + m2 + m3) = pA 

• See Trans. A.S.M.E., vol. 34, page 297. 
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In a similar way, if the section is taken along the minor axis, the 
resultant force normal to this axis is found to be pB. In like manner 
the resultant force normal to any section is (per unit of length of cylinder) 
equal to the intensity of pressure multiplied by the axis of that section. 
As B is less than A, the resultant force pB is less than pA; or the force 
tending to elongate the minor axis is greater than the force tending to 
elongate the major axis. If the tube were perfectly flexible, its form of 
cross-section would become, under pressure, one in which all axes are 
equal, or circular. A rigid material ofifers resistance to such change of 
form, and a flexural stress is produced in addition to the direct tension, 
but it approaches nearer to the circular form as the pressure increases. 
The existence of this flexural stress in a non-circular cylinder becomes 

apparent from a comparison of Figs. 93 and 94. In Fig. 93 (circular 
section) the lines of normal pressure all pass through a single point (the 
center of the circle); the resultant (Sr) of the tensions (Si and S2) also 
passes through this same point, hence these forces form a concurrent 
system, and they are in equilibrium. In Fig. 94, however, the pressures 
do not in themselves form a concurrent, nor parallel system of forces, 
hence they cannot be balanced by a single force (as the resultant Sr), 
but there must be a moment, or moments, of stress for equilibrium. 
A similar course of reasoning could be applied to a cylinder of any non¬ 
circular cross-section, for such a section (Fig. 95) could be considered 
as made up of circular arcs, each of which could be treated (like the 
special case of Fig. 92) by integrating between proper limits. A direct 
inspection will also show that in any cylinder of non-circular section, 
subjected to internal pressure, the pressure tends to reduce the cylinder 
to a circular cross-section. Suppose the original cylinder (Fig. 95) to be 
cut along the greatest axis of its cross-section, and that a flat bottom 
coinciding with the section-plane be secured to it, the lower portion of 
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the cylinder being entirely removed. The total pressure on this bottom 
evidently balances the components of the pressure on the curved surface 
which lie normally to this flat bottom; hence, the resultant of these 
normal components of pressure equals p(a . . a) = 7;^, per unit of 
length of cylinder. In a similar way, the resultant of components of 
pressure acting normally to any other section (as 6 . . 6, Fig. 95) equals 
p(b) . . h — pB < pA. This direct method might have been used in 
the preceding cases (Figs. 90 and 92) without recourse to the calculus. 

It is apparent, then, that any cylinder under internal pressure tends 
to assume a circular cross-section. A cylinder of nominal circular sec¬ 
tion, but departing from the true form to some extent, tends to correct 
this departure under internal pressure; or if a circular cylinder under 
internal pressure is deformed by any external force, it tends to resume 
its circular shape. Thus a circular cylinder under internal pressure is in 

stable equilibrium.^^ If the section is other than a true circle there is a 
flexural stress, as well as tension, when under pressure. 

.RESISTANCE OF THIN CYLINDERS TO EXTERNAL PRESSURE 

104. Theoretical Considerations. If a thin hollow cylinder of cir¬ 
cular section is subjected to an external pressure, it is obvious that a 
course of reasoning similar to that in Article 101 will show that a com¬ 
pressive stress is induced in the walls of the cylinder, the value of which 
will be given by formula (1), Article 101, or 

where Sc is a compressive stress. 
If the cylinder were perfectly cylindrical, of uniform thickness, and 

of homogeneous material, there seems to be no reason why failure 
should occur until the compressive stress reaches the yield point of the 
material. But tubes are never absolutely circular in form, uniform in 
thickness, or homogeneous in character; and hence failure occurs long 
before the compressive yield point is reached. A tube which fails 
under external pressure is said to collapse, and the forms of collapsed 
tubes are very characteristic. Figure 96 shows the form of cross-section 
of collapsed tubes, and Unwin * has shown that the number of lobes 
depends on the ratio of length to diameter, the smaller this ratio the 
greater being the number of lobes. This peculiarity is undoubtedly 
due to the influence of the heads placed in the ends. For values of l/d 
greater than about 4 to 6, only the forms of collapse shown at c and d, 
Fig. 96, appear. 

* See Elements of Machine Design,” page 101, 1901 edition. 
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If the non-circular cylinders of either Figs. 92 or 95 be considered 
as subjected to external pressure, the force tending to increase the major 
axis will be seen to be greater than that tending to increase the minor 
axis; hence the external pressure will cause collapse, unless the flexural 
rigidity of the material is sufficient to prevent this action. In a cylinder 
of nominal circular section any departure from the ideal section will be 
increased by the external pressure. Or, if a cylinder of true circular 
section is deformed in any way while under external pressure, this 
pressure will tend still further to increase the deformation. In other 
words, a cylinder under external pressure is in unstable equilibrium.'^ 
As perfectly true circular sections and homogeneous materials are not 
attainable in practice, the danger of collapse must be taken into consid- 

Fig. 96. Fig. 97. 

eration in designing pipes, tubes, or flues to withstand external fluid 
pressure. 

Since the wall of an ideal thin tube is subjected to a uniform com¬ 
pressive stress, it may be considered as being in the same condition as a 
long column; and theoretical equations expressing the relation between 
the external pressure, the stress, and the dimensions of the tube have 
been developed on this basis. In view of the fact that the theory of long 
columns is itself most unsatisfactory, it is not surprising that such 
equations do not accord with actual results, and they may be safely 
disregarded; but the analogy between long compression members and 
tubes subjected to external pressure is instructive. Other deductions 
based upon the theory of elasticity, though throwing some light on the 
form of rational equations expressing these relations, are not as yet 
applicable to practical problems, 

106. Long Tubes, Pipes, etc. Long tubes are defined as those so long 
that the influence of the heads is negligible in resisting collapse. The 
best known experimental results on the collapse of such tubes are those 
of Professors Carman and Stewart, respectively. 

In 1906 Professor A. P. Carman published the results of a set of 
experiments made at the Engineering Experiment Station of the Uni- 

• See Bulletin of the University of Illinois Engineering Experiment Station, 

vol. Ill, No. 17, June, 1906. 
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versity of Illinois, which prove conclusively that Fairbairn^s equations 
(see Article 107) hold only for tubes whose lengths are from four to six 
times their diameters; and that beyond that ratio the collapsing pressure 
is independent of the length. He found that the results of his experi¬ 
ments could not be well expressed by a single equation, but devised two 
equations to cover the range; these equations expressing the relation 
which exists between the unit pressure p and t d, where i is the thickness 

and d the outside diameter of the tube. Thus, for values of -^0.025, 
d/ 

and length greater than four to six times the diameter, he gives 

, t 

where k and c are constants to he determined experimentally and 
depending upon the material. 

Por brass tubes, 

p = 93,365 \ - 2474 (1) 
d 

P'or seamless drawn cold steel, 

p = 95,520 - 2090 (2) 
d 

P'or lap-welded steel, 

p = 83,270 - 1025 (3) 
d 

Professor R. T. Stewart,* in an elaborate set of experiments on 
lap-welded steel boiler tubes made for the National Tube Company, 

found that for values of - >0.023, the results of his work could be 
d/ 

expressed by the following: 

p = 86,670 1386 (4) 

which corresponds closely with (3) of Professor Carman’s work, show¬ 
ing the accuracy of the experimental work. 

For values of -V^O.925, Professor Carman found that the results 

of his work could be expressed by an equation of the form 

'-1 <d) 
p = (5) 

*See Tram* A.S.M.E., vol. 27, 1906. 
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where k\ as before, is an experimentally determined constant, whose 
value for thin brass tubes is 25,150,000, and for thin cold-drawn seam¬ 
less steel tubes 50,200,000. 

Professor Stewart found that for values of t/d below 0.023, or 
practically the same limit as above, his results were expressed by 

p = 1000^1 (6) 

The value of p for t/d -= 0.023 is about 600 lb, which corresponds 
closely with the upper limiting value of p obtained from (5). 

For values of t/d less than 0.023, the corresponding values of p, as 
found by either (5) or (6), do not differ materially. Furthermore, 

tubes in which ^<^0.02 are not much used in engineering work under 

external pressure, and for convenience, therefore, equation (5) will be 
adopted. 

106. Summary of Equations for Long Tubes. The work of Stewart 
and Carman deals entirely with tubes which are so long that the sup¬ 
porting effect of the heads is negligible, or in which the length is at least 
four times the diameter. Their experiments, conducted separately, 
supplement and corroborate each other. As given above, the equations 
are not in the most convenient form for use by the designer, since usually 
Z, d, and p are known and t is required. Transposing these equations, 
therefore, they may be written as follows: 

For values of -^0.025 and pressures less than 600, equation (5) 
d 

becomes 

t = d 
P (7) 

where k = 25,150,000 for thin brass tubes, and 50,200,000 for thin cold- 
drawn seamless tubes or lap-welded steel tubes. 

For values of ^^^.025 and pressures greater than 600 lb, equa¬ 

tion (1) becomes 
d(p -f c) 

t = (8) 

where for brass tubes.k — 93,365 and c = 2474 
** seamless cold-drawn steel, k = 95,520 and c = 2090 

lap-welded steel, . . . = 83,270 and c = 1025 
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The following approximate formula, which covers practically the 
whole range of values of ijd, is suggested by Professor Carman as useful 
in making rough calculations 

where k" = 1,000,000 for cold-drawn seamless tubes and 1,250,000 for 
lap-welded steel tubes. From this, the following formula, which is 
usually more convenient, can be derived: 

' - '‘4^. (8W 

Example. A lap-welded steel boiler tube,* 4 in. outside diameter 
and 10 ft long, is subjected to an external pressure of 300 lb per sq in. 
What must the thickness be in order to have a factor of safety of at 
least 6? 

Here, the assumed collapsing pressure is 

300 X 6 = 1800 lb per sq in. 

Applying equation (8) 

t = = 4(1800 + 1025) 

k 83,270 
Here the ratio 

t ^ 0.14 

d “ 4 
0.035 

0.14 in. 

and hence equation (8) applies. 
In case this ratio should be less than 0.025, which will seldom occur, 

a second solution, using equation (7), should be made. 
Messrs. Jasper and Sullivan f have made an extended r6sum6 of the 

work of Stewart and Carman and have added thereto the results of 
experimental work designed to evaluate the effect of “ out-of-roundness 
of tubing. Space does not permit a discussion of the results presented. 
It should be noted, however, that if such a refinement were incorporated 
in design formulas it would entail corresponding refinement in inspection. 
Stewart^s work was done upon commercial tubes in which as he states 
the out-of-roundness was complex and confusing so far as analytical 

*See also the Boiler Code of the American Society of Mechanical Engineers, 

The Regulations of the U. S. Board of Supervising Inspectors and the rules of several 

insurance companies give equations for fixing the minimum thickness of tubes, 

t See Trans, A.S.M.E., vol. 53, 1931. 
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conclusions were concerned. They, no doubt, represent average con¬ 
ditions as presented to the designer. 

107. Short Cylinders, Flues, etc. When the cylinder or flue is short. 

that is, 4 to 6, the effect of the heads cannot be neglected and resort 

must be had to short-tube formulas. The best known experimental 
work on short tubes of moderate size is that of Sir William Fairbairn, 
who in 1858 made a series of carefully conducted experiments from 
which he deduced the following equation: 

19 

p = 9,675,600 - 
Id 

(9) 

where p is the unit external collapsing pressure in pounds per square inch; 
and tj Ij and d are the thickness, length, and outside diameter, respec¬ 
tively, in inches. Fairbairn himself modified this equation, for sim¬ 
plicity, to the form 

p = 9,675,600 - (10) 

or, transposing. 

t = pld 
(11) 

Many other equations have been deduced from the experiments of 
Fairbairn, usually of the same form but with different exponents. Thus 
Professor Unwin gives the following as the result of a careful r6sum6 
of Fairbairn’s work: 

For tubes with a longitudinal lap-joint 

p = 7,363,000 ^5^ (12) 

For tubes with a longitudinal butt-joint 

P = 9.614,000 (13) 

For tubes with longitudinal and cross-joints, like an ordinary boiler 
flue 

p = 15,547,000 
^2.36 

(14) 

Other writers have deduced similar equations from the same data. 
Fairbairn's experiments were conducted with tubes whose lengths 

were small compared to their diameters. In such tubes the effect of 
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the supporting action of the head is noticeable; hence, his equations 
make the allowable pressure vary inversely as some function of the 
length. Now it is reasonable to suppose that if the tube were long 
enough the head would have no effect, except near the ends, and the 
collapsing pressure would be independent of the length. In a similar 
way, if the tube were very short, the walls should theoretically yield by 
crushing, and the intensity of the compressive stress would be given 
by formula (1), Article 101, or, 

(15) 

1/ this equation gives a lower working pressure than equation (10) 
the flue designed by it will be safe against collapse since (10) takes into 
consideration the supporting effects of the ends. 

Many variations of Fairbairn^s equation are in use. Thus the rules 
of Lloyd’s Marine Register give the following: 

- 1) 

(/ + 24)d 

where t = thickness of plate in thirty-seconds of an inch; I = length of 
flue between substantial supports in inches; d = external diameter of 
flue in inches; and C = a constant = 1450 when the longitudinal seams 
are welded and 1300 when the longitudinal seams are riveted. The 
Register also gives alternate equations for variations in conditions. 

The Boiler Construction Code of the A.S.M.E. gives for furnaces 
with riveted longitudinal joints not over 18 in. in diameter, and where 
the length does not exceed 120 times the thickness of the plate, 

p = :E:^(18.75< - 1.030 (17) 
d 

When the length exceeds 120 times the thickness of the plate 

4250^2 
V = - 

Id 

where I and d are in inches and t in sixteenths of an inch 
pressed in inches 

1,088,000^2 
p = ?- 

Id 

which is Fairbaim’s equation with a factor of safety of 9. 
For furnaces over 18 in. and up to 38 in. in diameter the same 

formulas apply, but the code specifies the character of the riveted 

If t is ex- 

CIS) 
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joints and if the furnace is over 6 diameters in length I is to be taken as 6d. 

For welded or seamless circular flues from 5 to 18 in. in diameter 
and where the thickness of the wall is not greater than 0.023 times the 
diameter the Code specifies 

10,000,000^'* 
P = - ,- (19) 

Where the thickness of the wall is greater than 0.023 times the diameter 

P = 
17,300^ _ 275 

d 
(20) 

where t and d are both in inches. 
It will be noted that all these equations are applicable only to com¬ 

paratively short flues. In practice, long flues are reinforced at short 
intervals by heavy rings of rolled section known as collapse rings, thus 
making the flue consist of a series of short flues to which these equations 
may be applied. Various insurance and governmental insf)ection de¬ 
partments give rules for proportioning flues and furnaces. These rules 
change from time to time, and if the construction of which the flue is a 
part is to be insured in any company the specific rules prescribed by it 
should be consulted. The student is referred particularly to the Boiler 
Construction Code of the A.S.M.E., which gives rules also for stayed 
and unstayed flues and pipes. 

The foregoing discussion deals with flues and cylinders of moderate 
size. For larger vessels subjected to external pressure, reference may 
be made to the Proposed Rules for the Construction of Unfired Vessels 
Subjected to External Pressure by the A.S.M.E. Boiler Code in 
Mechanical Engineering for April, 1934. See also Strength of Thin 
Cylindrical Shells under p]xternal Pressure/^ by Saunders and Winden- 
burg, Trans. A.S.M.E., 1931, vol. 53. 

108. Corrugated Furnace Flues. Flues corrugated as in Fig. 97 
are very much stiffer against collapse than plain cylindrical flues, and 
with proper dimensions of corrugations may be safely made of any 
desired length. Their peculiar shape also permits of expansion and con¬ 
traction under the influence of heat. The A.S.M.E. Boiler Code 
formula for such furnaces is 

Ct 
P = 7 (21) 

where p is in pounds per square inch and t and d are in inches; C is a 
constant that varies from 10,000 to 17,300, depending upon the type of 
corrugation. 
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In the Adamson flue short, flanged sections not less than 18 in. long 
are separated by reinforcing rings through which adjacent flanges are 
riveted. The code prescribes equation (17) for their design with the 
constant 57.6 substituted for 51.5. 

The following references contain valuable practical information on 
this subject: 

Lloyd's Register of British and Foreign Shipping. 
Steam Boilers," by Peabody and Miller. 

Rules and Regulations of U. S. Board of Supervising Inspectors. 
Rules and Regulations of the American Bureau of Shipping. 
Rules of the British Board of Trade. 
Boiler Construction Code of A.S.M.E. 

THICK CYLINDERS 

109. When the wall of a cylinder, which is subjected to internal or 
external fluid pressure, is thick, relatively to the internal diameter, 
it can no longer be assumed that the stress in the wall is uniformly 
distributed over the cross-section. In such cylinders, the stress is 
greater at the inner surface and decreases to a minimum at the outer 
surface, whether the pressure is internal or external. When the pres¬ 
sure is internal the stress is tensile, and when the pressure is external 
the stress is compressive. 

Many formulas have been deduced to express the relations between 
pressure, stress, and cylinder thickness. Of those, the formulas deduced 
by Lam6, Birnie, and Clavarino are the best known. Lamp's equation, 
which was once much used, neglects the factor of lateral contraction 
(Poisson’s ratio) and has therefore been superseded by others. Birnie’s 
equation assumes that the ends of the cylinder are open and that, 
as a consequence, there is no longitudinal stress. It applies, therefore, 
to shrink fits, such as the jackets of large guns. For the most usual 
case of design, namely, where the ends of the cylinder are closed, Clav- 
arino’s modification of Lamp’s equation is now much used, and it will be 
adopted in the work. 

Ordinarily, a cylinder of this character is subjected to either an 
external or an internal pressure, but not to both. But in a gun tube, 
for example, which has a hoop shrunk upon it and has an internal 
pressure applied to it by the explosion of the charge, the more general 
case occurs, in which the cylinder is subjected to both internal and 
external pressure. 

Let Pi — the internal unit pressure. 
p2 = the external unit pressure. 
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ri = the internal radius of the cylinder. 
r2 ~ the external radius of the cylinder. 
51 = the unit stress at the inner surface. 
52 = the unit stress at the outer surface. 

Then, by Clavarino’s * equation, the unit stress at any radius r is 

4?’i 11 
n^pi — r2^P2 H-—(pi — Pz) 

s = ^-:u-- (1) 
3(ra- — rr) 

If the external pressure p2 be zero, which is the most usual case, 
the greatest tensile stress is at the inner surface, and is 

p,[ri- + 4rr] 

3 L r2^ “ rr 

r2 = ri 
36-1 + Pi 

3.S1 - 4pi 

Example. A cast-iron cylinder, 20 in. in internal diameter, is to 
withstand an internal pressure of 1000 lb per sq in. How thick must 
the wall be in order that the stress at the inner surface may not exceed 
4000 lb per sq in.? 

Here r = 10, pi = 1000, and 6i = 4000. Hence, substituting in (3) 

36] + Pi 

361 - 4pi 
10 

3 X 4000 + 1000 1^ 

_3 X 4000 - 4 X 1000. 

or the cylinder walls must be 2.8 in. thick. 
From (1) it is found that 62, the stress in the cylinder walls at the 

outer fiber is 2620 lb. 

PRACTICAL CONSIDERATIONS 

110. Cast-iron pipes are widely used for underground water pipes 
and to some extent also for gas pipes, largely on account of their dura¬ 
bility against corrosion. For steam, or for high pressures generally, 
cast-iron pipes are now seldom used because of their unreliability. For 
all ordinary purposes pipes made of wrought iron or steel are most used, 

* The student is advised to read the discussion of thick cylinders given in 

Merriraan’s “Mechanics of Materials/^ eleventh edition, 1914, page 383. See also 

“Combined Stresses in Thick Cylinders,” by E. B. Norris, Trans. A.S.M.E., vol. 51. 

t In the derivation of this equation the induced stress s was assumed to be 

tensile. If the pressure is external, or if the external exceeds the internal pressure, 

the induced stress is compressive and will be negative in value. If the equation is 

applied to cylinders that are subjected to a greater external than internal pressure 

and a limiting stress is substituted for s, it must be written with the negative sign. 
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ulthoufj;!! in special applications, such as marine work where corrosion 
is to be resisted, copper and brass are preferred. 

Wrought-iron or steel pipes may be either lap-welded or butt-welded, 
the latter being commonly used for the smaller diameters, while steel 
piping may be drawnso that there is no seam, when it is known as 
“ seamless drawn tubing.’^ 

Standard piping is designated by its nominal internal diameter. 
Thus, standard 1-in. wrought-iron or steel pipe has a nominal internal 
diameter of 1.049 in., and an external diameter of 1.315 in. So-called 
standard wrought-iron piping may be us(‘d for pressures up to 100 lb, 
with safety. For still higher pn^ssurc^s, such as are found in high-class 
steam plants, thicker pipes, known as extra strong, are used. For 
hydraulic work, where pressures up to several thousand pounds per 
wsquare inch must be withstood, still thicker piping, known as double 
extra strong, is us('d. These heavy pipes are made by decreasing the 
internal diameter of the standard pijx', thus keeping the outside diam¬ 
eter, and hence the screw threads for the flanges, to one standard.* 
Thus an extra strong 1-in. pipe (nominal size) would have an internal 
diameter of 0.957 in., and a double extra strong of the same nominal size 
would have an internal diameter of 0.599 in., the external diameter 
remaining 1.315 in. in all cases. 

For large cylinders, both for steam and hydraulic service, cast iron 
is still much used and probably will be for some time, on account of the 
ease with which complicated iron castings can be made and machined. 
In steam-engine cylinders, the thickness of the walls is fixed by con¬ 
siderations other than those of strength, such as stiffness and the 
possibility of securing good castings. The proportions of steam cylin¬ 
ders, as fixed by practice, are the best guide. An examination of 
current practice shows the average thickness of low-speed engines to be 
given by the following, t = 0.05(/ + 0.3 in., f where t = thickness and 
d = diameter in inches, when the steam pressure does not exceed 
125 lb per sq in. 

Kent^s Mechanical Engineers^ Pocket Book ” gives the following 
as representing current practice, t = 0.0004(ip + 0.3, where d = diam¬ 
eter in inches and p = pressure in pounds per square inch. If p be taken 
as 125 lb, this equation reduces to that given by Barr. 

Cast iron is also much used for the cylinders of hydraulic machines, 

* The student is referred to Kent's “Mechanical Engineers’ Pocket Book,” or 

similar works, for full tables of standard sizes of pipes, flanges, etc. See also current 

trade catalogues. 

f See “Current Practice in Engine Proportions,” by J. H. Barr, Trans. A.S.M.E., 

vol. 18. 
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although steel castings are better in general In such cases equations 
(1) to (3) of Article 109, in common with all equations based on the 
theory of elasticity, should be used with caution when cast iron is selected 
for the cylinder Furthermore, it must be borne m mind that the 
thicker the cylinder walls, the more likely they are to be porous in the 
interior, when made of castings It is safer, therefore, as a rule, to 
carry a high working stress, within safe limits and insure sound castings, 
than to design thick walls which are open to suspicion, in order to get a 
theoretically lower stress A 3-m wall, for instance, with a working 
stress of 5000 lb per sq m , is preferable to a 4-in wall with a working 
stress of 3000 lb per sq in Care should also be exercised m cast cylin¬ 
ders to avoid excessive thickness of metal at any point, thus insuring 
sound castings Thick castings of any metal are very likely to give 
trouble by leaking on account of porosity, if subjected to high pressuies, 
and cast-iron cylinders are often fitted with brass or bronze liners to 
obviate this difficulty. 

111. Pipe Couplings, Flanges, etc. Methods for securing the ends 
of pipes together have become of greater importance as higher steam 
pressures have been employed The most usual method has been to 
thread the ends of the pipes (see Article 135) and secure them together 
with either a cylindrical pipe coupling, a pipe union, or a pair of pipe 
flanges. All of these are in very common use For pressures up to 100 
lb per sq in. and pipes not over 12 in. m diameter these may be used 
with success, but for higher pressures and larger diameters they are 
not so satisfactory. The pipe connection known as a union is used on 
small pipes only. 

In the ordinary screwed fitting of large size it is difficult to cut the 
thread accurately, and to screw the fitting on tight enough to prevent 
leakage at A, Fig 98 (a). This can be remedied to some extent by 
making the threaded portion of the pipe long enough to project through 
the flange slightly, and then facing off pipe and flange so as to make a 
smooth surface, and permitting the packing or gasket (P) to cover up 
the screwed joint, as shown at B, Fig 98 (a). Even this joint, however, 
is likely to leak if the workmanship is poor or if the flanges do not align 
properly. For high-pressure piping, threads of somewhat finer pitch 
than ordinary are sometimes used so as to reduce the torque due to 
screwing up (see Article 133), 

To obviate the difficulties of the screwed joint on pipe of larger 
diameter, the flanges are sometimes shrunk on as shown in Fig. 98 (b) 
(see also Article 153). In order to insure tightness, and secure a firmer 
grip on the flange, the end of the pipe is usually expanded into the flange, 
as shown in Fig. 98 (b). The gasket usually covers up the joint between 



CHAPTER XII 

KEYS, SPLINES AND COTTERS 

146. Forms of Keys. Keys are wedge-shaped pieces, generally 
made of steel, which are used primarily to prevent relative rotation 
between shafts and the pulleys, gears, etc., which they carry. On 
account of the frictional r(^s)stance which they induce between the 
«nrface of ‘'.iiatt and the member which is keyed to it, they also often 
pn vent relative sliding of the parts. K(‘ys are most usually rectangular 
in cross-section; but occasionally they are made in circular form. A 
saddle key s shown in Fig. 121. This form of key does not require the 
shaft to be cut; but its holding power is so small that it is used only for 

light work. Where the hub is to be fastened to the end of a projecting 
shaft, a round key, as shown in Fig. 125, is often used. Formerly this 
forp"^ of key was used for light loads only, but the Nordberg Manufac¬ 
turing Company has used them very successfully for heavy loads. In 
the practice of this company, such pins are tapered in. for every foot 
of length, and the holes are carefully reamed, thus securing a good fit at 
every point. Figures 126 (a) and 126 (b) show two other methods of 
applying round taper pins as a substitute for keys where light loads are 
to be resisted. A fiat key is shown in Fig. 127. This form requires a 
small portion of the shaft to be cut away, and its holding power is much 
greater than that of the saddle key. The sunk key, Fig. 128, is the most 
secure form of key fastening, and is more used than any oth^r. It is so 
called because it is sunk into a keyway or groove cut in the shaft. It 
thus requires more metal to be cut away from the shaft than the flat 

one 
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key, and this must be taken into account in designing shafting, since the 
metal is removed from the outer fiber where it is most serviceable for 
resisting applied loads. The key way cut in a shaft for a sunk key is 
made parallel to the axis of the shaft; but the key way in the hub of the 
pulley or gear which is to be made fast is cut tapering, as shown in Fig. 
128 (b). The sides of the key are parallel, as shown, and should fit well 
in both shaft and hub. When the key is driven in, the shaft and hub 
are drawn tightly together on the side of the shaft opposite to the key, 
and the frictional resistance thus set up helps to prevent relative sliding 
of the parts lengthwise of the shaft. If the bore of the hub is tapering, 
or if the key fits more tightly at one end than at the other, the part 
keyed on may be thrown out of alignment so that its plane is not per¬ 
pendicular to the axis of the shaft. Where great accuracy is required, as 
in flanged couplings on shafting, owing to this tendency, the faces of 

the flange or part secured to the shaft should be faced in place after the 
key is driven. If the part keyed on does not have to be removed often, 
the hub may be made a tight or press fit on the shaft, thereby preventing 
largely the tilting action of the key which might otherwise occur. In the 
Woodruff system (Fig. 129), the key is a circular segment and the key¬ 
way may be cut with a milling cutter. This allows the key to adjust 
itself to the taper of the keyway in the hub, hence it will not throw 
the keyed part out of perpendicular alignment. With this system, the 
hub must be forced on over the key. These keys are used largely in 
machine tools. 

In general, the part to be secured on the shaft is placed in position 
and the key driven in. This makes it necessary to extend the keyway 
along the shaft at least the length of the key (except when the hub is 
at the end of the shaft), unless the diameter of the shaft is enlarged under 
the hub, su^ciently to allow the keyway to be cut without cutting into 
the-shaft proper. Where it is desirable to withdraw the key occasionally, 
it is often provided with a head, as shown in Fig. 128 (b), in which case 
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it IS called a draw key* or gib head key. The head of the draw key should 
always be carefully guarded, or covered m some maimer, in all fast-run- 
nmg machinery, as there is danger that the cloth mg of a workman may be 
entangled, with fatal results. Sometunes, however, it is not desirable 
to extend the keyway beyond the hub, in which case, the keyway in the 
shaft is made the same length as the key, and the hub is driven over the 
key into its correct position. Much more force is necessary to drive 
the hub into place m this manner than to drive the key, on account of 
the friction between the shaft and the hub When the hub is a sliding 
or an easy ht on the shaft, and only one key is used, there is a tendency to 
throw the hub eccentric 1o the shaft Under th('se circumstances there is 
a tendency for the hub to rock and work loose on the shaft, especially 
if the direction of motion be reversed In such cases two keys set 90° 
apart make a much more secure fastening, as this gives three lines of 
contact and prevents rocking If one of these keys is a saddle key, as 
shown in Fig 124, the fitting is greatly facilitated and the fastening is 
almost as secure as with two sunk keys. 

147. Stresses in Common Sunk Keys. Since keys are designed to 
prevent relative rotation, it is evident that every key must transmit a 
certain torsional moment, or torque. This torsional moment may be 
equal to the total torque transmitted by the shaft, or the key may be 
required to transmit only a part of it This would indicate that keys of 
different sizes should be used with any given diameter of shaft, depend¬ 
ing on the load which the key must transmit. For practical reasons, 
however, such as standardization and mterchangeability, it is desirable 
that the dimensions of the shaft and key should bear a fixed relation to 
each other All practical systems of keys, therefore, give a fixed size of 
keys for each diameter of shaft, the dimensions of the key, presumably, 
being such that its strength is equal to the torsional strength of the 
shaft Shafts are usually designed for torsional stiffness rather than 
torsional strength, which results in a shaft considerably larger than 
necessary as far as strength is concerned. If, under these circumstances, 
the key is designed as indicated above, it will also have excess strength. 
Where the shaft is short and is designed for strength alone, the key 
should be more carefully considered. 

Keys resisting a torsional moment are subjected to simple crushing, 
or to crushing and shearing, depending on the manner of their application 
and manner of fitting. The ordinary sunk key (Fig 128 (a)), is sub¬ 
jected to a force, Fi, due to the pressure from the shaft, and to a resisting 
force, F2, due to the reaction from the hub which it secures. The effect 

Where a draw key cannot be used the point of the key is sometimes case- 
hardened so that it will not upset so readily m bemg driven out. 
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of these two forces is to set up a shearing stress along the middle section 
of the key at the outer surface of the shaft. The^y also form a couple 
which tends to rotate the key in the key way. This tendency to rotate 
should be, for best results, resisted by the pressure of the hub and shaft 
against the top and bottom of the key. If the key is not a tight fit on 
the top and bottom these resisting pressures, F3 and F4, will be con¬ 
centrated near the corners. This concentrated pressure may be suffi¬ 
cient to crush the key at these points, and allow it to roll in the keyway, 
deforming both the key way and key and subjecting the key to a severe 
crushing action rather than simple shear. If the conditions of service 
require a continual reversal of motion, a state similar to that shown in 
Fig 128 (c) is induced, where the resisting forces F3 and F4, have been 
moved inward and their moment arm made so short that their magni¬ 
tude must be very great to hold the key in position. This may bring 
a severe bursting stress on the hub. It is evident, therefore, that keys 
which fit sidewise only, cannot be depended on to carry as great a load 
as those which fit well on the top and bottom. Where great accuracy 
is required, as in machine tool construction, the hub is often made a 
force fit on the shaft and the key fitted only on the sides, so that it cannot 
thrown the parts out of relative alignment by radial pressure. 

Referring to Fig. 128 (a): 

Let I = the length of the key or hub. 
t = the thickness of the key. 
h — the breadth of the key. 
T = the torsional moment applied to the shaft. 

P = the force acting at the radius of the shaft so that P - = T, 

Then for shearing stress 

P = sjb (1) 

and since the torsional moment applied to the shaft must equal the 
moment of the crushing load applied to the side of the key, 

or 

(2) 

If Fi be considered to act at the radius of the shaft (which can be 
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done without serious error for keys as ordinarily proportioned) equation 
(2) reduces to 

P = sd- (3) 
2 

Equations (1) and (3) may be used to compute the stresses in any sunk 
key. 

If the shearing resistance of the key is to equal the crushing resistance, 
then from (1) and (3), 

Sfitt) ~~ Sfl 
2 

h Sc j t. 
- = — or t = b — 

i 2iSs S c 
(4) 

If Sc = 2sej t — b, and the key is square for equal resistance to shearing 
and crushing. For machiKery steel, at the elastic limti, 

Sc 
= O.G 

and hence from (4) for equal strengih in shearing and compression 
t = 1.26. If, in addition, the moment of the shearing resistance of the 
key is to be equal to the torsional resisting moment of the shaft, then, 

(5) 

where is the shearing stress in the outer fiber of the shaft. For 
steel shafts and keys, which are most common, Ss = s'*, whence from (5), 

16 
(6) 

The minimum length of hub (Z), as determined by practice, which is 
necessary to give a good grip on the shaft, should not be less than 3d, 2. 
Substituting this value of I in equation (6), 

3bd^ _ 

4 16 

12 4 

The above would, therefore, give keys of breadth, 5 = d/4, depth or 
thickness t = 1.26 = .3d, and minimum length |d. Flat keys as used in 
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practice conform closely to these rules as far as length and breadth are 
concerned; but, to avoid cutting away so much of the shaft, the thick¬ 
ness is usually much less than that given above. An average value 
of the thickness may be taken at This gives a key considerably 
thinner than it is wide and makes it weakest in crushing. The crushing 
resistance can, however, be increased by lengthening the key or by 
using a hard grade of steel. 

Keys designed as above usually have an excess of strength, since the 
friction between the shaft and the hub materially decreases the load 
actually brought upon the key. In addition, as has been noted, shafts 
are most usually designed for stiffness or angular distortion, and there¬ 
fore are greater in diameter than would be required for strength alone. 
If the key is made proportional to the shaft diameter as above, it 
must, therefore, have excess strength against rupture; and such keys 
seldom fail unless subjected to severe shock or extraordinary loads. 

There are no fixed standards for the dimensions of keys, various 
machine builders having their own standards.* The dimensions listed 
in Table XXI are recommended by the American Standards Association. 
See standard sheet B17e-1927 of A.S.M.E. If the length must be less 
than -|d, the crushing stress should be computed, as it may be neces¬ 
sary to use two keys. 

The taper of sunk keys is usually about g in. per foot of length, which 
is the taper recommended by the A.S.A. standard. 

Another form of sunk key, known as the Kennedy Key, is shown in 
Fig. 130. It has been used with great success in very heavy work, such 
as rolling-mill machinery. For such heavy work the width of the keys 
is made approximately one-fourth of the shaft diameter and they are 
located in the hub, so that the diagonals through the comers of the key 
pass through the center of the shaft. The taper of the key is about § in. 
to the foot of length and is made on the top of the key, the sides being a 
snug fit. 

In applying these keys for very heavy work, the hub is first bored 
for a pressed fit and then rebored eccentrically to provide a small 
clearance on the side to which the keys are fitted, so that when the keys 
are driven the hub will be concentric with the shaft. Such keys act as 
compression members or as struts. The keyways are more difficult to 
cut and the shaft is cut deeper than for the ordinary sunk key, but the 
holding power of such keys is very great. For diameters of shaft up 
to about 6 in., a single key is usually sufficient, but above that two 
keys are standard practice. For comparatively light loads the keys 
are sometimes made somewhat thinner. 

♦See Kent’s ^‘Mechanical Engineers’ Handbook,” page 1328. 
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148. Feathers or Splines. Sometimes it is desirable to have the hub 

free to slide axially along the shaft, but constrained to rotate with it. 

In such cases a feather, or spline, is used. The sides of the spline are 

parallel, and it may either be fastened rigidly to the shaft or move with 

the hub. Small splines are frequently dovetailed into the shaft (or hub), 

as shown in Fig. 131 (a); larger ones are often held in place by means 

of countersunk screws (Fig. 131 (b)), or rivets. 

A common way of securing the feather so that it will move with the 

hub is shown in Fig. 133. Splines are subjected to a shearing stress 

across the mid-section at the radius of the shaft, and to a crushing stress 

on the sides in the same way as sunk keys. Being fitted loosely on the 

top and bottom, they do not produce any friction between the hub and 

the shaft and, therefore, offer much less resistance than sunk keys to the 

rolling action imposed upon them (see Article 147). This rolling action 

tends to bring a concentrated crushing force at a and b (Fig. 131 (a)), 

if the feather is not rigidly secured to either the hub or the shaft. For 

this reason, and in order also to provide ample wearing surfaces, feathers 

are usually given a greater radial depth than sunk keys, and from their 

general proportions are often distinguished as square keys. It is 

evident that the holding power of splines is not equal to that of sunk 

keys. 

The following table gives dimensions of feathers which agree with 

common practice: 
TABLE XXII 

Dimensions of Feather Keys in Inches 

Diameter of shaft, d.. 1 I4 I5 2 2| 3 4 5 G 7 8 9 10 

Breadth of feather, b 1 
4 

5 
16 

3 
8 T6 

3 
2 

5 
8 

3 
4 i 1 Is ^ 8 15 

iS 2 2l 

Thickness of feather, t ,3 
8 T6 3^ 

6 
8 

3 
4 

t 8 1 13 If 
1 5 n 2 2| 2l 
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The length of feather keys is, in general, greater than that of sunk keys, 

for the same size of shaft, in order to reduce the bearing pressure and 

increase the wearing surface on the sides. 

Where very great torsional loads are to be transmitted, the ordinary 

splines described in the fon^going have not been found to be satisfactory. 

In such cases the shaft is sometimes made s(|uare, as illustrated in Fig. 

132 (a), or hexagonal, or, of some other special shape that will effectively 

resist rotation under lieavy load. The squared or hexagonal shaft 

induces a bursting stress in the hub, //, and when such shapes are used 

special attention should be given to the strength of the hub. In recent 

years, especially in automobile driving shafts, where the load trans¬ 

mitted is very great compared to the size of the shaft, multiple-spline 

shafts with the splines made integral with the shaft have come into 

extensive use. The usual manner of constructing such splined shafting is 

shown in Fig, 132 (b) and (c). The splines are made by milling or 

hobbing processes, and the spaces in the hub or collar, //, are usually 

made by the broaching process. If a considerable number of such 

parts are to be made, they can probably be produced more cheaply 

than the ordinary spline or key. These forms of sjilined shafting are 

also coming into more common use in industries other than automobile 

construction. The Society of Automotive Engineers has established 

standard dimensions for squared shafts and for multiple-splined shafts 

with four, six, ten, and sixteen integral splines, both for sliding and for 

permanent fit of the collar on the shaft. The student is referred to the 

S.A.E. standards for such dimensions. 

149. Cotters. A cotter is a form of key used to prevent relative 

sliding between two members. Figure 134 shows a method of securing a 

piston rod to a piston by means of a cotter. In this case the connection 

is permanent in character, the cotter being removed only when the 

piston or piston rod is repaired or renewed. In other forms of cottered 
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joints of this character, the rod is not tapered, but is prevented from 

sliding into the boss by means of a shoulder or by the cotter alone. The 

cotter is usually rectangular in section, but sometimes the edges are 

rounded so as to avoid sharp corners in the opening cut through the rod 

or to facilitate machining. In light work a taper pin of circular section is 

often used as a cotter. Figure 135 shows an arrangement of a gib and 

cotter (commonly known as a gib and key), such as is used on the ends of 

the connecting-rod of steam engines. The function of the gib is to 

prevent spreading of the strap. This arrangement permits a small 

amount of adjustment between the strap and the connecting-rod for 

taking up wear on the pin and brasses. 

150. Stresses in Cotters. A cotter of the form shown in Fig. 134 

is a beam supported at the ends. The exact distribution of the loading 

is indeterminate, as the bending of the cotter tends to concentrate the 

load near the points of support. It is sufficiently accurate, however, to 

consider the load as uniformly distributed. The area of the surface of 

the cotter where it bears on the rod, and also on the hub, should be suf¬ 

ficiently great to prevent crushing of the material. This indicates that 

the diameter of the hub should, for similar materials, be twice that of 

the rod, which is the usual proportion. The section of the cotter at 

the point of support should be great enough to prevent shearing, and 

in many cases it is sufficient to compute the section for shear alone, 

neglecting the bending action. 

When a cottered joint of this character is made, the cotter must be 

driven in tight enough to prevent its backing out. This is especially true 

when the load is a reversed one, as in a steam-engine piston. This 

induces an initial stress in the cotter and rod, over and above that 

due to the load P. The conditions, in fact, are somewhat similar to 

those which exist in screwed fastenings (see Article 138). The initial 

stress due to the driving of the cotter cannot be accurately computed, 

though it may be very great. For this reason all calculations of dimen- 



STRESSES IN COTTERS 305 

sions based on the maximum applied load should be modified to suit 

the conditions of service and the materials of which the joint is made. 

Thus if the rod be of brass and the hub or boss of steel, as is common 

in pump work, the proport ions would be different from those employed 

if all the materials were of steel or of steel and cast iron. 

Let d ~ the diameter of the rod where the cotter passes through. 

t = thickness of cotter. 

h = breadth of cotter. 

Then, in order that the net cross-section of the rod may be as strong in 

tension as the cotter and rod, where they bear upon each other, are in 

crushing, 

““ t^dsc 

For a steel rod and steel cotter where Sc = St, 

t = OAd (2) 

Good practice gives 

b^4:t = 1.57d (3) 

The taper of cotters, as shown in Fig. 134, should be so small that 

there is no danger of backing out and should not exceed | in. per foot of 

length. An auxiliary locking device is often used in arrangements such 

as shown in Fig. 135, in which case the taper may be as great as 1 in 8. 

In the form of cotter shown in Fig. 135, the stress due to driving the 

key may be disregarded, and the design based on the maximum applied 

load. The student is referred to treatises on steam-engine design for 

relative proportions of this form. 

It is often necessary to allow a rather high bearing pressure on the 

cotter to avoid large and clumsy proportions. An examination of suc¬ 

cessful practice shows an allowable pressure of 15,000 lb per sq in. as 

computed from the applied load. 



CHAPTER XIII 

MACHINE FITS-FORCE AND SHRINKAGE FITS 

161. Interchangeable Manufacturing. The degree of closeness with 

which two nuichine parts engage each other is known as the fit and, as 

will be seen, is necessarily of considerable variation. In building certain 

classes of machinery and especially where only a limited number are 

produced the exact s^ze of the mating parts is not, within close limits, 

a matter of great importance, and considerable fitting together is done 

during assembly. In mass production, as in producing typewriters, 

automobiles, etc., it is essential that all fits be made to known di¬ 

mensions, with great accuracy, for the following reasons: 

(1) To obviate all fitting at assembly. 

(2) To enable manufacturers of accessory parts and appliances such 

^^as bolts, nuts, shafting, taps, dies, etc., to coordinate their work with 

that of various producers of machinery. 

(3) To make it possible to supply repair parts that will fit with 

accuracy. 

The basic requirement for such a system of interchangeable parts is 

furnished by the Johannsen block gages. These blocks are made of 

steel about f in. wide and 1 in. long, hardened and ground to very 

exact thickness and parallelism between faces. In the best sets the 

dimensional errors are not greater than 0.000004 in. A set consists of 

about 80 blocks var3dng in thickness from 0.05 in. to 4 in. by means of 

which a large number of dimensions can be built up. Such accuracy 

of course assumes a fixed temperature, taken in this case as 65° F. 

From these master blocks, working gages * of great accuracy are made 

with which to gage the machine fits. 

The most important case of machine fits is where circular parts fit 

into circular holes. Obviously if such fits are to be of varying degrees 

of looseness either the hole or the shaft or both must vary in diameter. 

Space forbids a discussion of the relative merits of hole or shaft diameter 

* See ‘‘Methods of Gaging and Specifications for Plain Limit Gages’^ published 
by A.S.M.E. 

306 
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as a basis of vsuch variation. The American Standards Association * 

has adopted the diameter of the hole as a basic size and has established 

the following definitions: 

1. Basic size: the exact theoretical size from which all variations 

are made. 

2. Allowance: an intentional difference in the dimensions of mating 

parts to provide for different classes of fits. 

3. Tolerance: the amount of variation permitted in the size of a part. 

Fia. 136. 

Thus, referring to Fig. 136, the allowance is 3.000 — 2.9981 = 

0 0019. The tolerance for the hole is plus 0.0012, and the tolerance for 

the shaft is minus 0.0012. Therefore 

Hole Shaft Difference 

For tightest fit: 3 0000 2 9981 0 0019 = allowance 

For loosest fit: 3 0012 2 9969 0 0043 — allowance + tolerances 

The Standard referred to recommends eight classes of fits, namely; 

Class 1. Loose fit, where accuracy is not essential. 

Class 2. Free fit, as in ordinary engine and dynamo bearings where 

the rpm are 600 or over and bearing pressure 600 lb per sq in. or 
over. 

Class 3. Medium fit, for running fits where rpm are under 600 and 

bearing pressures less than 600 lb per sq in. 

Class 4. Snug fit, to be used where no perceptible shake is permissi¬ 

ble and where mating parts are not intended to move freely. 

Class 5. Wringing fit,t which is practically metal-to-metal contact. 

Class 6. Tight fit, which requires light pressure to assemble and is 

intended for more or less permanent assembly. 

* See “American Standard Tolerances, Allowances and Gages for Metal Fits,“ 

B4a-1926, by A.S.M.E. 

t The report states that this is sometimes called a “tanking fit.” The term is 

neither elegant nor necessary and should be dropped. 
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Class 7. Medium force fit, in which the allowance is negative and 

considerable force is necessary to assemble the parts. These fits 

are the tightest recommended for cast-iron hubs. 

Class 8. Heavy force and shrink fit, for steel hubs and where very 

great holding force is required. 

The first four of these classes of fits are intended for use in interchange¬ 

able work. The last four, where the allowance is zero or a minus quan¬ 

tity, which is defined by the A.S.A. as interference, are more permanent 

in character and selective rather than interchangeable. 

Table XXIII * lists the formulas recommended by the report for 

calculating allowances and tolerances, and the report tabulates allow- 

TABLE XXIII 

Allowances and Tolerances 

Class of Fit 
Method of 

Assembly 
Allowance 

Selected 

Average 

Interfer¬ 

ence of 

Metal 

Hole 

Tolerance 
Shaft 

Tolerance 

(1) Loose 
Strictly 

interchangeable 
0.0025 0.0025 0.0025 v^d 

(2) Free 
Strictly 

interchangeable 
0 0014 v'd2 

C
O

 

8
 

o
 0.0013 •>J^d 

(3) Medium 
Strictly 

interchangeable 
0 0009-^^ 0 0008 </d 0 0008 ■'^'d 

(4) Snug 
Strictly 

interchangeable 
0 0000 0.0006 0.0004-^5 

(5) Wringing 
Selective 

assembly i 
0.0000 0.0006-^d 0.0004 >5^d 

(6) Tight 
Selective 

assembly 
0.00025d 0.0006 O

 1 

(7) Medium force 
Selective 

assembly 
O.OOOfid 

1 O
 o

 1 

(8) Heavy force 

or shrink 

Selective 

assembly 
O.OOld 0.0006-^d 0.0006-^d 

See also ‘‘Machinery’s Handbook,” page 981, for other data from practice for 

tolerances, allowances, and fits. 
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ances and tolerances in detail for each class of fit. The report further 
lists the forcing pressure for force fits and also the stress at the inner sur¬ 
face of the hub. These values are given only for hubs twice the diameter 
of the shaft. However, for shafting other than the small sizes, hubs are 
rarely twice the shaft diameter even in heavy shrink fits such as are 
used in marine crankshafts. It may be well, therefore, to discuss the 
general theory of force and shrink fits. 

162. General Considerations. Crank discs, the hubs of heavy 
flywheels, impulse water wheels, and in general, work which is to be sub¬ 
jected to shock or vibration, must be fastened to the shaft more securely 
than is possible with a key, when the hub is a sliding fit on the shaft. 
In such cases the bore of the hub is made slightly smaller than the 
diameter of the shaft, and the shaft is forced cold into the hub; or 
the hub is expanded by heating till the bore is slightly larger than the 
shaft, then slipped over the shaft and allowed to cool in place. The first 
method is known as a force or pressure fit (class 7), and the second as a 
shrinkage fit (class 8). The degree of tightness or grip required be¬ 
tween shaft and hub depends largely on the service. Thus, with shafts 
up to 3 or 4 in. in diameter, a difference between the diameter of the 
shaft and the bore, such that the parts may be driven together with a 
hand sledge, is often satisfactory. Such a fit is called a driving fit (class 
6), and the difference between the shaft diameter and the bore is very 
small. With such work as armature spiders and flywheel hubs, the 
allowance for the press fit depends largely on the facilities for erection. 
If the parts can be forced together in the shop, where adequate means, in 
the form of a powerful hydraulic press, is to be had, an allowance requir¬ 
ing a pressure of 100 tons or more may be made. But if the parts must 
be erected in the field, this allowance may have to be reduced on account 
of the difficulties of erection. It is usually possible in armature spiders, 
flywheel hubs, etc., to obtain a sufficiently tight grip on the shaft by 
means of a press fit without inducing undue stress in the parts. De¬ 
pendence for preventing relative rotation may, in a large measure, be 
placed upon the key in all such cases. 

In such work as crankshafts, when built up from separate parts, it is 
often necessary to insure as strong a grip upon the shaft as is possible 
without inducing undue stress. A greater difference between the shaft 
diameter and the bore of the hub is then allowed than in force fits and 
the parts are usually put together by shrinking. In such fits the 
stresses induced are of importance and should be carefully considered. 

163. Stresses Due to Force Fits. If x be the elongation or con¬ 
traction of any radius r, then 27rx is the corresponding elongation or 
contraction of the circumference 2irr. The elongation or contraction 
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of the circumference per unit of length is 2’kx 27rr. If s be the stress 
which would induce this strain, and E be the coefficient of elasticity of the 

material, then, 
Stress 

Strain 

s 
- or X 
2tcx 

sr 

E 
(1) 

27rr 

In Fig. 137 let A represent a hollow shaft on which has been forced 
or shrunk a hub or boss H, the radius of the contact surface being r2. 
Before the operation of pressing, the outer radius of the shaft was 

r2 + €2f and the inner radius of the hub was r2 — e'2. The hub B is, 
therefore, in the condition of a thick cylinder without ends subjected 
to an internal pressure, and the shaft A is in the condition of a thick 
cylinder subjected to an external pressure. The greatest tensile stress 
will be found at the inside surface of the hub, and the greatest compres¬ 
sive stress at the inside surface of the shaft. If, therefore, e be the dif¬ 
ference between the outer radius of the shaft and the inner radius of the 
hub, before pressing, then e = 62 + 6'2. 

Let St = the unit tensile stress in the hub at a radius r2. 
Sc = the unit compressive stress in the shaft at a radius r2. 

W2 = the unit radial pressure between A and B, 
Ti = the internal radius of the shaft, 
rs = the external radius of the hub. 

With negligible error the final common radius can be used for the 
original inside radius of the hub and the original outside radius of the 
shaft; hence from (1), 

St . Sc , Ee 
e = - r2 + - r2 or st + Sc = — 

EE r2 
(2) 
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Birnic’s eciuation for stresses in thick cylinders without ends, and 
hence without longitudinal stress, is much used for the design of such 
members and will be adopted in this work. This ecjuation is: 

2ri~wi — 2r2‘^W2 + —(wi — wz) r2 

3(7-2“ - rr) 
(3) 

Where ri is the inner radius of the cylinder, r2 the outer radius, ivi the 
internal unit pressure, W2 the external unit pressure, and .s the tensile or 
compressive stress at any radius Applying this equation to the shaft 
U’l = 0, r = r2, whence the compressive stress at the surface of the shaft 
is 

?/’2(2r2“ + 4ri“) 

3(r2“ - rr) 
awz (4) 

In a similar way, substituting 7-2 for ri, 7-3 for r2, W2 for wi, and W3 

for W2, the unit tensile stress on the inner surface of the hub is 

St 
3(r3-' - r2^) 

Dividing (4) by (5), 

(5) 

__ Ot 

St 0 

From (2) and (6), 

(6) 

and 

Ee0 

r2(a + 0) 

Eea 

rzioL + 0) 

(7) 

(8) 

When the shaft is solid, ri in the above equation becomes zero and the 
equations are much simplified. 

Example. A hollow steel shaft 10 in. outside diameter and 2 in. 
inside diameter is to have a steel crank with a hub 15 in. long shrunk 
upon its end. The hub of the crank is 18 in. in diameter. What must 
be the difference betweeii the diameter of the shaft and the bore of the 

*The following treatment is from Professor Merriman’s “Mechanics of Mate¬ 

rials,” eleventh edition, page 594. The notation has been changed to agree with that 

adopted in this work. The student should compare this equation and its applica¬ 

tion with Clavarino’s equation and its application in Article 109. 
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crank so that the tensile stress at the inner surface of the hub shall not 
exceed 20,000 lb per sq in.? What will be the corresponding com¬ 
pressive stresses at the outer and inner surfaces of the shaft? Take 
E = 30,000,000. 

Here r\ = 1, r2 = 5, ra = 9 and St = 20,000. Whence, 

^ 2r2^ + 4n^ ^ (2 X 5^) + (4 X P) _ 3 
Z{r2^ - ri2) 3(52 _ i2) 4 

2r22 + 4ra2 ^ (2 X S^) + (4 X 9^) ^ ^23 

3(r32 - r22) 3(92 - 52) 

Then from (7), 

^ ■s.r2(« + d) ^ 20,000 X 5(f -H 2.23) ^ 

E(^ 30,000,000 X 2.23 
From (8), 

Sc = 

Eea _ 30,000,000 X 0.0044 X 0.75 

r2(a + ^) “ 5 X 2.98 
6700 

From (4), 
^ 6700 

a 4 
^2 = - = —-3 - = 8900 Ib 

and, substituting this value in (3), making r = n and w\ = 0, it is found 
that the compressive stress at the inner surface of the shaft is 18,500 
lb per sq in. 

Equation (3) and the discussion that follows it assume that the 
materials are elastic and that Hooke’s law applies. Professor A. Lewis 
Jenkins * noted that the most usual combination is a cast-iron hub 
on a steel shaft and that Hooke’s law does not hold for cast iron. He 
made a careful study of the records of force and shrink fits made by 
several manufacturing companies and deduced therefrom practical co- 
eflScients which he applied to a theoretical equation based upon Lamp’s 
theory. These equations are as follows, the notation being changed 
to agree with this discussion. For steel hubs on steel shafts 

15,000,000^[ + l] 

* See American Machinist^ March 4, 1915, for Professor Jenkins^ important 
discussion of this problem. 
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and for cast-iron hubs on steel shafts, 

102,900,000- 

« --^ (10) 
7.16 + (2 

r2 

Assuming the data of the problem discussed in the preceding sec¬ 
tion, e — 0.0044, ra = 9 in., r2 = 5 in., and, solving equation (9), the 
stress at the inner surface of the hub is found to be 17,274 lb per sq in., 
instead of 20,000 lb as assumed in the original example. For a cast- 
iron hub, assuming the same data, equation (10) gives 10,106 lb per 
sq in. as the stress at the inner surface of the hub. 

It is evident that if e be assumed, as is usual, the resulting pressure 
and stresses can be computed. It should be noted that must 
be well within the elastic limit to prevent the hub’s yielding and 
relieving the pressure. It appears, as pointed out by Professor Merri- 
man, that the allowances made in practice for force fits induce stresses 
which should be considered if other stresses are to act on the members. 
Thus, in the example given, the total allowance or difference between 
the diameter of the shaft and the bore of the hub would be 2 X 0.0044 = 
0.0088; and the allowance per inch of diameter would be 0.0088 10 = 
0.00088 in., which is close to average practice for force fits, where 
0.001 in. per in. of diameter is often allowed. A somewhat greater 
allowance is generally made for shrinkage fits, as here the difficulty 
of forcing on the hub does not occur. 

The A.S. A. Report formula for stress in steel hubs twice the diameter 
of the shaft is: = 29,000,000 A/d, where A is the allowance and d 

the diameter of the shaft. If, in equation (7), ri = 0 and the hub is 
taken as twice the diameter of the shaft, St = \EAIdy which gives 
smaller values than those of the A.S.A. Report. 

164. Forcing Pressures and Allowances. The foregoing equations, 
while giving the probable stresses and radial pressure resulting from a 
force or shrink fit made with an allowance e, are limited in their applica¬ 
tion to the practical making of force fits. They are important, however, 
as indicating the great stress that may be induced by a small allowance 
or difference in diameters. There is, generally speaking, no difficulty in 
making shrink fits, with any practical allowance, as far as getting the 
parts together is concerned, although greater skill is required in handling 
shrink fits than force fits. In making force fits, however, the amount of 
pressure that can be applied to the parts is often a controlling factor. 
The probable radial pressure between the shaft and hub {W2) may be 
found as above, but little is known of the coefficient of friction in such 
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work, and it is evident that this quantity will vary greatly with the 
character of the material, the finish of the surface, and the lubricant 
applied. Experimental data are lacking on this point; hence, it is 
almost impossible to compute accurately the resistance to slipping 
offered by force or shrink fits. In general, shrink fits are superior to force 
fits, since their surfaces are very dry and unlubricated, while those 
of a force fit are lubricated. Total dependence is, therefore, seldom 
placed on the forced fit itself, but a key is also used for safety. 

Experience shows that the pressure required to make a force fit will 
vary, for any given diameter, 

(a) Directly as the length of the hub. 
(b) Directly as the allowance c. 
(c) As some function of the radial thickness of hub. 
(d) With the character of the materials and the finish of the sur¬ 

faces. 

If the radial pressure for a given value of e is computed and the value 
of the coefficient of friction can be assumed, then the axial pressure 
necessary to force the shaft into the hub is 

P = TrdliJLW2 (11) 

where d is the diameter of the shaft and I the length of the hub. 
Professor Jenkins, as the result of the investigations already referred 

to, gave the value of P for steel shafts in steel hubs as 

P = 

and for steel shafts in cast-iron hubs, 

r2 

Assuming the allowance of 0.0044 computed in the example discussed 
in the preceding section, and taking ra = 9in., ra = 5 in., and Z = 15 in., 
as in that example, the force, P, required to press the shaft into the hub 
the entire length is found by equation (12) to be 188 tons. In the 
previous example referred to, the radial pressure W2 was found to be 
8900 lb per sq in. Substituting this value in equation (11) and taking 
d = 10 in., Z = 15 in., and /x = 0.085, the forcing pressure is found to 
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be 178.2 tons. These rosulls agree quite closely, as might be expected, 
since Professor Jenkins iis(‘d a value of /x — 0.085 in his determinations. 

It is evident, as stated, that the value of the coefficient of friction in 
work of this character depends upon the character of the materials, the 
finish of the surfaces, the lubricant, and the radial pressure. If the 
pressure is too high the lubricant may be squeezed out and abrasion may 
occur. As might be expected, therefore, practical data on this value 
vary considerably; although such data indicate that values ranging from 
0.08 to 0.125 are not infrequent in practice, it is very difficult to assign an 
accurate value of ^ for any given set of conditions, and it is always very 
desirable to check press fit allowances by actual practical exf)erience. 

An allowance of 0.001 in. per in. of diameter will represent average 
practice in this country for such work as crankshafts, crankpins, and, 
in general, where a tight fit is required. For armature spiders, or fly¬ 
wheels, one-half this allowance is often sufficient. For shrink fits a 
g’-eater allowance is often made, although the foregoing discussion indi¬ 
cates that this should not be much excecnled considering the stresses 
induced. The following t.able, which represents the practice of the 
General Electric Company, has been used successfully for many years, 
and may be helpful as a guide: 

TABLE XXJV 

Allowance for Fit in Inches 

Nominal 
Diameter, 

Inches Sliding 
Fit 

Commu¬ 
tator 
and 
Split 
Hub 

Press Fit 
for Solid 
Armatuie 

Spidei 1 

Steel 

Pi ess Fit 
foi Solid 

Armatui e 
Spider 

Cast lion 

Ph^s Fit 
for 

Couplings 

Shrink 
Fit 

2 -0 0015 -f-0 0005 -fO 00075 +0 0015 4-0 00175 4-0 0025 
4 -0 0020 +0 0005 -j-0 00150 4-0 0025 4-0 00300 4-0 0040 
8 -0 0040 -fO 0010 -f0 00200 4-0 0035 4-0 00450 , 4-0 0060 

12 -0 0050 -fO 0010 -f0 00250 4-0 0045 4-0 00550 4-0 0075 
16 -0 0055 +0 0010 +0 00300 1 4-0 0050 +0 00600 4-0 0090 
20 -0 0060 -hO 0015 +0 00350 4“0 0055 4-0 00700 4-0 0100 
24 -0 0070 1 -fO 0015 H-0 00350 -f0 0060 -fO 00750 4-0 0110 

. 28 -0 0075 1 +0 0015 -fO 00400 4-0 0065 4-0 00850 4-0 0120 
32 -0 0080 -fO 0015 -f0 00450 4-0 0070 4-0 00900 4-0 0125 
36 -0 0085 +0 0020 -f0 00450 ■f0 0075 4-0 00950 4-0 0135 
40 -0 0090 +0 0020 -fO 00500 4-0 0080 4-0 01000 4-0 0140 
44 -0 0095 ■fO 0020 -f0 00500 4-0 0085 4-0 01050 4-0 0145 
48 -0.0100 -f-0 0020 +0 00550 4-0 0090 4-0 OIKX) 4-0 0150 
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It will be obvious that the difficulties of pressing parts together and 
the uncertainty due to possible abrasion during pressure are lessened if 
the mating surfaces are tapering in form. The increased cost of machin¬ 
ing such surfaces usually makes such a procedure undesirable. 

166. Thin Bands or Hoops. If the ring or band which is forced or 
shrunk on to a member be thin, radially, compared to its diameter, the 
assumption can be made, without appreciable error, that the stress is 
uniform throughout the cross-section of the ring. The change of form, 
due to compression, in the member on which the band is placed, is so 
small in such cases that it may be neglected, and the stress in the band 
may be taken as that due to stretching it over an incompressible body. 
This is practically applicable to any ordinary shape of band, but rigidly 
true for circular shapes only. Thin bands of this character are usually 
shrunk into position. 

Example. A thin steel band is to be shrunk on to a casting whose 
external perimeter where the band is to be placed is 48 in. What 
must be the length of the inside face of the band so that the stress per 
unit area due to shrinking will be 30,000 lb? What will be the area 
of the cross-section of the band in order that the total stress in the band 
may be 60,000 lb? 

Let I = the internal perimeter of band before shrinking. 
Then 

and 
48 — Z = Total amount of elongation of band 

Unit elongation of band 

Whence, if E, the coefficient of elasticity, 
then, 

E = 30,000,000 = 
Unit strain 48 — I 

be taken as 30,000,000, 

or Z = 47.95 in. 

Z 

The total area of the cross-section of the band will be 

60,000 

30,000 
2 sq in. 

which may be distributed in any convenient proportions. 
If the part on which the band is to be shrunk is circular in form, the 

band is in the condition of a thin cylinder subjected to an internal 
pressure w per unit area, where w is the radial pressure between the band 
and the part on which it is shrunk. 
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Therefore by Article 101, 
wd - 2S 

where S is the total stress per unit width of the band, or 

w = 
d 

Thus, in the above problem, let the band be shrunk upon a circular 
hub of diameter 48/7r, and let the cross-section of the band be f in. by 
4 in. Then, 

60,000 

4 
= 15,000 

and 
^ ^ ^ 2 X 15,000 

^ d 48 
1962 lb per sq in. 

TT 

The steel tires of locomotive driving wheels are usually shrunk on 
with an allowance for shrinkage of 0.001 in. per inch of diameter, which 
gives 0.001 in. elongation per inch of circumference. Taking E = 
30,000,000, and considering the tire a thin band, the unit stress in the 
tire is 

s = SA = 30,000,000 X 0.001 = 30,000 lb 

156. Other Forms of Shrink Fits. Many machine parts, such as 
flywheel rims, are held together by steel links or bands shrunk into 
place. The theory outlined in the preceding article is clearly applicable 
to these members, and their dimensions should be carefully calculated 
so that they will not be overstrained by the shrinking alone. If such 
members are so designed that they will be stressed up to the elastic limit 
from shrinkage alone, they are liable to be strained beyond the elastic 
limit, when an external load greater than the total shrinkage stress is 
applied to the parts which they hold together, and the link, taking a 
permanent set, becomes ineffective. In computing the dimensions of 
such links, allowance must sometimes be made for the compression of the 
parts held together, but ordinarily this is small and may be neglected. 

Occasionally a bolt or link is used to reinforce a cast-iron member 
against tensile stress. Thus, in open frames (Fig. 139) that are used 
normally as punch press frames, a pair of removable reinforcing bolts are 
occasionally applied at some point, Af, near the location where the work 
is done, so that heavier work, such as shearing of metal plates, may be 
performed without danger of breaking the frame which has not been 
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designed, primarily, for such heavy loads. If it is desired to reinforce 
the frame, and still keep the throat of the frame clear, a large bolt is 
sometimes placed on i'lich side of the throat, as shown also in Fig. 139. 
These bolts are usually put in hot and allowed to cool in place. As 
ordinarily applied, the benefit derived from them is questionable. If 
they are designed and fitted so as to put the frame in compression at A, 
an amount ec^ual to the tension induced by the working load, P, at this 
same point, without being themselves strained beyond the elastic limit 
when the load is app)lied, then no stress can come upon the frame itself 
from the force P, If, however, the bolts and frame are each to carry 
part of the load, care should be exercised lhat the stress induced in the 
bolts by the initial load due to shrinking or screwing up is so low that 
the additional stress due to the external load does not raise this initial 
stress beyond the elastic limit, thus giving the bolts a px'rrnanent set 
and destroying their usefulness. 

Let A, Fig. 138, represent a cast-iron member of uniform cross- 
section which is to be reinforced against tensile stress by the bolt B. 

Suppose, first, that the nut is screwed up till it just bears firmly on the 
casting. If now an external tensile load is applied to the casting, the 
bolt and casting will be elongated the same amount A. But the coeffi¬ 
cient of elasticity of cast iron is only about one-half that of steel. 
Hence, since s = E X strain = E A/Z, the stress per unit area in the cast¬ 
ing will only be one-half that in the steel. If 2000 lb is the allowable unit 
stress in the casting, 4000 lb per unit area is all that can be thus obtained 
in the bolt. This would lead to unnecessarily large bolts. 

Suppose, however, that the nut is set up till a total compressive load, 
TVy is applied to the cast iron. The bolt will be elongated * and the 
casting compressed, the amount of elongation or compression depending 
on the cross-section of the respective members. The unit stress induced 
in the bolt and casting will also be proportional to the area of their 
respective cross-sections. If now an external tensile load, W'j is applied 
to the holt, the tendency is to relieve the compressive stress in the casting 
and to increase the tensile stress in the bolt. When the load applied is 
sufficient to elongate the bolt as much as the casting was originally com¬ 
pressed, the casting will be relieved of all stress. If the external load, 
IF', is applied to the bolt through the casting itself, it is evident that 
practically the same result is obtained; and after the compressive stress 
in the casting is fully relieved, any further addition to IF' induces a 
tensile stress in the casting and still further increases the tension in the 
bolt. Usually the cross-sectional area of the casting is very much 
greater than that of the bolt. Furthermore, the compressive stress 

* See Article 137. 
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induced in the casting by the initial load on the bolt is usually very 
small compared to the tensile stress induced by the working load. For 
these reasons the compressive deformation in the casting can usually be 
neglected without appreciable error; and the bolt may be designed on 
the basis of the external load alone. (See Article 138, Case «a.) 

Example. In Fig. 139 let the section AB be stressed by the load P 

whose arm is 1. Let O be the location of the gravity .axis of the section 
AB, It is desired to keep the stress at A not greater than 3000 lb per 
sq in. The material is to be cast iron. 

Let P = 60,000. 
I — moment of inertia of section = 4500. 
c = 10 in. 

Also let the area of the section be 200 sq in. Then from (il/),* page 
93, the tciisde stress at A due to P is 

s 
/P ^ Plc\ _ /60,000 60,000 X 30 X K)' 

\7l ^ I ) ~ woo" 4500 . 
= 4300 lb 

and it is desired to reduce this to 3000 lb by reinforcing bolts. These 
reinforcing bolts serve the double purpose of increasing the factor of 
safety by reducing the fiber stress, and also of decreasing the deflection 
of the frame at the point where the work is done. Let these bolts be 
located 8 in. from 0. Then the compressive stress induced at A by P' is 

^ \A^ I J \200 4500 / 

But s — s' must equal 3000; therefore, 

4300 - 
P' X 8\ 

450 / 
= 3000 

whence P' = 57,000. This is the total tensile load on both bolts, 
when the full working load, P, is applied. If the maximum stress at 
the root of the thread be taken at 15,000 lb, then the area of each 
bolt at the root of the thread is 

57,000 

2 X 15,000 
1.9 sq in. 

which corresponds closely to a if-in. bolt. The area of the body of a 

The effect of the curvature of the frame is neglected for simplicity. 
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if-in. bolt, where most of the stretching takes place, is 2.4 sq in. Hence 
the working stress in the body of the bolt is 

^ = 11,800 lb per sq in. 
2 X 2.4 

That portion of the boss which immediately adjoins the throat is sub¬ 
jected to an average tensile stress nearly equal to the fiber stress at the 
surface of the throat, or 3000 lb per sq in. The upper and lower por¬ 
tions of the boss have little or no tensile stress induced in them, as a 
consideration of a section such as XX, whose gravity axis is at O', will 
show. It will be reasonable to estimate that the stress in the boss is 
equivalent to the full stress of 3000 lb per sq in. through 14 in. of its 
length, the total length being 19 in. The increase in the length of the 
bolts due to loading the frame will be the same as the increase in the 
length of the boss. Neglecting the compressive deformation of the 
boss due to the initial load from the bolts, the elongation of the boss 
due to loading the frame will be 

A = (effective length) (strain) = Z — = 14 —— = 0.0028 
E 15,000,000 

The increase in the stress in the bolts will be 

0 0028 
5 = ^(strain) = 30,000,000 X = 4420 lb 

10 

whence the initial stress in the bolt will be 11,880 — 4420 = 7450. The 
allowance for shrinkage necessary to give this initial stress will be 

Is ^ 19 X 7460 

E 30,000,000 
0.0047 in. 

The number of threads per inch on a if-in. bolt is 5. Hence, after 
the nut has been set up snugly it should be given 0.0047 ^ = 0.0235 
of a turn, or should be turned through 360 X 0.0235 = 8.45 degrees. 
This is most easily done in the case of large bolts by first marking the 
nut with reference to the bolt when set up snug in a cold state, and 
then heating the body of the bolt, if necessary, and rotating the nut 
the desired amount, allowing it to cool in position. 

It is to be especially noted that a very small shrinkage allowance 
is needed to induce a great stress in the bolt. If too great an allow¬ 
ance is made, the bolts may be stressed beyond the elastic limit, and take 
permanent set the first time the external load is applied. When the 
external load is again applied, a force much smaller than the total load. 
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P, will strain the casting to the point where the bolt becomes effective. 
The total load, P, will strain the casting further than it did originally 

and even if the stresses induced are not sufficient to rupture the casting, 
the stiffness of the frame is materially decreased. 
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CHAPTER XIV 

TOOTHED GEARING 

167. General Principles. Powc^r may be transmitted from one 
shaft to another by means of belts, friction wheels, gearing, or chain 
drives. When it is not essential that rotation of one shaft shall produce 
definite and positive rotation of another, belts and friction wheels may 
be used to advantage, Wlien the velocity ratio must be constant, how¬ 
ever, some form of gear wheels or chain drive must be employed. It 
is evident that any pair of surfaces which will roll together with pure 
rolling motion, so as to give the required velocity ratio, may serve as a 
basis for the design of a pair of toothed gears; and works on mechanism 
treat fully of the methods of drawing the sections of such surfaces for 
various conditions and velocity ratios. Whether the elements of the 
surface thus outlined shall be iiarallel or otherwise will depend on the 
angle which the shafts make with each other, as in the case of friction 
wheels, and tooth gearing may be classified according to the character 
of the pitch surfaces, and the relation of the axes, thus: 

Kind of Gear Relat ion 
of Axes 

Pitch 
Sui faces 

Tooth 
Elements 

Tooth 
Contact 

Plain spur Pai allel Cy liiidei 8 Straight lines Straight line 

Helical, or twisted, spur Parallel C> Imders Helices Straight line 

Plain bevel Intel sect mg Cones Straight lines Straight line 

Twisted bevel Intersec ting Cones Curved lines Curved line 

Helical gears, m general Any angle 
not inter- 

i seeling 

Cylinders Helices Point 

Worm and wheel (special 
helical gear) hobbed 

Axes at 90° 
not inter¬ 
secting 

Cylinder for 
worm 

Helices for 
worm 

Curved line 

Hyperboloidal * gears Any angle 
not inter¬ 
secting 

Hyperboloids Straight lines Straight line 

* Sometimes called skew gears. 

322 
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The most important of these arc spur, bevel, and a few special 
forms of twisted and helical gears. The motion transmitted by a pair 
of properly designed toothed gears is identical with that of the base 
curves or surfaces rolling together. In order that a pair of curves 
may move upon one another with pure rolling motion, the point of 
tangency of the curves must always lie upon the straight line joining 
the centers of rotation of the curves. And, as a consequence, a pair 
of surfaces whose axes lie in the same plane will roll together with pure 
rolling motion when the line of tangency lies in the plane passing through 
the axes of rotation. If ri and be the instantaneous radii of such a pair 
of rolling surfaces at the point of contact, and a)i and a?2 be their instan¬ 

taneous angular velocities, then coi/a)2 = r^lri. In the most common 
case, the angular velocity of both shafts is constant, and hence r\ and r2 

are constant, and the rolling surfaces are circular in cross-section. Thus, 
Fig. 140 shows a portion of two gears whose rolling surfaces are a pair of 
circular cylinders, represented in cross-section by the circles C and D, 

If the teeth are properly proportioned the motion transmitted will be 
identical with that produced by the rolling of C on D, It can be shown 
that the condition which such tooth outlines must fulfill, in order that 
the velocity ratio may be constant, is that the common normal to the 

tooth outlines at the point of contact must always pass through the point of 

tangency of the rolling circles. There are many curves that can be used 
for tooth outlines, and which would fulfill the condition, but in practice 
only two are commonly employed, namely, the involute and the cycloid. 

Cycloidal tooth outlines are formed by rolling a circle upon the 
outside and inside of the rolling circles or pitch circles C and D, Fig. 
141. Involute tooth outlines are formed by rolling a straight line upon 
the base circles H and 7, Fig. 140. 
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Figure 140 illustrates a portion of two gears with involute teeth. The 
upper wheel, M, is the driver. Contact between two teeth has just 
begun at a, and the common normal to the point of contact aOb passes 
through the pitch point 0. As the wheels rotate, the point of contact 
will move along the line aOb till contact ceases at b. Hence, in the in¬ 
volute system, the normal to the point of contact makes a fixed angle 
with the common tangent to the pitch circles. 

Figure 141 shows a portion of two gears with cycloidal teeth. Con¬ 
tact is just beginning at a, and as the gears rotate the point of contact 
will move along the curved path a06, contact ceasing at b. The normal 
to the first point of contact is drawn, and it is clear that the inclination 
of the normal to the common tangent of the pitch circles is a maximum 
at this point, and continually varies in direction though always passing 
through the point 0, It can be shown that in the involute system the 
angular velocity ratio will remain constant, within the limits of action, 
whether the pitch circles are tangent or not; but for the transmission of 
constant velocity ratio with cycloidal gearing the pitch circkis must 
remain tangent. This practical advantage in favor of the involute tooth 
outline has brought it into extended use, and it has almost superseded 
the cycloidal tooth. In cycloidal teeth the contact is between convex 
and concave surfaces, whereas in the involute the contact is between 
convex surfaces or between convex and plane surfaces. The lubrica¬ 
tion of cycloidal teeth is, therefore, somewhat more efficient than 
in involute teeth, and this property is of value in worm drives that 
carry heavy loads. A fuller treatment of the theory of gear-tooth 
outlines, which is beyond the scope of this work, will be found in 
treatises on mechanism.* 

158. Interference in Involute Teeth. In cycloidal teeth the tooth 
outline is theoretically correct for conjugate action both above and 
below the pitch line, regardless of the size of the gear. In involute 
teeth, however, the true tooth outline is entirely outside of the base 
circle, and in order to obtain a tooth of sufficient depth below the pitch 
circle it has been customary to extend the outline inside the base circle 
by drawing radial lines from the end of the involute curve. This part 
of the tooth outline is not theoretically correct and may interfere with 
the action of the involute outline of the mating tooth. In gears of fair 
size this causes no difficulty, but it will be noted that a decrease in the 
pressure angle or a decrease in the radius of the gear reduces the length 
of the involute that lies below the pitch circle, thus bringing more of the 
incorrect radial outline into operation. This action is known as inter- 

* See Kinematics of Machinery,^' by J. H. Barr and E. H. Wood, also *^Kine- 

matics of Machinery/^ by Albert and Rogers. 
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ference, and in small gears the tooth outline must be corrected either by 
cutting away a portion of the lower face or flank of the tooth or by re¬ 
moving a part of the upper face near the point. This latter method 
is preferable as undercutting the lower part of the tooth naturally 
weakens it. 

169. Interchangeable Systems of Gearing: Standard Forms. It 
is desirable in practical work that any gear of a given pitch shall run 
properly with any other gear of the same pitch. In order that this may 
be so, certain limitations must be placed upon the form and dimensions 
of the tooth. In the cycloidal system, interchangeability may be accom¬ 
plished, so far as the tooth outlines are concerned, by keeping the diam¬ 
eter of the describing circle constant for all gears of the series. 

Any involute tooth outline will run properly with any other similar 
outline; and any gear with involute teeth will run with any other gear 
having similar teeth, so far as the height and thickness of teeth will 
allow them to mesh. In order to obtain involute outlines of sufficient 
length, and a series of gears with fixed nominal pitch circles, the angle 0, 
Fig. 140, made by the line of action with the common tangent to the 
pitch circles must have a proper value, and be constant for all gears of 
the series. In the systems in most common use this angle is 14|°, 
though there is a tendency in modern work toward a greater angle. 

It is found undesirable in practice to make gears with less than 
12 teeth; and in some cycloidal systems the radius of a 12-tooth gear 
of the required pitch is taken as the diameter of the describing circle. 
For a 12-toothed gear this will result in radial lines for the tooth out¬ 
lines below the pitch circle, i.e., the tooth will have radial flanks. In 
the practice of the Brown and Sharpe Manufacturing Company, the 
diameter of the describing circle is the radius of the 15-toothed gear of 
the series. This gives spaces between the flanks of the teeth on the 
12-toothed, or smallest gear, so nearly parallel that they may be cut with 
a rotary cutter. 

It is evident from Figs. 140 and 141 that the tooth outlines of either 
system may be extended below the pitch line as far as the involute base 
circle or cycloidal generating circle will permit and above the base 
circle until they meet at the point of the tooth. It is also clear that 
the longer the teeth the earlier will they engage with each other, the 
greater will be the arc of contact and the greater will be the number 
of teeth continually in contact. The distribution of the load over a 
number of pairs of teeth is in itself conducive to smooth running; but 
on the other hand, extending the arc of contact away from the pitch 
point increases the sliding between teeth, and also the velocity with 
which the teeth approach each other. The tooth also becomes weaker 
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as it is lengthened, the thickness remaining the same, and for these 
reasons a practical limit is placed on the length of teeth. The length 
of tooth adopted in practice is, therefore, a compromise between con¬ 
flicting conditions, which experience has shown will give good results. 

The distance along the pitch line from any point on a tooth to a 
corresponding point on the next tooth, is called the circular pitch, 
and will be denoted by p,. The thickness of the tooth along the pitch line 
will be denoted by /, Fig. 142. For cut gears, where no backlash is 
allowed between teeth, t ~ p, 2. In som(‘ forms of g('ars, such as shown 
in Fig. 154, where a metal pinion engages with a gear having wooden 

teeth, th(' pitch may not be equally divided, but the metal tooth may 
be thinner than the wooden tooth. If N be the number of teeth and 
D the pitch diameter, then evidently Npe ~ ttD. If the number 
of teeth N be divided by the pitch diameter, the quotient, or the teeth 
per inch of diameter, is called the diametral pitch and will be denoted by 
Pd. Since 

N , tD 
Pd “■ “ and Pc 

Z) N 

PdX Pc ^ TT. /. Pd = and Pc ^ 
pc Pd 

The diametral pitch is, ordinarily, the most convenient for use, and 
in this country practically all interchangeable systems are based upon 
the diametral pitch. Thus a gear 24 in. in diameter and 3 diametral 
pitch would have 24 X 3 = 72 teeth, and the circular pitch would be 
7r/3 = 1.047 in. The following notation will be used in this discussion: 

Di = the outside diameter of the gear. 
D = the pitch diameter of the gear. 

D2 = the diameter of a circle through bottom of space. 
Pd = the diametral pitch. 
Pc — the circular pitch. 
a = the addendum = height of tooth above pitch line. 
c == the clearance between top of tooth and bottom of space when 

gears are in mesh. 
d = the dedendum, or depth of tooth below the pitch line. 
a + d = A == total height of tooth. 
b = breadth of tooth. 
t = the thickness of tooth on pitch line = width of space on pitch 

line in cut teeth. 
N = the number of teeth in gear. 
h = the total height of tooth. 
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Many attempts to formulate standard gear systems have been made 
in this country and the 1923 edition of this book contains a comparative 
description of the most important of these early efforts. The best known 
and most widely used of these systems is that devised by the Brown and 
Sharpe Manufacturing Company. Involute gears made to this standard 
have been found to be very satisfactory for average conditions. For 
more extreme conditions, however, in order to obtain greater strength 
other proportions have come into use. Three methods of meeting this 
difficulty are available. The first is to increase the pressure angle 
(Fig. 140), thus thickening the flanks by carrying the true outline 
nearer to the root of the tooth and also thereby reducing the interference. 
With a pressure angle of 14|° interference begins with a pinion having 
about 32 teeth, but if the pressure angle is made 22^*^ interference does 
not begin until the number of teeth is 12, which is about as small a 
number as is ordinarily used. Most authorities on this subject have 
hesitated to recommend such a large angle of obliquity because of the 
added radial pressure which brings additional load upon the bearings, 
and some have adopted 2T^ as a compromise. 

A second method of obviating undercutting because of interference 
is to make the tooth outline below the base circle of cycloidal form, thus 
securing accurate conjugate action throughout and markedly thickening 
the root of the tooth. This also requires that the face of the tooth near 
the upper end must be cycloidal for a short distance. Such a system is 
known as a composite system and is now in use in this country. 

The third method of strengthening the tooth is to decrease its length, 
thus lessening the bending moment applied at the root. Experience has 
shown that teeth considerably shorter than Brown and Sharpe standard 
teeth have sufficient arc of contact and run smoothly and quietly. In 
fact, the claim is made that they operate more smoothly than teeth of 
standard height. Obviously, the height of the involute teeth may be re¬ 
duced and the angle of obliquity increased simultaneously, and this has 
been done in some of the new standard systems that have been developed 
or proposed. The name stub teeth has been given to any system of teeth 
where the length of the tooth is markedly shorter than those of the Brown 
and Sharpe standard. Mr. C. W. Hunt was one of the first to use such 
short teeth; he reported to the A.S.M.E. in 1897 (vol. 18) the results 
of the adoption of his system for heavy loads, and gave full informa¬ 
tion for designing the tooth outlines. One of the most prominent 
of these so-called stub-tooth systems is that advocated by the Fellows 
Gear Shaper Company. In this system an involute tooth with a pres¬ 
sure angle of 20° is used. The addendum is fixed, not by the reciprocal 
of the diametral pitch as in the Brown and Sharpe system, but by the 
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reciprocal of a diametral pitch somewhat larger. Thus, in this system, a 
^ gear is a gear of 7 diametral pitch having an addendum ^ in. in height. 
These relations are as follow^s: 

Diametral pitch 4 5 6 
7 8 10 12 

Addendum of Fellows gears i ni } in * m. 9 f 0 I'l in rV TTl'l 

The principal criticism made of this system is that the depth of 
tooth is not a direct function of the circular pitch, and advocates of 
other systems have adopted proportions that depend upon the pitch. 
The Fellows system is much used, howevei, and appears to give excellent 
results. In order to clarify this situation the American Standards 
Association has approved four systems of interchange^able gearing, full 
description of which will be found in its publication B6.1-1932. These 
systems are, respectively: 

(1) A composite system with an involute pressure angle of 14^ 
(2) A full-depth involute system with a pressure angle of 14-|°. 
(3) A full-depth involute system with a pressure angle of 20®. 
(4) A stub-tooth system with a pressure angle of 20®. 

Table XXV gives comparative proportions of these several systems; 
in this connection it should be noted that in the original Brown and 
Sharpe System the addendum is l/pa- 

160. Other Systems. As noted, there have been other attempts to 
devise standard systems. Of these the Maag System is interesting in 
that full involute action is obtained with all combinations of gears. 
The system is not interchangeable, however, and this is a great defect 
in these days of standardization. Space does not permit description of 
this system. 

In all this discussion reference is to cut or machined gear teeth. In 
rough gear teeth, cast from a wooden pattern, the thickness of the 
tooth must be less than the width of the space, and the clearance at 
the bottom of the space must be greater than in cut teeth. If the gears 
are machine-molded, the difference need not be quite so great as in 
pattern-molded gears. For pattern-molded gears good practice gives 
t = 0.45pc for large gears, to OAlpc for small gears, and the corre¬ 
sponding width of the space would be 0.55pc to 0.53pc. For machine- 
molded gears t == 0.46pc to 0.48pc and the corresponding space would be 
0.54pc to 0.52pc. The difference between the thickness of the tooth and 
the width of the space is commonly called back-lash. 
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TABLE XXV 

Comparison of Gear Tooth Systems 

14 14]° 14’» 20° 20° 22^° 22 >“ 
Brown ASA. AS.A. A.S.A. ASA. Full- Stub 

A Com- Full- Full- Stub Depth Tooth 
Sharpe posite Depth Depth Tooth Involute 

System System Involute Involute 

Pressure angle 14i° 14l° 14l° 20° 20° 22 221° 

Addendum 
1 0 1 0 1 0 1 1 0 0 SO 0 875 0 7854 

Pd Pd Pd Pd Pd Pd pd 

Working depth 
2 0 2 0 2 0 2 0 1 6 1 75 1 5708 

■— 
Pd Pd Pd Pd Pd Pd Pd 

Whole depth 
2 1571 2 1571 2 1571 2 1571 1 8 1 875 1 7279 

Pd Pd Pd Pd Pd Pd Pd 

Clearance 
0 1571 0 1571 0 1571 0 1571 0 2 0 125 0 1571 

Pd Pd Pd Pd Pd Pd Pd 

Minimum number ^ 

of teeth 32 12 32 18 14 12 11 

^ Number of teeth in eraallest pinion to mesh with rack without interference 

161. Forces Acting on Spur Gears. In Fig. 142 let the gear A drive 
the gear B. Let y„ be the velocity of the pitch circle of A; and Fb be 
the velocity of the pitch circle of B, Also let Wa be the equivalent 

driving force acting at the pitch circle of A, and let TFb be the equivalent 

resisting force acting at the pitch circle of B. If now the tooth outlines 
are properly constructed, the line of action of the actual driving force, 
TFi, will always pass through the pitch point, and the angular velocity 
ratio of A to B will be constant. The action of the pitch circles will be as 
though they rolled upon each other, and their linear velocity will be the 
same or Fa = Fb. The corresponding tangential driving forces at the 
pitch line, TFa and TFb, must therefore be equal, also, since WaVa == 
WbVb. The actual tangential driving force on the tooth varies some¬ 
what throughout the period of contact, but this variation may be 
neglected and it may be assumed that the action is the same as though 
a pair of teeth were continually in action at the pitch point. 

The pressure at the tooth contact is opposed by the supporting 
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bearings. The greater the angle of obliquity the more will the pressure 
at tooth contact and at the bearings exceed the effective force required 
to turn the gear. In the involute system the angle of obliquity is 
constant for any given system and is equal usually to 14or 20°. 
Neglecting the friction due to sliding between teeth the pressure angle 
at tooth contact will be equal to the angle of obliquity. The increase 
in the pressure at the bearing due to an angle of 20° is about (sec 20° — 1) 
or 6.4 per cent. In cycloidal gearing the obliquity varies from a 
maximum at the beginning of contact to zero when the contact point 
lies in the line of centers; and during recess it increases again to a max¬ 

imum at the end of contact. For the usual cycloidal systems, the 
maximum value of the angle of obliquity is about 22° and the increase 
in pressure at the bearings over and above the required tangential force 
is about 8 per cent. 

In the above discussion the influence of friction has been neglected. 
During the arc of approach the frictional force F (Fig. 142) deflects 
the line of action of TFi in such a way as to increase the effective obliq¬ 
uity. During the arc of recess it acts in the opposite direction and 
decreases the obliquity. The influence of this frictional force is small 
and may, usually, be neglected, but its action accounts, to a certain 
degree, for the well-known fact that gears run more smoothly during 
recess than during approach. 
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It is usually intended that more than one pair of teeth shall be in 
action at all times, but, owing to the unavoidable inaccuracy of form and 
spacing, it is not safe to depend upon a distribution of the load between 
two or more teeth of a gear. It is safest to provide sufficient strength 
for carrying the entire load on a single tooth. In the rougher classes 
of work, this load may be concentrated at one corner of the tooth, 
as indicated in Fig. 143, and all such gears should be carefully inspected 
and corrected, if intended to carry heavy and important loads. With 
well-supported bearings and machine-molded or cut gears, it is not 
unreasonable to consider the load as fairly well distributed across 
the face of the gear, if the face does not exceed in width about three 
times the circular pitch (see Fig. 144). 

The obliquity of the line of pressure gives rise to a crushing action 
on the teeth (due to the radial component of the normal force), in addi¬ 
tion to the flexural stress which results from the tangential component. 

This crushing component, with the ordinary proportions of teeth, does 
not exceed 10 per cent of the normal pressure. Its effect is to reduce the 
tensile stress due to flexure, and to increase the compressive stress. 
Since cast iron is far stronger in compression than in tension, this may be 
neglected in gears made of that metal, and with steel or composition 
gears, the margin of safety assumed usually makes it unnecessary to 
consider this component. 

162. Stresses in Spur Gear Teeth. The assumption often made in 
determining the strength of spur gears that the teeth of such gears can 
be considered as rectangular cantilevers is wholly unsatisfactory espe¬ 
cially in gears with a small number of teeth. Furthermore, the stresses 
in gear teeth are very complex. Figure 145 (a) * shows a photo-elastic 
picture of a gear tooth under stress and gives an idea of the complexity 
of the stress distribution. Figure 145 (b) shows a study of a gear 

* “Stress Distribution in Electric Railway Pinions,” A. L. Kimball, Trans. 
A.S.M.E., 1922. 
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tooth reported by E. G. Coker * indicating the lines of the principal 
stresses as derived from a photo-elastic picture; Fig. 145 (c) shows the 
relative values of the contour stresses both in tension and compression. 
These last refer of course to the stresses in the outer surfaces. The com¬ 
pressive stress directly under the point of contact should be particularly 
noted since it is this stress that causes pitting or flaking of the surfaces. 
The theoretical discussions that follow should therefore be considered 
in the light of these complex stresses. Figure 146 shows four gear 

teeth which have the same thickness at the pitch line and the same 
height. The tooth marked (a) is one of an involute rack; (b) is one of 
an involute pinion having 12 teeth, (c) is one of a cycloidal gear having 
30 teeth; (d) is one of a cycloidal pinion of 12 teeth. 

Mr. Wilfred Lewis, of Win. Sellers and Company, seems to have been 
the first to investigate the strength of spur gear teeth with due regard to 
the actual forms used in modern gearing. His work was published orig¬ 
inally in the Proceedings of the Engineers^ Club of Philadelphia, in Janu¬ 

ary, 1893, and his method of investigation was as 
follows: Accurate drawings of gear teeth were made 
on a large scale, and the line of action of the 
normal force, when acting on the point of a tooth, 
was drawn in (see Fig. 147). From the intersection 
of this line of action with the center line of the 
tooth, a parabola was drawn tangent to the sides of 
the tooth, thus locating a beam of uniform strength 
equal to the effective strength of the tooth (see 
Article 16). The points of tangency a, a, locate 

the weakest section of the tooth, and the bending moment applied to 
this section is Wl. Then from equation (J), page 93: 

* Engineering Problems Solved by Photo-elastic Methods,^* Journal of the 
Franklin Institute, 1923. See also “Contact Stresses in Gears'^ by R. V. Baud 
Mechanical Engineering, 1931, page 666. 
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c 6 3 \SpJ 

or 

W = = ^spciy) (1) 

where b = the breadth of the tooth in inches, s = the tensile stress, and 
Pc = the circular pitch. The factor y is sl variable, depending on the 
shape of the tooth. Mr. Lewis found that its value is practically inde¬ 
pendent of the pitch (since Pc, h and I are proportional to the pitch), 
but dependent mainly on the number of teeth in the gear. Tabulated 
values of this coefficient may he found in Rentes Mechanical I^ngineers^ 
Pocketbook.^’ From these tabulated values, Mr. Lewis deduced the 
following equations in which N = the number of teeth in the gear. 

For the Brown and Sharpe 14^° composite system and the cycloidal 
system using a generating circle whose diameter equals the radius of the 
12-tooth * pinion: 

W = bsp, ^0.124 — (2) 

For the 20° involute and addendum equal to -1; 
Pd 

W = hsp, (o.l54 - (3) 

For the Brown and Sharpe cycloidal system with a generating circle 
equal to the radius of the 15-tooth pinion: 

W = Up. (o.loo - (4) 

It will be obvious that Mr. Lewis^ analyses can be applied to stub 
teeth, but it appears that the value of {y) cannot be expressed accu¬ 
rately for all systems of stub teeth in the comparatively simple manner 
illustrated in equations (2), (3), and (4). Table XXVI gives the 
tabulated values of {y) for Fellows stub teeth and for other standard 

forms. 
The Lewis formula is convenient for determining IT, 6, pc, or s, where 

the number of teeth {N) is known; but a very common problem in 
design is to determine the pitch (pc), when the pitch diameter of the 
gear is given and the number of teeth is unknown. The formula may 

* The 12-tooth involute pinion may have its teeth weakened by a correction /or 
interference; but it is usually better to correct the points of the mating gear. 
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TABLE XXVI 

Values of y for Standard Gear Tooth Forms 

No. 

of 
Teeth 

N 

14^“ 
Com¬ 

posite 

1 
a= - 

Pd 

20° 

Full 
Depth 

1 
a ~ — 

Pd 

20° 

Stub 

08 
a = — 

Pd 

Fellows System 

4 5 
7 

6 
8 

7 
9 

8 
To 

g 
11 

1 0 
1 2 

J 2 
1 1 

10 0 056 0 064 0 083 

11 0 001 0 072 0 092 

12 0 067 0 078 0 099 0 096 0 111 0 102 0 100 0 096 0 100 0 093 0 092 
13 0 071 0 083 0 103 0 101 0 115 0 107 0 106 0 101 0 104 0 098 0 096 
14 0 075 0 088 0 108 0 105 0 119 0 112 0 111 0 10b 0 108 0 102 0 100 
15 0 078 0 092 0 111 0 108 0 123 0 115 0 115 0 no 0 111 0 105 0 103 
16 0 081 0 094 0 115 0 111 0 126 0 119 0 118 0 113 0 114 0 109 0 106 
17 0 084 0 096 0 117 0 111 0 129 0 122 0 121 0 116 0 116 0 111 0 109 
18 0 086 0 098 0 120 0 117 0 131 0 124 0 124 0 119 0 119 0 114 0 111 
19 0 088 0 100 0 123 0 119 0 133 0 127 0 127 0 122 0 121 0 116 0 113 
20 0 090 0 102 0 125 0 121 0 135 0 129 0 129 0 124 0 123 0 118 0 115 
21 0 092 0 101 0 127 0 123 0 137 0 131 0 131 0 126 0 125 0 120 0 117 
23 0 091 0 106 0 130 0 126 0 141 0 134 0 135 0 129 0 128 0 123 0 120 
25 0 097 0 108 0 133 0 129 0 143 0 137 0 138 0 133 0 130 0 120 0 123 
27 0 099 0 111 0 136 0 132 0 146 0 140 0 140 0 135 0 133 0 129 0 125 
30 0 101 0 114 0 139 0 135 0 149 0 143 0 144 0 138 0 136 0 132 0 128 
34 0 104 0 118 0 112 0 137 0 150 0 145 0 146 0 140 0 137 0 134 0 130 
38 0 106 0 122 0 145 0 140 0 154 0 149 0 149 0 144 0 141 0 138 0 133 
43 0 108 0 126 0 147 0 145 0 159 0 154 0 154 0 149 0 145 0 142 0 138 
50 0 110 0 130 0 151 0 147 0 161 0 156 0 156 0 151 0 147 0 144 0 140 
60 0 113 0 134 0 154 0 150 0 164 0 159 0 159 0 154 0 150 0 148 0 143 
75 0 115 0 138 0 158 0 153 0 166 0 161 0 161 0 156 0 152 0 150 0 145 

100 0 117 0 142 0 161 0 158 0 171 0 166 0 166 0 160 0 156 0 154 0 150 
150 0 119 0 146 0 165 0 162 0 174 0 170 0 169 0 164 0 160 0 158 0 154 
300 0 122 0 150 0 170 1 0 164 0 176' 0 172 0 171 ' 0 166 0 162 0 160 0 156 

Rack 0 124 0 154 0 175 1 0 1731 0 1841 0 179' 0 1761 0 172' 0 170' 0. 168 0 166 

be adapted to this last stated problem as follows. To accord with 
modern practice, circular pitch will also be transformed to diametral 
pitch. 

Let D == the pitch diameter. 
w == the load per inch of face. 

Pd = the diametral pitch = w/pc or pc = r/pd- 

Then, 
N == D Xpd 

Therefore 
w L 0.684\ , ir ^ 0.684\ 
W = 6pcs( 0.124  -] = bX — X si 0.124--— 1 

\ N / Pd \ Dpd/ 
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or since w = W 

and therefore 

/0.389 2.15" 

\ Pd 

17^ 

!l 
1 

'0.389 2.15\ 

^ Pd ~ Dp/} 

0.194 + 
2.15w;\ 

sD ) 

If 6 = kpc equation (1) may be written 
MW 

s - -7-^ 
kir-y 

This is a convenient form where the power to be transmitted and the 
diameter of the gears are known. 

Since also W = the equation may be written 

kir^yN 

which is a convenient form where the power to be transmitted and the 
ratio of the gears are known. 

The Lewis equal ion in its original form considers only the static or beam 

strength of the tooth. It is obvious that the stress so determined must 
be modified for the efft^cts of the impinging of the teeth upon each other.* 

One of the first attempts to make allowance for this increase in stress 
was that of Carl Barth, who formulated the equation 

6OO.S1 . . 

® ~ 600 + F 

where 5 = safe working stress for a velocity at 1 he pitch line of Vft per min 
and Si = the allowable stress for a pitch line velocity of zero, assumed by 
Barth to be one-third the ultimate strength. Table XXVII gives values of 
Si that have been used successfully with equation (7) for moderate speeds. 

For well-cut metal gears and pitch line velocities up to 4000 ft per 
min the following modification of this equation is recommended: 

1200^1 

“ - i200Tv ® 
For pitch line velocities of 4000 ft and over the American Gear Manu¬ 
facturers Association recommends 

78 + F» 
* “Effect of Rotation on Stress Distribution in Electric Railway Motor Pinions,’^ 

General Electric RevieWy February, 1924. 
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TABLE XXVII 

Values of si 

Materials Si in lbs per sq in 

Wood (beech or maple) 3,000 

Rawhide 8,000 

Fabroil 8,000 

Bakelite micarta 8,000 

Cast iron 8,000 to 10,000 

Semi-steel 10,000 
Bronze 12,000 to 15,000 

Steel castings 20,000 

Mild steel, untreated 25,000 

Alloy steels, case-hardened 50,000 

Chrome-nickel steel, hardened throughout 100,000 

Chrome-vanadium steel, hardened throughout 100,000 

TABLE XXVII (a) 

Values of st in Lb per Sq In 

Material 
Bnnell Hard¬ 
ness Number St Material i 

Brindl Hard-i 

ness Number 
Si 

Gray iron 160 12,000 Steel 240 60,000 

Semi-steel 190 18,000 Steel 280 70,000 

Phosphor bronze 100 24,000 Steel 320 80,000 

Steel 360 90,000 

Steel 150 36,000 Steel 400 100,000 

Steel 200 50,000 

Professor Earle Buckingham remarks that it has been found by 
experience that after gears reach a pitch line velocity of over 5000 ft per 
mm their load-carrying capacity is practically constant for any higher 
speeds and states that the following equation is in common use m this 
country for high velocities. 

W = bkD (10) 

where W = transmitted load, b = width of gear face, D = pitch diam¬ 
eter of smallest gear, and k = a constant For heat-treated gears 

/c = 62 5 for single reduction gears steady load continuous service. 
k == 100 for single reduction gears steady load but full load reached 

only occasionally 
The Lewis formula as presented m the foregoing has been used with 

success ior moderate speeds However, it is obvious that the effects of 
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variation in velocity, inertia, inaccuracy of tooth outlines, wear, etc., 
naturally are magnified by increased velocity. The best information 
on this point has been ^supplied by an extended series of tests conducted 
by Professor Earle Buckingham under the suspices of the A.S.M.E., the 
results of which are published by that society under the title Dynamic 
Loads on Gear Teeth.The principal object of these tests was to 
separate the increment load due to inertia and imperf(‘ctions of tooth 
outline from the basic load due to the power transmitted; and to evalu¬ 
ate the effect of repeated local stress upon wear. For the increment 
load Professor Buckingham gives 

0.05F(TF + bC) 

OMV + (W + 
(11) 

where Wi == total increment load, W = load due to the power trans¬ 
mitted, V = pitch line velocity, b == breadth of the tooth, and C = a 
constant dependent upon the error in the tooth faces. The total load 
upon the tooth is therefore 

Wd Wi+W = 
0MV[W + bC] 

0.05F + IW + bC]^ ^ 
(12) 

The error in the tooth face, of course, will depend upon the degree 
of refinement used in cutting the teeth. The American Gear Manu¬ 
facturers Association publications state that this error will vary from 
0.002 to 0.0048 in. in well-cut commercial gears. The Association 
sets up three classes of gears and establishes tolerances for gear manu¬ 
facture. Class 1 includes ordinary good conmuTcial gears; Class 2, 
gears cut with great care; and Class 3 is for ground teeth. These values 
are listed in Table XXVIII, and Table XXIX gives corresponding 
values of C. The values shown in Table XXVII (6) should keep the 
noise and the intensity of the dynamic load within reasonable limits. 

TABLE XXVII (6) 

Maximum Error in Action between Gears 

V Error V Error V Error 

250 0 0037 1750 0 0017 3250 0 0008 

500 0 0032 2000 0 0015 3500 0 0007 

750 0 0028 2250 0 0013 4000 0 0006 

1000 0 0024 2500 0 0012 4500 1 0 0006 

1250 0 0021 2750 0 0010 5000 i 0 0005 

1500 0 0019 3000 0 0009 and over 
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TABLE XXVIII 

Errors in Tileth 

Diametral Pitch Class 1 Class 2 Class 3 

1 0 0048 
. 

0 0024 0 0012 

2 0 0040 0 0020 0 0010 

3 0 0032 0 0016 0 0008 

4 0 0026 0 0013 0 0007 

5 0 0022 0 0011 0 0006 

6 and finer 0 0020 0 0010 0 0005 

TABLE XXIX 

Values of C 

Materials 
of Gear 

and Pinion 

Tooth 

Form 

Error in Gear Teeth 

0 0005 0 001 0 002 0 003 0 004 0 005 

Cl and Cl 14^° 400 800 1600 2400 3200 4000 

Cl and St Hi” 550 1100 2200 3300 4400 5500 

8t and St Hi = 800 1600 3200 4800 6100 8000 

Cl and CL 20° full 
depth 

415 830 1660 2490 3320 4150 

C 1 and St. 20° full 
depth 

570 1140 2280 3420 4560 

j 

5700 

St and St. 20° full 

depth 

830 1660 3320 4980 6640 8300 

C 1. and C I. 20° stub 

tooth 

430 860 1720 2580 3440 4300 

C.I. and St. 20° stub 

tooth 

590 1180 2360 3540 4720 5900 

St. and St. 20° stub 

tooth 

860 1720 3440 5160 6880 8600 

1 
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For safety the static load Wb for safe beam strength should exceed 
the total dynamic load Wd- 

For steady loads. Wb = \2^Wd 

For pulsating loads. Wb — 1.35Wd 
For shock loads. Wb — l.50Wd 

The foregoing discussion has reference to gears with cut teeth. 
Rough-cast gears are still used in agricultural machinery and where the 
speed is low and precision not important. An empirical rule for rough¬ 
cast teeth is 

W === 200 X Pc Xb (13) 

where TF, as before, is the total load pc the circular pitch, and h the width 
of face of tooth. The strength of wooden mortise teeth, made of beech 
or maple, may be taken as about one-half that of cast iron, under the 
same circumstances; and the strength of good rawhide gears may be 
taken as equal to that of similar gears made of cast iron. It is to be 
noted that a rawhide gear will endure considerably more shock than one 
made of cast iron. 

163. Wear of Gear Teeth. The wear on gear teeth may be divided 
into two kinds, namely, the wear from abrasion due to sliding between 
surfaces and that due to fatigue failure from concentrated compressive 
stress between the surfaces. The first of these may be obviated by 
proper lubrication provided the load is not excessive. The second is 
dealt with in some detail in the report by Professor Buckingham to 
which reference has been made. From this report, 

Let D = pitch diameter of pinion. 
b = width of face in inches. 
n = number of teeth in pinion. 

N = number of teeth in gear. 
El and E2 = modulus of elasticity of materials of gears. 

6 = pressure angle. 
$c = compressive endurance stress limit. 

Then the limiting load on the tooth for wear is 

TTtt) = (14) 
Ln + Nj 

where 
_ sin fl r 1 J_] 

1.40 L.Bi £2! 

Values of K are given in Table XXX. 
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TABLE XXX 

Values of K 

Material 
iu Pinion 

Brin ell 
Number 

Material 
in Gear 

Brinell 
Number 

8e 
P^atigue 
Limit of 

Surface of 
Material 

K 
for 14|° 
System 

K 
for 20° 
System 

Steel 150 Steel 150 50,000 30 41 
1 200 4 4 150 60,000 43 58 

11 250 4 4 150 70,000 58 79 
i < 200 4 4 200 70,000 58 79 
11 250 4 4 200 80,000 76 103 
i i 300 4 4 200 90,000 96 131 
11 250 4 4 250 90,000 96 131 

300 4 4 250 100,(X)0 119 162 
{( 350 4 4 250 110,000 144 196 
(t 300 4 4 300 110,000 144 196 
11 350 4 4 300 120,000 171 233 
4 4 400 4 4 ' 300 125,(X)0 186 254 
< ( 350 4 4 350 130,000 201 275 
( ( 400 4 4 350 140,000 233 318 
4 4 500 350 145,000 250 342 
1 4 400 4 4 400 170,000 344 470 
4 4 500 4 4 400 175,000 364 497 
1 4 600 4 4 400 180,000 385 526 
4 4 500 4 4 500 190,000 430 588 
4 4 600 4 4 600 230,CXX) 630 861 
4 4 150 Cast iron 50,000 44 60 
4 4 200 Cast iron 70,000 87 119 
4 4 250 Cast iron 90,000 144 196 
4 4 150 Ph. bronze 50,000 46 62 
4 4 200 Ph. bronze 70,000 91 124 
4 4 250 Ph.bronze 85,000 135 204 

Cast iron Cast iron 90,000 193 284 

164. Width of Face of Gears. There is no fixed rule governing the 
width of gear faces and this factor may vary considerably depending 
upon conditions. However, if the face is over-long and the supporting 
framework yielding, concentrated loading due to lack of alignment will 
occur. On the other hand, the tooth must not be so short that over¬ 
loading and excessive wear may occur. 

Experimental data on the durability of teeth are few, those of Marx 
and Buckingham being the most instructive. It is evident, however, 
that the allowable load will depend largely on the character of the 
service, velocity of rubbing, lubrication, and the material used. Thus^ 
for ordinary cut cast-iron teeth under constant service, the value given 
above (200 lb) is probably conservative; with teeth of high-grade steel 
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much greater loads may be carried. Cases are on record where loads 
above 2000 lb per in. of face were successfully carried, with a peripheral 
velocity of more than 2000 ft per min, the pinion being of forged steel 
and the gear a steed easting, 4.924n. circular pitch. Well-made gears 
of rawhide may be loaded up to 150 lb per in. of face, per inch of circular 
pitch; but the load should never exceed 250 lb per in. of face.* 

In machines such as punching-machines, which work intermittently 
and whose operation extends over a short space of time, the element of 
wear is not so important in the design of the teeth; but in such gears as 
those connecting street-railway or automobile motors with the driving 
axles, where the work is both continuous and severe, wearing qualities 
may be fully as important as strength; and gears made of steel or other 
hard materials may have to be used solely on this account. 

The actual width of face for ordinary pattern-cast gears, machine 
molded, and cut gears is usually three to three and a half times the 
circular pitch. So far as computations for strength are concerned, the 
width of the face should not be assumed greater than two to two and 
a half times the circular pitch for pattern-cast and machine-molded 
gears nor greater than three to four times the circular pitch for cut 
gears as ordinarily aligned. 

Examples. The pitch can be found from equation (6) for any 
values of u\ Z), and s, when the face of the gear is known or assumed. A 
common problem is as follows: The distance f between two shafts and 
their velocity ratio is known; required the pitch of spur gears to connect 
these shafts for a given load and working stress on the teeth. The center 
distance of the shafts, and the velocity ratio, fix the diameter of the 
gears. The face of the gears may be governed by the space available, or 
it may be assumed by the designer upon other considerations. To illus¬ 
trate: Suppose W = 15,000 lb and s\ the allowable stress at low velocity 
= 8000 lb per sq in. Let the diameter of the smaller gear be 40 in. 
and the rpm be 30. Assume the width of face as three times the circular 
pitch. Then the velocity at the pitch line will be 

X 30 = 314 ft per min 

and from equation (7) of Article 162 the allowable stress s will be 

/ 600 \ _/ 600 \ __ / 600 \ 

\600 + v) ^600 + 314> 
5250 lb per sq in. 

Hence 
W W Wpd 15,000prf 

* Private communication from the New Process Raw Hide Co. 
t It is better, if possible, to keep the distance between shaft centers somewhat 

flexible, as it may be difficult to find a suitable pitch that will give an integral 
number of teeth. 
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If, now, trial values of pd are assumed the resulting values of w can 
be substituted in equation (6) of Article 162. Thus, let pd = 1, whence 
w = 1590; then 

s / / 2.15w;\ 
= -(0.194+ >.038 -—) 

5250 

1590 
, 0.194 + 4 0.038 

2.15 X 1590\ 

5250 X 40 / 
1.15 

The result indicates that the assumed diametral pitch is a little on 
the side of safety; whence pd = 1, A = 40, and b = Zir/pd = 9.42 or 
say 9|. 

A more common problem is that in which the distance between shaft 
centers is not fixed but the velocity ratio and the load to be transmitted 
are known. Thus let it be required to design a pair of spur gears with 
14|° composite teeth to transmit 24 hp with a gear ratio of 1 to 5. 
Assume pinion to have 24 teeth and gear 120 teeth. The pinion shaft 
rotates 480 rpm and it is desirable to have quiet running conditions. 
Assume a steel pinion and a bronze gear. From Table XXVII the 
allowable stress for bronze is 12,000 to 15,000 lb per sq in. and for steel 
25,000 lb per sq in., hence gear will have weaker teeth. 

.n 24 X 33,000 X 12 
The torque on gear = 7 =---—-= 15,750 in lbs. 

27r X 90 

The width of face = 5 = 3p, or A == 3 and y = 0.1178 for N = 120. 
The induced stress (equation 6(6) 

= , = ^ = 2 X 15,750p.3 ^ 

kir-yN 37r2 X 0.1178 X 120 

If Prf = 4, s = 4800 lb; Z) = -y = 6' and V = 7r(A)480 = 753 ft min. 

Hence from equation (7) 5 = 12,000 
600 

(600 + 753) 
5300 lb sq in. 

Therefore for the Lewis equation the design is satisfactory and the 
diameters are 6" and 30" and b = 2.35" or say 2.5". 

For beam strength Table XXVII (a), 

W„ = s,bpcy = 24,000 X 2.5 Q 0.1178 = 5550 lb. 

T 15 750 
For static load IF = — = —f-— = 1050 lb. 

r 15 

For quiet running and dynamic effect within reason tooth error for 
V = 753 may by Table XXVII (6) be 0.0028, hence for pd = 4, Table 
XXVIII Class I gears would be satisfactory for strength and dynamic 
effect. However, wear may demand a higher class of gear. Assuming 
Class II gears the allowable error is 0.0013. Since the elasticity of 
bronze is about the same as cast iron, for steel pinion and bronze gear 
from Table XXIX, C = 1430. 
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The dynamic load Wd =-+ 
0.05F + VW + bC 

0.05 X 753(1050 + 2.5 X 1480) 

0.05 X 753 + \''l050 + 2.5 X 1430 
+ 1050 = 2700 lb. 

The ratio = 2.06, hence pjear is safe for shock load. 

For wear W,, should be equal to or greater than Wd- Assuming 
pinion of stei'l of 250 Brinell hardness and bronze^ gear, from Table 
XXX, K = 135 

Hence for wear (Equation 14), 

ir„ = DbK —= 6 X 2^ X 135 X 5 = 3375 
1 7i + AU 

Since Ww exceeds Wd the solution is satisfactory. 
It should also be noted that the teeth of the smaller gear of a mating 

pair are weaker in form than those of Ihe larger. The wear, also, is 
greater on the teeth of the smaller gear, since they come in contact more 
frequently. Hence, in 
I’-ereral, if the small gear 
is properly designed the 
larger gear will have suffi¬ 
cient strength. This does 
not apply to certain 
forms of reinforced or 
‘‘ shrouded teeth dis¬ 
cussed later, nor, neces¬ 
sarily, where the thickness 
of teeth and spaces are 
unequal, nor where the 
mating gears are of dif¬ 
ferent material. 

166. Strength of Bevel 
Gear Teeth. If a pair of 
bevel gear teeth, Fig. 148, 
have just come into con¬ 
tact as shown at a. Fig. Fia. 148. 

140, then the driving force 
is applied to the point of the driven tooth by the root of the driver. 
The tooth of the driven wheel will be deflected a certain amount, while 
the deflection of the driving tooth will be negligible. Since the deflection 
of the driven tooth is caused by the rotative effort of the driving gear, 
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the magnitude of this deflection at any point on the line of contact of the 
two teeth will be proportional to the movement of the corresponding 
contact point of the driver or to its distance from the axis of rotation 
of the driver; hence, from similar triangles, this deflection will also be 
proportional to the distance from its own axis of rotation. Now, the 
cross-sectional outlines of the tooth are similar at all points, and it can 
be shown that, in simple cantilevers of similar form, the load applied 
is proportional to deflection. It has just been shown, however, that 
the deflection of the tooth at any point is proportional to the dis¬ 
tance of that point from the axis of rotation. Hence the load on the 
tooth at any point must also be proportional to the distance from the 
axis, being least at the small end, and greatest at the large end, the mean 

value being at the middle of the tooth. Therefore, a spur gear which 
has the same width of face, and teeth of the same form and pitch as the 
mean section, will have, theoretically, the same strength as the bevel 
gear. It can also be shown that, in simple cantilevers of eqval breadth 

and similar outline, the stresses induced at corresponding points on the 
cantilevers are equal, if the load applied is proportional to the linear 
dimensions. Hence, the maximum stresses are the same at all sections 
of the tooth. 

It is evident that the relation thus established between the mean 
section of a bevel gear and a spur gear with similar teeth may be (and 
often is) used as a means of designing bevel gears. It is much more 
convenient, however, to deal with the teeth at the outer or large end. If, 
also, the pitch radii are used instead of the addendum radii, the error 
will not be great. 

Let ri = the pitch radius at the small end of the tooth. 
r2 ~ the pitch radius at the large end of the tooth, 
r = the mean pitch radius of the tooth. 
b = the width of the face of the tooth along the pitch elements. 

w = the load per inch of face at the radius r. 
W2 == the load per inch of face at the radius r2. 
W = the resultant load on the tooth = wb. 

We = the equivalent load per inch of face which, if acting at a 
radius r2, would produce the same rotative effect as the 
actual load. 

Since the intensity of the load on the tooth varies as the radii, the 
total resultant load will act at a radius 



STRENGTH OF BEVEL GEAR TEETH 345 

and the torsional moment due to the resultant force, W, will be 

WR 

Now by definition 

2 .(r2^-n^) 
3 ^ (r2^ - ri^) 

Therefore, 
Wehr2 = WR 

We 

2 (r2'^ - r\^) 
- w- 
3 (r2'^ - rr)r2 

(15) 

Also, since the load varies with the radius. 

W2 w w 2w 2wr2 

— = - = ——~ == "~T—• - ^2 = ^ 16) 
r2 r r2 + ri r2 + vi r2 + ri 

2 

and from (15) and (16), 

W2 2wr2 2 (r2^ — rr'^) 3(r2 — ri)r2^ * ^ . 
— = ——- -w —-— == —— -— = k (17) 
We r2 + ri 3 (r2" — ri^)r2 {r2'^ — ri'V 

The actual load, W2, will always be greater than w^ in the ratio shown 
above. A bevel gear, therefore, will be more heavily loaded at the 
large end than a spur gear of the same diameter, and carrying the 
same torque, in the ratio shown above. If, however, We is known, W2 

can be computed, and used in equations (2) and (6) of Article 162 instead 
of w. Usually n is made not less than |r2. When 

2 
r, = -r2, 

We 
1.4 

and this value can be used in computing W2 unless the face of the gear is 
excessively long. It should be especially noted that in solving problems 
in bevel gearing, by equations (2) and (6) of Article 162, the diameter, D, 
which must be substituted therein, is that corresponding to the formative 

circhf whose radius is R/ = r2 sec 6, Fig. 148, as the form of the tooth is 
fixed by this radius and not by the radius r2. The computations should 
be made for the smaller of the two gears, as in spur gears. 

Example. Design a pair of bevel gears to transmit 100 hp with a 
velocity ratio of 3 to 2; the gears to be of cast iron, and the maximum 
fiber stress to be 4000 lb per sq in. The revolutions per minute of the 
shafts are to be 300 and 200 respectively. 

*See also Mr. Lewises article, Proceedings Engineers^ Club of Philadelphia, 

January, 1893. 
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Lay off the axes OV and OT, Fig. 148, and draw OU so that corre¬ 
sponding radii of N and M are in the proportion of 3 to 2. Then it is 
found that 6 = 34° and 6' = 56°. Assume tentatively that r2 for the 
large gear = 15 in. and r2 for the small gear = 10 in., whence 

= f X 10 = 6.666 in. 

and the width of the face = 6 in. 
The velocity at the radius r2 

2 X TT X 10 X 300 

12 
1575 ft per min 

Hence the equivalent total load at a radius r2 

Therefore 

Since sec $ = sec 34° = 1.2, the diameter of the formative circle is 
20 X 1.2 = 24 in., and from equation (6) it is found that for Z) = 24 in., 
5 = 4000 lb, and w = 490 lb, the diametral pitch is very nearly 3, 
which may therefore be selected. This would give 60 teeth for the 
small gear and 90 for the large gear. 

166. More Refined Considerations. The methods outlined in the 
preceding section are sufficiently accurate for ordinary bevel gear 
problems where the speed is not high and where wear and noise are not 
important factors. However, the turbine, the automobile, and other 
accurately constructed machines have made a demand for more refined 
methods of production and more accurate methods of computing the 
characteristics of bevel gears. The Gleason Works have long been leaders 
in this field, and their system of tooth outlines has been adopted by the 
American Gear Manufacturers Association as a standard. Space does 
not permit the insertion of a detailed statement of the dimensional 
characteristics, and reference is made for these to the publications of 
the Gleason Works or of the American Gear Manufacturers Association. 
It should be noted that bevel gears are not interchangeable, and in the 
Gleason system three pressure angles are employed, namely, 14f°, 
17°, and 20°, depending upon the gear ratio. The proportions of the 
addendum and dedendum are not standardized but are varied to reduce 
the sliding effect. The Gleason system is the result of a long and varied 
experience in this field with bevel gears of all kinds and no doubt repre¬ 
sents the best information to be had. 

100 X 33,000 2100 ^ „ 
We =-7^7- = 2100, or We = —r~ = 350 lb 

1575 6 

W2 — We X Jc — 350 X 1.4 = 490 lb per in. of face. 
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For the strength of Gleason gears the A G M A recommends the 
Gleason equation 

W. ^hy[L - h] 

VdL 
(18) 

where TT* = tangential load; b ~ length of tooth face, L = cone 
length = 0(7 (Fig 148); Pd = diametral pitch, & = the allowable stress 
as calculated by equation (8), and y = tlu^ L( w coefficient taken from 
Table XXXI It should be remembered that the actual number of 
teeth is used in selecting y in Table XXXI. 

TABLE XXXI 

Outline Factors } loit Gleason Works Systi^m 

Rati >8 

Number 1 00 1 25 1 50 1 75 2 00 2 25 2 oO 2 7) 3 00 3 2) 3 >0 3 7 ) 4 00 1 50 5 00 
of 1 ecth to to to to to to to t ) to t ) to t ) t ) to 
in Pinion 1 1 50 1 75 2 00 2 25 2 50 2 75 3 00 3 2 , 3 50 3 7j 4 00 4 )0 >00 QO 

^ allies of } foi 1 1 * rnnil i 

10 0 231 0 260 0 280 0 294 0 305 0 31 ) 0 324 0 3 32 

1 

0 340 0 347 0 35 3 0 358 0 365 0 371 0 377 

11 0 268 0 264 0 273 0 286 0 296 0 30 3 0 309 0 315 0 320 0 324 0 328 0 3 32 0 336 0 340 0 342 
12 0 248 0 205 0 281 0 295 0 408 0 318 0 32S 0 335 0 341 0 34 ) 0 318 0 351 0 353 0 35o 0 356 
13 0 264 0 278 0 291 0 280 0 278 0 286 0 291 0 29) 0 298 0 299 0 301 0 303 0 305 0 307 0 310 
14 0 242 0 254 0 263 0 272 0 281 0 288 0 294 0 299 0 304 jo 307 0 310 0 313 0 316 0 318 0 319 
15 0 248 0 25S 0 260 0 274 0 284 0 290 0 296 0 301 0 305 0 308 0 312 0 315 0 318 0 319 0 320 

16 0 252 0 261 0 269 0 277 0 285 0 292 0 298 0 304 0 308 0312 0 314 0 317 0 319 0 321 0 323 

17 to 18 0 257 0 265 0 273 0 281 0 28S 0 295 0 302 0 307 0311 0 315 0 318 0 320 0 322 0 32j 0 326 

19 to 21 0 265 0 272 0 279 0 286 0 294 0 300 0 307 0 312 0 317 0 320 0 324 0 326 0 328 0 330 0 332 

22 to 25 0 274 0 281 0 288 0 29t 0 301 0 307 0314 0 319 0 321 0 327 0 3 31 0 332 0 335 0 337 0 338 

26 to 30 0 284 0 291 0 297 0 304 0 310 0 317 0 322 0 327 0 332 0 3 36 0 339 0 342 0 344 0 346 0 347 

For the allowable wearmg load the same authority gives 

= 37&bCmC.\^-J (19) 

where Cm — ^ material factor from Table XXXII and Os = a service 
factor from Table XXIII, N = number of teeth m the pinion, and 

Pd == the diametral pitch. 
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TABLE XXXII 

Material Factors (Cm) Used in Wear Load Formula 

Pinion Gear Cm 

The material factors {Cm) are based upon the 
hardness factors listed below Cast iron or soft steel Cast iron 0 30 

Heat-treated steel Heat-treated steel 0 35 

Case-hardened steel Cast iron 0 40 
Condition of Steel Bnnell 

Sclero- 
scope 

S A E 
Steels Com¬ 
monly Used Oil-hardened steel Cast iron 0 40 

Case-hardened steel Unhardened steel 0 45 Uuhardened steel 100-190 25-28 1035 

Oil-hardened steel Unhardened steel 0 45 Heat-treated steel 200-260 JO-36 
2335 
3140 

Case-hardened steel Heat-treated steel 0 50 Oil-hardened steel 70-80 3245 

Oil-hardened steel Heat-treated steel 0 50 

Case-hardened steel 80-90 

2315 

2512 

3312X 

Oil-hardened steel Oil-hardened steel 0 80 

Case-hardened steel Oil-hardened steel 0 85 

Case-hardened steel Case-hardened steel 1 00 

TABLE XXXIII 

Nature of Load and Service Factors (Cg) 

Intermittent service Cs = 1.3 for non-pulsating load; i.O for light shock; 0 65 for 

heavy shock 

Continuous service. C, = 1.0 for non-pulsating load; 0 75 for light shock; 0.50 

for heavy shock 

Starting. Ca = 1.5 for infrequent loads of short duration 

Example. A pair of steel bevel gears carefully cut are required to 
transmit 5 hp with a velocity ratio of 1 to 3. The pinion shaft rotates 
500 rpm. The service factor may be taken as unity and the material 
factor as 0.3 or 0.8 depending on whether the gears are oil hardened or 
not. The error in the tooth outlines may be assumed as 0.001 in., 
whence C in equation (11) may be taken as 1600. A preliminary layout 
assumes the largest pitch diameters as 4 and 12 in., cone length as 6.32 in., 
and length of tooth as 2 in. Assuming a diametral pitch of 6, there 
will be 24 teeth in the pinion and 72 teeth in the gear. Hence also the 
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pitch line velocity will be 4 X tt X 500/12 = 524 ft per min and the 
transmitted load will be 

W == 
5 X 33,000 

524 
= 317 lb 

From equation (8) and Table XXVII the allowable stress will be 

s = 25.000 
1200 

_1200 + 524 _ 
17,000 lb 

From Table XXXI the value of i/ for a Gleason system tooth for these 
conditions is 0.324, whence from equation (18) the tooth strength 
will be 

W. = 
17,000 X 2 X 0.324(6.32 - 2) 

6 X 6.32 
= 1250 lb 

For Cm = 0.3 and C, = 1, from equation (19) the allowable wearing 
load will be 

= 376 X 2 X 0.3 X 1 X = 451 lb 

If the gears are oil hardened and Cm = 0.8, then Ww == 1200 lb. 
From Table XXIX, C = 1600, whence the dynamic load will be 

from equation (11), 

0.05 X 524(317 + 2 X 1600) 

0.05 X 524 + (317 + 2 X 1600)^ 
= 1082 lb 

and the total load Wt = 317 + 1082 = 1399 lb. This is somewhat 
higher than the beam strength but may be accepted. Since, also, the 
allowable wearing load for unhardened gears is much less than the 
dynamic load the gears should be hardened, whence = 1200 lb. 
Since this allowable wearing load is in excess of the transmitted load 
and not much less than the dynamic load these proportions may be 
considered satisfactory, though a somewhat larger tooth would be 
desirable. 

HELICAL OR TWISTED SPUR GEARING 

167, General Principles. Suppose a spur gear to be cut into n small 
sections by a series of planes perpendicular to the axis of rotation. If 
each section be then placed a proper distance ahead or behind the adja¬ 
cent section, Fig. 149 (a), it is evident that they may be so arranged 
that some one section is just coming into contact with its mating section 
when the nth section in advance of it is in contact at the pitch point. 
With such an arrangement some section will always be in contact 
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near the pitch point, and there will always be approximately n points 
of contact with the mating gear between the pitch point and the point 
which marks the beginning of tooth action. Since the action of gear 
teeth is smoothest when contact is near the pitch point, this arrange¬ 
ment of gearing runs more quietly and smoothly than ordinary spur 
gearing, and it was at one time used in machine tool and similar work 
where smooth action is very desirable. 

As the number of sections is increased, the total width of the gear 
remaining the same, the spacing of these sections being kept uniform as 
before, the form of the stepped tooth approaches that shown in Fig. 
149 (c). When the number becomes infinite the teeth become helical 
in form, and contact is continuous along that portion of the face which is 
within the arc of contact. It is evident, however, that since the relative 
position of adjacent laminae is arbitrary, and may follow any desired law, 
the outline of the tooth in an axial direction is not necessarily helical, 
but may have any desired shape; although these teeth are most usually 
made helical, this form being more practical to cut. This form of gear¬ 
ing is also known as twisted gearing, for an obvious reason. The action 
of such gears is identical with that of common spur gearing, and should 
not be confused with that of screw gearing, though certain limiting forms 
of the latter are also twisted gears. A screw gear must have regular or 
uniform helical teeth; a twisted gear does not necessarily have this 
limitation. In plain and twisted spur gears the relative sliding between 
teeth is in the plane of rotation only; in screw gears there is also relative 
sliding along the tooth elements. 

Since the pressure, W, l)etween mating teeth must be normal to the 
surface, there is a component. Fig. 149 (c), which tends to move the gear 
in an axial direction causing end thrust on the shaft collars. This can 
be obviated by placing two sets of helical gears upon the shafts to be 
connected, one gear on each shaft being made with a right-hand helix 
and one with a left-hand helix. The gears on the same shaft may or 
may not be placed close to each other. A very common method is to 
make the two sets of teeth on the same shaft integral with each other, 
as shown in Fig. 150. This makes a very strong form of tooth, and this 
construction has been much used in heavy hoisting and haulage machin¬ 
ery where a high velocity ratio between the shafts is desired. Gears 
of this type are known as herring-bone gears. In recent years the term 
has been extended to include all similar combinations of right- and left- 
hand helical teeth whether those on the same shaft are made integral 
with each other or not. 

Gears such as are shown in Fig. 150 cannot be machined by the ordi¬ 
nary rotary cutters or hobs. They can be machined, however, by plan- 
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ing processes, and at least one manufacturer in this country is producing 
true herring-bone gears of large size with teeth accurately finished in this 
manner. Herring-bone gears with cast teeth for very heavy work arc 
often shrouded, either the pinion being shrouded to the top of the tooth 
or both pinion and gear shrouded to the pitch line. Gears of this con¬ 
struction, running at low velocities and with very heavy lubricant, have 

Fig. 150; 

been found to operate very well. It is obvious that where a pair of right- 
hand and left-hand helical gears are used to connect a pair of shafts, it is 
not necessary that they be placed close to eath other. Economy of space, 
however, often makes it desirable that they be so placed, and in such 
a case the problem of machining the teeth becomes a troublesome one. 
Figure 151 shows the developed surfaces of several types of machined 

Fig. 151. 

herring-bone gears. In Fig, 151 (a) the two gears are machined inde¬ 
pendently and are keyed to the shaft so that the two sets of helical 
teeth mate properly at the adjoining surfaces. For light work this 
arrangement is satisfactory. In Fig. 151 (b) the two sets of teeth are 
cut integral with the wheel, and a clearance space is left between the 
two sets of teeth to permit the cutter to run out of the cut. In the 
Wuest system, shown in Fig. 151 (c), the two sets of teeth are staggered. 
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thus saving much of the space allowed in (b), while still permitting a 
circular cutter to be used in machining the teeth. Since there is no 
connection between the two sets of teeth in any of these three construc¬ 
tions, they are obviously not as strong as that shown in Fig. 150. In 
the Citroen system, illustrated in Fig. 151 (d), the teeth are machined 
with an end-milling cutter and hence there is almost no limit to the form 
of twist that can be given to the teeth. There are serious mechanical 
difficulties in machining teeth in this manner, but the system has been 
used to a considerable extent in Europe. With properly machined teeth 
herring-bone gears may be used at high velocities under heavy loads. 

Care must be used that the alignment in an axial direction is accu¬ 
rate, or end play must he provided so that each gear carries its own 
share of the load. Because of the extended continuity of action, due 
to twisting the teeth, pinions may operate successfully with fewer teeth 
than are necessary in the case of plain spur gears, provided of course that 
tooth interference is cared for. For this reason, herring-bone gears 
are now much used for reducing the rotative speed of steam turbines in 
connection with the driving of marine propellers and for similar condi¬ 
tions where a high velocity ratio is necessary. In such installations the 
pitch of the teeth is rather fine and the face of the gears comparatively 
wide. Installations of this character have been operated at a speed 
of 6000 ft per min at the pitch line. 

168. Strength of Helical Spur Gears. If the effective load which one 
tooth of a helical gear transmits to its mate be Wy Fig. 149 (c), then 
the total load normal to the face is Wi = W cosec 6. If the length of 
the tooth be denoted by Z, and the breadth of the gear by 6, then 
Z = 6 cosec 6. Hence, the load per inch of face on a helical tooth 
= Wi/l = W cosec 6/b cosec 6 = W/h or the same as in a spur gear of 
face b. This would be strictly true if all points in the line of contact 
were at the same distance from the axis of rotation, as in a spur gear. 
This is never so in helical gears, the line of contact always extending 
diagonally across the tooth face. The error due to this, however, is 
small and on the side of safety, and it may be assumed that the load per 
inch of face in helical gears is the same as that of a spur gear of equal 
width and equally loaded. This diagonal distribution of the load across 
the tooth face decreases the lever arm of the force which tends to break 
the tooth, the amount of decrease depending on the amount of twist 
in the tooth. If the twist is so great that when the end in advance is 
going out of contact the other end is just coming into contact, the line 
of contact will run diagonally across the tooth from point to flank, and 
the average arm of the driving force will be about one-half the height 
of the tooth. If the twist be made equal to the pitch, tooth action is 
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continuous at every point of the arc of action and this or a somewhat 
greater twist is generally used. The cross-section of the tooth in line 
with Wi, Fig. 149, is narrower, however, than the true theoretical outline 
in line with W, this difference becoming greater and greater as the angle 
of twist is increased. It is clear, therefore, that the assumption often 
made that helical teeth are twice as strong as spur teeth of the same 
pitch is not true for t(*eth of usual proportions, a difference of 25 per cent 
being, perhaps, as much as can safely be assumed. On account of 
continuous tooth action and consequent smoother operation in helical 
gears, the effect of shock is lessened somewhat. 

It will be obvious that the Lewis equation could be applied to 
helical gears if the tooth-form factor y were known. Trautschold * 
gives an empirical equation for the factor as 

rp2 

y = ^ (20) 

where T == the width of the tooth flank just above the fillets and 
L = radial distance from the intersection of the line of action and the 
center line of the tooth to the tooth-flank width. 

For the beam strength of helical spur gears the A.G.M.A. recom¬ 
mends the following 

shy 

Pd^W 
(21) 

where is a service factor == 1.15 for enclosed gearing and s = 
78s'/(78 +\/y)- Values of s', the allowable static stress in the material, 
are given as follows: 

Material 

High-carbon or alloy steels heat-treated to an elastic limit of approximately 

60,000 lb per sq in. 

0.40 to 0.50 carbon steel heat-treated to an elastic limit of approximately 

50,000 lb per sq in . 

0.40 to 0.50 carbon steel untreated with an elastic limit of approximately 

40,000 lb per sq in. 
Cast steel A.S.T.M. Class B, elastic limit approximately 36,000 lb per sq in. 

Cast iron of tensile strength approximately 24,000 lb per sq in. 

Bronze 88-10-2 of tensile strength approximately 27,000 lb per sq in. 

15,000 

12,500 

10,000 

7,500 

4,000 

4,000 

Reduction gears with herring-bone teeth are now manufactured 
as a regular commercial product by several manufacturers in this coun- 

* See “Standard Gear Book,” by R. Trautschold, page 92. 
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try. Practice as to tooth proportions vary somewhat, but the angle 
of twist is usually made 23°, the angle of pressure 20°, with stub teeth. 
A detailed description of Wuest gears as made by the Falk Company 
and an excellent discussion of their strength will be found in the 
Transactions A.S.M.E., vol. 33. A similar description and discussion 
of herring-bone gears, as manufactured by the Fawcus Company, will 
be found in the American Machinistj Nov. 18, 1915. The Farrell- 
Birmingham Company manufactures a machine-cut herring-bone gear 
of high quality. In general, such gears are a specialized product, and 
it is well to consult the manufacturers where conditions are at all 
complex. The A.G.M.A. has done considerable work in standardizing 
helical gears, and their publications give ratings for various classes of 
gear reductions using helical gears. These publications should be 
consulted. 

169. Spiral Bevel Gears. It will be obvious that the teeth of bevel 
gears can be twisted in the same way as those of spur gears. In the 
Citroen system of gearing, referred to in the foregoing, herring-bone 
bevel gears have been manufactured commercially. In this country 
the spiral bevel gear has been much used for driving the rear axle of 
automobiles. In the well-known Gleason spiral bevel gear the curve 
of twist is circular, since the teeth are cut with a hollow circular cutter. 
As yet, this form of gear has not been used to any great extent outside 
of the automobile industry, but its many advantages would appear to 
commend it for a wider service. 

As these gears are highly specialized reference is made to the publi¬ 
cations of the Gleason Works and of the A.G.M.A. for data on propor¬ 
tions and strength. The same remarks apply to the Gleason hypoid 
gear which may be used with non-intersecting axes. 

170. Other Forms of Gear Teeth. The foregoing discussion has 
been confined largely to standard gear tooth systems now in use and 
to the several methods employed for strengthening them. One method 
of securing stronger teeth which has already been noted is to make the 
addendum of the pinion longer and the dedendum shorter than the 
standard tooth and the addendum of the gear shorter and the dedendum 
longer than standard, the total length of the tooth remaining the same. 
Thus, in certain bevel gears made by the Gleason Company the adden¬ 
dum of the pinion is 0.7 of the working depth, while the addendum of the 
gear is 0.3 of the working depth, the total working depth of the tooth 
being the same as the Brown and Sharpe standard. It is thus possible 
with high velocity ratios to have theoretically correct outlines without 
interference and to secure pinion teeth having a thickness at the root 
greater than at the pitch line, and the thickness of the teeth of the 
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mating gear will exceed the pitch line thickness by an increasing amount 
as the root is approached. The Gleason Company also varies the 
angle of obliquity, thereby still further strengthening the teeth at the 
roots. Obviously, interchangeability is not a factor in bevel gearing. 

A very common way of reinforcing teeth of cast gears is by shrouding, 
which consists in casting an annular ring of metal on one or both ends 
of the teeth, as shown in Fig. 152. This ring is cast as an integral part 
of the gear casting, and hence strengthens the gear tooth by practically 
twice the shearing strength of the cross-section of the tooth, when both 
ends are shrouded to the top. The teeth of the pinion are, from their 
outline, always weaker than those of the gear, and the wear on them Is 
also greater. The shrouding should, therefore, be put on the pinion; 
and if carried to the top of the teeth on both ends it will give them an 
excess of strength over those of the gear, with usual widths of face. If 
the gears to be reinforced do not differ greatly in diameter, the leeth of 
both may be shrouded half way up. Shrouding is used mostly on 
rough-cast gears, the shroud practically prohibiting the cutting of the 
teeth by the usual methods. 

If the gears arc to run in one direction only, and very heavy pressures 
are to be withstood, a form of tooth shown in Fig. 153, and known as a 
buttress tooth, may be, but seldom 
is, employed. The driving face, A, 
is made of correct theoretical out¬ 
line; the back face. By may be of 
any outline that will give the 
required strength, and clear the 
teeth of the mating gear. The 
front face should be of standard 
cycloidal or involute form and the 
backs are preferably involute 
forms, with a much greater angle of obliquity than would be per¬ 
missible in driving. 

171. Strength of Gear Rims and Arms. The rim of the gear wheel 
must not only be strong enough to resist the forces brought upon it, but 
also stiff enough to prevent improper action of the teeth due to spring¬ 
ing of the rim. A section of rim between two arms may be considered 
as a beam fixed at the ends and carrying a load at the middle, the 
value of which is W\ sin By Fig. 142. Good practice makes the thick¬ 
ness of the rim at least 1.25^, where t is the thickness of the tooth on the 
pitch line. For small gears this proportion gives ample stiffness, but 
for very large gears the thickness should be 1.5if, and stiffening ribs are 
also sometimes necessary. In many cases the thickness should be suf- 

Fig. 152. Fig. 153. 



356 TOOTHED GEARING 

ficient to allow of dovetailing a tooth into the rim, in case of accidental 
breakage of one or more teeth. The R. D. Nuttall Company of Pitts¬ 
burgh expresses the thickness t of the rim of its gears in terms of the 
diametral pitch pd, the number of teeth n, and the number of arms a, as, 

1 ^\n 
^ Pd^2a (1) 

And Professor C. D. Albert has found the following equation very 
satisfactory: _ 

1 In 
t = + 2.5 (2) 

Pd ^ 4a 

The depth of the stiffening rib, or bead, for the rim may be taken 
about 1.25^. Gear wheels are seldom run at peripheral velocities which 
induce dangerous centrifugal stresses. The principles governing the 
design of such wheels are discussed, however, in Chapter XVIII. 

It is usual to assume that each arm carries its share of the torque to 
be transrnjetted and that each arm acts as a cantilever free at the outer, 
or rim, end and fixed at the center of the wheel. Where the rim is com¬ 
paratively thin, as in gears and pulleys, the distribution of the load 
between the arms is uncertain. Equal distribution is the most tenable 
assumption where the rim is sufficiently strong and rigid for its purpose. 
The action of the arms is intermediate between cantilevers free at the 
outer ends and cantilevers free but guided at the outer ends. The 
assumption that they are free at the outer ends is on the safe side. 

To allow for possible shrinkage and contraction stresses incident to 
casting and to obtain sufficient rigidity, it is quite usual in the design 
of the arms to take the allowable stress from 0.50 to 0.60, the allowable 
stress used for the teeth of the gear. Another and perhaps superior 
method is to use the same stress as for the teeth but to base the bending 
moment for each arm on the maximum permissible load on the teeth 
instead of the working load. The maximum load corresponds to zero 
velocity and may be found by substituting the allowable stress for zero 
velocity in equation (7), Article 162, or it may be found by multiplying 
the working load by the ratio of the allowable stresses for zero velocity 
and the velocity corresponding to the working conditions. The dimen¬ 
sions as dictated by the two methods should be determined and con¬ 
trasted. Computations for strength of their arms or rims must, how¬ 
ever, be considered as giving minimum dimensions, stiffness being the 
prime requirement, and due regard must be paid to proportions of rim,'*^ 
arms, and hub, to minimize shrinkage stresses due to cooling. 
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172. Efficiency of Spur Gearing. The experimental data on the 
efficiency of spur gearing are very meager. Probably the best available 
data are those obtained by Mr. Wilfred Lewis, for details of which see 
Trans. A.S.M.E., vol. 7. His investigation was made with a cut 
spur pinion of 12 teeth meshing with a gear of 39 teeth. The circular 
pitch was in. and the face 3g in. The load varied from 430 to 2500 
lb per tooth, and the peripheral speed ranged from 3 to 200 ft per 
min. The measurements included the friction at the teeth, and the 
friction at the bearings. The efficiency, as observed, varied from 90 
per cent at a velocity of 3 ft per min to over 98 per cent at 200 ft per 
min. It appears that the friction at the teeth is a small part of the loss 
with good cut gears, the greater portion of the loss being at the journals. 
The efficiency of bevel gears is somewhat less than that of spur gears, 
on account of the axial thrust, which induces friction between the hub of 
the gear and the collar at the supporting bearing. 

173. Materials and Methods of Manufacture. The principal 
materials used for gear teeth are cast ^ron, steel castings, wrought 
steel, bronze, wood, rawhide, cloth, and fiber. Metallic gear teeth 
may be cast to the required form or cut from the solid metal. Gear 
teeth made from other materials, in most cases, must be cut from the 
solid. Where the gear teeth are cast, it is very important that the 
pattern itself be very accurately made; for even with the greatest care 
in molding, it is impossible to obtain true spacing, on account of shrink¬ 
age and displacement due to rapping the pattern in the sand. 
For this reason, and on account of the difficulty of obtaining smooth 
surfaces, greater clearance must be allowed in cast gears than in cut 
gears, as already noted. Wooden patterns are very unreliable for such 
work, on account of their tendency to warp and shrink, and permanent 
patterns should be made of metal. If the pattern for a spur gear is 
withdrawn from the sand with a movement parallel to the length of the 
tooth, the tooth pattern must have draft, or be slightly tapering to 
facilitate drawing, and consequently the cast tooth must also be tapering. 
Care should be taken, in assembling such gears, that the tapers in 
the two gears are reversed to avoid having the thick ends of both sets of 
teeth come together, thus concentrating the pressure at one end. 
Rough-cast gears, of the kind described above, are used only for rough 
or large work, and not for high speed. The particular defect of spur 
gears due to draft does not exist in bevel gearing. 

In gear-molding machines the pattern consists of a segment of the 
gear pattern, carrying several teeth. The pattern is mounted on an axis 
in such a manner that it can be rotated accurately through any portion 
of a complete revolution, or indexed.^' In forming the mold the 
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segmental pattern is placed in position and sand is rammed around it. 
The pattern is then withdrawn radially and rotated to the next succeed- 
mg position (the mdexmg device insuring accurate spacing), the opera¬ 
tion being repeated till the whole circumference is molded. The mold 
for the hub and arms is then completed, m large work this last bemg 
often accomplished by means of .cores If machine moldmg is well 
done the results are far superior to those obtained by patt/Crn moldmg, 
and gears may be made that can be run at moderately high speeds 
Obviously, however, all cast gears are much more maccurate than cut 
gears, and the latter are preferable where high speeds and smoothness 
of action are required 

It IS not difficult to mold fairly satisfactory gear teeth of cast iron. 
They have the advantage of retaining the hard strong surface which is 
lost when the teeth are cut by a machine Steel castings, however, 
are not quite so satisfactory It is difficult to obtain a smooth tooth 
surface m a steel casting, and the errors in the finished gear, due to 
shiinkage and to warping out of shape m cooling, are more marked m 
steel castings than in those made of cast iron The development of 
more powerful gear-cutting machinery has greatly extended the use 
of gears, especially pinions, cut from bar steel or from steel forgings 
The softer grades of steel have not proved to be very durable, and quite 
frequently gears made of wrought steel are case-hardened or are made of 
a quality of steel that can be hardened without the use of carbonizing 
materials Alloy steels carrying chromium and nickel have been used 
with success for this work As stated m Article 45, materials of the same 
texture do not usually rub together satisfactorily It is advisable, 
therefore, where both pinion and gear are of steel, to make them of 
somewhat different carbon content A bronze pmion meshing with a 
cast iron or steel gear is an excellent combination, and if the teeth are 
accurately cut such combinations may be run at comparatively high 
speed without trouble from noise In high-grade worm-wheels, the 
worm IS usually made of steel and the worm wheel of bronze. 

Metallic gearing, even when accurately cut and aligned, is inchned 
to be very noisy when run at a peripheral speed of more than 1200 ft 
per min, especially if any appreciable back-lash ” exists. If the 
points of the teeth are slightly reheved, the tendency to produce noise is 
reduced If high speeds are unavoidable the teeth of one of the matmg 
gears is sometimes made of wood. Wheels ruth wooden teeth are 
known as mortise wheels. They are not as much used as formerly, 
because modem methods of gear-cutting produce metallic gears of such 
accurate form that they may be mn in places where mortise gears 
were formerly considered indispensable. In making mortise wheels 
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the wooden teeth are roughed out and the shank is fitted into openings 
cast in the rim of the wheel, as shown in Figs. 154 and 155. The teeth 
are held in place by the keys, /\, or pins, P, as shown. The teeth proper 
are dressed to correct form with hand tools or by special machines using 
a fine circular saw for a cutter. 

As a rule, only the large gear is made with wooden or mortise 
teeth, the pinion being made of metal. This is rational, since the 
pinion, on account of the shape of its teeth, is the weaker of the two, 
and also because of the teeth of the pinion come into contact more fre¬ 
quently, and hence suffer greater wear. In such combinations, the 
metal gear frequently has teeth of thickness less than p, 2 and the wooden 
gear teeth of thickness greater than p, 2, to equalize strength. (See 
Fig. 155.) In lecent years, gears made of rawhide have b('en much 

used for high speeds. The blanks for rawhide gears are made by 
cementing specially prepared rawhide discs together under great pressure. 
Metallic discs, on each side of the blank, held together by rivets passing 
through the blank, assist the rawhide teeth in retaining their form. The 
teeth are cut in the blank in the same manner that metallic teeth are 
cut. When rawhide gearing is used, the pinion is almost always made 
of rawhide and the larger gear of cast iron or brass. Such a combination 
may be run at a very high rate of speed, 3000 ft per min being a not 
unusual velocity. Rawhide gears are almost noiseless in operation, but 
care must be used that they are not subjected to extreme moisture or 
run in too dry an atmosphere. 

The so-called ^‘FabroiF' gears are manufactured by the General 
Electric Co. The blanks for these gears are built up by compressing 
cotton fabric impregnated with oil, under a very heavy pressure. The 
gears are held together axially by metallic shrouding, in very much the 
same manner as rawhide gears. These gears are as strong as ordinary 
cast iron; they are impervious to moisture, will run in oil, are vermin- 
proof, and can be run up to 3000 ft per min at the pitch line. The 
blanks are machined and the teeth cut in the same manner as for metallic 
gears. 
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The Bakelite Micarta gears, manufactured by the Westinghouse 
Electric and Manufacturing Company, are made of a fibrous material 
that has strength and wearing qualities similar to fabroil. This material 
will also run in oil, is vermin-proof, and is unaffected by atmospheric 
changes. Several other fibrous materials are used for gears where the 
reduction of noise is a factor. 

Formerly it was cheaper to cast gear teeth, but the development of 
gear-cutting machinery has changed the situation where a large number 
of gears with small teeth are to be made. Modern methods of gear¬ 
cutting produce teeth of great accuracy, and have also so greatly reduced 
the cost of production that for high speeds, and where smoothness of 
action is necessary, cut gears have largely superseded cast gears, even in 
large work. 

There are many methods of cutting gear teeth in practical operation, 
the most common method of cutting spur gears being by the use of a 
rotating cutter.* The outlines of gear teeth vary with the number of 
teeth in the gear, the pitch or thickness of tooth remaining constant, 
and, theoretically, a different cutter is required for every different 
diameter of gear in a series of the same pitch. To meet this require¬ 
ment would lead to an excessive number of cutters for each pitch. It is 
found in practice, however, that the same cutter can be used, without 
serious error, for several sizes of gears of a given pitch. In the system 
adopted by the Brown and Sharpe Manufacturing Company only 24 
cutters are used for each pitch in the cycloidal system, and only 8 
cutters for each pitch in the involute system. 

When gear cutting is carefully done, very accurate work may be 
accomplished. It is to be noted, however, that the form of the teeth 
when cut with a set of cutters, as above, is not theoretically correct; 
and even in the best practice the error in the gear-cutting machine 
itself, coupled with that due to dullness of cutters and deviation due 
to different degrees of hardness in the metal, may be considerable. 

Amother method much used for cutting spur gear teeth is known as 
the generating process. In this method the cutter is made in the form 
of a gear or rack and the gear-cutting machine is built so as to roll the 
cutter and the gear blank together at the proper velocity ratio. The 
cutter is given a reciproacting motion and cuts its own way into the 
blank. Provision must be made in the machine for feeding the cutter 
radially into the blank while keeping the relative rotative positions of 
the cutter and blank the same. It should be noted that in the generat¬ 
ing process only one cutter is needed for each pitch, since in such a sys¬ 
tem every gear of a given pitch must run with every gear of the same 

♦ See ^^Gear-Cutting Machinery,” by Ralph E. Flandere. 
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pitch. This method of generation is employed in the Fellows gear 
shaper. 

Another generating method now much used to cut spur gears is 
based upon the use of a hob.* A hob fbr this purpose is a hardened-steel 
worm on which the cross-section of the thread is the same as that of a 
rack in the particular system of teeth to be cut. Cutting edges are 
formed upon the thread by notching it transversely. The hob is set 
with reference to the blank so that the cutting surfaces in actual opera¬ 
tion move parallel io the axis of the gear blank. The gear-cutting 
machine rotates the hob and gear at the proper velocity ratio and also 
moves the hob slowly across the face of the blank. The action is equiva¬ 
lent to forming the gear by means of a cutter made in the form of a 
rack, though obviously the cutting action is much more rapid. One 
form of gear cutter uses a cutting tool made in the form of a rack, the 
cutter having a reeipreheating motion, as in the Fellows shaper. 

Bevel gears, which are discussed in the succeeding section, can, of 
course, be cast, in the same way as spur gears. The problem of cutting 
bevel gear teeth is not the same, however, as that of cutting spur gear 
teeth. By reference to Fig. 148, it can be seen that the linear tooth 
elements of bevel gears meet in the common center, 0, and hence the 
cross sections of the teeth and of the spaces between teeth decrease in size 
as the tooth approaches 0. It is not possible, therefore, to cut accurate 
bevel tooth outlines with ordinary rotating euttc^rs. It is common prac¬ 
tice, however, to cut such outlines approximately correct with circular 
cutters. Sometimes the inaccuracies of such methods are corrected by 
filing the teeth after machining. In all methods that produce accurate 
bevel gear teeth the teeth are planed out by a reciprocating tool guided 
so as to move toward the common center, 0, and controlled by guiding 
surfaces or other mechanisms so as to generate the required tooth form 
as it moves backward and forward. There is a great variety of machines 
for producing bevel gears, and even a brief description f of this interest¬ 
ing machinery is beyond the scope of this work. 

HYPERBOLOIDAL AND WORM GEARING 

174. General Principles. When the axes of two shafts are not 
parallel and do not intersect, it is possible to lay out contact surfaces on 
which gear teeth may be constructed which will give line contact. 
Gears of this kind are known as hyperboloidal gears. They are difficult 
to construct, and are very rarely used. If the load can be carried on 

* See also Article 174. 
t See “Gear-Cutting Machinery,” by Ralph Flanders. 
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point contact, pitch cylinders may be described on the axes, Fig. 156, 
and on these surfaces helical teeth may be constructed which will trans¬ 
mit the desired motion. Such gears are known as helical or spiral * 
gears, the latter name being really a misnomer. Although the teeth of 
such gears resemble those of helical twisted gears, their theory and action 
are quite different, for, in addition to the conjugate rolling and sliding 
action, as in spur gears, there is also a sliding component along the ele¬ 
ments betwt^en contact surfaces. The action of such gearing is very 
smooth. The special case where the axes are at right angles, and where 
a large wheel having many helical teeth meshes with a small one having 
a very few helical teeth, is an important one on account of the great 
reduction in velocity ratio that may thus be obtained. This last arrange- 

Fig. 156j Fig. 157. 

ment is commonly known as a worm and worm wheel. Figure 158 
illustrates such a worm and worm wheel, the teeth on the worm wheel 
being truly helical in form and cut at angle to suit the worm thread or 
helix. The contact in these cases is point contact, and on the worm 
wheel tooth is confined to points in a line cut from the working surface of 
the tooth by a plane passing through the axis of the worm at right angles 
to the axis of the worm wheel. In operation the point of contact becomes 
a limited area. The advantage of this form of worm wheel, like all 
spur gears, is that the teeth can be cut with a rotary cutter, and pat¬ 
terns for rough-cast teeth are comparatively easy to construct. The 
same result is sometimes obtained by using a plain spur gear, and 
setting the axis of the worm at the proper angle with the plane of the 
gear.f 

♦For a full discussion of the methods of laying out and producing so-called 

spiral gears, see a Practical Treatise on Gearing,’* by Brown and Sharpe Manu¬ 

facturing Company, and also “Worm and Spiral Gearing,” by F. A. Halsey. 

t A highly successful form of this arrangement is the worm-and-rack drives on 

planing machines first used by Wm. Sellers and Company. 
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It is possible, however, to construct a worm wheel in such a manner 
as to secure line contact, as in spur gearing. Referring to Fig. 157, it 
can be seen that, when the single-threaded worm shown is rotated 
through 360°, any median section, as A, is moved forward an amount 
equal to the pitch of the worm wheel to a position B; and that rotation 
of the worm, in general, is equivalent to a translation of these sections 
backward or forward. The action is equivalent to translating a rack of 
similar proportions, and, in fact, if the worm itself is moved axially it 
will engage with the teeth of the worm wheel in the same manner as a 
rack does with a gear. In the involute system of gear teeth the rack has 
straight sides,* and this property is usually taken advantage of in mak¬ 
ing worm gearing, since a worm thread of such a cross-section is easily 
machined. The sides of the involute rack face are at right angles to the 
line of contact, aOb, Fig. 140, and hence the inclination of the sides to 
each other is 20, Fig 140, and in the standard system 26 = 29°. If 
other planes, such MNy be passed through’ the worm and worm wheel 
parallel to the median plane. A""A"', Fig. 157, it will cut a trapezoid from 
the worm somewha"^ different from that cut by the median plane. The 
rack-like action of these trapezoids would, however, be similar to those 
on the median plane, and it is clear that the shape of the worm-wheel 
tooth in the plane MN may be so made as to mesh correctly with this 
new trapezoidal section. It is evident that if enough such sections be 
taken, a complete tooth outline may be formed that will give line contact 
with a worm across its full face. It is evident also that any other form 
of worm thread may be similarly treated. 

The preceding discussion demonstrates the possibility of line con¬ 
tact for the worm and worm wheel, and suggests a method by which the 
teeth of such gears could be drawn, and hence constructed. There is no 
practical value in actually making such drawings; but teeth having this 
property of line contact are automatically produced by what is known 
as the bobbing process. A worm of tool steel is made of the exact 
form of the desired worm. This worm is made into a cutter by cutting 
flutes across the face as in Fig. 161. This is known as a hob; and when 
hardened and tempered it is used as a milling cutter. The wheel blank, 
which has been turned to correspond to the outside of the teeth, is 
mounted in a gear cutter, or a special bobbing machine, and the hob is 
also mounted in correct relation to the wheel, but with the axes of the 
wheels a little greater distance apart than the required final distance. 
The hob is then rotated and at the same time fed toward the worm 
wheel till the proper distance between the axes is reached, thus cutting 

* See “Kinematics of Machinery,” by John H. Barr and E. H. Wood, page 125. 
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the teeth in the worm wheel in a very accurate manner. Sometimes the 
wheel is caused to rotate simply by the action of the hob, but much 
better results are obtained if it is driven positively, with the proper 
velocity ratio, from the cutter spindle by means of positive gearing. 
In heavy work the teeth of the wheel are roughed out or gashed ” 
before bobbing. Figure 159 shows a worm wheel which has been hobbed, 
and its mating worm. Figure 160 * shows a form of wheel occasion¬ 
ally used where the wheel is sometimes rotated by hand or when the 
projecting teeth are undesirable. Such wheels may be hobbed, but are 

usually cut by the approximate method shown in Fig. 162, where a 
cutter is fed radially inward toward the axis of the worm wheel, produc¬ 
ing what is known as a drop-cut wheel. In the Hindley worm the pitch 
line of the worm is curved to coincide with the pitch line of the wheel, 
thus obtaining contact on several teeth at the same time.f 

176. Velocity Ratio of Worm Gearing. The axial advance per 
turn of the worm thread is called the lead. Thus in Fig. 157 the lead 
of the single-threaded worm shown is the distance, parallel to the axis, 
from any point on the tooth section A, to a corresponding point on the 
section H, and is equal to the circumferential pitch of the worm wheel. 
If the worm were double-threaded the lead would be twice this amount, 
or equal to the distance between corresponding points on A and C, and 

* Figures 158, 159, and 160 are reproduced from Brown and Sharpens Treatise 

on Gearing.” 

t See “Worm and Spiral Gearing,” by F. A. Halsey. 
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would then be twice the pitch of the worm wheel. The lead of the 
triple-threaded worm would be three times the pitch, and so on. If 
a single-threaded worm makes one revolution, a tooth of the worm wheel 
is moved a distance equal to the pitch. In a double-threaded worm the 
tooth would be moved twice the pitch; and in general, if N be the num¬ 
ber of teeth in the worm wheel, and n the number of threads on the 
worm, then, 

Angular velocity of worm N 

Angular velocity of worm wheel n 

Evidently a very great velocity ratio is possible with a comparatively 
small worm wheel. It is to be especially noted that the angular velocity 
ratio is independent of the diameter of the worm. The pitch of the worm 
wheel, which must be decided upon by consideration of the strength of 
the teeth, fixes the radius of the worm wheel for a given number of teeth; 
but the radius of the worm may then be varied to suit other conditions. 

176. Efficiency of Worm Gearing. The general expressions for the 
efficiency of screws, deduced in Article 130, Chapter XI, apply also to 

worm gearing. Since the worm thread is usually a so-called angular 
thread, equation 13 (a) of that article would strictly apply. However, 
the inclination of the face of worm threads is so small that the error 
introduced in using the simpler equations (9) and (10) of that article, 
which were deduced from the square thread, is small. These equations 
show that the efficiency of all screw gears is a function of the angle which 
the thread makes with a plane perpendicular to the axis, and of the 
coefficient of friction, assuming that the coefficient of friction at the 

thrust collar is the same as at the tooth. 
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One of the most valuable contributions to this subject is the experi¬ 
mental work of Mr. Wilfred Lewis.* The full lines in Fig. 163 have 
been plotted from the diagram on which he has summarized his results. 
They show clearly the increase of efficiency with increase of thread or lead 
angle at all velocities. They also show a remarkable agreement with the 
theoretical equations of Article 130. The dotted curve is reproduced 
from curve (2) of Fig. 123, and its close agreement with Mr. Lewis’s 
curves is to be noted. This dotted curve was plotted for a value of 
ju = 0.05. Mr. Lewis’s calculated average value of this coefficient for a 

velocity of 20 ft per min is 0.059 and for 10 ft per min 0.074. Curves (4) 
and (5) in Fig. 123 may, therefore, be taken as supplementary to those 
in Fig. 163, and may be used, as they were intended, for designing slow- 
moving and poorly lubricated screws. A theoretical curve plotted from 
equation (9), Article 130, with a value of fx 0.014 (which would be 
obtained only at high speeds), will coincide very closely with Curve 1, 
Fig. 163. This coincidence is closer than might be expected from the 
nature of the problem and the assumptions on which equation (9) is 
based. Mr. Lewis’s value of jx for these velocities f (200 ft per min) 

* Trans. A.S M.Pl, vol. 7, page 297. 

t Velocity here means velocity of rubbing at the point of contact between worm 

and worm wheel. 
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ranged from 0.026 to 0.015, his average value being 0.02 Professor 
Kennerson experimenting for the Brown and Sharpe Manufacturing 
Company (see Trans.^ A.S.M.E., vol. 34), developed efficiencies that are 
in accord with the foregoing discussion. Ilis experiments were con¬ 
ducted with steel worms mating with bronze worm wheels. The helix 
angles of the worms were 45° and 38° 16' respectively. Efficiencies as 
high as 97.9 per cent were reported. 

Mr. Halsey * has examined the design of a number of successful 
and unsuccessful worms used for transmitting power, and has found that 
every worm among those examined whose lead angle was greater than 
12° 30' was successful, and every worm whose lead angle was less than 9° 
was unsuccessful. He quotes Mr. James (ffiristie, who has had con¬ 
siderable experience with this form of gearing, as giving 17° 15' as the 
lower limit tor successful design, which still further corroborates the 
general theory given. It is to be noted, on the other hand, that there is 
iitth^ to be gained in using a lead angle above 30°, the increase in effi¬ 
ciency being very small, while the side tiirust on the wheel is increased. 
It is not to be understood that it is never proper to design a worm with 
a lead angle less than 9°, for there are many cases, not primarily for 
power transmission, and where the velocity is low, in which worms of 
less pitch are not only effective but necessary. In Mr. Ix'wis^s experi¬ 
ments the worms ran in a bath of oil, and the efficiencies given include 
journal friction, the thrust being taken at the end of the worm shaft by 
a loose brass washer running between twf) hardened and ground steel 
washers. 

The effect of the velocity of rubbing on the coefficient of friction of 
imperfectly lubricated surfaces was noted in Article 41, and Fig. 18 of 
that article indicates, in a general way, what may be expected with sliding 
surfaces: all experimental results going to show that the lowest coeffi¬ 
cient was obtained at about 200 ft per min. Mr. Lewis, as the result 
of his work, fixes 200 ft per min as the point of maximum efficiency 
of worm gearing, which is in perfect accord with the general theory of 
lubrication. The surfaces of worm gearing, although running in an oil 
bath, must, from the nature of the contact, be classified as imperfectly 
lubricated surfaces. An increase of velocity may, up to a certain limit, 
decrease the coefficient of friction, but it is not possible at any speed, 
with the small amount of surface contact obtainable in screw gearing, 
to create a true oil film so that the load would be fluid-borne (Article 42). 

177. Limiting Pressures and Velocities in Worm Gearing. It was 
stated in the last two articles that^the best results are obtained from 
worm gearing when the rubbing velocity is about 200 ft per min and the 

♦ See “Worm and Spiral Gearing,’' page 38. 
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lead angle not less than 12® 30'. It is not always possible, however, to 
keep the design within these limits. Thus, in order to obtain mechanical 

advantage (see Article 142), it may be necessary to use a worm with a 
very small lead angle, and kinematic requirements may necessitate a 
much higher velocity than 200 ft at the pitch line. 

The allowable axial load that may be applied to a worm under var3dng 
velocities has not been very accurately determined, the law undoubt¬ 
edly being complex (see Article 41). Enough experimental work has 
been done, however, to show that the pressure varies, approximately, 
inversely with the velocity; or the law may be roughly expressed as 
WV = where W = the axial load on the worm, V = the velocity of 
rubbing in feet per minute, and K = a constant to be determined by 
experiment (see also Article 54). In Lewis’s experiments, made on cast- 
iron worms and worm wheels, running in an oil bath, it was found that 
the limiting value of X, i.e., where cutting began, was about 1,500,000. 
Smith and Marx * quote corresponding pressures and velocities, attrib¬ 
uted to Stribeck, obtained with hardened-steel worm and bronze worm 
wheel running in an oil bath, which give an average allowable value of 
690,000 for K, Bach and Roser, experimenting with soft-steel worms 
and bronze worm wheels, succeeded in carrying a pressure of 800 lb at 
a velocity of 1700 ft per min, which gives K = 1,360,000. It would 
appear, therefore, that for average conditions and bath lubrication of 
the worm it will be safe, for velocities up to 1500 ft per min, to take 

WV = 750,000 (1) 

This value is probably conservative for accurately machined worms 
and worm wheels under best conditions of operation. Bach and Roser 
made a series of experiments with a steel worm mating with a bronze 
wheel and on the basis of these experiments have developed an equation f 
giving the relation between the axial load, the rubbing velocity and the 
temperature. The helix angle of the worm was 17° 34', which is very 
close to the allowable limit; the formula is based upon the result of 
experiments with this worm only and therefore there is reason to doubt 
its accuracy except for the particular conditions under which it was 
developed. The above discussion has reference to worms as ordinarily 
constructed with straight-sided threads. Mr. Robert Bruce J has 
shown that if the sides of the worm are made concave a much greater load 
may be carried. With improved threads of this form he has succeeded 

♦ “Machine Design/^ fourth edition, page 415. 

t American Machinist^ July 16 and 23^1903. 

% Proceedings of Institution of Mechanical Engineers (British), page 67 of the 
year 1906. 
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in carrying 25 tons at a velocity of 120 ft per min, corresponding to 
K = 6,720,000. This great gain is due, without doubt, to the improved 
lubrication obtained by what practically amounts to surface contact, 
between the mating convex and concave surfaces of the teeth. 

178. Design of Worm Gearing. In general, the strength of the 
worm exceeds the strength of the teeth in the worm wheel; and where 
the worm is made of a harder material, as is usual, the wear is greatest 
on the worm-wheel teeth. It is usually sufficient, therefore, to design 
the wffieel teeth alone, considering them as simple spur gear teeth as in 
Article 162. With rough-cast or drop-cut teeth, it must be assumed 
that the entire load is carried by a single tooth; but in hobbed gearing 
it is safe to assume that the load is distributed between two, or even 
three, teeth, depending on the number of teeth in the wheel. 

Example. Design a worm g(\ar to connect two shafts which are 11 
in. apart, and to tian^mit hp. The velocity ratio is to be 20 to 1, 
the worm shaft is to make 320 rpm, the lead angle is to be not less 
than 15°, and the worm wheel is to be cut with a hob. 

The solution of problems in worm gearing must generally be ten¬ 
tative. If the velocity ratio is to be 20 to 1, the worm wheel will have 
20, 40, or 60 teeth, depending on whether the worm is single-, double-, 
or triple-threaded. It is difficult to obtain a high lead angle with a 
single-threaded worm without making a very large thread; therefore, 
a trial assumption will be made with a triple-threaded worm, and 60 
teeth in the wheel. Twenty inches may be taken as a trial diameter 
for the wheel, and the trial pitch circumference will therefore be 63 in. 
approximately. If the circumferential pitch be taken as 1 in., the lead 
of the worm thread will be 3 in., and can therefore be easily cut in a 
lathe. The corrected circumference of the wheel will then be 60 in., 
corresponding to a pitch diameter of 19.11 in. The pitch diameter of 
the worm, with the given distance between centers, will be 2.9 in.; 

3 
hence, the tangent of the lead angle = —^ ~ = 0.33, or the lead 

TT X "-y 

angle is 18° 15', which is an efficient angle. 
The number of revolutions per minute of the worm wheel will be 

320 20 = 16. Hence the velocity of the worm wheel at the pitch line 
= 60 X 16 12 = 80 ft per min. The total axial thrust on the worm 
will be X 33,000 80 = 3100 lb. The velocity of rubbing equals 
the length of one turn of the worm thread multiplied by the number of 

revolutions per minute, or 

7 = 
y X 2.9 X 320 

(cos 18' - 15") X 12 

»r X 2.9 X 320 
255 ft per min 

0.95 X 12 
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The product of velocity and axial pressure on the worm = 255 X 3100 = 
790,000 which by equation (1) is a safe value, although somewhat high. 

The load may be considered as distributed between two teeth, and 
each tooth will have a face or length at the root somewhat less than the 
pitch diameter of the worm (see Fig. 157), or say 2.75 in. Hence the 

load per inch of face of tooth = - ^ = 560 lb. From equation (6), 
2 X 2.75 

Article 162, it is seen that this load corresponds to a fiber stress of about 
5000 lb per sq in. with 1 in. circular pitch. From equation (7) of Article 
162, however, it is seen that for the velocity, 80 ft, the allowable stress is 
7000 lb, hence, the tooth has an excess of strength to provide against the 
wear, which falls heaviest on the worm wheel. 

From curve (1), Fig. 163, it is found that the efficiency is about 90 
per cent; hence the horsepower which must be supplied to furnish 7.5 hp 
at the worm-wheel shaft will be 

7.5 
—= 8.4 hp = 277,200 ft-lb per min 
0.90 ^ ^ 

or 866 ft-lb per revolution of the worm. The torque, T, which must 
be applied to the worm-wheel shaft, will be 

866 X 12 

27r 
= 1650 in-lb 

The depth below the pitch line of a standard tooth of 1-in. circular pitch 
is, from Table XXV, 0.3857 in.; therefore, the diameter of the worm at 
the root of the thread = 2.9 — (2 X 0.3857) = 2.13 in., and from equa¬ 
tion {E)j page 93, the torsional stress 

16T 16 X 1650 

"" TT X (2.13)3 
850 Ib per sq in. 

which is very low. The design may, therefore, be considered satisfactory 
if the worm is to be cut integral with the shaft. If, however, it is to be 
bored out and fitted over the shaft, further calculation as to the strength 
of the shaft which may be fitted is necessary. 

The A.G.M.A. recommends certain standards for the proportions of 
worm drives and has established ratings for them. Its publications 
should be consulted for details. In high-speed worm gears of the enclosed 
type, heating may be a major factor in the design. The A.G.M.A. 
also gives coeflftcients and ratings for this factor. 

179. Thrust Bearings for Worms. An important frictional loss in 
worm gearing occurs in the thrust bearing, which therefore deserves 
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special attention. The general discussion in Article 62 applies in this 
case. The type of bearing shown in Fig. 41 is much used, and of late 
ball bearings have met with considerable success in such places. 
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CHAPTER XV 

BELT AND ROPE TRANSMISSION 

180. General Considerations. When power is to be transmitted 
from one shaft to another, especially when such shafts are not far apart, 
in such a manner that the velocity ratio of the two must be constant, 
some form of toothed gearing is usually employed. When, however, 
it is not necessary that the velocity ratio remain constant, flexible 
elastic connectors are much used. When the distance through which 
power is to be transmitted is comparatively short (50 ft or less), flat 
belts, or ropes of cotton or inanila, are most common; for longer dis¬ 
tances steel ropes have certain advantages. For small amounts of 
power, round belts of leather are much used. Belts with a V cross- 
section are also used for transmitting moderate amounts of power. 
Chain drives, which are virtually flexible connectors running on toothed 
wheels, have lately come into extended use for transmitting power over 
comparatively short distances. They are very efficient, maintain posi¬ 
tive velocity ratio between the two shafts, and can be used when the 
distance between shafts is too great for convenient use of gears. 

Leather belts arc most usually made by cementing, sewing, or rivet¬ 
ing together strips of leather cut from oak-tanned ox-hides. In recent 
years, however, chemical processes have come into use for leather belts 
that must operate under abnormal conditions as to heat, water, gas, etc. 
Such tanning is known as mineral or chrome tanning. Combination 
processes with both oak bark and chemicals are also in use. Where only 
one thickness is used belts are known as single leather belts; where two, 
three, or four thicknesses are needed to obtain a heavy belt, they are 
known respectively as double, triple, and quadruple belts. Cotton belts 
are made either by weaving in a loom, or are built up of several layers of 
canvas, sewed together, with a special composition between each fold. 
They are very little used in this country. Rubber belts are made of 
several layers of canvas, held together with, and completely covered by, 
a rubber composition which is vulcanized after the belt is constructed. 
They are very effective in wet places. Balata belts, so called, are 
made in the same way as rubber belts, except that balata gum is used 
instead of rubber. This compound is not vulcanized. Balata is water- 

372 



THEORETICAL CONSIDERATION OF BELTS AND ROPES 373 

proof, like rubber, and is said to resist acids somewhat better than 
rubber. It is not serviceable in hot places, as the balata, when hot, 
becomes sticky. 

The ends of all belts are joined, to make them continuous, either by 
lacing or sewing, or by some kind of special fastening of which there are 
many on the market, or by making a permanent joint by cementing and 
riveting. The last method is much preferable where it can be applied, 
as it makes the joint practically as strong as the rest of the belt, and gives 
a smooth surface which runs better than any joint. Other kinds of joints 
reduce the strength of the belt from 60 to 75 per cent, but inasmuch as 
the lacing can be replaced and the belt itself has its life prolonged by 
reduced load, this initial loss of efficient strength is not as wasteful as it 
at first appears. 

181. Theoretical Consideration of Belts and Ropes. In Fig. 164, 
let A represent a pulley whose center is at 0, and which is connected by 

a belt, as shown, to the pulley 5, whose center is at Oi. When no turn¬ 
ing moment is applied to the driving pulley A, the tensions in the two 
parts of the belt are the same, except possibly for friction of the bearings, 
and is that due to the initial tension with which the belt is placed upon 
the pulleys. Let this total initial tension on each side of the belt be 
called Ts. 

It is evident that this initial tension will cause the belt to exert a 
pressure upon the pulley, and this pressure will induce a frictional 
resistance opposing relative sliding between the belt and the pulley. 
If now a turning moment is applied to A, and a resisting moment to 
B, the pull upon the belt due to this frictional resistance will increase the 
tension in the lower part of the belt, and decrease the tension in the upper 
part. Let these new total tensions be called Ti and T2 respectively. 
It is evident that the tendency of the belt to slip around the pulley, 
owing to the difference in tension on the two parts of the belt, is resisted 
by the frictional resistance between the belt and pulley. The difference 
in tensions tends to rotate the pulley J5, and when the turning moment 
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(Ti — T2)ri becomes equal to the resisting moment applied to 5, rota¬ 
tion will take place. 

If the difference between Ti and T2 which is necessary to overcome 
the resisting moment is small compared to the frictional resistance 
between the pulley and belt, no slipping of the belt on the pulley will 
occur. To obtain this result in practice would necessitate the use of 
very large belts, relatively for the power transmitted. It has been 
found to be better practice to use smaller belts and allow the belt to 
slip somewhat. 

In addition to the slipping action noted above, all belts are subjected 
to what is known as creep. Referring again to Fig. 164, consider a 
piece of the belt of unit length moving on to the pulley under a tension 
Ti. As this piece of belt, of unit length, moves around with the pulley 
from M to Nj the tension to which it is subjected decreases from Ti to T2 

and the piece, owing to its elasticity, shrinks in length accordingly. The 
pulley Aj therefore, continually receives a greater length of belt than it 
delivers, and the velocity of the surface of the pulley is faster than that 
of the belt which moves over it. In a similar way the pulley B receives 
a lesser length of belt than it delivers, and its surface velocity is slower 

than that of the belt which moves over its surface. This creeping of 
the belt, as it moves over the pulley, results in some loss of power, and is 
unavoidable. The total loss of speed due to both slip and creep should 
not exceed 3 per cent; that is, the surface speed of the driving pulley 
should not exceed that of the driven pulley by more than 3 per cent. 
Good practice limits this value to about 2 per cent. When the total 
slip approaches 20 per cent, there is danger of the belt^s sliding off the 
pulley entirely. 

Since the pulling power of a belt is proportional to the difference 
between Ti and T2, it is necessary to know the relation which exists 
between these quantities. 

Let t = the tension per square inch of belt section at any point on the 
pulley. 

ti = the tension per square inch of belt section on the tight side, 
in pounds. 

t2 = the tension per square inch of belt section on the slack side, 
in pounds. 

/ = effective pull of belt per square inch of cross-section = 
(^1 — ^2), in pounds. 

V = the velocity of the belt, in feet per second. 
w = the weight of 1 cu in. of belt, in pounds. 
q = the reaction of pulley against 1 linear inch of belt of the 

width considered, in pounds. 
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c ~ the centrifugal force of 1 cu in. of belt, in pounds, at the 
given speed. 

/u = the coefficient of friction between belt and pulley, 
r = the radius of the pulley in inches. 
a ~ the angle of belt contact in degrees. 
d = the angle of belt contact in radians = 0.0175a. 

The centrifugal force of 1 cu in. of belt will be 

_ 12wv^ 

gr 

hence the centrifugal force of 1 linear inch of belt having 1 sq in. of 
cross-section will be 12wv^/gr. 

Let the cross-sectional area of Ihe 
belt be 1 sq in., and consider an ele¬ 
mental portion of its length as shown in 
Fig. 165. It is held in equilibrium, when 
slipping is impending, by the following 
forces: 

(a) The centrifugal force = cds. 
(b) The radial reaction of the pulley 

against the belt = qds. 
(c) The frictional force = /ugds, 
(d) The tensions t and t + dt. 
Resolving all forces vertically, 

d$ 
qds -f cds = ^ sin — -f (< + dt) sin -- (1) 

2 Z 

dQ 

Here dd is so small that sin dd/2 may be taken as equal to dd/2 in 
radians, without appreciable error, and the product of dt and sin dd/2 
may be neglected. 

Hence (1) may be written 

but 
qds + cds = tdO 

I2wv^ _ 
c =- and 

gr 
ds = rdS 

(2) 

12idv^ 12v)v^ 
cds =-ds =-do = zdSf for convenience 

gr g 
Hence from (2), 

qds = tdd — zd$ = (< — z)d$ (3) 
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From equality of moments around 0, 

< + = < + tiqds 

/. dt = fiqds 

Substituting in (4) the value of qds obtained from (3), 

dt = ii{t — z)dB 

(4) 

dB 

or 

and 

— z 
lOgeT- = 

ti — Z 
common log -= O.434ii0 

t2 — z 

(5) 

i\ — z 

t2 — z 
= 10'’^®^'“’ = 10° = 10*, for convenience (6) 

If the effect of centrifugal action is neglected (Article 184) z becomes 
zero, whence equation (6) reduces to 

h 

<2 
= 10' 

>0 0076f(a 
= 10* (60 

Now 
/ = <1 — <2. tz — t\ — J 

and, substituting this value of <2 in (6) and reducing. 

^ [/+2]10*-2 / . 
(7) 

where 

and 

C = 
10* - 1 

10* 

/ = Ki - z] - "ic- (8) 

If (8) be multiplied through by v/550 it will express the horsepower 
(Hp) which a belt of 1 sq in. cross-sectional area will transmit, or 

(9) 
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If, as before, the effect of centrifugal action is neglected (Article 184) 
equation (9) reduces to 

Hp (90 

182. Practical Coefficients. In the above equations, the quantities 
a, iu, and z must be known or assumed before a solution for i\ or / can be 
made. The angle of contact, a, can be taken from the drawing of the 
drive in question, and some allowance should be made for the conditions 
of operation. Thus, if the belt is to run in a horizontal position, with the 
slack side on top, the full theoretical value of a may be taken. If, how¬ 
ever, the slack side must be on the bottom (an arrangement which 
should be avoided if possible) or if the belt is to be run in a vertical 
position, some reduction must often be made in the theoretical value of a 
to allow for sagging of the belt. This also applies to belts running at 
high speed, where centrifugal force tends to lessen the arc of contact. 

The coefficient of friction, /x, is an exceedingly variable quantity, 
changing with the character and the condition of the surfaces of con¬ 
tact, the initial tension of the belt, the speed of the belt, and the rate of 
slip. It has been found by experiment that, within reasonable limits, the 
coefficient increases with the slip and that, as before stated, a maximum 
rate of slip, including creep, not in excess of about 3 per cent is good prac¬ 
tice. Rational equations expressing the value of jjl in terms of these 
variables have not been developed, but the following equation, proposed 
by Mr. Carl Barth and based upon his own experience and that of 
Professor Bird, has been used with considerable success for leather belts 

on iron pulleys: 

AC = 0.54 - 
140 

500 + V 
(10) 

where V is the velocity of the belt in feet per minute. Values of /x as 
computed by equation (10) are tabulated in Table XXXIV. 

Experiments made by Professor Diederichs in the laboratories of 
Sibley College gave average values of /x shown in the following table: 

For pulleys made of pulp. M == 0.29 
For pulleys made of wood. /x = 0.31 
For pulleys made of cast iron. M == 0.46 

Values considerably above these were found for paper pulleys of special 
construction. These values may serve as guides in modifying values of 

determined by equation (10) when pulleys made of wood or pulp are 

to be used. 
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The quantity z is proportional to the weight of the belt per cubic inch. 
For ordinary leather (which is most commonly used), w may be taken 
from 0.03 to 0.04, an average value being 0.035 lb. 

Table XXXV has been calculated with a value of w = 0.035; Table 
XXXVI is abbreviated from Transmission of Power by Belting,” * 
by Wilfred Lewis. 

TABLE XXXIV 

Coefficients of Belt Friction by Barth’s Formula 

Velocity of 

Belt, 

Feet per 

Minute 

Coefficient of 
Friction 

Velocity of 

Belt, 
Feet per 

Minute 

Coefficient of 
Friction 

Velocity of 

Belt, 
Feet per 

Minute 

Coefficient of 
Friction 

0 0 260 700 0 423 2000 0.484 

50 0 285 800 0 432 2500 0 493 

100 0 307 900 0 440 3000 0.500 

200 0 340 1000 0 446 3500 0 505 

300 0 365 1200 0 458 4000 0 509 

400 0 384 1400 0 466 4500 0.512 

500 0 400 1600 0 473 5000 0.514 

600 0 413 1800 0 479 5500 0 517 

TABLE XXXV 

Values of 2 =-, for v = feet per second, or 
Q 

V — feet per minute, w * 0.035 

V 30 40 50 60 70 80 90 100 no 120 130 140 

V 1800 2400 3000 3600 4200 4800 5400 6000 6600 7200 7800 8400 

z 11 75 20.9 32 5 47.0 64.2 83 4 105.5 130.5 157 6 187.6 220 2 255 5 

Example. Design a belt to operate a dynamo of 15-hp capacity, 
when the belt velocity is 2400 ft per min. Assume a = 180° and 
ti == 200 Ib/sq in. From Table XXXTV, /x = 0.49. 

* Trans. A.S.M.E., vol. 7, page 579. 
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From equation (9) the horsepower transmitted by a belt having a 

cross-sectional area of 1 sq in. is, for these conditions: 

Hp. K.-.1^ = [200 - 10.2 

lo 
/. the cross section required = — = 1.47 sq in. 

10.2 

which is equivalent to a belt in. thick and 6.75 in. wide. 

The total tension {T\) in the tight side of the belt will be 1 47 X 200 

= 294 lb. The total tension {Ty) m the slack side will be this value 

minus the required effective pull, P, which is found by dividing the 

foot-pounds of work to be done by the velocity of the belt, or 

„ 15 X 33,000 

Hence 
T2 = Tx 294 - 206 = 88 lb 

TABLE XXXVT 

Values of C — 
10* - 1 

10* 

(Nagle) 

Degi rees of Contact = a 

90 100 110 120 130 140 150 160 170 180 

0 15 0 210 0 230 0 250 0 270 0 2S8 0 307 0 325 0 342 0 359 0 376 

0 20 0 270 0 295 0 319 0 342 0 364 0 386 0 408 0 428 0 448 0 467 

0 25 0 325 0 354 0 381 0 407 0 432 0 457 0 480 0 503 0 524 0 544 

0 30 0 376 0 408 0 438 0 467 0 494 0 520 0 544 0 567 0 590 0 610 

0 35 0 423 0 457 0 489 0 520 0 548 0 575 0 600 0 624 0 646 0 667 

0 40 0 467 0 502 0 536 0 567 0 597 0 624 0 649 0 673 0 695 0 715 

0 45 0 507 0 544 0 579 0 610 0 640 0 667 0 692 0 715 0 737 0 757 

0 55 0 578 0 617 0 652 0 684 0 713 0 739 0 763 0 785 0 805 0 822 
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Equations (7) and (8) involve the relations that exist between 
Ti and T2 for a given set of conditions, but they do not indicate the 
relation between them and the initial tension Tz. It was formerly 
supposed that the sum of Ti and T2 was constant and equal to 2T3; 

and this relation may still be used for very rough calculations. Mr. 
Wilfred Lewis * has shown, experimentally, that this is not true. The 
ratio of stress to strain in leather and rubber increases with the strain 
instead of being proportional to it as in ductile metals. When a belt 
transmits power the tension is increased on the tight side and decreased 

on the slack side till the difference in tension is equal to the required 
driving force. This is accomplished by what virtually amounts to 
shortening the belt on the tight side, a given amount, by transferring this 
amount to the slack side. Because, however, of the relation between 
stress and strain noted above, the increase of tension on the tight side, 
due to this amount of shortening, is greater than the decrease of tension 
on the slack side due to an equal amount of lengthening, afid, as a con¬ 
sequence, the sum of the two tensions is increased j as the effective pull 
is increased. Suggestion: Place a rubber band over the fingers of the 
two hands and stretch it moderately; then twist one of the hands in 
either direction and the increase of force tending to bring the hands 
together will be apparent. As the result of an extended study of these 
relations, Mr. Barth concludes that, under any variation of the effective 
pull of a belt, the sum of the square roots of the tensions remains con¬ 
stant and equal to twice the square root of the initial tension, or 

Vt[ + Wi = 2V¥o (11) 

where Tq is the initial tension when the belt is at rest. In the best 
modem practice the stress in belts is carefully measured, when they are 
fitted to the pulleys, on weighing machines specially devised for this 
purpose. Equation (11) gives the value of the initial tension when 
Ti and T2 are known. 

In a long horizontal belt, the increase in the sum of the tensions 
is still further augmented in driving, because the tension on the slack 
side (with a proper initial tension in the belt) is largely due to the 
sag of the belt from its own weight; and thus the tension on the slack 
side tends to remain nearly constant, while the tension on the tight 
side increases with the power transmitted, at a given speed. It is found 
that the sum of the tensions on the two sides, when driving, may exceed 
the sum of the initial tensions by about 33 per cent in vertical belts, and 

* Trans. A.S.M.E., vol. 7, page 666. 
f Trans. A.S.M.E., vol. 7, page 569. 
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in horizontal belts the increase may be limited only by the strength of 
the belt. In addition to the causes discussed, the tensions on both parts 
of the belt are increased by the centrifugal action due to the mass of that 
portion of the belt which is rotating round the pulley axis. This latter 
cause increases the stresses on both the tight and slack sides of the belt, 
and decreases adhesion between the belt and the pulley, but does not 
increase the loads on the shafts which produce pressure at the bearings 
and flexure of the shafts. 

Large belts should therefore be put on with care, as to initial tension. 
Ordinarily, the initial tension is left to trained judgment, but it would 
seem that the more advanced practice of splicing the belt under a known 
initial tension will add to the life of large and important belts. 

183. Strength of Belting. The ultimate strength of good oak-tanned 
leather belting will vary from 3500 to 6000 lb per sq in. Chrome-tanned 
leather belting has a tensile strength varying from 7000 to 12,000 lb per 
sq in., or about twice that of oak-tanned leather. The ultimate strength 
of belting seldom enters as a factor in belt design, as the real strength of 
the belt is in the joint. If the ends of the belt are laced together, a 
maximum working stress of 200 to 300 lb per sq in. is found to be 
good practice; and if the belt is cemented together, and thus made 
“ endless,^^ a working stress of 400 lb per sq in. may be used. Leather 
belting is classified as single-ply, double-ply, and triple-ply. Each of 
these classes is again divided into light, medium, and heavy, according 
to thickness, by sixty-fourths of an inch. The allowable stress on the 
tight side of the belt, per inch of width, will depend upon the thickness. 
The subjoined table gives "average tension based upon the allowable 
stresses given in the foregoing: 

Grade 

Average Thickness Allowable Tension per Inch of Width 

Single- 
ply 

Double- 
ply 

Single-ply 
Laced 

Double-ply 
Laced 

Single-ply 
Cemented 

Double-ply 
Cemented 

Light. ¥ ^ A wi ii 30 60 50 90 
Medium.... A ^ A if toll 40 75 70 120 
Heavy. A ^ A If to If 60 100 90 150 

Lower tension than these are often advocated, and undoubtedly 
lower tension increase the life of the belt. 

Professor Benjamin * gives the strength of cotton belting as about 

* See ** Machine Design,by Benjamin, page 186. 
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the same as that of good leather He also found that four-ply rubber 
belting had a tensile strength of 840 to 930 lb per in of width Pro¬ 
fessor Leutwiler quotes the following values from a catalogue of the 
Diamond Rubber Company as the allowable net tensions, or effective 
driving force, for rubber belts 

For a three-ply belt 
For a four- or five-ply belt 
For a six-ply belt 
For a seven-ply belt 
For an eight-ply belt 
For a ten-ply belt 

40 lb per m of width 
50 lb per in of width 
60 lb per m of width 
70 lb per in of width 
80 lb per in of width 

120 lb per in of width 

184. Velocity of Belting. In equation (8), when 2 = /i, / = 0 and 
the belt will exert no turning force, the centrifugal force relieving all 
fiictional resistance between the belt and pulley 

If h be taken as high as 400 lb, and ti; = 0 035, this will occur when 
z = 400 or when \2wv^/g — 400, whence v = 175 ft per sec or 10,500 ft 
per mm 

If equation (8) be multiplied through by the velocity of the belt, 
it will express the rate at which energy is being delivered, or 

fv = v[U — z\C = V h — 
\2wv‘^ 

g 
C 

If now juL — 0 w ~ 0 035, a — 180, which are average conditions, the 
equation becomes 

fv = i[h- 0 013t;2] X 0 6 = 0 Qhv - 0 0078y'^ 

Differentiating the right-hand side with respect to v and equating to 
zero, 

0 6<1 - 0 0234«‘’ = 0 or t- = 5 iVTi (12) 

which gives the relation between v and h for maximum power When 
ti = 400, V = 102 ft per sec or 6120 ft per mm, and when h = 275 lb, 
v = 85 ft per sec or 5100 ft per mm It is often necessary to run belts 
at much lower speeds than these, but it is not economical to exceed tnese 
limits A speed of a mile per minute may be taken as about the economi¬ 
cal maximum limit, and it so happens that this is also about the limit 
of safety for ordinary cast-iron pulley rims For durability combmed 
with efficiency, a speed of 3000 to 4000 ft per mm may be taken as a 
fair value, though practical limitations, such as speed for shaftmg and 
diameter of pulleys, often fix belt velocities at much lower values The 
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effect of centrifugal action for velocities up to 2000 ft per min is usually 

neglected in applying equations (6) to (9) of Article 181. 

186. Efficiency of Belting. The losses of power in belt transmission 

consist of the loss due to slip and creep, that due to bending the belt 

v)ver the pulley, and the frictional losses at the shaft bearings, due to 

belt pull. The first two, slip and creep, should not exceed 3 per cent, 

and 2 per cent is belter. The loss due to bending the belt is usually 

negligible, although the effect on the life of thick belting running on 

small pulleys is important. The losses at the bearings may be consid¬ 

erable if the belt must be laced on under great initial tension in order to 

carry the load, and this condition should be avoided except where it is 

absolutely necessary to use a short belt. A well-designed belt transmis¬ 

sion should have an efficiency at least as high as 95 per cent, and it 

may be as high as 97 per cent, including bearing losses. 

186. Other Equations, Common Rules. If in equation (9), w be 

taken as 0.032 and ti as 305 lb, the equation reduces to 

Rp - [0.55 - 0m002mv‘^]vC (13) 

where C = (10^ — 1) 10^ as before and hp = horsepower per square inch 

of belt area. If the equation be multiplied by A, the area of the belt 

cross-section, it ^vill express the total horsepower transmitted, or 

Hp = [0.55 - 0.00002162^-]i’CA (14) 

Professor Diederichs has pointed out that equation (14) is identical 

with that reported by Mr. Nagle to the A.S M.E.* and commonly known 

by his name. Values of C have already been given in Table XXXVI. 

In the Transactions A S.M.E., January, 1909, Mi. Carl Barth pre¬ 

sents a more extended mathematical treatment of the driving capacity 

of belts. He also presents scientific methods for measuring the tension 

in belting. Many other formulas of a strictly empirical character are 

given by different authorities, and some of them are very convenient. 

In general these last formulas neglect centrifugal action and are hence 

applicable only to belt speeds below 2500 ft per min. Thus, a common 

rule is that a single leather belt 1 in. wide traveling 1000 ft per min will 

transmit 1 hp. Kent's ^^Mechanical Engineers' Pocket Book," gives a 

number of these so-called practical rules. 

187. Practical Considerations. One of the most valuable contribu¬ 

tions to the literature of the subject is Notes on Belting " by Mr. F. W. 

Taylor, in vol. 15 of the Transactions A.S.M.E. Mr. Taylor kept an 

accurate record of measurements and observations on belts in use at the 

Midvale Steel Company's works, for nine years, and gives many valuable 

* Vol. 2, page 91. 
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facts and practical suggestions in his paper. A satisfactory abstract 
of it is not possible here. Mr. Taylor advocates thick narrow belts 
rather than thin wide belts.* He sums up his investigation in thirty- 
six “ Conclusions,” among which are: 

A double leather belt having an arc of 180° will give an effective 
pull on the face of the pulley per inch of width of belt of 35 lb for oak- 
tanned and fulled leather, or 30 lb for other types of leather belts and 
6- to 7-ply rubber belts. 

The number of lineal feet of double belting, 1 in. wide, passing 
around a pulley per minute, required to transmit one horsepower is 
950 ft for oak-tanned and fulled leather belt, and 1100 ft for other 
types of leather belts, and 6- to 7-ply rubber belts. 

The most economical average total load for double belting is 
65 to 73 lb per in. of width, i.e., 200 to 225 lb per sq in. of section. 
This corresponds to an effective pulling power of 30 lb per in. of width. 

The speed at which belting runs has comparatively little effect on 
its life, till it passes 2500 or 3000 ft per min. 

The belt speed for maximum economy should be from 4000 to 
4500 ft per min.” 

It should be especially noted that Mr. Taylor advocates a maximum 
belt tension about one-half that ordinarily used. This would, of course, 
increase the first cost of the installation materially. His values, how¬ 
ever, are not based on the minimum size of belt required to simply 
transmit a given horsepower, but on the size of belt which will transmit 
that horsepower for a given time with minimum wear and loss of time 
due to breakage or taking up to restore tension. Whether his practice 
is followed or not, it indicates the true aspect of the problem, and is a 
step in advance. 

In lajdng out belt drives, care should be taken to keep the diameters 
of pulleys reasonably large. The constant bending action to which the 
belt is subjected as it runs around the pulley is a great source of wear, 
and if the pulley is very small, compared to the thickness of the belt, 
this may be excessive. For this reason also, it is probably better to run 
the hair side of the belt next to the face of the pulley, as this side is more 
easily cracked by bending than the flesh side, which is softer and more 
pliable. Mr. Taylor says it is safe to run double leather belts on pulleys 
12 in. in diameter. 

The total length of the belt, or distance between shaft centers, also 
deserves attention. A belt, being elastic, acts like a spring when tension 

* Although in general this conclusion is justifiable, care should be taken that it 
is not carried to the extreme where the life of the belt may be shortened by excessive 
bending. 
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is applied to it. The longer the belt the greater will be the total stretch 
for a given load. Suddenly applied loads, therefore, produce less stress 
in long belts than in short ones (see Article 29). If, however, the dis¬ 
tance between centers is too great, compared to the size of the belt, the 
belt is liable to flap and run unevenly on the pulleys. For small, narrow 
belts a maximum distance of 15 ft is good practice; for heavier belts 
25 ft is found satisfactory. The minimum distance between shafts is 
sometimes given as 3.5 times the largest pulley. The Rockwood Manu¬ 
facturing Company has devised an ingenious drive for short-center 
motor drives in which the belt tension is applied by the weight of the 
motor. When the tension is correctly adjusted it remains so unless 
excessive stretching of the belt occurs. Tightener pulleys should be 
avoided if possible. 

A number of important investigations of belt transmission have 
been reported to the A.S.M.E. See the following papers in the transac¬ 
tions of the Society by: Mr. A. F. Nagle, vol. 2, page 91; Professor 
G. Lanza, vol. 7, page 347; Mr. Wilfred Lewis, vol. 7, page 549; Mr. F. W. 
Taylor, vol. 15, page 204; Professor W. S. Aldrich, vol. 20, page 136. 
Abstracts of these, as well as other valuable data, are given in Rentes 
‘‘ Mechanical Engineers’ Pocket Book.” 

188. Steel Belting.* Steel belting originated in Germany and has 
been used in that country and in England, to some extent, with consid¬ 
erable success. So far, steel belts have not been used in America. 
As used abroad these belts are made of tempered-steel bands varying in 
thickness from about 0.0078 in. to about 0.035 in. and in width from ^ in. 
to 8 in. The tensile strength of the steel used is reported to be about 
200,000 lb per sq in. To form the joint a steel plate of special design 
is brazed to each end of the band. These plates lock together and are 
held in contact by removable screws. 

The principal advantages claimed for steel belts are as follows: 
They do not stretch while in service and they are not affected by ordinary 
changes in temperature. They are lighter than leather belts and can 
be operated at velocities as high as 19,000 ft per min. Hence, for a given 
amount of power transmitted, they are narrower than leather belts, and 
consequently they, and the pulleys over which they run, occupy less 
space. The slip is said to be very small and the efficiency consequently 
high. They are more sensitive, however, than leather belts, and the 
pulleys over which they run must be kept in alignment. These pulleys, 
also, for best results, must be covered with leather, canvas, or some sim¬ 
ilar material. 

♦For more extended discussions of steel belting, see Halsey^s Handbook for 
Designers,” and also O. A. Leutwiler's “Machine Design,” Chapter VII. 



386 BELT AND ROPE TRANSMISSION 

FIBROUS ROPE DRIVES 

189. General Considerations. If the amount of power to be trans¬ 
mitted is large, the width of belt required may be excessive, even 
when the belt is made very thick. To run wide belts successfully, the 
shafting must be kept in perfect parallel alignment, and the distance 
between shaft centers must not be too great. For these reasons rope 
drives have been found very satisfactory where the amount of power to 
be transmitted is large, and the distance of transmission relatively great. 
They are also particularly serviceable for connecting shafts that are 
not parallel, as in the case of “ quarter-turn drives, especially where a 
belt would have to be of considerable width and would, as a consequence, 
run badly. 

In all fibrous rope drives the surfaces of the pulleys, or “ sheaves, 
are provided with wedge-shaped grooves to receive the rope and thereby 
give the rope a better grip on the sheave. For drives of moderate length, 
40 to 150 ft., fibrous ropes of cotton, hemp or manila fiber are chiefly 
employed. For transmitting power comparatively great distances, wire 
rope is more common, although fibrous ropes are also used for com¬ 
paratively long transmissions. In all long-distance transmission the 
rope must be supported at intervals by idler pulleys. 

Figure 166 * shows a typical rope drive, where the line shafting of 
each floor of a mill is driven by its own rope drive from the main shaft 
of the engine. 

190. Materials for Fibrous Ropes. Round ropes of leather, or 
rawhide, are used to a limited extent, when the amount of power to be 
transmitted is small. Rawhide is especially useful in damp places, but 
since it costs about six times as much as vegetable fiber rope, its applica¬ 
tion is very limited. Leather belts or ropes of square f or wedge-shaped 
section have also been used to a limited extent. In certain localities 
in Great Britain, hemp, which is a local product, is used quite extensively; 
but cotton and manila fiber are by far the most common for transmis¬ 
sions of any considerable size. In this country manila fiber is used 
almost exclusively; in England and on the Continent cotton rope is also 
much employed. 

It is obvious that, as a twisted rope of any fibrous material bends 
while passing over the sheave, there must be a certain amount of internal 
friction. The result of this action is very noticeable in any old manila 
rope which has been used without lubrication. When such a rope is 

* Reproduc^ by permission from “The Blue Book of Rope Transmission,” by 
American Manufacturing Company. 

t For a fuller discussion of such ropes see “Machine Design,” by H. J. Spooner. 
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broken open it is found to be filled with powdered fiber, the result of the 
internal chafing. For this reason manila fiber, which is naturally rough, 
is usually lubricated, while being twisted into rope, with tallow, par- 
affijiy soapstone, graphite, or some such lubricant. 

Cotton fibers, on the other hand, are smoother and hence give rise 
to less internal friction. They are, therefore, usually laid up dry into 
rope, a dressing or lubricant being applied to the exterior to prevent 
small fibers from rising on the outside, thus starting the rope to fraying. 
This dressing also excludes moisture and retains the natural oils in the 
interior fibers. Cotton rope is not as strong as manila. 

Professor Flather * makes the following comparison between cotton 
and manila rope: ‘‘ As compared with manila, then, the advantages of 
cotton ropes of the same diameter are: Greater flexibility, greater elas¬ 
ticity, less internal wear and loss of power due to bending of the fibers, 
and the use of smaller pulleys for a given diameter of rope. Its dis¬ 
advantages are: Greater first cost, lesser strength, and possibly a greater 
loss of power due to pulling the ungreased rope out of the groove—in 
any case this is usually small with speeds over 2000 ft per min.'^ 

Manila ropes, as used in this country for transmitting power, are 
made specially for that purpose. For ropes less than | in. in diameter, 
the rope is usually made with three strands, larger ropes having four or 

* “Rope Driving,^’ by J. J. Flather, page 81. 
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six strands with a central core. Extra long manila fiber is used, and the 
inner core and inner strands are treated during manufacture with a 
lubricant of fish oil and graphite. Tallow, which was formerly used for 
this purpose, has been found to be unsatisfactory, partly because it 
usually contains acid. The outer yarns of each strand are laid so as to 
form fairly smooth protective covering for inner yarns that compose 
the body of the strand. In designing a rope transmission it is advis¬ 
able to consult manufacturers who furnish such apparatus. 

191. Theoretical Considerations. The general equations (7), (8) 
and (9), of Article 181, which were deduced for flat belts, hold also for 
round ropes if the proper notation be substituted. In these equations 
the unit mass of belt was taken as 1 cu in. With ropes it is more con¬ 
venient to take a piece of rope 1 in. in length and 1 in. in diameter. 
With the following exceptions, therefore, the notation used here will be 
the same as that used in Article 181. 

Let w' = the weight of a piece of roj^e 1 in. in diameter and 1 in. long. 
2' = \2w'v'^/g, where w' has the value above. 

t'l = the tension in a rope of 1 in. diameter on the tight side. 
C' = a new coefficient = C modified on account of wedging effect 

of groove. 

Then equations (8) and (9) become 

/ = [^'i - z']C (15) 
and 

HP-'1^ (16) 

In equations (8) and (9) the frictional force between the pulley 
and the belt for a flat belt is taken as ^.q, where q is the radial pressure 
between the pulley and the belt. In a grooved pulley the pressure 
between the pulley and the rope is greater than the radial pressure in 
the ratio of cosec B/2 to unity, where Q is the angle between the sides 
of the groove. The frictional resistance between the rope and sheave 
is therefore tiq cosec B/2, If jx cosec 0/2 be substituted for /x in the 
quantity C (equations 8 and 9) the result C' may be used as indicated 
in equations (15) and (16) for rope drives. The value of /x for rope 
sheaves has not been determined with any degree of accuracy. Pro¬ 
fessor Flather * after reviewing what experimental data there are on 
the subject, concludes that 0.12 is a fair value and computes the follow¬ 
ing values of 0 = M cosec B/2 = 0.12 cosec B/2, 

* *^Rope Driving," page 112. 
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TABLE XXXVII 

if} = coefficient of friction =0.12 cosec - 

Angle of groove 30° 35° 40° 45° 50° 55° 60° 

0 0 46 0 40 0 35 0 31 0 28 0 26 0 24 

It is obvious that if <#> be used instead of jjl in Table XXXVI, the 
corresponding values of C in Table XXXVI will be the new constant 
C'. Thus if e = 45^ <t> = 0.31. If also a = 180°, C' from Table 
XXXVI = 0.61 about. The angle 45° has been found to be the most 
satisfactory and is most commonly used.* If the angle 6 be less than 
45°, the wedging action, and hence the pulling capacity, is increased, 
but the power loss and wear of rope due to drawing it out of the grooves 
is greater. For such sheaves, with 6 — 45° and a = 180°. 

Hp = 0.61[<'i - z'] (17) 

As before stated, reliable data on the coefficient of friction for ropes 
are scarce, and designing engineers have approached the problem of rope 
drives without regard to this coefficient. One of the most important 
contributions to the subject is that of Mr. C. W. Hunt (see Transactions 

A.S.M.E., vol. 12). The notation of Mr. Hunt^s article has been 
changed somewhat to correspond with that used in this text. 

Let d diameter of the rope in inches. 
6 ^ sag of rope in inches. 

L = distance between pulleys in feet. 
w' = weight of 1 in. of rope of \-in, diameter. 

IF = weight of 1 ft of rope of diameter d. 

Ti = total tension in rope on tight side. 
T2 = total tension in rope on slack side. 
5Po == tension necessary to give the rope adhesion. 
K = the total tension applied to each side of the rope due to 

centrifugal force. 
P = effective turning force = Ti — T2> 

Then 
Ti^To + K + P 

and 
T2 ^ To+ K 

* The Dodge Manufacturing Company, which is well known in this line of work, 
prefers an angle of 60®. 
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Mr. Hunt says that when a rope runs in a groove whose sides are 
inclined toward each other at an angle of 45° there is sufficient adhesion 
when Ti 7^2 = 2. ' However, he assumes a somewhat different ratio in 
the development of his equation, for which he assumes “ that the tension 
on the slack side necessary for giving adhesion is equal to one-half the 
force doing useful work on the driving side of the rope.^^ Or, 

To = ^ and Ti = To + K + P=-^ + K + P^^P + K 

and p 
T2 — To + K = ~ + K by assumption 

JU 

/. P = f[Pi - K\ (18) 

If equation (18) be multiplied through by y/55() it will express the total 
horsepower transmitted, or 

= (19) 

The tension K on each side of the rope for an arc of contact of 180° 
and a rope of one-inch diameter is 12ie'r“/ gf, which is identical with the 
constant 2' in equation (16). Mr. Hunt^s formula therefore may be 
written 

where Hp is the horsepower transmitted by a rope 1 in. in diameter. 
This is identical in form with the theoretical equation (17) and differs 
from it only by a negligible amount in the value of the coefficient. 

It would seem therefore that Mr. Hunt^s assumptions give results 
very close to those obtained by using the value 0.12 for yu, as recom¬ 
mended by Professor Flather. 

It is to be noted that the values of z given in Table XXXV may be 
used in computing values of 2'. The quantities are the same except for 
the weight w'. In Table XXXV, w = the weight of 1 cu in. of leather ~ 

0.035. In equation (20), to' = the weight of 1 in. of rope of 1 in. diameter = 
0.028 for manila rope and 0.022 for cotton rope. If, therefore, the values 
given in Table XXXV are multiplied by ^ they are applicable to manila 
ropes, and if multiplied by they may be used for cotton ropes. 

Example. What diameter of manila rope is necessary to transmit 
25 hp, when running 4000 ft per min, in grooves having an angle of 
45°. Take t\ = 200 lb, and u;' = 0.028. From Table XXXV, 2, for 
the given velocity = 64, nearly. 

/. 2;' 64 X - 51 
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From equation (20) the horsepower which a rope I in. in diameter will 
deliver under these conditions is 

the cross-section required = 25 12.1 or about twice the area of a 
1-in. rope which corresponds to a rope Ig in. in diameter. 

Figure 167 * shows curves based on equation (19), giving the total 

horsepower transmitted by ropes of various sizes for Ti = 200<i^, and 
will be found convenient for making calculations. 

^ From “The Blue Book of Rope Transmission," by the American Manufacturing 
Company. 
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192. Strength of Fibrous Ropes. The ultimate strength of manila 
transmission ropes may be taken as about 7000c?^ and for cotton rope as 
about 4600d^, where d — diameter of rope in inches. The working stress 
must be taken very much less than these values, or otherwise the life 
of the rope is much shortened. For manila rope Mr. Hunt recommends 
that the working tension [T\) be not over 200d^. The same factor of 
safety would give 130d^ as the allowable working tension for cotton ropes; 
but since cotton ropes are somewhat less affected by internal chafing 
the working tension may, perhaps, be safely taken at a rather higher 
value. 

193. Velocity of Fibrous Ropes. The centrifugal force produces 
a tension in a rope of 1-in. diameter of z' ~ 12w'v^/gy or in a rope of 
diameter d the centrifugal force == 12w'd'^v^/g. The allowable stress in 
the rope is 200d^. The centrifugal force will equal the allowable tensile 
stress when \2w’d?'V^jg — 200d“, or when v — 140 ft per sec, at which 
speed the effective pull becomes zero for this allowable working stress. 

If equation (20) be differentiated and the differential be equated to 
zero as in Article 184, the resultant equation will give the value of the 
velocity where the work done is a maximum, for a rope 1 in. in diam¬ 
eter. This is found to be about 4900 ft per min. Since the centrifugal 
force and the total working stress both vary as the area of the rope, this 
limiting velocity applies to all sizes of ropes, a conclusion which is borne 
out by the curves of Fig. 167. 

It has been found, in practice, that the most economical speed for 
ropes is from 4000 to 5000 ft per min. If speeds greater than this are 
used, the wear on the rope is excessive. For a fixed value of Ti = 200d^ 
the first cost of a rope is a minimum at about 4900 ft as above, and this 
first cost is greater by 10 per cent if the velocity is increased to 6000 or 
decreased to 3700 ft per min. The first cost is increased 50 per cent 
when the velocity is reduced to 2400 ft per min with Ti — 200(i^, but 
the reduction in speed increases the life of the rope. 

194. Systems of Rope-driving. There are two methods of placing 
fibrous ropes on the sheaves. In the multiple or English system, several 
separate ropes run side by side, each rope forming a closed circuit 
in exactly the same manner as a flat belt, and running constantly in its 
own particular groove on each pulley. In the continuous or American 
system, one rope only is used, being carried continuously from one pulley 
to the other till all the grooves are filled, and it is then spliced; so that 
the rope, as it leaves the last groove of the driven sheave, is returned 
to the first groove of the driver, or driving pulley, by means of an idler, 
or guiding sheave. This idler is usually arranged so that through it a 
suitable tension may be put upon the rope (see Fig. 168). 
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Regarding the merits of the two systems it may be said that the mul¬ 
tiple system is the simpler, and that it also provides considerable security 
against the loss of time due to breakdowns, as it is not likely that more 
than one rope will break at a time. When failure of a rope does occur, 
the broken rope may be removed and repaired at a more convenient 
opportunity, allowing the other ropes to carry the load temporarily. 
Occasionally, however, the breaking of a rope in a multiple system may 
cause great delay, on account of the broken rope becoming entangled 
in one of the rope sheaves and winding up upon it before the machinery 
can be stopped. In this system the individual ropes must be respliced 
occasionally to take up the sag in the rope due to stretching. The 
velocity ratio transmitted by a new rope will be different from that 

Fia. 168. 

transmitted by an old one which has worn smaller, and hence fits 
down farther into the grooves, thereby changing its effective radius. 
The velocity ratio of the two sheaves can, however, have but one 
value, and, therefore, the tendency will be for either the old or the 
new ropes to carry the whole load. When the driving sheave is the 
larger, this will result in a tendency to throw more load on the old ropes; 
when the driving sheave is the smaller, the tendency is to throw more 
load on the new and larger ropes. The unequal speed of the ropes, of 
course, leads to unequal stress; and slipping and consequent wear arb 
sure to occur. 

The continuous system is more flexible in its application than the 
multiple system; for, owing to the limited sag in the ropes due to the 
action of the weighted idler, the rope may be run safely at any angle. 
This form of drive is, therefore, much used for vertical and quarter-turn 
drives, and, generally, where the transmission is of a complicated nature. 
The principal objections to the system are the danger of loss of time due 
to a breakdown, and the unequal straining of the various spans of 
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the rope, particularly with a varying load or inequality of grooves. 
When a load is suddenly applied to the continuous system all the spans 
on the slack side become slacker, except that which runs over the idler 
and which is kept at a fixed tension. A much greater load is hence 
brought on the driving span of rope next to the idler, and some time must 
elapse before this load can be equalized over all the spans. Mr. 
Spencer Miller * has pointed out that the general tendency to unequal 
straining may be somewhat obviated, where the sheaves are of different 
diameters, by making the angle of the groove in the small sheave some¬ 
what sharper than that in the larger, so that the product of the arc of 

contact and the cosecant of half the groove angle are equal; thus making 
the tendency to slip equal. 

The above are the principal points of difference between the two 
systems. The particular conditions of the installation must be con¬ 
sidered in making a choice between them. 

196. Sheaves for Fibrous Ropes. The sheaves over which ropes are 
to run deserve special attention. Care should be taken that the form of 
the grooves and the effective diameters are the same for all grooves of 
the same sheave, and the surfaces should be accurately finished and well 
polished, as any roughness or unevenness seriously affects the life of the 
rope. As the result of much experimentation, two forms of grooves as 
shown in Fig. 169 (a) and 169 (b) have become most common. In Fig. 
169 (b) the sides of the groove are straight, while in 169 (a) the sides are 
curved."^ This curving of the sides makes the angle of the. groove some¬ 
what fliatter at the bottom, and hence when the rope has been reduced in 
diameter from wear it lies lower in the groove and will slip a little more 
readily than when it is new and occupies a higher position. This is of 
importance in relieving the old rope of a tendency to pull harder as indi¬ 
cated in the preceding article. The curved outline is also said to assist 
the rope to roll in the groove, a very desirable feature since it distributes 
the wear on the rope. The curved groove is therefore much used in the 
multiple system. In the continuous system the rope necessarily rotates 
as it passes round the idler to the first groove. 

* Tram. A.S.M.E., vol. 12, page 243. 



DEFLECTION OR SAG 395 

The angle of the groove, as before stated, is usually 45®. The grooves 
of idler pulleys for simply supporting the rope when the stretch is 
great are not made V-shaped but as shown in Fig. 169 (c). 

The wear of fibrous ropes is both internal and external, the internal 
wear being due largely to chafing of the fibers on each other in bending 
the rope over the sheaves. For this reason sheaves should be as large as 
possible, and, in general, should not have a diameter less than forty diam¬ 
eters of the rope. 

196. Deflection or Sag. If the span between the pulleys is con¬ 
siderable, the amount of deflection is sometimes of importance. Since 
the deflection varies with the distance between pulleys, the size and 
speed of the rope, and the difference in elevation of the pulleys, it is 
impossible to express the relation existing between them in a single 
formula. For the simple case of the horizontal drive the approximate 
deflection on the driving side may be determined both for the continuous 
and multiple systems and also the deflection of the slack side of the con¬ 
tinuous system, where uniform tension is maintained by a tension weight. 
In the multiple system, however, ample allowance must be made on 
tht. slack side, as new ropes stretch very rapidly, and the deflection may 
become excessive before resplicing can be performed. Mr. Hunt gives 
the following equation (transformed) for computing the deflection in 
horizontal drives: 

where T is the total tension on either the slack or tight side, depending 
on the side for which it is desired to compute the deflection; W the weight 
of rope per foot; L the span in feet; and A the deflection in feet. Where 
the tension on the driving side is assumed to be equal to 200^^, regard¬ 
less of speed, the deflection on the driving side will be constant for a 
given span. As the tension in the rope due to centrifugal action increases 
as the square of the velocity, there is an increasing total tension T2 on 
the slack side for a fixed value of Ti \ and hence the deflection on the 
slack side decreases with the velocity, the span remaining constant. 
The value of T2 may be computed and substituted in equation (21) to 

find the deflection. 
Mr. Frederick Green * gives the following approximate formula for 

computing the deflection: 
WXL^ 

ST 
(22) 

♦See **The Blue Book of Rope Transmission,’^ by American Manufacturing 
Company. 
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where the symbols are the same as in equation (21), and from which he 
has calculated the following table on the assumption that Ti = 200d^: 

TABLE XXXVIII 

Distance 
between 
Pulleys, 

Feet 

Sag* on 
Driving 

Side, 
All Speeds, 

Feet 

Sag on Slack Side in Feet 

Velocity, Feet per Minute 

3000 4000 4500 5000 5500 

30 0 19 0 45 0 39 0 36 0 33 0 30 
40 0 34 0 80 0 69 0 64 0 59 0 53 
50 0 53 1 2 1 1 1 0 0 92 0 84 
60 0 76 1 8 1 7 1 4 1 3 1 2 
70 1 0 2 4 2 1 1 9 1 7 1 6 
80 1 4 3 2 2 9 2 5 2 3 2 1 
90 1 7 4 0 3 5 3 2 3 0 2 7 

100 2 1 5 0 4 3 4 0 3 7 3 3 
120 3 0 7 2 6 2 5 7 5 3 4.8 
140 4 1 9 9 8 5 7 8 7 2 6 6 
IGO 5 4 12 9 11 1 10 2 9 5 8 6 

197. Efficiency of Manila Rope Transmission. Data on the effi¬ 
ciency of rnanila rope transmission are somewhat rare. The best 
available data are those collected by the Dodge Manufacturing Company 
and reported by Mr. E. H. Ahara in Trans. A.S.M.E., vol. 35. These 
results indicate that a good American rope drive of the general design 
shown in Fig. 168 developed an efficiency ranging from 95 per cent at 
2500 ft per min to 90 per cent at about 5000 ft per min. Correspond¬ 
ing drives of the English or multiple type gave efficiencies about 5 per 
cent lower throughout the same range. Other drives of both kinds, but 
with more complicated means of returning the slack rope to the driver, 
gave efficiencies considerably lower. The reasons for an increase in 
efficiency with decrease in rope speed are not clear. The experiment 
showed that rope drives are efficient at light loads, the efficiency at half 
load being almost equal to that at full load. It should be noted that the 
sheave grooves in the testing apparatus were made with 60° angle for 
the American system and 45° angle for the English system, which is in 
accord with the practice of the Dodge Company. The cost of rope 
transmission compares favorably with that of belt driving. 

198. Fibrous Ropes for Hoisting. In power transmission it is usually 
possible to install sheaves large enough to prevent the bending action 
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from seriously affecting the life of the rope; but in hoisting work this is 

not always possible, on account of the size and clumsiness of the resulting 

tackle Thus, a manila lope of l-m diameter, if used for power trans¬ 

mission, should run over a sheave at least 40 in in diameter, but if used 

for hoisting it might be required to run over a block sheave 12 in. or 

even 8 m in diameter The internal friction and external chafing are, 

m such cases, very great, and the life of the rope, even when working at 

a lower stress, is greatly shortened, but m hoisting tackle, the frequency 

with which any portion of the rope passes over the sheaves is much less 

than IS ordinarily the case in power transmission, on account of lower 

speed. 

Theoretical considerations are of little or no help in hoisting installa¬ 

tions, and recourse must be had to successful practice on which, fortu¬ 

nately, there are considerable data The following table, from a paper 

presented by Mr C W Hunt, before the A 8 M E , gives the results 

of a long series of observations and indicates the most economical size 

of rope for a given load It has been found, by experience, that ropes 

larger or smaller th xn those recommended in the table are shorter-lived 

under the load indicated The speeds indicated in the table are defined 

as follows: 

Slow —Derrick, crane, and quarry work, 50 to 100 ft per mm. 

Medium —Wharf and cargo work, 150 to 300 ft per min 

Rapid ^’—400 to 800 per mm 

TABLE XXXIX 

Working Load for Maniia Rope 

A B C D E F G 11 

Diameter 
of 

Rope, 

Ultimate 
Strength, 

Working Load m Pounds 
Minimum Diameter of 

Sheaves in Inches 

Inches Pounds Rapid Medium Slow Rapid Medium Slow 

1 7,100 200 400 1000 40 12 8 
9,000 250 500 1250 45 13 9 

H 11,000 300 600 1500 50 14 10 

li 13,400 380 750 1900 55 15 11 

li 15,800 450 900 2200 60 16 12 

If 18,800 530 1100 2600 65 17 13 

If 21,800 620 1250 3000 70 18 14 
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199. Other Forms of Belts. Belts with trapezoidal cross-section 
erroneously known as V-belts have long been in use for special purposes. 
Such belts run in grooves with inclined sides like those used for rope 
drives, and the general theory as concerns their action is the same. 
A modern application is that for driving the fans on automobiles. A 
multiple V-belt transmission for short center drives has also been found 
useful. One of the best-known applications of this principle is the 
Reeves variable-speed transmission. The belts used in V-drives, so 
called, may be made of either rubber or leather. When made of leather 
the required thickness is obtained by lamination and riveting. Belts 
of both round and square section are also in use for special conditions. 
For a fuller description of such belting as used in England see Machine 
Design Construction and Drawing by H. J. Spooner. Since the 
application of these several forms of belting is usually of special character 
the publications of manufacturers should be consulted as to strength 
and driving power. 

WIRE ROPE TRANSMISSION 

200. General. Ropes made of iron or steel wire have been used to a 
considerable extent for transmitting power over comparatively great 
distances. The introduction of electrical transmission, however, has 
greatly curtailed the field as far as power transmission is concerned, 
although wire ropes are still much used for conveying materials such as 
coal, rock, etc., by means of buckets attached at intervals along the rope. 
The rope in such installations moves at very low velocities and consti¬ 
tutes a different problem from that of power transmission. Wire ropes 
are also much used for hoisting and haulage work, such as elevator and 
mine work and for carrying static loads, as in supporting smokestacks, 
masts, and suspension bridges. The problem of conveying materials by 
means of wire rope usually involves special apparatus beyond the scope 
of this book. Haulage is a special form of hoisting; hence this discus¬ 
sion will be confined to the problems of hoisting vertical loads and of 
power transmission by wire ropes. 

201. Materials for Wire Ropes. Wire ropes are usually made of 
wrought iron or crucible steel. The American Steel and Wire Company 
gives the following values for the tensile strength of the several kinds of 
wire rope which it produces, the values referring to the strength of the 
individual wires composing the rope. 

Wrought lion . 85,000 lb per sq in. 
Crucible cast steel 170,000 to 200,000 
Extra strong crucible cast steel 190,000 to 220,000 “ “ 
Plow steel 210,000 to 260,000 “ 
Monitor steel. 230,000 to 280,000 
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Its publications also state that it is difficult to obtain from a sample 
of rope, in a testing machine, more than 95 per cent of the aggregate 
strength of all the wires, and that with some ropes this percentage may 
be as low as 80. This is due to the difficulty of getting a perfect grip 
on the rope so that all the wires will carry their full share of the load; 
and also because the inner wires of a strand are shorter than the outer 
wires and are therefore more quickly overloaded. The wires, on account 
of the twisted construction, also tend to cut into each other, thus render¬ 
ing them more liable to fracture under heavy loads. On account of this 
latter action, ropes made with a short twist break at a lower percentage 
of their full strength than those of a longer twist. For these reasons and 
because of the great variety of ways in which wire ropes are made, it is 
always advisable to consult manufacturers' publications in selecting such 
ropes, 

202. Wire Hoisting Ropes. Wire ropes for hoisting and haulage 
are made with a soft core of hemp, to increase their flexibility and 
to reduce the bending stresses incident to going over sheaves. They 
are made in a variety of forms, so that it is essential, as previously noted, 
to consult manufacturers' publications in selecting such rope. For rough 
service, deep mine work, or wherever great strength is necessary, the 
better grades of crucible steel, plow steel, and monitor steel are used. 
Wire ropes used for hoisting may be subjected to the following principal 

stresses: 

(a) Static stress due to the weight of the load. 
(b) Stress due to accelerating the load. 
(c) Stress due to bending the rope over sheave or drum. 
(d) Stresses due to shock from sudden loading. 

The static stress can be determined if the load and the true cross- 
sectional area of the rope are known; but since these ropes vary widely 
it is advisable to take the carrying strength of wire ropes from manufac¬ 
turers' publications. Carrying strengths, as quoted by reliable manu¬ 
facturers, are based upon actual breaking tests. 

203. Stresses Due to Accelerating the Load. If the load is lifted 
very slowly, only the static stress need be considered; but in nearly all 
hoisting problems the load must be accelerated at least for a short period 
after starting, and with some forms of hoisting drums the acceleration 
may vary throughout the entire distance. If the velocity curve at 
which hoisting is performed is known, the acceleration diagram can be 
deduced from it. (See Article 5.) If the acceleration is known, the 
accelerating force can be calculated from the well-known relation: 
Force =* Mass X Acceleration. 
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204. Stresses in Wire Rope Due to Bending. The stress due to 
bending a rope over a sheave or drum may be great and should never 
be neglected in design. If a straight circular bar of diameter d is bent 
around a cylinder of diameter Z), then it can be shown that 

where s is the greatest tensile stress in the bar and E is the coefficient 
of elasticity. (See also Article 9.) Obviously, the equation cannot l>e 
expected to give accurately the stresses induced in the wires of a rope 
due to bending the rope around a sheave, and it has been demonstrated 
experimentally that it does not do so. This equation is therefore 
usually written 

s = (23) 

for wire ropes, where C is a constant varying, according to different 
writers, from 0.35 to .05. The American Steel and Wire Company, as 
the result of an extended series of tests on full-sized ropes, recommend a 
value of C X = 12,000,000. The carrying strength of the more com¬ 
mon kinds of hoisting cables listed in their publications, namely, 6X7 
(six strands of seven wires each) 6 X 19, 6 X 37, and 8 X 19, are based 
upon the use of this value in equation (23). In this equation d is the 
diameter of the wire of which the rope is constructed, and it may be 
noted for convenience in making calculations that d = ^ the outside 
diameter of the rope in 6 X 7 ropes and ^ the outside diameter in 
6 X 19 ropes. It will appear from the foregoing that the stress due to 
bending is inversely proportional to the diameter of the sheave and 
hence this diameter should be as large as possible. Prominent American 
manufacturers of wire rope recommend a minimum diameter of sheave 
of forty-eight times the diameter of the rope. 

206. Stresses in Wire Rope Due to Sudden Loading. Suddenly 
applied loads are most likely to occur in hoisting ropes, because of the 
reeling up of slack in the rope just previous to lifting the load. Con¬ 
sider first a rope so short that the amount of stretching under normal 
loading is very small. If the slack of such a rope is reeled in slowly until 
the rope is taut and if, then, the power is applied suddenly, the stress 
in the rope will approximate that due to applying the load suddenly but 
without initial velocity. By Article 29 this stress will be twice that 
due to the load if applied slowly. If, however, the slack of any rope is 
reeled in so rapidly that the rope is applied with a jerk, the stress in 
the rope will depend upon the energy stored in the rope and the reeling 



STRESSES IN WIRE ROPE DUE TO SUDDEN LOADING 401 

machinery, the elasticity of the rope, and the mass of the load. If 

these quantities are known the stress in the rope can be calculated. 

In actual design, however, it is seldom neces.sary to make such cal¬ 

culations. It should be noted that suddenly applied loads in hoisting 

ropes are caused almost always by the inertia of the reels and other 

moving parts, rather than by the application of hoisting torque. In 

very long hoisting ropes, the elasticity of the rope makes it difficult 

to apply a sudden load even when the reels and other moving parts of 

the hoisting machinery are very heavy. In short hoisting ropes, the 

inertia of the moving parts is small and, except for sheer carelessness, 

jerking effects can be avoided, though the load must often be started 

suddenly without initial velocity of the rope. These general con¬ 

clusions are borne out by the factors of safety assigned in practice 

to such ropes. Thus, for mining hoists, overhead traveling cranes, 

and similar service, where human life is involved, a factor of safety 

of 5 has been found to be sufficient. In elevators and other applications 

where extreme safety is desired, a factor of safety of 10 or even 12 is 
often used. 

Example. The ram of a pile driver weighs 2000 lb, and the hoisting 
machinery is capable of accelerating it at thc> rate of 8 ft per sec/sec. 

S(>lect a G X 19 steel cable for lifting it, assuming that the sheave and 

drum are forty-eight times the diameter of the rope, the factor of safety 

as 5, the maximum tensile strength of the wire as 250,000 lb per sq in., 

and the effective area of the rope as 95 per cent of the total area. Assume 

also that the load may be applied suddenly but without initial velocity. 

Since the factor of safety is 5, the maximum allowable working stress 

will be 50,000 lb per sq in.; and the sum of the stresses due to bending, 

lifting the load suddenly, and accelerating it must not exceed this 

amount. A tentative computation indicates that a rope f in. in diam¬ 

eter will serve. The diameter of the wire in the rope will be -|- X -] y = 

in. The total cross-sectional area of the rope will be 0.155. The 

effective area will be 0.155 X 0.95 = 0.147. The bending stress will be, 
from equation (23), 

s = 12,000,000 X X — 16,666 lb per sq in. 

The force necessary to accelerate the ram = mass X acceleration 

2000 X 8 

32.2 
= 497 lb. Hence, 

Total load due to ram = (2 X 2000) -f 497 = 4497 lb 

The stress due to this load = 
4497 

0.147 
= 30,6001b 
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Therefore, 
Total stress = 16,666 + 30,600 = 47,266 lb per sq in. 

and the selection is satisfactory. 
206. Power Transmission by Wire Rope. Wire ropes for power 

transmission are usually made of iron or soft steel and are laid up with 
a soft core of hemp in order to give greater flexibility. They cannot be 
run on metallic surfaces, and the sheaves must be lined at the bottom 
with soft rubber or similar yielding material. Great care must be taken 
that the rope does not chafe and, unlike the sheaves for fibrous ropes, the 
grooves in sheaves used for wire rope are so formed that the sides of the 
groove do not compress the ropes. In wire-ropes sheaves, the radius at 
the bottom of the groove is always greater than that of the rope itself, 
so that wire-ropes drive, like flat belts, simply through the friction on 
the bottom of the groove, due to the tension of the rope. The lining of 
the bottom of the groove (leather, wood, or some other comparatively 
soft material) gives increased friction as well as less wear of the rope. 
The sheaves should be as large as possible to minimize the bending effect 
on the rope, one hundred rope diameters being often taken as the min¬ 
imum diameter of the sheave. 

The general theory and equations developed for fibrous rope hold 
also for wire rope, proper constants being substituted. It is evident 
from this discussion that wire ropes can safely transmit a greater amount 
of power than fibrous ropes of the same diameter, because of the much 
higher allowable tensile stress. Refined calculations, however, are seldom 
necessary in determining the transmitting capacity of wire ropes, since 
dependence for such capacity is placed upon the tension due to the 
weight of the rope between sheaves rather than upon elastic tension 
such as is employed in leather belts. The John A. Roebling Sons Com¬ 
pany recommends that transmission ropes be permitted to deflect or sag 
one thirty-sixth of the span between sheaves, and states that this amount 
of deflection will provide ample friction on the driving sheaves. If less 
than this amount of sag is permitted, the resulting tension is likely 
bo cause undue stress in the rope and undue wear in the sheaves. If 
more than this amount is permitted, the rope may sway and jerk. It 
will be clear that under such a rule a rope of a given size will transmit 
more power when the span is long than when it is short, and with short 
spans it is sometimes necessary to use a heavier rope in order to secure 
the necessary amount of tractive force. Spans less than 70 ft are not 
very satisfactory, and single spans of 400 ft are not uncommon. 

The Roebling Company also states that with this amount of sag the 
difference in tension between the tight side and the slack side of the 
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rope may be taken as three times the weight of a single span of the rope 
for the deflection stated in the foregoing. This difference in tensions, 
multiplied by the speed of the rope, will give the foot-pounds that the 
rope will safely transmit. The velocity should not exceed 5000 ft per 
min. 

The American Steel and Wire Co. manufactures marlin-clad trans¬ 
mission ropes. Each strand of these ropes is wound with marlin or 
tarred hemp cord. This covering protects the wire from wear and makes 
a hard wearing surface that has exceptionally good tractive qualities. 
The lining of the bottoms of the grooves in the sheaves should be main¬ 
tained in good repair. If it becomes irregular, through wear, the rope 
may be bent at a sharp angle in passing over the high spots of the lining, 
with a resultant increase in the stress of the wires. This last action, 
however, is not equivalent, so far as the life of the rope is concerned, to 
running over a correspondingly smaller sheave, for every portion of 
each wire is bent around each sheave once during every circuit of the 
rope; and it is not likely that the same portion of the rope will fre¬ 
quently come in contact with any single irregularity in the lining. 
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CHAPTER XVI 

CHAINS AND CHAIN TRANSMISSION 

207. Classification. Chains may be conveniently divided into three 
classes: 

(a) Chains for raising and supporting loads. 
(b) Chains for conveying purposes. 
(c) Chains for power-transmission purposes. 
208. Chains for Hoists. In the first class are such chains as are 

used on cranes and hoisting appliances. Chains of this character are 
made with elliptical-shaped links and should be manufactured of the 
best wrought iron to insure perfect welding where the link is joined. 
The links themselves should be as small as possible, to minimize the col¬ 
lapsing action or bendmg due to the pull of the adjacent links, and also 
that due to winding the chain upon a circular drum. Such chains are 
sometimes called short-link, close, or crane chains. In so-called 
stud-link chain, a transverse bar, or stud, prevents the sides of the link 
from straightening under load. 

The strength of a chain link in tension is less than twice that of a 
bar of the iron from which the chain is made, on account of the curva¬ 
ture and the bending action due to the manner in which the load 
is applied, and also on account of the weld. The following empirical 
equation, in which W = the breaking load in pounds and d = the diameter 
in inches of the bar from which the link is made, has been much used 
for iron crane chains. 

W = 54,000^2 (1) 

The working load {W') should not be more than one-third this value or 

W' - 18,000^2 (2) 

Professors Goodenough and Moore, as a result of experimental 
work,* conclude that the stresses allowed by equation (1) are too high 
and recommend the following: 

* See Bulletin 18 of Engineering Experiment Station, Univ. of Dlinois. 

404 
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W = 0.4sd2 for open links (3) 
and 

W = 0.5s(P for stud links (4) 

where s is the allowable tensile stress in the link. 
These writers also deduced the following conclusions from their 

experiments:'' In the formulas for the safe design of chains given by the 
leading authorities on machine design, the maximum stresses to which 
the link is subjected seem to be underestimated, and the constants are 
such as to give maximum stresses of from 30,000 to 40,000 lb per sq in. 
for full load. 

“ The introduction of a stud in the link equalizes the stresses through¬ 
out the link, reduces the maximum tensile stresses about 20 per cent and 
reduces the excessive compressive stress at the end of the link about 
50 per cent. 

“ The stud-link chain of equal dimensions will, within the elastic 
limit, bear from 20 to 25 per cent more load than the open link. The 
ultimate slrenglh o^* stud-link chain is, however, probably less than that 
of the open link.’’ 

In many cases, no doubt, a lower stress than that indicated by (2) 
should be adopted. Whenever the load is not a direct pull, but severe 
bending stresses are also induced, as in chain ‘^slings” for handling heavy 
iron castings, the chain should have great excess of strength. Chains 
should be carefully inspected and tested or proved ” before using. The 
“proof” usually applied is one-half the ultimate load. Where chains 
are used for hoisting work, they are likely to become badly'strained. 
Annealing by heating allows a readjustment of the structure of the iron, 
and this should be done periodically with all such chains, particularly 
chains used for slings. This also affords an opportunity to thoroughly 
inspect chains which are greased in ojieration. The uncertainty regard¬ 
ing the exact condition of a chain in service, and the fact that it gives 
no warning of weakness, but may break at a load below the normal 
working load, have caused them to be largely replaced, on such appli¬ 
ances as overhead cranes, by steel rope. The state of the strength of 
the latter is more easily determined by inspection. 

Weldless * steel chain rolled from a bar of special shape has lately 
come into use to some extent. The chain is made in lengths of 60 
to 90 ft, and the lengths are joined by a link made of special welding 
steel. They are said to be much stronger than iron chains. 

209. Chain Drums and Sheaves. Drums on which crane chains 
are to wind should be carefully grooved so that alternate links lie flat 

* See Machine Design,” by H. J. Spooner, page 452. 
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on the surface of the drum; and they should have suflBcient capacity to 
receive the chain in one layer, as overwinding brings severe stresses on 
the parts wound upon the drum. The diameter of the drum should 
in no case be less than twenty times the diameter of the chain used, and 
thirty times this diameter is better. If it is not possible to have the 
chain wind upon a drum, pocket chain wheels are often used. These 
wheels are made with pockets around the periphery into which the links 
fit. The links are prevented from coming out by a guide over a portion 
of the wheel; and hence cannot slip on the sheave. Anchor chains, and 
the chains of certain forms of chain blocks for raising weights, run over 

such sheaves. 
210. Hoisting-hooks. The hooks used for raising heavy weights 

deserve special r ttention. They are usually made of steel or iron forg- 

r 

i 

r 
Fig. 170 (a). Fig. 170 (b). 

ings, although steel castings are employed to some extent. If the stress 
in the hook can be kept low, the use of steel castings may be justified; 
but where the load is great and the fiber stress in the hook necessarily 
high, to avoid clumsy proportions, the hook should be forged from ductile 
material. 

Let the hook in Fig. 170 (a) be subjected to a vertical load P; 
then XV, the most dangerous section, is apparently acted upon by a 
direct stress s' = P/A (where A is the area of the section) and by a 
flexural stress s" due to the moment Pa, the stress s" being tensile at X 
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and compressive at Y. Apparently, therefore, the theory of Article 21 
applies, and equation (Mi) (Table VI) may be used to design the 
section, or 

St — 

The resulting tensile stress at X is equal to the sum of the direct 
stress and the maximum tensile stress due to bending; the resulting 
compressive stress at Y is equal to the difference between the maximum 
compressive stress due to bending and the direct stress. The result¬ 
ing tensile stress at X will, therefore, always exceed the resulting com¬ 
pressive stress at Y if the gravity axis is midway between X and Y 
or nearer F than X. For this reason section XY is made unsymmet- 
rical, with the gravity axis nearer X than F for materials equally 
strong in tension and compression or stronger in compression than in 
tension. 

Hooks for small cranes and hoists are much more likely to be loaded 
frequently to their full capacity than hooks for raising large loads; thus, 
a hook on a 5-ton crane may be loaded to its full capacity several times 
every day, while the hook of a 20-ton crane would be thus loaded only 
at rare intervals. The stresses in small hooks must therefore be kept 
low, and fortunately this can be done without making the hook clumsy. 
As the size of the hook increases, however, the stresses must necessarily 
be increased to avoid clumsiness; but the larger the hook the less fre¬ 
quently will it be fully loaded, and a working stress as high as 15,000 
lb per sq in., or more, is as safe in a 50-ton hook as 10,000 lb per sq in. 
would be in a 10-ton hook. (See Article 27.) 

The most valuable data on crane hooks are those given by Mr. 
Henry R. Towne in his Treatise on Cranes, as a result of both math¬ 
ematical and experimental work. Figure 170 (a) and the following 
formulas give the most important dimensions of a hook according to this 
work, and these proportions have been much used with uniform success. 
The basis for each size is a commercial size of round iron or dimension A. 
In the following formula A is the nominal capacity of the hook in tons 
of 2000 lb. The dimension D is assumed arbitrarily but so as to pro¬ 
vide ample room for the slings. The following measurements are then 

expressed in inches: 

D « 0.5A + 1.25 H = 1.08A K = 1.13A 

G = 0.75Z) / = 1.33A L = 1.05A 
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The following gives the capacity of the hooks made from various 
sizes of bar stock: 

TABLE XL 

Capacity of hook in tons 1 
8 

1 
T 

1 1 n 2 3 4 5 6 8 10 

Size of bar A in inches. 5 
8 

1 1 
rff 

3 
4 iiV n a 2 2r 2| 3^ 

It is to be noticed that the stresses allowed by Mr. Townees propor¬ 
tions are very low. Thus in a 10-ton hook the dimension A is in. or, 
allowing for finishing, the dimension B may be taken as 3 in., which 
would give a tensile stress in the shank of only 3000 lb per sq in. It 
should be borne in mind, however, that hooks are subjected to much 

abuse, and the designer has no assurance that they will always be loaded 
with a true axial load, for improper arrangement of the sling often throws 
the load more toward the point of the hook, and the member is called 
upon to carry a bending moment greatly in excess of that for which it is 
intended. 

When, however, hooks larger than those covered by Mr. Townees 
work are to be designed, his proportions lead to clumsy dimensions. 
Thus a 20-ton hook would require a shank 4j in. in diameter and a 50-ton 
shank would be 6|- in. in diameter. Figure 170 (b) shows a 20-ton hook 
of Norway iron which has been successfully used in practice. The 
threaded shank, being 3f in. in diameter, is therefore stressed to about 
6000 lb per sq in., but yet is only as large as the shank of a 10-ton hook 
as given by Mr. Townees dimensions. Examination of current practice * 
and measurements taken from a number of large hooks in successful 
service indicate an allowable tensile stress at X, ranging from 10,000 
lb per sq in. in 10-ton hooks, to 15,000 lb per sq in. in 50-ton hooks. 

* For tabulated dimensions of hooks see ^‘Machinery's Handbook," page 814. 
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211. Conveyor Chains. Chains for conveying and elevating mate¬ 
rials, such as grain, coal, ashes, etc., are usually made of malleable iron, 
the links hooking together in some manner. This style of chain is known 
as link belt. On account of the diverse purposes to which they are 
applied, they are made in many forms, and the particular form for a 
given problem is usually selected in conference with the manufacturer 
or taken from trade catalogues giving the desired information. This 
form of chain is also extensively used in rough machinery, such as 
agricultural implements, for the transmission of power. Such chains 
must be run at low speeds, as they become noisy and unreliable even 
at moderate velocities. 

212. Chains for Power Transmission. The chains heretofore dis¬ 
cussed move, necessarily, at low velocities, but a demand arose for 
chains which may be run at high speeds for the purpose of transmitting 
power. Such chains are used when a positive velocity ratio must be 
maintained between the connected shafts, and where the distance 
between shafts is so great as to make tooth gearing inconvenient. 
Of this class there are at present three principal types, namely, roller 
chains, block chains, and so-called silent chains. Figure 171 (a) illus¬ 
trates the simplest form of roller chain, in which the pin, A, is riveted 
fast in the outer links, and rotates in the inner links. The roller, 72, 
lessens the friction against the tooth. In this form of chain the wear 
between the pin and the inner link is excessive, and for this reason it is 
now little used for power transmission. It is sometimes made without 
the roller and with several inside links and is then known as stud chain. 
In this form it is used for very low velocities only. The form shown in 
Fig. 171 (b) is most common. Here the bushing, /?, is pressed into the 
inner links, and the pin, which is riveted fast to the outer links, bears 
over the whole length of the bushing. The roller, 72, rotates on the 
bushing. In the block chain. Fig. 171 (c), the pin also bears over the 
whole thickness of the block, 7), but since the roller is necessarily omitted, 
there is more friction against the tooth. Roller chains may be used for 
velocities up to about 800 ft per min, and block chains up to about 500 
ft per min. 

The defect in the operation of the roller or block chain may be seen 
by referring to Figs, 172 and 173. When the chain is new, and has the 
same pitch as the wheel, it fits down on the wheel as shown in Fig. 172, 
but in a very short time the chain stretches slightly, owing to wear 
of the joints, thus increasing the pitch of the links. The wheel, on the 
other hand, may wear, but this does not change the pitch. The opera¬ 
tion of the chain is then as shown in Fig. 173, the increased pitch causing 
the rollers to ride higher and higher on the back of the tooth as they move 
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round the sprocket. The roller A is shown fully seated while B is just 
coming down to its seat. Before B can become fully seated A must rise, 
and this action takes place when A and B are carrying full load. As a 
consequence the chain does not run quietly and smoothly and the wear 

is excessive, thus limiting the speed at which the chain may be run. 
This difficulty is sometimes met by the arrangement shown in Fig. 174. 
Here the pitch of the chain when new is made a little less than the pitch 
of the driving sprocket, and clearance is allowed between the roller and 
the tooth, so that the driving is done by the last tooth, L, the pitch of 

the chain being such that the incoming roller, M, just clears the back of 
the first tooth and seats itself close to it at the root as at N. As the 
chain stretches, the rollers move backward toward the faces of the teeth, 
till a condition like that in Fig. 172 is reached, and riding commences. 
The pitch of the driven sprocket wheel is made equal to that of the chain, 
and the condition when new is that shown in Fig. 174. As the chain 
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stretches, the rollers move gradually backward away from the driving 
faces of the tooth, the driving being done on the last tooth, P, It is 
evident that this construction extends the time preceding the condition 
shown in Fig. 173. When this construction is used, the form of the tooth 
must be slightly modified. Referring to Fig. 175, it is obvious that if 
the outline of the tooth, Af, be an arc of a circle struck from the center 
of the roller (2), this roller will swing from its position 1' rolling on the 
face of the tooth, and this is the usual outline. But before roller (3) 
can take the load, which (2) is about to give up, it must be fully rooted 
against the next tooth; whereas (from Fig. 175) a small distance now 
separates the two. Therefore, as (2) rolls up the curve of the tooth it 
should allow (3) to 
slowly settle back in 
place. The tooth out¬ 
line is therefore struck 
(as shown on ilf), from 
a point a little inside 
the pitch polygon so as 
to give a curve tangent 
to the first and last 
positions of the roller. 
This outline is also 
necessary for the back 
of the tooth in order to allow the incoming roller to swing in without 
striking. The velocity of the chain is, therefore, a little less than the 
theoretical velocity on account of this continual slipping backward. 
Brief reflection will show that the tooth outlines of the driven sprocket 
may be struck from the center of the roller when rooted in place; and 
that when the chain is stretched a little it will creep as it is wound upon 
the driven sprocket. 

When the roller (4), Fig. 174, is about to roll up the face of P, roller 
(5) is not in contact with M (wear having begun); hence the chain will 
move ahead till (5) is in full contact with M. 

The greatest defect in this construction is the fact that the load is 
carried entirely on one tooth and hence the wear is excessive. This 
may be so great that the chain creeps forward on the driven wheel, so 
as to cause the incoming roller to strike the tooth S, Fig. 174. 

The above difficulties are overcome in the so-called silerd chains. 
In these chains the inevitable stretching of the links is compensated 
for in a peculiar manner. The true theory of the action of these chains 
is very complex; but the general action is as follows: as the chain 
stretches, the Hnk5=i continually tend to take up a position farther and 
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farther away from the center of the sprocket, thus increasing the length 
of the sides of the pitch polygon to suit the elongation of the link. 
Each link, therefore, remains in constant contact with its own tooth, 
from the time of engagement till release takes place. The links seat 
themselves without sliding action and the operation is nearly noiseless. 

In the Renold chain of this type. Fig. 176, the links move relative 
to each other on a round pin, P, the shouldered ends of which are riveted 
into a washer, W, thus holding the chain together. In a later form half 
bushings of case-hardened steel are so fitted to the links that the case- 
hardened pin has a bearing over its full length; but the relative motion 

of the pin to the bush 
is still a sliding mo¬ 
tion. In the Morse 
chain this sliding is 
eliminated by an in¬ 
genious form of 
rocker joint shown in 
Fig. 177. The hard¬ 
ened-steel parts, A 
and B, are fitted re¬ 
spectively to the sets 
of links, D and C. 
While keeping con¬ 

tact along a fixed line they rock on each other as the links C and D 
move relatively to each other, and sliding is thus eliminated. When 
transmitting simple tension between the sprockets, the parts A and B 
are in contact on flat surfaces as shown at E. This construction has the 
advantage of requiring little or no lubrication, hence the chain may be 
run at higher speeds than others requiring lubrication, the speeds of 
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which are limited by the velocity at which centrifugal action throws off 
the lubricant. The Morse chains also work well in dusty places. 

The efficiency of both of these chains is very high, the makers of 
the Morse chain claiming an efficiency of nearly 99 per cent. Such 
chains are particularly useful for connecting shafts which are too far 
apart for gearing, and not far enough for a belt, and in places where 
positive connection is desirable, as in motors driving heavy machine 
tools. It is to be especially noted that this form of transmission requires 
no definite tension on the slack side of the chain to produce a certain 
driving force on the tight side; and hence the pressure on the bearings 
is much reduced, for a given effective pull on the wheel rim. 

213. Standard Transmission Chains. Transmission chains arc for 
the most part a standard product and are selected by the user rather than 
designed. Manufacturers’ catalogues give much information concerning 
size and capacity of chains, but in case of doubt the manufacturer should 
be consulted. The American Gear Manufacturers Association has 
developed recommended standards for roller and block chains. The 
Association recommends the following equations for allowable load and 
speed subject to modification to suit conditions: 

2,600,000A WV^ 

^ F + 600 “ 115,900 

where T = allowable working load in pounds, A = projected pin¬ 
bearing area, V = velocity of chain in feet per minute, and W = the 
weight in pounds of 1 ft of chain. If the speed of the chain is less than 
800 ft per min the centrifugal effect represented by the second fraction 
may be neglected. Under best conditions of installation, lubrication, 
etc., this value may be increased 25 per cent. If the conditions of ser¬ 
vice are bad and where the load may be applied suddenly or where 
long life is desired this value should be reduced one-half. 

The Association further recommends that on account of impact 
between the chain rollers and the sprocket teeth the allowable revolutions 
per minute should not exceed 

where P = pitch of chain. 
The velocity of silent chains, so called, may be as high as 1200 to 

1600 ft per min. 
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CHAPTER XVII 

APPLICATIONS OF FRICTION 

FRICTION WHEELS FOR POWER TRANSMISSION 

214. General Considerations. When it is required to drive a rotat> 
ing menniber intermittently, and the rate of driving is not necessarily 
positive, friction wheels have been found very useful. They are par¬ 
ticularly applicable where the amount of power is comparatively small, 
as in feed mechanisms, but they may also be used for heavy work when 
properly constructed. For continuous driving, the transverse sections 
of friction wheels must be circular in cross-section, and this form, only, 
is used in practice. 

Figures 178 and 179 show common forms of friction wheels. In 
Fig, 178 let A be the driving wheel which rotates continuously and let B 

Fig. 178. Fig. 179. Fig. 180. 

be the driven wheel which is required to be driven intermittently. The 
shaft of A is so mounted that, by means of a lever attached to the bearing, 
A may be pressed up against B with a force P, or it can be moved slightly 
away from B until no contact exists. If now the force P is applied to 
the bearing (which should be close to A), an equal and opposite force is 
set up in the bearing of R, and the wheels are pressed together at the 
line of contact. The resistance to slipping at the line of contact will be 
fjtP, where m is the coefficient of friction of the materials of which the 
wheels are made; and if jaP is equal to, or greater than, the resisting force 
at the surface of B, A will cause B to rotate. Theoretically, A and B 

414 
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will roll together with pure rolling motion, but practically this cannot 
be attained, as even with very hard materials the wheels flatten slightly 
at the line of contact. (See Article 67.) 

Figure 179 illustrates the application of friction wheels to shafts 
which are not parallel to each other, the wheels here having the form of 
rolling cones. Obviously, the principle is of wide application and many 
combinations of friction wheels are used. Figure 180 illustrates a 
friction wheel arranged so that the driver, A, can rotate the driven 
wheel, Bj in either direction, depending on whether it is pressed against 
the surface m or the surface n. 

Figure 181 shows a form of friction mechanism much used for impart¬ 
ing variable speed to the driven shaft. The driver, A, may be moved 
along the shaft, C, at will. When at A' the angular velocity of B is a 

minimum. As A is moved inward, the rotative velocity of B increases. 
When A is moved across the center of B to the other side, the direction 
of rotation of B is reversed. If A were infinitely thin, it would, theo¬ 
retically, roll upon B with pure rolling motion. Since, however, it must 
have an appreciable width of face, and since the velocity of B varies 
with the radius, it is evident that there must be some sliding at the line 
of contact. For this reason the thickness of A must, for best results, 
be kept small compared to the radius of B. 

216. Materials for Friction Wheels. The driven wheels of friction 
devices should always be made of a harder material than the driver, for 
the reason that the driven wheel is likely at any time to be held station¬ 
ary by the load, while the driving wheel revolves against it under pres¬ 
sure. This action, though severe on the driver, does not tend to wear it 
out locally, but it does rapidly wear flat spots on the driven wheel. 
Driven wheels are, therefore, almost universally made of iron, and 
driving wheels of wood, leather, paper, rubber, or of some composition 
of these, the most common being leather and various forms of paper. 
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216. Practical Coefficients. The tangential force, F, exerted by A 
upon By Fig. 178, is dependent on the pressure P and the coefficient of 
friction It is, therefore, necessary to know the allowable pressure 
per unit of length along the contact elements and also the value of ix 
for the particular materials used. The most comprehensive investigation 
of these relations is that made by Professor Goss,* whose experiments 
cover a variety of materials. He recommends the following pressures, 
which are about one-fifth of the ultimate crushing strength of the 
respective materials. Professor Goss found that the coefficient of 

Safe Working Pressures per Inch of Contact 

Material Pressure 

Straw fiber. . 
Leather fiber 

Tarred fiber. 

Leather. 

Wood t. 

150 
240 

240 

150 

100 to 150 

friction for all the wheels tested approached a maximum value when 
the slip between the two wheels was about 2 per cent, and, within nar¬ 
row limits, was practically independent of the pressure of contact. He 
found these values to range for different combinations from low values 
up to 0.515. In these experiments the friction due to the bearings was 
neglected. The bearings, however, were of the roller type and, probably, 
absorbed less power than the ordinary bearing. Making due allowance 
for the difference between laboratory conditions and those found in 
practice. Professor Goss recommends the following approximate values 
of /xf for the various combinations. In this connection it is to be noted 
that allowance must be made for a decrease in the value of this coeffi¬ 
cient when the linear velocity of the driver is great, in the case where 
the driver is starting the driven wheel under load (see Article 37): 

Working Values of Coefficient of Friction 

Materials 

Straw fiber and cast iron... 

Straw fiber and aluminum.. 

Leather fiber and cast iron. 

Leather fiber and aluminum 

Tarred fiber and cast iron.. 

Tarred fiber and aluminum. 

Leather and cast iron. 

Leather and aluminum. 

Leather and typemetal. 

Wood and metal. 

Coefficient of Friction 

. 0.26 

. 0.27 

.0.31 

.0.30 

. 0.15 

. 0.18 

. 0.14 

.0.22 

.0.25 

.0.25 

♦ See Trans. A.S.M.E., vol. XXIX. 

t The value for wood is not from Professor Goss's paper. 

t The coefficient for wood is not from Professor Goss's paper. 
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217. Power Transmitted by Friction Wheels. If V be the velocity 
at the surface of the friction wheels in feet per minute, P the total nor¬ 
mal pressure in pounds, F the resulting tangential force, and fx the 
coefficient of friction, then since F = fxP, the rate at which power is 
transmitted in foot-pounds per minute is fxPV, and the horsepower is 

fiPV 

33,000 
(1) 

or, if d be the diameter of the driver in inches, Z the width of face in 
inches, w the allowable load per inch of face, and N the number of revo¬ 
lutions per minute, the horsepower is 

Hp 
fxwl X irdN 
12 X 33,0^ 

O.OOOOOS/iW^ZdiV (2) 

Example. How many horsepower can bo transmitted by a straw- 
fiber friction pulley of 8-in. diameter and 6-in. face, when running at 
500 rpm, the driven wheel to be of cast iron? 

Here cZ = 8 in., Z = 6 in., iV = 500, ix = 0.26, w = 150. 

/. Hp = 0.000008 X 0.26 X 150 X 6 X 8 X 500 = 7.5 

It may be noted that the horsepower per inch of width of face is a 
little more than unity, for a surface speed of 1000 ft, as in the above 
example. This corresponds closely to the empirical rule given for belts 
in Article 186, and corroborates the empirical rule often used that the 
same width of face is necessary for a friction wheel as for a belt, to 
transmit a given horsepower at the given speed. 

In the case of bevel wheels (see Fig. 179) the component R of the 
P 

applied force, P, presses the wheels together, and R =-. The 
cos 6 

velocity of the mean circumference of the driver may be taken as the 
velocity of transmission. 

In face friction driving as in Fig. 181, the width of the driving wheels 
should be kept as narrow as possible for best results. If the velocity of 
the outer edge of the driving wheel is not more than 4 per cent greater 
than that of the inner edge, the coefficients listed may be used. Where 
the driver must, at times, drive at a short distance from the center, 
lower values of the coefficient of friction must be taken. 

218. Wedge-faced Friction Wheels. The faces of a pair of metal 
friction wheels are sometimes formed as shown in Fig. 182 (a), and are 
then known as wedge-faced friction wheels. The object of this con¬ 
struction is to secure a greater resistance to slipping, with a given radial 
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pressure. It is to be noted that the number of wedges does not affect 
this ratio, but decreases the wear by distributing it over several surfaces, 
and thus reducing the difference in the velocities of the mating bottoms 
of the grooves and tops of the wedges. This last item is important, as 
it is easily seen that the contact surfaces of the driver and the driven 
wheel can have the same velocity at one point only, and that at all 
other points slipping or a grinding action occurs and wear must result.* 
The teeth, therefore, should not be very long. 

In Fig. 182 (b), let P be the radial force applied to the wedged 
surface, F the tangential force transmitted, R/2 the reaction on each face 
and 2d the angle of the wedge; then the wedge is held in equilibrium 
by the force P, the reactions P/2, and the frictional resistances nR/2 
due to the wedging action. Equating vertical forces, 

or since 

^ ^(R fiR \ 
P = 2 (sm ^ + — cos s) 

'■•(f) 
F 

or P = - 

^ P sin 0 „ 
P --h P cos 0 

or 

P = 
mP 

sin 0 + /X cos d 

(1) 

(2) 

To avoid sticking, the angle 2d should not be less than 30°. 
Equation (2), as will be seen, applies also to other wedge-shaped 

frictional surfaces, such as conical friction clutches and wedge-faced 
brakes. It appears, however, that when such frictional surfaces are 
brought into contact while under motion, the frictional component 
due to sliding at right angles to the direction of motion (AtP/2, Fig. 182 
(b)), is greatly decreased if not eliminated. Professor Leutwiler f quotes 
experiments by Professor Bonte which would indicate that such is 
the case. If this be assumed, equation (2) becomes 

P = 
mP 

sin 6 (3) 

♦ See Kinematics of Machinery/' by John H. Barr and E. H. Wood, page 101. 

t ‘‘Machine Design," page 418. 
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FRICTION BRAKES 

219. Friction brakes are used for controlling and stopping machinery 
by absorbing energy through frictional resistance from some moving 
part, and dissipating it as heat. Brakes used in heavy work, and as 
dynamometers for measuring energy, must often be fitted with water 
circulation to carry away the heat. The student is rc^ferred to treatises 
on power measurement for a discussion of dynamometers. 

220. Block Brakes. The simplest form of brake is the block brake, 
as shown in Fig. 183. Here the force P, acting on the lever A, presses 
the block C against the wheel B. Let the reaction between the wheel 
and the block be R. Then if B be rotating, a tangential frictional 
resistance nR = F will oppose its motion. With the arrangement shown 

in Fig. 183, the line of action of F passes through 0, the center of the 
fulcrum of A. Considering A as a free body and taking moments 
around 0, then for rotation in either direction 

or since 

or 

P(a + b) = Rb 

P 
Fb 

n(a + b) 

F 
liPja + b) 

b 

(1) 

(2) 

In Fig. 184 the line of action of F does not pass through 0, and therefore 
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in writing the equation for the equilibrium of A its effect must be 
considered, whence 

p = - 
a 

P6 r 1 cl 
+ blix 

(3) 

(4) r — 
*1 , cj O 
Lm 6] 

The minus sign is to be used for rotation in a clockwise direction, 
for the arrangement shown^ and the plus sign for rotation in the opposite 
direction. It is to be especially noted that for clockwise rotation when 
l/g = c/hj or when b = /jlc, P = 0; that is, the brake is self-acting and if 
put in contact the moment of the frictional force will apply it with ever- 
increasing pressure. Obviously such proportions should be avoided. 

In a similar manner for Fig. 185, 

or 

Fh n ^ i 
u + 6 

p^P{a + h) 

(5) 

(6) 

the plus sign referring to clockwise rotation, for the arrangement shown, 

and the minus sign to rotation in the opposite direction. 
In this class of brakes the pressure of the brake R against the wheel 

is opposed by an equal force R' at the bearing near the wheel. In the 
calculations above, the braking effect due to friction of the journal is 
neglected, as its lever arm is, usually, small. It cannot be neglected in 
designing the bearing, and for this reason this form of brake is not well 
adapted to heavy work. Most usually, two block brakes placed diamet¬ 
rically opposite each other are used. The methods of applying and 
relieving the brakes vary widely; where safety against accidents is a 
factor the brakes are usually held in action by a spring or a weight until 
relieved by the operator, going into action automatically when left to 
themselves. 

Figure 186 shows a brake such as is often used in hoisting engines of 
moderate size. Such brakes are usually operated by hand levers or 
foot pedals in the manner indicated. The frictional resistance, F, passes 
through the fulcrum, 0, as in Fig. 183. There is no tendency toward 
automatio action, and the brake pressures balance, thus, relieving the 
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bearings of all braking load. This type of brake is often constructed 
with an arrangement of levers as shown in Figs. 184 and 185, the line of 
action of the frictional force passing either inside or outside of the ful¬ 
crum. In such constructions the total braking force is the sum of the 
two values given by equation (4) or (6), as the case may be, and is equal 
to twice the value of the frictional force given by equation (2). It 
should be noted, however, that the braking load in these cases is un¬ 
equally distributed between the two blocks, and this unequal load must 
be resisted by the bearings. Usually this is not difficult to provide for. 

It may be noted that if the brake on one side of the brake wheel is 
arranged as in Fig. 184 and the brake on the other side arranged as in 
Fig. 185 the radial pressure will be the same on both sides of the wheel 
no matter what the direction of rotation may be. This arrangement 
of brake beams is unusual. 

Figure 187 shows an arrangement of brakes much used on large 
mining engines. The brake beams, B, are supported by the links, 
LU, through the pins, iV, these pins being placed as near the frictional 
surface as possible, so as to reduce the tendency of the frictional force 
to rotate the beams. The rods, are adjustable in length, and by 
means of these rods and the adjustable link, Af, the brake beams can 
be adjusted to fit the brake wheel correctly. The links, M and L', 
being approximately the same length, constitute a parallel motion, 
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compelling the beams to open and close without tipping. The brakes 
are applied by the load, W, and relieved by the action of the small 
cylinder, B, which may be actuated by steam or air. If T/2 be the 
tension in each of the rods, A and A, the frictional force exerted on 
the wheel is jP = 2mT, If the pin, 0, is so located that when the load, 
W, is applied it moves to O', and the center line of the rod. A, passes 
through the center of the pin, P, a toggle effect is obtained and the 
tension in the rods, A and A, may be made any desirable value; in 
fact, with such an arrangement care must be exercised in adjusting 
the brake that such pressures are not brought on the pins as will cause 

failure by shearing. When 0 moves down to 0' the brake is “ locked '' 
in position and the operating force may be removed. This last feature 
is often a valuable quality in a brake. Brakes of this character are 
generally lined with wooden blocks as shown. If the face of the brake 
wheel is wedge-faced the value of jj, in the foregoing equation should be 

replaced by ■ from equation (2), or —- from equation 
sin ^ M cos S '' sin 6 

(3), Article 218, as the circumstances may dictate. 
221. Strap Brakes. If the effect of centrifugal force is neglected 

(see Article 181), and the total tensions in the band (Ti and T2) be taken 
instead of the tensions per inch of width, equation (6) of that article 
reduces to ^ ^ 

h T2 
(1) 



STRAP BRAKES 423 

where fc = 0 0076/ia, a being the arc of contact in degrees If, also, F 

IS the total frictional force exerted by the band upon the wheel, 

F = Ti- T2 (2) 

It is obvious that these equations are applicable to the discussion of 
band brakes Figures 188, 189, and 190 show the most usual arrange¬ 
ment of band brakes In Fig 188 the end of the strap which is sub¬ 
jected to the greatest tension, Ti, is anchored, for convenience, at the 

pm which serves as a fulcrum for the operating lever, L, it could be 
anchored to any other convenient part of the frame. 

From (1) and (2), 

Taking moments around 0, 

Pa = T2b = 

Fh 

10* - 1 
or 

P 
Fh 

a(10* - 1) (3) 

which expresses the relation between the applied force, P, and the fric¬ 
tional resistance applied to the wheel 

In Fig 189 the end under greatest tension is attached to the lever 
and the end of least tension is anchored, hence for this case 

P = 
Fh\ 10* 

a [10* - 1 (4) 

In Fig. 190 the end under greatest tension is anchored to the lever at 
a shorter radius than the end of least tension, so that the force which it 
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exerts assists the operating force P. This is known as a differential 
brake. For this case in a similar manner as above 

It is to be especially noted that if 10*^6i = 62, P = 0, and the band 
will brake automatically; that is, if any force is applied to the lever, 
the brake will continue to set itself up with ever-increasing force till 
motion ceases or rupture occurs. This form of brake is exceedingly 
dangerous on account of its tendency to '' grab,'' especially if jjl is materi¬ 
ally increased through a change in the character of the friction surfaces. 

Strap brakes are usually made of wrought iron or steel. In light work 
they may engage with a cast-iron surface or may be lined with leather; 
but in very heavy work they should be lined with wood. 

Figure 191 shows a form of brake much used on overhead traveling 
cranes. The driving gear, A, meshes with the motor gear, and the pin¬ 
ion, Ey actuates the train of gearing that operates the hoisting drum. 
In hoisting, the gear. A, is rotated in the direction of the arrow, advanc¬ 
ing upon the thread on the main shaft, thus clamping the friction faces 
of the ratchet wheel, C, between itself and the collar, Z>. This collar 
is fast to the shaft and hence the latter is rotated against the resistance 
of the load applied through the pinion, E. The pawl, F, of the ratchet 
wheel, C, permits the latter to rotate freely during hoisting, but prevents 
its rotation in a reverse direction, and the load is sustained so long as the 
pressure between A and D is continued. In lowering, C is stationary. 
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The motor reverses the direction of rotation of A, thus unscrewing A 
and relieving the frictional resistance between A and D, But the load 
immediately rotates the shaft, screwing the shaft into the gear, A, and 
tending to restore the frictional resistance. In actual operation these 
two actions tend to offset each other and the load is lowered only as 
fast as the rotation of the motor will permit, and hence is always under 
perfect control. There are many variations of this general principle; 
in some constructions multiple-friction discs, such as are described in 
Article 226, are used. 

This mechanism is essentially a screw bolt and nut with a loose 
friction ring placed between the nut. A, and the bolt head or collar, D. 
Therefore, equations (6) and (6') of Article 130 apply, as does also the 
discussion in that article. The relation between the moment of the load 
applied through E and the normal force. If, is given by equation (6) 
of Article 130, while the reversing moment that must be applied by 
the motor for lowering is given by (6') of the same article. In com¬ 
puting the moment of the load, due account should be taken of the 
acceleration that it is desired to give the load to be raised. If the speed 
of hoisting is low this may be very small and negligible, but in cranes of 
moderate size the acceleration applied to the load is sometimes consider¬ 
able. The accelerating force, it will be remembered, is Pa/g^ where a 
is in foot-seconds and P is the load in pounds. This accelerating force 
should be added to the actual load to be hoisted in computing the 
moment upon E, The radius Vc of the equivalent frictional force, fiiW, is 

, * where ri and r2 are the outer and inner radii, respectively, 

of the friction surfaces. The value of Tf can be determined from 
equation (6), Article 130, and applied in equation (6') of the same 
article to determine the turning moment that must be exerted in 
lowering. 

222. Absorption of Energy. Brakes may be designed for one of two 
purposes, namely (a) to absorb the energy of a moving mass, or (b) to 
resist the torque of a load as in cranes and hoisting engines. Let F = 
the braking force at the surface of the brake wheel, D the diameter of 
the brake wheel, N the number of revolutions during which the brake 
acts, Ki the energy of the body when the brake is applied, K2 the 
energy that may be added during the application of the brake, and K3, 
the energy of the body at the end of the application of the brake. Then 

in general t 
K1 + K2- Kz^ FttDN (6) 

* See Article 166. t See Article 2. 



426 APPLICATIONS OF FRICTION 

If no energy is added during the operation K2 = 0. If the mass is 
brought to a full stop /va = 0. Ordinarily K2 = 0, but there are cases 
such as the automobile where the brakes are applied before the pro¬ 
pelling power is cut off. A falling body such as a mine cage is constantly 
acquiring energy until it is stopped. For any given distance of drop it 
is possible to compute the force F which, acting simultaneously, will 
stop the cage. Or if it has acquired a kinetic energy Ki before the brake 
is applied, the force F may be computed which will arrest the cage 
when it has fallen an additional distance in which it would acquire an 
additional amount of energy K2. In all such machinery as cranes, and 
hoisting machinery in general, the torque of the brake must exceed the 
torque of the load to be sustained. In such machinery the braking force 
is arranged so as to keep the brake on unless removed to allow of 
operation. 

Brakes operate by absorbing energy in the form of heat and dissi¬ 
pating it by radiation and conduction. For a given coefficient of 
friction the heat generated will be proportional to the normal force P 
and the velocity of rubbing V. Obviously if heat is generated faster 
than it can bo dissipated excessive heating and possibly combustion will 
occur. Marks (page 747) gives the following limiting values of PV 
for wooden blocks: 

For intermittent service and poor radiation PV = 1000. 
For fairly continuous service and poor radiation PV = 500. 
For continuous service and artificial cooling PV — 1400. 

FRICTION CLUTCHES 

223. Friction clutches, though made in a great variety of forms, can, 
in a large measure, be classified under four principal types, namely, 
conical, radially expanding, disc, and band. A well-designed clutch 
should start its load quickly but without shock, and should disengage 
quickly. It should be “ self-sustained,” that is, when the clutch is 
driving, no external force should be necessary to hold the contact surfaces 
together. In addition, it is often necessary that the clutch should 

lock ” in place, after the manner of the brake in Fig. 187. 
224. Conical Clutches. Figure 192 shows the elements of a conical 

clutch which is self-sustained. The cone, Ky is fast to the shaft, S, 
and rotates with it. The pulley, Hy rotates upon K and carries with it 
the levers, E. When the thimble, B, is forced under the rollers, C, the 
levers, Ey force the cone surfaces into contact. Heavy springs at G (not 
shown) throw the surfaces apart when the thimble is withdrawn. The 
relation between the transmitted frictional force, F, and the force P, 
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applied to the cone, in a direction parallel to the axis, is the same as 
that of the wedge gearing in Article 218, or 

F =-- (7) 
Sin d + iJL cos d 

The angle 6 should not be less than 10®, unless some mechanism is pro¬ 
vided for separating the cone surfaces positively, when desired. For 
clutches that do not operate frequently, metal surfaces are often used; 
but where the operation of clutching is frequent, one surface is usually 
lined with wood, cork, or leather. 

As noted in Article 218, there is a question as to how much the power 
that may be transmitted is affected by the apparent frictional com- 

Eig. 192. Fig. 193. 

ponents along the contact elements. From that discussion it would 
appear that this frictional action should be neglected in making com¬ 
putations for metallic surfaces, especially after the load has been fully 
picked up. 

226. Radially Expanding Clutches. Figure 193 shows the elements 
of a radially expanding, self-sustained clutch. The clutch body, A, 
is keyed to the shaft; the pulley, C, rotates loosely upon the shaft. 
The circular segment, Bj which fits the inner surface of C, can be moved 
radially upon A, The loose ring, G, is operated axially by a forked lever 
fitting on the pins, P. When the sleeve, E, is forced inward by the ring, 
G, the links, Z>, force the segments, B, outward against C. In the 
arrangement shown the links have a toggle effect and can exert enormous 
pressure against B; hence adjustment must be carefully performed. 
This is usually accomplished by making the length of the link, D, adjust- 
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able, by means of tum-buckles or similar devices, which also provide a 
means of compensating for wear. Usually the sleeve has motion enough 
to carry the inner end of the link slightly past the center position shown, 
thus locking the clutch in place. 

226. Disc Clutches. Figure 194 shows the elements of a multiple- 
disc clutch as sometimes used in automobile work for connecting the 
engine to the transmission shaft, A being fast to the engine shaft and 
B to the transmission shaft. The part A carries a number of discs, C, 
which fit loosely in an axial direction but are prevented from rotating 

relatively to A by bolts, which also hold L, the cover of the case, in 
place. A second set of discs, Z>, placed alternately between the discs C, 
are carried on the part B and compelled to rotate with it by the keys, G. 
A heavy helical spring, F (sometimes made of rectangular section as 
shown), presses the two sets of discs together with a known load, P, 
when the clutch is in and the shafts connected. The sleeve, P, while 
compelled by the feather, P, to rotate with the transmission shaft, JV, 
can be moved axially by means of the grooved collar, /, and the ring, 
J, / being made fast to B but built separately from it for constructive 
purposes only. When B is moved to the right the spring is compressed 
and the pressure on the discs relieved. The discs often run in an oil 
bath to prevent grabbing.'^ It is readily seen that while the force, P, 
which presses each pair of contact surfaces together is the same, the total 
frictional force transmitted is proportional to the number of pairs of 
contact surfaces n, or 

F = MnP (8) 

Assuming P to be uniformly distributed and that m does not vary in 
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value the frictional radius will heR = (see Article 64) and 

the moment that may be transmitted will be FR = finPR. In Fig. 194, 
n = 7, The above form of clutch is known as the Weston clutch. 
Obviously, any number of pairs of discs may be used. For large work 
the discs are sometimes made of iron and wood (or wood-faced). For 
small work, alternate discs of steel and brass are employed. Many 
pairs of contact surfaces are then used and the discs run in oil to pre¬ 
vent grabbing.The width of the wearing faces of the discs should 
be made small to prevent undue wear toward the outer edges of the discs, 
D, as in a thrust block (Article 63). It is better to use a number of 
smaller discs than a few large ones. 

227. Band Clutches. Figure 195 illustrates the elements of a band 
clutch. The clutch wheel, A (which may be fast to one shaft), carries 
the wood-lined band, C. When the thimble, F (which slides on the 
shaft), is forced under the lever, jE, the iron band, C, is tightened and 
clutches the rim of the driven wheel, B. Obviously, the principbs 
involved are identical with those of the strap brake. Fig. 188 of Article 
221. For light work the band may be lined with leather, but in heavy 
work, such as mine hoisting, blocks of basswood, or other soft wood, are 
used. The wood lining is usually made fast to the strap, though occa¬ 
sionally on very large diameters they are attached to the wheel so that 
they may be turned true in place. These clutches are made self-locking 
by arranging for a toggle effect in some one of the operating levers. 

Occasionally the band is made to expand inside of the rim of the 
wheel to be driven. It is to be noted that this case is not the same as 
the one just discussed, but is a special case of a radially expanding 
clutch. The outward force exerted by the band may be computed by 
the theory of Article 101, considering the band as a thin cylinder under 
compression, the compressive stress at any section being that due to 
the pressure applied by the operating lever. 

228. Magnetic Clutches. A number of clutches have recently 
appeared which are operated magnetically. These are most generally 
of the disc type. Evidently the general principles above, regarding 
transmissive power, apply also to these clutches. In magnetic brakes, 
the load is usually applied by a spring, or weight, and released by 
magnetic action, thus insuring safety against accident should the electric 
service fail. 

229. Practical Coefficients for Brakes and Clutches. The most usual 
combinations of friction surfaces for brakes and clutches are wood, 
leather, or cork with iron; and iron with iron. In the multiple-disc 
type, brass or bronze on iron or steel are sometimes used, Mr. C. W. 
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Hunt gives the following values of /x, as the result of considerable expe¬ 
rience in designing clutches, namely: cork on iron, 0.35; leather on iron, 
0.3; and wood on iron, 0.2. For iron on iron ^ may be taken as 0.25 
to 0.3. It should be remembered that if the friction surfaces are to be 
engaged under load and at high velocity, lower values must be assumed 
than for lower speeds (see Article 37). 

The pressure per unit area of surface is also an important feature in 
the design of friction machinery, for if this is taken too high, excessive 
wear will result. Thus, in disc clutches the pressure is usually taken at 
not more than 25 to 30 lb per sq in., and lower values are desirable. 
Wooden surfaces should not be loaded beyond 20 to 25 lb per sq in. 
If the clutch or brake is to operate frequently, ample surface must be 
provided properly to radiate the heat generated. 

REFERENCES 

Trans. A.S.M.E., vol. XXX, 1908. 
Trans. Inst. Mechanical Engineers, July, 1903. 



STRESSES IN FLYWHEELS 437 

they refer to specific conditions. It is to be noted that the weight of the 
flywheel is directly proportional to the energy to be absorbed and 
inversely proportional to (vi^ — V2^). The latter is usually a small 
quantity and, therefore, if E is large the weight of the flywheel may be 
excessive, which is undesirable because of the cost, and also because 
heavy wheels bring great loads on the bearings, causing frictional 
losses. For this reason it is always desirable so to arrange the sequence 
of events in the energy supply and work to be done as to minimize the 
excess energy to be absorbed. This is illustrated in Article 6, Fig. 5, 
where the area K may be greatly decreased (or increased) by changing 
the relative positions of the crankpins. This procedure is of great 
importance to avoid wheels of great weight in large steam engines when 
variation in velocity must be closely restricted. 

The allowable variation in velocity is fixed with reference to the 
character of the work to be done. It is evident that some classes of 
work require much more constant velocity than others, and experience 
has shown what the limits in variation of velocity may be for successful 
operation. The following limiting values of the proportionate variation 
(^1 — V2)/v represent average practice. The particular case of direct 
driving of alternating generators in parallel must, in general, be treated 
with reference to the allowable variation per pole, and when, therefore, 
the number of poles is great the total allowable variation is corre¬ 
spondingly small. 

TABLE XLI 

Values of —-— 
V 

For punching machines and similar machines.0.10 to 0.15 

For engines driving stamps, crushers, etc.0.20 

For engines driving pumps, sawmills. 0.03 to 0.05 

For engines driving machine tools, weaving and paper 

mills. 0.025 to 0.03 

For engines driving spinning mills for coarse thread.. 0.016 to 0.025 

For engines driving spinning mills for fine thread-0.01 to 0.02 

For engines driving single dynamos. 0.007 
For engines driving alternators in parallel. 0.003 to 0.0003 

232. Stresses in Fl3rwheels. The velocity of the rims of all fly- 
\yheel8 is, from the nature of their requirements, very high. If the 
wheel is to act as a band wheel, the desirability of obtaining high belt 
speed (Article 184) brings the peripheral velocity up to 4000 or 5000 ft 
per min. It has been shown that the capacity of a given wheel is pro¬ 
portional to the square of its velocity and, therefore, when the wheel 
is to act as a flywheel alone, economy in the use of material, or the limit- 



438 FLYWHEELS AND PULLEYS 

ing of the external dimensions, makes high speed very desirable. Great 
care should be used in the design of such wheels, for a flywheel which 
breaks at normal speed is exceedingly dangerous to life and limb, and 
when such wheels explode '' or break from overspeeding, the results 
are usually very disastrous. 

Unfortunately, mathematical analysis of the stresses in flywheels 
and pulleys is not satisfactory or conclusive. In small wheels cast 
in one piece, unknown shrinkage stresses of great magnitude may 
exist, which render useless any refined calculations. In large wheels 
built up of sections, the presence of joints vitiates any calculations 
based on the elastic theory of the strength of materials; and when the 
parts are of cast materials and of large sectional area, there is no assur¬ 
ance that the character of the material is uniform throughout. It is 
important, however, to understand fully the general character of the 
stresses, even though no accurate computations can be made as to 
their magnitude. 

Consider that the rim of the wheel in Fig. 197 is free to expand 
radially, the arms exerting no restraining force in a radial direction. 
If the wheel be rotated on its axis, the action of centrifugal force is such 
as to cause an outward pressure on every part of the rim, in exactly the 
same manner as in a boiler shell acted on by an internal pressure (see 
Article 101), the rim expanding until the tensile stress induced in any 
section, A A, Fig. 197, balances the tendency of the wheel to separate 
along that section. If, on the other hand, the arms are rigidly attached 
to both hub and rim, and are so inelastic that their stretch, under the 
action of the centrifugal pull due to their own mass and that of the rim, 
is negligible, it is clear that they may be placed so close together that 
the rim cannot expand, and practically no stress will exist in the rim, the 
centrifugal action being balanced by the stress in the arms. 

Flywheels approximating both of these conditions are sometimes 
built, but in the most usual case the arms stretch a certain amount and 
are not placed close together, so that a condition results similar to that 
shown, in an exaggerated manner, in Fig. 198. Here, the arms, though 
stretching somewhat, do not stretch enough to allow the rim to expand 
freely, and, therefore, the hoop tension is somewhat less than that in the 
free ring. The section of rim between each pair of arms is so long that 
it becomes a beam fixed at the ends and loaded uniformly by the unbal¬ 
anced centrifugal action, the greatest bending moment being at the arm, 
and a bending moment of half the maximum occurring at the center of 
the span. The maximum tensile stress will be the sum of the hoop 
tension and the tensile stress due to the bending action. The relative 
values of the hoop tension and bending stress will, evidently, depend 
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upon the amount which the arms stretch. If they should stretch 
enough, owing to their own centrifugal force, so that the rim expands 
freely, no bending action will occur; if they are so inelastic as com¬ 
pletely to restrain the rim, no hoop tension will be induced, but the full 
centrifugal force will be applied to bend the rim. With any inter¬ 
mediate amount of stretch of the arms, the rim will be held in equilib¬ 
rium, partly by the hoop tension and partly by the restraining action of 
the arms, the latter being a measure of the unbalanced centrifugal 
force of the rim, and of the bending stress caused thereby. Since the 
expansion of the rim is directly proportional to the stretch of the arms, 

it is clear that the hoop tension is also directly proportional to the 
stretch. If, for instance, the arms stretch one-quarter the amount 
necessary for free expansion, the hoop tension will be one-quarter that 
due to free expansion, and the bending stress will be proportional to 
three-quarters of the centrifugal force of the rim. The mathematical 
relation which exists between these stresses is complex, and will, of 
course, vary with the relative size and shape of the rim and the arms. 
If the rim is of a wide thin section, and the arms are few, the bending 
stress may be very serious. Professor Lanza* has shown that, with the 
proportions ordinarily used, the arm, theoretically, stretches about 
three-quarters the amount necessary for free expansion. It is also to 
be noted that if the wheel is to act as a band wheel, and has a wide thin 
rim, the bending action on the arms as at H, Fig. 198, still further dis¬ 
torts the rim and increases the bending on the forward side. 

Trans. A.S.M.E., vol. 16, page 208. 
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Let D = the mean diameter of the rim in feet. 
R = the mean radius of the rim iif feet. 
t = the thickness of the rim in inches. 
V = the velocity of the rim in feet per second. 

w = the weight of the material per cubic inch. 
I = the length of the rim between arms in inches. 

Consider a section of the rim 1 in. wide on the face. The centrifugal 
force per unit of length (1 in.), circumferentially, of this section is 
/ = wiv^/Rg and, therefore, by Article 101, the total load which tends to 
separate such a ring along a diameter is wiv^/Rg X 12Z), and the unit 
stress in the section, if no bending exists, is therefore, 

12wtv'^D \2wv^ ^ , . . 
= ———— =-= — , nearly, for iron wheels (5) 

2tRg g 10 

The maximum bending moment in the rim occurs at the arms, 
and its value is Af = //2/12,* considering the rim as a straight beam. 
The stress due to the bending moment, when no hoop tension exists, 
is, therefore, 

^ Me Pc 

“ J ““ 12/ 
(6) 

where c is the distance to the outer fiber, and /f the moment of inertia 
of the cross-section of the elementary ring. 

If now the stretch of the arms be taken as three-quarters that neces¬ 
sary for free expansion of the rim, the total unit tension in the rim will be 

if n be the number of arms in the wheel, I = 127r/)/n, and if the cross- 
section of the rim be rectangular c/I = whence equation (7) 
reduces to 

For t — *3^, V = 88, D = 4 ft, and n = 6, Professor Lanza found the 
stress due to hoop tension = 575 and the stress due to bending = 5060, 

* See Table I, case 17. 

t It should be noted that this / is for a unit (1 in.) of width of rim and not for 

the entire crossnsection. 
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or $, the total stress, =5635. For the same data, equation (8) gives 
fsi = 581 and = 4600, or a total stress s = 5181, which agrees 
quite closely. 

The above equation may be used for roughly checking the allowable 
stress in flywheel rims, but implicit faith must not be placed upon it for 
the reasons given in the first paragraph of this article, and all results 
obtained from this or similar formulas should be checked by successful 
practice wherever a doubt arises. The equation does, however, show 
clearly that in wheels having thin rims, or few arms, the bending stress 
is much greater than that due to hoop tension, and care should be 
exercised accordingly when such wheels must run at high speed. Equa¬ 
tion (5) is often taken as a basis for the design of flywheels, a large 
factor of safety being used therewith, to cover uncertainties. If si in 
equation (5) be taken as 1000 (a factor of safety = 20), then v = 6000 
ft per min, and this is found to be a safe peripheral speed for ordinary 
cast-iron wheels. It is to be noted, however, that this speed is safe only 
because experience has shown it to be so, and not, as will be seen, 
because the stress is necessarily as low as 1000 lb. 

Example. Compute the stress in the rim of the cast-iron flywheel 
discussed in Example 2 of Article 230, assuming that the arms stretch 
three-quarters the amount necessary for free expansion of the rim. Here 

n = 6, t = 2.33, D — 8, and v = = 66.6 

from (8), 

S = 3t;2^^+0.025)=3 X 66.62(^^^^^+0.025) = 1590 lb per sq in. 

The stress, if based on equation (5), would be 444 lb per sq in. 
When a flywheel is being accelerated from rest, or when the energy 

supply is suddenly cut off, as it may be in a steam engine, the arms 
may be called upon to carry the full torque load. Each arm of a wheel 
with a very stiff rim approximates a cantilever beam fixed at one end, free 
but guided at the other, and carrying a concentrated load at the free or 
rim end (see Table I, case 7). If the rim is thin and flexible, the arms 
approximate a simple cantilever loaded at the free end. In addition, the 
arm is subjected to a tensile stress due to the centrifugal action of its own 
weight, and that part of the rim which it supports, so that apparently 
equation M (Table VI) applies. The direct stress is difficult to com¬ 
pute, however, and since the bending stress in the simple cantilever 
is twice that of a cantilever with the free end guided, it is considered 
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sufficiently accurate to compute the arm^^as a simple cantilever and 
neglect the direct stress. 

I^et P = the greatest force due to the net belt pull at the rim. 
a — the length of the arm. 
n == the number of arms. 

Then from J, Table VI; 

s = 
Pac 

(9) 

from which the stress, s, or the moment of inertia, /, may be determined. 
The stress allowed should not exceed 2000 lb per sq in., for cast iron, 
on account of the uncertainties of the material, and a lower value is some¬ 
times desirable. The statement sometimes made that the arms should 
be as strong against bending stress as the shaft is against torsional 
stress is misleading as, in general, shafts are designed for stiffnesSf and 
not for torsional strength. The shaft of a steam engine may have to be 
very large to avoid excessive deflection and, as a consequence, may 
have great excess of torsional strength. 

233. Construction of Wheels. Flywheels and band wheels, for 
velocities below 5000 ft per min, are usually made of cast iron on 
account of low cost. For higher velocities steel castings are used, and 
in extreme cases wheels made of steel plates, or wire-wound wheels, 
have been constructed. Equation (5) may be written 

The allowable unit tensile strength divided by the weight per cubic unit 
is, therefore, a measure of the value of the material for this purpose. 
For this reason some woods are superior to cast iron for wheel rims, and 
cast-iron wheels which have burst have been successfully replaced with 
wheels having rims made of wood.* As has been noted, however, 
wheels made of cast iron are cheaper for ordinary speeds, and for very 
high speeds steel is preferable for reasons of strength. 

Difficulties in transportation limit the diameter of wheels cast in 
one piece to about 10 ft, and the diameter of wheels cast in two parts 
to about 20 ft. Wheels from about 16 ft in diameter upward are usually 
made in several sections. Small flywheels and band wheels are usually 
cast in one piece, or made in two parts for convenience in erecting. In 
either of the latter cases, unknown shrinkage stresses will most probably 
exist. These shrinkage stresses are sometimes relieved by casting the 

♦ Trans. A.S.M.E., vol. 13, page 618. 
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hub in several pieces, each piece being cast integral with one or more 
arms. The openings between the parts are afterward filled with lead, 
and rings are shrunk upon the hub to hold the parts in place. Expe¬ 
rience shows that solid cast-iron wheels, when properly proportioned, 
are safe up to 6000 ft per mm, which, fortunately, is also about the limit 
of efficient belt speed. If, however, the wheel has a very wide, thin 
rim it cannot be considered safe at this speed, particularly if balance 
weights are attached to the rim between the arms, thus increasing the 
centrifugal bending force. If joints exist in the rim, their relative 
strength must be considered. Band wheels of wrought-steel construc¬ 
tion can now be obtained up to about 4 ft in diameter; they are light 
and strong, and are rapidly coming into favor. 

Fia. 199. Fig. 200. 

Where speeds above 6000 ft per min are necessary, wheels such as 
shown in Fig. 199 are sometimes built. Here the rim and hub are of 
cast iron, each a separate casting, and the spokes are of steel. The 
spokes are placed in the mold, and the metal poured around them, so 
that on cooling they are gripped very firmly. The spokes are placed close 
together so that there is practically no bending of the rim, and the 
rim is also prevented from expanding freely. Wheels of this construction 
are used for large band saws at velocities above 10,000 ft per min under 
heavy service, with perfect success. 

In Fig. 200 the rim is cast separately in one or more pieces. The 
arms do not constrain the rim radially, but leave it free to expand. The 
stresses in the rim, when cast in several pieces so that shrinkage is not a 
factor, are those due to centrifugal force only, and the arms are simple 
cantilevers. Wheels of this character have been used with success in 
rolling-mill work.* Figures 199 and 200 illustrate wheels which corre¬ 
spond closely to the limiting types discussed in Article 232. The con- 

* Trans. A.S.M.E., vol. 20, page 944. 
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struction of most wheels lies between these types. Figure 201 illustrates 
a band wheel with the arms and hub cast in one piece and the rim in sec¬ 
tions. The joints in the rim are simple flange joints, placed midway 
between the arms. This is the most dangerous location possible, on 
account of the added bending effect due to the centrifugal force of the 
flanges which add to the mass without contributing to the strength. 
The best location is at the arm, and many wheels are built thus, the 
arm being bolted to each segment, and the segments themselves bolted 
together as well. Where the joint is placed between the arms, it should 
be about one-quarter the length of the span away from the arm, as at A, 
Fig. 201, where, by the theory of elasticity, the bending moment is 
zero. Figure 202 shows a heavy fl3rwheel with an arm and a segment 
of the rim cast together. The arms are secured in the hub by means 
of fitted bolts. The hub may be sohd, or the flange on one side may be 

movable axially so as to clamp the arms more firmly. The segments 
are held together at the rim by means of links of rectangular cross- 
section shrunk in place. This construction is very common. Occa¬ 
sionally, links are also shrunk into recesses on the outer face of the wheel. 
In Fig. 203 the segments are held together by T-headed links, sometimes 
called prisoners,’^ shrunk in place. The segments are joined at the 
arms, which are fastened to them by through bolts. This construction 
is simple and the machining is easier than with flanged connections. 
The construction of the hub is similar to that in Fig. 202. 

It is evident that the manner of joining segments in built-up wheels 
is most important. Wheels seldom fail at the hub. Wheels with thin, 
wide sections are almost always joined by flanges as shown in Fig. 205. 
When such joints are used they should be well ribbed for stiffness, as 
indicated, and the bolts should be placed as near the rim as^possible, so 
that the lever arm, a, shall be as great as possible compared to the arm b 

(see Article 141). A much better arrangement is shown in Fig. 206, 
where an arm is placed on each side of the joint. This is particularly 
applicable to wheels cast in two parts. It may be noted that thin rims 
are often stiffened by light drcumferential ribs at the outer edges. 
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Mr. A. K. Mansfield has pointed out {Trans, A.S.M.E., vol, 20) 
that these ribs may be a source of weakness. The greatest bending 
moment is near the arm, where these ribs are on the tension side of the 
beam. A rim having such ribs is not necessarily as strong against bend¬ 
ing in this direction, as one of rectangular cross-section having the 
same area; and when ribs are used the section modulus should be 
calculated. 

The prisoner link shown in Fig. 203 has certain advantages over the 
link shown in Fig. 202. It is evident that the depth of the recesses in 

Fia. 203. Fia. 204. 

Fig. 202 is limited, while in Fig. 203 the slot can extend entirely across 
the section and the link can be made as wide as the rim itself. Further¬ 
more, it is possible to machine both wheel and link in Fig. 203 accurately, 
which is difficult to do with the construction in Fig. 202. This permits 
of greater accuracy in computing the initial stress induced in the link 
by shrinking it in place, the importance of which has been noted in 

Fig. 205. Fig. 206. Fig. 207. 

Article 156. If the rim be made I-shaped,* as in Fig. 207, the links can 
be so proportioned that the joint will be as strong as the rim proper 

or even stronger. 
While, evidently, the relative strength of the joint compared to the 

solid rim will vary with the exact proportions selected, average practice 

gives the following apparent values: 

* See Trans, A.S.M.E., vol. 20, page 944. 
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Flanged joint, bolted, midway between arms. 0.25 
Flanged joint, bolted, at end of arms. 0 50 
Linked joint as in Fig. 202. 0 60 
Linked joint as in Fig. 203. 0 65 
Linked joint as in Fig. 207. 1 00 
Solid rim. 1.00 

It must not be inferred from the above that a solid rim is necessarily 
the best; obviously, a wide thin rim with unknown shrinkage stress 
may not be as safe as a narrow deep rim of the same sectional area if 
held together by a good joint. 

For extreme velocities, wheels built up of steel plates, or wheels 
with rims made of plates fastened to a central spider made of steel cast¬ 
ings, are now used. Figure 204 shows a flywheel of the latter type used 
in rolling-mill work (see Powers Feb. 4, 1908). The rim is made of 
laminations held to the spider by dovetails, as shown, the laminations 
being assembled with overlapping joints. Heavy outside plates clamp 
the whole structure together by means of through bolts. In the par¬ 
ticular case noted above, the velocity of the wheel rim is 250 ft per sec. 
Descriptions of a number of examples of such wheels are to be found 
in the Transactions A.S.M.E., the magazine Powers and other period¬ 
icals. Wheels for great speed have also been constructed by winding 
the rim with many turns of steel wire. 

The rotors of some forms of electric generators, steam turbine rotors, 
and similar revolving members are often loaded as shown at IF, Fig. 201. 
Such loads add to the centrifugal force acting on the rim, but do not 
add to the strength of the rim. Due allowance should be made in such 
cases, particularly if the load or loads are placed near a joint as shown in 
Fig. 201. The teeth of gear wheels constitute such a load, and if the 
wheel is large, and the peripheral speed high, this should be considered. 
Balance weights, placed between the arms, should be carefully con¬ 
sidered, especially when the rim is thin and the velocity high. 

234. Experiments on Flywheels. The best experimental data upon 
the strength of flywheels are from tests conducted by Professor Benja¬ 
min and reported to the A.S.M.E.* While these experiments were 
made to determine the bursting speed of small cast-iron wheels only, and 
throw no light on the increase of stress with an increase of speed, they 
are very valuable as indicating the manner in which various types of 
wheels fail. As they were conducted on small wheels, due allowance 
must be made for the difference in quality between the metal of small 
and large castings in estimating probable bursting stresses. These 
experiments go to show that solid cast wheels will burst at a peripheral 

* See Trans.f vols. 20 and 23. See also “Machine Design,*^ by C. H. Benjamin, 
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velocity somewhere near 400 ft per sec. A factor of safety of 3 on the 
bursting speed corresponds to a factor of safety of about 9 on the stress. 
Such a factor of safety would permit a peripheral velocity of 135 ft per 
sec. It is common practice to limit the rim speed of such wheels to 100 
ft per sec. The bursting speed was about 300 ft per sec for two-piece 
cast-iron wheels with thick heavy rims and about 225 ft per sec for 
two-piece wheels with wide thin rims divided along a diameter through 
diametrically opposite arms. With the same factor of safety as in the 
foregoing the corresponding safe peripheral velocities would be 100 and 
75 ft per sec, respectively. Rim joints midway between the arms, 
particularly the common flange joints, were found to reduce the strength 
materially. The strength of various joints was found to be about as 
tabulated in Article 233. Extra loads, such as balance weights located 
between the arms, were found to be very dangerous, on account of the 
added bending effect. 

236. Rotating Discs. If the radial depth of a wheel rim be great 
compared to its diameter, the equations deduced in the preceding 
articles do not apply, the difference being analogous to that existing 
between thick and thin cylinders. Mathematical analysis of the stresses 
in a rotating disc, in common with those existing in thick cylinders 
under internal pressure, are complicated and not altogether satisfactory. 
Experimental data, corroborating the theories, are also lacking. A full 
mathematical treatment of these stresses is beyond the scope of this 
treatise, and only enough will be inserted to show the general character 
of the problem. 

When a disc of uniform thickness is rapidly rotated on its axis, the 
principal stresses induced are a tangential tension, and a radial stress, 
at every point in the disc. 

Let r^- = the outer radius of the disc in inches. 
ri = the inner radius of the disc in inches. 
r = the radius at any point. 
X = Poisson^s ratio = 0.3 for steel and 0.25 for cast iron. 

N = revolutions per minute. 
w = weight of 1 cu in. of the material. 
5 == the tangential stress at any radius r. 
s' = the radial stress at any radius r. 

Then it can be shown* that, for a flat disc of uniform thickness, 
having a hole at the center of radius ri, 

* See ‘‘Theory of the Steam Turbine,” by A. Jude, pages 237 and 249. The 

notation and units have been changed to correspond to those used in this text. 
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s = 0.00000355M;jV2[^(3 + X) (r2^ + - (1 + 3X)r2j (11) 

and 

s' = 0.00000355w)i\r2 |^(3 + X) (^r2^ + j (12) 

For a solid disc, 

5 = 0.00000355t/;iV’2[(3 + \)r2^ - (1 + 3\y (13) 

and 
s' = 0.00000355iyiV2[(3 + X)(r2^ - r^)] (14) 

It is to be noted that the radial stress is less at any point than the 
corresponding tangential stress; and an examination of equation (11) 
shows that this tangential stress is a maximum at the surface of the bore 
and a minimum at the outer periphery. At the surface of the bore, 
or where r = ri, the stress 

s = 0.00000355iyiV2[(3 + X)(2r22 + n^) ~ (1 + 3X)ri2] 

If now ri be taken so small that ri^ is negligible, it appears that 
the tangential stress is 

5 = 2 X 0.00000355t4;iV2[(3 + x)r2^] 

which is just twice that obtained by making r = o in equation (13), 
The effect of even a very small hole at the center of a rotating disc is, 
therefore, greatly to increase the stresses. 

Example. A circular steel saw ^ in. in thickness and 80 in. in diam¬ 
eter has a hole 4 in. in diameter in the center and runs at the rate of 500 
rpm. Determine the tangential stress at rim and also at the hole. 

Here JV = 500, w = 0.28, X = J, r2 = 40 and ri = 2. Whence in 
(11), making r = r2 = 40, the tangential stress at the rim is 

s = 0.00000355 X 0.28 X 5002[(3 + |)(402 + 2^ + 2^) - (1 + 1)40^] 
= 535 lb per sq in. 

and at the hole, making r = n = 2, 

s = 0.00000355 X 0.28 X 5002[(3 + i)(40^ + 2^ + 40^) - (1 + 1)2^] 
= 2643 lb per sq in. 

It is sometimes desirable to design a revolving disc in which the 
stresses are uniform at every point. From the foregoing it will be 
clear that such a disc must be of varying thickness and, in general, 
thicker at the hub than at the rim. 

Let h »= thickness of disc at hub. 
fe ~ thickness of disc at rim. 
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t = thickness of disc at any point. 
e = Napierian base. 

CO = angular velocity in radians. 

Then the following equation is given by several authors,’* 

t = he- 
2gs 

(15) 

Obviously, if (2 is fixed by practical conditions, the corresponding value 
of h can be computed from equation (15), by making r = r2 and t = fe, 
and the outline of the disc can then be determined. 

Mr. Jude, commenting on equation (15), says that its accuracy is 
open to grave doubt because of the neglect of certain variables in 
deriving the expression. It should be remembered also that all these 
equations, (11) to (15), are deduced upon the hypothesis that the 
material is perfectly elastic and homogeneous. It is clear that they 
cannot be applied intelligently to built-up wheels of the disc type, and 
must be applied with caution to brittle materials. They are of value, 
however, in showing the general character of these stresses and in indi¬ 
cating the general outline of discs with approximately uniform stress. 
For complete mathematical analysis of discs of different shapes and discs 
carrying peripheral loads, reference may be made to the various works 
on the steam turbine. It is evident that great care should be used in 
selecting and working the material for high-speed discs. Rolled sheets 
are not good for very high speeds on account of their seamy structure, 
which is conducive to incipient cracks, and cast materials of brittle 
structure must be of first-class quality. Discs forged down from much 
thicker ingots give the safest construction. 

Discs rotating at high speeds and particularly turbine discs and others 
that are loaded intermittently are subjected to severe vibratory stresses. 
A discussion of this phenomenon is beyond the scope of this treatise. 
Reference is made in particular to the work of Mr, A. L. Kimball in 

this field. 
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CHAPTER XIX 

MACHINE FRAMES AND ATTACHMENTS 

236. Stresses in Machine Frames. Since machine frames must, in 
general, receive the reactions from the forces applied to the various 
moving members by the energy transmitted, it is obvious that most of 
the stresses induced in frame members are very complex and beyond 
mathematical analysis. If it is essential that the moving members 
be held in accurate alignment, as in machine tools, the predominating 
requirement for the frame is stiffness and not strength. For these 
reasons the design of machine frames, in general, must be governed 
largely by judgment and experience, the cases where complete mathe¬ 
matical analysis is possible being rare. However, even where judgment 
must be the guide, it is not only helpful, but sometimes necessary, 
to check, as closely as possible, the stresses in certain important sections, 
by applying those fundamental formulas of Table VI, page 93, which 
apparently fit the circumstances. In all cases, what may be termed a 

qualitative analysis of the frame is very desirable as a guide in 
properly distributing the material and in determining the forms of the 
various sections. 

If the character, value, and hne of action of every force acting upon a 
given section are known, the stresses in the section can be determined 
by applying the fundamental requirements for static equihbrium of the 
section, namely: 

(a) The algebraic sum of all horizontal component forces must = 0. 
(b) The algebraic sum of all vertical component forces must = 0. 
(c) The algebraic sum of all the moments must = 0. 

The stress, in any direction, at any point, will be the algebraic sum 
of all the stresses acting in that direction, at that point, as found by 
appl3dng (a), (6), and (c). It is impossible to make a classification of 
machine frames that would be of any service, but the principles will be 
illustrated by applying them to typical cases. It is to be noted that it 
is seldom possible to find the required dimensions of a section directly, 
by solving the particular equations from Table VI which apply; but, 

460 
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in general, the section must be assumed from the conditions given, 
and then checked for strength or stiffness. 

Figure 208 illustrates a type of frame which is quite common and 
known as an open frame. It is one of the few types where a mathe¬ 
matical analysis can be made with some degree of completeness. In the 
punching-machine frame illustrated in Fig. 208, great stiffness is not 
essential and the design may be based on the strength required. Sup¬ 
pose the frame to be outlined as shown, so that the dimensions of 
the cross-section at any place may be assigned. Evidently, if the 
stresses are checked at the sections BC, DE, and FG the strength of 
the frame will be fully determined. 

In the section BC, whose gravity axis is at Oi, consider the portion 
of the frame above BC as a free body. It is in equlibrium under 

Fig. 208. Fig. 209. 

the action of the exterior force P, due to punching, and the inlermil 

forces exerted upon it by the lower half of the frame. There are no 
horizontal forces. The vertical force P must be balanced by an equal 
and opposite force at the section PC, which induces a tensile stress 
uniformly distributed over the section, the intensity of which is 

P 
Si = — lb per sq in. 

A 

where A is the area of the section. The only moment acting on the 
part is Pa, due to the action of P, which tends to rotate the upper 
part of the frame around Oi, the gravity axis of the section, causing 
a resisting tension, S2, at B, and a resisting compression at C. Frames 
of this kind, as usually designed, approximate curved beams in their 
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outline, and, therefore, equation {Mi), of Article 21, applies; hence, 

S = «1 + 52 
a /ct 

R-cXr 

using the same notation as in that article. 
If the locus of the gravity axes of cross-sections of the frame, normal 

to the inner surface, is plotted, it forms a curved surface whose radius 
of curvature constantly changes in length. The curve Oi, O2, O3 in Fig. 
208 indicates such a locus. Consider the section DE, which is approx¬ 
imately normal to the inner surface; it passes through the gravity axis 
O2, and includes the instantaneous radius of curvature r2, whose center 
is at O4. The difference between this section and one truly normal 
to the inner surface through O2 is not very great. Consider, again, that 
the portion of the frame to the left of the section DE is a free body. 
There are no horizontal forces. The external load P is held in equilib¬ 
rium by the induced stresses distributed over the section DE. The 
action of P is equivalent to the action of the two component forces 
N = P cos 6 and S = P sin 6. The component N is held in equilibrium 
by a uniformly distributed stress 

N P cos 6 

^ A2 

and by a stress couple balancing the moment Na'2 or 

02 
Na'2 = P cos 6 X-= Pa2 

cos B 

The component S = P sin 0 is balanced by a shearing stress that is 
not distributed uniformly over the section. At the outer fibers this 
stress is a minimum. At the juncture of the side webs with the flanges 
of the section there is a rapid increase in the intensity of the stress 
and then a rather slow increase to a maximum intensity at the neutral 
axis which, it should be noted, in a curved beam does not coincide 
with the gravity axis. The maximum intensity of the shear stress 
at the neutral axis may be approximated by dividing /S = P sin 6 

by the area of the section of the side webs. This value may also be 
taken as representing, roughly, the value of the shear stress at the 
junction of the side webs with the flanges. As the intensity of the 
shear stress is small at the outer fibers the maximum induced tensile 
and compressive stresses are not affected by it. With the ordinary pro¬ 
portions of web and flanges, this shearing stress may be neglected. But 
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since the value of the shearing stress varies with the width* of the 
cross-section, care should be used that the web is not made unduly 
thin near the gravity axis, or failure may result from the shearing stress, 
particularly if the sides of the frame are used as a support for attach¬ 
ments. 

By equation (M) the maximum induced tensile stress equal to the 
sum of the direct stress si and the maximum bending stress S2 due to 
Pa2 is 

, ^ /> , ci2 (ct 
$ Si + S2 ^ — cos e +  -1 - 

A2I R — Ct\R 
X 

A'2 - A2 

where c<, -42, -4'2 refer to the section DE, and 6 is the angle between 
the section DE and the horizontal. 

Consider, lastly, the section FG, As before, there are no horizontal 
forces and the vertical force P is held in equilibrium by a shearing 
stress, which is not distributed uniformly over the section, and a stress 
couple due to the moment Pas. The intensity of the shearing stress 
may be approximated as indicated in the foregoing. If the section FG 

is considerably smaller than section DEy it may be well to so check it. 
As section FG is well beyond the curved portion of the frame the maxi¬ 
mum tensile and compressive stresses may be computed by equation 
(M) of Table VI. 

In unimportant cases where only approximate results are desired, 
or where the radius of curvature is great, or where a large factor of safety 
can be applied, equation (M) of Table VI is often used, because of 
its comparative simplicity, to check selections such as BC and DE. 

It should not be relied upon, however, where accurate results are desired 
and the curvature of the beam is appreciable. 

Figure 210 illustrates an open frame as applied to a power riveter. 
The rivet which is to be “ driven is placed between the dies, D 

and Di, and pressure is applied to the movable die, D, by means of 
the power cylinder, R. The pressure which is applied may be very 
great (150 tons or more), and unless the jaws are properly designed 
they may spring so much that the dies will fail to align properly, and 
faulty work will result (see Article 126). Stiffness and not strength 
is, therefore, the essential factor in the design, for if the parts are 
stiff enough they will, in general, be strong enough. The yielding 
which most affects the alignment is that due to the bending of the 
frame, J5, and the stake, C, and that which may result from the elonga- 
tion of the bolts which hold these members together. When the riveting 

* See Strength of Materials,^' by Arthur Morley, page 136; and also Materials 

of Construction,” by G. B. Upton, page 67. 
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pressure, P, is applied, the beams, B and C, tend to rotate around 
the point 0, this tendency being resisted by the tension in the bolts. 
The load which may be applied to the bolts by the force P will be 
Pi == P(a + h)/b. If the nuts on the bolts are set up so that a combined 
total initial tension somewhat greater than Pi is induced in the bolts, 
the stretching of the bolts, and the consequent opening up between 
the frame and the stake, will be negligible. (See Article 138 and Fig. 
114 and also Article 156.) The intensity of stress in the bolts should not 
exceed 6000 lb por sq in. The upper part of the frame, P, approx¬ 
imates a cantilever of uniform strength of length a. (See Article 16 and 

Case 1 of Table II.) The maximum deflection which occurs at D may, 
therefore, be computed, and the maximum stress which occurs at EF 

may be checked by equation J of Table VI. The stake, C, approxi¬ 
mates a cantilever of uniform cross-section, and may therefore be treated 
in a similar manner. (See Case 1, Table I, and equation J, Table VI.) 

Figure 211 illustrates a closed frame as applied to a vertical steam 
engine. The back column, B, which carries the crosshead guide is of 
cast iron, while the front columns, C, are of steel. It is required to check 
the stresses in these columns when the piston is ascending and also when 
it is descending, the rotation of the engine to be taken in a clockwise 
direction as indicated. 

When the piston is ascending, the steam pressure tends to draw 
the cylinder and bed closer together. This tendency is resisted by 
P', the combined thrust on all the columns, the vertical component 
of which must equal P, the total steam pressure on the piston. It 



STRESSES IN MACHINE FRAMES 455 

may be reasonably assumed that the back column carries one-half of 
the total thrust, and that each of the front columns carries one-quarter. 
The thrust of the back column, P'/^, may be resolved into components 
perpendicular and parallel to the face of the foot. The vertical com¬ 
ponent will equal P/2. The horizontal component, P, tends to spread 
the foot of the column outward and induce a bending stress in it. 
The column should, therefore, be secured to the bed by fitted bolts, 
or, if the bolts are loose in the holes, the foot should be well doweled 
to the bed; or, better still, the foot should fit against a ledge cast on 
the bed plate. R will then be balanced by an equal and opposite reaction 
at the feet of the front columns, thus setting up a negligible tension in 
the bed and leaving a compressive force only on the column. By 
similar reasoning, each front column is subjected to a compressive load 
P'/4, and the total horizontal component, P, is balanced by that of 
the back column through the bed. 

The tension or compression in the piston-rod and connecting-rod 
either ascending or descending, has a resultant, P', normal to the 
guide, which may have a large value where the connecting-rod is short 
compared to the crank. This resultant tends to bend P, and hence 
C also, in a left-hand direction, the bending being resisted by the 
fastenings at the feet. The columns and cylinder, however, consti¬ 
tute a very stiff structure, and, except where the frame is made up 
of light construction, this effect may be neglected. This reaction, P', 
however, also bends the column B locally, that is, as a beam encastr6 
at S and N, the effect of P being greatest when the crosshead is near 
half stroke. (See Case 18, Table I.) If then it be desired to check 
the central section UV of the column, the long column stress due to 
P72 must be added to the flexural stress due to P'. The sum of these 
stresses should not, of course, be greater than the allowable stress for 
the material used. The columns, C, need be checked only as long 
columns (see equation (^^2), Table VI). 

When the piston is descending, the steam pressure tends to sepa¬ 
rate the bed and the cylinder. The reactions at M and N are reversed 
in direction and the columns are put in tension, the horizontal com¬ 
ponents inducing negligible compression in the bed. The most danger¬ 
ous section in this case will be under P', and the stress will be that due 
to P'/2 plus the tensile stress due to the bending effect of P'. The 
fastenings of the columns to the cylinder and to the bed plate must, 
of course, be sufficiently strong in tension to resist the force tending 
to separate the cylinder and bed. 

In the foregoing examples, the lines of action of all forces, acting on 
the section considered, lay in a plane of symmetry of the section, and the 
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section tended to rotate around a gravity axis at right angles to this 
plane. This is the most usual case, but occasionally the force or forces 
acting are not in a plane of symmetry. Thus, Fig. 212 may represent 
the cross-section of the column of a radial drilling machine, in which it 
is required to check the stresses when the force F, due to drilling, is in 
the position shown. If C be the center of gravity of the section, the 
tendency to rotate will be around the axis X'X' at right angles to PCj 
the arm of the force P, and the resistance of the section against such 
rotation will be measured by the moment of inertia of the section with 
reference to this axis. The maximum tensile and compressive stresses 
will occur at the fiber farthest removed from X'X' or at M and X, the 
stress at M being tensile when the direction of P is upward to the 

plane of the paper, and compressive when its direction is downward. 
The center of gravity, C, may be located readily, by finding the inter¬ 
section of any pair of gravity axes. If the section has an axis of sym¬ 
metry, as UV, Fig. 212, it is necessary only to find the axis at right 
angles to UV. This is most readily done graphically as follows: Divide 
the section into small areas, as shown by dotted lines at xx in Fig. 212. 
From the center of gravity of each area draw parallel lines afe, be, cdy 
preferably at right angles to the known axis UV. In Fig. 212 (a), lay 
off AB, BCj etc., proportional to the respective areas whose gravity 
axes are ab, bcj etc. Take any pole 0 and draw AOj BO, etc. From any 
point on ab, draw ao indefinitely, parallel to AO. From the same point 
draw ob parallel to OB. From the intersection of ob and be draw co 
parallel to CO, and from its intersection with cd, draw od parallel to 
OD. The intersection of ao and od locates the gravity axis XX (see 
also Article 80). It is evident that this method may be applied when 
both axes are unknown. 
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The moment of inertia of the section around X'X' may be most 
readily found by transforming the area of the figure into an equivalent 
figure with RP as a base, as follows: Draw lines, as X"X", parallel to 
X'X', and plot the intercepts made by it on the given section, on each 
side of CB as ordinates of an equivalent section, shown in Fig. 212 by 
the dotted line L. The accuracy of the work may be checked with a 
planiineter, as it is evident that the area of the transformed section will 
be equal to that of the original. Divide this equivalent figure into 
approximate rectangles, by lines drawn parallel to Z'A"', as shown at r. 
Then the moment of inertia of r around the axis X'X' will be its moment 
of inertia round its own gravity axis parallel to X'X', plus its area into 
the square of the distance between these axes. The sum of the moments 
of inertia of all such small areas will be the required moment of inertia 
of the section. 

237. Distribution of Metal in Frames. Machine frames are usually 
made of castings, on account of their complicated shapes, cast iron 
being the material most used, though steel castings are rapidly coming 
into use for severe work. In addition to the stresses induced in the frame 
by the energy transmitted by the machine, it may also be subjected to 
severe accidental stresses due to such causes as shrinkage, or the settling 
of a part of the foundation. Both these classes of stresses are, in gen¬ 
eral, very complex and generally beyond mathematical analysis, and the 
problem must frequently be left to the judgment of the designer, espe¬ 
cially if stiffness is a large factor. Economy in the use of metal, how¬ 
ever, demands that its distribution throughout the frame shall be in 
accord with the best analysis possible, and, therefore, the general 
principles governing the forms of sections must be kept in mind. 

The most trying stresses to which a frame may be subjected are 
torsion, flexure, or a combination of these. It has been noted in Article 
13 that the hollow section (Fig. 7) is most effective for resisting torsion, 
and, if this be the predominating stress, sections such as are shown in 
Fig. 7, or modified sections as shown in Fig. 212, are correct. It was also 
noted in Article 20 (Fig. 10) that with cast iron, or other metal whose 
tensile strength is much less than its compressive strength, a great 
saving of material is effect/ed by massing the metal on the tension 
side as shown in Fig. 213 (a), thus making the tensile and compressive 
stresses more in proportion to the strength of the material. If then the 
predominating action on a frame is simple flexure (in a given plane), 
a section like that shown in Fig. 213 (a) is allowable, but if, in addition, 
torsional action must be withstood, or if the plane of flexure may 
change, a section similar to that shown in Fig. 213 (b) is better design, 
since it combines the merits of both Figs. 212 and 213 (a). Sometimes 
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it is better to make the section so large that the flexural stress can be 
safely withstood by a wall of uniform thickness, as in Fig. 212, as the 
construction of the pattern is simpler and the shrinkage stresses less 
serious than in such sections as shown in Fig. 213. The metal in the 
walls will be much sounder, also, as the thick sections of Fig. 213 are 
very likely to have a porous interior, due to shrinkage. Cast-iron parts 
more than 4 or 5 in. thick are almost sure to be defective in this manner. 
Where a considerable change in the thickness of metal in a section is 
found desirable, as in Fig. 213, the transition from the thin to the 
thicker portions should be gradual, as shown, and not abrupt, so as 
to secure sound castings and to minimize the effects of contraction and 
shrinkage. For the same reasons inner comers should be filleted and 
outer comers well rounded. Thin, wide flanges or webs should not be 
cast integral with thick, heavy parts, as unequal shrinkage and porosity 
are sure to result. This is especially true of thin ribs cast on the tension 
side of large sections, as the edge of the rib may crack through shrinkage, 
thus starting rupture across the entire section. Small brackets or 
other attachments of thin sections should never be cast on a large 
frame, as they seldom cast well. A section of moderate thickness 
is often stronger than a thicker one, since the greatest strength of cast 
iron is in the outer skin. It should also be remembered that, even when 
a frame is both strong and stiff enough to do the required work at low 
speeds, it may not have mass enough to absorb the vibrations set up 
when mnning more rapidly. This may call for more metal in the frame 
than is dictated by other requirements. Openings for supporting or 
removing cores should be placed near the gravity axis so as to reduce 
the strength as little as possible (see Fig. 213). 

238. Attachments and Supports. The general appearance of a 
machine is affected more by the outline of the main frame than by that 
of any other member. This outline should, therefore, be clearly shown, 
and not obliterated at places by the various attachments which restrain 
the moving parts or support the frame. In Fig. 208 is shown the out¬ 
line of a frame in which the various sections have been proportioned 
in accordance with the loads brought upon them, and the various 
bosses, M, and the support, T, appear as attachments to the main 
member. Figure 209 illustrates the same machine with the attachments 
merged into the main member, thereby destroying the character of the 
design, and also making it more difficult to judge of the relative strength 
of various sections of the frame. 

The form of an attachment will, of course, be governed by the 
service it is required to render and the manner in which it is loaded and 
supported. If the outline of the attachment is based on theoretical con- 
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siderations, care should be exercised that all the modifying influences 
are duly considered. Thus, if parabolic outlines are given to an attach¬ 
ment, such as the housings, //, for supporting the tool in Fig. 217, the 
upper end of the housing must be modified from the theoretical parabolic 
outline indicated by the bending effect of the force P, so as to provide 
for the shearing effect at the upper end, which is frequently neglected. 
(See also Article 16.) 

If the frame rests directly on the floor, its outlines should be carried 
down to the floor in such a manner as will give an appearance of stability. 
Figure 214 shows such a machine frame on which the vertical outline of 
the back of Hie frame is undercut; Fig. 215 shows the same machine 
with the outline carried straight to the floor, and the improvement in 

appearance, so far as stability is concerned, is obvious. Figure 216 
shows the outline of a planing machine in which the upright, C/, is 
carried to the floor at F, in the form of a leg. This construction is not 
correct, as U is an attachment to the bed, designed to resist the force of 
the cut and transfer it to the bed, which should itself be stiff enough to 
withstand all such stress thus brought upon it. Any settling of the 
foundation might affect the alignment of [/, and hence the arrangement 
shown in Fig. 217 is more nearly correct. 

In large machines the frame usually rests directly upon the founda¬ 
tion and should have sufficient stiffness to resist distortion due to the 
settling of the foundation, which is very difficult to avoid. In smaller 
machines the frame is carried on supports, which may be of two general 
types, (a) cabinet or box pillar supports (Fig. 217), and (5) legs as shown 
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in Fig. 218. The choice of support will, of course, depend on the type 
and size of the machines. In any case the number of points of support 
should be as few as possible. If the machine can be supported on three 
points it is evident that the frame cannot be affected by settling of 
the foundation. It is difficult, in general, to obtain three-point support, 
but it is seldom necessary to place supports as close together as in 
Fig. 216 (which is taken from an actual design), where the frame is 
carried on eight points. Figure 217 shows the same frame properly car¬ 
ried on box supports, the supports themselves being so stiff as materially 
to assist the frame and practically reducing the support to so-called 
two-point support. Small machines can often be supported on a single 
box-pillar, the overhanging parts of the frame having a parabolic out¬ 

line, as suggested in Fig. 215. If the box pillar is of considerable height, 
the sides should taper slightly toward the top, for if made parallel the 
pillar will appear wider at the top than at the bottom. It is preferable 
to use one form of support throughout, i.e., all box pillars or all legs, 
and not one or more of each. 

When the frame must be supported on legs, as in Fig. 220, these 
should not curve outward as in Fig. 218, unless it is absolutely essential 
in order to obtain stability. Spreading the legs, as in Fig. 218 lengthens 
the distance between the reactions, Rj R, and, therefore, increases the 
bending effect on the bed and legs as a whole. The leg shown in profile 
in Fig. 219 is better and much easier to make. The legs should: be so 
placed that the outline, L, forms a continuation of the principal vertical 
outline, L\ of the frame, as shown in Fig. 219. The same remarks apply 
to the end view of the legs as shown in Figs. 220 and 221. The complex 
curves and ornate features of Fig. 220 are not only useless but expensive. 
It is not always possible or desirable to make machine frames and sup¬ 
ports with simple straight line outlines; but where curves are necessary 
they should be as simple as possible; and in general the best results can 
be obtained by using arcs of circles or parabolas. Ornamentation of a 
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fanciful nature is not permissible anywhere, as it really detracts from 
the appearance of the machine and adds to the cost of production. 
Harmony of design can be attained by making the various members of 

correct proportions to withstand the loads brought upon them, and by 
using the simplest and most direct design with smooth transition curves 
between straight lines which intersect. It is a proverb in design that 

what is right looks right/^ 



CHAPTER XX 

BALANCING OF MACHINE PARTS 

239. General. Machine members such as reciprocating parts and 
unbalanced rotating masses tend to set up vibrations in the machines to 
which they belong. In many cases the inertia forces due to variations 
of velocity or to changes in the direction of motion are not serious, 
as they are so small that they are practically absorbed by the frame¬ 
work, and foundation of the machine. Whether vibrating inertia forces 
may be neglected depends upon the masses involved, the rate of change 
of velocity, the rate of change in the direction of motion, and the 
moments of such forces. The effects of such forces are always deserving 
of consideration and especially so in the case of high-speed machinery. 
The general subject of vibrations in machines is an extensive one, and 
only the elementary theory of the balancing of vibratory forces will be 
considered here. Rotation and reciprocation are by far the most com¬ 
mon motions in machines. The more common problems of balancing 
vibratory forces may, therefore, be treated under two heads—the 
balancing of rotating parts and the balancing of reciprocating parts. 

240. Coplanar Masses: Discs. When a mass that is mounted on a 
frictionless axle does not, in any position, show a tendency to rotate, 
it is said to be in static balance. A rotating mass that shows no ten¬ 
dency to set up vibrations is said to be in dynamic or running balance. 
Consider first an unbalanced mass, TTi, in Fig. 222. Such a body 
is clearly not in static balance with reference to its axis, 00'. If 
rotated around the axis, 00', it will develop a centrifugal force, 
IFirico^/p, which will tend to move the axis in a direction radial to the 
mass, and hence to set up vibrations in the system. Suppose, how¬ 
ever, that a mass, TF2, is placed radially opposite to Wi and that its 
radius, r2, is so chosen that Wiri = W2T2- Since the moments of these 
two masses balance, the system will be in static equilibrium. Further¬ 
more, if these masses be rotated, their centrifugal forces will balance, 
since 

TFirico^ _ TF2r2w2 

g g 
462 
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If, therefore, such a set of coplanar forces are balanced statically they 
are also in balance dynamically, and if balanced dynamically at one 
speed they are balanced dynamically at any other speed. By similar 
reasoning it is clear that any number of coplanar forces, Wi, W2, TF3, W4, 

Fig. 222. Fig. 223. 

Fig. 223, can be balanced statically and dynamically by finding the 
resultant centrifugal force, B 5, and balancing this force with an equal 
and opposite centrifugal force, Fo. It follows, also, that thin discs are in 
dynamic balance when they are in static balance, and that a long cylin¬ 
der made up of such discs 
will be in both static and 
dynamic balance. This 
property is made use of 
in the construction and 
balancing of such struc¬ 
tures as the runners of 
steam turbines. 

241. Balancing of Ro¬ 
tating Masses Not in the 
Same Plane. Quite fre¬ 
quently it is impossible to 
balance a single mass or 
a ijumber of coplanar 
masses by the simple ex¬ 
pedient described in the 
foregoing paragraph; in 
such cases, the balance 224, 
weight must be in some 
other plane, and, in general, two balance weights must be used. Thus, in 
Fig. 224, let it be required to balance the mass W. So far as centrifugal 
action is concerned, this may be balanced by a mass W2 at a radius r2. 



464 BALANCING OF MACHINE PARTS 

But W and W2 would constitute an unbalanced couple that would 
vibrate the shaft in the plane of the couple. For dynamic balance the 
sum of all the forces must equal zero and the sum of all the moments 
must equal zero. Suppose now another mass, Wi^ to be located at a 
distance oi from the plane of IF, and let W, Wij and W2 be in the same 
longitudinal plane. Then, if all forces are to balance, 

0)^ 
(TFiri + TF2r2 — TFr) — = 0 or TFiri + lF2r2 — Wt = 0 (1) 

9 

Taking moments around the plane containing TFi, 

_ 
[TFrai — TF2r2a2] — == 0 or TFrai — TF2r2a2 = 0 (2) 

9 

Whence, from equations (1) and (2) 

Win = ^2( 1 - -) and W2r2 = W2 — 
\ (I2/ 02 

and if n, r2, oi, and 02 are assigned, Wi and W2 are known. It should 
be noted that the locations of TFi and IF2 are arbitrary, the effect of a 
couple being the same without reference to its location on the shaft. 
Obviously, however, if the balanced couples are any appreciable dis¬ 
tance apart the rigidity of the shaft becomes a factor in design. 

The principles discussed in the foregoing are applicable to the bal¬ 
ancing of any number of masses not in the same longitudinal plane, 
and in such cases graphic analysis is most convenient. Usually it is 
necessary to introduce two balance weights, the case in which one weight 
is sufficient being a special one. In balancing the moments it is usually 
necessary to take the origin of moments in one of the normal planes 
that contains the path of one of the balance weights, thus eliminating 
one variable from the equations. 

In Fig. 225 four revolving masses, TFi, W2, TF3, and TF4, are shown 
rotating at the respective radii, ri, r2, rs, and r4. It is desired to balance 
the system by means of two additional unknown masses, TF and IF5, 
rotating in the planes indicated and at unknown radii, r and rs. As 
indicated in the preceding paragraph, the quantity w^/g may be omitted 
from the calculations, and the centrifugal forces of the several known 
weights may be taken as proportional to the vectors, TFin, TF2r2, 
TFsra and TF4r4, shown in Fig. 225 (d). The direction of each of these 
forces is, of course, radial. 

Let the origin of moments be taken in the plane which contains 
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W, whence the several masses are at distances ai, a2, as, a^, and as 
from this plane. Since for equilibrium all moments must balance, 

TTiriai + Tr2r2a2 + Wsr^as + Tf4r4a4 + = 0 

Here the only unknown is Wsrsas- If the known moments be taken as 
proportional to the respective vectors in Fig. 225 (c), the vector polygon 
can be drawn, since these moments act in the longitudinal planes con¬ 
taining the several forces and hence their direction of action is known. 
The unknown moment, TFsrsas, is thus determined in magnitude and 

direction as the closing link of the polygon, and since as is a known quan¬ 
tity WhTs can be computed. For equiUbrium also 

Wr + WiTi + W2T2 + WsTs + + TFsrs = 0 

and since PTsrs is now known, Wr can be determined by the force polygon 
Fig. 225 (d) in which the known vectors are taken as proportional to 
Wr, Wiri, etc. The closing link determines Wr in magnitude and 
direction and, as before, if the weight of W and W^ are selected, the 
radii can be computed. 
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242. Balancing Unknown Moments: Balancing Machines. In the 
foregoing discussion it has been assumed that the masses to be balanced 
are known in magnitude and position, but in many structures this is 
not the case. Thus, in large cast forms of any appreciable length, un¬ 
balanced moments usually exist, due to lack of homogeneity of the 
material. Such unbalanced moments are found to be present in care¬ 
fully machined automobile shafts which normally should run in balance. 
Built-up structures, particularly those that are to carry loads other than 
their own weight, usually have such unbalanced moments initially, if 
they are of appreciable length compared to their diameter. Thus, the 
long rotors used in the electric generators of fast-running turbo¬ 
generators may have unbalanced moments initially, either because of 
lack of homogeneity in the metal of the rotor itself, or because of irregu¬ 
larities in the heavy wire coils that they carry. As previously noted, 
such structures, if made up of discs, can be balanced by balancing each 
disc statically; but in all other cases the balancing of unknown moments 
in revolving structures of appreciable length can usually be accomplished 
only by experimental methods. It should be noted that balancing a 
long rotating member statically may make the running balance worse. 
Static balance of such a member may be attained by placing the proper 
balancing weight along the axis; but from the discussion in Article 241 
it will be clear that such a weight is more than likely to make the 
unbalanced moment worse instead of better. 

Static balancing of moderately heavy members can be fairly well 
accomplished by mounting the member on a mandrel which rests upon 
level, hardened, knife-edged parallels. This method is not satisfactory, 
however, for very heavy bodies. In the case of members that may be 
considered as discs, special balancing machines are now much used. 
In some of these machines* the part to be balanced is supported in a 
horizontal plane by a flexible support that permits the heavy side of 
the member to tilt, thus indicating the location of the unbalanced mass. 

Running balance, where the unbalanced moments are unknown, is 
accomplished by rotating the member and marking the points where 
it runs out of true. These marked points, properly interpreted, are an 
indication as to where weight should be added or taken away to secure 
balance. Such balancing requires skill and experience. A number of 
balancing machines are now upon the market for simplif5dng this 
process. In the Norton balancing machine the member is rotated 
under slight restraint and special scribers mark the “ high spots on the 
shaft. In using the Akimoff f balancing machine the part to be balanced 

* See Handbook for Machine Designers,” by F. A. Halsey, page 301. 
t See Tram, A.S.M.E., 1916. 
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IS first put into static balance. It is then mounted in the balancing 
machine and driven m unison with a balanced squirrel-cage rotor 
This squiirel-cage carries a number of bars on its periphery that can be 
moved laterally, thus introducing a moment into the system By 
experiment a moment is thus found that balances the unknown moment 
in the machine member to be balanced, and vibration m the system 
ceases The location of the bars laterally determines the value and 
plane of the moment to be balanced 

243. Relation to the Critical Speed. It was stated in Article 240 that 
if a body were m dynamic balance at one speed it would be m balance 
at any other speed This statement does not hold, of course, if the 
mass has been balanced at the critical speed as, obviously, a member 
rmght run m perfect balance at the critical speed, but be out of balance 
at any other speed (see Article 86) Most machinery, however, runs 
well below the iritical speed It should be noted that up to the critical 
speed the heavy side runs out,^^ but at and above that speed the light 
side luns out. 

244. Balancing Reciprocating Masses. The balancing of recipro¬ 
cating and oscillating masses presents an entirely different problem from 
that of rotating masses and, in general, a much more difficult one. In 
the majority of such cases, the mass to be balanced is known m magni¬ 
tude and direction of motion and the balancing forces necessary can 
usually be calculated It is difficult, however, to arrange balance 
weights that are effective m all positions and, generally, the most that 
can be done is to secure partial balance and to mmimize the disturbing 
forces 

These difficulties may be made more apparent by considenng the 
honzontal steam engine mechanism shown m Fig 226 The static 
load due to the steam pressure between the piston and the cylinder head 
is balanced m both directions, but the force necessary to accelerate the 
piston IS an unbalanced load and tends to set up horizontal vibrations 
in the machme The most obvious method of balancing this disturbmg 
force is to arrange a heavy reciprocating weight moving m a horizontal 
plane and in opposite phase to the moving parts This is done occa¬ 
sionally, but the device is a clumsy one that occupies space and involves 
machme parts that must be cared for; hence it is little used In fact, 
this method of balancing reciprocating parts usually involves unde¬ 
sirable construction. Occasionally two machines exactly alike are 
opposed in such a way as to secure balance; thus, in Fig. 226, if another 
engine, exactly like that shown, were connected to a pin at Pi, the two 
machines would mutually balance each other. 

A more usual plan is to secure partial balance by the use of revolving 
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balance weights. There is an essential difference between revolving 
masses and reciprocating masses, in that the force exerted by a revolv¬ 
ing mass is usually constant in magnitude but varying in direction, 
whereas the force exerted by a reciprocating mass is variable in magni¬ 
tude and operates only in the fixed plane of action of the mass. In 
general, therefore, a revolving mass cannot balance a reciprocating mass, 
and vice versa. 

Let W be the weight of the reciprocating parts in Fig. 226; then, 
neglecting the angularity of the connecting-rod, for simplicity, the 

W 
force necessary to accelerate the reciprocating parts is — cos <?), 

9 
where r is the radius of the crank and 6 the angle made by the crank 
radius with the line of action of the piston (see Article 5). If the angu¬ 
larity of the connecting-rod is neglected, as assumed, this force acts 

upon the crankpin in a direction parallel to the path of the piston. 
Suppose a rotating balance weight, Wi, equal to IT, to be placed 
diametrically opposite to the crankpin and at the same distance from 

Wi 
the center. The centrifugal force of this mass is —Thehori- 

9 
IF 2 ^ ^ 

zontal component of this force is — cos 6, and hence it just 
9 

balances the inertia force at the crankpin. The vertical component 
W 

of this force, — sin B, still remains unbalanced, so that, virtually, 
9 

horizontal balance has been secured at the expense of vertical equilib¬ 
rium. These vertical components are opposed, however, by the inertia 
of the foundation, which is usually of sufficient mass, in land engines, to 
absorb them, and this method of balance is much used in such machines. 

It will be clear that if a single-cylinder vertical engine is balanced in 
the manner described in the foregoing, an unbalanced horizontal force 
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will be introduced; and, since this will not be opposed by any stationary 
mass, undesirable vibrations may be set up. For this reason, such 
engines are often entirely unbalanced, the foundations being so con¬ 
structed as to absorb vertical vibrations. Where such massive founda¬ 
tions cannot be secured, as in vertical marine engines, good balancing 
can be attained by the use of several cylinders. For a more complete 
discussion of this problem, reference should be made to treatises on the 
balancing of engines. 
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conveyor, 409 

for power transmission, 409, 413 

proof test of, 405 

silent, 412 

strength of, 405 
weldless, 405 

Clavarino’s formula, 230 

Clutches, allowable pressure on, 430 

band, 429 

coefficient of friction for, 430 

conical, 426 

disc, 428 

friction, 426 

magnetic, 429 

radially expanding, 427 

shaft, 196 

Coefficient of elasticity, 32 

of friction for screws, 275 

Coefficients of friction for brakes and 

clutches, 416, 430 

of friction for friction wheels, 416 

of friction of pivots, 155 

Collar bearings, 153 

Columns, eccentric loading of, 70 

or long struts, 60 

Compression and torsion, combined, 63 

in machine elements, 34 

Conservation of energy, 6 

Constraining surfaces, materials of, 115 

Continuous system of rope-driving, 392 

Cotters, stresses in, 303 

Couphng flange shaft, 192 

Hookers, 195 

Oldham, 194 

Couplings, flexible shaft, 196 

shaft, 192 

Crank-effort diagram, 15, 24 

Creep, 86 

Curved beams, 67 

Cycloidal gear teeth, 301 

Cylinders, thick, 221 

thin, 217-221 

Deflection of ropes, 395 

table of, 396 
Deformation, work of, 73 

Differential brake, 424 

Discs, rotating, 447 

balancing of, 462 

Efficiencies of machine elements, 114 

Efficiency, absolute, 111 
definition of, 6 

general theory of. 111 

mechanical, 111 

Efficiency of belting, 383 
of bolts, 265 
of riveted fastenings, 244, 249 

of screws, 261 

of square-threaded screws, 261 

of triangular-threaded screws, 265 

Elastic limit, 31 

resilience, 73 

Elasticity, coefficient of, 32 

Endurance limit, 83 

Energy cycle, 6 

in air compressor, 23 

in steam engine, 15 
Energy problems, 6 

redistribution of, 26 

Euler's formula for columns, 61 

Factor of safety, 32, 87 

on boiler work, 252 

Factors of safety, table of, 90 

Fairbaim, Sir Wm., experiments on 

flues, 226 

Fatigue of materials, 78 

Feather keys, 302 

Feathers, table of dimensions of, 302 

Flanges, pipe, 232 

Flather, Prof., on rope drives, 387, 388 

Flexure and direct stress, 54 
torsion combined, 44 

in machine elements, 37 

Flues, 226 

Flywheel rim joints, 446 

Flywheels, 431 

coefficients of fluctuation, 437 

construction of, 442 

experiments on the strength of, 446 

general theory of, 431 

stresses in, 437 

Force fits, 309-313 

practical considerations in, 309 

stresses due to, 309 

Forces acting on machines, 29 
Francke's coupling, 198 

Friction, applications of, 414 

clutches, 426 
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Friction, coefficient of, 97, 98, 104, 108 
general theory of, 97 

laws of, 98 

of circular surfaces, 98 

of dry surfaces, 98, 99 

of flat surfaces, 97 

of lubricated surfaces, 98, 100 

of rolling, 100 

of screws, 261 
of triangular threads, 265 

static, 97, 101 

summary of general laws of, 110 

wheels, allowable pressures on, 416 

coefficients of friction for, 416 

forms of, 415 

materials for, 415 
power transmitted by, 417 

wedge-faced, 415 

work of, 98 

Furnace flues, corrugated, 228 

OrAR teeth, allowable stresses in, 331 

Citroen, 352 

cut, 360 

cycloidal, 323 

Fellows system of stub, 328 

Hunt system, 327 

involute, 323 

machine molded, 357 

methods of making, 357 

proportions of, 325 

slu*ouding of, 355 

strength of, 332 

stub, 327 

wear on, 339 

width of face of, 340 

wheels, forces acting on, 329, 355 

mortise, 359 

rawhide, 359 

strength of rims and arms, 355 

Wuest, 351 

Gearing, efficiency of spur, 357 

general principles of, 322 

helical or twisted, 349 

herring-bone, 350 

interchangeable systems of, 325 

screw, 361 

skew-bevel, 361 

spiral, 362 

standard forms of, 325 

Gearing, strength of twisted, 352 

worm, 362 

Gears, allowable speed of, 335 

bakelite-micarta, 359 

bevel, 343 

fabroil, 359 

rawhide, allowable load on, 359 

Gordon’s formula for columns, 64 

Helical gearing, 349 

Hindley worm, 364 

Hobs and bobbing, 363 

Hoisting mechanism, 26 

Hooke’s coupling, 195 

Hooks, hoisting, 406 

strength of, 406 

table of proportions of, 408 
Hoops, 316 

Hunt, C. W., on rope driving, 397 

system of gear teeth, 327 

Impact, shock, 29, 75 

Imperfect lubrication, 102 

Inertia effects in general, 26 

redistribution of, 26 

Inertia forces in steam engines, 16 

Involute gear teeth, 323 

Johnson’s, J. B., formula for columns, 66 

T. H., formula for columns, 64 

Journals, bearing pressure on, 133 

design of, 127 

examples of design of, 141 

imperfectly lubricated, 131 

perfectly lubricated, 134 

Keys, draw, 297 

flat, 295 

forms of, 295 

saddle, 295 

stresses in, 297 

sunk, 295 

table of dimensions of sunk, 301 

Woodniff, 296 

Kingsbury thrust bearing, 157 

Lam]6’b formula, 229, 240 

Lap joints in plates, 239 

Lasche, experiments of, 109 

Launhart’s formula, 81 
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Lewis’, Wilfred, formula for gear teeth, 

333 

Live load, effect of, 78 
Load, steady, dead, suddenly applied, 29 

Lubrication, imperfect, 102 

method of, 100 
of journals, method of, 147 

of sliding surfaces, 120 

perfect, 102, 105 

Machine attachments, 458 
design, definition of, 1 

fits, 306 
frames, 450 

distribution of metal in, 457 
sti esses in, 450 

striisses m closed, 454 

stresses in open, 451 

screws, 267 
supports, 458 

Marx and Cutter experiments, 337 

McBride, James, experiments on eflS- 

ciency of bolts, 279 
Mechanical advantage, 25 

efficiency. 111 

Mechanism, definition of, 2 

Michell thrust bearing, 159 
Micro flaws, theory of, 79 

Modulus of elasticity, 31 
Moore, Prof. H. F., expenments of, 106 

on riveted fastenings, 249 

Morse chain, 412 

Multiple system of rope-dnving, 393 

Nut locks, 273 

Oil film, 105 

in perfect lubrication, 105 
grooves, 148 

Oldham coupling, 194 

Perfect lubrication, 105 

Pipe couphngs and flanges, 232 
threads, 276 

Pipes, 217 

Pipiiigj practical considerations of, 230 
pivots, coefficient of friction of, 155 
Planing machine, 27 
Plates, thin, 234 

Power, definition of, 7 

Pulleys, 431 

Punching machine, 9, 432, 451 

Rankine’s equation for columns, 64 
Reist thrust bearing, 157 

Relative strength of riveted fastenings, 

244 

Renold chain, 412 

Resihence, 73 

elastic, 73 
of bolts, 285 

Ritter’s formula for columns, 65 

Riveted fastenings, butt joints, 238, 239 
chain riveting, 240 

efficumcy of, 245, 249 
factor of safety in, 252 

failure of, 242 
forms of joints, 239 

general considerations, 238 

general ccpiations for, 247 

lap joints, 239, 245 

making of, 254 

marginal strength of, 244 

practical consideration of, 249 

practical rules for, 256 

relative strength of, 245 

staggered nvetmg, 240 
strength of materials for, 251 

stresses m, 241 

th(K)retical strength of, 245 

Riveting, machine, 255 
Rivets, diagonal pitch of, 241 

pitch of, 241 

transverse pitch of, 241 

Roller beanngs, 160 

allowable load on, 164 
Rope-drivmg, sheaves for fibrous, 394 

systems of fibrous, 392 

Rope transmission, theory of, 386 

(by wire), 398 

Ropes, cotton, 386 

deflection of fibrous, 395 

fibrous hoisting, 396 

hemp, leather, etc., 386 
Manila, 386 

materials for fibrous, 386 

materials for wire, 398 

strength of fibrous, 392 
strength of fibrous hoisting, 397 

\ strength of wire hoisting, 398 
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Ropes, velocity of fibrous, 392 

wire hoistiag ropes, 399 
Rotating discs, 447 

S.A.E. standard bolts, 273 

Screw fastenings, 266 

gearing, 361 

and screw fastenings, 266 

Screws, bearing pressure on, 291 
cap, 267 

coefficient of friction of, 290 

design of, for jjower transmission, 

292 

efficiency of, 264, 265 
for power transmission, 288 

efficiency of, 290 

forms of, 260 

friction of, 261 

machine, 267 

mechanical advantage of, 289 

multiple-threaded, 289 

S.A.E, standard, 271 
stresses in transmission, 291 

U. S, or Sellers standard, 269 

Whitworth standard, 269 

Sellers shaft coupling, 193 

standard screws, 273 

Set screws, 268 

Shaft clutches, 193, 426 

coupling, flange, 193 

couplings, 193 

Shafts, allowable deflection of, 187 

allowable span of, 187 

critical speeds of, 187 

factors of safety for, 179 

hollow, 190 

subjected to torsion, 178 

subjected to torsion and bending, 

181 

torsional stiffness, 187 

whirling of, 187 

Shaping machine, energy distribution in, 9 

Shear in machine elements, 34 

Shock in machine members, 75 

Shrink fits, 309 
practical considerations in, 314 

Shrouding of gear teeth, 355 

Sliding surfaces, 116 
bearing pressures on, 119 

lubrication of, 120 

Spheres, 219 

Splines, 302 

Springs, applic^ations of, 199 

characteristics of, 199 

flat, 190 

design of, 203 

forms of, 202 

helical, 208 

design of, 210 
springs in torsion, 214 

laminated or plate, design of, 204 

materials of, 200 

spiral, 214 

Spur gear teeth, strength of, 331 

gearing, efficiency of, 357 

gears, allowable speed of, 335 

allowable stress in, 331 

machine-molded, 357 

width of face of, 340 

Stayed surfaces, 236 

Steam engine, energy distribution in, 15 

Step Ixjaring, 150 

Stewart, Prof. R. T., experiments on 

tubes, 223 

Storage battery, 27 

Strain, definition of, 30 

Straining action, nature of, 29, 31 

table of formulse for, 93 
Strap brakes, 422 

Strength of materials, table of, 94 

Stress, compound, 30, 37 

definition of, 30 

predominating or primary, 37 

strain diagram, 31 

working, 32 

Stribeck, Prof., experiments of, 106, 160 

Stub gear teeth, 327 

Stud bolts, 266 

Sweet, Prof., method of relieving sliding 

surfaces, 119 

Tap bolts, 266 

Taylor, F, M., rules for belting, 383 

Temperature, coefficient of expansion, 72 

stresses due to, 72 

Tension in machine elements, 33 

Thrust bearing for worms, 370 

Thrust bearings, 150 

allowable pressures on, 155 

efficiency of, 154 
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Thrust bearings, Kingsbuiy, 167 

Michell, 157 
Reist, 158 

Toothed gearing, angular velocity of, 322 

classification of, 322 
interchangeable systems of, 325 

Torsion and compression, combined, 53 

and flexure, combined, 44 

in machine elements, 34 

Tower, Beauramp, experiments of, 105 
Towne, H. R., experiments on hooks, 

407 

Triangular threads, eflficiency of, 265 
friction of, 265 

Tubes, 217, 222, 224 

Twisted gears, 349 

Ultimate strength, definition of, 32 

Unions, pipe, 232 

U. S. standard screws, table of, 271 

Van Stone pipe flanges, 233 

Welded joints, 256 
Weyrauch’s formula, 81 

Whitworth standard screws, 269 

Wire rope transmission, 398 
theory of, 399 

ropes, materials for, 398 

power transmitted by, 402 

Wohler's experiments, 80 

Work of deformation, 73 

Working stress, 32 

Worm and worm wheel, 362 
gearing, design of, 369 

efficiency of, 365 
limiting pressures on, 367 

limiting velocities of, 367 

velocity ratio of, 364 
Hindley, 364 

Yield point, 31 
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