

THE TECHNICAL COLLEGE SERIES
 General Editor: P. ABBOTT, B.A.

EXAMPLES

IN

ENGINEERING DRAWING

VOLUME 2

THE TECHNICAL COLLEGE SERIES

General Editor: P. ABBOTT, B.A.

NATIONAL CERTIFICATE MATHEMATICS
Volume I. By P. ABBOTT, B.A. and C. E. KERRIDGE, B.Sc.
Volume II. By P. ABBOTT, B.A. and H. MARSHALL, B.Sc.
Volume III. By G. E. MAHON, B.Sc. and P. ABBOTT, B.A.
PRACTICAL ENGINEERING DRAWING
By C. J. ATKINS, A.M.I.M.E. and G. B. WARD.
(In two volumes)
EXAMPLES IN ENGINEERING DRAWING
By H. BINNS, A.I.Mech.E., A.M.I.P.E.(In three volumes)
COMMERCE
By F. J. WRIGHT, M.Sc. (Econ.)(In three volumes)
NATIONAL CERTIFICATE ELECTRICAL TECHNOLOGY
By E. C. WALTON, Ph.D. and H. TEASDALE, B.Sc.(In three volumes)
MACHINE SHOP ENGINEERING CALCULATIONS AND SCIENCE
By J. STGNEY, B.Sc. (Eng.)

THE TECHNICAL COLLEGE SERIES

EXAMPLES IN ENGINEERING
 DRAWING

VOLUME 2
(Second Year Course)

By
H. BINNS
A.I.Mech.E., A.M.I.P.E.

Lecturer in Engineering Drawing at the Municipal Technical College, Halifax.

Published by

First printed September 1945

ALL RIGHTS RESERVED

This book is produced in complete conformity with the Authorised Economy Standards

GENERAL EDITOR'S FOREWORD

Technical education stands on the verge of a great advance. Throughout the country there is widespread recognition of the necessity for a great expansion of the facilities which are available for systematic training for science and industry. There is also a general acceptance of the wellfounded conclusions of experts that the economic prosperity of this country will, more than ever before, be dependent upon the efficiency and adaptability of our system of scientific and technical training.

It is the hope and ambition of those who have planned this series of technical books that it will meet the demands for new books which will follow these developments. New measures require new books and it is hoped that the series will not only assist in meeting these requirements but will incorporate those new methods and processes which have been introduced during the war years.

> P. ABBOTT.

AUTHOR'S PREFACE

The examples in Volume 2 are a continuation of those which appeared in Volume I. The student is now expected to go a step further in producing the finished working drawing, by giving all dimensions in their correct position on the drawing, to have a knowledge of tolerances on dimensions, to be able to make a schedule of parts when required, and also to indicate where the parts shall be machined.

Several examples of structural details are given, to help students in the structural industry.

Sufficient information is included to assist students to attempt the exercises, which include curves of intersection, the proportion of gear teeth, etc.

CONTENTS

PAOE
DIMENSIONS 7
LIMITS AND FITS 9
MACHINING 11
SCALES 11
SCHEDULES AND LABELS 13
EXAMPLE I. CLUTCH-FORK 14
EXAMPLE I. SOLUTION 15
EXAMPLE 2. GEAR-BOX SUPPORT 16
EXAMPLE 2. SOLUTION 17
EXAMPLE 3. NUT-BOX FOR LATHE 18
EXAMPLE 3. SOLUTION 19
CURVES OF INTERSECTION 20
STRUCTURES 22
GEARS 24
LIST OF "A" SHEETS 26
LIST OF " B " SHEETS 27

DIMENSIONS

At this stage a student should be able to dimension fully a working drawing.

The main function of a drawing is to show the sizes to which the detail is to be made, so that there is no possibility of error. To do this, a few points must be remembered:-
I. All dimensions must stand out clearly on the drawing, if possible on the outside of the detail.
2. All figures should be at least $\frac{1}{1 "}^{\prime \prime}$ high, and the dividing line should be horizontal.
3. The figures should be placed in the middle of the dimension line, so that they may be read from the front and from the right-hand side of the drawing.
4. All lengths should be given from a datum line, especially in the case of shafts, as shown in Fig. 2, page 8. The reason for this is that, where tolerances are given, the shaft may be too long or too short, depending on whether the lower or higher tolerance has been adhered to.
5. When several circles occur, the best method is to take the dimensions outside the circles, as shown on Fig. 3, page 8. Diagonal dimensions must not be given, except in the case of a single dimension-e.g., pitch circle diameter of bolt holes.
6. Always dimension to the centre of holes from either. a base line or a main centre line.

DMENSIONS

Fig. 1.

LIMITS AND FITS

All the information required on this subject may be obtained from the British Standard Handbook, No. 2, published by the British Standards Institution for the use of engineers. Students should study this for use in the drawing office, but a rough idea of tolerances is given for use in the examples on Fig. I, page 10.

There are several different fits to suit different requirements, and in the case of Fig. I, page 8, a running fit is given in which the hole is a basic size, whilst the diameter of the shaft may vary. The TOLERANCE is the difference between the high and low limits. The ALLOWANCE is the difference shown between the high limit of the shaft and the basic size of the hole, to allow for a running fit in this particular size of shaft.

Machining allowance must not be confused with the allowance on dimensions; it is the allowance on certain portions of castings and forgings where they are required to be machined, as shown in Fig. I, page 10.

Fig. 1

MACHINING

The tendency in modern drawing-office practice is to give as much information as possible on a working drawing with regard to the degree of finish on machined parts.

There are several methods of showing the finish required, but students are advised to adopt the method which has been standardized by the British Standards Institution, as shown on page 12, method No. 4.

In this method an equilateral triangle having sides about $\mathfrak{l}^{\prime \prime}$ long is used, with one point of the triangle touching the surface to be machined. A letter is used to indicate the particular process required.

SCALES

The method recommended for showing the scale on a drawing is as follows:-

Scale full size to be stated $1 / 1$

$$
\begin{array}{lll}
" & \text { half } & " \\
" & 3^{\prime \prime}=1 \text { foot } & " \\
\hline & 1 / 2 \\
\hline
\end{array}
$$

and all other scales to be shown as a fraction.

MACHINING
Method No l.

Method №.?

Method l. Method?.
f or $\nabla=$ rough machining.
ff or $\nabla=$ smooth finish.
ff or $\mathrm{WD}=$ smooth and ground finish, by polishing with emery or other abrasive.
ffff or WD $=$ Smooth and ground finish highly honed with very fine abrasive
$G=$ Ground This varies
according to the abrasive wheel and coolant.
Method No.3. The fractions indicate the amount of feed on the machine.

$$
\begin{aligned}
& f=f_{\text {finish }} \\
& f_{1}=\frac{1}{32} \\
& f_{2}=\frac{1}{16} \\
& f_{3}=\frac{3}{32} \\
& f_{4}=\frac{1}{8} \\
& f_{5}=\frac{5}{32}
\end{aligned}
$$

Method No.4. System recommended by the British
∇ Machine all over. Standards Institution.
θ Bore
∇ Turn
θ Plane
(D) Drill

G/ Grind

Draw an equilateral triangle with sides about $\frac{1^{\prime \prime}}{4}$ long, with one corner of the triangle touching The machined surface, and insert a letter to indicate the type of machining. For surface finish a ground surface is indicated by a number ${ }^{3 /}$.

SCHEDULES AND LABELS

It is the practice on all drawings to have a label in the bottom right-hand corner. These labels may vary considerably in different workshops, according to the information they are required to give, but the student is advised to adopt a label similar to that given on Example I, page 15. The size of the label will depend on the space available, but need not be more than $5^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime}$.

There are several systems of preparing the drawing for the workshop. Some firms prefer to make a separate drawing of each detail, as in Example I; others make drawings with several details combined, as in Example 2, or with several details drawn separate on one sheet, as in Example 3, together with an assembly drawing.

In Examples 2 and 3 a schedule would be required.
The schedule is of great value in every department of the works, including the cost office and other offices, because each part is given a reference letter, and the workmen may book their time employed on the item by reference to the letter, drawing No. and the Order No.

Students are advised to practise making out a schedule on all drawings having several parts, and so acquire facility in stating the materials required for each part.

The reference letter should be placed in a circle $\frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ diameter, with an arrow pointing to the particular item.

CURVES OF INTERSECTION

The line of interpenetration due to the intersection of two solids is determined by geometrical construction.

The method of construction for simple pipe intersection is shown in Figs. I, 2, 3, and 4.

Fig. I shows a branch pipe meeting the main pipe at right angles. The pipes in this case are of equal diameters. Draw the elevation and the plan as shown, and construct a semi-circle on the branch pipe in the plan and the elevation. Divide the semi-circle into, say, six equal parts with either compasses or 60 -degree set-square, and mark A, B, C, and D on each view. Project horizontal lines from each letter on the plan to A^{1}, B^{1}, C^{1}, and D^{1}, and project from the plan to the elevation to meet the horizontal projectors at A^{2}, B^{2}, C^{2}, and D^{2}. The line of intersection is obtained by drawing through these points, and in this case it would be a straight line.

Figs. 2, 3 and 4 may be constructed in a similar manner.
NOTE.-When pipes having the same diameter intersect, whether at right angles or any other angle, the resulting line of intersection will be a straight line, as shown in Fig. 3.
The usual practice in a drawing office, when showing intersection lines, is to fix the point D^{2} (see Fig. 2) by projecting from a point D^{1} on the plan, and then, using compasses set to a suitable radius " M ", to join the points A^{2} and D^{2}. Of course, this is not quite accurate, but is all that is required on most workshop drawings.

Fig. 5 shows the curve that may be developed on a connecting rod by the following method:-

The diagram on page 21 , Fig. 5, shows three views of a part of a connecting-rod end. Divide the curved portion, where the round rod joins the rectangular part, into several slices from about $\frac{1^{\prime \prime}}{8}$ to $\frac{l^{\prime \prime}}{4}$ apart. With a radius of $A-B$ draw an arc on the end elevation, to cut $E F$ at C. Project the point C back on to the line $A-B$ to C^{1}, and this will give one point of the required curve. Similar points may be obtained by taking several radii.

Note that the plan shows where the curve or fillet finishes on the plan at D.

Fig. 6 shows the curve that occurs on cranks, levers, and some shaft brackets.

The construction is the same as in Fig. 5, but it is usual in drawingoffice practice to use the same radius for both curves.

STRUCTURES

Steel structures are rolled to standard shapes, and are used to construct buildings, bridges, boilers, tanks, conveyors, gasholders, frames, cranes, etc.

Examples of various common sections are shown on page 23.

The standard sizes may be obtained from the handbooks published by the leading manufacturers.

Fig. I shows a rolled steel joist (R.S.J.), sometimes called a girder of " H " section.

Fig. 2 shows a channel.
When joists and channels are used in a horizontal position, and subject to flexure, they are referred to as beams, but when used in a vertical position, they may be referred to as columns, stanchions or struts.

Figs. 3 and 4 show an equal and an unequal angle respectively.
Fig. 5 shows a tee.
In addition to the above sections, flat bars, round bars, (black or bright), half-round bars, square bars, and hexagon bars may be obtained to standard sizes, in addition to sheet steel of various sizes.

Stiffeners may be made from angles and tees by shearing out pieces at 90 degrees, and then bending and welding, as shown in Fig. 6.

Rivets have been standardized by the British Standards Institution, and several of the simplest types are given, with proportions for use in the drawing examples.

GEARS

There are three recognised methods of specifying the pitch of gear teeth:-
(a) Circular or arc pitch $\left[P_{0}\right]$, measured from one point on the tooth to a similar point on the next tooth on the pitch circle, as shown in Figs. I and 2.
(b) Diametral pitch [DP], the ratio of the number of the teeth " N " to the pitch circle diameter P.C.D.;
or

$$
D P=\frac{N}{P . C . D .} ; \text { also } D P=\frac{\pi}{\bar{P}_{a}} .
$$

(c) Module $[m]$, the ratio of the pitch-circle diameter to the number of teeth;

$$
\text { or } \quad m=\frac{P . C . D .}{N} \text {; also } m=\frac{1}{D P} \text {, and } m=\frac{P_{o}}{\pi} \text {. }
$$

The outside diameter OD of a gear wheel may be obtained by the formula

$$
O D=\frac{N+2}{D P}
$$

There are two geometrical curves that give correct velocity ratio for gear teeth: (a) Cycloidal, (b) Involute.

Fig. I shows' the proportions for cycloidal teeth, and an approximate method of showing the shape of the teeth on a working drawing by using the radii X and Y from the centre of each tooth, but the true shape must be obtained by geometrical construction.

Fig. 2 shows the profile of involute teeth, with the approximate method of drawing the shape of the tooth with a radius " Z ".

The profile of involute teeth is obtained by geometrical construction. The curve is developed on a base circle, as shown in Fig. 4. Draw the pitch circle diameter, and from a point O draw a line at an angle θ.

This angle is called the pressure angle, and varies from $14 \frac{1}{2}$ degrees to 22 degrees. The British Standards angle is 20 degrees. Draw a line at right angles to the pressure angle, and the radius of the base circle is M.

Fig. 3 shows the names of the various parts of gear teeth.
When setting out a pair of bevel wheels, it is necessary to draw the two cones in contact, as shown in Fig. 5.

In some drawing-offices this is all that is given on a working drawing, together with the particulars of teeth, etc.

In Fig. 6 the teeth are shown drawn on the cones by setting off the sizes of the addendum and the dedendum A and B of the teeth from the formula given below.

Tooth proportions of standard teeth:-

$$
\text { Addendum }=\frac{1}{D P}=0.3183 P_{a} . \quad \text { Dedendum }=\frac{1 I}{D P}=0.3979 P_{a} .
$$

Therefore the clearance at the bottom of the teeth is

$$
\frac{\frac{1}{4}}{D P}=0.0796 P_{a}
$$

Fig. 7 shows the complete section of the bevel wheels as is required on Sheet No. 21 B.

LIST OF EXAMPLES

Title Sheet No. Page
Stuffing Box for Spring Relief Valve I.A. 28
Hinge Bracket 2.A. 29
Combined Stool and Sole Plate 3.A. 30
Crosshead 4.A. 31
Swing Bracket 5.A. 32
Lathe Bracket 6.A. 33
Swivel Carriage 7.A. 34
Cross Slide 8.A. 35
Conveyor Bracket . 9.A. 36
Connecting Rod End (solid type) 10.A. 37
Connecting Rod End (strap type) II.A. 38
Plane Bed 12.A. 39
Pump Baseplate 13.A. 40
Post Foot 14.A. 41
Built-up Girder End 15.A. 42
Cap and Base for Stanchion 16.A. 43
Connections of Floor Joists to a Stanchion 17.A. 44
$I^{\prime \prime}$ diameter Stop Valve . 18.A. 45
Roller Bearing 19.A. 46
Aero. Gear Cover 20.A. 47
Spur Gear Wheels 21.A. 48
Plug Valve and Pipe Union 22.A. 49
Ram Pump Barrel 50
23.A.

Balanced Crank

Balanced Crank 51 51
Automatic Lubricator
Automatic Lubricator 52 52
Gear Pump 26.A. 53

LIST OF EXAMPLES

Title
Sheet No. Page
Pump Stuffing Box I.B.Tappet Lever2.B.55
$24^{\prime \prime}$ diameter Pulley 56 3.B.
Pump Crosshead 57
4.B.
Axle Bracket 58
5.B.
Clutch Coupling 59
6.B.
Swivel Slide 60 7.B.
Tool Holder 61
Conveyor Tension Bearing 62
9.B.
Connecting Rod End (Marine type). 63
10.B.
Hydraulic Pivot Joint 64
Gear Bracket 12.B. 65
Hand Tool Rest 13.B. 66
Girder End 14.B. 67
Stanchion Base 15.B. 68
Stanchion Connection 16.B. 69
Diaphram Stiffeners for Box Girder 17.B. 70
I' diameter Stop Valve 18.B. 71
Universal Joint 19.B. 72
Facing Head for Boring Machine 20.B. 73
Bevel Wheels 74
21.B.
Jaws for Centring Machine 75
22.B.
Loose Headstock 76
Balanced Crank 77
Lathe Slide Rest Details 78
Lathe Slide Rest 79

(

CAP \& BASE For STAMCHON. Mid stael

DATA.
RSI. $14^{\prime \prime} \times 6^{\circ} \times 57 \mathrm{lbs}$ Side plates $16^{\prime \prime} \times \frac{3^{\prime \prime}}{4}$ thick Gusset plates $30^{\prime \prime} \times 20^{\prime \prime} \times 7^{7^{\prime \prime}}$ thick
Angles. $3 \frac{1}{2}^{\prime \prime} \times 3 \frac{1}{2}^{\prime \prime} \times \frac{1}{2}^{\prime \prime} \times 30^{\prime \prime}$ long
Angle cleats $6^{\prime \prime} \times 3 \frac{1}{2}^{\prime \prime} \times 1^{1 \prime} \times 11^{\prime \prime}$ Baseplate $30^{\circ} 5_{Q} \times 2^{\prime \prime}$ thick. All rivets $\frac{3}{4}^{*}$ die.

Rivets in baseplate to be cst on the underside.

The view given shows the cap inverted.
The base is similar except that the gussets

1. An elevation of cap, and base in correct I are substituted for relative position looking $=A$ the angles Y, and
2. An end elevation of the base only, half provision should be made in section on B-B.
for 4 bolt holes HE"dia 3. A plan projected from the end elevation. $22 \frac{3^{\prime \prime}}{} \times 18^{\prime \prime}$ centres

SHEET No.2OA.

D (E. D.-II.)

STANCHON COMWECTON. WH What

DATA
Stanchion A $9^{\prime \prime} \times 7^{\prime \prime} \times 50 \mathrm{lbs}$.
Stanchion B $12^{\prime \prime} \times 8^{\prime \prime} \times 65 \mathrm{lbs}$.
Web-plates C $12^{\prime \prime} \times{ }^{\frac{3^{\prime \prime}}{4}}$ thick.
Web plates D. $16^{\prime} \times \frac{3^{\prime \prime}}{4}$ thick.
Connecting plates E $16^{\prime \prime} \times 32^{\circ} \times$ Ithick.
Packing plates $F 16^{\prime \prime} \times 20^{\circ} \times k^{\prime \prime}$ thick.
End plate G. $13^{\prime \prime} \times 16^{\prime \prime} \times \frac{3}{4}_{4}^{\prime}$ Hick.
4 Angle cleats $16^{\prime \prime} \times 3 \xi^{\prime \prime} \times 3^{3 \prime} \times 66^{\prime \prime}$ long: - All bolls and rivets ${ }^{\frac{3 / 1}{\prime \prime}}$ ia

Bolts shown
Rivets shown. O

Draw $3^{\prime \prime}=1$ foot.

1. A front elevation
2. A sectional end elevation through P.P.
3. A plan.

LOSE HEDSTOCK for blat

(2)
 $4-\frac{1}{4}$ diem screws $\frac{3}{4} \frac{3}{4}$ hoo l
 nut here

Hand wheel C.I.
Draw to scale of $9^{\prime \prime}=1$ foot. with all the parts assembled.
Note:- X is the common centre line.

1. A sectional front elevation through $B-B$.
2. A sectional end elevation through $A-A$
3. A plan without hand wheel.

LATHE SLIDE REST.
SHEET NO 26.B
Arrangement shown in quarter section.

