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PREFACE TO THE SECOND EDITION 

Iii this edition, new material has been added and old material rear¬ 
ranged and rewritten. Two old chapters have been combined and an old 
chapter divided, the total number remaining unchanged. Discussion of 
the second law of thermodynamics, formerly extending over two chapters, 
has been rewritten and now appears as a single chapter. The section on 
calculations from thermodynamic functions derived by statistical methods 
lias been expanded to form a new chapter. A full enough treatment is 
given to enable the student to use the published tables of values for the 
thermodynamic functions, detailed calculation of the values being left for 
more extended courses in thermodynamics. Because of the growing 
importance of equilibriums in the gaseous phase, the chapter on gases has 
been expanded to cover real gases more completely, "fables have been 
revised, and new tables and new problems, based on recent data, have 
been added. The parts of the first edition found through teaching 
experience to lack clarity or logic have been rewritten. A minor change, 
but one that should be useful to the reader, is the renumbering of equa¬ 
tions, figures, and tables by chapter and the indication of the chapter 
number on each page. With the new numbering system, equations, 
figures, and tables in other chapters may be found more readily. 

Recently the National Bureau of Standards through Research Project 
44 of the American Petroleum Institute published a set of self-consistent 
constants and conversion factors. Although these values differ by less 
than the stated uncertainties from the self-consistent constants used in the 
first edition, the newer set has been adopted for this edition because the 
author felt that the advantages of a general uniformity in use of constants 
outweigh the labor required to make changes. In the future thermo¬ 
chemists, physical chemists, physicists, and engineers will doubtless agree 
on “best values” for constants, for it would seem that individual sets of 
constants are as obsolete as individual tables of atomic weights. 

The author wishes to thank Dr. Clara L. Deasy for careful and detailed 
criticism of the first edition and Dr. J. A. Campbell for criticism of some 
of the new material; he himself takes the responsibility for any errors 

that remain. 
Luke E. Steiner 

Oberlin, Ohio 

January, 1947 





PREFACE TO THE FIRST EDITION 

The laws of thermodynamics are the foundations of chemical thermo¬ 
dynamics, laid by the masters who enunciated and developed these laws. 

The thermodynamic functions of Gibbs form the framework for its super¬ 
structure. Different names and symbols have been applied to the Gibbs 

functions at various times and places but the functions themselves 

remain scarcely altered by the changing architectural styles. However, 

different exteriors have been built on this framework, some emphasizing 

one pattern or angle or detail, and some another. Among the structures 

is that constructed by Lewis and his school, who developed methods for 

evaluating the thermodynamic functions of chemical systems, particularly 

those of solutions. This structure has been especially important because 

it has been so useful. 

Chemistry is a healthy growing science which embraces new theories, 

methods, techniques, and tools whenever they are useful, but which shuns 

theories and speculations not susceptible to verification by experiment. 

Thus, when certain thermodynamic methods and functions were shown 

to give quantitative answers to the chemical problems of equilibrium and 

stability, they were adopted by chemists as “ chemical thermodynamics.” 
This chemical thermodynamics stimulated the collection of more and 

better data both through the extension of older methods and through the 

development of newer methods for evaluating the thermodynamic func¬ 

tions. The new data in turn increased the practical usefulness of chemical 

thermodynamics to a remarkable degree. In consequence, thermo¬ 

dynamics has taken its place among the basic courses in chemistry. It 

is no longer reserved for the specialist alone; it is now deemed an essential 

part of the equipment of the modem chemist. Such a change in the 

status of thermodynamics has necessarily caused some modification in the 

character of the courses in chemical thermodynamics. 

This book was developed for a short course in thermodynamics for 

seniors, some of whom are preparing for graduate work in chemistry and 

some of whom are not, and for graduate students without previous train¬ 

ing in thermodynamics. In the earlier chemistry courses students 

develop facility in various thermodynamic calculations, but they are 

usually deficient in an understanding of the basic concepts of thermo- 

vii 



PREFACE TO THE FIRST EDITION viii 

dynamics and of the relations between the thermodynamic functions. 

The first objective of this book is therefore to acquaint the student with 
this fundamental theory. A second objective is to prepare the student 
to utilize the various tables of thermodynamic data and the data found in 
the current chemical literature. A third objective is to give the student 
a sound background for more extended work in thermodynamics. There 
have been some important omissions under this plan. In particular, the 
methods of evaluating the thermodynamic functions from spectroscopic 
data are not included. These, and other omitted material, may quite 
properly follow in a second-semester course. 

To further the above objectives, primary attention is given to the 

thermodynamic functions which are most useful for chemical systems and 
consequently to those for which numerical data are most generally avail¬ 
able. At the same time the symbols and nomenclature selected are those 

most frequently met in the American chemical literature. Various other 
features of the book are designed to augment its usefulness in the class¬ 
room. The lists of problems and exercises at the ends of the chapters 
vary in difficulty and importance but all are selected to illustrate some 
principle or application. Derivations of formulas are given somewhat 
fully to free the class time for more important discussions. Numerical 

computations are indicated so as to show the relative importance of 
various terms in the formulas. An attempt is made to report good 
modern values for numerical data both in the text and in the problems, 
though older data are occasionally used for special reasons. The sources 

of the data are cited. These references to the chemical literature serve to 
identify the data; at the same time they may be used to set up further 
problems or as reading assignments. 

In systematic calculations on data from many sources, self-consistent 

conversion factors are highly desirable. The “ International Critical 
Tables” contained such a set of accepted values, but some of these have 

been revised since the publication of the “ Tables.” A revised set of con¬ 

version factors and defined values based on the values accepted by 
specialists is therefore used in this book. Because most undergraduates 

are unfamiliar with the sources of these constants and factors, a brief 
discussion of the accepted constants is included. 

The author wishes to acknowledge the aid of his former students and 

in particular the help of those in his class of 1940 who read and criticized’ 
the final manuscript. 

Luke E. Steiner 

Oberun, Ohio 

October, 1941 
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TABLE OF SYMBOLS 

The Lewis and Randall notation, E, H, S, A, and F, is used for the thermo¬ 

dynamic functions. The values of the extensive properties of substances for 1 mole 
of the substances are printed in small capitals, for example, e, n, s, a, f, v, and cp. 

The corresponding partial molal quantities are printed as barred small capitals, for 

example, Is, IT, s, a, f, v, and Up. The superscript ° denotes a function for substances in 
their standard states, for example, e°, ii°, s°. 

The symbol (g), (liq), (c), or (aq) following a chemical formula indicates the phase, 

gas, liquid, crystalline solid, or aqueous solution of indefinite composition, respectively, 

represented by the formula. 

A a constant 

A a molecular species 

A a particular system or body 

A a state 

A surface area 

A first virial coefficient 

A' first virial coefficient 

A work content, Helmholtz free energy 

a work content per mole 

a activity 

a atomic diameter (Debye-Hiickel) 

a a constant 
a number of moles of the Ath kind 

B a constant 

B a molecular species 
B a particular system 

B a state 

B second virial coefficient 

W second virial coefficient 

b a constant 

b number of moles of the Bth kind 

C concentration, moles per liter, molarity 

c centigrade 

C a constant 

€ heat capacity 

Cm mean heat capacity 
Cp heat capacity at constant pressure 

cp molar heat capacity at constant pressure 

Cv heat capacity at constant volume 

Cr molar heat capacity at constant volume 

C a molecular species 

xi 
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C number of chemical constituents (phase rule) 

C a state 

c a constant 

c heat capacity per gram 
c number of components (phase rule) 

c velocity of light 

D a constant 
D dielectric constant 

D a molecular species 

D a state 
d density 
d number of moles of the Dth kind 

E a constant 
E electromotive force 
E (with subscript) single electrode potential, arbitrary 

E' counter electromotive force 
E energy of a system, internal or intrinsic energy 

e internal energy per mole 

E a molecular species 
e base of the natural logarithms 

e~ the electron 
e electronic charge (charge equal and opposite to that of the electron) 

e number of moles of the Eth kind 

F faraday constant 

F free energy, Lewis or Gibbs 

f free energy per mole 
/ activity coefficient in terms of molarities 
/ fugacity 

G generalized extensive thermodynamic function 

G{ generalized thermodynamic function per mole of solution 

g acceleration due to gravity (standard) 

g statistical or quantum weight 

H heat content of a system, enthalpy 

h heat content per mole 

h gravitational potential 

h Planck’s constant 

1 an integration constant 

j freezing point lowering function 

K a constant 

K equilibrium constant 

Ka equilibrium constant in terms of activities 
Kj equilibrium constant in terms of fugacities 

Km equilibrium constant in terms of molalities 

Kc equilibrium constant in terms of molarities 

Kn equilibrium constant in terms of mole fractions 

Kp equilibrium constant in terms of partial pressures 

K Kelvin 

k a constant 

kf molality freezing point constant 

k molecular (Boltzmann) gas constant 
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TABLE OF SYMBOLS 

l length 

molar (gram-molecular) weight 

molar concentration (moles per liter of solution) 

mass 

molal concentration (moles of solute per 1,000 grams of solvent) 
molality 

Avogadro’s number 

mole fraction 

number of molecules 

number of gram-equivalents or faradays (emf equations) 

number of ions 
number of moles of ith substance 

number of molecules 

number of moles 

pressure 

thermometric property 
opposing pressure 

number of phases (phase rule) 

heat of solution 
integral heat of solution per mole of solution 

concentration ratio in the emf equations 

partition function 

heat (positive when entering system) 

heat absorbed at constant pressure 

heat absorbed at constant volume 

heat for a reversible change 

heat for a spontaneous change 

molar gas constant 

resistance 

number of reversible reactions (phase rule) 

radius 

entropy of a system 

entropy per mole 

solubility 
temperature on the Kelvin scale 

temperature in degrees centigrade 

molecular velocity 

mean square molecular velocity 

volume of a system 

v volume per mole 

vt molar volume of ideal gas 
v variance, number of degrees of freedom (phase rule) 

W probability function 

w weight 

w work (positive when done by system) 

wn net or useful work 
w' net reversible work 

we electrical work 
wp work of expansion against pressure 

wr work for a reversible change 
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X number of types of energy absorption in a molecule 

z charge of an ion 

a activity coefficient in mole fraction units 

a coefficient of thermal expansion 

a a constant 

a molar volume defect of a real gas 

0 compressibility 

/3 a constant 

7 activity coefficient in molality units 

7 a constant 

7 ratio of heat capacities, Cp/Oy 

7 surface tension 

t energy per molecule 

energy per molecule in first energy level 

«o energy per molecule in ground state 

ci excess energy of molecule in first energy level 

0 characteristic temperature* (Debye) 

0 observed freezing point lowering 

0 temperature on real gas scale 

0 temperature of a substance 

k factor in the Dcbye-IIiickel equation 

/it chemical potential 

n ionic strength 

ix Joule-Thorn son coefficient 

v frequency 

v number of ions per molecule 

<t> apparent molar volume 

\p potential of an ion in solution (Debye-ITiickel) 

Mathematical Symbols 

D the inexact differential operator 

d the total differential operator 

f function 

d the partial differential operator 

A increment. AG for a thermodynamic property for a chemical reaction refers to 

the increase in G as the result of the chemical reaction that proceeds as indicated 

in the chemical equation. 

AG * G* - Gi 

5 sum 

(f> function 

lim limit 

log logarithm to the base 10 

In natural logarithm 
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CHAPTER 1 

INTRODUCTION 

The science of thermodynamics is based on empirical energy relations. 
These relations may be summarized verbally in two important general 
statements and a third supplementary statement known as the “laws of 
thermodynamics.” 

Laws of Thermodynamics.—The first law of thermodynamics states 
the principle of the conservation of energy: Energy may be converted to 
other forms of energy but is neither created nor destroyed. Although experi¬ 

mental work was carried out by Rumford and Davy, it remained for 
Joule, in 1840 and thereafter, to put the first law on a firm experimental 
foundation. Independently, in the same decade, Mayer, Helmholtz, and 

others assisted in establishing the principle. 

The second law of thermodynamics states the principle of a general 
tendency toward equilibrium. Various aspects of this tendency may be 

emphasized. The engineer or physicist who is interested in utilizing this 

tendency in engines to do useful work develops those expressions of the 
second law most directly applicable to “heat engines.” The chemist, on 

the other hand, is especially interested in chemical equilibrium and in 
statements of the energy laws that may be related directly to substances 
and to their transformations. The second law of thermodynamics is 
older than the first. In 1824, Carnot made the first study of what is now 
known as the second law but in terms of an obsolete heat theory. After 
the first law was formulated, Kelvin showed that Carnot's conclusions 

were correct, and he and Clausius developed what we consider the classical 
formulation of the second law. In 1875-1878, Gibbs published his papers 
“On the Equilibrium of Heterogeneous Substances” which laid the 

groundwork for chemical thermodynamics. 
A third principle called the “third law of thermodynamics” has a 

somewhat different status than the first and the second. According to 

this principle, the entropy of substances at the absolute zero of temperature 

is zero or a small finite number, The principle was formulated by Nemst 
in 1906 in his attempt to make calculations of chemical equilibrium from 

thermal data alone. 
Because the laws of thermodynamics can be expressed in the form of 

mathematical equations, they are subject to the various treatments of 
the mathematician. However, thermodynamics is more than an exercise 

1 



2 INTRODUCTION TO CHEMICAL THERMODYNAMICS [Chap. 1 

in mathematics. Though all of a countless array of possible equations 
may be equally valid, they are not equally useful. The actual number 
of fundamental equations used in thermodynamics is not great. Because 
the chemist restricts his primary consideration to those equations in 
which he can substitute experimentally measured values, the relation¬ 
ships that he must consider are limited in number. 

Validity of the Laws and Methods of Thermodynamics.—Today no 
competent person seriously questions the validity of the laws of thermo¬ 
dynamics when applied- to large-scale phenomena. However, the gen¬ 
eral laws do not become useful until they are applied to specific systems; 
and, in this application, chances for inexactness of statement and analysis 
arise. For example, we concern ourselves in practice not with energy 
as an abstract concept but with the energy of real substances having 
specific properties. Frequently, we express the relationship between the 
properties of substances in terms of equations, known as “ equations of 
state,” that represent the observed behavior of the substances only to a 
limited degree of exactness. Equations of state that do not represent 
the exact behavior of any single substance are often used because they 
represent the idealized behavior of a whole class of substances. It is 
obvious that the combinations of such approximate equations with the 
exact equations of thermodynamics yield formulas whose exactness is 
limited by the approximations. 

The well-known ideal gas law Pv = RT furnishes an example. Every 
chemist knows that all gases deviate to a greater or lesser degree from 
this “ ideal ” equation, which assumes the validity of Boyle’s and Charles’s 
laws. Because R is not strictly constant for actual gases, equations 
containing this gas constant do not represent accurately the relations 
between P, v, and T unless corrections have been made for deviation of 
Pv from the ideal. Consequently, when the equation Pv = RT is intro¬ 
duced into any exact thermodynamic equation, an implicit assumption 
is made that restricts the applicability of the derived equation. 

On the other hand, the properties of substances are frequently 
expressed by empirical equations which represent the data well enough 
over the experimental range but which grossly misrepresent the known 
behavior outside this range. For example, the heat capacity of sub¬ 
stances is often expressed in terms of a quadratic or cubic equation fitting 
the data between certain limits, such as 0 to 100°c. It is known, how¬ 
ever, that, over the entire temperature range from absolute zero upward, 
an elongated /-shaped (sigmoidal) curve with its origin at zero represents 
the relation between heat capacity and temperature for simple substances. 
Such a curve cannot be represented by a quadratic (or cubic) equation 
even though the quadratic equation may fit restricted portions of the 
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curve. When, therefore, such equations of limited applicability are 
introduced into heat content or free-energy equations by the methods 
given in subsequent chapters, the resulting heat content and free-energy 
equations cannot be valid beyond the temperature range in which the 
heat capacity equation is valid. 

In addition to these limitations resulting from the representation of 
the properties of real substances by equations that do not conform strictly 
to the behavior of these substances, there may be further limitations 
resulting from convenient mathematical approximations. For example, 
the familiar laws for the boiling point rise and the freezing point depres¬ 
sion of solutions are derived from the thermodynamic equation on the 
basis that, where the mole fraction N of the solvent is nearly unity, a 
change in In N is approximately equal to a change in N. Although this 
assumption is justifiable when the concentration of solvent is high, 
(N = 1), and the concentration of solute is correspondingly low, the 
assumption becomes unjustifiable in solutions with higher concentrations 
of solute. 

Physical or mathematical approximations made in deriving an 
equation may be extremely advantageous because they facilitate the 
mathematical treatment. The explicit assumptions are not readily mis¬ 
understood. But implicit assumptions, made whenever approximate 
equations or equations valid only under restricted conditions are com¬ 
bined with the exact thermodynamic statements, may be so subtle as to 
be overlooked and disregarded. For this reason, we shall emphasize 
wherever possible the extent and nature of the various assumptions and 
approximations as we introduce them into exact equations. 

Thermodynamics and the Atomic Theory.—Traditional thermo¬ 
dynamics is independent of the atomic hypothesis. It is based on the 
observed energy relations of weighable amounts of material and applies 
to chemical reactions as well as to other processes. Its laws are gen¬ 
eralizations of our experience on the earth, hence any extension of the 
laws to the universe as a whole or to submicroscopic quantities are 
plausible but not proved. However, none of our observations on the 
universe or on small-scale phenomena are inconsistent with or contra¬ 
dictory to the laws of thermodynamics when proper allowance is made 
for mass-energy interconversions. Thermodynamics is older than our 
modern atomic theory, and it is not based on any particular theory of 
matter. Because thermodynamics is independent of the atomic theory, 
its general statements do not need revision whenever new details of 
atomic structure are established. On the other hand, because of this 
independence we are not able to establish the structure of atoms and 
molecules from the laws of thermodynamics. Thermodynamics sets up 
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rules that any atomic or molecular system must obey, but it cannot go 
further than this. 

For example, the heat capacity of a substance is an experimentally 
derivable quantity related in a very definite way to the other thermo¬ 
dynamic functions. On the basis of the atomic theory, one can attempt 
to calculate the heat capacity of the substance after assuming that the 
laws of motion apply to the molecules themselves. But the number of 
molecules in any finite sample of material is so large and the size of the 
molecules is so minute that the motions of individual molecules cannot 
be followed. The behavior of the system of molecules must, therefore, 
be explained in terms of statistical concepts. It is one of the triumphs of 
the quantum mechanics that, when it is applied to atomic and molecular 
systems, it yields calculated values for the thermodynamic functions, 
including heat capacities, in excellent agreement with the experimental 
values. Thus, the thermodynamics furnishes us with an excellent cri¬ 
terion for judging the various theories applied to atoms and molecules. 

For submicroscopic systems containing few atoms or molecules, sta¬ 
tistical studies show that the various thermodynamic functions would 
have fluctuating values. This conclusion does not trouble us, however, 
for the fluctuations for any finite system are too small to be detected 
experimentally. According to the kinetic theory, the pressure of a gas 
results from the bombardment of the walls of the container by the mole¬ 
cules. Only on the average will the exact number of molecules bombard¬ 
ing an equal area in unit time be identical, but any fluctuations about the 
average are too small to be measured. Similarly the “temperature7,1 
of any particular molecule varies as the molecule exchanges energy with 
its neighbors. The volume of a container for a substance will also show 
fluctuations, for the container walls consist of molecules that have a 
limited motion of their own. In all thermodynamic functions, however, 
the relative importance of the fluctuations decreases as the number of 
atoms in a system increases. Similarly, the laws of thermodynamics 
hold fully when applied not to individual submicroscopic systems but to 
ensembles of such systems.1 

Temperature 

Observations on energy relations cannot be dissociated from the con¬ 
cept of temperature. All bodies have temperatures detectable by our 
senses if the values occur within the proper range. Relative, qualitative 
temperatures are obtained readily; we can decide without much difficulty 
whether a body is colder than, or warmer than, some other body. How¬ 
ever, it is more difficult to place a temperature precisely on an objective 

1 Kemble, E. C., Phye. Rev., 56, 1003 (1939). 
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scale. We may start with the observation that substances, in general, 
change properties when their temperature is changed, some properties 
showing greater variation with changing temperature than others. Any 
property that changes with temperature in a continuous, relatively uni¬ 
form manner can be used as a thermometric property, especially if the 
property can be measured easily and accurately. 

When the temperature of a body A is to be measured, another body,* 
the thermometer, whose thermometric property is to be measured, is 
placed in thermal contact with it. The value of the thermometric prop¬ 
erty so obtained can then be compared with the value of the same prop¬ 
erty when the thermometer is in thermal contact with a substance at 
some reference temperature. It becomes evident at once that the reading 
of the thermometric property can represent the temperature of A only 
when the thermometer has the same temperature as that of A. If the 
thermometer initially is colder or warmer than A, it must exchange 
energy with it until the temperatures of the two are identical. When the 
two bodies have thus reached the same temperature, they are in thermal 
equilibrium. The attainment of thermal equilibrium is an indispensable 
requirement for the measurement of temperature with a thermometer. 

Centigrade Temperature Scale.—Some of the problems of thermom¬ 
etry become evident when one studies the method of setting up the centi¬ 
grade scale. Two temperatures on this scale are fixed by international 
agreement: The temperature of an equilibrium mixture of water and ice 
in contact with air at one normal or standard atmosphere pressure is 
fixed at exactly 0°, and that of water vapor in equilibrium with water at 
this same pressure is fixed at exactly 100°. The difference in tempera¬ 
ture between these two points is, therefore, 100°c. Suppose that a 
thermometer in thermal equilibrium with melting ice (0°c) under the 
specified standard condition has an observed value of the thermometric 
property P equal to TV When the same thermometer is in thermal 
equilibrium with condensing steam under the standard conditions (100°c), 
the value of P becomes equal to Pioo- With this thermometer, 100° cor¬ 
responds to (Pioo — Po), and the value of l°c is defined as 

1 Sometimes a property of the body whose temperature is to be measured is used as 

the thermometric property. In optical pyrometry the brightness of the glowing 

object is usually compared with that of a filament of a lamp. At low temperatures 

the vapor pressure of the liquid under observation (hydrogen or helium) may be used 

as a measure of its temperature. In the production of temperatures below 1°k by 

the method of adiabatic demagnetization, the magnetic susceptibility of the substance 

is used fc<? measure its temperature. 
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The value of any temperature t, at which the thermometer has the value 
of P equal to Ph is then given on this scale by 

t° = p — -Fj°- X 100 (1.2) 
i 100 ~ i 0 

Thus, if Pi is exactly intermediate between P0 and Pioo, 

Pt ~ Po = i(PlOO - Po) (1.3) 
and P = 50°c. 

Unfortunately, this procedure serves to define 50°c only in terms of 
the one thermometer. When a different thermometric substance is used, 
its value of Pt may not be exactly intermediate between P0 and Pioo. 

Table 1.1.—Reading* of Liquid-in-glass Thermometers at Various 

Temperatures 

(The calibration points of each thermometer are listed in bold-faced type) 

Fixed points 

Solid car¬ 

bon dioxide 

with vapor 

pressure at 

760 mm 

Melt¬ 

ing 

ice 

Con¬ 

densing 

steam at 

760 mm 

Thermodynamic* tem¬ 

perature . -78.51V -40V 0 V 30V 50V 100 V 
Mercury in verre dur. . . 0 30.102 50.103 100 

Mercury in Kew glass. 0 29.955 49.99 100 

Mercury in Jena 1G111.. 0 30.11 50.12 100 

Pentane in Jena 16m. . -78.61 -43 0 37.6 
Toluene in verre dur... . -78.61 -41.2 0 124 

Alcohol in verre dur.... -78.61 -40.9 0 33.6 

* Values derived from the data in the “International Critical Tables,” Vol. 1, pp. 55, 56, McGraw- 

Hill Book Company, Inc., New York, 1926. 

The two thermometers need not give the same scale between 0 and 100° 
or beyond these defined temperatures. This problem, therefore, needs 
further consideration. 

Reproducing the Centigrade Scale.—In a mercury thermometer the 
volume change of the mercury with temperature is measured (more 
precisely, the difference in the expansion of the mercury and that of the 
glass enclosing the mercury). If the bulb is full and the expansion occurs 
in a capillary tube of uniform bore, the volume change can be read directly 
in terms of the length of the mercury column in the capillary. The length 
of the mercury column then becomes the thermometric property actually 
observed. 

As a matter of fact, as may be seen in Table 1.1, the temperature at 
which a mercury column reaches a point halfway between the 0 and the 



Chap. 1] INTRODUCTION i 

100° marks depends on the kind of glass enclosing the mercury. Thus, 
mercury in French hard glass reads 50.10° when mercury in Kew glass 
reads 49.99°. When liquids other than mercury are used, the dis¬ 
crepancies become even greater. A thermometer of pentane in Jena 16m 
glass, when calibrated at —78.51° (vapor pressure of solid carbon dioxide 
equals 1 atmosphere) and at 0°, reads 3° lower than a helium gas thermom¬ 
eter at —40° and 7.0° higher than the helium thermometer at 30°. 

The various thermometric substances commonly used up to the freez¬ 
ing point of gold at 1063°c and the measured properties are indicated 
in Table 1.2. Of these thermometers, gas thermometers show the 

Table 1.2.—Common Thermometric Substances 

Type of thermometer Thermometric substance Property measured 

Primary: 

Gas 
Constant volume Helium, hydrogen, nitrogen, 

air 

Pressure 

Constant pressure Helium, hydrogen, nitrogen, 

air 

Volume 

Secondary: 

Liquid-in-glass Mercury, ethanol, toluene, 

pentane 

Length of column 

Resistance. Platinum, copper Electrical resistance 

Thermocouple. Platinum, platinum-rho¬ Emf developed between two 

dium; copper, constantan; junctions of dissimilar 
iron, constantan; Chromel metals at different tem¬ 

X, Copci peratures 

Optical pyrometer . Brightness of glowing object 

greatest agreement among themselves, especially those containing the 
more ideal gases helium and hydrogen. Gas thermometers, when filled 
with other gases, yield a temperature scale corresponding to that of the 
hydrogen or helium thermometers when corrections are made for devia¬ 
tions of these gases from ideality. All gases can, therefore, be made to 
give the same temperature scale. As we shall see later, the laws of 
thermodynamics give a temperature scale that is independent of the 
properties of any particular substance whether gas, liquid, or solid—the 
scale called the thermodynamic scale. This is the scale given by all gases 
as they approach ideal behavior. Thermodynamic temperatures are 
proportional to the pressures of an ideal gas in a constant-volume ther¬ 
mometer and to the volumes of an ideal gas in a constant-pressure 
thermometer. They can also be obtained from any other substance if the 
necessary data are available. 
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Working Temperature Scales.—The pressure (or volume) of an ideal 
gas thermometer is a desirable thermometric property to measure because 
it varies linearly with the temperature. However, gas thermometers are 
not convenient to use, partly because of their bulk, for they must be 
large enough to enclose sufficient gas for precise measurement. Because 
they are bulky, the essential thermometric requirement—that the ther-* 
mometer be in thermal equilibrium with the body whose temperature is 
to be measured—cannot easily be met. This requirement is fundamental; 
yet lack of thermal equilibrium within the body itself or between body 
and thermometer is undoubtedly the greatest source of error in ther¬ 
mometry. Thus, a mercury thermometer, calibrated for no emergent 
stem, may be used with a partly emergent stem so that part of the 
mercury is at a different temperature from that of the bulb; a resistance 
thermometer mtxy be incompletely immersed so that part of the resistance 
wire is at a different temperature from the rest; a thermocouple junction 
may be at a different temperature from that of the body it is to measure 
because the metallic wires, which necessarily have a high thermal con¬ 
ductivity, carry heat to or from the junction. Likewise, an optical 
pyrometer may give the wrong temperature of a body because it reads 
surface temperatures that may differ materially from interior tempera¬ 
tures whenever radiation losses are permitted. 

As was indicated earlier, gas thermometers are not suitable for rou¬ 
tine use. They reproduce the thermodynamic temperature scale within 
the accuracy of the measurement over a wide temperature range, but 
the precision of any single reading is not high enough. For this rea¬ 
son, the national standards laboratories of the United States, Great 
Britain, and Germany and other laboratories established, as accurately 
as possible, the temperatures of reproducible, isothermal equilibriums 
such as freezing points, boiling points, and other phase transition points, 

on the thermodynamic centigrade scale.1 These temperatures, on recom¬ 
mendation of the respective national laboratories, the Bureau of Stand¬ 
ards, the National Physical Laboratory, and the Physikalisch-technische 
Reichsanstalt, were accepted in 1927 by the Seventh General Conference 
of Weights and Measures2 as defining the international temperature scale. 
The temperatures, called basic fixed points, are printed in Table 1.3 in 
bold-faced type; they are the temperatures used to calibrate other ther¬ 
mometers, such as the platinum resistance thermometer, which can be 
read accurately. 

1 The thermometric substances must, of course, be chemically pure. 
2 For more information on the international temperature scale, read the report of 

the scale adopted by the Seventh General Conference on Weights and Measures 
representing 31 nations: G. K, Burgess, Bur. Standards J, Research, 1, 635 (1928). 
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For example, in the range 0 to 660°c the resistance R of the platinum 
resistance thermometer reproduces very well the temperature of the 
thermodynamic temperature scale as expressed in the equation 

R = JBo(l + At + Bt2) (1.4) 

The values of the constants R0, A, and B (with t in degrees centigrade) 

Table 1.3.—Fixed Points on the International Temperature Scale* 

(Basic fixed points are in bold-faced, secondary fixed points in ordinary roman type) 
[All temperatures are for equilibrium processes under a pressure of 1 standard atmos¬ 

phere (= 1,013,250 dynes/cm2)] 

Substance Phenomenon Temperature, 
°c 

Liquid 02. Vapor pressure -182.97 
Solid C02. Vapor pressure - 78.5 
Mercury. Freezing - 38.87 
Ice. Melting 0.000 
Na2S04. Transition 32.38 
Steam. Condensing 100.000 
Naphthalene. Condensing 217.96 
Tin. Freezing 231.85 
Benzophenonc.... Condensing 305.9 
Cadmium. Freezing 320.9 
Lead. Freezing 327.3 
Zinc. Freezing 419.45 
Sulfur. Condensing 444.60 
Antimony. Freezing 630.5 
Silver. Freezing 960.6 
Gold. Freezing 1063 
Copper. Freezing (in reducing atmosphere) 1083 
Palladium. Freezing 1555 
Tungsten. Melting 3400 

* Burgess, G. K., Bur. Standards J. Research, 1, 035 (1928). 

are evaluated from the measured values of R at the basic fixed points, 
freezing water 0.000°, condensing steam 100.000°, and condensing sulfur 
444.60°. When the constants are evaluated, the temperature correspond¬ 
ing to any other resistance within the stated range can be obtained from 
the equation. (The equation is sometimes transformed into other forms 
to facilitate computations.) If the thermometer is to be used in the 
range —190 to 0°c, the measured value of R at a fourth basic fixed point, 
the oxygen point at — 182.97°c, is used to evaluate an additional con¬ 
stant C. In this range, temperatures are then related to values of R by 
the equation 
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R - B0[l + At + Bt2 + C(t - 100)^] (1.5) 

where R0, A, and B have their previously determined values. 

The standard platinum vs. platinum-rhodium thermocouple is used 

from 660°c to the gold point, 1063°c, the electromotive force (emf) E 

being represented by the equation 

E — a -f- bt -f- cU (1.6) 

The constants a, b, and c are evaluated by calibration1 at the freezing 

point of antimony, as measured with the resistance thermometer (approx¬ 

imately 030.5°), and the basic fixed points, freezing silver 960.5° and 

freezing gold 1003°. For convenience in calibrating working thermom¬ 

eters, other fixed points called secondary points are established on the 

same scale as accurately as possible with thermometers calibrated at the 

basic fixed points. The secondary points are also listed in Table 1.3. 

Though knowledge of the proper methods for establishing tempera¬ 

tures of experimental substances on the thermodynamic temperature 

scale is not necessary for an understanding of the theories of thermo¬ 

dynamics, this knowledge is required for proper evaluation of many 

thermodynamic data. Detailed procedures for precision thermometry 

are given elsewhere.2 

Mathematical Review 

Thermodynamics deals quantitatively with the relations between the 

energy and other properties of systems. These properties are all inter¬ 

related mathematically, and the treatment of these relationships is sub¬ 

ject to the principles and rules of mathematics. A certain minimum of 

mathematical skill is therefore necessary. For the guidance of students 

who have studied elementary calculus, we shall present here a review of 

some of the mathematical principles that are used later. 

Consider a system with definite values for its pressure, tempera¬ 

ture, volume, energy, etc. If one of these properties, such as the energy 

or volume, is related in some definite way to several of the other prop¬ 

erties, such as the pressure and temperature, the relationship being 

expressible in the form of some mathematical equation, the property 

(energy or volume) is called a function of the pressure and temperature. 

1 In practice the calibration values for a thermocouple are generally compared with 

the emf values for its particular pair of metals as listed in a “standard” table. A 

deviation curve is then prepared which enables the experimenter to read temperatures 

directly from the standard table. 

* A comprehensive treatment of temperature and thermometry is the published 

report of a symposium conducted by the American Institute of Physics: “Tempera¬ 

ture, Its Measurement and Control in Science and Industry,” Reinhold Publishing 

Corporation, New York, 1941. 
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Where the energy is represented by E, the pressure by P, and the tem¬ 
perature by P, such relationship can be expressed in the language of 
mathematics as 

E = f(P, P) (1.7) 

A relationship between E, P, and T may exist even though we do not 
know the exact form of the equation that expresses it quantitatively. 
In the above equation, P and P, which may vary independently of each 
other, are called the independent variables; and E, whose value is fixed 
for each pair of values of P and P, is called the dependent variable. P 

and P are commonly expressed as independent variables because the 
resulting equations are simpler and more readily derived from the experi¬ 
mental data, but there is no theoretical reason why P or P should not be 
expressed as the dependent variable and the other properties as the 
independent variables. Thus, if E and P vary independently, the value 
of P becomes fixed for each pair of values of E and P. This relation 
may be expressed as 

P = fi (Ey T) (1.8) 

Whenever a property of a system depends on more than one other 
property, it is common experimental practice to secure data by permitting 
only one of the independent variables to change at a time, all the others 
being kept constant. In the above example, we might study the rate 
of change of energy with pressure, keeping the temperature constant, 
expressing the result for infinitesimal changes in the language of the cal¬ 
culus as (dE/dP)T. This is called a partial derivative, the symbol d being 
used to show that we are studying not the total change of energy but 
only the part of the energy change resulting from the change in pressure 
at a definite temperature P. The subscript P, which indicates that the 
temperature is kept constant during the differentiation, may be omitted; 
but the student should retain it until he is familiar enough with partial 
derivatives not to need the emphasis it gives. The same partial deriva¬ 
tive may be written as (dE/dP) t, with the symbol, d, as used for complete 
differentiation, but here the subscript P must be retained to show that the 
temperature remains constant at the value P during the differentiation. 
Similarly, the rate of change of energy with temperature may be studied 
at constant pressure, the corresponding partial derivative being written 
as (dE/dT)p or dE/dT or (dE/dT)P. 

If the energy of a syst'4 a function of pressure and temperature, 
an infinitesimal increa^ 1 energy, represented by the differential dE, 

may often be express' the sum of the energy increase accompanying 
the change in press* re while the temperature remains unchanged and the 
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energy increase accompanying the change in temperature while the pres¬ 
sure remains constant. Written with mathematical symbols, this state¬ 
ment is expressed by the differential equation 

In a system in which the energy is a function of the volume as well 
as of the pressure and temperature, the partial derivative of energy 
with respect to pressure becomes (dE/dP)r,v, the subscripts T and V 

indicating that both temperature and volume remain constant during 
the process. The differential equation for the total change in energy then 
becomes 

dE = (1.10) 

Under various restrictions, differential equations, such as (1.9), take 
on simplified forms. Thus, if the energy of the process remains constant, 
dE is 0 and equation (1.9) becomes 

Dividing by dT and rearranging algebraically, we have (still under the 
restriction of constant energy) 

(.8E/dT)P = _ fdE\ (dP\ 
(dE/dP)r \dT/p\dE/T 

(1.12) 

Other relations may be obtained from equation (1.9). If (1.9) is divided 
by d T, we have 

dE (dE\ dP (dE\ 

d T \dPjTdT + \dT/P 
(1.13) 

If we choose, we may place a restriction of constant volume on this equa¬ 
tion; under these conditions the total derivatives dE/dT and dP/dT 

become partial derivatives, and equation (1.13) becomes 

(If).=(Si). (I?),+(If), 
Calculations in Thermodynamics.—Th decision with which one 

makes calculations depends on the precision^ ** data used in the cal¬ 
culation and on the purpose for which the caU v‘ons are made. The 
beginning student who uses calculations primarily familiarize himself 
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with the laws of chemical combination needs to use fewer significant 
figures than the student in quantitative analysis who is trying to develop 
his analytical accuracy. In a study of thermodynamics, some problems 
are primarily to test the student's understanding of principles and meth¬ 
ods; other problems, however, require a more rigorous treatment, for 
thermodynamics is studied in part because it can give more exact answers 
to many problems than are obtainable without it. Because of their 
training in physical chemistry, students in thermodynamics are informed 
about the various experimental methods and may, therefore, be expected 
to make realistic computations that take into account the probable 
accuracy of the experimental data. The theory of errors, as applied to 
experimental work, is discussed elsewhere.1 

We are here concerned with the following problem: Given experi¬ 
mental data of a given accuracy (or precision), how accurate (or precise) 
are the conclusions drawn from these data by mathematical methods? 
In physical chemistry, the term “accuracy” relates to the degree of 
correspondence of data with the “absolute” value presumed to exist 
for the physical quantity. In general, we are confident of a high accuracy 
only if the same value is obtained bj^ more than one independent experi¬ 
mental method. The term “precision” is used to denote the degree of 
agreement among the various values in a given experimental series. If 
these values agree closely, the indeterminate errors are small and the 
precision is high. If, however, the experimental method contains some 
constant source of error, such as an error in an instrument, the accuracy 

of a value may be low even though the 'precision of the measurement was 
high. 

Good judgment in deciding whether a given datum is accurate or 
merely precise depends on one's knowledge of the experimental method 
used in obtaining the datum and sometimes on one’s knowledge of the 
experimenter himself. This judgment can be developed only by experi¬ 
ence but it will not be developed at all until the student becomes aware 
that the problem exists. Because it is just as foolish to carry on calcula¬ 
tions with greater precision than the data warrant as to neglect precise 
data where available and necessary, the student should form the habit of 

1 Jasper, J. J., “Laboratory Manual of Physical Chemistry," Chap. I, Houghton 

Mifflin Company, Boston, 1938. 

Daniels, F., “Mathematical Preparation for Physical Chemistry," McGraw-Hill 

Book Company, Inc., New York, 1928. 

Mellor, J. W., “Higher Mathematics for Students of Chemistry and Physics/' 

Longmans, Green & Company, New York, 1922. 

Livingston, Robert, “Physico Chemical Experiments," The Macmillan Com¬ 

pany, New York, 1939. 

Crumpler, T. B., and J. H. Yoe, “Chemical Computations and Errors," John 

Wiley & Sons, Inc., New York, 1940, 
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adapting his calculation method to the requirements of his problem. 
Some rules for computation are given below. 

Computation Rules.—Contrary to the opinion of many students, the 
position of the decimal point is no criterion of the precision or accuracy 
of a number; it depends entirely on the size of units expressed. Thus, a 
volume of 21.3 ml is identical with a volume of 0.0213 liter. Where no 
limits of error are indicated, it is often possible to deduce them from the 
number itself. In the above example, one may assume that the true 
value of the measurement lies nearer 21.3 ml than to either 21.2 or 21.4, 
that is, that it lies between 21.25 and 21.35. The digits 2, 1, and 3 are 
called significant figures, whether they appear in the number 21.3 or 0.0213. 
If the measured value is actually 21.3 ml to the nearest hundredth mil¬ 
liliter, it is expressed by the number 21.30 ml (or 0.02130 liter). Here 
the terminal zero is also a significant figure, though a zero used to show 
the position of the decimal point is not. Terminal zeros in a number 
should be retained whenever they are significant digits. The number 
1.000 gram implies one gram to the nearest milligram, and the number 1.00 
gram implies one gram to the nearest centigram. Uncertain digits are 
sometimes indicated as in the 6 in 2.16. 

In a computation, the number of digits retained in the result is 
properly the number that is significant.1 If we multiply 21.3 by 1.47, 
both numbers having three significant figures, we obtain the number 
31.311, but not all the five digits are significant. If the true value of the 
first number lies between 21.25 and 21.35 and that of the second between 
1.465 and 1.475, the true value of the product must lie between the 
minimum 21.25 X 1.465 = 31.13125 and the maximum 

21.35 X 1.475 = 31.49125. 

Because only the first two digits in these products agree exactly, it is 
meaningless to report more than three digits in the result which becomes 
31.3, for the true value lies between 31.13 and 31.49. If the multiplier 
1.47 is known to four significant figures, it is properly written as 1.470, 
and the true value lies between 1.4695 and 1.4705. The maximum and 
minimum products are 21.25 X 1.4695 = 31.226875 and 

21.35 X 1.4705 = 31.395175, 

respectively. Here the true value lies between 31.23 and 31.40. The 
precision has not been helped greatly by the greater number of significant 
figures in only one of the factors. 

1 There are exceptions to this rule. When known differences are to be derived from 

numbers, additional digits beyond those “significant” are sometimes recorded so that 

the correct difference is reproduced when one number is subtracted from the other. 
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Thus, it becomes evident that in multiplication or division the per¬ 
centage precision of a product or quotient cannot be greater than the 
percentage precision of the least precise factor in the computation. All 
superfluous digits are, therefore, rejected, the last retained digit being 
increased by 1 if the following rejected digit is 5 or over. Thus, in 
rounding off, 47.55 becomes 47.6. Where four-place logarithms are 
used, four significant figures are automatically retained; with five-place 
logarithms, five significant figures are retained. 

In additions or subtractions, the position of the decimal point is 
important. If the last significant figures of two numbers occur in the 
same decimal place, the final significant figure of the sum or difference 
lies in that place. Otherwise, the last significant figure of the sum or 
difference agrees with respect to the decimal place with that of the num¬ 
ber having its last significant figure farther to the left with respect to 
the decimal point (for example, fewer figures after the decimal place). 
When the student is in doubt about the number of significant figures in 
his result, he should compute the maximum and the minimum values of 
the result. In this way, he learns to judge the relation between his final 
values and the data on which they rest. 

Units and Accepted Constants 

The relationships of thermodynamics are especially useful because 
they permit correlation of the results of many different types of measure¬ 
ment with each other. In the thermodynamic equations as in other 
equations, the value of any one term can be found if the values of the 
other terms are known. These data, however, may come from many 
different sources. For example, the experimental data for one of the 
terms in the thermodynamic equation may be obtained with a calorim¬ 
eter at room temperature, those for a second term may come from a 
chemically determined equilibrium constant or from the emf of an electro¬ 
lytic cell, and those of a third term may come from heat capacity measure¬ 
ments at temperatures ranging from room temperature to temperatures 
approaching absolute zero, or from the combination of statistical theory 
with band spectrum data. When values assembled from such a variety 
of data are combined in a single equation, they must be stated in terms 
of some common unit, the data being converted with the aid of proper 
conversion factors. It is obvious that, if the values obtained by entirely 
different methods are to be compared, the conversion factors utilized 
must be accurate enough to permit the comparison. 

The question of conversion factors frequently arises when older data 
are compared with newer data. For example, if the data are tabulated 
on a molar basis, their numerical values depend on the assumed value for 
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the molecular weight, for the practical experimental unit of mass is the 
gram and not the mole. Whenever the degree of accuracy of the data 
is comparable with that of the molecular weights, any subsequent 
revision of the pertinent molecular weights necessitates a corresponding 

revision of the molar values.1 
The calorie is a traditional unit of energy, originally defined as the heat 

required to raise the temperature of one gram of water one degree centi¬ 
grade. Unfortunately, the heat capacity2 of water is not independent 
of the temperature of the water so that the calorie is not an invariable 
unit. Therefore, one should note the particular calorie utilized when 
examining energy data expressed in calories. Similarly, it is the duty 
of the author or compiler of data to give the necessary information. If 
an experimenter does not indicate the conversion factors he selects, one 
may safely infer that his attention to the other niceties of experimentation 
is not sufficiently careful for the securing of precise data. 

Some of the fundamental units and constants are given below. A 
more complete list of self-consistent constants and conversion factors is 
given in Tables I, II, and III of the Appendix. 

Fundamental Units.—The fundamental units of length and mass are 
the platinum-iridium standards prepared in 1875 and deposited at the 
Bureau International des Poids et Mesures at Sevres, France. Copies 
of these standards are held by the National Bureau of Standards at 
Washington. 

The fundamental unit of length is the meter (m), which is the distance 
at 0°c between the axis of two lines ruled on the prototype in France. 
The other metric units of length are multiples or submultiples of this 
unit. (In the United States the yard is defined as 3,600/3,937 meter.) 

The fundamental unit of mass is the kilogram (kg), which is the mass 
of the prototype in France. The gram (g), which is 10~3 kg, is frequently 
treated as a primary unit. (In the United States the avoirdupois pound 
is defined as 453.5924277 grams.) 

The fundamental unit of capacity is the liter, which is the volume 
of one kilogram of pure water at the temperature of its maximum density 
under a pressure of one normal atmosphere. Modern density determina¬ 
tions have shown that the maximum density of water (in grams per cubic 
centimeter) is slightly less than unity; hence, one liter is slightly greater 
than 1,000 cm8. The best values for the maximum density of water 
indicate that 

1 For apparent exceptions to this rule, see F. R. Bichowsky and F. D. Rossini, 

“The Thermochemistry of Chemical Substances/’ p. 10, Reinhold Publishing Corpora-. 

tion, New York, 1936. 

8 See Table 3.1. 
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1 liter = 1,000.028 cm3 

The fundamental unit of lime is the second (sec), which is defined as 
1/86,400 of a mean solar day. 

Conventional Constants.—Among the constants defined arbitrarily is 
the standard gravity (g). It is defined, not as the gravity at any par¬ 
ticular place, but as exactly 980.665 cm/sec2. 

The normal atmosphere (atm), also called the standard atmosphere, 
adopted by the Seventh General Conference of Weights and Measures1 
in 1927, is defined as the pressure due to a column of mercury 760 mm 
high, having a mass of 13.5951 grams per cm3, subject to a gravitational 
acceleration of 980.665 cm/sec2, and is equal to 1,013,250 dynes per square 
centimeter. 

Another unit of pressure, the millimeter of mercury (mm), is defined 
as 1/760 of the standard atmosphere. 

Mole.—Although the kilogram (or the gram) is the fundamental unit 
of mass, it is not the most convenient unit for expressing the unit mass 
of substances undergoing chemical reactions. Here the convenient unit 
is the molecule or the gram molecule consisting of N molecules, where N 

is Avogadro's number. The unit of mass which consists of the N mole¬ 
cules, a molecular weight in grams of a pure substance, is called the 
mole. The term “molecular” can then be reserved for the individual 
molecule. In this terminology, the molecular energy is the energy of a 
single molecule, and the molar (or molal) energy that of the mole of sub¬ 
stance. Thus, the terms “molar energy” and “molar volume” refer to 
32.0000 grams of oxygen, 16.042 grams of methane, or 18.016 grams of 
water. 

The convenience of the molar unit of mass is so great that nearly all 
the data for pure substances are recorded in molar units. Physicists 
have not followed this practice so widely as have chemists, in part because 
the experimental unit of mass is the gram, and in part because molar 
values need revision whenever the atomic weights on which they are 
based are revised. However, the advantages of the molar units are 
great enough to overcome these handicaps. 

We write chemical formulas for many substances whose precise molec¬ 
ular weights we do not know. The formulas 02 and CH4 represent 
very well the molecular and, therefore, the molar composition of oxygen 
and methane, but the formula H20 is not so satisfactory for water. It 
represents the molecular weight of the vapor but not that of liquid water. 
The term “formula weight” has been proposed to represent the weight 
in grams of the sum of the atoms indicated by the formula. We shall 
attempt no such discrimination. The term “mole” will be used to 

1 Burgess, op, cit. 
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represent the molar, formula, or atomic weight in grams of the substance, 
as indicated by the formula as written. Thus, we take the molar volume 
of NaCl as the volume of 58.454 grams of the salt without thereby 
implying that the formula NaCl represents a real “molecule” of the salt 
either in the crystal or in an aqueous solution. Whenever the molar 
weight is not well established by experiment or usage, we shall always 
indicate with a chemical formula the quantity of substance to which we 
apply the term “mole” or “molar.” 

Concentration Units.—Many of the thermodynamic properties of a 
substance are functions of the concentration of the substance. For this 
reason, we shall review briefly the various methods of expressing con¬ 
centration in common use. The concentration of a pure solid or liquid 
does not change rapidly with either pressure or temperature; hence, 
expressions for the change in concentration of these condensed phases do 
not enter the usual thermodynamic equations applied to chemistry. 
But the concentration of pure gases changes so rapidly with pressure and 
temperature that this change cannot be disregarded as negligible. For 
n moles of an ideal gas, the pressure, volume, and temperature being 
equal to P, V, and T, respectively, the ideal gas law gives the relation, 

PV = nRT (1.15) 

When V is measured in liters and P in atmospheres, R is the gas con¬ 
stant in liter-atmospheres per degree and the concentration in moles per 
liter is given by 

C = -f = 0-18) 

At constant temperature the pressure may be used as a measure of the 
concentration of the gas, for 

P = CRT (1.17) 

However, it is in dealing with solutions that we find most need for 
expressing the concentration of the various constituents of the solution. 
If a solute is to be emphasized, the concentration is frequently expressed 
in terms of number of moles of solute in unit volume of solution. Thus, 
a solution containing one mole of solute per liter is called a molar solution. 
In many problems, however, the functions take on their most instructive 
form if concentrations are expressed in mole fractions. If the solution 
is composed of nA moles of the substance A, nB moles of the substance 
B, and nc moles of the substance C, the mole fraction Na of A in the 
solution is 

AT 
Na — -;-j- 

Ua + + tie 
(1.18) 
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Similarly, the mole fraction of B, 2VB, and that of C, Nc, are given by 

Nb 
nB 

Ha + Hb + n of 
Nc = 

He 

Ha + Hb + He 
(1.19) 

The sum of all the mole fractions in a solution is unity, for, from the 
defining equations (1.18) and (1.19), we have 

Na + Nb + Nc 
Ha ~-f~ Hb ~f~ He 

Ha + Hb + He 
(1.20) 

Sometimes, moles per cent are used in place of mole fractions, the numerical 
values of the former being 100 times those of the latter. 

Mole ratios are also used as concentration units. Thus, in a binary 
solution of A and B, we have 

H\ _ Na 

Hb Nb 
(1.21) 

where ha/hb is the mole ratio of the two substances. 
For liquid solutions, especially aqueous solutions, another method of 

expressing concentrations is employed, which is equivalent to the mole 
ratio. Thus, a solution containing 1 mole of a constituent (called the 
“solute”) in 1,000 grams of a second constituent (called the “solvent”) 
is defined as a molal solution. In general, even for aqueous solutions, 
a liter of the solution does not contain exactly 1,000 grams of solvent. 
Molalities designated by m, therefore, differ from molarities, designated 
by C. Because 1,000 grams of water contains 55.506 moles, the mole 
ratio of a molal aqueous solution is 1/55.506. 

Electrical Units.—The electrical units in common use, called “practi¬ 
cal units,” are defined in terms of the fundamental units. Thus, the 
volt is 108 cgsm units of emf, the ampere (amp) is cgsm unit of cur¬ 
rent (the coulomb being the corresponding unit of quantity of electricity), 
and the ohm is 10° cgsm units of resistance. The practical unit of energy, 
the joule, equal to the volt-ampere-second or the volt-coulomb, is equal 
to 

10R X tV — 107 ergs (dyne-cm) 

In experimental work, however, electric measurements are made not 
in terms of the above absolute units but in terms of standards selected 
by international agreement. Units expressed in terms of these standards 
are called “international” units. Thus, the emf of the Weston normal 
cell at 20°c is defined as exactly 1.0183 international volts; 1 international 
volt therefore becomes 1/1.0183 of this value. The international ampere 
is defined as the unvarying electric current that, under specified condi- 
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tions, deposits silver at the rate of 0.00111800 gram per sec. The inter¬ 
national ohm is the resistance at 0°c of a column of mercuiy of constant 
cross section, having a mass of 14.4521 grams and a length of 106.300 
cm at this temperature. Although the international units at the time 
they were established (1908) agreed with the absolute units within the 
precision of the measurements, the two sets of units do not agree within 
the limits of present-day accuracy. 

The “best values” for the relations between the international units 
and the corresponding absolute units, selected by the National Bureau 
of Standards are 

1 international ohm = 1.000494 ± 0.000015 absolute ohm 
l international volt = 1.000332 ± 0.000029 absolute volt 

1 international coulomb = 0.999838 ± 0.000025 absolute coulomb 

From these values, we have 

1 international joule = 1.000170 ± 0.000052 absolute joule 

Calorie.—Historically, the calorie (cal) sometimes called the gram 

calorie, was defined in terms of the specific heat capacity of water, that 
is, as the quantity of heat required to raise the temperature of 1 gram of 
water l°c. The kilocalorie (kcal), also called the kilogram calorie, is 
defined as 1,000 calories. 

When more careful measurements showed that the heat capacity of 
water is not constant but changes with temperature, three different 
calories came into common use. The 15° calorie was defined as the quan¬ 
tity of heat required to raise 1 gram of water from 14.5 to 15.5°c and the 
20° calorie as that required from 19.5 to 20.5°c. The mean calorie was 
defined as 1/100 the quantity of heat required to raise 1 gram of water 
through the 100° interval from 0 to 100°c. The heat capacity values 
corresponding to each of these calories may also be measured in terms 
of the joule. The ratio between the specific heat capacity of water in 
joules and in calories is called the “mechanical equivalent of heat” or 
the “electrical equivalent of heat,” there being as many ratios as kinds 
of calories. These ratios, being dependent on experimental measure¬ 
ments, changed as the heat capacities of water became more and more 
accurately known. As long as experimental calorimetric results did not 
have a high degree of accuracy, such changes were not particularly impor¬ 
tant, but with the rise of modern calorimetry the experimental heats of 
reaction became more precise than the conversion ratios. 

In modern calorimetry1 heats are not measured in terms of the specific 
heat capacity of water, that is, in terms of one of the “calories.” Instead, 

1 For an excellent review, read the paper of F. D. Rossini, “ Modern Calorimetry/1 

Chem. Rev., 18, 233 (1936). 
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they are compared directly or indirectly with the electrical energy 
required to produce a similar temperature rise in a system as nearly 
identical with the reacting system as possible. By this method heats are 
measured directly in terms of the electrical unit of energy, the interna¬ 
tional joule. The experimental heats in joules are then converted to 
calories with the aid of the appropriate conversion factor. But such 

Table 1.4.—Values of the Various Calories in Joules* 

International 

joules 

Absolute 

joules f 

15° calorie . 4.1850* 4.1857 

20° calorie. 4.1811* 4.1818 

Mean calorie. 4.1900* 

Thermochomical calorie. 4.1833f 4.1840 

* From the data of N. S. Osborne, H. F. Stirnson, and D. C. Ginnings, J. Research Natl. Bur. Stand¬ 

ards, 23, 197 (1939). 

f Calculated with the relation, 1 ini joule = 1.00017 abs joule. 

J Defined value. 

data, expressed in calories, would be subject to revision whenever more 
accurate heat capacities of water became known. For these reasons 
Rossini1 introduced a defined calorie, now called the thermochemical 

calorie, based on the following relations: 

1 calorie (defined) = 4.185 absolute joules (1*22) 
1 calorie (defined) = 4.1833 international joules (1.23) 

Equations (1.22) and (1.23) agreed with the then accepted relation 
between the absolute joule and the international joule. When new 
determinations at the National Bureau of Standards resulted in a revised 
ratio between the international joule and the absolute joule, both of the 
defining equations (1.22) and (1.23) could not be maintained. Because 
the experimental data are obtained directly in international joules, 
Rossini2 elected to retain equation (1.23) as the definition of the thermo¬ 
chemical calorie. This defined calorie, not directly related to the heat 
capacity of water, has been accepted generally by thermochemists. We 
shall use it exclusively except where a definite statement is made to the 
contrary. Similarly, the kilocalorie will represent 1,000 defined 

thermochemical calories. 

1 See Bichowsky, F. R., and F. D. Rossini, “Thermochemistry of Chemical 

Substances,” Reinhold Publishing Corporation, New York, 1936. 

* Rossini, F. D., J. Research Natl. Bur. Standards, 22, 407 (1939). 
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The relative values of the different kinds of calories may be obtained 
from the data of Osborne, Stimson, and Ginnings on the heat capacity of 
water listed in Table 3.1. These workers used the relation, 1 interna¬ 
tional joule = 1.00019 absolute joule, and not the more recent value. 
When we use the relation, 1 international joule = 1.00017 absolute joule, 
we obtain the values in Table 1.4. The data in Table 3.1 indicate that 
the thermochemical calorie corresponds to the specific heat capacity of 
water at about 17°c. Observe, however, that the present calorie is con¬ 
nected only historically with the heat capacity of water. 

Volt-faraday, or Volt-equivalent.—For most purposes of chemistry, 
the convenient units of quantity of electricity are the electronic charge, 
equal but opposite in sign to that of an electron, and the faraday, the 
charge per oxidation-equivalent of an element or compound. The 
faraday is frequently called an “ equivalent/' The corresponding energy 
units are the volt-electron and the volt-faraday, or volt-equivalent. 

The best value1 for the electronic charge is 

1 electronic charge — 4.8024 X 10~10 esu 
= 1.6020 X 10”19 absolute coulomb 

When this value is multiplied by the Avogadro number, we obtain for 
the faraday 

1 faraday = 96,486 absolute coulombs 

From the values for the electrical units previously given, we obtain for 
the energy units, the volt-electron and the volt-faraday: 

1 absolute volt-electron = 1.6020 X 10“19 absolute joules 
1 absolute volt-faraday = 96,486 absolute joules 

= 23,061 calories 
1 international volt-faraday = 96,501 international joules 

= 23,068 calories 

From these relations, we obtain the faraday constant F which is used to 
convert volt-faradays to calories or joules. Values for the more com¬ 
monly used constants and conversion factors are given in the Appendix. 

Problems 

The use of handbooks as a source of data for calculations in thermodynamics is 

deprecated primarily because most handbooks do not indicate the original sources of 

their data. In general, their data in different tables are not based on a self-consistent 

set of conversion factors. Problems in thermodynamics frequently require data 

from different sources. Whenever a student looks up a datum in the chemical 

literature, he should record its source. In this way, he learns to relate the result of a 

calculation with the data on which it rests. 

1 The values in this section are those selected by the American Petroleum Insti¬ 

tute Research Project 44 at the National Bureau of Standards. Selected Properties 

of Hydrocarbons. Table a, Values of Constants, Mar. 15, 1945. 
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1.1. What is the mole fraction of the solute in a molal aqueous solution? What 

additional data are required to determine the molarity of the solution? 

1.2. At 20°c the density of an aqueous solution of 25 per cent sulfuric acid is 1.1783. 

Calculate (a) the molality of the sulfuric acid, (5) its molarity, and (c) its mole fraction. 

1.3. The linear expansion of aluminum is given by the equation 

It = J0(l +at + bt2) 

where a = 22.65 X 10"6, b = 9.5 X 10~s, t is the temperature in degrees centigrade 

as indicated by a gas thermometer, (0 is the length at t - 0, and lt is the length at the 

temperature t. 

If temperatures are measured with an aluminum thermometer on the basis that 

equal increases in length of an aluminum rod represent equal intervals of temperature 

and if the thermometer is calibrated at the fixed points of melting and boiling water, 

what temperature will the aluminum thermometer indicate w'hen the gas scale reads 

50°c? 

1.4. (a) When 1 cc of nitrogen at 0°c and a pressure of 1 m Hg is cooled to — 100°c 

at constant pressure, its volume decreases 0.3686 cc; if the volume is kept constant, 

its pressure decreases 0.3673 m. Calculate the apparent absolute zero of tempera¬ 

ture (1) for the constant-pressure and (2) for the constant-volume nitrogen thermom¬ 

eter. Give reasons for the difference. 

(b) When 1 cc of nitrogen at 0°c and a pressure of 1 in Hg is heated to 100°c at 

constant pressure, its volume increases 0.36745 cc; if the volume is kept constant, its 

pressure increases 0.36742 m. Calculate the apparent absolute zero of temperature 

from these data. Compare with the results in (a). Explain any differences. 

1.5. A benzene-toluene solution contains 50 per cent of benzene by weight. What 

is the mole fraction of the benzene? What is the mole ratio of benzene and toluene? 

1.6. A benzene-toluene solution contains 50 per cent of benzene by volume at 20°c. 

What is the mole fraction of benzene? The weight fraction of benzene? 

1.7. A given energy has a value of 1,000 defined thermochemical calories. What 

will be the value in 15° calories and in 20° calories? Calculate the percentage devia¬ 

tions of the 15 and the 20° calories from the thermochemical calorie. 

1.8. From the values of the constants in the Appendix calculate the value of 

1 electron-volt per molecule in calories per mole. 



CHAPTER 2 

THE FIRST LAW OF THERMODYNAMICS 

Thermodynamics deals with the science of energy and with its 
exchange between bodies. It establishes the limitations on the possible 
types of exchange and furnishes the basis for calculation of the quantity 
of energy exchanged, but it does not concern itself with the mechanism 
of the process. A typical thermodynamic problem is of the following 
kind: Given a system in an initial thermodynamic state. Is the system 
at equilibrium or will it change to another state at which it will be at 
equilibrium? If it does change, what energy quantities are involved? 
The answer can be stated in terms of certain properties of the system 
in the initial state and in the final state. These properties, of special 
utility in thermodynamics, are called “ thermodynamic properties. ” It 
appears that a science of this kind has particular applications to chemistry 
for it offers an answer to the chemical problem: Can a desired chemical 
process take place and, if so, what are the optimum conditions for the 
process? Thus, since thermodynamics can give quantitative answers 
to equilibrium problems, it is almost indispensable to the chemist who 
wishes a fundamental understanding of chemical equilibrium. 

The terms energy, system, and state appeared in the preceding out¬ 
line of the scope of thermodynamics. Since these terms are basic in the 
logic of thermodynamics, they deserve more detailed study. 

Energy and Its Forms.—Energy is often given descriptive names in 
connection with certain processes, substances, or configurations. Thus, 
it has been classified as potential, kinetic, thermal, mechanical, electrical, 
radiant, chemical, surface, or atomic energy. However, such classifica¬ 
tion is not particularly helpful in thermodynamics, which is concerned 
more with states and changes in states than in mechanisms. The laws 
of thermodynamics are general laws, not limited by these or other classi¬ 
fications. Accordingly, although we may use some of the terms for 

descriptive purposes, they are to be regarded only as terms of convenience. 
Chemists usually deal with substances at rest and in the absence of 

electrical and magnetic fields. Furthermore, chemical energies are rela¬ 
tively large and tend to overshadow gravitational and minor mechanical 

effects. Except for substances of colloidal dimensions, surface energies 
are relatively smafll and may usually be disregarded. Of course, when 

any of these forms of energy, usually disregarded, become large enough 
24 
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to contribute to the total energy effects, they must be included in the 
calculations. 

The energy effects of atomic transmutations are relatively enormous, 
but they must be considered only for processes in which the transmuta¬ 
tions occur. In the ordinary chemical processes, the atoms remain 
stable and their states can be represented accurately by the proper 
thermodynamic functions. The energy produced through atomic fission 
or other transmutation is subject to the same restrictions as other “ types” 
of energy. 

In the preceding classification, heat and work did not appear. In 
thermodynamics, heat and work are not considered forms of energy.1 
A system has energy but not heat and work. When the system loses 
energy, some of the energy may be measured as “heat” and the remainder 
as “work.” But, when the heat enters a second system and the work 
is done on this second system, the second system increases in energy; 
it is not said to have more heat or more work. It has more energy, equal 
according to the first law of thermodynamics to the decrease in energy 
of the first system. Thus, heat and work are to be regarded as energy in 
transit. 

System.—Energy is an extensive property of a substance; its quantity 
depends on the amount of material under consideration. If we wish to 
specify definite values for the energy and the other extensive thermo¬ 
dynamic functions, we must therefore consider definite bodies or sub¬ 
stances. For this reason, the concept of the thermodynamic system is 
utilized. A system is any space or any material that we wish to consider 
separately from all other space or material, the system being separated 
from the rest of the universe, called the surroundings, by real or imaginary 
boundaries. The system may be a calorimeter and its contents, a single 
crystal of a solid, a polycrystalline mass, a definite mass of gas that may 
change volume and shape, or a mixture of solid and liquid. It may be 
large or small, and it may contain inert parts. It may change in volume, 
provided that boundaries remain between it and its surroundings. The 
essential requirement is that it be so separated from its surroundings 
that exchanges of energy between the system and the surroundings can 
be observed and controlled. In general, we shall discuss systems con¬ 
taining a definite mass of material, but we may also discuss systems 
representing a definite space into which definite masses of materials are 
introduced or from which definite masses are extracted. In thermo- 

1 The above classification is that of classical thermodynamics. J. N. Br0nsted, 

in his system of energetics, uses the two terms in somewhat different senses. Accord¬ 

ingly, the energy equations that he derives, though correct, differ somewhat from those 

of the classical thermodynamics. J. Phys. Chem., 44, 699 (1940); Phil. Mag.} (7) 

29, 449 (1940); Kgl. Danske Videmkab. Selskab., Mat.-fys. Medd. XIX, 8 (1941). 
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dynamic discussions, it is common practice to select systems that permit 
a simple and clear analysis of a problem. 

A system that does not exchange energy with its surroundings is said 
to be an isolated system. Within such a system, there may be exchange 
of energy as long as all these changes take place in the system itself. An 
adiabatic system is one that does not exchange heat with the surroundings; 
it may still exchange work. For the purposes of thermodynamics, it is 
more important that energy exchanges between system and surroundings 
be of known kind and amount than that they be nonexistent. 

State.—A system is said to be in a given state when its various prop¬ 
erties have definite values. Thus, when its values of the volume, tem¬ 
perature, pressure, composition, energy, etc., are fixed, the systen^is in a 
definite state. Some of these properties are extensive 'properties, that is, 
properties dependent on the amount of substance. Examples are energy, 
volume, and mass. Other properties, such as temperature and pres¬ 
sure, do not depend on the amount of substance; they are called intensive 

properties. The molar1 or specific properties such as density, concentra¬ 
tion, or the related molar or specific volume, and the molar, or specific, 
energy play the role of intensive properties in describing the state of a 
system. In general, all molar quantities that describe the state of a 
system may be classed as properties of the system.2 

Additional thermodynamic functions may be used to describe the 
state of a system. However, not all these functions are independent. 
Thus, if the molar volume and the pressure are known for a perfect gas, 
the temperature has the value indicated by the gas equation Pv = RT. 

The energy and the other thermodynamic functions will also have definite 
values determined by the independent variables P and v. The number 
of variables or properties necessary to define the state of a system increases 
with the complexity of the system. However, the question as to which 
of the variables shall be chosen as the independent variables is one of taste 
and convenience. 

When a system is left to itself, some of the properties of the system 
tend to become uniform throughout the system. Pressure and tempera¬ 
ture tend to become equalized in this way. If pressure differences (or 
differences in partial pressures) exist in a system, the parts of the system 
at the higher partial pressures tend to move to regions of lower partial 
pressures until the partial pressures are uniform in all parts. If pressure 

1 A specific property is the property referred to unit mass of the substance which is 

traditionally one gram of the substance. As stated earlier, in chemistry the con¬ 

venient unit of mass of a substance is the mole. Molar properties are therefore specific 

properties based on the mole as a unit of mass. 

2 In general, molar values of extensive properties will be printed as small capitals. 

Thus, where V is volume in general, v is the volume per mole. 
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is used to indicate the state of a system or the states of different parts 
of it, it must obviously refer to a uniform pressure throughout the system 
or to a specified pressure in each part of it. Similarly, a specified pressure 
for any part of a system has meaning only if it refers to a uniform pressure 
within that part. The temperature must also be uniform if it is to 
describe the state of the system. If temperature differences do exist in 
an isolated system and the system is allowed to stand, energy will flow 
among the various parts of the system until thermal equilibrium has 
been established and the temperature is uniform. The concept of the 
state of a system, therefore, can be applied only to systems at equilibrium 
in these important respects. 

Under special conditions, the attainment of uniform values of pressure 
and temperature in a system may be impossible. A flow,of material or 
of heat through the system may produce pressure or temperature gradients 
that become stabilized so that the pressure or the temperature of any 
part of the system reaches a constant value which differs, however, from 
that of other parts of the system. Such a system is in a steady state, 
but it is not in equilibrium. Unless other conditions are expressed spe¬ 
cifically, we shall use the term “ state ” to represent an equilibrium state. 

Equilibrium.—If a system is to be in complete equilibrium, it is neces¬ 
sary that there be mechanical equilibrium, that is, (1) that there be no 
unbalanced forces in the system, tending to displace the parts of the 
system with respect to each other; and (2) that there be no unbalanced 
forces between the system and its surroundings, tending to displace the 
system with respect to its surroundings. A system in which diffusion 
is occurring obviously is not in mechanical equilibrium. However, in 
most of the systems that we shall discuss, the requirement of mechanical 
equilibrium is fully met. In such systems, there are no unopposed pres¬ 
sure differences. 

A second requirement of a system at equilibrium is that there be 
thermal equilibrium, that is, that there be no temperature differences in 
the system. If there are temperature differences in a system, our com¬ 
mon experience is that energy flows from the hotter parts of the system 
to the colder parts until a uniform temperature is established. 

A third requirement for complete equilibrium is that there be chemical 

equilibrium, that is, that the substances represent the possible combina¬ 
tions of the constituent elements in their most stable proportions at the 
experimental conditions. This equilibrium requirement is the hardest to 
secure in many chemical systems. As chemists, we know that many sub¬ 
stances can be kept for long periods of time even though they represent 
combinations of the elements less stable than other possible combina¬ 
tions. Thus, a mixture of hydrogen and oxygen gases at room tempera- 
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ture may be maintained for long periods of time even though water is 
much more stable than the mixture of the two constituent substances. 
Under these circumstances, one can treat the mixture of hydrogen and 
oxygen gases as a system at a definite state for the state of the system 
can be expressed in terms of definite, characteristic properties. Hence, 
the various thermodynamic functions can be used to characterize the 
system. However, a system that remains unchanged when not in chem¬ 
ical equilibrium should be called inert rather than stable. 

As we have stated, a system may be in mechanical and thermal 
equilibrium without being in chemical equilibrium. As chemists, we 
know also that a system may be in chemical equilibrium without being 
in thermal or mechanical equilibrium. For thermodynamic equilibrium, 
however, the system must be in equilibrium in all three respects. When a 
system is in thermodynamic equilibrium, all its properties have definite 
values, representative of its equilibrium state. These properties, there¬ 
fore, characterize and define the state of thermodynamic equilibrium of 
the system. 

Phase.—The concept of state, as used by the thermodynamicist, 
should not be confused with the restricted meaning of state sometimes 
used in elementary chemistry and physics to denote the physical form 

in which a substance occurs. In physical chemistry and in thermody¬ 
namics, the different homogeneous physical forms of a substance are 
called phases. Thus a pure substance may be a gas, a liquid, or a solid; 
the different phases being the gaseous phase, the liquid phase, or a solid 
phase. As we know, for a pure substance there is only one gaseous 
phase, all parts of the gas at equilibrium having properties like all other 
parts of the gas. The gas phase is homogeneous, with uniform properties 
throughout the phase at equilibrium. The primary requirement of a 
phase is that it shall be homogeneous, and a system composed of only 
one phase is called a homogeneous system. A mixture of gases at equi¬ 
librium is also homogeneous, and it therefore consists of only one 
phase. 

For a pure liquid, there is, in general, only one liquid phase, the liquid 

being homogeneous. An apparent exception will exist for those liquids 
which form ‘Tiquid crystals.” When two liquids, such as alcohol and 
water, that are miscible in all proportions are mixed to form a homo¬ 
geneous solution, there is only one phase, the solution phase. When two 
slightly miscible liquids such as water and benzene are mixed, two sepa- 

rate liquid layers form, a water-rich layer and a benzene-rich layer, each 
of which is homogeneous but different in composition from the other. 
There are, therefore, two phases, and the system containing the two 
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phases is a heterogeneous system. A heterogeneous system is one con¬ 
taining more than one homogeneous phase, each separable from the 
other by definite physical boundaries. 

Most pure substances can crystallize in more than one crystalline 
form, each with its own lattice dimensions and with its own properties 
such as solubility, thermal conductivity, and heat capacity. Each of 
the crystalline forms is homogeneous and represents a separate phase. 
Under special conditions, several of these solid phases may coexist, and 
the system containing the pure substance becomes a heterogeneous 
system. When more than one pure substance is present, the number of 
solid or other phases that may coexist increases, but the number that 
can coexist at equilibrium is limited by the rules of thermodynamics. 
This question is discussed in more detail under the phase rule of Gibbs 
(Chap. 17). 

In the application of thermodynamics to specific systems, the question 
may arise as to whether a system is homogeneous or heterogeneous. A 
solution that is a homogeneous dispersion of not too large molecules of 
one substance among the molecules of another is commonly classified 
as a homogeneous system. However, when the dispersed molecules are 

macromolecules of high molecular weight or when the dispersed particles 
are of so-called “colloidal” dimensions, the classification of the system 
as homogeneous or heterogeneous is not obvious. In such cases, it is 
evident that special formulas of thermodynamics derived for strictly 
homogeneous systems cannot be applied without qualification. Because 
chemistry is an experimental science, the correct procedure must be to 
see if the formulas do apply and then to classify the systems on the basis 
of their behavior. One cannot, by defining a given system in a given 
formal way, change its behavior and make it conform to any precon¬ 
ceived or “theoretical” formula. 

First Law of Thermodynamics.—Before the law of the conservation of 
energy could be established, proof was required that heat and work 
represent equal changes in energy. Just before 1800, Count Rumford 
had observed the large amounts of heat produced when cannon were 
bored and had estimated the amount produced per hour by the power of 
one live horse. Subsequently, Sir Humphry Davy observed the increase 
in the rapidity of the melting of ice when two pieces are rubbed together. 
The implications of these experiments were neglected whereas the caloric 

theory of heat, which considered heat as a substance, persisted. It 
remained for Joule in a series of experiments, beginning in 1840, to 
show the interconvertibility of electrical, mechanical, chemical, and 
thermal energies. In his experiments, he obtained the relation between 
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the energy measured in the “heat” unit and that measured in the 
“work” unit, the ratio known as the “mechanical equivalent of heat.” 
These experiments laid the experimental basis for the first law of 
thermodynamics. 

In the meantime, others were investigating energy relations. Seguin, 
the French engineer (1839), had worked on the problem of the “equiva¬ 
lence of heat and work”; Mayer, the German physician, had independ¬ 
ently stated the principle of their equivalence in 1842. In 1848, Helmholtz, 
at that time a Prussian surgeon, published his paper, “t)ber die Erhaltung 
der Kraft,” which brought widespread acceptance of the new principle. 

The results of Joule and the other experimenters may be summarized 
as follows: When heat and work are expressed in the same energy units, 
equivalent amounts of cither added to a system produce equal changes in 
the energy of the system. Similarly, when a system loses energy, some 
of it being transmitted as heat and some as work, the quantity is the same 
(if heat and work are expressed in a common unit) as when the system 
loses the same quantity of energy, all as heat, or all as work. These 
facts are the basis for the first law of thermodynamics. They are repre¬ 
sented by the statement: Energy may be exchanged as heat, work, or both, 
buflhe total quantity remains constant; energy is neither created nor destroyed. 

Consider a system with an initial quantity of energy, Ex. After it 
has exchanged energy, it has energy represented by E2. The increase 

in energy is expressed as AE and defined by the equation 

AE ss E2 — Ei (2.1) 

According to this definition, AE is positive in value if E2 is greater than 
Ei and negative if Ex is the greater. 

But, if the system exchanges energy with its surroundings, which 
initially had the energy E[ and finally the energy Ef2, the increase in 
energy of the surroundings may be represented by AE\ If AE, the 
increase in energy of the system, is positive, the increase in energy of 
the surroundings AE' must be negative by an equal amount in accordance 
with the principle of the conservation of energy. Hence, 

AE = -AE' 

and 
AE + AE' = 0 (2.2) 

Equation (2.2) is a mathematical expression of the first law; the total 
energy change is zero. 

The first law equation may be expressed in another form, more gen¬ 
erally useful because it focuses attention on the system itself. Let the 
heat absorbed by the system during its energy change be designated by q 
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and the work done by the system be designated by w;q and w being expressed 
in the same energy units. Then the equivalence principle enables us to 
write 

&E ~ q — w (2.3) 

This relation is the usual algebraic statement of the first law of thermo¬ 
dynamics. 

Validity of the First Law.—When a system in the state 1 is trans¬ 
formed to some other state 2 and then brought back to the state 1, the 
system is said to have undergone a cyclic process. We have stated as an 
experimental fact that the precise value of the energy gained on going 
from 1 to 2 is regained on the conversion from 2 to 1. The changes in 
energy are numerically equal but opposite in sign so that the net change 
in energy for the whole process is zero. If this were not true and if the 
system required less energy on going from 1 to 2 than it evolved in the 
reverse process, useful energy would have been created in the cycle. 
The excess energy could then be used to drive a machine doing useful 
work continuously—a perpetual-motion machine operating in violation 
of the first law. Such violation is called perpetual motion of the first kind. 

This socially useful prospect has long challenged men to construct a 
machine embodying an energy-creating cycle that would create enough 
energy to overcome frictional resistance in the machine. Every failure 
of such an attempt must be accepted as additional experimental evidence 
for the law of the conservation of energy. We should point out, however, 
that man has collected direct experimental evidence for the validity of 
the first law of thermodynamics only on the earth; the generalization of 
terrestrial experience to include the universe, although reasonable, rests 
on a less rigorous foundation. 

Another generalization extended from ordinary chemical reactions to 
the universe is the law of the conservation of mass. For many years, 
however, evidence from the high temperature reactions in the stars and 
from terrestial experiments on atomic disintegrations has cast doubt on 
both conservation laws. In 1905, Einstein proposed his equation for 
transformations between energy and mass, E = me2, in which E is energy, 
m is mass, and c is the velocity of light. This equation has for some years 
facilitated the interpretation of the mass and energy relations in atomic 
disintegration reactions and has had powerful confirmation in the recent 
large-scale operation of atomic fission reactions. Consequently, neither 
the law of the conservation of energy nor the law of the conservation of 
mass is entirely valid. For the strictest accuracy the two conservation 
laws should be combined in the general law of the conservation of mass- 
energy. However, since we perform our ordinary chemical experiments 
under conditions unfavorable to these mass-energy transformations, we 
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find the separate laws valid within the limits of our experimental error. 
With these qualifications, we can accept the first law of thermodynamics 
as a working principle. 

Energy of a System.—In assigning a definite energy Ex to a system in 
the state 1, we assumed implicitly that the system in that state has energy 
fixed in amount. In chemical thermodynamics we deal primarily with 
systems without independent motion as a whole. If the system itself 
has no kinetic energy, and it does not move in the earth’s gravitational 
field or in other potential fields, all energy changes of the system occur 
within the system itself. Under these conditions, the energy of the sys¬ 
tem is a characteristic function or property. It is fixed by the state of 
the system, which in turn is determined by the mass, volume, composi¬ 
tion, temperature, etc., of the system. We know, for example, that a 
gram of water at a temperature of l°c and atmospheric pressure has more 
energy than it has at 0°c and that this difference in energy is a definite 
quantity; for the amount of energy required to raise the temperature 
of the water from 0 to 1° is identical with that obtained from the water 
when it is cooled from 1 to 0° under the same conditions. Furthermore, 
the amount of energy is entirely independent of the way in which the 
energy is added to, or subtracted from, the water: the energy may be 
added as heat, as electrical work, as mechanical work used to warm the 
water by frictional devices, or as radiant energy. The same statements 
apply to different samples of water of equal mass under the same condi¬ 
tions. Furthermore, 2 grams require twice the energy required by 1 
gram. At every temperature, a sample of water has more energy than 
it has at some lower temperature; hence, at all finite temperatures, it 
has more energy than it has at the lowest attainable temperature. At 
all temperatures, the water, therefore, contains energy. This charac¬ 
teristic energy has been called the internal or intrinsic energy, or energy 

content. Since we shall, in general, consider only the energy of the system 
itself, we shall usually employ the brief term, energy. 

The energy in a heterogeneous system is also a property of the system. 
At 0°c and at 1 atmosphere pressure, a gram of water can be converted 
to a gram of ice at the same temperature and pressure. Here again, 
the energy required to melt the ice is identical with that released when the 
water is frozen to ice. This quantity of energy is unchanged whether 
the energy is added as mechanical energy used to rub two pieces of ice 
together, as electrical energy, as heat, or in any combination of these. In 
this instance, also, when ^ gram of the ice is melted to form gram of 
water, the energy required is one-half that required to melt a whole gram. 
For each state of the water-ice system, a definite amount of energy 
exists: a system £ water + | ice has a characteristic energy value, as 
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representative of the system as its volume or any other property character¬ 
izing the state of the system. As the student knows well, the term latent 

heat is used to indicate that the water is richer in energy than the ice 
even though its temperature is unchanged. The term latent energy 

would be more satisfactory; it is less dogmatic about the nature of the 
energy that the water possesses in excess of that possessed by an equal 
quantity of ice at the same temperature. 

The same principles apply to chemical systems containing more than 
one substance. Two different equal samples of sucrose in the same state 
have equal internal energies. When these two samples are burned 
under similar conditions in a bomb calorimeter, they yield equivalent 
amounts of water and carbon dioxide, in accordance with the laws of 
chemical combination. They also deliver equal quantities of heat to 
the calorimeter. These heats of chemical reaction, called, more simply, 
heats of reaction, represent the difference in internal energy between the 
system sucrose plus oxygen and the system carbon dioxide plus water. 
In terms of the atomic theory, they represent a type of latent energy 
called chemical energy associated with the arrangements of the atoms in 
the different molecules of substances participating in the chemical 
reaction. 

The first law of thermodynamics has nothing to say concerning the 
nature of the internal energy of a system whether “thermal,” “latent,” 
or “chemical.” In terms of the atomic theory and the kinetic theory 
of matter, part of the internal energy of a system is interpreted as being 
in the form of the kinetic energy of the individual molecules and atoms 
in the system. Other parts of the energy appear to have the character 
of energy of configuration. These questions, though interesting and 
important for a study of chemical processes and inherent in the applica¬ 
tion of statistical mechanics, are not among the primary problems of 
classical thermodynamics. Thermodynamics concerns itself chiefly with 
experimental quantities and not with kinetic interpretations. 

Heat.—The term “heat” has been widely used both in popular and in 
scientific language and has come to have a variety of meanings, some of 
which are vague. If it is to be used in thermodynamic formulas, however, 
it must be more exactly defined. Consider a system surrounded by a 
calorimeter in such a way that no work is done by (or on) the system 
on (or by) the calorimeter or any other part of the surroundings. If the 
system absorbs energy from the calorimeter, we know from the first law 
that the calorimeter has lost an equivalent amount of energy. Since w 

equals zero in this experiment, we have for the system, from equation 

(2.3), 

A E = q (2.4) 
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But all of the energy absorbed by the system was evolved by the calorim¬ 
eter. This energy increase, detectable and measurable by the calorim¬ 
eter, is represented by a positive energy quantity called heat. But one 
does not say that the calorimeter now has less “heat”; it has less energy, 
the amount being AE', where AE = —AE'. 

As we shall see, the heat q is not a property either of the system or of 
the calorimeter or other surroundings. It is merely a measure of the 
energy change of the system (or of the calorimeter). Observe that we 
write AE to represent the energy change E2 — Ex but we do not write 
Aq for there is no “change” in heat. The system does not have an 
increased value of heat though it has absorbed a definite quantity of 
heat q. This quantity q may be large or small depending on the value 
of AE. When AE becomes small enough to be represented by the differ¬ 
ential dE, q becomes a very small quantity which will be represented as 
Dg. Since q is not a property, D# is not an exact differential. T)q 
should be read as “a small value of 5” and not “an increase in the 
function q. ” 

Now consider that the system absorbs energy from the calorimeter as 
before but that the rest of the surroundings does work in some way on the 
system. Let the increase in energy due to energy absorbed from the 
calorimeter be A Eh = q. Since work was defined as positive when done 
by the system, the work done on the system becomes — w, and the increase 
in energy of the system due to the work done on it is AEw = ( — w). 
The total increase in energy of the system is 

AE — A Eh d~ A Ew = q -f- (— w) — q — w 

which is the first law equation (2.3). 
In each of these examples, the heat q is that part of the energy increase 

derived from the calorimeter and, therefore, measured by it. For this 
reason q has been defined as calorimetric heat. 

Equation (2.3) may be expressed in a form that emphasizes q. Thus, 

q — AE + w (2.5) 

When a system has an energy increase AE but does the work w during the 
process, the energy q required from the calorimeter is the sum of the 
increase in energy of the system and the work done by the system. Con¬ 
sequently, when work is done in a process, equation (2.5) shows that the 
heat absorbed, q, no longer measures the change in energy of the system. 
Indeed, in some process AE may be zero; if so, q is a measure of w. 

Another aspect of the thermodynamic concept of heat is important. 
In the exchange of energy between system and calorimeter, no material 
substance was transported. Only energy unaccompanied by matter 
passed between system and the calorimeter. As we shall see, the doing 
of work is always associated with the transport of matter as well as of 
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energy. This difference helps to differentiate between heat and work. 

We find also that energy passes from the calorimeter to the system only 

if the calorimeter is at a higher temperature. There must be a tempera¬ 

ture difference, however slight, if “heat” is to flow. This aspect of heat 

will be discussed more fully in connection with the the second law of 

thermodynamics. 

In thermodynamics, the student who has used the term “heat” in 

other senses must learn the narrower but more exactly defined concept. 

He may be forgiven occasional lapses from correct usage for all of us 

tend through carelessness, if not ignorance, to continue usages that con¬ 

tradict thermodynamic definitions of heat. 

Heat Capacity.—Historically, water was used as the calorimetric sub¬ 

stance whose rise in temperature was a measure of the energy absorbed 

by the calorimeter. Its specific capacity for heat, as measured by the 

quantity of energy required to raise the temperature of one gram of 

water one degree centigrade became the heat unit, the calorie. In 

general, all substances have more energy at higher than at lower tem¬ 

peratures, absorbing heat as their temperatures increase. And for each 

substance the heat capacity C depends directly on the amount of sub¬ 

stance. The heat capacity per gram1 is called the specific heat capacity c 

and that per mole is called the molar heat capacity c. It appears from 

equation (2.5) that the quantity of heat absorbed by a substance depends 

on the amount of work done during the rise in temperature as well as 

on the increase in energy of the substance. Hence, the heat capacity 

of the substance may vary with the conditions under which its tempera¬ 

ture is raised. Heat capacity may also vary with temperature. 

In the experimental determination of heat capacity what is ordinarily 

measured is not the heat required for a rise of one degree but the quantity 

of heat q absorbed during a rise in temperature from T\ to T% or the 

corresponding heat evolved during the temperature fall between the 

same limits. Because heat capacity varies with temperature, its values 

at the temperatures Ti and 1\ are usually different. Then the measured 

heat capacity over the interval Ti — T\ — AT is not the heat capacity 

at either T\ or T2 but is the mean heat capacity Cm. It is defined by the 

relation 

Cm - _ Ti AT ^2‘6^ 

If the temperature interval AT becomes smaller and smaller, in the 

language of the calculus we may write, T\ = T and T% = T + dT so 

*The traditional term “specific heat” is a misnomer. What is measured is the 

capacity of one gram of the substance to absorb heat when its temperature is raised 
one degree in temperature and not the amount of “heat” present in one gram of the 

substance. 
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that A T becomes d T. The value of q also becomes smaller and smaller 

and may be represented as Dg. The true heat capacity C at the tem¬ 

perature T is then 

r _ D? 
0 d T 

(2.7) 

The differential dT represents an increment in temperature that is 

unambiguous because temperature is a property of a system and is, 

therefore, uniquely defined by the state of the system. The temperature 

interval T2 — Ti has a single value. The temperature at any stage does 

not depend at all on the previous history of the system or on the path 

or process by which the system was brought to that state. In the lan¬ 

guage of mathematics, d27 is an exact, or perfect, differential.1 We shall 

reserve the symbol d for exact differentials. 

The first law of thermodynamics, equation (2.3), indicates that the 

heat absorbed is not a complete measure of the internal energy of a 

system unless the work done is zero. As we shall see later, the work and, 

therefore, also the heat absorbed when a system is changed from one 

state to another are not determined by the initial and final states but 

are dependent on the path by which the system is changed between the 

two states. The infinitesimal value of q is, therefore, not an exact differ¬ 

ential. We shall use the symbol D for inexact differentials and shall 

indicate the infinitesimal value of q by Dq as in equation (2.7). 

Heat of Reaction.—Heat is absorbed or evolved by many substances 

even though the temperature is maintained essentially constant during 

the process. Examples of such isothermal heat effects are the latent 

heats and heats of reaction that accompany transitions from one phase 

to another and changes in chemical composition. In terms of the kinetic 

theory, some of the “heat capacity” energy absorbed by a substance 

results in increased kinetic energy of the molecules of the substance and 

hence in increased temperature. On the other hand, latent heat and 

the heat of reaction must be related to changes in potential energies 

resulting from rearrangements of atoms or molecules without an increase 

in the average kinetic energy. 

For most of the purposes of chemical thermodynamics, latent heats 

may be treated as a simple form of heat of reaction. We shall write 

chemical equations for the phase transitions in the same manner as for 

“chemical” reactions. The two types of equation can then be combined 

by the usual methods of combining chemical equations. The heat 
absorbed when 1 mole of liquid water evaporates at 25° to form the 

1 See Epstein, P. S., “Textbook of Thermodynamics,” pp. 22-24, John Wifcy $ 

Sons, Inc., New York, 1937, for criteria for determining whether or not a linear differ¬ 

ential expression is an exact differential. 
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saturated vapor is 10,514 calories. This information is summarized in 

the thermochemical equation 

H20(liq) = H20(g, 0.03122 atm); q = 10,514 cal (2.8) 

where H20(liq) represents 1 mole of liquid water at the specified-condi¬ 

tions of temperature and pressure and H20(g, 0.03122 atm) represents 

1 mole of water in the gaseous form under the stated conditions. Accord¬ 

ing to the usual conventions, the substance disappearing in the process is 

written on the left and the substance produced in the process is written 

on the right side of the equation. 

If the above process is reversed, one mole of the vapor condensing to 

liquid water, the 10,514 calories of heat are evolved. The chemical equa¬ 

tion for this process is the reverse of equation (2.8), and the sign of the 

heat q is also reversed as in 

H20(g, 0.03122 atm) = H20(liq); q = —10,514 cal (2.9) 

When 1 mole of gaseous water at 25°c and at the saturated vapor 

pressure is formed from the elements, 57,803 calories of heat are evolved. 

The thermochemical equation for this reaction is 

H2(g, 1 atm) + i()2(g, 1 atm) = II20(g, 0.03122 atm); 

q — 57,803 cal (2.10) 

According to equation (2.9), when this water is condensed to liquid, 

10,514 calories more of heat are evolved. The heat of formation of 

liquid water from the elements can, therefore, be found by adding equa¬ 

tions (2.9) and (2.10) to give equation (2.11). Thus, 

H2(g, 1 atm) + i02(g, 1 atm) = H20(g, 0.03122 atm); 

q = —57,803 cal (2.10) 

H.O(g, 0.03122 atm) = HaO(liq); q = -10,514 cal (2.9) 

H2(g, 1 atm) + ^02(g, 1 atm) = li20(liq); q = —68,317 cal (2.11) 

If the pressure of the water vapor is 1 atmosphere instead of 0.03122 atmos¬ 

phere (23.73 mm), the heat of the reaction for equations (2.8) to (2.10) is 

changed by the energy difference between a mole of water vapor at 25° and 

0.03122 atmosphere and a mole at 1 atmosphere pressure. This energy 

difference is slightly more than 5 calories. 

Work.—As was indicated earlier, work is always associated with the 

displacement of matter. This means that, when there are no frictional 

losses, one displacement may be used to produce another equivalent 

displacement. Under these conditions, one kind of work can be con¬ 

verted to another kind of work. Thus, mechanical work can be con¬ 

verted to electrical work and electrical work to mechanical work. Work 
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may compress a gas, raise a weight, transfer a substance from one solu¬ 

tion to another, or expand a surface against surface tension, thereby 

increasing the energy of systems without a rise in temperature. When a 

system does work w on another system and there are frictional losses, 

the second system receives work less than wy the remainder of the work 

energy appearing as heat, which can be detected in the usual way by a 

calorimeter. The first law applies to all these energy exchanges. 

Work of Expansion.—The types of work that must be considered in 

chemical systems are limited in number. One type commonly found is 

work of expansion. Consider a system that expands slightly, the increase 

in volume being represented by the differential dV. The system will do 

work in the expansion only if the increase in volume is against an opposing 

pressure P'. Where the infinitesimal amount of work accompanying 

the expansion dV is represented by Dw, we have 

Dw = P'dV (2.12) 

As the symbol D indicates, Die is not an exact differential. In general, 

the pressure Pf of the surroundings is not a function of the volume V of 

the system and we cannot integrate equation (2.12) unless Pf is a function 

of V. Thus, the work w done, when a system expands from the initial 

state with volume Vi to the final state with volume V2, depends on the 

value of P' during the expansion. For the special case in which Pf 

remains constant, wre can integrate and write 

w = Pf AV = P'(F2 - Fi) (2.13) 

Equation (2.13) applies to the expansion of a system against the atmos¬ 

phere that remains at constant pressure during the expansion. 

When pressure is measured in dynes per square centimeter and volume 

in cubic centimeters, the work is expressed in ergs, for 

dynes . , 
X cm3 = dvne-cm = ergs 

cm 

The more common unit of pressure is the normal or standard atmosphere 

(atm) defined as equal to 1,013,250 dynes/cm2. Another common pres¬ 

sure unit is the millimeter of mercury (mm) defined as rhr atmosphere. 

The work done in an expansion of one cubic centimeter against one 

standard atmosphere is 

1 cm3-atm = 1,013,250 ergs = 0.101325 joule = 24.217 cal 

since 

1 abs joule = 107 ergs = 4.1840 cal 

In chemistry, the liter is a more common volume unit than the cubic 
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centimeter. From the relation between these two volume units, we have 

1 liter-atm = 1,000.028 X 0.101325 joule = 101.328 joules = 24.218 cal 

Electrical Work.—Electrochemical work is usually recorded in terms 

of the transport of the charge in faradays against an electrical potential 

Ef measured in volts. Where dn represents the number of faradays, 

the element of work (electrical) is 

T>w = E'd n (2.14) 

In general, E' is not a function of n, and the work for a given value of n 

will vary. However, if the opposing potential remains constant, we can 

integrate and obtain 

w — nE' (2.15) 

When n equals 1 faraday and Ef 1 volt, the electrical work is equal to 1 

volt-faraday. 

In practical work Ef is measured in international volts and w in inter¬ 

national joules. From the relations between the faraday and the 

coulomb, and the international joule and the calorie, we have 

1 int volt-faraday = 96,501 int volt-coulombs 

= 96,501 int joules = 23,068 cal 

In chemical problems, the value for electrical work is usually desired 

in joules or calories. It has, therefore, become the custom to introduce 

a conversion factor, the faraday constant F into equations such as (2.14) 

and (2.15). Thus, 

Dw = FEf dn (2.16) 

w = nFE' (2.17) 

When F = 96,501 int joules/int volt-faraday, equation (2.17) gives the 

value for the work in international joules. When F = 23,068 cal/int 

volt-faraday, the work is in calories. 

Surface Work.—Surface work rarely is important in chemical problems. 

It is usually expressed in ergs, the surface tension being expressed in 

dynes per centimeter and the change of surface in square centimeters. 

When 7 is the surface tension and dA the increase in area, we have for 

surface work 

T>w = 7 dA (2.18) 

Again, if surface tension remains constant, 

w = yNA (2.19) 

Chemical Work.—The equations for the various kinds of work called 

“chemical work ” will be developed as the need for them arises. Chemical 

work, like other work, can be expressed in terms of a “potential” such 
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as P or E, and a “quantity” such as dF or dn. The energy units used 
to express chemical work are often determined by the methods used to 
measure the work. Osmotic work, the work of transferring substances 
from one solution to another, is sometimes calculated from vapor-pressure 
measurements. The results may then be expressed in liter-atmospheres. 

In most thermochemical tables, the values for internal energies and 
heats are expressed in calories or joules. When values for work are to 
be combined with these values in thermochemical calculations, they 
must be converted to the same units. For this reason, we shall usually 
express values for work in calories. The more common relations between 

dV 

Fig. 2.1.—Expansion against an opposing pressure. 

energy units are listed in Table II of the Appendix. This list facilitates 
conversion from one unit to another. 

Reversible Work along a Path.—In the previous section we indi¬ 
cated that the value for the work Dw depends on the value of the opposing 
potential. Thus, for a given expansion dF, the work of expansion 
depends directly on the value of the opposing pressure P'. When P' is 
zero, no work is done during the expansion; when Pf has a maximum 
value, the work done will be a maximum. It is instructive to consider 
what this maximum value can be. 

Consider the system in Fig. 2.1 with volume F and pressure P increas¬ 
ing dF in volume against an opposing pressure P'. The work done during 
the expansion becomes larger and larger as Pf increases in value. There 
is, however, an upper limit to the value for P' if expansion is to occur. 
The system can expand only if P' is less than P, the pressure of the system 
itself. When P' = P, no movement of the piston takes place and no 
work is done. The system is then in equilibrium with the surroundings. 
When P' becomes greater than P, the movement of the piston is reversed 
and the system is compressed. Thus, we see that the maximum work 
of expansion is the work done as the system approaches equilibrium 
with its surroundings during the expansion. When Pf == P, the direction 
of movement of the piston is determined by infinitesimal pressure differ¬ 
ences so that, with a frictionless piston, the work of expansion and the 
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work of compression approach the same value. This value represent 
the reversible work. It is determined by the properties of the system, in 
this case the pressure and volume of the system. Consequently, the 
reversible work, wr or Duv, may be represented by the equations 

Dwr = P d V (2.20) 

wr = J PdV (2.21) 

Equation (2.20) can be integrated since the property P is a function of 
V. The value of wr will evidently depend on the path, which determines 
how P varies with V during the change. 

By similar reasoning, we find that the electrochemical work is also 
greatest when the emf E of the cell is very nearly balanced by the oppos¬ 
ing potential EWhen E = E\ infinitesimal differences in potential 
will permit a reversible cell to do work or will result in an equal amount 
of work being done on the cell. For the balanced reversible cell, the 
reversible work is, therefore, 

Dtcr = EF dn (2.22) 

wr = F J E dn (2.23) 

where the emf E is a property of the cell and a function of dn. Here, also 
the value of wr depends on the path, which determines how E varies 
with n. 

Similarly, for the other kinds of work we find that only when work is 
carried out reversibly can it be calculated from the change in properties 
of the system. Whenever we express work in terms of properties of a 
system, we are implying that it represents the work for a reversible 
process. 

There is another aspect to the securing of work through a reversible 
process. A system will expand fastest when there is no opposing pres¬ 
sure and it is doing no work. An electrochemical cell will discharge 
fastest when it is short-circuited and does no work. The greater the 
opposing potential, the slower the rate of doing the work. The more 
nearly the work done approaches the reversible work, the slower the 
rate at which the work is done. Thus, the reversible work could be 
obtained only at an infinitely slow rate, requiring infinite time. In 
thermodynamics, however, we are not troubled by this limitation for we 
can perform our calculations for the reversible process in terms of the 
properties of the system and need not actually carry out the reversible 

process. 
Heat from a Reversible Process along a Path.—If the energy of a 

system depends only on the state of the system, the change in energy when 
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the system changes from one state to another has a definite value. We 
have seen that, when the change is carried out reversibly along a path, 
the work done also has a characteristic value. Therefore, from the first 
law, the heat absorbed in the reversible process for that path must have a 
definite value. This value we shall indicate by the symbol qr. Thus, 
from equation (2.5), we have for the reversible process 

whence 
q = AE + wr = qr 

AE = qr — wr (2.24) 

Equation (2.24) indicates that, if wr has a definite value when the 
change of the system from one state to another is carried out reversibly 
along a path, qr must also have a definite value for this path. 

Conventions.—There have been widespread differences in the use of 
signs and symbols in thermodynamics. The differences, especially those 
in sign, have been troublesome and have led to misunderstandings and 
mistakes. In recent years greatly increased uniformity has been attained. 
In the United States the signs and symbols of Lewis and Randall1 have 
been rather generally adopted. In 1932, the Deutschen Bunsengesell- 
schaft2 and in 1937 a joint committee of the Chemical Society, Faraday 
Society, and the Physical Society (Great Britain)3 adopted similar con¬ 
ventions with respect to sign and adopted also the majority of the sym¬ 
bols used by Lewis and Randall. We shall follow these conventions. 
The symbols will be introduced as the need for them arises. 

In these conventions, the system is the center of attention. Thus, 
q is positive when heat is absorbed by the system. 
AE is positive when the internal energy of the system increases. 
w is positive when work is done by the system. 

The rule on the sign of w may seem unique; it is justified in part on the 
basis that if the work done equals JP dF, dF will be positive when the 
volume increases, that is, when work is done by the system. 

The convention concerning the sign of the heat absorbed, qf is con¬ 
trary to the usage of some chemists. Chemists formerly considered the 
heat of an exothermic reaction positive and the heat of an endothermic 
reaction negative. This custom focuses the attention on the surrounding 
(that is, the calorimeter) rather than on the system undergoing change. 
According to our conventions, these signs are reversed, the heat being 

1 Lewis, G. N., and M. Randall, “Thermodynamics and the Free Energy of 
Chemical Substances,” McGraw-Hill Book Company, Inc., New York, 1923. 

2 Eucken, A., and K. Fajans, Z. physik. Chem., A161, 233 (1932). 

3 Rideal, E. K., Chairman, Chemistry & Industry, 56, 860 (1937). 
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positive when the system gains heat (endothermic reaction). Instead 
of the older thermochemical equation, such as 

H2 + K)2 = H20(g, 0.03122 atm) + 57,803 cal 

we shall use exclusively the form in equation (2.10). Because of the 
existence of the two conventions with respect to sign, however, it is 
necessary to inspect each table of thermal data consulted for reference, 
to determine the convention followed by the compiler of the table. Heat 
of formation tables frequently list heats evolved as positive; in such 
tables a different symbol for the heat of reaction is sometimes used.1 

Equation (2.10) states specifically that at some temperature (25°c) 
57,803 calories of heat are evolved when 1 mole of water vapor is formed 
from 1 mole of gaseous hydrogen and ^ mole of gaseous oxygen. When 
no qualifying symbol (g = gas, liq = liquid, and c = crystalline solid) 
is enclosed parenthetically, it is understood that the substances are in 
their stable form under the experimental conditions. A pressure of 1 
atmosphere is assumed unless another pressure is indicated. It will be 
noted that the sign of the heat is that for the reaction as it proceeds from 
left to right. If the equation is reversed, the sign of q must also be reversed 
as was done for equation (2.9). Also, for the formation of 2 moles of 
water the heat of reaction is double that for the formation of 1 mole. 
Thus, 

2H2 + 02 = 2H20(g, 0.03122 atm); g = -2 X 57,803 cal (2.25) 

Here it is not necessary to indicate the phase for the hydrogen and oxygen; 
they are both gases at 25°c and 1 atmosphere pressure. 

The Differential First Law Equation.—The statement of the first law 
of thermodynamics previously made applies to finite energy changes. 
We have pointed out that the internal energy of a system is a property 
of the system; finite changes in energy can therefore be represented by 
AE, and infinitesimal changes can be represented by the exact differential, 
dE. From equation 2.3 it appears that, since AE can be expressed in 
terms of properties of a system, the difference (q — w) can be also, even 
though q and w, taken separately, may vary from process to process. 
Furthermore, if AE is small, {q — w) must also be small even though q 
and w, taken separately, may be relatively large. All that is required 
here is that their difference be small. As one differential expression of 
equation (2.3), we have, therefore, 

dE = D(q - w) (2.26) 

1 F. R. Bichowsky and F. D. Rossini in their “Thermochemistry of Chemical 

Substances,” Reinhold Publishing Corporation, New York, 1936, use Qf for the heat 

evolved on formation of a compound at constant pressure. For heat absorbed the 

corresponding symbol is AH. 
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When q and w have small values, we may use the symbols previously 
defined and obtain, as the differential expression of the first law equation, 

dE = Dq - Dw (2.27) 

Dependence of Heat and Work on the Path.—Consider a system con¬ 
taining metallic copper and zinc and large quantities of aqueous solutions 
of copper sulfate and zinc sulfate at unit activity and at room temperature 
(state 1). Let us now allow these substances to react, so that 1 mole 
each of zinc and copper sulfate are consumed and 1 mole each of copper 
and zinc sulfate are produced, there being enough of the solutions so 
that their concentration remains unchanged. This new state of the 
system is designated state 2. The difference in energy of the system 
found for this change is 

AE = E2 - E1 = —51,400 cal 

the minus sign indicating that the system has less energy in state 2 than 
in state 1. These facts are summarized in the equation 

Zn + CuSO^a = 1) = ZnS04(a = 1) + Cu; 
AE = -51,400 cal (2.28) 

The notation (a = 1) indicates that the substance is at unit activity. 
The actual reaction may be carried out in a variety of ways. It may 
occur (a) in a calorimeter in which the materials are merely mixed 
together, (b) in an electrochemical cell in which the electrical energy 
produced does the reversible work wr, or (c) in a Daniell cell in which 
less than the maximum work is produced. In all the processes, the same 
final state is reached from the initial state, for the properties of the final 
products do not depend on the method of manufacture.1 Each process 
leading from a definite initial state to a definite final state is called a 
path. 

Along path (a) no work is done, so that from equation (2.3) 

AE = q — 0 = q = —51,400 cal 

Here the heat evolved in the process is 51,400 calories. 
Along path (b) the maximum work wr is obtained, the emf of the cell 

being constant at E° the maximum, equilibrium value for the cell. From 
equation (2.23), n being 2 and E° being constant at 1.107 volts, 

Wr = FE° f dn = nFE° = 2 X 23,068 X 1.107 = 51,070 cal 

1 The tendency of the displaced copper to form brass with the metallic zinc is here 

neglected. See Van Straten, F. W., and W. F. Eh ret, J. Am. Chem. Soc., 61, 1798 

(1939). 



Chap. 2] THE FIRST LAW OF THERMODYNAMICS 45 

Hence, from equations (2.24) and (2.28), 

AE = qr - 51,070 = - 51,400 cal 
qT = —51,400 + 51,070 = -330 cal 

Here only 330 calories are evolved instead of the 51,400 calories as in the 
irreversible path (a) in which no work is done. 

For (c) there are an infinite number of paths. The actual work may 
vary from 0 as in path (a) (short-circuited cell) to 51,070 calories as in 
path (b) (reversible cell). The corresponding values of q range from 
— 51,400 to —330 calorics. These calculations show that q and w 
depend on the path followed in going from one state to another and are, 
therefore, not properties of the system. The results are summarized in 
Table 2.1 which also includes values for a path in which half the reversible 
work is obtained. 

Table 2.1.—Heat and Work from tiie Reaction between Zinc and Copper 

Sulfate along Several Paths 

(Values in calories per mole) 

Path (ib) Path (c) Path (a) 

Reversible Partly irreversible Completely irreversible 

w — wr w = \wT w = 0 

AE - -51,400 A E = -51,400 A E = -51,400 

w = ivr — 51,070 w — \wr — 25,535 w = 0 

q = </r = -330 q - -25,865 q = -51,400 

Heat of Reaction at Constant Volume.—The data in Table 2.1 indi¬ 
cate that the heat of a chemical reaction varies according to the amount 
of work done during the course of the reaction. When no useful work is 
done by a reacting system, as in the usual calorimetric process, the path 
followed is an irreversible one, but it yields a value for the heat of reac¬ 
tion characteristic of the path. Consider a chemical reaction carried 
out in a closed vessel such as the bomb of a bomb calorimeter. During 
the reaction, the system does not change volume; hence there is no work 
of expansion. Since there is also no other kind of work, w = 0 for the 
reaction. Hence, from the first law, 

qv == AEv (2.29) 

The subscript v is used to emphasize the experimental condition under 
which equation (2.29) is valid, namely, constant volume. For a reaction 
at constant volume, the calorimetric heat of reaction measures the increase 

in internal energy. 
The relation in equation (2.29) is simple and important but it cannot 

be applied directly to many chemical reactions since the usual experi¬ 
mental condition under which chemical reactions occur is that of con- 
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stant pressure. For any reaction in an open vessel, the external pressure 
is that of the atmosphere, which remains essentially constant during 
the course of the reaction. None of the equations (2.8) to (2.11) repre¬ 
sent constant-volume reactions; hence the q values listed for these reac¬ 
tions cannot be identified with the change in internal energy. On the 
other hand, equation (2.28) represents a reaction which, although taking 
place in an open vessel, is essentially at constant volume. All the react¬ 
ing substances are solid or in solution, and the volume change resulting 
from the reaction is so small that the work of expansion is negligible 
in value compared with the other energy changes. In identifying all 
the reversible work for this reaction with the electrical work, we assumed 
implicitly that the work of expansion and other possible types of work 
were negligible. 

Heat of Reaction at Constant Pressure.—When a chemical reaction is 
carried out in a vessel open to the atmosphere, there will be work of 
expansion if the reacting system increases in volume. Where the increase 
in volume is AV and the atmospheric pressure is P', the work of expansion 
is P' AV. If, however, the initial and the final pressures of the system 
equal atmospheric pressure, the work can be expressed in terms of the 
pressure P of the system itself. Then, there being no other kinds of 
work, we have 

w = Wp = P AVp 

and, from the first law, 
qp = AEp *4- P A Vp (2.30) 

The subscript P indicates the condition of constant pressure. Equation 
(2.30) shows that the heat of reaction in an open vessel does not equal 
the change in internal energy whenever there is a change in volume of the 
system. For a reaction at constant pressure, the calorimetric heat of 
reaction equals the sum of the increase in internal energy and the work 
of expansion. 

However, it must not be assumed that the increase in internal energy 
at constant volume is identical with that at constant pressure. Con¬ 
sider an isothermal gaseous reaction in which the final number of moles 
of gas is double the initial number, the initial pressure being 1 atmos¬ 
phere. In a closed calorimeter (constant volume) of 1 liter capacity, 
the values of P and V at the final state will be P = 2, V = 1. In an 
open calorimeter (constant pressure) with the same initial state, P = 1, 
V = 1, the final state will differ from that in the closed calorimeter, 
being P = 1, V = 2. Thus, since the final states in the two processes 
are different, 

AEv 9^ AEp 
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The general relation between qP and qv may be derived from equations 
(2.29) and (2.30). From equation (2.30), 

qp = (AEP — AEv) H" AEv *4” P A Vp 

Hence, from equation (2.29), 

qp — qv P AVP 4- (AEp — AEv) (2.31) 

In most chemical reactions, however, the values of AE resulting from 
chemical changes are so great compared with the change in E resulting 
from isothermal changes in volume (and pressure) of the system that we 
may write 

AEv — AEp 

When the difference between AEv and AEP becomes negligible, equation 
(2.31) becomes 

qp = qv “f- P A Vp (2.32) 

In precise calorimetry,1 however, the differences between A Ev and A Ep 

cannot always be neglected. Similarly, for processes without large heat 
effects, small energy differences become relatively important and equa¬ 
tion (2.32) cannot be used. 

As was indicated, the P AV work term is relatively important only 
when there is an appreciable change in volume. For solids or liquids, 
the volume changes are not great but when gases are evolved or consumed 
the work of expansion becomes significant. Whenever deviation of these 
gases from the ideal gas laws produces errors of a minor order only, we 
may calculate the value of the P AV term with the aid of the ideal gas 
equation (1.15). At constant pressure P and constant temperature T, 
we have, for nx moles of gas before the reaction, PV\ — UiRT and, for 
the n2 moles of gas after the reaction, PV2 = n2RT. Therefore, 

P(V2 - Vi) = (»2 - ni)RT = AnRT 

Accordingly, from equation (2.32), 

qP — qv *4“ AnRT 

Heat Content.—In thermodynamic calculations on chemical reac¬ 
tions at constant pressure, the sum (AEP + P AVP) appears so often 
that it is convenient to represent it by a symbol. Since P, P, and V 
are properties of a system, the sum may be represented by the change 
in some quantity H which is a function of Ey P, and V. Let the change 
in H for the constant-pressure process be represented by A Hp, so that 

AIIP = AEp+P AVP (2.33) 

1 For the kinds of calculations required when heats of reaction at 1 atmosphere 

pressure are derived from the data secured with bomb calorimeters, see the series of 

papers by Rossini and his coworkers at the National Bureau of Standards published in 

the Journal of Research of the National Bureau of Standards. 
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Then, for the conditions under which equation (2.30) was derived 

AII p = qP (2.34) 

The function1 II has been variously named heat content, enthalpy, and 
total heat. None of these names is entirely satisfactory. A system does 
not contain “heat.” On the other hand, the term “enthalpy” is as for¬ 
bidding to the student mind as entropy. Since the change in H for a 
process at constant pressure may be measured by the calorimetric heat 
for the process, no work except work of expansion being done, H can 
by analogy with “heat capacity” be called “heat content.” 

Equation (2.33) serves to define only the change in heat content for 
a constant-pressure process. The general definition of heat content is 
the following equation which reduces to equation (2.33) under the special 
condition of constant pressure 

II s E + PV (2.35) 

Since E, P, and V are properties of a system, H is also a property of 
the system. In a given state a system has definite values of E, P, and V 
and, therefore, a definite value of II. In a new state, with new values of 
Ej P, and V, there will be a corresponding new value of H. The increase 
in heat content, AH = II2 — Hi, on going from state 1 to state 2, may 
be derived from equation (2.35) as follows: 
At state 1, 

Hl - E1 + PiVi 
At state 2, 

II2 “ P2 P2 V 2 

The increase in heat content is, therefore, 

AII = H» - Hx = (P2 + P*Vi) - (Pi + PiVi) 
= (P2 - Pi) + (P272 - P1Vl) 
-A P + A (PV) (2.36) 

However, it is the increase in heat content under the restriction of con¬ 
stant pressure, equation (2.33), that is generally referred to as represent¬ 
ing the AII value for a chemical reaction and not the more general 
relation shown in equation (2.36). From the relations in equations (2.33) 
and (2.34), we may state: For a reaction at constant pressure, the increase 
in heat content is equal to the heat of reaction. Hence, AIIP may be expected 
to be particularly useful at constant pressure, the usual experimental 
condition. 

It is evident from equation (2.36) that there is also a change in heat 

1 Gibbs represented the H function by the symbol x and called it the heat function 
for constant pressure. 
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content for a reaction taking place under the experimental condition of 
constant volume. Thus, 

AHv = AEv + V AP (2.37) 

However, this change in heat content is seldom used, for it represents 
no value that is measured directly. Therefore, whenever AII is written 
without the qualifying subscript, it refers to A Hp and not to A Hr. Fur¬ 
thermore, we should remind ourselves that the heat of reaction under 
consideration is that measured in a calorimeter when no work is done 
except work of expansion. When there is electrical, or surface, or 
chemical work during the process, equation (2.33) is valid but does not 
represent the heat of reaction. 

Differential Expressions for //.—From the defining equation for the 
heat content, [equation (2.35)], we obtain the differential forms 

d/7 - dE + d(I>V) (2.38) 
- dE + VdP + PdV (2.39) 

At constant pressure, equation (2.39) becomes 

d IIP = dEP + PdVp (2.40) 

If the reversible work of expansion in a process is equal to P dV as 
in equation (2.20), there being no other kinds of work such as electrical 
work, the differential first law equation (2.27) becomes 

dE = Dq - PdV (2.41) 

A comparison with (2.40) shows that, under these conditions, 

dllp — Y)(jp (2.42) 

Absolute Values of E.—We have seen that energy is a function that 
depends only on the state of the system and not on its previous history. 
Thus, the gram of water at 1° at a definite pressure has a definite energy 
regardless of whether it has just been obtained from warmer water, 
from ice, or from the combustion of hydrogen. In all our calorimeter 
measurements, however, we obtain only the changes in energy which 
accompany changes in the state of a system and not the values of the 
energies themselves. If we know the absolute value of the energy of a 
system in the state 1, we can determine the energy of the system in any 
other state 2 by measuring the increment of energy E on going from 1 to 
2. However, we have no direct method of measuring the absolute 
energy at any state. 

Since we now have methods for calculating the energies associated 
with the motions of molecules, and of the atoms and electrons within 
the molecules, we might expect to secure absolute energy values. The 
energy levels for the different types of motion and of electron excitation 
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in relatively simple molecules can be secured from spectroscopic data. 
The quantum mechanics and the methods of statistical mechanics then 
enable us to calculate the energies of gaseous systems of molecules. 
Thus, all the molecules have translational energy, which contributes 
the energy Et to the system. Molecules, other than monatomic mole¬ 
cules, may rotate about their axes and contribute the rotational energy 
Er to the system. The atoms may vibrate about their equilibrium posi¬ 
tions in the molecules and contribute the vibrational energy Ev to the 
system. Furthermore, electrons may be raised to higher energy levels, 
contributing the electronic energy Ee to the system. All these energies 
depend on the temperature, for the number of molecules at quantum states 
with higher energies increases with increasing temperature. None of 
them take into account any possible energies at the absolute zero of 
temperature. 

But molecules, according to the quantum mechanics, have energy 
at zero temperature. This energy is called zero point energy; it may be 
represented by the symbol E0. Furthermore, the energies, which vary 
with temperature, are calculated by summation of the energies of the 
individual molecules and do not take into account the energy associated 
with interaction between the molecules. For real gases, this energy, 
attributed to gas “imperfections” because of the resulting deviation 
from the perfect gas law, may be represented by 2?t. Then, the absolute 
energy E of the gas under the specified conditions may be represented 
by the sum of all the energies and 

E = Eo -f- Et 4“ Er 4“ Ev 4~ Ee 4~ Ei (2.43) 

However, E0 is not evaluated and hence what is tabulated is the excess 
of the absolute energy over the zero point energy, E — E0. Further¬ 
more, in the tabulations the gas imperfections are not taken into account, 
the energies being given for the real gas at unit fugacity1 which corre¬ 
sponds to the state of an ideal gas at unit pressure. If the standard 
energy of the gas at unit fugacity is represented as E° and the zero point 
energy as El, the reported energy then becomes 

E° - E°0 = Et + Er 4- Ev + Ee (2.44) 

Thus, it appears that here also we deal with relative energies and not 
absolute energies. 

Absolute Values of H.—Values of P and V are expressed as absolute 
values. However, it appears from the definition of heat content that, 
if we do not have absolute values for E, we also do not have them for H. 
From the perfect gas law, we find that, since PV is proportional to T, 

1 Fugacity is defined in Chap. 12. 
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its value at zero temperature is zero. From equation (2.35), therefore, 
Ho = 2?o. Hence, for the gas in the ideal gas state, 

H° - III = H° - El = (E° - El) + (PV)° (2.45) 

Thus tables of heat content give the values of H referred to some 
suitable standard reference state at which H is arbitrarily assigned zero 
value. The reference standard state is often chosen within the experi¬ 
mental range, so that changes from it can be measured accurately. In 
this way, accurate tables of relative values are prepared in which positive 
values of II are given for the states with more energy than the standard 
state and negative values of II for the states with less energy than the 
standard state. 

From the following relations, we can see that the particular reference 
state chosen does not alter the value of the difference In heat content 
between two states: 

If the absolute value of the heat content of a system at some selected 
standard state is the absolute value at the state 1 is IIi, and that at 
the state 2 is #2, the difference in heat content between states 1 and 2 
is H2 - IIx = (II2 - Hs) - (Hi - Ih). But the differences (II2 - H8) 

and (Hi — Hs) are the relative values which we may designate as H* 

and II*; hence, 
AH = H2 - Hi = II* - II* (2.46) 

The difference between the relative values is therefore equal to the differ¬ 
ence between the absolute values. In standard heat of formation tables, 
the heat contents of compounds have values relative to those of the ele¬ 
ments. The heat contents of the elements in their standard state are 
arbitrarily placed at zero. 

Problems 

2.1. For the combustion of diamond at 25°c, E. J. Prosen, R. S. Jessup, and F. D. 

Rossini [</. Research Natl. Bur. Standards, 33, 447 (1944)] report a value of 

AH — —395,343 ± 96 int joules/mole 

For the combustion of graphite at the same temperature, they report 

AH — —393,447 ± 45 int joules/mole 

Calculate the values (including the uncertainties) for the heats of combustion at 

constant pressure in calories per mole. 

2.2. Calculate the minimum work in calories required to change 1 cm3 of water at 

20° to a spray in which the average diameter of the water droplets is 100 millimicrons. 

2.3. The capacity of a lead storage battery is 100 amp-hr. At 2 volts, what is 

the amount of heat in calories developed by this current? What weight of lead is 

consumed at the positive electrode during this process? 

2.4. The heat of evaporation of water at 1 atmosphere pressure and 100°c is 

qp — AH » 9,717 cal. At this temperature and pressure the molar volume of the 



52 INTRODUCTION TO CHEMICAL THERMODYNAMICS [Chap. 2 

vapor is 30.14 liters and that of the liquid is approximately 0.02 liter. What is the 

value of P AV for this reaction (in calories)? What is the change in internal energy, 

A E? 
2.6. The difference between the heat content of water vapor as an ideal gas at 

25°c and at the saturation pressure of 0.031222 atmosphere is given by 

H° - H^ 031222 = 5 cal 

The molar volume of water vapor at the saturation pressure is 781.9 liters. Calculate 

Pv for water vapor at 25°. From the ideal gas law, calculate Pv for the ideal gas. 

What part of the 5 calories above must be attributed to a change in Pv as the gas is 

brought to the ideal state? What part to a change in internal energy of the gas? 

2.6. Calculate the difference, in calories, between AH and AE for the following 

combustions, assuming that AEp = AEv, 
(а) Ethylene at 18°c. 

(б) Benzene at 25°c. 

(c) Benzene at 100°c. 

(d) Hydrogen at 500°C. 

(e) Carbon monoxide at 300°o. 

2.7. Benzoic acid is used as a standard substance in calibrating bomb calorimeters. 

R. S. Jessup [J. Research Natl. Bur. Standards, 33, 439 (1944)] reports a heat of com¬ 

bustion of a standard sample of benzoic acid as 26,428.4 ± 2.6 int joules per gram 

mass (weight corrected for buoyancy of air at 25°c). For a mole of benzoic acid, 

calculate AEy• 



CHAPTER 3 

HEAT CAPACITY 

In this chapter we shall consider only simple systems, that is, non¬ 
reacting systems in which the only work is work of reversible expansion. 
The heat effects considered in our discussion of heat capacity will, there¬ 
fore, be only those associated with changes in internal energy and in 
P dV work. 

Heat Capacity.—In Chap. 2, we defined the heat capacity in terms of 

the heat absorbed q per degree rise in temperature. We also observed 
that the value of heat absorbed between two states depends on the con¬ 
ditions under which it is absorbed, that is, on the path followed during 

the heating. In practice, measurements of heat capacity are made 
almost exclusively under either of two experimental conditions: constant 

pressure or constant volume. However, since systems tend to expand 
(with few exceptions) when the temperature increases, two systems 
identical at the first state will not be at the same final state when one is 
heated at constant pressure and the other at constant volume. The 
specific heat capacities at constant pressure and constant volume are 
represented by Cp and cV} respectively, the molar heat capacities by 
Cp and o, respectively, and the heat capacities of an indefinite number 

of moles by Cp and Cy, respectively. We shall use the molar heat capac¬ 
ities or multiples of these molar values almost exclusively for the 
same reasons that we use molar heats of reaction instead of the corre¬ 
sponding heats per gram. 

Where Dg is the infinitesimal quantity of heat absorbed by a mole of 
pure substance heated over an infinitesimal temperature interval dT, 
we have for the constant-volume process, from equation (2.29) 

d Ev == Dgy 

From our definition of heat capacity [compare equation (2.7)] 

~   Dgy   dEv  /dE\ 

Lv ~ dT ~ ~dT “ \df)v 

and, therefore, 
dEv = Cv d T 

For the constant-pressure process, we have, from equation (2.34) or 
(2.42), the equations corresponding to the above, namely, 
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(3.3) 
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CP 

d HP 

= D qp (3.4) 

D(^p d Up 

= Hr ~ Hr 
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*0 

(3.5) 

= CpdT (3.6) 

Between any two temperatures 1\ and T2 the heat absorbed by a sub¬ 
stance at constant pressure equals the increase in heat content, II2 — Hi; 

it is represented by the integral 

Hz — Hi = J* CP dT (3.7) 

This equation can be integrated if the relation between CP and T is 
known, that is, if CP is a known function of T. If the heat capacity does 
not vary with temperature, that is, if CP is constant, equation (3.7) becomes 

Hz-lh = CP j*' dT = Cp(T2 - TO (3.8) 

This is the form of the equation used with mean heat capacity data, 
because the mean heat capacity Cm is by definition constant for the 
stated temperature range. 

Measurement of Heat Capacity.—Heat capacity at constant volume 
is important theoretically because it is related directly to the internal 
energy. It is rarely measured, however, because of experimental diffi¬ 
culties. If a system is not to expand during heating, the retaining vessel 
must be strong and rigid enough to withstand the pressures that are 
built up. Such a vessel has a relatively high heat capacity. Further¬ 
more, the heat capacity of the substance is observed as the difference 
between the total heat capacity of the system and the heat capacity 
of the vessel. If this difference is small compared with the two heat 
capacities that are measured experimentally, even a small error in either 
of the measured values will lead to a relatively large uncertainty in the 
value of Cv for the substance. For this reason, heat capacities are 
measured almost entirely under the condition of constant pressure. 
Heat capacities at constant volume are then obtained from these data 
with the aid of other data and calculations by methods some of which 
will be indicated later. 

In ordinary heat capacity determinations, what is measured is the 
finite rise in temperature produced by a finite quantity of heat, or the 
finite quantity of heat released when the substance is cooled over a finite 
temperature interval, the pressure remaining constant. The observed 
ratio AH/AT measures the mean heat capacity over the temperature 
interval and not necessarily the true heat capacity at any specified tem¬ 
perature. Some of the relations between the observed values of AH and 
the heat capacities are indicated in Fig. 3.1. 
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When the substance is heated from the reference temperature To to 
the temperature Ti at constant pressure, the heat absorbed is equal to 
Hi — H0; when it is heated from To to the temperature T2, the total 
heat absorbed is equal to J/2 — H0. These values may be plotted as in 
Fig. 3.1 where the ordinates represent the various values of relative heat 
content and the abscissas the corresponding values of the temperature. 
The experimental values (H — H0) at the various temperatures are indi¬ 
cated by the circles. 

Fig. 3.1.—Some relations between relative heat content, true heat capacity at various 
temperatures, and mean heat capacity. 

The heat capacity at the temperature 7\ is represented by the slope 

of the H-T curve at Th namely, d//i/dTi, that at the temperature T2 is 
given by d//2/dT2. The mean heat capacity between the temperatures 
Ti and T2 is represented by the slope 

(Ih - Ih) 
(To - 7h) 

of the straight line between the points IIh Ti and TT2, T2. [Compare 
equation (3.8).] The various heat capacities can, therefore, be obtained 
directly from the graph as illustrated; they can be obtained more pre¬ 
cisely from the algebraic equation that relates H to T. In the more 
accurate work, heat capacities are obtained from the empirical equations 
that represent the experimental data as well as possible. 

Observe that Cm is, in general, not equal to (C2 + C\)/2. From the 
definition of mean heat capacity, we have from equation (3.8) for the 
heat absorbed between two states 

H2-Hi = Cm(T2 - TO (3.9) 
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When equation (3.9) is combined with equation (3.7), we have 

Cm(Ts - Ti) = C\ dT 

whence, 

(3.10) 

Only when CP is a linear function of temperature as in equation (3.18) 
will Cm be equal to the average of the heat capacities over the temperature 
range from Ti to T2. 

Some Relations between Cv and CV.—Some thermodynamic rela¬ 
tions between the heat capacity at constant volume and that at constant 
pressure may be derived for a simple system in the following way: From 
equations (3.5) and (2.35), we obtain for the heat capacity of a system 
at constant pressure. 

Cp = 

(dll\ (d{E + PVj 
\dT )P V ~d~T~ ), - (S), + Kr£), (3.11) 

Here the term (dE/dT)P does not represent the heat capacity at constant 
volume, for CV — (6E/dT)v> In order to substitute Cv in equation 
(3.11), we must find the relation between (3E/dT)P and (dE/dT)v. 
The equation of state for a simple one-phase system can be represented 
as a function of P, V, and T, only two of which are independent variables. 
The energy E of such a system can be expressed as a function of P and T 
as in equation (1.9) or as a function of V and T. In terms of the latter 
independent variables, the change in E may be expressed 

d E = 

On dividing by d77, we have 

dE (dE\ dV (dE\ 
dT \dVjr dT + \dfjv 

(3.12) 

(3.13) 

At a definite pressure P, the derivative (dE/dT) takes on a definite value 
(dE/dT)P which can be substituted directly in equation (3.11). We 
have the right to impose this condition on equation (3.13), for it is a 
general equation valid under any condition and consequently valid under 
the special condition of a definite pressure. We may also substitute Cv 
for {dE/dT)v. At the pressure P, (dV/dT) takes the value (dV/dT)P 
and equation (3.13) becomes 

(dE\ (dE\ (dV\ 
\dT/p \dV)T \dT/p + Cv (3.14) 
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When this value for the change of the internal energy with temperature 
at the pressure P is substituted in equation (3.11), we obtain 

CP ~ Cv + (w)r (M), + P (f£), 

-*'+mbp] (a (3.15) 

which may also be written 

C C i p fdV\ 
Cp ~ Cv - [WJt + 1 \ \df)P 

Equation (3.16) is useful because it contains only quantities that can be 
evaluated experimentally. The isothermal change of internal energy 
with volume, the pressure, and the change of volume with temperature 
at constant pressure (thermal expansion), all at a definite pressure P, can 
be measured. The difference Cp — Cv can then be calculated; and if 
Cp is known, Cv is obtained. Most of the mathematical operations we 
shall perform are made for this purpose—to derive equations that enable 
us to use experimental data in the calculation of relations not readily 
observed in the laboratory. A number of expressions of the function 
Cp — Cv may be set up, but these various possibilities are more inter¬ 
esting to the mathematician than to the chemist. Thus, by a method 
similar to that used in deriving (3.16) the following equation is obtained: 

Cp — Cv + T 
_ (dll\ 1 fdP\ 

VdP/rJ \<rr)v 
(3.17) 

In the derivation of equation (3.15), we assumed that E can be 
expressed as a function of V and T alone, that is, that the energy of the 
system is uniquely defined by its volume and temperature. If the energy 
depends also on other variables, as it does when chemical reactions or 
phase transitions occur, this derivation is not valid. We must, therefore, 
restrict our application of these equations to pure substances or to those 
mixtures of substances whose molar energies depend only on temperature 
and pressure or volume and not on the composition of the mixture. 

Heat Capacity Equations.—For small temperature intervals, the heat 
capacity of a substance may frequently be considered constant over the 
temperature interval. If this constant heat capacity is plotted on coor¬ 
dinate paper as ordinate against the temperature as abscissa, the result¬ 
ing curve will be a straight line parallel to the /-axis, as in Fig. 3.2. 
Data that are not precise may be given in this form over considerable 
temperature intervals. Quite generally, heat capacities increase with 
increasing temperature. To a close approximation, the heat capacity 
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frequently increases directly with temperature over temperature ranges 
that are not too extreme. If so, the heat-capacity curve becomes a 
straight line not parallel to the 2-axis. Such a curve is represented by 
an equation of the type 

CP = a + bt (3.18) 

where t represents temperature. At t = 0, Cp equals the constant a, 

which is frequently designated Co. The change in heat capacity with 

Fig. 3.2.—Curves representing several common types of heat capacity equations. 

temperature is measured by the slope which for the straight-line equation 
(3.18) is 

~ f1 = b (3.19) 
h — 

In the notation of the calculus, the slope is 

= b (3.20) 

In general, precise heat capacity data are still more closely fitted by an 
equation using higher powers of t, such as 

CP = a + bt + cl2 + • * * (3.21) 

Here again, the heat capacity at t = 0 is a and may be designated as C0. 
The change of heat capacity with temperature may, for this curved line, 
be derived by differentiation of equation (3.21). Accordingly, 

—f = b + 2d + • • • 

Heat capacity equations are expressed either in terms of t as degrees 
centigrade or of T as degrees Kelvin. In terms of absolute temperatures, 
equation (3.21) would be transformed to 

Cp = a + PT + yT2 + • • • (3.22) 



Chap. 3] HEAT CAPACITY 59 

The values of the parameters a, /3, and y may be calculated from a, bf 
and c by the rules of analytical geometry. To represent heat capacities 
up to high temperatures, Maier and Kelley1 proposed an equation of the 
form 

CP = a + bT + d T~2 (3.23) 

in which the coefficient cf in the T~2 term has a negative value. 
Equations of the above types may be used only within definite tem¬ 

perature limits, for heat capacity curves may have points of inflection 
not representable by such simple equations.2 Hence, it is unwise to 
extrapolate the equations beyond the experimental limits. Thus, if 
equation (3.21) is derived for the limits ti = 0°c and U — 100°c, it may 
be used with exactness within those limits, the heat capacity at 0° being 
a and that at 100° being (a + 1006 + l()02c). It does not follow, how¬ 
ever, that when equation (3.21) is transformed to equation (3.22) where 
T represents the temperature in degrees Kelvin, the new equation is 
valid over a wider range. Equation (3.22) would still hold between the 
former temperature limits 273.16 and 373.16°k, but it would not neces¬ 
sarily hold down to zero absolute. All that could be deduced is that, if 
equation (3.22) were valid at T — 0°k, the heat capacity at zero, Co, 
would equal a. In a particular equation, a might have a negative value, 
but it would be absurd to assume from this that heat is evolved when the 
substance is made to increase in temperature in the neighborhood of 
0°k. The proper interpretation is that the equation has been extended 
beyond its limits of validity. We find, as a matter of fact, that heat 
capacity at absolute zero approaches zero as a limit; hence, no equation 
of the type of equation (3.22) can be expected to hold at low tempera¬ 
tures. This question is discussed in more detail under the third law of 
thermodynamics. 

Heat Capacity of Solids.—In 1819, Dulong and Petit announced the 
empirical rule that the gram-atomic heat capacity of all solid elements is 
the same, the value being slightly larger than 6 calories per degree. The 
elements of the smaller atomic weights furnish exceptions to this rule. 
On the basis of the classical kinetic theory, Boltzmann calculated that 
the value of the constant should be Cv = 3R, which equals 5.96 calories 
per degree. Lewis3 found that the heat capacities of the solid elements 
agree better for Cv than for Cp, for the work of expansion varies with the 
different elements. The value 3R appears to be an upper limit for o. 
It is reached for the heavier elements at temperatures below' room tern- 

1 Maier, C. G., and K. K. Kelley, J. Am. Chem. Soc., 54, 3243 (1932). 
* Ibid. 
3 Lewis, G. N., J. Am. Chem. Soc.} 29, 1165, 1516 (1907); Lewis, G. N., and G. E. 

Gibson, ibid., 89, 2554 (1917). 
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perature; hence, the law of Dulong and Petit holds for these heavier 
elements. 

As we shall see in Chap. 14, the heat capacity varies as Tz near the 
absolute zero. As temperature approaches 0°k, the heat capacity and 
its temperature coefficient both approach zero. Figure 3.3, in which cv is 
plotted against T7, shows that the lower limits of cv and of dCv/dT 
approach zero (as T —> 0) and that the upper limit of cv (at room tern- 

Fig. 3.3.—Different forms of heat capacity curves found lor solid elements between zero 
absolute and room temperature. 

perature and above) is 6 calories per degree. At the upper limit, dCv/dT 
approaches zero again.1 Because of these limits, the heat capacity of 
solids must have a point of inflection and hence cannot be represented by 
a simple equation such as (3.21) or (3.22). In Fig. 3.3, curve a repre¬ 
sents those elements which have reached the value cv = 6 at 273°k, 

and b and c represent the lighter elements which do not reach the maxi¬ 
mum until a higher temperature is reached. (Compare with the o 
values for carbon in Table 3.2.) 

As was stated earlier, values of cv are difficult to measure accurately. 
They might be calculated from the heat capacity measurements at con¬ 
stant pressure by the use of equation (3.16), but values of (6E/dV)T for 
solids are difficult to measure. By methods that involve the second law 
of thermodynamics, Lewis derived the relation 

c p — cv = —^— (3.24) 

where a is the coefficient of thermal expansion, 0 is the compressibility, 
and v the molal volume. This equation is obtained from equation (8.48). 

Kelley2 has compiled heat capacity equations for many inorganic 
substances, indicating at the same time the probable average error of the 

1 These statements imply that no new forms of heat absorption, such as ionization, 
electron excitation, or phase or other transitions, develop at either the higher or the 
lower temperatures. 

2 Kelley, K. K., “High-temperature Specific-heat Equations for Inorganic 
Substances,” U. S. Bur. Mines, Bull. 371 (1934). 
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equations. For solid compounds including those containing the lighter 
elements, Kopp found that the molecular heat capacity equals the sum 
of the atomic heat capacities. For the heavier elements, he used cp — 6.4; 
for the lighter elements, he assigned values, such as S, 5.4; 0, 4.0; H, 
2.3; and C, 1.8. The rule is useful as a rough approximation when 
direct experimental data are lacking. 

Heat Capacity of Liquids.—Just as our general knowledge of the 
behavior of molecules in the liquid state is not on an adequate theoretical 

Table 3.1.—Heat Capacity of Aik-free Water at a Pressure of 1 Atm 

°c 

Cp 

°c 

cp 

Absolute 
joules/gram* 

Defined 

thermochemical 

cal/gram t 

Absolute 

joules/gram* 

Defined 

thermochemical 

cal/gramj 

0 4.2177 1.0080 50 4.1807 0.9992 

5 4.2022 1.0043 55 4.1824 0.9996 
10 4.1922 1.0019 60 4.1844 1.0001 

15 4.1858 1.0004 65 4.1868 1.0006 

20 4.1819 0.9995 70 4.1896 1.0013 

25 4.1796 0.9989 75 4.1928 1.0021 

30 4.1785 0.9987 80 4.1964 1.0029 

35 4.1782 0.9986 85 4.2005 1.0039 

40 4.1786 0.9987 90 4.2051 1.0050 

45 4.1795 0.9989 95 4.2102 1.0063 

100 4.2130 1.0076 

* Data of N. S. Osborne, H. F. Stimson, and D. C. Ginnings, J. Research Natl. Bur. Standards, 23, 
23S (1939). 

f Corresponding values in terms of the defined calorie. Since the original measurements were made 

in terms of the international joule and the reported values were calculated to absolute joules with the 

factor, 1 int joule 1.00019 abs joules, this same factor was used to calculate the values in defined 

calories. Hence, in this table, 1 cal => 4.1841 abs joules. 

basis, so our knowledge of the heat capacity of liquids is limited to empiri¬ 
cal results. The empirical heat ’capacity equation for a liquid in the 
neighborhood of its melting temperature, together with the corresponding 
equation of the solid, is used in the usual determination of the latent heat 
of melting. In general, the heat capacity of the liquid is greater than 
that of the solid although of the same order of magnitude; for a few 
organic compounds, however, the liquid appears to have a slightly smaller 
heat capacity than the solid. For an undercooled liquid, the heat 
capacity curve is continuous with that of the liquid above the freezing 
point. There is, in general, a rather abrupt change in heat capacity, 
however, when the liquid is undercooled so far as to form a glass. 
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The heat capacities of pure liquids and of liquid solutions are ordi¬ 
narily measured over limited temperature ranges. They are used to 
calculate the heats of reaction at a temperature different from the experi¬ 
mental temperature. The heat capacity of water is of special interest 
because it has served historically to define the unit of heat, the calorie. 

Table 3.2.—Molar Heat Capacities* for Some Substances at Constant 

Pressure 

(Heat capacities in calories per degree at 1 atmosphere pressure) 

Tem¬ 
pera¬ 

ture, °K 

Carbon 
(graph¬ 

ite) 

Carbon 
monox¬ 

ide 

Carbon 
dioxide 

Hydro¬ 
gen 

Nitro¬ 
gen 

Oxygen Water Methane 

298.16 2.066 6.965 8.874 6.892 6.960 7.017 8.025 8.536 
300 2.083 6.965 8.894 6.895 6.961 7.019 8.026 8.552 
400 2.851 7.013 9.871 6.974 6.991 7.194 8.185 9.736 
500 3.496 7.120 10.662 6.993 7.070 7.429 8.415 11.133 

600 4.03 7.276 11.311 7.008 7.107 7.670 8.677 12.546 
700 4.43 7.451 11.849 7.035 7.351 7.885 8.959 13.88 
800 4.75 7.624 12.300 7.078 7.512 8.064 9.254 15.10 
900 4.98 7.787 12.678 7.139 7.671 8.212 9.559 16.21 

1000 5.14 7.932 12.995 7.217 7.816 8.335 9.869 17.21 

1100 5.27 8.058 13.26 7.308 7.947 8.440 10.172 18.09 
1200 5.42 8.167 13.49 7.404 8.063 8.530 10.467 18.88 
1300 5.57 8.265 13.68 7.505 8.165 8.608 10.749 19.57 
1400 5.67 8.349 13.85 7.610 8.253 8.676 11.015 20.18 
1500 5.76 8.419 13.99 7.713 8.330 8.739 11.263 20.71 

2000 8.665 14.5 8.175 8.602 9.024 12.24 
3000 8.899 15.0 8.791 8.862 9.518 13.3 
4000 9.015 9.151 8.989 9.879 
5000 9.099 9.389 9.076 

l 
10.105 

* Wagman, D. D., J. E. Kilpatrick, W. J. Taylor, K. S. Pitzer, and F. D. Robbini, J. Research 

Natl. Bur. Standards, 34, 143 (1945). 

Table 3.1 gives values for the heat capacity of water at 1 atmosphere 
pressure. The data indicate that the heat capacity of water is at a 
minimum at about 35°c. According to these data, the defined calorie 
represents the heat capacity of a gram of water at about 17°c. These 
data indicate also that the 15° calorie (4.1858 abs joules) is slightly 
larger than the value previously assigned to it (“ International Critical 
Tables,” 4.1850 abs joules; Birge,1 4.1852 abs joules). 

Heat Capacity of Gases.—The heat capacities of gases are difficult to 
measure accurately because of their low values. However, Cp can be 

1 Birge, R. T., Rev. Modern Phys.} 1, 1 (1929). 
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measured, and the ratio cP/cv can be measured still more accurately. 
From these data or from equation (3.16), cv can then be calculated. 
The heat capacity of an ideal monatomic gas has particular theoretical 
importance both because the “noble” gases closely approximate this 

Table 3.3.—Molar Heat Capacity Equations* for Some Gases at Constant 

Pressure 

(Temperature in degrees Kelvin, heat capacities in calorics per degree per mole for the 
gas in its standard state) 

The values listed in the columns are those for the corresponding constants in one 
of the following equations: 

c°P = a + bT -f cT2 

cr - a + bT -f — 

Sub¬ 
stance a b X 103 r X 107 c' X 10~6 

Per cent deviation 

Range, °k 
Maxi¬ 
mum 

Average 

Hr 2 8.911- 0.140 -0.0298 0.09 0.02 300-1500 
OH, 3.381 18.044 -43.00 1.80 0.52 298.16-1500 
c2h4 2.706 29.160 -90.59 1.46 0.92 291.16-1500 
c2h6 2.195 38.282 -110.01 0.91 0.43 298.16-1500 
c2h5oh 3.578 49.847 -169.91 0.28 0.15 300-1000 
Cl, 8.764 0.271 ! -0.656 0.24 -0.11 300-1500 
CO 6.420 1.665 -1.96 1.17 0.55 298.16-1500 
co2 6.214 10.396 -35.45 1.41 0.77 298.16-1500 
HBr 6.5776 0.9549 1.581 1.23 0.54 300-1500 
HC1 6.7319 0.4325 3.697 0.98 0.49 300-1500 
h2 6.9469 -0.1999 ' 4.808 0.49 0.19 300-1500 
H20 7.256 2.298 2.83 0.74 0.45 298.16-1500 
H2S 6.385 5.704 -12.10 2.00 0.50 298.1-1800 
n2 6.524 1.250 -0.01 1.15 0.60 298.16-1500 
nh8 6.189 7.887 -7.28 0.65 0.23 291.16-1000 
n20 6.529 10.515 -35.71 1.26 0.68 298.1-1500 

02 6.148 3.102 -9.23 0.65 0.24 298.16-1500 
so, 11.895 1.089 -2.642 3.18 1.31 298.1-1800 

* Equations of II. M. Spencer and J. L. Justice, J. Am. Chem. Soc., 56, 2311 (1934); H. M. Spencer 

and G. N. Flannagan, ibid., 64, 2511 (1942); H. M. Spencer, ibid., 67, 1859 (1945). 

ideal behavior and because it represents that part of the heat capacity 
of other gases attributable to the increase in translational energy of the 
gas molecules. Heat capacity in excess of the translational heat capacity 
can then be attributed to the energy absorbed in the increased rotation 
of the gas molecule and in the increased vibration of the atoms in the 
molecule. For simple gases, the heat capacities and other thermodynamic 
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functions can be calculated from the observed energy levels in the band 
spectra of the molecules and the distribution of the molecules among those 
energy levels as calculated by the methods of statistical mechanics. 
These calculated heat capacities are more precise and appear to be more 
accurate than the values obtained experimentally. In recent years, a 
number of heat capacities of gases have been calculated. The difference 
in heat capacity of ortho- and para-hydrogen, predicted on theoretical 
grounds, was used to demonstrate the existence of these two forms of 
hydrogen. 

The molar heat capacities of the monatomic gases remain constant 
over large temperature ranges. Thus, for argon, helium, krypton, neon, 
radon, xenon, cesium, lithium, mercury, potassium, and sodium, the 
molar heat capacities at constant volume and constant pressure are, 
respectively, very near 3 and 5 calories per degree. As we shall see in 
Chap. 4, these values correspond, respectively, to §H and so that we 
may write for these gases, cv = 2.98 cal/deg and c> = 4.97 cal/deg. 
The heat capacities of diatomic and polyatomic gases are greater. 
The values of Cp for some gases and for carbon (graphite) are listed 
in Table 3.2. 

Some heat capacity equations for gases are given in Table 3.3. Equa¬ 
tions of this type do not represent the observed heat capacities at low 
temperatures. They appear to indicate a positive heat capacity at zero 
absolute where T = 0; but before this temperature is reached, the gases 
will have condensed to liquids or solids and the gas heat capacity equa¬ 
tions no longer apply. Even within this temperature range, equations 
of the type of (3.22) and (3.23) do not give perfect agreement with the 
best data. The indicated deviations of the equations listed in the table 
show the type of agreement that may be expected. Within these limits 
the equations are useful in thermodynamic calculations. The tempera¬ 
ture range of each equation is stated. 

Additivity of Heat Capacities.—In dealing with heat capacities, we 
shall have occasion to obtain the heat capacity of a reaction system by 
adding the heat capacities of the constituents of the system. This pro¬ 
cedure is justifiable for pure substances and mixtures of pure substances 
when the various substances do not interact. It fails in solutions where 
there are energy changes on assemblage of the system. The question of 
solutions that behave in this way is reserved for later discussion. We 
shall here restrict our attention to systems in which the properties of the 
various constituents of the system correspond to the proportional prop¬ 
erties of these constituents when separate in a pure state. Systems 
showing energy changes when the constituents are mixed will be con¬ 
sidered in later chapters. 
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Gaseous mixtures do not depart greatly from the laws of ideal solu¬ 
tions in the range of moderate temperatures and pressures. The internal 
energy of such systems is, therefore, very nearly equal to the sum of the 
internal energies of the pure constituent gases under corresponding 
conditions. This is also true of the heat content function II, for gases 
have PV values of the same order of magnitude at the same temperatures. 
Accordingly, the heat capacities of the mixture can be calculated from 
the heat capacities of the pure constituents. Thus, the heat capacity 
of a system containing 1 mole of hydrogen and i mole of oxygen is 
obtained from the equations in Table 3.3 as follows: 

For 1 mole of H2; cv = 6.9469 - 0.1999 X 10“3r + 4.808 X 10“7T2 
For -h mole of 02; ic,> = 3.074 + 1.551 X 10~3T - 4.615 X 10-'T* 
Total heat capacity - 10.021 + 1.351 X 10+ 0.193 X 10~7T2 

cal /deg 

Heat Content Equations for Homogeneous Systems.—We observed in 
Chap. 2 that ordinary thermal measurements do not yield absolute values 
of E and H. However, we can set up expressions for the relative heat 
content of systems in terms of temperature if we know the relation 
between heat capacity and temperature. We observe for the constant- 
pressure process that, if Cp can be expressed as a function of T, equation 
(3.6) can be integrated. Thus, if 

CP = a + fiT + yT* 
we have 

f dll = j (a + I3T + 7T2) dT (3.25) 

For the indefinite integral of equation (3.25), we have 

II = aT + +ST2 + iyT* + I (3.26) 

where I is an integration constant. I can be evaluated from the value 
of H at absolute zero. If the value of H at T = 0 is H0, we have 

IIo = I (3.27) 

The integration constant, therefore, represents the extrapolated value 
of the heat content at zero absolute. I will, of course, actually equal 
Ho only if the original heat capacity equation is valid down to zero 
absolute. 

If we integrate equation (3.25) between the temperature limits T = 0, 
where H has the value 7/0, and T = Th where H has the value Hh we 
have 

Jgt' = /or‘ (« + 0T + yT2) dr 



66 INTRODUCTION TO CHEMICAL THERMODYNAMICS [Chap. 3 

whence, we obtain 

Hi - Ho = ccTi + i(3Ti2 + fyiy (3.28) 

Similarly, between the limits 7\ and 0 where II has the respective values 
H2 and 7/0, we obtain the corresponding equation 

Hz — Ho = a7T2 + iftTz2 + (3.29) 

Thus, between the limits II], 7\ and 7/2, 7T2 

//;f d// = j*' (a + pT + yT'2) dT (3.30) 

Hz - Ih = a(Tt - Ti) + &8(7Y - 7Y) + |y(7V - TV) (3.31) 

This is, of course, the equation obtained by subtracting (3.28) from 
(3.29). It represents the change in heat content of a system between 
any two temperatures for which the heat capacity equation is valid. 
The corresponding equation for the indefinite integral obtained from 
(3.26) and (3.27) is 

II = IIo + aT + 10 T2 + hTz (3.32) 

Again we call attention to the fact that all these equations based on 
the heat capacity equation cannot be used beyond the temperature range 
for which the equation is valid. 

Problems 

For gases, use the heat capacity equations in Table 3.3. 

3.1. Find in the “International Critical Tables” (Vol. 5, page 92) the equation 

for the heat capacity of aluminum over the range 0 to 100°c. With this equation, 

calculate the value of Cp (in joules) for the temperatures —273, 0, 100, and 300°c. 

The heat capacity at 0°k is zero. Calculate with the equation, valid over the range 

200 to 300°c, the value for cp at 300°. Compare with the value obtained with the 

0 to 100° equation. Explain any discrepancies. 

3.2. (a) Calculate the heat required to raise 100 grams of nitrogen from 27 to 

127°c at constant pressure. 

(6) Calculate, for 1 mole of nitrogen, (1) the heat capacity at 27°c, (2) that at 

127°c, and (3) the mean heat capacity between these temperatures. Could the mean 

heat capacity have been used in (a) ? Explain. 

3.3. One cubic foot of gas at 740 mm pressure and 20°c with the composition 

hydrogen, 48 per cent; carbon monoxide, 44 per cent; carbon dioxide, 6 per cent; 

and water vapor 2 per cent by volume is heated at constant pressure from 20 to 100°c. 

Calculate the heat absorbed by the gas. 

3.4. What is the sign of (Cp — Cv) 
(a) For a gas at 100°c, assuming that (dE/dV)T is zero? 

(b) For water in the temperature range 0 to 10°c, assuming that (dE/dV)r is 
positive? 

3.3. Derive equation (3.17) 
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3.6. The molar heat capacity of a substance is represented by the equation 

Cp * a 4 bt 4 cl2 where £ is the temperature in degrees centigrade. Calculate the 

value of the parameters a, ft, and y in the equation 

cP = a + 0T 4 yT2 

that represents the heat capacity of the same substance, T being the temperature in 

degrees Kelvin. 

3.7. From the data in Prob. 3.1, calculate the rate of change of heat capacity of 

aluminum with temperature at 0, 100, 200, and 300°c. 

3.8. From the data in Table 3.1, calculate the value of the mean calorie in joules 

and in defined calories. 

3.9. K. J. Frederick and J. H. Hildebrand [J. Am. Chem. Soc., 60, 1436 (1938)] 

find that the molar heat capacity of solid iodine is represented by the empirical 

equation 

cp = 13.07 + 3.21 X 10“4(f - 25)2 

between 25°c and the melting point 113.6°c, t being the temperature in degrees 

centigrade. Calculate the heat required to raise 1 mole of iodine from 25°c to the 

melting point. 

3.10. Derive the heat content equations corresponding to equations (3.26) and 

(3.31) for a substance whose heat capacity is represented by the equation 

= a -f bT 4* c'T~2 

3.11. Plot the heat capacity values in calories per gram, given for water in Table 

3.1, against temperature. Calculate the difference in heat content per gram for water 

at 0° and at 50°; at 50° and at 100°; at 0° and at 100°. Calculate values for the mean 

heat capacity of water over the temperature ranges, 0 to 50°; 60 to 100°; 0 to 100°. 

What is the value of the mean calorie in terms of the thermochemical calorie? Com¬ 
pare with the value for the mean calorie obtained in Prob. 3.8. 

3.12. (a) For the gases listed in Table 3.2, calculate the heat capacities at 1000 

and 1500°k, using the heat capacity equations in Table 3.3. Compare the calculated 

values with the heat capacities given in Table 3.2. Calculate the percentage devia¬ 

tions and compare them with the maximum and average deviations listed in Table 3.3. 
(b) For these gases (except methane) calculate the heat capacities at 2000 and 

3000°k. and compare with the listed heat capacities. Note the stated temperature 

ranges of the heat capacity equations. This problem illustrates the danger of extra¬ 

polating equations expressed as a power series beyond the range for which the equa¬ 

tions were derived. 
3.13. The difference between the molar heat content of manganese dioxide at the 

temperatures T and 298.16°k as determined experimentally by G. E. Moore [/. Am. 
Chem. Soc.j 66, 1398 (1943)] is represented in the range 298 to 780°k by the equation 

OOO A/V) 

Hr - h298.ie = 16.60T7 4 1.22 X 10~*T2 4 - 6,369 cal 

From this equation, 
(a) Calculate the value of the mean heat capacity of manganese dioxide between 

300 and 700°k. 

(b) Derive the heat capacity equation 

Cp - 16.60 + 2.44 X lO-’r - 38^P°^ 



CHAPTER 4 

APPLICATION OF THE FIRST LAW TO GASES 

The pressure, volume, and temperature relations of gases are repre¬ 
sented more or less accurately by Boyle’s and Charles’s laws, so that all 
gases conform in a general way to a single equation, the ideal gas law 
equation. 

Ideal Gas Law Equation.—The states of all gases that obey Boyle’s 
and Charles’s laws may be represented by the equation 

Pv 
T 

(4.1) 

where v is the molar volume1 of the gas at the pressure P and the tem¬ 
perature T, and v0, Po, and 770 are the corresponding values under any 
other conditions including “standard conditions.” Since the ratio 
Pv/T remains constant as P, v, and T vary and has the same value for 
all gases obeying the above gas laws, it may be represented by a universal 
gas constant R. Real gases conform only approximately to equation 
(4.1) but follow the equation more and more closely the farther their 
temperatures rise above the liquefaction temperatures of the gases and 
the larger their molar volumes. Under these conditions, the interactions 
of the molecules of the gases become less important. At 0°o, for example, 
the Pv values for the more permanent gases change slightly as the pres¬ 
sure decreases, the changes being linear at pressures below 2 atmos¬ 
pheres, but they change in such a way that, as the pressure approaches 
zero, the Pv values for all the gases approach the same value, (Pv),-, 
characteristic of the ideal gas. Thus, at the ice point, 0°c, the limiting 
value2 is 

(Pv),;,o = lim (Pv)o = 22.4140 liter-atm (4.2) 
p~ o 

A similar limit to Pv is found at the steam point, 100°c. This limiting 
value, which is 1.36609 times greater than the limiting value at 0°c, 
enables us through the relations between Pv and T in equation (4.1) to 

1 General values of the extensive functions such as energy, volume, heat content, 

and heat capacity, are printed as large capitals and the corresponding molar values 

as small capitals. 

2 Cragoe, Carl S., “ Slopes of PV Isotherms of He, Ne, A, H2, Na, and Oj at 0°c,” 

J. Research Natl. Bur. Standards, 26, 495 (1941). 

68 
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calculate the value for T0, the temperature of the ice point on the ideal 
gas temperature scale. The ratio T100/To being 1.36609 and Tioo — 27o 
being 100°, we obtain for the temperature of the ice point on the ideal 
gas scale 

To = 273.16°k (4.3) 

The values from equations (4.2) and (4.3) substituted in equation (4.1) 
give for the value of the universal gas constant 

R — 0.082054 liter-atm/deg mole 

In terms of calories, the value is 

R = 1.9872 cal/deg mole 

From equation (4.1) the ideal gas equation for 1 mole of gas may be 
expressed as 

(Pv)* = Pv - RT (4.4) 

For n moles of gas with volume V = nv 

PV = nRT (4.5) 

Equations (4.4) and (4.5) are extremely useful for indicating the limiting 
relations of gases and as simple approximations to the actual relations 
of real gases. It is to be expected that gases about to condense as solids 
or liquids are far from ideal in behavior; hence, equation (4.5) cannot 
be applied without qualification to gases in equilibrium with liquid or 
solid phases. Any equation representing a solid or liquid that includes 
the gas constant R must, therefore, be only approximately valid unless 
other terms have been introduced to represent the deviation from ideal 
behavior of gases under these experimental conditions. 

Fig. 4.1.—Apparatus for the free expansion of gases according to the experiments of Gay- 
Lussac and Joule. 

Ideal Gases.—As a first defining equation for an ideal gas we may 
select either equation (4.4) or (4.5). Whenever we refer to the ideal gas 
equation without further qualification, we shall mean one of these equa¬ 
tions. However, additional relations are important for correlating the 
thermodynamic behavior of gases with the kinetic theory of gases. 

Early experiments by Gay-Lussac (1807) and Joule (1845) indicated 
that, when gases are expanded without doing work or absorbing heat, 
as in Fig. 4.1, they do not change in temperature. Under these condi- 
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tions, the gases evidently did not change in energy to a measurable degree. 
The energy of the gases, therefore, did not depend on the volume at 
constant temperature, so that 

(w), =0 <«> 

Equation (4.6) implies that there are no interactions between the gas 
molecules which would produce energy changes with changing volume, 
that is, with the changing distance between the molecules. Later, more 
careful work showed that actual gases do show a slight change in tem¬ 
perature on expansion under the above conditions. We may consider 
equation (4.6), as a second defining equation for an ideal gas. As we 
shall see in Chap. 8, equation (4.6) is a consequence of equation (4.5) 
and the second law of thermodynamics. 

If (dE/dV)T = 0, it follows that (dE/dP)T must also equal zero. 
From equation (4.5), we see that, at constant temperature, P varies 
inversely with V. If E does not change with changing V, it also does 
not change with changing P. For the ideal gas (dII/dP)T, and conse¬ 
quently (dll/dV)T, also equal zero as may be seen from the following: 

On differentiating the general relation 

H - E + PV 

with respect to pressure, the temperature being constant, we obtain 

But, for the ideal gas, 

(§), - ° “d d(PV) 
dP = 0 

(4.7) 

for, at constant temperature, PV = nRT — const. Hence, 

(fX - ° (4-8) 
Real Gases.—Real gases deviate somewhat from the ideal gas equa¬ 

tion but to varying degrees at different pressures and temperatures. 
Pv Pv 

Figure 4.2 shows how = 7orr f°r aitr°gen changes with pressure 
Jxl \r\)i 

at different temperatures. Observe that the deviation of the ratio from 
unity is greatest for the lowest temperature (—50°c) and that the 50° 
isotherm is practically ideal at pressures below 50 atmospheres. The 
figure shows also that, if one is satisfied with deviations of less than 10 
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per cent, he can use the ideal gas equation for nitrogen for pressures up 
to 200 atmospheres within the indicated temperature limits. Other 
gases show deviations of similar types. Gases below their critical tem¬ 
peratures show the greatest deviations. In view of these facts, it is not 
at all surprising that no single equation has been developed to represent 
this complex behavior of gases. A great number of different equations 

Pressure, atmospheres 
Fig. 4.2.—Deviation of nitrogen from ideal gas behavior. (Data of E. P. Bartlett, 

H. L. Cupples, and T. H. Tremearne, J. Am. Chem. Soc., 60, 1276 (1928); E. P. Bartlett, 
H. C. H ether ington, H. M. Kvalnes, and T. H. Tremearne, ibid., 52, 1363 (1930).) 

of state for gases have been proposed, one of the earliest being the van 
der Waals equation, which fails at high pressures and in the neighborhood 
of the critical point, its “ constants,” a and 6, not remaining constant 
under all conditions. Other equations with more empirical constants 
may represent the actual data better, but even these may not be extra¬ 
polated safely beyond the range for which the constants were derived. 

Accurate pressure-volume data for gases, usually obtained under the 
experimental condition of constant temperature, can be represented very 
closely by equations, of the types 

Pv = A + BP + CP2 + DP3 (4.9) 
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and 

In these equations A, B, C, and D, and AB\ C', and D', respectively, 
are known as theirs/, second, etc., virial coefficients, which are functions 
of temperature and, therefore, have different values for different iso¬ 
therms. The terms containing coefficients of the higher powers of P 
(or 1/v) become important only at high pressures, the values of the 
coefficients C and D (or C' and D') being small compared with that of 
B (or B'). As we shall see, the value of B is small compared with that 
of A. Thus, at low pressure the last terms on the right side of equations 
(4.9) and (4.10) become negligible. 

That A and Af are identical may be seen from the following: As the 
pressure of a gas approaches zero, the molar volume of the gas becomes 
infinitely large. Then, the right sides of equations (4.9) and (4.10) 
reduce to A and A', respectively. At the same time, the Pv value for 
the gas approaches the limiting value (Pv),- characteristic of the ideal 
gas. Therefore, 

lim Pv = (.Pv)i = A = A' 
p=o 

and from equation (4.4) 
A = A' = RT (4.11) 

That B and B' are nearly equal appears from the following: The 
second terms, BP and A'B'/v, respectively, are correction terms to the 
first term RT, and their value is not altered greatly if RT/P is substituted 
for v in accordance with the ideal gas relation. Then the second term 
on the right side of equation (4.10) becomes 

— = RT — = RT = B'P 
v v RT 

Comparison with equation (4.9) shows that, within the indicated approxi¬ 
mation, Bf is equal to B. As we have indicated, at low pressures the 
higher terms in P (or 1/v) are unimportant and either equation (4.9) 
or (4.10) takes the form 

Pv = RT + BP (4.12) 

This equation represents very well the isothermal expansion of gases at 
low pressures. It is a linear equation valid for the more permanent 
gases for pressures up to 2 atmospheres. However, B is a function of 
temperature so that its value must be determined for each isotherm. 
Equation (4.12) may be expressed in one of the following forms: 

P(v - B) = RT (4.13) 
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and 

(4.14) 

where v, is the volume of the ideal gas at the pressure P and the tem¬ 
perature T. 

Coefficient B.—Equation (4.14) indicates that the “ second virial 
coefficient” B represents the difference between the molar volume of the 
gas and the volume of the ideal gas at the same pressure and temperature. 
B also represents the slope of the isotherm obtained when Pv is plotted 
against P. Thus, on differentiating equation (4.12) with respect to 
pressure at constant temperature, we obtain 

' * <415> 

Values of B in liters per mole for some gases at 0°c are listed in Table 
4.1. Observe that for the gases listed the deviation of Pv from 

RT = (Pv)i - 22.4140 liter-atm 

is less than 0.1 per cent at P = 1. However, this correction must be 
made for certain purposes. 

Table 4.1.—Deviations of Some Gases from the Ideal Gas Law at 0°c 

Gas 
105O£* 

at 1 atm 

B 
(« X 22.41), 

in liters /mole 

Argon. -94 ± 1 -0.0211 ± 0.0002 

Helium.... .... 53 0.0119 

Hydrogen.. . 61.9 0.0139 

Neon. 49 ± 1 0.0110 ± 0.0002 

Nitrogen... . -45.3 + 0.3 -0.01015 ± 0.00007 

Oxygen. -95.1 ± 0.9 — 0.0213 ± 0.0002 

* Craqob, Carl S., J. Research Natl. Bur. Standards, 26, 405 (1941). 

For example, from the data of Baxter and Starkweather1 the density of 
oxygen is 1.428965 grams per liter at 0°c and 1 atmosphere (g = 980.616). 
Under these conditions, the molar volume of oxygen (molar weight 
exactly 32 grams by definition) is 

qo 

1.428965 ’ 22 3938 litera 

1 Baxter, G. P., and H. W. Starkweather, Proc. Natl. Acad. Set., 12, 703 (1926). 
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From Table 4.1 the value of B for oxygen is —0.0213 liters. Hence, 
from equations (4.4) and (4.13), P being 1 atmosphere, 

(JPv)i = RT = Pv - BP = 22.3938 - (-0.0213) = 22.4151 liter-atm 

When this value is corrected for the change to our present standard 
atmosphere (g = 980.655) it is decreased by 0.05 per cent to our present 
value, 

(Pv),- — RT — 22.4140 liter-atm 

at 0°c. This is the value previously used in the calculation of the value 
of the gas constant R. 

Temperature, °C 

Fig. 4.3. Variation of the second virial coefficient, B, with temperature. 

The ideal molar volume being known it appears that one can, with 
the aid of the slope B for a gas, find the molar volume of the gas. If the 
density of the gas is then determined, one has all the data needed to 
calculate the molar weight of the gas. The method is used for the noble 
gases that form no compounds and for several other gases as well. 

Knowledge of B is also useful in gas thermometry because it offers 
one method for deriving the temperature on the ideal gas scale from the 
readings made on the actual gas in a constant-volume or a constant- 
pressure thermometer. However, for this purpose the variation of B 
with temperature must be known. Figure 4.3 shows how the values of 
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B for helium, hydrogen, and nitrogen change with temperature. At 
low temperatures, B has negative values. As the temperature increases, 
the value of B increases through the value zero to a maximum positive 
value characteristic of each gas and then decreases again as the tempera¬ 
ture increases indefinitely. The maximum value is shown only for 
helium, the maxima for hydrogen and nitrogen lying outside the tem¬ 
perature range of the figure. These values are listed in Table 4.2. 
Another characteristic temperature for each gas is that at which B equals 

Table 4.2.—Characteristic Temperatures* of Some Gases 

(In degrees centigrade) 

Boyle point 

B = 0 

Maximum value 
of B 

Helium. -249.1 -77 A 
Hydrogen. -165.9 442.8 
Nitrogen. 51 1867 

* Keyes, F. G., “Temperature, Its Measurement and Control in Science and Industry,” p. 59, 
Reinhold Publishing Corporation, New York, 1941. 

zero. This temperature is called the Boyle point, the gas obeying the 

fa(Pv)l 
ideal gas equation over the range for which 

L 
remains zero. 

Table 4.2 lists the Boyle point of nitrogen as 51°c. As Fig. 4.2 shows, 
the 50° isotherm for nitrogen has a negligible slope for pressures below 
50 atmospheres. 

Some Relations of Real Gases.—For a perfect gas we found'that 
(SE/dV)T and (SE/dP)r equal zero and that, inconsequence, (dH/dV)r 
and (dll/dP) T also equal zero. The corresponding derivatives for a real 
gas represented by equation (4.12) are given below. When this equation 
is differentiated with respect to pressure at constant temperature, we 
obtain equation (4.15). On differentiating with respect to volume at 
constant temperature, we have 

[?-£2],-°+b(£), <4i6» 
When the defining equation for heat content is differentiated with respect 
to volume at constant temperature, we obtain an equation corresponding 
to equation (4.7), namely, 

• ($,-$)AV>\ 
Similarly, equation (4.7) gives an equation for the isothermal change of 
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heat content with pressure. But, since 

(dE\ (dE\ (dV\ 

\dPjr \dVjr\dPjr 

equation (4.7) may be written 

(4.18) 

(dU\ (dE\ fdV\ 

\dP jr \dVjr \dPj t \ dP )t 
(4.19) 

This equation will be needed later. For the present, it will be instructive 
to apply it to the real gas obeying equation (4.12). For this gas, from 

equation (4.15), \ 

Hence, 

B, and from equation (4.12), 

/ RT 

L' d/> J 

(30, 
(dH\ (dE\ (_ RT\ 

\dP/T \dV/T \ P*Jt 

(? • ■) (4.20) 

(4.21) 

Thus, it appears that (dE/dV)T can be evaluated for the real gas if we 
can find a way to determine (dII/dP)r. 

In the next section we shall consider the variation of Pv with tempera¬ 
ture for an ideal gas. For comparison, we find for the real gas obeying 
equation (4.12) 

a(Pv) 
dT 

d(RT) d(BP) 
dT + dT 

= R + P (ff) + B (§£) (4.22) 

Figure 4.3 indicates how B may vary with temperature. At constant 
pressure, equation (4.22) becomes 

p(^),-R+pC-f), (4-23> 
At low pressures and high temperatures, the last term in equation (4.23) 
is small compared with R so that for many real gases equation (4.23) 
reduces to 

Ks),-* (4-24) 
It will be instructive to calculate a value of (d&/dv)T for a real gas. 

According to Rossini and Frandsen,* the value of (dE/dP)T for air and 

1 Rossini, F. D., and M. Frandsen, Bur. Standards J. Research, 9, 733 (1932). 
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oxygen remained constant for pressures up to 40 atmospheres. For 
nitrogen at 28°c, they calculate a molar value of —5.97 int joules per 
atmosphere, the temperature coefficient being —0.4 per cent per degree. 
At 0°c, therefore, the value becomes —6.64 int joules or —1.59 calories 
per atmosphere. But, from equations (4.18) and (4.20), 

/dE\ _ (de\ (RT\ 
\dPjr WA P2)t 

Where RT — 22.41 liter-atm, we have for 1 mole of nitrogen at 0°c 
and 1 atmosphere 

1.59 
22.41 

— 0.0710 cal/liter 

Relation between Cv and CV for an Ideal Gas.—For substances in 
general, including gases, we derived equation (3.16) which, per mole of 
substance, is 

c P Cv Y*®) +P]( dv-\ 
i\dvjT J \dTjr 

For the special case of ideal gases, (dE/dv)r = 0 and the equation reduces 
to 

Cp — Cv — (4.25) 

This equation can be applied to nonideal gases to a fair degree of approxi¬ 
mation, for (dE/dv)r is small for gases compared with P. If the ideal 
gas law is differentiated with respect to temperature, the equation 

d(Pv) 
d T 

= R 

is obtained. Under the condition of constant pressure, this expression 
can be simplified to 

which is equation (4.24). Hence, from equation (4.25), 

Cp - Or = R (4.26) 

for a perfect gas. Equation (4.26), though derived for the ideal gas, 
applies also to real gases, especially at high temperatures. Table 4.3 
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lists experimental values of Cp — Cv for some gases at 15°c and Table 
4.4 lists values up to 2000°c. Observe that, at the higher temperatures, 
the difference, o — Cy, approaches the value R = 1.987 cal/deg. 

Table 4.3.—Experimental Heat Capacity Ratios and Differences in Molar 

Heat Capacity for Some Gases* 

(In calories per degree at 1 atmosphere pressure) 

Gas 
Tem¬ 
pera¬ 

ture, °c 
7 <> — Cy Gas 

Tem¬ 
pera¬ 

ture, °c 
7 Cp — Cy 

Monatomic gases: Polyatomic gases: 
Argon. 0-100 1.67 Ammonia. 15 1.310 2.108 
Helium. — 180 1.660 Hydrogen sul- 
Neon ......... 19 1.64 fide. 15 1.32 2.092 
Mercury. 360 1 .67 Acetylene. 15 1.26 2.057 
Sodium. 750-920 1.68 Ethylene. 15 1.256 2.057 

Diatomic gases: Ethane. 15 1.22 2.087 
Chlorine. 15 1.35s 2.135 Propane. 15 1.13 
Hydrogen. 15 1.410 1.987 Ethanol. 90 1.13 
Hydrogen chlo¬ Ethyl ether.... 35 1.08 

ride 15 1.41 2.057 Benzene. 90 1.10 
Nitric oxide.... 15 

i 
1.400 1.996 Cyclohexane . . 80 

; 
1.08 

* Data from th« “International Critical Tables,” Vol. 5, p. 80, McGraw-Hill Book Company, Inc., 
New York, 1926. 

Table 4.4.—Experimental Values* of — y and of Cp — cy for Some Gases 
Cy 

at 1 Atmosphere Pressure 

(Heat capacity in calories per degree per mole) 

Tern- 02, N 

O
 

O
 C02 H20 CH2 

pera- 

ture, °c 7 Cp - Cy 7 Cp - Cy 7 CP — Cy 7 Cp — Cy 

0 1.402 1.998 1.310 2.055 1.307 2.008 
100 1.399 1.99i 1.281 2.014 1.324 2.133 1.232 1.996 
200 1.396 1.989 1.263 2.001 1.310 2.043 1.188 1.992 

400 1.391 1.98s 1.235 1.992 1.30i 1.995 1.139 1.989 
600 1.383 1.98s 1.217 1.989 1.290 1.994 1.113 1.988 
800 1.375 1.98s 1.204 1.988 1.27s 1.991 

1000 1.365 1.987 1.195 1.988 1.25, | 1.990 

1400 1.342 1.987 1.184 1.987 1.206 | 1.988 

2000 1.303 1.98t 1.171 1.987 1.15, | 1.988 

* From data in the “ International Critical Tables,” Vol. 5, pp. 82-83, McGraw-Hill Book Com¬ 
pany, Inc., New York, 1926. 

Free Expansion of Real Gases.—The early experiments of Joule on 
the energy change during expansion of a gas not doing work (free expan¬ 
sion) were not suitable for detecting small changes in energy. In a new 
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experiment, Joule and Thomson1 (Lord Kelvin) observed the change in 
temperature of a gas when forced through a porous plug with a resulting 
drop in pressure. The method is indicated in Fig. 4.4 where b is a 
porous plug resistant enough to a flow of gas to permit a constant dif¬ 
ference in pressure between the pressure Pi of the entering gas and the 
constant lower pressure P2 of the gas leaving the plug. If the apparatus 

(Xjc = P/s tons 
b ~ Porous diaphragm 
dte~ Thermometers 

Fig. 4.4.—Apparatus for the Joule-Thomson expansion of a gas through a porous plug. 

is thermally insulated, the process is adiabatic, q = 0; hence, from the 
first law equation, 

AE = -w (4.27) 

Consider a mole of gas with volume Vi, temperature Th and energy ex, 

forced into the porous plug at the pressure Pi, the pressure being main¬ 
tained with the piston a. The work done on the gas is PxVi and the work 
Wi done by the gas is Pi AFi = —PiVi since AFi = — Vj. When the mole 
of gas leaves the porous plug at the temperature P2, energy e2, and pres¬ 
sure P2, it has a molar volume of v2. It does work w2 against the piston 
c equal to P2 AF2 = P2v2 since AF2 = v2. For the pressure change 
P2 — Pi, a temperature difference P2 — Pi is observed on thermometers d 
and e; and, from sufficient data, the limiting ratio dT/dP is obtained from 
the experimental values of AT/AP at different pressures. 

Now, the energy change in the process is Ae = e2 — Ei, and the work 
done by the gas is w = w2 + Wi = P2v2 — PxVi so that from equation 
(4.27) we have 

e2 — Ei = PiVi — P2v2 (4.28) 

This may be rearranged to 

E2 + P2V2 = Ei + PiVi 

Comparison with the definition h = e + Pv shows that 

h2 = Hi (4.29) 

There is no change in the heat content (enthalpy) during the process. 
The process is isenthalpic. 

1 Joule, J. P., and W. Thomson, Proc. Roy. Soc. (London), 143, 357 (1853). 
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The change of temperature with pressure at constant heat content is 
called the Joule-Thomson coefficient n; it is represented by 

’ - Ct), 
Let us now see how the Joule-Thomson coefficient may be used to 

calculate the change in energy with volume. Using the method of 
equation (1.9), we have for 1 mole 

But, because h is constant for this experiment, dn = 0. On rearranging 
(4.31) and dividing by dP, we have 

H i 

3?
 3

? 
X 

X 

** 
"3 

(4.32) 

But (dT/dP)h = m and (du/dT)r — o; hence, 

^7
3 

^
1

3
 

!! 1 (4.33) 

But equation (4.19), derived earlier, is applicable here so that for 1 mole 

/ /dv\ f d(Pv) 
~mc,> = WAwP + rev l (4.34) 

These conclusions are not restricted to gases, for at no point have we made 
restrictive approximations applicable to gases alone. The equations and 
the methods are applicable to liquids and solutions also. Table 4.5 lists 
the values of p for carbon dioxide at various temperatures and pressures. 
Values are given for liquid carbon dioxide as well as for the gas. 

For a perfect gas, (dE/dv)r and [d(Pv)/dP]T are zero; hence, \x must 
be zero. For hydrogen and helium at ordinary pressures and tempera¬ 
tures, m is negative, that is, the gases become warmer on free expansion. 
All other gases cool when expanded. At low temperatures, hydrogen 
and helium become “normal”; the temperature at which \x changes sign, 
that is ju = 0, is called the inversion temperature. As Table 4.5 indicates, 
the inversion temperature depends on the pressure. 

We may again calculate the value of (dE/dv)r for nitrogen, using 
Joule-Thomson data. When equation (4.34) is rearranged, it becomes 

(4.35) 
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If nitrogen is represented by the relations in equations (4.15) and (4.20), 
it appears that equation (4.35) may be written 

/3e\ _ -iic.p -B_ncP + B 

\dv)r _ RT 
(4.36) 

Table 4.5.—Joule-Thomron Effect for Carbon Dioxide* 

(Values of m = (dT/dP)H in degrees per atmosphere at several temperatures and 
pressures) 

Tempera¬ 
ture, °c 

Pressure, atmospheres 
State 

1 20 60 100 200 

300 0.2650 0.2425 0.2080 0.1872 0.1505 
200 0.3770 0.3575 0.3400 0.3150 0.2455 
100 0.6490 0.6375 0.6080 0.5405 0.2555 Gas 
50 0.8950 0.8950 0.8800 0.5570 0 0930 
0 1.2900 1.4020 0.0370 0.0215 0.0045 

-25 1.6500 0.0000 -0.0028 -0.0050 -0.0115 
-50 2.4130 -0.0140 -0.0150 -0.0160 -0.0248 Liquid 
-75 -0.0200 -0.0200 -0.0228 -0.290 

* Values of J. R. Roebuck, T. A. Murrell, and E. E. Miller. J. Am. Chern. Soc., 64, 400 (1942). 

The value for \x for nitrogen at 1 atmosphere and 0°c is given by Roebuck 
and Murrell1 as 0.2655 degree per atmosphere. By extrapolating the 
heat capacity equation for nitrogen in Table 3.3 to 0°c, we have Cp = 6.865 
calories or 0.2835 liter-atmosphere per degree. From Table 4.1 the value 
of B is —0.0105 liter. Consequently, at 1 atmosphere, 

/<9e\ = (0.2655)(0.2835) - 0.01015 
\dV / 273.16 22.41 

= 2.906 X 10-3 liter-atm/liter 
= 0.0704 cal/liter 

This value agrees well with that calculated in a previous section from 
different data. 

Isothermal Expansion of an Ideal Gas.—For an ideal gas, we found 
that (dE/dV)r = 0. This means that the energy of a definite amount of 
the ideal gas is a function of the temperature alone and does not change 
during an isothermal expansion. From the first law equation, therefore, 

A E — q — w = 0; q — w (4.37) 

In differential form, this becomes D<? = T>w. 

Roebuck, J. R., and T. A. Murrell, “Temperature, Its Measurement and 

Control in Science and Industry,” p. 70, Reinhold Publishing Corporation, New York, 

1941. 
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Previously, we found that the work of expansion is given by the 
equation 

Du> = P' dV; w — fP'dV (4.38) 

where P' is the opposing pressure. In general, equation (4.38) can be 
evaluated only if we know how P' changes with V. 

Irreversible Expansion.—The most completely irreversible expansion 
of the gas is the free expansion into a vacuum as in Fig. 4.1. Here 
P' = 0 and Dw = 0. Hence, q is also zero. Thus, the free expansion 
of an ideal gas is adiabatic as well as isothermal. 

The maximum work of expansion will occur when Pf has a value 
only slightly less than the pressure P of the gas. The expansion then 
approaches reversible expansion, and the work of expansion is the reversible 
work wr. Thus, the wTork in an irreversible isothermal expansion may 
range from zero to wr, and the heat absorbed, q, which equals wy will 
range between the same limits. 

Reversible Expansion.—For the reversible expansion, P' — P which, 
for the ideal gas, equals nRT/V. From equation (4.38), the reversible 
work wr for the isothermal expansion between the limits V = V\ and 
V = Vt is, therefore, 

f V 2 r V 2 1 y T 7 

Wr= P dV = nRT / - nRT In (4.39) 
Jvi Jvx V Vi 

The reversible heat absorbed in the expansion, from equation (4.37), is 

qr = wr = nRT In — nRT In ^ (±40) 

It is evident that the work in the isothermal reversible expansion depends 
only on the ratio of the initial and final volumes (or pressures) and not on 
their absolute values. It takes as much work to compress a sample of 
ideal gas from 10 to 1 ml, as from 10 to 1 liter or from 1,000 to 100 liters. 

Adiabatic Expansion of an Ideal Gas.—In an adiabatic process, no 
heat is exchanged so that we have, from the first law equation, 

A E — —w 
d E = —T)w (4.41) 

Since the energy of a definite amount of an ideal gas is a function of the 
temperature only, we may write 

(dE\ dE 
\dTjv d T 

But, if energy depends only on the temperature, the heat capacity at 
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constant volume which measures the energy change with temperature 
must also depend only on the temperature and not on the volume at 
which the heat capacity is measured. Therefore, from equation (3.2) 
we have 

dE = Cv dT (4.42) 

Thus, the change in energy of the ideal gas may be expressed as a function 
of the heat capacity at constant volume and the temperature. The 
work of expansion being Dw = Pf dF, we have, from equation (4.41) 
for an adiabatic expansion, 

-I)w = dE = Cv dT = -P' dF (4.43) 

Irreversible Expansion.—In the free expansion of an ideal gas, we 
found that dE, Dq, and Dw have zero values. Since dF and CV have 
positive values, from equation (4.43) dT and Pr must also be zero. In 
other words, the expansion is isothermal and at the same time adiabatic 
as we found earlier. For real gases, P' being still zero, a change of T in 
the expansion means a change in E with volume. 

Reversible Expansion.—For the reversible, adiabatic expansion P' 
equals P, and for a mole of gas P = RT/v so that, from equation (4.43), 

RT 
-Dw, = o dT =-— dv = — RT d In v (4.44) 

Hence, 

wr = - fj* Cv dT = -R T d In v (4.45) 

The integrals in equation (4.45) can be evaluated if we know how cv 
varies with T or how T varies with v. The gases most nearly ideal at 
ordinary conditions have heat capacities that vary only slightly with 
temperature. The monatomic gases in particular have nearly constant 
heat capacities. We shall, therefore, define an ideal gas further as one 
with a constant heat capacity. Hence, for the ideal gas, 

Wr = -Cr d T = -c v(T, - TO (4.46) 

We may obtain the reversible work for a real gas from the integral in 
equation (4.45) if we can express Cv as a function of T. 

Equation (4.44) can be divided by T, so that 

dT D , , 
Cv-jr = — P d In v 

But dT/T = d In T, hence 

cv d In T = —R d In v 

Cv for a perfect gas being constant, we may integrate this equation between 
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the limits T1, Vi and T2, v2, and obtain the relation 

cv In — —R In — — R In — (4.47) 
Ti Vi v2 

The negative sign indicates that T decreases as v increases, that is, that 
the gas cools on expansion. 

Since v = RT/P, equation (4.47) may be transformed to 

Cr 1,1 ft = R ln rt'M = R (ln ft + ln ft) 
Therefore, i D , T, — . P2 

Cv In Tfr + R ln w = R ln w 
I i 1 i Jr i 

But, from equation (4.2b), cv + R = Cp; hence, 

Cp ln >>r = i? ln 
i i /i 

If we divide equation (4.48) by (4.47), we obtain 

Cp __ = M/y/b) 
Cr 7 In (vi/v2) 

(4.48) 

(4.49) 

This equation indicates a simple method for obtaining 7, the ratio ov/cv, 
from measurements on P2/P1 and Vi/v2 during adiabatic expansion. 
From equation (4.49), we obtain 

Therefore, 

PiVp = P2v27 = const 

I 

(4.50) 

Compare this equation with that for the isothermal expansion of a gas 
(Boyle’s law). 

Carnot Cycle for an Ideal Gas.—For future use, we shall consider 
here the reversible work obtained with an ideal gas in a Carnot cycle, 
which is discussed in more detail in Chap. 7. Consider an ideal gas in an 
initial state A. It is expanded reversibly and isothermally to state B 
and then expanded reversibly and adiabatically to state C. The gas is 
then compressed reversibly and isothermally to state D so chosen that, 
when the gas is now compressed reversibly and adiabatically, it returns 
to its initial state A. Such a series of changes resulting in a return to 
the initial state is called a cycle, this particular series of isothermal and 
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adiabatic changes forming the Carnot cycle. It must not be assumed 
that the Carnot cycle is restricted to ideal gases or even to gases, but we 
have just derived the relations for ideal gases and shall apply them to 
this cycle. 

The various stages of the cycle are 
shown in Fig. 4.5, on a pressure-volume 
diagram. From the equations previously 
derived for reversible, isothermal expan¬ 
sion and reversible, adiabatic expansion of 
an ideal gas, we may summarize the quan¬ 
tities for the several stages. 

Stage AB. Isothermal Expansion. 

Ta Tb = Tt 

AE = 0 

Qua = Wba 
Vr 

vRT. In 
y A 

Volume 
Fi<r. 4.5.-- The Carnot cycle. 

Stage BC. Adiabatic Expansion, q = 0 

qc.B = 0 
Ec - Eh = Wcb = Cv(T1 - Tt) 

Stage CD. Isothermal Compression. Tc — T]} ~ 7\ 

AE — 0 

% q dc = Wr>c — nRT\ In 
1 a 

Stage DA. Adiabatic Compression, q — 0 

Qad — 0 
Ea - Ed = -iiu* = Cv(T2 - 7\) 

Before we summarize the results for the cycle, we shall show that 
Vb/Va = Vc/Vjj. We see from equation (4.47) that the ratio of the 
volumes of a definite amount of gas in an adiabatic expansion between 
two temperatures is determined by the ratios of the temperatures, Cv 
and R being constant. Consequently, 

Vb Va 

Vc Vi> 

and 
Vb = 'Vc 
VA V d 

Total Cycle.—The total change in energy for the cycle is zero, the gas 
having returned to its initial state. Since EA = Eb and Ec = Ed} we 

have for the four stages 

AE = 0 + Ec ~ Eb + 0 + Ea — Ed = 0 
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Let the total reversible work for the cycle be designated as wr} the 
heat absorbed qBA in the reversible expansion at the temperature T2 be 
designated as q$, and the heat absorbed qDC in the reversible compression 

at the temperature T1 be designated as gx. Then the total reversible 
work done by the gas in the cycle is 

Wr = Wba + Wcb + Wnc + Wad 

= nRT2 In - CV(T, - T,) - nRl\ In ~ - Cv(T, - Ti) 
V A V A 

= nR In (T, - Tx) (4.51) 
V A 

The heat absorbed during the reversible expansion along the path ABC is 

q, = q„A = nRT, In (4.52) 

and that absorbed during the reversible compression along the path CD A 

is 

q'i = qnc = —nRTi In -!>- (4.53) 
l a 

having a negative value because heat is evolved during the compression. 
The total heat absorbed is, consequently, 

q, + qx = nR In Y.1 (3’2 _ Ti) (4.54) 
V A 

and, since AE = 0, equation (4.54) equals equation (4.51). Thus, for 
the process we find that 

qi + qi = wr (4.55) 

and, from equations (4.51) to (4.53), 

= ~ <7i = _wr_ 
Tt Ti T2 - 7\ 

(4.56) 

In this cycle for the ideal gas, the heat absorbed at T2 and the heat 
evolved at Ti are found to be proportional to the temperatures on the 
ideal gas scale, and the reversible work is proportional to the temperature 
difference. When there is no temperature difference, no total work is 
done in the cycle. These results based on the behavior of the ideal gas 
are discussed in more detail in connection with the second law of thermo¬ 
dynamics in Chap. 7. 

We are reminded again, that the heat and work for a given change— 
for example, from state A to state C—depend on the path. Along the 
path ABC, the heat absorbed on expansion is 

qcBA — q2 — nR In jJ- 
V A 
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and the work done is 

Wcba = nR In T2 + Cv(Tt - TJ 
V A 

Along the path ADCy the heat absorbed on expansion (not compression) 

qcDA = — £i = nR In T1 

and the work done is 

Wcda = nR In ~ T1 + CV(T2 - Tx) 
V A 

Wcba — wCda = nR In (r2 — 7\) 
r a 

qcitA — — #2 + Qi — nR In tf- (T2 — Tx) 
V A 

it appears that both the reversible heat and the reversible work depend 

on the path followed in the change. 

Heat Capacity of Gases from the Kinetic Theory.—Although thermo¬ 

dynamics is not directly concerned with molecular theories, interesting 

and instructive conclusions may be drawn from a comparison of equations 

derived from the kinetic theory with the empirical equations obtained 

from the experimental data. Let us consider a mole of ideal gas com¬ 

posed of N molecules at the temperature T, and assume that the internal 

energy e is entirely an attribute of the kinetic energies of the individual 

molecules and their components. For an ideal monatomic gas, in which 

there is no rotational energy of the molecules or vibrational energy of the 

atoms within the molecules, the internal energy is the sum of the transla¬ 

tional kinetic energies of the individual molecules. For a single molecule 

with mass m and velocity ux, the kinetic energy ex is given by 

ei = i-mui2 (4.57) 

The velocity U\ has components along the £-, y-, and 2-axes. Not all 

the molecules have the same velocity, some moving much faster and some 

much slower than the average. Indeed, at different times any single 

molecule travels at different velocities, depending on the exchange of 

energy by collision with the other molecules. The average kinetic 

energy c of a single molecule is given by 

Cl + €2 + €3 + 

N 
(4.58) 

From equation (4.57), which shows the relation between the €*s and the 
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u’s for the individual molecules, we have, on substitution in 

(4.58), 
1 U l2 + Uo2 + Wg2 + * * ’ Uy2 1 —1 

6 = - m --——IT-= ^ m u 

equation 

(4.59) 

where ul is the mean square velocity. The rms velocity \[u2 = y/x'u2/N 

is not the average velocity of the molecules which is Xu/N. Since there 

are N molecules in the mole of gas, the total internal energy of the gas is 

E = Ne = iNmll2 (4.60) 

Now, from a study of the pressure exerted by the molecules on the 

walls of the containing vessel, it can be shown that 

Pv = \Nrm? (4.61) 

When this equation is compared with the ideal gas equation 7*v — Rl\ 

it is evident that 

Pv - RT - iNniu* - (iKiNniu?) (4.62) 

whence, from equation (4.60) 

RT = |io (4.63) 

This equation shows that the internal energy of the ideal monatomic gas 

varies directly with the absolute temperature. 

The heat capacity at constant volume for such a gas is approximately 

3 calories per degree, for we have, from equation (3.2), 

Cv = -/?== 2.981 cal/deg (4.64) 

The heat capacity at constant pressure, obtained with the aid of equation 

(4.26), is R calories per degree greater (approximately 5 calories per 

degree). 

cr=‘cr+* 

= %R T- R = %R = 4.968 cal/deg (4.65) 

These values are found experimentally for the monatomic gases and for 

hydrogen at temperatures below 40°k. Some Cv values for hydrogen 

are listed in Table 4.6. 

For gases, the heat capacity ratio Cp/cv = 7 can be measured more 

accurately than either Cp or cF. As stated earlier, the experimental 

values of cv are best obtained from the measured values of cv and 7. 

Values of 7 for some gases are given in Tables 4.3 and 4.4. 

From equations (4.64) and (4.65) we see that the kinetic theory gives 
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a simple ratio for cP/cv. For the monatomic gas, 

= = 3 = 1-667 (4-66) 

The values of y for all the monatomic gases are near this value. As we 

shall see, the ratio becomes smaller for more complicated molecules. 

Table 4.6.—Molar Heat Capacity of Ordinary Hydrogen 

(i para -f f ortho) Calculated from Spectroscopic Data* 

(In calories per degree) 

Temperature, °K cv Temperature, °k Cv 

0 2.980 150 4.087 
20 2.980 175 4.341 
30 2.980 200 | 4.536 
40 2.982 225 4.602 
50 2.990 250 4.785 
75 3.116 273.1 4.854 

100 3.411 298.1 4.905 
125 3.815 

* Giauque, W. F.( J. Am. Ghent. Soc., 52, 4816 (1930). 

Heat Capacity of Diatomic Molecules.—According to the principle 

of the equipartition of energy in classical mechanics, the energy of a 

system is equally divided among the “degrees of freedom/7 If a gas 

has only translational energy, there are 3 degrees of freedom correspond¬ 

ing to the three rectangular coordinates x, y> and z. Associated with 

each degree of freedom is one-third the energy, and at constant volume 

the heat capacity for each degree of freedom is then }R. However, if 

the molecule of gas under consideration is diatomic, or linear if poly¬ 

atomic, and, therefore, not a perfect sphere but dumbbell-shaped, col¬ 

lisions will produce rotational motion of the molecule in two planes, 

introducing 2 more degrees of freedom. Such a gas has 5 degrees of 

freedom, 3 translational and 2 rotational, and the molar heat capacity is 

cv = 5 X = iR = 4.968 cal/deg (4.67) 

cP = + R = iR = 6.955 cal/deg (4.68) 

Diatomic molecules, such as nitrogen and carbon monoxide, have these 

heat capacities at room temperature. Here, too, the heat capacity 

ratio Cp/cv takes on a simple form 

s - li - 1 - 1-400 <4-69) 

This is the value of 7 for many diatomic molecules at room temperatures. 

At low temperatures, the ratio tends to increase while cP decreases. The 
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reverse relation is found at high temperatures. Since 3 degrees of free¬ 

dom may be assigned to each atom, the two atoms in a diatomic molecule 

have a maximum of 6 degrees of freedom and, therefore, the possibility 

of a vibrational degree of freedom in addition to translation and rotation. 

It appears, therefore, that, at low temperatures, diatomic molecules do 

not have complete rotation and that, at high temperatures, vibration 

of the atoms in the molecule arises. In this way, the heat capacity 

exceeds that predicted for 5 degrees of freedom. 

The data for hydrogen in Table 4.6 illustrate this behavior. At 

0°c = 273. 1°k, the value of cv lies slightly below the theoretical value 

for the diatomic gas. However, cv decreases rapidly with decreasing 

temperature until its value approaches that of a monatomic gas with but 3 

degrees of freedom. Here rotation ceases, and y approaches the mon¬ 

atomic gas limit 1.67. In terms of the kinetic theory, we must assume 

that the molecule acquires rotational energy slowly, and in a way not 

accounted for by the classical prequantum theory. At higher tempera¬ 

tures the heat capacity increases above the classical diatomic gas value, 

as shown in Table 3.2, and the value of y decreases, facts indicating 

that new types of energy absorption such as vibration of atoms or excita¬ 

tion of electrons have arisen in the hydrogen molecules. 

Heat Capacity of Polyatomic Molecules.—A triatomic, nonlinear 

molecule may rotate in a third plane and have 3 rotational as well as 3 

translational degrees of freedom. For such a gas in the absence of vibra¬ 

tion of the atoms in the molecule, 

cv = 6 XiR = 3R = 5.962 cal/deg (4.70) 

cv = 3R + R = 4R = 7.949 cal/deg (4.71) 

Here the ratio cp/cv is 

= Tr = I = 1333 <4-72> 

As Table 4.3 shows, this is the value at room temperature approached 

by the simple polyatomic gases. However, some polyatomic gases, such 

as CH4, C2H6, C2H5OH, and (C2H&)20, show abnormally high heat 

capacities and low values of y. Apparently, heat is absorbed, also, in 

the form of vibrational energy and of rotational energy within the mole¬ 

cules. If so, increased temperature should favor such vibrations and 

internal rotations and lead to increased heat capacities. We have seen 

that as Cp and cv both increase, their ratio y decreases. As Tables 3.2 

and 4.4 show, these effects at higher temperatures are prominent in 

the organic gases such as methane, but they are evident also for the sim¬ 

pler gases N2 and 02. 

At the higher temperatures, the difference Cp — Cv approaches the 
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value R = 1.987 cal/deg == 8.314 joules/deg. The rapid increase in cP 

for gases is, therefore, paralleled by the increase in cv. These increases 
in energy must result from new types of energy absorption. Let the 
number of new types of energy absorption in addition to the translational 
energy be represented by X. For each new type, the heat capacity will 
be increased by and the total heat capacity of such a gas will be 

cP = ^R + R + ~R = ^4"-— R (4.73) 

With this equation, we may obtain the value of X from the experimental 
heat capacity. 

Thus, for methane at 25°c, we have 

^ X 1.99 

X 

The 3 rotational degrees of freedom of the molecule arc, therefore, not 
sufficient to account for the heat capacity of methane. At 1000°k, 
we have from Table 3.2, cp = 17.21, so that X = 12.3. At these tem¬ 
peratures, vibrational energy becomes large enough to favor decomposi¬ 
tion of the molecule. Observe, however, that even at this temperature 
the oxygen, nitrogen, and carbon dioxide have but a relatively small 
increase in heat capacity. 

The variation of the heat capacity of hydrogen and of the other gases 
cannot be explained by the classical mechanics; the explanation is found 
in the quantum theory. Because of this and other facts, we believe that 
energy is not absorbed in a continuous manner but in small units of 
energy called quanta. Before a molecule can rotate, it must acquire 
a definite amount of energy; before it can change its velocity of rotation, 
it must acquire another quantum of energy. Vibrational energy is also 
acquired in quanta. The heat absorption of a single molecule therefore 
proceeds in a stepwise manner. However, if a sufficiently large number 
of molecules are dealt with, experimental results are obtained which are 
averages; such averages will vary in a continuous manner, for the quan¬ 
tum is very small compared with the total amount of energy considered 
in ordinary systems by the chemist. Even though the heat capacity 
of a single molecule would be represented by a steplike curve, the heat 
capacity of a macroscopic portion of the same substance can be accu¬ 
rately represented by a smooth empirical curve and fairly well by equations 

such as those in Table 3.3. 
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Problems 

4.1. (a) The ratio of the PV product for an ideal gas at 0°o and 1 atmosphere; 

pressure to the PV product of air at the same temperature and pressure' is 1.00061. 
At this temperature and pressure, the molar volume of an ideal gas is 22.4140 liters. 

What is the molar volume of air under these conditions? 

(b) Calculate the value of B for air at 0°c from the data in (a). Calculate the 

value of B from the data in Table 4.1, assuming that air is 78 per cent nitrogen, 21 

per cent oxygen, and 1 per cent argon. Compart; the two results. 

4.2. Where the value of PV for a sample of air at 0°c and 1 atmosphere' pressure 

is PV — 1.0000 liter-atm, the value of PV as a function of pressure up to 100 atmos¬ 

pheres is given by the equation 

PV = 1.0000 - 0.03603P + 0.05302/>2 

Calculate the value of (dV/dP)t and \d(PV)/dP]r at 1 atmosphere and at 100 atmos¬ 
pheres pressure. If v is the molar volume of air obtained from Prob. 4.1, what are 

the corresponding values of (dv/dP)r and [d(IW) /&P]t? 

4.3. Rossini and Frandsen [Bur. Standards J. Research, 9, 733 (1932)1 report 

— 6.08 joules per atmosphere as the value of (dE/&P)t for 1 mole of air at 28°<; between 

the pressures 0 to 40 atmospheres. The change in this value per degree rise' in tem¬ 

perature is —0.4 per cent. Calculate the value of (<9e/dP)r in calories per atmosphere 

and in liter-atmospheres per atmosphere at 0°c. With the aid of the data in Prob. 4.2, 

calculate the values at, 0°c of (<9e/c1v)t and (<?h/0P)t for 1 mole of air at 1 atmosphere 

and at 40 atmospheres. 

4.4. Show that for the adiabatic expansion of n moles of perfect gas, 

log p' = 7 log -jr (4-74) 
i 1 V 2 

4.6. Derive the equation 

(4.75) 

4.6. From the data on carbon dioxide in the “International Critical Tables,” 

Vol. 3, pages 10-11, calculate the value for the change in PV with pressure at 100°o 

and 100 atmospheres. From this value and the Joule-Thomson coefficient, calculate 

the value of (dis./dP)T per mole of carbon dioxide in calories per atmosphere and 

in liter-atmospheres per atmosphere. 

4.7. A mole of nitrogen at 27°c and 1 atmosphere is expanded adiabatically to a 

final pressure of 0.1 atmosphere. Calculate the final temperature t in degrees centi¬ 

grade. Assume that cp for nitrogen is 29.0 joules per degree in this temperature 

range and that nitrogen obeys the ideal gas laws. 

4.8. What is the final temperature of 1 gram of nitrogen expanded under the 

same conditions (27°c and 1 atmosphere adiabatically to 0.1 atmosphere and t°)f 
Of m grams? 

4.9. Calculate the work done by the nitrogen during the expansions described in 

Probs. 4.7 and 4.8. 

4.10. Calculate the work that is done by the mole of nitrogen in expanding reversi¬ 

bly and isothermally from 1 to 0.1 atmosphere, (a) at 27°c, (b) at the temperature t 
found in Prob. 4.7. Compare with the result of Prob. 4.9. 

4.11. What work is done by a mole of nitrogen at 27°c in expanding from 1 atmos- 
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pherc into a vacuum until the final pressure is 0.1 atmosphere? If no heat is 

exchanged with the surroundings, what is the final temperature of the gas? Assume 

that nitrogen here behaves as a perfect gas. 

4.12. For a real gas obeying equation (4.12), show that at zero pressure 

[d(IW)/dP]T — const 

and that [d(Pv)/0\]t — 0. For this gas show that at zero pressure, if (dE/dv)r — 0, 

(0n/dv)T — 0, and (()u/0P)t has a finite value. 

4.13. Calculate the work required to compress 1,000 liters of a perfect gas at 1 

atmosphere isotherinally until the final volume is (a) 100 liters, (b) 10 liters, (c) 

1 liter. 

4.14. One mole of a perfect diatomic gas with a constant heat capacity has as its 

initial volume and temperature, 10 liters and 100°c, respectively. The gas is expanded 

and cooled reversibly until its final volume and temperature are 100 liters and 0°c, 

respectively, by one of the two following paths: 

(a) The gas is first expanded adiabatically and reversibly until its temperature is 

0°c and then expanded isothermally and reversibly until its final volume is 100 liters. 

(b) The gas is first expanded isothermally and reversibly at 100°c until its volume 

has the proper value, and then expanded adiabatically and reversibly to its final state 

of 0°c and 100 liters. For each of the two indicated reversible paths, calculate the 

work done by the gas and the heat absorbed by it. 

4.16. From the data in Table 4.5, calculate the change of heat content with pres¬ 

sure for carbon dioxide at 0°c and 1 atmosphere; 0°c and 100 atmospheres; 100°c 

and 1 atmosphere.; 100V and 100 atmospheres. Indicate the phases present at each 

point. The heat capacity of liquid carbon dioxide at 0°c and 100 atmospheres is 

2.00 joules per gram. 

4.16. With the aid of the data in Table 4.1, calculate values for the density of 

hydrogen and of argon in grams per liter at 1 atmosphere. 

4.17. Calculate value's of the molar volume of nitrogen at 1 atmosphere pressure 

for the temperatures —150, —100, -50, 0, 50, 100, 300, and 600°c, using values for B 
from Fig. 4.3. Compare with the molar volume of the ideal gas at these temperatures. 



CHAPTER 5 

HEAT OF REACTION 

In simple homogeneous systems, the absorption of heat or energy in 
any form is usually accompanied by a rise in temperature. The systems 
studied in the previous chapters conform to this type. We saw, how¬ 
ever, that the rise in temperature produced by a given amount of energy 
is different for the different pure substances and, indeed, for any one 
substance in the solid, liquid, or gas phases, or in any one phase at dif¬ 
ferent temperatures. In a definite amount of perfect gas, the energy is 
a function of the temperature only, so that, if the temperature is kept 
constant and the gas does no work, there are no heat effects when the 
system is compressed or expanded. For all actual substances, however, 
energies do depend on the volume of the system, that is, on the distances 
between the atoms and molecules. 

While a pure substance remains at constant temperature, it does not 
absorb large quantities of heat as it is expanded so long as the substance 
is not transformed into a new phase. Many mixtures of pure sub¬ 
stances also behave in this way. However, it frequently happens that 
the mixture of pure substances reacts according to the law of chemistry, 
with the resultant formation of new substances. In terms of chemistry, 
the atoms of the different substances have so rearranged themselves that 
there are large changes in the potential energies known as “ chemical 
energies/7 If the final mixture is at the same temperature as that of the 
initial mixture, none of this large amount of energy can be attributed 
to the heat capacity of the individual atoms in the system; all of it must 
be attributed to the change in energy resulting from the chemical 
rearrangement. 

The isothermal energy changes of one-phase pure substances are rela¬ 
tively small; but the isothermal energy changes resulting from chemical 
reaction are, in general, relatively large, though a few reactions have an 
almost negligible energy change. However, when pure substances 
change from one physical form to another at constant temperature, energy 
changes called latent heats occur, which may also be relatively large. 
These latent energies are measures of the changes in potential energy 
resulting from the change in phase. The difference in energy between 
a liquid and a gas is usually large, and the latent heat of evaporation is, 
therefore, correspondingly large. The change from solid to liquid is a 

94 
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somewhat less drastic one, and the latent heats of melting are accordingly 
smaller than the heats of evaporation. For the change of a substance 
from one crystalline form to another, the heat of transition is likely to 
be relatively small. The above generalizations are only approximate; 
many exceptions to the rules may be found. Where exceptions exist, one 
must look for unusual conditions that result in abnormal differences in 
potential energies. 

Latent Heat.—The latent heat effect was discovered by Joseph Black 
in 1761 while he was investigating the heat capacities of various sub¬ 
stances. It is made evident by an abnormally high heat capacity within 
a restricted temperature range. Latent heat might be better named 
latent energy. It undoubtedly exists in substances in the form of poten¬ 
tial energies and not in the form of kinetic energies. 

When a gram of ice at 0°c is heated at atmospheric pressure, it melts 
to water. If the resulting water has a final temperature of l°c, experi¬ 
ments show that 81 calories of energy have been absorbed. Of this 
energy, 80 calories are required to melt the ice to water at 0° and 1 caloric 
to heat the water from 0 to 1°. Where Hz represents the heat content 
of the water at 1° and Hi that of ice at 0°, the apparent heat capacity 
of the system over this temperature interval at constant pressure is 
{Hz — Hj)/(T2 — Ti) = 81 cal/deg. If the final temperature of the 
water is 0.5° instead of 1°, the apparent heat capacity over the half-degree 
interval is (80 + 0.5)/0.5 = 161 cal/deg; if the final temperature is 0.1° 
instead of 1°, the apparent heat capacity of the water is 

(80 + 0.1 )/0.1 = 801 cal/deg 

We see that, as the temperature range over which the latent heat is 
observed becomes smaller and smaller, the apparent heat capacity 
becomes greater approaching the limit, (dH/dT)dT~*o —> °° . 

These facts are illustrated in Fig. 5.1 for finite temperature intervals. 
From the general relation dHP = Cp dT, it follows that the increase in 
heat content between any two temperatures is given by the integral of 
Cp dT between those temperatures. The integration may be performed 
graphically. Thus, in Fig. 5.1 the value of II2 — Hx between Ti and 
T2 is the area under the curve between these temperatures. If the 
transition between solid and liquid takes place sharply at a definite 
temperature and the intervals over which the heat capacity is measured 
are very small, the heat capacity at the transition as indicated by the 
heavy line rises abruptly to a very large value. The heat of the transi¬ 
tion is then the difference between the total area under the curve between 
Tz and T± and that part which must be attributed to the true heat capacity 
in this temperature range. The heat capacity heat can be estimated 
from the heat capacity curves extrapolated to the transition temperature. 
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If the transition does not take place abruptly but extends over the 
temperature range T2 and 7\, as shown by the dotted curve, the total 
change in heat content in the range is the area under the dotted curve, 
and the heat of transition is that remaining after the true heat capacity 

Tt T2 T0T4Ts 

Temperafu re 
Fia. 6.1.—Influence of gradual or abrupt phase changes, or chemical reactions, on the 

apparent heat capacity curve. 

heat is deducted. For any given transition, the two heat of transition 
/T6 

r CP dT is the same in 

either case. 
Although the majority of phase transitions can be made to take place 

abruptly so that their influence on the measured heat capacity curves is 
restricted to very narrow limits, many transitions do not occur rapidly 
especially in systems that are being cooled; these transitions are detected 
by the abnormally high apparent heat capacities within the limits in 
which the transition occurs. Transitions in the solid state frequently 
behave in this way. This behavior becomes of increasing importance 
in the measured heat capacities at low temperatures where the low tern- 



Chap. 5] HEAT OF REACTION 97 

peratures favor sluggish transitions. Although the errors in the heat 
content of a substance that result from the overlooking of small heats 
of transition at low temperatures may not be great, the errors in the func¬ 
tion, entropy, as we shall see later, are as great for small neglected heat 
effects at low temperature as for large neglected heats at high tempera¬ 
tures. When mixtures of substances are heated or cooled and no phase 
transitions occur, abnormal heat capacities are taken as evidence for 
chemical reaction. The reactions or transitions, because of these 
abnormal heat capacity effects, are disclosed by “holds” in the time- 
temperature curves obtained when the systems are heated or cooled. 

Table 5.1.—Heat of Evaporation of Water 

(To form saturated vapor) 

Temperature, 

°c 

International 

joules/grain* 

Defined 

cal /gram t 

Defined 

cal/mole t 

0 2,500.17 597.6(5 10,767.4 

5 2,488.46 594.86 10,716.9 

10 2,476.74 592.05 10,666.4 

15 2,464.99 589.25 10,615.8 

20 2,453.21 586.43 10,565.1 

25 2,411.40 583.61 10,514.3 

30 2,429.57 580.78 10,463.3 

35 2,417.68 577.94 10,412.1 

40 2,405.76 575.09 10,360.8 

45 2,393.77 572.22 10,309.1 

50 1 2,381.73 569.34 10,257.3 

55 2.369.63 566.45 10,205.2 

60 2,357.45 563.54 10,152.7 

65 2.345.19 560.61 10,099.9 

70 2,332.84 557.66 10,046.7 

75 2,320.39 554.68 9,993.1 

80 2,307.83 551.68 9,939.0 

85 2,295.16 548.65 9,884.4 

90 2,282.35 545.59 9,829.3 

95 2,269.41 542.49 9,773.6 

100 2,256.30 539.36 9,717.1 

* Data of N. S. Osborne, H. F. Stimson, and D. C. Ginnings, J. Research Natl. Bur. Standards, IS, 

256 (1939). 
t 1 cal ** 4.1833 int joules. 
X 1 molo 18.016 grams. 

Wherever possible, the problem of measuring heats of transition or 
reaction is simplified by having the processes occur at constant tempera¬ 
ture so that the heats of transition or reaction may be kept distinctly 
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separate from the true heat capacity effects. For this reason, we study 
as many of these processes as possible at constant temperature. ~ 

For-reference, values of the latent heat of evaporation of liquid water 
to form the saturated vapor, calculated from the data of Qsborne, Stim- 
son, and Ginnings,1 are given in Table 5.1. 

Heat of Reaction.—Whenever a reaction takes place isothermally 
so that the final temperature of the reaction system is the same as the 
initial temperature, the entire heat of the reaction may be attributed to 
changes in the chemical energies and to the changes in potential energies 
that result from the volume changes or changes in surface or phase 
accompanying the reaction. Under these conditions, any thermal effects 
caused by the heat capacities of the atoms in the system are eliminated 
and the measured heats are representative of the changes in the chemical 
nature of the system. We have already indicated that the heat at con¬ 

stant pressure qP, in the absence of work except work of expansion, equals 
the change in the (E + PV)P value, this change being designated by 
AHP. Unless otherwise indicated, it is understood that the change in H 

refers to the constant-pressure process, there being also the AIIv function 
which is seldom used because it represents no directly measured physical 
quantity. Hereafter, we shall omit the subscript P, which specifies con¬ 
stant pressure, because we shall frequently use that position to designate 
the constant temperature at which the reaction occurs. Thus the sym¬ 
bol A/Zm8.i6 refers to the isothermal heat of reaction at constant pressure 
at the temperature 298.16°k = 25°c. 

We have also observed that the isothermal heat of reaction at con¬ 
stant volume qv is represented by the change in the internal energy 
AEv, there being here no work of any kind. Some heats, notably various 
heats of combustion, are measured directly in a bomb calorimeter, the 
corresponding heats at constant pressure being calculated from these 
values by the methods of equation (2.31). 

Heat of Combustion.—Many elements and compounds combine 
quantitatively with oxygen to form oxides, releasing in the process rela¬ 
tively large quantities of energy. Thus, for the combustion of hydrogen2 

1 /. Research Natl. Bur. Standards, 23, 256 (1939). It should be noted that the 

values for the heat of vaporization over the wider range, 0 to 374°c, by the same 

authors [ibid., 23, 261 (1939)] are smoothed values expressed in “International Steam 

Table’’ calories per gram. This unit is 6.5 parts per 10,000 smaller than our defined 
calorie. 

2 Rossini, F. D., J. Research Natl. Bur. Standards, 22, 407 (1939). The value 

reported was later corrected for the change in the molecular weight of hydrogen. 

The value is given to more figures than are certain to permit energy differences to be 

calculated accurately. Thus, the heat of evaporation can be calculated by subtract¬ 

ing the value for the formation of water vapor from that for the formation of liquid 

water. 
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at 25°c and at constant pressure, we have 

H,(g) + *02(g) = H20(liq); Atf°98.16 - -68,317.4 ± 9.6 cal (5.1) 

This corresponds to equation (2.11) previously given for the formation of 
water. As before, the subscript 29s.i6 represents the temperature of 
the reaction; the superscript 0 indicates that the reactants and the prod¬ 
ucts of the reaction are in their standard states. Similarly, for the com¬ 
bustion of methane1 at 1 atmosphere and 25°c 

CH4(g) + 202(g) = C02(g) + 2H20(liq); 

A#?98.i6 = -212,798 cal (5.2) 

The heats of combustion are useful in the calculation of heats of forma¬ 
tion of compounds that do not form directly from the elements. 

Standard States.—In tables of heats of reactions, the number of 
different values that must be recorded is reduced drastically if the values 
are recorded for some definite constant pressure and a definite tempera¬ 
ture. These equations can then be added or subtracted to yield the 
desired value at the standard conditions. The standard temperature 
selected depends almost entirely on experimental convenience, that tem¬ 
perature being selected which involves the fewest calculations in the 
correlation of the data. For many purposes, 25°c has been selected as 
the standard temperature. However, many of the older thermal data 
were measured at “room temperature/’ which at that time lay much 
nearer 18 than 20 or 25°o. For this reason, the tabulated data in Bichow- 
sky and Rossini’s “Thermochemistry of Chemical Substances” are 
reported for the standard reference temperature of 18°c. 

The heat of a reaction depends also on the state of the reactants and 
the products. For a liquid or solid, the standard state is generally chosen 
as the form stable at the indicated temperature and at a pressure of 
1 atmosphere. For a solid, if more than one crystalline form may exist 
at the standard pressure and temperature, it is necessary to specify the 
crystalline form explicitly. For gases, the standard pressure is usually 
1 atmosphere. However, the pressure at which the fugacity of the gas 
is unity is frequently chosen as the standard state. The concept of 
fugacity is discussed later. We may point out here that, for a definite 
amount of ideal gas at constant temperature, its value of H = E + PVis 
independent of the pressure, both E and PV remaining constant. For 
an ideal gas, the fugacity equals the pressure. However, for a definite 
quantity of a real gas, both E and PV vary with the volume and, there¬ 
fore, with the pressure. The heat content of a gas in the ideal (hypo¬ 
thetical) standard state of unit fugacity of 1 atmosphere is equal to that 

1 Prosen, E. J., and F. D. Rossini, J. Research Natl. Bur. Standards, 34, 263 

(1945). 
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of the gas behaving as an ideal gas at 1 atmosphere pressure and is 
identical with the heat content of the real gas at zero pressure. For a 
gas, the changes in E and the PV product with pressure depend on the 
attractive forces between the gas molecules; they are, therefore, a measure 

Table 5.2.—Deviation op1 the Heat Content of Some Real Gases* from That 

of the Ideal Gas at 25°c and 1 Atmosphere Pressure 

Substance 

Hideal, /=! atm _ 

— Hroal, P=0 

Hreal, P= 1 atm 

Hreal, 

In joules /mole In cal /mole 

-0.48 -0.11 

02(g) +8.06 j + 1.93 

00(g) 7.20 1.72 

CO,(g) 41 .4 9.90 

* Data from F. D. Rossini, J. Research Natl. Bur. Standards, 22, 407 (1039). 

of the deviation of the gas from ideality. Table 5.2 shows the difference 
between the heat content of several gases at a fugacity of 1 atmosphere 
and a pressure of 1 atmosphere. Some of these values are used later. 
Observe the relatively large deviation of carbon dioxide from ideal 
behavior. For most known heats of reaction, though not all, the differ¬ 
ence in heat content between the states of unit fugacity and unit pressure 
is within the experimental error of the measurement. The distinction 
between the two standard states is of practical importance only when 
accurate thermal data are available. The value of AII for the standard 
state is commonly designated by the superscript ° as in AH°. 

Heat of Formation.—Equation (5.1). which represents the combustion 
of hydrogen, also indicates the formation of 1 mole of liquid water from 
1 mole of hydrogen gas and l mole of oxygen gas. If the heat content 
of the mole of hydrogen under the standard condition is h(H2), that of the 
§ mole of oxygen is £h(02), and that of the liquid water is h(H20), we 
have 

AII = h(H*0) - [h(H2) + *h(0,)] = -68,317 cal (5.3) 

Because our heat content values are relative (see Chap. 2), we may arbi¬ 
trarily set the value of the heat content of the elements in their standard 
states as zero, so that equation (5.3) becomes 

AH = h(H20) = —68,317 cal (5.4) 

This relative molar heat content value of water is called its heat of 

formation. 

The heat of reaction when carbon dioxide1 is formed from graphite 

1 Prosen, E. J., R. S. Jessup, and F. D. Rossini, J. Research Natl. Bur. Standards. 
33, 447 (1944). 
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and oxygen is 

0 (graphite) + 02(g, f = 1) = C02(g, / = 1); 
A//“98.16 = -94,051.8 + 10.8 cal (5.5) 

If graphite is the form of crystalline carbon to which zero heat con¬ 
tent is assigned, and unit fugacity is the standard pressure for carbon 
dioxide, the heat of formation of carbon dioxide is —94,051.8 ± 10.8 
calories. 

From Table 5.2, it appears that the relative value of h = e + Pv for 
carbon dioxide at unit fugacity exceeds that at unit pressure by 9.90 
calories. There is also a difference of 1.93 calories for the oxygen. How¬ 
ever, the estimated uncertainty of the calorimetric value is 10.8 calories 
this value being computed by Rossini1 with a formula in which the “error” 
indicates the limits within which the “true” value has a 21 to 1 chance 
of being found. Using these data, we have 

C(graphite) + 02(g, / = 1) = C02(g, / = 1); 
AII = -94,051.8 ± 10.8 cal 

o2(g, P = 1) = = 02(g ,/= 1) } 
AII = 1.93 cal 

co2(g, / = 1) = = 00,0?, P = i); 
AH = - 9.90 cal 

C(graphite) + 02(g, P = 1) = CO*(g, P = 1); 
A//298.i6 = -94,059.8 ± 10.8 cal (5.6) 

The difference between the heat of formation of carbon dioxide at unit 
pressure and at unit fugacity is found to be 8 calories. 

For many compounds, the heat of formation cannot be measured 
directly because the direct combination of the elements takes place 
slowly or not at all at the temperatures at which calorimetric measure¬ 
ment is convenient. For such reactions, the heat of formation is obtained 
indirectly by the combination of reactions that are conveniently meas¬ 
ured. The heat of formation of methane may be obtained by a combina¬ 
tion of equations (5.1), (5.2), and (5.5). Thus, 

2 X equation (5.1): 2H2 + 02 = 2H20(liq); 
AH° = -136,635 cal 

+ equation (5.5): C(graphite) + 02 = C02; 
AH° = - 94,052 cal 

— equation (5.2): C02 + 2H20(liq) = CH4 + 202; 
AH° = +212,798 cal 

C(graphite) + 2II2 = CIi4; 
AH° = - 17,889 cal (5.7) 

1 Chem. Rev., 18, 252 (1936). 
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Table 5.3.—Heat of Combustion of Some Carbon Compounds* at 25°c 

(To form carbon dioxide gas and liquid water. Values in kilocalories per mole) 

State of compound 

Compound Formula 
Gas 

—AJ7298.i6 

Liquid 

-~A/f298.16 

Methane. ch4 212.798 
Ethane. c2h„ 372.820 
Propane. C,Ha 530.605 526.782f 
n-Butane. C,H10 687.982 682.844t 
2-Methvlpropane (isobutane). c4h10 686.342 681.625t 
n-Pentane. c6h12 845.16 838.80 
2-Methylbutane (isopentane). C6Hi2 843.24 837.31 
2,2-Dimethylpropane (neopentane). c6h12 840.49 835.18f 
n-Hexane. C6H,4 1002.57 995.01 

w-Heptane. CrHu 1160.01 1151.27 
n-Octane. CsHis 1317.45 1307.53 
Benzene. c«h6 789.08 780.98 
Methylbenzene (toluene). c7h8 943.58 934.50 
Ethylbenzene. c8h10 ! 1101.13 1091.03 
1,2-Dimethylbenzene (e-xylene). CgHio 1098.54 1088.16 
1,3-Dimethylbenzene (///-xylene). CsH10 1098.12 1087.92 
1,4-Dimethylbenzene (p-xylene) . CsH10 1098.29 1088.16 
Ethene (ethylene)... CAU 337.234 
Propone (propylene). C3H6 491.987 
1-Butene. c4h8 649.757 
as-2-Butene. c4ii8 648.115 
frans-2-Butene. c4h8 647.072 
2-Methylpropene (isobutene). c4h8 646.134 

1-Pentene. C.Hio 806.85 

1-Hcxene. c«h12 964.26 
1-Heptene. c7h14 1121.69 
1-Octene. c8h16 1279.13 
Ethyne (acetylene). c2h2 310.615 
Propyne (methylacetylene). CaH4 463.109 
1-Butyne (ethylacetvlene). C4H8 620.86 
2-Butyne (dimethylacetylene). c4h« 616.533 

1-Pen tyne. CbH8 778.03 
2-Pen tyne. c6h8 774.33 

3-Methyl-l-butyne. 

Alcohols: 

CbH8 776.13 

Methanol. CHsOH 182.58 173.64 

Ethanol. C2H6OH 336.78 326.66 

* Values for the hydrocarbons are those of the American Petroleum Institute Research Project 44 
at the National Bureau of Standards. Selected Values of Properties of Hydrocarbons. Table In, 
Heats of Combustion at 25°c., Mar. 31, 1944; April 30, 1945; Table 5n, ibid., Mar. 31, 1945; Table 
8n, ibid., Oct. 31, 1945; Table 12n, ibid., Mar. 31, 1945; Table 20n, ibid., Dec. 31, 1945; Table 24n, 
ibid., Dec. 31, 1945. 

t For liquid at saturation pressure, 
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Because of these relationships, it follows that the heat of any reac¬ 
tion may be obtained if the heat of formation of every substance enter¬ 
ing and leaving the reaction is known. If we wish to find the heat of 
reaction when Ba4^ ions and S04 ions from an infinitely dilute solution 
form 1 mole of crystalline BaS04, the heats of formation at 18° and 1 

atmosphere pressure being respectively, —128,360, —215,800, and 
— 349,400 calories, we calculate 

AH° = H[BaS04(c)] - [H(Ba++, oo) + h(S04— oo )] 
= -349,400 - (-128,360 - 215,800) - -5,240 cal 

Hence, 
Ba++(oo) + SO—(oo) = BaS04(c). 

AH° = -5,240 cal (5.8) 

The heat evolved in this reaction is, therefore, 5,240 calories per mole of 
BaS04 precipitated. 

Heat of Combustion of Hydrocarbons.—For reactions of organic com¬ 
pounds, it is difficult to measure equilibrium directly because of the 
possibility of side reactions and the instability of many of the compounds. 
The equilibrium conditions must often be calculated indirectly, one of 
the necessary data being the heat of combustion or the heat of formation 
of the compounds. The earlier thermochemical data obtained by such 
able and industrious experimenters as Thomsen and Berthelot are not 
accurate enough for this purpose. For this reason, Rossini1 and his 
coworkers at the National Bureau of Standards have investigated the 
heats of combustion of a large number of hydrocarbons with high accu¬ 
racy. Their data are the basis for the values listed in Table 5.3. Observe 
that values in the table are for —AH; in all the combustions, heat is 
evolved. As an example of the degree of error of some of the older data, 
we may call attention to the significant difference between Rossini’s value 
for the heat of combustion of methane and the older value, —AH = 210.8 

kcal/mole selected for the “International Critical Tables,” a difference 
of 2 kilocalories per mole. 

Certain regularities in the data may be pointed out. In the normal 
paraffin series, methane, ethane, propane, n-butane, n-pentane, n-hexane, 
n-heptane, and n-octane, the increments in heat evolved on combustion 
of the gaseous hydrocarbons are, respectively, 160.02, 157.79, 157.38, 
157.18, 157.41, 157.44, and 157.44 kilocalories. The increment seems to 
approach a constant value of 157.44 kilocalories. Hence, the heats of 
combustion of the higher members of the series can be calculated from 
experimental values for the lower members of the series. Thus, we 

1 For a review on the available data up to 1937, the student should read the review 

by F. D. Rossini, Ind. Eng. Chem., 29, 1424 (1937). 
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find for n-octadecane (CisHss = C8Hi8 + 10CH2) that — A//equals 

1,317.45 + 1,574.4 - 2,891.9 kcal/mole 

Observe the minimum increment found between the four-carbon and the 
five-carbon paraffin. Similar minima are found for the corresponding 
hydrocarbons in the olefin and acetylene series. Thus, the increments 
per CH2 in the ethylene series for the compounds ethene, propene, 
1-butene, 1-pentene, 1-hexene, 1-heptene, and 1-octene are, respectively, 
154.75, 157.80, 157.00, 157.41, 157.44, 157.44. A minimum is found for 
the increment between 1-butene and 1-pentene, and the constant incre¬ 
ment 157.44, is found for the higher members of the series. 

Of special interest are the heats of combustion of the various isomers. 
Since isomers have the same empirical formulas and burn to yield identical 
amounts of carbon dioxide and water, their differences in heat of com¬ 
bustion reflect directly the differences in their heat contents. These 
differences may be relatively large, there being 4.67 kilocalories differ¬ 
ence between n-pentane and neopentane; or small, there being only 0.17 
kilocalorie between m-xylene and p-xylene. The table also lists values 
for the heats of combustion of the hydrocarbons from their liquid states. 
The difference in —A// for the combustion of the gaseous and the liquid 
hydrocarbon equals the heat of evaporation at 25°c of the liquid to form 
the gas at 1 atmosphere pressure (unit fugaeity). 

Heat of Formation of Hydrocarbons.—The method used in obtaining 
the heat of formation of methane from its heat of combustion may be 
extended to the other compounds in Table 5.3. For methane, the stand¬ 
ard heat of formation AH° at 25°c was found in equation (5.7) to be 
— 17,889 calories per mole. The heats of formation of the other hydro¬ 
carbons may be calculated in a similar manner. When they are obtained, 
they show definite trends related to the trends shown by their heats of 
combustion. In the previous section, we found that the heat evolved 
on combustion for each added CH2 group had a value of about 157.44 
kilocalories in the higher members of a series. An approximate value for 
the heat of formation of the CIi2 group in these compounds may, there¬ 
fore, be calculated as follows: 

C + 02 - C02; All = - 94.052 kcal 
H2 + iOi = H20 (liq); AH = - 68.317 kcal 

C02 + HgO (liq) = lgOj + (CH2 in compd); AII =_157.44 kcal 
C + H2 = (CH2 in compd); AH = — 4.93 kcal 

Thus, because the increment in heat of combustion per CH2 group is, in 
general, less than —162.4 kilocalories (which is the sum of —94.05 and 
— 68.32), the heat of formation of hydrocarbons in each series becomes 
more negative with increasing molar weight. The values of the heats 
of formation of some hydrocarbons are listed in Table 5.4. Other values 
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may be derived from the data in Table 5.3. For isomers, the heats of 

formation may be obtained directly from the heat of formation of the 

normal hydrocarbon and the difference in heats of combustion of the nor • 

mal hydrocarbon and the isomer. Thus, normal butane has 1.64 kilo¬ 

calories more energy than isobutane; normal pentane has 1.92 and 4.67 

kilocalories more energy, respectively, than its isomers, isopentane and 

neopentane. With few exceptions, the most highly branched isomer has 

the lowest heat of formation and is the most stable. 

Table 5.4.—TIeat of Formation of Some Hydrocarbons* at 25°c 

[From carbon (crystalline graphite) and hydrogen (gas) to form the hydrocarbon (gas). 
Values in kilocalories per mole] 

Normal paraffins Normal olefins Normal acetylenes 

Compound 
For¬ 

mula 
A J7°2#8.1G Compound 

For¬ 

mula 
A Id°29ft 1C (Compound 

For¬ 

mula 
10 

Methane. CH< - 17.889 

C2He - 20.236 C2II4 12.496 C2H2 54.194 

- 24.820 C3Hh 4.879 C3H4 44.319 

n-Rutarifi. CJlio — 29.812 1-Butene. cm* 0.280 1-Butvne. C<Hc 39.70 

n-Pentane. CaHu -35.00 1-Pentene. CbHio - 5.000 1-1’entyne. C fills 34.50 

n-Hexane. CaHm — 39.96 1-Hexene. OfiH 12 - 9.96 1-Hex vne. CoHio 29.55 

n-Hept.ane. C7H16 — 44.89 1-Heptene. C7H14 -14.89 1-IIeptvne. C7H12 24.62 

n-Octane. CftHis -49.82 l-Octone. CsHlB -19.82 1-Octyne. CsHu 19.70 

* American Petroleum Institute Research Project 44 at the National Bureau of Standards. Selected 

Values of Properties of Hydrocarbons. Table 20w, Heat of Formation, All/0 at 0° to 1500°k, Nov. 30, 
1945; Table 24w, ibid., Nov. 30, 1945; April 30, 1946; Table 25w, ibid., Feb. 28, 1946. 

The heats of formation of the unsaturated hydrocarbons may be cal¬ 

culated from their heats of combustion by the method shown above. 

They may also be obtained from the known heats of hydrogenation of 

the olefins and the heats of combustion of the corresponding paraffins. 

Similarly, the heats of hydrogenation may be calculated from the heat 

of combustion data. From the experimental heats of combustion, we 

shall calculate the heats of hydrogenation of ethylene and propylene and 

shall then compare these calculated heats with the heats of hydrogenation 

determined directly. For the comparison, we shall use the original values 

of Rossini and his coworkers since the “best” values in Tables 5.3 and 

5.4 are based on all the available data. 

C2H4 + 302 - 2COa + 2H20(liq); 
AFI° = —337.28 ± 0.07 kcal 

H2 + *0, - HaO(liq); 
AH° = - 68.318 ± 0.010 kcal 

2COt + 3H20(liq) = C2H6 + 3£02; 

A H° = +372.81 ±0.11 kcal 

AH0 = - 32.79 ± 0.13 kcal (5.9) C2H4 + H2 - C2H6; 
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The value for the hydrogenation of ethylene obtained by Kistiakow- 

sky1 and his eoworkers from the direct calorimetrie measurement of the 

catalytic hydrogenation is —32.575 ± 0.050 kcal. Because these two 

values differ by slightly more than their estimated uncertainty, the dif¬ 

ference may be attributed to some minor systematic error such as the 

presence of ethane as impurity in the ethylene as suggested by Rossini.2 

Observe that, although the percentage accuracy of the heats of combus¬ 

tion is greater than that of the directly measured heat of hydrogenation, 

the estimated absolute error is greater. The small difference between two 

Table 5.5.—Heat of Hydrogenation* of Olefins at 82°c 

(In calories per mole) 

Substance Formula A//366.16 

Fthvlene. C»Hi(g) 

C.H.fe) 
C,H,fe) 

O.II,(g) 
C.H8(g) 

C.H.fe) 

-32,824 

-30,115 
-30,341 

-28,570 

-27,021 

-28,389 

Propylene. 

1-Butene. 

cis-2-Butenc. 

/rans-2-Butene. 
Isobutene. 

* Data of G. B. Kistiakowsky, et aL, J. Am. Chem. Soc., 57, 65, 870 (1935). 

large numbers must assume the absolute error of the Large numbers and 

not their percentage error. 

The heat of hydrogenation of propylene can be calculated similarly. 

C3H6 + 4-gOo - 3C02 + 3TI20(liq); 

A7I° = - 491.82 kcal 

II2 + *02 = HaO(liq); 

AII° = - 68.318 kcal 
3C02 + 4H20(liq) - C3H8 + 502; 

AH° = + 530.57 kcal 

CjH6 + H2 - C3II8; All0 = - 29.57 kcal (5.10) 

The value for equation (5.10) obtained from the catalytic hydrogenation3 

at 82°c is —30.115 kilocalories. When allowance is made for the varia¬ 

tion of heat of reaction with temperature by the method explained later 

in this chapter, the value at 25°c becomes —29.79 kilocalories. The 

agreement between the two values obtained by two independent calori¬ 

metric methods is excellent. The differences in energy of formation of 

isomeric compounds are illustrated further by the hydrogenation data of 

the isomeric butenes at 82°c, given in Table 5.5. When 1-butene, cis- 

1 Kistiakowsky, G. B., N. Romeyn, Jr., J. R. Ruhoff, H. A. Smith, and W. C. 

Vaughan, J. Am. Chem. Soc.} 57, 65 (1935). 

* J. Research Natl. Bur. Standards, 17, 629 (1936). 

3 Kistiakowsky, G. B., J. R. Ruhoff, H. A. Smith, and W. C. Vaughan, J. Am. 
Chem, Soc., 57, 876 (1935). 



Chap. 5] HEAT OF REACTION 107 

2-butene, and trans-2-butene are hydrogenated, the final product is the 

same, namely, normal butane. The differences in the heats of hydro¬ 

genation are, therefore, direct measures of the differences in the internal 

energy of these butenes at 82°. It is evident that the energy evolved 

when a mole of hydrogen is added to a double bond depends on the char¬ 

acter of the groups held by the double bond. It appears that the cis- 

2-butene has 1 kilocalorie more energy than the *raws-2-butene but 1.8 

kilocalories less energy than the 1-butene. The symmetrical trans-2- 

butene, therefore, appears to be more stable than the less symmetrical 

m-2-butene or the 1-butene. 

Fig. 5.2.—Heat capacity curve for liquid sulphur. 

Heat of Transition.—As stated earlier, heats of transition may fre¬ 

quently be derived from observed abnormal heat capacities. The 

method is illustrated by the data of Lewis and Randall1 on the heat 

capacity of liquid sulfur between 100 and 400°c. In this temperature 

range, there is also a transformation of S\ to SM. The observed heat 

capacities are plotted in Fig. 5.2. There is evidently an abnormally high 

apparent heat capacity, especially in the neighborhood of 160°, because 

heat is being absorbed in the transition S\ = SM. The heat capacity per 

gram of S\ is represented by the equation 

c = 0.21 + 0.00016* 

From the known percentage of at various temperatures, the heat of 

transition is calculated as 

Sx = SM; q = 13 cal /gram 

Graphically, this represents the area under the curve not attributable to 

the heat capacity of the sulfur. 

Heats of transition may also be obtained from observation of the 

heats of reaction when the two distinct phases of a substance are caused 

to undergo identical chemical reactions. For example, the heat of the 

1 Lewis, G. N., and M. Randall, J. Am. Chem. Soc., 33, 476 (1911). 



108 INTRODUCTION TO CHEMICAL THERMODYNAMICS [Chap. 5 

transition, diamond to graphite, may be obtained from a comparison 

of the heat of combustion of the two forms of carbon.1 For the decom¬ 

position of carbon dioxide to form graphite and oxygen, we have 

C()2(g) = 02(g) + C (graphite); 

A//298.16 = +94,051.8 ± 10.8 cal (5.11) 

For the diamond, the heat of combustion is 

C (diamond) + 02(g) = C02(g); 

A//?98.16 = —94,505.1 ± 22.9 cal (5.12) 

For the transition, diamond to graphite, it follows that 

C(diamond) = C(graphite); A//^9816 = —453.2 ± 20.3 cal (5.13) 

The “accuracy error” defined by Rossini is given here to show how the 

precision suffers when a small energy value must be obtained from the 

difference between two large numbers. In equation (5.12) the accuracy 

error of the heat of combustion is about 2 parts in 10,000 of the “best 

value” given. The accuracy error of the heat of transition is relatively 

much greater, being about 450 parts in 10,000. Such indirect methods of 

obtaining heats of transition are necessary whenever the direct transition 

cannot be measured readily. 

Heat of Solution.—When substances are mixed, the resulting heat 

may be a combination of the true solution effect due to the attractive 

forces between the molecules, the effect of the rearrangement of the ele¬ 

ments composing the substances to form new substances, and the heat 

effect that results from changes of phase during the mixing. If we survey 

the different types of solution and the heat effects that may be expected 

even though there are no chemical reactions of the traditional type, we 

are in a position to differentiate between the “solution” and “chemical” 

effects of mixing. In any case, the final solution, if homogeneous, will 

correspond to one of the phases of matter previously mentioned; that is, 

it will be a gas phase, a liquid phase, or a solid phase. Several of these 

phases may coexist, but here we shall consider only homogeneous systems 

containing a single phase. 

Gaseous Solutions.—When gases are mixed with gases, the thermal 

effects in the absence of chemical reaction are slight, being those associ¬ 

ated with the gas imperfections. This is illustrated by the data in Table 

5.2, which indicate the order of magnitude of the thermal effects when a 

mole of a pure gas is compressed isothermally from 0 to 1 atmosphere 

pressure. When liquids “dissolve” in gases, the final solution being 

gaseous, the thermal effect results almost entirely from the heat required 

1 Prosen, E. J., R. S. Jessup, and F. D. Rossini, J. Research Natl. Bur. Standards} 
83,447(1944). 
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to evaporate the liquid, the heat of evaporation being ordinarily large 
compared with the gaseous solution effect. Similarly, when solids dis¬ 
solve in gases, the thermal effects are primarily those of the sublimation 
of the solid. 

Liquid Solutions.—When liquids are mixed with liquids without 
specific chemical reaction, the heat effects are small, but larger than when 
gases are mixed because of the shorter distances between the molecules. 
Figure 5.3 indicates the magnitude of the heats of mixing of some liquids 
at room temperature. When methanol and ethanol are mixed, the 

0 20 40 60 80 100 
Weight per cent of solute 

Fig. 5.3.—Heat of solution of methanol with the solutes A, ethanol; B, propanol; and C, 
benzene. 

maximum heat effect (curve A) is found near the composition, ethanol 
60 per cent by weight, methanol 40 per cent, where 0.095 calorie is evolved 
per gram of solution. When 0.1 gram of ethanol is mixed with 0.9 
gram of methanol, 0.024 calorie is evolved. When 0.4 gram of propanol 
is mixed with 0.6 gram of methanol, 0.56 calorie of heat is absorbed 
(curve B). When 0.7 gram of benzene is mixed with 0.3 gram of methanol, 
2.43 calories of heat are absorbed (curve C). These heat effects for pro¬ 
panol and benzene in methanol are the maximum encountered in these 
systems. 

When gases dissolve in liquids, they enter the liquid phase and pro¬ 
duce fairly large heat effects. In the absence of chemical reaction, the 
thermal effects are essentially those resulting from the liquefaction of the 
gas and the mixing of this liquid with the solvent liquid. Whenever 
the heat effect of mixing of liquids is relatively small, the heat of solution 
of gases is essentially that of liquefaction of the gas. 

Similarly, when a solid is dissolved in a liquid, the solid “melts” into 
the liquid so that the normal heat effect is essentially the heat of melting 
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of the solid. When the heat of solution of the solid differs markedly 
from the heat of melting the difference must be sought in the specific 
interaction of the dissolving molecules with the molecules of the solvent 
liquid. These abnormal heat effects are common in aqueous solution. 
They indicate, therefore, that an essential part of the process is the inter¬ 
action of the solute with the water molecules. An example, the solution 
of KC1 in water, is illustrated in Table 0.1. 

Solid Solutions.—The same type of reasoning may be applied to 
solid solutions. Examples of solutions of gases, liquids, or solids in 
solids to form a solid phase are relatively limited. The thermal effects 
indicate whether the solution process is a normal one in which the pri- 

Fig. 5.4.—The change in heat content at constant pressure resulting from both a 
change in temperature and a heat of reaction. The change in heat of reaction with tem¬ 
perature at constant pressure. 

mary effect is that accompanying a change in phase of the solute or 
whether there are specific chemical interactions accompanying the 
process. 

Change of Heat of Reaction with Temperature.—In a reaction occur¬ 
ring at a definite temperature, the heat of the reaction of a definite amount 
of substance at constant pressure is a definite quantity represented by 
the change in the heat content AH. In general, the heat of reaction at 
some other temperature will be different. The relation between the 
heats of reaction at the different temperatures may be obtained by 
Kirchhoff’s method. When a system in the state 1 is changed at con¬ 
stant pressure to the state 4, the change in heat content is Ha — Hh 
and the temperature change is Ta — Ti. Because both H and T are 
properties of the system with values dependent only on the state of the 
system, both Ha — Hi and T4 — 2T are definite quantities that do not 
vary with the path over which the system travels in going from the state 
1 to the state 4. The relation between II and T can, therefore, be plotted 
as in Fig. 5.4. 

If the system is heated from the initial temperature Tx to some inter- 
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mediate temperature T2 without undergoing reaction, it will nevertheless 
absorb heat because of its heat capacity, the quantity being //2 — Hi. 
If now the system reacts isothermally at the temperature T2 — Tz, the 
heat of the reaction will be given by Hz — H2 = AH. If the temperature 
of the products of the reaction is raised to jT4 without further reaction, 
heat Hi — H3 will be absorbed because of the heat capacity of the 
products of the reaction. 

A different path may be followed in going from II1, to //4, 774. 
Consider the following path: The system is heated from 1\ to some tem¬ 
perature Tf2 without reaction; the reaction then proceeds at the tempera¬ 
ture T2 = Tz, the heat of the reaction being AH' = II3 — //£; finally, 
the products of the reaction are heated from T'z to I\. By the first 
path, the total heat absorbed is 

Hi - //x = (II2 - HI) + AH + (H4 - Ih) (5.14) 

and by the second path 

IIi - Ih = (//' - Ih) + AH' + (Ih - Ih) (5.15) 

where AH = Hz - Ih and AII' = H'z - //'. 
By comparison with Fig. 3.1, we see that the mean heat capacity of 

the system before the reaction Cp,a is presented by the slope of curve 12 

in Fig. 5.4, for 

Ch Ih - Ih 
t2 - I\ 

(5.16) 

The mean heat capacity of the system after the reaction Cr,b is similarly 
represented by the slope of the curve 34, for 

P,b 
Ih - Ih 
rI\ - Tz 

(5.17) 

When Cp,a *= Cp,bf the two curves arc parallel and the heat of reaction 
AH, represented by the vertical distance between the two curves, remains 
constant even though the reaction temperature varies. Similarly, if 
Cp,b > Cp,a, as in Fig. 5.4, the two curves diverge with increasing tem¬ 
perature so that the heat of reaction AII must increase with increasing 
temperature. If CPtb < CP,a, the heat of reaction decreases with increas¬ 
ing temperature. 

Now, from equation (5.16), the heat absorbed by the system between 
the states 1 and 2 is 

H2 - Ih = Cp,a(T2 - Ti) (5.18) 

and that absorbed between the states 3 and 4 is, from equation (5.17), 

Hi - Hz = CP,b(Ti - Tz) (5.19) 
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If the rise in reaction temperature is infinitesimal so that 

r2 = t2 +dr = t:6 

the change in heat of reaction is also infinitesimal so that 

ME = AH + d AII (5.20) 

For the second path, we have, therefore, 

U\ - Ih = CP,a(T'% - TO = CP,a(T2 - TO + CP,a dT } 2n 
774 - 7/3 = CP,b(Tt - 7") = CP,h{T4 - 7*,) - Cp,*dr I 

But, from equations (5.14) and (5.15), 

(772 - HO + A77 + (774 - 773) = (77' - 77,) + A77' 
+ (774 - 77J) (5.22) 

On substituting the above values in this equation, we find that 

CP,a(T2 - TO + AH + CPlb(T4 - T,) = CPta(T2 - TO + CP,a dT 
+ A77 + d All + CP,b(T4 - TO - CP,*> d77 

From this equation, therefore, 

d A77 = CPfhdT - Cr.a d7 
- (CPtb - CP,a) dT (5.23) 

whence, 

= CP,b — CP,a = Cp(products) — CP(reactants) = A CP (5.24) 

These equations, similar in form to the heat capacity equations for the 
pure substances, express the fundamental relation for the change of heat 
of reaction with temperature. If ACP equals zero, that is, if the products 
and the reactants in the reaction have the same heat capacity, the heat 
of reaction does not vary with temperature. If the change in heat 
capacity is not independent of the temperature, the equation 

d ATT = ACp dT7 (5.25) 
must be integrated. 

Integration is simplified for the special case in which ACP is independ¬ 
ent of the temperature, that is, when it remains constant in the tempera¬ 
ture range over which equation (5.25) is to be integrated. If the heat of 
reaction at temperature 7\ is AHx and that at T%) A772, then, from equa¬ 
tion (5.25), 

fHl d AH = A CP [T'd T 
JHi jTx 

AH2 - AH 1 = ACp(T2 - TO (5.26) 

When the heat capacities change with temperature and the heat capacity 
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of the substances entering into the reaction may be represented over the 
indicated temperature range by the equation 

CP (reactants) = a' + b'T + c'T2 

and that of the products leaving the reaction by the equation 

CV (products) = a" + b"T + c”T2 

the increase in heat capacity becomes 

A Cp = Cp( products) — GV(reactants) 
= (a" - a') + (&" - b')T + (c" - c')T2 
= a + fiT + yT2 (5.27) 

Equation (5.27) may be combined with equation (5.25) to give a general 
expression for the heat of reaction as a function of temperature. 

These principles will be applied to the calculation of the heat of 
freezing of water at — 10°c. 

Fia. 5.5.—The change of heat of freezing of water with temperature. The molar heat of 
freezing at — 10°c. 

Heat of Freezing of Water at — 10°c.—The heat capacity of liquid 
water at atmospheric pressure is 18 calories per mole. The mean heat 
capacity of ice over the range —10 to 0° is 2.03 joules per gram, or 8.7 
calories per mole. At 0°, the heat of melting of ice is 1436 calories per 
mole. 

Two methods may be followed in obtaining the heat of freezing of 
water at 10°c: (1) a repetition of the method used in deriving equation 
(5.26); (2) equation (5.26) itself. 

1. Two paths between the states, water at 0°c and ice at — 10°c, 
are path (a + b) and path (a/ + b’) in Fig. 5.5. When 1 mole of water 
is frozen to ice at 0°, 1436 calories of heat are evolved and a! = —1436 
cal. If the ice is cooled to —10°, 8.7 X 10 calories of heat are evolved 
and b' = —87 cal. Similarly, when the mole of water is cooled without 
freezing to —10°, 18 X 10 calories of heat are evolved and b = —180 cal. 
But the change in heat content along the two paths is identical; hence, 

& -f* b = of 4“ b' 
a = -1436 - 87 + 180 cal 

= -1343 cal 
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2. For the reaction 
HaO(liq) = H20(c) 

the increase in heat capacity ACP when the “reactants” H20(liq) are 
converted to the “products” H20(c) is given by 

Cico — Cwater = (8.7 — 18) cal/mole = —9.3 cal/mole 

From equation (5.2G), when 772 is 0°c and Ti is — 10°c, 

A Hi = —1436 cal 
-1,436 - A Hi = -93(10) 

— Alli = 1436 - 93 
AH, = -1343 cal 

AHi is identical with a above. 
General Heat of Reaction Equation.—Between any two temperatures 

Ti and T2, the change in the heat of reaction at constant pressure may 
be obtained by integration of equation (5.25) between limits. Thus, 

flh d AH = fTi ACp AT 
Jlh JTi 

AHi — All 1 = ACp (1T (5.28) 

If the integration is performed between the limits I\ = 0, AH\ = A//0, 
and To = T, AH2 = AHT, equation (5.28) becomes 

AHt - A//o = fj ACp d T 

Or, omitting the subscript r, 

AH = Alio + f ACp dT (5.29) 

Equation (5.29) is mathematically equivalent to the general integration 
of equation (5.25) to give 

AII = j ACp dT + I (5.30) 

where the integration constant I is identical with A//0, which is inter¬ 
preted as the heat of reaction at the absolute zero. However, we must 
emphasize the fact that, if the values of ACp do not represent the heat 
capacities of the substances at low temperatures, A Ho cannot represent 
the true heat of reaction at zero absolute temperature but is merely 
a useful integration constant. *». 

When the value of AC? is obtained from the empirical heat capacities 
of the reactants and the products of a reaction as in equation (5.27), it 
will yield values of ATI over the same temperature range as that for which 
the heat capacity equations are valid. In general, equations of this type 
that hold above room temperature do not hold in the neighborhood of 
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the absolute zero. Under these restrictions, equations (5.27) and (5.29) 

may be combined to give 

AH = AH0 + J{a + pT + yT2) dr 

AH = A//0 + aT + ipT2 + iyT3 (5.31) 

This general heat of reaction equation is used later in setting up free 

energy equations. 

Heat of Formation of Gaseous Water.—We have given equation 

(2.10) for the formation of water vapor at 25° under the saturation pres¬ 

sure. When the water vapor is under standard conditions, that is, under 

a standard fugacity of 1 atmosphere, we find1 

Ha(g, / = 1) + 40a(g, f= 1) = H20(g, / = 1); 

Mil98.16 = —57,798 cal (5.32) 

If we know in addition the heat capacities of hydrogen, oxygen, and 

water, we can calculate the value of MI° at other temperatures. From 

equation (5.24), we see that 

ACP = c(H20) - [c(II2) + ic(02)] (5.33) 

When the heat capacity equations from Table 3.3 for these gases are 

substituted in equation (5.33), we obtain 

For HoO(g), 

cp = 7.256 + 2.298 X 10~ZT + 2.83 X 10~7r2 

For H2, 

— Cp = -6.9469 + 0.1999 X 10~37T - 4.808 X 10~7772 

For JO2, 

= -3.074 - 1.551 X 10-3r + 4.615 X 10”77T2 

ACP = -2.7649 + 0.9469 X 10~*T + 2.637 X 10~7f* (5.34) 

This value of ACP may now be substituted in equation (5.31), whence we 

obtain 

AH° = Mil - 2.7649T7 + 0.4735 X lO"*3?72 + 0.879 X 1(U7!T3 (5.35) 

as a general equation for the heat of formation of water' vapor at unit 

fugacity. The integration constant Mil may be evaluated from the 

known value of A 11° at 25°c, namely, —57,798. Substituting this value 

and the value T — 298.16 in equation (5.35) and solving for A Hi, we 

have 

1 Rossini, F. D., J. Research Natl. Bur. Standards, 22, 407 (1939). 
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AH°0 = —57,798 + 2.7649(298.16) - 0.4735 X 10~8(298.16)2 
- 0.879 X 10“7(298.16)8 

= -57,798 + 824.4 - 42.1 - 2.3 
= -57,018 cal 

The general heat of reaction equation, therefore, becomes 

AH° = -57,018 - 2.76497' + 0.4735 X 10~3T2 + 0.879 
X 10 (5.36) 

It may be used to calculate the heat of formation of water vapor at any 
temperature for which the heat capacity equations are valid. Thus, at 
400°K, we have 

A/Co = -57,018 - 1106.0 + 75.8 + 5.6 
A/C0 = -58,043 cal 

The calculation is here carried out in some detail so that the student 
may observe the influence of the various terms in equation (5.36) on 
the final result. At higher temperatures, the T2 and T3 terms assume 
more importance. 

Maximum Flame Temperature.—The foregoing principles may be 
applied to the calculation of maximum flame temperatures. If, in a 
certain combustion, the heat of combustion is not lost to the surroundings, 
the temperature of the substances remaining after the combustion must 
rise as this heat is absorbed by these substances, until all the heat of 
combustion is absorbed. It is evident that the maximum temperature 
thus reached is dependent on the heat capacity of the substances that 
absorb the heat; if any inert body with an appreciable heat capacity is 
present, the maximum flame temperature will be less than that attained 
in the absence of this inert body. If the heat of reaction is AH and Cp 
is the heat capacity of the substances remaining after the reaction, 

HTm - IITl = MI = f*m CP d T (5.37) 

where Ti is the initial temperature and Tm the maximum temperature. 
As a simple example, consider the burning of methane in pure oxygen. 

We shall assume that the gases are present in stoichiometric proportions 
and that the reaction is complete so that the only substances present 
after the reaction are carbon dioxide and water. The heat of combustion 
previously given was for the production of gaseous carbon dioxide and 
liquid water, but in the flame the water is vaporized. Some of the heat 
will, therefore, be absorbed in the evaporation of water. Two methods 
of calculation are possible: Either we may calculate the heat absorbed 
by liquid water up to 100°c, then the latent heat of evaporation at 100°, 
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and then the heat absorbed by the steam from 100°c to the maximum 
temperature; or we may calculate the latent heat of evaporation of 
water at room temperature and then the heat absorbed by the vapor 
from room temperature to the maximum temperature. In our example, 
we shall follow the second alternative. For the combustion of methane 
at 25°c, 

CH4 + 202 = C02 + 2H20(liq); AH = -212,800 cal (5.38) 

For the vaporization of water at 25°c, 

Il20(liq) = H20(g, 1 atm); AH = 10,520 cal 

For 2 moles of water, 
AH = 21,040 cal 

On the assumption that the only substances left after the reaction are 1 
mole of carbon dioxide and 2 moles of water and that 25°c = 300°k, 

the heat absorbed is 

AH = 21,040 + 2 c(H20) d2’+JJ” c(C02) AT = 212,800 cal (5.39) 

Because the heat capacity equations of Kelley1 may be more safely 
extrapolated than those of Table 3.3, we shall use Kelley's equations 
here. For 2 moles of water, 

2c(H20) = 16.44 + 0.30 X 10“3r + 2.68 X 10-#7T* 

and, for C02, 

c(C02) = 10.34 + 2.74 X 10- 195,5001*-* 
ZCp = 26.78 + 3.04 X 10-3!T + 2.68 X 10-«r* - 195,500IT-2* 

From equation (5.39), therefore, 

212,800 - 21,040 = £ C, AT 

191,700 = [26.787’ + 1.52 X lO"3?12 + 0.89 X 10-67’3 + lOS^OOT-’]^ 

26.782’m + 1.52 X 10-»r»* + 8.9 X 10-77’ro3 
+ 195,5007’m-1 = 191,760 + 8,030 + 140 + 20 + 650 

= 200,000 

When this equation is solved by the method of successive approximations, 
the maximum temperature is found to be a little less than 4200°k. 
Observe that the T~* term is not important at high temperatures. 

The above calculation is based on the premise that the combustion of 

1 Kelley, K. K., U, S. Bur. Mines, Bull, 371 (1934). 
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methane goes to completion and that, at the high temperatures resulting 
from the combustion, the indicated products of combustion are stable. 
This assumption is obviously untrue at the extreme temperature of 4200°k. 
Some of the carbon dioxide and the water dissociate, absorbing heat 
during the dissociation, so that the observed maximum temperature 
would fall far below that indicated by the above temperature. 

Furthermore, the maximum temperature is lowered greatly if the 
methane is burned in air rather than in pure oxygen. With every 21 
moles of oxygen in air are found 79 moles of other gases, mostly nitrogen, 
so that about 7.5 moles of other gases will be found with the final product 
in equation (5.38). Under these conditions, the calculated maximum 

Table 5.6.—Maximum Flame Temperatures* for the Combustion of Gases 

in Air 

Gas °c Gas ! °c 
■ 

Hydrogen. 2040 Propane. 1915 

Carbon monoxide. . 2090 Butane. 1915 
Methane. 1870 Acetylene. 2210 

* Ribaud, Chaleur et ind., 18, 235, 295 (1937). 

flame temperature becomes 2330°k rather than 4200°. Even at these 
temperatures, there will be some dissociation of the water and carbon 
dioxide. This dissociation which results in heat absorption by the gases 
will result in a greater apparent heat capacity, in accordance with the 
principles outlined earlier. Using this apparent heat capacity in the 
calculation, Ribaud1 found the calculated value of 

1870°c = 2140°k 

instead of the value of 2330°k found on the assumption that there is no 
dissociation of the products of combustion. The correction for com¬ 
bustion in pure oxygen must obviously be much greater. Table 5.6 
shows the maximum flame temperatures calculated for the combustion 
of several gases in air. 

Problems 

For data on heats of reaction not given in the tables of the text or in the problems, 

use standard sources such as F. R. Bichowsky and F. D. Rossini “Thermochemistry of 

Chemical Substances” (Reinhold Publishing Corporation, New York, 1936) (B-R); 

the tables of the American Petroleum Institute Research Project 44 at the National 

Bureau of Standards (API); compilations of K. K. Kelley in the bulletins of the Bureau 

of Mines; or the “International Critical Tables” (ICT). If you have not learned to 

use the tables, consult your instructor. Form the habit of recording the source, 

including volume and page, of each datum so that it may be checked when necessary. 

Note that the values for heats of combustion and formation in many tables represent 

the heat evolved. 

1 Ribaud, Chaleur et ind.y 18, 235, 295 (1937). 
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6.1. The heats of formation of the carbon compounds in B-R are based on diamond 

as the standard state for solid carbon. How will these values be changed when 

graphite is selected as the standard state? 

6.2. Calculate the amount of energy required to transform 1 gram of ice at 0°c 

to steam at 150°c, 

6.3. Calculate the heat of reaction at constant pressure AH for the following 

reactions. Record your answer in either calories or kilojoules, and indicate the source 

of your data. 

H2(g) + CI2(g) = 2HCl(g) 

2S02(g) + 0,(g) = 2S03(g) 
Ag+(aq) + Cl~(aq) = AgCl(c) 

K + H20(liq) = |Il2(g) -h KOH(l(K) aq) 

Na -f H20(liq) = |H2(g) + NaOII(100 aq) 

Cu++(aq) + Zn(c) — Zn++(aq) 4~ Cu(c) 

C2H6OII(liq) = C2H4(g) 4- II20(liq) 

C2H4(g) 4- H2(g) = C2H6(g) 

6.4. Calculate AH for the formation of liquid and gaseous methanol from the data 

in this chapter. Compare with the B-R values for the heat of formation, remembering 

that their values are based on carbon as diamond. 

6.6. Naphthalene melts at 79.9 V. Select the necessary data, and calculate the 

heat absorbed in calories if 10 grams of molten naphthalene is allowed to crystallize 

at 50V. 

6.6. Using the value of AH29H 1c for the formation of C02 given in equation (5.5) 

and the value 

C(graphite) 4- ^02(g) = CO(g); A= -26,410 cal 

calculate the standard heat of reaction at 25V for the reaction 

CO(g) 4- J02(g) = C02(g) 

With this value and the heat capacity equations in Table 3.3, obtain the equation for 

All° as a function of temperature. 

6.7. From the data in Table 5.3, calculate the heat of reaction at 25V for the 

isomerization of n-pentane to isopentane and to neopentane. 

6.8. From the heats of formation of carbon monoxide (Prob. 5.6), carbon dioxide, 

and water, calculate the heat of reaction for the reaction 

H2(g) 4- C02(g) - H20(g) 4- CO(g) 

Select the necessary data, and derive the equation for AH° as a function of 

temperature. 

6.9. When methane is burned to carbon dioxide and liquid water, 

A//300 = —212,800 cal 

Calculate the maximum flame temperature when methane is burned in air. Con¬ 

sider air as 21 per cent oxygen and the remainder essentially nitrogen. Assume that 

the reactants are present in stoichiometric quantities and that the reaction is complete, 

without any dissociation. 

6.10. The molar heat capacity of graphite according to K. K. Kelley [U. S. Bur. 
Mims, Bull 371 (1934)] is represented to about 2 per cent by the equation 

Cj> = 2.673 + 0.002617'/’ - cal/deg 
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between 273 and 1373°k and that of diamond between 273 and 131 3°k is represented 

to about 3 per cent by the equation 

cp - 2.162 + 0.003059r - cal/dog 

For the transition 

C(graphite) = C(diamond); AH°n u = 453 cal 

Derive the complete equation for AH as a function of temperature for this transition. 

5.11. Calculate the values for the heat of hydrogenation at 25°c of ethylene, 

propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, and 1-octene to form the cor¬ 

responding normal paraffins. How does the heat of hydrogenation vary with the 

length of the carbon chain? 

5.12. On burning aluminum in a bomb calorimeter to form the oxide (corundum) 

P. E. Snyder and H. Seitz [/. Am. Chem. Soc., 67, 683 1945)] obtain at 296.59°k 

2A1(c) -f* |02(g, 40 atm) = Al203(c); AE = —1665.03 int kilojoules 

If (dE/dP)r for oxygen equals —6.51 joules per atmosphere per mole, calculate the 

value of AE at 296.59°k for the change 

|02(g, 1 atm) = |02(g, 40 atm) 

Calculate the value of AIIp at 296.59°k in kilojoules and in calories for the reaction 

2Al(c) -f |02(g, 1 atm) = Al203(c) 

Select values for the heat capacities and calculate the value of A//° at 298.16°k. 

Snyder and Seitz obtain the value 

AH = -399.0o + 0.24 kcal 

6.13. The heats of reaction of magnesium and of magnesium oxide with 1 n hydro¬ 

chloric acid as measured by C. II. Shorn ate and E. H. Huffman [/. Am. Chem. Soc., 
65, 1625 (1943)] were as follows at 298.16°k: 

Mg -f 2H+ = Mg44 + H2; A// = -111,322 ± 41 cal 

MgO + 2H4 = Mg44 -f H20(liq); AH = -35,799 ± 21 cal 

Calculate the value of AH for the formation of magnesium oxide. 

6.14. According to B. F. Naylor [J. Am. Chem. Soc., 67, 150 (1945)], the molar 

heat content of solid magnesium fluoride is represented between 298.16° and the 

melting point, 1536°k, by the equation 

MgFs(c); Hr - h29iU6 = 16.93T + 0.00126T* + 22°4°0 - 5,898 cal/mole 

and that of liquid magnesium fluoride between 1536 and 1800°k by the equation 

MgF2 (liq); Hr — H29g.i6 = 22.57T -f 2,450 cal/mole 

(a) From these equations, obtain the value for the molar heat of melting at 

1536°k. 

(b) From the heat content equations, derive the equations for the heat capacities 

of solid and liquid magnesium fluoride. 

(c) Plot the heat contents of solid and liquid magnesium fluoride against tem¬ 

perature, and indicate on your graph the heat of melting of magnesium fluoride. 



CHAPTER G 

HEAT OF SOLUTION. PARTIAL MOLAL HEATS 

In the absence of specific interaction, the heat of solution of a solid in 
a liquid may be expected to equal the heat of melting of the solid at that 
temperature. A solution fulfilling these requirements is an example of 
an ideal solution. In such a solution, the dissolved solute molecules 
have no special attraction for the solvent molecules, and the heat of 
solution is independent of the final concentration of the solution. This 
means that there is no heat effect when more solvent is added to the 
solution, that is, there is no heat of dilution. These conditions do not 
obtain when an electrolyte is dissolved in water, the solution process being 
undoubtedly accompanied by hydration of the ions. In order to study 
the kind and magnitude of the heat effects found when electrolytes 
dissolve in water, we shall examine the behavior of aqueous potassium 

chloride solutions. 
Apparent or Total Heat of Solution.—When 1 mole of KC1 melts at 

790°c, 6,400 calories of heat are absorbed. In order to calculate the 
heat of melting of KC1 at room temperature, we must know the heat 
capacities of solid and liquid KC1 between 20 and 790°c. Although data 
are not available on the heat capacity of liquid KC1, we may deduce 
from the corresponding data for AgCl, T1C1, and KN()3 that liquid 
KC1 has a higher heat capacity than solid KC1. If this is true, the heat 
of fusion of KC1 at room temperature should be somewhat less than 
6,400 calories (see Fig. 5.4). Actually, when KC1 dissolves in 12 moles 
of water, only 3,786 calories of heat are absorbed, which is less than 60 per 
cent of the heat of fusion at 790°. Apparently, there are attractive 
forces between the water and salt that lessen the energy necessary to 
“melt” the salt into the salt solution. However, more energy is required 
if more water is used to dissolve the salt. If the mole of salt is dissolved 
in 100 moles of water, 4,391 calories of heat are absorbed; if it is dissolved 
in an infinite amount of water, 4,404 calories are absorbed. In 400 and 
800 moles of water the heat of solution of KC1 is at a maximum, 4,462 
calories. These data are listed in Table 6.1. Column (2) gives the 
concentration of the final solution in terms of the mole ratio ni/n2, 
where n i represents the number of moles of water and n2 the number of 
moles of KC1 in the final solution; column (4) gives the corresponding 
heats of solution per mole of KC1 (n2 = 1). 

121 
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Let us consider further the solution of 1 mole of KC1 in 12 moles of 
water. The first of the K+ ions and the Cl“ ions that dissolve enter 
pure water, forming an infinitely dilute solution of the ions in water. 
The molar heat of solution of these first ions must be that for the infi¬ 
nitely dilute solution of KOI, namely, 4,404 calories, as indicated in line 
ra. When half the KOI has dissolved, the concentration of the solution 
is ni/n2 = 24, and the ions are now dissolving into a solution of this 
composition. The last of the KOI obviously dissolves in a salt solution 

Table 6.1.—Heat of Solution of Potassium. Chloride in Water 

(In defined calories) 

Heat of fusion at 790°c: KCl(c) = KOl(liq); AH — 6,400 cal 

Heat of formation at 18°c: K(c) + iOL(g) = KCl(c); 

All/ ~ h/[KC1(c)] = —104,361 cal 

Number of moles of KCl — n2; number of moles of water = nx 
IIf for water = 0, Q — heat of solution = 11/(solution) — 7//[KCl(c)] 

n\/n 2, 
///(solution), 

heat of 
formation 
of solution 
per mole 
of KCl 

Q/ni, 712/m, Q/n 1, 
moles of heat of moles of heat of 

water 
per mole 

solution 
per mole 

KCl 
per mole 

solution 
per mole 

AQ/An i AQ/Ant {AQ/An 2) - 4,404 

of KCl of KCl of water of water 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

a 

b 

12 
15 

-100,575 
-100,483 

3,786 
3,878 

0.08333 
0.06667 

315.5 
258.5 

30.7 
24.8 

16.8 
7.0 

3,420 
3,504 
3,670 
3,895 

-984 
-900 
-730 
-609 

c 20 -100,350 4,002 0.05000 200.1 

d 

e 

25 
50 

-100,275 
1 -100,085 

4,086 
4,276 

0.04000 
0.02000 

163.4 
85.52 

f 

Q 

100 
200 

- 99,970 
- 99,912 

4,391 
4,449 

0.01000 

0.005000 
43.91 
22.25 

2.3 
0.58 
0.065 
n 

4,161 
4,332 
4,440 
4,458 
4,469 

-243 
- 72 

+ 36 
54 
65 

h 400 - 99,899 4,462 0.002500 11.15 
i 800 - 99,899 4,462 0.001250 5.578 

u 
-0.0088 

3 1600 - 99,906 4,455 0.0006250 2.784 

k 3200 - 99,915 4,446 0.0003125 1.389 
-0.0056 
-0.0028 

4 458 
4,451 

54 
47 

l 6400 - 99,924 4,437 0.0001563 0.6933 
m 00 - 99,957 4,404 0 0 0 4,404 0 

in which the solution has the final concentration, namely, ni/n2 =12. 
The heat effect for the whole process is a summation of all the heat 
effects, including those of the ions dissolving in pure water, those of the 
ions dissolving in all the intermediate concentrations, and those dis¬ 
solving in the final solution. This value, from line a, is 3,786 calories. 
This heat is therefore, the total heat of solution. Because the first ions 
in dissolving absorbed more energy than the average, we may conclude 
that the last ions to dissolve required less energy than the average. As 
we shall see, the latter value is of the order of 3,400 calories. 
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Heats of Solution from Heats of Formation.—Table 6.1 was assembled 
from the data on the heat of formation1 of solid potassium chloride and of 
the various solutions of the salt with water. The calculation of heats 
of solution from the tabulated heats of formations may be performed 
with confidence, for they were originally prepared from the experimental 
heat of solution data. The heat of formation tables represent con¬ 
venient, concise summaries of the many separate experimental data. 

For the formation of solid KC1 at 18°c, we have 

K(c) + iCl2(g) = KCl(c); ATIf = -104,361 cal (6.1) 

Similarly, for the formation of a solution of KC1 in 200 moles of water, 
we have, from line cj in column (3), Table 6.1, 

K(c) + iCIs(g) + 200H,O(liq) = KCl(200HoO) (liq); 
0 0 0 -99,912 

AHf = —99,912 cal (6.2) 

In the preparation of the heat of formation tables for aqueous solu¬ 
tions, the heat of formation of the II20 added as solvent was arbitrarily 
placed at zero. By subtracting equation (6.1) from equation (6.2), we 
have, at 18°c, for the heat of solution of KOI in 200 moles of water, 

KCl(e) 4- 200H20 = KCl(200H2O)(liq); 
—104,301 0 -99,912 

AII = Q = 4,449 cal (6.3) 

The symbol2 Q, instead of the usual symbol A//, will be used for this 
change in heat content at constant pressure and temperature to prevent 
possible confusion with the heats of formation and duplication of symbols 
in a following section. 

Heat of Solution of Water m Potassium Chloride Solutions.—In the 
previous section, the mixing of solid potassium chloride and of liquid 
water to form the solution was discussed in terms of the dissolving of 
1 mole of potassium chloride in various quantities of water. The solu¬ 
tion process may also be considered from the point of view of the water 
added to the mixture to form the solution. In this example, however, a 
distinction is to be made: The solid potassium chloride “melts” into the 
solution to form the final liquid phase whereas the liquid water enters 
the solution without any change in phase. This distinction does not 
exist for all solutions; we shall later consider the mutual solution of 
benzene and toluene for which arbitrary distinctions between “solvent” 

1 Bichowsky, F. R., and F. D. Rossini, “Thermochemistry of Chemical Sub¬ 

stances,M pp. 151-152, Reinhold Publishing Corporation, New York, 1936. 

* Q corresponds to the relative heat content for which G. N. Lewis and M. Randall 

(“Thermodynamics and the Free Energy of Chemical Substances,” Chap. VIII, 

McGraw-Hill Book Company, Inc., New York, 1923) use the symbol L, 
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and “solute” have no meaning. For the potassium chloride solution 
where the phases chosen as the standard states are pure solid potassium 
chloride and pure liquid water, special attention is usually concentrated 
on the salt. The heat effects attributed to the components of the solution 
take on a more symmetrical form when the reference standard states are, 
respectively, pure water and K+ ions and Cl" ions in an infinite amount 
of water to form an infinitely dilute solution of potassium chloride. 
However, this change in the selected standard state for the potassium 
chloride will not alter the heat effects attributed to the water itself. 

Let us consider the heat effect produced per mole of water added to the 
solution. The observed heat effect when 12 moles of water and 1 mole 
of solid KC1 form a solution is 3,786 calories. The heat effect per mole 
of water is 3,786/12 — 315.5 cal. This and other values per mole of water 
are indicated in column (6) in Table 6.1. Column (5) indicates the 
number of moles of KC1 dissolved per mole of water; for line a, it is 
0.08333 mole. From line g, column (4), 4,449 calories are absorbed when 
200 moles of water dissolve 1 mole of KC1. The heat effect per mole of 
water is 4,449/200 = 22.25 cal, the amount of KC1 per mole of water 
being 0.005 mole. 

Column (4) gives the heat absorbed per mole of KC1, when the quan¬ 
tity of water varies as indicated in column (2). Column (6) gives the 
corresponding heat absorbed per mole of water, the quantity of KC1 
varying. These data are plotted in Fig. 6.1, those showing the variation 
of Q per mole of KC1 with the number of moles of water, n\} being plotted 
in Fig. 6.1a, and those for the variation of Q per mole of water with the 
number of moles of KC1, n2, being plotted in Fig. 6.15. The lack of 
agreement in the form of the two curves is evident. 

Differential Heat of Solution of Water.—Both columns (4) and (6) 
in Table 6.1 list total heats of solution, the former the total heat absorbed 
per mole of KC1 in the formation of the solution from the pure compo¬ 
nents, and the latter the total heat absorbed per mole of water. Suppose 
we wish to know, not the total heat absorbed, but the heat absorbed per 
mole of water when water is added to a solution rather than to pure potas¬ 
sium chloride. If 3 moles of water are added to a solution containing 
12 moles of water and 1 mole of KC1, the heat effect is 

Qb — Qa = 92 cal 

The heat effect per mole of water added while the number of moles of 
KC1 remains unchanged (n2 = 1) is 

AQ = Qb - Qa 
An, ni(b) — fti(a) 

3,878 - 3,786 _ 92 
15 — 12 3 

30.7 cal/mole (6.4) 

This value is the average heat of solution per mole of water in this con* 
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centration range. Similarly from lines d and e, Table 6.1, we have 

AQ = 4,276 - 4,086 
Ani 50 — 25 

190 
25 

7.6 eal/mole 

and from lines h and i, 
AQ = 4,462 - 4,462 
An] 800 - 400 

Between Ui/n2 = 400 and n\/n2 = 800, there is no apparent heat effect 
when 1 mole of water is added to the solution. Column (7) gives the 

Fig. 6.1.—Heat of solution of potassium chloride and water. 

various values of AQ/Anx. It may be observed that, with more than 
800 moles of water per mole of KC1, heat is evolved as more water is 
added. 

The relation AQ/Anx does not give the true heat of solution of water 
at a particular concentration of solution; for, in the above calculations, 
finite quantities of water were added to produce finite changes in con¬ 
centration. The true differential heat of solution is obtained when the 
finite quantities AQ and Anx become the infinitesimals dQ and dnx. The 
differential heat of solution of the water is defined by the derivative 

Qi s (0.5) 
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where the subscripts indicate that the number of moles of potassium 

chloride and the pressure and temperature remain constant during the 

differentiation. In the case we are discussing, n2 = 1, P = 1 atm, 

T = 18°c = 291.16°k. qI can be interpreted experimentally as the heat 

absorbed per mole of water at a given pressure, temperature, and number 

of moles of solute, when the quantity of added water is small enough 

not to change the concentration of the solution. It is the heat observed 

Tahle 6.2.—Relative Partial Molal Heat Contents of Potassium Chloride 

and Water in Aqueous Solutions of Potassium Chloride* 

m = number of moles of KCl/1,000 g of water (molality) 

ni = number of moles of water 

n-> = number of moles of KC1 

Standard states: pure water; K + and Cl" in oo moles of water 

111 
Molality 

Wi/n2, 
— —0 
Hi - ll1? h2 - h„ 

moles HoO per eal/mole cal/mole 
mole of KC1 of H20 of KC1 

(i) (2) (3) (4> 

0 00 0 0 

0.01 5551 —0.0025 19 

0.04 1 1388 -0.0079 63 

0.09 617 -0.0064 63 

0.16 347 +0.020 51 

0.25 222 0.158 14 

0.36 154 0.480 - 41 

0.64 86.8 1.53 -165 

1.00 55.5 3.57 -306 

1 .44 38.5 6.59 -442 

1.96 28.3 
* 

11 .58 -605 

* Data from I*'. D. Rossini, Bur. Standards J. Research, 6, 802 (1931). 

when 1 mole of water is added to an infinite quantity of solution of the 

specified concentration. 

The value of (dQ/dni)nuPtT can be obtained graphically from the 

plotted curve in Fig. 6. la, for it is given by the slope of the curve at any 

value of Q and n. It may also be obtained analytically from the empirical 

equation representing the curve. It appears that AQ/Arii differs widely 

from dQ/dni only at the concentrations where the curve changes direction 

abruptly. In Table 6.2, column (3), are listed some values of dQ/dni 
here indicated under the notation hI — h°. Inspection shows reason¬ 

able agreement between the values of AQ/Arii in Table 6.1 and the values 

of 

in Table 6.2. 
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Differential Heat of Solution of Potassium Chloride.—From columns 

(5) and (6), Table 6.1, may be obtained the corresponding values for 

AQ/An^ for solutions containing a constant quantity of water (— 1). 

Thus, from lines a and b, 

AQ _ 258.5 - 315.5 _ 57.0 __ 0 

An. 0.06667 - 0.08333 0.01666 Cal 

This means that 3,420 calories are absorbed per mole of KC1 dissolving 

into a solution containing 0.08333 to 0.06667 mole of potassium chloride 

per mole of water. It was pointed out earlier that the first potassium 

chloride to dissolve when the solution is prepared, dissolves into pure 

water with a molar heat of solution of 4,404 calories. The above calcula¬ 

tion shows that the last to dissolve does so with a molar heat of solution 

of 3,420 calories. The observed total heat of solution is the summation 

of all the heat effects for the range of concentration up to the final con¬ 

centration. It is, therefore, intermediate between these values, ranging 

in this concentration interval from 3,786 to 3,878 calories per mole of 

potassium chloride. The data in column (8) indicate the values of 

AQ/Ario for the entire concentration range. 

The differential heat of solution of potassium chloride appears to 

pass through a maximum at a concentration lying between 0.0006 and 

0.0012 mole of KC1 per mole of water. Because a molal aqueous solution 

contains 1 mole of solute in 55.51 moles (1,000 grams) of water, the cor¬ 

responding molalities of potassium chloride solution are 0.033 to 0.067 

molal. 

The true differential heat of solution of potassium chloride is repre¬ 

sented by the derivative 

This value may be obtained from the slope of the curve in Fig. 6.15 

or from the empirical equation for the curve. The values for Qj>, where 

KC1 in infinite aqueous solution is the standard state, are given in column 

(4), Table 6.2. They may be compared with the corresponding values 

of (AQ/An2) — 4,404, obtained for finite concentration intervals, given 

in column (9), Table 6.1. 

Partial Molal Quantities.—The limiting values of the differential 

molar heats of solution of the components in a solution at constant pres¬ 

sure, temperature, and composition as represented by the equations 
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are examples of quantities called by Lewis1 partial molal quantities. 

Similarly, the partial molal volumes of the components in a solution are 

given by 

In general, a partial molal quantity is the partial derivative of the quan¬ 

tity with respect to number of moles of one component of the solution, 

the pressure, temperature, and composition remaining constant. Fol¬ 

lowing Lewis, we shall designate the partial molal quantities by the bar 

over the symbol, the subscript indicating the particular component 

referred to. For aqueous solutions, it is customary to designate the sol¬ 

vent water as the first component and the solute as the second component. 

However, in many solutions the distinction between solvent and solute 

is purely arbitrary. For a water solution, then, h] represents the partial 

molal heat content of the water in the solution and h*> the partial molal 

heat content of the solute. At times, we may be interested in evaluating 

the partial change of the internal energy of a system with composition 

at constant volume and entropy. We have then the partial derivatives 

Mi = and (6.8) 

These quantities are not called partial molal quantities. The term 

“partial molal” is reserved for constant-temperature, constant-pressure 

processes. With this understanding, we shall omit the qualifying sub¬ 

scripts in the subsequent discussion. 

As we have stated earlier, the extensive properties of a substance in a 

standard state are indicated by the superscript ° as in the symbol H°. 

For a single phase of pure substance the partial molal value and the molar 

value of a property are identical, for 

55 (6.9) 

Similarly, the partial molal heat content of the solute in a system 

containing one mole of K+ ions and Cl~ ions in an infinite quantity of 

water may be expressed as 

h2 = 

If this solution is selected for the standard state of potassium chloride, 

we have for the standard molar heat content of the potassium chloride 

1 Lewis, G. N., Proc. Am. Acad. Arts Sci., 43, 273 (1907); Z. physik. Chem., 61, 
144 (1907). 
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5* = (6.10) 

If the pure potassium chloride is selected as the standard state, we have 

(6.11) 

These two standard states evidently have different heat contents. 

When a solution is made from the substances A and B in their stand¬ 

ard states, their respective heat contents being H\ and the heat of 

solution may be represented by the equation 

nx A + n2 B = solution; AH = // — (//? + //£) = Q (6.12) 
Ih° II 

From equation (6.12), we have for the partial molal heat of solution of 

the solvent 

Qi = 
dH 

drti 

dH° _ —5 
—-1 = Hi - H? 
dni 

(6.13) 

for dHl/drii = 0. (Why?) 

The difference between the partial molal heat content of the constit¬ 

uent A in the solution and in the standard state is called its relative 

partial molal heat content. Similarly, 

Q2 
dH 

dn2 
(6.14) 

Values of H2 — Hj, the relative partial molal heat content for KC1 in 

aqueous solutions, are given in column (4), Table 6.2. If the standard 

state selected for the potassium chloride had been the solid, the listed 

values for hJ — would be increased by 4,404 calories, for, from Table 

6.1, we have 

H/(infinite dilution) — H/(solid) = 4,404 cal 

For convenience in comparison, molalities are converted to mole ratios 

in column (2), Table 6.2. Within the limits of the approximation 

involved in evaluating AQ/An instead of dQ/dn, the values in column 

(9), Table 6.1, are seen to correspond to those in column (4), Table 6.2. 

Integral Heat of Solution of Benzene and Toluene.—In many solu¬ 

tions, especially those having constituents miscible in all proportions, the 

composition is best represented in terms of percentage. The whole 

composition range may then be shown on a single diagram. Weight 

percentages may be used but, in the majority of chemical problems, mole 

percentages are more instructive, If molalities are plotted, the proper- 
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LEGEND 
o Heat per mole of solution 
® Partial moh! beat of solution of benzene 
o Partialmo/a I heat of solution of toluene 

ties of the pure solvent may be obtained at m = 0, but the properties of 

the pure solute cannot be represented on the same diagram. Thus, in 

Fig. 6.1a the heat of solution of water in the infinitely dilute solution 

cannot be made to fall on the diagram. On the contrary, when the com¬ 

position is expressed in percentage (or fraction), the entire range of 

composition from pure A to pure B may 

be indicated on one diagram. 

Benzene and toluene mix in all propor¬ 

tions. When their heat of mixing is plot¬ 

ted against mole fraction as in Fig. 6.2, the 

curve is fairly symmetrical; this method of 

plotting is, therefore, well suited to solu¬ 

tions of this type. The experimental heats 

of solution for this system in calories per 

gram of solution are given in column (2), 

Table 6.3. From these values and from the 

composition of the solution, expressed in 

columns (1) and (3) as weight fraction and 

mole fraction, respectively, may be calcu¬ 

lated the corresponding heats of solution 

per mole of the mixture. The mole of mix¬ 

ture may be defined as follows: When nx 

moles of benzene and n2 moles of toluene are 

mixed, the sum of nx and n2 being unity, the 

final solution contains a number of mole¬ 

cules equal to the Avogadro number; there¬ 

fore, 1 mole. In such a solution, we find 

from the definition of mole fraction 

Fig. 
of benzene 
calories). 

6.2.—Heat of solution 
and toluene (in 

Ni = 
n i 

N2 (6.15) 
fti + n2 fti + n» 

that the number of moles of each constitu¬ 

ent is equal to its mole fraction since nx + n2 = 1. 

The heat absorbed in the solution process depends on the quantity 

of solution produced. In the potassium chloride solution, the heat 

absorbed was listed both per mole of potassium chloride and per mole of 

water. For reasons that will appear, we shall discuss here the heat 

absorbed per mole of solution. This heat, corresponding to the total heat 

Q discussed earlier but referring always to 1 mole of solution, will be 

defined as the integral heat of solution Qt. Values for this integral heat 

are given in column (4), Table 6.3. Where nx and n2, respectively, are 

the number of moles of the two constituents of the solution, the integral 

heat Qi is related to the total heat Q for nx + n2 moles by the relation 



Chap. 6] HEAT OF SOLUTION. PARTIAL MOLAL HEATS 131 

Q< = 
Q 

rii + n2 
(6.16) 

Values for q» are plotted as ordinates against Ni as abscissas in Fig. 6.2. 

At any composition Nh the slope of the tangent to the curve gives values 

of dQt/dNi. This slope is related to the partial molal heat, which is 

dQi/dni. In order to calculate the latter, we must find the relation 

between dNi and dftj at constant pressure and temperature. 

Table G.3. -Heats of Solution of Benzene and Toluene at 17°c 

(In calories) 

Gram of 

benzene/ 

gram of solu¬ 

tion, weight 

fraction 

Heat 

absorbed*/ 

gram of solu¬ 

tion 

Mole 

fraction 

of benzene 

q%, heat 

absorbed 

per mole 

of solution 

Qi = 
H7 - a®, 

cal /mole 

Q2 = 
Ha - H®, 

cal/mole 

(1) (2) (3) (4) (5) (6) 

0.00 0 0 f) 60 0 
0.10 0.080 0.11G 7.24 57 1 
0.20 0.144 0.228 12.81 51 2 
0.30 0.198 0.33G 17.31 34 9 
0.40 0.219 0.440 18.83 

: 

23 16 

0.50 0.223 0.541 18.85 17 21 
0. GO 0.220 0. G39 18.30 10 33 

0.70 0.18G 0.734 15.22 3 49 

0.80 0.124 0.825 9.99 1 55 

0.90 0.0G3 0.914 5 00 0 57 

1.00 0 0 0 0 57 

* Data of G. C. Schmidt, Z. phyaik. Chem., 121, 221 (1920). 

Partial Molal Quantities from Mole Fraction Diagrams.—Although 
the following relations are derived for partial molal heats, they apply 

also to other thermodynamic functions. We shall, therefore, analyze 

them in some detail. 

On mixing rt\ moles of a substance A and n2 moles of a substance B 

at constant pressure and temperature, the heat of solution is Q and we 

have 

nxA + n2B = ni + n2 moles of solution; AH = Q (6.17) 

For the formation of 1 mole of solution, the corresponding equation is 

(—7h—j \ -|_ (—l1*—) B = 1 mole of solution; 
\7h + wo/ \m + w-v 

A H = -4—= Q.- (6.18) 
ni + n2 
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Because nx/(ni + n2) and n2/(ni + n2) are the mole fractions Ni and N2, 

respectively, equation (6.18) may be written as 

NiA + N2B = 1 mole of solution; AH = q» 

Furthermore, from the definition of mole fraction, we have 

Nx = 1 - N2 \ 
N2 = 1 - Ni J 

(6.19) 

(6.20) 

Now the relation between dQ/dN and dQ/dn can be found from the 

relations between dAr and dn and these in turn may be obtained from 

equations (6.15). 

For the component A, we have, keeping n2 constant, 

(fti \ __ (ni + n2) dni — ni(dni) 

ni + ^2/ (^1 + n2)2 

n2 , 

(«i + n2)2 cn 
(6.21) 

which may be rearranged to give 

dNi _ dwi 

Ar2 ~ (ni + n2) 
(6.22) 

For the partial molal heat of the component A, we have from equations 

(6.5) and (6.16), n2 still being constant, 

Qi = 
dQ 

dni 

d[(ni + n2) Qi] 

dni 
= Q< + (ni + n-i) 

d<& 

drii 
(6.23) 

From equation (6.22), therefore, 

Qi = Q< + N2 ^ = Q< + (1 - Nr) 
dQi 

dNi 
(6.24) 

Similarly, for component B, ni now being constant, the partial molal 

heat is 

— dQ . ,, dQt 

Qj “ dn, ~ Qi + N1 W, 
= Q» + (1 — N 2) 

dQt 
dN2 

(6.25) 

The difference between Qi and q2 is found from equations (6.24) and 

(6.25) and the relation dN 1 = d(l — jV2) = —dN2 to be 

~~ ~~~ dQj \ 

Qi~Q2 = w1I 
and > (6.26) 

— — dQi \ 

Q! “ Ql “ W, J 

The evaluation of q"j and Qo can be made readily from the Q,-mole-fraetion 

curve. The method is illustrated in Fig. 6.3. At the mole fraction of 
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the component A equal to N\ = x, the integral heat of solution has the 

■value 

q i = ca = fe (6.27) 

The tangent to the curve at this point represented by the dotted line 

NrO N^x Nt-1 
Mole fraction, Nj 

Fig, 6.3.—Partial molal heats from a mole-fraction diagram. 

bg intercepts the axis Ni = 0, N2 = 1, at the point b and the axis Ni = 1, 

N2 = 0 at the point g. We shall show that 

|^ = 0l = (6.28) 

and 

= Q2 = 5a (6.29) 
dn2 

which represent the above intercepts. 

The proof follows: 

The slope of the tangent bg for Ni = x is given by 

jo< = gf _ gf _ gf_ 
dN 1 ex 1 — W 1 W2 

But, from equation (6.20), 
dNi = -dNt 

Hence, for N2 = 1 — x, 

dQ, _ gf 
dNi Ni N i 

(6.30) 

(6.31) 

(6.32) 

When the values from equations (6.27) and (6.30) are substituted in 

equation (6.24), we have 
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and, from equations (6.25), (6.27), and (6.32), 

dQ _ — (c6) r— 

dn2 A') 

These equations are, respectively, equations (6.28) and (6.29). 
The equations may be applied at the limit for pure A at which Ni — 1, 

and JV2 = 0. Under these conditions, 

and 

- dQ j- 
Ql = r— = he 

drii 

_ dQ 
Q2 = = o 

dti. 

Similarly, at the limit for pure B, iV2 = 1, A’i = 0, and 

_ dQ 
Qi = = 0 dn i 

_ dQ 

Q2 = dn. 
da 

(6.33) 

(6.34) 

(6.35) 

(0.36) 

The partial molal heats of solution of benzene and of toluene are cal¬ 
culated in this manner from the intercepts of the tangents to the curve 
in Fig. 6.2. These values are listed in columns (5) and (6), Table 6.3, 
and they are plotted against mole fraction in Fig. 6.2. Observe that 
the two partial molal heat curves cross each other at the composition 
corresponding to the maximum integral heat where the slope of the 
tangent to the curve is zero. At this value, from equations (6.24) and 
(6.25), 

Qi = Q2 = Qi 

The three curves must, therefore, intersect at this composition. 
The partial molal heat of solution of the benzene is at a maximum 

in the solution of nearly pure toluene and approaches zero as the solution 
approaches the composition of pure benzene. Similarly, for the toluene 
the partial molal heat of solution of toluene is at a maximum when the 
toluene dissolves into nearly pure benzene, and approaches zero when the 
toluene dissolves into a solution of nearly pure toluene. 

Problems 

6.1. Many data for solutions are reported per gram of solution. When we use the 
gram instead of the mole as the unit of substance and express concentrations in terms 
of weight fractions instead of mole fractions, the heats of solution or the volume 
change on solution per gram of solution may be plotted against weight fraction to 
give us partial specific quantities corresponding to the partial molal quantities defined in 
equations (6.5) to (6.7). The partial specific heat of solution and volume of solution 
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may be defined by the following equations: 

dQ ^ dV 
dm ^ * dm 

v (6.37) 

where m is the mass of a component in grams and q and v are the partial specific 
quantities. Show that 

<li =* gi 4- w2 - ~ = qi + (1 

-* + «.**-* + ( i w2) 
dw2 

where qi is tlie heat of solution pur gram of solution and w\ and w2 are the weight 
fractions of the first and second components of the solution. Show also that the 
corresponding partial molal heats are 

q7 = .1/ iqT; <F> ■= A/ 2q“2 (6.40) 

where M i and M2 are the molar weights of the two components. 
6.2. For the benzene-toluene solutions listed in Table 6.3, plot the heat of solution 

per gram of solution, obtained from column (2), against the corresponding weight 
fraction of benzene obtained from column (1). Use the relations derived in Prob. 6.1, 
and calculate graphically the partial specific heats of solution of benzene and toluene 
at the concentrations given from the tangents to the curve. Obtain the partial molal 
heats of solution from these values and compare with those listed in columns (5) and 
(6), Table 6.3. Tabulate your results. Plot your values of the partial molal heats of 
solution against the corresponding mole fractions listed for these solutions in column 
(3). 

6.3. Apply the method of Prob. 6.2 to the securing of the partial molal volumes of 
benzene and toluene in these same solutions. Schmidt [Z. phys/k. Chem., 121, 221 
(1926)] gives the following data for the increase in volume when 1 gram of solution is 
prepared from benzene and toluene at 17°c. When the solutions contain 10, 20, 30, 
40, 50, 60, 70, 80, and 90 per cent by weight of benzene, the increase in volume is 
2.5, 5.1, 8.3, 9.0, 10.0, 9.5, 8.3, 7.2, and 4.0, all times 10“4 cc, respectively. Plot these 
data against weight fraction, and calculate graphically the partial molal volumes 
of benzene and toluene compared with those of the pure components. If the densities 
of benzene and toluene at I7°c are 0.88299 and 0.86956, respectively, what are the 
partial molal volumes of these components at each concentration and at infinite 
dilution? Plot v[ and V2 against mole fraction. How do the partial molal volumes 
of these substances at infinite dilution compare with their molar volumes as pure 
substances? 

6.4. The apparent molar volume of a solute is frequently reported in the litera¬ 
ture. It is defined in the equation 

V — W1V1 + n2<t> (6.41) 

where nx and n2 are the number of moles of solvent and solute, respectively, V is the 
volume of the solution, and Vi the molar volume of the pure solvent. Show that the 
partial molal volume of the solute v^ is related to the apparent molar volume by 
the equation 

V2 = <t> + W2 (6.42) 

6.5. According to Longworth [/. Am. Chem. Soc., 59, 1483 (1937)], mixtures of 
HSO and H220 form perfect solutions, there being no volume change on mixing. If 
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H^O is component 1 and H220 is component 2, show that the volume v» of a mole of 
solution is given by the relation 

v< - N iVi + N 2v2 
N \M i + AT2M2 

d 

where Mi and M2 are the molar weights of the two components, iVi and N2 are their 
mole fractions, and d is the density of the solution. If the atomic weights are 
O = 16.0000, H1 — 1.00786, and H2 = 2.01419 and the densities of H^O and H220 
are, respectively, dAn — 0.99705& and d425 = 1.10466, what are the molar volumes of 
H^O and H*20? What are the molar volume and density of natural water con¬ 
taining 0.0176 mole per cent of H220? 



CHAPTER 7 

THE SECOND LAW OF THERMODYNAMICS 

When one considers the entire period of time in which man has specu¬ 

lated and experimented on the material universe, one is impressed by the 

fact that the laves of the conservation of matter and of energy were 

formulated relatively recently. The conservation laws were not self- 

evident because the world is a continually changing world in which the 

natural processes involved in the changes tend to mask the laws of con¬ 

servation. In terms of our present thinking, the changes occur because 

the world is not at equilibrium. Living things grow and die, water 

evaporates into the air and is precipitated again, summer and winter 

alternate and bring with them a whole series of changes. Even though 

we accept the laws of the conservation of matter and of energy as valid 

in the changing world, we must still consider whether any general prin¬ 

ciples apply to change itself. We suspect that such principles can be 

found because as chemists we know that, under given initial conditions, 

natural changes take place in a given direction. If these principles can 

be expressed in an energy law, the law will be as useful and fundamental 

as the laws of conservation. Before we discuss such a law, we shall first 

consider some of the aspects of change in more detail. 

Spontaneous Processes.—Processes taking place in a system without 

the aid of an outside agency are called spontaneous processes. As illus¬ 

trations, we shall consider several spontaneous processes involving energy. 

1. “Flow” of Energy from Higher Temperatures to Lower Tempera¬ 
tures.—When two bodies at different temperatures are brought into 

thermal contact, the hotter body loses energy to the colder body. When 

no work is done in the process, all the energy lost by the hotter body 

flows to the colder body thus increasing the energy of the colder body. 

In agreement with the principles embodied in the first law of thermo¬ 

dynamics, there is here no net loss or gain of energy, yet the process is 

spontaneous with a fixed direction. Energy may be exchanged between 

colder and hotter bodies, but the net effect is to increase that of the 

colder body and to decrease that of the hotter body. Net energy 

exchanges that follow these rules are called heat in classical thermody¬ 

namics. They may be measured conveniently by a calorimeter. 

These facts of energy flow may be used to define a state of thermal 
equilibrium. Two bodies are at thermal equilibrium when they are at 

137 
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the same temperature. They are at the same temperature if, when 
placed in thermal contact so that energy can pass freely between them, 
there is no net spontaneous flow of energy as heat from one body to 
the other. As we shall sec, the flow of energy from bodies at a higher 
temperature to bodies at a lower temperature can be made to do useful 
work, if the flow takes place through a suitable heat engine. 

2. Flow of Liquid from a Higher Level to a Lower Level.—The movement 
of a freely flowing liquid from higher levels to lower levels is a spontane¬ 
ous process familiar to all observers. The process continues until the 
levels have become equalized. The system is then in mechanical equilib¬ 
rium. Observe that in this spontaneous flow of liquids (as well as in 
the flow of gases in the two following examples) there is no heat effect. 
However, the liquid could have done work in passing from the higher 
to the lower level. Any general energy law that applies to all spon¬ 
taneous processes must, therefore, apply to this one as well. 

3. Flow of Gases fromi Regions of Higher Pressure to Regions of Lower 

Pressure.—Just as temperatures tend to equalize when energy can flow 
from one body to another, and liquid levels tend to equalize when the 
liquid can flow, so the pressures in a gaseous system tend to equalize 
when the gas is free to move. If, initially, part of the gas is at a higher 
pressure than another part, the gas moves from the region of higher 
pressure to the region of lower pressure until the pressures become 
equalized. Although some of the individual molecules of gas may be 
moving in a direction opposite to the direction of flow, the net effect of 
all the molecular movements is flow of the gas in the one definite direc¬ 
tion. Here, again, the spontaneous processes tend to bring the system 
to mechanical equilibrium. 

4. Diffusion of Gases.—In a gas that consists of more than one kind 
of molecules, the tendency for pressures to equalize is observed experi¬ 
mentally for each of the chemical constituents of the gas. The behavior 
of each constituent depends on its partial pressures in the different parts 
of the system and not on the total pressure of all the constituents. This 
fact is highly important in the application of thermodynamics to chem¬ 
istry because there are so many chemical analogies to this behavior. 
If a volume of nitrogen and a volume of oxygen at the same pressure 
and temperature are brought into contact with each other, the system 
is not in complete equilibrium even though it is at thermal equilibrium 
and mechanical equilibrium in the usual sense. Spontaneously, the 
nitrogen diffuses into the oxygen, where its partial pressure was originally 
zero, until it is so distributed that its partial pressures in the different 
parts of the system are identical. Similarly, the oxygen diffuses into the 
nitrogen until it is also distributed throughout the system with a uniform 
partial pressure. Or, if, at a suitable high temperature, hydrogen is 



Chap. 7] THE SECOND LAW OF THERMODYNAMICS 139 

separated from air by a palladium membrane permeable to hydrogen 
but not to air at tha.t temperature, the hydrogen will diffuse through the 
palladium into the air until the partial pressures of the hydrogen on 
both sides of the membrane become equal. This diffusion takes place 
even though the total pressure of the gases on the one side becomes greater 
than that on the other side of the membrane. At first thought, we might 
consider this characteristic? behavior outside the scope of thermody¬ 
namics because the heat absorbed or evolved during this redistribution 
of the gas or gases is negligible or zero and because, as in the case of the 
nitrogen and oxygen, the total pressure need not change during the proc¬ 
ess. However, the second law of thermodynamics applies also to such 
spontaneous processes. 

5. Chemical Reaction.—Another type of spontaneous process that 
concerns us particularly is the usual chemical reaction. Unless we happen 
to start with equilibrium concentrations of the reacting substances, there 
is a tendency for the reaction to proceed in one direction or the other. 
Even when, under the experimental conditions, the reaction rate is 
exceedingly small, the tendency still exists. When a reaction rate is 
small, a catalyst is sometimes added. At other times, a new mechanism 
for the reaction is sought—a mechanism with more favorable rates. 
Thus, hydrogen reacts with oxygen at room temperature to form water 
at an exceedingly slow rate, but the reaction can be carried out even at 
room temperature in a suitable electrochemical cell. We must, how¬ 
ever, not let the slowness of a rate disguise the reality of the tendency 
for the reaction to proceed in a definite direction. 

In all the types of spontaneous processes considered, the tendencies 
of the process to go in a definite direction are not altered by the slowness 
of the rate. If a body at a higher temperature is separated from the 
body at the lower temperature by a thermal insulator so that the rate 
of heat flow becomes small, energy will still flow from the hotter to the 
colder body. If water at a higher level is throttled so that it flows very 
slowly, it will still flow toward the lower level. If a gas is throttled so 
that the rate of flow is small, it will still move from regions of higher 
pressure to regions of lower pressure. And, if two gases are separated 
by a small orifice so that diffusion becomes very slow, they will still 
diffuse until the partial pressures of the constituents become equalized. 
Thermodynamics deals primarily with the difference in properties of the 
initial and final states and makes its predictions about the direction of a 
process on the basis of the values of the properties at these states and 
not the rate at which the process or reaction occurs. For this reason, 
thermodynamics can help us determine whether, and to what extent, a 
given reaction can proceed and can, therefore, tell us whether the intro¬ 
duction of a catalyst would be useful. 
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Tendency toward Equilibrium.—Spontaneous processes and the 

tendency for them to proceed in a definite direction may be considered 

from another point of view. As spontaneous processes continue, they 

tend to run down so that they finally stop. Only when the system under¬ 

going the process is replenished, can it continue indefinitely. Thus, if 

no new energy enters the system, the final result of energy flow from a 

hotter to a colder body is the cooling of the hotter body and the warming 

of the colder one. As a result of the process, the temperature difference 

between them finally becomes vanishingly small, and the two bodies are 

at thermal equilibrium. 

The tendency toward equilibrium is also observed when liquids flow 

in a closed system. As enough water flows from the higher level to the 

lower level, the height of the water at the upper level falls and the height 

of the water at the lower level rises until the water has reached a common 

level. A waterfall can be maintained only if water is replenished at the 

higher level and removed at the lower level. Similarly, a thermal dif¬ 

ference can be maintained between two bodies in thermal contact only 

if energy is supplied to the hotter body and removed from the colder 

body. 

When gases flow from regions of higher pressure to regions of lower 

pressure or when they diffuse from regions of higher partial pressures to 

regions of lower partial pressures, there is a similar tendency for the higher 

pressures to decrease and the lower pressures to increase until the pres¬ 

sures or partial pressures have equalized. In the flow of gases or of 

liquids to lower levels or lower pressures, there is a tendency toward a 

mechanical equilibrium and the processes do not cease until mechanical 

equilibrium is reached. 

Similar tendencies toward equilibrium exist in chemical systems. 

When hydrogen and oxygen react to form water, hydrogen and oxygen 

are consumed and water is produced. Unless the supply of the reacting 

gases is replenished, the reaction will stop when the concentrations of the 

reacting gases fall to the equilibrium concentrations. In this reaction, 

equilibrium at room temperature is reached only when the concentrations 

of hydrogen and oxygen have become vanishingly small, but the principle 

holds. Whatever the equilibrium concentrations for a particular reac¬ 

tion, the reaction can proceed only until the equilibrium conditions are 

reached. At the equilibrium state, the reactants may still be reacting, 

but the products of the reaction are reacting in the reverse direction at 

an equal rate. Hence, a spontaneous chemical reaction proceeds only 

to the state of chemical equilibrium. 

Explosive reactions are subject to the same principles. If the quan¬ 

tity of explosive is limited, the explosion, however violent, can continue 

only until a chemical equilibrium is reached. During the explosion, the 
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rate of reaction can increase as the reacting substances become hotter 

and hotter; hence, the equilibrium state is reached sooner. 

There are some useful analogies between the diffusion of gases into 

each other and a chemical reaction. Both processes can take place at a 

constant temperature and a constant total pressure, that is, they may 

take place under conditions of thermal equilibrium and under conditions 

of mechanical equilibrium as measured by the usual devices. Only 

internally is there lack of equilibrium in the mixed gases. Indeed, the 

methods used for studying and expressing chemical equilibrium can be 

applied to diffusion problems. As a result, we can have greater con¬ 

fidence in the validity of the methods. 

Work from Spontaneous Processes.—As was indicated in the previous 

sections, the spontaneous processes may be described in terms of a gen¬ 

eral tendency toward thermal, mechanical, or chemical, equilibrium. 

Another general statement is that spontaneous processes in their move¬ 

ment toward equilibrium can furnish useful work. The mechanisms 

required to obtain the work may differ from process to process; hence, 

we shall consider various ones corresponding to the different types of 

spontaneous processes described earlier. 

1. The undircctional flow of energy between two bodies at different 

temperatures can be made to do useful work if a suitable heat engine is 

devised for the purpose. All heat engines operate by absorbing energy 

at a higher temperature and discharging part of this energy at a lower 

temperature, the remainder of the energy being expended in doing work. 

In accordance with the first law, the total energy discharged by the 

engine at a lower temperature equals the total energy absorbed at the 

higher temperature. But, the first law does not tell us what fraction of 

the energy discharged at the lower temperature may be in the form of 

useful work. Carnot outlined an engine operating in a cycle between 

the two temperatures in an attempt to answer this problem. His cycle 

is interesting because it represented the first theoretical study of the 

work obtainable in a heat engine. 

2. The spontaneous process, the waterfall, can be harnessed to per¬ 

form useful work whether by the most primitive water wheel or the most 

modern turbine. Because of its availability and because of the sim¬ 

plicity of the machines required, the flow of water from higher to lower 

levels remains one of our important sources of energy for performing 

work. 

3. Work may be secured from the movement of gases whether by a 
windmill, a gas turbine, a reciprocating engine, or by jet propulsion. 

Work may be done by the moving gases when no change in temperature is 

involved, but a stationary sample of gas can do work at constant tem¬ 
perature only if, in the process, energy is absorbed from some other 
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source. Otherwise, the temperature decreases. In practice, the majority 
of engines propelled by gases secure pressure differences partly as a result 
of high temperatures produced by chemical reactions. Such engines 
may be considered as heat engines or as chemical engines, but their 
efficiencies are not affected by the point of view from which one considers 

them. 
4. In practice, it is difficult to devise an engine for securing useful 

work from the diffusion of gases. If one can find for each of the constit¬ 
uent gases of a mixture a membrane permeable only to that one gas, one 
can expand each constituent gas separately and thus carry out each 
expansion independently of the others. Such a mechanism is outlined 
in Fig. 12.1. 

5. Work can be obtained from spontaneous chemical reactions as well 
as from other spontaneous processes, but the practical devices for obtain¬ 
ing the work are often difficult to produce. Electrochemical cells are 
one convenient device for obtaining work from a chemical reaction. But, 
whether or not a practical cell can be devised for any particular chemical 
reaction, the direction of a spontaneous process in a system depends on 
its initial and final states. Consequently, we can foresee the usefulness 
of a second law of thermodynamics which can make correct predictions 
on the basis of the change in state regardless of the manner in which we 
choose to carry on the process. 

Heat and Work.—The law of the conservation of energy as expressed 
in the first law equation, dE = Dq — Dio, equates the increase in energy 
with the difference in heat absorbed and work done. Consequently, it 
has become common practice to classify the energy exchanges by .a sys¬ 
tem with its surroundings as heat and work. This classification, apply¬ 
ing only to the process of exchange, can be made without any knowledge 
of how the energy is distributed within the system itself; hence, it cannot 
ftimish information about the system or its tendency to change spon¬ 
taneously. Heat and work were defined in Chap. 2. 

One characteristic of heat as measured by the usual calorimetric proc¬ 
ess is that it passes from one system to another unaccompanied by mate¬ 
rial substance. Another characteristic is that it passes from regions of 
higher temperature to those of lower temperature. A system may 
exchange energy as heat even though it does not change in volume, does 
not gain or lose mass, and does not change in chemical composition. 
Whether it gains or loses energy as heat depends only on its relative 
temperature. 

On the other hand, useful work is associated with the transport of 
matter. For example, a system does work when it expands against an 
opposing pressure, work that can be classified as PdV work. In the 
expansion, matter is transported into the new volume resulting from the 
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expansion." Similarly, in the gaseous diffusion process described earlier, 
a gas is transported. This spontaneous transport, if suitably harnessed, 
can be used to perform useful work. Electrical work is the result of the 
transport of charged particles whether they are ions or electrons. Chem¬ 
ical work can also be considered from the point of view of transport of 
matter. In the chemical reaction, atoms are transported from a sub¬ 
stance into a new substance which is separated or separable from the 
initial substance. Work can be derived from the reaction if a practical 
machine can be devised to harness the spontaneous process. For reacting 
gases, one such device would be the equilibrium box described in Chap. 
12. For a reaction in an electrochemical cell, the transport of the 
reactants into the products of the reaction can be coupled with the move¬ 
ment of electrons in the external circuit and the movement of ions within 
the cell to do electrical work. 

Limits of Work from a Spontaneous Process.—In the previous 
section, we found that work can be derived from spontaneous processes 
if they are suitably harnessed. As we shall see, the actual work done 
depends on the relations between system and surroundings during the 
change. Work from the net flow of energy alone between bodies at two 
different temperatures can be obtained only if a suitable heat engine is 
used to utilize the flow. Where no temperature difference exists, no 
work can be obtained from the heat engine. On the other hand, in 
spontaneous processes in which matter is transported, useful work can 
be done if no temperature gradients exist, or even in spite of temperature 
differences. 

1. Work from Spontaneous Heat Flow.—If energy is allowed to flow 
from regions of higher temperature to regions of lower temperature unac¬ 
companied by a flow of matter and in the absence of a heat engine, no 
work will result from the process. If the energy, which may be measured 
as heat, flows through a suitable heat engine, useful work is derived 
from the process. It appears, however, that heat engines with different 
efficiencies would produce different amounts of work from the,flow of a 
definite amount of energy. Later, we shall consider the maximum ratio 
between the work and heat and shall find that this maximum ratio 
depends on the working temperatures of the heat engine. Hence, the 
work obtained may range from zero to a maximum. 

2. Work from Isothermal Spontaneous Processes.—Work can also be 
obtained from isothermal spontaneous processes. Examples are spon¬ 
taneous processes in which there is a tendency toward mechanical or 
chemical equilibrium. Consider a gaseous system containing a fixed 
amount of gas at a definite temperature and volume. The gas in this 
system will be at a definite pressure. If the gas is separated from the 
surroundings by a frictionless piston, the direction of the movement of the 
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piston will depend on the relative pressures on the two sides of the piston. 
As discussed in Chap. 2, if the pressure P of the gas is equal to an opposing 
pressure P7, the system will be in mechanical equilibrium with its sur¬ 
roundings and no movement will take place. If P7 is less than P, the 
gas will expand doing work equal to P7 dV against the external pressure. 
If P7 equals zero, no work is done; if P7 approaches P, the actual work 
approaches the limiting value 

T>wr = Pr dV = P dr 

The work done by the gas cannot exceed P dF since, if expansion is to 
take place, P7 must always be less than, even though only slightly less, 
P. If P7 becomes greater than P, the movement of the piston is reversed 
and the gas becomes compressed, the work of the compression process 
being P d V. Thus, where P and P7 approach each other in value, the 
work of expansion in becoming equal to the reversible work also becomes 
equal to the work of compression. But P and V are properties of the 
gas. It appears, therefore, that the reversible work done by the gas in 
the isothermal expansion can be expressed in terms of properties of the 
gas itself. 

The example chosen is instructive in another respect. The spon¬ 
taneous process, the expansion of the gas, is most rapid when the opposing 
pressure is least and no work is done. As the opposing pressure P7 
approaches P, the pressure on the gas and the amount of work done 
increase but the rate of the process decreases. At the equilibrium state 
where P7 equals P and the work done would be identical with the reversi¬ 
ble work, there is really no work done at all because there is no movement 
of the piston. Thus, the reversible work must be regarded as a limit 
that the actual work may approach but never quite reach. Hence, we 
see that we can approach the reversible work only if we are willing to 
takg infinite time. Fortunately, since the reversible work for the expan¬ 
sion of the gas may be expressed in terms of the properties P and V of 
the gas itself, we can calculate a value for the reversible work along any 
particular path without carrying on the experiment. 

As another example of the limits of work from a spontaneous process, 
we may consider the work derivable from a chemical reaction carried out 
in an electrochemical cell. In Chap. 2, we found that the cell process 
can proceed spontaneously if the emf, P, of the cell is positive. How¬ 
ever, this spontaneous process will produce useful work only if the current 
operates against an opposing emf, P7, in some engine capable of doing 
work. The amount of work done by the cell for the passage of a small 
amount of current will then be 

T>w = P7 dn 
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where dn is the number of faradays of electricity moving through the 
engine. If there is no opposing emf E\ no work will be done. If Ef = E, 
the cell will be in balance and no current will flow. But, if E' is less than 
Ey work will be done by the spontaneous reaction, the amount of work 
becoming greater and greater as Ef approaches E in value until a maxi¬ 
mum work equal to E dn is obtained. Thus, we find that the actual 
work obtained from the cell may range from zero to a reversible value 
determined by the way E varies with n. If E' becomes greater than Ey 

the direction of electrical flow is reversed and work equal to E dn is 
done on the cell. 

These principles, here derived from the expansion of a gas and the 
operation of the cell, may be applied to the other spontaneous isothermal 
processes. For each process, we find that the actual work may vary 
from zero to a maximum, characteristic of the way the process is carried 
out. It appears that this maximum value may be expressed in terms of 
properties of the system and of their variation during the process, but 
that the actual work may not. 

Types of Work.—All types of work can be expressed in terms of a 
potential and a quantity related to the amount of material transported. 
For pressure-volume work, an element of work Die can be represented 
by the product of the pressure P and the volume change dF. The direc¬ 
tion of the transport and, therefore, the sign of the work depend not on 
the absolute value of P for the system but on the value of P relative to 
the pressure P' of the surroundings. Thus, the sign of dV depends on 
whether P is greater than or less than P'. At equilibrium, the potentials 
of the system and its surroundings are equal and no transport takes place, 
and in the neighborhood of the equilibrium state the transport is almost 
reversible. 

Similarly, the direction of transport of electric charges depends on the 
value of the electrical potential E relative to that of an opposing poten¬ 
tial E\ Only when there is a difference in potential, will the charges 
move, the relative values of E and E' determining the direction of move¬ 
ment and the sign of dn. The transport becomes the more nearly revers¬ 
ible, the more nearly the potentials E and E' approach the same value. 

The work of transport of a chemical substance may be expressed in 
terms of the quantity of substance dn and a potential called by Gibbs 
the chemical potential /*. As we shall see, the potential under the special 
experimental condition of constant temperature and constant pressure is 
represented by a function f called the partial molal free energy. This func¬ 
tion will be discussed in more detail in later chapters. In a chemical 
reaction, the number of moles of the substance i transported may be repre¬ 
sented in differential form as dn*. Because in a chemical reaction new sub¬ 
stances are produced and other substances are consumed, the chemical 
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work will be the algebraic sum of the p dn terms for the substances in the 
reaction, dn having a positive sign for each substance produced and a 
negative sign for each substance consumed in the reaction. If proper 
respect is paid to sign, we may write for chemical work from a reaction 
involving the 1st, 2nd, . . . and ith substances, 

= fi i d/q + (a d /i 2 + ■ * ■ + M dnj 

For the transport of a single substance between a system and its sur¬ 
roundings, we find that the substance passes from regions of higher poten¬ 
tial to those of lower potential and that equilibrium is reached when the 
substance has the same value of p in all parts of the system. 

The same point of view may be extended to other forms of work. A 
summary of the forms of work most commonly met in chemistry is given 
in Table 7.1, the potential and the quantity transported being indicated 
for each. 

Table 7.1.—Types of Work 

Typo Potential Quantity 

Pressure—volume. . P d V Pressure. P Volume. 
i 

dr 

Electrical. E dn Electrical . E Electric charge. dn 

Surface. Y dA Surface tension. . Area. dA 

Gravitational. h d /a Gravitational. h Mass. dm 

Chemical. fj. diii Chemical. ix Amount of sub¬ 

stance . d rti 

Reversible Processes.—Because the second law of thermodynamics 
is intimately connected with the idea of the reversible process, we shall 
review the general requirements for reversibility. If we start with a 
system at state 1 and allow it to change to state 2 and then change the 
system back to state 1, we might consider that we had reversed the initial 
change completely. This idea is correct as far as the system itself is 
concerned. If, however, we must produce changes in the surroundings to 
restore the system to its original state, the cycle of changes is not a 
reversible one. 

Chemists are accustomed to considering a chemical reaction reversible 
if, by a change in experimental conditions such as pressure and tempera¬ 
ture or by providing adding new reagents, they can restore the original 
reactants. In practice, this restoration requires labor by the chemists 
and the use of external sources of energy and materials or chemicals. 
Accordingly, even though the initial substances are restored, the reversal 
of the chemical reaction leaves the rest of the universe in a different state. 
Such a process is not a thermodynamically reversible one. 

In thermodynamics, the term reversible process is used only for a 
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change that can be reversed in such a way as to leave the surroundings as 
well as the system in a condition equivalent to the original condition in 
every respect. It does not follow, however, that there may not be more 
than one way of proceeding reversibly from one state to another, or that 
the reverse path must be identical with the original path. If the original 
state is restored by a reversible process that utilizes new substances or 
new machines, the cycle is still a thermodynamically reversible one, if 
all new substances as well as other parts of the environment are left in 
their initial conditions. 

Previously, we considered the reversible expansion of a gas. As 
another example of a thermodynamically reversible process, we may con¬ 
sider the freezing of a liquid at constant temperature. In this process, 
energy as heat flows between system and surroundings during the change 
in state of the system. Let a system containing water be present in a 
surrounding, both system and surrounding being at 0°c and 1 atmosphere 
pressure. If 79.72 calories of heat are extracted from the water, 1 gram 
of the water freezes to ice. If the 79.72 calories of heat are restored to 
the system, the gram of ice melts to water, leaving the system in its 
original state. But, if heat is to flow from the system to the surroundings 
during the first change, the temperature of the surroundings must be 
slightly lower than that of the system; if heat is to flow back into the 
system, the temperature of the surroundings must be slightly higher. 
At the end of the two processes, the surroundings will be in approximately 
the same state as they were in the beginning. They will be more nearly 
the same, the smaller the temperature gradients permitted during the 
processes. But, as the temperature gradients become smaller, the rate of 
flow of the heat becomes smaller. Thus, the more nearly reversible the 
processes, the more time required. The truly reversible process is a limit¬ 
ing one, approached more nearly as the time, over which the process occurs, 
increases infinitely. 

Thus, it appears that all natural processes are thermodynamically 
irreversible. Nevertheless, there are excellent reasons for studying 
reversible processes. Reversible processes define equilibrium conditions. 
From our knowledge of these limiting conditions, we can decide whether 
or not a given desired process is possible. The restriction of infinite time 
for the reversible process becomes important only when we actually 
attempt to carry out the process experimentally. 

Second Law of Thermodynamics.—In the preceding sections we 
suggested that, from the experimentally observed tendencies toward 
thermal, mechanical, and chemical equilibrium, we should be able to 
formulate a second fundamental energy law, equal in importance to the 
first law of thermodynamics. In this section, we shall consider some 
verbal statements of such a law, postponing a mathematical statement 
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until we have discussed another thermodynamic function called entropy. 

The second law of thermodynamics, like other natural laws, is a state¬ 
ment of experience. It is to be accepted because it represents the experi¬ 
mental facts. The following statements are alternative statements, 
emphasizing different experimental aspects but they are self-consistent. 
Consequently, as Planck has emphasized, either all are valid or none are 
valid, the test being whether or not they are in agreement with experiment. 

1. Actual processes are spontaneous processes, and the change is toward 

equilibrium. It is not necessary that ultimate equilibrium be reached. 
However, if the statement is valid, the system after the process is nearer 
equilibrium than before. We have seen that spontaneous processes, 
when harnessed, can do useful work in their movement toward equilib¬ 
rium. This fact will allow us later to evaluate quantitatively the distance 
of systems from equilibrium, and to express it in terms of properties of 
the systems. 

2. When any actual process occurs it is impossible to invent a means of 

restoring every system concerned to its original condition. This statement 
by G. N. Lewis emphasizes another aspect of the tendency toward equilib¬ 
rium, An actual process is a one-way process, the direction being toward 
rather than away from equilibrium. Consequently, if we wish to restore 
the original conditions of the system, wre must do so at the expense of 
some other system. And, since every actual process is irreversible in the 
thermodynamic sense, the reversible process is a limiting one, wiiich can 
be approached but never completely realized. 

3. Heat cannot of itself pass from a colder to a hotter body. This state¬ 
ment of Clausius (1850) is more than a description of the direction of the 
flow of energy as heat. The phrase “of itself” means that the transfer 
of the energy to the higher temperature requires the aid of some agency 
that will become changed in the process. This early statement of Clausius 
is implicit in the more general statement 2. 

4. It is impossible by an inanimate material agency (an engine) to 

derive mechanical effect (work) from any portion of matter by cooling it 

below the temperature of the coldest of the surrounding objects. According to 
this statement of Kelvin (1851), an engine cannot act as a refrigerator 
and use the energy absorbed in the refrigeration process to do useful 
work. Such an engine would operate contrary to statements 2 and 3. 

5. It is impossible to construct an engine which will work in a complete 

cycle and produce no effect except the raising of a weight and the cooling of 

a heat reservior. This statement of Planck is equivalent to statement 4. 
The prohibited engine would not violate the first law, but it would enable 
man to derive work without limit from the energy of his surroundings. 

6. A transformation whose only final result is to transform into work 

heat extracted from a source which is at the same temperature throughout is 
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impossible. According to this statement of Kelvin, a heat engine oper¬ 
ating in an isothermal cycle cannot produce work. If a system in thermal 
equilibrium could move away from equilibrium, it would violate state¬ 
ments 1 and 2. Furthermore, energy does not flow as heat under iso¬ 
thermal conditions. 

In the popular mind, the laws of thermodynamics are identified with 
their prohibition of perpetual motion. Violations of the first, and second 
laws would produce, in the classification of Ostwald, perpetual motion of 
the first kind and the second kind, respectively. Another statement of 
the second law is that of Ostwald: 

7. It is mpossible to construct a perpetual motion machine of the second 

kind. 

The principle of the conservation of energy indicates that perpetual 
motion of the first kind is impossible. If energy is neither created nor 
destroyed, no engine, however perfectly designed or operated, can do 
work (produce motion) without absorbing an equivalent amount of 
energy. Because friction cannot be eliminated entirely from an engine, 
the output of work must be slightly less than the energy absorbed, the 
remainder of the energy appearing as heat of friction. No perpetual- 
motion machine has been perfected; therefore, we have renewed con¬ 
fidence in the first law. 

But the possibility of an engine producing work from isothermal 
cycles or from a transport of energy from lower to higher temperatures is 
not prohibited by the first law. An engine operating contrary to the 
preceding statements would not violate the first law but would represent 
perpetual motion of the second kind. There is here no question of cre¬ 
ating new energy; the question is simply one of violating the laws of 
heat flow. Perpetual motion of the second kind would be just as useful 
to mankind as that of the first kind. If it were possible, an efficient 
engine could take heat from a heat reservoir at a prevailing temperature 
and convert part of it to work, cooling the reservoir in the process. The 
reservoir, being colder than its surroundings, would then absorb heat 
from its surroundings in accordance with the laws of heat flow. The 
net result of this process would be the gaining of useful work from a 
refrigeration process. Consider a ship in a constant-temperature sea, 
equipped with such an engine. It might use surrounding water, extract 
energy from it, thereby cooling it, discharge the colder water into the 
sea, and use the energy to do the w^ork of driving the ship’s propellers. 
The work done by the propellers could return the energy to the water, 
raise it to its original temperature, and leave the sea in its original state 
but the ship in a new position. Thus, the ship would move spontaneously 
without moving toward equilibrium as required by statement 1. Such 
perpetual motion is contrary to experience. 



150 INTRODUCTION TO CHEMICAL THERMODYNAMICS [Chap. 7 

Carnot Cycle.—The work to be derived from the flow of energy from 
higher to lower temperatures was first studied by Nicholas Leonard Sadi 
Carnot, a French engineer, in 1824. He considered an ideal engine oper¬ 
ating between two temperatures in a cycle with two reversible expansion 
states, one isothermal and one adiabatic, and two reversible compression 
stages, one isothermal and one adiabatic. Carnot discussed his cycle 
in terms of the then current but now abandoned caloric theory of heat, 
which considered heat as a substance. Later, when the first law became 
established, Clausius discussed the Carnot cycle in terms of heat as one 

G 

*f Ri 

Fia. 7.1.—Apparatus for the Carnot cycle. 

aspect of energy change and subject to the first law. Other reversible 
cycles have been proposed and studied, but the Carnot cycle is so funda¬ 
mental and instructive that it remains the one most used in connection 
with the second law. 

A Carnot engine may be idealized in terms of parts such as are shown 
in Fig. 7.1. The heat reservoir R2 at the higher temperature T2 is large 
enough so that finite amounts of heat may be withdrawn from or added 
to it without changing its temperature significantly. Similarly, the 
cold reservoir, Rh at the lower temperature Th is large enough so that 
finite amounts of heat may be added to it or withdrawn from it without 
changing its temperature significantly. The cylinder G of the engine 
has a piston head and cylinder sides perfectly insulated so that heat 
is transmitted to or from the cylinder only through its bottom, which is 
a good thermal conductor. The insulating block, like the cylinder sides, 
is a perfect insulator. The working substance in the engine is enclosed 
in the cylinder G. In Chap. 4 we consider the Carnot cycle for an ideal 
gas, the various states reached by the gas being represented by the points 
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A, B, C, and D, in Fig. 4.5. A real gas, a liquid-vapor system, or a 
chemical system capable of doing P dV work, a chemical system in an 
electric cell capable of doing E dn work, or any other system capable of 
doing reversible isothermal work at different temperatures could be used 
in the cycle. Consider a liquid-vapor system as the working substance, 
the points A, B, C, and D in Fig. 7.2 representing the pressure and volume 
of the system at the end of the various stages. If liquid and vapor are 

Fia. 7.2.—Carnot cycle for a one-component liquid-vapor system. 

in equilibrium at point A, the reversible expansion at the temperature 
T2 will be isobaric as well as isothermal, the constant pressure being that 
of the saturated vapor at this temperature. During stage A B, the volume 
of the system increases as liquid is evaporated, heat q2, equal to the 
heat of evaporation, being absorbed and work wBa, represented graphically 
by the area ABba, being done. In stage BC> the reversible adiabatic 
expansion, the system cools until the temperature Ti is reached. In 
this expansion qCB equals zero and the work done wCb is represented 
graphically by the area BCcb. The point C represents the end of the 
expansion processes. In stage CD the system is compressed isothermally 
and at a constant pressure equal to the vapor pressure at the tempera¬ 
ture Tiy vapor condensing and heat being given to the cold reservoir. 
Since heat is lost by the system, the heat absorbed qi has a negative value. 
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Similarly, the work done by the system is negative, the work wDc being 
represented graphically by the area CDdc which is negative when read 
in the direction indicated. In stage AD, the compression is adiabatic, 
vapor condensing and the temperature rising to the original value 7\. 

Here qAD is zero and the work done by the gas is negative, being repre¬ 
sented by the area DAad. The energy changes for the entire cycle are 
summarized in Table 7.2, wr being the net reversible work for the cycle. 

At the end of the cycle, the working substance used in the Carnot 
engine has returned to its initial state with its initial energy. Since AE 

for the cycle is zero, we have from the first law 

?2 + qi = wr (7.1) 

This equation is identical with equation (4.55) obtained in Chap. 4 for 

Table 7.2.—Energy Exchanges in the Carnot Cycle 

Stages AB and BC 
Expansion (positive values) 

Stages CD and I)A 
Compression (negative values) 

Cycle 

Heat absorbed 

by working 

substance.. . 

Work done by 

w o r k i n g 

substance.. . 

Work area.... 

(quA +0) 4 (qdc 4 0) 

(wba 4 wcb) 4 
(.ABba 4 BCcb) 4 

(wnc 4 Wad) 

0CDdc 4 DAad) 

~ </2 4 q i 

= Wr 

= ABCD 

the ideal gas in the Carnot cycle. However, equation (7.1) does not 
indicate what the relative values of q2 (or q{) and wr shall be. When the 
ideal gas was used in the Carnot engine, w~e found that the relative 
values of q2, qi, and wr are determined by the values 7\, Th and 7\ — T\ 

as in equation (4.56), the temperatures being measured on the ideal gas 
scale. Elowever, the first law would be satisfied if the reversible work 
from the transport of a definite amount of energy by the liquid-vapor 
system differed from that obtained with the ideal gas, even though both 
operated in cycles between the same temperature limits. 

Nevertheless, several deductions may be made from the first law. 
Equation (7.1) is a statement of equality for a reversible process. It is 
still valid if the cycle is reversed and the path A DC BA is followed. Thus, 
if the system is expanded over the path ADC, it absorbs heat qi from the 
cold reservoir jRi and does work equal to wCba so that the numerical 
values of both qi and wcda are positive. Over the compression path 
CBA, work is done on the system and heat is given to the hot reservoir 
R2, hence, both q2 and wAbc have negative values. This reversed cycle 
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is a refrigeration cycle, net work being done on the system, heat being 
absorbed at the lower temperature and evolved at the higher temperature. 

Furthermore, since AE is zero even though a cycle is not carried out 
reversibly, we have from the first law 

q-z + Qi = w (7.2) 

When the cycle is not carried out reversibly, the actual work w, obtained 
when a given amount of energy g2 is absorbed at the higher temperature, 
is less than that for the reversible cycle. In the most completely irre¬ 
versible cycle, no work is done, so that, from equation (7.2) 

qi = -gi (7.3) 

Thus, the actual work may vary from zero to the value wr, and the energy 
discharged to the cold reservoir will vary accordingly. 

Maximum Work from the Carnot Cycle.—If the verbal statements of 
the second law of thermodynamics given in a previous section are valid, 
all Carnot engines operating reversibly between the same] temperatures 
must have the same efficiency. Suppose that a Carnot engine with a 
liquid-vapor system or any other real s}rstem had an efficiency different 
from that of the engine using an ideal gas. These engines could then be 
coupled so that the less efficient one operating as a heat engine drives the 
more efficient one as a refrigeration engine. The net result would be the 
transfer of energy from the lower temperature to the higher temperature 
in contradiction to statement 3. Or, the coupled engines could do work 
and at the same time act as a refrigerator contrary to statements 4 and 
5. If we are not to have perpetual motion of the second kind, all the 
reversible engines must have the same efficiency. 

Coupled reversible engines can also be used to show that wr must be 
proportional to g2 (or gi). If each of two engines absorbs the heat g2 
so that the total heat absorbed is 2g2, each must do the work wr so that 
the total work is 2wr. There is no limit to the number of reversible 
engines that may be coupled in this way, hence wr must be proportional 
to g2. 

A similar argument will lead to the conclusion that a Carnot engine 
operating irreversibly between two temperatures cannot be more efficient 
than a reversible engine. An actual engine operating in a cycle between 
the two temperatures can only approach the reversible cycle as a limit, 
and such an engine produces less work than the reversible engine, the 
value ranging from zero to the maximum value wr. Consequently, a 
reversible engine coupled with an actual engine cannot transport as 
much energy back to the hot reservoir as is lost by this reservoir, and 
statements 1 and 2 apply. In an actual process, the tendency is toward 
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thermal equilibrium, energy being transported from the higher to the 
lower temperature. 

Thermodynamic Temperature Scale.— In the previous discussion wo 
considered the relations between q2y qt, and wr for Carnot engines oper¬ 
ating between the fixed temperatures 7\ and 7\, but we have paid no 
attention to the actual temperature values beyond indicating that T% 

is greater than T\. Suppose that the temperatures 7\ and T3 approach 
a common value so that the expansion is carried out at the same tempera¬ 
ture as the compression. In Fig. 4.5 or 7.2, this would mean that the 
stages AB and DC become identical and that the stages BC and AD 

vanish. Under these conditions, g2 becomes identical with — gi, and 
wT vanishes as required by statement 6. Thus, it can be shown that wr 

varies in some way with the difference in temperature, T2 — TV Because 
the heat absorbed (g2) during expansion at the higher temperature T2 

is greater than the heat absorbed ( — q\) during expansion,1 at the lower 
temperature 7\ and because wr is related to the difference between 7\ 

and it seems reasonable to establish a temperature scale that is directly 
proportional to the heats absorbed during expansion at the several tem¬ 

peratures. Let us, therefore, following 
Kelvin, who proposed such a tempera- 

\q2 ture scale in 1851, define relative values of 
7\ and 7\ by the ratio 

Tj T2 
Fig. 7.3.—Relations between heat 

absorbed and work done in the 
Carnot cycle. 

7\ 

7\ 
(7.4) 

Observe that equation (7.4) defines merely 
the relative values of the temperatures and not their absolute values. As 
a consequence of equations (7.1) and (7.4), we have the ratios 

q* _ —Q\ _ wr 
7\ Ti T2 - 7\ 

(7.5) 

(The student should derive this equation.) Temperature defined in this 
way is called thermodynamic temperature. It is independent of the work¬ 
ing substance used in the reversible Carnot engine and dependent only 
on the relative values of g2, gi, and ter. The relations among these 
various quantities are illustrated by the triangular diagram in Fig. 7.3 
which expresses in geometric form all the relations in equation (7.5). 
For example, if —qi is half as great as g2, 7\ is half as great as T2 on the 
thermodynamic scale, and wr = — gi = iq2> As was stated previously, 
when Ti approaches 7\y —qi approaches g2 in value and wr vanishes. 
The diagram, however, emphasizes an additional relation. It places 

1 Remember that qx was defined as the heat absorbed during compression at the 
lower temperature 7\. 
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zero on the thermodynamic temperature scale as the temperature at 
which —qi becomes zero and wr becomes equal to q2. In terms of the 
Carnot cycle, this means that when the cold reservoir is at zero tempera¬ 
ture all the heat absorbed at the temperature T2 can be completely con¬ 
verted to work. At any other value for Th wr must be less than q2l 

the difference being equal to —qi. 

Equation (7.5) in which T represents thermodynamic temperature is 
identical with equation (4.56) in which T represents temperature on the 
ideal gas scale. This fact is not surprising when one considers that an 
ideal gas in the Carnot engine would give the same relative temperatures 
as any other substance. In fact, Kelvin chose a form for his thermo¬ 
dynamic temperature scale that would reproduce the ideal gas scale. 
However, since equations (7.5) and (4.56) define only relative and not 
absolute values of T, more than one thermodynamic temperature scale 
can be used. 

In the following chapter we shall consider how thermodynamic tem¬ 
peratures may be derived from data on the real gases by methods involv¬ 
ing the second law. The values of certain reference temperatures on a 
thermodynamic scale may also be determined from the limiting values of 
PV for gases at these temperatures by the method discussed in Chap. 4. 
By international agreement, the size of the degrees on all temperature 
scales is defined in terms of the difference in temperatures of freezing 
water and boiling water at 1 standard atmosphere. If T1 represents 
the former and T2 the latter temperature, we have by definition for the 
centigrade thermodynamic scale, T2 — T1 — 100. The value of PV for 
a gas acting as an ideal gas is found to be 1.36609 times greater at the 
steam point than at the ice point so that, from the ideal gas equation, 

pyS; - u“°9 = fi <7'6> 
The value for Ti, the ice-point temperature, obtained from this ratio 

and the defined size of degree, is found to be 273.16°, as in equation (4.3). 
In honor of Kelvin's fundamental work on the scale, the thermodynamic 
centigrade scale is called the Kelvin scale, symbol °k. It is related to 
the usual centigrade scale by the relations 0°k = — 273.16°c, 

273.16°k = 0°c, 

and 373.16°k = 100°c. 
The thermodynamic temperature scale in terms of the Fahrenheit 

degree is called the Rankine scale, symbol °r. There being 180 Fahren¬ 
heit degrees between freezing water and boiling water, we have, by defini¬ 
tion, for these temperatures on the Rankine scale, T2 — T1 = 180°. 
From equation (7.6), one can calculate absolute values for Tx and T2 
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in the Rankine scale and relate them to the corresponding temperatures 
in °f. Thus, 0°n = — 459.69°f, the freezing point of water being at 
32°f = 491.69°r. 

Entropy.—Let us consider again the first law equation in differential 
form 

dJE = Dq - Dw 

in which Dg and Dw, unlike dE, are not properties of a system but depend 
on the path along which the change in E occurs. The different types of 
work included in the work term, Dip, may be those listed in Table 7.1 
or additional terms of a similar type. In irreversible processes, we found 
that the actual work is measured in terms of changes in the surroundings 
and not in terms of the system itself. Thus, the work of expansion 
depends on the value P', a pressure of the surroundings, and the electro¬ 
chemical work on the value of E\ the counter emf. Only when a process 
is reversible, are the several work terms measured in terms of the prop¬ 
erties of the system, varying in a definite way for each path over which 
the change takes place. Then we have 

dE = Dqr - Dwr (7.7) 
in which 

Dwr = P dV + E dn + * * * (7.8) 

where P, E, etc., are intensive properties and dV, dn, etc., are definite 
changes in extensive properties of the system. But, since Dwr is meas¬ 
urable in terms of the properties of the system and dE is a property of 
the system, Y>qr must also be measurable in terms of some property or 
properties of the system which vary in a definite way for each path. 
By analogy with the work terms in Table 7.1, we may, therefore, hope to 
express Dgr in the form Y dX where Y is some intensive property of the 
system and X some extensive property. Since temperature plays a role 
in heat flow similar to the role of pressure in work of expansion, we may 
substitute the temperature T for Y and consider whether the change in 
some quantity, an extensive property of the system, could not bear the 
same relation to heat flow as dF plays in the work of expansion. Let such 
an X-property be designated by the symbol S, the change in the property 
being cLS. This quantity will then be defined in part by the equation 

Dgr s T dS 

From this definition and from equation (7.7), we have 

A c D qT d E + Dwr 
do = -ST = -™- 

(7.9) 

(7.10) 

The function S, defined above, was first introduced by Clausius and 
named entropy. 
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Entropy as a Property.—If the entropy S is an extensive property, a 
characteristic function of a system, just as we found the functions F, 
E, //, Cp, and Cv to be, the value of the integral of d$ between two states 
will equal the difference between the values of S in the two states. Thus, 

f* dS = - Si = AS (7.11) 

Consequently for the reversible, isothermal process, T being constant, 
we have from equation (7.9) 

f Dqr = T f dS 

qr — T AS (7.12) 

For the reversible adiabatic process between two states, qr and D#r being 
zero and T being finite, we have from equation (7.9) 

Dqr = 0 = T dS 

d S = 0 
and 

S, = Si (7.13) 

We have seen how qr and wn and consequently Dqr and Dwry have 
values in a given change that depend on the path over which the change 
takes place. Thus, Dgv and Dwr in equation (7.10) may have many 
values. But, if entropy is a characteristic function, its value must be 
independent of the path. Consider the change from state A to state C 

in the Carnot diagram, Fig. 4.3 or 7.2, by the path ABC or ADCy the 
values of qr and wr being different for the two paths. For the isothermal 
stage AB from equation (7.12), 

q __ q — 
B A fy\ 

i 2 

For the adiabatic stage BC from equation (7.13), 

Sc — Sp — 0 

Thus, for the change from A to C along path ABC, 

Sc - Sa = Sb- Sa = p (7.14) 
i 2 

Similarly, for the stage AD along the second path, 

SD - Sa = 0 

for the isothermal stage DC, 
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and for the change from A to C along path ADC, 

Sc - SA = Sc - Sn = - (7.15) 

But, from equation (7.5), the reversible heats and the temperatures are 
related in such a way that q^/T2 = — q\/THence, the difference between 
Sc and 8a as determined along the reversible path ABC is identical with 
that determined along the path ADC. It can be shown that, along any 
other reversible path between states A and C, the entropy change as 
defined by equation (7.9) has the same value. Hence, the change in 
entropy is indeed dependent only on the states and not on the path. 
Furthermore, entropy is an extensive property, depending on the amount 
of substance considered; 2 moles of a substance under given conditions 
have exactly twice the entropy of 1 mole under the same condition, just 
as they have twice the volume, energy, or heat capacity. However, we 
are warned by equation (7.10) that, although the energies of the two 
systems added to each other are additive, the entropy of the combined 
system is not necessarily the sum of the entropies of the two separate 
systems. Even though the energies are additive, the entropies will be 
additive only when there is no possibility of reversible work being done 
as a result of a combination of the two systems for, as equation (7.10) 
shows, the entropy change depends on the possibility of reversible work 
during the change as well as on the intrinsic energy of the system. 

Earlier, we stated that the differential equation (7.9) defined the 
entropy only in part. It defines changes in the entropy and not the 
absolute value of entropy for any state of the system. On integration 
of equation (7.9), we have 

S = +I (7.16) 

as the indefinite integral, the value of the integration constant I remain¬ 
ing unknown. As will appear, an additional principle, called the third 
law of thermodynamics, is required to help us determine the absolute 
value of I. The value of the integral being determinable, we can, with 
this new principle, obtain absolute values for the entropy S. 

Total Entropy Change in Reversible Processes.—Later, we shall 
focus our attention on the system alone. For the present, however, it 
will be instructive to consider entropy change in both system and sur¬ 
roundings. It will simplify our consideration of reversible and irre¬ 
versible processes if we assume surroundings that, within themselves, 
absorb or evolve any heat reversibly. Let primes designate the quanti¬ 
ties for the surroundings, dS' being the entropy change and T' the tem¬ 
perature of the surroundings, and Dqf being the heat absorbed by the 
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surroundings. Where heat is transferred from system to surioundings, 
Dq and Dq' must be equal in numerical value but opposite in sign so that 

Dg = — D qf 

The entropy change of the surroundings for the heat absorbed Dg' at 
the temperature T' will, therefore, be 

(7.17) 

The entropy changes for both system and surroundings in certain typical 
reversible processes will be considered in turn. 

1. Adiabatic Reversible Processes.—In an adiabatic process Dq = 0, 
but only if the process is reversible so that Dqr also equals zero will the 
entropy change for the system be zero. Such a process with no entropy 
change is called isentropic. Examples are the stages BC and DA, Figs. 
4.5 and 7.2, in the reversible Carnot cycle. These stages are isentropic 
stages, stages of constant entropy. For them, since dS = 0, we have 
from equation (7.10) 

' c n dE+Dwr dE + PdV 
dS = 0 = -j,-= -y- 

And, since T is not zero, 

Hence, 
dE + P dV = 0 

PdV = -dE 

the work being done at the expense of the internal energy. In conse¬ 
quence, the temperature must decrease during an expansion. For an 
ideal gas, the relations for adiabatic expansion were given in equation 
(4.45). Since the system is insulated from the surroundings during the 
process and no heat is exchanged, the entropy of the surroundings also 
remains unchanged so that d*S equals zero, d£' equals zero, and, hence, 

d 8 + dS' = 0 (7.18) 

2. Isothermal Reversible Process.—If system and surroundings are at 
exactly the same temperature, no heat will flow from one to the other 
and they mil be in equilibrium in this respect. Heat will be transferred 
reversibly only as a limiting process under the influence of a vanishingly, 
small temperature difference. Examples are the stages AB and CD} 
in the reversible Carnot cycle. Since the temperature remains con¬ 
stant, we^naayv evaluate thfc entropy change from either Dqr/T or qr/T 
a^ad,1 since( T' == 7”, we have, for the system^, d$ = Dqr/T, or AS = qr/T, 
and, for the surroundings, dS' = — D qr/T or A S' = —qr/T. For both 
system and surroundings, we have 
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ds + dS' = -q- = 

AS + AS' = 0 

3. Reversible Heat Transfer between Two Temperatures.—Earlier we 

found that energy is transferred reversibly as heat from one temperature 

to another only when reversible work is also done. Since the reversible 

Carnot engine is one device for making the transfer reversibly, it may be 

used to illustrate the entropy changes involved in the reversible transfer 

of heat between two temperatures. At the higher temperature T*, the 

engine (system) absorbs heat q2 isothermally and reversibly during the 

expansion so that its entropy change, AS2, during this stage is 

AS, = |f 

The entropy change for the reservoir (surroundings) during the same 

stage is 

At the lower temperature, 7\, the corresponding entropy changes are 

AS, = AS; = 

From these relations, it appears that at neither temperature is there a 

total entropy change for 

A*S2 + as; = = 0 
I 2 

ASi + AS[ = -1 j, ~ l — 0 

But there were also no entropy changes during the adiabatic stages, 

so that, for each of the four stages in the reversible Carnot cycle the sum 

of the entropy changes of system and surroundings is zero. 

If entropy is a property of the system, it should be unchanged at the 

end of the cycle. The sum of the entropy changes of the system itself is 

+ 0 + |i +0 
i 1 

A Sba A Scb + ASdc + A Sad = 

But, from equation (7.4), 

• 31 + Mi = 0 
Ti ^ T, 

So that for the cycle 

AS = 0 (7.20) 
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4. Reversible Chemical Reactions.—In Chap. 2, Table 2.1, we consid¬ 
ered three different processes for the reaction of zinc and copper sulfate 
to form copper and zinc sulfate. Process b, being carried out in a reversi¬ 
ble cell, may be used to illustrate the entropy change in a reversible 
chemical reaction. Since the necessary data are given in Table 2.1, we 
shall use them in calculating numerical values for the entropy changes. 
The reaction is isothermal, being carried out at 18°c which is 291°k. 

It is also carried out at constant pressure (atmospheric pressure), but 
the change in volume is negligible so that P dV work may be neglected. 
Consequently, for the reaction as written in equation (2.28), 

AE = AH = —51,400 cal 
wr = nFE = 51,070 cal 
qr = AE + wr = —330 cal 

and 

AS = | = ~~ = -1.13 cal/deg 

For the surroundings, we have q' = +330 cal so that the entropy change 
for the surroundings is 

AS' = T' = W\ = 113 Cal/deg 

As in the other reversible processes, the total entropy change is zero, for 

AS + AS' = -1.13 + 1.13 = 0 (7.21) 

Similarly, if the cell reaction were reversed, the entropy change for 
the reverse reaction would be 1.13, that of the surroundings, —1.13. 
For the complete cycle, there would again be no entropy change. 

In all the different types of reversible processes considered in this 
section, we found that the entropy of a system may change for any 
single process but that for the complete cycle, the system being again 
brought into its original state 

dS = 0 (7.22) 

Or for any single process, the entropy change of both system and sur¬ 
roundings is 

d S + dS' = 0 (7.23) 

These statements, therefore, appear suitable for a mathematical expres¬ 
sion of the second law of thermodynamics. 

Total Entropy Change in Irreversible Processes.—In irreversible, 
spontaneous processes, we found that less than the reversible work is done 
and that less than the reversible heat is absorbed. The irreversible heat 
Dgt and the irreversible work Dwi are subject to the first law equation 
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dE = Dgt ~ Dv)i. This equation combined with the corresponding 
equation for a reversible change in state of a system under comparable 

conditions yields 
Dqr - Dg* = Dwr - Dun (7.24) 

But, since Dwi < Dwr, Dgt- must be less than Dgr. 
In the irreversible process, the heat absorbed by the surroundings, 

Dq' will be equal to — Dgt and not to — Dgr. These facts have an impor¬ 
tant bearing on the entropy changes accompanying irreversible processes. 
The entropy change for the system will, as before, be measured by the 
quantity Dqr/T, but the entropy change of the surroundings will be 
measured in terms of a different quantity, namely, Dq'/T' which equals 
— Dqi/T'. Hence, the total entropy change for a process need no longer 
be equal to zero. Examination of some typical irreversible processes for 
specific conditions will enable us to see in what respects d£ and dS' 

differ. 
1. Irreversible Adiabatic Processes.—Reversible adiabatic processes 

are isentropic, but irreversible adiabatic processes are not. For the 
latter, there is no heat exchange between system and surroundings so 
that Dq = — Dg' = 0. As a consequence, we find from equation (7.17) 
that the entropy change of the surroundings, d$', equals 0. But since 
Dwr > DWi and I)g; = 0, it appears from equation (7.24) that Dgr must 
equal some positive number. Hence, Dqr/T, which measures the 
entropy change of the system, also equals some positive number, and 

dS > 0 (7.25) 

As a result, the total entropy change of system and surroundings must be 
positive since 

d8 + dS' > 0 (7.26) 

Inequalities such as those expressed in equations (7.25) and (7.26) 
are found for all processes not completely reversible. The maximum 
irreversibility occurs when the work done is at a minimum, that is, when 

— 0. An example of such a process is the expansion of an ideal gas 
into a vacuum. For such a gas, dE = 0, Dw{ = 0, and hence from the 
first law, Dg* = 0. This expansion will also be isothermal; hence, the 
entropy of expansion for an ideal gas can be calculated from equation 
(4.40) for the isothermal and reversible expansion of the gas. If the 
gas is not ideal, there will be a Joule effect; dE will still be zero, for 
dE — D#t — Dwi = 0 — 0 = 0, but the expansion will not be isothermal. 
Consequently, the gas in its final state will differ in temperature from the 
first state, and a modified equation must be used to calculate the reversi¬ 
ble heat absorbed and the entropy change for the process. In any case, 
the change in entropy of the gas will be greater than zero. 
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The entropy change could, of course, be determined by carrying out 
expansion reversibly or by recompressing the gas reversibly to its former 
state. If this process had been carried out reversibly, the gas in expand¬ 
ing would have pushed back the surroundings, thereby producing an 
entropy change in the surroundings. As a result, dS' would have bad a 
value equal but opposite in sign to dS. When the gas expands into the 
vacuum, however, there is no further change in the entropy of the sur¬ 
roundings, for the change in entropy of the surroundings occurred when 
the vacuum was created. 

2. Isothermal Heat Transfer.—The laws of energy flow as heat require 
that there be a temperature gradient. The isothermal transfer of heat is 
a limiting, reversible process. It was treated in the previous section. 
It is tabulated here merely to remind us that, if heat is to flow irreversibly 
between system and surroundings, T and Tf cannot be equal and the 
process cannot be isothermal. 

3. Irreversible Energy Transfer between Two Temperatures.—The 
reversible Carnot cycle enables us to transfer energy as heat from one 
temperature to another without entropy change, if we transfer only part 
of the energy absorbed at the higher temperature to the reservoir at the 
lower temperature and utilize the rest of the energy to do useful work. 
The maximum irreversibility will occur when no work is done in the 
process. By such a process, let a system at the temperature T lose heat 
to its surroundings, the heat being lost reversibly within the system. 
For the system, the change in entropy is dS = Dq/T, the change being 
negative because heat is evolved so that the numerical value of Dg is 
negative. For the surroundings at its temperature T', the entropy change 
is, from equation (7.17), dS' = —Dq/T'. The total entropy change 
becomes 

dS + dS' = 5? _ > o (7.27) 

That the total entropy change must have a positive value will be clear 
from the following considerations. Since T > T', the fraction Dq/T must 
be smaller numerically than Dq/T'. But, since Dq has a negative value, 
because of the direction of heat flow, the sum of the fractions is positive. 
Only when T = T' (isothermal transfer) or when 

D q -D q' 

t r 

(as in the Carnot cycle) will there be no increase in total entropy when 
heat is transferred. 

If T' > T so that heat flows from the surroundings to the system, the 
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total entropy change will again be positive. In this process, the loss in 
entropy of the surroundings will be numerically smaller than the gain 
in entropy of the system. It appears that, in heat flow, the body at the 
higher temperature does not lose so much entropy as is gained by the 
body at the lower temperature. 

4. Irreversible Chemical Reactions.—As an example of an irreversible 
reaction, 'we shall consider the reaction between zinc and copper sulfate 
previously discussed, but now carried out according to process a in which 
no work is done. If the reactants are mixed directly and the reaction 
allowed to go on at constant temperature and constant pressure, the 
P dV work still being negligible, we have, from the data in Table 2.1, 

AE = AH — cji = —51,400 cal 
Wi — 0 
qr = —330 cal 

As before, 

AS = ^ = —1.13 cal/deg 

However, for the surroundings in this irreversible process, q' = —qx, so 
the entropy change of the surroundings is 

A S' = ^ = = 176.6 cal/deg 

The total entropy change for the reaction carried out irreversibly in this 
way is 

AS + AS' 
-330 + 51,400 _ 51,070 

291 291 ‘ 
175.5 cal/deg (7.28) 

In this as in other irreversible processes, there is a change in total entropy, 
positive in value. The student should compare the above equations for 
the irreversible process with the corresponding equations, leading to equa¬ 
tion (7.21), for the reversible process. 

The total entropy change for all the different types of irreversible 
processes considered may be stated in the form of the inequality 

dS > 0 (7.29) 

Or, in terms of the entropy change for both system and surroundings, 
we have 

dS + dSf > 0 (7.30) 

These inequalities, showing a general increase in entropy in irreversible 
processes, may be compared with the equality in equations (7.22) and 
(7.23) showing no entropy change for processes carried out reversibly. 
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Entropy and the Second Law.—In all the reversible processes con¬ 
sidered, the sum of the entropy changes of the system and the surround¬ 
ings was found to be zero; the total entropy remained unchanged. On 
the contrary, in all the irreversible processes, the total entropy increased. 

However, before we make a general statement about entropy, we should 
consider several implicit assumptions made in discussion. One implicit 
assumption was that, for the combined system and surroundings, the 
total energy remained constant. In other words, in the given processes 
the surroundings exchanged energy only with the system. If the sur¬ 
roundings exchanged energy with a second system during a process, its 
entropy change would not have been determined by the term Dq'/T'. 

A second implicit assumption was that the total volume of system and 
surroundings remained constant, that the surroundings increased or 
decreased in volume only to the extent that the system decreased or 
increased in volume. Any further change in volume of the surroundings 
during a process would have resulted in an entropy change different from 
Dq'/T'. Where the subscripts E and V mean, as before, constant 
energy and constant volume, the general statement for entropy change in 
a process may be expressed in the form 

2 dSE,v ^ 0 (7.31) 

where the equality sign applies to the reversible process and the inequal¬ 
ity sign to the irreversible process. Equation (7.31) is a mathematical 

statement of the second law of thermodynamics. It is consistent with 
and more precise than the verbal statements of the second law given 

earlier. 
In the discussion of the reversible and irreversible processes leading to 

equation (7.31), the assumption was made explicitly that the surround¬ 
ings absorbed heat within itself reversibly. Its entropy change could 
then be represented by dS' = Dq'/T'. Suppose that this is not true 
and that there are additional irreversible processes within the surround¬ 
ings themselves. By the previous methods, one can show that such 
processes result in entropy changes still more positive in value than those 
derived for reversible absorption. Each additional irreversibility serves 
to make the total entropy change more positive. Equation (7.31) is, 
therefore, not limited by this assumption. 

In a previous section, several verbal statements of the second law 
were given. Statement 3, that of Clausius, when expressed in terms of 
the entropy function, forbids the total entropy change from being nega¬ 
tive in value. The consequence of the flow of heat from a colder to a 
hotter body would, as equation (7.27) shows, result in a decrease in 
entropy. The other statements would also, if violated, result in a 
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decrease in entropy. We have found that the total entropy change 
at constant energy and constant volume cannot be negative for, in real 
processes, that is, processes more or less irreversible, the total entropy 
change is always positive under these conditions. For reversible proc¬ 
esses, which are limiting processes, entropy change is reduced to zero, 
but never less than zero. In the words of Clausius, “Die Energie der 
Welt ist konstant; die Entropie der Welt strebt einem Maximum zu.” 

Entropy and Equilibrium.—Since reversible processes are carried out 
through a series of equilibrium states, equation (7.31) may be used as a 
criterion of equilibrium between system and surroundings. It may also 
serve as a criterion of equilibrium for the system itself if the proper 
conditions are observed. In the reversible processes previously con¬ 
sidered, the change in entropy of the system was found to be zero, 
positive, or negative, depending on the process, but the system did not 
remain at constant energy and volume in all these processes. When 
the conditions of constant energy and volume apply, the entropy of the 
system does not change during a reversible process. 

Consider a system that can do the reversible work 

Dwr = P dV + Die' (7.32) 

where Dw' stands for all other reversible work than PdF work. The 
first law equation may be combined with equations (7.9) and (7.32) to 
give an important equation 

dE = Dqr — Dier = T dS — P dV — Dwr (7.33) 

which represents a combination of the first and second laws. From 
equation (7.33) is obtained a general statement for the entropy change 
of a system 

dE + PdV+Dw' 
dS =-y- (7.34) 

When the conditions of constant energy and volume are imposed on 
equation (7.34), it becomes 

d&.r = —jr (7.35) 

Thus, when a system at constant energy and volume is not at equilibrium 
the work T)wf that the system may do in moving toward equilibrium 
along a reversible path is a measure of the entropy change. Both Dm/ 
and T are positive in value and d&u.y is, therefore, also positive. On the 
other hand, at equilibrium the system cannot do work, Dw9 is zero, 
and dSe,v is zero. These statements involve the second law and show 
how it may be used to describe the tendency toward equilibrium. 
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In the reversible adiabatic expansion, there was no entropy change in 
the system nor was there any Dw' work done. The system was, there¬ 
fore, at equilibrium throughout the change. The increase in volume 
during expansion was accompanied by an equivalent decrease in energy, 
but the system by itself has no tendency to undergo this change. There 
is no spontaneity to this process. Thus, for a simple system that can¬ 
not do net work Die', the entropy change, from equation (7.34) is 

d S = 
dE + PdV 

T 
(7.30) 

emphasizing again the fact that the entropy is a property of a system. 
Consider, however, a system of two different gases in two separate 

containers but at the same pressure and temperature. If a stopcock 
connecting the two containers is opened, the two gases will diffuse into 
each other until the partial pressure of each gas has been equalized 
throughout the system. Obviously, the initial system was not at equilib¬ 
rium for the diffusion proceeds spontaneously even though the total 
volume and the total energy remain constant. If the diffusion process is 
suitably harnessed, each of the gases can do work of diffusion as its 
partial pressure changes from the initial value to the equilibrium value 
and its volume changes from that of the initial container to that of the 
whole system. Since the work for gas A is pA dFA and that of gas B is 
pB dFB, the work of diffusion is 

Dw' = pA dVA + Pb dFB 

But, when dJ57 = 0 and the total volume remains constant so that 
dV = 0, this equation, combined with equation (7.34), becomes 

d Se,v 
Pa dVA + Pb dFB __ T)w' 

T T 

This latter equation, equivalent to equation (7.35), tells us more 
than that there is an increase in entropy. From it, we can calculate the 
numerical value for the entropy change. 

Equilibrium at Constant Temperature.—We have found that, under 
the condition of constant energy and constant volume, the entropy 
change of a system is a measure of the reversible work obtainable from 
the process. If no such work is possible, the entropy change is zero and 
the system is at equilibrium. Either the entropy change or the reversible 
work may, therefore, be taken as a criterion of equilibrium. In practice, 
however, most processes of interest to the chemist are not carried out at 
constant energy and volume. The typical chemical reaction in open 
vessels takes place at constant pressure (atmospheric pressure) and, 



168 INTRODUCTION TO CHEMICAL THERMODYNAMICS [Cha*. 7 

when suitably thermostated, at constant temperature. For these condi¬ 
tions, the entropy of the system is not the measure of the reversible work 
and of equilibrium. For example, the reaction between zinc and copper 
sulfate was carried out at constant pressure and constant temperature 
but with a volume change so small that the reaction may be considered 
a constant-volume reaction. However, in this reaction the energy of the 
system does not remain constant, the change being a decrease of 51,400 
calories. A consequence is that the reaction may proceed spontaneously 
even though the entropy change of the system is negative. 

Consider again a system and that part of its surroundings exchanging 
energy and volume with it. Where, as before, the surroundings absorb 
the heat D#' at the temperature Tthe increase in entropy of the sur¬ 
roundings is d$' = — Dq/Tf as in equation (7.17). At the same time, 
Dg is related by the first law to the increase in energy of and the work 
done by the system as in the equation 

Dq — d E + Dw 

Then, for the entropy change of the surroundings in terms of the changes 
in the system, we have 

— Dq _ —dE — Die 
” t7 (7.37) 

But, from equation (7.31) we have, for the total entropy change, 

2 dSE,v = dS + dS' ^ 0 

This equation, when combined with equation (7.37), becomes 

^ dSfj.r = ^ 0 (7.38) 

Equation (7.38) is valid even though the system and surroundings are at 
different temperatures. However, in a constant-temperature process in 
which the surroundings are at the temperature of the system, T' = T 

and equation (7.38) becomes, when rearranged 

T dS - dE - Dw ^ 0 (7.39) 
or 

T dS — dE ^ Dw (7.40) 

The equality sign applies, as before, for the reversible process, Dw then 
being the reversible work. But the changes in energy and entropy do 
not depend on the path, being determined by the isothermal change in 
state of the system. Hence, the work in the irreversible path as indi¬ 
cated by the inequality sign is less than the reversible work, which then 
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must be the maximum work for the isothermal change. Equation (7.40) 
is important and represents the combined first and second laws for an 
isothermal change. When combined with equation (7.32), we obtain for 

the reversible path 

T dS ~ dE — P dV = Dk/ (7.41) 

This equation is fundamental for equilibrium within a system. When 
the system is at equilibrium, it cannot do any net reversible work so that 
Dw' equals zero. At equilibrium, therefore, 

TdS - dE - PdF = 0 (7.42) 

Entropy and Probability.—The second law of thermodynamics and 
the entropy function take on more meaning when they are viewed in the 
light of the atomic (molecular) theory and the kinetic theory. The 
molecules are small, and the number present in any measurable sample 
is enormous. One may imagine them to follow the laws of mechanics 
(and where necessary the quantum mechanics) and still be unable to 
give a detailed description of the position, energy, and velocity of the 
individual molecules. However, when the methods of statistics are 
applied to large numbers of molecules assumed to follow the laws of 
mechanics, the results have a surprising certainty. The statistical 
mechanics adopts the hypothesis of molecular chaos in which each mole¬ 
cule has no preference for any statistical state available to it. But, 
though a single molecule has an equal probability of being in each state 
available to it, the system as a whole will have a probability experi¬ 
mentally indistinguishable from the maximum probability W9 which 
then becomes descriptive of the system. 

A system of molecules that has an initial distribution of molecules 
differing from the most probable distribution will change spontaneously 
until the molecules attain the most probable distribution. Thus, the 
probability of the statistical mechanics appears to be related to the 
entropy of thermodynamics, both increasing as a system tends toward 
equilibrium at constant energy and volume. 

As we have seen, entropy is an extensive property depending on the 
amount of substance in a system. For 2 moles of a substance, the 
entropy is double that for 1 mole at the same conditions. If two systems 
of a single substance with the entropies S' and S", respectively, are 
combined into one system, the entropy S of this system is the sum of the 
entropies of the component systems. Thus, 

S = S' + S" (7.43) 

However, from statistical mechanics we find that the maximum proba- 
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bility, W, for a macroscopic system of molecules is, for practical purposes, 
equal to the number of ways of realizing the system of molecules. When 
two systems with the probabilities W' and W", respectively, are com¬ 
bined into one system, the probability W of this system is the product 
of the probabilities of the component systems. Thus, 

W = W’ X W" (7.44) 

Boltzmann, therefore, suggested that the entropies are proportional to 
the logarithms of the probabilities, for from equation (7.44) 

In W = In (W X W") = In W9 + In W" (7.45) 

His well-known equation, relating entropy and probability, is 

S = k In W (7.40) 

where k is the proportionality constant. Equation (7.46) fulfills the 
requirements of additive systems since, for the two separate systems, 
we have 

S' = k In W' 

S" = k In W" 

and, for the combined system, 

S' + S" = k(\n W' + In W") = k In(W' X W") 

which, from the relations in equations (7.43) and (7.45), is equal to 
equation (7.46). 

When the value for k is properly chosen, equation (7.46) yields values 
for entropies equal to those obtained from thermal measurements and 
its validity has become well established. Since W is a pure number, k 

has the same dimensions as S. Its values are expressed in energy units 
per degree. If the temperature scale used in the statistical mechanics 
is the thermodynamic temperature scale, the value for k is found to be 
that of the gas constant per molecule. It is related to R, the gas constant 
per mole by the equation 

R = Nk (7.47) 

where N is the Avogadro number. The constant k is called the Boltz¬ 

mann constant. 

Equation (7.46) is instructive in another respect. It contains no 
additive constant. Consequently, when W = 1, In W = 0, and S 

becomes zero. But W equals 1 only when there is but one way of realiz¬ 
ing the system and the positions and energies of all the molecules are 
known. Under these conditions, the system has lost its randomness. 
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Equation (7.46), therefore, anticipates the third law of thermodynamics, 
which deals with the conditions under which the entropy becomes zero. 

Distribution of Molecules in Space.—Some of the aspects of prob¬ 
ability may be illustrated by the simple example of the distribution of a 
gas between two equal volumes Vx and V[. As was indicated earlier, 
any single molecule a has an equal probability of being in either Vx or 
V[. Hence, its probability of being in Vi may be expressed as ^ and the 

l molecule 3 molecules 4 molecules 
cl a,b.c ct'fyc.d 

Fig. 7.4.—Possible distribution of molecules between equal volumes, Vi and TV. 

molecule may be expected to spend equal time in Vi and V[. If a second 
molecule b is also present, the probability of finding both molecules in 
Vi becomes (i)2 or •£, since there are now four possible distributions, 
namely, (1) both a and b in Vh (2) a in Vi and b in V'u (3) b in Vi and 
a in V[, and (4) both a and b in V[. There is only one chance in four 
of finding both a and b in Vx. These possibilities are outlined in Fig. 
7.4. If there are 3 molecules, a, 6, and c, there are 23 or 8 different ways 
of realizing the system, and the probability of finding all 3 molecules in 
Vi is (i)3 or £. With 4 molecules, there are 24 or 16 different ways of 
realizing the system, and the probability of finding all 4 molecules in Vx 
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is reduced to tV It becomes clear that, if there are two ways of realizing 
a system for a single molecule, the number of ways for N molecules is 
2N, and the probability of finding all N molecules in the one statistical 
state is (*)* These results are summarized in column (2) of Table 7.3. 
From this table, we see that for 10 molecules there is only 1 chance in 
1,024 of finding all 10 molecules in Vi. With 20 molecules, there is only 
1 chance in 1 million; for 40 molecules, 1 chance in 1 million million or 
1012. Even with as few as 20 or 40 molecules, the chance of finding all 
the molecules in Vi is highly improbable. With the large number of 
molecules involved in chemical problems, the improbability becomes so 
great as to be considered an impossibility. 

Table 7.3.—Statistical Distribution of Gaseous Molecules between Two 

Equal Volumes 

Number of 
molecules 
in Fs, N 

(1) 

Number of 

combinations 
of molecules 
in Fi - 1 Vt, 

2* 

(2) 

Number of combinations in which the number of 
molecules in Vi is 

Fraction of the com¬ 
binations in which 

the number of mole¬ 

cules in Fi is 

Exactly 0.5N 

(3) 

0A5N-O.55N 

(4) 

0.4N-0.6N 

(5) 

Exactly 
0.5 N 

(6) 

0.45N- 
0.55JV 

(7) 

0.4N- 
0.6 AT 

(8) 

1 
2 

2 

4 9 0 500 

3 8 
4 10 0 375 
0 64 20 0 313 

8 252 70 0.278 
10 1024 252 672 0.250 0.66 
20 1.049 X 10« 0.1848 X 10» 0.5201 X 10« 0.7726 X 10* 0.176 j 0.497 0.74 
30 1.074 X 10® 0.1551 X 10® 0.8640 X 10® 0.145 0.80 
40 1.100 X io« 0.1379 X 10i* 0.6272 X 10i* 0.9304 X 10i* 0.125 0.57 0.84 

100 1.268 X 10»° 0.1009 X 10®° 0.9236 X 10®o 1.223 X 10»o 0.080 0.72 0.97 

A further study of the distribution of 4 molecules between V\ and V[ 

is instructive, for it illustrates the behavior of gaseous systems containing 
larger numbers of molecules. From the different arrangements of the 
molecules in Fig. 7.4, it appears that there is 1 arrangement in which all 
the molecules are in Vh and 1 in which none are in Vi; 4 arrangements 
in which 3 molecules are in Vh and 4 in which 1 molecule is in Vi; and 
6 arrangements in which 2 molecules are in V\. The numbers of the 
different arrangements 

l + 4 + 6 + 4 + l = 24= 16 

correspond to the coefficients of a binomial raised to the fourth power. 
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The number of arrangements, 6, in which exactly one-half the molecules 
are in Vi is listed in column (3), Table 7.3. The fraction representing 
the relative number of these arrangements is rgr = 0.375, which is listed 
in column (6). For 6 molecules, for which the total number of arrange¬ 
ments is 64, the number in which exactly 3 of the molecules are in Vi 
is 20, the fraction being 0.313. As N increases, it is evident that the 
fraction of arrangements in which the division of the molecules in 72 
is exactly even between Vi and V[ decreases. However, the certainty 
of an essentially even distribution increases. Thus, if a 20 per cent 
fluctuation from the even distribution is permitted, the fraction of the 
arrangements within these limits increases steadily as is indicated by 
columns (5) and (8). For 10 molecules, the arrangement in which 4, 5, 
or 6 molecules are in Vi are 672/1,024 of the total, or 65.6 per cent. For 
20 molecules, the fraction of the arrangements between 0AN and 0.6iV 
increases to 773,000/1,049,000, or 0.74, and for 40 molecules to 0.84. 
For 100 molecules, the fraction of the arrangements containing between 
40 and 60 molecules has increased to 0.97. Because of this rapid increase 
to an almost even distribution with so few as 100 molecules, one is not 
surprised by the statement by Mayer1 that “for a liter of gas at standard 
conditions, for which N ~ 1022, the chance of finding a deviation of more 
than one part in a million from the normal in one-half of the flask is only 
one chance in lO1010.” 

Entropy and the Number of Ways of Realizing a System.—There is 
another aspect to the improbability of deviation from the most probable 
distribution. The statistical states of the system represented by most 
probable distribution are such a large fraction of the total number of 
states that W may be represented in entropy calculations, either by the 
total number of states, or by the number of states represented by the 
most probable distribution. Consequently, when there are two ways 
of realizing a system and the number of particles N is a sufficiently large 
number, W is increased by a factor 2^ and the entropy is increased by 
the amount 

AS = * In 2V (7.48) 

For 1 mole of substance, N becomes the Avogadro number N so that 
from equations (7.47) and (7.48) 

As = * In 2" = Nk In 2 - R In 2 (7.49) 

Similarly, if the number of ways of realizing a system is increased by g, 
the entropy increase for 1 mole is 

As = k In gN = R In g (7.50) 

1 Mayer, Joseph E., and Maria G. Mayer, ‘‘Statistical Mechanics,” p. 77, John 
Wiley & Sons, Inc., New York, 1940. 



174 INTRODUCTION TO CHEMICAL THERMODYNAMICS [Chap. 7 

Equation (7.50) finds application when we consider the problem of abso¬ 
lute entropy values in connection with the third law of thermodynamics. 

Entropy of Expansion of an Ideal Gas.—Consider the isothermal 
expansion of an ideal gas, from an initial volume Vi as in Fig. 7.5, to a 
final volume F2, which is double Fi. The gas being ideal, there is no 
change in energy E of the gas during the expansion. Then, we may expect 
an entropy change only as a result of an increase in volume. When the 
gas was in Fi, it had a value of IF = Wi determined by its number of 
molecules N, its energy E, and its volume VIn accordance with what 
we found earlier about the distribution of the gas, it was at its most proba¬ 
ble distribution, that is, it was distributed evenly in the various parts of 
V\. If now the gas is expanded to the volume F2, E remaining con¬ 
stant, it is in an extremely improbable state, for all the molecules are in 

b 

1 
1 
I 
1 
1 

b' 1 
1 

(a) 
1 

1 
1 

. 
(b) 

V2 = Vj + V/ 

Fig. 7.5.—Distribution of molecules in a volume, V2. 

one-half the total volume. The gas will redistribute itself until it is 
evenly distributed in F2, that is, until it has reached its most probable 
distribution and W = W2. This is a spontaneous process at constant 
energy E and constant volume F2. It results in an increase in S, the 
value of which is to be calculated. It also results in an increase in 
probability, the probabilities W\ and W2 being related by the equations 

w 1 = arw2} 
2NW1 = Wo j 

(7.51) 

Where the increase in entropy is AS = S2 — Sh we have, from equation 
(7.46), 

S2 = k In W2 = k In (2*Wi) 
Sx = k In IFi - k In [Q)»Wt] 

AS = St - -Sx = *(ln Wt - In IT,) = * In 
W1 

2*JFi 
= k In = k In 2* (7.52) 

Where n is the number of moles of gas and N the Avogadro number, we 
have N = nN so that equation (7.52) becomes 
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$2 — Si = nNk In 2 
= nR In 2 (7.53) 

Equation (7.53) could also have been obtained from equation (7.49) 
which was derived for 1 mole of gas. 

The entropy increase may also be calculated from equations (7.12) 
and (4.40) to be 

$2 ~ S, <7r Wr 

T T 

nRT In ~ 
V i 

T 

— nR In ™ 
v 1 

= nR In 2 

(7.54) 

(7.55) 

since V2 = 2Vh Equations (7.53) and (7.55) for the increase in entropy 
for this isothermal expansion are identical. 

Problems 

7.1. Revise the following statements so that they are free from contradiction: 

(a) In a reversible process, the increase in entropy is equal to $(dqr/T). 
(b) In a reversible process, the total entropy does not change, 

7.2. («) Calculate the work (in calories) done by a perfect gas in expanding 

isotherm ally and reversibly at 20°c from 1 liter and 1 atmosphere to 2 liters. What 

are the values of the heat absorbed, the entropy change, the change in internal energy 

AE, and the change in heat content All for this process? 

(ib) What is the work done by 1 liter of a perfect gas at 1 atmosphere and 20°c in 

expanding into a liter vacuum so that the final volume is 2 liters? How much heat is 

absorbed in this process? What is the entropy change? Explain. Compare the 

values of w, q, AS, AE, and AII from this process with those in (a). 

7.3. Derive the equation 

Wr ^ T% - Ti 

q 2 Ti 

7.4. Derive the equation 

Ti - Ti 

qi T i 

7.6. A mole of a perfect gas at 300°k expands reversibly and isothermally from 

20 to 40 liters. How much work, in calories, will be done by the gas? Will heat be 

absorbed in this reversible process? Will there be an increase or decrease in the 

entropy of the gas? 

7.6. The entropy change in Prob. 7.5 is not zero, and yet the expansion is a 

reversible process. Explain. Will the surroundings undergo a change in entropy in 

this process? If so, what will be the sign and quantity of the change? 

7.7. A mole of nitrogen at 0°c occupying 10 liters (state 1) is to be expanded 

to a volume of 20 liters at 100°c (state 2). An infinite number of paths from state 1 

to state 2 arc possible. Consider the following important paths: (a) The gas is 

expanded isothermally and reversibly at 0°c to the volume of 20 liters and then 

heated to 100°c, and (6) the gas at a volume of 10 liters is heated from 0 to 100°c 



176 INTRODUCTION TO CHEMICAL THERMODYNAMICS [Chap. 7 

and is then expanded iso thermally to 20 liters. Compare the numerical values for the 

change in internal energy of the gas, the heat absorbed from the surroundings, and 

the work done by the gas obtained by following paths (a) and (6), respectively. 

Assume that the ideal gas law holds for nitrogen at these temperatures, that the heat 

capacity at constant volume is independent of the volume, and that 

cp = 6.524 + 0.00125 T 

7.8. Assume that liquid toluene and liquid xylene mix without an appreciable 

heat of solution and without a volume change. Will there be a change in internal 

energy AE? In heat content A//? In entropy AS? Will there be any work done in 

the process? 

7.9. Five ideal gas molecules are distributed between two equal volumes. Pre¬ 

pare a chart showing the probability of finding 5, 4, 3, 2, 1, or none of these molecules 

in the one volume VPlot this probability as ordinate against number of molecules 

as abscissa. What is the probability of finding other than a 2:3 or 3:2 distribution of 

the molecules between the two volumes? 

7.10. The volume of a mole of an ideal gas is increased tenfold. What is the 

increase in entropy (in calories per degree)? What is the increase in entropy per 

molecule? 

7.11. What will be the entropy changes resulting from the reversible adiabatic 

and isothermal expansions described in Probs. 4.7, 4.10, 4.11, and 4.14? 

7.12. (a) A liter of perfect gas at 0°c and 1 atmosphere pressure is expanded 

isothermally. To what volume must it expand to produce an entropy increase of 

0.1 calorie per degree? 

(b) The temperature of the gas in (a) is raised to 100°c at constant volume. 

When the gas is expanded isothermally at this temperature, what will be its final 

volume when the entropy increases 0.1 calorie per degree during the expansion? 

(c) The temperature of the gas in (a) is raised to 100°c at constant pressure. 

What will be its volume? When the gas is now expanded isothermally at 100°c, 

what will be its final volume when the entropy increases 0.1 calorie per degree during 

the expansion? What will be the relative increase in volume? 

(d) Explain the results of (a), (b), and (c) in terms of probabilities. 

7.13. (a) A liter of nitrogen and a liter of oxygen at 0°c and 1 atmosphere pressure 

are alldwed to diffuse into each other. What is the value for the change in entropy 

for this process? Assume that the gases are ideal diatomic gases. 

(b) A liter of nitrogen and a liter of oxygen at 100°c and 1 atmosphere pressure 

are allowed to diffuse into each other. What is the value for the change in entropy 

for this process? 

(c) Does the temperature of the gases in (a) and (b) enter into the calculations? 

Explain. 



CHAPTER 8 

APPLICATIONS OF ENTROPY. SOME ENTROPY FUNCTIONS 

The entropy function assumes relatively simple forms for systems 
that do no chemical or other work except work of expansion. For a 
change in state of such a system along any reversible path, the work 
done is Dwr = P dV and the heat absorbed during the change is 

D qr = T dS 

Since, according to the first law, 

dE = Dqr - Dwr 

we have for the system 

dE = TdS - PdV (8.1) 

Equation (8.1), based on the first and second laws of thermodynamics, is 
fundamental for systems under the indicated conditions. All the varia¬ 
bles in it are properties and depend only on the state of the system. 
Therefore, if we know the value of dE for any path and know how P 

changes with V along that path, we can evaluate T dS. Or, if we can 
evaluate T dS and P dF, we have the value for dE. These relations 
enable us to determine the entropies of pure substances. 

Efficiency of the Heat Engine.—Heat engines may operate in cycles 
other than the Carnot cycle, but the maximum work produced by one 
operating between the temperatures T2 and T1 is equal to that produced 
by an engine operating reversibly in the Carncrt cycle. The energy, 
equal to the heat q2, some of which is to be expended as work, may be 
obtained from a chemical process such as the combustion of coal at the 
temperature T2. According to the theory of the Carnot cycle, some of 
this energy, equal to — qi must be discharged at the temperature Th 

the difference between q2 and —qi being available as work. The con¬ 

version factor is defined by the ratio w/q2, the maximum value being, 

from equation (7.5) 
Wr ^ Tt - T, 
q2 T2 

(8.2) 

Now the temperature T\ at which the engine discharges the — qx calories 
of heat is dependent on the temperature of the surroundings of the engine. 

177 
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If the engine is operating rapidly, so that heat accumulates around the 
engine, 7\ may be considerably higher than the temperature of the sur¬ 
roundings. The temperature Ti cannot be lower than that of the sur¬ 
roundings for an engine operating continuously. From equation (8.2), 
the ratio expressing the maximum conversion factor for an engine oper¬ 
ating between 0 and 100° is 

373 - 273 
373 m - 

Only 27 per cent of the energy absorbed as heat at the higher temperature 
can be converted to work under these conditions. If the conversion 
factor is to be increased, the ratio (T2 — 7\)/T2 must be made as large 
as possible. The maximum limiting conversion factor is unity; under 
this condition all the energy would appear as work. 

The ratio (T2 — Ti)/T2 can approach unity only when 2V — T\ = T2} 

that is, when T2 is very large compared with TV This limit could be 
achieved if Ti approached zero. However, Ti cannot be lower than the 
temperature of the surrounding of the heat engine so that its lower limit 
is predetermined. Practical attempts to increase the efficiency of a 
heat engine must, therefore, be directed toward increasing TV 

Much progress has been made in increasing the efficiency of steam 
engines by increasing the temperature of the saturated steam. Because 
the increased temperature results in increased boiler pressures, the 
strength of the boiler imposes limitations on the attainment of high 
temperatures with steam. In recent installations, pressures up to 2,300 
pounds per square inch and temperatures up to 1000°f or 540°c have 
been obtained. If T\ is assumed to be 300°k, the maximum conversion 
of such an engine is (w/q2) = Iff = 0.63. The actual conversion from 
coal to electrical output is 33.5 per cent, a record for a steam plant. It 
should be pointed out here that it is the higher temperatures that are 
important, the higher corresponding pressures being incidental. In an 
effort to secure the desirable high temperatures without the undesirable 
high pressures, installations have been made in which higher boiling liquids 
such as diphenyl and mercury are substituted for the high pressure steam 
with actual conversions up to 37.5 per cent. 

Refrigerating Engine.—In a refrigerating engine, the Carnot cycle is 
reversed: qi calories of heat are withdrawn from the cold reservoir Ri 

at the temperature 7\, and work —w is done on the refrigerating gas to 
transport this heat to the hot reservoir R2 at the temperature TV Accord¬ 
ing to equation (7.1), the heat discharged at the higher temperature will 
be 

—?2 = Qi - w 
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and, according to equation (7.5) the ratio of the reversible work done by 
the engine to the heat absorbed from the cold reservoir is 

Wr 

Qi 
(8.3) 

From this relation, we see that the minimum work required to remove 
heat from a cold reservoir at T\ = 273°k and discharge the heat to 
the surroundings of the refrigerator at T2 = 300°k is indicated by the 
ratio 

wr 

Ti 
300 - 273 _ 27 

273 273 
—wr — 0.1 qi 

One calorie of work is required to remove 10 calories of heat from the 
refrigerator. If the cold reservoir of the refrigerator is at —73°c or 
200°k, and T% = 300°k, 

WT 100 n R n r 
“ ^ = 200 = °‘5; ~Wr = 0 5?] 

If T\ is 100°k, —wr — 2(ji. As rI\ approaches 0, we have, at the limit, 

_ Wr = T 2 - 0 

qi 0 

At zero absolute, therefore, the work required to remove heat from a 
substance acting as the cold reservoir becomes infinitely large. For 
this reason, the second law has been called the “principle of unattain¬ 
ability of the absolute zero” of temperature. 

The work required to transport a given quantity of heat from the 
lower to the higher temperature becomes greater as the temperature of 
the cold reservoir decreases or as that of the hot reservoir increases. 
The efficiency of the refrigerating machine, therefore, becomes less 
when the cooling coils of the refrigerator are so covered that they can¬ 
not transmit the heat —q2, which equals the sum of the heat pumped 
out of the refrigerator and the work done, to the surroundings of the 
refrigerator at the lowest possible temperature. It is not popularly 
understood that, in the operation of the domestic refrigerator, heat is 
added to the room in which the refrigerator stands. 

Kelvin suggested an interesting possible application of the refriger¬ 
ating machine to the heating of buildings. For example, with an out¬ 
door temperature of — 10°c and an indoor temperature of 20°c, the 
minimum work required to extract 1,000 calories of heat from the out 

of doors is 

X 1,000 - 114 cal 
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and the heat delivered indoors would be 

1,000 + 114 = 1,114 cal 

If the work, say in the form of electrical energy, had been converted 
to heat directly by means of a resistance coil, only 114 calories would 
have been added to the room. 

Change of Entropy with Temperature.—From the definition of 
entropy, it is evident that the change in entropy resulting from a change 
of temperature may be calculated from the heat for the reversible process. 
When a system changes temperature through absorption of heat, the 
change in entropy can be calculated from the heat capacity if the sys¬ 
tem absorbs the heat reversibly. However, if irreversible processes 
occur within the system during the absorption of. heat, the change in 
entropy cannot be calculated from the actual heat absorbed. For 
example, for systems at constant pressure, the actual heat absorbed for 
a process is represented by dH = DqP. The reversible heat is repre¬ 
sented by Dgr = T dS. But, dII and T dS are not equal except under 
equilibrium conditions or in simple systems where no chemical reactions 
occur. 

Consider a simple system consisting of some pure chemical substance. 
This system may absorb heat reversibly, the rate of temperature increase 
depending on the heat capacity of the substance. The heat will be 
absorbed reversibly if no temperature gradients exist in the substance 
itself or between the substance and the body donating heat to it. Under 
these conditions, the system absorbs heat infinitely slowly, the heat 
absorbed being 

Dq = C dT = T dS (8.4) 

where C is the heat capacity of the substance. 
If, in practice, the system absorbs the heat at a finite rate, its change 

in entropy will still be given by the relation dS = dq/T; for the entropy 
is a property of the system, and the same amount of heat will be absorbed 
for the spontaneous as for the reversible process. The difference in 
entropy between the reversible process and the irreversible process will 
occur not in the substance itself but in the surroundings. In the former 
process, the entropy loss by the surroundings will exactly equal the gain 
by the system; in the latter process, the surroundings, losing heat at a 
higher temperature, will not lose so much entropy as is gained by the 
system. This irreversible process results in a total increase in entropy, 
as in equation (7.27). In any event, the chemical substance has the 
change in entropy indicated by equation (8.4). For a simple system, 
therefore, we have, from this equation, 
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d S C 

AT T 
(8.5) 

or 

AS = C ^ = C d In T (8.6) 

Values of C are usually available for the common experimental condi¬ 
tions of constant volume or constant 'pressure. For these two conditions, 
we have from equations (3.2) and (3.5), respectively, 

When these values are introduced into equations (8.5) 
have, at constant volume, 

and (8.6), we 

(dS\ Cy 1 (dE\ 
\dTjv T T \dTJy 

(8.7) 

dSr = Cy d 111 T (8.8) 

and, at constant pressure, 

(dS\ CP 1 (dH\ 
\drjr T T \d T)P 

(8.9) 

dSP = CP d In T (8.10) 

The same equations may be derived in a more formal manner. From 
equation (8.1), 

T dS = dE + P dF (8.11) 

At constant volume, dV is zero, and, from equation (3.1), 

Q
 II II 

-a 

so that 
T d$y — diEV == (8.12) 

Similarly, at constant pressure, dE + P dV = dEP + P dVP = dllP and 
from equation (3.4), dHP — Dr/p, so that 

T dSP = dEP + P dVP = dHP = DqP (8.13) 

Thus, for such systems, the heat absorbed is the same whether it is 
absorbed reversibly or irreversibly, the value depending only on whether 
the process was carried out at constant volume or constant pressure, or 
any other condition that fixes the value of P dV for the change. For 
these processes, Dg = Dqr = T dS. 
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Since the heat absorbed produces a rise in temperature, it is related 
to the heat capacity of the system by equations (2.7), (3.3), and (3.5), 
so that 

Dq = CAT = TdS (8.14) 
Dqv = dEv = Cv dT = T dSv (8.15) 
Dqp = dHP = CP dT = 77 d£p (8.16) 

Equation (8.14) may be arranged to give equations (8.5) and (8.6), 
equation (8.15) to give equations (8.7) and (8.8), and equation (8.16) to 
to give equations (8.9) and (8.10). 

Because we shall need them later, we shall derive two other relations 
from equations (8.7) and (8.9). At constant temperature, that is, at 
some definite value of the temperature, the partial derivative of equa¬ 
tion (8.7) with respect to volume is 

d*S __ 1 (dCv\ _1 d*E ( 
arav r\av )r T'afav { ) 

and the partial derivative of equation (8.9) with respect to pressure is 

d'S 1 (dCp\ 1 cPH 

dT dP f\dP)T TdTdP 
(8.18) 

These equations are used later. 
Isothermal Change of Entropy with Volume and Pressure.—At the 

beginning of the chapter, we pointed out that equation (8.1) was set 
up for a reversible process, but that it now contains only the terms E, 
T, S, V, and P, all of which are properties. It may, accordingly, be 
applied to a system that undergoes any change reversible or irreversible, 
so long as the reversible system was not able to do work Dw' other than the 

work of expansion. This qualification must not be overlooked, for it is 
contained implicitly in equation (8.1) and in all other equations derived 
from it. Equation (8.1) may be applied to simple systems that do not 
undergo chemical changes and that do only work of expansion. In 
general, when chemical changes occur, other work, such as electrical 
work, can be derived from the process. 

Even though equation (8.1) is restricted in its application, it may be 
extremely useful, for any real process may be subdivided into separate 
stages. If the chemical reaction is presumed to go on at some constant 
temperature under specified conditions of pressure and volume, the sub¬ 
stances to be used in the reaction can be brought to the reaction condi¬ 
tions in accordance with the requirements of equation (8.1) and allowed to 
react while doing other work wf. The products of the reaction may then 
be changed from the reaction conditions to the final condition in accord¬ 
ance with equation (8.1). 
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We have found that the internal energy function E is particularly 
useful under experimental conditions of constant volume, and the heat 
content function H is especially adapted to conditions of constant pres¬ 
sure. From the definition of H, it follows that 

dH = dE + d(PV) = dE + PdV+VdP 

and, therefore, 

dH ~ VdP = dE + PdV 

If dH — V dP is substituted for dE + P dV in equation (8.1), we have 
the relation 

dH = TdS+VdP (8.19) 

Equation (8.1) may be solved for P, and equation (8.19) for V to give 
the corresponding equations 

P = 
dE 

dV 
(8.20) 

dH _ dS 

d P dP 
(8.21) 

If dE/dV and dH/dP are evaluated experimentally, values of d/S/dF 
and d$/dP may be obtained. However, dS/dV and d$/dP at constant 
temperature can be more readily evaluated from the following relations: 

When equation (8.20) is differentiated with respect to temperature 
at a definite volume, we obtain 

dP\ d*s (es\ s*e 
dT/v dVdT^ \dVjT OVdT 

(8.22) 

When equation (8.21) is differentiated with respect to temperature at 
a definite pressure, we obtain 

(w\ _ A2IL _ T _ (dA) (8 23) 
\dT)P~ dPdT dPdT \dPjT ^ ^ 

Comparison with equations (8.17) and (8.18) shows that the second and 
fourth terms in equation (8.22) cancel, as do also the second and third 
terms in equation (8.23), so that we have the important relationships 

and 

(»A) _ (*p\ 
\dV/T \dT/v 

(A) = 
\dP/T \dT/p 
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These relations enable us to evaluate (dS/dV)T and (dS/dP)T, for 
(dP/dT)v and — (dV/dT)P can be measured readily. 

Thermodynamic Equations of State.—If equations (8.24) and (8.25) 
are combined, respectively, with equations (8.20) and (8.21), the “ther¬ 
modynamic equations of state ” 

and 
p-T(§\-(w)r 

V = (w\ + T(?r)r 
are obtained. Comparison of equations (8.20) and (8.21) with (8.26) 
and (8.27) shows that the latter are slightly less general than the former. 
However, they are frequently more useful, for experimental data on the 
change of pressure with temperature of substances at constant volume 
or on the thermal expansion of substances at constant pressure are rela¬ 
tively easily obtained. Indeed, it is easier to obtain values of (dE/dV)r 
and (6H/dP)T by use of these equations than to determine the values 
experimentally. We are familiar with equations of state that express 
the relationship between the properties P, F, and T for a given amount 
of the substance. Equations (8.26) and (8.27) contain also the prop¬ 
erties E and Hf respectively, and are called the u thermodynamic equa¬ 
tions of state.” 

Equations (8.26) and (8.27) may be applied to any simple system 
and, therefore, to a gas that obeys the ideal gas equation Pv = RT. 
For such a gas, 

p RT (dP\ R 
V ’ W/v V 

(8.28) 

and 

RT fdv\ R 
V “ P ’ \dTjp ~ P 

(8.29) 

When these values are substituted in equations (8.26) and (8.27) we 
obtain the ideal gas relations 

II o
 

(8.30) 

and 

o
 II (8.31) 

These relations are equations (4.6) and (4.8). We see here that they 
follow from the ideal gas equation and the laws of thermodynamics. 
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For real gases that are not represented by the ideal &<Jttation, equa¬ 
tions (8.30) and (8.31) are not valid. 

Thermodynamic Temperatures from <3&s Ttfeermometers.—Equa¬ 
tions (4.56) and (7.5), namely, 

q2 _ —q\ Wr 
T2 7\ T2 - 1\ 

'are identical, holding, respectively, for the ideal gas and any substance 
in the Carnot cycle, but the temperature used in deriving equation 
(4.56) was that on the ideal gas scale and not that on the thermodynamic 
scale. Therefore, the identity of the two equations indicates the identity 
of the two temperature scales. Consequently, an ideal gas thermometer 
could be used to indicate thermodynamic temperatures. In a gas ther¬ 
mometer containing a definite amount of ideal gas, PV is directly pro¬ 
portional to the ideal gas and thermodynamic temperature T. Thus, 
if the measured pressure-volume product at the temperature Ti is P\Vi 
and that at the temperature T2 is P2F2, we have 

P2V2 = nRT, 
P1V1 = nRrl\ 

In a constant-volume thermometer, V and n are constant so that 

(V and n const) 
P i J i 

(8.32) 

(8.33) 

A real gas does not obey equations (8.32). Let the real gas be repre¬ 
sented by the equations 

J?2 V2 = nRB 2 
PiVi = nRd i 

(8.34) 

The “real gas temperatures” 61 and d2 in equations (8.34) are not identical 
with the thermodynamic temperatures Ti and T2 in equations (8.32); 
relative values of Bx and B2 are what are measured by the observed pres¬ 
sure ratio in a real gas constant-volume thermometer since, from equa¬ 
tions (8.34) 

IT = (Y and n const) (8.35) 
m Vi 

Since equations (8.33) and (8.35) give only relative values of T and 9 
an additional relation is required to fix the two temperature scales. If 
the pressures Pi and P2 are measured at the ice point and the steam 
point, respectively, we have by definition 

T2- Tx = 100° = B2 - Oi (8.36) 
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Then, for the ideal gas pressures, 

P2 - ri 100 

Pi Tx 

and, for the real gas pressures, 

Pt-Pi = 100 
P, ' Pi 

We must now find a relation between the real gas pressures and the 
thermodynamic or ideal gas temperature T. Equation (8.20) furnishes 
such a relation. It may be rearranged to 

'(£),->■- Of), 
which, when divided by T2, becomes 

T - P 

This equation may be rearranged to 

•(?),-($,(£),--(s 
and integrated between the limits Ph Tx and P>, T> to give at constant 
volume 

h 
t2 

(8.37) 

Comparison of equation (8.37) for the real gas with equation (8.33) for 
the ideal gas shows that the integral is a measure of the deviation of the 
real gas from the ideal gas equation. If the value of (dE/dV)r is zero, 
as it is for the ideal gas, the integral becomes zero and equation (8.37) 
reduces to equation (8.33). Equation (8.35) may be combined with 
equation (8.37) to give relations between 6, the “temperature” meas¬ 
ured by the constant-volume gas thermometer, and T, the thermodynamic 
temperature.1 With a constant-volume helium thermometer, the values 
of 6 are about 0.02° greater than the corresponding values of T; with 
a constant-volume nitrogen thermometer, the values of 0 are about 0.8° 

1 Discussion and application of these and other relations between gas scale tem¬ 
peratures and thermodynamic temperatures may be found in papers by W. T. Wensel, 
F. G. Keyes, J. R. Roebuck and T, A. Murrell, J. A. Beattie, and others in “ Tem¬ 
perature, Its Measurement and Control in Science and Industry,” Reinhold Publishing 
Corporation, New York, 1941. 
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smaller than those of T. At the ice point, the helium thermometer 
gives 6 = 273.184° and the nitrogen thermometer gives 0 = 272.380°. 

Corresponding equations may be derived for 6 as measured by a 
constant-pressure gas thermometer and the thermodynamic temperature. 
From equations (8.32), we have for the ideal gas 

~ = 7ft (P and n const) (8.38) 
V i 1 i 

and, from equations (8.34), we have for the real gas 

= ■— (P and n const) (8.39) 
VI "i 

In general, the relative values and, therefore, the absolute values of 0 
are not the same for the constant-pressure thermometer as for the con¬ 
stant-volume thermometer containing the same gas. As before, absolute 
values of 0 and T may be obtained from relative values by use of equa¬ 
tion (8.36) which fixes the size of the degree on each scale. A relation 
between V and T for the real gas is given by equation (8.27). From this 
equation by the methods previously used in deriving equation (8.37), we 
have 

(8.40) 

But from equation (4.33), (dH/dP)T = —pCp, where ju is the Joule- 
Thomson coefficient. Equation (8.40), therefore, becomes, when inte¬ 
grated between the limits Fi, T\ and F2, T2 at constant pressure, 

F2_ Fi 
T2 ITi 

(8.41) 

As in equation (8.37), the integral measures the deviation of the real gas 
from ideal behavior. In a helium constant-pressure thermometer, the 
values of 0 are approximately 0.15° greater than those for T, the value 
at the ice point being 0 = 273.320°. For the nitrogen constant-pressure 
thermometer, the values of 6 are approximately 1° smaller, the value at 
the ice point being 6 = 272.479°. 

Relation between Heat Capacity at Constant Pressure and Constant 
Volume.—In equation (3.16), we presented the difference between heat 
capacity at constant pressure and that at constant volume as 

/dE\ "I /dV\ 

c'-cr = [\wl+p\{irT)P <8-42> 
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This relation was derived on the basis of the first law of thermodynamics. 
However, the value of P derived from equation (8.26), which is based on 
the second law, can be substituted in equation (8.42) to give 

= \(dE\ 4. T (dP\ 
l\dV)T \dTjv 

= T (dA (d V) 
\dTjr\dTj, 

(dE) 1 (*Y) 
\dVjr\ \dT/p 

(8.43) 

Equation (8.43), as it stands, can be applied to gases for which the change 
of pressure with temperature is readily measured. However, this deriva¬ 
tive is not so readily measured for condensed phases, especially solids. 
Following the method illustrated in Chap. 1, we have, for a pure sub¬ 
stance whose pressure is a function of temperature and volume alone, 

dP-(57),.dF + (5f),''T <8«> 

But, for a constant-pressure process, dP = 0; and we obtain, from equa¬ 
tion (8.44), 

(£),--(£),(!& 
When equation (8.45) is substituted in equation (8.43), we have 

CP - Cv (8.46) 

Let the coefficient of thermal expansion a and the compressibility 0 be 
defined by the relations 

Substituting these relations in equation (8.46), we have 

(8.47) 

Cp — Cv = T ~ {fV>) 

c?VT 

P 
(8.48) 

This equation for 1 mole of substance was introduced earlier [equation 
(3.24)]. As stated there, the equation is useful in calculating Cp — cv for 
solids. 

Entropy of an Ideal Gas.—From the first law equation, we derived 
equation (8.1), which applies to systems in which the only work done is 
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that of expansion. Equation (8.1) may be rearranged in the form 

189 

d (8.49) 

This equation may be applied to 1 mole of perfect gas. For such a gas, 
we have P = RT/\ and, from equation (4.42), dE = cy dT. Hence, the 
change in entropy per mole may be expressed as 

ds = cr jr + R y = O d In T + R d In v (8.50) 

For the ideal gas with constant heat capacity, equation (8.50), when 
integrated, becomes 

s = cy In T + R In v + sj (8.51) 

where sj is an integration constant. 
The entropy may also be expressed in terms of the variables P and 

T (or P and F). When v is in cubic centimeters and P in atmospheres, 
v = RT/P, R being 82.057 cubic centimeter atmospheres per degree. 
Similarly, from equation (4.26), cy = cy — R, where R is in the same 
units as heat capacity. When these values are substituted in equation 
(8.51), we obtain 

urn 

s = (cy — R) \n T + R In + s$ 

= Cp In T — R In P + R In R + sj (8.52) 

If entropy is to be expressed in calories per degree, the first R in the 
R In R term must be expressed in this unit, but, from the derivation of 
equation (8.52) the second R must be expressed in the units of Pv/T. 
Thus, for the pressure and volume units chosen, 

R In R = 1.9872 In 82.057 = 8.7584 

The integration constant sj was first evaluated by Sackur and, more 
exactly, by Tetrode from the statistical mechanics. The constant has 

the value 

sj = |i?lnM + |j? + *ln^ (8.53) 

where M is the molar weight of the gas in grams, h is Planck’s constant 
in erg seconds, k is the Boltzmann gas constant in ergs per degree, and 
the other symbols have their usual meaning. The last term of equation 
(8.53), a constant for all gases, has the value 

R In (3.12185 X lO""4) = —16.0408 cal/deg 
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From equations (8.52) and (8.53), the molar entropy for the pressure in 

atmospheres is 

s = iR In M + Cp In T - R In P + %R + 8.7584 - 16.0408 
= In M + Cp In T - R In P + - 7.282 (8.54) 

Similarly, from equations (8.51) and (8.53), the entropy in terms of 
molar weight, temperature, and volume in cubic centimeters is 

s = %R In M + cF In T + R In v + §R - 16.041 (8.55) 

For the ideal monatomic gas, cv and cP have the values %R and f/?, 
respectively. These are also the values for that part of the heat capacity 
of polyatomic gases attributed to the increase in translational energy 
of the gas with temperature. Furthermore, %R has the value of 4.968 
calories per degree. Consequently, the Sackur-Tetrode equation for the 
molar entropy of a gas in calories per degree may be placed in one of 
the following forms: 
For volume in cubic centimeters, 

s = -§R In JM -f- %R In T7 + J? In v + — 16.041 

s = $R In M + iR In T + R In v - 11.073 

and, for pressure in atmospheres, 

s = %R In M + iR In T - R In P + f/? - 7.282 
B = |*lnJf + ilflnr-l?lnP - 2.314 

These equations were derived with the aid of the ideal gas equation 
and the heat capacities of a monatomic gas. They may be applied in 
the calculation of the entropies of monatomic gases; they may also be 
used to calculate the translational entropy of polyatomic gases. If the 
gases are not ideal, a calculation of the entropy difference between the 
ideal state and the real state of the gas enables one to obtain the transla¬ 
tional entropy of the real gas. However, the equations are not applicable 
over too wide a range of temperature and pressure. Thus, at P = 1 
and T < 1, In P becomes zero and In T becomes negative so that the 
entropy in equation (8.57) might become negative. Or if P is increased 
steadily, s might become negative. It does not follow, however that 
a substance can have a negative entropy. Instead, we must conclude 
that under these conditions the substance is no longer an ideal gas, or 
even a gas at all, so that these gas equations no longer apply to it. 

From equations (8.51) and (8.52) or equations (8.54) and (8.55), may 
be derived a number of relations for the change in entropy of an ideal 
gas under various conditions. Where Si is the molar entropy of the 

(8.57) 



APPLICATIONS OF ENTROPY Chap. 8] 191 

gas in the first state and S2 that for the gas in the second state, the 
changes in entropy under the indicated conditions are as follows: 

At constant temperature, equation (8.51) yields, for the entropy change 
on expansion, 

s2 - Si = R In — (8.58) 
Vi 

When equation (7.54) for the isothermal entropy of expansion is applied 
to 1 mole of gas, it becomes equation (8.58). Similarly, from equation 
(8.52), 

s2 - Si = -R In ^ = R In ~ (8.59) 
1 1 1 2 

This equation follows from equation (8.58) or (7.54), since 

fe) - (ft) 
for the perfect gas at constant temperature. 

At constant volume, the change in entropy with temperature is, from 
equation (8.51), 

T 
s2 — Si = cv In — (8.60) 

11 

This equation is obtained also when equation (8.8) is integrated for 1 
mole of perfect gas. 

At constant pressure, the change in entropy with temperature is, from 
equation (8.52), 

s2 - Si = cP In ~ (8.61) 
11 

This equation is also obtained when equation (8.10) 
mole of gas. 

For a reversible adiabatic expansion, qr = 0 and s2 
tion (8.51) yields 

c,InFi=-Kln- 

This equation is identical with equation (4.47). 
Equations (8.54) and (8.55) contain a term for the molar weight of 

the gas. They may, therefore, be used to calculate the change in entropy 
of a gas with mass. For example, the difference in translational entropy 
between two isotopic species of gas at the same temperature and pressure 
(and volume) is given by 

3 D , M2 

is integrated for 1 

= Si so that equa- 

(8.62) 
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where Mi and M2 are the molecular weights of the two isotopic species 
of the gas. However, equation (8.63) does not give the entropy change 
on the mixing of two isotopes. The expression for the entropy of mixing 
of two molecular species is derived in Chap. 14. 

Entropy of Real Gases.—Though equation (8.50) is subject to the 
restrictions of the ideal gas, equation (8.49) is subject only to the condi¬ 
tion that work of expansion is the only work done. 

A number of gases that are ideal enough to expand approximately 
in accordance with the ideal gas law have a heat capacity dependent on 
the temperature. If the heat capacity is a function of the temperature, 
we have, on integration of equation (8.50), 

[ = j f + R In v + ej 

Equation (8.64) may also be expressed in the form 

O d77 

■/ T 
— R In P -f- So 

(8.64) 

(8.65) 

where s0 = So + R In R. 
This equation may be applied to nitrogen. From Table 3.3, it appears 

that the constant c in the heat capacity equation is small enough to be 
neglected at moderate temperatures. Hence, 

Cp = 6.524 + 1.250 X 10~377 

and the change in entropy with temperature is 

s, - s, = + 0.001250^ dT . 

= 6.524 In 'L + 0.001250(7! - rl\) (8.C6) 
I 1 

In general, the change in entropy with temperature at constant pressure 
is given by 

S2 - s: = f = f Cp d In T (8.67) 
J Ti I J Tx 

This equation follows from equation (8.10). If the heat capacity can¬ 
not be represented satisfactorily by an algebraic equation, the integra¬ 
tion may be performed graphically. Equation (8.67) may be applied 
to liquids and solids as well as to gases. 

The entropies of real gases can be obtained more accurately by the 
following method: The translational entropy of the ideal gas plus a small 
correction for nonideality of the gas gives the translational entropy of 
the real gas. The entropy of rotation of the gas molecules andl the 
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entropy of vibration of the atoms can be calculated from the energy 
levels obtained from band or Raman spectra according to the methods 
of Giauque1 and others. These rotational and vibrational entropies can 
then be added to the translational entropies, as calculated by the above 
methods, to give the entropy of the gas. The entropy of nuclear spin 
and the entropy of mixing of isotopes may be similarly added to give 
the total entropy of the gas. The values obtained in this way are more 
accurate than those obtained by any other method. Because the nuclear 
spin entropies of the reactants in a chemical reaction are identical with 
those of the products of the reaction, the nuclear spin entropy is usually 
not included in tabulated entropy values. 

Entropy Change in Isothermal Reactions.—For an isothermal reversi¬ 
ble reaction, the change in entropy can be calculated directly from the 
calorimetric value of the heat of the reaction and the temperature; for, 
from equation (7.12), AS = qr/T. The melting of ice at 0° under a pres¬ 
sure of 1 atmosphere is such a process. Here the heat of melting, 
AH — 1,436 cal, is the reversible heat qr and we have 

H20(c) - H20(liq); AH = 1,436 cal 

AS = 273"R) = 5.257 cal/deg (8.68) 

The quantity of entropy corresponding to 1 calorie per degree centigrade 
is frequently called the “entropy unit” (eu). There will obviously be a 
different entropy unit if the energy is expressed in joules or foot-pounds 
or if the temperature is expressed in degrees Fahrenheit absolute. The 
term entropy unit for the calorie per degree is, therefore, not justifiable 
logically but it is met in practice. 

For a chemical reaction proceeding reversibly at constant tempera¬ 
ture and constant pressure, the entropy change can be obtained from 
the calorimetric heat of reaction^A# = qP in exactly the same way. If 
the constant-pressure reaction (or the constant-volume reaction) is not 
thermodynamically reversible, the calorimetric heat of the reaction can¬ 
not be used directly in the calculation of the entropy change for the 
process. Only when the constant pressure process is reversible can we 
write qP = qr. Under this condition, from equations (2.34) &n,d (7.12)^ 

AH = r&S (8.69); 

In reactions that are not reversible, qP and qr are not equal. The differ-- 
ence between qP and qT (AH and T AS) at constant temperature is called 
the free energy change; in the reversible process there is no change in free 
energy. The free energy function is discussed later in more detail. 

1 Giauque, W. F., J. Am. Chem. Soc52, 4808, 4816 (1930). 
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Entropy Change in Actual Irreversible Processes.—It is evident from 
the above relations between qP and qr that the entropy change for a 
thermodynamically irreversible process cannot be obtained from the 
calorimetric heat of reaction. It is evident, also, that the difference 
between qP and qr might be used as a measure of the distance of a chemical 
reaction from the reversible equilibrium state. For this reason, a knowl¬ 
edge of the entropy change in a reaction is useful, for it permits calcula¬ 
tion of qr from the relation qr — T AS. This value can then be used for 
comparison with qP for the reaction. 

Because the entropy is a property with a definite value for each state 
of the substance, knowledge of the entropies of the substances entering 
into and resulting from a reaction permits easy calculation of the change 
in entropy resulting from the reaction. In this way, we can predict 
beforehand whether or not a given chemical reaction will proceed. In 
recent years, great progress has been made toward obtaining the entropy 
of the simpler chemical compounds. One method depends on measure¬ 
ment of heat capacities down to low temperatures, the entropy for each 
phase being obtained from the relation in equation (8.07). When phase 
changes occur, the entropy of transition, calculated by the method of 
equation (8.68), must be added to the entropy calculated from heat capaci¬ 
ties to give the total entropy of the phase present at the higher tempera¬ 
tures. In the other method applicable to gases, the entropy is obtained 
from spectroscopic data. Because more entropy data are becoming avail¬ 
able, the entropy function is coming into more general use. The entropy 
values, together with the calorimetric heat of reaction at constant pres¬ 
sure, permit the calculation of the free energy of reactions and therefore 
of the equilibrium constants, which are directly related to the free 
energies, under conditions where a direct measurement is difficult. Some 
of the uses of the entropy function will appear as we apply it. 

Entropy of Crystallization of Water at —10°.—The entropy of freezing 
of water to ice at —10° cannot be calculated from the heat of crystalliza¬ 
tion because the crystallization at this temperature does not proceed 
reversibly. Undercooled water freezes spontaneously to ice if a small 
crystal of ice is present or is formed as a nucleus for the crystallization 
of the water. For convenience, we shall assume that the heat capacities 
of ice and of water are constant over the temperature interval —10 to 
0°c. In Chap. 5, the molar heat capacities of water and ice within this 
range are given as 18 and 8.7 calories per degree, respectively. 

For finite temperature intervals the change of entropy with tempera¬ 
ture is, from equation (8.10) or (8.67), 

Si - Si = j* CfdlnT (8.70) 
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When the heat capacity is constant, this equation becomes simplified to 

CTi nri 

s2 — Si = cP / d In T = cP In •— (8.71) 
JTi h 

Between the temperature limits of —10 and 0°c, we have, on transforma¬ 
tion to common logarithms, 

070 ifi 

So - Si = Cp X 2.303 log 20375 

= Cp X 2.303(2.43642 - 2.42022) = Cp X 0.0373 

Between these temperatures, the molar entropy change for ice is 

S273 — s263 == 8.7 X 0.0373 = 0.324 cal/deg 

and that for water is 

s*273 — s263 = 18.0 X 0.0373 = 0.671 cal/deg 

These entropy changes correspond, except for sign, to steps bf and b 
in Fig. 8.1. The entropy change for the reversible melting (step a') is 

b 
-0.67/ 

Water,-IO °c Wafer, 0°c 

-4.9/0 a a' -5.257 

b' 
0.324 

Fig. 8.1.—Entropy changes per mole of water (in calories per degree). 

found in equation (8.68) to be 5.257 calories per degree. From these 
values, the molar entropy of freezing of water to ice at — 10°c (step a) 

is seen to be 

Ice,-IO° c Ice, 0°c 

a = a! + b' — b 
= -5.257 - 0.324 - (-0.671) 
= —4.910 cal/deg 

The entropy of fusion of ice at —10° is opposite in sign; it equals +4.910 
calories per degree per mole. 

The same results are obtained when this process is described in the 
form of chemical equations. We have then 

H20(c, 273°) = H20(c, 263°); AS = -0.324 cal/deg 
H,0(liq, 263°) = H20(liq, 273°); AS = 0.671 cal/deg 
H20(liq, 273°) = H20(c, 273°); AS = -5.257 cal/deg 
H20(liq, 263°) = H20(c, 263°); AS - -4.910 cal/deg (8.72) 
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The value of the entropy change for the crystallization of water at 
263.16°k enables us to calculate the heat of crystallization for the reversi¬ 
ble reaction at this temperature. We have, from equation (7.12), 

qr = T AS = 263.16 X -4.910 = -1,292 cal 

This may be compared with the corresponding calorimetric heat of melt¬ 
ing at constant pressure qP = AH = —1,343 cal, calculated in Chap. 5. 

Problems 

8.1. (a) What is the maximum conversion factor of a steam engine with a con¬ 

denser at 30°c and a boiler at 150°c? At 200°c? 

(6) What is the pressure of saturated steam at 200°c? If mercury were used in the 

boiler at this pressure, what would be the maximum conversion factor of the engine? 

8.2. A refrigerating machine maintains a refrigerator at 32°f in a room at 86°f. 

What is the minimum amount of work required to remove 1 kilocalorie of heat from 

the refrigerator? How much heat is given to the room in this process? If the 

refrigerator is maintained at 14°f in the same room, how much work is required to 

remove the kilocalorie of heat? How much heat is given to the room? 

8.3. (a) The entropy of a mole of oxygen at 25°c and 1 atmosphere pressure is 

49.003 calories per degree. Using the heat capacity equation from Table 3.3, calcu¬ 

late the entropy of oxygen at 100°c. 

(6) Assuming that oxygen expands as a perfect gas, calculate the entropy of a 

mole of oxygen at 0.1 atmosphere and 25°c. 

(c) What will be the entropy of oxygen at 100°c and 0.1 atmosphere? 

8.4. The molar heat of melting of iodine at its melting point 113.G°c is 

3,740 ± 20 cal. 

What is the entropy of melting of iodine? 

8.5. Assume the entropy of iodine at 25° to be 27.9 calories per degree per mole. 

WTith the aid of the heat capacity equation of iodine in Prob. 3.9, calculate the entropy 

of solid iodine at 113.6°c. 

8.6. Combine the results of Probs. 8.4 and 8.5 to obtain the entropy of liquid 

iodine at its melting point U3.6°c. 

8.7. Calculate the minimum work in kilowatt-hours that would be necessary to 

separate, by an isothermal reversible process, 1,000 cubic feet of air at 20°c and 1 

atmosphere into nitrogen and oxygen, each at 1 atmosphere. Assume that the ideal 

gas law holds and that air is 21 per cent oxygen and 79 per cent nitrogen. 

8.8. Calculate the entropy change for the separation of each gas in Prob. 8.7 from 

the mixture. 

8.9. What will be the minimum amount of work required by a reversible refrig¬ 

erator cycle that adds 1,000 calories of heat to a room at 20°c, the temperature of the 

out of doors (refrigerator) being 10°c (50°f)? 0°c? — 10°c (14°f)? — 20°c (— 4°f)? 
How many kilowatt-hours of electricity are required to do this work? What will be 

the cost if the price of electricity is li cents per kilowatt-hour? Compare with the 

cost of 1,000 calories of heat obtained from natural gas (1,100 Btu/cu ft) at 60 cents 

per 1,000 cubic feet. 

8.10. By the methods used in deriving equation (1.11) or (8.45), show that 

fdT\ SdS\ (dT\ 

\dPjs \dP)T\ds)p 
(8.73) 
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From equation (8.73) derive the relation 

Cp 
T (dV/dT)P 

(dT/dP)s 
(8.74) 

8.11. It appears from equation (8.74) in Prob. 8.10 that heat capacity can be 

calculated from the measured values for the coefficient of thermal expansion and from 

the adiabatic temperature-pressure coefficient. Values of these coefficients have 

been measured by J. S. Burlew [J. Am. Chem. Soc., 62, 681, 690, 696 (1940)] for ben¬ 

zene and toluene. The adiabatic (isentropic) change of temperature with pressure 

for benzene is represented between 5 and 80°c by the equation 

- 2.12695 X 10~2 + 10.6806 X 10”** + 2.7715 X 10“*73 deg/bar 

where t is in degrees centigrade. Similarly, the coefficient of thermal expansion of 

benzene is represented by the equation 

1,000 = 1.2965 + 3.503 X 10~3/ + 1-779 X 10~5*2 cc/deg gram 

From these equations, calculate the heat capacity of benzene in absolute joules 

and in defined calories per gram at 20, 50, and 80°c. 

Note: 1 bar = 10° dynes/cm2. 

8.12. Calculate the difference in entropy between Ne20 and Ne22 at 25°c and 

1 atmosphere. 

8.13. From the data in Table 5.1, calculate the values for the entropy of evapora¬ 

tion of liquid water to form saturated vapor at 0, 25, 50, 75, and 100°c. 

8.14. The heat content of compounds at high temperature is frequently expressed 

in terms of Hr ~ h29r.i6 where hr is the molar heat content at the temperature T and 

H298.16 is the molar heat content in the standard state at 298.16°k. From the relations 

in equation (8.9), (8.10), or (8.16), show that 

ds — y, d(ur — h298.16) 

Integrate the right side of the equation by parts and show that the increase in entropy 

between the temperatures T = 298.16 and T = T is 

ST ““ 8298.16 
Hr — H298.16 

T 4- r ./298.16 

Hr — H29S.I6 

T 
d In T 

8.16. The molar heat capacity equation for manganese dioxide between 298 and 

780°k is given by G. E. Moore [J. Am. Chem. Soc., 66, 1398 (1943)] as 

cp = 16.60 + 2.44 X 10-»r - 

From this equation, derive the equation for the molar entropy increment for manga¬ 

nese dioxide at the temperature T. 

Sr - s,M.u - 38.223 log T + 2.24 X 10^r + —'- 97.491 

If the value of S298.i6 is 13.9 ± 0.4 calories per degree, what is the value of s at 500°c? 



CHAPTER 9 

EQUILIBRIUM IN SIMPLE SYSTEMS 

The first law equation may be combined with the second law rela¬ 
tion Dgr = TdS to give the equation 

dE = TdS - Dwr (9.1) 

Under the restriction that the only work is work of expansion, we derived 

equation (8.1), which is 

dE = TdS - PdV (9.2) 

The restriction above bars the application of equation (9.2) to a reaction 
system in which other work, such as electrical work, can be performed. 
The equation can be applied, however, to systems, including heterogeneous 
systems, that do not undergo chemical reaction and to mixtures in which 

no chemical reaction occurs. 
From equation (8.1) was derived the equation 

which is equation (8.24). The partial change of entropy with volume 
can, therefore, be obtained from experimental data on the partial change 
of pressure with temperature. 

Clausius-Clapeyron Equation.—Let us consider a system composed 
of a pure substance that may be present in two or more phases. If two 
phases coexist over long periods of time, either an equilibrium between 
the two must exist or the rate of transformation of one phase to the 
other must be infinitely slow. If the rate is slow enough, the two phases 
may exist independently of each other so that they may be considered 
as two separate constituents of the system. Among the different phases 
that may be present in a simple system are several solid phases, a liquid 
phase, a gas phase, and sometimes an intermediate phase such as the 
liquid crystal phase. The transformation between two solid phases is 
usually called a “transition,” that between a solid and liquid, a “melt¬ 
ing” or “freezing,” that between solid and gas, a “sublimation,” and 
that between liquid and gas, a “vaporization” or “evaporation.” All 
these equilibrium transformations of the various phases can take place 
at constant pressure. The heats of transformation may, therefore, be 
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heats at constant pressure and, at the same time, reversible heats. 
Under these conditions, 

gP = A Up = qr (9.4) 

These equilibrium processes may be carried out at constant temperature 
as well as at constant pressure. For the isothermal processes, we have, 
from equation (7.12), 

qr = T AS 

so that, at constant pressure, 

AHp = T ASP (9.5) 

If two phases of a pure substance are present at the temperature T7, 
each possesses an entropy value characteristic of the state of the sub¬ 
stance and of the quantity of the phase. The entropy of the system 
varies with the relative quantities present; it will increase if the phase 
with the lower specific entropy is converted to the phase with the higher 
specific entropy. But the volume of the system depends in the same 
way on the relative amounts of the two phases present. The volume 
increases if the phase with the lower specific volume is converted to the 
phase with the higher specific volume. At constant temperature, there¬ 
fore, both entropy an-d volume depend directly on the relative quantities 
of the two phases so that the derivative (dS/dV)r may be written more 
simply as 

(#),.=($), <»•«> 
The equilibrium systems are also characterized by the fact that the 

pressure of the system does not depend on the volume of the system but 
only on its temperature. This follows from the fact that the equilibrium 
pressure is independent of the relative amounts of the two phases present. 
If the pressure does not vary with the quantity of the two phases, it 
cannot vary with the volume. The equilibrium pressure of a water and 
vapor system at 20°c is the same whether 90, 50 or 10 per cent of the 
water is in the form of vapor, the remainder being present in the liquid 
phase. The volume of the system depends on the relative amounts of 
vapor and liquid, for the volume occupied by a glam of saturated water 
vapor at this temperature is approximately 58,000 ml compared with a 
volume of 1 ml for the liquid. At the same time, the entropy of the 
system depends on the relative amounts of liquid and gas whose molar 
entropies differ by the entropy of evaporation of the liquid. 

Because the pressure of the equilibrium system is a function of the 
temperature alone, we may remove the restriction of constant volume 
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from equation (9.3) and combine with it (9.6) to obtain 

dP /AS) 
dT \AV/r 

This equation, when combined with equation (9.5), gives 

<dP / AH \ 
d T \TAVjr,* 

(9.7) 

(9.8) 

the well-known Clausius-Clapeyron equation, which was first deduced from 
the Carnot cycle by Clapeyron and later derived from thermodynamics 
by Clausius. Equation (9.8) is exact, containing no approximations. 
We shall, therefore, call it the exact form of the Clausius-Clapeyron 
equation. 

The changes represented by AS and AH accompany the volume change 
in the system. All these changes result from the transformation of one 
phase to the other at the pressure P and the temperature T. The functions 
H, Sj and F are extensive properties that may represent any amount of 
the substance. If AH is the heat of melting of 1 mole, AF is the volume 
change when 1 mole of the solid is melted to form 1 mole of the liquid. 
If 1 gram of the substance is considered, AII is the change in heat con¬ 
tent per gram and AF the change in specific volume of the substance. 

Equation (9.8) may be used directly without integration for processes 
in which dP/dT is approximately constant over the range considered. 
For example, for the equilibrium, 

H20(c) = H20(liq) 

dP/dT can be calculated from the known values of AH, T, and AF at 
the pressure P and the temperature T. In a numerical solution of the 
problem, consistent units must be used. If P is expressed in atmospheres 
and the molar volumes of water and ice in cubic centimeters, AH must 
be expressed as the molar heat of melting in cubic-centimeter-atmospheres. 
However, since the specific data are commonly reported for water, we 
have for the specific quantities1 at T = 273.16°k, 

AH — 333.6 joules = 333.6 X 9.870 cm3-atm/gram 
AF = Vi — Vc = 1.0001 - 1.0908 = -0.0907 cm3/gram 

The change in melting point with pressure is, therefore, given by 

dT _ 273.2 X (—0.0907) 
dP 333.6 X 9.870 

—0.00753 deg/atm 

lData from the “International Critical Tables/' McGraw-Hill Book Company, 
Inc., New York, 1926. 
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The freezing point of water under its own vapor pressure (4.6 mm) 
is evidently different from the freezing point of water exposed to air at 
a pressure of 1 atmosphere. The latter freezing point defines 0° on the 
centigrade scale. If we neglect any freezing point lowering because of 
the dissolving of air in water, we see that water under a pressure of 4.6 
mm will freeze at +0.0075°c. 

Here the melting temperature decreases with rising pressure; for AF 
for water is negative, water being denser than ice. Antimony also fur¬ 
nishes an exception to the general rule that the solid state is denser than 
the corresponding liquid state. Because AH and T are always positive, 
the sign of dP/dT must correspond to the sign of AV. If cLP/dT7, T, and 
AV are measured directly, the heat of melting can be calculated. This 
method of obtaining heats of melting is especially useful at high pressures, 
where direct determination of the heat of melting is difficult. 

The other forms of ice (high pressure) are denser than water so that, 
for them, AV for the melting is positive and the melting point is raised 
by increased pressure in the normal manner. 

Clausius-Clapeyron Equation and Vapor Pressures.—In a system 
where equilibrium exists between a liquid and its vapor or between a 
solid and its vapor, the equilibrium pressure, called the “ vapor pressure/7 
changes rapidly with temperature and not at all linearly. Thus, the 
vapor pressure of water1 on going from 0 to l°c increases 0.343 mm; 
the increase between 50 and 51°c is 4.69 mm, and that between 100 and 
101°c is 27.51 mm. The value of dP/dT in atmospheres per degree 
at 0° is 0.0004373, and that at 1° is 0.0004662, an increase of nearly 7 
per cent for the 1° interval. At 50 and 100°, the values of dP/dT are 
0.00604 and 0.03570 atmosphere per degree, respectively. It is evident 
that for this liquid-vapor equilibrium dP/dT does not remain constant 
over wide temperature ranges so that equation (9.8) must be integrated. 
However, it cannot be integrated unless AH and AV can be expressed 
as functions of temperature or pressure. 

When one phase is gaseous and the other condensed, AF may be 
expressed as a function of temperature and pressure by the use of two 
simple approximations. Because the molar volume of a gas is large 
compared with that of the liquid (or solid), the change in volume AF 
is approximately that of the gas itself, so that, for the evaporation of 1 
mole 

Av = yg — Yi = v, (9.9) 

But the molar volume vg of a gas is given approximately by the ideal 

1 From the data of N. S. Osborne and C. H. Meyers, J. Research Natl. Bur. Stand¬ 
ards, 13, 1 (1934). 
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gas equation, so that 

(9.10) 

When this value of Av is substituted in equation (9.8), Ah being the molar 
heat of evaporation (or sublimation), it becomes 

dP AhP 

dr RT2 
(9.11) 

which is readily transformed to 

dP/P d In P 
d?7 dr RT2 K } 

Equation (9.12) can be integrated whenever Ah is a known function of 
T. When Ah does not vary with temperature, equation (9.12) may be 
transformed to 

dInP=~j (9.13) 

which becomes, on integration, 

In P = - A" 1 + V (9.14) 

On transforming to common logarithms, we have 

Ah 1 Tf 
log P = - 273(f20jR f + 273026 <'9'' 

Ah and R must be expressed in the terms of the same energy unit. If 
Ah is in calories, R has the value 1.9872 calories per degree and 2.3026 
R becomes 4.5757. Where the integration constant V equals 2.3026/, 
equation (9.15) becomes 

log P = 4 5757 J, + I (9.16) 

which is frequently written in the form 

log P = =A+B (9.17) 

These equations are equations for a straight line of the type y = ax + b. 
If log P is plotted as ordinate against 1/T as abscissa, the resulting curve 
is a straight line with a negative slope equal to A (or Ah/4.5757) and an 
intercept on the l/T-axis equal to B. The numerical value of B depends 
on the units in which P is expressed. When P is expressed in millimeters 
of mercury, B is greater by 2.8808 (which is log 760) than when P is 
expressed in atmospheres. In the “ International Critical Tables,where 
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the joule is the energy unit and R is assumed to be 8.315 joules per degree, 
vapor pressure equations are usually given in the form 

log P„un = -0.05223 ~ + B (9.18) 

This equation corresponds to (9.16), for here A = An(in joules), and 
(1/2.3026/?) = 0.05223 degree per joule. 

These equations are used to express vapor pressure data in spite of 
the computational labor required to solve equations involving logarithms 
and reciprocals of the absolute temperature. For several good reasons, 
physical chemists choose functions that can be plotted to give straight 
lines. When inaccurate vapor pressure data are plotted on a log P 
vs. l/T diagram, they are identified by their refusal to fall on or near a 
straight line. The straight line permits more accurate interpolation 
between experimental points, and it usually permits more accurate extrap¬ 
olation for values lying outside the experimental values. In addition, 
fewer good data are required to establish a straight line than any other 
type of curve. 

The Clausius-Clapeyron equation is frequently met in the form of 
the definite integral. If equation (9.13) is integrated between the tem¬ 
peratures T\ and where the vapor pressures are Pi and P2, Ah remain¬ 
ing constant, we have 

. P2 __ Ah / 1 _ 1 \ _ An / 1 1 \ 

Pi ~ “ R \T2 “ T[)~ ~R \T! ~ Yj 
(9.19) 

When R is expressed in calories per degree, equation (9.19) may be 
transformed to 

, P2 _ Ah Zt2 — T A 
gPi 4.5757 V TXT2 ) 

(9.20) 

This equation rests on all the approximations used in transforming equa¬ 
tion (9.8) to equation (9.13). 

Validity of the Integrated Clausius-Clapeyron Equation.—In deriving 
equation (9.13), we made three assumptions, namely, that the specific 
volume of liquid is negligible compared with that of the vapor, that the 
Volume of the vapor can be expressed by the ideal gas equation, and that 
the heat of evaporation is not a function of the temperature. At low 
pressures, the molar volume of the gas is large, and the first approxima¬ 
tion can be justified. However, a gas in equilibrium with its liquid, 
especially at the higher pressures, cannot be ideal. The presence of the 
liquid indicates that attractive forces exist among the molecules, great 
enough to liquefy the gas when the molecules approach each other closely. 
Furthermore, the heat of evaporation is not independent of the tempera- 
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ture; and it cannot be, so long as the heat capacities of gas and liquid are 
not equal. The heat of evaporation changes with temperature according 
to the relation d Ah = Acp dT, derived as equation (5.25). The heat of 
evaporation of water changes from 10,800 calories per mole at 0° to 
9,700 calories per mole at 100°, as indicated in Table 5.1. 

At the critical point, which is the highest point on the vapor pressure 
curve, the heat of evaporation vanishes and the specific volumes of gas 
and liquid become equal to each other so that we have Ah = 0 and 
Av = 0. Equation (9.8), therefore, becomes 

T 
d P 
d T 

0 
0 

(9.21) 

where 0/0 is indeterminate. This relation is evidently greatly different 
from the relation in equation (9.11). 

In spite of these difficulties, the integrated equation fits the experi¬ 
mental vapor pressure data surprisingly well over a wide temperature 
range, even near the critical point. If the experimental data are plotted 
on a log P vs. 1/T diagram, they fall on a line approximately linear or 
with but a slight curvature. We, therefore, conclude that the approxi¬ 
mations involved in the above assumptions tend to cancel each other, 
so that the final equation is better than either of the assumptions made 
in deriving it. 

General Vapor Pressure Equations.—When accurate vapor pressure 
data over an extended range of temperature are plotted on a log P vs. 
1/T diagram, a slight curvature is usually found. This curvature can 
be partially accounted for in terms of a variation of Ah with temperature. 
If Ah varies with temperature, according to equation (5.31), we have 

Ah = Ah0 + aT + m12 + iyT* (9.22) 

When this value of Ah is substituted in equation (9.13), we obtain 

d In P = — (— + - + - + dT 
R \ T2 ^ 2^ 3 ) 

When integrated, this equation becomes 

ln p = i (- + °ln T + iT +1?’2) +1 <9-23> 

This is an equation of the type 

log P - -A + B log T + CT + DT* + E (9.24) 

When the energy unit is the calorie, the constants of equation (9.24) 
are related to those of equation (9.23) by the following: 
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A -= ^H° . p __ 0L n — $ 
4.5757' 1.9872' 2 X 4.5757' 

D = 6 X 4.5757' E = 2^3026 (9-25) 

Empirical equations, such as (9.24), are used to represent vapor pressures 
accurately. Other empirical equations represent slight modifications. 
Thus, Keyes1 has used equations of the type 

log P = + CT + DT2 + E (9.26) 

which contains all but the log T term of equation (9.24). 
Although equations, such as (9.24) and (9.26), with more than two 

constants may be fitted accurately to vapor pressure data, they are not 
easy to use in the usual numerical computations. A three-constant 
equation corresponding in simplicity to the two-constant equation (9.17) 
is the Antoine equation2 used as a vapor pressure equation at the National 
Bureau of Standards. This equation has the form 

log P = a- (9.27) 

Comparison with equation (9.17) shows that the constant a corresponds 
to B, the numerical value of both being greater by log 760 = 2.8808 when 
pressures are given in millimeters rather than in atmospheres. Similarly, 
the constant b corresponds to A. The constant c corresponds to the ice 
point temperature, 273.16°, but in practice its values are somewhat 
lower. In this equation, the temperature t is in degrees centigrade. 
The Antoine equation also appears in an alternative form 

log P = a- Y—t (9.28) 

where T, as before, is the temperature in degrees Kelvin. The constant 
d is related to c by the equation 

T - d = t + c (9.29) 

Heat of Evaporation from Vapor Pressure.—The latent heat of 
evaporation of the liquid Ah can be calculated from vapor pressures with 
the aid of the above equations. If two vapor pressures are known, the 
constant value of Ah is obtained from equation (9.16) or (9.20). If the 
vapor pressures are expressed in the form of equation (9.24), the value 
of Ah as a function of the temperature is obtained. The relations of 

1 For example, see J. Am. Chem. Soc.} 40, 42 (1918). 

* Antoine, C., Compt. rend., 107, 681 (1888). 
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equations (9.25) may be used to calculate the constants of equation 
(9.22). 

Because of the approximations made in deriving the integrated 
Clausius-Clapeyron equation, the heat of evaporation calculated from 
vapor pressures has, in general, a higher value than the calorimetric 
value. At moderate pressures, it has the right order of magnitude. 
Where direct calorimetric data do not exist, the integrated Clausius- 
Clapeyron equation furnishes a good method for estimating heat of 
evaporation. Where vapor pressures are accurately known, so that 
dP/dT can be evaluated with good precision, and the specific volume of 
the vapor is known, the heat of evaporation can be calculated from the 
exact differential form of the Clausius-Clapeyron equation. Because 
this form of the equation includes no approximations, the accuracy of 
the heat of evaporation calculated by its use is limited only by the 
accuracy of the vapor pressure and specific volume data. 

Estimation of Vapor Pressures from Limited Data.—We have stated 
that, when experimental values of log P are plotted against 1 /T, the 
points lie approximately on a straight line; with the more accurate data, 
a curve is required to fit the experimental points. If a straight-line 
equation is used to fit the curve there are systematic positive and negative 
deviations of the experimental points from the straight line. When the 
data are not sufficiently accurate and the experimental points scatter 
about any line, the equation for a straight line is often as accurate as 
the experimental points. 

Only two experimental points are required to establish a straight line. 
If the normal boiling point of a liquid is known, and in addition the 
boiling point at some lower pressure, these values of Pi, Ti and P2, T2 
can be substituted in equation (9.16) to evaluate the constants Ah/4.5757 
and I. The vapor pressure at any other temperature can then be 
calculated. 

If the heat of evaporation Ah and the boiling point TB are known, / 
can again be evaluated. At the normal boiling point, P is 1 atmosphere, 
and we have, from equation (9.16), 

I = 
Ah 

4.5757Pb 
(9.30) 

If the pressure is stated in millimeters, P = 760 mm at the boiling point, 
and 

I = log 760 + 
Ah 

4.5757P* 
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By making an additional assumption, we can estimate the vapor 
pressure curve of a liquid, knowing only the boiling point. For a 
“normal” liquid, Trouton found that the molar heat of evaporation 
divided by the boiling temperature on the absolute scale is a constant 
with a value of about 21 calories per degree. Associated liquids such as 
water and ammonia have a volume of Au/TB of about 26 calories per 
degree. Trouton’s rule is discussed in more detail later. If we accept 
his value of 21 calories per degree, we have, from equation (9.30), for a 
normal liquid (when P is in atmospheres), 

1 - iSs -4589 

If P is in millimeters, we have, from equation (9.31), 

I = 2.881 + 4.589 = 7.470 

The heat of evaporation can also be estimated from the known boiling 
point and the relation Ah/Tb = 21. 

Let us apply the method to ethyl iodide, which has a boiling point of 
72.5°c. Using Trouton's rule, we have 

Ah = 21(72.5 + 273.2) = 7,260 cal/molc 

The vapor pressure equation becomes 
1 KQ7 

log Pmm = - + 7470 

At 30°c, we find that log Pmm = 7.470 — 5.234 and 

P = 172 mm 

The experimental value1 is 167.5 mm. Agreement to this degree of pre¬ 
cision may be expected. 

Duhring’s Rule.—An empirical rule proposed by Duhring2 in 1878 
has proved useful in the estimation of vapor pressures over large tempera¬ 
ture ranges. Though it does not give the highest precision, it gives values 
that are approximately correct. Diihring’s rule indicates a relation 
between the boiling temperatures of two different substances at different 
pressures. When one substance has a vapor pressure Pi at the tempera¬ 
ture th a second substance has the same vapor pressure at the tempera¬ 
ture 0i. At the temperature to, the first substance has a vapor pressure 
of P2; the second substance has the same pressure at the temperature 02. 
These temperatures are related to each other by the equation 

= K (9.32) 

1 “International Critical Tables,” Vol. 3, p. 217. 
2 “Neue Grundgesetze zur rationalen Physik und Chemie,” Leipzig, 1878. 
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which is an equation for a straight line. The straight line is plotted in 
Fig. 9.1 where the t’s are plotted as ordinates and the 0's as abscissas. 
The slope of the line is equal to K. 

Boiling temperature of second substance 

Fig. 9.1.—Duhring’s rule relations. 

According to this rule, which Diihring proposed after a study of 
about 50 substances with differing chemical and physical properties, 
the whole vapor pressure curve of a substance can be obtained from two 
experimental points by using some knowrn vapor pressure curve as a 

Table 9.1.—Boiling Temperatures of Water Calculated by DOtiring’s Rule 

with Ethanol as Reference Substance. Ratios of Absolute Boiling 

Points of Water and Ethanol at Various Pressures 

(The reference temperatures are in bold-faced type) 

Temperature 

Vapor 

pressure, 

mm 

Temperature of water 
Ratio of 

Ty °k 
t, °c 

w 

Calculated 
temperature, 

t, °c 

Observed 
temperature 

t', 0C T'y °K 

absolute 
boiling 

point, 
r/T 

273.2 0 12.2 13.84 14.3 287.5 1.052 

283.2 10 23.6 24.84 24.9 298.1 1.053 

293.2 20 43.9 35.84 35.7 308.9 1.054 

303.2 30 78.8 46.84 46.8 320.0 1.055 
313.2 40 135.3 57.84 

! 
57.9 331.1 1.057 

323.2 60 222.2 68.84 68.84 342.0 1.058 
333.2 60 352.7 79.84 79.8 353.0 1.059 
343.2 70 542.5 90.84 90.83 364.0 1.061 
348.2 75 666.1 96.34 96.34 369.5 1.061 

361.5 78.32 760.0 100.00 100.00 373.2 1.062 

353.2 80 812.6 101.84 101.88 375.1 1,062 
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reference. The rule holds best when the reference substance is similar 
to the substance whose vapor pressure curve is desired, but the rule holds 
fairly well even when a metal such as mercury is compared with an asso¬ 
ciated liquid such as water. Table 9.1 shows the degree of correspond¬ 
ence when alcohol is compared with water at various temperatures. For 
alcohol the temperatures selected for substitution in equation (9.32) are 
0i = 50°, 02 = 78.32°. At these temperatures the vapor pressures are 
222.2 and 760 mm respectively. From the vapor pressure tables for 
water in the “International Critical Tables”l the temperatures corre¬ 
sponding to these pressures are 68.84 and 100°, designated by t\ and t2, 
respectively. We have, then, 

h-h _ 100 - 68.84 
02 - 0i 78.32 - 50 

1.100 

Any boiling temperature of water t is related to the corresponding boiling 
temperature of alcohol 0 by the equation 

t = K0+(ti- K$i) (9.33) 

which is obtained by rearranging equation (9.32). When the proper 
values are substituted in equation (9.33), we have 

t = 1.1000 + 13.84 

The fourth column of Table 9.1 gives the boiling temperatures of water 
calculated from this equation. The fifth column gives the corresponding 
temperatures obtained by interpolation in the vapor pressure table for 
water. Except at the lower temperatures the degree of correspondence 
is good. 

Some of the approximations on which Diihring’s rule rests will 
become evident from the derivation of the rule from equation (9.20). 
Using primes to designate the reference substance, we have 

. Pi _ Ah' (T't - T[\ 
°g P[ 4.5757 V T\l\ / 

and, for the other substance, 

. P* = Ah (Tj - T A 
ogP1 4.5757 V TJ\ ) 

Now, if the temperatures are so selected that Pi = Pi and Pi = P'2, 
log Pi/PJ = log P2/Ph and 

Ah' ( T't - T[ 

T'fflT 
T, ~ T\ 

TiT2 ) 
(9.34) 

1 Vol. 3. pp. 211-212. 
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If we designate (T'2 — T[) by (h — U) and (7’2 — T,) by (02 — 0i), we 

obtain, from equation (9.34), 

(t, ~ t,) = Ah T[Ti 
(02 — 0,) Ah' TirJ\ 

(9.35) 

Comparison with equation (9.32) shows that if Diihring’s rule is valid 

the following equation must hold: 

Ah 

Ah' 

T' 
X ,~ = K (9.36) 

The last column of Table 9.1 shows how closely the ratio between the 

absolute boiling temperatures remains the same for the different pressures. 

Table 9.2.—Heats of Evaporation of Ethanol and Water at Various Pressures 

(Til calories per mole) 

Vapor 

pressure, mm 

Temperature, °c Molar heat of vaporization 

Ah'/Ah 

Ethanol Water 
Ethanol 

Ah 

Water 

Ah' 

12.2 0 14.3 10,130 10,620 1.048 
43.9 20 35.7 10,020 10,410 1.039 

135.3 40 57.9 9,910 10,170 1.026 
352.7 60 79.8 9,690 9,940 1.026 
760 78.3 100 9,410 9,720 1.032 

Table 9.2 shows similarly how the different values of the ratio Ah'/Ah for 

water and ethanol vary with temperature. These data indicate the 

accuracy with which vapor pressures may be calculated from Duhring’s 

rule. Although the agreement is not too close, the method is useful, for 

vapor pressures calculated in this way are more accurate than many 

published vapor pressure data. 

The equation of Dtihring may be applied to solutions as well as to 

pure liquids. Thus, a 20 per cent aqueous NaCl solution has vapor 

pressures of 14.8 and 760 mm at the temperatures 20 and 104.72°,1 

respectively. The boiling temperatures of pure water at these pressures 

are 17.30 and 100°, respectively. Using equation (9.32), we find that 

the temperature of pure water corresponding to a boiling temperature 

of 50° for the salt solution is 46.57°c. At 46.57°c, pure water has a 

vapor pressure of 77.9 mm. Compare this pressure with the tabulated 

value for the vapor pressure of the salt solution at 50°c, namely, 78.1 mm. 

Similarly, the total pressures2 (including the partial pressures of water 

1 “International Critical Tables,” Vol. 3, p. 370. 

* Ibid., p. 362. 
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and ammonia) of an aqueous 20 per cent solution of NH3 at 0 and 50°c 
are 81.75 and 783.5 mm, respectively. The pressure at 30°c is 351.6 
mm. If water is used as the reference substance, its temperature cor¬ 
responding to 30° is 79.52°, at which temperature the vapor pressure is 
348.3 mm. The deviation here is 3.3 mm, or 1 per cent. 

Baker and Waite1 report that “ . . . the relationships expressed by 
Dtihring’s rule appear to hold for unsaturated aqueous solutions where 
the solute does not exert an appreciable vapor pressure, more accurately 
than data which have been determined without regard to (1) whether 
the concentration is high or low, (2) whether or not the solute ionizes, 
(3) whether or not the molecules or ions of the solute take up water of 
hydration or association. It is not at all necessary that the solution be 
‘ideal’ to conform rigorously to the law.” Leslie an^ Carr2 investigated 
the applicability of the rule to organic substances vs. water. They found 
it to hold for all types of binary systems including those whose compo¬ 
nents are partly or completely soluble and whose boiling point curves 
show a maximum or minimum or neither. They concluded that “the 
generalization of Diihring’s rule is as accurate as most data on vapor 
pressures recorded in the literature.” 

Entropy of Evaporation.—The evaporation of a liquid at a pressure 
equal to its saturated vapor pressure is an equilibrium process and, 
therefore, a reversible process. At the same time, if the evaporation 
is carried out isothermally, it is a constanb-pressure process. For this, 
as for any other reversible process at constant pressure, we may write 

A If 
qp = A H, A S = ™ (9.37) 

When a mole of water is transformed to a mole of vapor at the normal 
boiling point, we have 

H20(liq, 1 atm) = H20(g, 1 atm); 
Q 717 1 

AssTsoe = = 26.040 cal/deg 

From equation (9.37), it appears that the entropy of evaporation is 
identical with Trouton’s “constant.” Trouton found empirically that 
Ah/T for a number of liquids at their normal boiling points were approxi¬ 
mately constant at 21 calories per degree, but that water and other 
associated liquids gave abnormally high “constants” of the order of 
26 calories per degree. Table 9.3 lists the values of the entropy of 
evaporation, the Trouton constant, for a number of hydrocarbons. 

1 Baker, E. M., and V. H. Waite, Chem. Met. Eng.} 26, 1137 (1921). 
8 Leslie, E. N., and A, R. Carr, Ind. Eng. Chem., 17, 810 (1925). 
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Observe the general increase of entropy of evaporation at one atmosphere 
pressure with the increase in boiling point. 

Table 9.3.—Heat and Entropy of Evaporation of Some Hydrocarbons* 

(For the evaporation of 1 mole of the liquid to the gas at the saturation pressure and at 

the indicated temperature) 

Compound Formula 

Normal 

boiling 

Heat of evaporation, 

Ah, at saturation 

pressure, kcal 

Entropy of 

evaporation, 

As, at satura¬ 

tion pressure 

at the normal 

boiling point, 

cal/deg 

point at 

1 atm, °c 
At 25°c 

At normal 

boiling point 

Methane. CH4 — 161.6 1.955 17.52 
Ethane. c2h6 - 88.9 3.514 ! 19.07 
Propane. C3H8 - 42.1 3.605 4.487 19.42 
n-Butane. 

2-Methylpropane (iso- 

C,H,„ - 0.50 5.035 5.352 19.63 

butane). C4H,„ - 11.72 4.570 5.089 19.47 
n-Pentane. 

2-Methylbutane (iso- 

c6H12 36.08 6.316 6.160 19.92 

pentane). 

2,2-Dimethylpropane 
CfiHn 27.86 5.878 5.842 19.41 

(neopentane). CfiH]2 9.45 5.205 5.438 19.24 
n-Hexane. c6h14 68.74 7.540 6.935 20.28 
n-Heptane. c7ii16 98.43 8.735 7.660 20.61 
n-Octane. CgH 18 125.66 9.915 8.360 20.96 
n-Nonane. O9H20 150.80 11.099 9.030 21.30 
Benzene. 

Methylbenzene (tolu¬ 

C«H6 80.10 8.090 7.353 20.81 

ene) . 07h8 110.62 9.080 8.00 20.85 
Ethylbenzene. c8h10 136.19 10.097 8.60 21.01 
1.2- Dimethylbenzene 

(o-xylene). 

1.3- Dimethylbenzene 

c8h10 144.42 10.381 8.80 21.07 

(m-xylene). 

1,4-Dimethylbenzene 
c8h10 139.10 10.195 8.70 21.10 

(p-xylene). c8h10 138.35 10.128 8.62 20.95 

* American Petroleum Institute Research Project 44 of the National Bureau of Standards. Selected 
Values of Properties of Hydrocarbons. Table lm, Heat and Entropy of Vaporization, at 25°c and the 
Normal Boiling Point, Mar. 31, 1944; Table 2m, ibid., Mar. 31, 1944; Table 3m, ibid,, Mar. 31, 1944; 
Table 4m, ibid,, Mar. 31, 1945; Table 5m, ibid., June 30, 1944, revised Mar. 31, 1945. 

Table 9.3 also lists values for the heat of evaporation at the saturation 
pressure, both at 25°c and at the normal boiling point. For all the 
liquids, the heat of evaporation is greater at the lower temperature. 
In general, the heat of evaporation of a liquid increases somewhat with 
decreasing temperature because the liquid has a greater heat capacity 
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than the vapor. For water, an “associated” liquid, this increase is 
greater than normal, because decreasing temperature favors association 
in the liquid state. The change of heat of evaporation of water with 
temperature was indicated in Table 5.1. It is evident, therefore, that 
the entropy of evaporation must increase at the lower temperatures both 
because AH increases and because T decreases. Thus, for the change 
in entropy on the evaporation of a mole of water, we have, at 50°c, 

As323.i6 = = 31.740 cal/deg mole 

and, at 0°c, 

As273.i6 = = 39.416 cal/deg mole 

At the critical temperature where Ah is zero, the entropy of evaporation 
must vanish. Because the entropy of evaporation of a liquid decreases 
with increasing temperature, as shown above, it is evident that Trouton 
was required to fix a reference temperature. 

We should point out here that the normal boiling temperature is an 
accidental point determined by the pressure defined as standard. A 
change in the standard pressure would result in changes in the absolute 
boiling temperatures and in the entropy of evaporation. Trouton's rule 
fails for low-boiling and high-boiling liquids. Thus liquid oxygen boiling 
at 90°k with a heat of vaporization of 815 calories has the low entropy 
change of 9.06 calories per degree per mole. Hildebrand1 concluded that 
the reason for the general increase of entropy of evaporation with tempera¬ 
ture is to be found in the decrease in the equilibrium concentration of the 
vapor with temperature at constant pressure. 

Hildebrand-Trouton Rule.—Various equations have been derived to 
express the general increase of entropy of evaporation at the normal 
atmospheric pressure with increase in boiling point. The rule of Hilde¬ 
brand proposes that comparison of entropies of evaporation at constant 
pressure be abandoned in favor of comparison of the entropy changes at 
temperatures where the vapors have equal concentrations. We may con¬ 
sider the entropy of evaporation as including the entropy increase on 
the separation of the molecules of liquid to form gas and the entropy 
increase on expansion of the gas. For associated liquids, an additional 
component of the entropy of evaporation is the entropy of dissociation 
of the liquid into simpler gas molecules. As we saw in equation (7.54) 
or (8.58), the entropy of a gas increases with volume at constant tem¬ 
perature, the increase for a mole of perfect gas being given by 

1 Hildebrand, J. H., J. Am. Chem. Soc., 87, 970 (1915). 
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As = R In - = 4.576 log - (9.38) 

On the assumption that Vi for the various gases is essentially the volume 
of their liquids, it appears from equation (9.38) that the entropy of 
expansion of the various gases will be the same when they have equal 
molar volumes (concentrations). When entropies of expansion are com¬ 
pared at the normal boiling points, the final gas volumes may be far from 
equal. Thus the molar volume of a perfect gas at 273°k is 22.4 liters; 
but at the boiling point of oxygen, 90°k, it is 7.4 liters, and at the boiling 
point of cadmium, 1040°k, it is 85.3 liters. At these temperatures the 
respective concentrations of vapor are 0.0446, 0.135, and 0.0117 mole per 
liter. 

The Clausius-Clapeyron equation (9.11) may be written in the form 

dP __ Ah dT 
P ~ RT T 

whence, 
d In P d log P Ah As , . 

d In T d log T RT R ’ 

This equation shows that if As is to remain constant, d log P/d log T 
must be the same for all liquids. This is not true at normal boiling points. 
However, Hildebrand found that when he plotted log P vs. log T for 
liquids ranging in boiling point from nitrogen to zinc the slopes of all 
the curves for normal liquids, d log P/d log T, were the same at the same 
concentration of vapor. 

The ideal gas equation may be written in the form 

P = yRT = CRT 

On the logP vs. log T vapor pressure diagram, the line of equal concentra¬ 
tion of vapor is given by the equation 

log P = log (CRT) = log T + log (CR) (9.40) 

Hildebrand arbitrarily chose C = 0.00507 mole per liter; for at this value, 
if P is in millimeters, log (CR) — 0.5. His values of As/R are given in 
column (3) of Table 9.4. They are constant for the normal liquids 
although the evaporation temperatures range from 55 to 1 130°k. Column 
(5) lists the values of As/R of the different substances at the pressure of 
100 mm. Observe the increase of As/R with temperature at constant 
pressure. 

Earlier, we found that the vapor pressure curve can be estimated for 
a liquid if only the normal boiling point is known, provided that the 
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liquid is normal enough to permit estimation of the heat of vaporization 
from Trouton’s rule. Hildebrand’s rule permits a more accurate estima¬ 
tion of this quantity provided that some reference substance is available. 
The two substances will have the same entropy of evaporation at the 
same concentration of vapor. If the value of Ah for the reference sub- 

Table 9.4.—Hildebrand-Trouton Entropy of Evaporation Constants* for 

Various Substances Compared at Equal Concentrations and at Equal 

Pressures 

Substance 

(D 

C = 0.00507 mole/liter P = 100 mm 

rc, t, °K 

(2) 

An/RTC = 
As/R 

(3) 

Tp, X °K 

(4) 

Ah/RTP = 
As/i? 

(5) 

Nitrogen. . . ... 55 13.8 63 11.0 
Oxygen. 75 13.8 81 11.4 
Chlorine. 194 13.9 200 13.5 
Pentane. 256 13.5 260 13.2 
Isopentane. . . 258 13.7 262 13.5 
Hexane. 286 13.6 289 13.3 
Carbon tetrachloride. . 294 13.5 295 13.4 
Benzene. 298 13.7 299 13.7 
Eluorobenzenc. ... 303 13.7 304 13.7 
Stannic chloride. 329 13.6 328 13.6 
Octane. 338 13.8 339 13.9 
Bromonaphthalene 486 13.8 472 14.1 
Mercury. 560 13.1 533 13.5 
Cadmium. 988 13.2 908 14.8 
Zinc. ! 1130 13.2 1030 15.1 
Ammonia. . . . i 200 16.2 
Water. 325 16.0 
Ethyl alcohol... 307 

i 
16.7 

* Hii.dkbhand, J. H., J. Am. Chem. Sor., 37, 970 (1915). 
t Tc =» temperature at which C m 0.00507 mole/liter. 
t Tp = temperature at which P — 100 mm. 

stance at this concentration and temperature is known, Ah/T for the 
unknown at the same values can be calculated. 

Problems 

9.1. The vapor pressures of water at the temperatures 0, 25, 50, 75, and 100°c 

are given by Osborne and Meyers, loc. citas 0.006027, 0.031222, 0.12170, 0.38043, 

and 1.00000 atmosphere, respectively. Assuming that water vapor behaves as an 

ideal gas, calculate the molar volume of the water vapor under the above conditions. 

9.2. The observed specific volumes of water vapor at 0, 25, 50, 75, and 100°c 

are 206,288, 43,401, 12,045, 4,133.2, and 1,673.0 cm3 per gram, respectively. Calcu¬ 

late the molar volumes at these temperatures, and compare with those derived with 

the ideal gas equation in Prob. 9.1. 
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9.3. Calculate dP/dT for the water-vapor equilibrium at 0°, using the value of 

heat of evaporation in Tabic 5.1 and equation (9.11). What approximations were 

made in this calculation? Compare with the experimental value of dP/dT. 
9.4. Using the vapor pressure data in Prob. 9.1, calculate the mean values of the 

heat of evaporation of water over the temperature intervals 0 to 25, 25 to 50, 50 to 75, 

and 75 to 100°, with the aid of the integrated Clausius-Clapeyron equation. Compare 

these values with the experimental values in Tabic 5.1. 

9.5. (a) Using the exact form of the Clausius-Olapeyron equation, calculate the 

heat of evaporation of water at 100°c and compare with the calorimetric value. 

(6) Perform this calculation, using the same vapor pressure data and the approxi¬ 

mate form of the Clausius-Clapeyron equation. Explain any discrepancies between 

this result and the result secured in (a). 
9.6. The vapor pressure of nitrous oxide, N20, according to H. J. Hoge [J. 

Research Natl. Bur. Standards, 34, 281 (1945)] is represented between the triple point, 

182.351°, and 240°k by the equation 

i r, , 656.60 
log Ptktm — 4.1375 ^  20 

At the normal boiling point, the molar heat of evaporation is 3,956 calories per mole 

according to Hoge and 3,958 calorics per mole according to Blue and Giauquc. Calcu¬ 

late a value for the heat of evaporation of N20 with the exact form of the Clausius- 

Clapeyron equation, deriving a value of dP/dT from the vapor pressure equation, a 

value of Vi from “International Critical Tables” (Vol. 3, p. 229), and a value of vff 

with the aid of the virial coefficient B which, according to H. L. Johnston and H. R. 

Weimer [J. Am. Chem. Soc., 66, 625 (1934); 67, 2737 (1935)], has the value 

D 00 56,115.0 , 3.9424 X 10* 3.9145 X 1011 , 3.0747 X 1016 
B OZ j, 1 rji 2 

9.7. The change in vapor pressure of 1-butene with temperature at 266.722°k 

according to J. G. Aston et al. [J. Am. Chem. Soc., 68, 52 (1946)] is (dP/d7T) = 29.362 

mm/deg, the vapor pressure being 0.99279 atmosphere. The molar volume of the 

liquid is 0.090 liter. The molar heat of evaporation at this temperature is 5,236.1 

calories. Calculate values for the molar volume of the gas and the second virial 

coefficient B. 
9.8. Using the appropriate value of the heat of evaporation of ethanol in Table 

9.2 and the observed boiling point 78.3°c, calculate the vapor pressure of ethanol at 

60°c. Compare with the observed value. 

9.9. From the “International Critical Tables” (Vol. 3, p. 205), obtain the vapor 

pressure equation for liquid zinc for the range 600 to 985°c, and calculate the vapor 

pressure of zinc at 600°c. 

9.10. The boiling point of n-propyl alcohol is 97.19°c. At 40° its vapor pressure 

is 50.2 mm. tlsing water as a reference liquid, apply Diihring’s rule, and estimate the 

vapor pressure of n-propyl alcohol at 70°c. The observed vapor pressure is 239.0 mm. 

9.11. Using the reference temperatures for n-propyl alcohol given in Prob. 9.10, 

calculate the vapor pressure of n-propyl alcohol at 70 °c, with the aid of the Clausius- 

Clapeyron equation. Compare with the results in Prob. 9.10. 



CHAPTER 10 

FREE ENERGY 

In the preceding chapter, we considered some reversible processes in 
simple two-phase systems, the only work being work of expansion. The 

systems were at equilibrium internally during the reversible processes 
and could do no net work w'. Thus, at 0° and 1 atmosphere pressure, 
there is no tendency for ice to melt or water to freeze even though the 

transition results in a change in volume. The phase transitions—melt¬ 
ing, evaporation, sublimation, and transition between crystalline phases— 
are equilibrium processes. They take place at a constant temperature 

if the pressure is maintained at a constant value, there being a definite 
temperature of transition corresponding to each pressure. But the usual 

experimental condition for chemical reactions is also that of constant 

temperature. Therefore, a more general study of equilibrium at con¬ 
stant temperature is desirable. 

Equilibrium in Simple Systems at Constant Temperature.—In simple 

systems capable of work of expansion only, reversible processes at con¬ 

stant temperature are changes at equilibrium. In Chap. 7, we found that 
entropy is a criterion of reversibility and of equilibrium under the condi¬ 

tions of constant energy and constant volume, the change in entropy 

being measured by the net work wf for a reversible process and being 
zero for a process at equilibrium. However, in phase transitions (and 

chemical reactions) at constant temperature there is an entropy change 

measured by the heat of the reversible reaction, since qr = T AS. 
Consider an isothermal process in a simple system for which wr equals 

fPdV, there being no net work w'. Then, for the reversible process, 

that is, an equilibrium process, we have 

At constant volume, 

qr = qv = AEV (10.1) 

At constant pressure, 

qr - qP « AEP + P AVr = AHP (10.2) 

The temperature being constant and qr being equal to T AS, we have 

from equations (10.1) and (10.2) for the equilibrium conditions at con- 
217 
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stant volume 
AEv,r == T ASv,t 

AEv,t — T ASv,t == 0 (10.3) 

and at constant pressure, 

AIIp,T := T ASptT 
AHptt — T ASp,t — 0 (10.4) 

The subscripts are used to emphasize the conditions under which these 
equilibrium equations are valid. The equations are important, having a 
more general validity than might be expected from the conditions for 
which they were derived. As we shall find later, they apply also to any 
system in internal equilibrium, the net work w' being zero under these 
conditions. 

It will be instructive to apply equation (10.4) to the data for the freez¬ 
ing of water to ice at 1 atmosphere pressure. In Chap. 5 we found the 
molar heat of freezing of water at 0°c and — 10°c to be —1,436 and —1,343 
calories, respectively. In Chap. 8, we found the molar entropy change 
for the freezing at these temperatures to be —5.257 and —4.910 calories 
per degree, respectively. Hence, at 0°c for the equilibrium process, 

AH2U i6 - TA.S273.i6 = -1,436 - 273.16(-5.257) 
= -1,436 + 1,436 = 0 

At — 10°c, the freezing is not an equilibrium process but a spontaneous 
process. At this temperature, 

A//263.16 — T A$263.ie := —1,343 — 263.16( — 4.910) 
- -1,343 + 1,292 - -51 cal 

Thus, for the equilibrium process, equation (10.4) applies and for the 
spontaneous process 

Allptt — T ASptT ^ 0 

This is a general result for changes at constant pressure and constant 
temperature. The difference, AH — T AS, is zero at equilibrium, nega¬ 
tive for spontaneous changes, and positive for changes that would go 
spontaneously in the reverse direction. Thus, for the freezing of water 
above 0°c, the difference is positive and the spontaneous process is the 
melting of ice, not the freezing of water. The same principles apply to 
the difference expressed in equation (10.3). At constant volume and 
constant temperature, the difference is zero at equilibrium, negative for 
a spontaneous process, and positive for a process spontaneous in the 
reverse direction. 
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Free Energy Functions.—The quantities, AEv,t — T ASv,r and 
AHp,t — T ASp,t, which indicate the equilibrium conditions for a system 
in terms of the thermodynamic properties of the system at constant 
temperature, are so important that they are represented as the changes 
in two functions A and F. Thus, let A be such a function that its change 
at constant volume and constant temperature is 

AAv,t = AEv,t — T ASp,r (10.5) 

and let F be such a function that its change at constant pressure and 
constant temperature is 

AFPfT — AHp,t — T ASp,t (10.6) 

The values of AAv,t and AFp,t can then serve as criteria of equilibrium 
at the indicated conditions. 

In Chap. 2 we found that a general function II, defined as F + PF, 
took on a particularly useful form at constant pressure. Accordingly, 
we look for general definitions of the functions A and F that lead to 
equations (10.5) and (10.6) respectively. 

Two such functions are defined by the equations 

A s E - TS 
p ~ H — TS 

Since H = E + PF, the F function may be written 

F = E - TS + PV (10.9) 

and F is related to A by 

F = A +PF (10.10) 

Because H, E, T, and S, are 'properties of a system, F and A are also 
properties whose values are defined by the state of the system. H, E, 
and S are extensive properties, and T is an intensive property; conse¬ 
quently, F and A are extensive properties, dependent on the amount of 
material considered in a process. For processes occurring at constant 
pressure, which is the common experimental condition, we have found 
the heat of reaction to be represented by AHP and not by AEP. Similarly, 
under conditions of constant volume, AEv not AHv represents the heat 
of the process. A comparison with equations (10.5) and (10.6) suggests 
that the F function is the important function under the condition of 
constant temperature and constant pressure and that the A function is 
the more useful under the condition of constant temperature and con¬ 
stant volume at which no work of expansion of the system occurs. 

The function E — TS, here designated as A, was called the “free 
energy” by Helmholtz. This name and the symbol F have been gen- 

00.7) 
(10.8) 
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erally adopted for it by the European school of chemical thermodynamics. 
However, as Gibbs and later Americans have pointed out, the function 
H — TS is much the more useful function under the common condition 
of constant pressure. This function, called the “thermodynamic poten¬ 
tial^ by Gibbs and the “free energy” by Noyes and Lewis, has been 
called the free energy by the followers of Noyes and Lewis. The symbol 
F was adopted for it, the symbol A being used for the function E — TS. 
Our definition of the A and F functions1 follows the practice of the Ameri¬ 
can school, as does our naming of the functions. The A function, fol¬ 
lowing this practice, is called the work content or, occasionally, the 
Helmholtz free energy. Our F function is called simply the free energy. 
This function is frequently called the “Lewis free energy,” the “Gibbs 
function,” or the “ Gibbs free energy.” Many represent it by the symbol G 

Free Energy Functions at Constant Temperature.—The free energy 
functions are in their most useful form for reactions at constant tempera¬ 
ture. The restriction of constant temperature does not interfere with the 
use of the functions in chemical thermodynamics, for most of the chemical 
reactions can be and are investigated under isothermal conditions. In 
the initial state a system has definite values of the properties T, Ph Vh 
Si, Ei, Hi, A i, and Fi. After an isothermal change the system in the 
final state has the corresponding properties T, P2, V2, S2, E2, IF, A2, and 
F2. We are here concerned with the change in the work content and in 
the free energy. From equation (10.7), the isothermal change in the 
work content is 

A2 - Ai = E2 - Ei - T(S2 - Si) 

This may be written in the equivalent form 

AA = AE — T AS (10.11) 

In the differential form, equation (10.11) becomes 

dA = dE - TdS (10.12) 

From equation (10.8), we have, for the isothermal change in free energy, 
the corresponding equation 

F2 — Fi = IU - Hi - T(S2 - Si) 

1 The British Joint Committee of the Chemical Society, The Faraday Society, and The 
Physical Society on “ Symbols of Thermodynamical and Physicochemical Quantities 

and Conventions Relating to Their Use” selects the symbol A as the preferred symbol 

for the E — TS function, with F as a nonpreferred alternate. It also selects the 

symbol Q for the H — TS function called the “ Gibbs function” or the “Lewis free 

energy.” Following European practice, it recommends the symbol F only as an 

optional symbol for the E — TS function [Chemistry & Industry, 56, 860 (1937)]. 
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which in accordance with our conventions is written 
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AF = AH — T AS (10.13) 

In the differential form, this equation becomes 

dF = dH - TdS (10.14) 

“From equation (10.10), we have, similarly, 

AF = A A + A (PV) (10.15) 

The free energy functions, as has been indicated, are especially useful 
in the study of systems at constant temperature. When a system with 
a definite amount of substance changes from one state to another at a 
different temperature, the heat absorbed and the work done along differ¬ 
ent reversible paths may differ, for part of the work may be done as the 
result of the transport of energy from one temperature to the other. 
The energy transported, and consequently the work done, are not prop¬ 
erties of the system itself, since some of the energy transported may come 
from the surroundings. On the other hand, if the two states of the sys¬ 
tem are at the same temperature, there is no work associated with the 
transport of energy between two temperatures and all the work can then 
be accounted for in terms of the work potentials and the quantities 
transported. As we found in Chap. 7, the actual work done depends 
on the opposing potentials; it may range from zero, as in the completely 
irreversible process, to a maximum, as for the reversible process. 

Since the first law equation holds for reversible processes as well as 
for other processes and since Dqr = T d$, we have 

dE = Dqr - Dwr = T dS - Dwr 

For the change from one state to another at constant temperature, the 
integral of T dS being T AS under these conditions, this differential 
equation becomes 

AE — T AS — wr 

When this equation is combined with equation (10.11) we obtain 

AA = AE — T AS = — wr 

or 
—A A = wr (10.16) 

Since, at constant temperature, the reversible work is the maximum 
work for the process, we see that the decrease in the Helmholtz free 
energy or work content is a measure of the reversible work, the maximum 

for the isothermal process. 
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If the process is carried out in an irreversible manner, the change in 
A (which is a property of the system) will be definite, just as the maximum 
work obtainable from the process is definite; but this change in A will 
exceed the work actually done, that is, — AA > w. There is, accordingly, 
a definite loss in ability to do work whenever a process proceeds irre¬ 
versibly. Equation (10.1G) tells us also that, when a system does work, 
its work content, its ability to do work, decreases. 

The relation of AF at constant temperature to the total reversible 
work wr may be obtained from equations (10.15) and (10.16), whence 

A F = — wr + A (PF) 

This equation does not appear to be immediately useful, but it becomes 
so when the special restriction of constant pressure is imposed on it so 
that A (PI7) becomes P AV, the reversible work of expansion of the sys¬ 
tem against an external pressure equal to P. Under these conditions, 
the equation becomes 

-AFP = wr — P AV = w9 (10.17) 

where wf is the net reversible work, the maximum useful work for the 
isothermal isobaric process. The work of expansion cannot be classed 
as useful work. In a reaction taking place in an open vessel, it is required 
to push back the atmosphere during the process. It cannot be used for 
any other purpose. 

Let us apply these relations to the isothermal reaction 

Zn + 2HC1 = ZnCl2 + H2 

This reaction may proceed in an electrolytic cell, in a beaker, or in some 
closed vessel. When the reaction is carried out reversibly in a cell at 
constant pressure, the total work obtainable is the sum of the electrical 
work we and the work of expansion of the evolved hydrogen P AV. The 
useful work from the process is the electrical work we; it is expressed by 
the relation 

we — wr — P AV — wf (10.18) 

Because the process is carried out reversibly, we have, from equations 
(10.16) to (10.18), 

-AFP = -AAP -PAV = we (10.19) 

Now, if the reaction is carried out in an open vessel against atmospheric 
pressure by a direct mixing of zinc and acid, the electrical or useful work 
obtained is nil, the only work done being P AV, the work of expansion 
of the hydrogen. The decrease in free energy — AF is the same as in the 
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reaction carried out reversibly, even though no useful work was actually 
obtained. 

If the reaction is carried out reversibly at constant volume, there is 
no work of expansion, P AV = 0, the electrical work at constant volume 
is the total work, and 

— AAv = we,v (10.20) 

If the reaction proceeds by direct mixing in a closed tube, the electrical 
or useful work is nil, as is also the total work, but a loss in ability to do 
work has occurred. The decrease in Helmholtz free energy is still — AAV. 
Thus, at constant pressure the actual useful work may range all the way 
from zero to the maximum value —AFp, and at constant volume the 
useful work may range from zero to the maximum value — AAV. 

Free Energy as Criterion for Equilibrium.—In the first section we 
considered equilibrium in simple systems and found that at constant 
temperature two functions serve as criteria for equilibrium. One of these 
is identified with the A function for constant volume and the other with 
the F function for constant pressure. We shall now see how these func¬ 
tions serve as criteria for equilibrium in more complicated systems includ¬ 
ing those in which chemical processes may take place. 

Equation (7.40), based on the first and second laws is a general equa¬ 
tion for isothermal processes, relating the change in entropy and energy 
of a system in any isothermal process to the work done. Thus, 

TdS - dE ^ Dw (10.21) 

the equality sign applying to a reversible path and the inequality sign 
to an irreversible path. But the total work Dw is the sum of any work 
of expansion P dV against the surroundings and the net work Dwny which 
represents the work the system does as a result of its tendency toward 
internal equilibrium. Thus, 

Dw = P dV + Dwn (10.22) 

When the process is carried out reversibly, Dw becomes Dwr and Dwn 
becomes the net reversible work Dw' defined earlier. Equation (10.22) 
then becomes equation (7.32), or, when integrated at constant pressure, 
it expresses the relation in equation (10.17). When equations (10.21) 
and (10.22) are combined, we have 

T dS - dE - P dV ^ Dwn (10.23) 

which becomes a measure of equilibrium within a system at constant 
temperature. We shall consider in turn the relations at constant volume 
and constant pressure, both at constant temperature as required by the 
conditions under which equation (10.21) [equation (7.40)] was derived. 
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1. Isothermal Change at Constant Volume.—In a change at constant 
volume, dF equals zero and the total work equals the net work so that 
Dw equals T>wn. A system at equilibrium within itself can do no work 
so that from either equation (10.21) or (10.23) 

T dS - dE = 0 (10.24) 

This equation corresponds to equation (10.3) derived earlier. 
If the system is not at equilibrium, the change may take place reversibly 

or irreversibly. Along any reversible isothermal path Die = Dwr — Die', 
the work being positive in value if the system can move spontaneously 
toward equilibrium. Thus, for a reversible path, 

T dS - dE = I)wr = Die' > 0 (10.25) 

If the system changes along an irreversible path, the work done is less 
than Die'. But dS and dE do not depend on the path so that, for the 
irreversible path, 

TdS- dE > Dw £ 0 (10.26) 

From equation (10.12), the left side of these equations equals —dA so 
that, for the system at equilibrium, dA = 0 and for a system that can 
change spontaneously toward equilibrium either by a reversible or an 
irreversible path 

dA = — Dwr — — Dw' < 0 

These statements may be combined to give the criterion for equilibrium 
at constant volume and constant temperature 

dAv,r g 0 (10.27) 

the equality applying for the system at equilibrium and the inequality 
sign for the change toward equilibrium. A spontaneous change at con¬ 
stant volume is one that can proceed with a decrease in Helmholtz free 
energy, the decrease being a measure of the reversible work for the change. 

2. Isothermal Change at Constant Pressure.—In a change at constant 
pressure, dE + P dV equals dH so that equation (10.23) becomes 

TdS - dll ^ Dwn (10.28) 

At equilibrium, the net work is zero and equation (10.28) becomes 

TdS - dH = 0 (10.29) 

This equation corresponds to equation (10.4) derived earlier. 
If the system is not at equilibrium but proceeds to equilibrium reversi¬ 

bly, the net work is the reversible net work Dw' and equation (10.28) 
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becomes 
TdS - dH - Dwf > 0 (10.30) 

If the change toward equilibrium takes place along an irreversible path, 
the value of Dwn is less than that for Die' so that, from equations (10.28) 

and (10.30), 
TdS - AH > Dwn ^ 0 (10.31) 

Comparison of these equations with equation (10.14) shows that, for a 
system at equilibrium, dF = 0 and that, for a change toward equilibrium, 
dF = — Die' < 0. These statements may be combined into the criterion 
for equilibrium at constant temperature and constant pressure 

dFp.t g 0 (10.32) 

the equality sign holding for equilibrium and the inequality sign for the 
change toward equilibrium. This equation has immediate application 
to chemistry. If a chemical reaction is to proceed spontaneously, it is 
necessary that the change in free energy be negative. Those reactions 
can proceed spontaneously that do so with a decrease in free energy. 
When no free energy change occurs, the reaction is at equilibrium; when 
the reaction would result in an increase in free energy, the reverse reac¬ 
tion is the reaction that proceeds spontaneously. 

It is only for an isothermal change that we may write dF or d,4 equal 
to zero for equilibrium at constant pressure and volume, respectively. 
However, these criteria are adequate for chemical purposes, for the ques¬ 
tion usually proposed in chemistry is whether or not a reaction will 
proceed at a given temperature. If the reactants cannot form the desired 
products at that temperature by an isothermal process, they also cannot 
by another process, for the initial and final free energies are independent 
of the path over which the reaction proceeds. Free energies do change 
with temperature, as we shall see below. 

General Free Energy Equations.—When the free energy equations 
are differentiated, we obtain from equations (10.7) to (10.9) the general 
equations 

dA = dE - T AS - S AT (10.33) 

and 

dF = d// - TdS - SdT (10.34) 
= dE + P dV + V dP - T dS - S dT (10.35) 

Reversible work, as in equations (10.17) and (7.32), may be expressed as 
the sum of the work of expansion and other reversible work, the net work. 
Thus, in differential form, 

Dwr - P dV + Dw' 
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Then, we have from a combination of the first and second law equations, 

as in equation (7.33), 

d E = TdS-PdV - Dw' 

which may be written in the forms 

dE — T dS — -P dV - 1W 
and 

dF + PdV - TdS = -Dw' 

(10.36) 

(10.37) 

On combining equation (10.33) with (10.36) and (10.35) with (10.37), we 

have, respectively, 

dA = -S d T - PdV - D w' (10.38) 

and 
dF = ~S dT + V dP - Dw' (10.39) 

Equations (10.38) and (10.39) are general equations, derived without 
any qualifying restrictions. From them, we can secure the equations 
for use under restricted conditions. 

In many of the equations we have assumed that Die' is zero. The 
processes for which this assumption is valid are those in which all the 
work1 may be expressed as a function of P and V, and equilibrium proc¬ 
esses, in which w' = 0. In the special case of reactions in balanced elec¬ 
tric cells, w' also equals zero. Spontaneous reactions may yield no work 
w\ but they must be considered separately because in such processes the 
S dT and P dV terms are not those of the reversible process, for $ does 
not vary with T nor P with V in the same manner as in reversible 
processes. 

Free Energy Change in Simple Systems.—In simple systems that do 
not undergo chemical reaction, the only work done is that against pres¬ 
sure. There is no other work such as electrical work, work of solution, 
or surface work. For these systems, Dw' = 0, and equations (10.38) 
and (10.39) become simplified to 

dA = -SdT - PdV (10.40) 
and 

(IF = -SdT + VdP (10.41) 

When both temperature and volume remain constant, we have dAr.v = 0, 
which is equation (10.27); when both temperature and pressure are con¬ 
stant, we have dFr,* = 0, which is equation (10.32). 

1 For constant-temperature processes, such as we are considering in the preceding 

equations, Dwf is measured by the exact differentials —dA and —dF at constant 

volume and constant pressure, respectively. However, we shall continue to use the 
notation Dw' to express small values for the net work. 
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1. Isothermal Processes, dT = 0.—For processes that occur at con¬ 
stant temperature, the above equations take on the simple forms 

d At = -PdVr 

(-) = -p \dVjT 
and 

dFT = V dPr 

(S), “ r 
These two derivatives can be readily evaluated from available experi¬ 
mental data. 

2. Constant-volume Processes, dV — 0.—If the volume is kept con¬ 
stant instead of the temperature, it is evident that equation (10.40) 
becomes 

d^lv = -SdTv 

Or), - (io-44) 
It is apparent from equation (10.41) that the F function does not take 
on a simple form for constant-volume processes. It is therefore not used 
under these conditions. 

The entropy of a substance is therefore a measure of the change of A 
with temperature at constant volume; it can be evaluated from (dA/dT)v. 
Its value is also expressed in terms of E and A by equation (10.7), 
whence, 

A — E 
-S = (10.45) 

This value may be substituted in equation (10.44) to give the Gibbs- 
Helmholtz relation for the constant-volume process 

3. Constant-pressure Processes, dP = 0.—If the pressure is kept con¬ 
stant, equation (10.41) becomes 

d FP = -SdTp 

(£?), - -s <,o-47> 

(10.42) 

(10.43) 

Under these conditions, the A function does not assume a simple form, 
and the entropy is a measure of the change of F with temperature. Again, 
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the entropy is given by the relation in equation (10.8), namely, 

-S = (10.48) 

This may be combined with equation (10.47) to give the Gibbs-Helmholtz 
equation for the constant-pressure process 

Tabulated Thermodynamic Relations.—We have derived only a few 
of the many mathematical relations between the properties of a system, 
such as P, V, T, II, E, S, A, and F. A very great number of relations 
exist between these properties, many of which are useful though more 

Table 10.1 

(dT)p = — (dP) t = 1 
(aV> = ~(dP)v = (dV/9T)P 
(sS)p - ~(;iP)s = Cp/t 
U)E)p-(aP)E = Cp - P(dV/dT)p 

CSH)P = -(dP)„ = Cp 
(3F)p = -(3P), = -S 
(0A)p = -(3P)a = ~[S +P(dV/9T)p) 

(dV)r-0 T)r = -ifiV/dP) r 
(SS)r = ~(dT)s = (dV/dT)p 

(5E)t = -(an* = T(av/dT)p + P(av/dP)T 
(dH) T = -OT)h = -V + T(dV/dT)p 
(9F)t » ~(aT)r = —F 
(aA)r-ODa = P(ay/aP)T 

(aS)r --(97)1 = (1 /T)\Cp{dV/dP)T + T{dV/dTl)] 
(aE)v = ~{av)E = Cp(av/aP)T + T{av/aT)% 
(dH)r-{dV)u = Cp(aV/aP)T + T(av/aT)% - V(av/aT)P 
(dF)r --(av)p-[V{av/aT)p + S{aV/aP)T] 
(dA)v = ~(9V)a = -5(aF/aP)r 

(dE)s = -(as)* = (P/niCp(aF/aP)r + r(aF/aT)pl 
(a«)s = -(as)* = —vCp/T 

(«dF)s - -(3S)f = -(1/niFCp - sr(aF/ai>] 
04)s = ~(a«)A = (l/n (P[Ci>(3F/aP)r + nav/dT)*, 1 + srOF/anpl 

(a#)* = -(aP)*-F[Cp - P(av/dT)P] - P{CP{dV/dP)T + TW/anJl 
(an* = -(an* - -v[Cp - P(av/aT)p] + S[T(av/dT)P + P(av/aP)T] 

(aA)e « - (an a - P[Cp(ay/dP)j. + T(av/aT)%] 

(<dF)„ _ -(dH), - — F(Cp + S) + TS(dV/dT)p 
(aA)n - -(affu - -[S +P(aF/an*Pr - ror/ar)*! + P(ar/aP)r 
(3A)p - ~(aF)A-S[F + P(aV/aP)r] - PV(av/aT)P 
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are little used. We have illustrated the general methods used in deriving 
the relations and could, if necessary, derive the others by the same 
methods. However, Bridgman1 presented a method and table that per¬ 
mit a ready calculation of the various interrelationships. This method is 
applied below. 

In terms of the general properties X, Y, and Z, Table 10.1 gives values 
for (dX)y, (dX)z, (dY)x, (dY)z, and so forth, for which we may write 

(dX\ (dX)z 
\dYjz (dY)z 

From the table, we see that, in general, 

(dX)z = — (dZ)x 

Thus, if we wish to obtain (dF/SP)T, we find 

(dF)T = -V, (dP)r = -1, and (j~)t = V 

which is equation (10.43). Similarly, from the table, 

(dF)P = -S, (dT)P = 1 
so that 

which is equation (10.47). 
Free Energy Change in Chemical Reactions.—The differential free 

energy equations already derived are general and can be applied to 
chemical reactions as well as to simple substances. In chemistry, we 
deal principally with constant-pressure reactions for which the change of 
free energy AF is the difference between the free energy of the products 
of the reaction and the free energy of the reactants. At constant pres¬ 
sure, the H — TS function is, therefore, much more useful than the 
E — TS function. Accordingly, we shall restrict our discussion to the 
F function. However, when desired, the corresponding equations for 
the A function may be derived by analogous methods. 

Consider a chemical system in which a change in free energy occurs 
because of the chemical reaction, pressure and temperature remaining 
constant. In the initial state, the system is characterized by functions 
such as Fiy Hh Si, P, and T. In the final state, these functions have the 
values F2, H2, S2, jP, and T. From Equation (10.8), we have, therefore, 

p2 = Ho - TS2 
Fi = Hi- TSi 

F2 - Fi = Ht - Hi - T(S2 - Si) 

1 Bridgman, P. W., Phys. Rev. (2), 3, 273 (1914). 

(10.50) 
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We have used the symbol A to denote change in a function because of 
the chemical reaction. Under this notation, equation (10.50) becomes 

AF = AII - T AS (10.51) 

which is a fundamental equation for the free energy change of a chemical 
reaction at constant temperature. The free energy change can be evalu¬ 
ated if AH and AS are known, the heat of reaction if AF and AS are known, 
and the entropy change if AF and AH are known, the last being given 
by the relation [compare equation (10.48)] 

— AS - 
AF - AH 

T 
(10.52) 

In a reaction system for which the reversible work is given by 

P AV + w' 

wf being all forms of reversible work other than that of expansion, and 
qT = T AS, we have, from the first law equation, 

AE = qr — wr = T AS — P AV — wf (10.53) 

But, at constant pressure, 

AH — AE + P AV (10.54) 

If equations (10.53) and (10.54) are combined with (10.51), we have 

AF = -w' 

which is the equation derived earlier as equation (10.17). 
Free Energy Change in Equilibrium Reactions at Constant Pressure. 

We have seen that equilibrium reactions are characterized by having 
w' = 0. Let us see how the free energy change of such a reaction (at 
constant temperature and pressure) changes with temperature and with 
pressure. On differentiating equation (10.51) with respect to tempera¬ 
ture, we have 

d AF _ d AH d AS 
d T d T d T (10.55) 

But, from equation (10.4) or (10.29), for an equilibrium process at constant 
pressure and the temperature T 

AHP = T ASP and 
d A Hp  d ASp 

“dT 1 ~dF~ 

so that equation (10.55) becomes 

= —AS (10.56) 
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which is analogous to equation (10.47). When equation (10.52) is com¬ 
bined with equation (10.5G), we have the Gibbs-Helmholtz equation for 
the chemical reaction 

which is analogous to equation (10.49). 
The above equations have been derived for the restricted condition 

of the equilibrium reaction. However, they now contain only functions 
that are properties of the systems under consideration. These properties 
are not subject to the path over which the reaction occurs, and the equa¬ 
tions may therefore be applied to nonequilibrium reactions. The appli¬ 
cation of these equations is discussed later. 

In a spontaneous process the actual net work may be zero, but the 
final free energies and entropies and volumes have values depending only 
on the final state. The values of the V dP and the S dT terms differ 
for the irreversible and reversible processes, but in such a manner as to 
produce the same value of dF for the process. 

Summary.—The relations between the maximum total work, the 
maximum net work, and the free energy functions A and F have been 
derived and discussed for various restrictive conditions such as those of 
constant temperature, constant volume, and constant pressure. Some 
of these equations are assembled in Table 10.2. As we have stated, the 
free energy function F is most useful under the experimental condition 
of constant pressure and temperature, whereas the total work function A 
is more useful at constant volume. The more useful and commonly used 
functions are emphasized in the table by bold-faced type. 

Problems 

10.1. Calculate the change in free energy AF (in calories) for the following reac¬ 

tions at 100°c: 

(a) H20 (liq) = H20(g, 0.9 atm) 

(b) H20(liq) - H20(g, 1.0 atm) 
(c) H20(liq) = H20(g, 1.1 atm) 

Explain, with the aid of the free energy function, which of these reactions are 

possible. 
10.2. For the isothermal expansion of a mole of an ideal gas, show that the 

increase in free energy is 

Ft-Fi - R T In — 
£ 1 

10.3. Derive equation (10.42) 
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and equation (10.44) 

from the relations in Table 10.1. 
10.4. At 100°c what is the change in free energy (in calories) of 1 mole of liquid 

water when the pressure is increased by 1 atmosphere? Assume the water to be 
essentially incompressible. 

10.6. What is the change in free energy when 1 mole of water at 100°c and 1 
atmosphere is changed to steam at the same temperature and pressure? WFat is 
the change in A? 

10.6. Combining the results from Probs. 10.4 and 10.5, calculate the change in 
free energy when 1 mole of water at 2 atmospheres and 100°c is changed isothermally 
to steam at 1 atmosphere pressure. 

10.7. For a chemical reaction at constant volume, show that 

Explain the meaning of AA and AE for such a process. 

10.8. For a cell in which the reaction is 

$H2(g, P = l) + AgCl(c) = HCl(aq, a = 1) + Ag(c) 

the standard emf at 25°c is 0.2225 int volt. What is the value of the standard 
free energy change for the reaction? The value of AA ? 

10.9. Is there a change in free energy for the mixing of toluene and xylene 
described in Prob. 7.8? Explain. 

10.10. What is the change in free energy as a result of the separation of the nitrogen 

and oxygen from air, as described in Prob. 8.7, for nitrogen? For oxygen? 

10.11. How does the free energy F of a perfect gas change with temperature at 

constant pressure? At constant volume? 

10.12. How does the Helmholtz free energy (total work function) A of a perfect 

gas change with temperature at constant pressure? At constant volume? Compare 

with the results from Prob. 10.11. 

10.13. In thermodynamic calculations, the Bert helot equation of state for gases 

* - RT [x + A k Tf (* -6 V)] (10-59) 

is frequently used to evaluate the deviation of the real gas from ideal behavior when 

other data are lacking. In this equation, Pc and Tc are the critical pressure and 

critical temperature, respectively. Show the relation between the correction term in 

equation (10.59) and the second virial coefficient B. 
10.14. For nitrogen, calculate values of the second virial coefficient B from the 

critical data and the Berthelot equation at the temperatures —150, —100, —50, 0, 

50, 100, 300, and 600°c and compare with the values of B read from Fig. 4.3. What 

percentage error is introduced into the molar volume when the Berthelot equation 

is used to calculate the molar volume at these temperatures? Compare the molar 

volumes with those obtained in Prob. 4.17. 

10.16. The density of propylene gas is 1.9149 grams per liter at 0°c and 1 atmos¬ 

phere according to T, Batuecas [/, chim, phys., 31,165 (1934)]. Calculate for this gas 
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(a) The molar volume of the gas. 
(ib) The second virial coefficient B. 
(c) The compressibility factor I\/RT. 
(<d) The value of F2 — Fi for the isothermal expansion of the gas from P = 1 to 

P = 0.5. 
10.16. For a real gas obeying the Bcrthelot equation (10.59) in Prob. 10.13, show 

that the thermal expansion is expressed by 

(dv\ R (. 27 P 7V\ 
\dTJp P \1 + 32 Pc Tz) 

What are the values of (ds/dP)r and of (dE/dP)r for a Berthelot gas and for an ideal 
gas. Integrate the expressions for (ds/dP)r between the pressures P = 0 and P — P1 
and obtain the entropy difference 

_ 27RTSP 
Sideal SBerthclot 32 TAP 

remembering that, at P = 0, the Berthelot gas becomes identical with the ideal gas. 
Derive the corresponding expression for Fidoai — FBortheiot. 



CHAPTER 11 

FREE ENERGY CHANGE IN CHEMICAL REACTIONS 

The free energy of a system depends on the pressure, temperature, 
and composition of the system, as indicated in the general equation 
(10.39). As we shall show later, the net work w' in a chemical reaction 
results from a change in composition of the system; it is, therefore, of 
special interest to chemists who are concerned with producing desired 
substances. When temperature and pressure are kept constant, there 
will still be a change in the free energy function F if a change in composi¬ 
tion produces net work. 

Free Energy of Reaction.—Consider a reaction system containing 
a moles of the substance A and b moles of the substance B, the molar 
free energy of the former being fa and that of the latter, fb. If these 
substances react at constant pressure and temperature, according to 
the chemical equation 

cl A. T* bB = dT) -f~ cE (11.1) 

d moles of the substance D and e moles of the substance E are formed, 
having the molar free energies fd and fe, respectively. In accordance 
with our previous conventions, the free energy change for the reaction 
is given by 

AF = F2 - Fi (11.2) 

Because Fi, the free energy of the system in the initial state with the 
composition aA + 6B, equals aFA + bFB and F2, the free energy in the 
final state with the composition dD + eE, equals dr^ + cfe, equation 
(11.2) may be expressed in the form 

AF = (6fd + cfe) - («fa + 6fb) (11.3) 

This change in free energy accompanying the isothermal constant-pres¬ 
sure chemical reaction is called the free energy of reaction. 

For a process at constant pressure and temperature, such as the one 
above, we have seen that the decrease in free energy equals the maximum 
net work, the reversible work. According to equation (10.17), this rela¬ 
tion may be expressed as —AF = wr. For the special case of a reaction 
at equilibrium, there is no net work; hence, w' = 0, and AF = 0. A 
reaction may proceed spontaneously if it can do the net work it/, that is, 

235 
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if a decrease in free energy results from the reaction. If there is to be an 
increase in free energy, wr must be negative; that is, work must be done 
on the reaction system, and the reaction cannot be spontaneous in the 
forward direction. Instead, the spontaneous reaction will be the reverse 
reaction for which the sign of the free energy change is reversed. 

The ice-water transformation at 1 atmosphere pressure is an equilib¬ 
rium reaction used to define 0°c. Since the reaction is at equilibrium, 
AF — 0, as indicated by the equation 

H20(c) = H20(liq); AfWie = *Vau,r — Fioo = 0 (11.4) 

At some other temperature or pressure, the free energy change is not 
zero, for the free energy of water changes with pressure and temperature, 
according to equations (10.43) and (10.47). The free energy of ice also 
changes with pressure and temperature but at a rate different from that 
of liquid water, for the specific volumes and entropies of ice and water 
differ. Ice and water can be at equilibrium only at temperatures and 
corresponding pressures at which the free energy functions of the two 
have the same value. In Chap. 10, we found for the freezing of water to 
ice at — 10°c that AH — T AS, which equals AF and, therefore, Fioo IViiter, 
had the value, —51 calories per mole. Hence, under these conditions, 
a mole of water has 51 calories more free energy than a mole of ice. If 
we know the free energy of water as a function of pressure and tempera¬ 
ture, and also the corresponding free energy function for ice, we can cal¬ 
culate the complete pressure-temperature curve for the ice equilibrium. 

The combustion of graphite is a spontaneous process. At 25°c and 
at a constant pressure of 1 atmosphere, the free energy change for the 
formation of carbon monoxide1 from graphite and oxygen is given by 
the equation 

C(graphite) + i02(g, 1 atm) = CO(g, 1 atm); 
AF = —32,808 cal (11.5) 

The formation of 1 mole of carbon monoxide from the elements results 
in a decrease in free energy of 32,808 calories. This value represents 
the maximum useful work that can be done in the formation of carbon 
monoxide at constant pressure and temperature. If the forward reac¬ 
tion is the spontaneous one, as in equation (11.5), the reverse reaction 
will not occur. When equation (11.5) is reversed, so that the decom- 

1 Wagman, D. D., J. E. Kilpatrick, W. J. Taylor, K. S. Pitzer, and F. D. 
Rossini, J, Research Natl, Bur. Standards, 34, 143 (1945). Strictly speaking, this 
free energy value is for fugacities equal to 1 atmosphere rather than for pressures 
equal to 1 atmosphere. 
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position reads from left to right, it becomes 

CO(g, 1 atm) = C (graphite) + KMg, 1 atm); 
AF = 32,808 cal (11.6) 

Here the free energy change is positive; the forward reaction will not take 
place spontaneously. At 25°c and 1 atmosphere pressure, carbon monox¬ 
ide will not decompose spontaneously into the elements. 

Free Energy of Formation.—Equation (11.5) states specifically that 
a mole of carbon monoxide has a free energy content 32,808 calories less 
than the elements of which it is composed at 25°c and 1 atmosphere. 
In terms of equation (11.3) 

AF = —32,808 cal = Fco — (fc i*Fo2) (11.7) 

We may set up a table of relative free energy values for compounds by 
arbitrarily setting the free energies of the elements at zero. When this 
substitution is made in equation (11.7), fc = 0, ^Fo., = 0, and 

fco = AF = -32,808 

at the specified temperature and pressure. This value for a mole of 
carbon monoxide and the corresponding values calculated for the other 
compounds are called their free energies of formation. This procedure is 
exactly analogous with that used for setting up heats of formation in 
Chap. 5. If we wish to obtain the absolute free energy of formation of 
carbon monoxide from this value, we must know the absolute free 
energies of the elements carbon and oxygen at the experimental conditions, 
25°c and 1 atmosphere pressure. This means in turn that we must 
have absolute values of H (and E). For most purposes, absolute free 
energies are not required; the relative values permit us to calculate the 
free energies of reaction for all reactions at the experimental conditions 
for which the free energies of formation are known. 

Addition of Free Energy Equations.—Free energy equations may be 
added by the methods used for obtaining heats of reaction in the thermo¬ 
chemical equations previously written. Thus, if we know the free energy 
of formation of carbon dioxide at 25°c and 1 atmosphere pressure to be 
AF = —94,260 cal, we may, on combining this value with that in equa¬ 
tion (11.6), obtain the free energy of combustion of carbon monoxide to 
dioxide as illustrated below: 

C + 02 = C02; AF = -94,260 cal (11.8) 
CO = C + i02; AF = 32,808 cal (11.6) 

CO + K>2 = C02; AF = -61,452 cal (11.9) 

Under the experimental conditions, 25°c and 1 atmosphere pressure, at 
which the free energies of formation in equations (11.5) and (11.8) were 
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measured, we find that carbon monoxide burns to the dioxide with a 
decrease in free energy of 61,452 calories. This isothermal reaction is 
therefore capable of doing this quantity of useful work for every mole of 
carbon monoxide burned if the reaction can be made to proceed reversibly. 
Unfortunately, such a process has not yet been devised. 

Standard States.—Because the free energy change in a reaction is the 
difference between the free energy of the products of the reaction and 
that of the reactants, it is affected by any of the factors that change the 
free energies of any of the constituents of the reaction. Free energies 
are dependent on the temperature; hence, the free energy change in a 
reaction will, in general, change with the temperature. If free energies 
of reaction are reported, the temperature at which the reactions occur 
must be specified; and if tables of free energies of formation are prepared, 
some standard temperature must obviously be chosen. The temperature 
of 25°c has quite generally been selected for this purpose. Unless other¬ 
wise specified, we shall use this temperature as that of the standard state. 

The pressure also has its influence on the free energy of reaction. 
According to equation (10.43), the change in free energy of a substance 
with pressure is measured by the specific volume. Because their molar 
volume is relatively small, solids and liquids do not show a large change 
of free energy with pressure. In describing the standard state of a pure 
liquid or a stable solid, therefore, it is usually sufficient to specify the 
temperature. 

Gases, however, have molar volumes much larger than those of the 
condensed phases, and their change in free energy with pressure is appre¬ 
ciable. For this reason, it is necessary to specify the pressure as well as 
the temperature of the different reacting substances. Indeed, the partial 
pressures in the reacting system must be considered in some detail; for, 
though all the constituents usually have the same temperature, they do 
not necessarily have the same partial pressures. In describing the state 
of a gas, therefore, its partial pressure is specified as well as its tempera¬ 
ture, the standard pressure usually selected being 1 atmosphere. At 
times, the standard pressure selected for gases is not that of the gas at 
a pressure of 1 atmosphere but at a fugacity of 1 atmosphere. For dis¬ 
solved substances, the standard state frequently selected is that of unit 
activity. The concepts of activity and of fugacity will be developed 
later. Because the difference in free energy between the standard states 
of unit fugacity and unit pressure are not great for a gas that is nearly 
ideal, we shall not always distinguish between the two standard states 
at this point. The student is warned, however, that some of the data 
we use are for the standard state of unit fugacity. 

When the reactants and the products of a reaction are all at their 
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standard states, the free energy change of the reaction becomes the 
standard free energy change designated by a superscript °. Thus, since 
the partial pressures of the gases in equation (11.9) are 1 atmosphere, 
we may write, for the free energy of this reaction, 

AF£98J6 = —Cl,452 cal 

The standard free energy change in equation (11.9) results from the 
reaction of 1 mole of pure carbon monoxide and i mole of pure oxygen, 
each at a partial pressure of 1 atmosphere. These initial conditions are 
different from those which obtain when a mixture of 1 mole of carbon 
monoxide and % mole of oxygen under a total pressure of 1 atmosphere 
reacts. When the pure gases mix, there is a free energy change of mixing 
equal to the loss in reversible net work w'. The mixing of the pure gases 
is a spontaneous process proceeding with a loss in free energy in accordance 
with the rules previously stated. This free energy of mixing is included 
in the value —61,452 calories for the free energy of the reaction. There 
is a free energy of mixing even though there is no significant heat of 
mixing. On the other hand, these gases are so nearly ideal that their 
heat of mixing is negligible compared with their heat of combustion. 
For this reason, we have discussed the standard state in more detail here 
than we did earlier in connection with the heat content change AH. 

When pure solids and liquids are diluted with solvents to form solu¬ 
tions, their concentrations change with an accompanying change in their 
free energies. There is a free energy of formation of the solutions even 
though there is no heat of solution AH. In addition, there may be free 
energy changes resulting from specific interaction between the solvent 
and solute. The partial molal free energy of a substance in solution 
differs, therefore, from the molar free energy of the substance in the pure 
state. Either state may be chosen as the standard reference state. 
These questions will be considered in more detail in the discussion of 

solutions. 
Change of Free Energy of a Gas with Pressure.—For a simple sub-v 

stance the change of free energy with pressure was given by equation 

(10.43) as 

(D," <iu°> 
For pure solids and liquids, this change in free energy becomes a sig¬ 
nificant contributing factor to the free energy only if the pressure change 
is relatively great, for their specific volume V is small. With gases, how¬ 
ever, rather small pressure changes may make large changes in the free 
energy, especially at the lower pressures where the molar volume is 
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large. Let us consider n moles of a perfect gas whose pressure and 
volume are related by the ideal gas equation, so that V = nRT/P. If 
this value of V is substituted in equation (11.10) it can be integrated 
between the states 1 and 2 at the temperature T to give the equation 

rpt p 
F2-F1= / VdP = nRT ln~ (11.11) 

J Pi Pi 

It is evident that the change of free energy with pressure depends not 
on the absolute value of the pressures but on their ratio and that the 
free energy change depends directly on the absolute temperature. For 
1 mole of gas the change in free energy accompanying a tenfold pressure 
drop at 25° c is 

F2 - Fi = 2.3026 X 1.9872 X 298.16 log 0.1 
- 4.5757 X 298.16 X ( — 1) = -1,364 cal 

Because the mole of gas at a partial pressure of 1 atmosphere has 1,364 
calories more free energy than it has at 0.1 atmosphere, it is apparent 
that the state of a gas must be carefully defined in free energy calculations. 

Free Energy Change in Galvanic Cell Reactions.—In Chap. 10, we 
indicated that the free energy represents the maximum energy available 
as useful work and that, in some reactions, the useful work may be 
obtained in the form of electrical work. In terms of the electronic 
theory, it is entirely reasonable for chemical free energy to appear as 
electrical energy, for all oxidation-reduction reactions involve a transfer 
of electrons and a resulting electric current. The electrical work is 
represented by the equation 

we — nFE 

where E represents the emf of the galvanic cell, F the faraday constant, 
and n the number of equivalents passing through the cell. If the reac¬ 
tion is carried out reversibly at constant temperature, the work and, there¬ 
fore, E are at a maximum, and the maximum work is a measure of the 
decrease in free energy. At constant pressure, the decrease in the free 
energy is 

-A F = w' = we = nFE (11.12) 

and at constant volume the decrease in work content, or “ Helmholtz 
free energy,” is 

—AA « wr = wv = nFE (11.13) 

Insofar as AAv differs from AFP} the emf of the cell at constant volume 
must differ from that at constant pressure. The galvanic cell offers a 
convenient method for obtaining free energies, for the reversible emf 
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of a cell can be measured with a potentiometer. If the emf is zero, the 
cell is at equilibrium and there is no change in free energy. 

From the relation in equation (11.12), it is evident that free energies 
of reaction may be obtained directly from emf measurements. Reversi¬ 
ble cells furnish one of the most accurate methods for deriving the free 
energy values. When the emf of a cell is expressed in international volts 
and the faraday constant has the values indicated in Chap. 1, the free 
energy change for the cell reaction becomes 

AF = — n96,501E int joules (11.14) 
AF = -n23,068£ cal (11.15) 

Values for the emf of a reversible cell may be obtained from the 
appropriate values for the single electrode potentials by the methods 
previously discussed for the addition of the chemical equations and dis¬ 
cussed in greater detail in Chap. 20. Thus, for the formation of silver 
chloride at 25°c, we have, from the half-cell reactions, 

Ag(c) + Cl- - AgCl(c) + e~; E° = -0.2225 volt (11.16) 
iCl2(g) + e- = Cl"; E° = 1.3587 volts (11.17) 

Ag(c) + iCl2(g) = AgCl(c); E° = 1J362 volts (11.18) 

As before, the superscript ° is used to show that the indicated value of E 
is for the reactants and products in their standard states. Because there 
is one equivalent of electricity passing through the cell in this reaction, 
n is unity and the free energy change for reaction (11.18) is 

AF° = -23,068 X 1.1362 = -26,210 cal 

The formation of solid silver chloride from the elements is, therefore, a 
spontaneous reaction. 

Change of Emf with Temperature.—The change of the emf of a 
galvanic cell with temperature may be obtained by substituting the 
value for AF in equation (11.12) in (10.57). As a result, we have 

m,<“•»> 
This equation may be rearranged in the form 

nFE + AH = nFT 

or the form 

(11.20) 

(11.21) 
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These equations may be used to calculate dE/dT if AH and E are known 
or to calculate AH if E and dE/dT are known. It is possible for some 
reactions to get a more accurate value for AH by this method than by a 
direct calorimetric one. 

Free Energy and the Heat of Reaction.—In an attempt to formulate 
a rule concerning the direction of chemical reactions, Berthelot stated 
that spontaneous reactions proceed so as to form the substance, or sub¬ 
stances, which involves the evolution of the maximum amount of heat. 
This “principle” has been mistakenly called the “principle of maximum 
work.” As was previously deduced, the maximum work in a reaction 
depends not on the heat evolved but on the change in free energy. The 
principle of Berthelot is, therefore, in error whenever the maximum 
heat evolved does not give the results predicted by the free energy 
change. 

The relation between the change in free energy and the heat of reac¬ 
tion for an isothermal reaction at constant pressure was given by equa¬ 
tion (10.51), which becomes, on change of sign, 

—AF = -AH + T AS (11.22) 

T AS equals the absorption of heat from the surroundings for the reversi¬ 
ble process; if there is no change of entropy, that is, no exchange of heat 
between the reacting system and its surroundings, equation (11.22) 
becomes 

—AF = -AH = w' 

But — AH is the heat evolved by the process as carried out in a constant- 
pressure calorimeter. In a reversible process that proceeds without 
entropy change, all this energy would appear as useful work. 

When heat is absorbed as the reversible process occurs, T AS is posi¬ 
tive, and 

-AF> -AH 

that is, more work can be derived from the reversible process than would 
have been obtained if all the energy evolved as heat in the irreversible 
calorimetric process had appeared as work. On the other hand, if heat 
is evolved during the reversible process, T AS is negative, the work 
obtainable directly is less than the heat evolved in the calorimetric 
process, and 

-AF< -AH 

If the T AS energy is sufficiently large, AF and AH may be opposite in 
sign. It is in such cases that the use of the sign of AH as a criterion of 
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the direction of reaction leads to erroneous conclusions. A reaction 
may proceed whenever the occurrence of the reaction would result in a 
free energy decrease; if so large an amount of heat is evolved by the 
reversible reaction that T AS > — AF, AH is positive. Such an example 
is found among the list of problems. 

Some Numerical Relations between Free Energy and Heat Content. 
The relations between AF, AH, and T AS for some reactions are illus- 

Table 11.1.—Changes in Free Energy, Heat Content, and Entropy for Some 

Reactions* 

[Standard conditions: 25°c and 1 atmosphere pressure (unit fugacity for gases)] 

Reaction AF°, cal AH°, cal 
i 

T AS°, cal 
A S°, 

cal /deg 

C (graphite) -f K>2(g) = CO(g) -32,808 -26,416 J 6,392 21.439 

('(graphite) + 02(g) = C02(g) -94,260 -94,052 208 0.697 
C(graphite) + 2H2(g) = CH4(g) -12,140 -17,889 - 5,749 -19.283 
C (graphite) = C (diamond) 685 453 - 232 - 0.778 

H,(g) + KMg) = H20(g) -54,635 -57,798 - 3,163 -10.607 

H,(g) + JO,(g) = H20(liq) -56,690 -68,317 -11,627 -38.997 

Ag(c) + |Cl,(g) = AgCl(c) -26,210 
! 

-30,342 - 4,132 -13.86 

* The values for the reactions of carbon and hydrogen are from the tables of D. D. Wagman, J. E. 
Kilpatrick, W. J. Taylor, K. S. Pitzer, and F. D. Rossini, J. Research Natl. Bur. Standards, 34, 143 
(1945). 

trated in Table 11.1. When 1 mole of graphite is burned to carbon 
dioxide under the standard conditions, the heat evolved is 94,052 calories. 
This value is very nearly equal to the decrease in free energy, which is 
94,260 calories. Observe, however, that the work that might be obtained 
from the reversible combustion is 208 calories greater than the heat 
obtained from the irreversible combustion at 25°. In the reversible 
process, therefore, 208 calories of energy will be absorbed from the sur¬ 
roundings by the reacting system; this reversible heat T AS will be avail¬ 
able for the performance of useful work so that —AF is greater than 
— AH. Similarly, when graphite burns to carbon monoxide, the decrease 
in free energy is 32,808 calories; this quantity of work could be done in 
the reversible combustion. In this process, energy of the quantity 
T AS — 6,392 calories would be absorbed from the surroundings. The 
decrease in heat content during the reaction is only 26,416 calories. If 
this process could be carried out reversibly and the free energy converted 
to heat in a room, more heat would be introduced into the room than if 
the irreversible combustion occurred within the room, the surroundings 
being required to donate energy in the former process. 

In the above reactions where AS is positive, the reactions proceed 
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with an increase in entropy. In the combustion of hydrogen to form 
liquid water, there is a decrease in T AS0 of 11,627 calories. From the 
principle of the entropy increase in spontaneous reactions, one might 
assume that the reaction would not be a spontaneous one. However, 
the reaction is spontaneous, for it results in a decrease in free energy of 
56,690 calories. Under the experimental conditions of constant tempera¬ 
ture and pressure, the decrease in free energy is the measure of the spon¬ 
taneity of a reaction. The principle of the increase in entropy can be 
applied only to a process at constant energy and volume and not neces¬ 
sarily to one at constant pressure and temperature. 

For the formation of solid silver chloride, we found the change in free 
energy at 25°c to be —26,210 calories. The heat of formation at con¬ 
stant pressure and 18°c is —30,300. Neglecting, for the present, any 
change of this heat of reaction with temperature in the interval 18 to 
25°, we obtain a value of —4,092 calories for the value of T AS. This 
quantity of energy will be evolved by the cell to the thermostat during 
the reversible process, while the maximum net work done by the cell is 
26,210 calories. Here the reversible work is smaller than the change in 
heat content. 

Free Energies from Thermal Data.—From the fundamental relation 
between the free energy, heat content, and entropy, we found, for the 
constant-pressure isothermal process 

AF = AH — T AS (11.23) 

which was derived earlier [equation (10.51)]. Because of this relation¬ 
ship, we may calculate the free energy change for any reaction for which 
we know the values of AH and AS. The entropy change in the reaction 
can be calculated from the individual entropies of the elements and 
compounds by the usual methods of combining the necessary chemical 
equations. Tables of standard entropies as well as of standard heats of 
formation prepared in this way, therefore, enable us to obtain the desired 
free energy values. 

We are accustomed to the calculation of heat content from relative 
values of H. For various reasons, however, entropies of elements and 
compounds are reported on an absolute or a pseudoabsolute basis. By 
use of the third law of thermodynamics, which establishes the absolute 
value at the zero absolute of temperature, the standard entropy of a simple 
system, consisting of an element or a compound, can be obtained from 
the heat capacity data of the substance from low temperatures up to the 
standard temperature. Thus, from equation (8.10), the increase in 
entropy of 1 mole of simple substance, between two temperatures at 
constant pressure, is 
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S2 — Si = f dT = f Cp d In T (11.24) 
J Ti J- J Ti 

Any change in phase that occurs in the simple substance is usually indi¬ 
cated by an abnormal heat capacity, as discussed in Chap. 5. When all 
heat effects are taken into account, the entropy of a simple substance at 
25°c is the entropy of that substance in excess of the entropy value at the 
zero absolute. A second method for calculating the entropies of simple 
substances is based on an analysis of the band spectrum of the substance. 
As stated earlier, the precision of this method in many cases exceeds that 
of the method based on heat capacity data. 

Table 11.2.—Entropies of Some Substances in Their Standard States at 25°c 

(In calories per degree mole) 

Substance* 

(formula) 

O 
S298.16 

Substancef 

(formula) 

O 
S,298.16 

0,(g) 49.003 Ca(c) 9.95 

Ha(g) 31.211 CaO(c) 9.5 

H20(g) 45.106 CaCOj(calcite) 22.2 

H,0(liq) 16.716 a,fe) 53.31 

N,(g) 45.767 HBr(g) 47.48 
C (graphite) 1.3609 Hate) 44.66 
C(diamond) 0.5829 Hite) 49.36 

CO(g) 47.301 Pb(c) 15.51 

C02(g) 51.061 PbCl2(c) 32.6 

CH.(g) 44.50 Ag(r) 10.21 

AgCl(c) 23.0 

♦ Values for the substances in this column are from D. D. Wagman, J. E. Kilpatrick, W. J. Taylor, 

K. 8. PiUer, and F. D. Rossini, J. Research Nall. Bur. Standards, 34, 143, 1945. 

f Values for the substances in this column are from K. K. Kelley, U. S. Bur. Mines, Bull. 434, revi¬ 

sion of 1940, or from later data. 

Tables of entropies based on either or both of these two methods are 
now available. A few entropy values are listed in Table 11.2.1 Select¬ 
ing the entropies of silver, chlorine, and silver chloride, we have for the 
reaction 

Ag(c) + *Cl*(g) = AgCl(c); ASi„. - -13.86 cal/deg (11.25) 

1 Extensive entropy tables are given by W. M. Latimer, “ Oxidation States of the 

Elements and Their Potentials in Aqueous Solution,” Appendix V, p. 328, Prentice- 

Hall, Inc., New York, 1938, and by K. K. Kelley, “Contributions to the Data on 

Theoretical Metallurgy, IX. The Entropies of Inorganic Substances. Revision 

(1940) of Data and Methods of Calculation,” U. S. Bur. Mines, Bull. 434. References 

to the original literature are included. For the hydrocarbons, see Tables “t” of the 

“American Petroleum Institute Research Project 44 at the National Bureau of 

Standards.” Entropy values are given up to 1500°k. 
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From this value, we find that, at 25°, T AS — —4,132 cal. Compare this 
value with the value of —4,092 calories obtained earlier from the values 
of AF and AH. In this reaction the free energy value, obtained from 
emf measurements, and the entropy values are probably more accurate 
than the reported value for the heat of formation AII. In this case, 
therefore, we may obtain a revised value of AH. Thus, 

AHlM.i6 = AF° + T AS° = -26,210 - 4,132 (11.26) 
= -30,342 cal 

This value of AH° is probably more precise than that obtained from the 
direct calorimetric measurement. 

For many reactions, however, the free energy change is not obtained 
so readily or so precisely. Indeed, it is frequently impossible to measure 
AF directly. Under these circumstances, AF can be obtained from the 
experimental values of AII and AS. Thus, for the formation of methane, 
we have, from the calorimetric data, 

C(graphite) + 2H2(g) - CH4(g); AH° = -17,889 cal (11.27) 

and from Table 11.2 

AS° = s°(CH4) - s°(C) - 2s°(H2) - -19.283 cal/deg 

From these values, we find, at 25°c = 298.16°k 

AF° = -12,140 cal (11.28) 

As we shall see in the following chapter, this value of the standard free 
energy of formation of methane may be used to calculate the equilibrium 
constant for reaction (11.27). 

Free Energy Change as a Function of the Temperature.—For a 
chemical reaction at constant pressure, the variation of the free energy 
change with temperature was given in equations (10.56) and (10.57) as 

As the equation stands, it cannot be integrated, but it can be put into 
a form suitable for integration by the following steps: 

d AF = AF _ AH 
dT T T 

Upon dividing by T and rearranging, 

b AF 1 A F _ AH 
BT T T2 T2 



Chap. 11] FREE ENERGY CHANGE IN CHEMICAL REACTIONS 247 

But, 

d AF 1 AF _ T(dAF/dT) — AF _ d /a/A 
"diT r r2 t2 dT\T) 

Hence, 

Although we have dropped the subscripts indicating constant pressure, 
we understand that the restriction of constant pressure is still main¬ 
tained. In rearrangement, we obtain 

If AH depends on T, according to the equation 

AH = AIIq + aT + brT2 + cT3 

equation (11.31) may be integrated to give 

/d (t) = - / 1 +6 +c7’)d7’ 

^jr = ^ - a In T - 6T - | CT* + I 

Equation (11.32), when multiplied by 2\ becomes 

AF = AHo - aT In T - bT2 - + IT 

Either equation (11.32) or (11.33) may be used to calculate the free energy 
at any temperature if the dependence of AII on the temperature is 
known, and if the value of AF at some one temperature is known so that 
the constant of integration I may be evaluated. A greater accuracy 
of calculation with less effort can frequently be achieved if equation 
(11.32) instead of equation (11.33) is used in carrying out a calculation. 

In Chap. 5, we found that, for the reaction in which the change in 
heat capacity is represented by the equation 

ACp = a 4" fiT -f* yT2 

and the change of heat of reaction with temperature by the equation 

^ = A Cr = « + PT + y T* 

the value of AH at any temperature is 

(11.31) 

(11.32) 

(11.33) 

AH = AH o + aT + + h T* 
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which is equation (5.31). In terms of the constants, a, 0, and 7, the 
equation for the free energy becomes 

AF = A//0 - aT In T - if3T2 - \yT3 + IT y^ll.34) 

Just as we were able to add heat capacity and heat of reaction equations, 
so we can add free energy equations if they are expressed in similar terms. 
These equations are used in subsequent calculations. 

Free Energy Equation for the Formation of Water.—In Chap. 5, 
we found the heat of formation of water vapor at 25° to be 

aKb.i6 = -57,798 cal 

and the value of the heat of formation as a function of temperature to be 
[equation (5.36)] 

All0 = -57,018 - 2.704977 + 0.4735 X 10~*T2 + 0.879 
X 10"7T3 (11.35) 

In Chap. 12, we shall derive the value of the standard free energy of 
formation at 25°, namely, 

H2(g) + iO,(g) - H20(g); AF°29s.i6 = -54,635 cal (11.36) 

With these values, we are prepared to evaluate the integration constant 
in the equation for the free energy of formation of water as a function of 
temperature. 

Where AH has the value indicated in equation (11.35), we obtain 
from (11.31), for the constant-pressure reaction, 

d (^!).(+5Z^ + ^_ 0.4735 X!0- 

- 0.879 X 10-77^ dr 

which becomes, on integration, 

+ 2.7649 In T - 0.4735 X 10~*T 

- 0.440 X 10~77'2 + I (11.37) 
where 2.7649 In T = 6.3665 log T. 

If we knew the temperature at which the reacting substances at their 
standard pressures are at equilibrium, we could substitute this value of 
T and the value AF = 0 in equation (11.37), thereby obtaining a value 
for the integration constant /. For this reaction, the standard free 
energy at 25° is more accurately known than the equilibrium tempera¬ 
ture, so that this value, from equation (11.36), will be used in evaluating 
I. Again, to show the relative importance at 25°c of the various terms 
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in equation (11.37), we shall outline the calculation in some detail. 
From equation ‘(11.37), therefore, 

O OQO 

1 = ISiii_ 6-3665 log 298-16 + 0-4735 x io-3(298-16) 
+ 0.440 X 10~7(298.16)2 

= 7.992 - 15.754 + 0.141 + 0.004 
= -7.617 

Equation (11.37), therefore, becomes 

~r = - + 6.3665 log T - 0.4735 X 10~*T 

- 0.440 X lO-^2 - 7.617 (11.38) 

As stated earlier, this form of the equation is occasionally more convenient 
to use than the more explicit form 

AF° = —57,018 + 6.366577 log T - 0.4735 X lO-T2 
- 0.440 X 10-7r3 - 7M7T (11.39) 

In the above calculation, we have carried more significant figures than 
the accuracy of the heat capacity equations warrants. This was done 
to secure internal consistency so that a reverse calculation would repro¬ 
duce the coefficients of equation (11.35). Equation (11.39), of course, 
cannot give more accurate free energy values at the higher temperatures 
than the accuracy of the heat capacity equations permits. 

Problems 

11.1. If the standard entropy of ethane is 54.85 calories per degree at 25°c, what is 

the entropy change for the reaction 

2C(graphite) -f 3H2 = C2H6(g) 

Select the necessary data, and calculate AF° and A11° for this reaction. 

11.2. For a cell in which the reaction is 

Ag(c) + HgCl(c) - AgCl(c) + Hg(liq) 

R. H. Gerke [./. Am. Chem. Soc., 44, 1684 (1922)] found, at 25°c 

0 cLE 
~ 0.0455 int volt, — — 0.000338 int volt/deg 

Calculate AF°y AH°, and AS0 for this reaction. Compare the signs of AF and All. 
Will the reaction proceed spontaneously from left to right? Explain. 

11.3. Select the necessary data from the tables in the preceding chapters and 

from Prob. 5.8, and calculate the values of AH°1 AF°, and A£° at 25°c for the reaction 

C02(g) + H,(g) - CO(g) + H20(g) 



250 INTRODUCTION TO CHEMICAL THERMODYNAMICS [Chap. 11 

11.4. From the heat of reaction equation derived in Prob. 5.8 and the datum 

bF°nA6 ~ 6,817 cal, derive the free energy equation 

AF° = 9,934 - 1.1858P log T + 3.1166 X KT3?72 - 5.252 X 10“7P3 - 8.402P 

for the reaction 

H,(g) + C02(g) - H20(g) + CO(g) 

Calculate AFi.ooo. 

11.5. From the datum AF?m. 16 = 685 and the heat of reaction equation derived in 

Prob. 5.10, derive the free energy equation 

AF° = 541 + 1.177T log T - 0.000221 T* + - 2.438T 

for the transition 

C (graphite) = C (diamond) 

11.6. The value for the heat of formation of hydrogen chloride gas at 25°c is 

—22,063 calories per mole. Calculate the values for the standard entropy of forma¬ 

tion and the standard free energy of formation of hydrogen chloride at 25°c. 

11.7. For the reduction of carbon dioxide to carbon monoxide by hydrogen 

(Prob. 11.3), calculate the values of A E° and A A0. Compare with the values of 

AII0 and AF°, Explain. 

11.8. If the formation of ethane as expressed in Prob. 11.1 is carried out at 

constant pressure, what will be the volume change for the reaction? What will be 

values of AAp and AEp for this reaction? If the reaction is carried out at constant 

volume, what will be the values of AFy and AHv*! 
11.9. Because the classical heat capacity expression 

Cp = a + bT + cT2 + dT* • • • (11.40) 

fails to express heat capacity data at high temperatures, G. O. Maier and K. K. 

Kelley [J. Am. Chem. Soc54, 3243 (1932)] propose the expression 

CP = a + bT - cT"2 (11.41) 

J. Chipman and M. G. Fontana [ibid, 57, 48 (1935)] find a better fit with experimental 

data when an equation of the type 

Cp = ct + bT + cT~* (11.42) 

is used. Derive the expressions for the heat content II and the free energy F corre¬ 

sponding to equations (11.41) and (11.42). Compare with the equations derived in 

the text from equation (11.40), 

11.10. For substances at high temperature, the heat content relative to that at 

25°c is frequently expressed in the form 

Hr - H298.i6 - aT + bT1 + j, + d (11.43) 

Derive the corresponding equations for Cp and st — s298.ie. What additional informa¬ 

tion is needed if values of ft — Fm.ie are to be derived from equation (11.43)? 



CHAPTER 12 

FREE ENERGY CHANGE AND 
THE EQUILIBRIUM CONSTANT 

As chemists, we have used the equilibrium constant as a measure of 
equilibrium states and of the distance of reacting systems from equilib¬ 
rium. Because the free energy also measures this distance from the 
equilibrium state at constant temperature, it must be related to the 
equilibrium constant. Let us consider the reaction between the perfect 
gases A and B, and D and E as expressed in the general chemical equation 

aA + bB + • • • = dD + eE + • • • (12.1) 

the gases being at partial pressures equal to PfA, Pb, Pd, and Pe, respec¬ 
tively. The equation then indicates that a moles of the gas A at the 
partial pressure PA react with b moles of the gas B at the partial pressure 
Pb to form d moles of the gas D at the partial pressure P£> and e moles 
of the gas E at the partial pressure PL We have chosen a reaction among 
ideal gases because the properties of a mixture of ideal gases can be calcu¬ 
lated from the known properties of the component pure gases. 

The relation between the free energy change and the equilibrium 
constant can be obtained directly from the relations derived in the pre¬ 
vious chapter. It may also be obtained from a study of an “ equilib¬ 
rium box” (Fig. 12.1). Hitherto, we have used analytical methods in 
deriving thermodynamic formulas and have avoided the use of cycles. 
However, the equilibrium box may be useful in a physical interpretation 
of the derived formulas. We shall develop it first as an example of the 
general method and then derive the relations formally. 

Equilibrium Box.—The reaction in equation (12.1) may be carried out 
isothermally, reversibly, and at the constant pressure P with the aid of 
an “equilibrium box” illustrated in Fig. 12.1. In the reaction chamber I, 
the gases are present at equilibrium, the equilibrium partial pressures of 

the gases being PA, Pb, Pd, and PE, respectively, and the total pressure 
being constant at the value P. The reacting gases A and B are present 
at their initial partial pressures PA and Pb in the reservoirs II and III, 
respectively. The products of the reaction D and E are present at 
their final partial pressures Pd and PE in the reservoirs IY and V, 
respectively. The initial and final pressures may equal P, but they may 

be given any arbitrary values. 
251 
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The reaction may be carried out as follows: The gases A and B are 
changed from their initial pressures to their equilibrium partial pressures 
and added to the reaction chamber I where they react reversibly and 
at equilibrium to form the gases D and E. As they form, D and E are 
removed at their equilibrium partial pressures and changed to their final 
pressures. In this way, a moles of A and b moles of B are converted 
reversibly and isothermally into d moles of D and e moles of E. 

Consider the detailed process for A. When a moles of the gas, 
initially stored in II at the pressure P'A, are transferred at this pressure to 
VI, no work or free energy changes are involved: as piston 11 moves down, 
piston VI moves up. In VI, the gas is changed from its initial pressure 
to its equilibrium partial pressure, the molar volume of the gas changing 

Fig. 12.1.—-The equilibrium box. Key: (I) reaction chamber; (II), (III), (IV), (V), 
reservoirs for the gases A, B, D, and E, respectively; (VI), (VII), (VIII), (IX), piston 
chambers used to transfer the gases reversibly between the reservoir and the reaction 

chamber. 

from the initial value vA to the equilibrium value vA. From equation 
(4.39), the work done by a moles of the gas in this isothermal expansion 
is 

Wa = aRT In ^ = aRT In ^ (12.2) 
VA Fa 

From equation (11.11), the free energy change in this process is 

FA - F’a = aRT In ^ (12.3) 
* A 

A comparison of equations (12.2) and (12.3) shows that the free energy 
change equals —wA. The a moles of A are now transferred reversibly 
through a semipermeable membrane from VI to I at the equilibrium 
partial pressure PA. The membrane, permeable only to A, permits A 
to pass at constant partial pressure from VI to I in spite of the presence 
of other gases in the reaction chamber. There is here no free energy 
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change, there being no change in the partial pressure of A, but isobaric 
work is done on the gas. As A is transferred to I, the volume of I need 
not change for the gas is consumed in the reaction, but there is a change 
in volume of VI, a decrease equal to — ava. at the constant pressure PA. 

In this constant-pressure process, the work done by the gas is 

P AV = aPavA = -aRT (12.4) 

in accordance with the gas laws. 
In a similar way, b moles of B are introduced to the reaction chamber, 

there being work and free energy equations corresponding to equations 
(12.2) to (12.4). As the reaction proceeds at equilibrium, A and B are 
consumed and D and E are formed. The d moles of D and the e moles 
of E must then be removed and brought to their final pressures. The 
same operations are carried out as for A and B except that the direction 
is reversed. Thus, the work done by B in the transfer from VII to I 
at the equilibrium partial pressure is —bRT, being negative as in equation 
(12.4), but the work done by D and E in going from I to VIII and IX, 
respectively, is positive, the values being dRT and eRT. 

The isobaric work, which does not involve a free energy change, is 
the sum of the isobaric work for the individual gases, namely, 

wP = -aRT - bRT + dRT + cRT = [(d + e) - (a + b)]RT (12.5) 

But the difference between (d + e), the number of moles of gas produced, 
and (a + b), the number of moles consumed, represents the increase in 
number of moles of gas as a result of the reaction. Let this increase An 
be defined as 

An = {d e) — {a -(- b) (12.6) 

It follows from equations (12.5) and (12.6) and the gas laws that 

Wp = AnRT = P AV (12.7) 

where P is the total pressure of the reacting mixture and AF is the increase 
in volume as a result of the reaction, this increase being measured at the 
total pressure P. Only when there is no change in the number of moles 
as a result of the reaction will there be no external work wP. 

Now there was no spontaneity is the work of expansion wP, for all 
this work is done at equilibrium pressures. On the other hand, the 
changes between the equilibrium and the initial or final pressures, though 
carried out reversibly, do not represent equilibrium processes. If more 
work can be secured from the expansion of the products of the reaction 
than is required to compress the reactants, useful net work results. The 
net work expression for B corresponding to equation (12.2) is 



254 INTRODUCTION TO CHEMICAL THERMODYNAMICS [Chap. 12 

Wb = -bRT\n^ (12.8) 
B 

and the net work done by the products D and E between their equilib¬ 
rium pressures and their final pressures is, respectively, 

Wv = dRT In — = -dRT In § (12.9) 
Vd Jr-d 

and 

We = -eRTln^ (12.10) 
A E 

From equation (10.16), the change in work content for this isothermal 
reaction is 

AA = — Wr — —Wp — WA — U'B — Wd — We (12.11) 

The reaction is also an isobaric one so that, from equation (10.17), the 
change in the free energy is 

AF = — Wf — —WA — U>b ~ Wr> — Wr (12.12) 

We have, then, for the reaction, 

AF = aRT In ~ + bRT In 
P. P* P' 

A , mrr^g* + dRTlnLJl + eRTln^ 
b In I e 

= RT 

AF = RT In 
P’M 

+ In I 

p'ap>b - RT In 

+ In 

/ViV 
PM 

= —w (12.13) 

Because the decrease in Helmholtz free energy equals the total work, we 
have, from equations (12.7), (12.11), and (12.12), 

AA = AF — AnRT 

as may be deduced from the general relation A A = AF — A(PV). 
Free Energy Change from the Partial Free Energies.—From equation 

(11.11), the change in free energy when a moles of the ideal gas A expand 
from a partial pressure of Pi to a partial pressure Pa is given by 

<1214> 

If f! is the molar free energy of A at the partial pressure P'A and if fa 
is that of A at the equilibrium partial pressure, we have, from equation 
(12.14), 

Pa - Pi = «(fa - Fi) = aRT In ^ (12.15) 
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Table 12.1.—Summation of Partial Free Energy Changes for a Reaction 

Step Reaction Free energy change 

I a.\(P'A) = aA(Pa) AFi = a(FA ~ Fa) 
II bB(P'B) = I)B(Pb) AFu = 6(fb — Fb) 

III aAU\) + 6B(Pb) = dD(Pi>) + eE(PK) AFih = 0 

IV dD(Pi>) = dD(P'D) AFiv = ^(Fj) — Fd) 

V eK(PE) = eE(P'E) AFv = c(fe - Fe) 

Total aA(K) + bB(P'B) = dn(P'D) + eE (P'E) AF — AFi -f- AFii -f- AFiv ~f~ AFv 

Corresponding equations may be written for the gases B, D, and E. 
Reaction (12.1) may be carried out by the reversible steps in Table 12.1, 
step III being the reversible reaction that occurs when all the gases are 
at their equilibrium pressures, so that AF = 0. For the reaction indi¬ 
cated in equation (12.1), we have, therefore, 

AF — AFi “I- AFu -f- AFiv AFv 

= aRT In j* + bRT In § + dRT In ^ + eRT In ^ 
P a * b •* d Jr b 

AF = RT In P'»dP'E‘ 
pr-apn, RT In 

Pi/Pe (12.16) 

This equation is identical with equation (12.13) deduced from the 
operation of the equilibrium box. 

Equilibrium Constant.—For an isothermal equilibrium process at 
constant pressure AF = 0. Consequently, if the initial partial pressures 
of the reactants and the final partial pressures of the products of the reac¬ 
tion equal the equilibrium values, AF = 0 for the reaction. Then, from 

equation (12.16), 

RT In 
P ndPEe 

Pa“Pb6 
= RT In p't>dp;• 

and 
Pi/Pe' _ P'v>iP%> _ „ 
Pa“Pb‘ p?p B6 

(12.17) 

where KP is a constant called the equilibrium constant for the reaction. 
At constant temperature, we may vary the initial and final pressures in 
a reaction and still preserve equilibrium so long as the variation keeps 
constant the ratio 

KP 
iViV 
Pa°/V 

(12.18) 

This is the relation known as the law of mass action, used widely by chem¬ 
ists in making calculations on equilibrium reactions. It was first derived 
not from thermodynamics but from kinetic considerations. 
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As early as the beginning of the nineteenth century, Berthollet called 
attention to the influence of quantity of reacting substances on a chemical 
reaction; but, unfortunately, he concluded that the influence of varying 
proportions of reactants resulted in compounds of varying composition. 
When the law of definite composition was established, the ideas concerning 
the effect of quantity of material on the course of a reaction were neglected 
for a half century. In 1863, Guldberg and Waage, using the concept 
“active mass,” stated that the velocity of a chemical reaction depends 
on the products of the active masses of the reactants. If [A] and [B] 
represent the active masses of the reactants and [D] and [E] those of the 
products in a reaction 

A + B = D + E 

involving 1 mole of each of the reacting substance, the velocity of the 
forward reaction equals p[A][B], and that of the reverse reaction g[D][E], 
where p and q are constants characteristic of the reacting substances and 
of the temperature. For equilibrium, 

P[A][B] = *[D][E] 

[D]fE] p 
[Aj[B] q (12.19) 

Equation (12.19) is a simplified form of (12.18), applying when the 
number of reacting moles, a, 6, d, and e, are all unity. Guldberg and 
Waage suggested the use of concentration as a measure of active mass, 
or, as we would say now, of activity. We should take note that the 
law was derived for “active masses” and that it cannot be used in terms 
of concentration where concentration is not a measure of activity. 

Standard Free Energy Change and the Equilibrium Constant.—In 
previous sections, we found that if reaction (12.1) is an equilibrium reac¬ 
tion the initial pressures of the reactants (Pi and P'B) and the final pres¬ 
sures of the products (P'D and P'E) are equilibrium pressures. Whenever 
these pressures are not equilibrium pressures, there is a free energy change. 
The greater the pressures of the reactants and the smaller the pressures 
of the products, the greater is the tendency for the reaction to proceed. 
This is readily explained from the kinetic point of view and just as readily 
from equation (12.16), which may be put in the form 

AF = RT In - RT In KP (12.20) 

As Pd and Pi decrease and Pi and Pi increase, the fraction P^PeVP^Pb6 
decreases, its logarithm decreases, and AF becomes more negative. 
From the thermodynamic as well as the kinetic standpoint, therefore, 
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the reaction has a greater tendency to go. The tendency of a reaction 
to go depends on the initial and final concentrations or activities of 
reactants and products as well as on the value of the equilibrium con¬ 
stant, and there is a free energy change for each set of initial and final 
conditions. We must emphasize the fact that there are these different 
free energy changes even though temperature and pressure of the reac¬ 
tion remain unchanged. As equations (12.7) and (12.13) indicate, the 
total pressure P enters into the work of expansion but not the free energy 
of reaction. 

If a standard state is selected for each constituent at which its initial 
or final pressure is unity, we have 

Pa - = n - n = i 

Under these conditions, equation (12.20) becomes 

AF = AF° - 0 - RT In KP 
AF° = —RT In KP (12.21) 

where AF° is the standard free energy change previously defined in Chap. 
11. This standard free energy change is particularly useful because it 
can be calculated from, or used to calculate, the equilibrium constant. 

We know that the numerical value of an equilibrium constant fre¬ 
quently depends on the units used. Each set of units implies a different 
standard stale and the value of the standard free energy change changes 
with the shift in standard states. If the partial pressures Pa, Pb, and 
so forth, are expressed in millimeters then the standard state is taken 
as PfA = P& = 1 mm. When we do not specify otherwise, we shall select 
1 atmosphere pressure as the standard state of a gas. 

Perhaps we should remind ourselves at this point that the free energy 
functions used in the derivations in this chapter are valid only for con¬ 
stant-temperature processes. Consequently, the equilibrium constant 
is a constant for the constant-temperature reaction and the standard free 
energy change refers to a reaction between substances in their standard 
states at that temperature. For simplicity, we have omitted the subscript 
T, but it is implied in the preceding equations in this chapter. 

Conventions in the Use of Equilibrium Constants.—In accordance 
with established usage, AF is positive when the final state has more free 
energy than the initial state. From equations (12.1G) and (12.21), it 
appears that the free energy change is positive when In KP is negative, 
that is, when KP has a fractional value. In the expression for KPy the 
terms for the products of the reaction are uniformly written in the numer¬ 
ator and those for the reactants in the denominator of the mass action 
expression. This practice is necessary if the proper signs for AF are to 
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be obtained. If the equilibrium concentrations of the products of the 
reaction are larger than the initial concentrations and those of the reac¬ 
tants are correspondingly smaller, the reaction may proceed from left to 
right spontaneously. Under these conditions, A > 1, In A is positive, 
and AF has a negative value. This is in agreement with our previous 
statements on the free energy change of a spontaneous isothermal isobaric 
reaction. 

We have stated earlier that free energies are additive extensive prop¬ 
erties of systems. When two systems arc added, therefore, the free 
energy of the resulting system is the sum of the two separate free energies. 
Thus, we have, for the formation of 1 mole of water vapor, 

II2 + i02 = H20(g); A/'T (12.22) 

and, for the formation of 2 moles of water, 

2H2 + 02 = 2II20(g); AF2 = 2A Fl (12.23) 

But, from equation (12.18), we have, for (12.22), 

K' - KTK? <1224> 
and, for equation (12.23), 

K* = = (A,)2 (12.25) 
Jr h2 *o2 

From equation (12.21), we have the confirming relation 

AF2° = 2AFl = -2RT In AT = —RT In AT2 = —RT In AT (12.26) 

When a chemical equation is doubled, the free energy change of the reac¬ 
tion is doubled but the equilibrium constant is squared. From the 
logarithmic relation between AF and A, we find in general that, if reac¬ 
tions (1) and (2) with free energy changes AFi and AF2 and equilibrium 
constants Ki and A2, respectively, are added, the free energy and 
equilibrium constant for the resulting reaction are, respectively, 

AF 3 — AFi + AF 2 

A3 = Ax X A2 
(12.27) 

Relations between the Equilibrium Constants Expressed in Different 
Units.—Because perfect gases do not affect each other, their activities are 
directly proportional to their partial pressures, or to their “concentra¬ 
tions” in moles per liter or to their mole fractions. These different 
methods of expressing activity and the corresponding constants KPj Ac, 
and Kn are related. Concentrations are frequently expressed in moles 
per liter. If the total reaction volume is V, the number of moles of A 
being a, the concentration of A is given by CA = a/V [compare equation 
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(1.16)]. For all the constituent gases, we have, in this concentration 
unit, 

CA = Cb Cd = Ck = (12.28) Y, \sa y i '-'u y ’ y 

In terms of concentration units the equilibrium constant Kc is written 

CV ■ CN 
Kc = (12.29) 

CV • Cb6 

From the definition of a mole fraction in equations (1.18) and (1.19), 
we have, for the constituent gases, 

b 
a H- b -f- d -J- e ’ 

d „ e 

Nk = 
a + b + d + e’ 

Nv = Ne = (12.30) 
a + b + d + e’ J a + b + d + e 

In terms of the mole fractions the equilibrium constant Kn is given by 

NV ■ Ne‘ Kn (12.31) 
Nv ■ Nb" 

From Dalton’s law of partial pressures, we have, for perfect gases, 

Pa = NJ>; Pb = NbP; Pd = NaP; PE = N»P (12.32) 

From the ideal gas equation [compare equation (1.17)], we have 

PA = CART; Pb = CbRT; Pd = CvRT; 
Pe = CeRT (12.33) 

The relation between the equilibrium constants in terms of partial pres¬ 
sures and mole fractions is obtained by combining equations (12.18) 
and (12.32). Thus, 

KP PDrf • Pb* 
Pa“ • PBfc 

(NuPY ■ (NvPy _ 
(NApy ■ (iVeP)" aTa° • Nb“ 

(12.34) 

and, from equation (12.31), 

KP = Kn • pM+«>-(«+w (12.35) 

The relation between the equilibrium constants in terms of partial 
pressures and concentrations is obtained by combining equations (12.18) 
and (12.33). Thus, 

KP 
(CgRTy • (CeRTY = cv • cv. (RTMd+>)_{a+i) 
{C\RT)a • (CbRTy Cv ■ Cb" ^ ’ 

(12.36) 

and, from equation (12.29), 

Kp = Kc(RTyd+‘>-<°™ (12.37) 
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Using the definition of An in equation (12.6), we have, for the various 

equilibrium constants, 

and, similarly, 

Kr = Av PAn = Kc(RT)** (12.38) 

(12.39) 

In some reactions the numerical values of the equilibrium constants 

expressed in the different units are identical. From equation (12.38), 

it follows that 

K* = Kn = Kc (12.40) 

when An — 0, that is, when there is no change in number of moles in the 

reaction and d + e = a + b. Another condition under which Ki> and 

Kn are identical is that of unit pressure. Kp and Kc may also be iden¬ 

tical when (RT) is unity. If the concentration is expressed in moles 

per liter and the pressure in atmospheres, R — 0.08200, and T must be 

1/0.08206 = 12.2°k. This last condition (RT = 1) is evidently not of 

practical importance. 

Standard States and the Standard Free Energy Change.—Let us 

now study in more detail the influence of the choice of standard states 

on the value of the standard free energy change. From the relations 

in equations (12.15) and (12.16), it follows that the free energy change 

for reaction (12.1) may be expressed as 

AF = a(FA - y'a) + &(fb - fi) + d(F'u - F») + c(fe - fe) (12.41) 

which may be written in the form 

AF = [(dFn + cf'e) - (av'A + 6ii)] - [(dFi> + cfe) 

- («fa + 6fb)] (12.42) 

These equations show that the free energy change for the reaction is 

related to the change in free energy of the constituent gases. Thus, 

what appears in equation (12.41) for the gas A is the free energy differ¬ 

ence a(FA — fa). If this difference can be determined directly, it follows 

that the absolute values of the free energy of A in the initial and equilib¬ 

rium states are not necessary. The definition F = H — TS, indicates 

that absolute values of F can be obtained when the absolute values of 

both H and S are available. These values are known only for a limited 

number of substances. 

It is, of course, possible to prepare free energy of formation tables cor¬ 

responding to the heat of formation tables if the elements in their stand¬ 

ard states are assigned a free energy of zero. The free energy tables 
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prepared for the compounds in this way represent the values relative to 

those of the elements. If the gases A, B, D, and E, in reaction (12.1), 

are compounds and not elements, their free energies, even when expressed 

in these relative values, will usually have values not equal to zero. 

When the reactants and products of a reaction are in their standard 

states, their molar free energies ri, fb, f£>, and f^ become the standard 

molar free energies, and the free energy change for the reaction becomes 

the standard free energy change. Using the customary notation, we 

have, from equations (12.41) and (12.42), 

AF° = [d(F° - Fn) + C(F° - Fb)] - [a(v°A - FA) + b(f£ - FB)] 

= [(dF?, + CFe) - (UFA + 6Fb)] - [(dFD + CFk) 

- (ufa + 6fb)] (12.43) 

It follows from equation (12.43) that, when the equilibrium free energies 

of the three substances A, B, and C, are fixed independently, c/fd must 

assume a unique value that preserves the constancy of the term 

[(drD + cfe) — (aFA + £>fb)]. Because fd has a constant value for a 

mole of D under these conditions, the value of d, the number of moles of 

D, also must assume a unique value. This result is a necessary conse¬ 

quence if AF° for the reaction is to have a value dependent only on the 

initial and final conditions and independent of the path over which the 

reaction proceeds. This constancy may be used as the basis for another 

statement of the law of mass action. 

The above relations were derived for an isothermal reaction. Under 

the condition of constant temperature, we have seen that it is possible 

to alter the free energy of a substance by changing its concentration. 

Let us consider a new standard state for the gas A, at which its initial 

partial pressure isP°' instead of JP°, the temperature remaining unchanged. 

The corresponding molar free energies of A are designated Fa and 

respectively. Because the equilibrium free energy term in equation 

(12.43) is unchanged by this shift in standard state, the standard free 

energy of the reaction must change correspondingly. If the new value 

of the free energy change for the reaction is designated as AFor, it follows 

that 

AF°' - AF° - <z(Fa - fI') (12.44) 

A shift in the standard state for any of the reactants or products of a 

reaction is, therefore, directly reflected in the value for the standard free 

energy of the reaction. Changes in standard state are frequently met 

in Studies on solutions where the standard states are fixed arbitrarily. 

They are also common in studies of reactions where one or more of the 

reacting substances may be present in more than one phase. Thus, in a 
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reaction involving water, we may select ice, liquid water, or water vapor 
as the standard state. 

Solids, Liquids, and the Equilibrium Constant.—The basic equation 
(12.21), relating the standard free energy change for a reaction to the 
equilibrium constant, was derived for the reaction of ideal gases. It 
can also be applied to the reactions of solids and liquids whose vapors 
behave as ideal gases; for if the vapors are in equilibrium with each other 
in a reaction mixture, the solid and liquid phases in equilibrium with their 
respective vapors must also be in equilibrium with each other. How¬ 
ever, in a mixture of ideal gases the vapor pressure of a pure solid or 
liquid at constant temperature remains constant, whereas the pressures 
of the gaseous constituents are variable. As a consequence the equilib¬ 
rium concentration of the vapor from the pure solid or liquid is identical 
with its initial (or final) concentration. Thus, if the substance A in 
reaction (12.1) is a pure solid, the vapor pressure of A will fix both the 
initial and equilibrium pressures of A in the gas phase. Because PI = Pa, 

it follows from equation (12.15) that 

o(fa — fI) = aRT In 1 = 0 (12.45) 

It is the custom not to include the concentrations of pure solids or 
liquids in the expression for the equilibrium constant but, because their 
values remain constant, to “ include them in the numerical value of the 
equilibrium constant.” Thus, when the substance A is a pure solid or 
liquid, equation (12.18) becomes 

D dp e 

KP = (12.46) 

Let us define a new standard state for the substance A so that A is in its 
standard state when it is a pure solid with a vapor pressure of P0/ rather 
than a gas at 1 atmosphere pressure. The change in the standard free 
energy of A accompanying this change in standard states, on comparison 
with equation (12.15), is seen to be 

a(F? - f°) = aRT In 2 = aRT In Pi' (12.47) 
Ha 

The standard free energy change of the reaction resulting from the change 
in the standard state of A becomes altered by this same quantity; for, 
from equation (12.44), 

AF°' — AF° — a(A - F?) = aRT In ^ (12.48) 

This factor (1/Pl')a is obviously responsible for the difference between 
equations (12.18) and (12.46), 
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Equilibrium Constant for the Formation of Water at 26°C.—The 
equilibrium conditions for the formation of water from hydrogen and 
oxygen may be deduced from the equilibrium constant of the reaction. 
This value in turn may be obtained from the standard free energy change 
for the reaction. We have shown how the standard free energy change 
may be calculated from the potential of a standard reversible cell with 
the aid of equation (11.12). This change, AF°, may also be evaluated 
from the basic equation 

AF° = AH° - T AS° (12.49) 

if the necessary data are available. 
The heat of formation of liquid water under standard conditions was 

given in equation (5.1) as A//298.i6 = —68,317 cal. In this reaction, 
at 25°c the hydrogen and oxygen gases and the liquid water were all in 
their standard states so that this value of the heat of reaction at constant 
pressure is the standard heat of reaction AH°. The standard entropies 
of hydrogen and oxygen gases and liquid water at 25°c, from Table 11.2, 
are 31.211, 49.003, and 16.716 calories per degree per mole, respectively. 
The standard entropy change for the reaction is 

H2(g) + i()2(g) - H*0(liq); AS° = s°jQ - (4, + *4.) (12.50) 

Using the above data, we have 

AS° = -38.997 cal/deg (12.51) 

At 29S.16°k, T AS0 has the value —11,627 calories. When this value 
and the value for A11° are substituted in equation (12.49), we have 

H*(g) + i02(g) = H20(liq); AF° = -56,690 cal (12.52) 

We have remarked that the standard free energy change measures 
the distance from equilibrium of the system in which the reactants and 
products are in their standard states. At 25°c, hydrogen and oxygen 
gases at 1 atmosphere are far from being in equilibrium with water. 
Consider a system of hydrogen, oxygen, and water that would be in 
equilibrium at this temperature, the equilibrium partial pressures of the 
hydrogen and oxygen being x and y atmospheres, respectively. In this 
system, the liquid water is in equilibrium with its vapor so that the free 
energy of the saturated vapor equals that of the liquid water. Thus, 

PI20(g, satd vapor) = H20(liq); AF = 0 (12.53) 

The saturated vapor in turn is in equilibrium with the hydrogen and 
oxygen at their equilibrium partial pressures so that 

H2(x atm) + }Oz(y atm) = H20(g, satd vapor); AF = 0 (12.54) 
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From equations (12.53) and (12.54), it appears that liquid water is also 
in equilibrium with hydrogen at x atmospheres and oxygen at y atmos¬ 
pheres. These equations, when combined, become 

H2(x atm) + i02(y atm) *= II20(liq); AF = 0 (12.55) 

Equation (12.55), or equations (12.53) and (12.54), may be subtracted 
from equation (12.52) to indicate a reaction with a free energy change 
identical with the standard free energy change. Thus, 

H2(l atm) + -KM1 atm) = Il2(x atm) + i02(y atm); 
AF = — 56,090 cal (12.56) 

The free energy change in equation (12.50) is a measure of the net work 
of expansion of hydrogen from its standard state of 1 atmosphere to its 
equilibrium state of x atmospheres and of oxygen from its standard state 
of 1 atmosphere to its equilibrium state of y atmospheres. It appears, 
therefore, that equation (12.52) with the same value for the free energy 
change measures the same net work. 

It will be instructive to express the free energy change for equation 
(12.56) in terms of the free energies of the reacting substances. Thus, 

AF — [f(Ho, x atm) — f°(H2, 1 atm)] + [1f(02j y atm) — iF°(02, 1 atm)] 
= —56,690 cal ’ (12.57) 

But, from equation (11.11), the isothermal change in free energy of the 
hydrogen is 

f(H2, x atm) — f(H2, 1 atm) = RT In x (12.58) 

and the corresponding change for the ^ mole of oxygen is 

iF(02, y atm) — £f(02, 1 atm) = %RT In y = RT In y* (12.59) 

From these equations, we have for the fre6 energy change of reaction 
(12.56) 

AF = RT In x + RT In y1 = RT In xy1 = —56,690 cal (12.60) 

This result may be compared with that obtained by a more formal treat¬ 
ment of equation (12.52). The equilibrium constant for reaction 
(12.52) is related to its standard free energy change by equation (12.21) 
so that 

AF° = -RT In KP = -2.3020RT log KP = -4.S75777 log KP 
= -56,690 cal (12.61) 

R being 1.9872 calories per degree. The liquid water being in its stand¬ 
ard state, it follows from equation (12.46) that the equilibrium constant 
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for reaction (12.52) is 

K - 1 - J_ 
P Pu, ■ Po,* xyi 

From equations (12.61) and (12.62), we have 

(12.62) 

AF° = -RT In KP = -RT In — = RT In xy* = -56,690 
xy* 

which was obtained previously [equation (12.60)] by a different method. 
The equilibrium constant for the formation of liquid water may be 
evaluated from equation (12.61). Thus, 

and 

1 K __ 56,690 
g P 4.5757 X 298.16 

41.553 

KP = 3.57 X 1041 

From these values and equation (12.62), we obtain 

log (PHa Po2j) = -41.553 = 42.447 
and 

Ph, * Po2* = xy* = 2.80 X lO"42 (12.63) 

It is evident that the partial pressures of hydrogen and oxygen in equilib¬ 
rium with liquid water have extremely small values and that the reaction 
goes essentially to completion. 

The above relations are for the equilibrium of hydrogen and oxygen 
with liquid water. In a reaction system in which the water is present 
as the vapor, the vapor at 1 atmosphere pressure is chosen as the stand¬ 
ard state for water. This change in standard state produces a corre¬ 
sponding change in standard free energy in accordance with the discussion 
leading to equation (12.44). According to Osborne and Meyers,1 the 
equilibrium vapor pressure of water at 25°c is 0.031222 atmosphere, or 
23.729 mm. The change in free energy desired is, therefore, that for the 
change in standard states for water, 

H20(liq, 1 atm; vapor pressure = 0.031222 atm) 
= H20(g, 1 atm) (12.64) 

Three equivalent procedures may be used in evaluating this change in 
standard free energy from the experimental data. We shall indicate the 
optional methods of procedure as examples of general methods among 
which one may choose on the basis of simplicity or convenience. 

Osborne, N. S., and C. H. Meyers, J. Research Natl. Bur. Standards, 13, 11 
(1934). 
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1. Remembering that water is a product of the reaction corresponding 
to D and not to A, we have from equations (12.43) and (12.44) 

AF°' - AF° = Fj/,0 - f°,0 (12.65) 

Because P°' = 1 and P° = 0.031222 atm, we have, by analogy with 
equation (12.47), 

imo — Fhso = R1 In q_q3j222 

= -4.5757 X 298.16 log 0.031222 
= 2,054.0 cal (12.66) 

2. Let us consider the change in standard state for water as the result 
of two steps, the first being an equilibrium reaction with a free energy 
change of zero, and the second being the compression of the water vapor. 
Thus, 

H,0(liq) = H20(g, 0.031222 atm); 

AF = 0 

HsO(g, 0.031222 atm) = H20(g, 1 atm); 

AF = j v dP = RT In 0(m222 

H»0(liq) = H20(g, 1 atm); AF = —RT In 0.031222 (12.67) 
= 2,054.0 cal 

Equation (12.67) is equivalent to (12.66) above. 
3. For the reaction 

H*0(liq) = H20(g), KP = PHao (12.68) 

we may write in a formal manner 

AF° = -RT In KP= -RT In Pw (12.69) 

In equation (12.68), we have omitted the term for the liquid water from 
the equilibrium constant expression, as is customary for liquids and solids. 
The value of Ph2o is the equilibrium value, 0.031222 atmosphere, and 
the value for AF° is the standard free energy change for reaction (12.68). 
We have, therefore, 

AF° = -RT In 0.031222 = 2,054.0 cal (12.70) 

in agreement with equations (12.66) and (12.67). 
In these calculations, we have assumed that water vapor acts as a 

perfect gas. Rossini1 reports a difference in free energy of the real and 

1 Rossini, F. D., J. Research Natl Bur, Standards, 22, 407 (1939). 
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ideal water vapor at a pressure of 0.031222 atmosphere equal to 

Fid»ai — Freai = 4.7 ± 1.2 joules =1.1 cal (12.71) 

Because the real gas at 0.031222 atmosphere pressure has a free energy 
smaller by 1.1 calories than the ideal gas, the free energy change for 
bringing the gas to a fugacity (symbol /) of 1 atmosphere is obtained 
by combining equation (12.66), (12.67), or (12.70) with equation (12.71) 
to give the free energy change for the change of the standard state of 
water from that of the liquid to that of the vapor at unit fugacity. Thus, 

A F° = 2,054.0 + 1.1 = 2,055.1 cal (12.72) 

Fugacity is defined in the following section. 
We are now prepared to calculate the free energy of formation of 

water vapor at 25° and fugacity of 1 atmosphere by combining equations 
(12.52) and (12.72). Thus, 

H2(g, / = 1) + i02(g, / = 1) = H20(liq); 
AF° = —56,690 cal 

H20(liq) = H20(g,/= 1); 
AF° = 2,055 cal 

H2(g, / = 1) + *Oa(g, / = 1) = H20(g, / = 1); 
AF° = -54,635 cal (12.73) 

This value of AF° was used in equation (11.36) to evaluate I in the general 
free energy equation for the formation of water vapor. 

In equation (12.68) the equilibrium constant contains the term PH2o 
for the partial pressure of gaseous water in the numerator. Either the 
standard free energy value in equation (12.52) or that in (12.73) may 
be used in deriving the equilibrium pressures of the hydrogen and oxygen 
in the formation of water at 25°, but each value must be used with its 
corresponding equilibrium constant. 

The calculations on the preceding pages illustrate the need for precise 
free energy data in calculating equilibrium constants. Rossini gives the 
“accuracy error ” for the standard free energy of liquid water [equation 
(12.52) ] as ±11 calories. Let us assume, therefore, that the last sig¬ 
nificant figure is uncertain; it is carried primarily so that a reversed 
calculation will permit the recovery of the original experimental values 
on which it is based. If the fifth significant figure in the value 56,690 is 
uncertain, the fifth figure in the value log KP = 41.553 is also uncertain. 
Although the logarithm of KP is given to five significant figures, the value 
of KP itself will be available to only three; for it is the mantissa, and not 
the characteristic, that controls the number of significant figures in the 
value of KP. If AF° is assigned a value of —56,695, an increase of 5 
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calories, log KP becomes 41.556 and KP becomes 3.60 X 1041, an increase 
of 0.03, or 1 per cent in the value of KP. In this example, an error of 
0.01 per cent in AF becomes a 1 per cent error in KP, The value of the 
absolute temperature, kept constant in the above calculation, also enters 
into equation (12.21). A doubling of the absolute temperature results in 
a halving of the value of log K for any given value of AF. 

Fugacity.—The relation between the change in standard free energy 
for a reaction and the equilibrium constant was derived for the reactions 
of ideal gases and of solids or liquids whose vapors behave as ideal gases. 
For each simple constituent of an isothermal system, we may write 
dF = v cLP, but only for the ideal gas may we place v equal to RT/P in 
order to obtain the integrated expression 

f - f' = RT In ~ (12.74) 

which we used in deriving the expression for the equilibrium constant. 
However, there are many chemical systems in which these ideal con¬ 

ditions do not obtain. In such systems, the equilibrium “constant” in 
terms of partial pressures or concentrations does not remain constant 
with varying equilibrium conditions at constant temperature; conse¬ 
quently, the “constant” cannot be an exact measure of the standard free 
energy change of the reaction as required by equation (12.21). Several 
alternative procedures may be followed in applying the laws of thermo¬ 
dynamics to nonideal systems. 

1. An empirical function for the relation between V and P for the 
nonideal system may be derived so that v dP may be integrated to give 
an exact value of f — f'. In general, the form of the empirical function 
will vary from substance to substance; thus, the combinations of the 
functions of the different substances in the chemical system may give 
complicated expressions that are not easy to apply. 

2. The general form of equations (12.74) and (12.21), including the 
ideal gas constant Rf may be preserved if another function is substituted 
for the pressure. This function will be empirical and the deviations 
from ideality will all be lumped into one term, but it will give the correct 
value of f — f7 for the isothermal process. 

In accordance with the suggestion of Lewis, the second alternative has 
been almost universally followed by physical chemists. Lewis1 proposed 
the use of the function fugacity, /, as a measure of the escaping tendency 
of a substance. Because the escaping tendency of an ideal gas is meas¬ 
ured by the pressure, the fugacity is such a function that, for an ideal gas, 

1 Lewis, G. N., Proc. Am. Acad, Art* Sci., 37, 49 (1901); Z, phyvik. Chem., 33, 
205 (1901). 
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it is identical with the pressure. Let the fugacity of a mole of substance 
be defined in part by the differential equation 

dF = RT d In / (12.75) 

This equation defines only the change in / and not its absolute value. 
For the isothermal process, we obtain, on integration, 

f - f' = RT In j, (12.76) 

which is strictly analogous to equation (12.74). Observe, however, that 
equation (12.76) defines only the ratio///' and does not in itself permit the 
evaluation of either / or /'. 

However, the requirement that the fugacity for an ideal gas shall 
equal its pressure permits us to fix the absolute value of the fugacity for 
a real gas. A real gas approaches ideal behavior as its pressure becomes 
reduced; hence, the fugacity of the real gas approaches the pressure as 
the pressure approaches zero. This statement in mathematical form is 

lim = 1 (12.77) 
P-0 H 

Activity.—Lewis also introduced another function, activity1 (symbol, 
a), which is used as a relative function. For 1 mole of substance in an 
arbitrarily selected standard state with a free energy f° and a fugacity 
/°, the absolute value of the fugacity in atmospheres or any other unit 
will not necessarily be unity. However, the activity in this state, a°, 
is defined as equal to unity. In any other state, the substance has a 
value of the fugacity / which may be expressed in absolute units. The 
value of the activity in this state, however, is relative to the activity in 
the standard state (unity) as defined by the equation 

a = / (12.78) 

A comparison with equation (12.76) shows that activity is also defined 
by the equation 

F — f° = RT In a (12.79) 

As this equation indicates, when a substance approaches the arbi¬ 
trarily selected standard state, its free energy f becomes equal to f°, 

In a = 0, and a = 1. All values of a are therefore relative to this value 
at the standard state. In the arbitrarily selected standard state, / may 
have an absolute value different from unity. From equation (12.76), 

1 Lewis, G. N., Proc. Am, Acad. Arts Scin 43, 259 (1907); Z. physik. Chem.f 61, 
129 (1907). 
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however, it follows that a standard state exists in which p = f' = p°, 
In///0 = 0, f/f° = 1; therefore, / = /°. 

Fugacities, Activities, and the Equilibrium Constant.—Because equa¬ 
tions (12.76) and (12.79) have the same form as equation (12.15), it 
appears that all the thermodynamic equations derived for ideal gases 
with the aid of equation (12.15) may be generalized to include substances 
that do not obey the ideal gas laws. Equation (12.76) or (12.79) may 
be used in the derivations so that f or a will be substituted for P in all 
the derived equations. Thus, if the reactants A and B in equation 
(12.1) are initially in standard states with fugacities fA and /£, respec¬ 
tively, /a and /b being the corresponding equilibrium values, and if the 
products D and E are finally in standard states with fugacities /£ and 
/£, respectively, the equilibrium values being /D and /E, we see by com¬ 
parison with equations (12.16) and (12.18) that 

AF = RT In - RT \n Kf (12.80) 

If the standard states are so chosen that /a = /b = /d = /e = 1, the 
free energy change becomes the standard free energy change and equa¬ 
tion (12.80) becomes 

where 

AF° = -RT In Ks (12.81) 

K, udu 
UafBb 

(12.82) 

Similarly, if equation (12.79) is used in the derivation, we have directly 

where 
AF° = —RT In Ka (12.83) 

Ka 
aAaaBb 

(12.84) 

Equations in terms of the functions activity and fugacity are extremely 
useful for they may be applied to reacting systems nonideal in behavior. 
However, the task of obtaining numerical values of the activity or fugac¬ 
ity to use in place of pressures or concentrations is not circumvented. 
When accurate values of the standard free energy are known, Ka and 
the resulting values of a can be calculated. We shall not discuss here 
the general methods for evaluating activities and fugacities. For pur¬ 
poses of illustration, we shall continue to use the approximate equations 
involving Kp, Kc, or KN as occasion may require because values for pres¬ 
sures, concentrations, and mole fractions are more readily available than 
activity and fugacity data. In research, where a quantitative applica- 
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tion of the laws of thermodynamics to real systems is desired, the more 
exact but less convenient equations will obviously be used. 

vtfugacity of Water Vapor at 25°C.—A single method of obtaining 
the fugacity of water at 25°c is presented here At this temperature we 
found in equation (12.72) that the free energy of water vapor with a 
fugacity of 1 atmosphere is 2.055.1 calories greater than the free energy 
of liquid water. But the fugacity of the liquid water is equal to the 
fugacity of the vapor in equilibrium with it so that we have 

H20(g, / = 1) = H20(g, / of satd vapor); 
AF = f — f° = —2,055.1 cal (12.85) 

where f is the molar free energy of the saturated vapor with the fugacity 
/ and f° is the molar free energy of the water vapor in its standard state 
of unit fugacity. The value of /, the fugacity of the saturated vapor, 
and of the liquid water in equilibrium with it may be calculated from 
equations (12.76) and (12.85). Thus, 

f — f° = -2,055.1 = RT In j 

whence, 
j_ 2,055.1 _ t 

0g^ ~ 4.5757 X 298.16 ~ 5063 
and 

/ = 0.03117 atm 

Compare this value with the pressure of 0.031222 atmosphere. 
Or, using the value for the free energy change on going from the real 

to the ideal gas from equation (12.71), we have 

Frefti = RT In j — 1.1 cal 

log^ = 4.5757 X 298.16 = 0 00081 

f = 0.031164 atm 

Various Equilibriums and Their Equilibrium Constants.—Equilibrium 
constants and corresponding standard free energy changes can be 
expressed for many equilibriums that do not involve chemical change in 
the traditional sense. Some of these types are listed in Table 12.2. In 
general, the equilibrium constants expressed in terms of activities differ 
in numerical value from those expressed in the traditional units, for 
different standard states are usually selected. The equilibrium con¬ 
stants expressed in the different traditional units, P, C, and N, also differ 
in numerical value for the same reason. 

F ideal 

log 0.031222 - 

whence we have 
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Change of the Equilibrium Constant with Temperature.—When both 
sides of equation (12.20) are divided by T, we obtain the equation 

AF p'dp'* 

Y = R ln - R ln K* (12.86) 

When this equation is differentiated with respect to the temperature, 
the first term on the right side becomes zero, for the partial pressures 
P'A, PEt P'D) and P'E are fixed by the initial and final states of the reacting 
substances. These initial and final states are set up arbitrarily; they 
are, therefore, independent of the temperature. We have, accordingly, 

d(AF/T) _ d(Ar/T) _ pd In KP 
dT (IT dT ' 

When this equation is combined with equation (11.30), we obtain 

d ln KP _ AH 
dT T2 

which may be rearranged to the equation, known as the van’t Hoff 
equation 

d ln KP _ AII 
dT RT2 (12.88) 

Corresponding equations may be obtained for the dependence of Ka and 
Kf on temperature. 

The corresponding equations for Kc and KN may be obtained from 
equation (12.38) by the following steps: Because 

KP = KNPAn = Kc(RT)An 
ln KP = In Kn + An ln P = ln Kc + An ln (RT) 

On differentiating with respect to temperature and substituting in equa¬ 
tion (12.88), we have 

d ln KP _ d ln Kx d ln P 
dT ~ dT + dT 

d ln Kc 
dT 

An 
d In (RT) 

dT 
AH 
RT2 

(12.89) 

Now, at constant pressure, the total pressure P is independent of the 
temperature, and 

d ln P 
dT" 

= 0 

Consequently, 
d ln Kn AH 

dT RT2 

The value of d ln (RT)/dT is 1/T; consequently, 

d ln Kc , An AH 

(12.90) 
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Rearranging and using the relation, P AV — AnRT from equation (12.7), 

d In Kc _ AH AnRT _ AH — P AV _ AE { . 
dT RT2 RT2 RT2 RT2 

We should point out here the necessary correspondence between the 
van't Hoff equation, in which the equilibrium constant is expressed in 
partial pressures, and the approximate form of the Clausius-Clapeyron 
equation, which also rests on the same ideal gas equation. From Table 
12.2 the equilibrium constant for the reaction 

H20(liq) - HoO(g) 

is KP — PHao* A substitution of this value in equation (12.88) gives 
directly the Clausius-Clapeyron equation (9.12) as applied to vapor 
pressures. 

Integration of the van’t Hoff Equation.—The van’t Hoff equation 
may be integrated as was the Clausius-Clapeyron equation. When AH 
does not vary with the temperature, we have, for either Kp or Kn, 

f , . T. All f dT 
J d In A = j -jjr2 (12.92) 

and 

In K = “ -f + 1 (12.93) 

When integrated between the temperatures Ti and T2, equation (12.92) 
becomes 

AH (l_ 

R\l\ 

or, in terms of common logarithms, 

. Ki AH (1 
l0g Ki 4.5757 \Tx 

1 \ _ AH (T>- T\ 
Tj 4.5757\ TtTt ) 

(12.94) 

where AH is the heat of reaction in calories. This equation can be used 
to calculate the shift in equilibrium in any reaction for which the heat 
of reaction is known. 

When AH varies with temperature, according to the equation 

AH = AH0 + aT + bT2 + cT\ 

we obtain, instead of equation (12.92), 

din A = ^(^r° + | + b + cfjdT 
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On integration, we obtain 

\n K = ^ + a\n T + bT + \ cT^j + I' (12.95) 

When AH and R are in calories and natural logarithms are converted to 
common logarithms, equation (12.95) becomes 

log A = - 4757577- + 179872 log T + 45757 T + 2 X 4.5757 Ti + 1 

(12.96) 
where / — /'/2.3026. 

We have shown earlier that the coefficients, a, 6, and c in the heat con¬ 
tent equation may be obtained from the coefficients a, 0, and 7, obtained 
from heat capacities. Thus, if the change in heat capacity as the result 
of a reaction is 

ACp = a + @T + 7 T2 

the value of AH as a function of temperatures becomes 

AH = AH0 + aT + Wn + irT3 

A//0 being the integration constant. If this value for AH is substituted 
in equation (12.88), we obtain, on integration, 

In A = - + ^ln T + ±|- T + '-'l T* + I’ (12.97) 

Comparison with the constants in equation (12.95) confirms the relation¬ 
ships a = a, — b, iy = c. 

Again, on dividing equation (12.97) by 2.3026, we obtain an equation 

of the type 

where 

AIR = 

log A = - + A log T + BT + CT* + I (12.98) 

AH0 , _ a d _ r _ y 
2.3026R’ R’ 2 X 2.3026A’ 6 X 2.3026A 

and 

I = 
r 

2.3026 

Evaluation of I.—In an equation of the type of equations (12.96), 
(12.97), or (12.98), there is an integration constant I to be evaluated. 
The other constants may be derived from those of the heat of reaction 
equation. The same statement applies to equation (12.93) where AH 
is considered constant. Because of the relationship between AF° and 

In A, it is evident that the integration constant I is common to both 
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functions. We have shown earlier how 1 may be evaluated if the value 
of AF° for some one temperature is known. But this is equivalent to 
saying that I may be evaluated if the value of K is known for some tem¬ 
perature. In practice, if the equilibrium constant can be measured 
accurately, I (and AF°) are evaluated with this datum. If equilibrium 
is difficult to secure or to measure, I is evaluated from the value of AF, 
which in turn may be obtained from AH and T AS or from the emf of a 
suitable cell. 

Problems 

12.1. From the equation AF° = —RT In K, calculate the change in AF° in 

calories if the value of F is doubled at 25°e. At 350°c. 

12.2. What percentage error in the equilibrium constant will result from an 

error of 1 kilocalorie in the free energy of the reaction at 27°c? At 327°c? From an 

error of 100 calories at these temperatures? 10 calories? Tabulate your results 

12.3. At 0°c, the value of AF° for a reaction is —1,000 calories. What is the 

value of K? What must be the value of AF° at the following temperatures if K is not 

to vary with temperature: 200, 400, 600, 800, 1000°c? Tabulate your results. 

12.4. Will a reaction proceed if In K > 0? If In K < 0? Under what condi¬ 

tions? Explain. 

12.6. If Ki and Kt are the equilibrium constants at the temperature T for the 

two reactions 2CO2 = 2CO + 02 and 2H20 = 2H2 + 02, respectively, find the value 

of K3, the equilibrium constant at the same temperature, for the reaction 

H2 + C02 - H20 + CO 

12.6. Some iodine and hydrogen were heated at 475°<' in a bulb of 90 ml capacity 

until equilibrium was established. The equilibrium mixture was analyzed and found 

to consist of 4.60 X 10"4 mole of H2, 6.0 X 10"6 mole of I2, and 11.4 X 10~4 mole of 

HI. 

(a) Calculate Kp, K#, and Kc. Is the reaction influenced by total pressure? 

(1b) Calculate the equilibrium partial pressures in this experiment. 

(c) Calculate the percentage decomposition of pure HI when heated at 475°c. 

(d) Calculate the free energy change of the reaction if the products and reactants 

are considered at atmospheric pressure by calculating the free energy change of each 

of the products and reactants in passing from the “standard” to the equilibrium 

condition and then summing these free energy changes. Show that this sum corre¬ 

sponds to the equation 
AF° - -RT\n KP 

12.7. From the data in Prob. 11.6, calculate the numerical value of the equilib¬ 

rium constant at 25°c for the reaction 

H2(g) + Cl,(g) - 2HCl(g) 

12.8. From the free energy equation for the reaction 

H,(g) + C02(g) * H20(g) + CO(g) 

derived in Prob. 11.4, calculate the value of the equilibrium constant for the reaction 
at the temperatures 298.16, 400, 600, 800, 1000, and 1500°k. (Indicate your calcula¬ 
tions in tabular from.) 
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12.9. According to Rossini and Jessup [J. Research Natl. Bur. Standards, 21, 49] 

(1938)], the change of free energy, as a function of both temperature and pressure, 

for the transition 

C (graphite) = C (diamond) 

is given by the equation 

AF = 541.82 + -'ip + 1.17662T log T - 2.437237’ - 0.000221 T* 

- (0.045660 + 0.91236 X KT'/' - 0.7830 X 10->»7’2 

- 0.3623 X 10-*T»)P + 0.19 X 10-*P* cal 

where P is in atmospheres and T in degrees Kelvin. Calculate the value of AF for the 
following conditions, and state whether or not diamond is stable with respect to 

graphite under these conditions: 

(a) 300°k and 1 atmosphere. 

(b) 300°k and 1,000 atmospheres. 

(c) 300°k and 10,000 atmospheres. 

(d) 300°k and 20,000 atmospheres. 

(e) 500°k and 1 atmosphere. 

(/) 500°k and 1,000 atmospheres. 

(g) 500°k and 10,000 atmospheres. 

(h) 500°k and 20,000 atmospheres. 

(Try sample calculations with a slide rule to discover which terms need more accurate 

computation.) 

12.10. Solid ammonium hydrosulfide dissociates according to the equation 

NH4HS(c) - NH3(g) + H2S(g) 

and the vapor phase contains practically no NH4HS. The vapor pressure of this 

system has been measured over a temperature range by Isambert [Compt. rend., 92, 

919 (1881)] and Walker and Lumsden [J. Chem. Soc., 71, 428 (1897)] and at 20°c 

by Magnusson [,/. Phys. Chem., 11, 21 (1907)]. Isambert’s data are given by Mag- 

nusson {ibid). Walker and Lumdsen give their data (p. 432) and compare with 

interpolated values of Isambert’s data. Record the original data of Isambert and 

Walker and Lumsden, calculate the value of Kp at each temperature (slide rule), and 

plot log K vs. 1/T. Draw the best line through these points, and calculate the heat 

of sublimation from its slope. Calculate the heat of this reaction from the heat of 

formation in some standard table, and compare. Calculate the standard free energy 

change for the sublimation at 298. 1°k. Specify clearly the standard states you 

selected. 

12.11. (a) From the value for standard free energy of formation of liquid water, 

at 25°c, calculate the value of the equilibrium constant for the dissociation of liquid 

water and the partial pressures of hydrogen and oxygen in equilibrium with the water 

at this temperature. What volume is required to hold 1 mole of oxygen at this 

pressure and temperature? Calculate the ratio of this volume to that of the earth. 

(6) What is the corresponding value of the dissociation constant for gaseous water? 

How do the partial pressures of hydrogen and oxygen in equilibrium with water vapor 

at 25°c and 1 atmosphere pressure compare with those calculated in (a)? Explain 

any differences. 

12.12. For the dissociation of triammonium phosphate trihydrate according to 

the reaction 

(NH4)3P04 • 3H20(c) « (NH4)2HP04(c) 4- 3H20(g) + NH3(g) (12.99) 
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Huey and Tartar [/. Am. Chem. Soc., 62, 26 (1940)] find that the equilibrium partial 

pressures of water vapor and ammonia are represented by the equations 

For H20, 

log Pmm = /r—" + 8.8353 

For NHs, 

log jPmm = ~3'j61'3 + 11.2045 

between 25 and 50°c. Write the equilibrium constant for equation (12.99). If the 

partial pressures of water vapor and ammonia are expressed in atmospheres, show that 

log Kp ■= + 26.1872 

AF° = 45,108 - 119.8207’ cal 
AH = 45,198 cal 

A f-f 

A£ = ~f = 151.59 cal/deg 

What are the values of Kp, AF°, AH°, and AS° at 25°c? Can the decomposition of 

the triammonium phosphate trihydrate proceed spontaneously at 25°? Under what 

conditions? What is the meaning of the standard free energy change for this reac¬ 

tion? The meaning of ASotl 
12.13. For the equilibrium between the dimer and the monomer of benzoic acid 

in benzene solution F. T. Wall and F. W. Banes [J. Am. Chem. Soc.j 67, 898 (1945)] 

report 

(BzOH)2 = 2BzOH; log K = 3.383 - 

Calculate a value for the heat of dissociation of the dimer and values for the equilib¬ 

rium constant at 25 and 50°c. 

12.14. For the isomerization equilibrium between normal butane and isobutane 

ft-CtHio = 1-C4H10 

the values of the standard free energy change in kilocalories per mole for the tempera¬ 

tures 298.16, 600, and 1000°k are AFl9gtl6 = —0.542, AF°600 — 0.59, and AF°1000 — 2.08. 

For these temperatures, report in tabular form the values of AF°/T, log K, and K, and 

the equilibrium mole fractions of n-butane and f-butane. 



CHAPTER 13 

IDEAL SOLUTIONS1 

The concept of the ideal, or perfect, gas enables us to correlate the 
common properties of all gases and to make quantitative predictions, 
under many conditions, on the behavior of real gases. The concept of 
the ideal solution serves a similar useful function. It may be applied to 
gaseous solutions, usually called “gaseous mixtures/' with an accuracy 
comparable with that of the ideal gas laws. Solutions of condensed 
phases, solids, and liquids are much more concentrated than gaseous 
solutions; hence, there is much more opportunity for specific interaction 
of the molecules in the former than in the latter. Nevertheless, there is 
much to be learned about the laws of solutions from the laws of ideal 
solutions, especially because dilute solutions tend to approximate the 
limiting ideal solution as concentration is decreased. Furthermore, 
where experimental data are lacking, we can frequently obtain approxi¬ 
mate values by applying the laws of ideal solutions to liquid and solid 
solutions as well as to gaseous solutions. 

Concentration Units for Ideal Solutions.—In setting up general rules 
for ideal solutions, we must determine first of all the units to be used in 
expressing the composition of the solution. The problem is illustrated 
by the data on the solubility of sulfur2 in benzene and in toluene, in 
Table 13.1. In terms of weight percentages, sulfur is about equally 
soluble in benzene and toluene. The concentration of sulfur per unit 
volume of the solution differs, however, the liter of benzene containing 
more sulfur than the liter of toluene. In a volumetric unit, grams or 
moles per liter, the two solutions do not appear to have an equal “con¬ 
centration" of sulfur. If the concentration of the sulfur is expressed in 
terms of mole fraction or in relative number of moles of “solute" and 
“solvent," the solutions again differ in apparent concentration, but here 
the toluene solution has the higher “concentration" of sulfur. Before 
we can set up criteria for the ideality of liquid solutions, we must, there- 

1 The student interested in ideal solutions is referred to the monograph by J. H. 

Hildebrand on uSolubility of Non-electrolytes/1 2d ed., Reinhold Publishing Corpora¬ 

tion, New York, 1936, which provides an excellent review of ideal and nonideal 

solutions and contains many references to the original literature. Some of the ideas 

developed in this chapter are treated in more detail in the monograph. 

* Ibidp. 17. 

279 
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fore, discover which of these methods of expressing concentration can be 
used to give general solubility equations applicable to all solutions in 
which specific interactions between solvent and solute do not occur. 
This question of the concentration unit does not arise for gaseous solu¬ 
tions because all ideal gases have equal molar volumes under similar 
conditions. In a mixture of ideal gases the numerical value of the rela¬ 
tive abundance of the constituents is the same whether expressed in 
moles per liter, partial pressures, mole fractions, or partial volumes. 

Table 13.1.—Solubility* of Sulfur (S8) at 25° 

Solvent 
Weight 

per cent 
Grains/liter 

Mole 

per cent 

Benzene. 2.07 18.5 0.641 

Toluene. 2.02 17.8 0.735 

* Hildebrand, J. H., “Solubility of Non-electrolytes,” 2d ed., p. 17, Reinhold Publishing Corpora¬ 
tion, New York, 1930. 

In gaseous solutions, there is no distinction to be made between 
“solvent” and “solute.” As we shall see, there is also no theoretical 
difference between solvent and solute in an ideal liquid solution because 
there is no abrupt change in properties of the solution when one substance 
is added gradually to the other until it is present in excess. For this 
reason, the terms “solvent” and “solute” will be used merely as terms 
of convenience without any implication of a theoretical difference 
between them. 

Raoult’s Law.—Unlike gases, liquids differ in molar volume. In a 
mixture of liquids, therefore, the volume ratio of the liquids in the solu¬ 
tion differs from the mole ratio of the liquids. Let us consider the partial 
vapor pressure of one of the constituents, A, of the solution. We may 
expect this partial vapor pressure to be proportional either to the relative 
number of molecules of the type A or to the relative volume occupied by A 
in the solution. The relative number of moles of A is, by definition, 
the mole fraction of A, and the relative volume the volume fraction of A. 
Raoult1 found empirically that the vapor pressure of a number of solu¬ 
tions varied with the mole fraction. This relation is, therefore, used as 
a basis for the definition of an ideal liquid solution. 

The observed vapor pressure relation for solutions may be explained 
in the following way: If the constituents A and B in a solution are suffi¬ 
ciently alike so that the solute B does not change the field of force around 
A, the escaping tendency of A from the solution will depend only on the 
mole fraction of A. If half the molecules are A and half B, the mole 

1 Compt. rend., 104, 1430 (1887); Z. physik. Chem., 2, 353 (1888). 
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fraction of A in the solution is 0.5 and its escaping tendency is 0.5 that 
from pure A. The constituent A in the solution will therefore be in 
equilibrium with a vapor in which the partial pressure of A is 0.5 that 
of the vapor in equilibrium with pure A. This relation between the 
vapor pressure Pa of the constituent A and its concentration in the 
liquid solution is represented by the linear equation 

I\ = PIN a (13.1) 

where Pi is the vapor pressure of pure A at that temperature and Na is 
the mole fraction of A in the liquid solution. This statement is known 
as Raoult's law of vapor pressures. For a second constituent B in the 
ideal solution the corresponding relation is 

Pb = PINb (13.2) 

The vapor pressure of A is not a strict measure of the free energy of 
A when the vapor itself does not behave as an ideal gas. Strictly speak¬ 
ing, the fugacity of A rather than its partial pressure is a measure of the 
free energy and consequently of the escaping tendency of A. If allow¬ 
ance is to be made for this departure of the vapor from the behavior of 
an ideal gas, the fugacity / must be substituted for the vapor pressure, 
and Raoult’s law takes the form 

A - S°aNa (13.3) 
/b - JbNb (13.4) 

Because equations (13.3) and (13.4) make the proper allowance for 
the departure of the vapors from ideal behavior in the gas phase, they 
may be used to detect departure from the laws of ideal solution in the 
liquid phase. Deviation of liquid solutions from the laws of ideal solu¬ 
tions is more frequent and more extensive than is the deviation of gaseous 
solutions from the ideal relations. This behavior follows from the fact 
that, in general, liquids are much more highly concentrated than gases. 
Because the nonideal solution effects in the liquid phase overshadow 
those in the gaseous phase, we shall utilize equations (13.1) and (13.2) 
rather than (13.3) and (13.4) as the defining equations for the ideal 
liquid solution. This decision parallels the one made earlier when, for 
the sake of simplicity, we used the ideal gas equations in the discussion 
of thermodynamic theory. 

In a system in which the vapor pressures of the constituents A and 
B are proportional to their concentrations, as in equations (13.1) and 
(13.2), there can be no theoretical difference between solvent and solute. 
The equations for A and B have the same form, and they are linear over 
the entire concentration range from pure A (Na = 1) to pure B (NA = 0). 
This relation is shown in Fig. 13.1 where the equation for the constituent 



282 INTRODUCTION TO CHEMICAL THERMODYNAMICS [Chap. 13 

A is plotted for the entire range in concentration, Na = 0 to Na = 1, the 
pressure ranging from P = 0 to P = P° between these limits. 

Because the vapor pressure here considered is an equilibrium pres¬ 
sure, an equilibrium constant can be written for the isothermal “reaction ” 

A(in soln) = A(vapor); Ka = - a-~A*— (13.5) 
U(A. in so In) 

The activity of A in the vapor, if it behaves as an ideal gas, is directly 
proportional to the partial pressure of A; and the activity of A in the 

Mole f reaction of component A 
Fig. 13.1.—Vapor pressures according to Raoult’s and Henry’s laws. 

solution, if ideal, is directly proportional to the mole fraction of A in the 
solution. Therefore, for equation (13.5), we may write 

K = kKa — (13.6) 

as in equilibrium 2 of Table 12.2. A comparison of equations (13.1) and 
(13.6) shows that the equilibrium constant K is identical with the vapor 
pressure of pure A at that temperature. For the ideal solution, therefore, 

K = P° (13.7) 

Henry’s Law.—The solubility of gases or vapors in a liquid may be 
expressed in many different units. The form in which Henry’s law for 
the solubility of gases is expressed depends, therefore, on the units used. 
If, as before, we express the activity of a substance A in the gaseous 
phase in terms of its partial pressure Pa and its activity in the solution in 
terms of its mole fraction Na, we have, for the equilibrium of A between 
gas and solution phases, 

A(in soln) = A(g); Ka = ——:(13.8) 
&(A. in soln) 

K = kKa = j± (13.9) 
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Equation (13.9) may be selected as a statement of Henry’s law. The 
law is similar to Raoult’s law except that the constant K does not neces¬ 
sarily have the value P°. Figure 13.1 shows the form of the Henry’s 
law equation when the constant K has values Ki and K2, which are, 
respectively, greater than and smaller than P°. 

Correlation of Raoult’s and Henry’s Laws.—Traditionally, Raoult’s 
law has been applied to the vapor pressures of water from aqueous solu¬ 
tions, especially from dilute solutions of nonvolatile solutes. In such 
solutions the concentration is usually expressed in terms of the solute, 
the term “dilute” meaning relatively little solute and a relatively large 
amount of water. Because a dilute solution of sugar in water means 
relatively little sugar, it must also mean a relatively large amount of 
water. The dilute sugar solution is, therefore, concentrated with respect 
to water. Under these conditions, Raoult’s law is applied to the vapor 
pressure of the “solvent” in the concentration range where the mole 
fraction of the solvent approaches unity. This region is indicated in 
Fig. 13.1. In a solution of A approaching the composition of pure A, 
the molecules of A are in great excess so that the environment surrounding 
any particular molecule of A approaches that in pure A. These condi¬ 
tions are especially favorable for agreement with Raoult’s law. Many 
substances in solution obey Raoult’s law in the range N = 1, when the 
solutions are not ideal over the whole concentration range. 

Henry’s law is usually applied to gases that are not too soluble; that 
is, to gases whose concentration in the solution is low. The gas or vapor 
A in equilibrium with A in the liquid solution is therefore classed as the 
solute, and its concentration range occurs in the neighborhood of Na = 0. 
This is in contrast to the traditional Raoult’s law region, which is in the 
neighborhood of Na — 1. In a solution in which Na approaches zero, 
the molecules of A are surrounded by those of the other constituent B, so 
that the environment of any particular molecule of A approaches that of 
pure B. From such an environment, the escaping tendency of A will 
not necessarily be identical with that from a solution of pure A, and the 
value of equilibrium constant K may differ somewhat from the value of 
P°. The deviation of K from P° in Henry’s law may be taken as a meas¬ 
ure of the difference in environment provided for molecules of A by an 
excess of B and A, respectively. 

Ideal Solution.—An ideal gaseous solution may be defined as one in 
which the partial pressures of the constituents are proportional to their 
mole fractions over the entire concentration range. Similarly, the ideal 
liquid solution is defined as one in which the partial pressure of each 
constituent is proportional to its mole fraction over the entire concentra¬ 
tion range. This is the relation defined by the Raoult’s law equations. 
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If this relation is to hold, a molecule of A must have the same chance to 
escape from a solution in which it is surrounded by molecules of B as 
from a solution in which it is surrounded its own kind of molecules. 
This requirement is a rigorous one. When it is met at some one tempera¬ 
ture and pressure, it is reasonable to suppose that the forces about the 
individual molecules of A and B will be influenced in much the same way 
by a change of temperature or of pressure. If, because of the similarity 
between the molecules of A and B, it is possible to substitute molecules 
of A for those of B without changing the escaping tendency of the indi¬ 
vidual molecules of A or of B, an increase of temperature should not dis¬ 
turb this relationship. A solution that acts as an ideal solution at 25°c 
and 1 atmosphere pressure should be ideal at 50°c and 1 atmosphere. 
Similarly it should be ideal at 2 or 3 atmospheres pressure. These 
requirements may be included in the definition of the ideal solution as in 
the statement: An ideal solution is one that obeys Raoult's law at all tem¬ 
peratures and all pressures. As we shall see, such a solution is assem¬ 
bled from its constituent liquids without a heat of mixing and without 
a volume change on mixing. 

Equations of the type of (13.1) and (13.2) contain only functions of 
one component of the solution. If the solution is ideal, the vapor pres¬ 
sure equation for A contains only terms that apply to the component A 
and that for B only terms that apply to the component B. This relation 
has important consequences. It enables us to predict the solubilit}r and 
other properties of a substance in a number of different solvents without 
reference to the individual properties of these solvents. 

Heat of Solution of Gases in Liquids.—The equilibrium constant 
defined in equation (13.8) for the solution equilibrium between A in the 
gas phase and A in the solution phase is the Henry’s law constant. For 
the ideal solution, this constant is identical with the Raoult’s law con¬ 
stant P°. For the ideal solution, therefore, from equations (13.6) and 

(13.7), 

K — P° = (13.10) 

To get a complete expression of the solubility as a function of tem¬ 
perature, all that we need do is to find how this equilibrium constant 
changes with temperature. From the van’t Hoff equation (12.88) or 
(12.90) and equation (13.10), we have, for either KP or Kn, 

dlnA' = dln^ = |pdr (13.11) 

and 

dlnP! = ~pdr (13.12) 
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But equation (13.12) is identical with the Clausius-Clapeyron equation 
(9.13) as applied to vapor pressures, Ah being the heat of evaporation at 
the temperature T. The change in heat content on evaporation of a 
mole of gas or vapor from the ideal solution is therefore identical with 
the heat of evaporation from its own liquid at the same temperature, 
and the heat of solution of the gas or vapor is identical with the heat of 
condensation of the gas at the same temperature. There is, therefore, 
no heat of mixing of the liquefied vapor and the solvent. The heat of 
evaporation is usually a function of the temperature because the heat 
capacities of liquid and vapor differ; it follows that the heat of solution 
of a gas varies with temperature in the same way. Because equations 
(13.11) and (13.12) contain only quantities that are functions of A, it 
follows that the heat of solution of the gas is independent of the particu¬ 
lar solvent used to form the ideal solution with it and that it is inde¬ 
pendent of the concentration. 

From equation (13.11), it appears that the heat of solution must 
remain constant over the entire concentration range. If ha is the molar 
heat content of the pure liquid A, h* that of the gas, and ha that of the 
substance A in the solution, we have, for the heat of solution 

A//(solution) = ha — H* 

and, for the liquefaction of the gas, ha — h$. These values being equal, 
we have 

A//(solution) = h! — hJ = ha — h* (13.13) 
Ha = Ha (13.14) 

We find, therefore, that, in the solution, A has the same molar heat con¬ 
tent as in the pure liquid. 

These thermal relations may be expressed in terms of the partial 
molal heats defined in Chap. 6. If the values of Ha, H*, and Hi are 
the values of the heat content of n moles of A in the solution, gas, and 
pure liquid phases, respectively, we have from equation (13.14), at con¬ 
stant temperature and pressure 

dH a ^ Ha 

dnA Ua 

- “5 o 
= Ha = Ha = HA (13.15) 

In the ideal solution, the partial molal heat content of A is constant over 
the entire concentration because it is equal to the molar heat content of 
pure A in the liquid phase. The simpler molar heat content is used 
throughout in this chapter because it is equal to the partial molal heat 
content. In ideal solutions at constant temperature and pressure, the 
heat content of A is directly proportional to the number of moles of A 
and independent of the number of moles of B. This statement may be 
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expressed in the form 

dHA = /dHA\ 

JnB,P,T \dUA /nB,P,T 
(13.16) 

The heat content will, of course, vary with temperature and with pres¬ 
sure in the usual way. An ideal gas has a molar heat content that is 
not dependent on the other ideal gases mixed with it, so that its partial 
molal heat content is also identical with the molar heat content over the 
entire concentration range. These relations are expressed in the equations 

djlt 
driA 

~ = ^ = h? 
Ua 

(13.17) 

Solubility of Gases.—We have seen that, according to Raoult’s law, 
the equilibrium constant for the solution of a gas or vapor is identical 
with the vapor pressure P° of the pure liquid at that temperature. In 
Chap. 9, we observed that this pressure may be read directly from a log 
P vs. 1/T plot of the vapor pressure data. When Ah is not a function of 
temperature, we found this plot to be a straight line. The same results 
follow from equation (13.11) or (13.12), which may be written in the 
form 

d log P _ Ah 

dOjT) ~ “ 2.3031? 
(13.18) 

In Chap. 9, we observed that Ah cannot remain constant, for it 
vanishes in the neighborhood of the critical point. Nevertheless, the 
log P vs. 1/T plot is approximately linear even up to the critical point 
because the other approximations made in deriving the integrated Clau- 
sius-Clapeyron vapor pressure equation compensate almost completely 
for the change of Ah with temperature. 

Many gases whose solubilities we wish to study are above their 
critical temperatures in the temperature range for which we wish to 
know their solubilities. For such gases, Hildebrand1 suggested that a 
fictitious value of P° may be obtained by an extrapolation of the linear 
log P vs. 1/T plot above the critical point. This value can then be used 
to give an estimated value for the solubility of a gas when no other data 
are available. Even though this value of P° represents the “ vapor pres¬ 
sure ” of a pure “liquid” at temperatures above the critical temperature 
where the liquid does not exist, it gives good estimates of the solubility 
of gases in solutions that do not depart too widely from ideality.2 

1 Op. tit., p. 31. 

* Op. citFig. 4, p. 30, 
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Certain rules for the solubility of gases in solutions that approach 
ideality may be deduced from the above considerations, and especially 
from equations (13.11) and (13.12). 

1. At a given temperature the solubility of a gas is independent of the 
solvent and is, therefore, the same for all solvents. This follows directly 
from Raoult’s law. 

2. The gas with the higher boiling point or critical temperature has a 
greater solubility than one with a lower critical temperature. This follows 
because the gas with the higher critical temperature has the lower value 
of P° at the solution temperature. 

3. The solubility of a gas decreases with increasing temperature. This 
follows from equations (13.11) and (13.12) because the heat of evapora¬ 
tion Ah is positive; hence d In P°/dT is positive and P° increases with 
increasing temperature. Therefore, P/N increases with temperature. 
If P is kept constant, the mole fraction of the substance in the solution 
must decrease. 

The above rules apply quantitatively to systems that obey Raoult/s 
law; they may be applied qualitatively to many other systems. 

Solubility of Liquids.—If two liquids have properties similar enough 
so that their solutions obey Raoult’s law, they must be miscible in all 
proportions. If the two liquids, when mixed, form two layers with 
different compositions, the mole fraction of the A in the two liquid 
phases must differ. But if the two liquid phases are to be in equilibrium 
with each other, they must be in equilibrium with the same gas phase. 
Because the mole fractions of A in the two liquid phases differ, the vapor 
pressure cannot be proportional to the mole fraction. 

Partly miscible liquids cannot obey RaouWs law. 
Heat of Solution of Solids in Liquids.—When a binary ideal solution 

is cooled sufficiently, one or both of the components crystallize out of the 
solution unless a glass is formed. If the two components are sufficiently 
similar, they are miscible in the solid phase as well as in the solution 
phase and a solid solution will be formed. If the two components differ 
sufficiently in molecular size or shape so that they do not fit into the 
same crystal lattice, the components that crystallize out of the solution 
may be pure A, pure B, or a mixture (eutectic) consisting of crystals of 
pure A and crystals of pure B. We shall study here this equilibrium 
between pure solids and the ideal liquid solution. The corresponding 
equilibrium for a solid solution can be treated by the same general meth¬ 
ods if the proper equilibrium constant is used. 

Let us consider the pure solid A, which dissolves in B at the tempera¬ 
ture T, to form an ideal liquid solution of A and B. If the solution is 
saturated with respect to A, an equilibrium exists between solid A and 
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A in the solution for which an equilibrium constant may be written as 
follows: 

A(c) = A (in soln); Ka = ”(A-iD^); K = NA 
U(Alc) 

Absolution) = ha — ha(c) (13.19) 

where h£(c) is the molar heat content of the pure solid A. The activity 
of A in the solution is proportional to NA as indicated by Raoult’s law. 
In pure solid A, the mole fraction of A is unity, so that the activity is 
also unity. This is in agreement with the convention of selecting the 
pure solid as the standard state of A. Equation (13.19) may also be 
obtained by the following method: 

Let the dissolving of the solid be represented in two steps, the first 
being the evaporation of the solid and the second the solution of this 
gas. We have, for the former step, 

A(c) = A(g); K = ^ = 1» (13.20) 

Here the mole fraction of the solid is unity, NA = 1, and the vapor pres¬ 
sure PA must equal the saturation pressure P*A. For the dissolving of 
the gas, we have the reverse of equation (13.8), namely, 

A(g) = A (in soln); K = —"- (13.21) 
I A 

At equilibrium, PA = P\. On addition of equations (13.20) and (13.21), 
we obtain the value for the equilibrium constant in equation (13.19). 

Let us now find the heat of solution of 1 mole of a solid in an ideal 
solution by the same steps. For the evaporation of the solid [equation 
(13.20)] the heat of the reaction is the heat of sublimation. 

AH = HA(g) - Ha(c) (13.22) 

For the solution of the gas [equation (13.21)], the heat of the reaction 
is the heat of solution of the gas which, from equation (13.13), is identical 
with the heat of liquefaction of the gas. 

AH - ha(in soln) - HA(g) = HA(liq) - ha(g) (13.23) 

When equations (13.22) and (13.23) are added, we obtain, for the solu¬ 
tion of the solid in equation (13.19), 

AH (solution) = [HA(g) - ha(c)] + [nl(liq) ~ nA(g)] 
- HA(liq) - ha(c) (13.24) 

When equation (13.24) is compared with equation (13.19), we see that 
in the ideal solution the heat of solution of a solid is identical with its heat 
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of melting at the same temperature. The substance A will absorb the 
same energy when it “melts’f into an ideal solution containing both A 
and B as it will when it melts to form pure liquid A. 

Equation (13.24) applies over the entire concentration range. Thus, 
the partial heat of solution of the solid is constant, and the molar heat 
content ha of A in solution may be represented by the equations 

HA(in soln) = HA(liq) 

(S)- - W = * - <,3-25) 
As for ideal gases, the simpler molar heats are identical with the partial 
molar heats. For the systems discussed in Chap. 6, the heat contents 
were not independent of the concentration and the partial molal heats 
were required to give the heat of solution at any given concentration 

Solubility of Solids in Liquids.—From equation (13.19), it appears 
that at the temperature T, the solubility of a solid is constant. This 
conclusion is in agreement with experience. When the temperature 
changes at constant pressure, the solubility changes as required by the 
van’t Hoff equation. From equations (12.90) and (13.19), we have the 
solubility equation 

d In NA = dT (13.26) 

As a first approximation, we may consider the heat of melting inde¬ 
pendent of the temperature. This assumption is legitimate at tempera¬ 
tures not too far removed from the melting point of the solid, especially 
because the differences in heat capacities of solids and liquids are not so 
great as the differences between the heat capacities of gases and con¬ 
densed phases. The indefinite integral of equation (13.26) is 

In Na — + r (13.27) 

When R = 1.9872 cal/deg, 2.3026 R equals1 4.576 and, we have for 1 
mole of A, on conversion to common logarithms, 

l°gNA=-^I + I (13.28) 

This equation is analogous to equation (9.16) for the change of vapor 

pressure with temperature. 

1 In this chapter we shall use the value 4.576 rather than the more exact 4.5757. 
Equations based on the assumption of ideal solution are not exact enough to justify 
the use of the more exact value. 
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When log Na is plotted against 1/T, a straight line is obtained with 
the slope equal to —Aha/4.576 and the intercept at /. The value of / 
can be readily determined; for, at the melting temperature 7a of pure A, 
the “solution” becomes pure A, so that Na = 1 and log JVA = 0. From 
equation (13.28), therefore, 

Aha 1 
4.570 Tk (13.29) 

This value of / may be substituted in equation (13.28) to give 

log Na 
4.576 T 

which may be written in the form 

Aha 1 Aha 1 

4.576 Tk 
(13.30) 

■<*N‘ = or. (rc ~ - isk(ttt) <13-31> 
Equation (13.31) is obtained directly when we integrate (13.26) between 
the limits Na — 1, T — T a and Na = Na, T — T. At the temperature 
T' where NA has the value NA, equation (13.28) becomes 

log Na 
Aha 1 

4.576 T' 
+ / (13.32) 

which may be combined with equation (13.28) to give , Na 
l°gW 

Aha / 1 _ l\ 
4.576 \T Tf) 

Aha / 1 l\ _ Aha (T - T'\ 
4.576 \Tf T) 4.576 V TT9 ) 

(13.33) 

All the above equations contain only functions of the substance A. 
There are no terms for the “solvent” or “solute” B. In an ideal solu¬ 
tion at constant pressure the solubility of A is a function of the tempera¬ 
ture, the heat of melting of A, and the melting point of A. In the ideal 
solution, it is, therefore, possible to obtain the solubility curve for A 
without reference to any particular solvent. In the substance C, A 
will have the same solubility curve as in B. Because the log N vs. l/T 
graph is linear, only two experimental points or one experimental point 
and the slope are required to establish the solubility curve. Thus, the 
solubility curve can be established with (a) a solubility determination 
at each of two temperatures, (6) a solubility determination and the melt¬ 
ing point, (c) the heat of melting (solution) and the melting point, or 
(d) the heat of melting and one solubility value. 

The above equations were called “solubility equations/’ When the 
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constants of the equations are evaluated or when the equation is plotted, 
the solubility (in mole fractions) can be obtained at any temperature. 
However, the equations are also freezing point equations. When pure 
A freezes to the pure solid, Na = 1 and T = Ta) but when it freezes 
from a solution, Na < 1 and T < Ta- The addition of B to the solution 
lowers the value of Na) hence, the freezing of A from the solution occurs 
at a lower temperature. The freezing point lowering may be obtained 
from equation (13.31) by solving for TA — T. Thus, 

TA — T = — 4"™'7 a log Nk (13.34) 

An approximate expression for the freezing point lowering is derived in 
a following section. 

Exact Solubility-temperature Curve.—In the integration of equa¬ 
tion (13.26) to give equation (13.27) and subsequent equations, the 
approximation was made that the heat of melting (heat of solution) of 
the solid does not change with temperature. As we know, the heat 
capacities of solid and liquid are not identical so that the heat of melting 
changes somewhat, though not rapidly, with temperature. When the 
molar heat of melting is represented by the equation 

Ah = Ahq + olT -f- if3T2 (13.35) 

the constants a and /3 being obtained from the heat capacity equations 
of solid and liquid, equation (13.26) becomes 

d In Nk = dr (13.36) 

If this equation is integrated between the limits Na = Na, T = T and 
the melting point where Na = 1, T = Ta, we obtain 

!n Nk r° t) + Rln T + 2R (Tk ^ 

On change of sign and conversion to common logarithms with R in calories 
per degree, this equation becomes 

log Na = 
Ah0 / 1 l\ 

4.576 \Ta T) 1.987 
log 

Tk 

T 

0 
2 X 4.576 

(Tk - T) (13.37) 

Because a and 0 are relatively small, the second and third terms introduce 
small or negligible corrections, so that instead of being straight the log 
N vs. 1/T graph may be slightly curved. When accurate data are avail- 
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able, the plotted experimental data fall on a solubility graph that is 
slightly curved; if the data are not so precise, the accidental errors tend 
to hide any curvature of the line because the plotted experimental points 
scatter on both sides of the “best straight line” drawn through the data. 

Freezing Point Lowering.—The familiar expression for the freezing 
point lowering may be derived directly from equation (13.26). If A is 
the solvent and is present in great excess, the solution is dilute with respect 
to the solute, B, Na approaches the value of unity, and T approaches 7’A. 
Under these conditions, 

d In Na = = dNa (13.38) 

But, in a binary solution, 

iINa = -d JVB (13.39) 

If these equations are combined with (13.20), we have 

diVA _ _ dNn Aha 
"dT ~ ~6T ~ RTa- 

(13.40) 

When the concentration of B is low, the freezing point lowering defined 
as Ta — T = —ATf is directly proportional to the mole fraction of B, 
as indicated in the equation 

dJVA _ dWB ^ N* _ Nb 
dT dT T - 1\ -AT/ 

(13.41) 

The freezing point lowering — AT/ produced on A when B is added to A 
in sufficient quantity to make its mole fraction equal to A h is, from equa¬ 
tions (13.40) and (13.41), 

-A Tf = 
RTA* 
Aha 

Nb 
RTa* 
Aha 

(1 - Na) (13.42) 

This value for the freezing point lowering of the solvent derived with 
approximations from the differential solubility equation may be com¬ 
pared with that obtained from the integral solubility equation in equa¬ 
tion (13.34). 

The freezing point lowering depends on the heat of melting of A, on 
its freezing temperature, and on the concentration of A (or B) in the 
solution. When the freezing point lowering of different solvents is com¬ 
pared, therefore, it seems reasonable to compare them at equal concentra¬ 
tions. In the last column of Table 13.2 the freezing point lowering 
— ATf = k' of different solvents containing 5 mole per cent of solute are 
compared. In all these solutions the concentration of the solvent is 
95 mole per cent. Observe that, with few exceptions, the freezing point 
lowerings of the solvents are between 2 and 4°c at this*concentration. 
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The “freezing point constant” kf usually listed for solvents compares 
the different solvents not at equal mole fractions but at equal molalities 
of solute. On this basis the constants for the different solvents differ 
widely as indicated in column (6) of Table 13.2. This constant involves 

Table 13.2.—A Comparison of Freezing Point Constants for Equal Molalities 

and for Equal Mole Fractions of Solute 

Solvent 

(1) 

Formula 

(2) 

Molar 
weight 

(3) 

Melting 
point, 

°c 

(4) 

Heat of 
melting, 
k joules 

(5) 

Freezing point constants 

k/, for molality 
of solute — 1 

(0) 

k', for mole 
fraction of 

solute = 0.05 

(7) 

Water. h2o 18.02 0 6 01 1.86 5.26 
Benzene. Cnllo 78.05 5.5 9.91 4.90 - 5 23 3 38 - 3.61 

C f.H iii 84.00 6.5 20.0 -20.3 12.8 -13 1 
p-Xylene. CsHio 1 106.08 13.2 17.45 4 30 2.24 
Naphthalene. CioHg 128.06 80.1 19.07 6.899- 7.10 3.04 - 3.13 

Diphonvl. C12H10 154.08 69.0 16.84 8.00 - 8.35 3.0 - 3.13 
Anthracene. CkHio 178.08 218 28.85 11.65 3.86 
Phenanthrene. C14H10 178.08 99 6 18.1 12.00 3 97 

Dibenzvl. C14H J4 182.11 52.5 23.645 7.20 - 7.23 2.34 - 2.35 
Triphenylmethane. C»Hx6 ! 244.12 92.5 18.2 12.45 3.18 
Carbon tetrachloride. ! ecu 153.88 -23.0 2.68 29.8 -34.8 11.2 -13.1 
Chloroform. CHCls 119.38 -03.5 4.67 - 4 90 2.37 - 2.49 
Bromoforin. CHBrs 252.76 7 7 14.25 - 14.44 3.52 - 3.57 
Ethylene dibromide. C2H4Br2 187.86 10.0 10 637 12.50 -11.80 3.96 - 3.74 
Formic acid. CH2Q2 46.015 8.4 11 34 2.77 - 2.80 3.15 - 3.18 
Acetic acid . C2H402 60.03 16.6 11.23 3.90 3.45 
Benzoic acid. CtHbOj 122.05 121 7 17 3 7.85 - 8.788 3.61 - 4.04 
Phenylacetie acid. C0H8O2 136.06 76.7 9.00 3.75 

Palmitic acid. CicHi^Oj 256.25 04 42.05 4.40 1.08 
Stearic acid. CisHasOs 284.28 69.3 56.5 4.40 - 4.50 0.991-1.01 
Cyclohex an ol. C0H11O 100.09 23.9 1.756 38.28 20.95 

Phenol. C eH eO 94.05 41 11.4 7.20 - 7.50 4.18 - 4.26 

o-Cresol. CtHsO 108.00 30.1 5.62 2.88 

p-Cresol. CvHgO 108.06 34.8 11.9 7.55 3.88 
0-Naphthol. CioHbO 144.06 122 18.8 11.25 4.47 
Thymol. CioHhO 150.11 51.5 17.3 8.30 - 8.32 3.16-3.17 
Camphor. CioHtsO 152.12 179 49.80 19.15 

Salol. CnHioOj 214.08 43 12.30 3 49 

Benzil. C14H10O2 210.08 95.2 19.45 10.50 3.02 

the following further approximation: When Nb = nB/nA, that is, when 
nx + rtB « ftA, equation (13.42) becomes 

-A = (13.43) 
1 Am nA v 

When the molality constant kf is defined as the value of —AT/ when 1 
mole of B is dissolved in 1,000 grams of A, equation (13.43) becomes, for 

a one molal solution, 
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RTa2 1 __ RTa2 Mk 
Aha 1,000/ATa Aha 1,000 

(13.44) 

where Ma is the molar weight of A. 
Equation (13.44) indicates that, if two solvents have equal values of 

7V/Aha, their values of kj are directly proportional to their molecular 
weights. This relation has been Misinterpreted by some chemists who 
have used freezing point lowering experiments to determine the molecular 
weights of organic molecules. For example, some have used ethylene 
dibromide as a solvent “because it has a high constant.” The reasoning 
is erroneous; as column (7) of Table 13.2 shows its mole fraction con¬ 
stant k' is normal. Ethylene dibromide has a high molality constant 
primarily because it has two heavy bromine atoms in the molecule which 
give it a relatively high density but do not necessarily make it a better 
solvent for molecular weight determinations. Because deviations from 
the laws of ideal solution increase with increasing concentration of solute, 
we should judge two solvents at comparable concentrations. Generally 
speaking, we prefer a solvent that is nearly enough like the solute to form 
an ideal solution with it; to favor ideality, we desire the largest freezing 
point lowering for a given concentration of solute in the solution. It is 
obvious from Table 13.2 that the method of expressing concentration is 
important when we undertake to compare “equal concentrations” of 
different solvents (or solutes). 

Let us compare benzene (m.p. — 5.5°c) and ethylene dibromide 
(m.p. = 10.0°c) as solvents for molecular weight determinations. We 
see from column (G) of Table 13.2 that the freezing point lowering pro¬ 
duced by 1 mole of solute on 1,000 grams of ethylene dibromide is 11.8 
to 12.5°, whereas that produced on 1,000 grams of benzene by the same 
amount of solute is 4.90 to 5.23°e. As a result of this difference in 
“constants,” some have preferred ethylene dibromide as a solvent for 
molecular weight determinations. But the 1,000 grams of ethylene 
dibromide occupy only 0.454 liter at 10°c, whereas the 1,000 grams of 
benzene occupy 1.118 liters at 5.5°c. The freezing point lowering pro¬ 
duced when the mole of solute is dissolved in 1 liter of ethylene dibromide 
at 10°c ranges between 5.4 to 5.7°c, whereas that produced when the 
mole of solute is dissolved in 1 liter of benzene at 5.5° ranges from 5.5 to 
5.9°c. On a volume basis, the two solvents appear nearly equal. On a 
basis of equal mole fractions (0.05 of solute) the last column of Table 
13.2 shows that ethylene dibromide has a slightly higher constant, 3.96 
to 3.74°c as compared with 3.38 to 3.61°c for benzene. We may, there¬ 
fore, conclude that solvents for molecular weight determinations should 
be chosen primarily on the basis of their similarity to the solute and not 
on the basis of misinterpreted “molality” freezing point constants. 
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Boiling Point Rise.—The boiling point rise law may be derived in a 
similar manner. Because d In P° = dP°/P°, we have from equation 
(13.12) 

~ = ~dT (13.45) 

If we write Pa — Pa for dP° and combine with equation (13.1), we have 

dP° ^ po _ Pa _ po __ PoNa (13.46) 

from which we obtain 

dp° ^ po(1 _ Na) = P°Nn (13.47) 

because Na + Nb — l. As a further approximation, we may substitute 
the boiling point rise A 1\ = T — TA for d7\ Equation (13.45), then 
becomes 

jyrn 2 

An = Nb (13.48) 
Aha 

which has the same form as the freezing point lowering equation. Here 
Aha is the molar heat of evaporation of the solvent. Values of the boil¬ 
ing point rise for different organic solvents calculated for equal mole frac¬ 
tions show agreement corresponding to that found for freezing point 
lowering. When the boiling point rise is calculated for different molal¬ 
ities, the “constants” differ widely for the same reasons as do those for 
the freezing point lowering under similar conditions. 

Solubility in a Binary System.—We have seen [equation (13.30)] 
that all the constants in the ideal solubility relation 

log Na = 
Aha 1 . Aha 1 

4.576 T ^ 4.576 1\ 
(13.49) 

are functions of the component A, so that the solubility of A will be the 
same in all ideal solvents. Values of Na at various temperatures can 
be derived from this equation and plotted with temperature as ordinate 
and mole fraction as abscissa, as in Fig. 13.2. The curve begins at Ta 

and Na = 1 and continues toward lower values of N at lower tempera¬ 
tures. Similarly the equation for the solubility of B in A, which is 

log Nb = - y jr (13.50) 

may be evaluated with the data on the heat of melting of B and the 
melting point 7V The values of Nb at various temperatures can be 
calculated for this substance and plotted on the same diagram beginning 
at 7b and Na = 0, JVb = 1. 
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At the point E where the solubility curves intersect, both solid A and 
solid B are in equilibrium with the solution. This point of intersection 
is called the “eutectic point.” At this eutectic temperature, the values 
of Na and Nb are such that 

Na + Nb = 1 

If we substitute the substance B' for B, the solubility curve for A, 
as in Fig. 13.2, is unaltered; it extends from 1\ through E and E'. The 
solid B', with its own heat of melting AHb and its own melting point 7'b, 
has a solubility curve different from B, as indicated in Fig. 13.2. The 
curve for B' intersects that for A at Er; this is the eutectic for this binary 
system. If B and B' form an ideal solution, the complete solubility 
diagram for a system containing these substances may be plotted in a 
similar manner. 

orNs,z/ 

Fig. 13.2.—Solubility diagrams for binary systems. 

The factors in the solubility equation that change from substance to 
substance are the heat of melting and the melting point. Figure 13.2 
shows that B' is more soluble than B; at any temperature the value of 
Nb is greater than that of Nb. Where the heats of melting do not differ 
too widely, the substance with the lower melting point is the more solu¬ 
ble; it “melts” more easily into the solution just as it melts more readily 
to form the pure liquid. 

Ideal Ternary Systems.—The above considerations can be applied to 
ideal ternary systems. If the solids A, B, and C dissolve mutually to 
form a set of ideal binary systems, they form an ideal ternary system. 
These relationships were discussed by Johnston,1 Andrew, and Kohman 
in a series of papers. They found for the systems, the three dinitro- 
benzenes, the three nitroanilines, and the three nitrochlorobenzenes, 

1 Johnston, J., D. H. Andbews, and G. T. Kohman, /, Phys. Chem., 29,882,914, 

1041, 1048, 1317 (1925). 
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that the pairs of compounds ortho + meta, ortho + para, and meta +• para 
and the ternary system ortho + meta + para all fulfil the above require¬ 
ments for ideal solutions. Table 13.3 gives data obtained by the cooling 

Table 13.3.—The Mutual Solubilities* of orthometa-, and 

pam-DlNITROBENZENE 

[Temperatures at which one of the dinitrobenzenes (called A) crystallizes from solu¬ 

tions of each of the others (called B)] 

Crystallization temperatures, °c 

Mole per Ortho — A Meta — A Para = A 

cent of A in 

the solution Observed when Observed when Observed when 
(= KXWa) 

Ideal 
Meta — Para — 

Ideal 
Ortho = Para = 

Ideal 
Meta ~ Ortho = 

B 15 B B B B 

100 

90 

116.9 89.8 173.5 

110.0 110.0 110.6 83.2 83.2 83.2 167.1 167.1 167.7 

80 104.5 104.8 104.0 75.5 75.5 160.4 160.4 161.2 

70 97.2 97.2 67.6 67.6 152.3 152.3 154.5 

60 89.6 88.7 144.3 144.3 146.1 

50 80.7 79.5 134.3 134.3 136.6 

40 70.4 68.7 . 122.1 122.0 125.2 

30 

20 

107.1 107.0 111.7 
87.1 87.5 93.7 

* Andrews D. H., J. Phys. Chem., 29, 1041 (1925). 

curve method for the binary systems ortho + meta, ortho + para, and 
meta + para-dinitrobenzene. The temperatures marked “ideal” are 
those calculated from observed heats of melting and the melting tem¬ 
perature according to equation (13.30). When the mole fraction of the 
o-dinitrobenzene is 0.90 in the solution, it begins to crystallize from the 
solution at 110°c, regardless of whether the other component is the meta- 
or para-compound. A mixture of the meta- and para-compounds does 
not change the solubility of the ortho-compound so long as the mole 
fraction of the latter remains unchanged. However, when a third com¬ 
ponent, C, is added to a binary system of A and B, more moles are added 
and the mole fraction of A in the solution is reduced. The temperature 
at which A crystallizes from the solution is therefore lowered. If both 
A and B are crystallizing from the solution at the binary eutectic point 

where 

JVa + Nb « 1 
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addition of C decreases both Na and Nb so that the solution is no longer 
saturated. It becomes saturated again only when the temperature is 
lowered. Thus, a third substance present, even as an impurity, may 
lower the eutectic temperature for a binary system. In general the 
eutectic point of A-B is lowered by C, that of A-C by B, and that of 
B-C by A, so that the ternary eutectic point is lower than the binary 
eutectic points. This principle is used in the production of low-melting 
alloys. 

At the ternary eutectic point, we have 

Aha 1 . Aha 1 
4.576 T ^ 4.576 TA 
Ahb 1 Ahb 1 

4.576 T + 44376 YB 
Ahc 1 . Ahc 1 

44376 T + 4.576 To 
and 

Na + Nb + No = 1 

The temperature that satisfies these equations is the ternary eutectic 
temperature. It can be calculated by the methods outlined by Andrews 
and Kohman.1 

Free Energy of an Ideal Solution.—At constant temperature the 
change of free energy of a simple substance with pressure is given in 
equation (10.43); it may be expressed as 

dF = V dP 

log Na = — 

log Nb = — 

log No = — 

which for 1 mole of ideal gas becomes 

f2 - Fi = RT In 7^ (13.51) 
r i 

Let us select the pure liquid A as the standard state with fx = f£ and 
Pi = P°a, where Pa is the saturated vapor pressure of A. When the 
liquid A enters a solution where its molar free energy at the mole fraction 
Na is f2 = fa and the vapor pressure is P2 = Pa, the change of free energy 
for the solution process is 

fa - ri = RT In (13.52) 

The assumption that the vapors in equilibrium with the solution behave 
as ideal gases is implicit in this equation. If they do not, we must use 

i /. Phys. Chem., 29, 1317 (1925). 
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the form 

Fa - f! = RT\nk (13.53) 
J A 

But, if the solution obeys Raoult’s law, Pa/P°a = Na and equation 
(13.52) becomes 

Fa — Fa ~ RT In Na (13.54) 

where fa — f£ is the change in free energy when 1 mole of pure liquid A 
dissolves in the solution. Equation (13.54) was derived for an ideal 
liquid solution, but it can be shown that the free energy of solution of 
ideal solids and of ideal gases may also be represented by this equation. 

Equation (13.54) gives the free energy of solution of 1 mole of A. 
For 1 mole of solution containing Na moles of A and Nb moles of B, the 
free energy of formation of the solution from pure A and pure B is 

Aa(Fa - F°) = NaRT In Na 

Ab(fb - rg) = NbRT In Nb_ 

AF (solution) — NaRT In Na + NbRT In Nb (13.55) 

Entropy of Solution.—We found earlier that, for ideal solutions, the 
heat of solution of a gas or a solid is identical with the heat of condensation 
of the gas or heat of melting of the solid. When there is no phase change, 
as in the mixing of liquids, there is no heat effect. In ideal solutions, 
there is no heat of mixing and ha = h£, as indicated in equation (13.14). 
The solution process is spontaneous, however, and there is, therefore, 
a free energy of mixing as indicated in equation (13.54). From equation 
(10.51), for this constant-temperature process, 

AF — All — T AS (13.56) 

and because AH = 0, we have for the solution of 1 mole of A 

Fa — Fa ^ 0 — T(SA - ST) (13.57) 

which combined with equation (13.54) becomes 

o RT In Na o , at /io con 
Sa — sA =-j,- = —R In Na (13.58) 

From the point of view of probability, there must be an entropy 
change for the mixing of two liquids just as for the mixing of gases. 
The entropy change results because the liquids or gases are diluting each 
other so that the molar volume of each is increased. In this and in all 
other spontaneous processes at constant energy, there is an increase 
in entropy. Observe that Sa — s£ is positive, for In Na is negative. 
Although equation (13.58) was derived for liquid solutions, it applies to 
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ideal gaseous and solid solutions as well; for it is derived from the rules 
of ideal solution that can be applied to gaseous, liquid, and solid phases. 

Regular Solutions.—In Chap. 7, the relation between entropy and 
probability was derived for and applied to ideal gases. We discovered 
there that the probability of a given state of the gas is related to the 
volume of the gas in that state. For this reason, the probability of a 
gas in a mixture is related to the volume of the gas in the mixture, and 
this volume of the mixture in turn depends on the extent of the dilution 
of the gases. At constant pressure, this dilution is measured by the 
mole fraction of the gas. The mole fraction of the gas, therefore, becomes 
a measure of the probability and of the entropy. This is the relation 
expressed in equation (13.58). 

The probability of a given state can be expressed in terms of the 
concentration of a substance only if complete randomness exists. If the 
molecules combine or associate, the complete randomness is destroyed 
and the mole fraction can no longer be a measure of the probability of a 
state. We have stated as a requirement of ideal solution that the mole¬ 
cules of A shall not behave differently in an environment of molecules 
of B than they do in an environment of pure A. If the molecules of A 
and B tend to associate or combine with each other, the randomness of 
distribution is obviously destroyed. 

The thermal motion of the molecules will, if pronounced enough, 
ensure complete mixing of A and B if the attractive forces between them 
are not too great. Under these conditions, it may be entirely possible 
for the molecules of a solution to be thoroughly mixed even though the 
attractive forces between the molecules do not permit adherence to 
Raoult’s law. The number of solutions having a complete randomness 
of distribution is greater than the number that are ideal over the com¬ 
plete concentration range. Hildebrand has suggested that solutions in 
which this randomness exists shall be called regular solutions. The 
entropy of the component A in a regular solution may therefore be repre¬ 
sented by equation (13.58). In such a solution there may, of course, 
be a heat of mixing and a nonideal free energy of mixing, as indicated in 
equation (13.56). Under these conditions, the difference between the 
free energy of mixing for the ideal and the regular solutions is measured 
by the observed heat of mixing. In the regular solution, the free energy 
may not be measured by the mole fraction in accordance with equation 
(13.54), so that it will be necessary here to use the partial molal free 
energy, that is, the free energy per mole at the given concentration. 
For the regular solution, we have, therefore, from equation (13.56), 

F? - fI « 57 - h! — T(57 - st) (13.59) 
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and, for the ideal solution, 

Fa' “ Fa = HAi — Ha — ^(Sa* ~ &1) (13.60) 

But because, for the regular and ideal solutions, 

SV - sl = s? - s£ (13.61) 

and because, for the ideal solution, 

ha' - hI - 0 (13.62) 

we have, on subtracting equation (13.60) from (13.59), 

Fa* — FAi = 57 — Ha (13.63) 

For a solution process at constant temperature and pressure, HAr — h£ is 
the partial heat of solution of liquid A in the regular solution at the given 
concentration. 

Ideal Solutions of Isotopes.—In recent years, many substances 
formerly considered pure have been shown to be composed of molecules 
that are not identical in mass. Water, for example, is composed of 
molecules of H^O16, H22016, H12018, and the other possible combina¬ 
tions of these isotopes of hydrogen and oxygen. These molecules are so 
similar in properties that they fulfill all the requirements we have set up 
for ideal solutions. It is customary in chemistry to consider the naturally 
occurring isotopic mixtures as 44pure” substances and to define the stand¬ 
ard state for the substance in terms of these naturally occurring mixtures. 
As a result, the thermodynamic functions are evaluated in terms of these 
mixtures. 

If we wish to determine the values of these functions for each of the 
isotopic forms present in the naturally occurring mixture, we must know 
how the thermodynamic functions change on formation of the mixture 
from the simple isotopes. These changes can be readily evaluated with 
the aid of the laws of ideal solution. Thus the vapor pressures and the 
free energies of mixtures of Hl2016 and H22016 can be calculated from 
corresponding functions of the simple molecules with the aid of Raoult’s 
law. 

As usually carried out, chemical reactions do not distinguish between 
the isotopes of an element so that the relative proportion of the isotopes 
remains unchanged throughout a series of reactions. Under these 
conditions, the isotopic mixture acts as a pure substance and the values 
of the free energy and entropy, which are a measure of the distance from 
equilibrium at constant temperature and pressure and constant energy 
and volume, respectively, may be treated like those of a corresponding 
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pure substance. This practice is entirely legitimate because the values 
of our thermodynamic functions are relative rather than absolute. 

If reactions are found that can distinguish between two isotopes so 
that a separation is made, the isotopic mixture can no longer be assigned 
the value of the free energy for a pure substance. Under these condi¬ 
tions, the free energy of the isotopic mixture differs from that of the 
simple isotopes by the free energy of mixing. 

Our ability to distinguish among the isotopes is an important factor 
here. When we connect two liter vessels of oxygen, there is no tendency 
toward a new equilibrium and, therefore, no change in free energy and 
entropy as the contents of the two vessels mix. When we connect a 
liter of Cl352 and one of Cl372, the two isotopes will interdiffuse until each 
is distributed uniformly throughout the system. If we cannot distinguish 
between the two isotopes of chlorine, this process will not seem different 
from the mixing of the oxygen from the two vessels. It appears, there¬ 
fore, that, for practical purposes, entropy increases in processes which 
we can detect and measure. Many practical values of entropy based on 
this principle arc in use. This point of view must be used in correlating 
entropies measured from thermal data with those calculated by statistical 
methods. In the statistical methods, isotopes that cannot be distin¬ 
guished from each other in a process are treated as a single species. 
However, the energy levels of isotopes can be distinguished in the band 
spectra and these levels can be used to calculate the thermodynamic 
functions. When the value of the entropy of a gas, for example, cal¬ 
culated in this way, is compared with the entropy obtained from thermal 
data, it should not contain a term for the entropy of mixing of the 
isotopes because the isotopic mixture is not resolved in the thermal 
measurements. 

Problems 

In making systematic calculations, put the equations in a convenient explicit form 

and tabulate the calculations. See your instructor for suggestions. Hand in the 

tabulated calculations with the diagrams. 

13.1. A solution of benzene contains 10 per cent of toluene by weight. Calculate 

the temperature at which benzene first crystallizes from the solution,‘using the van’t 

Hoff equation. Obtain the necessary data from the “ International Critical Tables.,, 

From the same tables, obtain data for the actual freezing temperature of this solution, 

and compare with your calculated value. 

13.2. A mole of solute when added to 1,000 grams of benzene forms an ideal 

solution. Secure the necessary data and calculate the freezing point lowering pro¬ 

duced by 1 mole of solute in 1,000 grams of benzene with the aid of (a) one of the 

integral solubility equations (6) the mole fraction formula [equation (13.42)], and (c) 

the molality formula [equation 13.44) ]. Explain any discrepancy between the lower¬ 

ings calculated by the three methods. Which of these represents the molal “freezing 

point constant1*? Compare with the value commonly recorded in textbooks. In a 
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molal ideal benzene solution, what is the percentage deviation between the freezing 

point lowering calculated by the three methods above and the observed lowering? 

13.3. Repeat the calculations in Prob. 13.2 for 0.1 and 0.01 molal solutions of 

benzene. [Note that the integral solubility equation in the form of equation (13.30) 

cannot be applied with accuracy at low concentrations unless six- or seven-place 

logarithms are available. Why?l On a single diagram, plot the values you obtained 
for the freezing point lowering in this problem and Prob. 13.2 against molality and 

mole fraction of solute, respectively. What are the limiting ratios of —AT/rriB and 

-AT/Nb? 
13.4. Over what range of concentration is the approximation in equation (13.38) 

valid to 1 per cent? 5 per cent? 

13.6. Calculate the vapor pressure of benzene at 50 °c from the observed boiling 

point, 80.10°c, and the heat of evaporation of benzene. 

13.6. The vapor pressure of benzene is represented by the equation 

i D 1206.350 
log Pnu6.89745 - 220237 +1 

Calculate the value for the vapor pressure at 50°c and compare with the value obtained 

in Prob. 13.5. 
13.7. At 25°c, ethyl alcohol and n-propyl alcohol form ideal solutions. Obtain 

from the “International Critical Tables” values for the vapor pressure of these liquids 

at 25°. Calculate the partial pressures of the two alcohols and the composition of the 

vapor in equilibrium with solutions containing, respectively, 0.2, 0.4, 0.6, and 0.8 mole 

fractions of ethyl alcohol. Construct graphs, with mole fraction as abscissa and 

vapor pressure as ordinate, showing 

(a) The variation of the total pressure of the solution with change in composition 

of the solution. 

(b) The variation of the partial pressures with change in composition. 

(c) The variation of the vapor pressure of the solution with change in composition 

(mole fraction) of the vapor. 

13.8. Calculate the free energy of formation in calories for the formation of 1 mole 

of air from 0.21 mole of oxygen, 0.78 mole of nitrogen, and 0.01 mole of argon at 27°c. 

13.9. Calculate the entropy of formation for the process in Prob. 13.8. 

13.10. Plot the solubility data for the dinitrobenzenes in Table 13.3 on a log 

N vs. 1/T graph. Calculate the three binary eutectic temperatures and compositions 

and the ternary eutectic temperature and composition. 

13.11. Prove that equation (13.55) when applied to the formation of 1 mole of 

gaseous mixture from Na moles of A and Nb moles of B at constant pressure and 

temperature gives the same free energy change as that calculated with the aid of the 

equation 

13*12. Assuming that ethanol and n-propanol form ideal solutions, calculate the 
entropy of formation of 1 mole of solution containing ethanol and propanol in the 
mole ratios of 1:4, 1:3, 1:2, 1:1, 2:1, 3:1, and 4:1, respectively. 

13.13. Assuming that ethanol and n-propanol form ideal solutions, calculate the 
entropies of solution of 1 mole of ethanol in 1, 2, 3, and 4 moles of n-pro- 
panol, respectively. 
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13.14. According to J. Smittenberg, H. Hoog, and R. A. Henkes [J. Am. Chem. 
Soc.7 30, 17 (1938)], n-heptane, freezing at —90.6°c, and 2,2,4-trimethylpentane, 

freezing at — 107.8°c, form ideal solutions. The eutectic point obtained from the inter¬ 

section of the solubility curves is at — 114.4°c where the composition is 24 mole per cent 

n-heptane. Calculate the heat of fusion of n-heptane and of 2,2,4-trimethylpentane. 

13.16. Secure for benzene and naphthalene the best data on their melting point 

and heat of melting. Calculate with the aid of these data the mutual solubilities of 

these substances. Plot these solubilities on a T-N diagram (temperature as ordinate, 

and mole fraction as abscissa), 

13.16. On the same diagram, plot the solubilities from the values given in the 

“International Critical Tables/’ Vol. 4. Compare the experimental values of the 

eutectic composition and temperature with those read from the curves in Prob. 13.15. 



CHAPTER 14 

THE THIRD LAW ®F THERMODYNAMICS 

The relative energies of the products and reactants of a reaction may 
be obtained in accordance with the first law of thermodynamics. We 
have observed, however, that the direction of a reaction is not defined 
by the heat of the reaction. The first law, therefore, cannot be used to 
predict equilibrium conditions. When the second law of thermody¬ 
namics is combined with the first, we obtain entropy and free energy 
functions that are related to the equilibrium conditions. Thermal data 
may be used to establish the change of these functions with temperature, 
but they cannot establish the value of the integration constant that 
appears in the equations. The first and second laws, therefore, cannot 
be used with thermal data alone to predict the conditions of chemical 
equilibrium. The functions based on thermal data give the change in 
equilibrium with temperature, as in equation (12.98); but one equilibrium 
value must be measured in order to fix the value of the integration con¬ 
stant. The search for a principle that will enable us to predict the 
equilibrium conditions from the thermal data alone led to the statements 
frequently called the “third law of thermodynamics.” 

Limitations of the First and Second Laws.—For a chemical reaction 
in which the change of heat capacity ACP (heat capacity of the products 
minus heat capacity of reactants) is given by the equation 

ACP = a + /3T + yT2 (14.1) 

we found from the first law equation that the heat of reaction at con¬ 

stant pressure is given by the equation 

AH = AH0 + *T + + iyT* (14.2) 

The only data required to evaluate all the constants in this equation are 
thermal data—the heat capacities, and the heat of reaction at one tem¬ 
perature. A combination of the first and second law eouations gave us 
the free energy equation for an isothermal reaction, 

AF =* —wr + A(PV) — AE + A(PV) — T AS (14.3) 

and, therefore, 

Ap = AH — T AS 
305 

(14.4) 



306 INTRODUCTION TO CHEMICAL THERMODYNAMICS [Chap. 14 

For the change of free energy with temperature at constant pressure, we 
found in equation (10.57) that 

whence we obtained equation (11.31) 

JAF\ _ AII Arp d ( T )p T2 

(14.5) 

(14.6) 

which, with equation (14.2), gives 

AF = AH0 — aT In T - &3T2 - %yTz + IT (14.7) 

derived earlier as equation (11.34). When the products and reactants 
are at standard conditions, equation (14.7) represents the standard free 
energy change; it is related to the equilibrium constant by the equation 

AF° = — RT In KP (14.8) 

When equations (14.7) and (14.8) are combined, we have 

-RT In KP = AH°0 - aT In T - i(3T2 - iyT* + IT (14.9) 

which is equivalent to equation (12,97). 
The values of c*, 0, 7, and A//0 are obtained from heat capacity data 

within a limited temperature range and from the heat of reaction at one 
temperature. For this reason, equations (14.7) and (14.9), which are 
based on these values, cannot be applied at temperatures outside of the 
range for which the constants were obtained. Even the form of equa¬ 
tion (14.1) is not suitable for expressing observed heat capacities at low 
temperatures. Because the constants are empirical, the integration 
constant / in equations (14.7) and (14.9) is also empirical. If we employ 
a free energy expression in which the constants express the actual behavior 
of the heat of reaction function, we see by comparison with equation 
(14.4) that the integration constant must be related to the entropy change 
for the reaction. Hence, if we can calculate the integration constant 
from entropy values, we can determine equilibrium conditions from 
purely thermal data without any equilibrium constant or free energy 
measurements. 

In 1888, Le CMtelier showed, from a study of the free energy equa¬ 
tion, that the integration constants of additive equations are additive. 
He predicted that we should be able to calculate the integration con¬ 
stants of a reaction from the constants relating to the evaporation or dis¬ 
sociation of the reactants and products. Because dissociations and 
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evaporations are equilibrium reactions, Le ChAtelier’s proposal is essen¬ 
tially the calculation of an equilibrium condition from other equilibrium 
data in addition to the thermal data. Others (Lewis, Richards, van’t 
Hoff, and Haber) worked on this problem. In 1906, Nernst, chiefly on 
the basis of Le Ch&telier’s and Richards’s work, proposed his heat theorem. 

Entropy and the Integration Constant.—Before we state Nernst’s 
heat theorem, we shall discuss briefly the relation between entrep}^ and 
the integration constant. From equation (14.5), it is evident that AS 
may be obtained either by differentiating equation (14.7) with respect 
to T or by subtracting (14.7) from (14.2) and dividing by T. In either 
case, we find that 

AS = a + a In T + 0T + iyT2 - I (14.10) 

This equation is not important practically; for the equation on which it 
rests, namely, equation (14.1), does not represent the experimental facts 
at low temperatures. Equations (14.2) and (14.7) are valid only within 
restricted temperature limits, which do not extend into low temperatures. 
Near the absolute zero of temperature, we shall find there is no a term; 
hence, the integration constant is numerically equal to the entropy change 
at absolute zero, AS0. Whenever equations (14.7) and (14.9) are used 
within the range for which the heat capacities equations are valid, they 
give the correct value of the changes in free energy and heat content. 
Under these conditions, equation (14.10) is an accurate expression of the 
entropy change. At low temperatures, however, I has a value different 
from AS; for the coefficients a, y have values that do not fit the heat 
capacity curve at the lower temperatures. 

The relation between the entropy change and the true integration 
constant may be derived as follows: For a reaction at constant pressure, 
represented by the chemical equation 

A + B = D + E (14.11) 

the entropy of reaction at the temperature T is represented by 

AS = (sd + Se) — (sa + Sb) (14.12) 

We can evaluate the change of entropy of reaction with temperature if 
we know how the entropies of the substances A, B, D, and E change 
with temperature. From the relation between the heat capacity and 
entropy for simple substances at constant pressure given in equation 
(8.9), we have, from equation (14.12), 



308 INTRODUCTION TO CHEMICAL THERMODYNAMICS [Chap. 14 

which may be written in the form 

d AS = 
ACPdT 

T 
(14.14) 

When equation (14.14) is integrated between the temperature limits 
T = 0 and T = T where AS has the values ASo and AS, respectively, we 
obtain 

A ,S = JJ ——+ ASo (14.15) 

It appears, therefore, that we can obtain the value of AS0, the entropy 
of reaction at zero temperature, from the measured value of AS at the 
temperature T, if we can evaluate the integral in equation (14.15). 

When equation (14.15) is substituted in (14.4), we obtain 

fT Kfi Arp 

AF = AH — T J - T AS0 (14.16) 

Equation (14.4), which relates free energy change to change in heat 
content and entropy change for an isothermal reaction, will, for the iso¬ 
thermal reaction at zero temperature, become 

AFo — AHq — T A So (14.17) 

It appears from equation (14.17) that the free energy of reaction at zero 
temperature equals the heat of reaction for the constant pressure process 
if 

rAS0 = 0 (14.18) 

At zero absolute where T = 0, equation (14.18) can be valid if AS0 is 
zero or finite. It is clear, therefore, that the first and second laws leave 
AS undefined. Even if, in equation (14.16), we know the value of the 

ACpdT 
integral / the free energy of reaction cannot be calculated from 

known values of AH so long as AS0 is unknown. 
Nemst Heat Theorem.—The relation between AF and AH for an 

isothermal reaction may be expressed in still another form obtained 
from equation (10.57), 

AF — AH — T (~^|r) (14.19) 

A comparison with equation (14.4) shows that at constant pressure 

d AF 
dT 

-AS (14.20) 

which is equation (10.56). 
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In 1902, Richards found that the values of AF and AH for a number 
of cell reactions of condensed systems approach each other as the tem¬ 
perature is lowered. If AF and AH become equal at T = 0, we have, 
from equation (14.19), 

= 0 (14.21) 

On the basis of these results, Nernst in 1906 proposed that not only 
do AF and AH approach the same value at T = 0 so that T d AF/dT 
approaches zero but that d AF/dT also approaches zero. It might be 
possible for d AF/dT to have a finite value as in Fig. 14.16, in which 
case T d AF/dT at the absolute zero would still have zero value when 
T = 0. According to Nernst’s proposal, AF approaches its limiting value 
at the absolute zero of temperature with zero slope as in Fig. 14.1a. 

* 

o 

& Temperature, °K 

(a) (6) 
Fig. 14.1.—The limiting values of AF and AH. 

The consequences of this proposal are clear; from equation (14.20), we 
see it is equivalent to saying that, at the zero absolute of temperature, 

lim (AF - AH) = lim T[^f) 
t-o r-o \ di / 

(14.22) 

This statement, that the entropy change for an isothermal reaction at 
the absolute zero of temperature is zero, is the Nernst heat theorem. 
It is a partial statement of what many call the third law of thermody¬ 
namics. Although the experimental data on which Nernst based his 
heat theorem were obtained for condensed systems, the restriction need 
not prove troublesome, for all known systems in the neighborhood of 
zero absolute are condensed at finite pressure. 

Let us now see how AII must change with temperature in the neighbor¬ 
hood of T = 0. Equation (14.19) may be written in the form 

(14.23) 

When T approaches zero and AF — AH approaches zero, the right side 
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of equation (14.23) assumes the indeterminate value 0/0, which would 
be satisfied by (B AF/BT)P having either a finite or a zero value. The 
indeterminate value may be resolved mathematically by differentiation 
of numerator and denominator of the right-hand term of equation (14.23). 
Then, at the limit T = 0, 

lim lim 
0 
0 

lim 

BA If 
BT 

so that 

lim 
o 

(14.24) 

But, from equation (14.22), (B AF/BT)P = — A£0 at T — 0, and from 
equation (5.24), (B AH/BT)P — ACP. Therefore, equation (14.24) may 
be written in the form 

AS0 = AS0 + lim ACP (14.25) 

If ASo has zero value or a finite value, equation (14.25) shows that 

lim ACP = 0 (14.26) 
o 

The consequence of ACP being greater than zero would be that AS0 must 
be infinitely large. On the other hand, as equation (14.25) shows, experi¬ 
mental proof that the limiting value of ACP is zero cannot tell us whether 
ASo is zero or whether it is finite. Observation on the heat capacities 
alone cannot give us the Nernst theorem; the heat theorem cannot be 
deduced from the first and second law equations. The same conclusion 
follows from equations (14.16) and (14.17). If ACP approaches zero at 
T = 0, the integral approaches zero, and equation (14.16) becomes equa¬ 
tion (14.17). However, equation (14.17) is satisfied either by ASo = 0 
or by ASo equal to a finite number. 

We stated earlier that a heat capacity equation of the type of (14.1) 
cannot represent heat capacities at low temperatures for it is in conflict 
with the deductions of the heat theorem. Thus, if ACP is to equal zero 
at T = 0, a must be zero. To repeat our previous statements, if there 
is an a term in the heat capacity equation, the integration constant in 
equations (14.7) and (14.9) cannot equal zero, and /, therefore, represents 
an extrapolation value of an empirical equation and not the value of the 
entropy. This relation is clearly shown in equation (14.10). 

Third Law of Thermodynamics.—The Nernst heat theorem, which 
bans entropy changes during reactions at the absolute zero, requires 
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accordingly that all condensed systems at the absolute zero have the same 
entropy value. Nothing is implied by the theorem as to the numerical 
value of this common entropy. 

According to statistical theory, entropy is related to probability by 
equation (7.4G), which is 

S = k In W 

As a result of cessation of translational molecular motion at the absolute 
zero of temperature, the positions of the atoms may be fixed uniquely so 
that the probability of this state becomes unity. But if W = 1 at 
absolute zero, In W = 0 and So = 0. Planck, therefore, proposed that 
zero is the natural value of this entropy value common to all substances 
at the absolute zero of temperature. Any other value of So is consistent 
with the Nernst heat theorem so long as this value represents the entropy 
of each condensed substance at zero temperature. The Planck proposal, 
therefore, goes beyond the Nernst heat theorem. If Planck’s proposal is 
valid, the Nernst heat theorem must follow; in addition, there are con¬ 
sequences of the Planck formulation that cannot be deduced from the 
heat theorem. 

The assignment of zero entropy to each substance may be accepted 
as the third law of thermodynamics. It may be expressed provisionally 
in the following words: 

At the absolute zero of temperature, the entropy of every substance is 
zero. The law is also represented by the equation 

So - 0 (14.27) 

Planck limited his assignment of zero entropy to pure crystalline 
solids; he exempted glasses and solid solutions from adherence to the 
third law. If the entropy of a solid solution at zero temperature has a 
value different from that of a pure crystalline solid, the Nernst heat 
theorem is not valid for the formation of the solution. But, as we pointed 
out in the preceding section, if A So has a finite value, A Cp must still be 
zero. 

The limits of applicability of the third law must be determined from 
the experimental evidence. ^Before we discuss this evidence, we shall 
derive some of the consequences of equation (14.27) that cannot be 
derived from the heat theorem. Chemical reactions do not permit a 
direct proof of equation (14.27), for they give only changes in entropy; 
that is, they fix the values of AS and not absolute values of entropy. 
For that matter, we have seen that the first and second laws enable us 
to calculate only relative values of energy, heat content, and free energy. 
However, the values of AE, AH) and AF, which we require, may be cal¬ 
culated from relative values as readily as from absolute values. 
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Heat Capacity at the Absolute Zero of Temperature.—We were able 
to show from the Nernst heat theorem that, at the absolute zero of 
temperature, ACp = 0. This condition is fully met in the transition 
of a solid from one crystalline form to another, if both forms have the 
same heat capacity at zero absolute. The latter condition is fulfilled 
if the numerical value of the heat capacity is a finite number and not 
zero. If equation (14.27) is valid, however, this common heat capacity 
value must be zero and not some finite number, as is evident from the 
following: 

When a simple substance is heated at constant pressure, the increase 
in entropy per mole, from equation (8.6) or (8.10), is 

ds = y dT (14.28) 

If this equation is integrated between the absolute zero of temperature 
where s = s0 and the temperature T where s = s, we have 

s — s0 = (14.29) 

If Cp remained finite and not zero as T approached zero, the integral 
would become equal to ». Therefore, if entropy is to be positive at all 
temperatures above zero, cp for each substance must approach zero. 
This prediction of the third law has been amply verified. A similar 
derivation at constant volume shows that Cv must also approach zero. 
We may, therefore, write 

lim Cp == cv = c = 0 (14.30) 
0 

Other Properties at the Absolute Zero of Temperature.—For a 
process near 0°K in which the only entropy change results from an infin¬ 
itesimal pressure change, we have 

S,-S,-f(g)r6P 

From the heat theorem, AS = 0, so that 

,u.m„(ip)r - ° 
But, from equation (8.25), 

(14.31) 

(14.32) 
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whence, 
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lim 
r-o 

- 0 (14.33) 

According to equation (14.33) the coefficient of thermal expansion 
vanishes near T = 0. Thus, when the pressure remains constant near 
T = 0, the volume also remains constant and the heat capacities at 
constant pressure and at constant volume assume a constant value c, 
as indicated in equation (14.30). 
Similarly, it can be shown that 

so that 

r f dS\ n 
hmVav) = 0 r*o \pv/t 

(14.34) 

*
3

 o3
* II o
 

(14.35) 

Just as pressure and volume become independent of the temperature 
at T = 0, so must surface tension, also. At constant temperature and 
pressure, the increase of free energy with increase in surface area is 
expressed by the equation 

AF - 7 A A (14.36) 

where y is the surface tension and A A the increase in surface area. If 
the heat theorem is valid, we have from equations (14.22) and (14.36), 
because surface area is not a function of temperature, 

= 0 (14-37) 

This equation may be tested with helium, which remains liquid under 
its own vapor pressure at the lowest temperatures (less than 1°k). For 
liquid helium, the surface tension becomes independent of temperature, 
as required. 

Liquid helium may be frozen at pressures higher than its vapor pres¬ 
sure. When the system containing solid and liquid helium is subjected 
to pressure, the change with temperature of this equilibrium pressure 
tends toward zero at low temperatures so that the equilibrium pressure 
at very low temperatures approaches a constant value that is independent 
of the temperature, as required by equation (14.35). 

Equation (14.33) requires that the coefficient of thermal expansion 
shall become zero at low temperatures. Buffington and Latimer1 found 
in confirmation that the coefficients of expansion of a number of crystal- 

1 Buffington, R. M,, and W. M. Latimer, J. Am. Chem. Soc48, 2305 (1926). 
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line solids approach zero, changing slightly more rapidly with tempera¬ 
tures than do the heat capacities. These agreements with predictions 
made from the third law of thermodynamics may be taken as evidence 
for the validity of the law. 

Heat Capacities at Low Temperatures.—The predicted radical influ¬ 
ence of low temperatures on heat capacity stimulated research to verify 
the conclusions. Nernst and his coworkers carried out extensive heat 
capacity measurements which showed that heat capacities decrease 
rapidly at low temperatures in such a way as to indicate that the heat 
capacity vanishes at zero temperature. 

In Chap. 3, we showed that on the basis of the classical mechanics 
the gram-atomic heat capacity of a solid at constant volume is 3R = 5.96 
cal/deg. Many of the lighter elements, however, have heat capacities 
smaller than 3R at room temperatures; their heat capacities approach 
the upper limit of Cv — 5.96 cal, only at relatively high temperatures. In 
1907, Einstein1 derived an equation for heat capacity based on the 
quantum theory that gives the upper limit cv — 3R at high tempera¬ 
tures and Cv = 0 at T — 0. This was the first theoretical explanation 
of the general sigmoidal form observed for the heat capacity curves. 
Although the Einstein equation gives the general trend of heat capacity 
curves, it does not give close numerical agreement with the experimental 
results. In 1912, Debye2 outlined a theory for the heat capacity cv of 
isotropic solids that reproduces the observed heat capacities well. We 
shall not discuss the theory in detail. One of the terms in the equation 
is {T/6)8 where 6 is a constant for each substance called the characteristic 
temperature of the substance. It is defined by 

where v0 is the upper limit of the spectrum of frequencies of vibration, 
h is Planck's constant, and k, Boltzmann's molecular gas constant. 
This constant, 0, contains the individual characteristics of a substance 
in the v0 term so that if Cv is plotted against T/6 the curves for all the 
different substances that obey the Debye equation fall on a single uni¬ 
versal curve. For very low temperatures, the Debye equation becomes 

which is of the form 

Ck » aT3 (14.39) 

1 Einstein, A., Ann. Physik, 22, 180, 800 (1907). 
2 Debye, P., Ann. Physik, 39, 789 (1912). 
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The prediction that in the neighborhood of zero temperatures the heat 
capacity varies as the cube of the temperature has been confirmed for a 
great many substances, including glassy solids. Equation (14.39) is, 
therefore, widely used in the extrapolation of experimental heat capacity 
curves. The lower temperature limit for many data is that of the triple 
point of hydrogen at about 14°k. For solids that obey the Debye 
formula and do not have transitions in this range, equation (14.39) may 
be employed in the extrapolation from 14 to 0°k. Observe that the 
heat capacity here is that at constant volume. Near 0°k, however, cp 
and cv become identical within the limits of experimental error, as 
required by equation (14.30). 

As stated above, cv may be plotted against (T/6) to give a single 
curve for all substances following the Debye equation. A single curve 
will, therefore, be obtained when cv is plotted against log (T/6). But 

log = log T — log 6 (14.40) 

It appears, therefore, that when cv is plotted against log T, curves for 
all these substances coincide if they are displaced along the log-7T-axis 
by the distance — log 6, which is characteristic of each substance. This 
method was used by Lewis and Gibson1 to correlate the heat capacities 
of different substances. For substances that do not follow the Debye 
equation, they2 plotted cv against n log (T/6) where n is also character¬ 
istic of each substance. These substances they classify as Class II. 

We should point out that Lewis and Gibson used 6 = -$(3R) instead 
of 6 as defined in equation (14.38) so that 0pebye = 4.O20Lewis. 

Calculation of Entropy from Heat Capacity Data.—Relative values 
of both heat content and entropy may be obtained from heat capacity 
data down to low temperatures. Thus, for the increase in heat content, 
at constant pressure, 

dH = cPAT 

h — H0 = Cp AT (14.41) 

Because s0 = 0, from the third law, the increase in entropy, from equation 
(14.29), is 

T 

cP d In T (14.42) 

1 Lewis, G. N., and G. E. Gibson, J. Am. Chem. Soc., 39, 2554 (1917). 
* The method is described by G. N. Lewis and M. Randall, in “Thermodynamics 

and the Free Energy of Chemical Substances,” p. 76, McGraw-Hill Book Company, 
Inc., New York, 1923. 
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These relations are indicated in Figs. 14.2 to 14.4. The shaded area 
under the Cp vs. T curve in Fig. 14.2 represents H — H0; that under the 
Cp vs. log T curve in Fig. 14.3 or under the Cp/T vs. T curve in Fig. 14.4 
represents S. Observe that, at log T = 0, T = 1°k and that, at tem- 

Fig. 14.2.—Graphical computation of heat content. 

peratures below 1°k log T approaches — «>; but in this range the con¬ 
tribution to the total entropy appears to be small for all elements except 
hydrogen. 

Fig. 14.3.—Graphical computation of entropy. 

We stated earlier that small errors in heat capacity measurements at 
low temperatures are not particularly important in evaluating H, but 
that they do cause significant errors in entropy. This is evident from 
equations (14.41) and (14.42). Thus, a small error in Cr at low tempera- 
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tures produces no greater error in h than a similar absolute error at high 
temperatures, but an error of 0.1 calorie at 10°k produces as large an 
error in s as an error of 1 calorie at 100°k or 3 calories at 300°k. 

The numerical evaluation of entropy of a substance at room tempera¬ 
ture is usually carried out in several steps. If the heat capacity data 
are available only between room temperature and liquid air or liquid 
hydrogen temperatures, a graphical integration of Jo din T between 
these temperature limits gives the entropy increase in this interval. If 
there are any phase transitions, solid-solid, solid-liquid, or liquid-gas, the 
entropy of the transitions is obtained either from the apparent heat 
capacities over the transition interval or from the measured heat of 
transition at the transition temperature. Between liquid hydrogen or 
liquid air temperatures and zero temperature an extrapolation of the 

Fig. 14.4.—Graphical computation of entropy. 

observed heat capacity curves is required. Table 14.1 illustrates the 
types of calculation used to obtain the entropy of chlorine. 

In many systems, significant heat effects are found below liquid air 
temperatures so that extrapolation below these temperatures does not 
reproduce the experimental results in this range. Extrapolation below 
liquid hydrogen temperatures is usually permissible. The entropy 
change in this low temperature range may then be obtained analytically 
from equations such as (14.39) or (14.42) or graphically from the area 
under the CP/T vs. T curve, as in Fig. 14.4. 

The value of the entropy of the substance at room temperature is 
then obtained from the summation of all these entropies between 0°k 
and room temperature, s0 being assumed to be zero. As we have indi¬ 
cated, the entropies of gases may also be calculated from spectroscopic 
data. These spectroscopic values offer an independent check on the 
validity of the third law. 
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Some Experimental Tests of the Third Law.—We have already indi¬ 
cated some of the evidence for the validity of the third law of thermody¬ 
namics. Thus, its predictions concerning the behavior of heat capacity, 
surface tension, and coefficient of expansion in the neighborhood of zero 
temperature have all been confirmed by experiment. A further test of 
the law is furnished by the comparative values of s — s0 for substances 
with known entropy difference at room temperature. Different crystal- 

Table 14.1.—The Entropy of Chlorine* Gas at the Boiling Point from 

Thermal Data 

(In calories per degree, 1 cal = 4.1832 int joules, 0°c = 273.10°k) 

Temperature 

range or 
transition 

temperature, °k 

Type of calculation Entropy/mole 

0-15 From Debye function, hcv/k = 115 0.331 
15-172.12 Graphical calculation from c\p for solid 16.573 
172.12 Fusion Aiii72.i2 — 1,531 cal 8.895 

172.12-239.05 Graphical calculation from c/> for liquid 5 231 

239.05 Vaporization AH239.06 = 4,878 cal 

Entropy of actual gas at boiling point 

Correction for gas imperfection 

Entropy of ideal gas at boiling point 

20 406 

51 ~sr 
0.12 

53 .56 

♦Giatjque, W. F., and F. M. Powell, J. Am. Chem. Soc., 61, 1970 (1939). 

line modifications of an element are suitable for this type of measurement 
because few experimental measurements are required. 

Let us take two crystalline forms A and B of an element. At the 
transition temperature, A and B are in equilibrium with each other, Af 

for the transition is zero, and the heat of transition becomes the reversible 
heat. For a constant-pressure process, the change in entropy for the 
transition A to B is 

Sb — Sa 
qP _ AHr 
~f ~ ~~T 

(14.43) 

so that we obtain directly the difference between the entropy of A and 
of B at the transition temperature. 

If the third law is valid, both A and B have the same value of entropy, 
So = 0, at zero temperature; hence, Sa and SBat the transition temperature 
can be evaluated from the respective heat capacity data for these crystals. 
We have, therefore, from equation (14.42), 

Cb — Ca 
d T Ac d In T 

T 
(14.44) 
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The value of Sb — Sa calculated from equation (14.44) can be compared 
with that from equation (14.43). If these two methods give the same 
value of AS, the equality of s0 for A and B is confirmed. 

Early measurements on the transitions rhombic-monoclinic sulfur, 
white tin-gray tin, quartz-cristobalite, and calcite-aragonite furnished 
agreement with the heat theorem, within the limits of the experimental 
accuracy. The experiments on tin were the most accurate and were in 
agreement with the theorem. Discussion of this system is reserved for 
the following chapter. More recently, accurate heat capacities have 
been obtained for a number of systems. With exceptions of the type 
discussed later, they support the heat theorem. 

Entropy of Sulfur.—Crystalline sulfur occurs in two crystalline forms, 
rhombic, stable below 95.5°c, and monoclinic, stable between 95.5°c 
and the melting point. The heat capacities of these forms were meas¬ 
ured by Eastman and McGavock.1 They used 273. 1°k as the ice 
point temperature; hence, we shall here adopt the temperature scale, 
T = 273.1 + t. The heat values are in defined calories. If 95 ± 10 

calories is accepted as the atomic heat of transition at 95.5°c, we have 

S(rhombic) = S(monoclinic); Ah368.6 = 95 ± 10 cal 

As = 94j; -v° = 0.258 ± 0.027 cal/deg 
368.0 

The heat capacity data for this system are listed in Table 14.2. 

The entropy difference for rhombic sulfur between 0 and 15°k, obtained 
graphically from an extrapolated curve of cP/T vs. T or by calculation 
from a Debye function fitted to the experimental points up to 40°k, is 
0.12 ± 0.02 calorie per degree. The entropy between 15 and 298.1 or 
368.6°k is obtained graphically from the data in Table 14.2. The total 
entropy of rhombic sulfur is found to be 7.624 ± 0.05 calories per degree 
at 298. 1°k, and 8.827 ± 0.06 calories per degree at 368.6°k. 

In Table 14.2 the difference AcP between the heat capacities of mono¬ 
clinic and rhombic sulfur is tabulated. At 298. 1°k the resulting entropy 
difference is 0.157 ± 0.04 calorie per degree; at 368.6°k, it is 0.215 ± 0.05 
calorie per degree. If both rhombic and monoclinic sulfur have zero 
entropy (or the same value) at 0°k, this difference of 0.215 calorie per 
degree represents the difference in their entropies at the transition point. 
This value agrees with the entropy value calculated from the measured 
heat of transition. The third law, therefore, applies to crystalline sulfur. 

Glasses and Solutions and the Third Law.—In proposing that a value 
of s0 be assigned to the entropy of solids at zero temperature, Planck held 
that solid solutions should be assigned a positive entropy. If so, the 

1 Eastman, E. D., and W. C. McGavock, J. Am. Chem. Soc., 59,145 (1937). 
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Table 14.2.—Atomic Heat Capacity of Sulfur* 

(In calories per degree) 

T, °K 
c P 

rhombic 

Ac p =* 
c(m) - 

c(r) 

Cp 

mono¬ 
clinic 

T, °K 
Cp 

rhombic 

ACp — 

c(m) - 
c(r) 

Cp 

mono¬ 
clinic 

15 0.311 210 4.743 | 
20 0.605 220 4.841 0.180 5.021 
25 0.858 . 230 4.927 
30 1.075 240 5.010 0.199 5.209 
40 1.452 250 5.083 
50 1.772 260 5.154 0.217 5.371 

60 2.084 0.007 2.091 270 5.220 
70 2.352 280 5.286 0.234 5.520 
80 2.604 0.020 2.624 290 5.350 
90 2.838 298.1 5.401 0.248 5.649 

100 3.060 0.040 3.100 300 5.412 0.250 5.662 

110 3.254 310 5.474 
120 3.445 0.063 3.508 320 5.535 0.264 5.799 
130 3.624 330 5.598 
140 3.795 0.087 3.882 340 5.660 0.276 5.936 
150 3.964 350 5.721 

160 4.123 0.112 4.235 360 5.783 0.286 6.069 
170 4.269 368.6 (5.837) 0.289 6.126 
180 4.404 0.136 4.540 
190 4.526 
200 4.639 0.159 4.798 

* Eastman, E. D., and W. C. McGavock, J. Am. Chem. Soc., 59, 145 (1937). 

formation of solid solutions from the pure solid should result at zero 
temperature in an entropy increase, and this process would form an 
exception to the heat theorem. Nernst believed that undercooled liquids 
(glasses) and solid solutions have an entropy value at zero temperature 
which is identical with that of crystalline solids. There is, accordingly, 
a conflict between the Nernst heat theorem in this form and the Planck 
inference that the common entropy value of zero should be restricted 
to pure crystalline solids. 

In equation (13.58), the molar entropy of A in an ideal solution was 
given. If 1 mole of solid solution containing Na moles of A and Nb 

moles of B is formed, the entropy change for the solution process is 

Na(ba - si) - -NaR In Na 

_Nb(sb - eg) = - NbR In Nb_ 

s(solution) — (ATasI + AbsS) = ~R(Na In Na + N^ In Nb) (14.45) 
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The entropy of formation of 1 mole of solution containing 0.5 mole 
of A and 0.5 mole of B is, therefore, given by 

As(solution) = —4.576(0.5 log 0.5 + 0.5 log 0.5) 
= -4.576 log 0.5 
= +4.576 log 2 
= 1.38 cal/deg (14.46) 

This is. in agreement with the conclusion from the statistical theory, for 
the number of available positions for the molecule of A is doubled and 
the number for the molecule of B is doubled so that a factor of 2 appears 
in the probability expression, and the entropy for the mole of solution is 
increased by R In 2 as in equation (7.49). 

However, if the positions of the individual atoms at zero temperature 
are fixed in the glass or solid solution as well as for the pure solid, both 
may be expected to give the same entropy expression and hence to have 
equal entropies. To settle this point, the measured entropies of glasses 
and solutions were compared with those of the corresponding pure sub¬ 
stances. In all the experiments, the glasses and solid solutions were 
found to have greater entropy than the corresponding pure crystalline 
solids. The entropies for these substances were obtained from the heat 
capacity data by the methods outlined above. 

Thus, the entropy of glycerol glass at 0°k appears to have a value 
higher by 4.6 calories per degree than crystalline glycerol at the same 
temperature. Similarly, for a glassy solution of glycerol and water, the 
entropy increase found from the heat capacity data was 1.30 ± 0.36 
calories per degree at 0°k as compared with an increase calculated from 
equation (14.45) of 1.14 calories per degree. These values agree within 
the experimental error. The entropy of mixing of 0.728 mole of AgBr 
with 0.272 mole of AgCl to form 1 mole of solid solution is calculated from 
equation (14.45) to be 1.16 calories per degree. Eastman and Milner1 
found the entropy of mixing at 298°k to be 1.12 + 0.1 calories per degree 
and that at absolute zero as calculated from the heat capacity data to be 
1.03. These three values agree within the experimental error. We must, 
therefore, conclude that, if the entropies of pure crystalline solids at the 
absolute zero of temperature are zero, the entropies of glasses and solu¬ 
tions are positive. 

Entropy of Gases.—The entropy of gases can be checked in still 
another way; it can be calculated from the energy levels obtained from 
band spectrum data by the methods of statistical mechanics. Table 14.3 
lists some entropies of gases obtained by calorimetric and by spectro¬ 
scopic methods. There is agreement between the two methods within 

1 E. D., and R. T. Milner, J. Chem. Physics, 1, 444 (1933)., 
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the experimental error for all the listed gases except hydrogen, carbon 
monoxide, nitric oxide, water and nitrous oxide. For these the dis¬ 
crepancies are, respectively, 1.5, 1.1, 0.75, 0.78, and 1.14 calories per 
degree. The discrepancy for hydrogen is explained by the fact that solid 
hydrogen is a solution of ortho and para forms. The discrepancy for the 
others is explained in terms of an indefiniteness of position of the atoms 
or bonds in the crystal. 

Table 14.3.—Molar Entropies of Some Gases at 25°c from Calorimetric and 

Spectroscopic Data 

(In calories per degree) 

Substance 
Entropy 

(calorimetric) 
Entropy 

(spectroscopic) 

h2 29.7 31.211 
n2 45.9 45.767 
o2 49.1 49.003 
HC1 44.5 44.66 
HBr 47.6 47.48 
HI 49.5 49.36 
CO 46.22 47.301 
C02 51.11 51.061 
NO 43.0* 43.75* 
H20 44.33 45.106 
n2o 51.44 52.58 

♦At 12I.36°k. 

For example, in a perfectly oriented crystal of nitric oxide, the mole¬ 
cules are aligned in a regular manner such as NO-NO. However, if the 
two ends of the molecule may be interchanged in the crystal, the arrange¬ 
ment might be NO-ON. If there is no preferred orientation, the number 
of available arrangements for each molecule is doubled and the molar 
entropy is increased by R In 2 which equals 4.576 log 2, or 1.38 calories 
per degree. Since the calorimetric value for nitric oxide differs from the 
spectroscopic value, based on perfect orientation, by less than this value, 
we conclude that the orientation of the nitric oxide molecules, though not 
unique, is not a perfectly random one. If the number of ways of realizing 
a system is g, we found in equation (7.50) that the entropy is increased by 
R In g. This equation, based on probabilities, is applicable at the abso¬ 
lute zero of temperature. If the molar entropy of the perfect crystal of 
a pure substance is so = 0, the entropy of the imperfect crystal is 

so = 0 + Rln g (14.47) 

The imperfect crystal, therefore, has a finite but not a zero entropy value 
at zero temperature. 
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Because there is an entropy of mixing, it appears also that the entropy 
of a substance which is an isotopic mixture cannot be zero at zero tem¬ 
perature. Chlorine, for example, with the isotopes Cl85 and Cl87, is a 
mixture of the molecules C136C136, C137C137, and C185C137. But chemical 
reactions do not separate this mixture, the chlorine acting as a single 
molecular species throughout a series of reactions. Consequently, the 
entropy of mixing cancels out in all the calculations. Entropy values for 
chlorine that do not include the entropy of mixing are, therefore, as useful 
as those which do, if they are used consistently throughout the calcula¬ 
tions. For the same reason the tabulated “absolute” entropy values 
for the elements and compounds do not include the entropy of nuclear 
spin. This term cancels out of the calculations for chemical reactions. 

A Final Statement of the Third Law.—Because not all crystalline 
solids have zero entropy at 0°k, the statement of Planck should be revised. 
The following statement fits the facts, although it is less definite than 
Planck’s or Nernst’s proposals: 

The entropy of a solid or liquid at the absolute zero of temperature is 
never infinite; it may be finite and may be zero. It is zero when the solid is 
in a single pure quantum mechanical state. 

Problems 

14.1. Plot the heat capacity data of rhombic sulfur on the following types of 

graphs: (a) c vs. log T\ (b) c/T vs. T. From these graphs, calculate the entropy 

increase between 15 and 368.6°k. Compare. 

14.2. Calculate the entropy of formation of 1 mole of solid solution containing 

0.728 mole of AgBr and 0.272 mole of AgCl. How does this value of the entropy of 

solution change with temperature? 

14.3. Suppose that AF and AH approach the common limiting value at low tem¬ 

peratures not as we find experimentally (Fig. 14.1a) but as in Fig. 14.16. Start with 

the fundamental equations, and show which of the following quantities have a zero 

value, finite value, or infinite value under these hypothetical conditions at constant 

pressure and T = 0: 

AS, ACp, AF - AH, 
AF — AH d AH d AF 

T 1 dT 1 dT 1 
T AS, AF, AH 

14.4. The difference in heat capacity between white tin and gray tin between 

79.8 and 298.1°k as determined by Brpnsted [Z. physik. Chem., 88, 479 (1914)] may 

be represented by the equation 

AC « 1.365 - 8.75 X 10“3T + 29.2 X - 32.5 X 10“9P3 

For reasons indicated in the text, this equation is not valid near zero absolute. If 

this equation were extrapolated to 0°k, what would be the value of AC at 0, 20, 40°k? 

Compare with the values calculated with the Debye equation as listed in column (8) 

of Table 15.1. 
14.5. Extend the heat capacity equation for the transition 

Sn(gray) * Sn (white) 
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given in Prob. 14.4, to the temperature range 0 to 80°k; and find by integration 

between the indicated temperature limits the values of A$8o — A&40, A$4o — ASso, 
A$3o “ A$o. Why is this extrapolation invalid? Compare with the values obtained 

from column (7) of Table 15.2. 

14.6. From the values of (ds/dP)r for the Berthelot gas and for the ideal gas 

derived in Prob. 10.16 calculate, for chlorine, whose critical constants are Tc =* 417% 

Pc =* 76.1, the value of Side*i - ^Bortbeiot at the boiling point 239°k and at 298.1% 
for 1 atmosphere pressure. (Slide rule.) Compare with the value in Table 14.1. 

14.7. Calculate the values for the heat capacities of gray tin and white tin at the 

temperatures 1, 5, 10, 15, and 20% using for the characteristic temperatures 6 = 253 

and 0 = 198, respectively, for gray tin and white tin. Tin follows the Debye equa¬ 

tion; the simple Tz relation holds below 20°k. 
14.8. Plot the heat capacity data for tin obtained in Prob. 14.7: 

(a) On a c vs. log T plot. 

(b) On a c/T vs. T plot. 

From one of these graphs calculate the value of s for gray tin and for white tin at 
20°k. 

(c) Calculate the entropies of gray tin and white tin at 20°k from their heat 

capacity equations obtained in Prob. 14.7. Compare with the entropy values that 

you obtained graphically. 



CHAPTER 15 

SOME APPLICATIONS OF THERMODYNAMICS 

The data for any chemical system come from a variety of sources. 

They vary in completeness and in accuracy and may be inconsistent 

among themselves. Because the principles of thermodynamics enable 
us to combine data from different types of experiment in such a way as 

to derive values that can be compared with those obtained directly by 

experiment, thermodynamics is a powerful tool. Correlation and criti¬ 

cism of data require a systematic examination of the available data. 

We shall discuss several relatively simple systems as illustrations of some 

of the methods that may be used. 

The System White Tin-Gray Tin 

The observation that white tin at temperatures below room tempera¬ 

ture changes to a gray powder is a relatively old one. Cohen1 and his 
coworkers investigated the tin system and found a transition at 18°c, 

white tin being stable above and gray tin below this temperature. Br0n- 

sted2 measured the heat capacities of these forms down to 79.8°k and 

the heat of transition at 0°c. This heat of transition was obtained by the 

following method: White tin at 0°c is transferred to a calorimeter held at 

45 or 58°c. The heat absorbed by the tin in the calorimeter is a measure 

of its heat capacity. Similarly, gray tin at 0° is added to the same calo¬ 

rimeter. At the calorimeter temperature of 45 or 58° the transition of gray 

tin to white tin proceeds rapidly, the final material being white tin. 

Subtracting the observed heat absorbed by the white tin over the entire 

temperature interval from the heat absorbed by the gray tin, we obtain 

the difference in heat content of the two forms at 0°c. Thus, we have 

for the transition, the ice point being assumed to be 273°c, 

Sn(gray) = Sn(white); A//273 = 532 cal (15-1) 

Br0nsted found 19°c (292°k) as the transition temperature; at this tem¬ 

perature, gray and white tin are in equilibrium so that 

Af292 = F(white) - F(gray) = 0 (15.2) 

1 Cohen, E., £. physik. Chem., 30, 601 (1899); 33, 59 (1900); 35, 588 (1900); 36, 
513 (1901); 50, 225 (1904); 63, 625 (1908). 

1 Br0nsted, J. N., Z. physik. Chem., 88, 479 (1914), 
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The entropy of transition at 0°c cannot be calculated directly from 
the heat of transition given in equation (15.1) because the transition at 
this temperature is not reversible. However, we may obtain the values 
of Ah and Af as functions of temperature with the aid of the heat capacity 
data. On application of the general equation, 

AF = AH - T AS 

we may then calculate the value of As for the transition at any tempera¬ 
ture in the experimental range. Observe, however, that these relations 
give only the change in entropy. If we wish to obtain the entropy of 
transition at 0°k or the absolute values of the entropy of white tin and 
gray tin, we need heat capacity curves down to 0°k. Because the heat 
capacities were not measured below 80°k, they must be extrapolated to 
0°k. If the Debye formula, when fitted to the data in the observed 
range, represents the heat capacities in the extrapolated range, Brpnsted 
found that the third law of thermodynamics is confirmed. These cal¬ 
culations of Brpnsted are given in some detail as an illustration of the 
application of thermodynamics to a concrete chemical system. 

Heat Capacities, Heats of Transition, and Free Energies of Transi¬ 
tion between 80 and 288°k.—Brpnsted’s data on the atomic heat capacity 
of white tin, ctr, and of gray tin, ctf, at constant pressure and in the tem¬ 
perature range 79.8 to 288. 1°k are given in columns (2) and (4) of Table 
15.1, and the values of Ac = c^ — cg are given in column (6). The 
experimental values of Ac are fitted by the empirical equation 

Ac = 0.49 + 3.25 X 10~8(300 - 77)3 (15.3) 

The agreement between the experimental values and those calculated 
from equation (15.3) becomes evident when columns (6) and (7) of 
Table 15.1 are compared. When equation (15.3) is expanded with some 
slight rounding off of numerical values, it becomes 

Ac = 1.365 - 8.75 X 10~*T + 29.2 X lO"6!72 - 32.5 X lO^T3 

This equation has the form of equation (5.27) so that by the methods 
previously described [compare equation (5.31)] the general heat of reac' 
tion is obtained for this transition. Thus, 

Ah = Ah0 + 1.365T - 4.37 X 10~3r2 + 9.72 X 10~6!T3 
- 8.1 X 10-®!T4 (15.4) 

Ah0 may be evaluated by the substitution of the values Ah = 532 cal 
and T = 273°k* from equation (15.1) in equation (15.4). We find 

Ah0 =* 332.4 (15.5) 

* In the older data, 273°k was usually selected as the temperature of the ice point. 
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Observe that this value of Ah0 is obtained by extrapolation of the equa¬ 
tion (15.4), valid between the temperatures 80 and 288°k down to 0°k. 
Therefore, Ah0 is not the real value of the heat of this transition at 0°k, 
but merely the integration constant. 

Table 15.1.—The Atomic Heat Capacities of White and of Gray Tin 

(In calories per degree) 

T, °K 

(1) 

C * 1 'Wy 

obs 

(2) 

c„7, from 
the Debye 

formula 
(6 - 198) 

(3) 

c„,t 

obs 

(4) 

c0, from 
the Debye 

formula 
0B - 253) 

(5) 

AC,} 
obs 

(6) 

Ac, from 
equation 

(15.3) 

(7) 

Ac, from 
the Debye 

formula 

(8) 

20 0.469 0.228 0.241 
30 1 .30 0.744 0.556 
40 2.235 1.42 0.815 
60 3.65 2.82 0.83 
79.8 4.64 3.80 3.80 0.84 0.84 

87.3 4.87 4.07 4.07 0.80 0.80 
94.8 5.07 4.30 4.31 0.77 0.77 

194.9 6.20 5.66 5.60 0.54 0.53 
197.2 6.23 5.71 5.64 0.52 0.52 
205.2 6.25 5.75 5.69 0.50 0.52 

248.4 6.36 5.87 5.86 0.49 0.49 
256.4 6.37 5.88 5.88 0.49 0.49 
264.3 6.38 5.89 5.90 0.49 0.49 
273.0 6.39 5.90 5.93 0.49 0.49 
288.1 6.40 5.91 5.97 0.49 0.49 

*cw * atomic heat capacity of white tin. 
t cff « atomic heat capacity of gray tin. 
% AC “ Cir — cp. 

By the methods previously described [compare equation (11.34)] the 
equation for the free energy of transition, obtained from equation (15.4) 
is 

Af = 332.4 - 1.365(2.3026) T log T + 4.37 X 10"3r2 
- 4.86 X lO-6!73 + 2.7 X lO^T4 + IT (15.6) 

When the integration constant I is evaluated at the transition tempera¬ 
ture where T = 292°k and Af = 0, Brpnsted found I to be 5.677 so that 
equation (15.6) becomes 

Af - 332.4 - 3.143T log T + 4.37 X 10-8T2 
- 4.86 X 10“6jP8 + 2.7 X 10-*!F4 + 5.677T (15.7) 
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The values of Ah and Af calculated from equations (15.4) and (15.7) 
are tabulated in columns (2) and (3), Table 15.2, and their difference in 
column (6). Observe that, as the temperature decreases, Ah — Af 

approaches Kero, as required by the third law. 

Tabls 15.2.—The Heat, Free Energy, and Entropy of Transition of Gray Tin 

to White Tin between 0 and 298°k 

(In calories, or calories per degree, per mole) 

Ah, from 
-1 

Af, from 
Ah, 

calculated 

Af, 

calculated 
T, 6k equation 

(15.4) 

equation 

(15.7) 

Ah — Af 

| 
As 

a) (2) " (3) (4) (5) (6) (7) 

371 371 0 0 

376 369 7 

383 365 18 

60 401 353 48 0.80 

418 334 84 

434 311 123 1.23 

495 162 ’ ' i 333 1.67 

273 532 34 498 1.82 

292 541 0 541 1.85 
298 545 -13 558 1.87 

Temperature Range 60 to 80°K.—In order to extrapolate the data 
to absolute zero, we must know the form of equation followed by the 
data. If the Debye equation is valid, it can be fitted to the experimental 
data over the range 80 to 288°k and then used to give values1 of Cp 
below 80°. A comparison between the observed heat capacities of gray 
tin in column (4) and the corresponding values calculated from the Debye 
equation, which are listed in column (5), Table 15.1, shows excellent 
agreement. We, therefore, feel confident in the extrapolated values 
derived from the Debye formula. A similar extrapolation for the heat 
capacity of white tin is tabulated in column (3), and the calculated values 
of Ac are listed in column (8). These values of Ac may now be used in 
setting up equations for Ah and Af in this range. 

It appears from columns (7) and (8) that Ac increases from the 
value Ac = 0 at T = 0 to Ac = 0.83 at T = 60°, remains constant at 
Ac = 0.84 between 60 and 80°, and then decreases again. In the tem¬ 
perature range 60 to 80° 

Ac = 0.84 (15.8) 

1 Br0nsted assumed that, below 60°, cv * cp. At higher temperatures, he used 
the Nernst and Lindemann formula [Z. Elektrochem., 17,817 (1911)), Cp — cy ** kcp*T, 
where k ■» 2.3 X 10-1 for gray tin. 



Chap. 15] SOME APPLICATIONS OF THERMODYNAMICS 329 

Hence, 
Ah = Ah0 + OMT (15.9) 

and 
Af = Ah0 - 2.303 X 0.84 T log T + IT (15.10) 

But the value of Ah8o as calculated from equations (15.4) and (15.5) and 
listed in Table 15.2 is Ah80 = 418 cal. When this value is substituted 
in equation (15.9), Ah0 is found equal to 350.8 calories. This value and 
the value Af80 = 334 cal obtained from equation (15.7) may now be 
substituted in equation (15.10) so that I is evaluated. We find that 
I = 3.47. 

When these values of Ah0 and / are substituted in equations (15.9) 
and (15.10), we obtain 

Ah go = 401 cal; Af60 = 353 cal (15.11) 

These values are listed in Table 15.2. Observe that the value of Ah0 
obtained from equation (15.9) differs from that obtained from equation 
(15.4). In neither case are these the heats of transition at 0°k. 

Temperature Range, 0 to 60°K.—Because the heat of transition 
changes with temperature according to the equation 

d Ah = Ac dT 

we have 

An - Ah0 = JJ AcpdT (15.12) 

At 60°k, the integral is found equal to 30 calories, so that from equations 
(15.11) and (15.12) 

Ah0 = 401 - 30 = 371 cal (15.13) 

Similar evaluations of the integral at the temperatures 30 and 40°k give 
us the values 

Ah30 = 376 cal; Ah40 = 383 cal (15.14) 

Compare the true value of the heat of transition at 0°k, 371 calories, 
with the values of the integration constant Ah0 obtained when equations 
(15.4) and (15.9) were extrapolated to 0°k. 

From the equation 

AF = AH — T AS (15.15) 

which applies to an isothermal process, we obtain the equation 

Af = Ah — T ^ ^ dr (15.16) 

From the value of the integral at the temperatures 0, 30, 40, and 60°k 
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and the calculated value of Ah at these temperatures, Brpnsted obtained 
the values 

Af0 — 371 cal; AF3o = 369 cal; Af40 = 365 cal; 
Af60 = 353 cal (15.17) 

But the value Af6o = 353 is identical with that obtained by extrapola¬ 
tion of the experimental data to 60°, on the assumption that, from 60 to 
80°, Ac = 0.84. In other words, on the assumption that the Debye 
equation is valid between 0 and 60° and that, from 60 to 80°, Ac is con¬ 
stant, the Ah and Af values confirm the Nernst heat theorem. In the 
neighborhood of zero temperature, as Table 15.2 indicates, 

. . d A/7 d AF . f . 
Ah0 = Af0; = -jyr = Ac7. - -As - 0 (15.18) 

From these data, it appears that white tin and gray tin have the same 
entropy value at 0°k. 

Entropy of Tin.—From Br0nsted,s heat capacity data, Lewis and 
Randall1 derived the entropies of white tin and gray tin at 298°. Assum¬ 
ing that the common entropy value for these forms is s0 = 0 as stated 
by Planck, they found entropies equal to 11.17 and 9.23 calories per 
degree, respectively. The entropy of transition gray tin = white tin 
calculated from the heat capacity data is, therefore, 1.94 calories per 
degree. 

At 298°, the free energy of the transition as listed in Table 15.2 is 
Af298 = —13 cal. As stated earlier, the negative free energy change 
means that the forward reaction in equation (15.1) is spontaneous, gray 
tin being converted to white tin at this temperature. From equation 
(15.15) and Table 15.2, we have 

As298 =-- = 293 = !*87 cal/deg (15.19) 

This value for the entropy difference, based on the experimental heat of 
transition and free energy of transition at room temperature, is in excel¬ 
lent agreement with that calculated from the observed heat capacity 
data. This system furnished one of the best early confirmations of the 
third law of thermodynamics. 

The System Calcium Carbonate + Calcium Oxide + Carbon 

Dioxide 

Heat of Dissociation at Room Temperature.—The heat of dissocia¬ 
tion of calcium carbonate may be evaluated at room temperature from 

1 Lewis, G. N., and M. Randall, “Thermodynamics and the Free Energy of 

Chemical Substances,” p. 450, McGraw-Hill Book Company, Inc,, New York, 1923. 
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measurements of the heat of solution of calcium carbonate and of cal¬ 
cium oxide in hydrochloric acid. This heat was measured by Back- 
strom1 from the following reactions: 

CaO(c) + 2HCl(aq) = CaCl2(aq) + H20; AH = -46,200 cal 
(15.20) 

CaCOs(calcitc) + 2HCl(aq) - CaCl2(aq) + H20 + C02(g); 
AH = -3,260 - 330 cal (15.21) 

In equation (15.21) the observed heat ( — 3,260 calories) must be corrected 
for the heat (330 calories) used in evaporating water to saturate the 
escaping C02 gas. When equation (15.20) is subtracted from (15.21) 
the result is 

CaC03(calcite) = CaO(c) + C02(g); AH = 42,600 ± 200 cal 
(15.22) 

The earlier values are Thomsen's value of 42,520 calories and Berthelot's 
value of 43,300 calories. It is possible to calculate the heat of reaction 
at the higher temperatures at which dissociation occurs, from the corre¬ 
sponding heat at room temperature if the heat capacities of the substances 
involved in the equation are known to these higher temperatures. How¬ 
ever, the heat capacities have not been accurately determined up to these 
temperatures. It is also possible to calculate the heat of reaction from 
the vapor pressure data. 

Dissociation Pressure of CaC03.—If C02 behaves as a perfect gas 
at the low temperatures where its partial pressure is low and at the high 
temperatures necessary for high partial pressures, the equilibrium con¬ 
stant for reaction (15.22) may be written in the form 

KP = PCo2 (15.23) 

The activities of solid CaC03 and solid CaO remain at unity during the 
dissociation, for it has been shown to proceed without a solution of the 
CaO in the undissociated CaC03 to form a solid solution. On comparison 
with equation (12.98), we see that the equilibrium constant may be 
represented by the equation 

log P = - ~ + B log T + CT + DT2 + E (15.24) 

This equation is identical with that obtained by integration of the 
approximate form of the Clausius-Clapeyron equation (9.24). If the 
approximations made in the development of this equation (what approxi¬ 
mations?) are adequate for C02 in this temperature range, the constants 

1 BXckstrOm, H. L. J., J. Am. Chem. Soc., 47, 2446 (1925). 
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for the equation are fixed by the constants H0) a, p, and 7, obtained solely 
from thermal data. It would be possible in this case to use the heat 
capacities, a heat of reaction at room temperature, and one point on the 
vapor pressure curve to determine the whole vapor pressure curve for 
this system. In practice, the thermal data are not known with suffi¬ 
cient accuracy; they are used solely as guides in determining the constants 
in an empirical equation set up in the form of equation (15.24). The 
vapor pressure equation so set up may then be used to give values of 
d In P/dT or dP/dT that may be substituted in the Clausius-Clapeyron 
equation to give values of the heat of dissociation. 

Vapor pressures of carbon dioxide for the dissociation of cal cite have 
been obtained by a number of investigators among whom are Le Ch&- 
telier,1 Johnston,2 Smyth and Adams,3 Andrussow,4 Tamaru, Siomi, and 
Adati,6 and Southard and Royster.6 

Johnston expressed his pressures in terms of the equation 

log + 1.1 log T - 0.001271 + 8.882 (15.25) 

for temperatures up to 900°c. Smyth and Adams extended their meas¬ 
urements beyond the eutectic point for crystalline CaC03 and CaO, 
which is 1240°c and 30,000 mm pressure, to a temperature of 1390°c 
where the pressure is 779,000 mm. They give an equation applicable 
through the experimental points of Johnston up to their value of the 
eutectic temperature and pressure, namely, 

log Pmm - —- 5.388 log T + 29.119 (15.26) 

Tamaru, Siomi, and Adati, between 614 and 891°c, obtained pressures 
represented by the equation 

_q 920 
log P mm= —+ 1.70 log T - 0.00149T + 1.443 X 10-7T2 + 7.181 

(15.27) 

Their pressures are distinctly higher than the corresponding pressures of 
Johnston and of Smyth and Adams, but the curves have similar slopes, 
so that they lie parallel and give similar heats of dissociation. Various 

*Le ChAtelier, H., Compt. rend., 102, 1243 (1886). 
2 Johnston, J., J. Am. Chem. Soc., 32, 938 (1910). 
* Smyth, F. H., and L. H. Adams, J. Am. Chem. Soc., 45, 1167 (1923). 
4 Andrussow, L., Z. physik. Chem., 116, 81 (1925). 
8 Tamaru, S., K. Siomi, and M. Adati, Z. physik. Chem., 167A, 447 (1931). 
• Southard, J. C., and P. H. Royster, J. Phys. Chem., 40, 435 (1936). 
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values reported for the dissociation temperature at 1 atmosphere are 
Johnston, 898; Smyth and Adams, 897; Andrussow, 882; and Tamaru, 
Siomi, and Adati, 882°c—a spread of 16°. More recent work by Southard 
and Royster (1936) suggests that the preceding discrepancies are caused 
by systematic errors in temperature measurement. By use of precau¬ 
tions that enabled them to hold their reaction system and thermocouple 
at 900°c with a maximum variation of 0.04°c for 30 hours, they obtained 
the equation 

log Pen = ~ + 0.382 log T - 0.G68 X 10-377 + 9.3171 (15.28) 

The coefficients 0.382 and 0.668 were obtained from the relation 

ACP = 0.76 - 0.006IT 

which is assumed to hold for the range 900 to 1200°k. The other coeffi¬ 
cients are chosen to give agreement with the experimental data. The 

Table 15.3.—Heat Capacities in the Calcium Carbonate System 

Temperature, 
Molar heat capacity, cal/deg 

-ACi> 
' 

IV 
CaC02 CaO C02 

200 23.83 11.56 9.94 2.33 
400 27.06 12.00 10.94 4.12 
600 29.45 12.20 11.78 5.47 
800 31.35 12.26 12.48 6.61 

1000 32.92 12.30 13.03 7.59 

atmospheric dissociation temperature calculated from equation (15.28) 
is 894.4°c (1167.6°k) ; it is assumed, to be correct to less than 0.3°. When 
pressure is expressed in atmospheres instead of in centimeters of mercury, 

log P*tm = log^ = log Pom — 1.8808 

so that the integration constant in equation (15.28) becomes 7.4363. 
In the meantime, Backstrom had set up a vapor pressure equation, 

based on the data of Johnston and Smyth and Adams, by the use of 
his oiyn value of the heat of reaction at 25° and of assembled heat capacity 
data, some of which are given in the Table 15.3. An equation set up 
to express ACp for these data in degrees centigrade is 

—ACp = 0.12 + 1.1525 X 10-2* - 4.13 X 10-V 

which, when expressed in degrees Kelvin, becomes 

ACP « 3.34 - 1,378 X 10~2T + 4,13 X 10~6T2 (15.29) 
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From this formula, the equation for AH as a function of temperature is 
derived in the usual manner, the observed heat of dissociation at 25°c, 
namely, AH2m = 42,000 cal, being used to evaluate A770. Because 
KP = P from equation (15.23), the van’t Hoff relation may be used with 
this value for AH to give the general expression1 of P as a function of 
temperature, namely, 

log P = ~9’|-2-4 + 1.0797 log T - 1.5048 X 10-37’ 

+ 0.1503 X 10~6?’2 + 1 (15.30) 

It should be emphasized that all the constants in equation (15.30), with 
the exception of the integration constant 7, were obtained from thermal 
data alone. All the other constants being selected from the thermal 
data, the observed vapor pressures may be used to evaluate 7. Back- 
strom substituted Johnston’s vapor pressures and the corresponding 
temperatures in the range 860 to 1167°k in equation (15.30) and obtained 
an average value of 7 = 7.161, P being in millimeters. The data of 
Smyth and Adams between 1115 and 151 4°k yielded an average value of 
7 = 7.1635. This value places the curve for the Smyth and Adams data 
slightly above that for the Johnston data. The mean value 7 = 7.162 
was selected. The corresponding value, when P is expressed in atmos¬ 
pheres, becomes 7 = 4.281. 

A comparison of the dissociation pressures calculated from equations 
(15.25) to (15.30) is made in Table 15.4, the temperatures in degrees 
Kelvin being 900, 1000, 1100, 1167.6, which is the atmospheric dissocia¬ 
tion temperature according to Southard and Royster, 1200, and 1513, 
which is the eutectic temperature for calcium carbonate and calcium 
oxide according to Smyth and Adams. 

The Tamaru equation (15.27) gives pressures that appear to be 20 
per cent too high over the entire temperature range. The Johnston 
equation (15.25) derived from older, less accurate thermal data may evi¬ 
dently not be extrapolated far above the experimental range for which it 
was derived. The Smyth and Adams equation (15.26), which was 
derived on the basis that ACp is constant, fits the data at the higher 
temperatures well but gives values that are too low at the lower pressures. 
There is substantial agreement between the pressures predicted by the 
Southard and Royster equation (15.28) and the Backstrom equation 
(15.30). The calculations show that, if empirical equations are to be 
extrapolated with confidence beyond an experimental range, they should 
have the proper form dictated by theory. Additional information, such 

1 In the derivation, Backstrom used the values 25 °c * 298°k, R * 1.9885 cal/deg, 

and 2.3026 R » 4.5786 cal/deg. 
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as thermal data, is desirable to indicate the appropriate value of the 
constants in the equation. 

Table 15.4.—Dissociation Pressures of Calcium Carbonate 

(Calculated from various vapor pressure equations. Pressures in atmospheres) 

Temperature, 
°K 

Vapor pressure 
formulas 

900 1000 1100 

1 

1167.6 
(894.4°c) 1200 

1513 
(eutectic 
temper- 
ature) 

(15.25) Johnston. 0.00621 0.0577 0.344 0.944 1.46 (32.4)* 
(15.26) Smyth and Adams. . . . |0.00506 0.0524 0.337 0.966 1.53 39.9 
(15.27) Tamaru, Siomi, and 
Adati. 0.00715 0.0682 0.421 1.19 1.87 (48.8)* 

(15.28) Southard and Royster. 0.006428 0.05947 0.3583 1.000 1.565 39.7 
(15.30) Backstrom. 0.00596 0.0566 0.348 0.979 1.53 39.9 

* Values iu parentheses represent values obtained above the stated range of the formula. 

Heat of Dissociation from Dissociation Pressure Data.—From the 
van’t Hoff equation (or the approximate Clausius-Clapeyron equation), 
we have 

= RT, d \n_P = A// = aHq + aT + I pT2 + ~ yT3 (15.31) 

When an experimental pressure equation in the form of equation (15.24) 
is converted to one in natural logarithms, it becomes 

In P = - 2-3-3-- + B In T + 2.303CT + 2.303DT* + 2.303A (15.32) 

which may be differentiated with respect to temperature to give 

dLnP = 2,3034 + B + 2 303C + 2(2.303)DT 

R being 1.9872 calories per degree, the heat of dissociation in calories is 

AH = = 4.5757A + 1.9872Br + 4.5757CT2 
dr 

+ 2(4.5757)Z>T3 (15.33) 

Within the limits of the approximate Clausius-Clapeyron equation, then, 
the heat of dissociation may be calculated from the constants in the 
dissociation pressure equation. When the constants A> B, C, and D 
were evaluated originally from thermal data, the calculation based on 
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equation (15.33) is obviously merely a process to recover the originally 
assumed value for the heat of dissociation equation. 

There is much better agreement between the heats of dissociation 
calculated from the various equations, that is, between the slopes of the 
log P vs. l/T curves, than between the actual value of the vapor pres¬ 
sures. At 800°c the values for the heat of dissociation of calcium car¬ 
bonate calculated from the vapor pressures equations (15.25) to (15.28) 
and (15.30) are, respectively, 38,750, 40,460, 39,330, 39,020, and 39,160 
calories. 

Heat of Dissociation from the Exact Clausius-Clapeyron Equation.— 
The error introduced by the approximations inherent in the approximate 
Clausius-Clapeyron equation can be evaluated for this system from 
available data. The exact equation 

dP AH 
d T TAV 

(15.34) 

may be used to calculate AH if values for the rate of change of pressure 
with temperature and the change of molar volume are known for the 
dissociation. Smyth and Adams obtain dP/d7T from equation (15.26) 
by the following steps: 

In P 

AP 
AT 

2.303 X 11,355 _ & m ln r + j, 

d In P /2.303 X 11,355 5.388\ 
dT X \ T2 T ) 

At the eutectic point of CaC03 and CaO, T = 1513°k, 

P — 30,000 mm 

and AP/AT = 237.02 mm/deg. At this temperature, the molar volumes 
of CaC03, CaO, and CO2 are calculated to be 36.89 cc, 18.15 cc, and 
3,208.33 cc, respectively, so that AV = +3,190 cc. The volume of carbon 
dioxide under these conditions of temperature and pressure is obtained 
from the Keyes equation1 of state. When these values are substituted 
in equation (15.34), the value of AHuu = 36,440 cal is obtained, as 
compared with the value of 35,790 calories obtained by the use of equa¬ 
tion (15.33). The values of AH at 897°c, where the dissociation pressure 
was 760 mm, are 39,420 and 39,440 calories for the exact and the approxi¬ 
mate equations, respectively. It is evident that here the approximations 
used in the integration of the Clausius-Clapeyron equation tend to 
cancel each other and that the values obtained by the use of the approxi¬ 
mate form are surprisingly good. 

1 Keyes and Kenney, J. Am. Soc. Refrig. Eng., 3, 1 (1917). 
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Free Energy of Dissociation of Calcium Carbonate,—From the 
general relation between the standard free energy change and the equilib¬ 
rium constant, it follows that the standard free energy change for the 
dissociation of calcium carbonate is represented by the equation 

AF° = -RT In P = —4.5757T log P (15.35) 

If this equation is combined with equation (15.24) for the value of log P 
in terms of the empirical constants Ay C, D, and Ey we obtain the 
equation 

AF° = 4.5757 In T - CT2 - DT3 - ET^j (15.36) 

Any of the dissociation pressure equations (15.25) to (15.30) could be 
combined with equation (15.36) to give the standard free energy of dis¬ 
sociation for the temperature range in which the equations are valid. 
However, observe that, if the selected standard state of carbon dioxide 
is at 1 atmosphere pressure, the dissociation pressure equations must be 
in the form to give pressures in atmospheres. If the equations give pres¬ 
sures in millimeters or centimeters of mercury, the values of log 760 and 
log 76, respectively, must be subtracted from the reported integration 
constants to give the new constants for the pressure in atmospheres. 

If the dissociation pressure equations can be safely extrapolated to 
25°c, equation (15.35) may be used to give the standard free energy of 
dissociation at this temperature. As may be suspected from the trends 
of the various equations at the higher temperatures, they diverge at 
25°c. At this temperature, the values of log P derived from equations 
(15.25) to (15.28) and (15.30) are -22.959, -25.178, -22.847, -22.473, 
and —22.896, respectively. It is evident that the values of AF£98>16 
calculated from these values are not in complete agreement, the values for 
the last three equations being 31,170, 30,660, and 31,240 calories, respec¬ 
tively. Using I? = 1.9885 cal/deg Backstrom obtained AF£98 = 31,258. 

Entropy of Dissociation.—The entropy of dissociation of calcite 
can be calculated from the measured entropies of CaCO.3 (calcite), CaO, 
and C02. From Table 11.2, they are, respectively, 22.2, 9.5, and 51.06 
calories per degree. Hence, 

A$298.16 = ScOs + ScaO — ScaCOg 

= 38.4 cal/deg 

This value may be compared with the entropy change calculated 
from the general equation (15.15) whence, at 298.16°k, 

AS - 
AIJ - AF 

298.16 
cal/deg (15.37) 
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Taking A7?298.i6 = 42,600, after Backstrom, and using the values o 
A^298.i6 calculated from the dissociation pressure equations, we have,, 
from equation (15.27), 

AS = = 38.34 cal/deg 

from equation (15.28), 
11 040 

AS = = 40.05 cal/deg 

and, from equation (15.30), 

AS = = 38.10 cal/deg 

It is clear that the uncertainty in the value of AF29r.i6 results in a 
corresponding uncertainty in the calculated value of AS, an uncertainty 
of 100 calories in AF corresponding to an uncertainty in A$298.i6 of 0.34 
calorie per degree. From the general relation in equation (15.37), it 
follows that an uncertainty of 100 calories in AH29s.n results in the same 
uncertainty in A$298.i6- According to equation (15.22), the uncertainty 
of AH is 200 calories. Consequently, the uncertainty in AaS29s.i6, attribut¬ 
able to the experimental uncertainty of AH alone, is 0.7 calorie per degree. 
The uncertainty in AS arising from that of AF is even greater. 

For many reactions, the value of AS is more accurately known than 
the measured or estimated values of AH and AF. If the value of either 
AH or AF is accurately known, this value may be combined with that of 
AS to give the value of the other function. Thus, if we accept the 
values 

A/jT298.i6 — 42,600 cal and A$298.ic — 38.4 cal /deg 

we calculate, for the dissociation of calcite at 25°c, 

AF298.16 = 42,600 - 298.16 X 38.4 = 42,600 - 11,400 
- 31,200 cal 

With this value, we obtain from equation (15.35) 

logP 
— 31,200 

-22.87 
4.5757(298.16) 

whence we find, for the equilibrium pressure of C02 at 25°c, 

P = 1.3 X 10-23 atm 

Similarly, for a reaction for which AF and AS are accurately known, the 
value of AH calculated from these values is frequently more accurate 
than the measured values. 
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Problems 

15.1. From the vapor pressure equations (15.25) to (15.28), and (15.30), derive 

the equations for ACp used in. setting up these formulas. Tabulate the values of 

ACV obtained from these equations for the temperatures 1000, 1200, and 1500°k. 

16.2. From equation (15.28), calculate the equilibrium partial pressure of carbon 

dioxide over calcium carbonate at 25°c. Would it be possible to cause calcium 

carbonate to dissociate at room temperature with a diffusion pump that maintains a 

vacuum in which the pressure is 10~6 mm Hg? 

16.3. At what temperature will calcium carbonate begin to dissociate in air that 

contains 0.03 per cent of carbon dioxide by volume? 

16.4. Plot the heat capacity data given in Table 15.1 for gray tin and white tin 

against log T. From these diagrams, calculate the entropies of these forms of tin at 

292 and 298°k relative to their values at 20°k. (The graphical integration is con¬ 

veniently done by measuring ordinates at frequent but even intervals or by cutting 

out the graphs and weighing.) Combine the results with the entropies calculated at 

20°k in Prob. 14.8 to find the entropies of these forms of tin at 19 and 25°c. 

16.6. From the entropy values obtained in Prob. 15.4 for gray tin and white tin 

at the equilibrium temperature 19°c, calculate the heat of transition. Compare with 

the value 541 calorics found by Brpnsted. 

16.6. The free energy of formation of RC1 may be calculated from the free 

energies of the following reactions: 

JH2(g, 1 atm) -f AgCl(c) = HCl(aq, a = 1) + Ag(c) (15.38) 

Ag(c) + §Cl2(g, 1 atm) = AgCl(c) (15.39) 
HCl(aq, a = 1) = HCl(g, 1 atm) (15.40) 

From the standard electrode potentials, we have, for the emf of reaction (15.38), 

£298.1 “ 0.2225 int volt. For reaction (15.39), the emf is £298.1 ~ 1.1362 int volts. For 
equation (15.40), the equilibrium constant as determined by M. Randall and L. E. 

Young [/. Am. Chem. Soc., 60, 989 (1928)1 is 

A' = — = 4.97 X 10-J 
«2 

where P2 is the partial pressure of HOI over the solution and a2 the activity of the 

HC1 in the solution. From these data, calculate the standard free energy change 

for each of the above reactions, and derive the standard free energy of reaction for 

4H2(g, 1 atm) 4* iCWg, 1 atm) = IICl(g, 1 atm) (15.41) 

16.7. From the values for the entropies of II2, Cl2, and HC1 in Table 11.2, calcu¬ 

late the entropy of formation of gaseous HC1. Combine this datum with the free 

energy of formation obtained in Prob. 15.6, and calculate the heat of formation of HC1 

at 25°c. F. D. Rossini [Bur. Standards J. Research, 9, 679 (1932)] obtained —22,063 

± 12 calories for this heat of formation in a calorimeter. (Compare with the results 

in Prob. 11.6.) 

16.8. R. H. Gerke [/. Am. Chem. Soc., 44, 1684 (1922)] found the temperature 

coefficient of the emf of the cell representing equation (15.39) in Prob. 15.6 to be 

d£ 
^ - -0.000595 ± 0.000006 int volt/deg at 25°c 
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From this value, calculate the entropy change for the reaction in equation (15.39) 

at 25°c. ^ 

15.9. Combine Rossini’s value of AH and the values of AS calculated in Prob. 

15.7 to give an independent value of the standard free energy of formation for reaction 

(15.41) in Prob. 15.6. Compare the two free energy values. 

16.10. From the value of AF° calculated in Prob. 15.9 for reaction (15.41) in Prob. 

15.6, calculate the equilibrium constant for the reaction at 25°c. What is the equi¬ 

librium pressure of H2 (and Cl2) obtained from the dissociation of TIC1 at 25°e? 

15.11. Derive equation (15.30) from (15.29) and the datum AlLm ~ 42,600 cal. 

In the derivation of (15.30) the value R = 1.9885 cal/deg was assumed. Use this 

value here. What is the value of AIIq! 

15.12. From the data given in this chapter, calculate the entropy of dissociation 

of calcite at the temperature at which the dissociation pressure equals 1 atmosphere. 

15.13. Assuming that the dissociation pressure of sodium sulfate decahydrate is 

19.19 mm at 25°c, calculate the standard free energy change for the reaction 

Na2S04(c) + 10H2O(g) = Na2SO410II2O(c) 

Indicate clearly the standard states chosen for the reactants and products. 

15.14. The heats of solution of Na2S04 and of Na2SO410H2O in water are 

A11° = —560 ± 10 cal/mole 

and AH° =* 18,840 ± 20 cal/mole, respectively, at 25°c, according to Pitzer and 

Coulter \J. Am. Chem. Soc., 60, 1310 (1938)]. The heat of evaporation of water at 

25° to form water vapor at 1 atmosphere is 10,520 calories per mole. Calculate the 

change in heat content for the reaction, 

Na2S04(c) + 10II2O(g) - Na2SO4T0H2O(c) 

16.16. From the change in heat content calculated in Prob. 15.14 and the free 

energy change calculated in Prob. 15.13, calculate the change in entropy for the 

reaction 

Na2S04(c) + 10H2O(g) = Na2SO4-10H2O(c) 

15.16. Accepting 45.11 calories per degree as the molar entropy of water vapor at 

25°c = 298.16°k and the value s°98.i6 — s° = 35.7 cal /deg as the molar entropy of 

solid Na2S04, combine these values with the entropy of dissociation of Na2SO410H2O 

obtained in Prob. 15.15 to derive a value for the entropy of formation of Na2S04- 

10H2O. The calorimetric value of the entropy obtained by Pitzer and Coulter {he. 
7*298.16 0 0 

cit.) as calculated from the integral J Cp d In T is s.298,16 — s0 = 140.5 cal/deg. 

Compare the two results. How do Pitzer and Coulter explain the difference? 



CHAPTER 16 

THERMODYNAMIC FUNCTIONS FROM STATISTICAL METHODS 

Values of the thermodynamic functions for many elements and the 
simpler compounds in the gaseous phase have been calculated from the 

energy levels of the molecules which in turn are derived from spectro¬ 
scopic data as interpreted in terms of the quantum mechanical models 

for the molecules. Statistical methods are then used to find the distribu¬ 

tion of the molecules among the various possible energy states for the 
gas. For not too complicated molecules, the assignment of energy levels 

from the spectroscopic data is fairly certain and the calculated results 

for the thermodynamic functions agree well with the best experimental 
values. Indeed, for these molecules, the calculated values are more pre¬ 

cise than the values determined from heat capacity measurements. For 
more complicated molecules, the assignment of energy levels is not so 

certain and approximations are used in the calculations. However, the 
derived results are extremely valuable; for many molecules, they appear 

to be more reliable than the scattered and inconclusive experimental 
values. Since we shall use the results of the calculations in the form of 

various tabulated functions, we shall examine the basic assumptions 

and methods and shall then be able to apply the results of the calculations 

more intelligently. 
In the preceding chapters, the variation of the thermodynamic func¬ 

tions with temperature was expressed in the form of algebraic equations. 
Thus, heat content and free energy wrere expressed as functions of tem¬ 
perature in terms of coefficients obtained from the heat capacity equa¬ 

tions. Algebraic equations are convenient .for deriving the values of the 

functions at any specific temperature but they are, in general, valid 

only over restricted temperature ranges because the heat capacities are 
expressed in equations of a form not suitable for too wide ranges of tem¬ 

perature. On the other hand, tabulated values at even temperature 

intervals permit a ready and precise calculation of the thermodynamic 

functions at these temperatures, and yet calculations for temperatures 

other than those appearing in the tables necessitate interpolation of the 

published values. The relative merits and demerits of the two methods 

for evaluating the thermodynamic functions for specific systems will 

appear as the methods are used in practice. 
341 
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Equilibrium among Molecules in Different States.—In a gas with 
molecules so widely separated from neighboring molecules that they do 
not interact, the energy of the gas may be described completely in terms 
of the energies of the individual molecules. Consider a sample of such 
a gas A at constant energy and volume and at the same time at constant 
temperature and pressure. In accordance with the quantum theory, 
each molecule has a definite amount of energy and it gains or loses energy 
in quanta as it exchanges energy with other molecules. The total energy 
of the gas being constant, the molecules exchange energy until the 
numbers of molecules in the different energy states are the equilibrium 
numbers. Let the equilibrium number of molecules of A in the lowest 
energy or ground state be n0 and the energy of each molecule in this state 
be €o. This energy is called the zero point energy. Let the number of 
molecules in the next energy state be n i and the energy be e[. 

We shall, however, be interested not in the absolute energy of the 
molecules in this state but in the excess in energy over that in the ground 
state. This energy difference, designated as ci, is defined by the equation 

61 ^ Cl - 6o (16.1) 

It is the value of ci rather than the absolute values e[ and e0 that deter¬ 
mines the equilibrium distribution of the molecules between the two 
states. The relative numbers of molecules in the two energy states are 
given by the equation 

— = e~^kT (10.2) 
Uo 

where k is the Boltzmann constant1 and T the absolute temperature. 
This equation was derived by Maxwell and Boltzmann from the sta¬ 
tistical mechanics and is called the Boltzmann factor. It has been verified 
experimentally in a number of different ways. For example, when it is 
used to calculate heat capacities of gases, it yields values reproducing 
the experimental heat capacities of different gases at different tempera¬ 
tures. In a later section, we shall show how equation (16.2) may be 
used to calculate heat capacities and other thermodynamic functions. 

It may be instructive to see how equation (16.2) is related to our 
thermodynamic functions which were derived for macroscopic systems 
and, therefore, represent the average behavior of large numbers of mole¬ 
cules in different energy states. If the number of molecules passing 
from the ground state to the first energy state is the Avogadro number N, 
we have 

Aei = Nei 

1 In this chapter the gas constants R and k will appear as light-faced italics in 
exponents. Otherwise they will appear in their usual bold-faced form. 
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where Aei is the energy difference per mole. Then, we have from equa¬ 
tion (16.2), Nk being equal to R 

ill _ Q-ti/kT _ e-AEi/RT 

n0 (16.3) 

which may be written in the forms 

Aei _ 

Wr 
AEi = 

In — 
n0 

-RT In — 
n0 

(16.4) 

But the ratio rii/n0 represents the equilibrium constant K for the transi¬ 
tion 

Ao = Ai; K = Ji (16.5) 
710 

where A0 represents the gas in the ground state and Ai the gas in the 
first energy state. It appears, therefore, that Aei in this transition cor¬ 
responds to AF°, the standard free energy of reaction which is related 
to the equilibrium constant by equation (12.21). 

AF° = —RT In K (16.6) 

Furthermore, from equation (10.51), we have 

AF° = AH° - TAS° (16.7) 

For the transition under consideration, Pv for the gas remains constant 
so that 

Ah = Ae + A(Pv) = Ae (16.8) 

Consequently, equation (16.7) becomes 

AF° = Ae - T As° 

But if, from equations (16.4) to (16.6), AF° = Ae, it follows that As0 is 
zero for the transition. 

When two configurations or energy states have practically the same 
energies, the difference in energy becomes approximately zero. If n is the 
number of molecules in the one state and n' the number in the second 
state, we have from equation (16.2) 

€ = 0; Vl = e-0/*r 

n = i; n = n' (16.9) 

Thus, at equilibrium there are equal numbers of molecules in two states 
with equal energies. Accordingly, if there are two states with equal 
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energies, the number of molecules in the two states is 2n; if there are g 
states, the total number of molecules in these states is gn. The factor g 
is called the statistical weight, the quantum weight, or the a 'priori proba¬ 
bility. It appeared in equations (7.50) and (14.47). 

Partition Function.—The sum of the numbers of molecules of the gas 
in all possible energy states equals the total number of molecules N. 
Thus, 

N = n0 + nx + n2 + * * * + n* (10.10) 

From the equilibrium ratio of the number of molecules in different states 
expressed in equation (16.2), it appears that the total number of mole¬ 
cules can be represented in terms of the number of molecules in the 
ground state and the energy of each state in excess of the zero point 
energy. Thus, from equation (10.2) the number of molecules in state 2 

is given by n2 = n0e~e2/*T. On making the appropriate substitutions in 
equation (10.10), we have 

N = n0 + n0o~fl/kT 4- n0e~ti/kr + • • • (16.11) 

the sum including all possible energy states. This sum may be sim¬ 
plified somewhat if all terms with approximately the same energies are 
combined. Thus, if there are go states with zero point energy, gx states 
with approximately the same additional energy ely etc., the total number 
of molecules may be expressed as 

N = n0g0 + nogie~tl/kT + n0g2e~*2/kT + • • • (16.12) 

or as 

N = n0 £ 0ie-«/*r (16.13) 

where the summation is over all values of €, including the value e = 0. 
At this point, we remind ourselves that the e's represent the energy in 
excess of that of the ground state. Hence, a value of e = 0 applies to 
the molecules with only the zero point energy. The sum in equation 
(16.13) occurs frequently in calculations of energy and the other thermo¬ 
dynamic quantities from the energy levels of molecules. It is called the 
partition function or state sum and designated by the symbol Q. Thus, 

i 

Q = X (16.14) 
o 

In terms of the partition function Q, equation (16.13) becomes 

N = n0Q (16.16) 



Chap. 16] THERMODYNAMIC FUNCTIONS 345 

The preceding equations were derived for the condition of constant 
temperature. As equation (16.14) shows, the partition function is a 
function of temperature. Consequently, from equation (16.15) the rela¬ 
tive number n0/N of molecules in the ground state is also a function of 
temperature. At higher temperatures, relatively more molecules are in 
higher energy states and the number in the ground state decreases. On 
the other hand as T becomes small, approaching zero, all values of e~t/kr 
except the e~0/kT term approach zero, Q approaches unity, and practically 
all the molecules are in the ground state. 

For future use, we shall derive the general equation for the change of 
Q with temperature. In the differentiation of equation (16.14) with 
respect to temperature, g, e, and k are constant. The energy differences 
and quantum weights for the various states of the molecule are not func¬ 
tions of the temperature though the relative numbers of molecules in the 
various energy states are. Therefore, from equation (16.14), 

dQ 
d T 

d. 

dl (£ s,e—-) - £ 9*-"(j*'„) - sr, X <*«• *«> 
Energy of the Molecules.—Since we are here concerned with the 

internal equilibrium of the gas among the different energy states, we shall 
for the present consider all energy dependent on temperature except the 
translational energy of the molecules. The energy to be considered 
includes the energy of rotation of molecules or of parts of molecules with 
respect to the rest of the molecule, the energy of vibration of the atoms 
within the molecule, and the energy of electron excitation. All molecules 
have zero point energy; at the absolute zero of temperature, the molecules 
are in the ground state with this minimum energy. As additional energy 
is added to the system, the temperature rises in a way required 
by the heat capacity of the system. In previous chapters, we considered 
the translational part of this added energy. Any energy absorbed in 
addition to that required by the increased translational motion of the 
molecules will raise some of the molecules to rotational, vibrational, or 
electronic levels higher than those of the ground state. This energy is 
the part we shall now consider. ^ 

Since all the molecules have zero point energy, and some have energy 
in addition, we may represent the zero point energy of all the molecules 
as in equations (2.43) and (2.44) by E0. If E is all the energy of the 
molecules (except translational energy), that part of the energy in excess 
of the zero point energy will be E — E0. This energy may be expressed 
as the sum of excess energies of all the molecules, as defined in equation 
(16.1). There being gn0 molecules with excess energy, t = 0, g\U\ mole- 
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cules with excess energy ci, etc., we have for the energy of all the molecules 

E — Eq = nQgoO + n\git\ + n^g^2 + * * * (16.17) 

But, from equation (16.2) it appears that the numbers nh n2, etc., can be 
expressed in terms of n0, the energies, and the temperature. Thus, 

E — Eq = n0goO + n0€igie~tl/kT + n^g2^~€l/kT + * * * (16.18) 

This equation may also be written as 

* 

E - E0 = n0 J *>—'**' (16.19) 
0 

where, as before, the summation is over all values of €. When the value 
for n0 from equation (16.13) is substituted in equation (16.19), it becomes 

(16.20) 

Thus, the energy of the gas can be calculated from the number of mole¬ 
cules, N, the energy levels obtained from spectroscopic data, and the 
statistical weights of the levels obtained from the quantum mechanical 
theory. As was stated earlier, the number of molecules in the higher 
levels depends on the temperature. If e is large enough, e~t/kT becomes 
negligible in the summation, and there are few molecules in that energy 
state. 

Comparison of equation (16.20) with (16.14) shows that the denomi¬ 
nator is the partition function Q. Comparison with equation (16.16) 
shows that the sum in the numerator equals kT2(dQ/dT). Consequently, 
the energy may be expressed in terms of the partition function as 

E — En = 
NkT2 dQ din Q 

d T 
(16.21) 

The preceding equations are for N molecules of gas. For 1 mole of gas, 
the number N becomes equal to the Avogadro number and Nk becomes R. 
Then, for 1 mole 

E - Eo = RT2 (16.22) 

From this relation between the energy of the gas, the partition function 
of the gas at the temperature T, and the change of the partition function 
with temperature, we shall be able, through known thermodynamic rela¬ 
tions, to calculate the equations for the other thermodynamic functions 
in terms of the partition function. 
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Heat Capacity.—From equation (16.22), we may calculate the con¬ 
tributions of the rotational, vibrational, and electronic energies of the 
molecules to the heat capacity of the gas. The heat capacity measures 
only the part of the energy that varies with temperature. Thus, the 
heat capacity for 1 mole of gas, exclusive of the translational heat capac¬ 
ity, is, for this constant-volume system, 

d(E — Eo) dE 

c - * = —df— = a? 
for the zero point energy e0 is not a function of temperature. Conse¬ 
quently, on differentiating equation (16.22) with respect to temperature, 
we have 

= -* (a?[ao7$]} <16*» 
since d(l/77) = - (dT/T2). 

Entropy.—The entropy of a gas is related to the heat capacity by 
equation (8.6), from which, between the temperatures T = 0 and T = T 

This equation may be simplified to 

8 So R lo (r)d_d(l/T)_ (16.24) 

Equation (16.24) may be integrated by parts. Thus, in the general 
formula 

we have 

dw 

u = du 

_ d In Q 
_ddm 

From equation (16.24) we have, therefore, 

s s0 = —R 
( 1\ d In Q 
\T) d(lJT) 

d In Q , 

d(l/D 0 
(16.25) 

But, d(l/2’) = — (dT/T~) so that the first term in the brackets becomes 

/1 \ d In Q r 2 _ TdlnQ 
\TJ dT d T 
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For the second term in the brackets, Q being Q0 at T = 0 and Q at T = T, 
we obtain on integration, In Q — In Q0. When these are substituted in 
equation (16.25), it becomes 

s - So = RT d-^ + R In Q - R In Q0 (16.26) 

At zero temperature, equation (16.26) becomes 

— s0 = —R In Q0 (16.27) 

If there is a single state with zero point energy and all the molecules are 
in this state, N = n0 and, from equation (16.15), Q = 1. Then In Q0 = 0 
and So = 0. This is a statement of the third law of thermodynamics. 
On the other hand, if there are g ways of realizing states with zero point 
energy, we have from equations (16.12) and (16.15) at T = 0, N = n0g0, 
Qo — go, and So = R In g0. Tliis is equation (7.50). From equations 
(16.26) and (16.27) the equation for the rotational, vibrational, and 
electronic entropy of the gas is 

s = RT d jT^ + RlnQ (16.28) 

Comparison with equation (16.22) shows that this equation may also 
be written in the form 

s = ~ yr” + R In Q (16.29) 

In calculations of the thermodynamic functions from the logarithm 
of Q and its change with temperature, the rotational, vibrational, and 
electronic contributions are usually evaluated separately. When the 
energy of a given level can be separated into the rotational, vibrational, 
and electronic components, we may write 

€ = €r + €v + €e (16.30) 

From the exponential character of the partition function Q, it appears 
that it is the product of the component functions so that 

Q = QrXQvXQe (16.31) 

Thus, equation (16.22) may be put in the form 

E — E0 = (E — Bo )r + (E — E0)„ + (® — E0)« 

_ tprri d In (QrQvQe) 
~ dr 

_ z>^2 (& In Qr f d In Qv f d In Qe\ 
~RT \r^f-+^7^+-dT~) 

(16.32) 
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Corresponding relations hold for the other thermodynamic functions. 
For many of the gases, the electronic levels are so high that at moderate 
temperatures the electronic contributions are negligible. The rotational 
contributions may be closely approximated by analytical functions of the 
moments of inertia of the molecule. The vibrational contributions 
usually require summation, which is a tedious process. However, when 
the exact energy levels and the statistical weights are known, the final 
results are accurate. The translational contributions are considered 
separately. 

Thermodynamic Functions for Translation.—The thermodynamic 
functions just discussed represent energy contributions exclusive of 
translational energies. The translational contributions are considered 
separately for most of them do not differ for different kinds of molecules 
so long as the gases remain ideal. We have already derived the equa¬ 
tions for the ideal monatomic gas. But, the translational energies of 
ideal polyatomic gases are identical with those of ideal monatomic gases, 
and the translational entropies differ from gas to gas only in the term 
for the molecular weight in the Sackur-Tetrode equation. The thermo¬ 
dynamic functions already derived for translation will be collected here. 

Energy and Heat Content of Translation.—From the kinetic theory 
we derived equation (4.63) for the translational energy of 1 mole of ideal 
gas. Thus, 

e = 1RT (16.33) 

For the molar heat content of the gas, we have from equation (2.35) 
and from the ideal gas equation, Pv = RT, 

H = E+ Pv = E + flT (16.34) 

Consequently, the translational heat content becomes 

h = | RT + RT = %RT (16.35) 

Heat Capacity of Translation.—From equation (16.33), we have 
directly for the translational heat capacity at constant volume 

1* <i6-36) 

which is equation (4.64); from equation (16.35) we have, for the trans¬ 
lational heat capacity at constant pressure, 

°' = (jp), = iR (16-37> 
which is equation (4.65). 
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Entropy of Translation.—The entropy of translation is given by the 
Sackur-Tetrode equation (8.57). Thus, 

s = f J? In M + In T - R In P + $R - 7.282 (16.38) 

At 1 atmosphere, the translational contribution to the entropy becomes 

s = 6.804 log M + 11.439 log T - 2.314 (16.39) 

Relative Energy of a Gas.—When the translational energy of a gas 
in equation (16.33) is added to the rotational, vibrational, and elec¬ 
tronic energies represented by equation (16.22), we have an expression 
for the total energy of the gas dependent on the temperature. Thus, 

e - E„ = RT2 4^ + | RT (16.40) 

Observe that e — e0 represents only the energy in excess of the zero point 
energy as in equation (2.44). Included in the zero point energy are the 
minimum rotational and vibrational energies characteristic of the mole¬ 
cules in their ground state and the energies of nuclear and electronic spin. 
However, in every chemical reaction the atoms in products of the reac¬ 
tion are those initially present in the reactants so that the energies 
associated with atoms in their ground states remain unaltered by the 
reaction. On the other hand, molecules in their ground states have also 
the energies associated with bonds between the atoms in the molecules. 
These bond energies, whose differences represent the energies of chemical 
reaction, are of special interest to chemists. At temperatures above the 
absolute zero, the measured energies of reaction include the differences 
in rotational, vibrational, and electronic energies of the reacting sub¬ 
stances as well as the differences in bond energies and are, therefore, not a 
direct measure of the chemical forces. 

In accordance with the usual chemical practice, we may assign a zero 
value to E0 for the molecules of the elements. Thus, we may assign a 
value of E0 equals zero for hydrogen gas H2 and a value e0 equals zero 
for oxygen gas 02. Then the value of e0 for water vapor cannot be 
zero for, in the formation of 1 mole of water from I mole of hydrogen and % 
mole of oxygen at zero temperature, 57,104 calories are evolved. Hence, 
on this standard, the value of Eo for gaseous water would be —57,104 
calories. Similarly, if the value of Eo for molecular hydrogen is zero, 
the value of e0 for atomic hydrogen cannot be zero for the energy of 
formation of atomic hydrogen from molecular hydrogen at zero tempera¬ 
ture is 51,620 calories. Thus, the value of Eo for H is 51,620 calories if 
the value of e0 for H2 is zero. It appears, therefore, that in calculations 
attention must be paid to the reference state of the element chosen as the 
standard state. 
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Relative Heat Content—For use in constant-pressure reactions, we 
shall need relative values for heat content corresponding to the relative 
energy equation (16.40). It appears from equation (16.34) that the heat 
content of 1 mole of the gas differs from the energy by RT. But, at 
zero temperature RT equals zero, so that at this temperature we have 

H0 = E0 (16.41) 

where h0 is the heat content at zero temperature. Since the zero point 
heat content of the gas is identical with the zero point energy, we may 
subtract equation (16.41) from equation (16.34) and obtain 

H — H0 = H — E0 = E — E0 “f~ RT (16.42) 

Then, from equations (16.40) and (16.42), 

h - Ho = RT* + \ RT (16.43) 

h — H0, like e — E0, is a measure of the energies that are dependent on 
the temperature. At zero temperature, the terms on the right-hand 
side of equation (16.43) vanish and h becomes equal to h0. 

Because of the equality between h0 and e0, what has been said con¬ 
cerning the relative values of e0 for different elements and compounds 
and for elements in different reference states applies also to the values 
for h0. All the tables of heat content that we have used hitherto have 
shown relative values. Thus, heat of formation tables usually list the 
heat contents of the compounds relative to the heat contents of the con¬ 
stituent elements in their standard states. The proof in Chap. 2 that 
the particular reference state chosen does not influence the heat content 
values calculated for a specific reaction may be reviewed at this point. 

Values of h — h0 are usually listed for a standard pressure of 1 atmos¬ 
phere. Where the superscript 0 refers as before to the substance in its 
standard state, and the subscript 0 to a temperature of 0°k, we may 
express the relative heat content of a substance in terms of the difference 
h° — Hq. Values of this standard relative heat content are given in 
Table 16.1 for a number of gases as well as for crystalline carbon, both 
with graphite and with diamond as the standard phase. The values 
of h° — Hq at different temperatures are related to the heat capacity of 
the substances. Thus, h° — Hq for hydrogen has a value of 2,731.0 at 
400°k and a value 2,036.47 at 300°k, the difference, 694.5, representing 
the integral of CpdT for hydrogen between these two temperatures. 
The tabulated values enable us to avoid integration of the heat capacity 
equation over the temperature interval but they do not give the heat 
content at intermediate temperatures. If such a value is desired, how¬ 
ever, one may interpolate between the values given in the table,. 
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Table 16.1.—Relative Heat Content (h° — Ho) of Some Substances* 

(In calories per mole) 

Substance 
Temperature, °k 

(formula) 
298.16 400 600 800 3000 1500 2000 3000 

0.(8) 2069.78 2792.4 4279.2 5854.1 7,497.0 11,776.4 16,219 25,500 

Hj(g) 2023.81 2731.0 4128.6 5537.4 6,965.8 10,694.2 14,672 23,186 

OH(g) 2106.2 2829.6 4240.8 5658.4 7,106.0i 10,910 14,960 23,562 
H.O(g) 2365.1 3190.0 4873.2 6666.4 8,580.0 13,876 19,760 32,580 

N,(g) 2072.27 2782.4 4198.0 5668.6 7,202.5 11,253.6 15,499 24,245 

NO(g) 2194.2 2920.8 4381.2 5909.6 7,506.0 11,694 16,030 24,921 

C (graphite) 251.56 502.6 1198.1 2081.7 3,074.6 5,814 

C(diamond) 128.13 I 325 950 1804 2,782 

C0(g)- 2072.63 2783.8 4209.5 5699.8 7,256.5 11,358.8 15,636 24,434 

CO,(g) 2238.11 3194.8 5322.4 7689.4 10,222 17,004 24,144 38,950 

CH*(g) 2397 3323 5549 8321 11,560 21,130 

0(8) 1607.4 2134.9 3151.7 4157.6 5,158.8 7,653.3 10,143 15,129 

H(g) 1481.2 1987.2 2980.8 3974.4 4,968.0 7,451.9 9,935.9 ^ 14,904 

N(g) 1481.2 1987.2 2980.8 3974.4 4,968.0 7,451.9 9,936.2 14,918 
i 

* Waqman, D. D., J. E. Kilpatrick, W. J. Taylor, K. S. Pitzer, and F. D. Rossini, J. Research 

Natl. Bur. Standards, 34, 143 (1945). 

American Petroleum Institute Research Project 44 at the National Bureau of Standards. Selected 

Values of Properties of Hydrocarbons. Table Ou, Heat Content (H° — Ho°) at 0° to 4000°k, July 31, 
1944; Aug. 31, 1946; Table OOu, ibid., June 30, 1946. 

In certain calculations, the value of (h° — u°0)/T is required. This 
function is called the heat content function. Values of this function for 
some substances are listed in Table 16.2. Observe that the values have 
the order of magnitude and the dimensions of heat capacity though they 
are not the values of the true heat capacity, dH/dT. They correspond 
to the mean heat capacity for the substance over the range 0 to T°k, 

as may be seen by comparison with equation (3.9). From equation 
(16.43), we have, for the heat content function, 

H jyrp d In Q ^ 5 jj 
RT~5T~ + 2R (16.44) 

Heat Capacity.—The heat capacity of the gas may be obtained by 
adding the value for the translational heat capacity in equation (16.37) 
to the rotational, vibrational, and electronic heat capacity as given in 
equation (16.23). For calculations on the change of heat of reaction 
with temperature, we desire the values for the change in heat contents 
with temperature and not the true heat capacities. Tabulated values 
of Ho — Ho for different temperatures permit us to calculate this change 
directly, so that the heat capacities are not required. 
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i}a 

Table 16.2.—Heat Content Function -——- of Some Substances* 

(In calorics per degree mole) 

Substance 
Temperature in °k 

(formula) 
298.16 400 600 

I 

800 1000 1500 2000 3000 

0,(R) 6.9418 6.9813 7.1320 7.3176 7.4970 7.8509 8.1094 8.5000 

H,fe) 6.7877 6.8275 6.8810 6.9218 6.9658 7.1295 7.3358 7.7286 

OH(g) 7.064 7.074 7.068 7.073 7.106 7.273 7.480 7.854 

H20(g) 7.934 7.975 8.122 8.333 8.580 9.251 9.88 10.86 

N,(g) 6.9502 6.9559 6.9967 7.0857 7.2025 7.5024 7.7497 8.0816 

NO(g) 7.359 7.302 7.302 7.387 7.506 7.796 8.015 8.307 

(.(graphite) 0.84369 1.2565 1.9968 2.0621 3.0746 3.876 

C(diamond) 0.4297 0.8125 1.583 2.255 2.782 
! 

CO(g) 6.9514 6.9594 7.0159 7.1247 7.2565 7.5725 7.8182 8.1448 

C02(g) 7.5064 7.9870 8.8707 9.6117 10.222 11.336 12.072 12.98 

CH,(g) 8.039 8.307 9.249 10.401 11.56 14.09 

0(g) 5.391 5.337 5.253 5.197 5.159 5.102 5.071 5.043 

H(g) 4.968 4.968 4.968 4.968 4.968 4.968 4.968 4.968 

N(g) 4.968 4.968 4.968 4.968 4.968 4.968 4.968 4.973 

* Wagman, D. D., J. E. Kilpatrick, W. J. Taylor, K. S. Pitzer, and F. D. Rossini, J. Research 

Natl. Bur. Standards, 34, 143 (1945). 

American Petroleum Institute Research Project 44 at the National Bureau of Standards. Selected 

Values of Properties of Hydrocarbons. Table Or, Heat Content Function (H° — Ho°)/T at 0° to 

4000°k, July 31. 1944; Aug. 31, 1946; Table OOr, ibid., June 30, 1946. 

Entropy.—The total entropy for 1 mole of gas may be obtained by 
adding equation (16.38) for the translational entropy to equation (16.28). 
Thus, for the standard state of 1 atmosphere, 

s° = RT + R in Q + ^R In M +1 i? In T + | J? - 7.282 

(16.45) 

A comparison with equation (16.44) for the heat content function shows 
that the entropy may also be expressed as 

s° = -° ~ H° + RlnQ + ^R\n M + ^R\nT - 7.282 (16.46) 

As was stated earlier, the nuclear spin energies are usually not included 
in the partition function. Consequently, the equations for the entropy 
do not include the entropy of nuclear spin. Similarly, equations (16.45) 
and (16.46) do not include a term for the entropy of mixing of isotopic 
forms of the gas. Hence, the entropies calculated from the equation are 
relative rather than absolute entropies. They may be used in calcula- 
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tions for all reactions that do not result in a separation of isotopes. This 
limitation is not usually of practical importance for nuclear spins and 
the ratios of isotopes remain unchanged in most chemical reactions. 

Free Energy.—In the preceding sections, relations were found 
between the partition function of a gas and the entropy and relative 
heat content. But the free energy is related to these functions as is 
evident from the defining equation 

F s H - TS 
from which 

F - Ho = H - Ho - TS 
and 

F — Ho _ H — Ho 
ji iji & (16.47) 

The function (F — H0)/T defined by equation (16.47) is called the free 
energy function. For 1 mole of the gas in its standard state, we have 
from equations (16.46) and (16.47) 

T 
= -R In Q - | R In M - | R In T + 7.282 (16.48) 

Table 16.3.—Free Energy Function for Some Substances* 

(In calories per degree mole) 

Temperature, °k 

Substance 
(formula) 

298.16 400 600 800 1000 1500 3000 

02(g) -42.061 -44.112 -46.968 -49.044 -53.808 -56.103 -59.468 

Ht(g) -24.423 -26.422 -29.203 -31.186 -32.738 -37.669 -40.719 
OH(g) -36.824 -38.904 -41.772 - 43.804 -45.385 -48.295 -50.415 -53.521 
HsO(g) -37.172 -39.508 -43.768 -45.131 -47.018 -50.622 -53.38 -57.59 
N*(g) -38.817 -40.861 -43.688 -45.711 -47.306 -50.284 -52.478 -55.687 
NO -42.980 -45.134 ipffsWipi* - 50.202 -51.864 -54.964 -57.239 -60.549 
C (graphite) - 0.5172 - 0.8245 - 1.477 - 2.138 - 2.771 - 4.181 
C(diamond) - 0.1532 - 1.358! 
CO(g) -40.3.50 -42.393 -45.222 -47.254 -48.860 -51.884 -54.078 -57.314 
C02(g) -43.555 -45.828 -49.238 -51.895 -58.461 -61.85 -67.11 
CH4(g) -36.46 -38.86 -42.39 -45.21 -47.65 -52.84 
0(g) -33.078 -34.654 -36.801 -38.3041 -39.460 -41.539 
H(g) -22.425 -23.884 -25.899 -27.328 -30.451 -31.880 -33.894 
N(g) -31.646 -33.106 -36.550 -37.658 -39.673 -41.102 -43.117 

* Wagman, D. D.f J. E. Kilpatrick, W. J. Tatlor, K. S. Pitzer, and F. D. Rossini, J. Research 

Natl. Bur. Standards, 84, 143 (1945). 
American Petroleum Institute Research Project 44 at the National Bureau of Standards. Selected 

Values of Proper ies of Hydrocarbons. Table Os, Free Energy Function (F° — Htf)/T at 0° to 4000°Kt 
July 31, 1944; Aug. 31, 1946; Table OOs, ibid., June 30, 1946. 
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Values of this function for several substances are listed in Table 16.3. 
Values for f°/T may be obtained from the free energy function, since 

It appears that absolute values of f° and of f°/T may be obtained from 
the free energy function only if absolute values of Hq are known. How¬ 
ever, for calculations on chemical reactions, we desire the difference in 
free energy between that of the products and that of the reactants. 
This difference can be obtained from relative values as well as from 
absolute values. If, then, we use proper relative values for the standard 
heat content of the reacting substances at zero temperature, we may 
obtain the value for the free energy change in the reaction. Thus, from 
the heat of formation of a compound from its elements at zero tempera¬ 
ture, we may obtain the value for the free energy of formation of the 
compound at this temperature, for, from the third law, So = 0 and f0 = h0. 

Heat of Reaction at Zero Temperature.—The heat of reaction at zero 
temperature may be obtained from the measured heat of reaction at 
room temperature and the values of h° — h° for the reacting substances. 
The heat of reaction at zero temperature and the h° — values may 
then be used to calculate the heat of reaction at other temperatures. In 
Chap. 5 we showed how heats of reaction may be derived from heats of 
formation of compounds from the elements. The formation of gaseous 
water from hydrogen and oxygen will serve as an example. At 25°c 
for the substances in their standard states, we have 

H2(g) + *02(g) = H20(g); A//?98.16 - -57,798 cal 

At this temperature, as in equation (5.3), 

AH° = h°(H20) - h°(H2) - |h°(02) = -57,798 (16.50) 

At zero temperature for the same reaction 

AH°q = Hq(H20) - h°(H2) - X(02) (16.51) 

But the heat of reaction at zero temperature is 

A Hi = A H° - A (H° - H°0) (16.52) 

The values of A(H° — Hi) may be obtained from the data for water, 
hydrogen, and oxygen in Table 16.1. Thus, 

A(H° - HI) = (h° - Hq)(H20) - (h° - Hq)(H2) - *(h° - hS)(02) 

= 2,365.1 - 2,023.81 - 1,034.89 = -693.6 cal (16.53) 
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Hence, from equations (16.50) to (16.53), 

A Hi = Hq(H20) - Hq(H2) - *hS(0,> - -57,798 + 694 = -57,104 cai 
(16.54) 

Thus, it appears that the zero point heat content of 1 mole of gaseous 
water, which from equation (16.41) is identical with the zero point 
energy, is smaller by 57,104 calories than that of 1 mole of hydrogen and 
\ mole of oxygen. If the zero point energies of the molecular hydrogen 
and oxygen are arbitrarily placed at zero, the zero point heat content of 
water on this scale becomes —57,104 calories. This value being fixed, 
we may now calculate the heat of reaction at any temperature, for, 
from equation (16.52), 

AH° = AH°0 + A(H° - II°0) (16.55) 

Values for the heat of formation AH°f of various substances are given 
in Table 16.4. From these data and the values in Table 16.1, we may 
calculate the heat of formation of atomic hydrogen at 1000°k, the zero 
point energy of molecular hydrogen being arbitrarily set at zero. Thus, 
for the reaction 

lb - 2H 
we have, from Table 16.4, 

A Hi = 2iIq(H) - h°0(H2) - 2 X 51,620 = 103,240 cal 

and from Table 16.1, 

A(//° - H°0) = 2(h° - hS)(H) - (h° - hJ)(H2) 

= 2 X 4968.0 - 6,965.8 - 2,970 cal 

Table 16.4.—Heat of Formation &H°f of Some Substances from the Elements 

in Their Standard States* 

(In kilocalories per mole) 

Substance 
ah; 

Substance 
A H°f 

(formula) 
At 0°k At 298.16°k 

(formula) i 
At 0°k At 298.16°k 

0,(g) 0 0 C(graphite) 0 0 

H,(g) 0 0 00(g) -27.2019 -26.4157 

OH(g) 10.0 10.061 co2(g) -93.9686 -94.0518 

HsO(g) -57.1043 -57.7979 CH,(g) -15.987 -17.889 

N,(g) 0 0 0(g) 58.586 59.159 

NO(g) 21.477 21.600 

1 

H(g) 
N(g) 

51.620 

85.120 

52.089 

85.566 

* Waqman, D. D., J. E. Kilpatrick, W. J. Taylor, K. S. Pitzer, and F. D. Rossini, J. Research 

Natl. Bur. Standards, 34, 143 (1945). 
American Petroleum Institute Research Project 44 at the National Bureau of Standards. Selected 

Values of Properties of Hydrocarbons. Table Ow, Heat of Formation AH/° at 0 to 4000°k, July 31, 
1944; Aug. 31, 1946; Table OOw, ibid., June 30, 1946. 
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Therefore, the heat of formation of 2 moles of atomic hydrogen at 1000°k 
is 

AH° = AH°0 + A(H° - H°0) = 103,240 + 2,970 - 106,210 cal 

Entropy of Reaction.—From equation (16.47) it appears that the 
entropy of a substance at any temperature may be calculated from the 
values for the heat content function and the free energy function at that 
temperature. Thus, for the substance in its standard state, 

T 
(16.56) 

For a chemical reaction, the corresponding change in entropy is 

06.57) 

Free Energy of Reaction.—The free energy of reaction at any tem¬ 
perature T may be derived from the value of the free energy function for 
that temperature and the heat of reaction at zero temperature divided 
by the temperature T. Thus, from equation (16.49), we have 

AF° AH°0 , JF°~IP0\ 
T~ = “5T + A \T~~) 

(16.58) 

which may be used directly in the calculation of the equilibrium constant. 
However, if free energy values are desired explicitly, equation (16.58) 
may be multiplied by T. 

Equilibrium Constant.—The equilibrium constant for reactions may 
be obtained from the tabulated functions. Equation (12.21), which is 

AF° = -RT In K 

may be rearranged to 

= -R In K = -4.5757 log K (16.59) 

Hence, from equation (16.58), 

-R In K = -4.5757 log K = ^ + A (F° ~ ^ (16.60) 

This equation may be applied to the reaction 

H, + C02 = CO + H.O(g); K = 
r H*t co* 
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From the data in Tables 16.3 and 16.4, we have for the reaction at 1000°k 

AF° _ _ (-27,202 - 57,104 + 0 + 93,969) 
T 4 5757 1 8 K 1000 

+ (-47.018 - 48.860 + 32.738 + 54.109) 
= 9.663 — 9.031 = 0.632 cal/deg 

whence, 
AF° = 0.632 X 1,000 = 632 cal 

and 
. „ 0.632 nioo 
l0gA= 4^757 = ~°-1381 

so that 
K = 0.728 

The value for AF° at 1000°k may be compared with that obtained from 
the algebraic functions in Prob. 11.4. 

Problems 

16.1. Calculate the values for the heat of formation of gaseous water at the tem¬ 

peratures, 298.16, 400, 600, 800, 1000, 1500, 2000, and 3000°k. Carry out the calcula¬ 

tions in tabular form and show your complete calculations. 

16.2. From the tabulated data, calculate the values of the equilibrium constant 

for the reaction 

H2 + C02 = CO + H20(g) 

at the temperatures, 298.16, 400, 600, 800, 1000, 1500, and 2000°k. Report your 

calculations in tabular form and compare the results with those obtained in Prob. 

12.8. 
16.3. (a) Plot the values of the equilibrium constant for the reaction in Prob. 16.2 

against temperature and find the temperature at which K = 1. 

(6) For the same reaction, plot the values of log K and of AF° against temperature. 

Find the temperatures at which log K = 0 and AF° — 0, reading the values from a 

large scale plot. Which of the functions in (a) and (6) permits the more accurate 

interpolation? 

16.4. From the tabulated data, calculate the values for the entropy of hydrogen 

gas at the temperatures, 298.16, 1000, 2000, and 3000°k. 

16.5. A gas containing approximately 77 mole per cent of nitrogen, 21 of oxygen, 

and 2 of water vapor is heated at 1 atmosphere pressure to 1500°k. Which of the 

following reactions can occur to an appreciable extent at this temperature? 

N2 + 02 « 2 NO 

H20 = II2 -j~ $02 

H2 + 02 - 2 OH 

Estimate the quantities of H2, OH, and NO at equilibrium. 

16.6. Calculate the values for the dissociation of water into hydrogen and oxygen 

at 1 atmosphere pressure and the temperatures 1000, 2000, and 3000°k. 

16.7. Steam is heated with excess carbon (graphite) at 1000°k and 1 atmosphere 

pressure until complete equilibrium is established. Consider the following reactions 

and their equilibrium constants: 



Chap. 16] THERMODYNAMIC FUNCTIONS 359 

(1) C(c) + H,0 
(2) C(c) + C02 
(3) C(c) + 2H2 
(4) CO + i02 
(5) CO + H20 
(6) iH2 + i02 
(7) H2 + J02 

CO +Ha KP = 2.609 
2 CO Kp = 1.900 
ch4 Kp = 9.829 X 10~l 
C02 Kp = 1.582 X 10'« 
CO2 + H2; Kp = 1.374 
OH ; Kp = 4.130 X 10-J 
H20 ; Kp = 1.151 X 10>« 

Make preliminary calculations to see which of the possible gases, II20, H2, 02, OH, 
CO, C02, and CH4 will be present at equilibrium at a concentration of more than 
1 mole per cent and find the equilibrium mole fractions of these gases. Remember 
that mole fractions may be used to represent partial pressures when the total pressure 
is unity, that not all the above reactions are independent, and that the total number 
of moles of substances containing hydrogen is related to the total number of moles of 
substances containing oxygen. The equilibrium mole fractions may be read from 
suitable plots showing the change of mole fraction of one substance with change in 
another substance. 

16.8. The heats of formation and the entropies of ethane, ethylene, and acetylene 
at the temperatures 298.16, 1000, and 1500°k are 

Gas 

AH° (formation) in kilocalories at s° in calories per degree at 

298.16°k 1000°k 1500°k 298.1 6°k 1000°k 1500°k 

CaH. —20.236 -25.28 

1 

-25.73 54.85 79 39 92.46 
c2h. 12.496 9.205 8.61 52.45 72.06 82.01 
c2h2 54.194 53.304 52.548 47.997 64.095 70.925 

With the aid of the data in this chapter, determine for each of the temperatures 
(a) Which of these hydrocarbons are stable with respect to the elements in their 

standard states. 
(b) The equilibrium constants for the dehydrogenation reactions 

C2H0 = c2h4 + h2 
C2H4 = c2h2 + h2 
C2H6 = C2H2 + 2H2 

(c) The relative numbers of moles of the hydrocarbons at equilibrium with each 
other when the hydrogen pressure is l atmosphere. 



CHAPTER 17 

GENERAL EQUILIBRIUM CONDITIONS 

In a system in which an entropy change results from a reversible 
transfer of heat, no external work being done, we found that the increase 
in entropy of the system equals, numerically, the decrease in entropy 
of the surroundings. For such a process, the total energy of system and 
surroundings remains constant, and 

(ZdS)E = 0 (17.1) 

It is possible, however, for the entropy of the system to increase because of 
a change in volume, even though the internal energy remains unchanged, 
as in the reversible expansion of an ideal gas at constant temperature. 
Under these conditions, the gain in entropy of the system is equal numer¬ 
ically to the loss in entropy of the surroundings, so that for both system 
and surroundings, the total volume being constant, we have 

(2dS)v = 0 (17.2) 

Equations (17.1) and (17.2) may be combined to give the general equation 

(SdSky = 0 (17.3) 

which applies to every reversible process. 
If the system is so isolated that all changes in energy and volume and 

the other properties occur within the system itself, the total energy and 
volume of the system remain constant. According to equation (17.3), 
any reversible changes in this system must occur without any change 
in the entropy of the system. But reversible processes are processes at 
equilibrium; the system is at equilibrium at constant energy and volume 
when any changes within the system take place without a change in the 
entropy of the system. Then, for the system itself, 

d SE,v = 0 (17.4) 

Equation (17.4) is a general criterion of equilibrium applicable to any 
system at constant energy and volume. It is but one of the many criteria 
that may be set up. 

Free Energy as a Criterion of Equilibrium.—In the chemical labora¬ 
tory, systems are rarely observed under the conditions of constant energy 
and constant volume. As has been stated repeatedly, the common 

360 
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experimental conditions are those of constant temperature and constant 
pressure. In Chap. 10, we showed that under these conditions the func¬ 
tion that remains constant in a system at equilibrium is the free energy 
F and not the entropy. Thus, in equation (10.32), we found that 

dFjvp = 0 (17.5) 

is the criterion for equilibrium under these conditions. 
Similarly, when the volume of the system remains constant, the 

temperature still being constant, the function A, called the maximum 
or total work or the Helmholtz free energy, is the function that remains 
constant. For these conditions, equation (10.27) expresses still another 
criterion of equilibrium, namely, 

&At,v — 0 (17.6) 

Because pressure and not volume remains constant under the usual 
experimental conditions, we have developed the function F to the neglect 
of the function A. Although we shall discuss the F function and its 
relation to equilibrium most completely, we shall return later to a brief 
discussion of the criteria of equilibrium that may be applied under 
different sets of experimental restrictions. 

Some Free Energy Equations.—In Chap. 10, we derived the free 
energy equations for simple systems and for systems in which chemical 
reaction occurs. The differential free energy equation for a simple sys¬ 
tem was given in (10.41) as 

dF = -SdT + VdP (17.7) 

Here F, S, and V are the extensive properties that refer to a fixed amount 
of substance in the system. There is no term for the free energy change 
that may occur when material is added to or removed from the system, 
and there is no term for any net external work done by the system. If 
temperature and pressure are uniform throughout the system and if no 
substance is transferred into or out of the system, the system is at 
equilibrium. Under these conditions, temperature and pressure remain 
constant, dr and dP are zero, and dF becomes zero in agreement with 
equation (17.5). Equation (17.7) then becomes identical with equation 

(17.5). 
When a chemical reaction occurs within a system not at equilibrium, 

there is a resulting change in free energy and the system is capable of 
doing external work in addition to work of expansion. For such a 
system, we obtained in equation (10.39) the more general free energy 
expression 

dF = -SdT + VdP - Dw' (17.8) 
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T>wf being the net useful reversible work previously defined in equation 
(7.32). Under the experimental conditions of constant temperature and 
pressure, equation (17.8) indicates that the system may still do net work 
if it is not at equilibrium, the decrease in free energy being a measure of 
this work, as in the equation 

dFt,p = -Du/ (17.9) 

If the system is at equilibrium, Dwf — 0 and equation (17.9) becomes 
equal to equation (17.5), which is our criterion of equilibrium. 

We shall now discuss in more detail the nature of the terms for the 
various substances in a reaction, represented by the Die' term in the 
free energy equation. A system is capable of doing external useful work 
when material is added to or removed from the system and when a 
chemical reaction occurs that produces new substances with a free 
energy different from that of the substances that were consumed in the 
reaction. In the latter instance, there is a free energy change and, 
therefore, a value of Die' even though there is no movement of material 
into or out of the system. This type of free energy change resulting 
from chemical reaction is of special interest to the chemist. 

General Free Energy Equations.—Because the free energy of a system 
is a function of the composition of the system as well as of the temperature 
and pressure, we may include in the free energy expression terms for the 
change of the free energy with composition. If the composition is 
expressed in terms of the number of moles nh n2, and so forth, of the 
various substances present, this relation may be expressed as 

F = (T,P, nly n2, • • • ) (17.10) 

or, by the differential equation, 

I dfti 

dU2 + * * • (17.11) 

We have already discussed the dF/dT and dF/dP terms. For a system 
of constant composition where nh n2, . . . remain constant, equations 
(10.43) and (10.47) tell us that 

and (5),-v <1712> 
When these values are substituted in equation (17.11), we have the 
general free energy equation in the form 
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dF = -SdT + VdP + d ni + (-*-) dn2+ • • • 
\dn\/ \on*/r,p,nu... 

(17.13) 

The change in free energy with number of moles of one constituent, 
when temperature, pressure, and composition remain constant, has been 
named by Lewis the partial molal free energy (symbol f). By definition, 
therefore, 

so that equation (17.13) may be written 

dF = -S dT + V dP + FI dru + T2 dn2 + • • • (17.15) 

These general equations must obviously reduce to the simpler free 
energy equations previously given. For example, when the composition 
remains unchanged, dni, dn2, and so forth, are zero, and equation (17.15) 
becomes identical with (17.7). Similarly, a comparison with equation 
(17.8) shows that 

FTd?i] + Fi dn2 + • • • = — T)wf (17.16) 

At constant temperature and pressure a system can do net useful work only 

when dni, dn2, and so forth, are not all zero. This is in agreement with 
our previous statement that a system can do net useful work at constant 
temperature and pressure only if there is a change in composition of the 
system. 

Equation (17.16) is a fundamental equation of chemical thermody¬ 
namics because it establishes the conditions of chemical equilibrium. 
At equilibrium, under which condition no net work may be done by the 
system, equation (17.16) becomes 

Fi dni -f- f2 dn2 -f- • • • = 0 (17.17) 

Although we have specifically indicated only two constituents, repre¬ 
sented by the quantities ni and n2 moles, respectively, the above equa¬ 
tions are applicable to any number of constituents. For example, with 
four constituents whose quantities are, respectively, nh n2, n3, and n4 
moles, equation (17.17) becomes 

Fi dni + Fi dn2 + f^ dn3 + Yi dn4 = 0 (17.18) 

These general equations may be applied to all equilibrium processes in 
which there is a transfer of material from one phase to another within a 
system, or in which a chemical reaction is proceeding at constant tem¬ 
perature and pressure. With their aid, we can derive the phase rule of 
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Gibbs. We shall apply them to different types of equilibrium involving 
several phases and several components. 

In many of the general equations that follow, we shall express the 
composition in terms of only two components. However, we do not 
thereby sacrifice the general applicability of the equations, for they can 
be extended to more than two components just as equation (17.17) was 
extended to include four components as in equation (17.18). When we 
write (dF/dnj)n„ we shall remember that, in the partial differentiation 
of F with respect to nh temperature, pressure, and the quantities of all 

other components remain constant. In a four-component system, the 
above partial derivative becomes 

(*) 
\dniy na.TU 

n8 and n4 remaining constant as well as n2. 
General Conditions for Equilibrium.—Several criteria of equilibrium 

were indicated in the previous sections. Thus, if a system is to be at 
equilibrium at constant temperature and pressure, any changes within 
the system may not produce a change in the free energy function F. 

Similarly, for equilibrium in a system at constant temperature and 
volume, any changes within the system may not produce changes in the 
A function. When the temperature is permitted to change but the 
internal energy and volume remain constant, the entropy of the system 
may not change if equilibrium is maintained in the system. But, these 
are not the only functions that may be used as criteria of equilibrium 
in a chemical system, nor are they independent of each other. From the 
statement made above on the existence of equilibrium in a system at 
constant energy, volume, and entropy, we deduce that when entropy 
and volume remain constant a criterion of equilibrium is that there shall 
be no change in energy and that, when entropy and energy remain con¬ 
stant, there shall be no change in volume. 

The various equations that determine completely the state of any 
particular system, including the equilibrium state, were named by Gibbs 
the fundamental equations. All these equations are equally valid; each 
may be derived from any of the others. Accordingly, we base our 
decision on which of these equations to use primarily on the ease with 
which the various sets of restricting conditions can be applied and main¬ 
tained in practice. Thus, in chemistry the common experimental con¬ 
dition of constant temperature and pressure dictates the use of the free 
energy function as the simplest criterion of equilibrium. 

A few of the many conditions for equilibrium that may be expressed 
are the following: 
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dF t,p — 01 
dAt,v ^ 0 I 

dS^.r ==: 0 > (17.19) 
dEs,v — 0 V 
dHb,p = 0 / 

As we stated above, these criteria are all related to each other and may, 
therefore, be derived from each other. 

Fundamental Equations of Gibbs.—We have expressed in equations 
(17.10) and (17.11) and the subsequent free energy equations the relation 
between the free energy and the temperature, pressure, and composition 
of a system that enables us to set up the requirements for equilibrium. 
Equations (17.10) and (17.11) are two forms of what Gibbs1 in his famous 
papers “On the Equilibrium of Heterogeneous Substances” called the 
“fundamental equation” for this function.2 As the criterion of chemical 
equilibrium at constant temperature and pressure, we obtain, from 
equations (17.13) and (17.19), the equation 

dni + (17.20) 

Similar equations for the other thermodynamic functions may be 
derived. Thus, the total work function A is a function of composition 
as well as of the temperature and volume so that we may write 

A = <h(T,V,nhn2) (17.21) 

This is another “fundamental equation” from which the equilibrium 
conditions may be obtained. The equation may be written in differ¬ 
ential form as 

dA = (dA) d7’ + (~) dF + (M) dm 
\dT/v,ni,ni VdH/r.ni.na \dUi /r.v.m 

+ (|£) dn2 (17.22) 
\on2/ T,V,m 

But the values of dA/dT and dA/dV are given in equations (10.44) and 
(10.42) as — S and —P, respectively, so that equation (17.22) may be 
written, 

dA--SiT-PdV + (M) d», + (M) d* (17.23) 

The qualifying subscripts are omitted here for the sake of simplicity.' 

1 “The Collected Works of J. Willard Gibbs,” Vol. 1, “Thermodynamics/' Long¬ 
mans, Green & Company, New York, 1928. 

* Our free energy function F corresponds to the f function of Gibbs. He used the 
symbols «, x, and f for the functions we call E, S, H, A, and F, respectively. 
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Combining equation (17.23) and our general condition for equilibrium 
in equation (17.19), we have 

which gives the condition for equilibrium for an isothermal constant- 
volume process. 

This general process may be repeated for the other functions that 
measure chemical equilibrium or the distance from chemical equilibrium. 
The corresponding equations for these various functions are listed in 
Table 17.1. Because it is characteristic of all these “fundamental” 
equations that each may be derived from the others, any of them may 
be used to establish criteria for chemical equilibrium. 

Table 17.1 

A. The Fundamental Equations for Some Thermodynamic Functions: 

(1) F = <h(T, r, nh n2, • • w») 
(2) A = <f>2 (Tj v, m, n2, • • nx) 

(3) S = <f>;fE, v, nh ns, • • to) 

(4) E = 4n(S, r, n i, nh * • nx) 

(5) H — <hb(S, r, nh n->, • ■ m) 

B. The Fundamental Equations in Differential Form: 

(i) dF = = -S dT + V dP 
+ (£-,) dn‘ + (Sr) dn2 + 

(2) dA = = -SdT - PdV + (S)dni + (S9 dn2 + 

(3) T dS = = dE +P dV - T (Sh - K© dn2 + 

(4) dE = = T dS ~ P dV + (S)dni + ©dn 2 -f 
(5) d H = = T dS + V dP + (S)dn 2 4* 

C. The Criteria of Equilibrium: 

(1) dF t ,p — (f-) <•«. \dni/T.p +(£), dn2 
V.P 

4- • • • - 0 

(2) dAr,v — m dn, 
\dni/T.v +(£), dn2 

r.r 4” • • . ~o 

(3) rdSf^.F = -tCA) 
\dn\J e,v 

dm - T (-) \dn2/i 
dn2 

s.v 
4- • • 

(4) dE$,v 555 
©a.vdWl 

+ (**) 
\dn2Js 

dm 
uv 

+ • • . S3 0 

(5) dtfs.P = (£Ldni + (-) KdniJ, 
dm 

S,P 
4- • • • = 0 

(6) In general; , /xi dn* dr Pz dm + • * • * 0 
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Chemical Potentials of Gibbs.—From the various equations in Table 
17.1C, it is evident that 

But, all the coefficients of dfti are independent of the mass of mate¬ 
rial being considered, and all must have the same value. This common 
coefficient Gibbs1 called the potential m- It is frequently called the 
thermodynamic potential or the chemical potential. 

The chemical potential mi of the first constituent of the system is 
identical with the partial molal free energy 71 of this constituent. Thus 
we have, from equation (17.14), 

Mi = 71 (17.26) 

From the relations in equation (17.25), it appears that mi is also expressed 
by the equations 

= (*!li\ = (jZA (17.27) 
\dni/ E,v,m \dfii/R\dni/s,p,m 

In all these differentiations with respect to the first constituent, the 
quantities of any other constituents, n2, n3, n4, and so forth, remain 
unchanged. 

The chemical potential M2 of the second constituent is identical with 
the partial molal free energy Yi for this constituent, so that 

M2 — Fo (17.28) 

The potential for the second constituent may also be represented by the 
equations 

1 Gibbs expressed the composition in terms of the mass m of the several constit¬ 
uents. We are expressing the composition in terms of the number of moles n of these 
constituents. The molar mass of each substance may obviously be used instead of 
the mass in grams. Under these conditions the masses mi, ra2, and so forth, of Gibbs 
correspond to our niy w2, and so forth. 
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T (~S) = (—) « (|^) (17.29) 
\dn2/ E}v,m \on2/ S,v,n J \d'fl2/ 8,P,m 

In these differentiations with respect to the second constituent, the quan¬ 
tities of all other constituents, nh n3, n4, and so forth, remain unchanged. 

In the above sections, we have shown how the conditions for chemical 
equilibrium can be obtained from a number of different functions. 
Because of our interest in equilibrium at constant temperature and pres¬ 
sure, we shall discuss at length only the free energy function and the 
partial molal free energies. Under different experimental conditions, 
other functions would be utilized, for the statements we make in applying 
the partial molal free energy to equilibrium conditions apply to any of 
the other partial derivatives that equal the chemical potential /z. 

Equilibrium in One-component Systems.—The general usefulness of 
our general criteria for equilibrium appears when we apply them to a 
variety of types of equilibrium. We shall first apply the free energy 
equations to the problem of equilibrium in a one-component system at 
constant temperature and constant pressure. In such a system the 
composition of the system may be expressed in terms of the number of 
moles n of the substance in the system, n2, n3, and so forth, being zero. 

1. Free Energy of Transfer.—From the general equation (17.15), we 
have, at constant temperature and pressure, 

dFr,p — dr? — F d?i 
dn 

(17.30) 

But, in a pure substance, the partial molal free energy f is identical with 
the molar free energy F/n, for it is independent of the amount of sub¬ 
stance already present. Accordingly, equation (17.30) may be integrated 
to give the equation 

F = nf = nr (17.31) 

which states that the free energy of a pure substance is directly propor¬ 
tional to the number of moles of the substance that are present. If n 

moles of the substance are added to a system, the free energy is increased 
by n times the molar free energy. According to equation (17.16), this 
increase in free energy is equal to the maximum useful work done on the 
system in the reversible transfer of n moles into the system. Thus, 

nf = -wf (17.32) 

2. Transfer of Substance from One Phase to Another.—In a system 
containing a pure substance, the substance may be present in more than 
one phase. It may be present as one or more solid phases, one and 
occasionally two liquid phases, and a gas phase, although all these phases 
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may not be able to coexist. If there are n moles of substance in the sys¬ 
tem, they may be distributed among the various phases, n* being in the 
first phase, n" in the second phase, n'" in the third, and so forth. Where 
n' and n" now take the place of n\ and n2, respectively, in the general 
free energy equation, we have, from equation (17.17), for equilibrium 
between the two phases at constant temperature and pressure, 

f'dnf = —F7 dn" (17.33) 

But when n' moles enter the first phase, n" moles must leave the second 
phase so that 

dn' = -dn" (17.34) 

At equilibrium, therefore, 

F = F7 (17.35) 

Equation (17.35) expresses a fundamental requirement for the equilib¬ 
rium of a substance distributed among several phases. The 'partial molal 

free energy of a substance in one phase is equal to the partial molal free 

energy of the substance in any other phase in equilibrium with the first phase. 

If the partial molal free energy is greater in one phase than it is in the 
other, it tends to decrease spontaneously until it reaches the equilibrium 
value. In this process, work may be done at constant temperature and 
pressure, for 

— dF = T)w' (17.36) 

If no work is to be done, that is, if Dwf is zero, equation (17.35) must 
represent the relation between the partial molal free energies. 

When a third phase is placed in contact with the first phase, the partial 
molal free energy of a substance in the third phase must equal that of the 
substance in the first phase if the substance is not to be transported 
from the one phase to the other. The condition for equilibrium, as in 
equation (17.35), is, therefore, 

P = F77 (17.37) 

When three phases are to be in equilibrium simultaneously, the partial 
molal free energy of the substance must evidently have the same value 
in all three phases and 

P = F7 = F77 (17.38) 

3. Equilibrium between Several Phases.—We have stated earlier the 
general requirements of thermodynamic equilibrium. They are 
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(a) There must be no thermal gradients in the system; that is, the 
temperature must be uniform throughout the system. If thermal 
gradients exist, they may be utilized to perform useful work, as in the 
Carnot cycle. 

(b) There must be mechanical equilibrium in the system. This 
means that there must be no uncompensated pressure differences in the 
system. In a system in which the parts are free to move from one part 
to another, pressure gradients can be used to perform useful work. 

(c) There must be chemical equilibrium. This means, in a one- 
component system, that the partial niolal free energy of the component 
must have the same value in each phase. Otherwise, the transfer of 
material from one part of the system to another could be used to do 
useful work. 

Between two phases designated, respectively, by ' and ", these 
requirements may be summarized by the equations 

rjir __ rpft \ 

P' - P^' ! (17.39) 
f' = f" j 

4. Maximum Number of Phases in Equilibrium, a. the restric¬ 

tions for a one-thase system.—Let us consider an equilibrium condi¬ 
tion in a single phase. If the phase is to remain stable, any change in 
pressure, temperature, or composition of the phase cannot result in useful 
work. In such a system, dP = 0. If the composition remains constant, 
we have, from equation (10.41) for the relation between the temperature 
and the pressure, 

-SdT + 7dP = 0 (17.40) 

where S and V have values proportional to the number of moles n in 
the system. In equation (17.40), which is based on a fixed value for n, 
we may still vary T or P independently without causing the disappear¬ 
ance of the phase or the appearance of a new one, but we cannot vary 
both independently. When n and T have fixed values, the pressure 
must have the value that corresponds to the chosen values of n and T. 
Similarly, n and P may be fixed, in which case T may not be varied inde¬ 
pendently but must have the value fixed by the chosen values of n 

and P. In a system for which these relations are valid, the "variance" 
or "number of degrees of freedom" is said to be two. Two variables 
may be arbitrarily chosen without the disappearance of a phase or the 
formation of a new one. 

These relations are better illustrated with the more general equation 
for the one-component system, which, from equation (17.15), is 

dP = —S dP + F dP + F dn (17.41) 
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For equilibrium, at which changes in temperature, pressure, or number 
of moles will not result in useful work, we have dF — 0, so that equation 
(17.41) becomes 

-S dF + V dP + f dn = 0 (17.42) 

If the number of moles n is fixed, dn = 0 and equation (17.42) becomes 

SdT = V dP (17.43) 

which corresponds to the relation in equation (17.40). Either T or P 

may be varied independently, but not both; for, from equation (17.43), 
dP/dT = S/V. Both S and V are properties of the substance that are 
not subject to independent variation under these conditions, their 
values being defined by the partial derivatives in equations (17.12). 
The molar free energy is also a property defined by equations (17.30) 
and (17.31). 

On the other hand, we may arbitrarily fix the values for dT and cLP, 
in which instance dn cannot vary independently if no work is to be done 
as a result of the process. Regardless of the particular variables desig¬ 
nated as the independent variables, the maximum number is two. There 
are, therefore, 2 degrees of freedom in this system. 

b. the restrictions for a two-thase SYSTEM.—When a substance 
is present in two phases not in contact, a separate equilibrium equation 
corresponding to equation (17.42) may be written for each of the phases. 
Where the terms for the first phase are designated by the single primes ' 
and those of the second phase by the double primes ", we have, for the 
two separate equations, 

-S' d r + V'dP' +¥ dn' = 0 | ( 7 . 

-S" d T" + V" clP" + P dn" = 0 J ^ } 

When the two phases are separate, each has 2 degrees of freedom as 
in the single-phase system. When the two phases are placed in contact, 
one might therefore expect 4 degrees of freedom among the two phases. 
However, restrictions are placed on the equilibrium states of the two 
phases as soon as they come in contact. If equilibrium is to exist, there 
can be no temperature or pressure gradients between the two phases nor 
can there be differences in the partial molal free energies of a substance 
present in both phases. If there were a difference in partial molal free 
energies, there would be a tendency for material to be transported from 
one phase to the other phase. Such a process could be used to do useful 
work, and the phases could not be in equilibrium. These conditions for 
thermodynamic equilibrium, previously given in equations (17.39), 
which act as restrictions on the number of independent variables, are 
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fjif __ rpn \ 

P' = P" [ (17.45) 
F = f" j 

Because F = F7 when the phases are at equilibrium and because 
dn' = — dn", the separate equations in (17.44) may be combined to give 

-S' dr + V* (IP' = -S" d7T" + 7" dP" (17.46) 

But, because, from equations (17.45), Tf — P" and P' = P" 

dr - dT" - d7T 
and 

dP' = dP" - dP 

so that equation (17.46) becomes 

yf _ V" 
dT = g7—dP (17.47) 

This equation is equivalent to equation (9.7) and to the Clausius-Clapey- 
ron equation (9.8). 

The above restrictions have been imposed by the condition of equilib¬ 
rium so that of the four independent variables in the separate equations 
in (17.44) only one remains. If pressure is arbitrarily fixed, tempera¬ 
ture must have a unique, corresponding value. If we arbitrarily fix both 
temperature and pressure, one of the phases must disappear so that we 
may have the 2 degrees of freedom. If two phases are present, there is only 
1 degree of freedom. 

c. restrictions for A three-phase system.—When three phases 
are to be at equilibrium, there must be equilibrium between the first 
and second phases and equilibrium between the first and third phases. 
As a result, there will be equilibrium between the second and third 
phases. The requirement of equilibrium between the first and third 
phases introduces another set of restrictive equations similar to those in 
equation (17.45), namely, 

r = Tn ] 
P' - P"' } (17.48) 
jp = f777 I 

By use of the restrictions on a pair of equations corresponding to (17.44) 
we may derive an equation similar to equation (17.47), which must express 
the equilibrium conditions between the first and third phases. Thus, 
we obtain the equation 

dT * 
yf __ yfft 

dP 
S' - S'" 

(17.49) 
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When the first phase is in equilibrium with the second and third phases 
simultaneously, dT in exuations (17.47) and (17.49) has the same value 
so that the two equations may be combined to give 

Vf - V" 1__ dp 
S' - S" 

(17.50) 

In general, the two coefficients of dP in (17.50) are not equal, because 
dP/dT has a different value for each of the pairs of phases. Conse¬ 
quently, equation (17.50) can be generally valid only if cLP = 0, that is, 
if P has a single value. If three phases of a one-component system are 
in equilibrium and none of the phases tends to disappear, P and T must 
have single values. Accordingly, there are no degrees of freedom in 
this system. This result is confirmed by experiment. 

We have not specified, here, the kinds of phases that are in equilib¬ 
rium. The general equilibrium expression limits to three the number 
of phases of a one-component system that may be in equilibrium, but 
it does not specify the particular ones that shall be in equilibrium. The 
three phases that are in equilibrium may include several solid and liquid 
phases and a gas phase, but the total number is limited to three in a 
one-component system. The number of phases is here limited to three 
because for this number of phases the number of restrictive equations 
among the various variables becomes equal to the number of independent 
variables among the three phases. If there are more restrictive equa¬ 
tions, one of the phases must disappear. 

Phase Rule of Gibbs.—The line of reasoning followed in finding the 
maximum variance in a one-component system may be extended to a 
system of more than one component. For a system of c components 
the general differential equation for the free energy in any one phase as 
stated in equation (17.15) is 

dF9 = -S' dT + V' dP' + dn[ + 72 dn'2 +•••+£ dn'c (17.51) 

For equilibrium within this phase, the value of dF' = 0, so that equation 
(17.51) becomes 

-S' dT + V' dP' + fJ dn[ + F2 dn' + • ■ • + 7C dn'e = 0 (17.52) 

In this equation, there are (c + 2) variables, one corresponding to each 
of the components, and T and P in addition. But only (c + 1) of the 
variables are independent, as equation (17.52) shows. 

Let there be p phases, designated by the primes ", "', and so forth. 
For each of the p phases, we shall have an equation corresponding to 
equation (17.52). Thus for the second and third phases, and so forth, 

we have the equations 
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-S" dT” + V" dP" + f7 dn" + r? dn" 
4- • • • 4-~Fc dn" = 0 

-S'" AT"’ + V" dP"' + if An'" + if dn'2" + • • • 
+ if dK" = o 

(17.53) 

and so forth, to p equations. 
If there are p phases, there are p(c + 1) independent variables when 

the phases are separate. However, when the phases are brought into 
contact, a number of restrictive equations are obtained. Thus, the tem¬ 
peratures, pressures, and partial free energies of each component must 
be identical in each of the phases. These requirements are expressed in 
the restrictive equations 

Tr = T" = T"' • • • to p phases 
P' = P" = P'" • • • to p phases 

* * * to p phases 
f2 = v? = F2" • • • to p phases 

= y'J — Pj7 * • • to p phases 

The number of necessary equations between the T1 s is one less than the 
number of phases, or (p — 1). But the number of variables in equations 
(17.54) having (p — 1) relations is the number of components plus 2, or 
(c + 2), so that there are (p — l)(c + 2) restrictive equations in all. 
We found in the one-component system that the variance, or number of 
degrees of freedom, equals the excess of number of independent variables 
for the separate phases over the number of restrictive equations. The 
same statement applies to a system of c components. Thus, if v is 
the variance, or number of degrees of freedom, its value is represented by 
the equation 

(17.54) 

or 
V = p(c + 1) — (p - l)(c + 2) 

v = c — p + 2) 
v + p = c + 2 J 

(17.55) 

This equation represents the phase rule of Gibbs. The number of 
degrees of freedom in a heterogeneous system is 2 greater than the excess 
of number of components over the number of phases. Thus, in a system 
of 2 components, the maximum number of phases, the number that will 
produce zero variance, is 4, because 

0 = 2 — 4 + 2 = 0 

In such a system, there may be two solid phases, a liquid phase and a gas 
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phase all in equilibrium at a unique pressure and temperature. If there 
are three solid phases, however, either the gas phase or the liquid phase 
must disappear. 

In the above derivation, terms were included for each component in 
each phase. However, the number of degrees of freedom remains 
unchanged if not all the components are present in each phase. For 
example, when the first component is present in only the first phase, 
the terms 5^ dn'/, TJ77 dn'/', and so forth, in equations (17.53) are absent 
and the number of independent variables is reduced by (p — 1). At the 
same time, however, an equal number of restrictive equations in (17.54) 
also disappear, for we no longer have the (p ~ 1) equations represented 
by the equations 

5^ = if = if7 • • • to p phases 

The total number of degrees of freedom in the system, therefore, remains 
unchanged. 

We have indicated several definitions for the number of degrees of 
freedom that may be used interchangeably. The number of degrees of 
freedom v may be defined (1) as the number of variables that must be 
specified in order to define the system completely or (2) as the number 
of variables that may be arbitrarily fixed without the disappearance of 
one of the phases at equilibrium. In accordance with our previous 
definition of a phase as representing a homogeneous system, the number 
of phases in a system is the number of different homogeneous systems in 
the heterogeneous system. 

The number of components in a system is more troublesome to define. 
It is not necessarily identical with the number of different substances 
present in the system. Suppose that two substances A and B are in 
chemical equilibrium in the system. If so, the number of moles of B 
in the system cannot be varied independently from that of A. If the 
number of moles of A is fixed arbitrarily, the number of moles of B must 
also have the value dictated by the chemical equilibrium. If we wish 
to include terms for B among equations (17.53), we are compelled to 
introduce an equal number of additional restrictive equations dictated 
by the equilibrium between A and B. As a result, the total number of 
degrees of freedom for the system remains unchanged. The number of 
components c may be defined in either of the two following ways: (1) 
as the smallest number of chemical constituents needed to express the 
composition of every phase; (2) as the total number of chemical constit¬ 
uents C less the number of reversible chemical reactions r occurring in 
the system.1 Thus, c may be defined as equal to C — r, so that the 

1 For example, see 8. T. Bowden, Nature, 141, 331 (1938). 



376 INTRODUCTION TO CHEMICAL THERMODYNAMICS [Chap. 17 

phase rule may be expressed in the form 

„ = (C - r) - p + 2 (17.56) 

Problems 

17.1. In a system at equilibrium at constant temperature and pressure the partial 

rriolal free energy of a substance distributed between two phases has the value f' = f" 

as in equation (17.35). How is a' related to a" under these conditions? 

17.2. At the triple point for water at approximately +0.0075°c, liquid water is in 

equilibrium with ice and vapor. At this temperature, the heat of fusion of ice is 

79.72 calories per gram, the heat of evaporation of water is 2500.17 int joules 

per gram, the specific volume of water vapor is 206,288 cm3 per gram, that of 

liquid water is 1.00021 cm3 per gram, and that of ice is 1.0908 cm3 per gram. From 

these data, calculate the change of equilibrium pressure with temperature for each of 

the pairs of phases ice, vapor; ice, liquid; and liquid, vapor in the neighborhood of the 

triple point. Indicate your conclusions on a pressure-temperature diagram for the 

water system. 

17.3. Calcium carbonate and calcium oxide do not form a solid solution. At the 

eutectic, point for the system calcium carbonate plus calcium oxide plus carbon dioxide, 

at 1240°c and 30,000 mm pressure, how many phases can be at equilibrium? What 

are they? 

17.4. rJ Pwo salts AB and CD when melted together may form AD and CB. If the 

solids do not form solid solutions, what is the maximum number of the possible solids 

AB, AD, CB, and CD that can be in equilibrium with the fused mixture at a given 

temperature and pressure? 

17.5. Does the system water plus sodium sulfate plus sodium sulfate decahydrate 

have any degrees of freedom ? Under what conditions can this system be used as a 
“fixed point” in the calibrating of a thermometer? 

17.6. What is the maximum number of compounds or complexes such as AB, 

A2Ba, AB2, and so forth, that can exist together at equilibrium in a homogeneous 

system ? 

17.7. Is the “melting point” of a pure solid an invariant point? Under what 

conditions can a melting point be used as a fixed point in thermometry? Is the 

“boiling point” of a liquid a fixed point? When may it be used as a calibrating point 

in thermometry? 

17.8. Copper sulfate forms a series of hydrates, C11SO4H2O, CuS0r3H20, and 

CuS04*5H20. What is the maximum number of these solid hydrates that can coexist 

in a closed system in equilibrium with a limited amount of water vapor? 

17.9. Derive the relations 

=1. (*s\ _P. (d_E\ _ 
\dEjv.n T’ \dV)E.n T’ \dSjv.n 

which are applied in the equations in Table 17.15. 



CHAPTER 18 

PARTIAL MOLAL QUANTITIES 

The partial molal free energy of a simple substance has a constant 
value that is independent of the quantity of the substance already present; 
it is identical with the molar free energy of the substance. Thus, the 
change in free energy when a mole of oxygen is added to another mole is 
identical with that observed when the mole of oxygen is added to 10 
moles under the same conditions of temperature and pressure. The 
concept of the partial molal free energy makes no new useful contribution 
to the description of the behavior of simple systems. We have been 
able to avoid the formal use of the function hitherto because the systems 
we have discussed are of limited types. When the different substances 
remain pure, their molar free energy can be used directly; when they are 
present in ideal solutions of gases, liquids, or solids, the free energy of each 
substance can be calculated directly from a simple function of the 
concentrations. 

However, the majority of chemical systems are not so simple. In 
many solutions, the free energy and the other thermodynamic functions 
of each substance are influenced significantly by the presence of each of 
the other constituents. Under these circumstances, the partial molal 
free energy and the other partial molal quantities in the solution are not 
identical with the corresponding molar values for the pure substances at 
the same temperature, pressure, and concentration. 

Notation in Solutions.—Hitherto, we have used the subscripts 1 and 2 
chiefly to designate the initial and final states of a system. In the equa¬ 
tions of the previous chapter, however, the subscripts were used to denote 
the different substances in a system. This latter practice is continued. 

In many solutions, there is no fundamental difference between the 
behavior of the different constituents. If both components of a binary 
solution are liquids, for example, both may be represented by equations 
of the same type. In such instances, either component may be desig¬ 
nated by the subscript i or 2 and either may be designated the solvent or 
solute. However, if one of the components is a solid and the other a 
liquid, it is traditional to call the liquid the “solvent” and the solid the 
“solute.” For systems of this type, it is conventional, following the 
precedent established by Lewis and Randall, to designate the “solvent” 
as component 1 and the “solute” as component 2. This distinction is 

377 
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important chiefly when corresponding functions of the two components 
are represented by equations of dissimilar types. 

In the usual treatment of solutions, attention is directed to a single 
phase. When a second phase is present, it is usually of pure 1 or pure 2. 
When a pure phase is selected as the standard state of component 2, its 
free energy per mole may be designated either as the molar free energy 
Fg, or as the partial molal free energy f£, since for a pure substance 
dF/dn = F/n = f. In the solution, the partial molal free energy is no 
longer identical with the molar free energy of the pure substance, since 
f — dF/dn has varying values in solutions of varying composition. 

Other Partial Molal Quantities.—In Chap. 17, we found that the 
chemical potential ju, which is generally useful in the calculation of equilib¬ 
rium conditions in a chemical system, is identical with the partial molal 
free energy f. The partial molal free energy, in turn, is defined as the 
partial derivative of F with respect to n at constant temperature, pres¬ 
sure, and composition. Now the free energy, which depends on the 
composition of the solution, is related to other functions such as heat 
content, entropy, volume, and so forth. It follows that these other 
functions must also depend on the composition of the solution. Thus, 
for the solutions discussed in Chap. 6, we found that the heat of solution 
at constant temperature and pressure is very definitely a function of the 
composition of the solutions. 

The partial molal heat contents, entropies, volumes, and so forth, bear 
the same relation to the partial molal free energy as their total quantities 
bear to the total free energy. For example, the free energy equation 

F = II - TS 

which serves as a definition of free energy, may be differentiated with 
respect to nh the number of moles of constituent 1. At constant tem¬ 
perature, pressure, and composition, we obtain, by this partial differ¬ 
entiation, the equation 

dF_ = dH _ &S 
dni dn i dni 

which may be written in the form 

Similarly, because 

Fi = Hi — !Tsi 

dF 

dP 
= V 

(18.1) 

(18.2) 

we find, on differentiating with respect to nh when T} P, and n% remain 
constant, that 



Chap. 18] PARTIAL MOLAL QUANTITIES 379 

A (?E\ = JL (ULS = dV 
dn\dP) dP\dni) drii 

In the partial molal notation, this relation is written in the form 

W = ?i (18.3) 

As indicated in Chap. 6, the partial molal quantities for all functions are 
defined by the partial differentiations with respect to n for one constituent, 
P, Ty and all other n’s remaining constant. Thus, the partial molal 
quantities for volume, heat content, heat capacity, and entropy are 
defined for constituent 1 by the equations 

Vi = Hi = 

The corresponding partial 
are 

(dH\ . (dCp\ 

\dnJP,T,n2’ Pl XdmJp'T.J 

molal quantities for the; second constituent 2 

_ _ dVm — dH __ _ dCP. _ _ dS 

Vs <W H2 dn2’ CPi dn2 ’ 82 dn2 
(18.5) 

it being understood from the definition of partial molal quantities that 
pressure, temperature, and the amount of all other constituents remain 
constant in the partial differentiation. 

From these definitions and the rules of differentiation, we may write, 
in a formal way, 

dn _ 
dT cp 

(18.6) 

ICO
 

I II (18.7) 

_ m dF 
t-h-Tw (18.8) 

The student should derive these relations from the more general equations 
previously given. 

Partial Molal Quantities and the Chemical Potential.—We must 
emphasize the fact that the partial molal quantity of a thermodynamic 
function and the chemical potential for the same function <are not iden¬ 
tical, except in the instance of the free energy function. Both partial 
molal quantities and chemical potentials represent the change of the 
functions with change in number of moles of a constituent at constant 

composition, but the other restrictive conditions are different. For 
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example, the partial molal energy e is defined by the partial derivative 
of E with respect to n at constant temperature and constant pressure, 
but the chemical potential /i is defined by the partial derivative of E 

with respect to n at constant entropy and constant volume as in equation 
(17.27). Thus, 

Only for the free energy may we write 

(18.9) 

(18.10) 

In systems under restrictions other than t hose of constant temperature 
and pressure, we may, of course, define functions that are analogous to 
the partial molal quantities. Thus, in a system at constant entropy and 
volume, only the partial derivative of E with respect to n is equal to the 
chemical potential i±. In such a system, the partial derivative of A with 
respect to n would be useful, but it is equal neither to the chemical poten¬ 
tial nor to the partial molal Helmholtz free energy. Because we are 
concerned in practice with systems at constant temperature and pressure, 
we have discussed only the partial molal free energy as a measure of the 
chemical potential. For the same reason, we shall use only the partial 
derivatives of the other functions with respect to the number of moles n 

under these same experimental conditions. These partial derivatives, 
and these only, are called the partial molal quantities. 

Generalized Treatment of Partial Molal Quantities.—A number of 
general relations between the partial molal quantities for the various 
constituents of solutions are applicable to all partial molal quantities. 
These common relations arise from the fact that the number of moles of 
the several constituents in systems at equilibrium cannot all be independ¬ 
ent of each other. For example, when a substance is transferred from 
one phase to another or when it is converted to another substance in a 
chemical reaction, the number of moles of a substance that are removed 
from one phase is related to the number that appear in the new phase or 
in the solution. 

Let any extensive property of a system at constant temperature and 
pressure be represented by the symbol G in accordance with the nomen¬ 
clature of Lewis and Randall. If this extensive property is a function 
of the number of moles of the constituents, 1, 2, and so forth, the partial 
derivatives of G with respect to the number of moles of each constituent 
may be obtained in the usual manner. These partial molal quantities 
for the various constituents, always under the conditions of constant 
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temperature and pressure, are defined by the equations 

381 

Gi 
dGm 

dni’ 
g2 = 

dGm 

dn2 
7T dG 

dn 3 
(18.11) 

In each of the above derivatives the concentrations of the remaining con¬ 
stituents remain unchanged. For a change in G at constant temperature, 
pressure, and composition, we may, therefore, write 

dG = ~— dni + ~— dn<2 + . - dn3 + • • • (18.12) 
dni dn2 dn3 

When the partial molal notation is used, this equation becomes 

dG — gI dni + G2dn2 + Gs dn3 + • • • (18.13) 

Equation (18.13) is readily integrated for any system in which gI and 
Gjj remain constant while ni and n2 are varied. An example of such a 
system is a mixture of ice and liquid water. The partial molal property 
Gi of the ice remains constant, regardless of the relative or absolute 
amounts of ice. The same statement applies to the corresponding partial 
molal property for liquid water, so that Go remains constant. The partial 
molal quantities, like other specific quantities, are intensive properties 
whose values do not depend on the total quantity of material. 

When equation (18.13) is integrated between the limit nx = n2 = 0, 
where G = 0, and the limit nx = nh n2 ~ n2) G = G, we have, g[ and G2 

remaining constant, 

G = Gj/ii + Goti2 T * * * (18.14) 

Thus, if VI for ice is 19.6 ml and V2 for water is 18 ml. the volume of a 
system containing 1 mole of ice and 2 of water is 

V = 1 X 19.6 + 2 X 18 = 55.6 ml 

Partial Molal Equations for Solutions.—Equation (18.14) has a more 
general applicability than the above example implies. In solutions where 
the g’s vary greatly with change in composition, equation (18.14) may 
still be applied to any solution in which the relative proportions of the 
various constituents remain unchanged. The g's are intensive properties 
that depend not on the total amount of solution but on the composition 
in terms of the proportions in which the various constituents are present. 
For example, the partial molal heat of solution of a salt in 1 liter of 
2 molal solution is the same as in 100 liters of the 2 molal solution. So 
long as the relative proportion of the different constituents in a solution 
remain unaltered by the addition or withdrawal of material, as they do 
when the change in n is very small and can be represented by dn, the 
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values of Gl, 37 and so forth, remain constant. Therefore, equation 
(18.14) applies to solutions of definite composition as well as to systems 
composed of pure substances. It is one of the fundamental partial molal 
equations. 

Equation (18.14) enables us to calculate the value of any extensive 
property G of a system if the composition and the partial molal values 
of G are known. Similarly, in a binary solution, if the values of G, 
Gl, nh and n2 are known, Gl can be calculated. This principle is widely 
used in the application of partial molal quantities to solutions. 

For example, equation (18.14) may be applied to the aqueous solution 
of potassium chloride studied in Chap. 6. In Table 6.1 are listed, not 
the partial molal heats of solution of potassium chloride and of water, 
but the corresponding average values AQ/Anx and AQ/An*. Let us take 
these values, averaged for the concentration interval of 12 to 15 moles 
of water per mole of potassium chloride and assume the average value of 
tti to be 13.5 moles. From equation (18.14), we have 

Q = 13.5 X 30.7 + 1 X 3,420 - 3,834 cal 

The observed values of Q at nx = 12 and n 1 = 15 moles of water are 
3,786 and 3,878 calories, respectively, and the average value is 3,832 
calories, in good agreement with the value calculated above. 

Although Gl and Gl are constant in a solution having any given pro¬ 
portion of components, they change when this proportion is varied. 
For any infinitesimal change in composition, whether produced by change 
in n 1, n2, or both, we obtain, from equation (18.14), 

dG — U\ dGi -f- (37 d?ii -f- n2 $g2 g2 <9m2 -f- * * * (18.15) 

When equation (18.13) is subtracted from this equation, we obtain 

ll\ dGi + w2 dGi + * * • =0 (18.16) 

It is, therefore, possible in an infinitesimal change in composition to find 
dGi from a given value of dGi. Equations (18.11) to (18.16), though 
indicating directly only two components, are not limited to any specified 
number of components. They are general for any process at constant 
temperature and pressure, the conditions we specified at the beginning. 

We may wish to know the change of Gl, 37, and so forth, when nx 

is varied, n2 remaining constant. On dividing equation (18.16) by dnh 

we obtain the relation between ffGi/dni and dJTi/dnh and so forth, which 
is 

niS+n2S+ ■ * ■=0 (i8i7) 

Partial molal equations of the type of (18.14), (18.16), and (18.17) are 
particularly useful in expressing the change of G or ST, 5T, and so forth, 
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with composition, when composition is expressed in terms of molalities. 
In the molal solution containing 1 mole of solute in 1,000 grams of solvent, 
U2 equals the molality m and nx = 1,000/Mi, where Mi is the molar 
weight of the solvent. 

Partial Molal Equations for One Mole of Solution.—As we discovered 
in the chapter on ideal solutions, the concentrations of binary solutions 
that obey Raoult’s law are best expressed in terms of mole fractions or 
mole per cents rather than in molalities. One advantage of the mole 
fraction graph is that the value of a property for any composition of the 
solution ranging from pure component 1 to pure component 2 can be 
represented on a single diagram. For this reason, the properties of 
many nonideal solutions that do not depart too widely from ideality are 
also plotted on this type of diagram. One further advantage of the 
mole fraction method of expressing concentration rests on the fact that 
the total quantity of solution under consideration may be kept constant 
at 1 mole while the proportions of the two components vary. As we 
shall discover, the partial molal equations assume particularly useful 
forms when they are applied to 1 mole of solution. 

The mole of solution is defined as that quantity of solution in which 
the total number of moles of the constituents is unity. Thus, for 1 mole 
of solution, 

/ii + ?i2 ~h * * • =1 (18.18) 

and the number of moles of each constituent is equal to its mole fraction. 
For the mole fraction, we have by definition 

Ni + N2 + * • • = 1 (18.19) 

Because the numerical value of any extensive property depends on 
the quantity of material under consideration, the value of G is evidently 
a function of the number of moles of the constituents as well as of the 
temperature and pressure. We shall designate the value of G for 1 
mole of solution by the symbol g*. Thus, in a solution containing 

+ n2 + * • * moles, g< is related to G by the equation 

Gi = 
G 

Wl + 712 + ‘ ' * 
(18.20) 

From the relations in equations (18.18) and (18.19), it is clear that, 
for 1 mole of solution, equation (18.14) becomes 

Gi = JTiNi + gIN2 + * * * (18.21) 

Similarly, when equation (18.16) is divided by rti + n2 + * • • , it 
becomes 

Ni dGi -f* N2 $G2 * * * = 0 (18.22) 
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When equation (18.22) is divided by dNh we obtain an equation anal¬ 
ogous to equation (18.17), namely, 

N'w, + N'm+-- - <18 23> 

The relations among the partial molal quantities in a solution in 
equations (18.21) to (18.23) are particularly useful when composition is 
expressed in mole fractions just as equations (18.14), (18.16), and (18.17) 
are readily applied to solutions whose composition is expressed in 
molalities. 

One important advantage in the mole fraction notation is that the 
entire range of composition can be plotted in a single diagram. When 
G (or Gt), Gl, and g5 are plotted against the mole fraction of component 1 
of a binary solution, the tangents to the resulting curves at the composi¬ 
tion Ni have the values dG/dNi, dWi/dNi, and dZh/dNi, respectively. 
These values can be substituted in the above equations. Because of the 
relation between dNi and diV2 in a binary solution, which is dNi — — dA^2, 
we can also evaluate the corresponding partial derivatives with respect 
to N2j the mole fraction of the second component of the solution. How¬ 
ever, the partial derivatives with respect to the mole fraction are not 
equal to the partial derivatives with respect to the number of moles ni, 
namely, dG/dnh dGi/dni, and do^/drii. The two sets of partial deriva¬ 
tives must differ, for dN ^ dnh as we found in Chap. 6. If we wish to 
calculate the partial molal quantities from mole fraction diagrams, we 
are required to find the relation between the measured slopes dG/dNi, 
and so forth, and the desired partial molal quantities dG/dn1} and so 
forth. 

When the calculated values of the partial molal quantities (SI and Qi 
are plotted against mole fraction, the slopes of the curves give us the 
values dcTi/dNi and d(h/dNh which may be substituted in equation 
(18.23). Useful relations are derived from this equation. 

Calculation of Partial Molal Quantities from Mole Fraction Dia¬ 
grams.—When the value of an extensive property G for an isothermal, 
isobaric process is plotted as ordinate against Ni as abscissa, the tangent 
to the curve at N\ is (dG/dN i)t,p. From this value of dG/dNi, we may 
derive the value of Gx and also that of Gl because of the interdependence 
between these two functions. We remember that dG/dNi is not the 
partial molal quantity ei; for, in the change in mole fraction represented 
by dNi both rti and n2 vary, whereas, in the change in rii represented by 
dnx, n2 remains constant. 

Because the value of G depends on the quantity of material under 
consideration, the numerical value of dG/dNi. also depends on this. 
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quantity of material. If g< is plotted instead of G, the corresponding 
slope dOi/dN represents the change in g* per mole of solution. As we 
shall see, the partial molal quantities <TI and (Jji are obtained more simply 
from the slopes of the g» curve than from the more general G curve. 
For this reason, we shall derive the relations between the partial molal 
quantities and the values of dGi/dNi and dGi/dN2. We shall expand 
here some of the discussion we applied in Chap. 6 to heats of solution. 

The relation between SG/dNi and gI = dG/drii depends on the rela¬ 
tion between dNi and dni, which was found in equations (6.21) and 
(6.22) to be for a binary solution 

dNi - 
n2 

(n i + n2)2 
dnx 

N2 
(ni + n2) 

dni (18.24) 

Because we are plotting G{ as ordinate, we shall also wish to know the 
relation between dGi/dni and gI, which is dG/drii. On differentiating 
equation (18.20) with respect to ni, we have 

Gl = 5n"i KWl = + Gi (18.25) 

because dn2/dni = 0. (Why?) 
Because of the relation between dni and dNi in equation (18.24), we 

may transform equation (18.25) to 

SI = N 
dG i , 

2 dN\ + Gi 
(18.26) 

By methods analogous to the above, we find for g2, ni now remaining 
constant, that 

g2 — N 
dG{ 

lWt 
+ G. (18.27) 

By the definition of mole fraction, we have, for the binary solution, 

and, therefore, 
Ni = 1 — Nt 

dNi = -diV2 

(18.28) 

(18.29) 

Consequently, equation (18.27) may be expressed in the equivalent form 

g2 = (Nt ~ 1) ^ (18.30) 

which may be subtracted from equation (18.26) to give the relation 

_ _ dQi 
G, - G2 - m 

dOi 
(18.31) 
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and the corresponding relation 

_ _ dot G2 _ Ql _ __ <9G}' 

WL 
(18.32) 

The relation between dG/dni and dGi/dni was expressed in equation 
(18.25). The relation between dG/dNi and dGi/dNi is simpler. On dif¬ 
ferentiating equation (18.20) with respect to N\, we have 

dGj_1_ JN7 
dN i 711 -f- 711 dN\ 

(18.33) 

Tii + 7i2 remaining constant during the differentiation. (Why?) There¬ 
fore, when Gy the value of the extensive property for nx + n2 moles of 
solution, is plotted against mole fraction, the values of Gl and Gi may be 
calculated from the following equations: 

(rii + ?i2)gl = iVo + G (18.34) 
d/V i 

(«i + rnW, = N1+ G (18.35) 

(ni + n2)(G} - Gi) - (18.36) 

(nx + 7l2) (G2 — Gi) = —(18.37) 

These equations reduce to equations (18.26), (18.27), (18.31), and (18.32), 
respectively, when wx + n2 = 1, that is, for 1 mole of solution. 

Special Forms of the Partial Molal Equations. 1. At Maximum or 

Minimum Values of G.—The partial molal equations derived for the 
extensive property G have been derived without special reference to the, 
form of the curve obtained when G is plotted against nx, n2, or N. Accord¬ 
ingly, the equations have general applicability to all quantities such as 
heat of reaction, heat capacity, volume, entropy, and free energy, that 
are functions of the pressure, temperature, and composition of the system. 
In all the partial molal equations, we have considered only the change of 
G with composition; these changes of composition were assumed to take 
place at constant temperature and pressure. 

Whenever the plotted curve of G, or Gt, vs. mole fraction passes 
through a maximum or minimum, dGi/dN = 0. Under these conditions, 
it appears from equations (18.26) and (18.27) that 

Gx ^ g2 ^ (18.38) 

This relation was observed for the heat of solution curves in Fig. 6.2, 
where values of oil qT, and Qt were plotted on the same graph. The 
curves intersect at the maximum of the heat of solution curve, the partial 
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molal heat of solution of the two components here being identical with 
heat of solution for 1 mole of solution, which is, by definition, the integral 
heat. Similarly, from the relation between G and G» in equation (18.20) 
we find at this point that 

Gi — G2 — 
G 

n 1 + n2 
(18.39) 

where G is the value for n 1 + n* moles of solution. 
2. At the Limit N — 1.—When a solution becomes infinitely dilute or 

infinitely concentrated, the partial molal equations again assume simpler 
forms. As the solute, component 2, becomes more and more dilute, its 
concentration in the solution approaches the limiting value N2 = 0. At 
the same time, the solvent becomes more and more concentrated until its 
concentration approaches the limiting value N1 = 1. The “solution” 
then consists of pure solvent. From equation (18.26), we obtain as the 
limiting value 

SI - Gt (18.40) 

which tells us what we already knew: the partial molal quantity for a 
pure substance is identical with the corresponding molar value. This 
limiting partial molal quantity gI, therefore, has zero value or a finite 
value, depending on the corresponding molar value of the pure substance. 

3. At the Limit N = 0.—In the previous section, we found the limiting 
value of g of the first component as its mole fraction approaches unity. 
We are here concerned with the limiting value of Gi as N\ approaches 
zero and A2 approaches unity. Under these conditions, equation (18.26) 
becomes 

= + G< (18.41) 

Therefore, it appears that we cannot evaluate the partial molal quantity 
for component 1 at the limit A1 = 0 unless we know the value of dGi/dN 1 

as well as the value of g*, which by analogy with equation (18.40) is here 
equal to gI, the molar value of G for component 2. 

From equations (18.40) and (18.41), we can set up the following pairs 
of limiting values: 
At N1 = 1, N% = 0, 

Gi 

g2 

At Ni = 0, Ni — l 

Gi 

G-i 

Gi 

<5g, 

dNl + Gi 

dGi 
+ Gi 

Gi 

(18.42) 

(18.43) 
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Change of Partial Molal Quantities with Composition.—We have 
been discussing primarily the change of the extensive property G with 
number of moles of either component 1 or 2, and we have shown how this 
value may be obtained from a graph of G or G; vs. mole fraction. By use 
of equations (18.26) and (18.27) the values of gI and Gi are obtained from 
the family of tangents to the curve and the corresponding values of G{. 

The values of o[ and Gi calculated in this way can be plotted against 
the mole fraction of their respective substances in the solution. From 
the slopes of these curves, values of do\/dNi and dch/dNi are obtained, 
for dNz = —dNi. The ratio between these slopes for any value of Ni 
may be obtained with the aid of equation (18.23), whence we have 

dG]/dN 1 _ dGl/dNi N2 (*[9 
doi/dN 1 doi/dN* ' N1 K } 

It is at once evident that the ratio between the two slopes at any con¬ 
centration is equal to the mole ratio N2/Ni = n2/nx at that concentra¬ 
tion. When Ni — N2, the mole fraction of each being 0.5, it is evident 
that 

dGi _ _ <3g2 _ do2 

dN i dN i dN 2 
(18.45) 

At this concentration the slopes of the two curves are equal but opposite 
in sign. At all other values of Ni, the signs of the slopes must also be 
opposite, for N2/Ni is always positive. If Gi passes through a maximum, 

Table 18.1.—Some General Partial Molal Equations for the Extensive 

Property G 

(At constant pressure and temperature) 
(18.13) dG = 57 d?ii -j- Oo dn2 4 dn3 -f 

At constant composition 
(18.14) G — R-iGi -p n257 -j- R-3G3 * 
(18.16) ni d57 4“ r2 d&2 4" ■ • - 0 

(18.17) dwx . cm , 
n 1 --(- n2~-h • 

drii dill 
• • -0 

For 1 mole of solution (ni 4- n2 4- • • • = » 1;G - 
(18.21) 
(18.22) 

Gi — N\<$i 4" N2&2 4~ ■ * 
N1 <957 4“ N2 dGi 4- ■ • • - 0 

(18.23) 0 

(18.26) 

(18.27), (18.30) 
m ”Ni Si+o< “ <'Nt 

- 1)— 
}dN 1 

(18.31) 
_ __ dGi dGi 

01 01 ” dJVi “ dNt 

(18.44) dm/dNi T N, 
dir,/dNi “ Ni 
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BTTi/dNi being zero, $2 must pass through a minimum, the indeterminate 
number 0/0 having the value —N2/N1. 

Some of the partial molal equations are summarized in Table 18.1. 
Limiting Values of the Partial Molal Quantities.—Equations (18.42) 

and (18.43) represent the limiting values of <51 and G2, both in infinitely 
concentrated and in infinitely dilute solutions of the two components. 
We are now in a position to say more about these limiting values, for we 
are able to discover how they must be approached if equation (18.44) 
is to be satisfied. 

From equation (18.44), it appears that the ratio N2/N1 approaches 
zero in a solution where N1 approaches unity and N2 approaches zero. 
We have, therefore, 

lim 
Ni «* l,iV2 “ 0 

dGi/dN 1 

doi/dN 1 

= 0 (18.46) 

This limiting ratio is satisfied by two pairs of values for the slopes of the 
curves obtained when the g] and Gi curves are plotted against the mole 
fraction. Thus, when 

Or, when 

dGi 

dN1 
dGi 

Wi 

= 0 

■ 
= a finite value 

<3Gi 

W[ 
dGi 

dN 1 

a finite value 

00 

(18.47) 

(18.48) 

The form of the Gi and Gi curves in the neighborhood of Ni = 1 is illus¬ 
trated in Fig. 18.1 for the pair of values that follow the relations in equa¬ 
tions (18.47). As is evident from the heat of solution data in Chap. 6, 
heats of solution furnish an example of this type of system. The partial 
molal volumes also follow the relations in Fig. 18.1 and equations (18.47). 
In the neighborhood of Ni = 1, the partial molal heat content or volume 
of component 1 is essentially that of pure 1 and the partial molal heat 
content or volume of the solute, component 2, must remain finite. 

The forms of the (51 and Gj> curves in the neighborhood of Ni = 1 that 
satisfy the requirements in equations (18.48) are illustrated in Fig. 18.2. 
The free energy and entropy functions are of this type. Thus, in the 
neighborhood of Ni = 1, the free energy of component 1 in solution 
differs from that of pure 1, for the change of free energy with Ni is finite. 
But, because the partial molal free energy curve of the solute, component 
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2, has an infinite slope, the free energy of the solute at infinite dilution must 
be infinite (negative in this case). An infinite amount of work is required 
to compress a mole of solute at infinite dilution to the pure solute where 
by analogy FI = f2, a finite value. 

Limiting Free Energies and Entropies of Ideal Solution.—The above 
conclusions on the limiting values of the partial molal functions may be 
compared with those which are obtained from the equations for the free 
energy and entropy of ideal solution. These equations previously 
derived for these functions are (13.54) and (13.58), respectively. If 
component A in these equations is now designated as component 1, we 

Nj=0 Ws-l NrO Nr! 
Mole fraction, Nt Mole fraction, Nt 

Fig. 18.1.—Limiting values of Fig. 18.2.—Limiting values of the 
the partial molal quantities ac- partial molal quantities according 
cording to equations (18.47). to equations (18.48). 

have for the change in free energy of this component when 1 mole dissolves 
in a solution having the composition AT, 

Fi — fj = RT In AT (18.49) 

Here Fi, the free energy of 1 mole of component 1 in the ideal solution, 
is identical with what we have since called the partial molal free energy 
of this component, fi. Similarly, the molar free energy in the standard 
state, Fi is identical with the partial molal free energy of pure 1, namely, 

Equation (18.49) may, therefore, be written 

Fx - f* = RT In AT (18.50) 

In the neighborhood of pure 1 where AT approaches unity, In AT 

approaches zero and FI approaches the value F® as required by equation 

(18.40). Because if has a finite value, FI approaches this finite value. 
But we are interested also in discovering how FI approaches this finite 
value, that is, in the slope of the FI vs. AT curve at this concentration. 

On differentiating equation (18,50) with respect to AT, we obtain the 
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m = PT din Nl 
dNi dN! = RTW N i 

(18.51) 

Equation (18.51) indicates that, as N1 approaches unity, dFl/dWi 
approaches the finite va ue RT. This, except for sign, is the relation 
shown in Fig. 18.2. 

Simi arly, for extremely dilute solutions of component 1, we have Ni 
approaching zero and In N\ approaching the value — «>. It fo lows from 
equations (18 50) and (18.51), therefore, that, at the limit N\ = 0, 

= - oo 1 

m _ 1 
dN! 00 j 

(18.52) 

The above equations obvious y may be applied also to the second 
component for its limits N2 — 0 and N2 — 1, so that we obtain the 
following pairs of values: 

At Ni = 1, Ni = 0, 

Fi == F 
o 
1 

F2 == ~ oo 

dFi 
dA^ 

= RT 

dF2 _ _ dF2 

dN\ dN2 

(18.53) 

(18.54) 

The relations in equations (18.54) correspond to the limiting values 
in (18.48). 

The entropy in the idea solution, by comparison with equation 
(13.58), may be expressed by the equation 

si - s° = -R n Ni (18.55) 

We find, therefore, 

ctei _ 6 In Ari 

Wi ” 'TatT 
R_ 
Nr 

(18.56) 

Similarly, the pairs of limiting values have the relations shown in the 
following equations: 
At #i = 1, N2 = 0, 

si 

dWj 
dNi ~ 
dsj __ 
dNi dN2 

= s, 
= 00 

R 

d&t 

(18.57) 

(18.58) 
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Problems 

18.1. Let the molar heat content of pure component 1 be h^, that of pure com* 

ponent 2 be hJ, and that of a mole of solution containing Ni * x moles of 1 and 

N% “ 1 ~ x moles of 2 be h,-. If these heat contents have the values indicated in 

Fig. 18.3 where the lower curve represents the values of h, for values of Ni ranging 

Fig. 18.3.—Calculation of partial molal heat content by the method of intercepts, 

from Ni = 0 to Ni =* 1, show graphically from Fig. 18.3 and the partial molal equa¬ 

tions that the intercepts of the tangent to the curve at Ni — x give the values of 

hI and Hji for these components in the solution. 
18.2. Show that, for the same conditions as those stated in Prob. 18.1, Q< in Fig. 

18.4 represents the integral heat of solution measured experimentally and that 

Qi * Ht - (JVtHj + N2H2) 

What is the physical meaning of NiH° + NiH°J 
18.3. Where the various terms have the values indicated in Probs. 18.1 and 18.2 

and in Figs. 18.3 and 18.4, show that 

qT = hT - H° 
Qi * lit - 

If Hj and H2 are arbitrarily assigned the values of zero as in Fig. 18.5, where Qt is 

plotted directly against N1, show that the same values of ol and Q2 are obtained at 

Ni * x from Fig. 18.5 as from Fig. 18.4. 

Fxa. 18.4.—Relation of integral heat of Fig. 18.5.—Integral heat of solution, 
solution to heat content. 
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18.4. If the relative partial molai heat content lI of the solvent is defined by 

U « ol = hT - h, 
show that 

~ - (S3, - (4), 

What is the physical meaning of (c?)i and (e>)i? 

18.5. What is the physical meaning of h[ — h°? Under what conditions and in 

what equations is this function useful? 



CHAPTER 19 

NONIDEAL SOLUTIONS 

The free energy equations that we have applied to the various compo¬ 
nents of solutions were derived from the ideal gas laws and the laws of 
ideal solution. Their application is, therefore, limited to systems in 
which the vapors behave as ideal gases and the solutions obey the laws 
of ideal solution. In these equations, the free energy of a substance is 
expressed as a logarithmic function of the pressure, mole fraction, or 
some other corresponding measure of the concentration of the substance 
in the gas phase or in the solution. Equation (13.51) for the expansion 
of 1 mole of ideal gas at constant temperature may be expressed in the 

differential form as 
dF = RT d In P (19.1) 

Similarly, for the ideal gas, liquid, or solid solution, temperature and 
pressure both remaining constant, the relation between the free energy 
of 1 mole of substance and its mole fraction given in equation (13.54) 
may be expressed in the differential form as 

dF = RT din N (19.2) 

Fugacity and Activity.—In nonideal gases and in nonideal solutions 
|bhe free energy of a substance cannot be represented by equations (19.1) 
and (19.2). However, when empirical functions are substituted for 
pressure and mole fraction, equations having the form of (19.1) and 
(19.2$*can be made to represent the free energy of a substance regardless 
of the extent or nature of the departure from the laws of ideal gases or of 
ideal solution. The empirical functions in common use are the fugacity /.. 
and activity d, which were introduced in Chap. 12. Fugacity was defined 
in part in equation (12.75) by the relation 

dF - RT d In / (19.3) 

From the relation between activity and fugacity expressed in equation 
(12.78), it follows that the corresponding function for activity is 

dF = RT d In a (19.4) 

Observe that in both these equations the ideal gas constant R is retained, 
all deviations from ideality being grouped in the empirical functions / 
and a. 

894 
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Although there is no theoretical restriction on the application of 
either fugacity or activity to systems of any particular type, in common' 
practice the fugacity function is expressed almost exclusively in absolute 
values. It is applied to gases and to liquids or solids in equilibrium with/ 
their vapors as an empirical substitute for pressure in the free energji 
equations. Its numerical values are, therefore, expressed in pressure 
units, usually in atmospheres. On the other hand, activity is almost 
always expressed in relative values. It is applied chiefly to solutions as 
an empirical substitute for concentration, and its numerical values are, 
therefore, expressed in concentration units. In practice, equation (19.3) 
is paired with (19.1), / becoming identical with P for the ideal gas; and 
equation (19.4) is paired with (19.2), a becoming identical with N for 
the ideal solution or the molality m, or molarity C in the ideal “dilute” 
solution. 

Because a factor n for the number of moles of substance is absent from 
equations (19.3) and (19.4), it is evident that these equations refer to 1 
mole of substance, f being the molar (or partial molal) free energy. The 
ideal equations (19.1) and (19.2) also refer to 1 mole of substance. 

The differential equations (19.3) and (19.4) define only changes in 
the functions/ and a; therefore, they express only the relative values of 
these functions. When wo integrate equation (19.3), keeping tempera¬ 
ture constant, we obtain the equation 

f = RT In f+ A (19.5) 

The value A is a constant of integration that may be, and is, a function 
of the temperature. It can be evaluated for some standard state where 
the free energy has the value f° and the fugacity the value /°. Under 
these conditions, equation (19.5) becomes 

f - f° = RT In js (19.6) 

f — f° representing the difference between the free energy of the experi¬ 
mental state and that of the standard state and f/f° the relative fugacity 
of these two states. When the standard state is so selected that/0 = 1, 
the integration constant A becomes equal to the free energy F° of this 
standard state, and equations (19.5) and (19.6) become 

f - f° = RT In / (19.7) 

but this value of f0 = A is not identical with f° in equation (19.6) unless 
both represent the same standard state. 

Inspection of equation (19.6) shows that, even though the numerical 
values of f and f° are known, only the relative values of / and f° can be 
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obtained from the equation. Absolute values of fugacity must be estab¬ 
lished with the aid of some independent relation. The requirement, 
expressed in Chap. 12, that the fugacity of a gas must equal its pressure 
as the gas approaches ideal behavior, gives the additional relation. The 
pressure of a mole of gas is a function of the temperature; and the fugacity, 
which is related to this pressure, must also be a function of the tempera¬ 
ture. Because the standard fugacity/0 is a function of the temperature, 
it follows that A> in equation (19.5), is also. When the standard state 
selected for a gas is at P = 1, a real gas has a standard fugacity value f° 
not equal to unity. The fugacity of this gas at any other state at the 
same temperature is expressed by equation (19.6). 

In practice, the activity function is applied to the various components 
of a solution rather than to the solution as a whole. Under these condi¬ 
tions, the general activity equations represented by equations (19.4) and 
(12.79) become the corresponding partial molal equations for the various 
components. However, we here use the more general form to indicate 
the similarities between the activity and fugacity functions. Their 
differences are analyzed in more detail later. 

From the general integration of equation (19.4) at constant tempera¬ 
ture, we have 

f = RT In a + B (19.8) 

where B is the integration constant. 
Because activity is used only in the relative sense, the activity of the 

standard state invariably being assigned the value of unity, we have, for 
the defining equation of activity, 

a = £ = jo (19.9) 

Equation (19.9) leaves undefined the units in which a is to be expressed. 
A number of different units have been used in practice. The constant B 
can be evaluated for any arbitrary standard state for which a is placed 
equal to unity; for, by definition, / = f° for this state. When a = 1, f 
becomes equal to f° and, therefore, B = f°. As a result, equation (19.8) 
may be expressed in the form 

f - f° = RT In a (19.10) 

If the activity is to become identical with the mole fraction for the ideal 
solution, it may be assigned the value a = 1 at N = 1, so that the pure 
component at the experimental temperature and pressure has unit 
activity. When a is expressed in concentration units of this type, we 
find that f° and, therefore, B are functions of pressure and temperature. 
This question of the standard state is discussed in more detail below. 
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Free Energies and Standard States in Ideal Solutions.—The meaning 
of the “standard state” as applied to the fugacity and activity functions 
becomes clearer when we review the relations between the standard states 
for ideal solutions. 

1. Solutions of Ideal Gases.—For the isothermal expansion of a defi¬ 
nite amount of a pure substance the change in free energy with pressure 
is given by the equation (6F/dP)T = V. If the gas is ideal, we have, 
for a mole of the gas, v = RT/P, whence we obtain the isothermal 
relation 

dr = RT ~ = RT d In P 

which is equation (19.1). 
When the gas, here called component 1, expands into a mixture of 

ideal gases at constant temperature, the change in free energy for a mole 
of component 1 is the change in the partial molal free energy Fl. For this 
process, expressed in the partial molal notation 

drl = vld Pl (19.11) 

For the ideal gas, the partial molal volume v[ is related to the partial 
pressure Pi by the equation 

RT 
= -p- (19.12) 

When equations (19.11) and (19.12) arc combined, we have, for compo¬ 
nent 1, 

dFl = PPdlnPi (19.13) 

This equation, when integrated at constant temperature, becomes 

Fi = RT In Pi + Ci (19.14) 

where Ci is the integration constant. If the standard state is chosen at 
Pi = 1 where FI = P, we find that 

Cl = ?! (19.15) 

We observe here that, although Ci remains constant as the pressure varies 
at constant temperature, its value must change as the free energy of the 
gas at 1 atmosphere pressure, that is, the gas in its standard state, changes 
with temperature. Therefore, Ci is a function of temperature. 

When equation (19.15) is combined with (19.14), we obtain the 
familiar equation 

FI - F? - RT In Pi (19.16) 

In a gaseous solution that obeys Dalton’s law of partial pressures, 
the partial pressure Pi of the gas is related to the mole fraction Ni and 
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the total pressure P by the equation 

Pi = NxP (19.17) 

It is, therefore, apparent that equation (19.14) may be expressed in the 
form 

FI = RT In (NxP) + Cy 
= RT In Nx + RT In P + Cy (19.18) 

If, for this isothermal solution process, the total pressure P remains 
constant, the term RT In P may be combined with the term Ci to give 
the equation 

FI = RT In Nx + Dx (19.19) 
where 

Dx = Cx + RT In P (19.20) 

Because C\ is a function of the temperature, it is evident from equation 
(19.20) that Dx is a function of both temperature and pressure. 

When the standard state is defined in terms of pure substance at P 
and T where Nx — 1, the free energy of this standard state being ?f, we 
obtain, from equation (19.19), 

Di — Fi (19.21) 

Therefore, at constant temperature and pressure, we have 

FI — Ff = RT In Nx (19.22) 

Observe that, in equation (19.22), f® is constant only under the restriction 
of constant temperature and pressure. Observe also that the numerical 
value of f® in equation (19.22) is not equal to that of if in (19.16), for 
the standard states are differently chosen. When a gas is pure, Ni = 1, 
but its pressure may or may not equal 1 atmosphere. 

Equation (19.22) may be differentiated at constant temperature and 
pressure. Under these conditions, if remains constant and we obtain 
the differential equation corresponding to equation (19.2). Equation 
(19.2) is, therefore, valid under these restrictions. 

2. Ideal Liquid Solutions.—In Chap. 13, we defined an ideal liquid 
solution as one that obeys Raoult’s law at all pressures and temperatures. 
When the vapor pressure of pure component 1 is Pf, the partial pressure 
Pi of this component in the vapor above the ideal solution is 

Pi = NxP°x (19.23) 

Ni being the mole fraction of component 1 in the solution. At this 
partial pressure, we see from equations (19.14) and (19.23) that the free 
energy of the vapor is represented by the equations 

Fi = RT In Pi “h Ci 
- RT In Nx + RT In P? + Cx (19.24) 
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But component 1 in the solution is in equilibrium with component 1 in 
the vapor, so that 

FI(in vapor) = F(in soln) (19.25) 

The partial molal free energy of component 1 in the solution is, therefore, 
given by the equation 

Fl = RT In N\ + E\ (19.26) 
where 

E1 = Ci + RT In P° (19.27) 

Again, if the standard state of component 1 is that of the pure liquid 
whose mole fraction is unity, we have 

Ei = f? (19.28) 

so that equation (19.26) may be expressed in the form 

Fl - = RT In Ni (19.29) 

This equation agrees in form with the partial molal equation for the ideal 
gas in a gaseous solution; but the standard state and therefore the value 
of the standard free energy differ numerically in the two cases, as indi¬ 
cated by equations (19.20) and (19.27). 

Fugacity 

The empirical function fugacity, which is to play the role of the pres¬ 
sure or partial pressure in the free energy equations, was defined in part 
in equations (19.3) and (19.6). Because these equations establish only 
the ratio between two values of the fugacity, another relation is required 
to determine the absolute values of fugacity. The fugacity is further 
defined as being identical with the pressure for a perfect gas. Because 
all gases approach ideal behavior as their pressures approach zero, / = P 
for real gases at sufficiently low pressures. We have, therefore, the 
further definition 

lim | = 1 (19.30) 
P = 0 A 

Equations (19.6) and (19.30) define fugacity completely. When pres¬ 
sure and fugacity functions can be extrapolated to zero pressure where 
pressures and fugacities become identical, the absolute values of fugacity 
at higher pressures can be readily calculated. 

Change of Fugacity with Pressure.—For a system in which no net 
useful work is done, that is, a simple system or a system at equilibrium, 
the change of free energy with pressure at constant temperature is repre¬ 
sented by equation (10.43), which becomes, for 1 mole of substance, 

(£), -v (19.31) 
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When equation (19.5) is differentiated with respect to pressure at 
constant temperature, we obtain an expression for the change of fugacity 
with pressure. Because the integration constant A in this equation is a 
function of the temperature only, we have 

<i9-32) 

On combining equations (19.31) and (19.32), we obtain the equation 

CJfO, - it <19-33> 
This equation may be expressed in the form 

RT d In / = v dP (19.34) 

it being distinctly understood, however, that this represents the relation 
for the isothermal process. 

Equation (19.34) follows directly from (19.3) and (10.43) applied to 
1 mole of substance. It applies to liquids and solids as well as to gases. 

Fugacity of a Pure Nonideal Gas.—The fugacity of a real gas may 
be calculated from the above equations if the necessary data on the molar 
volumes of the gas at various pressures are available. When v can be 
expressed as a known function of P, as in the van der Waals equation, 
for example, equation (19.34) can be integrated. If the numerical values 
of v are available, they may be plotted against the pressure and the 
integration carried out graphically. Thus, from equation (19.34), we 
have, 

/ V dP = RT\n^ (19.35) 
J 1 J 1 

f 2 
Observe, however, that the integral / v dP evaluates only In (/2//1) and 

not the absolute value of either /1 or /2. If absolute values of fugacity 
are required, it is necessary to carry the integration to low pressures where 
the fugacity becomes equal to the pressure. 

The calculation is simplified if a term a is introduced into equation 
(19.34) to represent the deviation of the ideal molar volume vt* from the 
real molar volume v, v* being defined by the ideal gas law relation 
vt * RT/P. Thus, 

v = Vi — a 

RT 
P 

a (19.36) 

When equation (19.36) is introduced into (19.34), we have 
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RT din ~-dP - adP (19.37) 

which may be written in the form 

RT d In / = RT d In P - a dP (19.38) 

This equation, when integrated between zero pressure where / = P = 0 
and the pressure P where / differs from P, becomes 

RT In / = RT In P — a dP (19.39) 

Hence, when the difference, at constant temperature, between the ideal 
volume and the real volume is plotted against pressure, we can obtain 
the difference between fugacity and pressure at this temperature by 
graphical integration. 

' At low pressures, the value of a approaches a constant value, — R, 
defined in equation (4.14). This fact permits accurate extrapolation 
of molar volumes to zero pressure where all real gases behave as ideal 
gase^s. In the low pressure range where a equals —5, the integral in 
equation (19.39) becomes equal to —BP and the equation itself may be 
written in the forms 

RT In / - RT In P - -aP = BP } 

and RT In = -aP = BP j (19 40) 
which are valid at low pressures for all gases. A plot of a against P at 
low pressures evaluates B and enables us to evaluate/for any value of P. 

Equation (19.40) may be applied to oxygen at 1 atmosphere for 
which, from Table 4.1, we have B — —0.0213 liter/mole at 0°c. Conse¬ 
quently, P being unity and RT being 22.41 liter-atmospheres, 

ln/ = 

/ = 

— 0.0213 _ 
22.41 

0.99905 atm 

-9.51 X 10"4 

It appears that, for a gas as nearly ideal as oxygen, the difference between 
the fugacity and pressure may be neglected except for the most exact 
work. 

Following the suggestion of Lewis and Randall, a further approxima¬ 
tion can be made. Thus, equation (19.40) may be ^written in the alter¬ 
native forms 

In 
/ = _ aP 
P RT 

JxP 
RT 

(19.41) 
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But, when x = aP/RT is small, e~x — 1 
becomes 

— x, and equation (19.41) 

(19.42) 

We have expressed v* as equal to RT/P. Similarly, the ideal pressure Pi 
may be defined as Pt = RT/v. If these values are substituted in equa¬ 
tion (19.36), we have 

a = Vi — v = 
RT 
P 

RT 

Pi 

which, when substituted in equation (19.42), gives the simple relation 

T> = Pi (1!)-43) 

This equation holds at low values of a. Observe, however, that values 
of the real molar volume v are still needed to calculate Pi. 

Fugacity of Liquids and Solids.—For liquids and solids in equilibrium 
with vapors, f being the partial molal free energy of the gas and f' that 
of the liquid or solid, we have the general condition of equilibrium, 
namely, 

f = f' (19.44) 

Because the integration constant A in equation (19.5) is fixed by the 
chosen standard state at a definite temperature, it has the same value for 
all phases at that temperature. Accordingly, from equations (19.5) and 
(19.44), we have for equilibrium 

/ = f (19.45) 

where / is the fugacity of the gas and /' that of the liquid or solid. The 
fugacities of a substance in all phases at equilibrium must be equal. The 
fugacity, therefore, serves as a measure of the escaping tendency from 
any phase. Because the activities of gases and liquids or solids are usually 
not referred to the same standard state, the activity of a substance at 
equilibrium between two phases may have different numerical values in 
the different phases. The fugacities, at equilibrium, always have the 
same numerical value because they are referred to the same standard 

state. 
Equation (19.34) may be applied to liquids and solids as well as to 

gases. In general, the molar volume of liquids and solids is small com¬ 
pared with that of gases, and it is essentially constant for pressure differ¬ 
ences that are not too great. When v remains essentially constant, as for 
liquids and solids at pressure differences that are not too great, equation 
(19.34) may be integrated to give the simple equation 



Chap. 19] NON I DEAL SOLUTIONS 403 

RT In |j = v(Ps - Pi) (19.46) 

This equation may be used to calculate the change of fugacity of a liquid 
or solid with pressure. It indicates, however, only relative values of the 
fugacity; to obtain absolute values, we must know the absolute value for 
the liquid or solid for some one pressure. This absolute value is obtained 
from the€ugacity of the gas in equilibrium with the liquid or solid. 

Change of Fugacity with Temperature—When the standard state is 
selected at/° = 1, equation (19.6) becomes 

f — f° = RT In / (19.47) 

This equation may be differentiated with respect to temperature. Al¬ 
though f°, the free energy of the standard state, is not a function of the 
pressure, it is a function of temperature. On differentiation of equation 
(19.47), therefore, we have 

d* d* __ prri d In / p f 
dT dT RI d T +R[nf (19.48) 

But, from equation (19.47), 

F — F° 
”—= Rlnf (19.49) 

and, from equation (10.49), we have, at constant pressure, 

(<9f\ _ f — h ' 

df)r T~ 

SdF°\ _ F° - H° 

\dT/p ~ T 

<j!9.50) 

On combining equations (19.49) and (19.50) with (19.48), we obtain the 
equation for the change of fugacity with temperature at constant pres¬ 
sure, namely, 

Crr), ’ t?5 (1951) 
Here h° is the molar heat content of the substance in its standard state 

of unit fugacity at the temperature T and h is that of the substance at 
the experimental pressure and temperature. Equation (19.51) may be 
applied to liquids and solids as well as to gases, for in the derivation we 
made no special restrictions. In each case, however, the proper value of 
h must be used. In the application of equation (19.51) to different 
phases at equilibrium, we remember that under these conditions 

F(g) = F(liq) — F(solid) 
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and 
/(g) = /(liq) = /(solid) (19.52) 

When the substance is not pure, the above relations apply to the fugacity 
/i of the substance in the mixture and to the corresponding partial molal 
heat content Hi. 

Heat Content of a Gas at Unit Fugacity.—Because the fugacity of a 
gas approaches the pressure as the gas approaches ideality, In/approaches 
In P. But, for a constant-pressure process, d In P equals zero, so that d In 
/ approaches zero. It follows from equation (19.51) that h approaches 
h°, the heat content at unit fugacity. Thus, for a gas behaving as an 
ideal gas, h = h°. As we found in Chap. 4, the heat content of a perfect 
gas at constant temperature is independent of the volume, and hence of 
the pressure. Consequently, h° is independent of the pressure and may 
be regarded as the heat content of the gas at unit fugacity, as the heat 
content of an ideal gas, or as the heat content of the real gas at P = 0 
where / = P. Because the heat content of a gas at the standard state 
of unit fugacity is identical with that of an ideal gas, the state of unit 
fugacity is selected as the standard state of gases for many calorimetric 
determinations (see Chap. 5). 

Evaporation of Liquids and Solids.—When / in equation (19.51) 
represents the fugacity of a liquid or solid, h represents the molar heat 
content of the same substance, and h° represents the heat content of the 
ideal gas, as indicated in the preceding section. Under these conditions, 
equation (19.51) expresses the change in escaping tendency of liquid or 
solid at constant pressure. The pressure may be maintained at the 
constant value P by some inert gas while the partial pressure Pi of the 
evaporated liquid or solid changes with temperature. According to 
equation (19.51), therefore, the change with temperature of the fugacity 
of a liquid or solid in equilibrium with its vapor is measured by the heat 
of evaporation of the liquid or solid to the ideal gas state where its heat 
content is h°. If the vapor behaves as an ideal gas,the fugacity equals 
the vapor pressure Pi; when Pi is substituted for fugacity in equation 
(19.51), we have the familiar Clausius-Clapeyron equation for the vapor 
pressure of a liquid or solid. 

Mass Action Law in Terms in Fugacities.—The law of mass action, 
derived in Chap. 12 for perfect gases, may be derived for nonideal sub¬ 
stances by a simple application of the general partial molal equations. 
Whenever a substance is present in a system with other substances, the 
fugacity of the substance i£ defined, not in terms of the free energy of 
the system as a whole, but in terms of the partial molal free energy of the 
substance. For component 1 in the system, the fugacity fi is defined 
by the equation 



Chap. 19] NON I DEAL SOLUTIONS 405 

Fi - f° = RT ln/i (19.53) 

which corresponds to equation (19.7) for the pure substance.* Similar 
equations may be Avritten for the other components of the system. 
Observe that the free energy of the standard state need not be written 
in the partial molal form because it has a value fixed for each substance 
in its standard state of unit fugacity at constant temperature. 

According to equation (18.13), the change of free energy for any 
process at constant temperature and pressure may be expressed in the 
form 

dF = fI dni + Fi dn2 + ¥1 dn3 + fI dn4 + ' * ’ (19.54) 

But, for a system at equilibrium, there is no change in free energy so that 
dF = 0, and equation (19.54) becomes 

fl d/i! + f*> dn2 + F3 dn3 + F4 dn4 + * • • =0 (19.55) 

At equilibrium, therefore, not all these terms can be independent variables. 
Let us apply this equation to the chemical reaction expressed in 

equation (12.1) as 

uA -f- 5B +••*== dD + eE ~J~ * ■ • 

At equilibrium, a moles of A and b moles of B may react to form d moles 
of D and e moles of E without the performance of any useful work. 
Similarly, the reverse reaction may occur without any change in free 
energy of the reacting system. If the chemical substances A, B, D, 
and E are identified with the components 1, 2, 3, and 4, we have, for the 
forward reaction at equilibrium, 

a = — dni \ 
b — — dn2 

d = dn3 

c = dn4 

(19.56) 

On comparison with equation (19.53), we see also that the partial molal 
free energies of the various substances are 

RT In /A + f° \ 
RTlnfB + F°h I 

RT In /» + f° ( (19-57) 
RT In fK + ) 

When equations (19.56) and (19.57) are substituted in equation (19.55), 
we have * 

FI = 

Fb = 

Fd = 

Fe — 

-aRT In /A - bRT In /B + dRT In f» + eRT In /, 
- aFj - br°B + drl + erl = 0 (19.58) 
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which may be written in the form 

' dF°> + cf°e - aF\ - K = -RT ln{?3r (19.59) 
Ja/b 

But the left-hand terms of equation (19.59) represent the standard free 
energy change for the reaction, AF°, and the right-hand term equals 
— RT In Kf where Kf is the equilibrium constant in terms of fugacities 
defined by equation (12.82). Equation (19.59) is, therefore, identical 
with equation (12.81), which is 

AF° = -RT In Kf 

Fugacity of Substances in Solution.—When a substance is present in 
solution, its fugacity depends on the composition as well as on the tem¬ 
perature and pressure of the solution. At constant temperature and 
pressure, it is, therefore, necessary to express the fugacity of a component 
as a function of the partial molal free energy of this component in solution. 
Similarly, the change of fugacity of a component with pressure or with 
temperature at constant composition is measured by the change of the 
partial molal free energy of this component with these variables. These 
relations for the component 1 may be obtained from equations (19.33) 
and (19.51). They are 

din/A __ vT 
fP )t n RT 

and 
d In = uf — h5 

dT )P> RT2 

These equations show why we need experimental data on the partial 
molal volumes and heat contents instead of the corresponding molar 
values when we desire to calculate the change of fugacity of a component 
of a solution with temperature or with pressure. 

The relations between the various partial molal properties and the 
values for 1 mole of the solution may be obtained by application of some 
of the equations derived in Chap. 18 for partial molal quantities in gen¬ 
eral. Thus, from equation (18.21), we have, for 1 mole of solution, 

Vi - NivI + N2v~2 + • * • (19.62) 
h» = N ififi + N2h2 + • • • (19.63) 

Therefore, we may add equations (19.60) and (19.61), respectively, for all 
the components in the solution to obtain the corresponding equations for 
1 mole of solution, namely, 

(19.60) 

(19.61) 

+ • * • 
Vi 

RT 
(19.64) 
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N i (9 In A 
\ dT )r,N 

— Hi 

RT2 (19.65) 

Gibbs-Duhem Equation.—From equation (18.23), which was derived 
under the conditions of constant temperature and pressure for 1 mole of 
solution, we have, in terms of the partial molal free energies, 

Ni 
<9fi 

W[ + N'm + 
(19.66) 

This fundamental relation was derived by Gibbs in terms of his thermo¬ 
dynamic functions. When the partial molal free energy equations, such 
as equations (19.53), are differentiated with respect to Ni, since f° and Fj, 
and so forth, are not functions of composition, we have 

dFi _ p/ri d In fi 
W[ dNi 
dTi p/rr d In fz 
dN j dNi 

(19.67) 

It is apparent that equation (19.66) may, therefore, be expressed in the 
form 

N i 
d In fi 
dNi~ 

+ N 2 d l^ + 
^ 2 dN i ^ 

= 0 (19.68) 

For vapors that obey the gas laws, f — P, and we have the corresponding 
equation for the partial pressures of vapors 

Ni 
d In P i 

dNi 
+ N, 

d In Pi 
+ • • • = 0 (19.69) 

This equation is called the Duhem1 equation. 
For a binary solution, we have, from equation (19.68), the relation 

between the fugacities of the two components 

In /, _ Ni _ Ni - 1 
In ft Ni N 

The corresponding relation for the vapor pressures, where they do not 
differ too widely from the fugacities, is 

d In Pi _ Nt _ Ni — 1 
d In Pi Ni Ni 

(19.71) 

These equations have been verified for the vapor pressures of binary 

1 Duhem, Compt. rend., 102, 1449 (1886). 
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systems. Consequently, they may be used to test the experimental 
vapor pressure data for solutions. 

Activity 

The function activity is applied chiefly to the components of solutions 
whose absolute fugacity values are difficult to determine. The activity of 
pure substances is seldom calculated from the fugacity through the rela¬ 
tions in equation (19.9). For solutions, however, the activity is the func¬ 
tion almost exclusively used. Thus, for component 1 in a solution, we 
have 

Similarly, in terms of component 1, the general activity equation (19.8) 
is expressed as 

FI = RT In a, + Bx (19.72) 

The standard state of component 1 may be selected as any state for 
which its activity ai is assigned the value of unity. The integration 
constant Bi is evidently equal to the free energy of this component in 
this selected state, and its numerical value must, therefore, be altered 
by any change that results in an altered value of the standard free energy. 
As we stated earlier, the activity is used in a relative sense so that the 
state selected for this standard state varies according to the convenience 
of the experimenter. Illustrations of such change in standard state are 
given in the latter part of the chapter. Since the activity is used as an 
empirical function to play the role of concentration in the free energy 
equations, a comparison with equations (19.14) and (19.18) suggests 
that the standard free energy Bi is a function of both temperature and 
pressure. 

Standard States of Unit Activity.—Because the activity function a 
is a relative empirical function, it need not be, and is not, always referred 
to a single standard state of a substance. The fugacity of a substance in 
several phases in equilibrium has a single value for this substance in every 
phase in which it is present but activities are defined in relative units, 
and the standard states chosen for a component may vary from phase to 
phase. Then the activity of the component may have a different value 
in each of the phases at equilibrium. Although the selection of arbitrary 
standard states facilitates the calculation of activity from the experi¬ 
mental data in any one problem, it makes less convenient the comparison 
of systems whose activities are based on different standard states. 

At constant temperature and pressure, we may select any state of 
the solvent or solute, whether that of the pure component or that of the 
component in a solution of a given composition, as the standard state for 
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which the activity of the component is designated as unity. In this 
standard state, the partial molal free energy has the value It is 
evident from equation (19.72) that, when ax = 1, Bx = if and equation 
(19.72) may be written in the form 

¥1 - f? = RT In ax (19.73) 

where RT In ax represents the difference between the partial molal free 
energy in any state and that of the standard state where a = 1. It is 
evident also that there are as many different values of as there are 
different states designated as standard. Some of the different methods 
in common use for expressing activity, each of which results in a different 
standard state, are given below: 

1. For a Gas, a = /. Standard State, the Gas at Unit Fugacity Where 
a = / = 1.—When the activity of a gas is defined in terms of its fugacity, 
it is defined in the absolute units such as atmospheres. Under these 
conditions, Bx in equation (19.72) is identical with the standard free 
energy f° in equation (19.53). Because we have already discussed some 
of the fugacity equations, we shall not discuss this standard state further. 

2. For a Solvent or Solute, a Becomes Equal to N When N = 1. Stand¬ 
ard State, Pure Solid or Pure Liquid.—When the standard state of a 
component is so selected that the activity is unity when the mole fraction 
is unity, the substance in this state is the pure substance. Under these 
conditions, Bx in equation (19.72) has a value equal to the molar free 
energy of the pure liquid or solid. Because the free energy of the pure 
substance is a function of the temperature and pressure in accordance 
with equation (10.41), the standard free energy for this state will be such 
a function. The standard state may, of course, be defined at unit pres¬ 
sure, in which case the free energy of the standard state is not a function 
of the pressure. 

In completely miscible systems such as those of gaseous solutions, of 
liquids in liquids, and of solids in solids, the pure components of the solu¬ 
tions represent convenient reference states, especially for solutions that 
do not deviate too widely from ideal behavior. In solutions of this 
kind, there is no fundamental difference between the behavior of the 
two components and no theoretical reason for classifying one component 
as the solvent and the other as solute. Accordingly, both components are 
represented by similar functions. In many solutions, however, the solute 
does not approximate the behavior of ideal solutions even though it 
obeys the dilute solution laws based on Henry’s law and even though the 
solvent in these “dilute” solutions is approximately ideal. In these 
solutions the standard state chosen for the solvent is commonly that of 
the pure solvent whereas the standard state selected for the solute is 
not the pure solute but that of the solute in an infinitely dilute solution. 
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3. For a Solute, a Becomes Equal to N When N = 0. Standard State, 
the Solute in Solution When a = 1 ilfoZe Fraction Unit.—When the solu¬ 
tion is formed from components not miscible in all proportions, it is 
convenient to select a standard state for the solute other than that of the 
pure solute. For example, when the solute is a solid with a limited 
solubility, its maximum concentration in the solution is limited by its 
solubility. If the solvent, component 1, is a liquid, the pure liquid may 
still be used as its standard state, the activity of the solvent approaching 
the mole fraction as the mole fraction approaches unity as in Method 2. 
However, the mole fraction of a partly miscible solute, usually designated 
as component 2, cannot approach unity in the solution. 

For this reason, the activity of the solute may be defined as approach¬ 
ing the mole fraction of the solute when the solution becomes more and 
more dilute. Then a becomes equal to N at the limit N — 0 so that 

lim 
o 

a 

N 
1 

In a solution that is ideal over the whole concentration range, a/N = 1 
for all values of N including both N = 1 (Method 2) and N — 0 (Method 
3). For a solute so dilute that Henry's law is obeyed, the ratio of a/N 

is constant over the Henry's law range, but the solute need not have the 
same Henry's law constant in the different solvents. 

If the activity is placed equal to the mole fraction at N = 0, the 
standard state of unity activity may be a hypothetical state even for 
completely miscible components. Thus, the activity of a solute may 
still be less than unity in a nonideal solution when N2 approaches unity. 
And, in a solution in which the solute is a gas or a solid and has a limited 
solubility, the mole fraction of the solute in the solution cannot equal 
unity even if the dissolved solute forms an ideal solution. Then the 
activity of unity represents an extrapolation to a pure liquid solute. In 
either case, the state of unit activity represents merely an extrapolation 
of the activity function to a hypothetical state. 

4. For a Solute, a Becomes Equal to m When m = 0. Standard State, 
the Solute in Solution When a = 1 in Molal Units.—In aqueous solution, 
the concentration of the solute is usually expressed in moles per liter of 
solution (molarity) or moles per 1,000 grams of solvent (molality). 
Because the latter method expresses concentration in weight units that 
are independent of the temperature, it is chosen for most physicochemical 
work. When concentration is expressed in molality m, the standard 
state chosen is that in which activity has the value of unit molality. 
In very dilute solutions, the molality of a solute is proportional though 
not equal to the mole fraction of solute. At the higher concentrations, 
however, the two are no longer proportional. In the ideal solution, the 
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molality of the solute cannot be proportional to the mole fraction beyond 
the very dilute range for mathematical reasons, since molality represents 
mole ratios rather than mole fractions. For completely miscible solutions 
that do not depart too widely from ideality, the expression of activity in 
terms of molality is not suitable, in part because the entire concentration 
range cannot be plotted on one diagram. The “molal” activity is 
used principally for aqueous solutions of electrolytes that are not com¬ 
pletely soluble and that do not follow the laws of ideal solution at all. 
For such systems, this method of expressing concentrations is convenient. 
At the same time, the deviation from the form of the ideal solution equa¬ 
tion causes no concern, for this equation is not followed by the solute 
regardless of the particular selected standard state. 

5. For a Solute, a Becomes Equal to C When (7 = 0. Standard State, 
the Solute in Solution at a ~ 1 Molar.—The expression of solute con¬ 
centrations in volume concentration units is traditional. Although 
the quantity of solvent in a molar solution is undetermined and although 
the number of moles of solute in a liter of solution varies with temperature 
because of the thermal expansion of solutions, volume concentrations 
are still used in certain types of problems. With the exceptions indi¬ 
cated above, the activity function of a solute in a molar system behaves 
like the activity in a molal system. Both systems give values that 
diverge widely from those of the mole fraction system. In dilute 
aqueous solutions, the volume of a liter of solution is approximately 
equal to that of 1,000 grams of water, and the activities in the molar 
and molal systems are essentially equal. 

Change of Activity with Temperature and Pressure.—The change of 
fugacity with temperature and pressure could be expressed in relatively 
simple terms, for the standard state is so defined that it can be expressed 
as a known function of temperature. As defined, it is not a function 
of the pressure at all. In general, the standard state of unit activity 
is a function of both temperature and pressure. This statement applies 
to pure solvent or pure solute as standard states. If the standard state 
of the solute is defined in terms of the infinitely dilute solute in a solution, 
as in Methods 3 and 4, the state for which activity is unity maj^ depend 
on the composition of the solution as well as on temperature and pressure. 

It is clear from equation (19.73) that we cannot express the change 
of activity with temperature or pressure unless we know how both f 
and F* change with these variables. The change of the standard partial 
molal free energy with temperature or pressure depends in turn on the 
way in which the standard state is defined. 

It is possible, of course, so to define the standard state that it does 
not change with temperature and pressure. This practice does not 
eliminate the problem, however; for, in an experiment carried on under 
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the usual conditions of constant temperature and pressure, there is no 
direct comparison between the activity of a component in the solution 
and at the standard state if the experimental temperature and pressure 
differ from the temperature and pressure chosen for the standard state. 
Under these conditions, data are still needed to determine the relation 
between the activity chosen at a reference state under the experimental 
conditions and the activity at the standard state. Because there is no 
general agreement on the methods of defining standard states, we shall 
not give here equations for the change of activity with temperature and 
pressure.1 For Method 1, the equations derived for fugacity obviously 
apply. For the other methods, any specific definition establishes the 
variance of the standard free energy of a component with temperature 
and pressure. 

Activity Coefficient.—'The composition of solutions is expressed in 
units that indicate the relative proportions of the various components 
present. It is for many purposes convenient to tabulate not the actual 
activities of the components in these solutions but the ratios of the activi¬ 
ties to the concentrations as expressed in the customary units. These 
ratios are called the activity coefficients. In general, there are as many 
different sets of activity coefficients as there are standard states. 
Between all the sets of activity coefficients based on activities in mole 
fraction units, there exist definite ratios that permit the ready calculation 
of one set from another. However, because activities expressed in 
molalities or molarities are not proportional to those expressed in mole 
fractions (for mathematical reasons), the corresponding activity coeffi¬ 
cients must also diverge from each other. The symbol y is widely used 
for the activity coefficient when the activity is expressed in molalities. 
The symbol / is also widely used. We shall reserve this symbol for the 
activity coefficient when activities are expressed in molarities. To 
distinguish between these coefficients and that for the activity expressed 
in mole fraction units, we shall denote the latter coefficient by a. 

Mole Fraction Activity Coefficient.—Let the mole fraction activity 
coefficient be defined by the ratio 

It is evident that a expresses the ratio between the effective mole fraction 
and the actual mole fraction of a component in a solution. When the 
activity coefficient is introduced into equation (19.73), we have 

fI — = RT In ociNi 

= RT In ax + RT In Ni (19.75) 
1 Some of the possibilities and inconsistencies are discussed by R. W. Goranson, 

J. Chem. Phye., 5,107 (1937), and L, H. Adams, Chem. Rev., 19,1 (1936). 
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For the ideal solution, a obviously equals unity. For the nonideal 
solution, a is used as a convenient term for expressing the deviation of 
the component from the laws of ideal solution. 

When the standard state is defined as in Method 2 where a = 1 when 
N = 1, the activity coefficient is evidently unity at the standard state. 
For any other composition, a may be greater than, less than, or equal to 
unity. The Gibbs-Duhem equation applies here, however, so that the 
behavior of the activity coefficient for one component is related to those 
of the other components. This relation enables us to calculate activity 
coefficients for both or all components from limited sets of data. 

When the standard state is defined as in Method 3 above, it appears 
that the activity coefficient a equals unity at a — N = 0, that is, in the 
infinitely dilute solution and not necessarily at A2 = 1 where a2 may differ 
widely from jV2. For the ideal solution, a is unity at both concentration 
limits. But when a is greater than unity over the entire concentration 
range, it appears from equation (19.74) that the solute reaches its stand¬ 
ard state a2 = 1 at a concentration in which the mole fraction is less than 
unity. Similarly, when a is less than unity, the solute reaches its stand¬ 
ard state a2 = 1 in the hypothetical state where the mole fraction of the 
solute is greater than unity. 

Molal Activity Coefficient.—In a solution in which the activity is 
expressed in terms of molalities, the molal activity coefficient is defined 
by the ratio 

y = - (19.76) 
m 

This activity coefficient expresses the ratio between the effective molality 
and the actual molality of a component in a solution. When, as in 
Method 4, a is so defined that it becomes equal to m in the infinitely 
dilute solution, y = 1 in such a solution. When this activity coefficient 
is introduced into equation (19.73), we obtain, for the solute, 

Fjj — ^ ” RT ln 72m 
= RT In 72 + RT In m (19.77) 

We use here the subscript 2 because this method of expressing concentra¬ 
tion is reserved for the solute. As we stated earlier, equation (19.77) 
is not suitable for expressing the activities of concentrated solutions that 
are nearly ideal, for m is not proportional to N except in very dilute solu¬ 
tions. Thus, an ideal solution has a value of a equal to unity at all 
concentrations but y cannot be unity for mathematical reasons. 

Molar Activity Coefficient.—When the activity is expressed in 
molarities, as in Method 5, C being the concentration in this volume 
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concentration unit, the molar activity coefficient is defined by the ratio 

/ = 
a 
C 

(19.78) 

In infinitely dilute aqueous solutions, C approaches m and / approaches y 

as the density of the solution approaches unity. Because C diverges 
from m for more concentrated solutions, / also diverges from y. In 
nonaqueous solutions, C and m do not approach the same limit. When 
equation (19.78) is combined with (19.73), we have 

f; - F® = RT In ftC 

= RT In f2 + RT In C (19.79) 

Because the standard states, where the activity is unity, are different 
when the activity is expressed in mole fraction, molal, or molar units as 
previously stated, it follows that f£ has a different value in each of equa¬ 
tions (19.75), (19.77), and (19.79). 

Relations between the Different Concentration Units.—In discussing 
the relations between the various concentration units, we shall use the 
following symbols. They are assembled here for convenient reference. 

iii — number of moles of solvent. 
n2 = number of moles of solute. 

Mi ~ molar weight of solvent. 
M2 = molar weight of solute. 

d = density of solution. 
d° — density of solvent. 

N1 = mole fraction of solvent. 
N2 = mole fraction of solute. 

C = molarity of solute. 
m = molality of solute. 

W\ — weight of solvent per liter of solution. 
Because the weight of solvent in a liter of solution is 

we have 

101 = l,000d - CM2 

__ wi _ 1,000d - CM2 

Mi Mi (19.80) 

Let us now consider a solution with a single solute and a composition 
defined by the mole ratio n2/ni, the solute having the partial molal free 
energy iv The composition of this solution may be expressed in molar, 
molal, and mole fraction units as follows: 

In 1 liter of solution where = C and rti has the value in equation 
(19.80), we have 
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n2 _ CM i 
nx ~ l,000d - CM2 

This relation may also be expressed in the form 

q _ 1 
Mini -f- M^ni 

Similarly, for the molal concentration of this solution, 

(19.81) 

(19.82) 

n2 
ni 

m 

1,000/Mi 
= 0.001 mMi 

whence, 
1,000n2 

m = - 
Mini 

In mole fraction units, where 

tc
 II . 
3

 
M

? 

ni -J- n2 

we have, similarly, 
n>i N 2 N 2 

ni Ni 1 - JV2 

(19.83) 

(19.84) 

(19.85) 

(19.86) 

For this solution, therefore, the relation between these different concen¬ 
tration units is 

CM i _ mli _ A^2 
l,00Qd - CM* 1,000 1 — N2 

(19.87) 

The relations in equation (19.87) may be applied to any solvent. When 
more than one solute or an ionizing solute is present, equation (19.85) 
and the subsequent equations must obviously be modified. (Why?) 
For very dilute aqueous solutions, d approaches d°, CM2 becomes small 
compared with 1,000, N2 becomes small compared with unity, and 
1,000/Mi = 55.51, so that equation (19.87) takes the limiting value 

lim 
2-a-o 

C* 
55.51 d° 

m* = N* 
55.51 

(19.88) 

where the starred concentrations refer to concentrations of the solute at 
infinite dilution. 

Relations between the Different Activity Coefficients.—Because the 
molar and molal concentration units and their corresponding activity 
coefficients are used mostly for aqueous solutions, we shall derive the 
relationships between these coefficients for such solutions. Let us con¬ 
sider a solution so dilute that the activity of the solute becomes equal 
to the concentration, as for Methods 3, 4, and 5, the concentration of 
solute in mole ratio being n*/tti and its partial molal free energy being 
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fJ. For this dilute solution, the various activities and corresponding 
coefficients become 

a* - C*; at = m*; a* = N* 

f = y = a = 1 

where the starred symbols as in the previous section refer to the solute 
at infinite dilution. 

On combining equations (19.88) and (19.89), we have 

= a* = 55.51 a* (19.90) 

These activities are related to the corresponding activities of the solute 
in the solution with concentration n2/wi by the defining equation 

T2-f* = RT hi (19.91) 

so that the activities of the solute in these two solutions in any concentra¬ 
tion unit are expressed by the ratios 

(19.89) 

ac _ am ay 

a* ~ a* ~ a* 

(19.92) 

When equation (19.90) is combined with (19.92) we have, therefore, 

^ = am = 55.51a* (19.93) 

This equation shows the relation between the activities of a solute in 
terms of the various concentration units when the activities in infinitely 
dilute solution approach the concentrations as required by equation 
(19.89). 

Now, from equation (19.93) and the definition of activity coefficients 
in equations (19.74), (19.76), and (19.78), we obtain the equation 

^ = ym = 55.51*^ (19.94) 

which expresses the relations between the activity coefficients and con¬ 
centrations. Equation (19.94) may be combined with equation (19.87) 
to yield other relations among /, y, and a. It is clear that, in a solution, 
f, 7, and a have different values and that, for the molal standard state 
when ym = 1, fC and aN2 will not be unity. When the concentration 
of the solute is expressed in molarity or mole fraction, the solute is at its 
standard state in a solution having a different concentration. 

Activity of Cadmium in Cadmium Amalgam. 1. The Saturated 

Amalgam as the Standard State.—We have indicated that any state of a 
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substance may be selected as the standard state and that when the 
necessary free energy data are available the activities relative to this 
state may be derived. Some of the principles involved in the calculation 
of activities and activity coefficients and in a change in standard state 
will be illustrated for solutions of cadmium in mercury. 

When cadmium is added to mercury, it dissolves in the liquid until 
a saturated solution is reached. According to Hulett and De Lury,1 
this saturated liquid amalgam at 25°c contains 5.573 per cent cadmium 
or 0.05902 gram of cadmium per gram of mercury. When more cadmium 
is added, a solid phase rich in cadmium is formed, which is in equilibrium 
with the mercury-rich liquid phase. Hulett and De Lury measured the 
difference in potential between a saturated amalgam and a series 
of dilute amalgams of cadmium down to concentrations of 1 part by 
weight of cadmium per 100 million of mercury. The very dilute amal¬ 
gams showed a drifting potential, however, probably because the cad¬ 
mium was slowly oxidized. Here a small amount of oxidation produces 
a large relative change in the amount of cadmium remaining in the dilute 
amalgam. Accordingly, we shall consider only the amalgams with the 
concentrations listed in column (2) of Table 19.1. Values for the emf 
of the cells formed with the saturated amalgam as one electrode and the 
dilute amalgams in turn as the other electrode, a solution of cadmium 
sulfate being the electrolyte, are listed in column (1). 

The cell may be indicated as follows: 

Cd(satd amalgam); CdS04(solution); Cd(dil amalgam) 

the reaction being the transference of cadmium from the saturated to 
the dilute amalgam as expressed by the equation 

Cd(satd amalgam) = Cd(dil amalgam) (19.95) 

From equation (19.4) or (19.91), we have, for the relation between the 
activity of cadmium and the change in free energy, 

AF = - Fcd(»td, = RT In (19.96) 
^'(uatd) 

It is evidently convenient to select the saturated amalgam as the standard 
state with a(satd> = 1, so that equation (19.96) becomes 

AF = Fcd(dii) = R,T In ol (19.97) 

where a! is the activity of the cadmium referred to the cadmium in the 
saturated amalgam as the standard state. 

Because the change in free energy is related to the equilibrium emf 

1 Hulett, G. A., and R. E. De Luky, J. Am. Chem. Soc., 30, 1805 (1908). 
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by equation (11.12), we have for these amalgams 

-nFE = AF = RT In a' (19.98) 

On substituting the proper numerical values in equation (19.98), we 
find the relation between log a' and E, which is 

log a' = - 
2 X 90,501 

2.3026 X 8.3130 X 298.16 
E = -33.816£ (19.99) 

From these values of log a', we obtain the values of a' listed in column 
(4) of Table 19.1. These values may be compared with the corresponding- 
values of the mole fraction in column (3). Observe that in the more 
dilute solutions the change in activity of cadmium is proportional to the 
change in mole fraction as required by Henry's law. The ratio a'/N, 
which is the activity coefficient a', is tabulated in column (5). The 
irregularities in the value of a' for the more dilute solutions indicate the 
presence of some experimental error. 

2. Cadmium in Mercury at N = 0 as the Standard State.—The selec¬ 
tion of the saturated amalgam as a standard state was arbitrary; it was 
justified on the grounds of convenience. However, the activities and the 
activity coefficients calculated on this basis have no theoretical signifi¬ 
cance. Because the activity parallels the concentration in the more 
dilute solutions, it is instructive to identify the activity with the mole 
fraction in these solutions. This procedure is equivalent to Method 3 
for which a = N at N = 0. 

Because of the experimental errors in the dilute amalgams reflected 
in the fluctuations of a! in this “ideal dilute solution" range, we must 
find some way of obtaining a reasonable limiting value for a!. We might 
arbitrarily select the solution containing 1 gram of cadmium per 1,000 
grams of mercury as representing the ideal dilute solution with ai = N\. 

If this is done, we may obtain the activities on the new scale from the 
general relation in equation (19.92) for the relations between activities 
on different scales. Thus, we have for the activity ratio for a second 
state, here the saturated amalgam, and a first state, here a dilute amalgam, 

= 0_2 

a[ ai 
(19.100) 

But a'2 was defined as unity, so that on the new scale the activity of the 
saturated amalgam is 

_ oi _ 0.001781 
°2 a[ 0.01621 

0.1099 

Observe, however, that the above method establishes a new activity 
scale on a single experimental point in the dilute range. We shall, 
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therefore, discard this method and shall set up a scale of activity a = a" 

that considers all the points given for the dilute range. 
Because a' == 0 and a" = N == 0 at infinite dilution, we cannot sub¬ 

stitute these values for a\ and ai in equatipn (19.100). However, if this 
equation is placed in the form 

a{ _ a[ 

a" a” 
(19.101) 

we see that the ratio of the activities of the saturated amalgam on the 
two scales is equal to the indeterminate 0/0, which can be evaluated. 

Fig. 19.1.—Graphical computation of the limiting value of an activity ratio for cadmium in 
mercury. 

Because we define a" as equal to N at low concentrations, we have, from 
equation (19.101), 

lim ~ = £ = a = 2 (19.102) 

It appears from column (5) of Table 19.1 that 0/0 has a value of approxi¬ 
mately 9.1. 

When all the values of log (a'/N) = log a' are plotted against N as 
in Fig. 19.1, a smooth curve may be drawn through all the points except 
those for the lowest concentrations, and these scatter about the curve 
that is extended to N = 0. From this graph the limiting value of log 
(a'/N) appears to be 0.9584, whence we have 0/0 = a'/N — 9.087. 
From equation (19.101), it follows that, because 

&2 
9.087 
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for the saturated amalgam, 

n" a- __!?*_ 

2 9.087 
1 

9.087 
- 0.11005 

Compare this value with that obtained when the 1/1,000 amalgam was 
selected as having an activity coefficient equal to unity. 

The ratio 0.11005 between the a" and the a' activity scales may now 
be used to calculate the activities for the other concentrations. These 
values are tabulated in column (6) of Table 19.1. The corresponding 
values of the activity coefficient a" are listed in column (7). The fluctua¬ 
tions of the values of a" about a mean value of unity at the lower con- 
centrations are an indication of the experimental errors in this range. 

3. Pure Cadmium as the Standard State.—In order to refer the activity 
of the cadmium in the amalgams to the activity of cadmium in the pure 
state where N = 1, we must know the difference in free energy, or some 
related function, between pure cadmium and the cadmium in one of the 
amalgams listed in Table 19.1. This free energy change and the cor¬ 
responding activity ratio may be calculated from the measured emf of a 
cell at 25°c containing pure cadmium as one electrode and the saturated 
amalgam at the other. For this cell,1 

Cd(c) = Cd(in satd amalgam); E = 0.05045 int volt (19.103) 

Because pure cadmium is selected as the new standard state, its molar 
free energy is F^d(c) and its activity is unity. If the activities on this 
scale are indicated as a'", we have, as before, 

AF — Fcd(satd) Fqj(c) — RT In U(^td) 

From the relations in equations (19.96) to (19.99), this equation becomes 

log cCd, = —33.8162? «= -33.816(0.05045) 
= -1.7060 

whence 
<Ctd) = 0.01968 

From this value, the activities in column (4), and equation (19.100), 
it is evident that the activities on this scale may be calculated for all the 
concentrations. These values of atn are listed in column (8). Observe 
that the activities of the cadmium in the amalgams are smaller than the 
corresponding mole fractions over the entire concentration range. 
Column (9) for the activity coefficients on this activity scale is left blank. 
The student should calculate these coefficients. 

The free energy change for the transference of cadmium between 
any two states can be obtained from the activity ratio on any scale. 

4 Parks, W. G., and V. K, La Meb, J. Am. Chem. Soc56, 90 (1934). 
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Thus, for the transference of a mole of cadmium from the saturated 
amalgam to the 1/106 amalgam we have, for these three scales, 

r tt rn 
d2 _ ^2 _ ^2 
T7 “77 T777 
flj (Zj 

so that, with the proper numerical substitutions, 

o2 _ O.OslOlO _ 0.04782 _ 0.05318G 
Oj ~ 1 0.11005 0.019G8 

0.0001619 

from which we have 

Because 

log - = 4.2092 = -3.7908 
Ox 

AF = -nFE = JR71 In -2 
Ox 

the emf corresponding to this activity ratio at 25°c is 

E = -0.02957 log - = 0.02957(3.791) 
a 1 

= 0.1121 volt 

which is the observed value listed in column (1). 
Gibbs-Duhem Equation.—Because the Gibbs-Duhem equation 

expresses a relation between the partial molal free energies of the different 
components in a solution, it enables us to calculate certain relations from 
limited data. Thus, for a binary solution at constant temperature and 
pressure, we have, from equation (18.22), 

N1 dFl = —N? d¥i 

From equation (19.4), therefore, 

N1 d In ai = —N2 d In a2 (19.104) 

At constant composition, we obtain, from this equation and equations 
(19.74), (19.76), and (19.78), the corresponding equations in terms of the 
activity coefficients 

N1 d In a! = ~A2 d In a2 (19.105) 
Ni d In 7i = — N2 d In y2 (19.106) 
Ni d In /1 = -A2dln/2 (19.107) 

These equations pernoit us to calculate the activities and activity coeffi¬ 
cients for one component from those of the other component. 

We shall here emphasize the fact that, because N2 = (1 — Ni) for a 
binary solution, (1 — Ni) may be substituted for N2 in any equation 
for the solution. Thus, for the ideal solution, the free energy of both 
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solvent and solute may be expressed in terms of the mole fraction of 
either component. 

dFi = RT d In Ni 
dF2 = RT d In N2 = RT d In (1 - Ni) 

(19.108) 

However, we cannot write the corresponding relations for a\ and a2; for, 
in general, a2 yA 1 — ai. For this reason, we find equations such as 
the Gibbs-Duhem equation useful. Only with its aid can the free 
energies of one component be calculated from those of the other. 

Problems 

19.1. Calculate the activity coefficient a!" for cadmium dissolved in mercury at 

25°c from the recorded values of the activity in Table 19.1, pure cadmium being the 

standard state. What is the value of this activity coefficient at infinite dilution? 

19.2. With the aid of the Gibbs-Duhem equation, calculate the activity of the 

mercury in the amalgams listed in Table 19.1. Consider pure mercury at 25°c as the 

standard state for mercury. What is the free energy change when 1 mole of pure 

mercury dissolves in the saturated amalgam? 

19.3. Show that for a solution having a single solute and a composition n2/ni the 

various concentration units are related by the equations 

log N2 — log m — log (1 -f 0.001 mMi) -f log (0.001 Mx) (19.109) 

log iV2 = log C — log [l,000d + C{ftfx — Mi) 1 + log Mx (19.110) 

19.4. For a solute that dissociates into v ions, show that the mole fraction N, of an 

ion is defined by 

Ni = 
rij 

n i -b vrii 
(19.111) 

If the molality of this ion is m», show that 

log Nt — log mx — log (1 + 0.001 vmMi) -f log (0.001 M i) (19.112) 

19.5. For a solute that dissociates into v ions, derive the relations between Ci, 

m», and Ni for one of the ions corresponding to the relations given in equation (19.87) 

for a single solute. 

19.6. For a solute that dissociates into v ions, show that the values of at, 7,, and/t 

for one of the ions are related by the equations 

— = 1 + 0.001 vmMi 
y< 
ai _ d + 0.001 CifMt - Mt) 

Si ~ d° 

fi d°m 

Vi " cr 

19.7. At 25°c the pressure of hydrogen is represented by the equation 

Pv = RT( 1 + 0.000537P + 3.5 X 10~8P2) 

Calculate the fugacity of hydrogen at 1, 100, and 1,000 atmospheres when the tem¬ 

perature is 25°c. 

(19.113) 

(19.114) 

(19.115) 
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19.8. Calculate a value for the fugacity of oxygen at 0°c and 1 atmosphere pressure 

using the Berthelot equation (Prob. 10.13) and the critical constants. Compare with 

the value derived with the coefficient B. 
19.9. The vapor pressure of propylene at 0°c is 5.75 atmospheres and the molar 

volume of the saturated vapor is 3,410 cc, according to W. E. Vaughn and N. R. 
Graves [Ind. Eng. Chem.., 32, 1252 (1940)]. The critical constants are Pc = 45.4 atm, 

Tc - 91.4 + 273.16 = 364.56% and v« = 180 cc. When the reduced pressure, 
pr = P/45.4, has the values 0.05, 0.1, and 0.1267 (saturation pressure), the com¬ 

pressibility factor of the gas P\/RT has the values, 0.954, 0.907, and 0.875 respec¬ 
tively, at 0°c. According to T. Batuecas [/. chim. phys., 31, 165 (1934)1, the density 

of propylene gas at 0°c is 1.9149 grams per liter. Plot a suitable function of propylene 

gas against pressure for the range 0 to 5.75 atmospheres and calculate values of the 

fugacity of the gas at 0° and the pressures, 0, 1, and 5.75 atmospheres. 



CHAPTER 20 

REACTIONS IN GALVANIC CELLS 

As indicated in the previous chapters, the total reversible work for a 
reaction that proceeds at constant temperature and pressure is measured 
by the change in the total work or Helmholtz free energy function A. 

Similarly, the net or useful reversible work is measured by the change in 
the Lewis or Gibbs free energy function F. At any given temperature 
and pressure the value of AF for a reaction is calculated from experimental 
data in one of the four following ways: 

1. From known values of the heat of reaction and the entropy of 
reaction. 

2. From measured values of the equilibrium constant or the equilib¬ 
rium partial pressures or activities of the reacting substances. 

3. From tabulated values of the function (F° — H%)/T and known 
values of the heats of formation at the temperature of zero absolute. 

4. From the measured reversible value of the emf of a galvanic cell 
in which the stated reaction occurs. 

We have discussed the first three methods in some detail; we shall 
here discuss the thermodynamic relations as applied to galvanic cells. 
The reactions of galvanic cells are important because they enable us to 
measure directly free energies and entropies for solutions of electrolytes 
that, in general, do not obey the laws of ideal solution. 

Galvanic Cells.—In galvanic cells, we meet two classes of electrical 
conductors: metallic conductors and electrolytic conductors. In metallic 
conductors, the electricity moves through the conductor without a cor¬ 
responding movement of the substances of which the conductor is com¬ 
posed. In terms of the electronic theory, the current of electricity consists 
of a stream of electrons that pass along from one atom to another in the 
conductor. On the other hand, in electrolytic conductors, called “ elec¬ 
trolytes,” the carriers of the electricity are of atomic or molecular size, 
some being positively and some negatively charged. The negatively 
charged particles have a charge equal to that of one electron or a simple 
multiple of this charge; the positively charged particles have a charge 
equal to one or more electronic charges but opposite in sign. In the 
conduction process, these oppositely charged particles, named “ions” by 
Faraday, move in opposite directions. 

When two metallic conductors, called “electrodes,” are dipped into 
an electrolyte, measurable electric potentials are set up. In chemistry, 

425 
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we are concerned primarily with the potentials at the boundaries between 
electrode and electrolyte and between electrolyte and electrolyte. How¬ 
ever, these potentials can be measured only on formation of a complete 
electrical circuit that contains, also, boundaries between metal and 
metal. If the electrodes differ in composition, electrical potentials exist 
at their junction as well as at the boundaries with which we are concerned. 
Furthermore, we cannot measure single potentials, so that measurements 
on galvanic cells give us only relative potentials, that is, the differences 
between potentials and not absolute potentials. However, the assign¬ 
ment of potentials in a circuit can be made in an arbitrary way so long 
as the observed potential differences are represented. This practice 
of using relative values, which is inherent in emf measurements, is 
analogous to the arbitrary assignment of zero relative heat content to 
the elements in the preparation of heat of formation tables. 

When the two electrodes of a galvanic cell with differing potentials are 
connected by a metallic conductor, a current flows in the circuit. In 
the external circuit, the conduction is metallic; within the cell, where the 
conduction is electrolytic, the current is transported bodily by the ions. 
At the electrode-electrolyte boundary where the change from electrolytic 
to metallic conduction takes place, the result is a chemical reaction. 
It is because of these chemical reactions, an essential part of the opera¬ 
tion of a galvanic cell, that we study the cells. 

Nature of Galvanic Cell Reactions.—In a cell the substance losing 
electrons to an electrode is being oxidized, and the substance gaining 
electrons from the other electrode is being reduced. Hence, the chemical 
reaction accompanying the flow of current is an oxidation-reduction reac¬ 
tion. In an oxidation-reduction reaction in a beaker where the reactants 
are mixed, the reaction is not reversible; but in the galvanic cell where the 
oxidation and the reduction take place in parts of the cell physically 
isolated from each other, the reaction may be made to proceed reversibly. 
Galvanic cell reactions are especially interesting and important because 
of their reversible character. 

At the same time, we must bear in mind that electrolytes carry the 
current through the cell; the complete cell reaction must show the mate¬ 
rials transported as well as the substances oxidized or reduced at the 
electrodes. Because electrolytic conduction between the electrodes is an 
essential requirement of galvanic cells, the types of reaction that can be 
studied thermodynamically in galvanic cells are limited. A few solid 
salts are somewhat conducting at temperatures below their melting 
points, but, as is well known, molten salts and solutions of acids, bases, 
and salts comprise the chief electrolytic materials, aqueous solutions of 
electrolytes representing by far the most important type of electrolytic 
conductors. 
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In accordance with the laws formulated by Faraday, the extent of an 
electrode reaction is always directly proportional to the quantity of 
current passing through the cell, one chemical equivalent of substance 
being oxidized at one electrode while one equivalent of substance is 
reduced at the other for each faraday of current passing through the cell. 
The faraday, or equivalent, was previously defined (Chap. 1) as that 
quantity of electricity, 90,501 int coulombs, which represents the elec¬ 
tronic charge per oxidation equivalent of an element or compound. 
The absolute proportionality between the chemical equivalent and the 
faraday is a basic fact without which we could not relate the maximum 
electrical work to the molar free energy change of a reaction. The 
exactness of Faraday’s laws has been fully verified. The number of 
chemical equivalents deposited per faraday of current is independent 
of the nature of the dissolved substance, the time or current strength, 
and the solvent. Richards and Stull1 found that the same weight of 
silver, within 0.005 per cent, deposits from fused silver nitrate at 250°c 
as from an aqueous solution of this salt at 20°c; and Cohen2 found that 
the same weight of silver deposits in a coulometer at pressures up to 
1,500 atmospheres as in a reference coulometer at atmospheric pressure. 

Electrode Reactions.—Because the reducing and the oxidizing action 
in a galvanic cell take place in different parts of a cell, it is frequently 
convenient to write separate partial equations for the two simultaneous 
electrode-electrolyte reactions. These partial equations are called the 
half-cell reactions. We shall consider first some reducing half-cell reac¬ 
tions in which electrons, denoted as e~, are added to some substance at 
an electrode. A familiar example is the reduction of silver ions to form 
a deposit of metallic silver on the electrode as in 

Ag+ + e~ = Ag (20.1) 

This is a common type of electrode reaction for metals. Hydrogen ions 
react similarly to form a deposit of hydrogen on an inert electrode such 
as platinum. 

2H+ + 2e- = II2 (20.2) 

This electrode is called a hydrogen electrode; it is illustrated in Fig. 20.1. 
At an inert electrode, many multivalent ions, such as the ferric, 

stannic, and cupric ions, may be reduced to the corresponding lower 
valence ions. Thus, 

Fe+++ + e~ = Fe++ (20.3) 

Still another type of reduction is the formation of negative ions from a 

1 Richards, T. W., and W. N. Stull, Proc. Am. Acad. Arts Sci., 38, 409 (1902). 
2 Cohen, E., Z. Elektrochem.} 19, 132 (1913). 
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neutral substance, such as chlorine gas, at an inert electrode. Thus, 

CI2 + 2e~ = 2C1- (20.4) 

An electrode at which this reaction takes place is called a chlorine elec¬ 

trode. As a modification of equation (20.1) or (20.4), we have the reduc¬ 
tion at a silver, silver chloride electrode. This electrode consists of a 

Fig. 20.1.—Diagram of a hydrogen electrode. 

deposit of crystalline silver chloride on a silver electrode, the electrode 
reaction being 

AgCl(c) + e- - Ag + Cl" (20.5) 

Figure 20.2 illustrates a silver, silver chloride electrode. The electrode 
reaction of the calomel half cell, frequently used as a reference electrode, 
is of this type. 

All the above electrode or half-cell reactions are reversible, the direc¬ 
tion of the reaction depending only on the direction of the current through 
the cell. At the electrode where the electrons pass from electrolyte to 
electrode, the electrode reactions (20.1) to (20.5) are reversed, and the 
electrode action is an oxidizing one, the oxidizing half-cell reactions being, 
respectively, 

Ag = Ag4* + e- 
H2 = 2H+ + 2e- 

Fe4"4* = Fe^*4* + e“ 
2C1- = CI2 + 2e~ 

Ag + Cl- - AgCl(c) + e- 

(20.6) 
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For each of the electrodes represented by the above reactions, a 
definite potential exists that depends on the concentration of the various 
substances and on the temperature and pressure. Because the half-cell 
reactions do not take place singly but only in pairs, the direction of the 
reaction depends on the relative potentials of the two half cells that are 
combined. Thus, if a silver electrode is combined with a hydrogen elec¬ 
trode, reduction takes place at the silver electrode and oxidation at the 
hydrogen electrode. The cell reaction for 
the passage of 1 faraday of current through 
the cell may be represented by a combina¬ 
tion of equation (20.1) (reduction) with one- 
half the reversed equation (20.2) (oxidation), 
as follows: 

Ag+ + e" = Ag 
iH2 = H+ + e- 

£H2 + Ag+ - H+ + Ag (20.7) 

Observe that the sum of the two electrode 
reactions does not include any negative 
ion in the reaction. However, during the 
cell reaction, these negative ions are mi¬ 
grating from the silver electrode toward the 
hydrogen electrode to preserve the electrical 
neutrality of the solutions. 

Reversible Cell.—In the previous section, we discussed half reactions 
that could be reversed by the imposition of a sufficient potential. Simi¬ 
larly, when the electrodes are reversible, the cell reaction, such as (20.7), 
can be reversed if a sufficient emf is opposed to that of the cell. This is 
not a sufficient criterion of reversibility in the thermodynamic sense, 
however. As was indicated in Chap. 7, the thermodynamically reversible 
process is the equilibrium process which may be made to proceed first in 
one direction and then in the other by an infinitesimal change in one of 
the thermodynamic functions. If a cell is reversible, the direction of the 
cell reaction may be controlled by infinitesimal changes in the emf at the 
electrodes. Thus, if at constant temperature and pressure the emf 
of the cell is exactly opposed by a counter emf as with a potentiometer, 
no reaction must take place in the cell. Because small currents pass 
through the cell in either direction during the process of attaining the 
balance with the potentiometer, the emf of the cell can remain unchanged 
at its equilibrium, maximum value only if the electrode reactions are 
reversible. All the above electrode reactions [equations (20.1) to (20.6)] 
are reversible in this complete sense. 

The statement that the direction of the cell reaction shall be com- 

Fig. 20.2.—Diagram of a silver, 
silver chloride electrode. 
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pletely controllable by the imposed emf implies that there is no reaction 
in the cell except at the electrodes, because only the electrode reactions 
can be controlled by the imposed emf. Any direct reactions among the 
contents of the cell result in a nonequilibrium process. Furthermore, 
if the measured emf of a galvanic cell is to be used in thermodynamic 
calculations it must represent the equilibrium value for some definite 
known reaction. In some cells, two reactions may proceed at one elec¬ 
trode simultaneously. In such an event, Faraday's laws are not violated 
because the total quantity of substance liberated at the electrode for 
each faraday of current is still 1 equivalent of the combined product. 
Here we cannot be sure, however, whether the measured emf is the 
equilibrium value for either or neither of the cell reactions. In general, 
the substances specified in the desired cell reaction should be the strongest 
oxidizing-reducing agents at their respective electrodes. If not, their 
reactions must be rapid compared with that of competing reactions. In 
the words of Gibbs,1 “ If no changes take place in the cell except during 
the passage of the current, and all changes which accompany the current 
can be reversed by reversing the current, the ceil may be called the perfect 
electro-chemical apparatus. ” 

A cell is said to be reproducible when another cell prepared in the 
same manner gives the same emf. Obviously, we cannot have confidence 
in having measured the equilibrium emf of a cell unless the cell is repro¬ 
ducible. However, the reproducibility of a cell does not indicate the 
nature of the cell reaction. As we shall find on application of thermo¬ 
dynamics, however, the emf of the cell changes in a definite way with a 
change in concentration of the reacting substances so that unless the 
emf changes in this fashion when the concentration of a substance is 
changed the actual cell reaction does not include these substances. 

In many cells, a single electrolyte or a uniform electrolyte is present. 
Cells of this type are said to be without liquid junctions. In other cells, 
however, the two electrodes are bathed in solutions that differ in composi¬ 
tion. Where the two half cells of such a cell meet there is an electrolyte- 
electrolyte boundary of variable thickness between the solutions of 
different concentration or composition. Such a cell is called a cell with 

liquid junction. 

Across this junction, there is diffusion of electrolytes from the solution 
of higher concentration to that of lower concentration. Because different 
ions have different mobilities, they tend to diffuse across the boundary 
at different speeds. A steady state is finally reached in which the faster 
ions drag the slower oppositely charged ions with them. Accordingly, 

1 “The Collected Works of J. Willard Gibbs,” p, 338, Vol. 1, “Thermodynamics,” 
Longmans, Green & Company, New York, 1928, 
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a junction potential is set up that is dependent on the relative speeds of 
the diffusing ions. The potential of such a junction cannot be measured 
directly, and it may be difficult to estimate. It can be calculated theo¬ 
retically for cells with one electrolyte1; for more complicated mixtures 
the treatment is less certain. When a saturated solution of potassium 
chloride is placed between the two half cells, the liquid junction potential 
may be reduced to a few millivolts 
but it is not entirely eliminated. 
Because of these uncertainties, cells 
are set up without liquid junctions, 
whenever possible. 

Conventions.—In Chap. 10, the 
reaction of zinc with hydrochloric acid 
was considered for reaction in a beaker 
and in a galvanic cell. The reaction 
is not easy to set up in a perfect elec¬ 
trochemical cell, but it will serve to 
illustrate the conventions used in dis¬ 
cussions of cells. A cell for the car¬ 
rying out of this reaction is illustrated 
in Fig. 20.3. It consists of a carefully 
prepared zinc rod, free from strains and impurities, dipping in a solution 
of zinc chloride, and a hydrogen electrode dipping in a solution of 
hydrochloric acid. The hydrogen electrode as in Fig. 20.1 consists 
of a sheet of platinum foil around which pure hydrogen is bubbled. 
When the surface of the platinum is coated with platinum black, it offers 
a suitable surface for the reversible fairly rapid oxidation of the hydrogen 
gas to hydrogen ions. This cell may be summarized in the conventional 
form 

-Zn; ZnCl2:HC1; H2,Pt+ (A) 

Here the semicolon (;) designates boundaries between electrode and elec¬ 
trolyte, the colon (:) designates boundaries or junctions between two 
electrolytes (liquid junctions), and the comma (,) between two formulas 
indicates that these substances are present together in solution or as 
coordinate parts of an electrode. The symbol Pt represents the inert 
electrode that supports the hydrogen gas as electrode material. It is 
used to represent inert electrodes in general. 

1 Methods of calculating liquid junction potentials are discussed in other places. 

See, for example, D. A. Maclnncs, “The Principles of Electrochemistry,” Chap. 13, 

Reinhold Publishing Corporation, New York, 1939, and M. Dole, “Principles of 

Experimental and Theoretical Electrochemistry,” McGraw-Hill Book Company, 

Inc., New York, 1935. 

Fig. 20.3.—Diagram of the cell Zn; 
ZnChrHCl; H2,Pt+ 
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When a liquid junction potential has been eliminated or has been 
corrected for, it is customary to indicate the step by the use of double 
vertical lines as in 

~~Zn; ZnCU || HC1; H2,Pt+; E — approximately 0.76 volt (B) 

All remaining potentials are attributed to the electrode-electrolyte 
junctions. Unless otherwise indicated, all numerical values of E are 
those for the emf at 25°c. 

The equation that represents the cell reaction when 2 faradays of cur¬ 
rent are produced by cell (B) is 

Zn + 2HC1 = ZnCU + H2; E = approximately 0.76 volt (20.8) 

As this cell reaction proceeds, the negative current passes through cell 
(B) from right to left; over the external circuit the electrons pass from 
the zinc electrode to the hydrogen electrode. When measured with the 
potentiometer, the zinc electrode is found to be negative with respect to 
the hydrogen electrode as indicated in cell (B). 

According to the convention now almost universally adopted, the 
free energy change is negative for reactions, such as (20.8), that proceed 
spontaneously from left to right as wTritten, and the emf is given a positive 
sign. Thus, the emf of the cell reaction (20.8) is +0.76 volt. If the 
reverse reaction is written, the value of AF becomes positive and E 

becomes —0.76 volt. The approximate value of the emf is here given, 
for the exact value depends on the concentrations of the electrolytes and 
the partial pressure of the hydrogen gas. 

As written, “positive” electricity travels from left to right in cell 
(B) for the spontaneous reaction. Unless the reverse polarity is clearly 
indicated, we shall always diagram cells with the positive electrode on 
the right so that the positive electricity passes through the cell from left 
to right for the spontaneous reaction. 

Free Energy Change in Galvanic Cell Reactions.—In Chaps. 10 and 
11, we discussed the relations among the emf of a cell, the electrical work 
that can be done by the cell, and the free energy change of the cell reac¬ 
tion. This discussion should be reviewed at this point. In practice, the 
emf of a cell is compared directly or indirectly with that of a Weston 
standard cell, which in turn has been compared with the national stand¬ 
ards in Washington. The composition and the cell reaction of this cell 
are indicated in Prob. 20.9. Because the emf of the Weston cell defines 
the international volt, E is expressed in international volts. The elec¬ 
trical work we done by a cell for each faraday of current is, therefore, 
96,501£ int joules or (96,501/4.1833)E defined calories. For n faradays, 

We — nFE = 96,501n£ int joules *= 23,068nE cal (20.9) 
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where the faraday constant has the values F = 96,501 int joules/int 
volt-equivalent and F = 23,068 cal/int volt-equivalent. 

Because n and F for a given reaction are constant, it follows from 
equation (20.9) that we has the maximum value when E has the maximum 
equilibrium value, that is, when the reaction is proceeding infinitely 
slowly. Because the free energy of a reaction is related not to the irre¬ 
versible work but to the reversible, isothermal, net or useful work, it is 
clear that only the reversible emf of a cell can be used in thermodynamic 
calculations. In the subsequent discussion, we shall always use the 
symbol E to denote this maximum emf of a cell. 

Galvanic cells are almost invariably operated under the experimental 
conditions of constant temperature and pressure. Under these condi¬ 
tions, a cell also does work of expansion, wP = P AT, against the atmos¬ 
pheric pressure P whenever an increase in volume results from the 
reaction. This work is relatively large whenever gases are produced or 
consumed in the cell reaction. Although the maximum reversible work 
wr of a cell is represented by 

wr = we + wP (20.10) 

the net useful work wf is identified with we and not with wT} so that, 
from equations (10.17) and (10.18), 

A FP = — w' = — we (20.11) 

which, when combined with equation (20.9) becomes 

AFP = -nFE (20.12) 

Change of Emf with Temperature.—The application of thermo¬ 
dynamics to electrochemical as well as to other types of equilibrium was 
first made by Gibbs in his paper “On the Equilibrium of Heterogeneous 
Substances.”1 Because of the relation of the equilibrium emf of a cell 
to the free energy, we can derive directly the change of emf with tempera¬ 
ture and with pressure. From equation (10.39), we have the general 
free energy equation 

dF = -S dT + V dP - Dw' (20.13) 

which may be applied to the various constituents of a cell or to the cell 
as a whole. At constant temperature and pressure, equation (20.13) 
becomes the familiar expression 

dF = —I)w' 

When the change in free energy is the result of a chemical reaction in the 

1 Op. cit.f pp. 331-349. See also his letters on electrochemical thermodynamics 
written in 1887 to the British Association for the Advancement of Science, ibid., pp. 
406-412. 
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cell (a change in composition), F1 being the free energy of the reactants 
and F2 that of the products, we have 

AF = F2 - Fi = -w' = -nFE 

which may be derived directly from equations (20.11) and (20.12). 
Again, for the change in free energy of the cell with temperature, the 

pressure and composition remaining constant, dP and Dw' are equal to 
zero so that, from equation (20.13) or (17.15), 

(d F)PtN = -SdT (20.14) 

The subscript N here indicates constant composition.1 In this process 
the requirement that Du/ shall be zero means that there shall be no 
chemical work or work of diffusion taking place in the cell that would 
cause free energy changes on their own account. 

Equation (20.14) can be used to represent constituents of the cell as 
well as the cell as a whole. Thus, for 1 mole of reactant in the cell at 
constant pressure and composition, we may write 

d fI = -sTd T (20.15) 

and, for 1 mole of product of the cell reaction, 

dFi = —dT (20.16) 

The partial molal quantities are used here to emphasize the fact that, 
although in this change with temperature we are dealing with a cell that 
does not change in composition, a cell with a different composition would 
have different partial molal values of these functions. Equation (20.15) 
hiay be subtracted from (20.16). For a cell reaction involving only these 
components 

dfi — dFI = d(Fi — FI) = d AF 
and 

S2 — Si = AS 

so that we obtain the equation 

(ir),., - f2017) 
previously derived as equation (10.56). The derivation is repeated here 
to emphasize the basic assumptions behind the equation. Observe that 
this change of free energy of reaction with temperature is at constant 

1 In Chap. 17, we indicated constant composition with the subscript n to show 
that the number of moles n remain constant during the differentiation. Because we 
are here using n to indicate the number of faradays or chemical equivalents, we shall 
indicate constant composition with the subscript N. 
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pressure and concentration. If the cell reaction now proceeds at the 
new temperature, an increase in free energy of reaction AF must express 
itself, according to equation (20.12), in a decrease in the emf of the reac¬ 
tion, so that 

or 

(20.18) 

(20.19) 

This equation was first derived by Gibbs; it was derived independently 
by Helmholtz. Because AS for an isothermal reaction is related to AF 
and AH, as in equation (10.51), the Gibbs-Helmholtz equation previously 
derived as equation (11.19) is readily obtained from equations (20.18) 
and (20.19). It may be expressed in the form 

A H = AF + T AS 

= —nFE + nFT 
dE 
d T 

(20.20) 

Although this equation may be placed in other forms for specific calcula¬ 
tions, we shall, as frequently as possible, utilize the simple fundamental 
formulas instead of more special forms. 

Calculations from the Gibbs-Helmholtz Equation.—Because of the 
interrelations between the various functions above, it appears that the 
numerical values of a function may be derived in a number of ways. 
Thus, AF may be calculated from known values of AH and AS obtained 
from thermal data or from the measured value of E for the cell reaction. 
The value of AS above may also be derived from the temperature coeffi¬ 
cient of a cell, as in equation (20.18), or from spectroscopic data. Simi¬ 
larly, the values of AH may be derived from several different types 
of experiment. Before we undertake detailed calculations, we shall 
discuss briefly the precision obtained from a combination of different 
data. The number of equivalents n appears as a factor in the calcula¬ 
tions, so that we shall evaluate the functions for 1 equivalent. 

If the value of AS per equivalent is to be accurate to 0.1 calorie per 
degree, the value of dE/dT must be known to 

^Qeg = 0.000004 volt/deg 

In practice, values of AE/AT for a temperature interval of, say 10°, are 
determined instead of values of the derivative dE/dT. 

If the temperature interval is 10°, the emf of the cell over this interval 
must be reproducible to 0.00004 volt per degree. This is higher accuracy 
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than is obtained in the majority of measurements. With this accuracy 
the value at 298.16°k of T AS, the reversible heat of reaction, can be 
determined to 30 calories. Again, if the value of AF per equivalent is to 
be accurate to within 30 calories, the value of E for the cell must be 
accurate to within 30/23,068 = 0.0013 volt. This accuracy has been 
exceeded for a number of cells. Under such circumstances, the accuracy 
of a value of AH calculated from emf data is likely to be limited more by 
the uncertainty in AS than by that in AF. 

1. The Reduction of Silver Chloride by Lead.—Values of E at 25°c 
and of AE/AT have been determined by Gerke1 for the cell 

for which 

and 

Pb(Hg), PbCl2; IlCl(lm); PbCl2, AgCl, Ag 

E = 0.4843 int volt 

= —0.000202 int volt/deg 

and for the cell 

for which 
Pb; Pb(C104)2; Pb(Hg) 

E = 0.0057 int volt 
and 

AE 
AT 

= 0.000016 int volt/deg 

(C) 

(J>) 

Crystalline lead chloride was added to the silver, silver chloride elec¬ 
trode so that a uniform concentration of this slightly soluble salt was 
present throughout the electrolyte. Otherwise, a liquid junction, and 
therefore a liquid junction potential, resulted. 

When cells (C) and (D) are connected in series, the result is equivalent 
to eliminating the potential of the lead amalgam electrodes and hence 
equivalent to the cell 

Pb, PbCl2; HCl(lm); PbCl2, AgCl, Ag (E) 
for which 

E - Ec + Ed = 0.4900 int volt (20.21) 
and 

= _0 000186 int volt/deg (20.22) 

Because the cell reaction for the passage of 1 faraday through cell (E) 
is 

iPb + AgCl(c) = iPbCl2(c) + Ag 

1 Gerke, R. H., J. Am. Chem. Soc., 44, 1684 (1922). 

(20.23) 
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we obtain from the values in equations (20.21) and (20.22), for this 
T*£kCI 1 ntl 

AF = —23,068(0.4900) = -11,303 cal 
and 

AS = 23,068(-0.000186) = -4.29 cal/deg 

whence the reversible heat of reaction is 

T AS = 298.16(—4.29) = -1,279 cal 

and the value of AH is 

AH = -11,303 - 1,279 = -12,580 cal 

Let us compare these values of AS and AH with those calculated 
from other sources. Using the entropies from Table 11.2 we have 

AS = Sa* + ispbci2 — -|spb sAgCi 

= 10.21 + 1(32.6) - 1(15.51) - 23.0 
= — 4.25 cal/deg 

Compare this value with the value —4.29 obtained above. 
Another value of AII is obtained from the heat of formation tables 

of Bichowsky and Rossini,1 from which we have, remembering that 
“heats evolved” are listed in these tables, 

AH — Ha« + iHpbCio — lllpb — Ha*ci 

= 0 - 1(85.71) - 0 + 30.30 kcal 
= —12,560 cal 

This value may be compared with the value of —12,580 obtained from 
the emf data. 

2. The Formation of Silver Chloride.—Similar calculations may be 
made with Gerke’s2 data for the cell 

Ag, AgCl(c); HCl(lm), AgCl(satd soln); Cl2, Pt-Ir (F) 

for which the cell reaction is 

Ag(c) + lCl,(g) = AgCl(c) (20.24) 
and for which 

AE 
E — 1.1362 int volts and ^ = —0.000595 int volt/deg 

From these data 
AF = -26,210 cal 
AS — —13.72 cal/deg 

1 Bichowsky, F. R., and F. D. Rossini, “Thermochemistry of Chemical Sub- 
etance8,” Reinhold Publishing Corporation, New York, 1936. 

a Loc. cit. 
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and, T being 298.16°k, 

T AS = -4,091 cal 

From these values, we find that 

AH = -26,210 - 4,091 
= -30,300 cal 

This value is identical with the value recorded in Bichowsky and Rossini's 
tables for the heat of formation of silver chloride at 18°c. The agree¬ 
ment with the entropy of formation calculated from the entropies in 
Table 11.2 is satisfactory. Here we find 

A/S = Sa*C1 — Sa* — '2'Scia 

= 23.0 - 10.21 - £(53.31) 
= 13.86 cal/deg 

We should warn the student here against misconstruing the kind of 
check we have just made. In the preparation of entropy or heat of 
formation tables, evidence is assembled from a variety of sources. It 
may happen that the particular datum we are comparing was weighted 
heavily in the preparation of the standard tables so that an apparent 
check may follow merely because the two values are based on the same 
experimental data. 

In the calculations just made, molar values of S and H were used. 
This procedure was proper because the cell reaction involved only solids. 
When the cell reaction includes electrolytes, we must use the correspond¬ 
ing partial molal quantities for the specified concentration. The par¬ 
tial molal quantities may differ widely from the corresponding molar 
properties of the pure substances. In solutions of electrolytes, the partial 
molal quantities have proved most necessary and hence most useful. 

Change of Emf with Pressure.—The influence of pressure on the free 
energy of a galvanic cell is easily obtained from the general equation 
(20.13). At constant temperature, there being no reaction in the cell, 
dT7 = 0 and Dtp ~ 0, so that (dF)T,N = F dP. If, now, the reactants 
and products of the cell reaction are considered separately, we have, for 
1 mole of reactant under the same conditions, 

dP! = Vi dP (20.25) 
and, for the products, 

d¥~2 = v2 dP (20.26) 

At constant pressure and composition, for these components 

- d¥i = d(F£ - Fl) = d AF 

and V; — V7 = AF, so that we obtain for the cell 

d(AF)p,* = AFdP (20.27) 



Chap. 20] 

and 

REACTIONS IN GALVANIC CELLS 439 

(tfL -4F 
(20.28) 

whence, from equation (20.12), 

I 

* 
ii >

 

(20.29) 

These relations were first derived by Gibbs1 (1878) and by Duhem.2 
In general, we find that for reactions among solids and liquids where the 
volume changes are relatively small, the work of expansion at moderate 
pressures may be neglected compared with the work resulting from the 
chemical reaction. For gases the influence of pressure on emf is much 
greater and cannot be ignored. If a mole of gas appears from the passage 
of n faradays of current through the cell, the other reacting substances 
being solid or liquid, we have, approximately, 

When this value of AF is substituted in equation (20.29), we obtain the 
equation 

nFdE = - RT d In P (20.30) 

which, when integrated between the limits E = Ei at P — 1 atm, and 
E = EP at P = P atm, becomes 

RT 
Ep — Ei = - 1 nP (20.31) 

When E is measured in international volts, F in international joules per 
volt-equivalent, and R is 8.3130 int joules per degree, equation (20.31) at 
25°c becomes 

Ep — Ei — — 8.3130 X 298.16 X 2.3026 
n X 96,501 

log P 

0.059141 
log P (20.32) 

The factor 0.059141, which represents the slope between the emf and the 
common logarithm of the concentration, is frequently met in electro¬ 
chemical calculations. 

Calculations on the Pressure Effects. 1. Cells Involving Only Con¬ 
densed Phases.—We have stated that, in cells in which only solids and 

1 Op. tit., p. 338. 
2 Duhem, P., “Le potentiel thermodynamique et ses applications,” p. 117, Paris, 

1886. 
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liquids react, the influence of moderate pressure changes on the emf 
(or free energy) of a galvanic cell may be neglected. It will be inter¬ 
esting to find the order of magnitude of these effects. For the reaction 

TlCl(c) + CNS~ = TlCNS(c) + Cl- (20.33) 

Cohen and Piepenbroek1 calculated the value of AV at 30°c from density 
data. At the same temperature, they measured the emf2 of the cell 

Tl(Hg), TlCNS(c); KCNS: KC1; TlCl(c), Tl(Hg) (G) 

for pressures up to 1,500 atmospheres. From these data, the value of 
dE/dP for reaction (20.33), obtained directly, may be compared with the 

Table 20.1.—Influence of Pressure on the Emf of the Cell* 

Tl(Hg), TlCNS(c); KCNS:KC1; TlCl(o), Tl(Hg) 

Pressure, 
atmospheres ! 

E, measured, 
volts 

E, calculated, 
volts 

1 0.00856 0.00856 
250 0.00927 0.00927 
500 0.00998 0.00998 
750 0.01069 0.01069 

1,000 0.01139 0.01140 
1,250 0.01211 0.01211 
1,500 0.01282 0.01282 

•Data of E. Cohen and K. Piepenbroek, Z. physik. Chem. 170A, 145 (1934). 

value of dE/dP calculated from equation (20.29) and the density data. 
For reaction (20.33) the increase in volume is calculated from the 

densities to be 

AV3o°c = —2.66e ± 0.080 cm3 

From equation (20.29), therefore, at 1 atmosphere pressure, 

(dE\ _ 2.66e X 0.10131 

\dP/30°C. 1 atm 96,501 
= 2.80 X 10~6 int volt/atm 

because n is unity and 1 cm3-atm = 0.10131 int joule. 
This value may be compared with that calculated from the emf data 

in Table 20.1. The experimental emf values in the second column were 
fitted by the equation 

Eso oc = 0.00856 + 0.00000284P (20.34) 

Observe the excellent agreement between the values of E calculated with 
this formula as listed in the third column and the measured values listed 

1 Cohen, E., and K. Piepenbroek, Z. physik. Chem., 167A, 365 (1933). 
* Ibid., 170A, 145 (1934). 
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in the second column. On differentiating equation (20.34), we obtain 
directly 

= 2.84 X 10“6 int volt/atm 

The two values of d£/cLP are in excellent agreement. It is evident that 
the influence of pressure on solids and liquids at moderate pressures is 
not important; for this reaction, the emf increases only 3 microvolts 
per atmosphere. 

2. Cells Involving Gases.—Because the hydrogen electrode is a stand¬ 
ard reference electrode, it is interesting to observe the influence of pressure 
on cells containing this electrode. Maclnnes1 and his coworkers investi¬ 
gated the hydrogen-calomel cell 

Pt, H2; HCI(O.Im); Hg2Cl2, Hg (H) 

up to pressures of 1,000 atmospheres at 25°c, the cell reaction being 

H2 + Hg2Cl2(c) = 2HC1(0.1m) + 2Hg (20.35) 

We give here the comparison between the calculated and observed emf 
values for this cell made by these workers. 

For reaction (20.35), the volume change is represented by 

AV = 2Vhci + 2v1Ik — Vhb2cI; - Vh2 

the v’s representing the respective molar volumes. The partial molal 
volume of the hydrochloric acid is here written because the molar volume 
of hydrogen chloride in a 0.1m solution may differ greatly from that of 
pure liquid hydrogen chloride. However, all the v’s except that for the 
gaseous hydrogen are small and compensating so that, in practice, only 
the molar volume of the hydrogen need be considered. 

At the lower pressures the molar volumes of hydrogen are well repre¬ 
sented by the ideal gas equation. Remembering that, because hydrogen 
gas is consumed in reaction (20.35), 

AV = —vHs = 
RT 
P 9 

we obtain, from equation (20.29), 

Ep — E\ RT: 
nF 

In P (20.36) 

This equation, except for sign, is identical with equation (20.31). (Why 
the difference in sign?) WTien the proper numerical factors are intro¬ 
duced in equation (20.36), n being 2, we obtain the equation 

1 Hainsworth, W. R., H. J. Rowlet, and D. A. MacInnes, J. Am. Chem. Soc., 
46, 1437 (1924). 
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EP — Ei = ° °^914 log P = 0.02957 log P (20.37) 

for the change of emf with pressure. The values of EP — E\ calculated 
from equation (20.37) are plotted against log P in Fig. 20.4, forming 
curve A, which has the theoretical slope 0.02957. The experimental 
values of EP — Ei at the same pressures are represented by the circled 
points on the same graph. Observe the excellent agreement between 
the calculated and observed values at pressures below 100 atmospheres. 

Fig. 20.4.—The change with pressure of the emf of the cell: Pt, H2; HC1(0.1m); 
Hg2ei2, Hg. 

At higher pressures, the molar volume of hydrogen was calculated 
from the empirical equation 

Pv = RT(1 + 0.000537P + 3.5 X 10~8P2) (20.38) 

the P and P2 terms on the right representing the corrections for the ideal 
gas equation at the higher pressures. When this formula is substituted 
in equation (20.29), we have 

nF o = RT Q, + 0.000537 + 3.5 X 10~8P 

which, when integrated between the pressures P = 1 atm and P = P atm, 
becomes 

EP - Ei = ^ [In P + 0.000537 (P - 1) + 1.75 

X 10-"(P2 - 1)] (20.40) 
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This equation is represented in Fig. 20.4 by curve B, which deviates from 
curve A at pressures above 100 atmospheres. Observe that curve B 
represents the experimental data, indicated by the circles, for pressures 
up to 600 atmospheres. At still higher pressures, it appears that the 
molar volume of hydrogen can no longer be used to represent — AF for 
reaction (20.35). 

Change of Emf with Concentration.—We have already derived rela¬ 
tions between free energy and concentration for reactions involving ideal 
gases and solutions. Because the free energy in a galvanic cell is related 
both to the emf of the cell and to the concentrations of the cell constit¬ 
uents, it appears that emf and concentration must be related to each 
other. The change of emf of a cell with pressure of hydrogen was dis¬ 
cussed above. We shall here derive the general relationship between emf 
and concentration. 

For ideal gases and solutions, the differential expression for the rela¬ 
tion between free energy and concentration for any constituents is given 
by equations such as (19.1) and (19.2), namely, 

dr = RT d In P 
dF = RT d In N 

However, solutions of strong electrolytes show the widest departures 
from the laws of ideal solutions, so that concentrations cannot be related 
to the free energy and emf according to the ideal solution equations. 
For this reason, Lewis introduced the empirical activity function a, 
defined in equation (19.4), which we shall here write in the partial molal 
form 

dT = RT d In a (20.41) 

This function is applied only to the nonideal constituents. When ideal 
gases participate in cell reactions, we shall continue to represent their 
activities by their partial pressures. 

Consider again the general chemical reaction 

aA + bB = dV + cE (20.42) 

in which the participating substances A, B, D, and E, may represent 
reacting ions in a cell reaction. When o!K is the initial activity and aa the 
equilibrium activity of the substance A, the change in free energy when 
1 mole of A is transferred from the initial to the equilibrium state is 
represented by the equation 

fl - VA = RT In £ (20.43) 
aA 

which may be obtained by integration of equation (20.41). Correspond¬ 
ing equations may be written for the substances B, D, and E. When the 
partial molal free energy equations for these substances are combined 
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according to the methods of Table 12.1 and equation (12.16), we have, 
for reaction (20.42), 

AF = o(fI - f£) + b(Wg - i?) + cZ(f£ - F5) + c(fe - F£) 

- RT [ln (?)” +(?)1+ ln (t)1 +ln (£)!" 
= RT ln — XT ln rtD<W 

ai°aB6 aA0aBl> 
(20.44) 

We here remind ourselves that the ans represent the initial activities 
of the reactants and the final activities of the products and the a’s 
represent the equilibrium values. The ratio of the a1 s in the last term 
of equation (20.44) is, therefore, the equilibrium constant Kaj previously 
defined in equation (12.84). When equation (20.44) is combined with 
(20.12), due regard being paid to sign, the result is 

r RT. a'jfa'jz* RT, „ f . 
E ~ nF n ai“4 + nF n Ka (20.45) 

Observe that the emf of a cell is a function of the initial and final activities 
of the reactants and products as well as of the equilibrium constant. 

The change of emf of a cell with concentration may be expressed by 
other formulas. If E,f is the emf of a cell in which the initial activities 
of the reactants and the final activities of the products are expressed as 
a,ns, as in the equation 

pn „ RT In a'vdaEe j RT 1 p /Of) Af\\ 

E - - nF~ ln + ^F ln K* (20-4(,) 

and Ef is the corresponding value of E in equation (20.45), where the 
initial and final activities are expressed as ans, equations (20.45) and 
(20.46) may be combined to give the equation 

E" - E' = 
RT, o!&a%? 
nF n afj?a!£ 

RT a"VE'< 
nF m 

(20.47) 

Equation (20.47) contains no term corresponding to the equilibrium 
constant, although the activity terms have the same form as the equilib¬ 
rium constant term. Observe that the a’$ in these terms are not the equilib¬ 
rium values but the values for the constituents in the cell as set up and 
measured. 

This ratio of the a’s, which appears in the general free energy expres¬ 
sion and in the emf formulas and which represents the initial-final and 
not the equilibrium values, may be represented conveniently by the 
symbol Q. Thus, for the a”s, 

Q' = (20.48) 
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The ratio Q has a value fixed only by the activities of the constituents of 
the cell. This value may be varied at will, but there is only a single value 
of K for a given cell reaction at constant temperature and pressure. 
When Q! and Q" are written for the ratios of the a"s and the arns in 
equation (20.47), this becomes 

E" - E' = In Q' — ^ In Q" (20.49) 

Equations of the form of (20.47) and (20.49) are especially useful in the 
treatment of concentration cells whose emf results entirely from changes 
in the concentrations of the cell constituents rather than from changes 
in their nature. 

Standard Emf of a Cell.—In dealing with free energies, it is convenient 
to fix the initial and final concentrations so that they represent the stand¬ 
ard states of the pure substances at which partial pressures or concentra¬ 
tions are unity. Under these conditions, the standard free energy 
equation takes on the simple form 

AF° = -RT\n K (20.50) 

as in equation (12.21). The standard states of pure substances can be 
realized in practice. If the reacting substances are not at their standard 
states, they can be brought to these states by known manipulations with 
known or measurable free energy changes. In this way, the standard 
free energy can be evaluated and then used to derive the numerical value 
of the equilibrium constant. 

If each reacting substance in a galvanic cell is in its standard state so 
that its value of a' is unity, the first term in equation (20.45) disappears, 
and the cell has the standard emf E° defined by the equation 

PT 
E° = ~~ In Ka (20.51) 

which corresponds to equation (20.50). The mathematical step is here 
simple, but the experimental realization of the standard state for elec¬ 
trolytes is difficult. Indeed, there is no direct experimental procedure 
by which a solution can be prepared in which all the constituents have a 
desired activity. We can prepare a one molal or a one molar solution 
of sodium chloride even though other substances are present in the solu¬ 
tion, but we cannot set up a solution in which the chloride ion has an 
activity of one molal regardless of the character of the other constituents 
of the cell. On the other hand, the emf of a cell changes with activity 
of the chloride ion whenever this ion is one of the reacting substances 
even though the molality of the ion remains unchanged, but the emf 
remains constant when the activity remains unchanged even though 
the concentration of the chloride ion is altered. 
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An inspection of equations (20.44) and (20.45) shows that these equa¬ 
tions give only ratios of activities and not the absolute values of these 
activities. It appears, therefore, that emf measurements in themselves 
cannot evaluate the activities of substances whose standard states can¬ 
not be realized directly. If a value of Ka can be obtained by some 
independent method, it can be used to set up a value of E°, which can 
then be combined with the experimental value to E to give values of 
activity relative to those of the standard state. Or the experimental 
data can be extrapolated to infinite dilution as we did for the cadmium 
amalgams in Chap. 19. Numerical values of the a1 s in the experimental 
range relative to the standard state can then be obtained. 

If E° has been evaluated by an extrapolation method or by some 
independent method, this value may be substituted in equation (20.45) 
to give 

* = £°-S'lnif <20-52) 

From the definition of Q in equation (20.48), it appears that equation 
(20.52) may be written in the form 

T>rn 

E = E° In Q (20.53) 

which has special usefulness in the so-called “oxidation-reduction” 
reactions. When Q is made equal to K the cell is at equilibrium and E 
(and AF) become equal to zero. 

Standard States for Electrodes.—For metallic electrodes, the standard 
state usually chosen is that of the electrode in its stable crystalline form 
at the cell temperature. In some cells, the metal in a saturated two- 
phase amalgam is chosen as the standard state because the electrode so 
formed is more reproducible than the electrode of pure metal. Examples 
of amalgam electrodes are given in Table 20.2. In a two-phase amalgam 
the activity of the metal in both phases is identical and, therefore, inde¬ 
pendent of the gross composition of the mixture. 

Because the activity of a perfect gas is directly proportional to its 
pressure, the partial pressure of the reacting gas at a gas electrode must 
be carefully defined, the standard state for the gas being unit partial 
pressure or unit fugacity. When the partial pressure or fugacity of the 
gas at the electrode is P rather than unity, the change in emf of the cell 
with P may be calculated from equation (20.49). Consider a cell in 
which 1 mole of gas D is produced for n faradays of current. If all the 
other activities remain unchanged during this change in partial pressure 
of D, we have 

^ ) &b = — 1, (ijj — P, 
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so that, from equation (20.49), 

PT 
E" -E' = 0 - In P (20.54) 

which is identical with equation (20.31) derived for the change of emf 
with pressure. As stated earlier, this equation is based on the assumption 
that all other activities in the cell remain constant and that the activity 
of the gas is measured by its pressure. Figure 20.4 and the accompanying 
discussion show the pressure limits for the validity of these assumptions 
for one particular cell. 

Standard States for Electrolytes.—Early work showed that the emf 
of a cell is not uniquely defined by the concentration of reacting ions when 
these concentrations are expressed in normalities or molarities of these 
ions as estimated from so-called “ degrees of ionization.” For this rea¬ 
son, the standard state of an ion is now defined in terms of the hypo¬ 
thetical state of unit activity. As we stated in Chap. 19, however, the 
activity of a solute may be so defined that its value equals unity when 
expressed (1) in mole fraction units, (2) in molal units, and (3) in moles 
per liter, the standard state of unit activity being different in each case. 
The usual practice is to express the standard ion activity in terms of 
molalities so that a — 1 for an ion when my — 1. 

Standard Single Electrode Potentials.—The potential of a single 
electrode cannot be measured. However, all electrodes may be com¬ 
pared with some standard reference electrode and their potentials evalu¬ 
ated relative to the potential of this reference electrode. The standard 
hydrogen electrode with hydrogen gas at unit pressure and hydrogen ion 
at unit molal activity has been chosen as this reference electrode, its 
potential being arbitrarily called zero at all temperatures. The standard 
emf for the cell in which the standard hydrogen electrode is one electrode 
then becomes the standard single electrode potential of the other elec¬ 
trode. The sign of the single electrode potential still remains undefined. 
According to one convention, an electrode is given a positive sign when 
reduction at the electrode, as indicated in equations (20.1) to (20.5), is 
spontaneous compared with the reduction of hydrogen ion in equation 
(20.2). According to another convention, the electrode is given a positive 
sign when oxidation, as indicated in equations (20.6), is spontaneous 
compared with the oxidation of hydrogen. We shall follow the former 
convention; when the positive end of a cell is always written on the right, 
the emf of the cell and the single electrode potentials ER and EL of the 
right-hand and the left-hand electrode, respectively, are related by the 
equation 

E — Er — El (20.55) 
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Table 20.2.—Standard Electrode Potentials* at 25°c 

(Standard states: gases at unit fugacity, ions at unit molal activity) 

Electrode Electrode reaction 
Standard 
potential 

E°t volts 

Li*; Li. Li* 4 e" - Li -3.0243 
K*; K. K* 4- e~ - K -2.9239 
Rb+; Rb. Rb* 4 0- - Rb -2.9239 
Na*; Na. Na* + e~ «= Na -2.7139 
OH", HaO; Ha, Pt . HaO 4 2e" = 20H~ 4 H2 -0.8279 
Zn**; Zn. . . . Zn** 4 2e“ = Zn -0.7611 
OH", PbO(c); Pb. PbO(c) + HaO + 2e- - 20H~ 4 Pb -0.5785 
Cd**; Cd. Cd** 4 2e" = Cd -0.4021 
Cd**; Cd(Hg). Cd++ 4 2e~ - Cd(Hg) (satd) -0.3516 
804", PbS04(c); Pb(Ilg) . PbS04(c) 4 2e- = SO<— 4 Pb(Hg) (satd) -0.3505 
T1 *; T1. Tl* + e" = T1 -0.3385 
Co**; Co. Cof* 4 2e~ Co -0.283 
Ni**; Ni. Ni** 4 2e- -» Ni -0.236 
I-, Agl(c); Ag. Agl(c) 4 e“ » 1" 4 Ag -0.1522 
Sn**; Sn. Sn*+ 4 2e- - Sn -0.1405 
Pb**; Pb. Tb*+ 4 2e- ** Pb -0.1265 
H+; Ha, Pt. 2H* 4 2e“ « Ha ±0.0000 
Br", AgBr(c); Ag. AgBr(e) 4 e" =* Br~ 4 Ag 40.0711 
OH~ HgO(c); Hg. UgO(c) 4 HaO 4 2e“ - 20H“ 4 Hg 40.0976 
H*, SbaOj(c); Sb. Sb20*(c) 4 6H+ 4 6e~ « 3H20 4 2Sb 40.1445 
Cu++, Cu*; Pt. Cu*4 + e- - Cu* 40.159 
Cl", AgCl(c); Ag. AgCl(c) + e~ - Cl- + Ag 40.2225 
Cl', HgaCla(c); Hg. iHg2Ci2(c) + e- - Cl- + Hg 40.2681 
Cu**; Cu. Cu*+ 4 2e~ - Cu 40.339 
I- 12(c); Pt. Is 4 2e- » 21- 40.5350 

OH~, Mn04~, Mn02(c); Pt. Mn04- + 2H20 4- 3e“ - 40H~ 4 Mn02(c) 40.587 
SO4—, HgSCMc); Hg. HgS04(c) 4- 2e~ - SO4— 4* Hg 1 40.6141 
H*, quinhydrone; Au. Quinone(c) 4- 2H* 4- 2e~ hydroquinone 40.6994 
Fe***, Fe**; Pt. Fe*++ 4 e~ - Fe*+ 40.783 
Ag+; Ag. Ag* 4- e“ - Ag 40.799 
Hg**, Hg2++; Pt. 2Hg*+ 4* 2e- « Hg2*+ 40.906 
Br~, Br2 (liq); Pt. Br2(iiq) 4* 2e“ ■* 2Br~ 41.0651 
Mn**, MnCh(c); Pt. MnOs(c) 4 4H+ 4 2e" - 2H20 4 Mn** 41.236 
Cl"; Cli(g); Pt. Cl*(g) 4 2e- - 2C1“ 41.3587 
H*, AuaOs(c); Au. Au2Oj(c) 4- 6H + 4 6e“ — 3H20 4 2Au 41.360 
Pb**, PbOa(c); Pb. PbOs(c) 4 4H* 4 2e“ - 2HiO 4- Pb** 41.467 
Mn04~, MnOa(c); Pt. Mn04- 4 4H* 4- 3c- * 2HaO 4 MnOa 41.586 
Ce****, Ce+++; Pt. Ce++*+ 4 e~ - Ce**+ 41.609 
8O4”, Pb02(c), PbS04(c); Pt. Pb02(c) 4- S04— 4 4H+ 4 2e- » 2HsO 

4 PbSO<(c) 
41.685 

♦These are the values selected by D. A. Maclnnes, “The Principles of Electrochemistry,” 
Reinhold Publishing Corporation, New York, 1939. 

Thus, for the cell 

Zn; Zn++(o = 1) || H+(a = 1); H2, Pt (I) 

whose emf is E° = 0.7611 volt, 

£° = - £ L = 0.7611 volt 

= 0 - 0.7611 - -0.7611 volt 
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Single electrode potentials calculated in this way, all for substances 
in their standard states, are tabulated in Table 20.2. The corresponding 
half-cell reactions, all for the reducing action at an electrode, are listed 
opposite the standard potential. Table 20.2 therefore gives complete 
information on the reactions corresponding to each potential. If any 
of the half-cell reaction equations is reversed to show oxidation, the cor¬ 
responding potential must be given the opposite sign. 

From Table 20.2, for example, 

2H+ + 2e~ = H2; E°h = 0 
Zn4*4 + 2e~ = Zn; E%n = —0.7G11 volt 

f 

When the second equation is subtracted from (or reversed and added to) 
the first, the equation for the reaction of cell (7) is obtained, namely, 

Zn + 2H+ = Zn++ + H2; E° = 0 + 0.7011 = 0.7611 volt 

In this way the standard emf for any cell can be calculated from the 
single potential values. 

Problems 

20.1. According to W. G. Parks and V. K. La Mcr fJ. Am. Chem. Soc., 66, 90 

(1934)], who studied the cell 

Cd(c); CdSO4(0.5m); Cd (satd with Hg) 

for which the cell reaction is 

Cd(c) - Cd (satd with Ilg) 

the emf of the cell can be represented by the formula 

\0bE - 5,538 - 14.8* - 0.385/2 + 0.0075l* 

between 0 and 30°c, t being in degrees centigrade. For the transfer of 1 mole of 

cadmium to the saturated amalgam at 20°c calculate AF, AN, and AS. If the pure 

cadmium is selected as the standard state, calculate the activity of the cadmium in the 

saturated amalgam at 0, 10, 20, and 30°c. 

20.2. Write the half-cell reactions for the cell in Prob. 20.1. Does the potential 

of each half cell depend on the concentration of the electrolyte? Does the emf of the 

cell? 

20.3. From the standard electrode potentials (Table 20.2), calculate the standard 

emf of the cell 

Pt, H2; HCl(a - 1); Cl2, Pt 

Write the cell reaction. Calculate the standard free energy change and the value of 

the equilibrium constant for the cell reaction at 25°c. 

20.4. The chlorine at a chlorine electrode may be diluted by an inert gas, nitrogen. 

Calculate the emf of the cell in Prob. 20.3 if the partial pressure of the chlorine is 

0.75 atmosphere. 0.50 atmosphere. 

20.6. A hydrogen electrode is used in a solution in which the partial pressure of 

the water vapor is 22 mm at 25°c. The atmospheric pressure is 748 mm. What is 
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the difference in potential between this electrode and one whose partial pressure of 

hydrogen is 1 atmosphere? 

20.6. For the cell 

Ag, AgCl; 0.1m KC1; HgCl, Hg at 25°c, 103 jp « 2.66 ± 0.2 mv/atm 

Write the chemical equation for the cell reaction and the equation for the emf as a 

function of the activity of the cell constituents. What is the volume change for this 

reaction? Compare with the volume change calculated from the necessary density 

data. 

20.7. Write the cell reaction equations and the equations for the emf as a function 

of the activity of the cell constituents for the following cells. Where liquid junctions 

occur, assume that the liquid junction potentials have been eliminated. 

(a) Pt, H2; HCl(mx) || HCl(m,); Hi, Pt 

(b) Pt, H2; HC1 (mi) || KOHfaO; H2, Pt 

(c) Zn(Ni), (Hg); ZnS04(nn); Zn(AT,), (Hg) 

(d) Pt, H2; H2S04(C); Hg2S04, Hg 

« Ag, AgCl; HC1 (im); Hi, Pt; HCl(m2); AgCl, Ag 

(/) Cd(Hg); CdCl2(mi); AgCl, Ag 

(g) Cd; CdCl2(m1); Cl2, Pt 

(h) Pt, I,(c); KI(mi) || KCl(m2); Cl2, Pt 

20.8. Write the cell reactions and calculate the emf of the following cells at 25°c. 

Assume that liquid junctions have been eliminated. 

(а) Pt; Fe++(a - 1), Fe+++(a - 1) || Cl~(a - 1); C12(P * 0.5), Pt 

(б) Zn; Zn++(a « 0.1) || I“(a = 0.1); I,(c), Pt 

(c) Pb, PbO(c); OH-(a - 0.1); HgO(c), Hg • 

(d) Ag, Agl(c); I~(a = 0.01); I,(c), Pt 

(e) Pt, Hg2++(a = 1), Hg++(a - 0.1) || H+(a - 0.1); H,, Pt 

20.9. The Weston standard cell may be represented as follows: 

Cd (amalgam); CdS04(satd soln), Hg2S04(satd soln); Hg(liq) 

The chemical reaction upon the passage of 2 faradays of current through the cell is 

represented specifically by the equation 

Cd (amalgam) + Hg2S04(c) -f |H20(satd soln of CdS04) 

- CdS04 • f II20(c) -f 2IIg(liq) 

As the reaction proceeds, the CdS04 formed by the cell reaction removes f mole of 

water per mole of CdS04 from the saturated solution, resulting in the precipitation of 

more CdS04 than the above reaction calls for. The equation is, therefore, revised to 

Cd(amalgam) -j- Hg2S04(c) + zCdS04(aq) -f mH20 

- (1 + *)CdS04 • fH,0(c) + 2Hg(liq) 

where m = |(1 -f x). 
This reaction may be considered the sum of three reactions. Its heat of reaction at 

18°c may be calculated from the following data: 

(а) Cdy = Cd (amalgam) AHi = —5,675 cal 

(б) Cdy + Hg2S04(c) = CdS04(c) + 2Hgaiq) AH2 - • • • 

(c) CdS04(c) -j- xCdS04(aq) -f* mH20 

- (1 + a;)CdS04 • fH20 AH, » -7,890 cal 

For AH2) the 1‘International Critical Tables’’ values give —46,340 calories, and the 
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data of E. C. Cohen and J. J. Wolters [Z. physik. ChemtJ 96, 253 (1920)] give —45,346 

calories. 

(1) From the above data, calculate the heat of reaction for the standard cell 

reaction. 
(2) In the “International Critical Tables,” find, for the above cell, the equation 

for its emf as a function of temperature. From this equation, calculate £2»n dE/dT, 

and hence AF29i and A#29i. Compare the latter with the value calculated from 
thermal data in (1). 



CHAPTER 21 

SOLUTIONS OF ELECTROLYTES 

For the reasons previously given, the concentration of nonelectrolytes 
is best expressed in terms of mole fraction; the activity coefficient a then 
becomes a true measure of the departure of the solution from the laws 
of ideal solution. For historical and practical reasons, however, the 
concentration of solutions of electrolytes has generally been expressed in 
terms of the volume and mole ratio units, molarity and molality, respec¬ 
tively. Because of the influence of charged particles on each other and 
on the solvent, solutions of strong electrolytes deviate from the laws of 
ideal solution even though proper allowance is made for the increased 
number of solute particles resulting from the separation of the solute 
into ions. Furthermore, salts are usually not completely miscible writh 
water, so the entire range of solutions represents only part of the entire 
mole fraction range. Indeed, for many solutions the entire concentration 
range is represented by solutions so dilute that mole fractions, molalities, 
and molarities are proportional to each other for all possible concentra¬ 
tions. Under these conditions, the various activity coefficients indicate 
the influence and nature of the specific interactions of ions and solvent. 
In more concentrated solutions, they will, of course, indicate also ‘the 
departure from ideality resulting from the use of a function of the wrong 
form, as was stated in connection with equation (19.77). 

In this chapter, we shall apply all three of the methods of expressing 
concentration to solutions of electrolytes for all are used by important 
workers. The relations between the different concentration units dis¬ 
cussed in Chap. 19 should, therefore, be reviewed at this point. Because 
the concentration of the ions in an electrolyte is not always identical with 
the concentration of the electrolyte that furnishes the ions, some addi¬ 
tional definitions and conventions are required. Most of the relations 
that follow are applicable to solutions of electrolytes in general, but all 
of them can be applied specifically to aqueous solutions. 

Activity of Ions*—Because the properties of a strong electrolyte such 
as potassium chloride are essentially the properties of a mixture of potas¬ 
sium ions and chloride ions and because the solution has no properties 
that need interpretation in terms of un-ionized molecules, we shall follow 
the usage of the theory of complete ionization of strong electrolytes 
without further comment. 

452 
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Consider a solution of potassium chloride. In this solution, the 
activity of the potassium ion expressed as the usual function of the partial 
molal free energy of the potassium ion is 

fk+ — ?k+ = RT In aK+ (21.1) 

and the activity of the chloride ion in the same solution is expressed by 
the equation 

Fcr — Fci~ — RT In CLci- (21.2) 

In a formal way, the activity of the potassium chloride may be defined 
similarly, as in the equation 

fkci — Fkci = RT In aKci (21-3) 

If the standard states are so defined that 

“"5 -O I “7 
Fkci — Fk+ + FCr 

and the partial molal free energies of these constituents in the solution 
at nonstandard states have the same relation, we obtain, on combining 
these equations, 

Fkci — F^ci = (Fk+ + FCi-) ~ (?k+ + *ci~) 

= RT In (Ikci ~ RT In Uk+Uci- (21.4) 

Under these conditions, it is evident that 

Gkci = Uk+Uci- (21.5) 

Equation (21.5) serves as a definition of the relation between the activity 
of the salt and the activities of the component ions. 

In order to substitute numerical values for the activities in equation 
(21.5), we must be able to evaluate separately the activities of one or 
both of the ions. However, these ions coexist in the solution so that the 
activity of one kind of ion in the absence of the other cannot be determined. 
Because the individual ion activities are not determined, a mean activity 
a±, is introduced; this mean activity may then be substituted for the 
individual ion activities regardless of sign. 

When a± is substituted for aK+ and aci- in equation (21.5), we have 
the equations 

Ukci = Uk+Uci~ “ a±2 

a± = (aK+aCr)* 

Equations (21.6) serve as a definition for the mean activity of the ions 
in this salt. Observe that the mean activity is a geometric mean. 

Consider next a solution of barium chloride that furnishes two 
moles of chloride ion per mole of salt. The free energy of the chloride 

(21.6) 
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ion in such a solution is 

2fq— 2f£i- = 2RT In aC\- = RT In aci-2 (21.7) 

and that of the barium is represented by an equation corresponding to 
(21.1). For 1 mole of this salt, the free energy may be expressed in a 
form analogous to equation (21.4), namely, 

Fb*C1j ~ iLc, ~ (Fb»++ + 2Fcr) ~ (*WH H" 2Fcr) 

= RT In aB»ci2 = RT In aB^+acr2 (21.8) 

For barium chloride, it appears that the activity of salt and the activity 
of the ions are related by the equation 

aBaci2 = aBa++aci-2 (21.9) 

If, as before, the mean activity represents the geometric mean of the 
product of the individual ion activities regardless of sign, it is related to 
the activities in equation (21.9) by the equations 

OB.C = aB.+,aci-2 = a±s | (21.10) 

a± = (aBa++aCi-2)* ) 

It is apparent that these relations among the activity of a salt, the 
individual ion activities, and the mean activity of the ions can be gen¬ 
eralized. Consider the strong electrolyte B, which contributes v+ posi¬ 
tive ions indicated as D+ and negative ions, indicated as D~. Here 
the + and - subscripts indicate merely the sign of the charges and not the 
number of charges on the several ions. For this electrolyte, 

B = r+D+ + (21.11) 

If, as before, the free energy per mole of electrolyte is the sum of the 
ionic free energies, the standard free energy of the electrolyte being related 
to the standard free energy of the ions by the relation 

Fb = v+f® + vJfL (21.12) 

the activities of electrolyte and constituent ions are related by the equation 

a2 = a+v+a~p- = (a±)'+ (a±)= (a±)v (21.13) 

where v = v+ + p_. From equation (21.13), it follows that the mean 
activity is related to the activity of the electrolyte by the equation 

i 

a± - (a2y (21.14) 

Molality of Ions and the Mean Molality.—The relations indicated in 
equations (21.1) to (21.14) serve to define the relations between the 
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activities of the various constituents of a salt. Although these activities 
may be expressed in any of the usual units, they are most frequently 
applied to data expressed in molalities. For this reason, we shall utilize 
the molal system in the following section. 

Consider again the solution of barium chloride. In an m molal solu¬ 
tion of the salt the molalities of the barium ion and the chloride ion are 
related to that of the salt by the equations 

mBa++ = m 

raa- = 2m (21.15) 

If the solution is dilute enough so that the activity coefficient is unity, 
the activities of the ions become equal to the molalities of the ions so 
that aB*++ = mBa++ = m and aCi- = mCi- = 2m. It follows from equation 
(21.9) that 

aB»ci2 = (wb^+Xwci-)2 = (m) (2m)2 (21.16) 

In this solution in which the activity coefficients are unity, the mean 
molality m± may be defined as equal to the mean activity. From equa¬ 
tions (21.9) and (21.10) and this definition of mean molality, we have, 
the activity coefficient still being unity, 

so that 
a±z = m±z = 22m3 

a± ~ m± = ra(22)* 

(21.17) 

(21.18) 

From the derivation of this equation, it follows that for the general elec¬ 
trolyte indicated in equation (21.11) the mean molality is related to the 
molality of the electrolyte by the relation 

m± = m{v+v+v^v-)v (21.19) 

Because we have made no approximations that restrict these relations 
to solutions in which activity is expressed in molalities, we may immedi¬ 
ately define mean molarity of ions and a mean mole fraction of ions by the 
equations corresponding to equation (21.19), namely, 

l 

C± = C(r+'+p_'-); (21.20) 
and 

i 

N± = N(v+'+r-'-); (21.21) 

These methods of deriving the mean molality of a salt may be extended 
to a mixture of salts. Thus, in a solution in which potassium chloride 
is 0.1m and barium chloride is 0.1m, we have mK+ = 0.1, Wcr = 0.3, 

= 0.1 so that, for the potassium chloride 



456 INTRODUCTION TO CHEMICAL THERMODYNAMICS [Chap. 21 

m± = « (0.1 X 0.3)* 

and, for the barium chloride, 

m± — = [0.1 X (0.3)2]* 

Ion Activity Coefficients and the Mean Activity Coefficient.—From 
the relations between activities, concentrations, and activity coefficients 
defined in Chap. 19, we can now find the relation between the activity 
coefficients of the individual ions and the mean activity coefficient. 
For the general electrolyte in equation (21.11), let the activity coefficient 
of the positive ions be y+ and that of the negative ions be From 
equation (21.13) for the activity of this electrolyte and the general rela¬ 
tion between ra+, ra_, and m, we may write 

a,2 = a+v+a~v~ = (m+y+)v+(m-yj)v- ~ mv(v+v+v-.v-)(y+v+yvJ) (21.22) 

But, from equations (21.14) and (21.19), 

l i 

(a2)- = a± = m±( y+’+y-’-)* (21.23) 

Let us now define the mean activity coefficient y± as 

1 

y± = (y+v*y-v-Y (21.24) 

From equation (21.23), it appears, therefore, that the mean activity 
coefficient may also be defined as 

rt - (21-25, 

The mean activity coefficients for the other concentration units may be 
defined in an analogous manner. Thus, for concentration in moles per 
liter, 

/± = gj = (Wi-’-i* (21.26) 

and, for concentration in mole fractions, 

a± = W± = (<*+'♦<*-'-)' (21.27) 

As stated earlier, the individual ion activities cannot be measured 
experimentally. For this reason, the mean activity coefficients and not 
the individual ion activity coefficients are derived in practice. Where no 
qualifying subscripts are indicated, we shall, therefore, assume that the 
value of an activity coefficient is that of the mean coefficient. Observe, 
as before, that “mean” refers to the geometric mean. 
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Activity and Ionic Strength.—In the application of the law of mass 
action to strong electrolytes, it was early recognized that the equilibrium 
constant does not remain constant when the “active masses” of ions in 
the equilibrium constant expression are represented by the concentrations 
of these ions as calculated from the Arrhenius theory of the incomplete 
dissociation of the strong electrolytes. It was originally assumed that 
all electrolytes are incompletely dissociated because the conductivity 
of electrolytes increases with dilution, the limiting conductivity at infinite 
dilution being assumed to represent complete dissociation. However, 
strong electrolytes do not follow the Ostwald dilution law. Further¬ 
more, the solubility of slightly soluble strong electrolytes can be treated 
by the mass action law only as long as the total concentration of elec¬ 
trolytes is small, the solubility increasing markedly in the presence of 
indifferent electrolytes that do not react with the dissolving salt and do 
not have an ion in common with it. 

The increased solubility of a slightly soluble salt in a strong salt 
solution could not be explained satisfactorily on the basis of the Arrhenius 
theory. On the other hand, the enhanced solubility follows from the 
empirical rule that the presence of electrolytes of moderate concentra¬ 
tion decreases the activity of the dissolved salt so that a greater quantity 
must dissolve to maintain a definite activity and the corresponding 
partial molal free energy. 

After a study of the general decrease in the activity coefficient of an 
electrolyte in the presence of indifferent electrolytes in the dilute range, 
Lewis and Randall1 concluded that in any dilute solution of a mixture of 
strong electrolytes of the same valence type the activity coefficient of 
each electrolyte depends solely on the total concentration. Because 

' salts of the higher valence types have a much greater effect than univalent 
salts, Lewis and Randall introduced a new term, ionic strength, n, to 
permit the correlation of data on the influence of salts of all types. 

In a solution of a strong electrolyte, the ionic strength of the solution 
is defined as one-half the sum of the ion molalities, each multiplied by the 
square of its charge, the factor | being included because the sum includes 
both the positive and the negative ions. If is the charge of the ion i, 
this definition may be expressed as 

(21.28) 

With this definition, Lewis and Randall2 were able to state their principle 
of ionic strength concerning the influence of electrolytes on the activity 

1 Lewis, G. N., and M. Randall, J. Am. Chem. Soc.y 43, 1112 (1921). 
* Loe. tit. 
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coefficient: In dilute solutions the activity coefficient of a given strong elec¬ 
trolyte is the same in all solutions of the same ionic strength. As we shall 
see, this empirical rule proved to have a theoretical basis. It holds only 
as a limiting law, and it may be applied with reasonable accuracy only 
in dilute solutions (below 0.2m); even where it does not hold quantita¬ 
tively, it furnishes a convenient qualitative rule. 

For a uni-univalent electrolyte the ionic strength is identical with the 
concentration, that is, y = (m + m)/2. For a uni-bivalent electrolyte 

such as potassium sulfate, 
(2m + 4m) 

M = --o-- = 3m 

and, for a bi-bivalent electrolyte such as copper sulfate, 

(4m + 4m) 
u = --x-- = 4 m 

In other words the effectiveness of these salts in influencing activities 
is in the order of 1:3:4. 

Debye-Huckel Equation 

The first successful theoretical explanation of the observed activity 
of strong electrolytes was the theory of Debye and Hiickel,1 which explains 
the deviation of electrolytes from the laws of ideal solution in terms of 
the interionic attraction of the charged ions in the solution. The theory 
rests on a successful calculation of the potential of an ion surrounded by 
an ionic atmosphere that contains more oppositely charged ions than 
ions of the same kind of charge. Although limiting mathematical 
approximations and physical assumptions are made in the derivation 
that restrict its precise application, the equation has established its 
usefulness in dilute solutions where the approximations are valid. 

Electric Potential of an Ion.—Consider a positive ion in a solution 
surrounded by the charges of the remainder of the solution. Because 
of the attraction of opposite charges, a positive ion is surrounded by 
more negative ions than positive ions, the orienting force of the charges 
tending to overcome the dispersive forces of the thermal agitation of the 
ions. The potential of the central ion Debye and Hiickel found to be 
of the form 

A p~*r 
* = ~ (21.29) 

where A is an integration constant, e the base of the natural logarithms, 

1 Debye, P., and E. HUckel, Physik. Z., 24, 185 (1923). The theory as we shall 

outline it was not complete in this paper. It has been developed and improved by the 

authors and others. 
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r the distance for which the value of the potential \f/ is calculated, and k 

an important quantity defined by the equation 

-4 
4 Te22niZ* 

DkT 
(21.30) 

In equation (21.30), e is the electronic charge (positive); n* the number 
of ions of the charge z» per cubic centimeter; D the dielectric constant of 
the solvent; k the Boltzmann gas constant, that is, R/N, the gas con¬ 
stant per molecule; and T the absolute temperature. For the simple 
case of a uni-univalent electrolyte for which z for both positive and nega¬ 
tive ions is unity, equation (21.30) becomes simplified to 

K 4 ^ e2n 
DkT 

(21.31) 

The reciprocal of k has the dimensions of length. It is interpreted as the 
effective radius of the ionic atmosphere about the central ion. This 
radius is large for small values of k, that is, when the concentration of 
ions is small. Equation (21.30) shows also the importance of the charge 
of ions, the ions of high charge having much greater influence on k than 
univalent ions. 

The integration constant A can be evaluated for the limiting case of 
a very dilute solution where the concentration of ions is so small that k 
is very small and e~Kr = 1. The entire potential of the ion at the dis¬ 
tance r can then be attributed to the charge on the ion itself and not to 
any potential because of the ionic atmosphere. Because this potential 
for a point charge is 

= 

Zje 

Dr 
(21.32) 

it appears on comparison with equation (21.29) that A — z{e/D so that 
equation (21.29) becomes 

* = (21.33) 

An important step is now made in dividing the potential into two parts, 
one due to the charge of the ion itself and one ^ due to the ionic 
atmosphere around the central ion. Thus, ^ = \po + But, if has 
the value in equation (21.32), the potential due to the ionic atmosphere, 
from equation (21.33), is 

t - h - g (e— - 1) (21.34) 

The term e”“*r can be expanded in a series; for small values of kt the series 
becomes approximately equal to 1 — ter so that equation (21.34) becomes 
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^ (21-35) 

Equation (21.35) was derived on the basis of several simplifying assump¬ 
tions. If the ions are not considered to be point charges but to have an 
effective radius so that the distance of nearest approach is a, equation 
(21.35) has the more complicated form 

\Pi = 
Zie k 

D 1 + Kd 
(21.36) 

For ions of a single size, a represents the diameter of the ions; for a mix¬ 
ture of ions of different sizes, a must represent the mean effective diam¬ 
eter of the ions. Observe that, for very dilute solutions where k is small, 
equation (21.36) reduces to equation (21.35). 

Free Energy of Transfer of an Ion.—In an ideal solution, the free 
energy of transfer of a mole of substance from the concentration N\ to 
the concentration N2 is given by RT In (N2/N1). From the definition 
of activity, the corresponding free energy of transfer in a nonideal solu¬ 
tion is given by RT In (a2/ai). For a single molecule, the ideal and 
actual free energy change is, respectively, kT In (N*/N 1) and kT In (a2/czi). 
Because of the relation a = Na, we may divide the free energy of trans¬ 
fer into two parts, as in the equation 

Af = RT In - = RT In ^-2 = RT In ^-2 + RT In — (21.37) 
ai iViai N i on 

where the term RT In (a2/ai) represents the free energy change in excess 
of the ideal free energy change. This division of the free energy change 
into an ideal and a nonideal portion is used in explaining the deviations 
of ionic solutions from the ideal solution laws. 

Let us consider the reversible work of bringing a charged ion from an 
infinitely dilute solution to a solution in which its concentration is N 
and its activity coefficient is a;. In the infinitely dilute solution where 
N = No, the activity coefficient is unity. Let the ion be discharged 
while in the dilute solution, transferred without charge into its final 
ionic atmosphere in the final solution, and there charged reversibly. 
Because the reversible work done by a system is related to the free energy 
change of the system by the relation AF = — w', AF for this process is 
numerically equal to the reversible work done on the system. 

On the assumption that the ion without its charge behaves as an ideal 
solute, it follows that the work done on it in transferring it from the 
dilute to the concentrated solution is given by the equation 

At N 
Ideal work on the ion = *rr (ideal) = kT In 

N No (21.38) 
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But the electrical work of discharging and charging the ions is also a part 
of the reversible work of transfer. Per ion it is, 

/\y 

Electrical work on the ion = (electrical) = kT In a* (21.39) 

for a in the dilute solution is unity. For Anions, we obtain the important 
relations 

Af = AF(ideal) + AF(electrical) \ 

AF(ideal) = NkT In j^- = RT In F- ( (21.40) 

AF(electrical) = NkT In a* = RT In a* ) 

which relate the activity coefficient to the electrical work of transfer. 
The Debye-Huckel theory has been called the “theory of complete 

ionization” because it undertakes to explain the deviation of a solution 
of ions from the ideal laws entirely on the basis of the electric charges 
instead of on an assumed existence of un-ionized molecules in the ionic 
solution. Indeed, it has been so successful that the concept of the com¬ 
plete ionization of strong electrolytes is utilized almost universally. 
In solutions in which the solvent has a low dielectric constant, the asso¬ 
ciation of ions into more complex particles becomes important, but these 
associated complexes do not necessarily correspond to neutral un-ionized 
molecules. There is nothing in theory as developed, however, which 
prohibits its application to solutions of weak electrolytes that are known 
to be only partly dissociated into ions. When we apply the equations to 
strong electrolytes, we assume that the numerical values for the number 
of ions to be substituted in the formulas is the maximum number that 
the electrolyte can give, and for weak electrolytes we use the number 
of ions actually present. 

Electrical Work of Transfer,—In the previous section, we indicated 
that the electrical work of transfer, which has been equated with a func¬ 
tion of the activity coefficient in equation (21.39), can be derived from 
the reversible work of charging the ion in its new environment. This 
work evidently depends on the potential of the ion in the new and in the 
old environment. In equations (21.32) to (21.35), this potential was 
divided into two parts, that due to the charge of the ion itself and that 
due to the ionic atmosphere. But the ion in the dilute solution has the 
same charge as it has in the concentrated solution, although it has no 
ionic atmosphere in the extremely dilute solution. It follows that the 
work of discharge of the ion in the dilute solution at the potential of its 
own charge is exactly equal and opposite to the work of charging the 
ion at that part of the potential due to its own charge in the new solu¬ 
tion. The new electrical work of the transfer, therefore, arises from the 
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potential of the ion due to its ionic atmosphere, as indicated in equa¬ 
tions (21.35) and (21.36). The electrical work has been shown to be 
equal to one-half the product of the potential and the charge of the ion 
so that we have, per ion of charge 2«, 

Air 1 
~jyT (electrical) = (21.41) 

From this equation and equations (21.35) and (21.36), we have 

“ (electrical) = — (21.42) 

as the simple form and 

f (electrical) = (21.43) 

as a more exact form. We shall develop equation (21.42) only. The 
corresponding equations obtained with equation (21.43) can be readily 
derived. From equation (21.42), the electrical free energy of transfer per 
mole of the ion is readily found to be 

z2p2N 
AF(electrical) =-2lY K (21.44) 

The negative sign indicates that the transfer of the charge to the ionic 
environment proceeds with a decrease in free energy; that is, the process 
is spontaneous, tending to oppose the tendency of the ions to diffuse into 
the more dilute solution. 

Activity Coefficient of an Ion.—From equations (21.40) and (21.44), 
it is clear that the activity coefficient is related to the maximum electrical 
work of transfer of N ions from the solution where the coefficient is 
unity to the solution where it is a; by the equation 

-RT In a* = (21.45) 

Here cu is the activity coefficient of the ion that is transferred and Z{ is 
its charge. By the rules previously derived, a, is related to the mean 
activity coefficient. From equation (21.45), we have 

_ 3,;2e2 /01 acv\ 
1 f 2DRTK 2DkTK (21.46) 

where k contains the term for the concentration of ions. Before we 
substitute for k in equation (21.46), we shall call attention to the fact 
that its concentration unit is the number of ions per cubic centimeter, 
a volume unit, and a is the activity coefficient for the mole fraction unit. 
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The further assumption is, therefore, made at this point that oti = /*, the 
activity coefficient of the ion for the concentration in molar units. This 
step is equivalent to a substitution of C/Co for N/N0 in equations (21.40). 
This approximation is valid for the dilute solutions in which the final 
equation is found to hold. If other deviations from the Debye-Htickel 
equation did not appear in the more concentrated solutions, it would 
be necessary to introduce a correction term for the deviation of / from a 
in the more concentrated solutions. A similar statement applies when 
the molal activity coefficient y is substituted for a. With/* as the activity 
coefficient of the ion which is transferred, equation (21.46) becomes 

- In/; = (21.47) 

The value of k is indicated in equation (21.30), which contains a 
factor 2nt2i2 in addition to the constants found in equation (21.47), nt- 
being the number of ions of a particular kind and z. the charge of this 
kind of ions. This factor is readily converted to gram-ionic weights 
per liter, because, for one kind of ion, 

n __ l,000fti 

Accordingly, = (iV/l,000)(7tZi2. With this substitution, equation 
(21.30) becomes 

K = yll,000Dkf X CiZ<2 (21.48) 

But the summation of the molar concentrations of the various ions, 
each multiplied by the square of the charge of the ion, corresponds, except 
for the factor i and the use of Ci for mif to the definition of ionic strength 
in equation (21.28). If the ionic strength is here defined on the molar 
basis rather than on the molal basis, it is evident that we may substitute 
2/i for SCtZi2 in equation (21.48). This equation may now be substi¬ 
tuted in equation (21.47). When natural logarithms are converted to 
common logarithms, this equation then becomes 

, , _ z;2e3 V2irN/l,000 r 
l0g/t 2.3026(DkT)* Zi2A vTt (21.49) 

The factor A in equation (21.49) contains terms for the dielectric con¬ 
stant D and the temperature T in addition to the universal constants. 
Because k = R/N, the factor A in equation (21.49) has the value 

Af __ e*NW2*/1,000 _ 1.8243 X 106 
(DT)8 2.3026R*(DT)i (DT)} 

(21.50) 
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where the constants have the values given in Appendix I. This equation 
can be used for any solvent at any temperature. If the dielectric constant1 
of water has the values 88.25, 82.27, 80.35, and 78.49, respectively, at 
the temperatures 0, 15, 20, and 25°c, the values of A for aqueous solu¬ 
tions at these temperatures are, respectively, 0.4873, 0.4997, 0.5045, 
and 0.5095. The latter, 25° value of A, corresponds to the value 0.505 
commonly found in the chemical literature, and based on the older Mil¬ 
likan value of 4.774 X 10~10 abs esu for the electronic charge. 

Mean Activity Coefficient,—Equation (21.49) and the preceding 
equations express the relations for the activity coefficient of a single ion 
species, the factor zt* being the charge of this species. As was mentioned 
earlier, however, the activity of a single ion species in the absence of 
other ions cannot be measured experimentally. Because the mean 
activity coefficient is what is determined, it will be necessary to find the 
relation between /t- and /±. 

We shall do this for a binary electrolyte of the kind illustrated in equa¬ 
tion (21.11) for which the relation between the activity coefficients of 
the positive and negative ions and the mean activity coefficient is given 
by equation (21.26). From this equation, 

log f± = \ ("+ log /+ + v- log /-) (21.5]) 

If the ith ion in equation (21.49) is alternately the positive ion and the 
negative ion, we have, on substitution in equation (21.51), 

- log/± = A Vm (21.52) 

But, the solution is electrically neutral so that 

V+Z+ = V-Z- 

It can, therefore, be readily shown that equation (21.52) may be expressed 
in the form 

— log/± = z^-A Vm (21.53) 

In a pure uni-univalent electrolyte in water at 25°c, equation (21.53) 
has the simple form 

— log/± = 0.5095 \/m = 0.5095 y/C (21.54) 

because the ionic strength equals the concentration for such a salt. 
When the logarithm of the activity coefficient of such an electrolyte is 

1 The values of the dielectric constant are taken or calculated from the tabulation 
of N. E. Dorsey, “Properties of Ordinary Water-substance,’* Table 174, pp. 364-365, 
Reinhold Publishing Corporation, New York, 1940. 
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plotted against the square root of the molarity or molality, the slope 
should be —0.5. This limiting slope is approached by all strong elec¬ 
trolytes of this type in dilute solutions (below 0.01m). This agreement 
affords one of the tests of the Debye-Hiickel equation. 

In a uni-bivalent electrolyte, z+z~ = 2 and 

-log/± = 1.0 Vm (21.55) 

Here, /* is no longer equal to C. 
For a uni-tervalent electrolyte, it is evident that 

- log/± = 1.5 Vm (21.56) 

The limiting slopes 0.5, 1.0, and 1.5 for the three types of salt have 
been confirmed by experiment. This experimental confirmation of the 
theoretical slopes supports the general logic of the Debye-Hiickel equa¬ 
tion. At the same time, the Debye-Hiickel equation affords an excellent 
theoretical basis for the empirical principle of ionic strength of Lewis 
and Randall. 

More Complete Forms of the Debye-Hiickel Equation.—In the deriva¬ 
tion of the Debye-Hiickel equation, a number of simplifying assumptions 
were made. In part because of these approximations and in part because 
the specific properties of the individual ions become more important in 
concentrated solutions, the simple linear forms of the equation are 
approached only as limiting values, that is, in very dilute solutions. 
Various attempts have been made to extend the range of validity of the 
equation. One, of course, starts with the more exact equation (21.43) 
instead of equation (21.42) so that equation (21.53) becomes 

-,og/* - rr« v; <21-57> 
Because k is a function of the ionic strength expressible as B Vm, equa¬ 
tion (21.57) may be put in the form 

- log f± = 
z+Z-A yV 

1 -f- Ba \/~ix 
(21.58) 

B may be evaluated from the constants for k in equation (21.30). How¬ 
ever, when equation (21.58) is then fitted to the experimental data, a 
may or may not have values that are reasonable when interpreted as the 
mean ionic diameter. In practice, therefore, a is usually treated as an 
empirical constant. Equation (21.58) provides for the observed devia¬ 
tion from the straight line when log / is plotted against Vm- It does not 
provide for the minimum actually found for log / in the more concen¬ 
trated solutions, the values of log / then rising at higher concentrations. 
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In the above derivations, the dielectric “constant” D was treated as a 
constant, the value for pure water being used for the salt solutions. In 
these solutions, however, the properties of the solvent water are no longer 
identical with those of the pure solvent. Some correction for this effect 
may be made by the addition of another term to equation (21.58) so 
that it now becomes 

- log f± =■ :^-~7= " Cfl (21 -59) 1 + Ba v jx 

In practice, C in this equation is treated as an empirical constant, being 
given a value that fits the equation to the observed data. Equation 
(21.59) is sometimes simplified to 

— log f± = z+z-A Vm C'v (21.60) 

As we stated previously, the values of log / in these equations are 
really the values of log a. From the relations between a, 7, and / 
given in equations (19.113), (19.114), and (19.115), the true values of / 
and 7 may be obtained by the addition of the proper corrective terms to 
the above equations. 

Among the extensions of the Debye-Hiickel equation must be included 
that of Gronwall, LaMer, and Sandved,1 which takes into account the 
higher terms in the series expansion used in the evaluation of the poten¬ 
tial \p. The result is a complicated correction term to equation (21.57). 
This equation is successful in interpreting the activity coefficients of 
bi-bivalent electrolytes, such as zinc sulfate,2 that are not represented by 
the simpler equations. 

Measurement of Activity Coefficients 

If the limiting equation of Debye and Hiickel is to be tested, experi¬ 
mental values of activity coefficients must be available for dilute solu¬ 
tions. In these dilute solutions, the chances for experimental errors are 
great. The testing, therefore, must be made by methods that are accu¬ 
rate. These methods may be classified into three groups, solubility 
measurements, emf measurements, and measurements on the solvent. 
The solubility method may be used for nonelectrolytes as well as for 
electrolytes. The emf method is limited to electrolytes that participate 
in reversible reactions at electrodes. The solvent properties usually 
measured are freezing point lowering, boiling point rise, and vapor pres¬ 
sure lowering. The latter measurements may obviously be made on 
solutions of either electrolytes or nonelectrolytes, but they give the 

1 Gronwall, T. H., V. K. LaMer, and K. Sandved, Physik. Z., 29, 358 (1928), 
* Cowperthwaite, I. A., and V. K. LaMer, /. Am. Chem. Soc.j 63, 4333 (1931). 
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activity of the solvent directly. The activity of the solute must be 
obtained with the aid of the Gibbs-Duhem equation. 

Solubility of Salts.—For the solution of a slightly soluble salt, such 
as silver chloride, to form a saturated solution, we may write 

AgCl(c) = Ag+ + C1-; AF = 0 (21.61) 
and 

AF — AF° = RT In a+ + RT In a_ = RT In a+GL. (21.62) 

But, because AF = 0, 

AF° = -RT In K = RT In a+a_ (21.63) 
whence, 

K = a+a_ (21.64) 

This equilibrium constant K is the well-known activity solubility product. 
The solubility product constant was first derived in terms of the con¬ 

centrations of the ions rather than in activities; it was defined by the 
equation 

Kc — C+CL. (21.65) 

For a salt of the uni-univalent type, C+ = CL = s, where $ is the solu¬ 
bility in moles per liter. Accordingly, $ = \/Kc for the silver chloride. 
It was early recognized, however, that the solubility of a slightly soluble 
salt is greatly influenced by the presence of other salts that do not furnish 
an ion in common and therefore do not change the concentration of 
either the positive or the negative ion. Furthermore, the product C+CL 
does not remain constant when either C+ or CL is changed by the addition 
of some electrolyte containing one of these ions. 

These results can be explained in terms of the activity solubility 
product because 

K = a+a_ - (C+f+)(C-f-) = (C±)2(/±)2 = Kc{f±Y (21.66) 

If the result of an increased salt concentration in the solvent is to lower 
the activity coefficient of the saturating salt, f± takes on a value of less 
than unity and Kc must increase to preserve the constancy of K. 
Furthermore, since the Debye-Hiickel equation gives a quantitative esti¬ 
mate of the change of/ with salt concentration, it should give a quantita¬ 
tive estimate of the influence of additional salts on the solubility of the 
saturating salt. A measurement of the solubility of a salt in salt solu¬ 
tions may therefore be used as a test of the validity of the Debye-Hiickel 
equation. 

When the measurements are carried out in pure water or in salt water 
containing no ions in common; the calculations are simple. Consider the 
general case of a slightly soluble salt of the type indicated in equation 
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(21.11). The salt must not be too soluble lest the ionic strength become 
too high. For this salt, we may set up, in the usual manner, 

AF° * RT In K = RT In a+'+a-.'- (21.67) 

whence we obtain, for the activity solubility product, 

K = (a^)(a^) = (C+f+y+(C-f-)v- - (C±Y(f±Y (21.68) 
K « Kc(f±Y (21.69) 

These general equations may be applied either in the presence or in the 
absence of a common ion. If a common ion is not present and s is the 
solubility, C+ = p+s, CL = p_$, so that 

Kc = SV(v+v+V-*-) (21.70) 

Let us now compare the solubility s0 of the salt in pure water and its 
solubility s in a salt solution, fo being the activity coefficient of the satu¬ 
rating salt in pure water and / the corresponding value in the salt solution. 
It follows from equations (21.69) and (21.70), therefore, that, because p+ 
and p_ remain constant, 

sf = sofo = = const (21.71) 

and 
_$ = /o 

So f 
(21.72) 

The ratio of the solubilities in salt solution and in pure water gives 
directly the ratio of the activity coefficients in these two solutions. 

One of the first tests of the Debye-Htickel equation was given by the 
data of Brpnsted and LaMer1 on the solubility of some complex cobalt- 
ammines at 15°c. These salts are sparingly soluble, their solubilities in 
water at 15°c ranging from 0.00049 to 0.00005m. Analysis of these 
saturated solutions was simplified, for a number of equivalents of ammonia 
could be released and titrated for each mole of the complex salt. These 
workers tested the Debye-Htickel equation by the following method: 

From equations (21.53) and (21.72) is obtained the general equation 

log f * log/o - log / = Z+Z-A (Vm + Vmo) (21.73) 
So 

For the uni-univalent saturating salt 

[Co(NH3)4(N02)(CNS)]+[Co(NH3)2(N02)2(C204)]~ 

for which z+ « 2_ = 1, equation (21.73) becomes 

log— ® log/o — log/ = 0.5 Vm + const (21.74) 
So 

Be0nbted, J. N., and V. K. LaMeb, J, Am. Chem, 8oc.} 48, 555 (1924). 



Chap. 21] SOLUTIONS OF ELECTROLYTES 469 

because the ionic strength juo in water is constant. For the uni-bivalent 
saturating salt [Co^Hs^CgO^^SaOe) for which z+ = 1, z__ = 2, 
equation (21.73) becomes 

log - = log/o — log/ = 1.0 Vm + const (21.75) 
So 

For the ter-univalent saturating salt [Co(NH3)6]+++[Co(NH8)2(N02)2*- 
(C204)]3~ for which z+ = 3, z_ - 1, equation (21.73) becomes 

log ~ — log/o — log/ = 1.5 V7i + const (21.76) 
So 

Various values of the ionic strength fx were obtained by the addition 
of known quantities of salts such as sodium chloride, potassium nitrate, 
barium chloride, potassium sulfate, magnesium sulfate, and potassium 
cobalticyanide to the solvent water. In the solutions tested, the value 
of log (s/so) when plotted against Vm gave straight lines as required by 
equations (21.74), (21.75), and (21.76), the slope in each case being the 
slope of 0.5, 1.0, or 1.5 as required by the theory. 

In order to evaluate log f, however, it is necessary to know the value 
of log /o, fo being the activity coefficient of the saturated water solution 
of the salt. Because of the linear relation between log (s/s0) and Vm, 
it is possible to extrapolate the curve through the measured value of 
V7o for the saturated value in pure water to \x = 0, where the ions are 
so widely separated that / = 1, the extrapolated value of s in this hypo¬ 
thetical solution having the value s*. Because 

= — log / = ziz20.5 a/m + const (21.77) 
8 

values of log s/s* found in this way give values of — log / directly. 
Figure 21.1 shows the degree of correspondence between the activity 

coefficients measured in the different salt solutions and the limiting 
slopes predicted by the Debye-Hiickel equations for the different types 
of salts. The equations for the uni-univalent salt, the uni-bivalent salt, 
and the ter-univalent salt are represented, respectively, by curves A, B, 
and C. The agreement between the experimental and theoretical values 
is good. We should point out, however, that, when higher valence 
solvent salts are used with higher valence saturating salts, deviations 
from the linear relations begin to appear at low concentrations. 

Activity Coefficients from Emf Measurements.—Galvanic cells offer a 
convenient and accurate method of obtaining the activity coefficients 
of electrolytes. This method can be used whenever a cell can be set 
up that has a cell reaction involving the activities of the desired sub- 
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stances. The concentration of the electrolytes in a cell are usually 
expressed in molalities, especially when the cell reaction is studied at 
different temperatures, hence y is the activity coefficient evaluated by 
this method. 

When the value of E° for a cell is known, the activities of the constit¬ 
uents can be derived by a simple calculation. The values so derived, 

Fio. 21.1.—Relations between activity coefficient and ionic strength from the solubility of 
salts of different types in salt solutions. 

however, rest on the value of E° that is adopted, and this value in turn 
rests on an extrapolation of experimental data to zero concentration. 
Because the activity coefficient approaches unity when the concentration 
approaches zero, the precision with which this limiting value can be 
estimated depends on the rate of change of activity with concentration 
at concentrations below those which can be measured directly. If the 
Debye-Huckel equation is valid as the limiting relation, it is evident 
that y for an electrolyte cannot equal unity at any finite concentration. 
In other words, an electrolytic solution cannot be ideal at any finite 
concentration so that an extrapolation to zero concentration cannot be 
avoided. Some of the problems met in the extrapolation of experi¬ 
mental data and therefore inherent in the setting up of a table of activity 
coefficients will be illustrated. 
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Consider the cell 

Pt, H2;HCl(m); AgCl(c), Ag (A) 

for which the cell reaction is 

£H2 + AgCl(c) = H +(m) + Cl-(m) + Ag (21.78) 

The activity of the solids, silver and silver chloride, remains constant 
and is, therefore, assigned a value of unity in accordance with the usual 
definitions of the standard states so that, for this reaction 

dn+aci- 
(21.79) 

The emf of this cell depends, as indicated, on the experimental partial 
pressure of the hydrogen gas. The emf data reported in the chemical 
literature are usually for the cell with a standard hydrogen electrode, 
PHt being 1 atmosphere. Under these conditions, equation (21.79) 
becomes 

RT RT 
E = E° ——p In Uh+Uci- — E° — -~jr In (wiH+7n+)(wcr7ci-) (21.80) 

where 
nF 

RT 
E = E'-^mpn> 

For reaction (21.78) as written, n = 1, so that equation (21.80) may be 
put into the forms 

E = E° In (m±)2 - “ In (-y±)2 

E = E° - 2 
(2.3020)/?r. _ (2.3026)RT. 
--w1-lo6 m±-2 i--log y± 

(21.81) 

Activity Coefficient of Hydrochloric Acid.—For cell (A), Harned and 
Ehlers1 report values of the emf at temperatures of 0 to 35°c and for 
concentrations of hydrochloric acid ranging from 0.003m to 0.12m, the 
value at 25° for 0.1m hydrochloric acid being E = 0.35240 volt. In order 
to use equation (21.81) to calculate the activity coefficient of hydrogen 
chloride in this solution, we must have the value of E°. From their 
data, Harned and Ehlers derive the value of E° = 0.22239 volt. From 
substantially identical data, Maclnnes2 calculated 

E° - 0.2225 volt 

1 Harned, H. S., and R. W. Ehlers, J. Am. Chem. Soc., 54, 1350 (1932). 
1 MacInnes, D, A., “The Principles of Electrochemistry,” p. 186, Reinhold 

Publishing Corporation, New York, 1939. 
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The “International Critical Tables”1 value based on older data is 0.2221 
volt. 

A simple calculation shows how the values of the activity coefficient 
depend on the adopted value of E°. Let us calculate the values for 0.1m 
hydrochloric acid from the above data. From equation (21.81), 

2 X 0.059141 log Tdt = E° - 2 X 0.059141 log (0.1) - E 

Using the Harned and Ehlers value of E° and E = 0.35240, 

log y± = 
0.22239 + 0.11828 - 0.35240 

0.11828 
= —0.09917 

With E° = 0.2225 volt and the same E, 

log y± — —0.09824 
With E° « 0.2221 volt, 

log y± = —0.10162 

From these values of log y± the values obtained for the activity coeffi¬ 
cient of 0.1m hydrochloric acid at 25°c are, respectively, 0.7958, 0.7976, 
and 0.7914. Values of the activity coefficient of additional electrolytes 
are given in Table 21.1. 

Table 21.1.—Activity Coefficients* y of Some Electrolytes at 25°c 

Electro- 
Concentration, moles of electrolyte/1,000 grams of water 

lyte 
0.005 0.01 0.02 0.05 0.10 0.20 0.50 1.00 1.50 2.00 3.00 4. 00 

NaCl 0.928 0.903 0.872 0.821 0.778 0.732 0.680 0.656 0.655 0.670 
i 

0.719 0. 791 
KC1 0.927 0.902 0.869 0.817 0.770 0.719 0.652 0.607 0.587 0.578 0.574 
HC1 0.930 0.906 0.878 0.833 0.798 0.768 0.769 0.811 0.898 1.011 1.31 1. 74 
HBr 0.930 0.906 0.879 0.838 0.805 0.782 0.790 0.871 
NaOH 0.899 0.86o 0.806 0.759 0.719| O.681 0.66; 0.67i O.6S5 
CaCl* 0.789 0.732 0.699 0.584 0.524 0.491j 0.510: 0.725 1.554 3.384 
ZnCl* 0.767 0.708 0.642 0.556 0.502 0.448 0.376 0.325 0.290 
h2so4 0.643 0.545 0.455 0.341 0.266 0.210 0.155 0.131 0.125 0.142 0. 172 
ZnS04 0.477 0.387 0.298 0.202 0.148 0.104 0.063 0.044 0.037 0.035 0.041 
CdS04 0.476 

1 
0.383 0.199 0.137 0.061 0.042 0.039 0.030 0.026 

* MacInnss, D. A., “The Principles of Electrochemistry,” p, 167, Reinhold Publishing Corporation, 
New York, 1936. References to the original literature are given by Maclnnes. 

According to the calculations of Randall and Young,2 the value of y 
at 25°c both from freezing point lowering and emf measurements is 

1 “International Critical Tables/’ Vol. 6, p. 332, McGraw-Hill Book Company, 
Inc., New York, 1926. 

* Randall, M., and L. E. Young, J. Am. Chem. Soc., 60, 989 (1928). 
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0.796, in agreement with the Hamed and Ehlers value. However, 
Randall and Young secure the E° value of 0.2221 with this value of y. 
This means that their value of E° = 0.2221 volt is based on an observed 
value of E for the cell (A) different from that reported by Hamed and 
Ehlers. 

Evaluation of E°.—In the previous section, we listed three different 
values of E° for the cell (A). The “International Critical Tables” 
value of 0.2221 rests on a different experimental value of E for cell (A) 
than do the other values. Thus, if y = 0.796 is accepted as the activity 
coefficient of hydrochloric acid and E = 0.35240, we have from equation 
(21.81) the value 

E° = 0.35240 + 2 X 0.05914 log (0.0796) 
= 0.35240 - 0.13000 
= 0.2224 volt 9 

in agreement with that derived by Hamed and Ehlers. 
However, the value of E° calculated by Maclnnes rests substantially 

on the same data as those of Harned and Ehlers, the difference in E° 
resulting from different extrapolation methods. We shall, therefore, 
review these extrapolation methods briefly. 

1. Method of Hitchcock.1—Equation (21.81) may be placed in the form 

E + 2k log m = E0 — 2Jc log y (21.82) 

where k — 2.3026RT/F. Plotting the left side of equation (21.82) 
against ra*, on a large-scale plot, Harned and Ehlers obtained values of 
E for rounded values of m. Now, using the method of Hitchcock, who 
assumed that log y varies according to equation (21.60) so that 

log y = — 0.5ra* + bm (21.83) 

we find on combining equations (21.82) and (21.83) that 

E + 2k log m — km* = E° — 2k bm (21.84) 

The left side of equation (21.84) is now plotted against m. The graph 
has only a slight curvature; it may, therefore, be extrapolated to m = 0 
where the ordinate reading gives E° directly. 

2. Method of Brown and Maclnnes.2—With the above data, Maclnnes* 
used the more exact equation (21.58) to represent y, namely, 

- log y 
A' \/m 

1 + B'a y/m 
(21.85) 

1 Hitchcock, D. I., J. Am. Chem. Soc., 50, 2076 (1928). 
1 Brown, A. S., and D. A. MacInnes, J. Am. Chem. Soc., 57,1356 (1935). 
* “The Principles of Electrochemistry,” p. 185. 
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where A' and Bf differ from the constants A and B by the factor y/d? 
as required by equation (19.93). From equation (21.82), therefore, E" 
being defined by the relation 

E" = E + 2k log m 

we have, on combination with equation (21.85), 

E" - E° = -2k log 7=2k — Y™— (21.86) 
1 + B’a \/m 

Equation (2L86) may be rearranged to 

E" - 2kA' Vm = E° - (E" - E°)B'a y/m (21.87) 

It appears from equation (21.87) that a plot of the left side of the equa¬ 
tion against (E" — E°) y/m as abscissa should be a straight line with a 
slope of Bfa and an intercept qf E°. A tentative value of E° is necessary 
for this method. Using this method on the data of Hamed and Ehlers 
and of Roberts,1 Maclnnes obtained a straight line through the data, 
instead of the curved line of Hitchcock. This straight line indicates the 
value E° = 0.2225 volt. It appears, therefore, that the method used 
in extrapolation to infinite dilution is of some importance in the calcula¬ 
tion of E° values and the establishment of an activity coefficient scale. 

Activities from Freezing Point Measurements.—Consider ice in 
equilibrium with water in a solution, the fugacity of the ice being /(o) 
and its molar heat content being h(c). From equation (19.51), the change 
of fugacity of the ice with temperature is 

d In /(c) _ h* H(0) 

dT RT2 
(21.88) 

where h* is the heat content at a standard state of unit fugacity. 
Consider next pure undercooled water with a fugacity f° and a heat 

content Hi. For this substance, 

d In f° _ H* — Hi 

6T “ RT2 
(21.89) 

From equations (21.88) and (21.89), therefore, 

d In /(0) d\nf°_d\n (f(0)/f°) _ Hi - H(o) 

dT dT dT RT2 
(21.90) 

But, at equilibrium, the fugacity of the ice equals the fugacity fi of the 
water in the solution. The activity of the water at equilibrium may, 
therefore, be defined as 

ax = 
fl _ /(e) 

r r 
1 Roberts, E. J., J. Am. Chem. Soc52, 3877 (1930). 

(21.91) 
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Observe that the standard state here selected for the water is the under¬ 
cooled water at the freezing temperature. From equations (21.90) and 
(21.91) , therefore, 

9 In oi Hi - h(c) Ah, 
RT2 RT2 

where Ah, is the heat of melting of ice at this temperature. Equation 
(21.92) corresponds to the ideal solubility equation (13.26) previously 
derived, the two equations becoming identical when a± ~ N. 

For dilute solutions, the usual approximations may be made in inte¬ 
grating equation (21.92). If Ah, is assumed to remain constant, we 
find on integration between the limits a\ = a\ and ai = 1, where T = T 
and T = To, respectively, 

In ai = 
Ah, A _ j\ 

R \T Tj 
Ah, (To -J\ 
R \ TTo ) 

(21.93) 

For dilute solutions, TT0 is approximately equal to T02, and To — T is 
the observed freezing point lowering, which may be designated as 6. 
Equation (21.93) may, therefore, be put in the forms 

In ax = - 6 (21.94) 

and 

d In a, = - <16 (21.95) 

Equations (21.94) and (21.95) give relations between the activity 
of the solvent and the observed freezing point lowering. For the ideal 
solution where ai = Ni, the relation between activity of the solute and 
the observed lowering is obtained by a simple substitution of 1 — N2 
for Ni. For the nonideal solution, however, we must turn to the Gibbs- 
Duhem relation. Thus, from equation (19.104), the relation between the 
activity of the solvent and that of the solute is given by 

d In a2 = — ^ d In ai == — ~ d In ai (21.96) 
iV 2 712 

Equation (21.95) may, therefore, be written 

d ln as ns RT02 d° (21.97) 

For an aqueous solution in which n 1 = 1,000/Mi, Mi being the molar 
weight of water, and n2 equals the molality rn, equation (21.97) becomes 

, , 1,000Ah/ d& 1 d^ 
d ln at — — = j- 

M1RT02 m kf m (21.98) 
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where kf is the molality freezing point constant previously defined in 
equation (13.44). Equation (21.98) may be used for nonelectrolytes as 
well as electrolytes. For electrolytes, the activity of the solute is related 
to the mean ion activity as in equation (21.14). In terms of the mean 
activity, equation (21.98), therefore, becomes 

d In a± = - d In a2 = —V d0 (21.99) v vmkf 

Equation (21.99) may be evaluated by graphical integration. The 
computation is simplified, however, by the introduction of the j function 
of Lewis and Randall. 

Let j be defined by the equation 

=-1 - a 
Because the observed lowering 0 becomes identical with vmkf at infinite 
dilution, j becomes zero at infinite dilution. When equation (21.100) 
is differentiated and rearranged, it becomes 

dd 
vmkf v m J (21.101) 

A comparison with equation (21.99) shows immediately that 

d In a± = (1 - j) ^ - d j (21.102) 

In equation (21.19), we indicated the relation between the mean ion 
molality m± and the molality m of the solute. From this equation, it 
appears that 

i 

In m± = In m + In (v+p+vj'-)p 

which, when differentiated, becomes 

d In m± = d In m (21.103) 

for the y's remain constant during the change in concentration. If 
equation (21.103) is now subtracted from equation (21.102), we obtain 

d In — * d In » —j — — dj (21.104) 

Equation (21.104), therefore, gives a relation between the mean activity 
coefficient and j. Integrating equation (21.104) between the limits 
fn = and m = 0 where j = 0 and 7 = 1, we have 
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The value of the integral may be obtained graphically. It may also be 
obtained from the empirical relation of Lewis and Linhart,1 which 
expresses j in terms of m. 

j = 0m° (21.106) 

When equations (21.104) and (21.106) are combined and the resulting 
equation integrated, we obtain 

In y± 
f}ma 
--Pma a 
«« +1) m. - ma (21.107) 

A comparison with the Debye-Huckel equation indicates that a in 
this empirical equation should have the limiting value of It is evident 
that equation (21.105) may be combined directly with one of the forms 
of the Debye-Huckel equation, which expresses a value of log y±. In 
this way the empirical function [equation (21.106)] may be replaced by a 
function with a semitheoretical basis. 

Ionization Constants of Weak Electrolytes.—In the previous discus¬ 
sion, we treated strong electrolytes that are essentially completely ion¬ 
ized. The same general methods may be used to treat weak electrolytes 
when proper methods are available for evaluating the actual concentra¬ 
tion of the ions. Let us consider a weak acid HA, which dissociates 
according to the equation 

HA = H+ + A- (21.108) 

and for which the thermodynamic ionization constant is 

K = Qh+Ua- 

Uha 
(21.109) 

In general, the activities of the ions are functions of the ionic strength 
so that the simple “dissociation constants” 

Kc - QgC*: (21.110) 
Cha 

and 

Km = 
mH+mA- 

mKA 
(21.111) 

do not remain constant during variations in the salt concentration of the 
acid solution. The relation between the K and Km at any temperature 
as obtained from equations (21.109) and (21.111) is 

K = (m_H.7H*)(mA-TA-) _ Th^L* Km (21.i12) 
WhaTha 7ha 

1 Lewis, G. N., and G. A. Linhabt, J. Am. Chem. Soc., 41, 1951 (1919). 
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The corresponding relation between the thermodynamic ionization con¬ 
stant and the “constant” in terms of molarities is, evidently, 

K=f-M±:Kc (21.113) 
JHA 

Similar methods may be used to set up the constants for weak bases or 
for water. 

Ionization Constant of Acetic Acid.—Harned and his coworkers have 
determined the dissociation constants of a number of weak acids over a 
range of temperatures. The method will be illustrated by the data of 
Harned and Ehlers1 on acetic acid. The emf of the cell 

Pt, H2; HO Ac (mi), NaOAc(m2), NaCl(m3); AgCl, Ag (B) 

was measured at various temperatures and for various values of mi, m2, 
and m3. The cell is without liquid junctions; hence, the potentials are 
defined unambiguously. The cell reaction for this cell is 

£H2 + AgCl = H+ + Cl” + Ag (21.114) 

as for the reaction (21.78) of cell (A). The pressure of the hydrogen 
being 1 atmosphere, equation (21.80) is valid so that, for the cell 

RT 
E = E°--p- In (wiH+YH+wici-Ya-) (21.80) 

But, acetic acid ionizes like the weak acid in equation (21.108), so that 

K = 
Th+Toac- 

YHOAc 

mii+moAc- 

muoAc 
(21.115) 

Between these two equations, mH+ may be eliminated to give the equation 

E = E° 
RT, muoAoWci- 
In- 

F moAc- 
Th+7ci-7hoaq 

7h+Yoao- 
K (21.116) 

This equation may be rearranged to the form 

£ _ £° _L |n ^HOAcWfca- _ 

F moAc- 
RT j 7h *7ci-7hoac 

F 7h+7oac- 
(21.117) 

The values of E° have been accurately determined, and the values of E 
are measured at various known values of mHoAC, ma-, and moA*In the 
more dilute solutions, enough of the acetic acid dissociates so that the 
concentration of the acetate ion from this source must be added to that 
from the sodium acetate in the calculation of m0a0- Similarly, the con¬ 
centration of the undissociated acetic acid must be used for Whoa*. 

1 Loc. dt. 
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However, these corrections remain small in the presence of the excess of 
sodium acetate, and they may be readily made with the aid of a prelimi¬ 
nary value of the ionization constant so that the accuracy of the final 
calculation is not altered. 

The values on the left side of equation (21.117) are, therefore, all 
known or measured in this experiment. They may be plotted against the 
ionic strength ju as abscissa. Now the ratio 

7h+7ci- 

7h+7oac- 

equals unity at n = 0, and it varies little from unity at low ionic strengths. 
The same is true of the activity coefficient of the undissociated acetic 
acid yhoac Because the first term on the right of equation (21.117) 
varies in this fashion with fx and the last term is constant, the curve 
representing the plot of the left-hand terms of equation (21.117) against 
M should be nearly straight and its extrapolated value at y. = 0 gives the 
desired value of 

A second method of plotting may be used. Equation (21.117) may 
be placed in the form 

where 

E - E° + 
RT i mH0Acmci- 
F mQ AC- 

(21.118) 

K' = 7h+7ci -Thoac 

7u+7oac- 

K 

From the known values of the left-hand terms at various values of n, 
Kf can be calculated. These values of K' may now be plotted against m- 
Because the fraction expressing the ratio of the activity coefficients 
approaches unity at zero ionic strength as previously indicated, Kr — K 
at = 0. By this method, the value of the thermodynamic ionization 
constant of acetic acid at 25°c was found to be if = 1.754 X 10~5. 

Thermodynamic Ionization Constant of Water.—Similar methods 
may be used in the calculation of the ionization of water. Thus, the 
concentration of hydrogen ion in the cell without liquid junction 

Pt, H2; KOH(rai), KCl(ma); AgCl, Ag (C) 

is controlled by that of the hydroxyl ion according to the reaction 

H20 = H+ + OH- (21.119) 

For this ionization, the thermodynamic ionization constant is represented 
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by the equation 
_ Oh^Ooh; _ mH+moH. Mor (21.120) 

Ohso 7h,o 

By convention, the molality of water in 1,000 grams of water is assigned 
a value of unity. 

As before, let the cell reaction for cell (C) be represented by equation 
(21.114), there being, however, a further reaction according to equation 
(21.119), so that OH*" is consumed and H2O produced in the cell reaction. 

Between equations (21.80) and (21.120), mH+ may be eliminated so 
that 

E = E° - ~ In K, (21.121) 
r ttloH- 7h+7oh- 

This equation may be written in the form similar to equation (21.117), 
namely, 

E - E° + 
mCi- 

Won- 

RT 7h+7c[-7h2o 

F 7h+7oii- 

RT 
F 

In Kw (21.122) 

As already discussed for acetic acid, the right-hand side of equation 
(21.122) may be placed equal to — (RT/F) In K\ where 

K' = 'yH+7c»-7H,o 
7h+7oh~ 

The quantity K' is evaluated at various values of and at 
various temperatures from the measured values of E, and these values 
are plotted against the ionic strength. At each temperature, the activity 
coefficient ratio approaches unity at fj. = 0 so that an extrapolation of 
the value of K' to m = 0 gives Kw directly. From the data of Hamed 
and Hamer1 the value of Kw at 25°c is Kw ~ 1.008 X 10“14. 

Problems 

21.1. Calculate the mean molality m± for each of the following m molal solutions: 

CuS04, Al2(SOi)3, KHSO4. What is the mean molality of CuS04 and of K2S04 in a 

solution containing 0.2 mole of CuS04 and 0.2 mole of K2S04 per 1,000 grams of 

water? 

21.2. Calculate the ionic strength of a 0.01m solution of aluminum sulfate. Com¬ 

pare with a 0.01m solution of copper sulfate. What is the ionic strength of a solution 

containing 0.1 mole of NaNCb, 0.1 mole of BaCl2, and 0.2 mole of Na2S04 in 1,000 

grams of water? 

21.3. Calculate the value of B in equation (21.58) for water solutions at 25°c. 
21.4. Prove that the Br0nsted definition of ionic strength of a simple salt, 

where c is the number of equivalents per liter, is identical with the Lewis and Randall 

^Earned, H. S., and W. J. Hamer, J. Am. Ckem. Soc., 55, 2194 (1933). 
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definition in terms of molarities. For a mixture of salts show that 

M - l(CiZi + C2Z2 + • • ■ ) 

21.5. If the “mean ionic diameter” a has the value 3.5 X 10“8 cm, what per¬ 
centage error in the value of / will result from using equation (21.53) instead of 
(21.58) for a solution with an ionic strength of 1? 0.1? 0.001? 

21.6. From the relation between the ionic strength and the concentration of a pure 
uni-bivalent salt and a pure uni-tervalent salt, calculate the limiting slope at low 
concentrations when — log /± is plotted against \/C for these salts. 

21.7. At 25°c the limiting solubility of silver chloride is 1.309 X 10~5 mole per 
liter. What is the limiting molality? Calculate the solubility of silver chloride in 
0.01m potassium chloride solution and 0.01m sodium nitrate solution, the mean 
activity coefficients of these salts being 0.902 and 0.90, respectively. 

21.8. From the single electrode potential in Table 20.2 of the hydrogen electrode in 
solutions of H+ ions and OH~ ions, respectively, calculate the value of Kw for the 
ionization of water. 





APPENDIX 

Table I 

Ice point (0°c) 

Liter 

Atmosphere, standard (atm) 

(Pv)i.o°c - (RT)0oc 

International ohm 

International coulomb 

International volt 

International joule 

Calorie (cal) 

Faraday constant, F 

Molar gas constant, R 

—Some Accepted Constants* 

= 273.100 ± 0.010°k 

- 1,000.028 ± 0.004 cm3 

1.013250 X 106 dynes/cm2 

= 22,414.6 ± 0.4 cm3 atm/mole 

= 22.4140 ± 0.0004 liter atm/mole 

- 1.000494 ± 0.000015 abs ohm 

= 0.999838 ± 0.000025 abs coulomb 

= 1.000332 ± 0.000029 abs volts 

- 1.000170 ± 0.000052 abs joules 

m 4.1833 int joules 

= 4.18401 ± 0.00020 abs joules 

= 96,501.2 ± 10.0 int joule/int volt equiv 

= 23,068.2 ± 2.4 cal /int volt equiv 

= 23,060.6 ±2.4 cal /abs volt equiv 

= 8.31439 ± 0.00034 abs joules/deg mole 

= 8.31298 ± 0.00054 int joules/deg mole 

= 1.98718 ± 0.00013 cal/deg mole 

= 82.0567 ± 0.0034 cm3 atm /deg mole 

- 0.0820544 ± 0.0000034 liter atm/deg mole 

- (6.02283 ± 0.0022) X 1023/mole Avogadro number, N 

Boltzmann gas constant — (1.38048 ± 0.00050) X 10“16 erg/deg 

Planck constant, /i 

Velocity of light, c 

Electronic charge, e 

= (6.6242 ± 0.0044) X 10“27 erg sec 

= (2.99776 ± 0.00008) X 1010 cm/sec 

= (1.60200 ± 0.00060) X 10“19 abs coulomb 

= (4.80240 ± 0.00180) X 10“10 abs esu 

* American Petroleum Institute Research Project 44 at the National Bureau of Standards. Selected 

Values of Properties of Hydrocarbons. Tabic a, Values of Constants, Dec. 31, 1944; revised, Mar. 31, 

1945. 

483 
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Table II.—Relations among Various Energy Units* 

To convert any value expressed in one of the units in the left-hand column to 

the corresponding value expressed in one of the units in the top row of the table, 

multiply the former value by the factor in the block common to both units. -, 
Calorie Abs joule Int joule Liter-atm Int kilowatt-hr 

1 calorie. 1 4.18401 4.1833 4.12918 X 10~2 1.162028 X 10~6 

1 abs joule. 0.239005 1 0.999830 9.86896 X 10“3 2.77731 X 10-7 

1 int joule. 0.239046 1.000170 1 9.87063 X 10“3 2.77778 X 10“7 
1 liter atm. 

I int kilowatt- 

24.2179 101.3278 

i 
101.3106 1 2.81418 X 10”fi 

hr. 860,565 3,600,612 3,600,000 35,534.3 1 

* American Petroleum Institute Research Project 44 at the National Bureau of Standards. Selected 
Values of Properties of Hydrocarbons. Table 0 (Part 8), Conversion Factors. Units of Energy, 
Jan. 31, 1945; revised, Mar. 31, 1945. 

Table III.—Some Frequently Used Factors 

Factor 
Numerical 

value 

Common 

logarithm 

Ice point in °k. 273.16 2.43642 

25°c in °k. 298.16 2.47445 
Steam point in °k. 373.16 2.57190 
273.162*.... 74,616 4.87283 

298.162. 88,899 

139,248 

4.94890 

373.162. 5.14379 

273.163. 2.0382 X 107 7.30925 
298.163. 2.6506 X 107 7.42334 

373.163. 5.1962 X 107 7.71569 

In 10 =* In x/log x... 2.30259 0.36222 

R; In cal/deg mole. 1.9872 0.29824 

In int joules/deg mole... 8.3130 0.91976 

In liter atm/deg mole. 0.082054 2.91410 
F: In cal/int volt equiv. 23,068 

96,501 

4.36301 

In int joules/int volt equiv. 4.98453 

In the following R is in calories per degree, F in calories per international 

volt-equivalent 

2.3026 (298.16). 686.54 2.83667 

2.3026 R. . 4.5757 0.66046 

2.3026 R (298.16)... 1,364.28 3.13491 

2.3026 R (298.16) /F. 0.059141 5.77189 
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Aluminum, heat of combustion of, 120 

linear expansion of, 23 

Aluminum oxide, heat of formation of, 120 

American Petroleum Institute Research 

Project 44, 118 

Ammonia, vapor pressure of aqueous 
solution of, 211 

Ammonium hydrosulfide, dissociation of, 

277 

Ampere, 19 

international, 19-20 
Antoine equation, 205 

Approximations, mathematical, 3 

physical, 3 

Atmosphere, standard, 17 

Atomic disintegration, 31 

Atomic theory, and heat capacity, 4 

and thermodynamics, 3-4 

Avogadro number, 17 

B 

Barium sulfate, heat of formation of, 

from aqueous solution, 103 

Benzene, adiabatic change of temperature 

with pressure for, 197 

489 
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Benzene, coefficient of thermal expansion 

of, 197 

freezing point constants for, 294 

heat of solution of, with methanol, 109 

with toluene, 129-131 

table of, 131 

as solvent for molecular weight deter¬ 

minations, 294 

vapor pressure curve of, 303 

volume increase of, on solution with 

toluene, 135 

Benzoic acid, dissociation equilibrium 

of dimer of, 278 

standard heat of combustion of, 52 

Berthelot equation of state for gases, 233 

Berthelot principle of maxirmim wrork, 

242 

Binary systems, solubility in, 295-296 

solubility diagram for, 296 

vapor pressures in, 407 

Boiling point constants, 295 

Boiling point rise, 3, 295 

agreement of, for different solvents, 

295 

Boltzmann factor, 342 

Boltzmann gas constant, 170 

Bomb calorimeter, 33, 98 

Bond energies, 350 

Boyle point, 75 

Boyle’s law, 2, 68 

Bureau International des Poids et 

Mesures, 16 

Butane, isomerization equilibrium for, 

278 

1-Butene, heat of evaporation of, 216 

molar volume of, 216 

vapor pressure of, 216 

Butenes, heats of hydrogenation of, 

106-107 

C 

Cadmium in amalgams, activity of, 416- 

422 

table of, 418 

limiting value of activity ratio for, 

graphical computation of, 420 

Cadmium cell with cadmium amalgam, 

449 
emf of, 449 

Calcium carbonate, dissociation of, en¬ 

tropy of, 337—338 

free energy of, 337, 338 

heat of, 330-331 

from the exact Clausius-Clapeyron 

equation, 336 

from pressure data, 335-336 

dissociation pressure of, 331-335, 338 

table of, 335 

dissociation temperature of, at 1 atmos¬ 

phere pressure, 333 

eutectic point of, with calcium oxide, 

332 

heat capacities in calcium carbonate 

system, table of, 333 

heat of solution of, in hydrochloric 

acid, 331 

transition of calcite to aragonite, 317 

Calcium oxide, heat of solution in hydro¬ 

chloric acid, 331 

Calculations, from tabulated thermo¬ 

dynamic functions, 357-358 

in thermodynamics, 12-15 

Caloric theory of heat, 29 

Calorie, 16, 20-22, 35 

definition of, 21, 62 

the 15°, 20, 62* 

the 20°, 20 

International Steam Table, 98 

mean, 20 

thermochemical, 21, 62 

values of, in joules, table of, 21 

Calorimeter, 34 

bomb, 33, 98 

modern, 20-21 

Calorimetric values, errors in, 101 

Carbon, heat capacity, of diamond, 120 

of graphite, 119 

table of, 62 

heat of combustion, of diamond, 51, 108 

of graphite, 51, 101, 108 

transition of graphite to diamond, free 

energy equation for, 250, 277 

heat of, 108 

Carbon compounds, heat of combustion 

of, table of, 102 

Carbon dioxide, free energy of formation 
of, 237 

heat of formation of, 101 
Joule-Thomson effect for, table of, 81 
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Carbon monoxide, free energy of combus¬ 

tion of, 237, 238 

free energy of formation of, 236, 237 

heat of formation of, 119 

Carnot cycle, 84-87, 150-153, 177-179 

conversion factor for, 177 

energy exchanges in, 152 

for an ideal gas, 84-87 

for liquid-vapor system, 152, 153 

maximum work from, 153-154 

Carnot heat engine, 150, 153 . 

efficiency of, 153 

thermodynamic scale from, 154-156 

Cells (see Galvanic cells) 

Centigrade temperature scale, 5-6 

reproducing the, 6-7 

Characteristic temperature, of gases, 

table of, 75 

of solids, 314 

Charles’s law, 2, 68 

Chemical energy, 24, 29, 33 

Chemical equations, combining of, 36-37 

Chemical equilibrium, 27 

calculation of, 1 

among several phases, 370 

tendency toward, 140-141 

Chemical formulas, 17 - 

Chemical potential, 145 

definition of, 367 

of Gibbs, 367-368 

and partial molal free energy, 367 

and partial molal quantities, 379-380 

Chemical reaction, free energy change in, 

229-230, 235-237 

half-cell, 427 

spontaneous, 139 

work from, 142 

Chemical Society (London), 42 

Chemical thermodynamics, 1 

Chemical work, 39-40, 143 

Chlorine, entropy of, table of, 318 

Chlorine electrode, 428 

Clausius-Clapeyron equation, 198-201, 

274, 285, 372 

at the critical point, 286 

exact form of, 200 

heat of dissociation calculated from, 

336 

validity of, 203-204 

and vapor pressures, 201-203 

Cobaltammines, complex, solubilities of, 

468-469 

Components (phase rule), definition of, 

375-376 

Compressibility, 188 

Computation rules, 14-15 

Concentration cells, 445 

Concentration units, 18-19 

for ideal solutions, 279-280 

relations between, 414-415 

Conservation, of energy, 1, 29, 31 

of mass, 31 

Constants, accepted, 15-22 

conventional, 17 

gas, 2, 18, 68, 69 

integration (see Integration constant) 

Conventions, signs and symbols of 

thermodynamics, 42-43, 220 

in the use of equilibrium constants, 

257-258 

used in discussing galvanic cells and 

emf, 431-433 

Conversion factors, 15 

for Carnot cycle, 177 

Copper sulfate, reaction with zinc, 44-45 

emf of, maximum, 44 

entropy of, 161, 164 

heat of, 44-45, 161, 164 

reversible, 161 

table of heat and work from, 45 

work from, 44-45, 161 

Coulomb, 19 

international, 20 

Criteria for equilibrium, 364-365 

entropy, 360 

free energy, 360-361 

table of, 366 

Cyclic process, 31 

D 

Daniell cell, 45 

Debye heat capacity equation, 314-315 

Debye-Iiuckel equation, 458-466 

extensions of, 466 

as limiting relation for extrapolation, 

470 

more complete forms of, 465-466 

and the principle of ionic strength, 465 

tests of, 468-469 
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Degrees of freedom, in gas theory, 89, 90, 

91 

in the phase rule, 370, 374-375 

Deutschen Bunsengesellschaft, 42 

Dielectric constant of water, 464 

Differential, exact or perfect, 36 

inexact, 36 

Differential equations, 12 

Diffusion of gases, work from, 142 

Dinitrobenzenes, isomeric, mutual solu¬ 

bilities of, table of, 297 

Diphenyl, in a heat engine, 178 

Dissociation pressure of calcium car¬ 

bonate, 331-335 

equations for, BackstrOm, 334 

Johnston, 332, 334 

Smyth and Adams, 332, 334 

Southard and Royster, 333, 334 

Tamaru, Siomi, and Adati, 332, 334 

Distribution of molecules between equal 

volumes, 171-173 

table of, 172 

Diihring’s rule, 207-211 

application of, table of, 208 

Duhem equation, 407 

Dulong and Petit, law of, 59-60 

E 

Efficiency of heat engines, 177-178 

Einstein heat capacity equation, 314 

Electric potential of an ion, 458-460 

Electrical energy, 24, 29 

Electrical units, 19-22, 39 

best values of, 20 

of energy, 19, 39 

international, 39 

relation between international and 

absolute, 20 

Electrical work, 37, 39 

Electrode potentials, standard single, 

447-449 

table of, 448 

Electrode reactions, 427-429 

table of, 448 

Electrodes, 425-426 

chlorine, 428 

hydrogen, 427 

silver, silver chloride, 428, 429 

standard states for, 446-447 

Electrolytes, 425, 426 

activity coefficients of, table of, 472 

standard states for, 447 

strong, ionization of, 457, 461 

weak, application of Debye-Htickel 

equation to, 461 

ionization constants of, 477-478 

Electromotive force, change of, with con¬ 

centration, 443-445 

with pressure, 438-439 

calculations on, 439-443 

with temperature, 241-242, 433-435 

conventions used in discussing, 431-432 

standard, 445-446 

evaluation of, Brown and Maclnnes 

method for, 473-474 

Hitchcock method for, 473 

temperature coefficient of, for hydro¬ 

gen, chlorine cell, 339 

of thermocouple, 10 

Electronic charge, 22 

Empirical equations, 2 

Empirical functions, 268 

Endothermic reaction, 42-43 

Energy, 29-30 

absolute values of, 49-50 

atomic, 24 

of atomic fission, 25 

of atomic transmutations, 25 

bond, 350 

change in, 30 

chemical, 24, 29, 33 

of configuration, 33 

conservation of, 1, 29, 31 

electrical, 24, 29 

units of, 19-22, 39 

equipartition of, principle of, 89 

interconvertibility of, 29-30 

internal, 32-33 

relative values of, 50 

intrinsic, 32 

kinetic, 24, 33 

latent, 33, 95 

mechanical, 24, 29 

of molecules, 50, 87-91, 345-346 

electronic, 50, 87, 90, 91, 345 

rotational, 50, 87, 89, 90, 91, 345 

translational, 50, 87, 89, 90, 91, 345 

vibrational, 50, 87, 90, 91, 345 

of nuclear spin, 350, 353 
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Energy, potential, 24 

relative, 50, 51 

from spectroscopic data, 350 

spontaneous flow of, 137 

surface, 24 

of a system, 32-33 

thermal, 29 

transformation of, to mass, 31 

various forms of, 24-25 

work from flow of, 141 

zero point, 50, 342, 345 

of compounds, 350 

0See also Internal energy; Kinetic 

energy) 

Energy content, 32 

Energy quanta, 91 

Energy units, 38-39 

Enthalpy, definition of, 48 

Entropy, 148 

absolute, 244 

at absolute zero, 1, 310-311 

calculation of, from heat capacity data, 

194, 245, 315-318 

from spectroscopic data, 194, 245, 

347-348, 353-354 

change of (see Entropy change) 

of chlorine gas, 318 

as criterion for equilibrium, 360 

definition of, 156 

of dissociation of calcium carbonate, 

337-338 

and equilibrium, 166-167 

errors in, 97 

from errors in heat capacity meas¬ 

urements at low temperature, 

316-317 

of evaporation, 211-213 

of associated liquids, 213 

at constant pressure, 211-213 

tables of, 212, 215 

at equal concentrations, 213-215 

Hildebrand-Trouton constants for, 

for various substances, table of, 

215 

Hildebrand-Trouton rule for, 213- 

215 

of hydrocarbons, table of, 212 

of oxygen, 212 

of water, 211, 213 

of expansion of an ideal gas, 174-175 

Entropy, of formation, of acetylene, 

ethane, and ethylene, table of, 359 

of methane, 246 

of silver chloride, 245 

of water, 263 

of freezing of water at — 10°c, 194-196 

of gases, 321-323 

ideal, 188-192 

monatomic, 190 

real, 192-193 

table of, 322 

total, 353-354 

of glycerol and water solution, 321 

of glycerol glass, 321 

graphical computation of, 316, 317 

and the integration constant, 307-308 

of isotopes, 191-192 

of mixing of, 193, 302, 323 

of melting of ice, 193 

at -10°c, 195 

of nuclear spin, 193, 353 

partial molal, definition of, 379 

and the partition function, 347-349 

practical values of, 302 

and probability, 169-171, 311 

as a property, 157-158 

of reaction, calculated from tabulated 

thermodynamic functions, 357 

table of, 243 

at zero temperature, 308 

and realizing a system, number of 

ways of, 173-174 

of rotation of gas molecules, 193 

and the second law of thermodynamics, 

165-166 

of sodium sulfate, 340 

of sodium sulfate decahydrate, 340 

of solution, at absolute zero, 321 

ideal, 299-300, 320, 321 

limiting values of, 390-391 

of silver bromide and silver chloride, 

321 

standard, table of, 245 

of transition from gray to white tin, 

330 

table of, 328 

translational, of monatomic gas, 190 

of polyatomic gas, 190, 350 

of real gas, 190 

of vibration of atoms in molecules, 193 
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Entropy change, in chemical reactions, 

irreversible, 164 

reversible, 161 

of gas, in adiabatic expansion, 191-192 

at constant pressure, 191 

at constant temperature, 191 

at constant volume, 191 

from heat transfer, irreversible, 163- 

164 

reversible, 160 

in irreversible processes, 161-164, 194 

adiabatic, 162 

in isothermal reactions, 193 

with pressure, isothermal, 182-184 

in reversible processes, 158-161 

adiabatic, 159 

isothermal, 159-160 

spontaneous, adiabatic process, 162 

with temperature change, 180-182 

at constant pressure, 181 

at constant volume, 181 

with volume change, isothermal, 182- 

184 

at zero absolute, 310 

Entropy errors, at low temperatures, 97, 

316-317 

Entropy unit, 193 

Entropy values, comparison of, from 

spectroscopic and thermal data, 302 

Equations, empirical, 2 

fundamental, for thermodynamic func¬ 

tions, table of, 366 

general partial molal, table of, 388 

thermochemical, 37 

older, 43 

thermodynamic, approximations in, 

2—3 

implicit assumptions in, 2 

Equations of state, 2 

Berthelot, 233 

Keyes, 336 

thermodynamic, 184r-185 

Equilibrium, 27-28 

chemical, 27 

at constant pressure, 167-169 

criteria for, 364-365 

entropy, 360 

free energy, 223-225, 360-361 

Helmholz free energy, 224 

table of, 366 

Equilibrium, and entropy, 166-167, 360 

and equilibrium constants, 271-272 

table of, 272 

fugacities in phases at, 402 

among gas molecules, 342-344 

general conditions for, 364-365 

mechanical, 27 

among several phases, 370 

in one-component systems, 368-373 

equilibrium restrictions, for one- 

phase system, 370-371 

for two-phase system, 371-372 

for three-phase system, 372-373 

maximum number of phases in, 370- 

373 

partial molal free energies in phases at, 

369 

prediction of, from thermal data, 305, 

306 

among several phases, 198, 369-370 

chemical, 370 

mechanical, 370 

thermal, 370 

in simple systems at constant tem¬ 

perature, 217-218 

tendency toward, 1, 140-144 

in chemical reaction, 140-141 

in flow of energy, 140 

in flow of gases, 140 

in flow of liquids, 140 

thermal, 5, 27, 137 

tendency toward, 140-141 

and thermometry, 5, 8 

thermodynamic, 28 

{Sec also Chemical equilibrium) 
Equilibrium box, 251-254 

Equilibrium constant, 255-256 

and activities, 270-271 

calculation of, need of precise free 

energy data for, 267-268 

from tabulated thermodynamic func¬ 

tions, 357-358 

change of, with temperature, 273-274 

conventions in the use of, 257-258 

dependence of, on units used, 257 

different units used in expressing, 258- 

260 

relations between, 258-260 

for formation of water, 263-268 

and fugacities, 270-271 
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Equilibrium constant, and liquids, 262 

and solids, 262 

and standard free energy change, 256- 

257, 357-358 

in terms of, activities, 270 

concentrations, 259 

fugacities, 270 

mole fractions, 259 

partial pressures, 259 

for various equilibriums, 271-272 

table of, 272 

Equilibrium reactions at constant pres¬ 

sure, free energy change in, 230-232 

Error, accuracy, 108 

Errors, theory of, 13 

Escaping tendency, 268 

Ethane, entropy of, 249 

table of, 359 

heat of formation of, 105 

table of, 359 

Ethanol, heat of evaporation of, at 

various temperatures, table of, 210 

heat of solution of, with methanol, 109 

vapor pressure of, table of, 208 

Ethylene, entropy of, table of, 359 

heat of formation of, table of, 359 

heat of hydrogenation of, 105-106 

Ethylene dibromide, freezing point con¬ 

stants for, 294 

as solvent for molecular weight de¬ 

terminations, 294 

Eutectic, 287 

Eutectic point, 296 

in a binary system, 296 

of calcium carbonate and calcium 

oxide, 332, 335, 336 

in a ternary system, 298 

Evaporation, entropy of (see Entropy, of 

evaporation) 

heat of, 95 

Exothermic reaction, 42-43 

Expansion, coefficient of, at absolute 

zero, 313-314 

of gases, free, 69-70 

ideal, adiabatic, 82-84 

isothermal, 81-82 

real, free, 78-81 

thermal, coefficient of, 188 

for benzene, 197 

Extensive property, 25 

F 

Faraday, 22, 427 

Faraday constant, 22, 39 

Faraday Society, 42 

First law of thermodynamics, 1, 29-31 

and the atomic theory, 33 

and the kinetic theory, 33 

limitations of, 305-307 

validity of, 31-32 

First law equation, differential, 43-44 

Flame temperature, maximum, 116-118 

of gases, table of, 118 

Formula weights, 17 

Free energy, 219-220 

absolute, 237 

calculation of, from tabulated thermo¬ 

dynamic functions, 354-355 

from thermal data, 244-245 

as criterion for equilibrium, 223-225, 

360-361 

at constant pressure, 224-225 

at constant temperature, 224-225 

at constant volume, 224 

of dissociation of calcium carbonate, 

337 

of formation, 237, 260 

of carbon dioxide, 237 

of carbon monoxide, 236 

of methane, 246 

of silver chloride, 241 

of solutions, 231 

of water, liquid, 263 

vapor, 267 

as function of the composition, 362- 

364 

Gibbs free energy, 220 

and heat content, some numerical rela¬ 

tions between, 243-244 

and heat of reaction, 242-243 

Helmholtz free energy, 219, 220 

in galvanic cells, 240 

Lewis free energy, 220 

of mixing, 239 

of mixing of isotopes, 301-302 

partial molal, 363 

and chemical potential, 367 

in phases at equilibrium, 369 

of reaction, 235-237 
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Free energy, of reaction, calculation of, 

425 

from tabulated thermodynamic 

functions, 357 

from thermal data, 244-245 

limiting value of, 309 

table of, 243 

relative, 237 

and reversible work, 221 

of solution, ideal, 298-299 

limiting values of, 390-391 

standard, and change in standard state, 

260-262 

and the equilibrium constant, 256- 

257 

and standard states, in ideal solutions, 

397-399 

of gases, 397-398 

of liquids, 398-399 

of transfer, 368 

of an ion, 460-461 

electrical, 461-462 

ideal, 460 

of transfer, from one phase to another, 

368-369 

of transition, gray to white tin, 326-330 

table of, 328 

Free energy change, 193 

with change of standard state, 260-262 

for water, 265 

in chemical reactions, 229-230 

in equilibrium reactions at constant 

pressure, 230-232 

as a function of temperature, 246-249 

in galvanic cell reactions, 240-241, 

432-433 

from the partial free energies, 254-255 

with pressure, for a gas, 239-240 

in simple systems, 226-229 

for constant-pressure processes, 227- 

228 

for constant-volume processes, 227 

for isothermal processes, 227 

standard, 239 

and the equilibrium constant, 251, 

256-257 

and standard states, 260-262 

Free energy data, precise, need of, for 

calculation of equilibrium constants, 

267-268 

Free energy equations, 361-362 

addition of, 237-238 

for formation of water, 248-249 

general, 225-226, 249, 362-364 

for transition of graphite to diamond, 

277 

Free energy functions, 219-220, 354-355 

at constant temperature, 220-223 

definitions of, 219, 354 

tables of, 231, 354 

Freezing point constants, for equal mole 

fractions, table of, 293 

for equal molalities, table of, 293 

in terms of molalities, 293-294 

in terms of mole fractions, 293 

Freezing point, lowering of, 3, 291, 292- 

294 

Freezing point measurements, activities 

from, 474-477 

Fugacity, 50, 238, 268-269, 394-396, 399- 

408 

change of, with pressure, 399-400 

change of, with temperature, 403-404 

definition of, 269 

and the equilibrium constant, 270-271 

and evaporation of liquids and solids, 
404 

and the law of mass action, 404-406 

of liquids, 402-403 

in phases at equilibrium, 402 

of pure nonideal gas, 400-402 

relation of, to activity, 269, 396 

of solids, 402-403 

and standard states, 99 

of substances in solution, 406-407 

of water vapor at 25°c, 271 

Fundamental equations for some thermo¬ 

dynamic functions, table of, 366 

G 

Galvanic cell reactions, free energy 

change in, 432-433 

nature of, 426-427 

Galvanic cells, 425-426 

concentration cells, 445 

conventions used in discussing, 431- 

432 

with liquid junction, 430 

without liquid junction, 430 
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Galvanic cells, reproducible, 430 

reversible, 429-431 \ 
emf of, 241 

standard emf of, 445-446 

Weston standard, 19, 432, 450-451 

Gas constant, 2, 18, 68, 69 
Boltzmann, 170 

molar, value of, 69 

Gas equation, ideal, 2, 26 

Gas thermometer, constant-pressure, 74 

constant-volume, 74 

Gases, characteristic temperature of, 

table of, 75 

deviation from ideal gas law, table of, 73 

diffusion of, 138 

energy of, relative, 350 

entropy of, 321-323, 353-354 

table of, 322 

flame temperature of, maximum, table 

of, 118 

free expansion of, 69-70, 78-81 

heat capacity of, table of, 62 

heat capacity equations for, table of, 63 

heat capacity ratios and differences of, 

tables of, 78 

monatomic, entropy of, 190 

heat capacities of, 64 

polyatomic, translational entropy of, 

190 

real, 70-73 

deviation of heat content from ideal 

gas, table of, 100 

entropy of, 70-73 

equations for, 70-73 

free expansion of, 78-81 

some relations of, 75-77 

solubility of, 280-287 

solubility equations for, 286 

spontaneous flow of, 138 

translational energy of, 349 « 

(See also Ideal gases) 

Gibbs chemical potentials, 367-368 

Gibbs-Duhem equation, 407-408, 422- 

423, 482 

Gibbs function, 220 

Gibbs fundamental equations, 365-366 

Gibbs-Helmholtz equation, 227, 228, 232, 

435 

calculations from, 435-438 

precision of, 435-436 

Gibbs phase rule, 29, 363, 364, 373-376 

Glasses, and the third law of thermo¬ 
dynamics, 319-321 

Glycerol, entropy of glassy solid, 321 

entropy of glassy solution with water, 

321 

Gram calorie (see Calorie) 

Graphical computation, of entropy, 316- 

317 

of heat content, 316 

of limiting activity of cadmium in 

mercury, 420 

H 

Half-cell reactions, 427 

Heat, 25, 29, 30, 33-34, 137 

calorimetric, 34 

of combustion, 98-99 

of benzoic acid, standard, 52 

of carbon compounds, table of, 102 

of diamond, 108 

of graphite, 51 

of hydrocarbons, 103-104 

of hydrogen, 98-99 

increment of, per methylene group, 

103, 104 

of isomers, 104 

of methane, 99 

of organic compounds, table of, 102 

at constant pressure, as reversible heat, 

199 

conventions in sign for, 42 

dependence of, on path, 44-45 

of dilution, 121 

of dissociation of calcium carbonate, 

330-331 

from the exact Clausius-Clapeyron 

equation, 336 

from pressure data, 335-336 

electrical equivalents of, 20 

of evaporation, 95 

of 1-butene, 216 

calculated from vapor pressure, 205 

of ethanol, table of, 210 

of hydrocarbons, table of, 212 

of nitrous oxide, 216 

of oxygen, 212 
of water, tables of, 97, 210 
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Heat, of formation, 100-103 

at absolute zero, 355-357 

table of, 356 

of acetylene, table of, 359 

of aluminum oxide, 120 

of aqueous solutions of potassium 

chloride, 123 

of carbon dioxide, at unit fugacity, 

101 
at unit pressure, 101 

of carbon monoxide, 119 

of ethane, 105, 359 

of ethylene, 359 

of hydrocarbons, 104-107 

tables of, 105, 359 

indirect determination of, 101 

of isomeric compounds, 105-106 

differences in, 106-107 

of methane, 101 

of potassium chloride, 123 

signs and symbols used for, 43 

of silver chloride, 244 

of some substances, table of, 356 

of water, liquid, 37, 100 

at 0°c, 115-116 

vapor, 37 

of freezing of water, change with tem¬ 

perature, 113-114 

at -10°c, 113-114 

of fusion (see Heat of melting) 

of hydrogenation, of ethylene, 105-106 

of isomeric butenes, 106-107 

of olefins, table of, 106 

of propylene, 106 

latent, 33, 95-98 

mechanical equivalent of, 20, 30 

of melting, 95 

of ice, 113 

at — 10°c, reversible, 196 

of iodine, 196 

of potassium chloride, 121 

partial molal, calculated from a mole 

fraction diagram, 131-134 

of reaction, 33, 36-37, 98 

at absolute zero, 355-357 

calculated from tabulated thermo¬ 

dynamic functions, 355-357 

calorimetric, 45, 46 

change of, with temperature, 110-113 

at constant pressure, 46-47,48, 98 

Heat, of reaction, at constant volume, 

45-46, 96 

equation for, general, 114-115 

and free energy, 242-243 

limiting value of, 309 

of magnesium and hydrochloric acid, 

120 
of magnesium oxide and hydro¬ 

chloric acid, 120 

some values for, table of, 243 

from reversible process along a path, 

41-42 

of solution, 108-110 

abnormal, 110 

apparent, 121-122 

of benzene and toluene, 129-131 

table of, 131 

of calcium carbonate in hydro¬ 

chloric acid, 331 

of calcium oxide in hydrochloric acid, 

331 

calculated from heats of formation, 

123 

differential, of potassium chloride, 

127 

of water in potassium chloride 

solution, 124-126 

of gaseous solutions, 108-109 

of gases in liquids, 109, 284-286 

ideal, of solids, 287-289 

integral, 130, 392 

definition of, 130 

relation of, to heat content, 392 

of liquid solutions, 109-110 

of liquids in liquids, 109 

of methanol, with benzene, 109 

with ethanol, 109 

with propanol, 109 

partial molal, definition of, 127-128 

partial specific, definition of, 134-135 

of potassium chloride and water, 

123-124 

table of, 122 

of sodium sulfate, 340 

of sodium sulfate decahydrate, 340 

of solid solutions, 110 

of solids in liquids, 109-110, 287-289 

total, 121-122 

of water in potassium chloride solu¬ 

tion, 123-124 
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Heat, of transition, 107-108 

of diamond to graphite, 108 

of gray to white tin, 325, 320-330 

table of, 328 

of liquid sulfur, 107 

of vaporization (see Heat of evapora¬ 

tion) 

and work, 142-143 

Heat capacity, 2, 35-36, 53-54 

abnormal, 107 

high, 95-97 

at absolute zero temperature, 310, 312 

additivity of, 64-65 

apparent, 96 

influence of chemical reaction on, 96 

influence of phase changes on, 96 

and the atomic theory, 4 

in the calcium carbonate system, table 

of, 333 

calculation of entropy from, 315-318 

at constant pressure, 53 

and constant volume, relation be¬ 

tween, 56-57, 187-188 

for an ideal gas, 77-78 

Nernst and Lindemann equation 

for, 328 

for solids, 188 

at constant volume, 53 

of diamond, 120 

of diatomic molecules, 89-90 

Dulong and Petit, rule for, 59-60 

errors in measurements of, at low 

temperature, 316-317 

of gases, 62-64 

differences of, tables of, 78 

from the kinetic theory, 87-89 

monatomic, 64 

ratios of, tables of, 78 

tables of, 62 

total, 352 

of glassy solids at low temperatures, 315 

of graphite, 119 

of hydrogen, calculated from spectro¬ 

scopic data, table of, 89 

of iodine, solid, 67 

of liquids, 61-62 

at low temperatures, 314-315 

of manganese dioxide, 67, 197 

mean, 35, 54, 55, 56 

measurement of, 54-56 

Heat capacity, molar, 35, 53 

and the Nernst heat theorem, 310 

partial molal, definition of, 379 

and the partition function, 347 

plotting, 315 

of polyatomic molecules, 90-91 

of solids, 59-61 

of some substances, table of, 62 

specific, 35, 53 

of sulfur, 319, 320 

liquid, 107 

monoclinic and rhombic, table of, 320 
of tin, gray and white, 326-330 

table of, 327 

of translation, for an ideal polyatomic 

gas, 349 

of water, 16, 20 

table of, 61 

Heat capacity curves, 58 

for solids, 60 

for sulfur, liquid, 107 

Heat capacity equations, 2, 57-59, 250 

Debye, 314 315 

Einstein, 314 

for gases, table of, 63 

Nernst and Lindemann, 328 

temperature limits for, 59 

Heat content, 47-49 

absolute values of, 50-51 

at absolute zero, 351 

change of, with temperature, 110-113 

definition of, 48 

differential expression for, 49 

extrapolation of, to low temperatures, 

317 

and free energy, numerical relations 

between, 243-244 

of gases, real, deviation from the ideal 

gas, table of, 100 

at unit fugacity, 404 

graphical computation of, 316 

in ideal liquid solutions, 288, 289 

of magnesium fluoride, 120 

partial molal, calculation of, by method 

of intercepts, 392 

definition of, 128, 129, 379 

in ideal solution, 285 

relative, 51, 123, 351-352 

of gases, 351-352 

table of, 352 
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Heat content, relative partial molal 

definition of, 129 

of potassium chloride, table of, 126 

of water in potassium chloride, table 

of, 126 

of translation, of ideal polyatomic gas, 

349 
Heat content equations for homogeneous 

systems, 65-66 

Heat content function, definition of, 352 

table of, for some substances, 353 

Heat engine, 141 

Carnot, 141, 177-178 

conversion factor of, maximum, 177- 

178 

efficiency of, 177-178 

with diphenyl, 178 

with mercury, 178 

with steam, 178 

Heat theorem, Nernst, 307 

Helium, change of melting point with 

pressure at absolute zero, 315 

characteristic temperature for, 75 

second virial coefficient for, 74 

surface tension of, at absolute zero, 313 

Helium thermometer, 7 

Henry’s law, 282-283 

correlation with Raoult’s law, 283 

diagram of, 282 

region of, 282, 283 

Heptane, ideal solution of, with 2,2,4-tri- 

methylpentane, 304 

Heterogeneous system, 28-29 

Hildebrand-Trouton rule, for entropy of 

evaporation, 213-215 

for entropy of evaporation constants, 

table of, 215 

Hoff, van't {see van't Hoff) 

Homogeneous system, 28 

Hydrocarbons, entropy of evaporation 

of, table of, 212 

heat of combustion of, 103-104 

tables of, 105, 359 

heat of evaporation of, tables of, 105, 

212, 359 

heat of formation of, 104-107 

tables of, 105, 359 

Hydrochloric acid, activity coefficient of, 

472-47? 

Hydrogen, cell with calomel, 441-443 

change of emf with pressure, 441-443 

cell with silver, silver chloride, 471 

emf for, 471 

standard, 471-472 

characteristic temperature for, 75 

electrode, 427 

equation of state for, 442 

heat capacity of, table of, 89 

heat of combustion of, 99 

partial pressure of, in equilibrium with 

liquid water, 265 

reaction with calomel, 441 

volume change for, 441 

reaction with silver chloride, standard 

emf for, 233 

second virial coefficient for, 74 

triple point of, 315 

Hydrogen chloride, heat of formation of 

gas, 339 

I 

Ideal gas equation, 2, 18, 68-69 

Ideal gases, 69-70 

Carnot cycle for, 84-87 

defining equations for, 69, 70, 83 

entropy of, 188-192 

entropy of expansion of, 174-175 

heat capacities at constant pressure 

and constant volume, relation 

between, 77-78 

monatomic, 64 

energy of, 88 

entropy of, 188-190 

heat capacity of, 88-89 

polyatomic, translational, energy of, 

349 

entropy of, 350 

heat capacity of, 349 

heat content of, 349 

Ideal solutions, 121, 283-284 

concentration units for, 279-280 

definition of, 284 

entropy of, 299-300 

free energies and standard states in, 

397-399 

free energy of, 298-299 

gaseous, definition of, 283 

heat of solution of solid in, 287-289 
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Ideal solutions, of n-heptane and 2,2,4- 

trimethylpentane, 304 

of isotopes, 301-302 

of light and heavy water, 135-136 

liquid, 287, 288 

definition of, 283 

heat content in, 288 

partial molal heat content in, 285 

Ideal ternary systems, 296-298 

Integration constant, at absolute zero, 

307-308 

calculated from entropies, 306 

in the Clausius-Clapeyron equation, 

202, 203, 206, 207 

and entropy, 307-308 

evaluation of, 275-276 

for free energy equations, 247-248 

prediction of, 306 

and the third law of thermodynamics, 

158 

Interconvertibility of energy, 29-30 

Internal energy, 32-33 

absolute values of, 49-50 

conventions on sign and symbols for, 

42 

relative values of, 50 

“ International Critical Tables,” 202 

International electrical units, 19 

International temperature scale, 8 

fixed points on, 8-10 

table of, 9 

Inversion temperature, 80 

Iodine, heat capacity of solid, 67 

heat of melting of, 196 

Ionic strength, and activity, 457-458 

and activity coefficients, relation be¬ 

tween, from solubilities, 469 

definition of, 457, 458 

principle of, 457-458 

and the Debye-Hiickel equation, 465 

Ionization, complete, theory of, 461 

of strong electrolytes, 452, 457, 461 

Ionization constant, of acetic acid, 478- 

479 

of water, 479-480 

of weak electrolytes, 477-478 

Ions, activity of, definition of, 452-454 

activity coefficient of, 456 

from the Debye-Hiickel theory, 462- 

464 

Ions, activity coefficient of, mean, 456 

from the Debye-Hiickel theory, 

464-465 

electric potential of, 458-460 

free energy of transfer of, 460-461 

electrical, 461-462 

ideal, 460 

mean molarity of, definition of, 455 

molarity of, definition of, 454-456 

mean, definition of, 455-456 

mole fraction of, definition of, 455 

partial molal free energy of, 453 

Isotopes, entropies of, from heat capac¬ 

ities, 302 

mixing of, 302, 323 

from spectral data, 302 

free energies of mixing of, 301-302 

ideal solutions of, 301-302 

J 

Joule, 19, 38 

international, 20 

Joule-Thomson coefficient, 80 

inversion temperature for, 80 

Joule-Thomson effect for carbon dioxide, 

table of, 81 

Joule-Thomson expansion of a gas, appa¬ 

ratus for, 79 

Joule-Thomson experiment, 79 

Junction potential, liquid, 431, 432 

K 

Keyes equation of state, 336 

Kilocalorie, 20 

Kilogram, 16 

Kilogram calorie (see Kilocalorie) 

Kinetic energy, 24, 33 

of molecules, translational, 87 

and temperature, 36 

Kinetic theory and the heat capacity 

of gases, 87-89 

L 

Latent energy, 33, 95 

Latent heat, 33, 36-37, 95-98 

Law of mass action, 255-261 

Laws of thermodynamics, 1-2 

application to nonideal systems, 268 
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Laws of thermodynamics, limitations of, 

305-307 

validity of, 2 

(See also First law of thermody¬ 

namics; Second law of thermo¬ 

dynamics; Third law of thermo¬ 

dynamics) 

Lead, reduction of silver chloride by, 

emf of, 436-437 

entropy of, 437 

free energy of, 437 

heat of reaction of, 437 

Liquid junction potential, 431, 432 

calculation of, 431 

elimination of, 431, 432 

Liquids, and the equilibrium constant, 

262 

reversible freezing of, 147 

solubility of, 287 

spontaneous flow of, 138 

Liter, 16 

M 

Magnesium, heat of reaction with hydro¬ 

chloric acid, 120 

Magnesium fluoride, heat content equa¬ 

tions for, 120 

Magnesium oxide, heat of reaction with 

hydrochloric acid, 120 

Manganese dioxide, heat capacity of, 194 

heat capacity equation for, 67 

heat content equation for, 67 

Mass, conservation of, 31 

transformation to energy, 31 

Mass action law, 255, 261 

in terms of fugacities, 404-406 

Mathematical function, 10 

Mechanical equilibrium, 27 

among several phases, 370 

Mechanical equivalent of heat, 20, 30 

Mechanical work, 37 

Melting, heat of (see Heat of melting) 

Melting point, change with pressure, for 

water, 200 

Mercurous chloride, cell with hydrogen, 

441-443 

change of emf with pressure, 441-443 

reaction with hydrogen, 441 

volume change for, 441 

Mercury, in a heat engine, 178 

millimeter of, as pressure unit, 17, 38 

Mercury thermometer, 7 

Meter, 16 

Methane, entropy of formation of, 246 

free energy of formation of, 246 

heat of combustion of, 99 

heat of formation of, 101 

Methanol, heat of solution of, with ben¬ 

zene, 109 

with ethanol, 109 

with propanol, 109 

Millimeter of mercury, as pressure unit, 

17, 38 

Molal concentration, 19 

Molality, 19 

of ions, definition of, 455 

mean, definition of, 455 

Molar concentration, 18 

Molar properties, 26 

Molar quantities, 26 

Molar volume, apparent, definition of, 

135 

of water vapor, 52 

Molarity, 19 

mean, of ions, definition of, 455 

Mole, 17-18 

Mole fraction, 3, 18 

mean, definition of, 455 

Mole per cent, 19 

Mole ratio, 19 

Molecular weight determinations, sol¬ 

vents for, 294 

Molecules, distribution of, 171-173 

statistical, table of, 172 

energy of, 50, 87, 88, 90, 91, 345-346 

electronic, 50, 90, 91, 345 

kinetic, 87 

rotational, 50, 87, 89, 90, 91, 345 

translational, 50, 87, 89, 90, 91, 345 

vibrational, 50, 87, 90, 91, 345 

N 

National Bureau of Standards, 8, 16, 20, 

47, 103, 205 

National Physical Laboratory, 8 

Nernst heat theorem, 307, 308-310 

and heat capacity change, 310 
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Nitrogen, characteristic temperature for, 

75 

deviations from ideal gas, 70-71 

Joule-Thomson coefficient for, 81 

second virial coefficient for, 74 

Nitrogen thermometer, 23 

Nitrous oxide, heat of evaporation of, 216 

second virial coefficient for, 216 

vapor pressure equation for, 216 

Nonideal systems, application of the laws 

of thermodynamics to, 268 

Normal atmosphere (see Standard atmos¬ 

phere) 

Nuclear spin, energy of, 350, 353 

entropy of, 193, 353 

O 

Ohm, 19 

international, 20 

“On the Equilibrium of Heterogeneous 

Substances,” 1, 365, 433 

One-component systems, equilibrium in, 

368-373 

One-phase systems, equilibrium restric¬ 

tions for, 370-371 

Optical pyrometer, 8 

Optical pyrometry, 5 

Osmotic work, 40 

Oxygen, entropy of evaporation of, 212 

heat of evaporation of, 212 

partial pressure of, in equilibrium 

with liquid water, 265 

P 

Partial derivative, 11 

Partial free energies, 254 

summation of, 255 

Partial rnolal equations, for 1 mole of 

solution, 383-384 

for solutions, 381-382 

special forms of, 386-387 

table of, 388 

Partial rnolal heat, calculation of, from 

intercepts, 133, 134 

Partial rnolal heat content, definition of, 

128, 129 

in ideal solution, 285 

relative, 129 
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Partial rnolal quantities, 127-129, 378- 
379 

calculation of, from mole fraction 

diagrams, 131-134, 384-386 

change of, with composition, 388-389 

and chemical potential, 379-380 

definition of, 127-128 

generalized treatment of, 380-381 

limiting values of, 389-390 

relations among, 131-134 

Partial rnolal volume, definition of, 128 

Partial specific quantities, 134 

Partition function, 344-345, 346 

and energy of molecules, 346 

and entropy, 347-349 

and heat capacity, 347 

Pentane thermomeriter, 7 

Perfect gas (see Ideal gas) 

Perpetual motion, of the first kind, 31, 

149 

of the second kind, 149 

Phase, 28-29 

Phase rule, Gibbs, 29, 363, 364* 373-376 

Phases, equilibrium among, 198 

transformations of, 198 

Physical Society (Great Britain), 42 

Physikalisch-technische Reichsanstalt, 8 

Platinum vs. platinum-rhodium thermo¬ 

couple, standard, 10 

Platinum resistance thermometer, 8-10 

Potassium chloride, heat content of, rela¬ 

tive partial rnolal, table of, 126 

heat of formation of, 122, 123 

of aqueous solutions of, 122, 123 

heat of melting of, 121 

heat of solution of, in water, 121-123 

differential, 127 

table of, 122 

Potential energy, 24, 36 

Precision, 13 

Probability, at absolute zero, 311 

a priori, 344 

and distribution of molecules, 171-173 

and entropy, 169-171 

Process, cyclic, 31 

reversible, 146-147 

entropy change in, 158-161 

and heat, 41-42 

and work, 40-41 
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Process, spontaneous, 137-139, 140 
entropy change in, 161-164 

limits of work from, 143-145 
and rate, 139 

and tendency toward equilibrium, 

140 
Propanol, heat of solution with methanol, 

109 

vapor pressures of, 216 
Properties, extensive, 26 

intensive, 26 

molar, 26 

specific, 26 
Propylene, critical constants for, 424 

density of, 233, 424 

heat of combustion of, 106 

heat of hydrogenation of, 106 

molar volume of, 424 

vapor pressure of, 424 

Q 

Quanta of energy, 91 

Quantum mechanics, 4 
Quantum weight, 344 

R 

Raoul t's law, 80-282 

correlation with Henry's law, 283 

derivation of, 281 

region of, 282, 283 

in terms of fugacities, 281 
Reaction, chemical, free energy change 

in, 229-230, 235-237 

half-cell, 427 

spontaneous, 139 
work from, 142 

(See also Heat of reaction) 

Refrigerating engine, 178-180 

efficiency of, 179 

Regular solutions, 301-302 

Reversible process, 146-147 
entropy change in, 158-161 

and heat, 41-42 

and work, 40-41 

S 

Sackur-Tetrode constant, value of, 189 

Sackur-Tetrode equation, 189-190, 350 

Salts, activity of, definition of, 452-454 
solubility of, 467-469 

standard free energy of, 453 

Second law of thermodynamics, 1, 147- 
149 

and entropy, 165-166 

limitations of, 305-307 

statement of, Clausius, 148 

Kelvin, 148, 149 

Lewis, 148 

mathematical, 165 
Ostwald, 149 

Planck, 148 

Second virial coefficient, 73-75 

variation of, with temperature, 74 

Seventh General Conference of Weights 

and Measures, 8, 17 

Significant figures, 14 

Silica, transition of quartz to cristobalite, 

319 

Silver, silver chloride, cell with hydrogen, 

471 

electrode, 428, 429 

Silver bromide, entropy of mixing with 

silver chloride, 321 
Silver chloride, entropy of mixing with 

silver bromide, 321 

formation of, 437-438 

emf of, 241, 437 

entropy of, 245, 437 

free energy of, 241, 437 
heat of, 244, 438 

reaction with hydrogen, standard emf 

for, 233 

reduction by lead, emf of, 436-437 
entropy of, 437 

free energy of, 437 

heat of reaction of, 437 

Sodium chloride, vapor pressure of 

aqueous solution of, 210 

Sodium sulfate, entropy of, 340 

heat of solution of, 340 

Sodium sulfate decahydrate, entropy of, 

340 

heat of solution of, 340 

Solids, and the equilibrium constant, 262 

relation between heat capacities of, at 

constant pressure and constant 

volume, 188 
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Solubility, in a binary system, 295-296 

of complex cobaltammines, 468-469 

of gases, 286-287 

of liquids, 287 

mutual, of the dinitrobenzenes, 296- 

298 

table of, 297 

of salts, 467-469 

of solids in liquids, 289-291 

of sulfur, in various units, table of, 280 

Solubility curve, calculation of, 290 

Solubility equations, 289-290 

Solubility product constant, 467 

definition of activity solubility prod¬ 

uct, 467 

Solubility-temperature curve, exact, for 

solids, 290-291 

Solute, 279, 280, 377 

Solutions, of benzene and toluene, volume 

increase in, 135 

gaseous, 108-109 

liquid, 109-110 

notation in, 377-378 

regular, 301-302 

entropy of mixing in, 301 

free energy of mixing in, 301 

heat of mixing in, 300 

randomness in, 300 

solid, 110 

and the third law of thermodynamics, 

319-321 

(See also Heat of solution; Ideal 

solutions) 

Solvent, 279, 280, 377 

Specific heat (see Heat capacity) 

Specific properties, 26 

Spontaneous process, 137-139 

and rate, 139 

and tendency toward equilibrium, 140 

Standard atmosphere, 17, 38 

Standard cell, Weston, 19, 432, 450-451 

reactions in, 450 

Standard electrode potentials, 447-449 

table of, 448 

Standard gravity, 17 

Standard states, 51, 99-100, 238-239 

change in, for potassium chloride, 124 

and the standard free energy change, 

260-262 

for electrodes, 446-447 

Standard states, for electrolytes, 447 

and free energies, in ideal solutions, 

397-399 

of gases, 397-398 

of liquids, 398-399 

and free energy change, standard, 260- 

262 

for gases, 99-100, 232, 233, 409 

for ideal solutions, 397-399 

for liquids, 234, 410 

of reactants and products, 99-100 

for solids, 234 

for solutes, 409-411 

for solvents, 410 

and standard free energy change, 260- 

262 

of unit activity, 408-411 

for gases, 409 

for solutes, 409-411 

for solvent, 409-410 

Standard thermocouple, 10 

State, 26-27 

equations of (see Equations of state) 

standard (see Standard state) 

State sum, 344 

“Statistical Mechanics,” 173 

Statistical mechanics, 4 

Statistical weight, 4 

Steady state in a system, 27 

Steam engine, conversion factor for, 178 

efficiency of, 178 

and high pressure, 178 

Sulfur, entropy, of monoclinic, 319 

of rhombic, 319 

heat capacity, apparent, of liquid, 107 

of monoclinic and rhombic, to low 

temperatures, table of, 320 

heat of transition of liquid, 107 

solubility of, in benzene, 280 

in toluene, 280 

transition of rhombic to monoclinic, 

319 

Sulfuric acid, density of a 25 per cent 

solution of, 23 

Surface energy, 24 

Surface work, 39 

Surroundings, 29 

Symbols and conventions, of thermo¬ 

dynamics, 42-43, 220 

(See also Conventions) 
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System, 25-26 

adiabatic, 26 

heterogeneous, 28-29 

homogeneous, 28 

inert, 28 

isolated, 26 

T 

Tables, activity of dilute cadmium 

amalgams, 418 

activity coefficients of electrolytes, 472 

calories, values of, in joules, 21 

deviation of gases from the ideal gas 

law, 73 

deviation of heat content of real gas 

from the ideal gas, 100 

dissociation pressures of calcium car¬ 

bonate, 335 

electrode potentials, standard, 448 

electrode reactions, 448 

entropy, of chlorine gas, 318 

of evaporation of hydrocarbons, 212 

of formation of acetylene, ethane, 

and ethylene, 359 

of gases, 322 

of reaction, some values for, 243 

standard, of some substances, 245 

equilibrium constants for some equi¬ 

libriums, 272 

flame temperatures, maximum, of 

gases, 118 

free energy of reaction, some values for, 

243 

free energy functions, 231 

for some substances, 354 

freezing point constants, 293 

fundamental equations of thermo¬ 

dynamic functions, 366 

general partial molal equations, 388 

heat, of combustion of carbon com¬ 

pounds, 102 

of evaporation, of ethanol, 210 

of hydrocarbons, 212 

of water, at various temperatures, 

97, 210 

of formation of hydrocarbons, 105, 

359 

of formation of some substances, 

353 

Tables, heat, free energy, and entropy of 

transition of tin, gray to white, 328 

heat, of hydrogenation of olefins, 106 

of reaction, some values for, 243 

of solution, of benzene and toluene, 

131 

of potassium chloride in water, 122 

heat capacities, in the calcium car¬ 

bonate system, 333 

of gases and carbon, 62 

of hydrogen, calculated from spec¬ 

troscopic data, 89 

of sulfur, rhombic and monoclinic, 

to low temperatures, 320 

of tin, gray and white, to low tem¬ 

peratures, 327 

of water, 61 

heat capacity equations for gases, 63 

heat capacity ratios and differences 

for gases, 78 

heat content, relative, of some sub¬ 

stances, 353 

heat content function of some sub¬ 

stances, 353 

Hildebrand-Trouton entropy of evapo¬ 

ration constants, 215 

international temperature scale, fixed 

points on, 9 

Joulc-Thomson effect for carbon diox¬ 

ide, 81 

pressure, influence of, on thallium 

chloride, thiocyanate cell, 440 

reaction between zinc and copper sul¬ 

fate, heat and work from, 45 

relative partial molal heat contents of 

potassium chloride and water, 126 

solubilities, mutual, of the dinitro- 

benzenes, 297 

solubility of sulfur, 280 

standard electrode potentials, 448 

statistical distribution of molecules 

between equal volumes, 172 

temperature, characteristic, of some 

gases, 75 

thermometers, liquid-in-glass, reading 

of, 6 

thermometric substances, 7 

vapor pressure of ethanol, 208 

water, boiling temperatures of, calcu¬ 

lated from Duhring’s rule, 208 
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Tables, work, types of, 146 

Temperature, 4-10 

absolute zero of {see Absolute zero of 

temperature) 

boiling, of water, calculated from 

Duhring’s rule, table of, 208 

change of {see Temperature change) 

characteristic, of gases, table of, 75 

of solids, 314 

eutectic, 334 

inversion, for Joule-Thompson coeffi¬ 

cient, 80 

and kinetic energy, 36 

low, entropy errors at, 97, 316-317 

errors in measurement of heat 

capacity at, 316-317 

extrapolation of heat content to, 317 

heat capacity at, 314-315 

of glassy solids, 315 

maximum flame, 116-118 

scales of {see Temperature scale) 

and solubility, exact solubility-tem¬ 

perature curve, 290-291 

{See also Temperature change) 

thermodynamic, 154 

from constant-pressure gas thermom¬ 

eters, 187 

from constant-volume gas thermom¬ 

eters, 185-186 

Temperature change, adiabatic, with 

pressure, for benzene, 197 

effects of, on activity, 411-412 

on electromotive force, 241-242, 

433-435 

on entropy, 180-182 

on equilibrium constant, 273-274 

on fugacity, 403-404 

on heat content, 110-113 

on heat of freezing of water, 113 

on heat of reaction, 110-113 

on solubility of solids in liquids, 289- 

291 

on vapor pressure of water, 201 

with pressure at constant heat con¬ 

tent, 80 

Temperature coefficient of emf for hydro¬ 

gen, chlorine cell, 339 

Temperature limits for heat capacity 

equations, 59 

Temperature scale, centigrade, 5-7, 155 

Temperature scale, Fahrenheit, 155 

ideal gas, 155 

international, 8 

basic fixed points on, 9 

ice and steam points on, 5 

secondary fixed points on, 9 
table of, 9 

Kelvin, 155 

ice point on, 155 

Rankine, 155-156 

ice point on, 156 

thermodynamic, 7, 8, 154-156 

working, 8-10 

Ternary eutectic point, 298 

Ternary systems, ideal, 296-298 

Thallous chloride, cell with thiocyanate, 

440 

change of emf with pressure, 440- 

441 

reaction with thiocyanate, 440 

volume change for, 440 

Thallous thiocyanate, cell with chloride 

{see Thallous chloride) 

Thermal equilibrium, 5, 27, 137 

among several phases, 370 

and thermometry, 8 

Thermochemical equations, 37 

older, 43 

li Thermochemistry of Chemical Sub¬ 

stances,” 99, 118 

Thermocouple, 8 

calibration, 10 

emf of, 10 

standard platinum vs. platinum-rho¬ 

dium, 10 

Thermodynamic equations, explicit as¬ 

sumptions in, 3 

implicit assumptions in, 3 

of state, 184-185 

Thermodynamic equilibrium, 28 

Thermodynamic functions, 26 

calculated from energy levels, 341 

fluctuations of, 4 

fundamental equations for, table of, 

366 

symbols and conventions of, 220 

Thermodynamic potential, definition of, 

367 

of Gibbs, 220 
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Thermodynamic relations, tabulated, 

228-229 

Thermodynamic system, 25 

Thermodynamic temperature scale, 7, 8, 

. 154-156 

Thermodynamics, laws of (see Laws of 

thermodynamics; First law of ther¬ 

modynamics; Second law of thermo¬ 

dynamics; Third law of thermo¬ 

dynamics) 

Thermodynamics, and atomic theory, 3-4 

calculations in, 12-15 

validity of laws of, 2 

validity of methods of, 2-3 

Thermometers, 5, 7 

gas, 7, 8 

helium, 186-187 

nitrogen, 23, 186-187 

thermodynamic temperatures from, 

185-187 

mercury, 6, 8 

pentane, 7 

reading of liquid-in-glass, table of, 6 

resistance, 8-10 

types of, 8 

Thermometric property, 5, 7 

Thermometric substances, 7 

table of, 7 

Thermometry, 10 

and thermal equilibrium, 5, 8 

Third law of thermodynamics, 1, 244, 

305, 310-311 

experimental tests of, 318-319 

for the transitions, calcite to aragon¬ 

ite, 319 

quartz to cristobalite, 319 

sulfur, rhombic to monoclinic, 319 

tin, white to gray, 319 

and glasses, 319-321 

and the integration constant, 158 

and solutions, 319-321 

statement of, 323 

Three-phase system, equilibrium restric¬ 

tions for, 372—373 

Tin, entropies of gray and white, 330 

heat capacities of, to low tempera¬ 

tures, table of, 327 

the system, white tin—gray tin, 325- 

330 

Tin, transition of gray to white, 319 

entropy of, table of, 328 

free energy of, 326-330 

heat of, 326-330 

Toluene, heat of solution of, with ben¬ 

zene, 129-131 

table of, 131 

volume increase of, on solution with 

benzene, 135 

Total heat, definition of, 48 

Transition, between phases, 198 

heat of, 107-108 

Triammonium phosphate trihydrate, dis¬ 

sociation of, 277-278 

entropy of, 278 

equilibrium constant of, 278 

partial pressures of, 278 

Trouton's constant, 211 

Trouton’s rule, 207 

(See also Hildebrand-Trouton) 

Two-phase system, equilibrium restric¬ 

tions for, 371-372 

U 

Unattainability of absolute zero, princi¬ 

ple of, 179 

Units, and accepted constants, 15-22 

concentration, 18-19 

for ideal solutions, 279-280 

relations between, 414-415 

electrical, 19-22, 39 

best values for, 20 

fundamental, 16-17 

of capacity, 16 

of length, 16 

of mass, 16 

of time, 16 

V 

van't Hoff equation, 273, 274 

integration of, 274-275 

for solubilities, 289 

Vapor pressure equations, 202-203 

Antoine, 205 

Clausius-Clapeyron, 201-203 
Duhring, 207 

general, 204-205 
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Vapor pressures, according to Henry's 
law, diagram of, 282 

according to Raoult's law, diagram of, 
282 

of aqueous ammonia solution, 211 
of aqueous salt solution, 210 
in binary systems, 407 
change of, with temperature, for 

water, 201 
and the Clausius-Clapeyron equation, 

201-203 
estimation of, from limited data, 206- 

207 
of nitrous oxide, 216 
of propanol, 216 
of water, 215, 265 

Variable, dependent, 11 
independent, 11 

Variance (phase rule), 374 
definition of, 370 

Velocity of molecules, 87-88 
average, 88 
mean square, 88 
root-mean-square, 88 

Virial coefficients, 72 
Volt, 19 

international, 19, 20 
Volt-electron, 22 
Volt-equivalent, 22 
Volt-faraday, 22 

international, 22 
Volume, apparent molar, definition of, 

135 
molar, of water vapor, 52 
partial molal, definition of, 128, 379 
partial specific, definition of, 134, 135 

Volume, specific, of water vapor at 
various temperatures, 215 

Volume increase, of solution of benzene 
and toluene, 135 

W 

Water, boiling temperatures of, calcu¬ 
lated from Diihring's rule, table of, 
208 

density of heavy, 136 
of light, 136 

dielectric constant of, 464 

Water, entropy of evaporation, 211, 213 
of formation, 263 
of freezing at — 10°c, 194-196 
of melting of ice, 193, 195 

formation of, equilibrium constant for, 
263-268 

free energy change with change in 
standard state, 265-267 

free energy difference, between liquid 
and vapor, 263-267 

between real and ideal vapor, 267 
free energy of formation, 263 

of vapor, 248, 267 
equation for, 248-249 

heat capacity of, 16, 20 
table of, 61 
relative partial molal, in potassium 

chloride solution, table of, 126 
heat of evaporation, 37, 51 

tables of, 97, 210 
heat of formation, 100 

general equation for, 115-116 
of liquid, 37, 110 
of vapor, 37, 115-116 

heat of freezing at — 10°c, 113-114 
heat of melting, 113-114, 196 
heat of solution, in potassium chloride 

solution, 123-124 
table of, 122 

differential, 124-126 
ionization constant of, 479-480 
liquid, entropy of formation of, 263 

free energy of formation of, 263 
melting point, change with pressure, 

200 
solution, ideal, of light and heavy, 135- 

136 
vapor (see Water vapor) 
vapor pressure of, 265 

change with temperature, 201 
at various temperatures, 215 

Water vapor, free energy of formation 
of, 248, 267 

equation for, 248-249 
fugacity of, at 25°c, 271 
molar volume of, at 100°c, 52 
specific volume of, at various tem¬ 

peratures, 215 
standard state for, 265 



510 INTRODUCTION TO CHEMICAL THERMODYNAMICS 

Weston standard cell, 19, 432, 450-451 

reactions in, 450 
Work, 25, 29-30, 37-40 

chemical, 39-40, 143 

conventions on sign and symbols for, 42 
dependence of, on path, 44-45 
electrical, 37, 39, 143, 240 

reversible, 41 

of expansion, 38-39, 82 

adiabatic, of a gas, 83 
irreversible, of a gas, 82 
isothermal and reversible, of an ideal 

gas, 82 
and heat, 141-142 

limits of, 143-145 
from chemical reactions, 144-145 
from electrochemical cells, 144-145 

from heat flow, 143 
from isothermal, spontaneous proc¬ 

esses, 143-144 

maximum, and the free energy func¬ 

tions, table of, 231 

Work, mechanical, 37 

net, and the maximum useful work, 222 
osmotic, 40 

reversible, electrical, 41 

of expansion, 41 

along a path, 40-41 

from spontaneous processes, 141-142 
surface, 39 

types of, 145-146 
table of, 146 

Work content, 220 

decrease in, and the maximum work, 

220 

Z 

Zero, absolute (see Absolute zero of 
temperature) 

Zero point energy, 50, 342, 345 

of compounds, 350 

Zinc, reaction with copper sulfate (see 
Copper sulfate) 








