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PREFACE 

In the development of modern fluid mechanics, the past 
quarter century has witnessed a concerted effort to reconcile 
the theories of classical hydrodynamics with the findings of the 
practical engineer. Not only has much controversial matter of 
long standing already found satisfactory explanation, but many 
proponents of empirical methods have been won to the viewpoint 
that sound physical concepts must form the groundwork for 
further progress. In particular is this tru(i of the field of aero¬ 
nautics, for the simultaneous rise of aviation and applied aero¬ 
dynamics is largely responsible for present trends in the study of 
fluid motion. 

The hydraulic engineer, however, has as yet had few conclusive 
proofs that his methods might be bettered by subordinating 
empirical formulas to more rational methods of attack. Indeed, 
his justifiable pride in achievements of the past only strengthens 
a tendemey to adhere to practices accepted in the days when 
engineers first learned to smile at the efforts of the theoreticians. 
Despite sucii natural conservatism in one of the oldest of engi¬ 
neering professions, many of the leading technical schools are 
gradually replacing elementary hydraulics courses with instruc¬ 
tion in general fluid mechanics, while a number of excellent 
textbooks on the subject are now available in the English 
language. Nevertheless, existing texts beyond the elementary 
class are intended primarily for the student of aeronautics, and 
the hydraulic engineer will find in them little of direct applica- 
Jon to his own field of endeavor. 

It is with the hope of appealing specifically to this type of 
reader that the present volume has been prepared. The subject 
matter is definitely of an advanced nature, in that the author 
has presumed a reasonable familiarity on the part of the reader 
with the elementary principles of hydraulics as taught in Ameri¬ 
can technical schools. On the other hand, every phase of the 
subject is developed from basic principles of mechanics, though a 
consistent effort is made to carry all such developments through 

ix 
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to their final application in a coherent and systematic fashion. 
At the same time, certain bugbears have been avoided which 
long have tended to arouse the antagonism of the practical 
engineer—in particular, the convenient creation of the so-called 
^‘perfect fluid”—for such assumptions commonly made by the 
theoretician have helped to preserve the rift between practice 
and theory for more than a century. The author seeks thereby 
to convince the hydraulic engineer that there is much to be 
gained by giving heed to rational methods of analysis and 
research. 

The experience of the author in the experimental laboratory 
has led him to believe implicitly in the necessity both of experi¬ 
mental vindication of analytical studies and of correct physical 
groundwork for experimental research. It is to be hoped, 
therefore, that laboratory investigators will also find much of 
value in these pages. Yet if the engineering students of the 
present day, who will become the hydraulic engineers and 
investigators of the near future, are to be properly equipped 
for their profession, it is essential that the study of fluid mechanics 
form no small part of their training. With this in mind, the 
author has endeavored to make the volume suitable as a text in 
advanced hydraulics courses, to be supplemented by such prac¬ 
tical applications as may be chosen by the instructor. 

The need for such a book as this first became apparent to the 
author in 1930, during the course of research under Geheimrat 
Th. Rehbock at the Karlsruhe Technische Hochschule. At 
that time even the best hydraulic laboratories were still largely 
unaffected by the advances made in other research institutions 
for fluid mechanics, and securing the fundamentals of the science 
was a tedious process. In the years 1931-1933, however, the 
author was so fortunate as to be in close contact with Professor 
W. Spannhake, of Karlsruhe, then visiting professor at the 
Massachusetts Institute of Technology. While attending Pro¬ 
fessor Spannhake^s lectures on applied hydrodynamics for the 
second successive year, the author prepared under his guidance 
a set of mimeographed notes for student use, which covered 
approximately the same ground as Part One of the present 
volume. 

In the following years the author presented a similar course 
for advanced students in civil and mechanical engineering at 
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Columbia University. Lectures on the mechanics of fluids and 
the hydraulics of open channels by Professor B. A. Bakhmeteff, 
of the Columbia Department of Civil Engineering, further 

served to broaden the author^s viewpoint, as did numerous dis¬ 
cussions with Professor Bakhmeteff on the publications of 
various German, French, and English authorities, particularly 
in the field of fluid turbulence. It was during this period that 
much of the material presented in Part Two of this book was 

assimilated. 
More recently the author has conducted classes in fluid 

mechanics and open-channel hydraulics for senior and graduate 
students at the California Institute of Technology, and has had 
the privileges of contact with Professor Th. von Kdrmdn, to 
whose genius the engineering world is indebted for marked 
advances in nearly every phase of fluid mechanics. The experi¬ 
ence of these last years not only led to considerable revision and 
unification of the earlier portions of the book, but permitted the 
addition of chapters on the transportation of sediment and the 
mechanics of wave motion—research subjects of primary con¬ 
cern in the hydraulic laboratories of the California Institute. 

The various photographs appearing in this volume were 
taken by the author during his investigations at the Flussbau- 
laboratorium of the Karlsruhe Technische Hochschule, the River 
Hydraulics Laboratory of the Massachusetts Institute of Tech¬ 
nology, and the Fluid Mechanics Laboratory of Columbia 
University, as indicated below each reproduction. Negatives of 
the photographs made at the Massachusetts Institute of Tech¬ 
nology are the property of that institution and are reproduced 

with the permission of the Department of Civil Engineering 
of the M. I. T. 

To Dr. Merit P. White the author expresses sincere apprecia¬ 
tion for thorough critical examination of the original manuscript 
of this volume and for subsequent aid in the revision of the 
proofs. Valuable assistance by Miss Mary Arcularius and Mr. 
Hugh Stevens Bell in preparing manuscript and photographs 
for publication is also gratefully acknowledged. 

Hunter Rouse. 

Pasadena, California, 

June, 1938. 
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FLUID MECHANICS 
FOR 

HYDRAULIC ENGINEERS 

CHAPTER I 

DIMENSIONAL ANALYSIS 

1. Empiricism versus Rational Analysis. Througliout the 
many centuries since the earliest hydraulician drew his first 
primitive conclusions with regard to the flow of water, engineers 
have relied almost entirely upon engineering judgment and 
empirical formulas in designing hydraulic structures and in pre¬ 
dicting the behavior of the resulting flow. Such empirical formu¬ 
las have been based on experimental measurement, although 
tempered, to a certain extent, with common sense and intuition; 
and for lack of a more rational means of approach, engineering 
judgment has been developed largely through the tedious process 
of trial and error. Inasmuch as experience is a very excellent 
disciplinarian, such methods have well served their purpose. 

On the other hand, parallel with the rapid growth of empirical 
hydraulics during the past one hundred and fifty years, mathe¬ 
maticians and mathematical physicists have attempted com¬ 
pletely rational solutions of the problems of fluid motion, without 
any recourse whatever to experimental measurement. These 
rational methods were made possible, however, only by such 
simplifying assumptions that the resulting solutions often bore 
little or no resemblance to the actual phenomena in question. 
Needless to say, the hydraulic world was quite justified in denying 
the practicability of methods leading to erroneous results. 
Nevertheless, there was considerable right in the point of view 
of the mathematicians, who were not content merely to formulate 
simple working rules from a limited range of experimental data. 

Modern fluid mechanics recognizes the merits of each school. 
Based upon a healthy combination of physical analysis and 

1 



2 FLUID MECHANie& FOR HYDRAULIC ENGINEERS [Chap. I 

experimental verification, fluid mechanics eliminates both the 
improbability of recognizing fundamental principles by chance, 
as in empirical hydraulics, and the necessity of dealing with an 
ideal, non-existent fluid as in classical hydromechanics. Empiri¬ 
cal hydraulics seeks to formulate simple working equations for 
design, dependability of numerical results being of more conse¬ 
quence than physical veracity of an equation; fluid mechanics, on 
the other hand, teaches that a sound physical basis for an equation 
is of primary importance, in that it may have far broader signifi¬ 
cance than might originally be apparent. Rigorous mathe¬ 
matical analysis usually encounters insurmountable obstacles, 
and simplifying assumptions without benefit of experimemtal 
background can often lead to completely fallacious conclusions; 
fluid mechanics avoids this difficulty by restricting its assump¬ 
tions to those which experience and sound physical reasoning have 
shown to be without serious effect upon the essential features of 
the problem. 

Th(i tools of fluid mechanics are laboratory experience, dimen¬ 
sional analysis, and a process of reasoning that seeks to interpret 
phenomena of flow in the light of basic principles of mechanics. 
Where empiricism emphasizes the algebraic development of a 
formula from experimental data often with little physical justifi¬ 
cation, rational analysis attempts a complete solution for the 
correct function and the numerical constants involved. Fluid 
mechanics, on the other hand, uses the principles of dimensional 
analysis to incorporate those variables which experience has 
shown to be essential into a basic dimensionless expression sys¬ 
tematically and significantly arranged; wherever possible, the 
functional relationship of the several members of this expression 
is then developed, at least approximately; finally, experimental 
investigation supplies the numerical constants and the essential 
check on the correctness of the analysis. Such methods lead not 
only to dependable practical results, but to a far more thorough 
understanding of the fundamental problem. 

2. Theory of Dimensions.^ Unfortunate indeed is the fact 
that the English language uses the same word, dimension, to 
denote both the numerical magnitude of a measurement and its 
dimensional category; before proceeding farther, the significance 

^ To the reader is recommended P. W. Bridgman’s admirable little 

volume, Dimensional Analysis,” Yale University Press, 1937. 



Sec. 2] dimensional analysis 3 

of this distinction must be clearly understood. It is possible 
to ascribe an arbitrary dimensional unit to any measurable char¬ 
acteristic of matter or of its physical behavior; thus, one might 
well conceive of units of area, electrical permeability, or momen¬ 
tum. The magnitude of the momentum of a given body, for 
instance, would then be expressed as the numerical ratio of its 
momentum to that of the arbitrary momentum unit, this number 
referring specifically to the momentum dimension and to the size 
of the momentum unit. 

Such promiscuous creation of dimensional units, fortunately, 
is neither convenient nor necessary. Since fluid motion is 
basically a problem of mechanics, and since for the present pur¬ 
poses thermal, electrical, optical, and chemical phenomena have 
no bearing on the problem, it is sufficient to restrict this study to 
four fundamental dimensions by means of which all quantities 
in mechanics may be described: length, time, mass, and force, to 
which categories the letters L, M, and F refer symbolically. 
To each dimensional category may be assigned some arbitrary 
unit, confusion too often resulting from the fact that nations 
cannot agree among themselves as to the choice of units. In the 
American system, which is adopted in this text, the length unit 
is the foot, the time unit the second, the mass unit the slug, and 
the force unit the pound. In the English system feet and seconds 
have the same significance, but the pound is the unit of mass and 
the poundal the unit of force. In the metric system the second 
is the only similar unit, for force is measured in dynes, length in 
centimeters, and mass in grams, although meters and kilograms 
are often used as more convenient units. Owing to the decimal 
nature of the system, this would not introduce serious difficulties 
—were it not for the fact that continental engineers are prone to 
ignore the dyne and measure force in grams or kilograms. 

Whether the volume of a body is measured in terms of cubic 
inches or cubic miles makes no difference in the actual volume 
that it possesses, however much the numerical ratio of its volume 
to that of each unit may vary. Similarly, regardless of what 
dimensional system may be adopted, the volume dimension is 
dependent upon the third power of the fundamental length dimen¬ 
sion, and hence is written L^. A quantity such as a force inten¬ 
sity is really a force per unit area and will thus depend in numerical 
magnitude upon the arbitrarily selected units of force and length, 
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this magnitude being found by dividing the numerical measure 
of the force by the numerical measure of the area. It is futile, 
however, to think of a fundamental dimension F being divided 
bodily by the second power of another fundamental dimension!/ 
—that is, the dimension of force intensity, in terms of the funda¬ 
mental units, is merely symbolized in shorthand fashion—Fjl? 
or Such a procedure is obviously far simpler than creating 
a new dimension and a new dimensional unit to describe each new 
characteristic. 

This method of reasoning will readily explain points that some¬ 
times tend toward confusion. It is often claimed that it is 
impossible to take the logarithm of a length; but when it is realized 
that the measured length, regardless of the unit upon which it is 
based, is simply a numerical ratio, then any mathematical oper¬ 
ation upon it becomes fully justifiable. Such a ratio is not, 
however, dimensionally independent; only when a number does 
not refer to any dimension whatever, and hence is numerically 
independent of any change in dimensional units, does it become 
truly dimensionless. 

Although length, time, mass, and force are all mechanical 
characteristics of fundamentally different nature, it is convenient 
to relate their dimensional units in definite fashion. Thus, it has 
been universally agreed that in any dimensional system the force 
unit is that force which will change the velocity of a unit mass 
one unit length per unit time in one unit of time. For instance, 
a force of one pound will accelerate one slug of matter one foot 
per second in one second. At the same time that this arbitrary 
correlation defines any one dimensional unit in terms of the other 
thr»e independent units, it also makes any one dimensional cate¬ 
gory expressible through use of the other three categories. That 
is, F may now be replaced by a combination of L, T, and ilf, and 
so forth, so that 

F = 
ML, HI 

M ' 

More generally, 
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It is evident that in this manner any three of these fundamental 
dimensions may be used to describe completely the dimension of 
any mechanical characteristic, by eliminating the chosen depend¬ 
ent dimension through one of the above relationships. Power, 
for example, is measured in foot-pounds per second; its dimension 
may then be written correctly in any of the following ways: 

LF _ F2 T ^ [Fn. 
T M \ M 

Nevertheless, owing to the common usage of the length, time, 
and force scales in this country, and of the length, time, and mass 
scales in Europe, it is customary to adopt L, and either F or M 
as the three independent dimensions. On a later page in this 
chapter there will be found a table giving the dimensions of the 
common fluid propertic^s and characteristics of motion, using 
both notations. To express the dimension in the American, 
English, metric, or any arbitrary system, one need only substitute 
the corresponding dimensional units, the dependent unit thereby 
being determined so long as that system is followed. 

Conversion from one system to another follows the same basic 
procedure. For instance, if a force * in tensity expressed as 
1000 dynes per square centimeter is desired in terms of pounds 
per square foot, th(^ pro(;edure will be as follows: 

1 dyne = 2,248 X 10“« lb.; 1 cm. - 0.03281 ft. 

1000 X 1 dyne 1000 X 1 (2.248 X lO"’^ lb.) _ ^ ,, ,,, , 
Tcm.*-^ 1 (0.03281 ft.)^ “ 

If, on the other hand, the result must be in terms of slugs per 
foot-second^, 

1 lb. = 1 slug ft./sec.- 

2.088 X 1 lb. ^ 2.088 X 1 slugft./sec.^ 
1 ft.2 ' 1 ft.2 

2.088 slugs/ft.-sec.2 

3. Properties of Fluid Matter. All matter, whether solid, 
liquid, or gas, must occupy a certain portion of space, its geo¬ 
metrical form and the magnitude of its volumetric displacement 
being measurable in terms of an arbitrary length scale in each of 
three coordinate directions. By establishing some center for the 
coordinate system, the same length scale may be used to describe 
its position with relation to the coordinate center. Thus, geo- 
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metrical form and relative location in three-dimensional space are 
purely length characteristics. 

The duration of existence of this body of matter as such cannot 
bo measured in length terms, but requires a special scale of time. 
By selecting some arbitrary point on this scale, it becomes possible 
to relate the time at which the body is studied to a convenient 
reference datum. As a familiar example of such a practice, the 
reader need only recall that time scale for which the unit is the 
year, and oii which the date of birth of Christ has been chosen as 
the arbitrary datum or zero point. 

Mass is purely a quantitative measure of matter. Since neither 
the time nor the length scale is suitable for such measurement, it 
becomes necessary to establish an independent scale of mass, the 
unit of which is once more quite arbitrary. Because the mass of 
a given substance is quite unrelated to its volume, neith(a* expan¬ 
sion nor contraction can affect its nnignitude; wdiile its geometrical 
form and location may be varied mechanically with time, material 
mass may be neither created nor destroyed. A characteristic 
inherent in mass is that of inertia, the tendency to remain at rest 
or in an existing state of motion unless acted upon by some 
external force. 

A very convenient and significant combination of the mass 
and length scales is found in the characteristic known as mass 
density, or simply density. This characteristic is given the 
symbol p (the Greek letter rho), and is defined as the mass of a 
given substance per unit volume; it may be measured in terms of 
slugs per cubic foot, and will have the dimension M/IJ, Evi¬ 
dently, expansion or contraction of the substance will result in a 
change in density. 

To be distinguished carefully from density is the characteristic 
known as specific; gravity, wdiich represents merely a numerical 
ratio of two densities, that of water commonly being taken as a 
convenient reference; specific gravity is no more dimensionless 
than length or energy, in that it depends in magnitude upon 
what dimensional unit is selected—that is, upon the fluid density 
used as reference. In other words, it is not sufficient to say that 
the specific gravity of some liquid is 2.34—unless one tacitly 
concedes that what is meant is 2.34 water-densities.^' 

Matter may be further described mechanically in terms of 
certain force characteristics—^namely, mass attraction, molecular 
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friction, molecular attraction, and elasticity. While each of 
these is undoubtedly related to the basic molecular constitution 
of matter, in the study of fluid mechanics it is not only advisable, 
but entirely reasonable, to consider these several types of force 
action as quite distinct from one another—exactly as the molecu¬ 
lar spacing is of no practical consequence in treating matter as 
homogeneous. 

Mass attraction is that force which is exerted by two bodies of 
matter upon each other, and is proportional directly to the 
product of the masses and inversely to the square of the distance 
between them. In fluid mechanics mass attraction is significant 
only so far as that exerted by the earth upon a fluid is concerned, 
this attractive force being known as weight. So common and 
dangerous is the fallacy of (jonfusing mass and weight that this 
distinction cannot be too strongly emphasized. Obviously, a 
change in volume of a given body of matter can cause no change 
in the magnitude of either mass or w(dght; on the other hand, 
although the mass of the body must remain constant, regardless 
of location, its weight will vary inversely with the square of its 
distance from the earthcenter of mass. The force exerted by 
tlie earth upon a mass of one slug (at sea level in the United 
States) is ai)proximately 32.17 pounds—corresponding to a force 
of 980.7 dynes upon a mass of one gram. Hence the American 
slug and the pound are, respectively, 32.17 times as large as the 
corresponding English units of mass and forcci, the pound and 
poundal; similarly, the gram as a force unit is 980.7 times as 
great as the dyne. 

The property of specific weight (often called ‘^weight density^^ 
to distinguish from the foregoing ‘‘mass density ^0 is the weight 
of a given substance per unit volume, and is commonly given the 
symbol y (gamma). It is measurable in terms of pounds per 
cubic foot, in the American system of units, and has the general 
dimension of F/L^. It is evident that the specific weight of any 
substance will vary with both expansion and contraction of the 
substance and with geographical location (refer to page 404 of 
the Appendix). 

All matter may be subjected to a shearing force, the effect of 
such stress marking the primary distinction between the solid 
and the fluid states. A solid in a state of shear will deform 
elastically, the magnitude of deformation being in direct proper- 
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tion to the shearing force until the elastic limit is reached, beyond 
which plastic flow will generally occur until the point of final 
rupture. If a fluid is subjected to shear, it will also deform, but 
continuously so long as the shearing force is applied, the magni¬ 
tude of the force now governing not the magnitude but the rate 
of deformation. Opposing such continuous fluid deformation is 
the molecular friction (viscous shear) within the substance, pro¬ 
portional to the rate of deformation and to the viscosity coefficient 
of the fluid. This is often called the absolute viscosity, with the 
customary symbol fi (mu)—dynamic viscosity, however, being 
a far more logical designation; from definition, it varies directly 
with the intensity of shear {F/L'^) and inversely with the rate of 
angular deformation (1/T), and hence has the dimension FT 
Since viscosity is that fluid property which resists angular defor¬ 
mation, and since fluid deformation under stress is continuous, 
the influence of vis(iOsity is apparent only so long as there is 
relative motion within a fluid; in otluir words, viscous effects 
cannot exist in a fluid whicdi is at rest. It is a pertinent fact that 
both liquids and gases under normal conditions display quite 
similar characteristics of viscous shear, regardless of the differ¬ 
ence in molecular spacing. 

While the magnitude of /x is independent of the state of motion, 
it is generally a function of temperature. This dependence 
differs considerably among the common fluids, but it is generally 
true that the viscosity of a gas increases with temperature, 
whereas that of a liquid decreases. Pressure has practically no 
effect upon viscosity except at very high values. Both air and 
water have relatively low viscosities, those of the various oils 
being much higher; glycerine is the most viscous of the better 
known fluids (roughly a thousand times as viscous as water), 
and its lack of color and ready miscibility with water render it of 
value in the laboratory as a means of producing solutions of any 
desired viscosity between the limits of pure water and pure 
glycfirine. 

Although viscous action is certainly a molecular phenomenon, 
it is basically as different from molecular attraction, which causes 
capillarity, as the latter is different from mass attraction. 
Although several theories attempt to explain capillary action, 
let it suffice for the present to say that all liquid molecules are 
presumed to exert an attractive force upon all others in their 
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immediate neighborhood, a force that would seem to be electro¬ 

chemical in nature. At some point within a liquid medium, at 

an appreciable distance from a boundary, such molecular forces 

are necessarily in equilibrium. But at a boundary surface the 

forces are no longer the same on every side, so that a resultant 

force acts upon all surface molecules in a direction normal to the 

surface. In other words, superficial energy will exist at any such 

surface—and since its magnitude is proportional to the surface 

area, the surface therefore tends to contract until it has the 

minimum area possible. While the phenomenon might indicate 

an apparent tension in an imaginary surface skin, the common 

term surface tension’^ is really a misnomer, for the lateral force 

at the surface is no greater than at any other point in the liquid. 

The magnitude of the actual ^Tnward pull'' exerted upon the sur¬ 

face molecules of a liquid depends not only upon the molecular 

attraction of the liquid molecules among themselves, but also 

upon the different degree of attraction between the liquid mole¬ 

cules and those of the boundary substance. Such a boundary 

might be formed by either a solid or an immiscible liquid or gas. 

Assume, for instan(;e, that a few drops of water were added to 

a container of nitrobenzene. Since nitrobenzene is more dense 

than water, and since the mutual attraction of the difftTent mole¬ 

cules is less than that of the similar molecules, the water will 

remain on the surface in drop form. If, however, there had been 

added to a container of water a light oil whose internal molecular 

forces were less than the attraction between its molecules and 

those of water, the drops would have spread out on the water 

surface until the thickness of the oil film had reached a uniform 

minimum value. Similarly, drops of any liquid falling through a 

less dense liquid or gas will tend toward a spherical form, since 

a sphere has the minimum surface area per unit volume; the 

bubble analogy is obvious. In the case of such surface curvature, 

the difference between the pressure intensities on the two sides 

of the surface varies inversely with the radius of curvature. 

If the boundary substance is a solid^ the molecules of which 

attract the liquid molecules with a greater force than that which 

exists among the liquid molecules themselves, the liquid is com¬ 

monly said to ''wet" the solid wall; actually, the degree of wetting 

is variable, for it depends upon the relative value of the forces of 

adhesion and cohesion. Water wets glass readily, mercury to a 
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negligible degree. In the case of water in contact with both a 

solid and a gaseous boundary (for instance, water in a glass tube 

with a free surface exposed to air), the several forces will cause 

the free surface to assume a concave form, and thereby decrease 

the pressure just below the surface; the water must then rise 

in the tube to a height sufficient to balance this pressure drop. 

In the case of mercury, which does not wet a glass wall, the inward 

pull of the mercury molecules will result in a convex surface, an 

accompanying increase in int('rnal pressure, and a corresponding 

drop in surface level. As proof of the (*onclusion that viscous 

effects are not de])endent upon adhesionof fluid molecules to 

a solid wall, it must be noted that mercury displays the same 

property of viscous shear in boundary regions as any liquid which 

fully wets the boundary. 

The magnitude of so-called surface tension is expressed by 

the factor a (sigma), which lias the dimension of force per unit 

length, F/L (since this is the dimensional ecpiivalent of energy per 

unit area). It is not necessarily a constant for a given liquid, 

for it depends as well upon the other media with which the liquid 

is in contact. 

The modulus of elasticity e of a fluid, identical with the bulk 

modulus of a solid, denotes the ratio betwe^m an increment of 

stress per unit area (pressure intensity p) and the resulting strain 

(relative change in volume V under this stress): 

_ dp 

The negative sign denotes a decrease in volume under a positive 

increment of firessure intensity. Since a small decrease in the 

original volume represents a proportional increase in the fluid 

density, the following relationships must hold: 

dp 
dp/p 

and 
dp __ dp 
e p 

The elastic modulus thus has the dimension of force per unit 

area, F/U^ and its reciprocal is a direct measure of fluid com¬ 

pressibility. Most liquids have a comparatively high elastic 

modulus, and hence are considered practically incompressible 

under ordinary conditions. The modulus varies with tempera¬ 

ture, however, and also with pressure when the liquid is under 
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excessively high stress. The elastic modulus of a gas is rela¬ 
tively low, and, for adiabatic conditions (constant heat) may be 
found from the basic equation of thermodynamics 

=r constant 

in which k is the adiabatic constant, equal to the ratio of the 
two specific heat coefficients of the gas in question {k = Cplc^). 

Table I 

Terms 

Geometrical: 

l^ength (any linear dimension) 

Area. 

Volume. 

Kinematic: 

Time. 

Velocity. 

Angular velocity. 
Acceleration. 

Angular acceleration. 

Kinematic viscosity. 

Rate of discharge. 

Oynamic: 

Mass. 

Force. 

Density. 

Specific weight. 

Dynamic viscosity. 

Surface tension. 

Elastic modulus. 

Pressure intensity. 
Momentum (and impulse) 

Energy (and work). 

Power 

Symbols 
Dimensions 

L-T-M 
in terms of 

L-T-^F 

L, 1 L L 
A L2 

V 

T,t T T 
V,v LIT LIT 

CO \/T IJT 
L/T^ LIT^ 

a 1/P2 1/P2 

y L^/T L^IT 
Q L^T L^/T 

M M FT^IL 
F MLJT^ F 
p MjL^ FT^L^ 
y M/L^T^ FIL^ 

M/LT FTIL^ 
<r M/T^ FIL 
e MILT^ FIL^ 
V MILT^ FIL^ 
M{I) ML/T FT 
E{W) ML^T^ LF 
P MLyr^ LF/T 

Expressed in logarithmic form this equation becomes 

In p + Aj In F = constant' 

Differentiating, 

^ + fc¥ = 0 and ^ = 
p V p p 
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whence 

dp 
dp/p 

= kp 

Hence the elastic modulus of any gas under adiabatic conditions 
will depend only upon the absolute pressure intensity to which 
the gas is subjected and upon its adiabatic constant. Such is 
the case of an clastic wave. If the })roc<\ss is isothermal (constant 
temperature), on the other hand, the modulus will be exactly equal 
to the absolute pressure intensity: 

e ~ p 

4. Characteristics of Fluid Motion. Just as the properties of 
fluid matter have been defined in terms of four fundamental 
units, these same units may be used to describe any state of fluid 
motion. Corresponding to the geometrical form of a body of 
matter are the geometrical boundary conditions of flow—that is, 
the size and proi)ortions of the fixed or moving solid boundaries 
of the fluid, all measurable in terms of the arbitrary length scale. 

To describe the kinematics of fluid motion, it is evident that 
both time and length scales are necessary. Thus, the distance 
a fluid particle moves in a given direction per unit of time is a 
measure of its velocity, and its (diange of velocity per unit of 
time determines its acceleration. Similarly, the product OJ 
velocity and cross-sectional area of flow becomes a rate of dis¬ 
charge. Each of these dimensions is purely kinematics, in that it 
involves only the time and haigth scales; these are sufficiemt to 
describe the entire flow pattern, includmg the form of the paths 
followed by the i* iividual fluid particles, without any knowledge 
of the forces causing such motion. 

Once a dynamic statement of motion is required, recourse must 
be taken to the basic principle of mechanics—the Newtonian 
equation—which involves all four fundamental dimensions, any 
one of which is made dependent upon the other three. This 
principle states that the rate of change of momentum of a given 
mass is proportional to, and in the direction of, the acting forc^e; 
or, more commonly, force is proportional to mass X acceleration. 
Thus, per unit fluid volume, 

- __ d{pv) 
^ dt 

= pa 
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Classical hydrodynamics dealt entirely with an idealized fluid 

assumed to be non-viscous, cohesionless, and inelastic, even the 

property of weight being a secondary characteristic, in that the 

fluid was generally presumed to extend to infinity (or to a fixed 

boundary) in every direction from the region under investigation; 

only in the study of surfaca^, waves did weight become an essential 

dynamic factor. In tiie general problem the only force which 

could produce an acceleration of the fluid mass was that due to a 

difference in pressure intensity from point to point within the 

fluid; thus, classical hydrodynamics was coru^enied essentially 

with the kinematic pattern of the flow (as evidem^ed by the 

velocity distribution) in its relation to the dynamic pattern 

(as evidenced by the distribution of pressurci). Modern fluid 

mechanics, on the other hand, with due regard to the basic flow 

pattern expressed in the classical relationships, realizes that the 

other properties of fluid matter—weight, viscosity, surface 

tension, and elasticity—may sometimes modify this basic pattern 

to a very appreciable d('gree. Nevertheless, it must be remem¬ 

bered that (dassical hydrodynamics succeeded in developing a 

rational means of analysis only through elimination of all variables 

impossible to handle mathematically at one and the same time; 

if fluid mechani(‘s hopes to replace these neglected character¬ 

istics, it is evident that a different means of analysis must be 

found before satisfactory results can be obtained. 

6. The n-Theorem. Before an attempt is made to develop a 

comprehensive statement of flow involving more than the basic 

characteristics treated in classical hydrodyna *iics, it is essential 

that the several variables be organized dhiiensionally in the 

smallest possible number of significant parametric groups. Such 

organization is facilitated by the fact that any mathematical 

equation of motion, in order to be physically correct, must be 

dimensionally homogeneous; that is, every term in an equation, 

when reduced to basic dimensions of length, time, and either 

force or mass, must contain identical powers of each of the respec¬ 

tive dimensions. Thus, if one knows the variables to be included 

in any flow statement, one knows in addition that these variables 

must be so related in the statement that dimensional homogeneity 

will obtain. 

The principal tool of dimensional analysis, by means of which 

one accomplishes the organization of the variables, is kno*- 
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the 11 (the Greek capital pi) theorem, first brought emphatically 
before the engineering world by Buckingham in 1915.^ The 
essence of this theorem is as follows: If any variable, 4i, depends 
upon the independent variables Asy • • • An, and upon no 
others, the general functional relationship may be written in the 
form: 

Ai — f(A2, Azy * • * Ar^ 

Owing to the mathematical equilibrium between the dependent 

and the independent variables, these may be grouped in another 

functional relationship equal to zero:^ 

/'(Ai, A2, Az, - • An) = 0 

The IT-theorem then states that if all of these n variables may be 

described with m fundamental dimensional units, they may then 

be grouped into n — m dimensionless Il-terms: 

<p(Uiy Ih, Ha, • • • Iln-m) = 0 

In each term there will be m + 1 variables, only one of which 

need be changed from term to term. 

The variables of which each ll~term is composed must evi¬ 

dently appear in such exponential form that every term will be 

truly dimensionless. If the m repeating variables are given 

unknown exponents in each term, the fact that there are r 
fundamental dimensions with which each variable cai" be 

described at once provides a means by which these unknowns 

may be determined. 

In general, the only variables that can influence fluid motion 

are of the following three categories: (1) the several linear dimen¬ 

sions fully defining the geometrical boundary conditions—a, 6, c, 

d, etc.; (2) kinematic and dynamic characteristics of flow—a mean 

velocity V (or a rate of discharge Q or, less frequently, a time or 

an acceleration), and a pressure increment Ap or gradient dp/dx 
(or a resisting force, or an intensity of shear); and (3) the fluid 

properties of density, p, specific weight, y, viscosity, p, surface 

^ Buckingham, E., Model Experiments and the Forms of Empirical 
Equations, Trunn. A.S.M.E., vol. 37, 1915. 

* Should this conversion at first puzzle the reader, he need only consider a 
' ^/iTfjrnple: x ^ f(y) * whence, x — y^ ^ f(x, y) « 0. 
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'^nsiou, <T, and elastic modulus, e. Assuming, for illustration, 

mt each of those characteristics is involved in the motion to be 

ivestigated, then 

/'(a, 6, c, r/, F, Ap, p, 7, M. 0-, c) == 0 

Since there are throe fundamental dimensions in fluid mechan- 

(eiiher or L-T-F) and eleven varia})les, the final func- 

onal relationsliip must contain eight IT-terms, and three 

triables must be common to each. It is usually expedient to 

.elect for these three a representative length together with 

velocity and density, the remaining eigiit variables appearing 

eparately in the eight groups; the latter are given, for con¬ 

venience, the ex})onent — 1, the others, unknown exponents whose 

lagnitudes are still to be determined: 

<p(TTi, JI2, II3, II4, 115, 1I6, Ht, Ilg,) == 0 

in which 

11, = yj/i p.. I.-’ == Us = 

Il4 = F^^^p"^ Ap~l; II5 = F^'^p** 7“S* lie = F^«p"®M“^; 

II7 = F^’ p^' 0-“^; Eg = F^« p^« e~^ 

To yield dimensionl(\ss E-terms, these unknown exponents 

nust be such that if each variable is replaced by the correspoud- 

combination of L, T, and M or F^ the exponent of each inde- 

oendept dimension will finally reduce to zero. The solution thus 

comes one of simultaneous linear equations: 

(Ly' -1 ^ ^0 7^0 

L: Xi + 1/1 ~ 3zi ~1 = 0 
T: - Vi = 0 

M: Zl = 0 
Xi = 1; 2/1 = 0; = 0 

n. = ? 

Evidently, if two variables of like dimension appear together 

in a group, the other variables disappear; hence E2 and E3 may 
be written by inspection: 
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U _ Ih - n, = 

The remainingTl-ternis are determined as follows: 

114: (Ly 

L 
T 

M 

3:4 + 2/4 — 324 +1 = 0 
- 2/4 +2 = 0 

24 — 1 = 0 
Xi = 0; Vi = 2; 

yz 
24 = 1 

Hi = 
Ap/p 

n. 

L 
T 

M 

Xs + 2/5 - 325 + 2 = 0 
- 2/5 +2 = 0 

25 — 1 = 0 

*6 = -1; 

n, = 

Vi = 2; 
FVa 

yh 

26 = 1 

He 

r 

M 
Xi -- 

Xo + ^6 — 326 + 1 = 0 
- 2/6 +1 = 0 

26 — 1 = 0 

1; 2/6=1; 2a = 1 
Fo 

He = 
m/p 

Hr 

L: xt + 2/t ~ 327 = 0 

T: - 2/7 +2 = 0 

Af: 27 - 1 = 0 

xj = 1; vr = 2? = 1 
F*o 

Hy = 
<7/p 
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Introduction of these dimensionless groups of variables in the 

.riginal expression results in the following significant relationship: 

/a a a 
\b’rd’ 

FVa Va 
Ap/p y/p p/p a/p e/p ) 

It ivs evident from the basic statement of the Tl-theorem that 

this is not by any means the only possible grouping of the 

v^ariables that will yield a dimensionally correct functional rela¬ 

tionship, for aside from the several length characteristics, any 

three variables might have been selected to appear in each of the 

Il-terms. The fundamental significance of the choi(‘e that was 

made, however, is that this led to three basically different types 

of dim(‘nsionless parameters: (1) those defining the boundary 

conditions; (2) one characterizing the basic flow pattern of 

classical hydrodynami(*s; and finally (3) those four pertaining 

to the action of weight, viscosity, surface tension, and elasticity— 

the latter being known, respectively, as the Froude, Reynolds, 

Weber, and Cauchy numbers: 

V _ ZV«. R - Z£. w - r - Y! 
y/p’ ^ p/p’ ^ ~ a/p’ ^-e/p 

Although any of the foregoing Il-terms might be considered 

the dependent variable, the only logical choice is that containing 

the essential characteristics of the flow itself; thus 

_ZL 
Ap/p 

Cv‘ 
a d 

F, R, W, C 

in which C is a constant numerical factor quite independent of 
the choice of dinaensional units and of the variation of the n-terms; 
tp' is also free from dimensional influence, provided that aU 
variables in the relationship be expressed in units of the same 
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dimensional system. Of the several members of the d(^pen(lent 

term, any one may now be chosen as the one whose variation is 

to be studied; for instance, 

this velocity being rcaidily (*onvertible to a rate of discharge 

through multiplication of both sides of the equation by the coitc- 

sponding flow area (the latter must ]>e expressible in terms of the 

repeating length a). 
Inspection of this general expression will show that it really 

incorporates a statement of flow conditions as found in classical 

hydrodynamics 

V 

corrected to actual conditions by a variable factor (p'\ which 

depends upon th(‘ influence of th(' several force prop(a’ties of 

the fluid. As yet no information is given as to the form of the 

function or the magnitude of the numerical constant C'; never-' 

theless, the' Il-tlieorenn has well served its purpose in reducing the 

number of essential terms through systematic grouping, and has 

in addition yielded i)arameters quite independemt e^f dimenisiemal 

units. It now remains eithen- to further analytical study or to 

experimental investigation to determine the characteristics of 

the function. 

6. Typical Applications. Assume first that it is desired to 

develop an expression for discharge into the atmosphere from a 

circular orifice in a very large closed tank; if it is assumed, as in 

classical hydrodynamics, that the velocity of efflux is a function 

simply of fluid density and difference in pressure intensity within 

the tank and without, 

V Ap) 
r 

Since there are only three variables, there can be but one Il-tcrm, 

and 
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The fact that the function is zero indicates merely that the Il-term 

itself is equal to some numerical constant: 

_ZL 
Ap/p 

= c 

This relationship readers will recognize as the basic equation of 

orifice discharge, in which C is “- for the assumed case of flow— 

equal to 2. By introducing the orifice area, and a numeri¬ 

cal factor Cc representing the reduction in jet area at the con¬ 

tracted section, 

Methods of classical hydrodynamics have shown that Cc for 

flow from a very large tank must have the value 0.611. 
IT + 2 

Further analyses by von Mises have determined Cc as a function 

of the geometrical proportions of the tank for a wide range of 

shapes and sizes; as such,‘the various tank dimensions being 

simply lengths, 

It is a well-known fact that the effect of weight on the rate of 

discharge is appreciable only if the velocity of efflux is very low; 

in such a case the downward deflection of the jet may cause a 

marked deformation of the otherwise symmetric^al contraction 

even very close lo the orifice itself. Under such circumstances, 

7 is an additional variable, and, for limiting boundary conditions, 

Nevertheless, even though the flow boundaries do not vary in 

form and the velocity of efflux is high enough to yield a sym¬ 

metrical jet near the orifice, experimental evidence will show that 

the factor C in the basic equation is actually a variable, 2Cv®. 

Realization that viscous influences may play an appreciable role 

then leads to the relationship, again for limiting boundary 

conditions, 
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Q = Cd; Cd = a c; = ^ J-2 ^4(R) 

As a matter of fact, a plot of experimental data for against the 

Reynolds number not only substantiates this expression but 

yields a single curve along which fall all measured values for fluids 

as widely different as water, air, oil, and water-glycerine mixtures. 

If one recalls that the action of capillary forces becomes the 

more appreciable as the curvature of a liquid surface increases, 

one might venture the oi)inion that in jets of small diameter the 

contraction would be altered, due not only to a sort of ‘^elastic 

stocking’^ influence, but to the failure of the fluid to spring 

free directly at the orifice edge. Indeed, pndiminary investiga¬ 

tion of the discharge coeffi(dent as a function of the Weber num¬ 

ber points directly to the truth of this reasoning. 

On combining these several influences in a single expression, 

whence it is clear that the actual fnnciion can be no simple one; 

not only does Cq vary individually with each parameter, but the 

variation of all together becomes hopelessly involved. Analytical 

treatment can suc(je(Kl only by neglecting secondary effects, the 

results then being useful only under conditions in which such 

effects actually are relatively unimportant. Thus, weight is 

negligible at all except small Froude numbers; viscosity is of 

great importance only at small Reynolds numbers; and only if the 

Weber number is small need surface tension be considered. 

In the foregoing example it was tacitly assumed that the out¬ 

lines of the approaching flow were determined entirely by fixed 

boundaries—^thus, there could exist no free surface inside the 

tank, th^ elevation of which above the orifice wmuld determine 

the pressure intensity p; the latter case would make one of 

the geometrical boundary conditions dependent upon pressure 

intensity (or vice versa), and the relationship would then con¬ 

tain two dependent variables, a condition contrary to the proper 

application of the Il-theorem. Such a case is illustrated by 

gravity discharge over a weir. This problem would be handled 

exactly as the orifice problem, with the one exception that pres¬ 

sure intensity would necessarily have to be dropped from the 
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expression. A little reflection will show that in the case of a free 

surfju^e, when tli(i flow is caused by weight itself, the hydrostatic 

pressure, and any variation th(‘refrom bec^ausc of acceleration, 

will be due to weight as the motivating agcuit. Under such con¬ 

ditions the Froude numb(‘r is seh^cted as Uie dependent variable, 

the discharge coc'flficient for weirs, spillways, and sluice gates then 

depfuidiTig primarily upon the geometrical parameters, and to a 

lesser degree u])on the Reynolds and Weber numbers. 

As a second illustration, t ake t he case of flow Ihrough a circular 

pipe. If the motion is a laminar one, density will play no part, 

and the only variables are the pipe diametcir, the mean velocity, 

the pressure gradient, and vis(*osity: 

With only four variables, ther(‘ can he but one IT-term, and this 

must have the form, 

D'^dj)/dx 
II = ' — constant 

Km 

Th(^re being so few vari«‘d)l(‘s, simple mathematical analysis can 

prove that the numerical constant must equal 32, as will be 

shown at a later point. 

If the flow is turbulent, the eddies involve a continuous acceler¬ 

ation and deceh^ration of small fluid massc^s, tlie effect of which 

on the flow will depend upon the density of the fluid. Assuming, 

furthermore, that the roughness of the pipe walls c.an be described 

by a single linear parameter, A:, the function will be: 

f{D, V, p, fc) = 0 

Application of the Il-theorem will yield the following dimension¬ 

less groups: 

whence 

/ VD p\ _ . 
^\D dp/dx ikfp k ) 
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Since the dependent II«*term is a function of two variables, the 

form of the function might best be shown by means of a three- 

dimensional plot.; however, the most common proc^edure is to 

plot <p' as ordinate and R as abscissa, with a separate curve for 

each value of the relative roughness D/k. 
Flow in open channels is a much more difficult problem to 

handle because of the many new variables involved—shape of 

cross section, non-uniformity of depth, presence of sediment as 

bed and suspended load, and so forth. For the present it must 

suffice to say that, as in the case of weirs, the pressure gradient 

must be omitted, and in addition there mxist be introduced a 

further geometrical characteristic, channel slope. In the case of 

a very wide chanm'I with uniform depth y and no bed load, the 

function would then be 

(Vl/y . Vy 
y/p ’ m/p 

y\ = 
- k) 

It may be shown analytically that V will vary with ^/Sy the 

above function then taking the form 

As a final example, consider the resistance of a body moving 

fully immersed in a fluid. The resultant force F exerted by the 

fluid during relative motion will depend upon the geometrical 

form of the body, the roughness of its surface, the relative 

velocity, and the fluid density and viscosity. For a given 

geometrical form and roughness, a single length will suffice 

for the basic function: 

F = m V, p, p) 
As there are five variables, there will be two Il-terms: 

whence 

/ F VD\ 
XpV^D^’ p/p/ 

= 0 

F - Ci<pi{R)D^pV^ 

In the case of a gas, it is quite possible for the relative velocity 

to approach and even exceed the acoustic velocity; not only will 
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the fluid density then change appreciably, but the formation of 

elastic waves will augment the resistance, conditions which are 

often encountered in the case of proje(‘tiles and airplane pro¬ 

pellers. In such instances the elastic modulus of the gas must 

be included in the basic statement. The function will then be 

F = C,<p,(Ry C)D‘^pV^ 

On the other hand, if the body moves in a liciuid close to the free 

surface, gravity and capillary waves will be formed and will add 

to the resistance exactly as in the case of elastic waves; the specific 

weight and surface tension of the fluid then belong in the state¬ 

ment of flow: 

F = C,<ps(Ry F, W)D^pV‘^ 

The form of this function is of basic importance in studying the 

resistance of ships, although th(^ Weber number is significant only 

if the linear dimensions (a ship model, for instance) are very 

small. 

In the liglit of parainet(Ts referrhig to wave motion, it will be 

interesting to note a pertinent similarity of the Froude, Weber, 

and Cauchy numbers; when written in the form 

_ V __ V V 
^ \/Lylp' ^ \/a]pL' ^ \/c/p 

these parameters re})resent the ratio of the actual velocity of flow 

to that of a gravity, capillary, and elastic wave, respectively. 

The Reynolds number is related in so far as viscous action plays a 

predominant role, if not always in the formation, at least in the 

subsequent gradual demise of any type of fluid wave. 

So long as the motion of a homogeneous fluid is studied in this 

manner, the method of treatment follows the foregoing general 

pattern. By no means infallible, dimensional analysis will not 

automatically correct for the investigator's failure to include all 

independent variables, nor for his overenthusiasm in including 

more than one dependent variable. On the other hand, too many 

independent variables will only serve to clutter up the equation, 

for experimental trial will finally show whi(;h of these are actually 

essential to the relationship. Needless to say, a certain under¬ 

standing of fluid principles is essential to proper use of the 
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n-theorem, coupled with a good share of common sense and 

ingenuity. Moreover, while the foregoing choice of repeating 

variables to be used in each of the Il-terms is by far the most 

logical, it, sonudimes haj)pens that a more ingenious s(d(^ction will 

disclose a functional rc^lationship that has dc'finite bearing upon 

further analytical study—such a case will be noted in a later 

section on flow in pipes. 

That phase of hydraulic engiiieering having to do with river 

regulation is conc('rn(‘d to an ever-in(‘reasing degree with the 

movement of sediment. Once such foreign matter is carri(‘d by a 

fluid—wludher as suspended or bed load-—it is no longer possible 

to treat the flowing matter as homogeneous and having only those 

characteristics already outlined. It becomes essential to add a 

number of n(‘w variables to the functional relationship, variables 

fully describing the chara(‘teristi(‘s of the fluid mixtun^; these 

involve either the density or sp(H*ifi(^ weight of the material in 

the fluid, together with parameters defining the }airti(^le siz(?, 

grading, and possil)ly shape. To dat(‘ siudi paraimdcirs have been 

chosen on purely em|)irica1 grounds, which lias niad(' the dimen¬ 

sional study of sediment transportation at best a haphazard 

process. 

7. Similitude. Of recent years the popularity of hydraulic 

model studies has servcal to emphasize—if not exaggerate—the 

efficacy of small-sca](^ (ixp(‘riments in designing and studying 

the probable behavior of hydraulic structujrt^s. Through use of 

models often a hiindi’edfold reduced in size from natural scale, 

it is possible to exi)(a’im(ait at low expense and without undue 

waste of time ludil the most favorable conditions of flow are 

realized, ciualitative—and often quantitative—observations being 

significant when converted to the dimensions of the full-scale 

prototy})e. 

Since a model has no prescribed scale relation, and since the 

investigator is not required to use the same fluid for the model as 

will flow in the prototype, it is evident that the model may be 

larger, smaller, or even the same size, and that the choice of 

both geometrical scale and fluid will be limited only by practical 

considerations. What, then, are the principles governing model 

construction and operation? 

It should be evident to the reader that, for the type of flow to 

be realized in the prototype, there will exist a functional relation- 
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ship among the several variables pertinent to the ease in question 

“ “ these variables including the geometrical boundary dimensions, 

the characteristics of flow, and the fluid properties, all of which 

may b(^ grouped togeth(‘r in a number of dimensionless parameters 

or Tl-terms. If true mechanical similarity is to exist between flow 

in the prototype and flow in its modc^l, every dimensionless 

parameter r(^ferring to conditions in the model must have the 

same nurneric^al magnitude as the corr(\sponding parameter 

referring to the prototype. Since all geometrical Il-terms must 

then be the same in both cases, it is evident that model and 

prototype must be completely similar geometrically; the flow 

characteristics will then be similar if the fluid properties are such 

that the Fronde, Reynolds, Weber, and Cauchy numbers (or 

whichever of thc‘se have bearing upon the phenomenon) are 

rtispectively equal in both cases. Once this condition is estab¬ 

lished, the characteristics of flow may be varied at will without 

destroying the similarity between prototype and model. 

One is accustomed to think of the model scale simply as the 

ratio of corres])()nding geometrical dimensions of model and 

prototype. Nevertheless, dimensional considc'rations will show 

that a change in the length scale is impossible without due regard 

for the scales of time, mass, and force. Thus, a true model— 

illustrated, for instancic, by some Lilliputian (or Brobdingnagian) 

water system—would have its own units of length, time, force, 

and mass, each of which would have its respective numerical 

ratio to the corrc^sporiding unit in our own system. Evidently, 

knowledge of the ratios of any three of these scales would auto¬ 

matically permit determination of the fourth. One may thus 

think of the foot or the second in the model world as some fraction 

or multiple of that in our own world; or, more conveniently, one 

may simply treat all modc'l dimensions as some fraction of those 

of the prototype, each meavsured according to the same standard 

dimensional units. Thus, the model: prototype scales may refer 

to the ratios of dimensional units or of actual dimensional meas¬ 

urements; for instance, in a 1:25 pipe model, one may speak of 

the prototype pipe as being five prototype feet in diameter and 

the model pipe as being five model feet (each 1^5 of a prototype 

foot) in diameter, or of the prototype pipe as having a diameter 

of five feet and the model a diameter of }/i foot. The latter is 

by far the more common practice. 
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While it is fully correct to deal directly with the length, time, 

force, and mass scales (any three of which are arbitrary), this 

method will prove far more cumbersome than adopting a scale 

of length and a separate scale for each of the fluid properties. 

This is because the choice of any model fluid at once fixes every 

fluid property, thereby establishing once and for all the scales of 

mass and force. 

Once the length scale and the prototype and model fluids are 

chosen, there is but one time scale that will permit full similarity 

of flow in the two systems. Although one might use sucdi a scale 

by itself to measure the corresponding intervals required to 

discharge similar volumes in the two systems or to measure the 

time of transit of floats, it is far more pertinent to combine this 

time scale with the others to measure corresponding velocities, 

accelerations, pressures, and so forth; in fact, since the time scale 

is the dependent one, it may be replaced through a combination 

of the other three, the mass and force scales benng inherent parts 

of the fluid-property scales, and the length scale remaining 

arbitrary. 

In the Table II the reader will find a list of the more common 

flow characteristics—namely, velocity, acceleration, rate of 

Table II 

Dimension 
Scale 

Flow characteristic in terms of 
L-M-F 

(1) 

F 

(2) 

R 

(3) 

W 

(4) 

C 

Length. L \ X X X 

(Lhf/F)^ X» X3 X 

(y./o.)* M«/p« 

Velocity. (LF/M)^ P*/pi 
X ‘ “ xi 

(•./p.)i 

Acceleration. F/M T*/p» (flt/pt) * 
X* 

9t/pi 

x» 

e./pi 
X 

Discharge. iJJF/M)^ x5(7*/p*)i X'Ma/p« X3(ir,/p,)l 

Pressure intensity. F/L* \ya M.» 
X*p« 

O'* 
X 

e* 

Energy. ' LF \*yM Xm.« 
Pi 

XV« X»e. 

Momentum. (LMF)^ X»M. x8o’*ip*I X*eiip«I 
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discharge, pressure intensity, energy, and momentum—each 

with its fundamental dimension taken from Table I. Designat¬ 

ing by X (lambda) the numerical value of the selected length scale 

(such as X == Lrn/Lj. = and by p«, 0“^, and the numerical 

values of the corresponding fluid property scales, there is tabu- 

lat(Kl the combination of these sctales according to which the flow 

characteristics must vary to insure complete similarity. Con¬ 

siderable insight will be gained by the reader through verification 

of these values. 

It will be noted at once that each characteristic must vary in 

(piite a different mamua’, depending upon whi(;h force property 

of the fluid governs the flow. Whenever the plnmomenon is 

infliuaieed by only one such property, the procedure is then 

quite straightforward. In particular is this true of weight; 

since most model studies are conducted under gravitational 

conditions similar to those under which the prototype will fum^- 

tiou, despit(i use of diffenmt fluids the ratio of specific w^eight 

to density will be idcaitical in both systems -under such (*ir- 

cumstances flu^ ratio ys/ps is unity, leaving suc'h quantities as 

time, velocity, and discharge dependent only upon X. 

Jf two force pro})erties play essential roles in the flow to be 

studied by mod(d, the problem is not so simple. Assuim', for 

instance, that a certain ty])e of fluid motion involves the a(;tion 

of weight and viscosity; since any flow charatfleristic is then 

detfuanined by both wc'ight and viscosity criteria as showm in the 

corresponding columns, equating any two of these values will 

yield the following essential relationship: 

Ps Js/Pa 

If the gravitational conditions for model and prototype are the 

same, tlic^ factor js/p^^ may be dropped from the relationship, 

whereupon 

^ 
PB 

K 

That is, similarity is possible only if the fluids are so chosen that 

the ratio of the viscosity and density scales equals the % power 

of the length scale. 
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Similar operations may be performed for any other pair of 

force properties, these steps being left for the reader^s practice. 

Once three or more force properties are involved, however, such 

solution is mathematically impossible, as the reader will be con¬ 

vinced after a single trial. That is, when more than two force 

properties of a fluid appreciably influence some phenomenon of 

flow, it is impossible to obtain a true model on any but the same 

scale using any but the same fluid as in the prototype. Since 

hydraulic models are often operated with the same fluid—water— 

and under the same conditions as in the prototype, it is thus 

evident that only if a single force property is involved will it 

be possible to have model and prototype of different size. 

The reader will long since have noted that the several force 

properties of matter often appear in their ratio to density. Each 

of these ratios will be found to have purely kinematic dimensional 

qualities, and although each depends upon two distinct fluid 

properties, it is often convenient to treat the ratios as significant 

characteristics. Thus, t/p is commonly known as g, the accelera¬ 

tion of gravity. Similarly, p/p is called the kinematic viscosity 

and given the symbol v (nu). The ratio (r/p has neither name nor 

symbol, although it might properly be called the kimunatic surface 

tension. The square root of the ratio e/p is generally desig¬ 

nated by the symbol c, tiie ac^oustic velocity, or velocity of an 

elastic wave. The reader is cautioned to regard these ratios 

purely as derived quantities, lest confusion result in the more 

general application of dimensional analysis. 

Since in the majority of hydraulic engineering problems the 

influence of fluid weight is greater than that of the other force 

properties, the flow characteristics in the operation of hydraulic 

models are usually determined through use of the Froude criterion 

alone. Water is used in the model as in the prototype, and 

since the factor g is generally the same for both model and 

prototype, these flow characteristics follow the simplified form 

of column 1 in Table 11. Needless to say, such procedure permits 

simple control of the model behavior, and hydraulic model 

experiments under these conditions have come into world 

prominence in recent years. 

Were the actual conditions governing model performance as 

straightforward as this, the investigator might well rest assured 

that tests on his model structure would yield quantitative results 
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accurately transferable to the prototype scale. The forep;oing 

considerations, however, have shown tjiat true similitude is 

generally impossible whc^n one and the samci fluid is used, for it 

seldom happens that only one force property is brought into play. 

Even if one could reproduce the geometrical characteristics to 

t rue model scale (such characteristics including surface roughness 

as well as structural form), too great a reduction in scale would 

most certainly make viscous and capillary action of appreciable 

importance. Yet so partial have many modcd laboratories 

become to the Froude number alone, that resulting discrepancies 

between modfd and prototype behavior are blamed upon imper¬ 

fections—^or ^Timitations^^—of the thcnny of similitude. 

Nevertheless, from the purely i)ractical viewpoint, it is evident 

that however mu(di one may strive after absohite similarity, 

its attainment is not always economically feasible. In such 

instances as turbine and pump studies, the investigation of pipes 

and pipe meters, or the testing of air and underwater craft, the 

fact that of the force properties usually viscosity alone can influ¬ 

ence the flow at once enables the investigator so to choose his 

model fluid that the model velocities are of convenient magnitude. 

But the operation of hydraulic models in which a free surface is 

involved adds to the action of viscosity that of w^eight and sur¬ 

face tension—each to a different degree—so that accurate quanti¬ 

tative results are practically impossible. 

Under such conditions, it is illogical to seek strict similitude 

—in particular since the cost of any fluid other than water for 

such studies will nearly always prove prohibitive. Instead, the 

investigator aims at qualitative indications of prototype per¬ 

formance, so governing the model slopes and discharges that the 

salient features of the flow are as similar as possible. Thus, 

if flow in the prototype is t-urbuhmt, that in the model must also 

be turbulent; if the prototype velocity is above the wave velocity, 

that of the model must also be above the wave velocity, and vice 

versa; if cavitation occurs in the prototyi^e, the model behavior 

will be of value only if cavitation also takes place; if surface 

currents are of importance in the prototype, the influence of 

surface tension in the model must not be sufficient to distort the 

flow pattern. 

Great reduction of scale in river models often leads to appreci¬ 

able viscous and capillary influence in the very shallow regions 
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of flow, which obviously rejiders the model performance ex(^eed- 

ingly open to doubt eyen so far as qualitative results are con¬ 

cerned. In such instances it is common practice to construed the 

model at a distorted scale, the vertical dimensions being redue^ed 

less than the horizontal in order to produce a relative^ly deeper 

channel. Thus, strict geometrical similarity, already sae^rificed 

through necessary change in slope, then exists only as far as the 

plan of the model layout is concerned; only through extrinne care 

may the iiivt^stigator hope for dependable indications from such 

model behavior, for the free surface in regions of rapid accelera¬ 

tion will by no nutans follow his scheme of scale dist-ortiou. 

The difficulties of true model similarity bectonui all the more 

insurmountable in the (‘ase of river models with movable bed. 

Sediment cannot b(» r(‘duc(‘d according to the geometri(*al sceJe 

without giving rise to sus])ension and flocculation as the s(‘ale 

becomes very small; h(aic(% the model laboratories have lieen 

forced either to use sand mixtures su(*h as ocamr in natural rivers, 

or to find other materials that better suit tlu'ir purpos(‘; for 

example, such substanccis as jmlverized coal, pumic^e, and amber 

have long since* proved th(‘ir worth in this respect. Sinca the 

totally different relative roughness in model and prototype now 

entails (wen further compensating change in surfae^e slope and 

vertical scale, the investigator can hope to obtain qualitative 

similarity in only one general feature of the flow—the movement 

of the bed. In a straight flume the velo(uty-slope relationship 

is first found which will cause the chosen model sediment to move 

in characteristic bars for the given ranges of dc^pth from low to 

high water. These factors, and in addition the high- and low- 

water time s(^ale, are then adjusted in the actual model until it is 

possible to reproduce, qualitatively, known past stages of the bed 

development in the prototype, whereupon it is assumed that those 

modifications to be investigated will not disturb the degree of 

similarity. While the research world is slowdy attacking the 

sediment problem from the analytical point of view (as a question 

of functional relationship rather than similitude), it will be evi¬ 

dent to the reader that present methods of approach are at best 

empirical. 

8. Classification of Flow Phenomena. Dimensional considera¬ 

tions have been seen to provide a logical means of subdividing 

the field of fluid mechanics, and hence might well serve as a guide 
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in presenting a systematic discussion of the various aspects of 

the science. Thus, from the geometrical standpoint, the differ¬ 

ent types of flow may be classed according to the boundary 

conditions; from the kinematic standpoint, according to the 

conditions of acceleration, f.c., wludJjer the flow is uniform or 

non-uniform, stf^ady or unsteady; and from the dynamic point of 

view, according to the fluid ])roperty having the predominant 

influence upon the flow. Of these several (^ik^ia, one must 

be selected as a primary means of classification, the other two 

then serving as major and minor subdivisions. 

Empirical hydraulics has perforce classified the various types 

of flow according to the boundary conditions, with the result 

that frecpiently no connection is apparent between definitely 

related plu^nonuaui. It is the pur])ose of fluid mcndianics, on the 

contrary, to correlate existing knowledge—including that offered 

by empirical hydraulics—to the end of producing a soundly 

unifi(‘d and coherent system of reasoJiing. For the purpose of 

the prc^sent volume, therefore, it has been deemed wisest to 

regard the dynamic aspects of flow as fundamental, fluid proper¬ 

ties thereby playiiig predominant rokvs. It would then seem in 

order to treat, in turn, })henomena in which density, specific 

weight, viscosity, surface tension, and elasticity determine the 

essential pattern of motion. Yet, while rigorous adherence to 

such a f)]an might be the most systematic course, certain features 

of a(d.ual motion make advisabhi a slight departure from this 

procedure—in x^articular since in any problem of actual motion 

more than one fluid property is almost certain to be involved. 

TlKU'cfore, in order to permit a logical development of the final 

picture, the following method has been adopted. 

While classical hydrodynamics stressed the interrelationship of 

density, pressure, and velocity—with little regard to the actual 

forcai x)ropertieR of the fluid—th(i fundamental equations of 

hydrodynamics suffer no essential change if the action of fluid 

weight is considered from the outset. Part One, therefore, 

stresses the basic mechanics of motion, selecting from the classical 

treatment all that is immediately useful or will have bearing 

upon later developments; by giving due regard to fluid weight, 

such treatmemt is made applicable alike to confined flow and flow 

with a free surface. Part Two expands these basic principles by 

introducing the effect of viscosity, emphasizing first those cases 
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ill which vifscouH action predominateH, and finally thoHC in which 

it is but one of the several influences determining the resultant 

flow pattern. Yet since capillary action and elasticity are defi¬ 
nitely minor fluid jiropcrties, in so far as the interests of this book 

are concerned, such individual treatment of these is quite unwar¬ 

ranted. On the other hand, sim^e the field of wave motion is not 

only of distinct importance to the engineer, but provides, as well, 

an excellent means of comparing the action of the several force 

properties. Part Three is devoted entirely to this purpose. Wave 
mechanics is first stressed in its general aspects, following which 

the individual effects of viscosity, elasticity, specific weight, 
and surface tension are discussed in such detail as is warranted by 
their relative importance. In ev('ry cas(', subdivision aiajording 

to geometrical and kinematic asp(*cts lias beini so devised as to 

(‘oordinate—rather than isolate—specific problems of motion in 

the various fields. 



PART ONE 

FUNDAMENTALS OF HYDROMECHANICS 





CHAPTER II 

ELEMENTARY PRINCIPLES OF FLOW 

9. Velocity of a Fluid Particle as a Function of Time and 
Space. Any fluid may be imagined to consist of innumerable 
small but finite particles, each having a volume so slight as to be 
negligible when compared with the total volume of the fluid, yet 
sufficiently large to be considered homogeneous in constitution. 
Since these fluid particles must be in constant contact with each 
other, true impact between particles is j)hysically impossible; it 
follows that any relative motion within the fluid will generally 
involve both rotation and deformation of each individual particle. 

Each particle at any instant of time will have its own particular 
velocity, which will generally vary as it travels from point to 
point; moreover, the velocity of successive particles passing a 
fixed point is likewise a variable in the most general case, l^'he 
Lagrangian method of attack studies the behavior of a given fluid 
particle during its motion through space; opposed to this is the 
method of Euler, which observes the flow characteristics in the 
immediate vicinity of a given point as the particles pass by. 
While perhaps not so descriptive of the fate of the individual 
particle, equations of motion obtained by the Euleriaii method 
lend themselves more readily to practical use. 

Unlike scalar quantities, such as length or time, velocity and 
acceleration may vary in direction as well as in magnitude; they 
are, therefore, true vectors, with components in each of three 
coordinate directions. Variation with time of any vector quan¬ 
tity may result from a change either in direction or in magnitude 
—or in both—of the vector itself. However, knowledge of vector 
analysis is not essential to the study of fluid motion, for the 
variation of a vector may be fully described by the changes in 
magnitude of its three components. 

What is known in hydromechanics as a stream line is an 
imaginary curve connecting a series of particles in a moving fluid 
in such manner that at a given instant the velocity vector of 

35 
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every particle on that line is tangent to it (Fig. 1). In uniform 
flow the magnitude and direction of the velocity vector are 
constant ov(?r the entire length of any stream line at any instant; 
in other words, all stream lines remain parallel to one another, 
the distinction bctwe(‘n uniformity and non-uniformity referring 
specifically to the geometry of the flow pattern. On the other 
hand, regardless of the relative form of the stream lines, if the 
flow is steady there may be no variation with time in either magni¬ 
tude or direction of the velocity vector at any stationary point 
in the space through which the fluid moves. 

It follows that a flow which is non-uniform and unsteady 
shows velocity variation both with distance and with time; 
that is, the velocity of fluid particles changes from point to 

1/ point, and the velocity of the parti- 
cles passing any given point changes 

^-- from instant to instant. This is 
most general case, and may be 

^ described mathematically by the 
-exi^ression 

^ 

^ , Cl. V ^ which states simply that the veloc- 
Fig. 1.—Stroam lines. . . . 

ity vector is a function of time 
and of position with respect to the three coordinate axes. 
It is evident that in unsteady, non-uniform motion the entire 
flow pattern may be changing from instant to instant, in 
which case the stream lines must be regarded as instantane¬ 
ous—that is, they r()present the paths of particles for only a 
small increment of time. If the flow is either steady or uni¬ 
form, the stream lines will represent the actual paths of the 
fluid particles; only in regions of uniform flow can these paths 
be parallel. 

The same distinction that exists between a fluid particle and a 
point in the fluid medium may be used to define a stream filament 
as distinguished from a stream line: The reader must visualize 
a small filament or tube of fluid, bounded by stream lines arid 
yet of inappreciable cross-sectional area, as shown schematically 
in Fig. 2. This stream filament might be considered, in either 
steady or uniform flow, as the passage through space of a fluid 
particle, and as such is the basis of the one-dimensional treatment 
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of certain flow problems. Indeed, elementary hydraulics is based 
largely upon this conception, a single filament being assumed to 
have the cross-sectional area of the entires flow. 

In c(U’tain tyi)es of fluid motion the stream filaments are 
arranged in a very ord(Tly fashion, and may be made visible 
experimentally by the introduction of colored fluid at some point 
in the How. More generally, however, there occurs a complex 
interlacing of ihi^. acdual stream lines; the various particles not 
only'follow (completely different and intricate courses but suffer 
continuous distortion and subdivisiem, so that no i)articl(c ('xists 
as an individual for more tban 
a short int.erval of time. In 
such cases it is often praedi- 
cable to n‘j)resent- by stream 
lines or filaments tine tcjiiporal 
average of conditicjns through- c/Q=\/,c/A,^i/^d^2 

out the movement. Such rep- ' ir,,;. 2. - st roam filament, 

resentation does not ignore the 
actual complexity of the motion, but serves (jnly as a convemient 
aid in visualizing the underlying pattern of the flow. 

The ])oundaries of fluid motion are the fixed or moving surfaces 
which define the border's of the fluid nmdium. TIk^so may either 
surround the flow, as is done l^y the walls of a pipe or turbine, 
or may be enclosed by tlie flow, as in the case of an airplane or the 
blade of a turbine runner. On the other hand, the frc'c surface 
of a liejuid in contact with a gas is not given its form t.)y a solid 
boundar}^, but through the (condition that the ])ressure intensity 
at every point (m the free surface must be the same. In any 
case, the situation is fully described by wl^at are known as bound¬ 
ary conditions. It should be (dear that the borders of the flow 
are always stream lines, since by definition and })hysical fact, 
respectively, the flow cannot cross either a stream line or the 
boundary line of motion. 

10. Relationship of the Velocity Fields for Steady and Unsteady 
Flow. In general liydroimcchaiiics it is customary to distinguish 
between absolute and relative motion. For the purpose of this 
text, however, it will be more feasible to disregard the absolute 
space of the theoretician, and simply place emphasis upon the 
relation of the flow picture either to the fluid itself, or to a fixed 
or moving boundary. In order to clarify this principle, consider 
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the two cases of a boat moving through still water, and water 
flowing around a bridge pier. The coordinate system may be 
represented by the (luadrilkvruled ground glass of a camera 
which is suspended some distance above the water. If the 
camera is related'^ (fixed) to tlie boat or to the bridge pier, the 
flow picture will be a steady one, and the stream lines will also 

Vtj(unsfcoicfy} 

steady flow 
Fic}. 3.—Patterns of relative motion between a fluid and a solid boundary. 

be the apparent paths of the fluid particles (see Fig. 3). If, 
however, the camera is related to the water, the picture will 
change with time and will show the flow pattern caused by the 
pier or the boat at any instant. In the case of the bridge pier 
the water obviously moves through space, while in the other 
example it is the boat which moves; hence, in the first case the 
moving coordinate system gives a picture of unsteady motion, 
and in the second a picture of steady motion. 

The relation between the two pictures is purely a vectorial 
one, as indicated in Fig. 3. Assume, for instance, that the camera 
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is stationary above the water, thereby yielding the unsteady 
pattern caused by the boat moving to the left. If the camera is 
now moved to the left with the boat, tlie resulting steady pattern 
will be the same as if the boat and all fluid partichis in the unsteady 
pattern were moved to the right at the relative velocity Vh- 

Thus the steady vector Vs at any point is the vector sum of Fb 
and the unsteady vector Vu^ Similarly, the steady pattern of 
flow around the bridge pier, observed when the camera is sta¬ 
tionary, may be changed to an unsteady one by moving the 
camera to the right—^^c., by giving the pier and all fluid particles 
an apparent velocity F/e to the left. Ft; is then the vector sum of 
Fb and F,s. Interesting photographic studies of such relative 
motion caused by a body moving through a fluid may be made 
by sprinkling aluminum flakes or bits of finely divided paper 
on the fluid surface and then making short time exposures: 
first while the camera moves at the exact speed of the body 
(steady motion), and then with the (camera held motionless 
(unsteady motion). Such photographs may be seen in Fig. 4.^ 

A method of changing the picture of unsteady flow through a 
turbine or centrifugal pump, as would ordinarily be seen by an 
observer, to one of steady flow has been developed by Professor 
Thoma, of Munich. An apparatus known as a rotoscope, con¬ 
sisting of a small telescope and an objective prism, is mounted 
in line with the pump or turbine axis, the end of the casing having 
been replaced by a small section of plate glass. So long as the 
prism is at rest, the flow picture remains unsteady; but if the 
prism is made to rotate at the proper speed, through the telescope 
the blades will appear to be stationary. If dye is introduced at 
various points of the flow, a steady picture of the stream lines 
will result. Similar stroboscopic methods are in common use in 
studying the performance of high-speed machinery, involving 
the same principle of reducing unsteady motion to steady motion 
by relating the coordinate? system to the moving parts. 

It is customary to construct a stream-line diagram in such a 
fashion that the distance An between stream lines at every point 

^ For the purposes of simplicity, the stream lines in Figs. 3 and 5 have 

been drawn symmetrically at the front and rear of the body. That this is 

not an impossible case of flow is shown by the photographs, taken shortly 

after movement began. Further discussion of flow in the wake of a body 

must be reserved for a later chapter. 
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Columbia 
Flo. 4.—Patterns of (a) unsteady and (6) steady flow around a cylinder as 

motion begins, the camera traveling with the fluid and with the cylinder, respec¬ 
tively. The stream lines are shown by the movement of highly illuminated 
aluminum particles during a short time exposure. 
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is inversely proportional to the length of the velocity vector at 
that point: An == c/v] this practice is possible on paper, of course, 
only in the case of two-dimensional or planar motion, such as 
that shown in Fig. 3. Because of such sysU^matic selection of 
stream lines (in reality an infinite number of them exists), it is 
possible to simplify tluj construction of the pattern for steady 
flow from that of unsteady flow, and vice versa, with the following 
graphical method. For every system of flow thcTe exists at 
each point of the pattern one and only one vector diagram repre¬ 
senting the relation of the steady and unsteady velocity vectors 
to the velocity of translation; similarly, tlie magnitude of each 
vector represents a definite spacing of the str(\ani lines. Since 
the relative velocity is constant, it may be represented by a 
series of equidistant lines parallel to the direction of motion, 

Fig. 5,—Graphical combination of velocity fields. 

spaced according to the velocity and the proportionality (con¬ 
stant. By connecting with smooth curves all points of inter¬ 
section of these parallels with successive stream lines in either 
the steady or unsteady flow pattern, the corresponding pattern 
of flow lin(3s will result, as shown in Fig. 5. This method of 
graphically combining (adding or subtracting) two vector fields 
is of especial value in the study of motion within the moving 
runner of a turbine, and will also be used in the following pages 
in the study of vector fields of force. 

While the stream lines in steady flow represent the actual paths 
of fluid particles (with reference to the coordinate system), the 
paths traveled by particles in unsteady motion must, in general, 
be obtained by another graphical method. Since a given fluid 
particle in unsteady motion follows one stream line for only an 
infinitesimal increment of time, its velocity then being deter¬ 
mined in direction and magnitude by the next stn^am line to 
cross its path, one must plot on a diagram of instantaiu^ous stream 
lines the successive distances over which it will move in the direev 
tion of each stream line as the unsteady field of motion advances. 
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Thus, in Fig. 6, a particle at point 1 will move the distance a 

according to the dire(*tion and spacing of the stream line A at 
that point, the distance h according to conditions at point 2, 
and so on. The complete paths followed by the various particles 
in this particular system of motion will vary only with the original 
distance from the centerline of flow. 

Stream lines and path lines must not be confused with so-called 
streak^' lines—^the latter conne(‘ting all particles passing through 

a given point. Filaments of dye injc^cted into a moving fluid 
therefore correspond to streak lines, and indicate path lines and 
stream lines as well only if the flow is steady. 

11. Equations of Motion in Natural Coordinates. While the 
Cartesian coordinate system is by far the most general, it is at 
the same time very diflicult to visualize states of motion described 
in this system, and just as difficult to adapt its equations of motion 
to various boundary conditions. Hence, it is customary to make 
extensive use of some specialized system, according to the case in 
question. In the study of flow through or around boundaries 
generally symmetrical about one axis, such as the surfaces of 
revolution in centrifugal pumps and turbines, the cylindrical 
coordinate system is particularly advantageous. The coordi¬ 
nates are again three in number, and consist of the radius rand 
the angle 0 of the planar system of polar coordinates, and of the 
distance z measured along the axis of rotation. For very special 
cases the spherical (astronomical) system has its advantages, 
although its use is limited. 

Because of its close relation to the stream-line picture, the 
natural coordinate system will be found particularly applicable to 
the methods of study in this book. This system is somewhat 
different from the others, in that it may be used to describe most 
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conveniently only that region of flow immediately surrounding 
the center of coordinates. The coordinate center is thus located 
at the point in the flow chosen for study (point o in Fig. 7), the 
s axis being tangent to the stream line at that point, the n axis 
normal to the stream line and containing its center of curvature, 
and the m axis normal to tlu^ other two. It is apparent that at 
the coordinate center the v(‘locity vector lies along the 6* axis, 
there being no velocity (jomponent-s at that point in either of the 
other coordinate directions. At any other point q, however 
(refer to Fig. 7), according to the coordinate axes centered at o, 
the velocity vector will have components in all three directions. 

Writing the velocity at any point of an 
unsteady, non-uniform flow as a funcUon of 
time and of position with respect to the three 
natural coordinates axes 

V ■-= f (t, s, n, m) 

it will be seeji that th(' velocity of a fluid 
j)article must theri va-ry not only according to 
the change of conditions in that locality with 
time, since the flow is unsteady, but also 
according to the change of conditions in each toristiers of the natural 

,1 r 4- r a • eoordinate system, ol the coordinate dircudions, since the flow is 
non-uniform. Since the velocity is a true v(^.ctor, it will generally 
have (components in each of th(* tbr(H> coordinate directions (^6, Vn, 

and Vni), each of whicch is also a function of time and space: 

= /i {t, s, n, m) 

Vn == /s (ty s, n, m) 
Vm = /s {i, s, 71, m) 

Sincce acceleration is a vector quantity defined as the temporal 
rate of change of the velocity vector, 

dv 
^ Jt 

its components in the three coordinate directions may be written 
as the temporal rates of change of the corresponding components 
of velocity: 

dt’ dt* dt 
a, = 
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In moving an increment of distance in an increment of time, a 
particle will undergo acceleration for two distinct reasons: first, 
because of passage of time, without respect to its movement 
through space; second, because of its movement through space, 
without respect to passage of time. In other words, each com¬ 
ponent of total acc(ileration will consist of two parts: the first is 
written simply as the partial derivative of the velocity component 
with respect to time; the second is expresst^d as the partial deriva¬ 
tive of the velocity compoiumt with respect to distance in the 
direction of motion, multiplied by tlie distance traveled per unit 
of time during the short time increment. Evidently the distance 
traveled per unit of time is equal either to the vedocaty component 
in tile 5 direction or to the magnitude of the velocity vector itself, 
since the two differ by an exceedingly infinitesimal amount oven 
after the partiide has moved the short increment of distance. 
Hence, the three components of acceleration may be written in 
the following form: 

tT. ' 
dVs _ dv. 

+ 
dVs' ds av. 

(It at dH (ft dt_ 
+ V j. - 

ds 

(IVn _ aVn 1 dVn ds 
1 

(It at ds dt “ dt 
V-r- 

ds 

dVm . av„, 
1 dVm ds dVrn 1 dVm 

dt at "T 
ds di dt 

~r 
ds 

(Is) 

(In) 

(Iw) 

The partial derivatives express the local and the convective 
compon^t>s of acceleTa^^ the tlui^ particTe, a^n!tSttngitt?(hed 
fltmTlTT^THaTor^ component of acceleration, and 
represent, respectively, variation with time, regardless of space, 
and with space, regardhiss of time. If the flow is steady, the 
local terms are zero; similarly, if the flow is uniform, the convec¬ 
tive terms are zero. In a steady, uniform flow there is no acceler¬ 
ation whatsoever. 

Owing to the nature of this coordinate system, these equations 
may be further simplified, for at the instant the fluid particle 
pavsses the origin 0 (Fig. 7) there can be no component of the 
velocity in either the n or the m direction, and the curvature of 
the stream filament will lie entirely in the sn plane over a short 
distance ds (i.e., the curvature of a line can be only two-dimen¬ 
sional at any point and hence over an infinitesimal distance on 
either side of that point). In Eq. (Is) the convective term may 
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now be written in the following form, which involves merely a 
change in mathematical wording: 

dv __ d(v^/2) 

The convective term in Eq. (In) may be replaced by the familiar 
term of mechanics representing the centrij^etal acceleration of 
any mass moving in a curved path. This may be proved by 
reference to Fig. 8, similarity of triangles resulting i?i th(' 
proportion 

whence the convective term in the second 
equation becomes simply v'^/r, 8in(*-e the 
plane of curvature of the filament is 
normal to the m axis over the distance ris, 
there can be no acceleration in the direc¬ 
tion m as the particle travels this short 
distance. Hence, the convective term in 
Eq. (Im) may be omitted (‘utirely. These 
three equations may now be written as follows for t he immcHliate 
vicinity of tjie coordinat(‘ (‘enter: 

Fig. 8.-—Centripetal ac- 
oeleraticai. 

^ 4. 
(it dt ds 

dVn _ dVn , v'^ 

dt ~ It '^7 

dVm _ OV-m 

'^dt ~ Wt 

{2s) 

(2n) 

(2m) 

In order to study the individual action of any force property in 
producing sut^h acceleration, it is necessary to eliminate, for the 
time being, the influence of all other force properties. This is 
accomplished in fundamental hydromechanics by arbitrarily 
setting the viscosity, surface tension, and compressibility of the 
fluid equal to zero, weight and pressure then being the forces 
under investigation. Thus, the forces exerted in an axial direc¬ 
tion upon an elementary cylinder of fluid (see Fig. 9) will be the 
pressure at either end and the component of fluid weight acting 
parallel to the axis. While the pressure intensity at any point 
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within such a fluid is the same in cvoiy direction, it will in general 
vary from i)oint to point, its rate of variation in any direction 
being called the pressure gradient. The difference in pressure 
intensity between the two ends of the fluid eylinder is thus given 
by the pressure gradient in the axial direction times the distance 

between the two ends. The total force acting upon this fluid 
volume will then b(‘: 

dF3, ^ p dA ~ y^ ^ dA + y dx dA cos a 

Introducing the rate of changes of elevation h in the x direction 
(cos a = —dh/dx) this becomc^s: 

dFx = ——^ dxdA “7 dx dA 
dx dx 

This very important relationship may be expressed as follows: 
The force per unit volume, /, acting in any direction is equal to 
the rate of decrease of tln^ sum {p + yh) in that direction: 

This force per unit volume divided by the density of the fluid 
will equal the force per unit mass, or, in accordance with the 
Newtonian equation, the rate of acceleration of the fluid in the 
given direction: 

d^ 
dt 

P 

p dx 
(p + yh) 

(4) 

d; (5) 



Sec. 12) ELEMENTARY PRINCIPLES OF FLOW 47 

From J^]q. (5) ii will Ix' lhat if any component- of the 
subsimitial {icce|('ra.tion is z(‘ro^ ilunaj can bo no variation in tlie 
sum (/> + 7//) in (liai (linxiiom In other words, the distribution 
of ])ressur(‘intensity niusl lx* liydi*ostat ic (/.c.,/> = constant —yh) 

in any din'ction in wliicii no a(*cel(a’ation tak(\s ])lac*e. 
F]quation (5) may now Ix^ (‘ornbined with the expressions for 

acceleration already dev(io|xxi: 

d[v''/2) 

Vh d J 
dVn , V- 

(h)„ 

at 

(6.s) 

lliP + yh) (6m) 

(6/m) 

"Fhese are special forms of tlu' most basic, relationships in hydro- 
metdianics, first ])iiblish(‘d in 1755 ))y the founder of the science, 
th(‘ Swiss mathematician Leonliard Jailer, and gcnierally known 
as the Eul(‘r cxjuations of a(x*(‘l(*ration. 

12, Principles of Energy, Continuity, and Momentum. Equa¬ 
tion (G.s‘) may be writtcai direct!}^ in the following pertinent form: 

^ av, a (pir , A n 

The tliree terms witliin parenthesc^s may Ix' set equal to the quan¬ 
tity E-,,. If the flow is assumed steady, t he hxail acceleration will 
then b(^ equal to zero, and integration of this differential expres¬ 
sion over 6‘ will yield a gcaieral statement of conditions of steady 
floW' along any stream line: 

|* dE.„ - + ]) + yh = / (0 (7) 

Altlioiigh t.lio flow wa.s cxpres.sly made a .steady one, Eq. (7) 
states that the quantity Ev may still be a function of time. The 
reader will recall, however, that from defiriition the word ^'steady’’ 
specifies only that the velocity .must remain constant with time 
at all points in the flow, and thereby places no restriction upon 
temporal variation of the pressure intensity. Equation (7) 
simply means that variation in t.he hydrostatic load on the system, 
as included in the sum (p -f- yh), will exactly equal the change 
in Ev with time and will extend uniformly over the entire length 
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# 
of the stream line; as such, it can have no effect whatever upon 
the velocity at any point. 

If Ev is not a function of time, along any stream line 

Ev = p^+p + 7^ = constant (8) 

Each term of this ecpiatioii has the (liiiK^ision of energy per unit 
volume, the equation (unlxxlying a complete' statement of the 
energy principle, or the essential balam^e betwe'en kinetic energ. 
and potential emergy ove'r every part of a stream line in stead 
flow. The equation of energy is more commonly known as the 
Bernoulli theorem, named for Daniel Bernoulli (like Euler a 
Swiss mathematician), who discussed the various forms of flow 
energy in a treatise on hydraulics (1738) nearly two decades 
before Euler laid the foundations of hydromechani(;s. Tin? equa- 
tion ajjpears above in its most general form—one particularly 
well adapted to flow that is entirely confined by solid boundaries 
Judging from previous remarks and from the interrelation of th 
three terms in this equation, it is evident that the pressure intei 
sity will vary along the stream line with change in velocity, wil 
change in elevation, and (when Ev is a function of time) wit 
chani^e in the hydrostatic load on the enclosed system. Und 
such conditions it is appropriate to distinguish that portion of tl 
pressure intensity resulting from dynamic effects from that resul 
ing from hydrostatic (*onditions. Designating these by the sub 
scripts d and s, respectively, Eq. (8) may be written in the fon 

p2 

Ev ~ p 2 + (^) 

in which the sum (/;« t- yh) is cather a ca^nstant or some furictio 
of time; in either case, 

^2 

P 2 + Vd ~ constant (10, 

If Eq. (8) is divided by the fluid density p, there will result an 
alternate expression in which each term has the dimension of 
energy per unit mass of fluid: 

5 + ^ + 
z p (11) 
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This general form is particularly significant when dealing with the 
flow of gases. A form more familiar to engineers, since it is 
appropriate in cases of flow with a free surface, is derived from 
Eq. (8) by dividing all terms by the specific weight of the fluid: 

Eu: ^ f +^- +h (12) 
y 

Each term now has the dimension of energy per unit weight of 
fluid; since this is eqiiivakmt to length, the several terms are 
(haracjterized as heads, and are called, respectively, the total head, 
the velocity head, the pressure head, and the geodetic head or 
elevation. Since the pressure head and elevation represent 
potential energy, as distinguished from the kinetic energy embod¬ 

ied in the velocity head, the sum is properly known as 

the potential head. It, follows from Eq. (8) that the sum of 
velocity and potential heads will not vary with distance along 
iny stream line in steady flow. Evidently, no restriction is 
placed upon variation from one stream line to another. 

At every point along a fluid surface exposed to the atmosphere, 
he pressure intensity must be that of the atmosphere itself. 
Hence, while the hydrostatic load in a closed system may be 
v^aried at will without changing the flow pattern, there is no 
possible way of changing the pressure intensity in flow with a free 
surface (except through atmospheric variation) without altering 
che entire pattern of motion. Under such circumstances differ¬ 
entiation between hydrostatic and dynamic influence upon the 
pressure intensity would be quite pointless, for the two can no 
longer be considered independent of each other. 

Equation (12) finds a very valuable application in the graphical 
representation of the total head and its component parts. For a 
given stream filament in steady flow, the magnitude of its eleva¬ 
tion at every point is plotted as a vertical distance above some 
assumed geodetic datum. The magnitude of the pressure head 
is then added vertically to the elevation of the stream line, the 
locus of these latter points being called the pressure line. From 
each point on the pressure line the corresponding velocity head 
is then laid off, resulting in a line of total head—the energy line— 
lying the distance above the geodetic datum. Thus, in a 
single diagram is contained the entire story of energy trans- 
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formation undergone by a fluid particle an it moves from point to 
point along its path, the method being quite as applicable to 
confined as to open flow. 

If all neighboring filaimmts hai^xai to possess the sam(‘ total 
head, it is only reasonable to allow thc^ same (‘uergy line to a})ply 
to the entire grou}). But since this in no way prevents prc^ssure 
intensity and velocity from varying from one strc^am lim^ to 
another, there will evidently be (‘ases in whi(*h a different ])ressure 
line would have to be drawn for eacli individual filanuait; such is 
always the case if the stn^am fihunents disj)lay appreciable curva- 

Fig. 10.~'Noii-hydro.stali<* prcssurt* (iintribiiUoii in curvilinear motion, 

ture. For illustration, in Fig. 10 is shown a longitudinal section 
through the crest of a spillway. Each filament passing the 
vertical line erected at t in' topmost point of tiie crest will be under 
a different pressure intensity, the pressure head at each elevation 
being plotted horizontally from the section line. Since the dis¬ 
tance between the filament and tlie energy line is equal to the 
sum of pressure and velocity heads, it is obvious that the pressure 
line for every filament would lie a different distance below 
the energy line. As a matter of fact, only in parallel flow will a 
single ])ressure line suffice for all filaments at once: if the upper 
surface is exposed to the atmosphere, the pressure line will then 
(!oiricide with the free surface; if the flow is confined, the pressure 
line may lie either above or below the centcirline of flow, depend- 
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ing upon whether the mean pressure head is jjositive or negative 

{i.e.f greater or ](iss than atmospheric). 

In the most general case, howevc^r, one may not assume that all 

stream filaments possess the same energy of flow, for the total 

head often varies from one filament to the next. (It will be 

recalled that the Be'rnoulli theorem makes no mention of the 

relative energy of lunghboring filaments.) lJnd(^r such con¬ 

ditions, if one is still to use a common energy line for the entire 

flow, it is essential that the total la^ad which this indicates be a 

true moiisure of the mean flow em'rgy. In other words, since 

head rei)resents (‘iiergy per unit, weight of fluid passing a given 

section, the total head for ea(‘h increment of cross-sectional area 

must be wtnghted according to the rate of weight discharge 

through that elementary anvi. 

D(\signatiiig ])y AQ = v A A the rate of discharge through the 

increment of cross-sectional ania, the product of this (piantity 

and the spe(*ific weight of th(‘ fluid will yic'ld thti de'sired weight 

l)assing the increiiK'iit of area i)er unit time, and thus give the 

facdor by which the total head of ea(‘h filament inust be multi¬ 

plied b(‘fore integrating over the entire cross section of flow. 

This integral, when divided l)y the mean rate of wc'ight discharge, 

yVA (basf'd on the mean velocity V), will (‘qua! the weighted 

mean total head: 

(A’,,)m - yYJij (2,; 

If the flow is parallel, on the other hand, the sum of pressure 

head and elevation—that is, the potential head—must be a 

constant over any cross section, so that only the velocity head will 

then vary from one filament to the next. Under such circum¬ 

stances, a weighted mean velocity head must be added to the 

common potential head to determine the weighted mean total 

head. The procedure is similar to the foregoing one: 

The kinetic-energy correction factor will them be: 

K = ^ 
^ V^A 

(lA (15) 
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It may vary in magnitude from unity, for uniform total head, 

through an average practical value of about 1.1, to a general 

maximum of 2 when the velocity distribution (over a circular 

section) is paraboloidal. Needless to say, if the vt^locity distribu¬ 

tion is modified by a change in flow section, the magnitude of 

this correction factor cannot remain constant. 

In addition to the principle of energy, which is really the law 

of conservation of energy applied to tlui stream filament, the law 

of conservation of matt.er plays an essential role in hydro¬ 

mechanics. Since from definition there can be no passage of 

fluid through t he walls of a stream filament (and since there may 

be no change in fluid density from one point to the next), unless 

the cross-sectional area changes with time, the rate of discharge 

must be the same at all cross sections of the filament at any 

instant: 

V dA — constant 

If one integrate this increment of- discdiarge through llie indi¬ 

vidual filament over th(‘ entire cross section of flow, the same 

conditions of continuity must hold through the flow at any one 

instant of time: 

V dA — constant (16) 

This equation applies to both steady and unsteady flow so long as 

the outermost stream lines do not change in form. 

The ICuler equations of acceleration, from which the energy 

equation was derived, embody the application of Newton 

momentum principle to a particle at a given point in a moving 

fluid. With little modifi(^ation, this principle may be applied 

conveniently to an entire region of flow, by integrating over the 

total volume of that region the elementary forces producing mass 

acceleration. The basic vector relationship between the force 

per unit volume and the rate of change of momentum 

^ d{pv) 

^ " dt 
= pa 

may best be integrated over a given volume V by reducing the 

vector terms to their components in the three Cartesian coordi- 
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nate directions; thus, the integral expression for any direction x 

will be: 

b\ = :::: (/x) = p a* dV 

The term on tlie left includes the x cojnponent of all forces acting 

upon every particle^ in the; volume at a given instant. But since 

every force upon a particle within the volume recpiinis the exist¬ 

ence of an equal and opposite force upon the neighboring parti(‘les, 

all such interna] forces wall (;ounterbalance each other, so that 

one need consider only those forc(;s exertcKl externally. In 

its most general apt)li(‘ation, this quantity must imilude ev(‘ry 

type of force action; for the presemt, only pressure and weight are 

to be considered. 

In the case of stc^ady motion, the term on the right of the 

equation may be made more explicit by considering the fluid 

volume to be composed of innumerable fluid filaments of perma¬ 

nent form, the surfa(.*e of this volume then consisting of the walls 

of the outermost filaments and the sum of all the cross-sectional 

areas dA at either end of (^very one. The component of acceler¬ 

ation, ax, may now^ be expressed in terms of a differential length, 

da, along any filament: 

_ dvx _ ^ da _ ^ dvx 

dt da dt ^ da 

Since the differential volume dV is equal to the product da dA, 

and since the term v dA is equal to an increment of discharge dQ 

(from th(^ equation of continuity), the term on the right of the 

original equation finally becomes: 

pjj^ V ^ ds dA = P p ^ ds j^vdA = pj - P..) dQ 

in which Vxx and Vx^ denote the components of the velocity at 

entrance to and at exit from the given space. ^ 

The equation of momentum applied to an appreciable section 

of the flow will then have, for any coordinate direction, this 

general form: 

^ This development, as well as many another feature of elementary hydro¬ 

mechanics, is clearly and simply presented in Mibbs, R. von, ^‘Technische 
Hydromechanik,^^ B. G. Teubner, Leipzig, 1914. 
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Fx = i; (/x) = pp p.. <IQ - pp Px, dQ (17) 

When reduced to the siin])l(^ form us(m1 in hydraulics, the two 

integral terms are n'placc'd by the product of tlu^ rate of dis¬ 

charge' and the average velocity components at entrance and exit. 

In this form the equation is commonly applied to cases of jets 

deflected by curved surfaces, to pipe bends, nozzles, and similar 

(ieinentary hydraulic devie^es. Just as in the case of the total 

head, however, if th(^ velocity is not uniformly distributed over 

the section, it is not correct, simply to use the mean value V of the 

velocity in the momentum equatioti. From Eq. (17) it is evident 

that to the produ(*t pV‘^ A at (^ach section there must be applied 

a correction factor of the form: 

A’,„ = j (18) 

This factor must not be confused with K,., used in tlie energy 

(equation, for the velocity appears to the second power in the 

former and to the third })ower in the latter. 

In the general (aise of curvilinear flow, in which average values 

of neither velocity nor pressure intensity may be us€?d, Eq. (17) 

must be followed strictly, actual curves of velocity and pressure 

distribution formijig the basis for integration, and the actual 

volume of the lluid b(ung used to d(d/crmine the component of the 

fluid weight in tlu^ givefi direction. Yet such methods will 

require experimental measurement of velocity and pressunj dis¬ 

tribution at one section or the other, for the general principles of 

momentum, energy, and continuity have as yet provided no 

means of determining these characteristics by rational analysis. 

13. Theory and Use of the Flow Net. If the total energy is 

constant not only along any stream .^lament but also from one 

filament to another, F]q. (6n) may be simplified, owing to the fact 

that the sum of kinetic and potential energy cannot vary in the 

n direction. Since thc' flow must- nec^essarily be steady, the term 

dVn/dt can be dropped at once. Then subtracting the quantity 

l?l from both sides of the equation, 

r dn 
l±(p^ 
p dn\ 2 

+ p + yh 
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and isiiico the flow is one of uniform energy disf ribution, the right 

side of this equation must ecjual zero; hence, 

dv dv V 
— 1)- or - rrr 

r dt( dn r 
(19) 

This equation may ])e integral t‘d lo give 

/* r dn 

In = I + C or V — (y c ^ (20) 

In combination with the principle of contimiity and the 

Bernoulli theorem, Eep (19) affords a m(‘ans of determining the 

pressure and velocity distribution in steady two-dimensional flow^ 

in which liie total head is reasonaldy uniform at all points. 

While this method is n(‘cessarily graphical (with tlu^ (^xc(q)tion of 

('(‘rtain cases to be discarssed later), it is mwerthehjss leased upon 

physically exact principles, and is limited only by tin? degree of 

graphical accuracy which may be attained. Consider, for 

instance, the fixed boundari(*s shown in Fig. 11a. A flow^ net is 

first sketched in by ey(‘, consisting of an arbitrary number of 

stream lines, and of such a number of orthogonal lines as to divide 

the flow area into as nearly j)erf(^(‘t s^puinw as possible', all stream 

lines and orthogonal lines meeting at right angles. It is evident 

that a iK'tw^ork of diagonals through all points of intersection 

should also yield squares, and thus permit a conv(nii(‘nt test for 

angular error. Obviously the squares in the vicinity of the bend 

will be distorted, but they should become more nearly perfect 

as the number of lines is increased. Mathematically speaking, 

they can become true scpiares only as they Ix^come infinitesimal 

in size. However, by adjusting the position of stream lines and 

orthogonal lines, with plentiful use of pencil and eraser, a very 

systematic progression of the stream lines will finally result. 

There is only one arrangeme]it of tln^ chosen nuiiiber of stream 

lines that wdll fulfill the mathematical statement of the equations 

of Euler; consequently, tliear positions may now be checked for 

correctness by means of Eq. (19). For any orthogonal line a plot 

is made of the relationship between distance along the orthogonal 

in the direction n and the radii of curvature of the stream fila¬ 

ments at the points of intersection with thc^ ortfiogonal. These 

values must be determined graphically. From the principle of 

continuity as applied to the flow between each pair of stream lines 
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(z.e., the velocity must vary inversely with the spacing), the 

velocity vector at each point of intersection is next determined 

and plotted against n on the same diagram. If the stream lines 

are correctly spaced, it is evident from Eq. (19) that the slope of 

the velocity curve at any point must ecpjal the ratio betwetm the 

velocity and the radius of curvature, whicdi can be checked 

(c) (cO 

Fig. ]1.—Application of the flow net. 

graphically on the plot (see Fig. 115). If these values do not 

agree as they should, the stream lines must be redrawn. 

Usually a single check at several typical points will serve to 

make the diagram as accurate as is required. Once the correct 

velocity curve is obtained, the pressure distribution may be 

found through use of the energy equation (see Fig. 11c). Since 

the flow is enclosed, the change in pressure intensity with change 

in elevation (or with variation in hydrostatic load upon the 

system) can have no effect whatever upon the velocity distribu- 
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tion or upon the distribution of dynamic pressure. Indeed, if 
the pressure distribution were computed in terms of head, the 
variation in pd/y with n would be exactly equal to the variation 
in reading of manometric. columns connected to piezometers at 
the several points in question. 

Little thought will be required to convince the reader that the 
same flow net may api)ly equally well to rates of discharge other 
than that selected for investigation, for the pattern of stream 
lines depends not upon the velocity represented by the chosen 
spacing, but purely upon the geometrical form of the boundaries. 
Since a change in velocity will change the scale but not the form 
of the distribution curves in Fig. 11c, it would be most expedient 
to devise a single diagram (*ontaining the ratio of velocity, density, 
and dynamic pressure intensity for the given section, regardless 
of the rate of discharge (Fig. lid). If this ratio is put in the form 

—it will not only be dimensionless but will be identical 
P VoY2 
with the flow paramet(;r derived by means of the Il-theorern in 
the preceding chapter. In other words, at any given point 
in the flow pattern, this parameter must remain constant regard¬ 
less of change in rate of discharge or hydrostatic load—a fact of 
fundamental importance. 

If the flow has one or more free surfaces, the problem becomes 
considerably more difficult, although no less subject to solution. 
If the profile of the free surface is known from experimental 
measurement, the procedure is the same as though this curve were 
one of the given boundaries; but if such experimental information 
is not available, since the stream lines at the border between 
liquid and atmosphere are not governed in position by a fixed 
boundary, they too must be sketched in by eye. The identical 
construction of the flow net then follows. However, in checking 
the position of the stream lines, not only must Eq. (19) be satis¬ 
fied, but the pressure distribution curve must pass through zero 
(atmospheric) at every point lying on a free surface. If this does 
not check, not only th^ profile of the free surface, but the form of 
all other stream lines as well, must be modified. 

As has already been mentioned, use of the energy equation 
written in terms of head is best suited to such conditions of flow. 
The scale used in plotting velocity and pressure head is then 
determined directly by the linear scale of the flow profile, and 
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consequently the several distribution curves have immediate 

quantitative significance. For illustration, in Fig. 12 is shown 

the flow net for discharge under a sluice gate, the solution yielding 

curves of pressure head over the gate and along the lower bound¬ 

ary of the flow. 

The gradual rise in the upper surface approaching the sluice 

gate illustrates a characteristic of flow in the neighborhood of a 

so-called point of stagnation. Wherever a str()am line changes 

abruptly in direction, the spacing of the stream lines at that point 

is either infinity or zero, depending upon whetluT the change 

Fig. 12.—Pressure distribution for sluiee-gate discharge as determined from the 
flow net. 

in direction is toward or away from the other stream lines. 

Since, from continuity, the product of the spacing and the velocity 

must remain constant for a given rate of discharge, a zero spacing 

denotes an infinitely high velocity, and vi(;e versa. Although a 

velocity equal to infinity (corresponding, in enclosed flow, to a 

dynamic pressure intensity of negative infinity) is physically 

impossible, a velocity of zero is obviously quite conceivable. 

If there are no free surfaces involved, this simply means that the 

intensity of dynamic pressure must increase to the magnitude 

of the constant in Eq. (10), and then be known as the stagnation 

pressure intensity. Indeed, it is upon this condition of stagna¬ 

tion that operation of the Pitot tube depends, for the nose of 

the tube pointing upstream merely produces a small region of 

stagnation at which the pressure intensity is measured; the ratio 

of stagnation pressure to the density and the square of the velocity 
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of the surrounding flow must remain constant, regardless of 

(‘hange in magnitude of the velocity itself. However, if the 

stagnation point lies at a frcie surface, as in the case of the sluice 

gale, the pressure intensity must evidently remain atmospheric; 

since the total head along this upper stream filament must be 

the same at all ])oints, it is (iear that the decrease in velocity 

head must be acconi])anied by an increase in elevation of the 

filament, its liighest position coinciding with the energy line 

itself at the point of stagnation. 

Karlsruhe 

Fig. 13.—How profile at a ventilated overfall. 

14, Significance of the Force Potential. According to the 

Euler equations, two distinct components of the accelerative 

force per unit volumes act upon fluid particles in two-dimensional 

flow: one (fs) in the direction of motion, and the other (/„) in 

the direction of the center of curvature of the stream filament; 

these force com})ontnits are normal to the orthogonal lines and 

the stream lines, respectively, of the flow net, and are equal to 

the negative gradients of the sum (p + yh) in the corresponding 

directions, in accordance with Eq. (3). On the other hand, the 

resultant force/ per unit volume at any point might also be con¬ 

sidered to have components in two other directions: one (fp) 
normal to a line of constant pressure intensity, and the other 

{fw) normal to a line of constant elevation. Figures 14 and 15, 

based upon flow conditions at the free overfall,^ clearly indicate 

1 Rouse, H., Vertoilung der hydraulischen Energie bei einem lotrechten 
Absturz,” Oldenbourg, Munich, 1933. 
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this essential distinction, the two force parallelograms for the 

same point in the flow yielding the same vector /. 

A force potential may be defined in hydromechanics as a 

quantity whose derivative in any direction equals the component 

of force per unit volume acting in that direction. From this 

Fig. 14,—Velocity field at overfall crest. 

definition it is evident that the force potential for flow under the 

action of weight and pressure must be the quantity —(p + 7A), 

as will be seen from reference to Eq. (3). But since this expres¬ 

sion may also be written in the form 

d{-p) , dj-yh) 

dx dx 

it is clear that the quantities — p and —yh also have the nature 

of force potentials; these may be called the pressure potential 
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and the weight potential, respectively, since 

(/;.)x=-~ and {U)x=--jA 

The lines of constant pressure intensity shown in Fig. 15 thus 

represent lines of constant pressure potential, while the lines of 

constant elevation are lines of constant weight potential; in 

cither case successive lines represent constant increments of 

potential. Hen(‘.e, while the lines of weight potential are neces¬ 

sarily equidistant parallels, variation in pressure intensity from 

point to point in the flow results in a gradual change in form and 

spacing of the pressure-potential lines. Because of the constant 

increment in potential from line to line, at a given point the force 

component in any direction for either pressure or weight is 

inversely proportional to the spacing of the lines in that direction; 

evidently, it attains its maximum value when normal to the 

potential line passing through the given point. 

Since either system of lines represents a ve(dor field of force, 

the two systems may be combined vectorially to yield a resultant 

system (corresponding to the vector field of the resultant force/. 

Moreover, inasmucch as a line of total force potential must 

represent a constant value of the sum {p + 7/1), such vectorial 

combination may be accomplished graphically simply by con¬ 

necting with smooth curves (the heavy lines in Fig. 15) succecssive 

points of intersection of the two component systems. Since the 

total force per unit volume at any point must be normal to the 

resultant potential line passing through this point, it is evident 

that the convective acceleration produced by this field of force 

must also be normal to the potential lines at all points of the flow. 

In other words, while the flow net shows at a glance the direction 

and relative magnitude of the velocity vector, the pattern of the 

potential field indicates the direction and relative magnitude 

of the vector of force or acceleration. 

It should be evident from the foregoing discussion that the 

actual magnitude of either the pressure or the weight potential 

is of no consequence, for the corresponding force component is 

determined entirely by the rate of change of the potential in 

the given direction. The components fp and /«, may vary greatly 

with respect to one another in different regions of a given flow, 

although if the flow is uniform their vector sum must always be 
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zero, They will approach this condition as a limit, for instance, 

a very great distance upstream from the crest of the free overfall, 

where the lines of constant pressure and of constant elevation 

practically coincide; /«, will then be directed downward and 

upward, the resultant lines of constant force potential then being 

vertical and extrem(ily far apart. Within the falling nappe, on 

the other hand, as the pressure intensity approa(*hes the atmOvS- 

pheric, the pressure gradient will approach zero, so that the linens 

of constant force potential will become more nearly coincident 

with lines of constant elevation. 

So long as a given state of steady uiKanifined flow is the 

immediate result of gravitational action, at any point in the flow 

Fig. 1().—Velocity and force patterrus for a two-dituensional orifice*. 

the ratio of fp to (f.c., the direction of /) is fixed oiujc and for 

all by the existing boundary conditions. Variation in the fluid 

properties of density and specific weight v^ill most (certainly 

change the magnitudes of these components and of th<^ velocity 

of flow as well, but the flow net and the lines of force potential 

cannot possibly change in form. Similar circumstances are 

encountered in the case of completely confined flow, with the 

exception that either velocity or the fluid properties may be 

varied indepcmdently, and thereby produce a change in magnitude 

—but not direction—of the acceleration at any point; since weight 

can produce no acceleration in confined flow, fy, = 0 and / = fp^. 

Distinctly different is the case of flow that is confined over 

only a part of its course, a condition illustrated by efflux of a 

liquid from a closed conduit into the atmosphere. In Fig. 16, 

for instance, is shown the flow net for discharge from, a two- 
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dimensional orifice (i.e., from a very wide rectangular opening). 

So long as the velocity of efflux is very high, the magnitude of 

is quite negligible in comparison with the high values of 

in the neighborhood of the orifice, so that only as fp approaches 

zero some distancci from the orifice does the action of weight in 

deflecting the jet become appreciable. However, fp may be 

varied at will simply l^y changing the pressure intensity within 

the conduit (thus producing a change in the total energy of flow), 

gradual lowering of which will make fp and /«, more and more 

nearly of the same order. Under su(;h conditions the deflection 

of the jet will Ix'come more and more api)reciable in the neighbor¬ 

hood of the opening, the jet thereby losing its original symmetry. 

Fi(j. 17. Forc-o pattern for a sbarp-c.re.sted weir. 

The evident limit of such variation is reached when the flow 

oc(jurs entirely as a result of gravitational attraction, under 

whi(^h condition the flow energy is a minimum for the given 

boundaries. Such a case is illustrated by the suppressed weir 

of Fig. 17, the proportions of which have been made to correspond 

to the lower half of the orifice of Fig. 16. Significant is the fact 

that the lines of constant force potential are identical some divS- 

tance upstream in both cases, despite the fact that weight is 

of no moment whatever in the one; only in the unconfined portion 

of the flow do these lines differ appreciably in form, and even 

then one can readily visualize a systematic progression from one 

to the other with variation in the relative magnitudes of the two 

force components. The reader will realize that horizontal 

acceleration within the nappe becomes negligible only as the 

potential lines approach the horizontal; only then will the nappe 

assume the parabolic trajectory of free fall. 

It has been shown that the relative magnitudes of fp and /t« 

in cases of efflux may be varied over a great range through 
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variation in the energy of flow. Though the fact is not generally 

appreciated, similar circumstances may be realized in weir flow 

as well. In the former instance, energy variation was accom¬ 

plished by a change in pressure intensity within the conduit; 

with flow upstream from the weir freely exposed to the atmos¬ 

phere, however, arbitrary (diaiige in pressure intensity is impossi¬ 

ble. Yet the (mergy of flow may still be increased through 

increase in velocity head—accjoinplished, for instance, through 

discharge from a sluice gate or down a steep incline. Under 

such circumstances, it is evident from the momentum principle 

that the distribution of pressure intensity, and hence of pressure 

potential, could be altered almost at will wii h respect to a constant 

pattern of weight potential. Obviously, this would entail con¬ 

siderable variation in the form of the free surface, along which the 

pressure intensity must always remain atmospheric. 



CHAPTER III 

GENERALIZED EQUATIONS 

16. Translation, Rotation, and Deformation of a Fluid Element. 
For a more detailed study of the behavior of the individual 

particle than is possible in natural coordinates, one must turn 

to a more general coordinate system, the Cartesian. While the 

method of Lagrange, in which the particle is followed nlong its 

course, yields equations of definite significance, continued adher¬ 

ence to the procedure originated by Euler of observing conditions 

at fixed points in space will prove of greater value in the present 

discussion; the behavior of particles will then be studied as they 

pass the points in question.^ 

During the very small increment of time dt the total variation 

of any velocity component Vx of a,fluid particle must be equal 

to its rate of change with time dvx/dt multiplied by the time 

increment, plus its rate of change with movement in each of the 

coordinate directions, dVxIdXj dVx/dy^ and dVxjdZy multiplied by 

the increment of distance traveled in the corresponding direction 

in the same increment of time: 

j , dvx 7 , dVx j , dVx j 

As before, the partial derivatives represent variation with time, 

regardless of space, and with each ^Ikectiom iiL.space^ regardless 

of time and of the other two coordinate directions. 

Since the distance a particfe travels in any Erection during an 

increment of time is equal to its component of velocity in this 

direction multiplied by the time increment, the following rela¬ 

tionships exist: 

dx = Vx dt] dy — Vy dt] dz — Vzdt ^ 

^Lamb, H., Hydrodynamics,” 6th ed., pp/ 2-6, 31-35, Cambridge 
University Press, 1932. 

66 
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From these three equations it is evident that the iiK^rements of 

distance traveled in the three directions in the same iiK^rement 

of time must be proportional to the vt^locity components in the 

respective directions; this urwortionality is, in effect, tlu^ diffet- 

Qn^l equation of the iastaiffaneous stream line to which the 

velocity v(Stor of the particle is tangent: 

dx __ dy _ dz __ ds , . 

Vx Vy Vz V 

If the foregoing equivalents of dx^ dy, and dz are substituted 

in the original expression, there will result: 

dVa: = dt + V:r ^ dt + Vy di + V, — dt 
dt dx dy dz 

Similar operations, of course, may be performed for ea(‘h of the 

remaining coordinate directions. It is then obvious from inspec¬ 

tion that division of each equation by the time increirumt will 

yield the^otal or substaiitud accx^d^^^^ the particle in each 

coordinate cfrfeclion. From Eq. (5) these compoTients of 

acceleration may then t)e equated to the component of force ])er 

unit mass acting upon the particle* in the corresponding dir(‘ction; 

thus are derived the three fundamental equations of Euler: 

dVx . dVjc , dVjr. . dVx 

dz 

^ + Vrp + 
dt dx dy dz 

dVs , dVz . dVz , dVz 

dt dx dy dz 

-\l-yiv + yh) 

-\U^+yh) 

[22x) 

(222/) 

{22z) 

Consider now a fluid element of cubical form (shown in Fig. 18) 

having small but finite sides 5.r, and bz, each parallel to the 

respective axis. At the point (x, y, ;^)—the corner of the cube 

nearest the origin—the velocity vector has the three components 

Vxy Vy, and Vg. Since the given state of flow varies with distance 

in each of the coordinate directions, at any instant the velocity 

components at every other corner of the cube will differ from 

these three by amounts depending upon the length of the-sides 

and upon the gradient of each velocity component in each of the 

three coordinate directions. 

In order to avoid the confusion of considering variations in all 

three directions at once, it will suffice to follow the changes in 
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any one face of the cube, later extending the relationships 

thereby developed to the other faces. Taking, for instance, the 

face nearest the plane of the x and y axes, the velocity (components 

in the directions x and y at the four corners of this face will be as 

indicated in Fig. 19. Neglecting for the moment the local varia¬ 

tion (the change with time at a fixed point in space), it will be 

seen from the illustration that during a small time incremcmt dt 
the actual motions of the several corners of the face must b(^ 

different. Hence, not only will the face be moved bodily through 

space, but it must at the same time 

suffer a change in its original form. 

In order to bring clarity into such 

a complex picture, let the motion be 

reduced to the four essential types of 

movement which the face may un¬ 

dergo: Superposed upon the transla¬ 

tion of the square in the x and y 
directions, there will be in the most 

general case a change in the length of 

each pair of parallel sides (linear 

„ dvj. ^ 

Fig. 19. - Velocity components in 
the xy plane. 

deformation), a change in each of the four corner angles (angular 

deformation), and a turning movement in one direction or the 

other (rotation). Each of these essential types of displacement 

is shown schematically in Fig. 20. 

During the time increment dt the magnitude of the translation 

in the two directions will be represented by the quantities 

Vis dt and Vy dt 
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The magnitude of the linear deformation will be given by the 

difference between the distances moved by each pair of opposite 

sides: 

^ 8x dt and 8y dt 
dx dy 

Angular deform^atipn, considering only the change in the right 

an3e"^t the point {x, y^ z), will depend upon the difference 

between the angular movements d<x and d^ of the two sides bx 
and by. Since over a very short time these angular increments 

I Translation 

^6ydt. 

/ Angular Jf deformation 

'^■^Sxdt 

Unear 
deforwatiork 

Sxdt 

Fig. 20.—Schematic representation of translation, 
in the xy plane. 

r dx 
deformation, and rotation 

will be small, they may be considered nurnerii^ally equal to thtnr 

respective tangents; selecting the counterclockwise direction as 

positive: 

da 

bx dt 
dx 

bi, ' 

dy 
by dt 

by 

da “ dfi = 4- 
\dx ~dy} 

dt 

Rotation, on the other hand, will occur if the angular incr£=-. 

ments are unequal or of like sign; the total angle through which 

tEejTaceja,xotat^ To their average value: 

da dfi _1 {dVy dVg\ 
2 2 7 dy ) 

It will be apparent that translation and rotation are allied 

types of displacement, since each denotes a bodily movemenllir" 
.             I,.a  .Ill ' ...... I . 
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^the face without changing^its original form. Similarly, linear 

and angular deformationXear a definite relationship to each other, 

^since the former generally involves a change in the angles formed 

by the diagonals, whereas the latter involves a change in the 

diagonal lengths. Thus, linear deformation would become angu¬ 

lar deformation according to axes turned through 45°, and vice 

versa. 

Owing to the finite dimensions of the original cube, the values 

just given for each typcjof displacement are not exact, variabks 

of order higher than the firsFIiavingnBeen omitted. But if the 

sides of the cube are now assumed to become infinitejsimal, all 

corners then approaching the point (a;, y, z) as a limit, each type 

of movement may be expressed exactly as a rate of change with 

time. At the given point the rate of translation in the three 

coordinate directions will be simply the three velocity components 

Vx, Vy^ Vz and v — Vy^ + Vz^ 

The rate of linear deformation in each of the coordinate direc¬ 

tions will be 

dvx 

dx 
dXj 

dVg 

dz 
dz 

each denoting the velocity at which the respective opposite faces 

are drawing apart. Since the density (and hence the volume) 

of a fluid particle must remain cdnsTarit diiffflgweh^d^fofmatm^^ 

it isljBvi'ous tKat an"^^^ particre in two directions 

must be compensated by a contraction in the third, and vice 

versa. Thus, the rates of linear deformation in the three coordi¬ 

nate directions (?’.c., the changes per unit time of the distances 

between opposite faces) multiplied by the areas of the respective 

faces must have a sum of zero: 

. -- dx{dy dz) -f dy(dz dx) + ^ dz{dx dy) = 0 
ox oy dz 

Dividing each term by the elementary volume yields the most 

general fQ^_pf the equation of contlhuity, which states that the 

^Mivergence^^ of the velocity vector must equal zero in a flow in 

..which the.not a variable quantity; in other words, 

v^lodty. cajonaLincxeaaa. iir aL 

once; 
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div.-|> ++ (23) 
dx dy dz ^ 

The rate of angular deformation at a. given point (a quantity 

which vani^ with direction but which is not a true vector) is 

designated in each of the coordinate directions by the symbols 

{ (xi), rj (eta), and f (zeta). These symbols then represent the 

rate of angular deformation in planes normal to each of the three 

axes; for purposes which will be clear directly, they are arbitrarily 

made equal to one-half the actual rate of angular deformation: 

On the other hand, the rate of rotation—ai^ular velocity—is 

a true vecdor quantitynand is ^iven the customary symbol a> 

(omega); its components will then denote the rotation per unit 

of time in planes normal to the three axes, the sense of rotation 

determining the direction of the vector: 

__ 1 /dVg dVy\ _ 1 / dVg\ _ 1 / d?;*, A 
2 \dy 2 \dz ~d~x p 2 ~dy ) 

(25) 

The vector 2co is known in hydromechanics as the curl of the 

velocity vector: 

CO = \/0)*^ + coy^ + co«^ = 32 ^ 

Since the convective acceleration at any point in space must 

depend not only upon the inapilTude and direction of the velocity 

vector at the given point but also upon the divergence of the 

velocity vector and upon angular deformation and rotation, it 

should be possible to incorporate these quantities in the three 

equations of Euler. Thus the convective terms of Eq. (22x) 

may be rewritten as follows, through simultaneous addition and 

subtraction of the proper quantities: 

dv dvx + X I 
Vy + V, 

ax dy 
dVt . 1 
li + r' 

dVy 
" dx 

1 dv, 
— V, . 4- It; ^ 

" dx ^ 2 ‘dx 2"' 

dVg 

dx 
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On performing a similar open’ation upon each of the three 

(‘omponents of convective acceleration and substituting the 

corresponding symbols from Kqs. (24) and (25), there will result: 

1 d 
Vy<a^ + V,uiy = —-^ip + yh) (27x) 

p ox 
1 d 

V, + Vr 01^ = — -r-(p + yh) {27y) 
p oy 
1 d 

V^O>y + VyW^=-(P + (27*) 
p OZ 

Owing to the general character of the Cartesian system, it is 

seldom necessary to develop more than one of the three equations 

for any condition of flow, for the remaining two may always be 

found from the first through the method of cyclic permutation. 

Thus Eqs. (27i/) and (27^) may be derived from Eq. (27x) by 

substituting y ior x, ziov y, and j for 2 in every instance in which 

these symbols occur. This method a])plies fully as well to such 

expressions as the components of co as to the general equations 

of Euler, and will assist the reader in comprehending the other¬ 

wise complex nature of this system. 

So long as the vector Qf.rgt^tipii.^has„a-fijQita.y.alu^^^ ilow . 

is characterized as rotational, the significance of which may be 

"sKowh' by'^tlie foliowmg"“c^^^^ If each component of this 

vector is reduced to zero, the flow will become irrotational, 

whereupon, 

dVy . ^Vy . 

dv^ , dv, . . . 

(28) 
dVz _ dVy^ dVx _ dVz^ dVy __ dVx 

dy dz ' dz dx ' dx dy 

Adding and subtracting equivalent terms in Eq. (27a;), now 

written for irrotational motion, 

dVx . dVx . 1 dVy ,1 dVx . I ,1 dVz 

&t dx 2 dx 2 dy 2 dz 2 dx 
1 d^ 

dy 
, 1 dVy 

2*’'' 
1 dWx , 1 QVz 

r-s + r-ii 

whence 
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This result may also be written in the form 

. d{v:^/2) _ 1 
dt dx dx dx p dx^^ 

in which the convective portion of the left side of the equation is 

simply the derivative of the square of the resultant velocity, since 

2 

Similar results will be obtained for the two other coordinate 

directions through the same operation, from which it is at once 

obvious that throughoxit the entire flow 

dv^ dEm __ dvy dEm _ dv, dEm __ ^ 

"dt dx dt dy dt dz~ ^ 

The significance of the above result cannot be overemphasized; 

expressed in words, this important fact is as follows: Except for 

arbitrary change in the hydrostatic load, in irrotational motion 

the eriei^y’or a^ particle can vary in magnitude tr"6m"p(jmr^ 

point in the flow only if conditions are changing with time. In 

other words, st^dy irrotational flow is always one of constant 

energy. It wilf be recalled that in developing Eq. (19) the energy 

was assumed constant from one stream line to the next, so that 

dv 
dn r 

or 
dvs __ d^ 

dn ds 

Referred to the natural cxiorxlinate system, this quantity is 

merely the one component (wm) of the rotation vector which can 

be present in two-dimensional motion, and which must be zero 

if the .motion is to be one of constant energy. 

Perhaps even more important is the converse of this conclusion: 

In unsteady, rotational motion the energy of flow can never be 

constant, for it will vary at a given point with time, and at a 

given instant with distance in any direction. 

16. Circulation and Vorticity. To visualize clearly the phe¬ 

nomenon of rotation, it is necessary to introduce a new expression, 

circulation, which is customarily given the symbol T (the Greek 

capital letter gamma). Circulation is defined as the line integral 

of the tangential velocity component around any closed curve 
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(see Fig. 21): 
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r = (^^vlcIL (30) 

It must be understood that such a curve in itself is independent 

•of the velocity field and may be given any desired shape, size, 

and position. Moreover, as shown in Fig. 22, the circulation 

around any such three-dimensional curve will be equal to the 

sum of all the circulations around any system of figures into 

which the surface bordered by the curve is subdivided. This is 

true because the line integral along the neighboring sides of each 

pair of subdivisions will be of opposite sign, so that the algebraic 

Fig. 21.—Line integral. Fig. 22.—Circulation, 

sum of all will simply result in the circulation around the outer 

curve. 

If any such surface becomes exceedingly small, the circulation 

around its enclosing curve will indicate actual rotation about an 

axis normal to the small increment of area. Thus, the limit of 

the circulation per unit of area, as the area approaches zero, Ls 

equal to twice the component of the rotation vector to normal 

to the surface: 

lim ^ = 2o)xa (31) 

The significance of this relationship will be apparent after 

considering the circulation around the rectangle in the xy plane 

shown in Fig. 19. If the elementary rectangle is suflficiently 

small, the line integral of tangential velocity along each side will 

equal the average velocity between the two corners times the 

length of the side. Writing the circulation in the counter- 
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clockwise direction, 

= (*’- + 5 + (*’>' + + \ 

- ("* + + \ + l j^^y) ^y. 
As the area of the surface approaches the limit zero, the resulting 

expression for circulation per unit area will be: 

lim = 2w, = ^ — 
Sx6y~^0 by dx dy 

The remaining components of the rotation vector may be 

derived in a similar manner: 

lim — 2a)x ~ 
ctUr dVy 

¥ dz 

lim = 2oj‘tj == ^ _ dVg 

Sz Sx dz dx 

Since w is a vector quantity and similar in many respects to 

the velocity vector its distribution in space may be repre¬ 

sented in a similar way; that is, a system of vortex lines may be 

constructed in space, having the same relation to the rotation 

or vorticity at any point as a stream line has to velocity. Thus a 

vortex line shows through tangency to the vorticity vector the 

sense of rotation and the direction of its axis at every point for a 

given instant, it being assumed that the vector indicates the 

direction of rotation of a right-hand screw—i,e., clockwise when 

looking in the positive direction. If the quantities dx, dy, and 

dz represent the projections of dw, a differential length of vortex 

line, on the three axes, Eq. (21) for the stream line will have its 

counterpart in the differential equation of the vortex line: 

^ ^ ^ ^ (32) 
Q)x CU 

Just as a small group of stream lines may form a stream fila¬ 

ment of var3dng cross-sectional area AA, the rate of discharge 

past all such sections being the same at a given instant, so may a 

group of vortex lines form a vortex filament of varying cross- 

sectional area AA (Fig. 23), the circulation around the perimeter 
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of all cross sections being the same at any instant: 
» 

V AA = AQ = constant and 2o) AA = AF = constant 

Inasniiujh as the law of continuity applied to a stream filament 
thus has its counteri)art in the law of constant strength of a 

Flu. 23.— Parjillcl characteristics of stream and vortex iilaments. 

M.I.T. 
Fig. 24.—-Vortex filament at the base of a weir (compare with Fig. 141). 

vortex filament, it might .be assumed that the mathematical 
expression for the divergence of the velocity vector could be 
written in a similar fashion for the vector of rotation: 

div V = 
dVx . dVy dVz 

dx dy dz = 0; div w j- I dcuz _ ^ 
dx dy dz 

That this is true may be proved by substituting in the above 
expression the components of ca in terms of the space derivatives 
of the velocity. 
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17. Characteristics of the Vortex. While stream lines gen¬ 
erally exist throughout all portions of a fluid in motion, a single 
vortex line may exist in an otherwise irrotational flow, so that 
only those infinitesimal fluid particles lying directly upon that 
line will undergo rotational motion. Such a case may be illus¬ 
trated by the movement of fluid in concentric layers around a 
vertical axis in such a way that all particles not lying upon that 

axis have the same total energy of flow—z.e., the flow is 
steady and irrotational. If these conditions are fulfilled, the 
circulation around any horizontal curve (not including the center) 
must be equal to zero. 

Referring to Fig, 25, the circulation around the area A bounded 
by any two radial lines and any two circular arcs having the radii 
ri and h may be written as follows: 

T ^ v% (ftn — vi 4) ri 
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If this quantity is equal to zero, tlie flow is irrotational and the 
velocity distribution must be such that 

Vi ri ~ V2 r2 and v ~ — 
r 

This is in agreement with Eq. (19) for irrotational flow: 

dv _ V 
dn r 

(in — —dr; In ~ In r; vr — C 

Since the total head is constant, the pressure head along any 
horizontal plane will be 

2 = E„ - h - 
y 2g 2gr^ 

If the fluid is a liquid with a free surface at constant (atmos¬ 
pheric;) pr63ssure, the elevation of this surface above any geodetic 
datum may be written 

h = Eu> — 
2g? 

in which represents the surface elevation an infinite distance 
from the axis. The j)rofile of such concentric motion is shown in 
Fig. 25, the phenomenon being known as the free or potential 
vortex. 

Around any circular stream line, however, the circulation will 
have a finite magnitude 

r = 2Trrv 

which will be a constant irrespective of the radius of the circle. 
The term r/27r is then the constant (f.c., the product of the 
velocity and the radius of curvature) in the above equations. 
But since the circulation around any such circle, no matter how 
small, is a finite constant, then the ratio T/A becomes infinitely 
great as the area of the circle approaches zero. Hence, the rota¬ 
tion vector CO is infinite along the axis (the axis being a vortex line) 
but equal to zero at every other point in the flow. 

Obviously, tliis is an impossible condition, for it requires 
either that the surface at the center drop an infinite distance 
below any geodetic datum chosen, or, if the fluid is completely 
enclosed, that the pressure intensity at the center be negative 
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infinity. However, the .space in tiie neighborhood of the single 
vortex line may contain fluid which does not follow the iiotential 
relationship of the general flow, but behaves as a vortex filament, 
all particles of which have a constant rate of rotation. 

The velocity characteristics of such a filament are similar to 
those of the tank of liquid rotating with constant angular 
velocity o) as studied in hydraulics. Since th(i fluid particles 
have no motion relative to one another, the velocity must wary 
directly with the radius: 

V — cor 

The circulation around any stream line will then vary with the 
square of the radius 

r = 2Trrv == 27rcor“ 

as will th(^ circular area Trr- Ixmnded by the stream line. Hence, 
the rotation vector at the centnr must be 

r 27rcor“ 

2A 27rr2 

But the circulation around any area B (Fig. 25) bounded by 
two radial lines and two circular arcs and not including the central 
axis, divided by the area of this surface, yields the identical 
rotation vector for any fluid particle in the vortex filament: 

_ r _ Vi <t>n — Vs <t)rs __ 
^ 2.4 “ f(r^ - rs^) 

It is obvious that the energy of flow cannot be a constant, 
because of this rotational motion. Denoting by ho the surface 
level at the axis, the elevation of the free surface at any radius 
may be found from Eq. (fin): 

gr 

r 

r 

f 

1 ^ 
p dn 

dh^ 

iP + yh) 

r dr 

~ Q 

C + 
2 r 

ho + 
^2 
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A combination of tbf' two types of motion is known as the Rankine 
combined vortex, with i>rofilo and velocity distribution as shown 
in Fig. 25. 

Observation with time of tlie two elementary areas A and B 
in the light of the foregoing study of tfie four essential types of 
displaciement should serve to clarify the general conclusions 
reached at that time. Since a velocity vector exists at every 
point of the motion with the sole exception of the central axis, 
all particles are being translated through space at a rate varying 
with the distance from the central axis. While a mathematical 
treatnnuit of deformation and rotation in this cas(i requires 
use of the (Cylindrical coordinate system, inspection of Fig. 25 
will suffice to show that in addition to translation surface A will 
undergo both linear and angular deformation, but not rotation, 
whereas surface B wiW be rotated but not defcn’med. 

Su(*h an isolated vort-c^x filament in an otherwise irrotational 
stat(c of fluid motion must always be surrounded by a velocity 
field, as shown in Fig. 25, wliich extends outw^ard to the bound¬ 
aries of the flow, the V(clocity in this field Ixcing inversely pro¬ 
portional to the distance from the axis of the vortex filament. 
The exist(Mi(‘e of two or more neighboring filanumts thus results 
in a relative movement of (each filament in accord with the 
velocity fields of the ot hers. Tw^o vorti(C('s of equal strength and 
opposite^ directions of rotation will propel eacdi otlncr in a direction 
normal to the plane of their ax(cs, as shown in Fig. 26, the velocity 
of translation dei)ending upon the strength and spacing of the 
filaments (refer to the curve of velocity distribution as a function 
of distance from the filament in Fig. 25); on the oth(cr hand, if 
the vortices are of unequal strength, they will move with different 
velocities around concentric; circles of unequal radii. If the 
filaments are of equal strength and have the same direction of 
rotation, both will move around the same circle; if of unequal 
strength, they will travel about concentric circles of unequal 
radii, on opposite sides of the common center. If a single 
filament exists near a plane boundary parallel to the axis of the 
filament, it will move parallel to the boundary as though impelled 
by an imaginary vortex (its ^‘mirror imageon the other side 
of the w’^alL The vortex ring (exemplified by the common smoke 
ring) moves through space under the influence of its own velocity 
field; the direction of translation is normal to the plane of the 
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ring. It should be obvious that tlie presence of many vortices of 
different strengths in a moving fluid will give rise to a very com¬ 
plex velocity field throughout the fluid. 

The Header may readily convince himself of the existence of 
such movements by generating small vortices with a paddle in a 
basin of water, tlu^ upper t^nds of the filaments being visible as 
small depr(^ssions in t))(‘ water surface. The potential vortex is 

-c-u 

Motion of A 
due to yeloc/ty 

field of B 

Motion of B 
due to \<elocity 

field of A 

/ 
- / 
'V.' / 

Fig. 26.—Interaction of neighboring vortices. 

illustrated by the movement developing in a tank of water shortly 
after a drain has been opened in the bottom of the tank, a hollow 
space forming in the surface and extending downward to the 
drain, and displaying a profile very >similar to the outer curve 
shown in Fig. 25. If the drain is then partially closed, the profile 
will become that of the Rankine combined vortex. Cyclonic 
twisters and water spouts are also examples of vortex motion, 
in which the filament itself is made visible by dust and by water, 
respectively. 

A principle of classical hydrodynamics, known as Thomson's 
law, states that irrotational motion can never become rotational 
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so long as only gravitational and pressure forces act upon the 
fluid particles; similarly, under these conditions rotational 
motion must always remain rotational. Moreover, since the 
strength of a vortex filament must remain constant throughout 

M.I.T. 

Fig. 27, - Pr(jfilos of (a) the potential and (h) the combined vortex, occurring 
above an orifice in the bottom of a tank. The central portion of the combined 
vortex has been coloted by dye. 

M.I.T. 

Fig. 28.—Velocity distribution of the combined vortex as indicated by the paths 
of aluminum particles during a short time exposure. 

its length, it is impossible for a filament to end abruptly within a 
fluid medium; it must either be a closed curve, as in the case of a 
smoke ring, or terminate at a free surface or a solid boundary. 
While these principles have long since been vindicated by rigid 
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mathematical proof, the fact remains that rotational movement 

may be started in any fluid at will, the motion then gradually 

becoming irrotational as the ifluid again comes to rest. 
These circumstances lead at once to the following conclusion: 

Since neither weight nor the normal force of fluid pressure upon a 

particle can produce rotation, any change in rotational energy 

must be the result of tangential stress, whicdi can be caused only 

through viscous shear. Indeed, the very basis of modern progress 

in fluid mechanics lies in the ap])reciatioii of the role played by 

viscosity; the fact has been verified repeatedly in experimental 
investigations that viscous action is essential to the generation 

of rotational motion, and that only by conversion into heat 

through viscous shear can rotational energy be diminished. 

It has been shown in the foregoing pages that rotational motion 

may often be studied quite satisfactorily at any instant in the 

light of the non-viscous flow equations, regardless of whether the 

rotation is continuously distributed throughout th() fluid, or 

discontinuously, as in the case of isolated vortex filaments. On 
the oth(ir hand, the rotational characteristics of many types of 

flow arc of so secondary a nature that the assumption of irrota¬ 

tional motion is often fully justified. A more intensive study of 

rotation will, therefore, be left until a later chapter on viscous 

flow. 



CHAPTER IV 

IRROTATIONAL MOTION 

18. The Velocity Potential. Returning now to the case of 
irrotational movement, since at every point in the field of mution 
all three components of the vorticity vector a? must equal zero, 
the following equalities will obtain: 

dy dz ^ dz dx ^ dx dy ^ 

Under these conditions there will exist a velocity potential 0 (phi) 
throughout the flow, the space derivatives of which at any 
point will equal the velocity components in the corresponding 

directions: 

Vx 
d<f> 
dx' 

(34) 

This relationship may be verified by substituting in Eqs. (33) 
the velocity components as expressed in Eqs. (34): 

d^<l> __ d^<t> ^ ___ ^ __ d^<l) 

dz dy dy dz^ dx dz dz dx^ dy dx dx dy 

Since differentiation with respect to two variables is independent 
of the order of differentiation, the above values will be seen to be 
identities, and Eqs, (34) are thereby substantiated. 

The significance of such a velocity potential may be seen 
through comparison with the force potential, a mathematical 
relationship already used in the development and application 
of the three equations of Euler. It was shown that the derivative 
of the quantity — (p + yh) in any direction must equal the 
component of the accelerative force per unit volume in that 
direction; —(p + yh) is obviously a scalar quantity, its magni¬ 
tude varying generally with time and three-dimensional space. 
Thus at any instant imaginary surfaces of constant force potential 
may be considered to exist throughout the moving fluid, the 
resultant vector f of accelerative force per unit volume at fevery 

83 
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point being normal to one of these surfaces. <t> is likewise a 
scalar quantity and a function of time and space, and at any 
instant surfaces of constant velocity potential may also be 
imagined to exist throughout the fluid, the velocity vector at 
every point being normal to such a surface. A surface of con- 
stant velocity potential is thus normal at all points to the direc- 
Tjbn oTl^dST^^ "wKsreas a surface of constant force potential is 
normal at all poiiifs^ the direction of acceleration.- 
"""Tnasmuch as every velocity vector is tangent to a stream line 
at a^iven instant, a surfac^e of constant velocity potential must 
cut all instantaneous stream lines at right angles. Therefore, 

V = 
^<j> 
ds 

(35) 

and it is apparent that the magnitude of 0 must increase in the 
direction of flow according to this relationship. It should also 
be apparent to the reader that the normal trajectories of the 
two-dimensional flow net are merely intersections of surfac.es of 
constant velocity potential with the plane of motion. The 
systematic spacing of these n trajectories resulted in constant 
increments of <t> from one line to the next, so that the relative 
velocity at any point could be seen from the spacing of these 
potential lines, according to Eq. (35) written in approximate 
form: 

^ ^ C 
As As 

It has already been shown that flow with constant specific 
energy must be^.bpth Even iflrrota- 
tional motion is unsteady, there is still a direct relationship 
between the energy of flow and the rate of change of the velocity 
potential with time, d<t>/dt, which may be developed as follows: 
Any one of the three equations of Euler written for unsteady 
irrotational motion (see page 71), 

dVj: 

di 
, I ^ I 

"ax 
dVt 

' dx 

may now be written in the form, 

ay d{v^/2) 
dx di dx 

1 A 
p dx 

(Pd + p. + yh) 
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Integrating with respect to this will then become: 

p + p 2 

The term F (t) represents merely an arbitrary function of time 
allowing for possible variation of the hydrostatic pressure load 
on a closed syst-(mi; it has already been shown that this will have 
no effect whatsoever ui)on the pattern of flow (so long as the 
absolute pressure does not reach z(‘ro at any point). Equation 
(36) may thus be rewritten in the form^ 

P ^ + P 2 + = constant (37) 

showing that in unsteady irrotational flow the dynamic character¬ 
istics are directly dependent upon the temporal variation of the 
velocity potential. 

As yet no restriction has been placed on the variation of </>, 
for it remains to be stated that the motion described by the 
velocity potential must also fulfill the conditions of continuity. 
The equation of continuity may be written in terms of 0, through 
substitution of its space derivatives [Eqs. (34)] in Eq. (23): 

^ d-<t> 

dx- dy'^ dz- 

This general relationship, known as the equation of Laplace, 
must be satisfied by any velocity potential. 

If, for a given set of boundary conditions, <t> could be expressed 
mathematically as a continuous function of time and space 
which would satisfy Eq, (38), the state of flow would then be 
completely defined by this one expression; it would at once be 
possible to determine from it any desired characteristic of flow 
at any point, through substitution in Eqs. (34) and (37), and 
thus entirely eliminate further use of the three equations of Euler 
and the one of continuity—obviously a great simplification. 

However, unless a given state of unsteady motion can be 
reduced to a steady one through introduction of a moving coordi¬ 
nate system, except in certain special cases it will be found 
exceedingly difficult to express the variation of <t> with both time 
and space. Hence, the question of unsteady motion must be 

1 Compare with Lamb, Hydrodynamics/' pp. 1^4-22. 
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left for the time being, the discussion of potential flow henceforth 
dealing entirely with movement that is independent of time. 
Under these circumstances, the local acceleration will be zero at 
every point, and Eq. (36) will then become the equation of 
Bernoulli. 

19. Problems in Three-dimensional Flow. It might now b(^ 
assumed that <i> could be written at once as a function of coordi¬ 
nate space for any given boundary conditions. Unfortunately, 
this is by no means the case. While a velocity potential unques¬ 
tionably exists for every possible type of irrotational motion, the 
mathematical ingenuity of the scientist is not yet of such calibre 
as to enable him to derive at will expressions for more than the 
simplest cases of such motion. As a matter of fact, classical 
hydrodynamics advanced largely through the reverse procedure 
of finding boundary conditions to which known functions of the 
velocity potential would apply. These known functions for 
three-dimensional motion are comparatively few in number and 
deal generally with flow around such bodies of revolution as air¬ 
ships and undersea craft. Since each has its counterpart in the 
more highly developed study of two-dimensional potential flow, 
which will be discussed directly, only brief mention of several 
typical examples will be necessary at this point. 

Just as rotation may exist along a single vortex line in other¬ 
wise irrotational fluid motion—a singular line, mathematically 
speaking—it is also permissible to introduce what is known in 
hydrodynamics as a point source or a point sink—a singular 
point in the fluid medium at which fluid matter is either created 
or destroyed at a given constant rate. The equation of con¬ 
tinuity for a fluid of constant density will then hold exactly at 
every point in the flow, with the one exception of the point source 
or sink, at which point the divergence of the velocity vector will 
change abruptly from zero to negative or positive infinity. 
Similar conditions were found to hold in the case of the vortex 
line, the rotation vector being infinitely great on the line itself, 
and zero throughout the remainder of the flow. 

Since the equation of continuity still applies to all regions of 
flow other than the one singular point, the rate of discharge Q 
through all imaginary spheres surrounding the singular point 
must be the same as the rate at which fluid is presumed to be 
created or destroyed at that poii^t. Denoting by R the radius 
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of any sphere concentric with the source or sink, since the flow 
is radial in all directions, the velocity y = r/i at a given radius 
may be found from the expression 

= ±4^ 

the plus sign applying to the source and the minus to the sink 
(Fig^ 29). Since this velocity 
vector is equal to the gradient of 
the velocity potential in the 
radial direction, <t> must then 
have the following form: 

Motion of this sort may be 
more clearly visualized if com¬ 
pared with flow toward a small orifice in the side of an extremely 
large tank. With the exception of the immediate neighborhood of 
the orifice itself, where the motion is curvilinear, the velocity will 
be radial and will vary inversely with the square of the radius. 
The orifice symbolizes the point sink, the flow picture in this case 
being just one-half of the symmetrical pattern of stream lines 

approaching a true sink from all directions (see Fig. 
30). 

If a source and a sink of equal magnitude are 
located a distance m apart in a fluid otherwise at 
rest, all of the fluid leaving the source will return 
sooner or later to the sink, following stream lines 
shown schematically in Fig. 31. Placing the cylin- 

Fig, 3 0. drical coordinate origin midway between the source 
(““O2), the velocity potential of the 

combined flow will be simply the sum of the velocity 
potential of the source 4>i and that of the sink 02; since the radius R 

of the spherical system now becomes (refer to Fig. 31), 

= J.„ dR + 
Q 

iirR 
^ 1/ ^ 

dR ~47tR'^ dR~ ^47rR^ 

Fig. 29.—Source and sink. 

0 = 01 + 02 = 
Q ^_ Q 
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The velocity at any point of the flow will then be the vector sum 
of the components in the r and z directions, each of which may 
be found by taking the proper space derivative of </>. If the 
source is greater or smaller than the sink, there will be a positive 
or negative surplus of fluid (Qi — Q2), which must either go out 
to, or cornci in from, infinity, as the case may be. 

When a source and a sink of equal magnitude are made to 
approach ea(di other in such manner that the product of rate of 
discharge and distance Qrn is held constant, as rn approac^hes 

the limit zero the flow pattern 
will be(‘,ome that of a doublet, 
shown in Fig. 32. The velocity 
potfmtial of the doublet (the 
mathematical development is 
omitted)^ will then be 

(/> = 
Cz 

(r2 + 

Fig 32.—Three-dimensional doublet. 
in which C is an arbitrary con¬ 

stant. Idle velocity at any point may be found in the usual 
manner. 

If there be added to any of these source-sink combinations a 
linear flow in a direction parallel to the line connecting the 
singular points, it is evident that the interaction of the two 

' For this derivation, as wtdl as for a more extiaisive treatment of examples 

of potential motion, the Header is referred to Prandtl-TietjeNs^ “Funda¬ 

mentals of Hydro- and Aeromechanies,” Engineering Societies Monograph, 

McGraw-Hill Book Company, Inc., 1934, and to vol. I of W. F. Durand^s 

“Aerodynamic Theory,” Julius Springer, Berlin, 1934. 
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systems must produce an entirely new flow pattern. An imagi¬ 
nary surface of revolution may now be considered to separate 
the flow of the source-sink group from the outer flow, the surface 
having such a shape that the velocity determined from the 
combined potential will be tangential to it at all points through 
which it passes. Since this surface must then be composed of 
those stream lines forming the boundary between the two systems 
of flow, the inner flow could be replaced by a solid body of exactly 
the same surface form without disturbing the flow around it. 

Fig. 33.—-Combination of parallel flow and a sonree—the half body. 

As a simple example, consider the combination of a single 
source with parallel flow. The velocity potential of the linear 
motion (in the positive z direction) must be: 

<I>1 ^ Vo z 

The velocity potential of the source has already been developed. 
The velocity potential of the resulting flow will be simply the 
sum of these two: 

In Fig. 33 is shown the pattern of stream lines correjsponding 
to this velocity potential. It is obvious that the space occupied 
by the fluid emerging from the source could be replaced by a solid 
body of the same form without changing the flow around it in 
any way, relationships then being at hand for finding the pres¬ 
sure and velocity distribution at any point in the surrounding 
fluid. Such a profile is known as a half body or a semi-infinite 
body, since it extends to infinity in the positive z direction. 



90 FUNDAMENTALS OF HYDROMECHANICS [Chap. IV 

The velocity component parallel to the z axis may be found by 
taking the derivative of 0 in this direction: 

_ d(t> _ , Qz 
dz 22)54 

It may be seen by inspection that the velocity will become parallel 
and equal to the original magnitude of the oncoming flow only an 
infinite distance along the z axis in either direction. The position 
of the nose of the body, which is a point of stagnation, may be 
determined by placing r and Vz equal to zero in the above expres¬ 
sion, with the result: 

The imaginary flow through any normal section of the half 
body to the right of the coordinate origin (refer to Fig. 33) must 
be equal to the discharge from the source, 

27rr dr ^ Q 

whereas between the origin and the nose of the body this must 
equal zero; i.e,^ all fluid leaving the source in the negative z 
direction must eventually return and pass to the right. By 
substituting the value for Vz in this integral expression, an equa¬ 
tion may be derived for the radius a of the profile at any given 
value of z, by which means the exact form of the body may be 
determined. 

Had the velocity potential for a parallel flow been added in 
similar fashion to that for a source and a sink of equal magnitude, 
equations would have resulted for flow around a symmetrical 
body of approximately ellipsoidal form, since under these con¬ 
ditions the discharge from the source would have been entirely 
absorbed by the near-by sink; the relative dimensions of such a 
body depend upon the assumed velocity of the oncoming flow 
and the magnitude and spacing of the source and sink. 

The combination of a parallel flow with a doublet results in 
the pattern of flow around a sphere (Fig. 34); the velocity poten¬ 
tial of such a flow will be, in terms of the arbitrary doublet 
constant C, 

Cz 
0 == t^o 2 "t“ 
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the derivative of which in the z direction yields the axial compo¬ 
nent of velocity at any point: 

_ C _ _ 3C32 
V, Vo -t- 

The magnitude of the doublet constant C may now be determined 
by writing the conditions at the stagnation point (r = 0, Vz = 0) 
in terms of the radius a of the sphere: 

0 = + 
C 

C = 
2 

Introducing this value in the above relationships, the velocity 
l)otential and the two velocity components for flow around a 
sphere of radius a will then be: 

^ , a"' 

_ V() 3 vq, 
i'* - *'0 + ^2 _l_ - 2 , 

_ 3 n ^ V{) z r 
- ~2(H + Z-) ^ 

The velocity v = y/vr + Vz- at any point on the Kurf'ace of the 
Sphere may now be found through substitution of the term 

a == Vr- +' in the above expressions. Idiis tangential velocity 
will vary from zero at the point of stagnation to a maximum 
value of around the circumference of the sphere in a plane 
normal to th(‘ longitudinal axis. 

The intensity of dynamic pressure at any point on the surface 
of the sphere—and similarly at any point throughout the flow— 
may be determined from the following general relationship for 
all such types of flow, 

P2 + Vd constant = = p ~ 

since pd has a magnitude of zero an infinite distance from the 
sphere, where v == Vq. Thus pa will have a maximum positive 
value of p t^o^/2 at the points of stagnation, and a minimum value 
of — ^ p vq^/2 in the region of highest velocity. 

In each of these cases, the pattern of steady flow around an 
immersed body has been obtained by superposing parallel motion 

flow around ti sphere. 
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upon some existing state of movement. Assume now that the 
body and the surrounding flow are given a rate of motion equal 
and opposite to the velocity of the parallel flow (the coordinate 
system thereby remaining stationary); the stream-line pattern 
of the original flow will evidently be restored to its earlier form— 
through subtraction of the quantity that had just been added— 
with the exception that these stream lines now represent the 
iuvstantaneous pattern for unsteady flow caused by movement of 
the immersed boundary, as indicated for the sphere and half 
body in Figs. 32 and 33. 

Since the velocity of the parallel flow and the discharge and 
location of the sources and sinks are entirely optional in any of 
these problems, it should also be possible to combine as many 
sources and sinks of different magnitudes as one might desire, 

Fig. 35,—Devolox^ment of tho velocity potential for a boundary of complex form. 

in order to produce velocity functions for bodies of revolution 
covering a wide range of profik^s. Indeed, this method has been 
used satisfactorily to develop the vt^locity potential for flow 
around an airship—in both forward and lateral motion—by 
combining with a parallel flow a series of sources and sinks 
systematically distributed along the axis of the body (see Fig. 35). 
For the given airship profile and the given velocity of the oncom¬ 
ing flow, the sources and sinks are so grouped that at every point 
on the profile the normal velocity component caused by the 
parallel flow is exactly equal and opposite to that caused at the 
same point by all the sources and sinks together. That is, the 
resulting normal velocity component must be zero over the entire 
surface. Obviously, the total discharge from the sources must 
equal the total discharge into the sinks. When these conditions 
are satisfied, the resulting velocity potential may be determined 
through summation. 

By carefuUy grouping sources and sinks in this manner, and 
by addition of ring vortices in planes normal to the axis, it is 
possible to determine the velocity and pressure distribution 
around a body of revolution of almost any desired form, although 
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the computations will become quite involved. If carried to an 
extreme, this method might be expected to yield results for bodies 
of any irregular shape, through groups of sources, sinks, and ring 
vortices at other points than the axis; the complicated form of 
the resulting velocity potential, however, would hardly warrant 
such a procedure. 

20, Two-dimensional Flow: the Stream Function. If the 
conditions of steady, in*otational flow are such that the motion 
is entirely two-dimensional—that is, if th(^ stn.'am-line pattern 
is identical in a series (jf parallel planes (a:?/), there being no move¬ 
ment whatever in a direction {z) normal to these plan(\s—the 
relationships just developed for three-dimensional potential flow 
become greatly simplified. The principle of continuity [Eq. 
(23)], which must hold for any type of flow at constant density, 
redm^es to 

(liv V = --h = 0 
dx dy 

(39) 

whereas the fact that in two-dimensional motion only one com¬ 
ponent (coz) of th(^ vorticity vector could possibly exist, leads to 
the following simplification of Eqs. (33) for irrotational motion: 

dVy _ ^ 
dx dy 

(40) 

The Bernoulli theorem, of (‘ourse, requires no modification, while 
Eqs. (34) will become, 

Vx (41) 

Substitution of thCvSe components in the equation of continuity 
results in the equation of Laplace for two-dimensional flow, a 
relationship that must be satisfied by any true velocity potential: 

dy^ 
(42) 

Moreover, because of the condition expressed by Eq. (39), 
there will also exist a stream function ^ (psi), the derivatives of 
which in the two coordinate directions yield the velocity com¬ 
ponents in directions normal to the respective axes: 

Vx 

dyp dyj/ 

dx 
(43) 
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Since the velocity vector at any point is tangent to the stream 
line passing through that point, it is evident that the components 
of V must be proportional to the respective components of an 
increment of distance ds along the stream line. Thus, the 
differential equation of the stream line must be as follows: 

^ or Vx dy — Vy dx ~ 0 (44) 
Vx Vy 

Introducing the components of the velocity vector expressed as 
derivatives of ^ into this expression, 

(46) 

from which it will be seen that the stream line is that line along 
which the stream function is con¬ 
stant. Substitution of Eq. (43) in 
Eq. (40), 

I ^ A 

dx^ dy- 
(46) 

shows that the stream function must 
also satisfy the equation of Laplace. 

Since each component of the ve¬ 
locity vector is now expressible in 

terms of either </> or xp, the following identities must exist: 

Fig. 30.—Stream and j^otential 
lines. 

^ ^ ^ (AJ) 

dx dy' dy dx ^ ^ 

That is, lines of constant velocity potential and lines of constant 
stream function must always intersect each other at right angles. 
It should now be clear to the reader that the stream lines and 
normal trajectories of the two-dimensional flow net are really 
lines of constant \(/ and constant 0, respectively, so placed that the 
spacing between every pair of stream lines and every pair of 
potential lines represents a constant increment of xp and of <t>. 
As will be clear from Fig. 36, according to the natural coordinate 
notation, 
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and 

^ = 0 = — 
dn ds 

(49) 

since the product v dn represents the increment of rate of 
discharge dq per unit distance normal to the plane of motion 
(f.c., volume per unit time per unit length equals area per unit 
time), it will be evident that the quantity of fluid passing per 
second between any two stream lines Aq must be both dimen¬ 
sionally and numerically equal to the change in magnitude of 
the stream function Ai^ from one stream line to the next: 

/A« 
V dn — A\f/ (50) 

This is, of course, merely another way of expressing the law of 
continuity for two-diimmsional irrotational motion. 

Just as in the cas(^ of three-dimensional potential motion, the 
velocity j)()tential for certain types of two-dimensional flow may 
be formulated analogically through combination of sources, 
sinks, circulation, and parallel motion. Since the flow must 
be entirely i)lanar in such problems, the stream-line patterns may 
often be found conv(‘niently through graphical combination of 
the elemejitary flow patterns, in the manner indicated early in 
Chap. II. In many cases, however, the boundary conditions 
make an exact mathematical derivation of the velocity potential 
either impossible or at best extremely difficult—despite the fact 
that a velocity potential must exist for every case of steady, 
irrotational motion. In such instances, the construction of the 
flow net by graj)hical means, without heed to the velocity 
potential as a mathematical function, is the most practical means 
of solution. This procedure will, of course, yield the same 
results for velocity distribution as would differentiation of 
were the latter function known, for the construction of the flow 
net is based upon identical physical relationships. In addition 
to the foregoing methods of solution, there exists a very significant 
type of mathematical operation involving the use of complex 
variables, whereby the number of available expressions for the 
velocity potential is tremendously increased. Owing to the 
nature of this method, it will be discussed separately in the fol¬ 
lowing chapter. 



CHAPTER V 

CONFORMAL MAPPING 

21. Theory of Complex Variables. A complex number is on(‘ 
composed of real and imaginary terms. Any imaginary term, 

such as \/-“a, may be reduced to the product of a real quantity, 

\/a, and the unreal or imaginary root — 1, the latter commonly 
being given the symbol i\ an imaginary quantity, hence, always 
contains the factor i. Thus a complex number z may be written 

y as the sum of a real term x and an 
z^x^iy^re^^ imaginary term t?/, 

^ z — X iy (51) 

/y y in which th(^ real and imaginary terms 
I must be regarded as distinct from one 

0^ ’ Z^ne-aiioihor. 
Fig. 37.-Graphical repre- a number may be plotted, how- 

sentation of a complex ever, by presuming an imaginary axis 

along which is measured the real part y of 
the imaginary term, and a real axis at right angles to it along which 
is measured the real term x of the complex quantity. Thus in 
the z plane, according to the above relationship, the point z 
lies a distance x along the horizontal or real axis, and the dis¬ 
tance y along the vertical or imaginary axis, the magnitude of 
the complex number z then being given by the sum x + iy, 
as shown in Fig. 37. 

Polar notation may also be used to express the value of a com¬ 
plex variable. Denoting by r the distance of any point z from 
the coordinate origin, and by B the angle between this radius 
vector and the real axis the following relationships will be 
seen to hold: 

^ z plane 

Fig. 37. —Graphical repre- 

= + 2/^ r cos B, y — r sin B 

Hence 

= r (cos B + i sin B) 
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The radius r is known as the modulus of z, and the angle B as the 
amplitude or argument of z. Refer to Fig. 37. 

If the quantity is expanded in a series, 

= 1 + 
id 

+ 
B^ 

+ 
iB^ 

1 1-2 1-2-3 ' 1-2-3-4 ' l-2-3'4-5 

and the real and imaginary terms separated, 

0 
• Z® _ 

1 • 2 • 

+ 
e* 

1-2 ' 1•2-3-4 
cos 6 

3 1 2-3-4-5 i sin B 

it is at once evident that Eq. (52) may be written in the more 
convenient form: 

z = (53) 

Inasmuch as a complex num¬ 
ber may be represented vec- 
torially by the direction and 
magnitude of r, it will be clear 
that the sum or difference of 
two complex numbers may be 
obtained by the vector sum or 
difference of their respective moduli (see Fig. 38). From Eq. (52) 
it is obvious that the same result may be obtained by adding or 

subtracting the real and imaginary parts of 
the two complex quantities, as shown in the 
illustration; that is, 

Zz = zi + Z2 = xi + i yi + X2 + i t/2 

= {xi + X2) + i (2/1 + 2/2) 

Multiplication or division of one complex 
number by another may be performed by 

Fig. 39.“-Multipii- taking the product or quotient of the moduli 
cation and division, difference of the arguments, 

since 

— Zi' 2% ^ Ti • 7*2 = ri Tt 

The operation is shown in Fig. 39. In the same manner, the 
power of a complex number is found through raising the modulus 
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to the power and multiplying the argument by the exponent, as 
illustrated in Fig. 40, since 

Fig. 40.—Powers of com¬ 
plex numbers. 

Eqs. (53) and (51), 

Evidently, the relative change as a result 
of the operation depends in part upon the 
proximity of the original complex quan¬ 
tity to the unit circle, for which r = 1. 

The logarithm of a complex number 
may be obtained by a combination of rec¬ 
tangular and polar coordinates. From 

Z2 = In Zi ^ In Vi = hi rj + idi == X2 + iy-z 

Therefore, 

X2 = In ri; ^2 = 

As shown in Fig. 41 the effect of this operation upon z will 
depend upon the magnitude of the modulus with respect to the 

Fig. 41.—Logarithmic operations. 

X 

unit circle, and upon its direction with respect to the coordinate 
axes. That is, if ri in the polar notation is greater than unity, 
X2 in the rectangular notation will be positive; if is less than 
unity, X2 will be negative; will always be equal to By plotted 
vertically in radians. Thus, the shaded areas in the rectangular 
plane correspond to the logarithms of the similarly shaded areas 
in the polar plane. 

22. Significance of Conformal Representation. Performing 
such operations upon a given complex variable is the essence of 
the mathematical process known as conformal mapping. If one 
complex variable can be expressed as a function of another com- 
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plex variable, and if either one of these can also be expressed as 
a known function of coordinate space, then the expression of the 
other as a function of coordinate space may be readily derived. 

Assume, now, that one complex variable w is plotted in the 
w plane, of which the ^ axis is imaginary and the </> axis is real, 
and that tt; is a function of another complex variable 2:, which is 
plotted in the z plane. Then 

ly = </) + t ^ = / (2:) =- f {x + iy) (54) 

Assume further that in the w plane are drawn two families of 
equidistant lines, parallel, respectively, to the real and imaginary 
axes, as shown in Fig. 42. These will denote lines of constant ^ 
and constant the increments and A<^ being equal throughout 

Fig. 42.—Conformal transformation. 

the system. If z now be assumed to vary in such manner that 
the real part {<j>) of w changes, the imaginary part (^^) remaining 
constant, there will be traced in the z plane a line conforming to 
this line of constant ^ in the w plane. If this procedure is fol¬ 
lowed for both families of parallel lines in the w plane, there will 
result a conformal map of this network in the z plane, the shape 
and position of the transformed image depending upon the func¬ 
tional relationship between w and z as expressed generally in 
Eq. (64), and shown schematically in Fig. 42. 

Certain pertinent characteristics of this operation must be 
noted. First of all, it is evident that both </> and ^ are real func¬ 
tions of X and y, and vice versa: 

4>=<l>ix,y}, ^ = y); or x = x {4>, , y = y (.<!>,4') 
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That is, for a given functional relationship of the two complex 
variables, the real quantities x, y, <t>, and ^ will also be interrelated 
in a manner independent of the imaginary factor i. Thus, a 
knowledge of the function will provide a means of reproducing 
in a real xy plane the transformed <t>\l/ network; if the character¬ 
istics of the original network are known, then the characteristics 
of the transformed network will also be known. 

Sinc(‘ for every point Wi in the w plane there is a corresponding 
point Z\ in the z plane according to the relationship of Eq. (54), 
it follows that for every change dw in the one complex variable 
there must be a corresponding change dz in the other. These 
increments, furthermore, must be equal to the sum of the varia¬ 
tions of th(iir real and imaginary parts, respectively; hence, the 
ratio of the two corresponding increments will be equal to: 

die _ + i dxj/ 
dz dx + i dy 

But the partial derivatives of z with respect to x and to y^ [see 
Eq. (51)] 

^ . dz _ . 
dx ^ dy ^ 

when substituted in the expressions for the partial derivatives ot 
w with respect to x and to y will yield the following pertinent 
relationships for the variation of w with respect to z: 

dw _ dw dz __ dw ^ dw _ dw dz _ . dw 
dx dz dx dz' dy dz dy dz 

Therefore, 

die _ ^ ^ . dyj/ 
dz dx dx ^ dx 

and 

dz i dy i \dy dy) 

Hence, 
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Since the real and imaginary parts of any complex relationship 
are quite distinct, it is evident that the real terms in the above 
equation must equal each other and that the imaginary terms 
must also be equal: 

_ dxj/ d<t> _ drp 
dx dy ^ dy dx 

These two equalities, known as the Cauchy-Riemann equations, 
are identical with Eqs. (47); since Kq. (54) may be shown to 
satisfy the equation of Laplace, <t> and ^ represent th(^ velocity 
potential and the stream function for two-dimensional irrotational 
flow; hence, 

(56) 

(57) 

from which it is evident, that the velocity may also bo considered 
a complex variable of the form v — — i Vy, which is then a 
function oi z — x + i y. From this expression may be obtained 
the magnitude and direction of the velocity vector, although v 
itself is not a true vec.tor, for it has both real and imaginary parts. 
Since the two complex variables v and w are functions of a third 
complex variable z, it follows that a functional relationship 
must also exist between w and v: 

w =f{v) =f(v^- i Vy) (58) 

It is this general expression which permits solution of certain 
problems of flow from solid boundaries into the atmosphere, as 
in the case of jets and weir nappes. 

From Eq. (55) it will be obvious that the variation of w with 
respect to z is independent of the direction of the increment dz ~ 
i,e,, independent of the ratio dy/dx. In Fig. 42, for instance, 
as the diagonals Azi and Az2 approach zero, the limits of Awi/Azi 
and AW2/AZ2 will be identical, despite the difference's between 
Axi and Ax2j and Ay^ and Ay2. Since the derivative dw/dz 
depends upon the position, but not tlie direction, of dz, it thus 
can represent only the magnitude of rotation and linear distortion 
involved in the transformation, for from Eqs. (56) it is apparent 
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that the transformed flow net has the identical angular character¬ 
istics of the original—that is, all lines of the net still meet at 
right angles, while every ^'mesh^^ of the net is still a perfect 
square when reduced to the infinitesimal. Thus, the operation 
of conformal transformation will (diange the linear characteristics 
of a network of lines without affecting in any way whatever the 
angular intersections. 

A familiar application of this operation is illustrated by the 
Mercator projection used in mapping. In this projection the 
parallels of latitude and the great circles of longitude on the ter¬ 
restrial globe are reproduced in a two-dimensional plane as two 
rectilinear families of parallel lines. At the equator tlie linear 
distortion is zero, but the poles arc changed from points to lines 
of the same length as the equator. Since no angular distortion 
results from this operation, such ^Tnfinitesimar’ areas as the 
maps of towns and cities will remain practically unchanged in 
shape, despite the obvious distortion of large continental areas 
at high latitudes. Moreover, if the same method is used to 
show the polar region, the t-wo-dimensional projection will be a 
series of radial lines representing the longitudinal meridians, and 
a series of concentric cin^les of constant latitude, of which 
one is the equator. Obviously, conditions at the pole remain 
unchanged, whereas the regions farthest from the pole undergo 
the greatest distortion. Again, however, angular characteristics 
are unaffected, and infinitesimal areas that were originally square 
will remain so. If now the first projection be called the w plane 
and the second the z plane, it is apparent that a single functional 
relationship must exist between the two, since every point in the 
one has its counterpart in the transformed or conformal map, 
and vice versa. 

23. Elementary Transformations. As a preliminary exercise 
in the methods of conformal mapping, consider the function 

w-<t> + iyl/=f{z) = f (x At iy) = {a + ih) z 

At once one may write 

i ^ = {a + ih) {x iy) == ax + ibx + iay — by 

from which it is apparent that through equating the real and 
imaginary parts there will result: 

<l> ax — by; = bx + ay 
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The velocity components may be found directly through differ¬ 
entiation of the velocity potential or the stream function, or 
through the operation: 

dw . , ., 
dz 

Again equating the real and imaginary parts, 

Vx ~ a; Vy = —b 

The lines of constant </> and constant yp in the z plane may be 
found by setting the expressions just found for 4> and yp equal to 
successive numerical constants, the increments always being 

Fig. 43.—Conformal repreHentation of the function uj = (a + i b)z. 

the same. If a and b are both positive, the original and the 
transformed flow nets will be as shown in Fig. 43, the slope and 
spacing of the conformal lines depending upon the magnitude 
of a and of b. If these constants are equal, the slope will be 45°; 
if a is positive, the horizontal component of flow will be to the 
right—if negative, to the left; if b is positive, flow will have a 
downward component—if negative, an upward component; if a 
is zero, the flow will be vertical; similarly, if b is zero, the flow 
will be horizontal. Obviously, if h is zero and a is unity, the 
pictures in the two planes will be identical. Similarly, if a is zero 
and b is unity, although the scale will be the same, the stream 
lines will be changed to potential lines, and the potential lines 
to stream lines. It is thus evident that multiplication of any 
function by i will rotate the pattern of motion through 90°, 
while multiplication by = —1 will completely reverse the 
direction of flow. 
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A general function of the type 

w — 

may through the relationship z = be written in the form 

ttO . . 7r^\ 
-1 t sin — I 
a OL f 

from which it is apparent that the velocity potential and the 

stream function will be as follows: 

VtrO 

w — a r“ (i u r“ I cos 

~ irO - . ttS 
<f) == a r“ cos —; ^ = a r* sin — 

a a 

The flow net resulting from this transformation will evidently 

-4 77'-/. / 

\ 

^ n r- 
Fig. 44.—Potential flow at a 90® boundary angle. 

depend in form upon the magnitude of the angle a. If this 

angle is 90°, 

w == a r- 

and 

<j> = a cos 26 a {x- — y-); ^ = a sin 26 = 2axy 

The velocity components may now be found through differentia¬ 

tion of the velocity potential, giving 

Vx = 
dx 

2ax; Vv = 
d<l> 

dy 
-2ay 

V ^ ^/vx^ + Vy^ == 2a\/x‘^ + 2ar 

and 
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A plot of the lines of constant stream function, with constant 
increments between lines, will result in a series of hyperbolas 
in the four quadrants of the polar coordinate plane. Selecting 
the axes x and y as solid boundaries of flow, the stream and 
potential lines in the first quadrant (see Fig. 44) will then form 
the flow net for potential motion at a 90° angle in the boundary, 
there being a point of zero velocity at the corner. 

Since the angle a evidently represents the angle between the 
two straight boundary walls, this function may be used to deter¬ 
mine the flow characteristics at a corner of any desired angle. 
Use of the angle a = tt must then yield parallel flow along a 
straight wall, as may be seen from the form of the original 
function. 

24. Source-sink Combinations. The function 

tc = a In s 

Fig. 46.—Transformation from parallel flow to flow from a source. 

may be treated as follows: 

<^ + f ^ = a In 
0 == a In r; 

d<t> 
dr r 

= a In r + aid 
= aS 

Since flow that is entirely radial, the tangential component cf 
the velocity being zero at all points, must be flow from a two» 
dimensional source (if a is positive) or into a sink (if a is negative) 
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then the constant a may be expressed in terms of the two- 
dimensional rate of discharge q: 

q — 2TrrVr = 27ra; ^ ^ ^ 

The transformation is shown in Fig. 45. 
The similar function 

w = at In z 

may be treated in a corresponding manner: 

(f) + i= a i In = a i In r — ad 
<l) = --ad; rp = a In r 

d<l> ^ d(j> a 
^ = 0; Vt = = — 
dr r dd r 

Since in this case the velocity is entirely tangential, the trans¬ 
formed image represents flow in concentric circles with constant 

Ay 

Fig. 46.—Potential flow with constant circulation. 

circulation; the constant a will then be (assuming T positive in 
the clockwise direction): 

r 
— r = 2vrVi = —2Tra; a = ^ 

The flow pattern in the z plane may be seen from Fig. 46. 
If a composite function be written in the form 
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the operation will result in a family of logarithmic spirals, as 
illustrated in Fig. 47, the direction and curvature of the spirals 
depending upon the sign and magnitude of q and T. It is evi¬ 
dent that this flow pattern may also be obtained graphically 
according to the method already discussed of adding velocity 
fields. As will be secui from tlui foregoing development, th(' 
velocity i)()tential and the stream function of the family of loga¬ 
rithmic spirals are merely the sums of those for radial and con¬ 
centric motion. 

y. 

Fig. 47.—Combination of potential vortex with source or sink. 

A source and sink of (Hpial magnitude and spaced a distance 2m 
apart will result from the function of transformation 

q , 2 + m 
w ~ ^ In 

27r z — m 

Referring to the flow net shown in Fig. 48 (which may also be 
constructed graphically through combination of the stream and 
potential lines of the source and sink), it will be seen that 

w = 0 + f ^ 
27r 

In 
Vi _ q 
r2 €' ,162 27r 

In ™ -b f (01 
^2 

62) 

from which the velocity potential and the stream function may 
be found by inspection: 

= #-ln 
2t n’ 
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Thus, potential lines and stream lines will all be circles, the loci 
of ri/r2 = constant and (^i — ^2) == constant, respectively. 

Through use of Eq. (57) it may be shown that the magnitude 
of the velocity vector at any point will be 

^ mq 
V —-- - 

TT ri r2 

although the development of this relationship is too involved 
to be presented in this text. This velocity may also be found by 

Fig. 48,—Source and sink of equal strength. 

adding vectorially the velocities of flow from the source and toward 
the sink at any point. 

As in the foregoing example, the picture of flow from a source 
to a sink may be transformed into the pattern of circulation 
around two vortex lines simply by multiplying the original func¬ 
tion of z by the factor i. In this way the potential lines in Fig. 48 
will become stream lines, and vice versa, and the flow net will 
represent the unsteady flow pattern of the two vortex filaments 
in the upper left-hand corner of Fig. 26. The pattern of steady 
flow may be developed by adding graphically a parallel flow equal 
and opposite to the velocity of translation of the two filaments; 
that is, Vq = r/47rm. Obviously, the outline of either filament 
must be formed by one of the circular stream lines, it being of no 
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consequence whether or not the two filaments are of the same 

diameter so long as the circulations around their circumferences 

arc of the same magnitude and opposite sign. 

Any portion of any potential flow may be replaced by a solid 

boundary whose outline coincides with a stream line without 

changing the characteristics of flow in 

any way. Thus, the foregoing pattern 

of circulatory motion may be used to 

find the approximate velocity and pres¬ 

sure distribution for flow under a mov¬ 

able cylindrical weir profile by fitting 

one stream line of the flow net to the 
!• 1 1 Fi(}. 49.—Flow under a 

cross section of the cylinder, as shown cylindrical gate. 

in Fig. 49. ^ This method is not exact, 

because the lines of flow upstream from the weir deviate 

from those of the potential function, although the latter may 

be used to good advantage as the first approximation in 

the graphical construction of the net. Moreover, the point at 

which the flow separates from the cylinder moves upstream with 

increasing head; that this will affect the velocity of flow will be 

apparent from the fact that only through knowing the elevation 

of this point of atmospheric pressure can one establish the velocity 

corresponding to the given spacing of stream lines. 

26. Flow around a Cylinder. If the distance m in the source- 

sink combination approach zero, the product mq thereby remain¬ 

ing constant, the flow pattern will approach that of the 

two-dimensional doublet, or dipol, shown in Fig. 50. The 

corresponding complex function will then have the form 

a 
w = ~ 

z 

The velocity potential and the stream function are found as 

follows: 

. , . , _ a _ a {x -- i y) _ ax ___ aiy 
^ X iy {x + iy) {x — iy) ^ x^ + y^ x^ + y^ 

A ~ _ o cos 6^ _ ay _ a sin 6 
3*2 _|_ ^2 r ’ x^ + y^ r 

^ For extensive application of conformal mapping to the design of hydraulic 

structures, see Kulka, H., '^Der Eisenwasserbau,” vol. I, Wilhelm Ernst & 
Son, Berlin, 1928. 
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Both <i> and \p are thus constant along circles passing through the 
(coordinate origin; in Fig. 50 xp and are increased succcessively by 
constant increments, the radii of the stniam and potential lines 

Fig. 50.—Two-dimensional doublet. 

varying inversely with thc'se (piantiti(\s. The velocity compon¬ 
ents will be found to be 

_ <9</) _ a {y^ — —2axy 
dx ~ (x- + 2/^) - ’ ~ dy ~ (x- + y-y 

from which the magnitude of the velocity vector at any point 
will equal 

+ Vu^ = 
— o;’)- + 4a“ y- 

{x^ + ^2 + 2/2 

Comparable to the three-dimensional doublet, from this flow net 
may be determined the unsteady stream-line picture resulting 
from the motion through a fluid of an infinitely long circular 
cylinder, simply by constructing upon the flow net a circle con¬ 
centric with the coordinate origin to represent the cross section 
of the cylinder. Designating by the velocity of translation of 
the cylinder, the magnitude of a may be found by setting equal to 

the velocity of the fluid immediately in front (or in back) 
of the body (refer to Fig, 50), at the distance n from the origin: 

V and a = vq Vq^ 
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Obviously the usual methods cannot be used to find the pres- 

ure distribution around the body, for unsteady motion denotes 

variable energy of flow. The steady picture, however, may be 

obtained directly through adding (either graphically or analyti¬ 

cally) to the above potential and stream functions those of a 

parallel flow with the velocity Vo—that is, the body is brought to 

rest through superposing vectorially upon the entire flow picture 

a velocity Vq equal and opposite to that of the cylinder: 

^ , Vi) ro“ X 
<t> = v,x + ^ ^ Vi) y 

Vq n- y 

This is satisfied by the complex function 

since 

, 1 . / / I • \ I ^0 [x ~ I y) w ^ <i> I yp Vi) {x + I y) --V 
x^ -h y- 

The velocity components may be found either by differentiating 

the above relationships or by adding algel)raically to Vx for 
unsteady motion tiie quantity ^o; Vy, of course, must remain 

unchanged by this operation. Furthermore, since + y^^ 
x = r con 0, and 1/ == r sin 0, the velocity at all points around the 

circumferemce of the cylinder may be found from the relationship: 

V — Vt — 2vi) sin d, when r = ro 

The pressure distribution around the cylind(u- may now be found 

from the expression already developed, 

from which it will be seen that there is a maximum pressure 

v^ 
intensity of at both points of stagnation, and a minimum 

intensity of "~3p^ at either intersection of the circle with the 

y axis. The stream-line pattern for flow around a cylinder is 

shown in Fig. 51; this flow net may be found by combining 

graphically a parallel flow with a doublet, the spacing of the 

parallel stream lines for a given doublet depending only upon the 
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diameter of the cylinder; such spacing may then represent any 

desired magnitude of tlie parameter p-™* 

If one now superpose upon the flow picture just found the 

pattern of stream lines for a constant positive circulation V 

around the cylinder, grai>}iical addition of the two systems will 

yield a flow net r(\seinhling that shown in Fig. 52. As can be seen 

Fig. 51.—Potential flow around a cylinder - graphical combination of parallel 
flow with a doublet. 

Fig. 52.—Displacement of stream lines around a cylinder through addition of 
circulation. 

from the illustration, the points of stagnation will be displaced 

downward, while the velocities will be augmented on the upper 

side and reduced accordingly on the lower. The degree of dis¬ 

placement of the stagnation points will depend upon the ratio of 

the tangential velocity due to circulation, Vc = r/27rro, to the 

velocity of tlie oncoming flow Vo; the larger this ratio, the greater 

the displacement. 



Sec. 25] CONFORMAL MAPPING 113 

The form of this complex function will then be: 

/ I '■o*^ I * r 1 
“'-’"i' + Tj + sr'”* 

from which, 

and 

The tangential velocity around the circumference of the cylin¬ 
der, which is of particular importance, may be found simply by 
combining with Vtj the tangential velocity without circulation, 
the velocity Vc due to the circulatory motion: 

r 
V = Vt + Vc = 2vo sm 6 + — 

ZirTo 

The two are obviously added on the upper side and subtracted 
on the lower. It is evident that at the points of stagnation, 
where the resultant velocity must be zero, the two velocities will 
be equal and opposite; the ratio of Vc and therefore, determines 
the angle of displacement, — 6 — 180°: 

1 V 
t; = 0 = = 2vo sin ^ sin jS = — 

Zi Va 

Thus P will be 30° when the two velocities are equal, 90° when 
their ratio is equal to 2; as the ratio becomes greater than 2, the 
point of stagnation will move away from the cylinder, which will 
then be entirely surrounded by fluid moving in the same angular 
direction. 

Inasmuch as the velocities are higher on the one side of the 
cylinder and lower on the other, there must be a resultant 
pressure acting in the positive y direction. The component of 
force in this direction due to the pressure intensity over an incre¬ 
ment of circular arc when integrated entirely around the circle 
should give the magnitude of this force per unit length: 

F_ f' 

L-jo‘ 
Pd To sin 6 do (vo^ — v^) Vo sin 6 dd 

2vq sin 6 + —Y 2irro/ 
To sin 6 do 
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It must again be noted that the two terms are to be added while 6 
varies through 180®, and subtracted for the remaining 180® of 

the cycle. 

Integration will result in the very pertinent relationship 

I; = P % r (59) 

whi(!h states that the force per unit length of cylinder is a direct 

prodiK^t of fluid density, velocity of flow, and circulation. The 

identical expression applies to circailation around bodies of many 

other shapes. This so-called Magnus effect explains in a 

general manner the principle of the rotor (applied at various 

times to the propulsion of ships, airplanes, windmills, and so 

forth), and the reason for the deviation of a spinning ball from its 

natural trajectory. 

26. Successive Transformations. The foregoing conformal 

transformations involved relationships between only two complex 

variables, w and 2, the flow picture in the z plane being considered 

in each case a conformal map of the parallel flow in the original 

w plane. It must be realized, however, that the parallel flow 

pattern is also a conformal map of the flow net in the z plane in 

every case, and may be obtained from the latter through the 

identical functional relationship; that is, if w is a known function 

of z [w = fw (z)], it is obvious that z must then also be a known 

function of w [z — fz (w)]. Moreover, beginning with the 

original flow picture, any number of transformations may be 

performed in succession, each operation resulting in a new con¬ 

formal map of the preceding flow net, all such maps then being 

related through the series of successive functional operations. 

In performing more than one conformal transformation it is 

most expedient to introduce an additional plane for the complex 

variable f (zeta) = ^ -f- f in which the f (xi) axis is real and 

the Tj (eta) axis is imaginary. If now z is any known function 

of f, and w in turn is some known function of 2, then w is also a 

function of f, which may be written as follows: 

w=fy,{z); z=ft{i)-, W = fu^lfzU)] = f'u,iO 

Substituting the real and imaginary parts of the several complex 

variables, this becomes: 

(l> + i — fw (x + i y) — (f + i v) 
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Hence, the real variables 0 and 0 must be functions of the real 

variables { and t?, so that the f plane will again represent a trans¬ 

formed flow net of 0 and 0 lines. 

Since further transformation of the picture of flow around a 

cylinder offers a wide variety of useful flow nets, it is customary to 

accept the transformation from the w plane to the z plane as 

performed once and for all, and to proceed at once from the flow 

picture as shown in Fig, 53a. This procedure is based upon the 

methods of conformal mapping already discussed at length, and 

will simply be outlined in the following pages. 

If the functional relationship between the z and f planes is 

such that 

r = 
2vo 

it is evident that the conformal map of the flow around the cylin¬ 

der will become simply a case of parallel flow identical with that 

in the original w plane. The operation will, however, flatten the 

circular cross section of the cylinder into an ellipse having a 

major axis equal to twice the diameter of the circle and a minor 

(or vertical) axis with a length of zero; that is, the body immersed 

in the parallel flow is bounded by two straight lines, both of 

which are superposed upon the real axis of the {* plane. This 

flow net is simply that of movement along an infinitely thin plate 

parallel to the flow (refer to Fig. 535). 

If, on the other hand, the function given above is multiplied 

by the imaginary factor f, 

f - 

the conformal map of flow around a cylinder will be that of flow 
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around •an infinitely thin plate that is normal to the oncoming 

fluid, as shown in Fig. 54a. If these two operations are combined 

in the form 

f = (a + i b) ib Vo 

variation of the constants a and b will (*hange the slope of the 

plate (see Fig. 546) and at the same time change iho. scale of the 

general picture. This operation will be clear after ref(‘Tence to 

the elementary principle of rotating the coordinate axes, as illus¬ 

trated in Fig. 43. 

It will be apparent from inspection of Fig. 546 that the unsym- 

metrical location of the two stagnation points will result in a 

Fig. 65.—Introduction of circulation to elimiiiato infinite velocity at trailing edge. 

force couple tending to rotate the plate about its center of gravity 

(the coordinate origin), although in such potential motion there 

can exist no resultant force that would cause a displacement of 

the center of gravity itself. In order to produce such a force in 

one direction or another, it is necessary to introduce a constant 

circulation about the original cylinder, as shown in Fig. 55a. If 

the above-given functional relationship between f and z still 

exists, the picture of flow in the f plane will now represent a 

combination of parallel flow and circulation around a flat plate 
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inclined at any angle, the force acting upon the })late in a direction 

normal to the oiKJoming flow again being givcm by Eq. 59. 

Since the edges of an infinib^ly thin plate have a zero radius 

of curvature, it is evident that in general the vadocity at su(*h 

points must be infinitely great. One such region, however, may 

be obviated in the following manner. Since the position of the 

two points of stagnation of the circaimference of the cylinder may 

be controlled through varying Vo and F, and since tlie angles of 

inclination of the plate to the oncoming flow may also be con¬ 

trolled through variation of the constants a and 6, it is possible 

cither to change T or to rotate the coordinate axes in Fig. 55a 
through such an angle that one point of stagnation will coincide 

with the intersection of the real axis and the circular cross section 

of the cylinder. Under these conditions in the transformed 

picture oiui stagnation point must lie at one end of the thin 

plate—that is, the stream line at tliis point will be a smooth 

continuation of the line of the plate itself, as shown in Fig. 55b. 

27. Kutta and Joukowsky Profiles. If the coordinate axes in 

the pi(}ture of flow around a cylinder are transposed bodily in the 

negative z/ direction, application of the foregoing transformation 

will result in the following interesting pi(*-ture: In Fig. 56 the 

original section is shown as a heavy circle, the real axis having 

been displaced downward a distance/. The lighter cinde has its 

center at the new coordinate origin, both circk^s crossing the real 

axis at the same two points. It is (evident that the operation 

which transforms the lighter circle into a double line lying upon 

the real axis in the f plane will affect the heavy circle in the same 

way only at the two points common to both. Every other point 

on the heavy circle will be shifted upward through the trans¬ 

formation by an amount varying with the distance from the 

imaginary axis; that is, since points a and b are transformed to 

a'6' at the real axis, the fact that c and d lie above a and 6, respec¬ 

tively, signifies that e'e?' must also lie above a'b\ The two 

points on the y axis will finally lie the distance 2/ above the 

origin, and the conformal map of the heavy circle will be a double 

circular arc passing through these three points, as drawn in 

Fig. 56. Obviously, all stream and potential lines of flow around 

the heavy circle will undergo a corresponding transformation, so 

that the final flow net will represent potential motion around a 

plate bent in the form of a circular arc, called the Kutta profile. 
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The addition of circulation to the picture will then produce a 
force upon the curved plate at right angles to the oncoming 
flow, and by rotating the coordinate axes, in addition to trans¬ 
posing them, the point of stagnation may be moved to the rear 
edge of the plate as the plate is inclined to the flow. 

Had the coordinate axes been shifted to the right, instead of 
downward, the conformal map of the original circle would have 
been given the form of a streamlined body symmetrical about 

the real axis. That this is true will be seen from Fig. 57; 
since the heavy circle lies outside of the one concentric with the 
new coordinate origin at all points but one, then the transformed 
image of the heavy circle must lie outside of the image of the other 
(in this case the image is a straight line) at all points except the 
one common to them both. If the axes are first displaced and 
then rotated through a given angle, the transformed image will 
be that of a symmetrical streamlined body of infinite length 

Fio. 57.—Streamlined foil. 

(i.e., infinite in a direction normal to the plane of motion) inclined 
at the given angle to the direction of oncoming flow. Circulation 
may then be introduced and the rear point of stagnation brought 
to the trailing edge of the body in the manner already described. 
It is evident that through this general transformation both 
regions of infinite velocity have been eliminated. 

A combination of these two types of displacement of the 
coordinate axes—downward and to the right simultaneously— 
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will result, obviously, in a form of profile that is a combination of 
the circular arc of the first example with the symmetrical stream- 
lined section of the second example. As shown in Fig. 58, the 
image of the original section (both image and original are shown 
in heavy lines) must have in general the same position relative 
to the other two images as the heavy circle has to the other two 
original circles—that is, where the heavy circle lies between the 
other two, its image must also lie between the arc and the straight 
line; where the heavy circle lies outside the others, its image must 
also lie outside. Careful study of the illustration will serve to 
clarify this point. 

It will be evident to the reader that this form of section, called 
the Joukowsky profile after the scientist who developed the trans- 

Fio. 58.—The Joukowsky profile. 

formation, bears a striking resemblance to the airfoil cross section 
used for airplane wings and propeller and turbine blades of various 
sorts. Since the Joukowsky profile may be given almost any 
thickness and shape through varying / and 5 (refer to Fig. 58), 
and since the velocity and pressure distribution in the sui^ounding 
fluid may be found analytically by means of the proper functional 
relationships, the method has been of great aid in the study of 
actual airfoil sections. The foil may not only be inclined at any 
desired angle to the oncoming flow, but through the introduction 
of circulation the flow net may be made to pass the trailing edge 
without a singular point of infinitely high velocity; and since the 
leading edge is rounded, the singular point of the Kutta profile 
is entirely obviated. Under these conditions the magnitude of 
the lift, or force normal to the oncoming flow, may be computed 
from Eq, (59). 
♦ Although the problem of velocity distribution around such a 
profile does not warrant further discussion in this text, a simple 
graphical method of determining the form of the profile itself 
may be of interest to the reader. From the origin of the f plane 
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the distance t; = / is laid off along the imaginary axis. Through 
this point and the point ^ = ro on the real axis is drawn a straight 
line, along which, on either side of the imaginary axis, is measured 
the distance 5, as shown in Fig. 59. Using these two points as 
centers, two circles are described, both of which pass through the 
intersection of the straight line with the real axis. Two lines are 
now drawn from the origin, making equal positive and negative 
angles with the real axis; from th(i intersection of one line with 
the larger circle and from that of the other line with the small 
circle two more lines are drawn to form a parallelogram. Since 
the corner of this parallelogram opposite tlu^ (coordinate origin 
determines one point on the profik', the opecration may be per¬ 

formed simply by swinging two 
(ireidar arc's having radii equal 
respectively to the two sides al- 
rc^ady drawn. This operation is 
then repeated for as many points 
as ar(c iKKcessary to complete the 
profile. Obviously, if the distance 
b is equal to zero, the foil will 
have the form of a circular arc— 
the Kutta profile—the degree of 

curvature depending upon the relative magnitude of / and ro; 
similarly, if / is zero, theu'e will result a symmetrical streamlined 
section, its relative thickness dei>ending upon the ratio between 
b and ro. 

28. Methods of Application. In a few specific instances the 
several elementary transformations already discussed may be 
applied directly to problems of fluid motion. That such cases are 
not more numerous is due in part to the restrictions noted in the 
following chapter, but also to the fact that these elementary 
transformations are definitely limited in scope. Nevertheless, it 
is sometimes possible to combine a number of basic functions— 
namely, those for parallel flow, circulation, and sources and sinks 
—in such a way as to approximate the desired conditions of 
motion to a satisfactory degree. This method has been used, for 
instance, by Spannhake^ in the study of flow around the impellei* 

Flo. 59,- -Graphical construction of a 
Joukowsky foil. 

^Spannhake, W., ^^Neue Darstellung der Potentialstromung durch 

Kreiselrader fiir beliebige Schaufelform,^^ Vortrage aus dem Grcbiete der 

Aerodynamik und verwandter Gebicte (Aachen, 1929), Springer, Berlin, 

1930. 
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blades of a tioi dfugal pump. In general, however, it must be 

said that a proet dure such as this requires (‘ousiderable persistence 

and mathematic yi ingenuity, and becomes the more difficult as 

the boundary conditions increase in comph'xity. 

Mention has already bc^en made of tlie fact that a flow net may 

be fitted graphically to any two-dimensional boundary profile, 

however involved the form may be. Justification for this pro¬ 

cedure is (embodied in the Cauchy integral theorem,^ which states, 

in effect, that any pattern of potential motion is determined 

uniquely by the boundary geometry. The Cauchy integral 

formula, mor(K)ver, provides a means of obtaining this pattern of 

motion for any two-dimensional boundary (conditions whatever, 

by relating the complex function for any point in the flow to that 

of a point moving around the boundary profile.^ Although the 

calculation must proceed by means of graphical integration, 

the resulting solution is far more accurate than that obtained by 

graphical adjustment of the flow net. 

This process is very laborious, however, and certain mechanical 

substitutes for the malh(3matical analysis will yield the same 

results with far less trouble. Principal among these is the elec¬ 

trical analogy, which warrants a brief explanation at this point. 

It has long been known that the potential patterns used herein 

to describe fluid motion apply fully as well to magnetic and 

electrical fields. Indeed, the lines of constant velocity potential 

for a given flow pattern would coincide with lines of constant 

electrical potential were a current to be passed through a plane 

conductor having the same boundary outlines. This fac^t at once 

suggests the use of the analogy between the two cases as a method 

of obtaining electrically the flow pattern for any desired bounciary 

conditions. The comiucting medium is given the required form, 

a known potential is applied between the two extremities, and 

the drop in potential is measured at suitable points over the 

profile; by selecting equal potential increments, successive lines 

of constant potential can readily be traced. In some instances 

a metallic conductor is desirable, although use of an electrolyte 

is often advantageous. In the latter instance, since the bound¬ 

aries are formed by flexible strips immersed in the bath and 

curved to the required shape, the potential may be applied 

^Durand, W. F., Mathematical Aids, ‘‘Aerodynamic Theory,” vol. 1, 

p. 10, Springer, Berlin, 1934. 

2/Wd., p. 11. 
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between either pair of opposite boundaries by proper choice of 
conducting and non-conducting material. If the outermost 
stream lines are formed by metallic strips, and the end potential 
lines by strips of an insulating material, the drop in electrical 
potential will then indicate the change in ^ from one stream line 
to the next. That is, the method will permit the location of both 
stream and potential lines, since in any conformal net the terms 
4> and ^ may be interchanged without affecting the mathematical 
nature of the pattern. Further information on apparatus and 
experimental technique may be found elsewhere.^ 

As yet no attempt has been made in this chapter to treat cases 
of motion which are not determined by fixed boundaries. Since 
the outermost stream lines invariably coincided with the bound¬ 
ary profiles, no restriction had to be made as to the boundary 
pressure distribution, the latter following from the existing 
distribution of velocity. A free surface, on the other hand, 
not only denotes a discontinuity of the fluid medium, but 
also represents a stream line along which the pressure intensity 
must be constant. Needless to say, the Cauchy theorem applies 
as well to such cases of motion, although if the action of fluid 
weight can still be neglected, other methods will prove more 
useful. For instance, it has been found helpful in conformal 
mapping to introduce an intermediate transformation to the v 
plane [refer to Eqs. (57) and 58)], in which the pattern—known 
as a hodograph®—indicates by the magnitudes of r and 6 the 
magnitude and direction of the velocity vector at every point 
of the flow profile in the z plane. By similar means Helmholtz 
and Kirchhoff first investigated the problem of jet contraction,» 
while von Mises^ determined the contraction and discharge 
coeflicients for a wide variety of orifice forms. 

^ Hohbnemser, K., Experimentelle Losung ebener Potentialstrdmung, 

Forschung auf dem Gebiete des Ingenieurwesensy vol. 2, no. 10, p. 370, 1931. 

For an extensive bibliography see Hague, B., The Electriciany vol, 102, 

pp. 185, 315, 1929. 
^ Pkandtl-Tibtjbns, ‘‘Fundamentals of Hydro- and Aerodynamics,” 

p. 178. See also Betz, A., and Pbtersohn, E., Anwendung der Theorie der 

freien Strahlen, Ingerdeur-Archivy vol. 2, 1931. 

®Lamb, “Hydrodynamics,” p. 94. 

* Mises, R. von, Berechnung von Ausfluss- und Ueberfallzahlen, Zeit- 
schrift VDJy p. 47, 1917. See also Schach, W., Umlenkung eines freien 

Fltissigkeitsstrahles an einer ebenen Platte, Ingenieur-ArchiVy vol. 4, 1934; 

vol. 6, 1935. 
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Once fluid weight plays an essential role, the hodograph method 
is not always sufficient, although the Cauchy integral formula 
may still be counted upon to yield satisfactory results. The 
approach is now indirect, however, for application of the formula 
requires prior knowledge of the boundary form, whereas the form 
of a free surface is the principal variable to be determined. 
Nevertheless, the formula will yield a flow net for any assumed 
boundaries, and it is, therefore, only necessary to make a reason¬ 
able assumption and then check the resulting solution for con¬ 
stancy of pressure along the assumed free surface. This may 
be accomplished in the following manner: Since along the free 
surface 

V \/2g {Eu, - h) = 

the magnitude of at any point on this stream line may be found 
by integrating v along s from some arbitrary ])oint of referen(*e 

So: 

4> = rV2g iE,r - h) ds (60) 

Comparison of this distribution of <t> with that obtained by 
application of the Cauchy formula will show at once the manner 
in which the assumed profile must be adjusted for the next 
approximate solution. Evidently, successive trials will lead 
closer and closer to the exact profile form, three or four approxima¬ 
tions generally being sufficient. Unfortunately, space does not 
permit more detailed discussion of this method, in particular 
since it has not yet received the attention which it merits. A 
complete description may be found in a paper by Lauck,^ who 
determined therewith the profile of flow over a weir of infinite 
height. 

Since application of the electrical analogy makes recourse to 
the Cauchy theorem unnecessary in dealing with problems of 
confined flow, it should also be useful in cases of flow with a free 
surface—although the possibility of such application apparently 

^ Lauck, a., Ueberfall uber ein Wehr, Z, angew. Math. Mech.y vol. 5, 
p. 1, 1925. 
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has escaped the notice of the research world. The process of 

successive approximation would then proceed in the manner 

just outlined, the electrical method replacing the Cauchy formula 
in obtaining the distribution of <t) to check against that deter¬ 

mined by means of Eq. (60). Unfortunately, the hydraulieian 

who is still so optimistic as to seek a simple mathematical method 

of expressing the form of surface profiles will doubtless continue to 

seek in vain; no other means of analysis is known for curvilinear 

flow under gravitational action. 



CHAPTER VI 

APPLICABILITY OF THE FUNDAMENTAL EQUATIONS 

29. Resume. Classical hydrodynamics, in the course of its 
two centuries of development, centered its attention upon the 
interplay of velocity and dynamic pressure for a given fluid 
density and given boundary geometry. Although the resulting 
equations of motion pertain to the case of confined flow, introduc¬ 
tion of a single force property—specific weight—readily permits 
extension of these equations to the case of flow with a free surface. 
The foregoing chapters have placed considerable emphasis upon 
the more essential concepts of classic.al hydrodynamics, since these 
basic equations are the foundation of modern fluid mechanics. 
Thus, in Chapter II the elementary principles of momentum, 
energy, and continuity were discussed in their relationship to 
the gemnal pattern of motion. Chapter III inquired more 
thoroughly into the behavior of the fluid particle, stressing the 
kinematic—rather than the dynamic—aspects of flow. Then, 
under the assumption of steady, irrotational motion (a restriction 
that is in itself purely kinematic), certain methods were outlined 
in Chapters IV and V, permitting the determination of the flow 
pattern for given boundary conditions—namely, the concept 
of potential flow, conformal mapping, and the Cauchy integral 
theorem; the flow net may be looked upon as the graphical 
representation of the latter principles. 

In addition to providing a preliminary structure for the refine¬ 
ments of fluid mechanics, in many instances these basic concepts 
are directly applicable to engineering problems without further 
modification. Moreover, the elementary principle of energy 
provides a qualitative check upon their limit of applicability. 
This limit depends, obviously, upon the extent to which the 
original premises of classical hydrodynamics are actually fulfilled 
in the given problem. Thus, if the principle of potential motion 
is accepted as the most useful immediate tool provided by the 
science, it is evident that any flow studied by this means must be 

125 
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essentially one of constant energy, constant density, and complete 
conformity with the boundary geometry. 

30. Energy Criteria. Whenever flow proceeds from a state of 
rest, the fluid energy^ will at first be uniformly distributed; it is 
then only reasonable to presume that the flow net will satis¬ 
factorily des(n’ibe the pattern of motion. For instance), the dis¬ 
charge under a sluice gate leading from a large reservoir will 
differ only imperceptibly from potential motion. As will be 
seen in Part Two of this book, however, the energy of flow will 
change with distance in the direction of motion, varying not only 
along each stream line but from one stream line to the next. 
At low velocities the rate of change of energy in the longitudinal 
direction will be small, but the energy will then vary appreciably 
over a normal section. At high velocities, on the other hand, 
the energy will be fairly uniform across the flow, while the rate 
of change in the direction of motion will be relatively large. It 
so happens that the latter type of motion is most often encoun¬ 
tered in engineering practice. 

In problems of rapid variation in velocity, indeed, tin' distribu¬ 
tion of dynamic pressure is of paramount importance, interest 
in energy variation then being completely secondary. If the 
boundary transition is short, the longitudinal energy change will 
often be of negligible magnitude, and if, in addition, the vclo(*ity 
is sufficiently high, the energy will also be approximately uni¬ 
form over the cross section of flow. One might therefore conclude 
that use of the flow net would then be justifiable—at least so 
far as energy criteria are concerned—regardless of whether the 
fluid accelerates or decelerates as a result of the boundary form. 
Nevertheless, the remaining two restrictions—constant density 
and conformity with the boundary—often limit the extent to 
which rapid variation may occur if the flow net is to provide 
satisfactory results. 

31. Variation in Density. An extreme case of rapid transition 
is shown in the case of a thin flat plate in a plane normal to the 
direction of motion (Fig. 54a). Although the fluid comes to 
rest at the point of stagnation, with an accompanying increase 
in the dynamic pressure, at the edges^ of the plate the accelera¬ 
tion is infinitely great—a condition requiring a velocity of posi¬ 
tive infinity and a pressure intensity of negative infinity. Such 
conditions are mathematically possible in potential flow, but 



Sec. 31 J APPLICABILITY OF THE EQUATIONS 127 

since they are physically quite out of the question, it is evident 
that the flow net cannot possibly describe the actual state of 
motion past such a boundary. 

Since a change in velocity must always be accompanied by a 
change in dynamic pressure, it is evident that either acceleration 
or deceleration must tend to change the density of the moving 
fluid. The reader will realize that in the case of a gas, which is 
readily compressible, the flow net will have quantitative signifi¬ 
cance only if the relative change in density is limited to a very 
small magnitude. Otherwise, the actual flow pattern will differ 
from that of potential motion in the distribution of both pressure 
and velocity. Of distinct value, therefore, would be an approxi¬ 
mate relationship for the permissible variation in velocity or 
pressure whereby change in density will not seriously affect such 
computations. 

The differential equation of energy for steady flow applies 
just well to a gas as to a liquid, provided the density is no 
longer treated as a constant; thus, 

p V dv + dp + d{y}\) = 0 

Since the increment d{yh) is ordinarily insignificant in gaseous 
motion, it may be omitted without appreciable error. Dividing 
by p, and integrating along a stream line between points 1 and 2, 

Although the first term is identical with that for liquid motion, 
the second differs in that the integration cannot be performed 
until the two variables are related to one another. This relation¬ 
ship is found in the thermodynamic principle 

(absolute pressure) X (specific volume)^ = constant 

Since specific volume is defined as volume per unit weight, it 
is seen to be the reciprocal of specific weight, whence 

= constant = ^ 
yki yr 

P* Pl^ 

and therefore 
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or, solving for p, 
1 

The second term of the energy (equation may now be rewritten 
in the form, 

r^dj> ^ r 
jpi p pi jpi 

V 

1 

^ dp Pi 
Pi k i[fe) 

k-l. 
k 

introduction of which in the energy equation then yields, 

/<•-! 

This expression represents the counterpart of the Bernoulli 
(Kiuation for a gas under adiabatic conditions." 

Solving for p2, * 

P2 = Pi 

k 
. I Pi ~ v^rk - 1 

2 T”'_ 

Subtracting pi from both sides of the ecpiation, and expanding 
the right side in a series, 

P2 ~ Pi = Pi 1 + Pi vr 

pi 
+ 1 /pi v{^ - 

2k \p^ 2 / + 

Finally, writing the pressure and vekxaty differences in simplified 
form, 

Ap Pi 2 
1 + + 
^ ikpi ^ 

Immediately apparent is the fact that the first term of the series 
corresponds to conditions of flow at constant density. It then 
follows that for relatively small changes in velocity the per cent 
error in pr6\ssur^' change caused by assuming the density constant 
will be indicated approximately by the magnitude of the quantity 

ikp 
X 100 
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For instance, in the case of air under normal atmospheric condi¬ 
tions, a change in velocity from 50 to 250 feet per second will 
result in an error in i)ressure change of only 1.2 per cent if com¬ 
puted on the basis of (constant density. As a matter of fact, the 
influence of variable density upon the dynamic pattern must be 
taken into account only under relatively high velocity (dianges 
such as are encountered, for instance, in tlie free efflux of gas 
from a high-pressure container, or in the motion of airplane 
propellers and projectiles. 

32. Cavitation. A liquid, unlike a gas, may be considered 
truly incompressible so far as those typ(is of flow usually encoun¬ 
tered in hydraulic engineering are concerned. Neverthelevss, 
while compressive stresses will thus have no further bearing upon 
the applicability of the flow net in cases of liquid motion, it 
must be recalled that liquids may not ordinarily be expected to 
withstand tension to any appreciable degree. In the laboratory, 
to be sure, it has been shown that w^ater has a tensile stremgth 
of at least 34 atmospheres; but it is essential that the water so 
stressed be extremely clean and free from dissolved air. Under 
average conditions a liquid will seldom fail to boil once the pres¬ 
sure of vaporization is reached—close to absolute zero at normal 
temperature. 

It is evident that for given boundary conditions either the 
velocity of flow or the hydrostatic load on a closed system may 
so be varied that a pressure intensity of absolute zero will be 
approached at some point on the boundary; that is, 

Pab$ = Ev — p 2 — yh~->0 

In the case of the two-dimensional bend of Fig. 11a, the point 
of minimum pressure intensity will occur along the inner wall 
near the midpoint of the bend. If now the pressure int(uisity 
at this point is reduced to the vapor pressure of the liquid, 
either by increasing the discharge or by reducing the pres¬ 
sure load, it is evident that the liquid passing this point will just 
begin to vaporize. If the discharge is further increased, the 
region of vaporization will grow in size, a cavity forming imme¬ 
diately beyond the midpoint of the bend and appearing to ease 
the curvature of the innermost filaments. Continued increase 
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in discharge will cause further growth of this vapor pocket, until 
finally the flow as a whole becomes unstable. 

A simple laboratory demonstration of this phenomenon-— 
cavitation—was devised long ago by Osborne Reynolds,^ and 
may easily be repeated by the reader. A small glass tube Ls 
heated over a flame and drawn out in the form of a Venturi meter 

Columbia 
Fig. 60. Cavitation in a two-dimensional Venturi throat; (a) front illumination, 

(1)) rear illumination, under identical conditions of flow. 

with a fairly great contra(;lion. If this is connected with a water 
faucet by means of rubber tubing, at even relatively low rates of 
flow a white cloud of vapor may be observed just beyond the 
throat. As the discharge is increased, the zone of cavitation 
will lengthen, the intensity of the formation and subsequent 
collapse of the vapor bubbles making itself apparent through a 
distinct hissing sound and perceptible vibration of the tube. 
Photographs of a two-dimensional contraction of this nature 
may be seen in Pig. 60, front illumination emphasizing the region 

* Retnolds, Osborne, “Papers on Mechanical and Physical Subjects,” 

vol. 2, p. 578, 1901. 
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of actual cavitation and illumination from the rear showing the 
appreciable quantity of air which is brought out of solution by 
the extreme reduction of pressure and not redissolved. It is 
quite evident from the photographs that the effect does not 
extend entirely across the flow section, but is limited to the region 
of maximum curvature—and hence maximum velocity and 
minimum pressure—at the boundary. 

The occurrence of cavitation in hydraulic machinery is obvi¬ 
ously a disadvantage, if only because of the resulting loss in 
efficiency. There is, however, a far more serious aspc^ct of the 
problem, the importance of which has led to extensive research 
on cavitation in this country and abroad. High-speed motion 
pictures of this process indicate that conditions in the cavitation 
zone are far from steady—in fact, the vapor cloud seen with the 
naked eye is merely an average impression, for the successive 
stages of vaporization, movement downstream, and (condensation 
repeat themselves so many times a second (the number of cycles 
varying directly with the velocity) that the eye is quite incapa¬ 
ble of following. The formation of the vapor pockets is in 
itself of little consequence—but the abrupt collapse of these 
cavities as they are carried into regions of higher pressures is 
accompanied by sudden compressive stresses of exceedingly high 
magnitude. If the point of collapse is close to a solid boundary, 
the boundary surface is then subjected to countless intermittent 
shocks, and will sooner or later fail through fatigue. It was 
formerly thought that the corrosion—pitting—of metal parts of 
hydraulic machinery was due to a chemical action intensified by 
the low pressure. But laboratory tests indicate that such chemi¬ 
cally inert (though brittle) substances as glass will fail quite 
readily, the zone of failure even lying somewhat below the exposed 
surface. Moreover, in every case the pitting has not been found 
to occur at the point where the pressure drops, but where the 
pressure abruptly rises, this marking the region of collapse of the 
vapor pockets. 

Measurements of the pressure distribution along a Venturi 
throat during cavitation provide an excellent picture of the mean 
dynamic pattern.^ In Fig. 61a may be seen a typical series of 
pressure distribution curves, taken under conditions of constant 

^ Ackbrbt, J., Kavitation, ‘^Handbuch der Experimentalphysik/' vol. 

Akademische Verlagsgesellschaft, Leipzig, 1931. 
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discharge and constant pressure intensity at the entrance, such 
that the vaf)or pressure of the liquid would prevail at the point 
of maximum velocity at the throat. The intensity of cavitation 
was then governed by varying the downstream pressure, the end 
of the visible vapor pocket corresponding invariably with the 
point at which the pressure abruptly began to rise—for example, 
at point C as shown in the illustration. 

Since the magnitude of the downstream pressure intensity 
is seen to determine the intensity of the cavitation phenomenon 
for the given conditions of flow, one can only conclude that the 
extent to which the kinetic energy is restored to potential energy 
beyond the throat will decrease with increasing intensity of 
cavitation. The plot of relative pressure recovery at section 3 
(Fig. 616) indicates this fact; it will be found, moreover, that if 
section 3 is moved downstream, points By C, and D will lie higher 
on this plot, but will never reach the elevation of point A A 
It is apparent that the vertical scale then represents the efficiency 

^ Compare Moody, L. F., and Sorenson, A. E., Progress in Cavitation 
Research at Princeton University, Tram, A.S,M.E,y vol. 67, 1935. 
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of the meter, cavitation effectively lowering the efficiency of any 
hydraulic device. 

While the foregoing measurements applied to specdfic pressure 
and velocity conditions in the approach, they may be generalized 
in the following manner: Writing the mean energy equation 
between sections 1 and 2 (ignoring, for convenience, the secondary 
effects of curvature), 

p-^ - + pi = f' 

whence 

Fa^ - Fi2 Fi2/Fs^ 

Pi P2 - P 2 ■ ^ "2 \F,2 - 1 ) 
The ratio F2/F1 is determined by the meter dimensions, and the 

quantity may theretore be considered constant for the 

given meter. Once cavitation begins, will become equal to pvy 
the magnitude of which is also independent of flow conditions. It 
then follows that pi should be a linear function of pVi^/2 for all 
stages of cavitation; that is. 

Fi2 
Pi = C p -y + Pv 

as shown by the full line in Fig. 61c; for any point in the region 
to the right of the line, cavitation will not occur. Furthermore, 
for a given magnitude of pV-^12 (and hence of pi), the degree of 
cavitation is governed by the pressure intensity at some down¬ 
stream section. It is then apparent that a given state of cavita¬ 
tion—corresponding, for instance, to the pressure distribution 
Ay By Cy or D—^will be indicated by a linear relationship between 
pz and pFiV2: 

Fi2 
Ps '= C'p “2 + Pv 

The factor C' will vary in magnitude with the stage to which it 
corresponds, as indicated by the broken lines in Fig. 61c. More¬ 
over, it will remain essentially constant for a given stage of 
cavitation only if the air content of the water is negligible, 
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for experiments have shown that the characteristics of cavitation 
will vary with the amount of air in solution.^ 

Cavitation occurs most frequently in two related t3^pes of 
hydraulic macliinery—turbine runners and ship propellers— 
both of which operate under conditions of relatively low pressure. 
Since as yet no material has been found which resists pitting to a 
satisfactory degree, the elimination of cavitation remains the only 
means of solving this costly problem. Three possible courses 
should be apparent to the reader: reducing the mean velocity 
of flow, increasing the hydrostatic load, or modifying the curva¬ 
ture at the danger point of the boundary. Since high average 
velocities and low hydrostatic loads are often essential in the 
operation of hydraulic machinery at peak efficiency, it is evident 
that boundary design is of considerabk^ importance. The flow 
net will be found of considerable assistance in such design, 
although it is no longer directly applicable once cavitation begins. 

33. Separation. In stating that boundary conditions uniquely 
determine the form of the corresponding flow net, the Cauchy 
integral theorem presumes that the outermost stream lines of the 
resulting flow conform exactly with the boundary profile over 
their entire length. In other words, neither may cavities exist 
between the boundary and the fluid medium, nor niay a stream 
line abruptly leave the boundary and wander into the central 
portion of the flow. 

Considering once again the equation of energy along a given 
stream line, 

= p ^ + p + -y/i = constant 

it is evident that for constant values of h a rise in pressure is 
limited by a zero magnitude of the velocity, just as a rise in 
velocity is limited by an absolute zero magnitude of the pressure 
intensity. If the energy is uniformly distributed, the maximum 
dynamic pressure will then occur at a point of stagnation. But 
if the energy is different for any two neighboring stream lines, 
continued increase in pressure in the direction of flow would call 
for a point of stagnation on one line while the other ^till displays 
a finite velocity. Should the stream line of lowest energy lie at 
a solid boundary, this outermost stream line can no longer 

^Hunsakbr, J. C., Cavitation Kesearch, Mech. Eng.y vol. 67, no. 4, 
pp. 211-216, 1935. 
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continue along the boundary once the point of zero velocity is 
reached, for at a stagnation point the stream line must abruptly 
change direction. 

If the energy equation for any stream line is differentiated 
(assuming, for convenience, that h is constant), it will be apparent 
that for a given pressure increment the corresponding change in 

Columbia 

Fia. 62.—Abrupt contraction in a conduit, showing separation in regions of local 
de(;eleration. 

velocity will be inversely proportional to the magnitude of the 
velocity vector: 

pv 

Should the pressure gradient along two neighboring stream lines 
be essentially the same, the ratio of the corresponding velocity 
increments will be indicated by the inverse ratio of the velocities: 

dvi ^ V2 

dvi Vi 

Evidently, when the pressure decreases (acceleration), the 
velocity distribution will grow more uniform (Fig. 63a). On the 
other hand, an increase in pressure (deceleration) will cause 
the velocities to become more and more unequal, until one eventu¬ 
ally reaches the limiting magnitude of zero. 

Such circumstances are physically possible only if the point of 
zero boundary velocity is a true point of stagnation—that is, the 



136 FUNDAMENTALS OF HYDROMECHANICS [Chap. VI 

stream line must then abruptly change direction, the flow thereby 

separating from the boundary, as indicated in Fig. 636. There 

thus results a discontinuity in the flow—but not in the fluid, 

as in the case of cavitation, for the region of discontinuity is 

generally filled with fluid moving along the boundary in the 

upstream direction. Since the line of separation nevertheless 

Fig. 63.—Effect of (a) acceleration and (h) deceleration upon velocity distribution. 

marks a border of the flow that was not considered in the original 

boundary conditions, it is obvious that the phenomenon of 

separation cannot be studied further in the light of potential 

motion. 

While the energy equation permits at least qualitative infor¬ 

mation as to discontinuity, more thorough discussion of this 

problem must be left to a later chapter. It must be noted, how¬ 

ever, that either local or gfmeral deceleration of flow with non- 

Fig. 64.—Separation 
at a two-dimeiieional 
bend. 

SeparaHon / 

y7777777777///7//////^^^^ 
Fig. 05. -Separation at 

spillway. 

uniform energy distribution will almost invariably result in zones 

of discontinuity. Two such regions are indicated in Fig. 64, 

conforming with the two-dimensional bend already studied by 

means of the flow net. Only if the velocity of approach is 

practically constant from one side to the other, or if the curvature 

is very gradual, will separation fail to occur. Figure 65, on the 

other hand, shows a ca^se of generally accelerated motion, the 

two regions of discontinuity at points of local deceleration near 
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the cresi of the spillway being due entirely to poor design. It 

should^ be apparent to the reader, therefore, that the flow net 

attains its greatest significance in the case of rapidly accelerated 

motion—and, conversely, that a flo\^pr()file attains its maximum 

efficiency when it conforms most closely to conditions of potential 

motion. 
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MECHANICS OF FLUID RESISTANCE 





CHAPTER VII 

FUNDAMENTAL EQUATIONS OF VISCOUS FLOW 

34. Elementary Stresses within a Viscous Fluid, If, in addi¬ 

tion to the infiiience of weight, one considers the effect uixm fluid 

motion of the next most important for(;e property—viscosity— 

one must return first of all to the basic expressions for the equi¬ 

librium of a fluid element. Aside from gravitational attraction, 

the element is now subjected to two distinct tyj)es of stress 

compression, and shear; in accordance with the Newtonian princi-| 

pie of momentum, the resultant of these several forces must equal 

the mass times the acceleration of the fluid clement. Since thej 

expre^ssions for the components of acceleration are independent 

of the character of the acting forces, it remains only to incorpo¬ 

rate in the basic force equation the effect of viscous action. 

Consider now a small fluid element in the form of a cube whose 

center lies at the coordinate origin and whose sides are parallel 

to the (X)ordinate axes (Fig. 66). Gravitational attraction 

necessarily retains its original nature, the force vector for fluid 

weight being directed vertically downward and passing through 

the center of the cube. But the resultant force upon each face 

of the cube no longer acts normally, for it is composed of a direct 

stress—pressure intensity—and a tangential stress—viscous 

shear; and owing to the nature of the viscoius action, both of these 

must be considered to vary generally with distance and direction. 

Thus, at the center of the cube the pressure intensity will have 

different magnitudes parallel to each of the coordinate axes: 

Px, py, and p*; thl; pressure intensity at the midpoint of each 

face of the cube will then differ from the corresponding com¬ 

ponent at the origin by the product of the pressure gradient at 

right angles to the face and the distance of the face from the 

center, as shown in Fig. 66. Similarly, since there will be shear 

in two directions on each of the three planes passing through 

the origin, at the center of the cube the intensity of shear (tau) 

must be expressed by six different quantities: Tty, 
^XZ (rxy, for example, representing the shear intensity in the plane 

141 



142 MECHANICS OF FLUID RESISTANCE [Chap. VII 

normal to the x axis and acting in the y direction); the intensity 

of shear in either of two directions along any face of the cube will 

then differ from that at the origin by the product of the gradient 

at right angles to the face and the distance of the face from the 

origin, as shown in Fig. 66. If the fluid element is so small that 

the force intensities at the center of any face may be treated as 

average values for the entire face without appreciable error, the 

total direct or tangential stress upon a face in any direction will 

Fig. 66.—Components of normal and tangential stress anting upon a fluid 
element. 

be equal to the product of its area and the corresponding stress 

intensity. 

The weight components of the fluid element can be written 

directly as the product of the specific weight of the fluid, the 

volume of the element, and the negative rate of change of eleva¬ 

tion in each coordinate direction: 

X direction: — 7 8y dz 
ox 

y direction: —y8x6y8z^ 

z direction: —y8x8y8z^ 
oz 

The components of the resultant force due to pressure gradient 

may also be written at once, as the differences between the normal 

forces exerted upon each pair of opposite faces; thus, 
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X direction: 

St) 
y direction: —^ by {bz bz) 

dy 
Q'P 

z direction: bz ibx by) 
dZ 

In similar fashion one may formulate the components of shear 

to which the fluid element is subjected, with the exception that 

force components parallel to any one of the coordinate axes will 

now involve two different pairs of opposite faces of the cube; the 

components of tangential stress will then be: 

X direction: by {bx bz) + bz {bx by) 

y direction: bz (by bx) + bx (by bz) 
az ax 

z direction: (bz by) + by (bz bx) 

There are now at hand relationships for the (;omponents of 

gravitational attraction, normal stress, and tangential stress 

upon a fluid mass of elementary volume. These relationships 

are only approximate, owing to the finite dimensions of the fluid 

element, but as the dimensions become smaller, the expressions 

will become more nearly exact. Division of each term by the 

fluid volume, as the latter approaches the infinitesimal, will then 

yield the components of force per unit volume acting at a point 

in space; 

(/»)x = 
dh 
dx ’ 

dh 
(/«.). = 

dh 
-'^di 

(61) 

ifp). = 
dpx, 
dx ’ (/p). - 

dpv. 
dy’ (f.)^ = 

dpz 
dz 

(62) 

II 1 

dz ^ 
(/.)p = 

dr zy . dxxy, 

if.). 
dxxt 

' “ dx 
. S-Ty, 

dy 
(63) 

36. Viscous Stress in Terms of Rate of Deformation. Fortu¬ 

nately, the foregoing relationships for viscous stress may be 

simplified considerably, for it can be shown that at a given point 

the intensity of shear in a plane normal to any axis x and acting 
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in a direction parallel to any other axis y {r^y) must be identical 

with the intensity of shear at that point in a plane normal to the 

y axis and acting in the x direction (ryj. This may he seen 

(through reference to Fig. 66) by taking moments about the 

z axis of all forces in the directions x and y, and then placing 

these equal to the product of the mass, the square of the radius 

of gyration, and the angular acceleration of the cube about the 

z axis. All components of fluid weight and normal force will 

lie along lines passing through the center of the cube, and hence 

will have no moments; the remaining terms will have the form 

Stxy 8x . Stxy hx\ ^bx 
IF T + '-'-'to 2j <*«'**> 2 

( , STyx ^ STyx 5y\ 
~ + 2/ 

from which 

(dz Sx) ^ 

^ p bx by bz a 

Txy — Ty* = p a 

If the dimensions of the cube are now made to approach the limit 

zero, the square of the radius of gyration will becjoine an infini¬ 

tesimal of the second order, in which case the right side of the 

equation may be neglected. Extending the operation to the 

remaining coordinate directions will then prove the existemce of 

the following identities: 

Txy '^yxi Xyz XX — X xz (64) 

Readers will recall that the dynamic viscosity of a fluid was 

defined quite generally as the ratio of intensity of shear to rate 

of angular deformation. This definition may now be made more 

explicit by expressing the intensities of shear in the three direc¬ 

tions in terms of the dynamic viscosity and the rates of angular 

deformation in the corresponding directions: 

T*" = ^ (-^ + (65a:) 

r.. = (65j/) 

= = + m) 
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Substitution of these quantities in Eqs. (63) will give 

(/•)» = M 

(/»)y M 

(/•)z = M 

'd^Vy \ 
^dx dy'^ dy^ / dz^ dx dz) 

, /d^Vy 
^dy dz'^ dz^ / dx^ dy dx) 

Vx , t;A /Vz S^Vy\ 

dz dx dx^) ^Xdy"^ dzdy) 

(66a:) 

{my) 

(662) 

With reference to the close relationship between linear and 
angular deformation mentioned in Chapter III, the reason for 
the variation in pressure intensity in the three coordinate direc¬ 
tions should now be evident. Just as the difference in tangential 
stress in any two directions is proportional to the difference in 
rate of angular deformation in those directions, the difference in 
pressure intensity in two directions must vary with the difference 
in rate of linear deformation. Designating by the symbol p the 
mean pressure intensity at the center of the fluid element, the 
difference between this mean value and the actual intensity of 
normal stress may be written as follows for each of the coordinate 
directions:^ 

p — Px = 2m 
dVx 
dx 

P - Pv = 2^~ 

p - p, = 2m- 

"K' 

-H 

-K: 

dVx , dVy . dVi 

dx dy dz 

dVx . dVy dVj 

dx dy dz 

dVx , dVy , dv, 

(67a;) 

(672/) 

i&lz) 

These expressions are in their most general form, for it is obvious 
that the divergence of the velocity vector (the terms within 
parentheses) must be equal to zero under conditions of constant 
density. In either case the relationships will be found to satisfy 
the requirement that 

V = 
P» + Py + P« 

3 

Retaining, for the present, the divergence terms, substitution 
of Eqs. (67) in Eqs. (62) will yield 

^Lamb, ** Hydrodynamics,” pp. 571--574, 
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(fp)x — 

{fp)y ~ 

(fph = 

JL O — ? A.(^ -L ^ -L. 
^ s^dx\dx dy ^ dz/ 

<> ? a/^4-^4- 
dy ^dy^ S^dy\dx dy dz) 

+ 2m 
dH, 
dz^ 

^ ^4-^4- 
S^'^Xdx dy ^ dz) 

(68x) 

(682/) 

(682) 

Addition of the components of force due to pressure, weight, 

and shear in each of the coordinate directions will result in the 

following essential equations for the force components per unit 

volume of fluid at any point in a viscous fluid: 

d . , rx • o 
-^(P + tA) + 

dhx , , A!!i I 
^ dx"^ dxdy dxdz) 

/dH:, , dhz 
4 322 + 33.32 

+ rW + 2.gL. 

-5<» + ’'■) + 

4. 1 ^ 

\3x32/ dp’*/ ^\d2’* dxdz) 

^ -1-^4- 
3^\dpda: dp’* dydz) 

(j. -u ^ 4- 
^\dpd2 d2V ^dx’* dpdx/ 

d’*r; _ 2 /d’*t>i . d’*t>y , d’*fA 

'd2^ 3^\d2dx d2dp d2^/ 

/ d’*P,, d**!), /d’*D* , dh)y\ 

^\d2dx dx** '"\dp’* dzdy) 

0 

s) <«*'*) 

From these equations it is quite evident that in viscous flow the 

existence of a force potential is generally impossible, for there is 

no quantity whose derivation in a single direction can yield the 

component of force in that direction. 

36. Dissipation of Energy through Viscous Action. Inasmuch 

as the continuous deformation of a moving fluid is opposed by 

viscous stresses that vary directly with the rate of deformation, 

such movement can take place only if energy of flow is expended 

in doing work; in other words, such a process will involve a 

continuous transformation of mechanical energy into heat. 

Further insight into this process may be gained through the 

following development. 

The temporal rate at which work is done by a given force is 

equal to the product of the force and the velocity at the point of 

application, Thus, the work done by any component of weight, 

per unit time and per unit volume of fluid, is simply the unit 

weight component multiplied by the corresponding velocity 
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component at the given poitit. On the other hand, the work done 

by a direct or tangential stress, per unit time and per unit volume 

of fluid, is equal to the gradient of the product of the stress 

intensity and the corresponding component of velocity. The 

reader may verify this fact by expressing the work done on each 

face of the fluid element in Fig. 66 as the dimensions of the ele¬ 

ment approach the infinitesimal. It then follows that the total 

rate per unit volume at which work is done at any point in a 

viscous fluid may be written: 

(dh dh dh\ 
P* "i“ T'xy Txz ^t) 

^x) “1“ Tzx “^x “1“ T"zy Vy) 

With the exception of the work done by weight, each of these 

terms is the space derivative of the product of two quantities; 

after the rules of differential calculus, each term is equal to (1) the 

derivative of a stress intensity times a velocity plus (2) the 

derivative of a velocity times a stress intensity. The sum of all 

terms of type (1), including the work done by weight, expresses 

the rate at which the unit forces change the kinetic energy of 

the flow: 

+ T/t) + ^ + 

+ 

dxy dz 

-^.(Py + 7/1) + % + dz dX J"” 

+ d / I 7 \ I drxz I V/ yz 

d2/ >■ 
The remaining terms will then be; 

dVx 
dx Vv 

dvy dVz 
"dz ^dy 

I / dt>y I d^\ , / dVe I dVy\ , /dVx I dVi\ 

+W + W + '"W + si)+Hli + to) 
Substitution from Eqs. (65) and (67) will yield: 

/ dVx I dVy dv, 
dy dz 

+ 

^ ^(£)‘+(S)’+(t)1 

4(s+^)+(: 
' dv, . d^ 

\.dy dz y+(t+fe)’] 
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Since the divergence of the velocity vector must be zero, regard¬ 

less of the nature of the acting forces, it is evident that variation 

of the hydrostatic load can have no effect whatever upon the rate 

of dissipation of energy. Moreover, owing to the continuity 

(homogeneity) of the fluid medium, energy loss through so-called 

'impact'' is impossible. Therefore, as shown by the remaining 

terms of the foregoing expression, only through linear and angular 

deformation can energy of flow be converted into heat. It 

follows that the energy of a given flow may remain constant so 

long as deformation does not take place at any point (refer to 

the case of the forced vortex in Chapter III), a condition which 

is possible only if the entire fluid mass is displaced bodhy (whether 

through translation or rotation), or if the fluid is completely 

at rest.^ 

37. Equations of Navier-Stokes. Rearrangement of terms in 

Eqs. (69) and division by the fluid density yields expressions for 

the force components per unit mass in the following form: 

p 

p 

(l: 
P 

Z pdx\dx ^ dy 

+ 

1 M d (dVz , ^ I 
" dy dz) 

P (Vz 
p\dx^ 

I 4. 
f dz) 

P Pi 

,d^Vz, d^ 
dz^) 

Id, , ... 1 p d / dVz , dv^ 

+ - + 

dv, 

p\dx'^ ' dy^ ' dz^ 
Zl 4- 
.2 • w) 

\ ^ 3/dVz , dVy 

P dz^^ + 3 P azV dx'^ dy dz ) 
+ p/d^Vz 

p \ dx'^ 
I Vz , 

dy^ 
^A 
dz^) 

(70a:) 

(702/) 

(70z) 

Again recognizing the fact that the divergence of the velocity 

vector must be zero, the second term at the right side of each 

equation may be dropped. ■ Then by writing the last term in 

shorthand fashion and replacing the force per unit mass by the 

equivalent expression for acceleration, one obtains these general 

relationships: 

* Refer to Lamb, “Hydrodynamics,” pp. 579-581, for a more comprehen¬ 
sive treatment than has been deemed necessary in the foregoing discussion. 



Sec. 37] FUNDAMENTAL EQUATIONS OF VISCOUS FLOW 149 

dVx +1'* 
dVx + dVx 

di dx dy 

dVy 

dt 
+ Wx 

f)Vy 

dx 
+ Vy 

dy 

dVz + fx 
dVz + dVz 

dt dx 
Vy 

dy 
+ V: 

dz 

dz 

dVz 

dz 

~i|;(p + T«+2v=„, 

-l^(p + T«+iv%. 

(71x) 

(712/) 

(712) 

Known as the equations of Navier-Stokes, these differ from 

the Euler equations of acceleration only through the addition 

of tlie operator ii/p V^, which vanishes, of course, as the viscosity 

approaches the limit zero. Since these are exact mathematical 

statements"^ of djnriamic conditions within a viscous fluid, they 

may be expected to apply correctly to every type of viscous flow. 

Nevertheless, it has been shown that the veiy general character 

of the Euler equations quite limits their usefulness in specific 

X)roljlems unless the nature of such problems either permits 

considerable simplification or provides an additional relationship 

which incorporates in convenient form the essence of these basic 

statements. Although such a relationship was often available 

in the form of a vc^locity potential, the reader will realize that 

the existence of a velocity potential depends entirely upon the 

absence of rotation, with the possible exception of isolated 

vortex lines. Not only are the Navier-Stokes equations of more 

complex form than those of Euler, but a glance at the additional 

terms will show that irrotational motion of a viscous fluid is 

generally out of the question unless fluid and boundaries move 

bodily through space. Indeed, the fact that in viscous flow the 

velocity of the fluid at a boundary must be identical with the 

velocity of the boundary itself (quite contrary to the conditions 

of fundamental hydromechanics) should be sufficient indication 

of this important fact. 

With the convenient introduction of the velocity potential 

generally impossible, it is evident that actual application of the 

Navier-Stokes equations will dep<md entirely upon the extent 

to which these equations may be simplified for specific problems. 

While in fundamental hydromechanics dynamic conditions were 

of primary interest, it is evident that in an elementary study of 

viscous phenomena one must perforce consider dynamic effects 

negligible and concentrate upon the investigation of viscous 

resistance. 



CHAPTER VIII 

PROBLEMS IN LAMINAR MOTION 

38. Steady Flow between Parallel Boundaries. Strictly 

speaking, the assumption of steady movement of a viscous fluid 

precludes any possibility of local fluctuation in velocity; in the 

absence of such local variation, the fluid will, in effect, move in 

layers—or laminae—whence the expression laminar flow/^ 

Such will generally be the case if a characteristic flow parameter 

composed of the product of mean velocity, density, and the 

spacing of the boundaries, divided by the dynamic viscosity of 

the fluid (i.e.j a Reynolds number, R = VpL/fi)^ has a magnitude 

not greater than a certain limiting value which is roughly of the 

order of 10^. Generally speaking, this requires that the velocity 

of flow and the spacing of the boundaries be relatively small. 

Consideration of steady laminar flow confined in the z direction 

by closely spaced parallel surfaces will permit extensive simplifi¬ 

cation of the basic Navier-Stokes equations. Since the local 

acceleration in each of the coordinate directions is then zero, 

and since the velocity vector has no component in the z direction, 

the following relationships must hold: 

dVx , dVx 

dy dx 

dVy , dVy 
Vy^ 

dx ^ dy 

^ ^ / I i,\ i IJ' , d^ Vx 

1 5 /„ ■ A-i I I 

0 = 

+ 

z(p + yh) 

dz^ ) 

dz^ } 

A very important conclusion may be drawn from inspection: The 

pressure is hydrostatically distributed in a direction normal to 

the boundaries; as a result, at any point the gradient of the 

quantity (p + yh) in either of the remaining two directions is 

completely independent of the actual magnitude of z. In other 

words, however much the velocity may vary from one boundary 

to another, the distribution of (p + yA) must be the same in 
160 



Sec. 38] PROBLEMS IN LAMINAR MOTION 151 

every plane parallel to the boundary surfaces. It is then only 

reasonable to conclude that the pattern of streana lines in the 

xy plane will not vary across the flow, despite change in the 

magnitude of the velocity itself; that is to say, v will depend upon 

z in magnitude, but not in direction, a conclusion that is vindi¬ 

cated in the following development. 

The fact has already been mentioned that the actual velocity 

of flow at any stationary boundary must be zero, owing to the 

viscous qualities of the fluid. It then follows that the magnitude 

of the velocity must vary rapidly with distance from the bound¬ 

ary, this velocity gradient, for a given rate of flow, being inversely 

proportional to the distance from one boundary to the other. 

If the boundaries are very close to one another, the gradient of 

the velocity in either of the other two coordinate directions will 

be relatively insignificant, under which conditions the terms 

dVxfdXj dvx/dy^ dVy/dXy and dvy/dy^ and the corresponding second 

derivatives, may safely be dropped from the foregoing equations. 

These will then reduce to 

+ yh) 

+ yh) 

Each of these may be integrated with respect to 2, whereupon 

If the center of coordinates is located midway between the 

boundaries, when 2 = 0, dvxidz = 0 == dvy/dz, whence 

Cl = 0 = C2. 

A second integration then yields: 

If the boundaries lie the distance 2h apart, when z = ±6, 

Vx ^ ^ — Vy] hence. 
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= "1^ 

Penally, 

(72x) 

(722/) 

The curves of velocity distribution indicated by these parallel 

equations are parabolic in form (refer to Fig. 67), the velocity 

components having a maximum value at the 

^ = 0: 

(Pa:)n... = + T^*): (73a;) 

(vyU^ == -~~ip + yh) (732/) 

It follows from the geometry of the parabola that the mean 

component in either direction will be two-thirds the maximum, 

which result may also be obtained by integrating across the 

section (thus yielding the unit rate of discharge g) and dividing 

by the spacing of the boundaries; or, more simply, 

V,-IJ^ -H(p + rJ.) (7te) 

+ (74J,) 

pjvidently the negative gradient of the sum {p + 7/1), indicating 

the rate at which energy is lost through viscous shear, will be 

directly proportional to the dynamic viscosity and to the com¬ 

ponent of mean velocity in the corresponding direction, and 

inversely proportional to the square of the spacing of the bound¬ 

aries. Thus, in the direction of the mean velocity vector, 

-|(p + 7/i)=3^ (75) 

A glance at Eqs. (72) will suffice to show that under these 

boundary conditions the velocity components in the xy plane 

are the derivatives of a function of two-dimensional space; that 

is, there exists a velocity potential having the form 

poin 

4 
Fig. 67.—Laminar 

flow between parallel 
boundaries. 
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{z^ - b^) (p + yh) 
(76) 

the subscript restricting the velocity potential to a single plane 

the distance z from the plane of tht^ axes x and y. Moreover, 

Eqs. (74) and (75) indicate the existence of another velocity 

potential for the mean flow: 

= 5^ {p + yh) 

Sji 
(77) 

While this would appear to contradict the general statement made 

on page 149, it will be recalled that the foregoing equations were 

derived by assuming negligible velocity gradients in the x and y 
directions. In other words, a velocity potential can exist in 

viscous flow only if there is no appreciable acceleration in thei 

direction of motion. 

In the latter part of the last century there was developed in 

England by Hele-Shaw^ a method of simulating stream-line 

patterns of two-dimensional potential motion, as discussed in 

Chapter V, through application of the foregoing principles of 

viscous flow between parallel plates. It will be recalled that any 

potential flow pattern depends solely upon the geometrical form 

of the boundaries, regardless of the acting forces. Hele-Shaw 

took advantage of this fact by inserting various boundary profiles 

between closely spaced glass plates, passing a low flow of water 

through the system, and coloring an arbitrary number of stream 

filaments by injecting dye at equal intervals across the entrance 

(a schematic diagram of the apparatus is shown in Fig. 68). By 

this means he was able to reproduce not only the patterns of 

potential flow around elementary profiles, but also those of 

various source-sink combinations. Such patterns are identical 

with those determined analytically for similar boundary con¬ 

ditions, with the exception of a slight distortion in the neighbor¬ 

hood of the boundary itself. But since the distance the zone of 

boundary influence extends into the flow is approximately equal 

to the spacing of the plates, it is obvious that this effect may be 

reduced as much as desired simply by bringing the plates closer 

together. 

1 Hele-Shaw, H. J, S., Investigation of the Nature of the Surface Resistance 
of Water and of Stream-line Motion under Certain Experimental Conditions, 
Tram, Imt. Naval Architects^ vol. 40, 1898. 
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Since these elementary patterns may easily be obtained 

analytically, a more practical use of the apparatus lies in the 

determination of flow patterns in cases too complex to handle 

through conformal transformation, in particular for conditions 

of flow through, rather than around, fixed boundaries. In this 

way, flow patterns have been obtained for discharge through 

siphons, over spillways (prior knowledge of the form of the free 

surface then being essential), and even in the pervious soil forma¬ 

tions beneath hydraulic structures. 

Fig. 68.—Hele-Shaw apparatus for visual study of potential flow. 

Variation in the sum (p + yh) with distance is fundamentally 

a measure of the rate at which energy of flow is dissipated in 

viscous shear, from which it follows that if this quantity shows 

no variation in the direction of motion, then flow as such will not 

occur. For instance, if the potential energy is made constant 

in Eqs. (72) or (74), the velocity at every point must become 

zero. 

Assume now that the only motion of the enclosed fluid is that 

resulting from shearing stresses due to relative displacement of 

the two boundaries. Since there can be ho change in (p + yh) 
in any direction, conditions of equilibrium require that the inten¬ 

sity of shear be the same at every point—in other words, the. 

velocity gradient with respect to z [refer to Eqs. (66)] must be a 
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constant for any values of x and y. If the upper boundary is 

moved with the velocity vq in the x direction, then at the moving 

boundary Vx = i^o, and at the fixed boundary Vx = 0, whence, 

Vjs = 2^0 
h + z 

(78) 

The velocity now varies linearly between the plates, and the 

energy dissipated in the form of heat comes from the work done 

in moving the one boundary. The total force 

that must be exerted is simply the product of 

the area of cither boundary and the intensity 

of shear caused by the relative motion: 

F = 
A fJL Vo 

2h 
(79) 

Fig. 69.—Velocity 
distribution resulting 
from the motion of one 
boundary parallel to 

Indeed, this simple principle is often used 

as a means of determining fluid viscosity, through measurement of 

the force necessary to displace two plates in a given fluid at a known 

relative velocity. These plates are most conveniently arranged in 

the form of nested cylinders (the Couette apparatus), one of which 

is supported on a torsion balance and the other rotated at a 

known angular speed. Owing to the small clearance between the 

cylinders, the relatively great magnitude of the radius of curva¬ 

ture of the boundaries often permits treat¬ 

ment of the motion as approximately planar. 

It must be remarked, however, that an 

exact solution must include the effects of 

curvature and centripetal acceleration; 

flow between two parallel thus, if the inner Cylinder is rotated, the 
ix)undarieB, one of which higher velocities at the inner boundary may 
18 in motion. i i i m* <* ^ 

lead to instability of flow; on the other hand, 

rotation of the outer cylinder will always have a stabilizing 

influence.^ 

If conditions described by Eqs. (72) and (78) are combined, 

in the x direction the resulting velocity distribution will have the 

form 

Vq • 

+ 2 _l_ z* - 

26 2/x Bx 
{p + yh) (80) 

^Tatlob, G. I., Stability of a Viscous Fluid Contained between Two 
Boundaries, Phil. Trans., A, Vol, 223, 1922. 
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As shown in Fig. 70, the parabolic distribution curve is displaced 

by an amount varying directly with the velocity of the moving 

boundary and with the relative distance from the boundary at 

rest. The mean velocity component in the x direction will now 

have the magnitude 

*'• -1 - Is'f + »■> 
while it should be evident that the maximum velocity no longer 

occurs midway between the boundaries. 

39. Elements of Lubrication. Theories of bearing lubrication 

are so closely related to other problems of laminar motion as to 

warrant a brief discussion in this text, despite their limited 

application to general hydraulic engineering. No attempt will 

be made to present more than a partial review of the essential 

methods of approach, the sole endeavor being to correlate the 

characteristics of viscous flow in bearings with the basic princi¬ 

ples of fluid motion. 

The layman^s conception of lubrication would probably 

undergo a radical change were he to witness the operation of a 

small mechanical model produced by a prominent manufacturing 

concern. This model consists of a polished circular disk mounted 

on a vertical shaft and capable of rotating upon several polished 

rocker plates serving as horizontal bearings. The shaft and disk 

are electrically insulated from the mountings of the rocker bear¬ 

ings, but placed in series with a battery and a small lamp in such 

manner that the latter will glow when the disk is actually in 

contact with the bearings that support it. If the disk is set in 

motion by spinning the shaft, the lamp will at once cease to glow; 

the apparatus has been constructed so carefully that the rotating 

disk will lose speed very slowly, yet the lamp will not light again 

until motion is almost completely at an end—which thus indi¬ 

cates that the bearings do not come in contact with the disk so 

long as appreciable movement occurs. 

The observer can only conclude that air, being a viscous fluid, 

may on occasion serve as a very capable lubricant, and that so 

long as a lubricant functions properly there will be no direct 

contact between properly finished bearing surfaces. It is in this 

connection that the mathematical principles of lubrication are of 

tremendous importance, for through them may be determined 

the degree to which a bearing surface must be finished, the clear- 
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ances that must be allowed, the point of application of the result¬ 
ant force, and the viscosity and rate of flow of the lubricant that 
will prevent both metal-to-metal friction and excessive heating 
through viscous shear. 

From the foregoing discussion of flow between parallel bound¬ 
aries, the reader will realize that under uniform conditions the 
pressure gradient must remain constant in the direction of motion 
—that is, the second derivative of the pressure intensity must 
be zero, regardless of distance along the x axis [refer to Eq. (80)]. 
If the fluid movement results entirely from the displacement of 
one boundary, the pressure gradient will then be zero. It then 
follows that if one boundary is of finite length and the fluid is at 
atmospheric pressure at either end, no resultant force normal 
to the boundaries may be exerted as a result of the movement. 
In other words, parallel bearing surfaces are incapable of support¬ 
ing any load unless they are actually in physical contact with one 
another; it is obvious that such contact would defeat the purpose 
of lubrication. 

Consider now a plane boundary of finite length which, similar 
to the rocker bearings in the model already described, may be 
inclined slightly with respect to a horizontal boundary a short 
distance above, as shown in Fig. 71. It must be noted that the 
proportions of the illustration are necessarily distorted, for both 
the mean spacing and the difference in spacing at the two ends 
are extremely small in comparison with the length of the lower 
plate. Equation (80) or (81), therefore, will describe the con¬ 
ditions of flow with negligible error if the upper boundary is 
moved to the right with the constant velocity v^. The lower 
boundary is so inclined that the spacing decreases in the direction 
of motion, the distance between the boundaries for a given value 
of X being expressed by the relationship 

6 = J (61 - h^) = bi- ax (82) 

If h is assumed constant, integration over the cross section of flow 
will yield the rate of discharge q through a section of unit width: 

¥ 
12m 

Introducing Eq. (82) and treating the pressure gradient as the 
dependent variable 
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^ _ 6 M ^0_12 IX q 

dx (hi — axy (hi — axy 

Then integrating with respect to x, 

V = 
6 ju 12 }xq 

OL (hi — ax) 2a (hi — ax)' 
+ c 

The constant C, as well as the constant unit discharge qy may 

be determined from the fact that the pressure intensity must 

be atmospheric (or, more gener¬ 

ally, p = po) at x 

x — L; thus, 

0 and at 

C = po 
6 M I 12 IX q 

ah I 2ahi^ 

Fig. 71.—Distribution of pressure and 
velocity in a lubricated bearing. 

Vo h: bt 

bi + 62 
(83) 

The pressure intensity at any point along the boundary may 

then be expressed as follows: 

, 6 Vo X (L — x) {bi — bi) 
p = poH->-,5 

L ¥ (bi + bi) 
(84) 

The resulting curve of pressure distribution is shown sche¬ 

matically in Fig. 71. It will be noted that the maximum ordi¬ 

nate lies to the right of the midpoint of the bearing, its position 

being found by placing equal to zero the derivative of p with 

respect to x: 

for which 
hiL 

hi + 62 

Integration of the pressure intensity over the length L yields 

the following pertinent expression for the resultant normal force 

per unit width of bearing:^ 

^ 6 M ^0/i c — l\ .Q-. 
“ V (c - !)■ C” ‘ ~ ^ 

in which c represents the ratio 61/62. It is evident from this 

equation that P will have a value of zero when the two surfaces 

^ Intermediate steps in this and succeeding developments may be found in 
Kaufmann, W., “Hydromechanik/’ vol. 2, Springer, Berlin, 1934, from 

which the foregoing derivations of lubrication equations have been taken. 
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are parallel, and will become negative once c is less than unity. 

Its maximum positive magnitude may be found by setting equal 

to zero its derivative with respect to c, under which conditions c 

is approximately equal to 2.2 and 

P max 
0.41 M Vo 

(86) 

in which bm is the mean spacing of the boundaries. Of great 

importance is the fact that the point of action of this resultant 

force is not at the midpoint of the bearing. A trial computation 

will convince the reader of the tremendous loads which may be 

supported by a thin film of oil once the bearing surfaces are given 

their proper slope. 

a Lubricated bearing b. Dry bearing 

Fig. 72.—Displacement of rotating shaft with and without lubrication. 

By expressing the intensity of shear along the upper boundary 

as a function of the velocity gradient and integrating over the 

distance L, an equation may be obtained for the tangential force 

per unit width that resists the motion of the upper boundary; 

this will be, for the case of maximum normal force, 

(87) 
Om 

The foregoing equations for the forces involved in the two- 

dimensional problem of lubrication merit careful study, in that 

they indicate—at least qualitatively—the characteristics of any 

lubricated bearing. Nevertheless, quantitative solution of actual 

bearing problems requires considerable extension of this develop¬ 

ment, for seldom may a case be regarded as truly two-dimen¬ 

sional. For instance, plane bearings are of finite width as well 

as of finite length, and generally involve rotation about a central 

axis, as in the model first described; moreover, lubrication of 

cylindrical bearings entails radial displacement of the shaft, as 

shown in Fig. 72 (it is to be noted that the resultant action of 

normal and tangential stresses produces a displacement in the 
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opposite direction from that caused by mechanical friction). For 
further study of this specialized branch of fluid mechanics, the 
reader must turn to other sources.^ 

40. Uniform Flow in Circular Tubes. The basic equations of 
Navier-Stokes may be simplified still further in the treatment of 
steady, laminar motion in circular tubes of uniform diameter. 
Assuming that the x axis is coincident with the center line of the 
tube and positive in the direction of flow, it follows that Vy and v^ 

are both zero, and that is identical with the velocity vector; 
moreover, the velocity remains constant in the x direction, owing 
to the uniformity of the flow section. Under these conditions, 

^(p + yh)- ^ + -^) 

+ yh)=^o 

£(P + yh) =0 

Evidently, the pressure intensity will vary in the axial direction 
as the result of viscous shear and change in elevation, but it 
must be hydrostatically distributed over every normal cross 
section of the flow; this conclusion cannot be too highly stressed. 

Because of the symmetry of the flow about the longitudinal 
axis, the flow picture in every plane through the axis must be 
the same. It is therefore convenient to change from the rectangu¬ 
lar to the cylindrical coordinate system, in which a point in the 
flow is established by the distance x along the central axis from 
some arbitrary zero point, by the normal distance r from this 
axis, and by the central angle 6 from some arbitrary axial plane. 

As may be seen by expressing the equilibrium of viscous, pres¬ 
sure, and gravitational forces upon a fluid element having the 
volume dx dr r dB, the equations of Navier-Stokes in cylindrical 
coordinate notation, simplified for the problem now under con¬ 
sideration, will have the form: 

|;(p + tA) = 0 = + yh) 

^Thomsen, G. C., “The Practice of Lubrication,'^ McGraw-Hill Book 

Company, Inc., 3d ed., 1937; or Hbrsey, M. D., “Theory of Lubrication,” 

John Wiley & Sons, Inc., 1936. 
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As in the case of flow between parallel boundaries, these may be 

integrated directly to provide the distribution of velocity across 

the section of flow. However, the same result may be obtained 

in a more graphic way by proceeding directly from the relationship 

T (88) 

in which y differs from r only in that it is measured from the flow 

boundary rather than from the longitudinal axis. As has already 

been noted, the potential energy may vary only in the direction 

of flow, and by an amount directly proportional to the viscous 

resistance to motion. Thus the longitudinal force per unit 

d 
volume, "”^(P + multiplied by the volume of any isolated 

portion of the flow, must equal the total shearing force exerted 

upon the surface of that volume. If this isolated portion of the 

flow is bounded by the walls of the tube (where r = ro and r = to) 

and by two planes normal to the axis and the distance L apart. 

and 

TT ro^ L —{p +7^) = — 2 TT ro L To 
ox 

ro= -iyJ^P + yh) (89) 

Since the potential energy per unit volume is constant over any 

normal section, a similar expression must hold for any coaxial 

cylinder of fluid: 

Hence, 

(90) 

(91) 

an equation of basic importance. 

From Eqs. (88) and (91), 

dv dv r 

dy dr ro 

which becomes, through integration, 

To 

2 Mn 
+ C V = 
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At the wall of the tube the velocity of flow must be zero, whence 

^ 2m 

The distribution of the velocity will then be 

V 
To 

2 fjL Vo 
(vo^ — r^) (92) 

As this equation is evidently that of a paraboloid of revolution, 

symnu^trical about the longitudinal axis, the maximum velocity 

of flow may be found by setting r equal to zero: 

^max 
To n 

2fi 4/i dx 
(p + yh) 

Similarly, one may derive an expression for the rate of discharge 

through the tube by integrating the velocity over the entire cross 

section of flow: 

Q = V 27rr dr 
TT To 

Expressed in terms of the diameter and the potential gradient, 

this will have the form 

Q = - 
ttD^ d 

128/1 dx 
(P + yh) (93) 

and division by the area of the cross section will then yield an 

expression for the mean velocity of flow: 

As may also be seen from the geometry of the paraboloid of 

revolution, the mean velocity is exactly one-half the maximum. 

Finally, upon rewriting Eq. (94), a fundamental relationship is 

obtained for the rate of energy loss in steady, laminar flow 

through a uniform circular section: 

_|(p + ^4).32g (95) 

Equation (95) states that the rate of loss of potential energy is 

directly proportional to the dynamic viscosity and the first 

power of the mean velocity, and inversely proportional to the 
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area of the cross section. These essential facets were discovered 
independently by Hagen and by Poiseuille, shortly before the 
middle of the nineteenth century, through experiments on capil¬ 
lary tubes. 

41. Percolation. That phase of laminar motion which is 
probably of greatest importance to hydraulic engineers involves 
the passage of water through pervious material—whether in the 
relatively simple sand filters of sanitary installations, or in the 
more complex soil formations underlying hydraulic structures,^ or 
even in the materials of the structures themselves. In any case, 
the interstices of the pervious matter form countless little con- 

Fio. 73.—Percolation through a uniform column of pervious material. 

duits of ever-changing section; but these tiny channels are so 
complex and innumerable that any attempt to treat each as an 
individual—even if a typical one could be imagined—would be 
quite futile. It thus becomes essential to disregard the devious 
course of each fluid passage, and to look upon the pervious mass 
simply as a space through which the fluid moves. The impervi¬ 
ous boundaries then define the limits of the movement, and the 
effective cross section of flow is determined by the area enclosed 
by these boundaries without regard to that portion of the area 
actually occupied by the grains of solid matter. 

Consider, for instance, a tube filled with sand and connecting 
two tanks of water of unequal surface elevation (Fig. 73). If the 
sand is relatively fine and if the difference in pressure intensity 
is not excessive between the beginning and end of the sand column, 
not only should the motion of the fluid through the interstices 
be laminar, but the rate of discharge Q through the column, 

^ For a general treatment of percolation through soils the reader is referred 

to Nem^snyi, P., “Wasserbauliche Stromungslehre/^ Johann Ambrosius 

Barth, Leipzig, 1933; and to Tolman, C. F., "‘Ground Water,McGraw- 

Hill Book Company, Inc., 1937. 
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divided by th(i ero.ss-.scctional area of the tube, will yield an 
effective velocity that Is exceedingly small. Indeed, the magni¬ 
tude of the effei^tive kinetic, energy, proportional to the square 
of this small quantity, is quite negligible, so that the effective 
energy of flow may safely be considered entirely potential. That 
is, since the velocity head may be ignored, the total head must 
consist wholly of pressure head and elevation: 

y 

The reader has ali'eady s(^en that in laminar flow the rate of 
energy loss (indicated by the slope of the energy line) varies 
directly with the first power of the mean velocity across the 
actual flow section. Evidently, the ratio of the mean velocity 
through an average interstice to the effective velocity for the 
cross section of the tube will depend entirely upon the character¬ 
istics of the given pervious material, and owing to the fineness 
of this material the ratio will remain essentially the same from 
one section to another. Hence, the effective velocity of flow 
must also be directly proportional to the difference between the 
surface elevations in the two tanks and inversely proportional 
to the length of the soil column. Introducing the factor k as the 
coefficient of proportionality, 

V = k and Q AS (96) 

in which the slope of the energy line. Evidently 

k must have the dimension of a velocity, which relegates it to 
the class of dimensional coeflicients, varying in magnitude from 
one dimensional system to another. This factor is commonly 
known as the permeability of the given material. 

Obviously, such a coefficient is not alone a function of material 
characteristics, which its name implies, for it must also vary with 
the reciprocal of the dynamic viscosity of the fluid. With regard 
to properties of the material, it wdll depend in magnitude upon 
the grading, the form and diameter of the average grain, and 
the degree of compaction under flow conditions. Determination 
of k still depends upon experimental measurement^ or the use of 

^Bakhmeteff, B. a., and Feodoroff, N. V., Flow through Granular 

Media, Trans. A. S. M. E.f Applied Mechanics Division, vol. 4, no, 3, 

p. A-97, 1937. 
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unsatisfactory empirical relationships, for though it is a simple 

matter to introduce /x as a separate variable and thus make k 

a true permeability coefficient dependent upon material proper¬ 

ties alone, as yet no one has succeeded in the analytical derivation 

of its functional relationship with these properties. 

If the boundaries of flow are not straight and uniformly 

spaced, as in the foregoing illustration, but generally curved and 

non-parallel, it should be apparent that the resistance to flow 

will still be basically the same. However, the effective velocdty 

no longer represents a mean over an appreciable cross section, 

for it will now vary in magnitude and direction from one point to 

another (and from instant to instant, if the flow is an unsteady 

one). Still proportional to the factor /c, this velocity vector will 

now depend in magnitude and direction upon the rate of change 

of the total head as a general functioji of spac^e and time. 

Evidently Eu, must have the maximum gradient in the direction 

of flow s, whence, for steady motion, 

■ (97) 

Furthermore, since the total head is generally a function of 

three-dimensional sx)ace, the components of the effective velocity 

vector may be written as follows: 

Vz 
dEw, 
dx ' 

Vy -k - 
dE.,, 
dz 

(98) 

As the reader will recall, if the velocity is the space derivative 

of a continuous space function, then the flow must be a potential 

one; in this case the velocity potential is simply 

This fact at once opens the way for a graphical solution of a 

multitude of percolation problems, in particular if the flow is 

purely a two-dimensional one. For given geometrical boundary 

conditions, construction of a flow net will yield a comprehensive 

picture of pressure and velocity distribution, the scale of which 

depends only upon the total loss of head and the magnitude of 

k for the given fluid viscosity and the given soil conditions. 

Figure 74 shows, for example, a typical problem involving 

seepage through a pervious stratum of sand underlying a low 
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dam. The orthogonal lines of the flow net represent lines of 

constant potential h(‘ad, the loss of head between each successive 

pair of lines being constant. The stream lines indicate the 

direction of the velocity vector at every point and, relatively 

speaking, the effective lengths of the paths the fluid particles 

must travel. Owing to the square constru(;tion of the net, the 

magnitude of the effective velocity will vary inversely with the 

sides of the squares—this a])proximate relationship becoming 

exact as the squares a})proach the infinitesimal. 

The slope of the energy lin(‘ at any point may now be replaced, 

for all practical purposes, by the change in head from one poten- 

Fig. 74.—Determination of i>ressure distribution duo to seepage under a masonry 
dam. 

tial line to the next divided by the spacing of potential lines at 

that point: S = — AjE'„,/A6*. Thus, if there are Na divisions of 

any stream line in the net, and if the total loss of head is equal 

to hi — h2 ^ hi = — the loss between each pair of 

orthogonal lines will be — AJS„, = hi/Na- The latter fraction, 

multiplied by A:, is equal to the change in velocity potential 

A<#>, which, divided by the distance between potential lines As, 

in turn is equal to the magnitude of the velocity in the given 

region: v = A<l)/As = Jc hi/Ns As. But since the spacing of 

stream lines and the spacing of potential lines are identical at 

any point (As = An), the quantity k hi/Ns must also equal 

the rate of discharge (per unit width of effective flow section) 

between any neighboring pair of stream lines; that is, 

(100) 

Thus the total rate of discharge through the sand stratum 
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is found by multiplying this ratio by the number of parts 

into which the stream lines divide any line of constant potential 

head, and by 6, the width of the stratum. This relati(jpship 

will then be as follows: 

Q = kbj” V. dn = J” 

The approximate expression at the right, of course, becomes 

more exact as the divisions in the flow net are increased in 

number. 

Comparison of Eq. (99) with expressions developed in Chapter 

II for the force potential will show that the effective velocity of 

percolation is directly proportional to the force exerted by the 

flow upon the pervious material. If the velocity vector has a 

downward direction, the flow tends to cause further compaction 

of the material. If flow is upward, on the other hand, the 

opposite effect is produced; and unless the material is heavy 

(or cohesive) enough to withstand such uplift, the phenomenon 

known as piping will take place, whereby the downstream por¬ 

tion of the material is carried out by the flow. Danger points 

of this nature are generally marked by excessive concentration 

of the flow lines, for the smaller the relative spacing in any 

locality, the greater the local velocity will be—and hence the 

greater the force tending to move the material. For example, 

a condition such as that at point A in Fig. 74 must be avoided 

by more careful design, or else the soil must be protected by a 

layer of rocks that are individually heavy enough to remain in 

place, fine enough to form an effect blanket for the underlying 

material, and yet coarse enough to offer little additional resistance 

to flow. 

So long as the soil particles are reasonably round and uni¬ 

formly deposited, the permeability factor k will be independent of 

direction. Appreciable stratification, however, or the presence 

of flat grains deposited in parallel fashion, will result in a lower 

resistance to flow in one direction (generally the horizontal) 

than in another, and hence variation of the quantity kEw with 

space is no longer dependent solely upon the form of the imper¬ 

meable boundaries. Under such circumstances the flow net will 

be deformed, since the spacing of the stream lines—^for a given 

loss in potential—must then change inversely with k. Similar 
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conditions arc encountered at the boundary of two sediments 

of diff(irent permeability, in which region there is a sharp dis¬ 

continuity in the energy gradient. The solution of such prob¬ 

lems simply through adjustment of the stream lines in accordance 

with assumed or measured variation of k requires consider¬ 

able experience; where experience is lacking, model studies in a 

glass-walled tank are of great value, for the stream lines in the arti¬ 

ficially deposited material may be mad(^ visible along one trans- 

Fi(i. 75.—Flow net for percolation through an earth embankment 

parent wall through inj(K;tion of dye at various points on the 

upstream surface of the stratum, with simultaneous piezometric 

measurement of pressure distribution along the lines of flow. 

Less difficult is the case in which there is no impervious upper 

boundary. As indicated in Fig, 75, the free water surface within 

the soil must take a form that is in hydrodynamic equilibrium 

with the forces involved—that is, the pressure must be atmos¬ 
pheric at all points along the topmost stream line, discounting 

the height of capillary rise in the interstices of the material. 

The surface profile may therefore be found by so adjusting the 

flow net that the uppermost stream line drops the same distance 
Ahi between every pair of potential lines. 



CHAPTER IX 

FLUID TURBULENCE 

42. The Transition from Laminar to Turbulent Motion. In 
the foregoing chapter certain* elementary examples of steady 
viscous flow were shown to be subject to solution through 
application of the Navier-Stokes equations in greatly simplified 
form. In each case the simplification restricted the essential 
variables to pressure, weight, and viscous shear, to the exclusion 
of all dynamic effects of acceleration. Lest the reader draw 
the erroneous conclusion that laminar flow is basically one in 
which inertia plays no role, the fact must be made very clear 
that numerous problems of laminar flow exist in which the 
differential terms for local and convective acceleration can by 
no means be ignored. It is only because of the compkixity of the 
resulting differential equations that rigorous analysis of such 
problems has not yet been accomplished. 

Nevertheless, one may conveniently classify problems in 
viscous motion according to the relative magnitude of the terms 
for acceleration and the terms for viscous force per unit mass 
in the Navier-Stokes equations. The preceding chapter dealt 
with cases of predominant viscous action, in which the accelera¬ 
tive terms were negligible; on the other hand, the entire first 
part of this book proceeded on the assumption that viscous 
action was non-existent, the dynamic effects of acceleration then 
being all-important. Between these two limits of the realm of 
fluid motion there lies a vast range of problems in which neither 
dynamic nor viscous effects can be ignored. It is here that the 
majority of engineering problems are to be found. 

A very significant parameter may be developed to designate 
the relative magnitude of the dynamic (or inertial) characteristics 
with respect to the viscous characteristics of a given steady 
motion. Any one of the Navier-Stokes equations may be 
reduced to the following essential terms: 
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It is evident that in non-viscous motion the potential gradient 
will depend entirely upon the mass acceleration, whereas in 
non-accelerative motion it will be entirely a function of viscous 
shear. In general, the extent to which each of these factors 
will control the potential gradient will depend entirely upon the 
relative magnitude of the terms p and /i If the flow 
is a steady one, the velocity at any point will be proportional 
to the mean velocity of flow, while the velocity gradient at any 
point will vary with the mean velocity and with the reciprocal 
of some length characteristic of the boundary conditions. Thus, 
the product of density and convective acceleration for any typical 
region of the flow must be proj^ortional to pv^/L^ whereas in the 
same region the term p must be proportional to pV/U-, 

The ratio of these two pertinent quantities will then take the 
form, 

pFVi _ FLp 
■ p 

This is seen to be identical with the dimensionless parameter 
called the Reynolds number, which was obtained in Chapter I 
from purely dimensional considerations. It is apparent that 
the greater the relative magnitude of the numerator of R, the 
more the dynamic aspects of the problems will predominate; 
on the other hand, the greater the denominator, the greater 
the role played by viscosity. 

So long as the dynamic aspects of a given flow are negligible, 
there can be no question but that the motion must be extremely 
stable; such conditions are marked by very low values of the 
Reynolds number. Once dynamic effects become appreciable, 
as indicated by higher values of R, although the flow may still 
continue in a laminar state, the stability of the laminar motion 
becomes entirely a relative matter. That is, any momentary 
disturbance in the flow (a local pressure or velocity fluctuation 
due to one cause or another), if sufficiently small, will be effec¬ 
tively damped out by viscous action. But the same flow may be 
unstable to a larger disturbance* which will then grow in magni¬ 
tude and spread to other regions of the moving fluid. It is 
apparent that the stability of laminar motion depends in part 
upon the magnitude of the disturbance and in part upon the 
relative magnitude of inertial and viscous qualities of the flow; 



Sec. 42] FLUID TURBULENCE 171 

the larger the Reynolds number, the smaller the disturbance 
necessary to produce instability. 

The growth of such instability may easily be followed by 
injecting dye into the flow upstream from the disturbance. 
So long as the motion remains laminar, the filament of dye will 
remain intact; but the slightest fluctuation will cause it to waver, 
and if the disturbance is not damped by viscous action, the 
filament will disrupt and rapidly diffuse across the flow section. 
Osborne Reynolds first demonstrated this phenomenon in 
connection with flow through a glass tube,^ the series of photo¬ 
graphs in the Frontispiece illustrating effects similar to those 
which he obtained. From Fig. 76 may be seen the essential 

\^Dye 

^6/ass fube 
i 

- ■ .. .. .A. .. n 

Fig. 76.—The Reynolds apparatus. 

features of the Reynolds apparatus. The entrance to the glass 
tube should be well rounded and the liquid in the supply tank 
must be stilled for several hours if one is to obtain good results; 
colored fluid is introduced through a fine jet at the mouth of the 
tube, while the discharge is controlled by a valve at the exit. 
As the valve is slowly opened, the flow will be so steady that at 
first glance the ribbon of color will appear to be stationary, as 
may be seen from the uppermost photograph. If no disturbance 
is generated through careless handling, the valve may be opened 
wider and wider without any noticeable change in the character 
of the flow. But since disturbance is a relative matter, with 
increasing discharge the movement will eventually reach a stage 
at which the filament of dye will begin to fluctuate, and finally 
break up completely. 

Experimentation with the Reynolds apparatus will show that 
the initial disburbance may result from such widely varied 

^ Reynolds, Osborne, An Experimental Investigation of the Circum¬ 

stances Which Determine Whether the Motion of Water Shall Be Direct 

or Sinuous, and of the Laws of Resistance in Parallel Channels, Phil, Tram, 
Roy, Soc,y voL 174, 1883; Papers, vol. 2, pp. 51-105. 
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causes as vibration of the apparatus, insufficient stilling of 
the water before flow begins, too great an influx of dye from the 
jet, poor rounding of the bellmouth, or abrupt adjustment of 
the valve, in particular if the latter is partially closed after flow 
has been established. Reynolds found that instability generally 

VD 
occurred at a value of the parameter -r- varying from 10,000 to 

m/p 

12,000, but considerable care on the part of more recent investi¬ 
gators has led to results which would indicate that the limit of 
the critical Reynolds number is indeterminate, depending pri¬ 
marily upon the extent to which disturbances may be eliminated.^ 

Columbia 

Fio. 77.—Stability of laminar flow at a boundary contraction. 

Experience has shown, however, that a very definite lower 
limit of R exists, below which all disturbances will be effectively 
damped out by viscous action. This lower critical value of R 

will depend entirely upon the boundary conditions of the flow; 
for example, in the case of circular pipes it will be approximately 
2000. Although within the range of this lower critical limit the 
influence of viscosity is predominantly stabilizing, the reader 
must not conclude that this is the sole function of viscous action; 
reference to the discussion on the dissipation of energy in Chapter 
VII will recall to his mind that viscous shear is also a factor 
involved in changing the kinetic energy of the flow. ‘Indeed, 
in the motion of fluids with low relative viscosity, viscous 

^ With Reynolds^ original equipment, for instance, a value of R of more 
than 40,000 has been r^ched; see Ekman, V. W., On the Change from 
Steady to Turbulent Motion of Liquids, Arhiv mat.f astron. fysik^ vol. 6, 
no. 12,1911. 
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influences are often the cause of the initial disturbance producing 
instability. 

It has been seen that a disturbance too great to be quelled will 
rapidly increase in magnitude and spread to neighboring regions 
in the form of eddies, this complex pattern of secondary motion 
appreciably modifying the basic pattern of flow. Such secondary 
motion, once established, is known as fluid turbulence. It is 
characterized primarily by the continuous mixing action of the 
eddies, whereby small fluid masses are constantly being carried 

Columbia 

Fig. 78.—Instability of laminar flow at a boundary expansion, the point of 
disruption moving upstream with increasing Heynolds numl^cr. The form of 
the dye cloud in the center photograph is evidence of parabolic velocity distribu¬ 
tion. 

into regions of different velocity. This produces, in effect, a 
transport of kinetic energy from central regions of high velocity 
toward the boundary regions of low velocity, and vice versa. 
The obvious result is that in turbulent flow the velocity dis¬ 
tribution is more uniform than in laminar, except in the immedi¬ 
ate vicinity of the boundaries; here the velocity must again 

approach the limit zero. 

As must be concluded from the foregoing discussion, the 
intensity of the turbulent eddies will increase with the Reynolds 
number. It then follows that the higher the magnitude of R, 
the more uniform the velocity distribution, as is shown schemat- 
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ically in Fig. 79 for the case of a circular pipe.^ Moreover, the 
higher velocity gradient at the boundary would indicate, for 
the same mean velocity as in laminar flow, a much higher 
boundary resistance. That this is actually the case is proved by 
experiment, for in turbulent motion the intensity of shear at a 
smooth boundary is proportional to a power of the mean velocity 
ranging from 1.75 to 2, depending upon the magnitude of R. 
The relation of to to V in the critical region is indicated in the 
logarithmic plot of Fig. 80. 

Fig. 79.—Distribution of velocity 
for laminar and turbulent flow in a 
circular pipe. 

Fig. 80.—Boundary shear 
versus mean velocity in the 
critical region. 

The point has already been stressed that viscous action is the 
only means by which flow energy may be transformed into heat. 
It is evident that no change in fluid characteristics occurs with 
the onset of turbulence (that is, '‘impact” between fluid particles 
is still physically impossible), so that the Navier-Stokes equa¬ 
tions may be expected to apply to laminar and turbulent flow 
alike. In the case of turbulence the rate of energy dissipation is 
obviously increased, but this becomes fully understandable 
if the reader visualize the complex curve of velocity distribution 
that must exist apross the flow at any instant, each one of the 
countless eddies then being the source of additional viscous shear. 
In other words, for any value of R above the critical there exists 

1 As R b€5<50ines infinitely great, the energy of flow will then be constant 
across any normal section j this corresponds to the case of noh-viscous flow 
as treated in Part One, for the condition R is satisfied when m =* 0. 
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a definite avera^^e state of viscous equilibrium within the eddying 
fluid. 

Nevertheless, the turbulent pattern is not only exceedingly 
complex but ever changing in detail. However correctly th(^ 
Navier-Stokes equations may describe conditions at any point 
at any instant, it is obviously futile to attempt to use them in 
investigating a finite portion of the flow for a finite length of 
time—unless it is found possible so to modify them that the 
complexity of the secondary fluctuations will not conceal the 
basic essentials of the flow. 

43. Reynolds* Modification of the Navier-Stokes Equations. 
While casual observation of the turbulent mixing process would 
seem to indicate complete lack of system, investigators have 
attacked the general problem with fair success through use of 
statistical methods, based upon the following point of view. If 
one imagine a singk^ vortex filament and its surrounding velocity 
field, it is (wident that the transit of t his filamcjit past a point of 
observation will produce a rapid change in the velocity vc^ctor. 
At any instant during transit the magnitude and di]*e(ition of the 
recorded velocity will depend upon the strength and sense of 
rotation of the filarnfuit, and upon the? proximity of its path to 
the actual point of observaiion. If many su(;h filaments of 
different strengths are distributed through the flow, not only 
will the velocity record at the fixed point display continuous 
fluctuation, but the actual pattern of stream lines surrounding 
each individual filament will be influenced by the velocity fields 
of all other filaments in the immediate vicinity. As a matter of 
fact, vortex lanes (such as those shown in Fig. 99) are often 
the initial stage in the development of turbulence; however, by 
the time the turbulent motion has become fully established, the 
eddies bear little or no resemblance to the original picture of 
flow, for individual vortices are no longer recognizable as such. 
From the observer's viewpoint, nevertheless, the transit of 
irregular eddies will differ from the transit of regular vortices 
only in the complexity of the velocity record. 

Some semblance of order will be brought into this record if 
one first differentiate between velocities involved in the secondary 
movement and those pertaining to the basic translation of the 
fluid as a whole through space. One may thus consider the 
instantaneous velocity vector at any fixed point to represent 
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the vector sum of two different vekxutics, v and v\ the first 
referring to the basic movement and the second to the fluctua¬ 
tion. Schematically, then, v' might be thought of as the relative 
velocity within an eddy at the point of observation, and v 

as the velocity with which the eddy is carried past this point 
by the flow. Since each of these vectors, as well as their vector 
sum, will generally have comixments in each of the three coordi¬ 
nate directions, the following relationships will be seen to hold: 

t; = V v' 

Vx = Vx + i’'; Vy = Vy + Vy) V, == Vz At (102) 

V ^ + Vy- + Vz- 

V = 

v' = v'y- + 

The vector of fluctuation v' varies continuously in magnitude 
and direction, so that turbulent flow can newer be steady in the 
strict sense of the word. The three components of v' will some¬ 
times be positive, sometimes negative, while the numerical 
magnitude of each may vary from zero as a minimum to a 
maximum that is still relatively small when compared with the 
components of v. 

In order to compute the instantaneous rate of discharge 
through any cross section of the flow, one must integrate over 
this section the normal (component of the instantaneous velocity 
vector; assuming the cross section parallel to the yz plane, 

Q = d A = v' dA 

If conditions of continuity are still to hold, it is evident that 
the rate of discharge tlirough every successive cross section of 
the flow at any instant of time must be the same. Such a 
condition is possible, however, only if the total flow past a section 
is independent of the secondary fluctuations in velocity—in 
other words, the second integral in the above expression must 
always equal zero. More generally, it may be said that the 
average of any component of fluctuation over a normal area 
must be zero, so long as the magnitude of the area is great in 
comparison with the scale of the secondary movement: 
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dA == 0, etc. (103) 

In order to determine the temporal mean value of any com¬ 
ponent of the instantaneous velocity, one must integrate this 
component at a given point with respect to time and divide by 
the corresponding time interval: 

ij 
From statistical considerations, since is restricted neither in 
numerical magnitude nor in sign, the last term in the above 
expression must have a value of zero, provided only that the 
time of observation be sufficiently long. It then follows that 

^=0; ^=0; (104) 

under which conditions the vector v must equal the temporal 
mean value of the instantaneous vector v. It is therefore 
possible to treat the vector ^ as a general function of space in 
describing the underlying flow pattern, just as in the earlier 
chapters of this book; v may also be considered a general function 
of time, so long as the rate of variation of the mean motion is 
sufficiently small to be distinct from the more rapid changes 
of the secondary pattern. In this sense, turbulent flow may now 
be characterized as steady or unsteady, uniform or non-uniform, 
with respect to the temporal mean vector alone, without regard 
to variation of v' as a special function of space and time. 

Fully established turbulent motion is not merely a heterogene¬ 
ous agitation of the moving fluid, for, as has been shown by expe¬ 
rience, an essential characteristic of true turbulence is a certain 
average correlation of the three components of y' at any typical 
point in the flow.^ That is, limiting the illustration to the xy 

plane, the components y' and Vy will not display the random 
distribution indicated in Fig. 81a, since a positive value of 2?', let 
us say, will more often than not be associated with a negative 

^This applies to turbulence produced by flow along a boundary—the 

type most commonly encountered in hydraulic engineering. In isotropic 

turbulence—that forming in the wake of a grid—there will necessarily be 

a random distribution of the components at any point, but correlation of 

similar components at two neighboring points. 

Vx dt 
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value of v', and vice versa, as illustrated by Fig. 81&. Owing to 
the existence of such correlation, although the temporal average 
of any component of fluctuation must be zero, the mean product 
of any two components will always have a finite value. If one 

define the coefficient of correlation by the ratio^ 

in which the bars denote mean values, random distribution would 
then correspond to zero correlation, wh(^reas the perfect correla¬ 
tion shown in Fig. 81c would have the maximum coefficient, 
unity. Measurements with the hot-wire anemometer- indicate a 
practically constant degree of correlation throughout the greater 

(a) (b) (c) 
Fici. 81.—Schomatic ropresontaiion of correlation. 

part of flow between parallel boundaries. The actual magnitude 
of the coefficient appears to depend upon the boundary conditions 
of motion. From these considerations, it would seem that the 
character of the turbulent mechanism might well be described 

through use of the following essential terms: 0^v^y 

Returning to the basic* equation of Navier-Stokes, for each 
component of the instantaneous velocity vector may be substi¬ 
tuted the equivalent sum of the components of v and for the 
X direction the result will have the general form, 

In addition, the equation of continuity may now be written in 
terms of both the temporal mean velocity and the velocity of 
fluctuation: 

^ KAbmAn, Th. von, Turbulence and Skin Friction, J. Aeronautical Sct.^ 
vol. 1, no. 1, p. 1, 1934. 

* Wattenpokf, F. L., Investigation of Velocity Fluctuations in a Turbu¬ 

lent Flow, Jz Aeronautical Sci., vol. 3, no. 6, p. 200, 1936. 
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dv^ dVy 

dx^ dy^ dz " 

£5^ 4. ^ ^ 0 
dx dy'^ dz 

(105) 

(106) 

The total derivative dv[^/dt may now be expressed as the sum 
of partials with respect to time and space; to these are added the 

quantity ^ (which, for reasons of con¬ 

tinuity, must equal zero), with the following result: 

dt;' _ dt;' /y') y')\ 
'’rfT"^ 

Owing to the complexity of the secondary motion, such an 
equation cannot be of practical value unless it is made to indicate 
the average—rather than the instantaneous—effect of the mixing 
process. Under such conditions, only those terms which have 
a temporal mean value of finite magnitude will be significant. 
Such quantities as dv'g^/dt and for instance, may then be 
dropped, for the mean values of the components of t;', and hence 
their mean rates of change with time or distance, must always 
equal zero. If such operations are performed for each of the 
coordinate directions, the three Navier-Stokes equations will 
assume the following modified form, first developed by Osborne 
Reynolds:^ 

p 

+M 

(~ar +’■ 8J _+ W + "-wIj -to*” + 

y-w+w^^)~’’\ris+~jf +-3r) 

^ dy^ ^ dz^J ^\dy 

/dVg — dv* , — dl?I , —dVg\ d,, 

I I dv.K 
Bz Bx By 

(1072/) 

(107*) 

1 Reynolds, Osborne, On the Dynamical Theory of Incompressible 

Fluids and the Determination of the Criterion, PhiL Trans, A, vol. 186,1894; 

Papers, vol. 2, p. 535. 
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The reader must not lose sight of the fact that these modified 
expressions of Reynolds apply no more accurately to conditions 
of turbulemce than do those of Navier-Stokes; their particular 
merit lies principally in the opportunity they afford to differenti¬ 
ate between the primary and secondary characteristics of the 
motion. 

44. Stress Intensity in Terms of Momentum Transport. 
Through the foregoing adaptation of the basic equations of 
acceleration, it is evident that the magnitudes of the terms 
for viscous stress are greatly reduced. Since a quantity such 
as M involves only the temporal mean component of velocity, 
the further effect of viscous action in the complex secondary 
motion of the eddies is now implicitly expressed by quantities 

u /d zJp , d vL . d , 1 . L 
such as — p 1 -T— + —~H—1. In other words, the 

\ dx dy dz / ’ 

actual stress due to viscous action is replaced by the viscous 
stress in terms of the mean velocity gradient plus the apparent 
stress due to the ox(5hang(^ of momentum in the mixing process. 
Such apparent stress results from the fact that fluid masses 
carried from one region into another—the velocity generally 
being different in the two regions—will thereby either gain or 
lose a small amount of momentum; ff they gain momentum 
through being carried into a region of higher velocity, they will 
exert a corresponding retarding force upon the flow in the 
latter region, and vice versa. Expressions for the magnitude 
of such forces may be obtained by the following elementary 
considerations. 

Owing to the mixing process in turbulent motion, small fluid 
masses are continually carried back and forth across any imagi¬ 
nary plane. The temporal rate of flow per unit area due to this 
secondary movement will equal simply the component of v' 

normal to the plane, while the difference between the mean 
velocity of any fluid mass and that of the region into which it 
comes on crossing the plane will appear as a momentary velocity 
fluctuation. If the wandering fluid mass then adapts itself to 
the velocity conditions of its new surroundings, the change in 
momentum per unit volume of fluid must be equal to the product 
of the fluid density and the velocity of the fluctuation, v'. It is 
evident that the momentum change per unit volume, multiplied 
by the volume passing a unit area per unit time, must equal 
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the rate of transport of momentum per unit area as a result 
of the secondary flow. The force per unit area necessary to 
I)roduce such inertial redaction must then he ecpiivalent to the 
stress intensity caused by the mouKaitum transport. 

With reference to Fig. 82, momentary flow across tlio line a-a 
as the result of the component Vy will exert a 
normal force in the y direction and a tangen- y 
tial force in the x direction, the stress inten- 
siticjs having the following magnitudes: 

If these are now writ ten as average values, — 
and similar expn^ssions are obtained for tlu^ 

... «2. -Apparent 
remaining coordinate directions, they will strowses resulting from 

have the form momentum transport, 

_ p: = p _ Py = p ?>£_= p v? (io8) 

T'xy = -p^y] r'y, = -P?^; r'^ = (109) 

In addition to such stressi's resulting from momentum transport, 
one must not fail to consider those of viscous action in ItTins of 
the temporal mean velocity gradient: 

(111) 

The total intensity of normal and tangential stress in the several 
directions will finally be given by the sums of the respective 
quantities in Eqs, (108-111). These expressions correspond 
to the equations formerly developed for general viscous flow 
(refer to Chapter VII), and which apply fully as well to turbulent 
as to laminar motion. The sole difference lies in the fact that 
the latter refer to instantaneous conditions, whereas the relation¬ 
ships just obtained apply to an interval of time of sufficient 
length to yield the average effect of the mixing process. It 
will be apparent to the reader that the Reynolds equations 
should also be obtainable without recourse to those of Navier- 
Stokes, by proceeding directly from the foregoing expressions 
for normal and tangential stress. That identical results may 
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be found in this way merely substantiates these elementary 
considerations. 

46. Kinetic Energy of Turbulence. Any general statement for 
the total energy per unit volume at a given point in a moving 
fluid must include terms for kinetic and potential energy; that is, 

E = ^ + (p + yh) 

This statement is independent of the force properties of the fluid, 
for it refers to conditions at a single point at a single instant, 
without regard to change with time or space; again, it is as valid 
for turbulent as for laminar motion, since the kinetic energy is 
expressed in terms of the instantaneous velocity. However, 
instantaneous conditions in turbulent flow are of little practical 
significance, for they can provide no clue as to the mean effect 
of the fluctuations. If, for purposes of convenience, the measura¬ 
ble temporal mean velocity is incorporated in such an expression, 
it must be remembered that merely substituting a parallel term, 
pv-/2j for the kinetic energy of the mean flow, completely ignores 
the existence of the kinetic energy involved in the secondary 
motion. In order that the quantity E may truly represent 
the total energy of the flow, it is essential to add a further term 
for the kinetic energy of the turbulent fluctuation; thus, for 
average conditions at any point, 

IE +W = ^ + (p + yh) 

in which 

■p/ _ _ (^ + + ^) 
^ - -g- - P-2- 

If the turbulence is not fully established, the kinetic energy 
of the secondary movement will either increase or decrease with 
time. In other words, the quantity 

dW _ d + 
dt ''dt\ 2 

will then have a finite numerical value. There are, however, 
only two ways in which the energy of turbulence may vary. 
Evidently, the viscous stresses within the eddies must entail 

(112) 

(113) 
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a continuous drain of energy at a rate depending only upon the 
dynamic viscosity of the fluid and the existing intensity of the 
turbulent motion. In the course of such loss, the kinetic 
energy of the eddies must gradually decrease unless energy is 
supplied by the basic flow at an equivalent rate. On the other 
hand, if the intensity of the turbulent fluctuations increases, 
it is because energy is being transmitted to the secondary move¬ 
ment faster than the existing state of viscous stress within the 
eddies can dissipate it in the form of heat. Under no circum¬ 
stances can energy of turbulence be restored to the mean motion. 
Thus, unless the flow is in a state of stable equilibrium, the rate 
of dissipation of turbulent energy will differ from the rate at 
which energy is supplied by the mean flow, with the result that 
the intensity of the secondary motion must change accordingly. 

In Chapter VII a very fundamental relationship was obtained 
for the rate of dissipation of flow energy as a result of viscous 
stress. It should hardly be necessary to remind the reader at 
this point that such a general relationship must apply fully as 
well to turbulent flow as to laminar. However, similar opera¬ 
tions performed in terms of v and will yield expressions that 
are particularly significant in the case of turbulence. With 
respect to the mean motion alone, the rate of increase of kinetic 
energy and the rate of viscous loss will be identical with those 
discussed in Chapter VII, provided that v is substituted for v 

throughout each of the two expresvsions. The work done by 
the apparent stresses of the momentum transport, however, 
represents a further drain upon the energy of the mean flow. 
As first shown by Reynolds,^ the average rate at which the 
energy of the mean flow is thus reduced may be written in the 
form: 

This expression, evidently, must also represent the mean rate 
at which energy is supplied to the secondary motion. 

At any instant, the rate of dissipation of the turbulent fluctua¬ 
tions through viscous action must be as follows: 

1 Compare with Lamb, Hydrodynamics,” p. 674. 
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tiN = II 

+(s+0y+(- 
dx^ 

dx ' dz dzj 

The mean rate of siieh disHipation Ls then denoted by fxN. 
The.se two quantities may now be (‘ombined to yield the 

temporal rate of change of turbulent energy per unit fluid 
volume: 

= pM - pN (114) 

Although W will change with time in the most general case, 
once the motion is fully established the following condition of 
equilibrium must obtain, 

pM = /i/V 

whereby the intensity of the turbulence remains (constant. 
In order to describe conditions over a finite region of the flow, 

the quantity W must, be integratc'd with respect to the volume 
of the region under investigation; thus, 

M dx dy dz — p JJJ 'N dx dy dz 

(115) 

Unless terms are added for the rate of transport of turbulent 
energy into and out of this region, this equation is stric.tly cor¬ 
rect only if the intensity of the fluctuations around the bound¬ 
aries of the region is either zero or so distributed as to produce a 
net transport of zero magnitude. 

In addition to the instructive nature of these relationships^ 
they also have a decidedly practical value, for it is through them 
that conditions of instability of motion are investigated. Rey¬ 
nolds adopted the method of seeking that case of existing turbu¬ 
lent motion in which the velocity fluctuations would gradually 
disappear; more recent studies proceed from an initial state of 
laminar motion, and determine whether or not local disturbances 

1 Prandtl has developed the basic expression in such a way as to include 
a Reynolds number of the flow; see his Mechanics of Viscous Fluids, 
vol. 3, Division G, p. 182, of Durand^s ^^Aerodynamic Theory,” Springer, 
Berlin, 1935. 
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can grow in magnitude under the given boundary conditions. 
Considerable success has resulted from the latter method of 
attack, although the general problem has not yet yielded to exact 
solution. 

46, Quantitative Analysis of the Turbulence Mechanism, As 
yet no mention ha.s been made of the actual magnitude of the 
intensity of turbulence, aside from its dependence upon the 
mean products of the v(*1ocity components of the s(^condary 
motion. Although these quantities correctly define the charac¬ 
ter of the fiuctuations, they are in themselves of little practical 
significance unless they can be related to flow characteristics 
that are more readily measurable. 

Even before Reynolds published his classic analysis of the 
secondary fluctuations, Boussinesq introduced a coefficient of 
^^molar’^ (as distinguished from molecular’^) viscosity, by means 
of which the intensity of apparent stress due to the momentum 
transport might be expressed in t(u*ms of the mean velocity 
gradient,^ This coefficient, henceforth denoted by the symbol v, 
is dimensionally the same as the dynamic viscosity of the fluid, 
and has come to be known generally as the eddy viscosity; it 
is, in effect, a dynamic coefficient of turbulence. After the 
method of Boussinesq, p]qs. (108-111) will hav(' the following 
form: 

V - Vx - v'x ^ (116x) 

___ 
p - py - Py = 2 {fl + v)-^ (116?/) 

p - pz - pi = 2 iix + v) (116z) 

^ ^ = (m + ??) (117xy) 

= (m + ??) ^ (117?/z) 

+ ^ = (m + ?)) ^ (11722) 

If, as Boussinesq assumed, the factor tj is constant for a given 
state of flow, the equations of Navier-Stokes written in terms 

^Boussinesq, J., Essai sur la th6orie des eaux courantes, MSnoirea 
vr4sent4s par divers savants a VAcad^mie des Sciences, vol. 23, 1877. 
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of the mean velocity gradients would differ only to the extent 
that the sum (m + ri) would replace the term Actually, 
however, r) varies widely in magnitude, not only with the general 
conditions of motion but from point to point in a given flow; 
thus, while m represents a fluid property that is independent 
of the state of motion, rj depends as well upon the fluid density 
[compare Eqs. (116-117) with (108-111)] as upon the intensity 
of the secondary movement. 

While the relation of 17 to the basic flow pattern is still undeter¬ 
mined, the Boussinesq equations lend themselves to the following 
significant comparison. At any Reynolds number below the 
critical, rj obviously has a magnitude of zero. As R increases 
beyond the critical range, the eddy viscosity becomes increasingly 
important, and, as shown by experiment, eventually acquires 
such magnitude as to dwarf the dynamic viscosity completely. 
In other words, at high Re5rnolds numbers the viscous stresses in 
terms of the mean velocity gradient are negligible in comparison 
with the apparent stresses due to momentum transport. Under 
such conditions, all terms containing fx in either the Boussinesq 
or the Reynolds equation may then be dropped. Evidently, 
the magnitude of the Reynolds number may be considered a 
direct indication of the ratio between the eddy viscosity and 
the viscosity of the fluid; that is R rj/ix. 

In the effort to relate the rate of momentum transport to the 
pattern of the mean flow, PrandtB introduced a characteristic 
linear dimension called the mixing length, roughly similar to the 
mean free path in the kinetic theory of gases. Such a length 
may be considered to represent the average distance a small 
fluid mass will travel before it loses its increment of momentum 
to the region into which it comes. As in the case of the com¬ 
ponents of v'j it is apparent that the magnitude of the mixing 
length will not only change from point to point, but at a given 
point will also vary with direction. 

Prandtl, however, restricted his analysis to the case of essen¬ 
tially uniform motion, defining the mixing length as a distance 
normal to the direction of mean flow. He then referred the 
components of fluctuation to the transverse velocity gradient 
by reasoning that a fluid mass traveling the distance I across the 

^ Prandtl, L., Bericht Uber Untersuchungen zur ausgebildeten Turbulenz, 
Z, angew. Math. Mech.^ vol. 6, no. 2, p. 136, 1925. 
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flow before changing its momentum would cause a fluctuation 
at the end of its journey (Fig. 83) proportional to the product of I 

and the mean velocity gradient—i.e., to the diflerence in mean 
velocity between beginning and cnid of its course. Thus, if 
the flow is in the x direction and if v varies only with the 
following average proportionality may be written, 

~dy 

in which the vertical bars denote numeri(\al magnitude, regardless 
of sign. Furthermore, Prandtl concluded, if two fluid masses 
approach each other in a direction parallel to 
one axis, fcom reasons of continuity the result¬ 
ing secondary flow normal to this axis must 
depend upon their velocity of approach. In 
other words, further proportionality must exist 
between the componeuits of fluctuation in the 
two normal directions. Thus, 

W' V' 
Fioi. 83.- Tlic mixing 

I(‘zigth. 

Evidently a positive fluctuation will generally accompany 
a negative fluctuation and vice versa, which is merely another 
way of admitting tin!; existence of correlation. 

Since the intensity of turbulent shear may also be ex])ressed 
in terms of these components, 

>K\i 

dVx dVx\ 
dy 

dVj: 

dy 

Inasmuch as both I and the factor of proportionality are still 
unknown quantities, it would seem expedient to combine the 
two into a single term. Thus, if I is considered to absorb the 
proportionality factor, the following significant relationship will 
be obtained; 

dVx\ 
dy 

dvx 
dy 

(118) 

The coefficient rj may now be given added significance through 
comparison of Eqs. (117) and (118), from which it will be seen 
that 

(119) 
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Just as the ratio m/p represents a quantity that is independent 
of both force and mass characteristics and called th(^ kinematic 
viscosity, v, the ratio r?/p is a kinematic turbulence factor, e 
(epsilon), sometimes known as the kinematic eddy viscosity. 
This factor is a direct measure of the transporting capacity of 
the mixing process, regardless of whether the transport refers to 
momentum, as in the Prandtl development, or to vorticity, 
salinity, sediment, or heat. As shown by von Kdrman,^ such 
engineering problems as heat transfer due to turbulent convection 
or the transportation of silt as suspended load in rivers may be 
studied conveniently in terms of the kinematic turbulence coeffi¬ 
cient. This may be seen from the following generalization of the 
Prandtl concept. 

Assume again that due to cross fluctuations having the mean 
numerical value f^, fluid masses are carried an average transverse 
distance I before losing their identity; moreover, let u represent 
the local magnitude per unit volume of any flow characteristic 
or fluid property, or the local concentration per unit volume of 
any substance carried in solution or suspension. The rate of 
lateral transport of u as a result of the mixing process will depend 
upon the change in u over the distance I (i.e,, approximately 
I duldy) and upon the general rate of flow per unit area fwj] in 
this direction. But if I is again assumed to absorb the propor¬ 
tionality constant, the product jtj] I becomes the kinematic 
turbulence factor e, whence the rate of transport of u across the 
flow can be written simply as 

(120) 

the minus sign indicating that the net transport will be in the 
direction of decreasing u. If this equation is written in terms 
of the average momentum per unit volume pzl, 

which is, of course, the same as Eq. (118). Similarly, if n 

represents the number of silt particles per unit volume at any 
point in the flow, the rate of silt transport in the direction y 

will be 

1 KArmAn, Th. von, Some Aspects of the Turbulence Problem, Proc. 
Fourth Intern. Congress Appl. Mech.y Cambridge, 1934. 
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i\r=-ep (120n) 
dy 

Again, letting cd denote the heat per unit fluid volume (i.e., 
the produet of speeifie heat and temperature), the rate of heat 
transfer may then be expressed as 

H = 
dice) 

' dy 
(120h) 

Other applications should be obvious to the reader. Some 
question remains, however, as to whether the factor e is the same 
in each of the above equations—for instance, whether the 
velocity of fluctuation for the silt particles can be considered 
identical with that of the fluid, and whether the proportionality 
constant for the mixing length will also be the same. 

As a matter of fact, while the Prandtl mixing-length concept 
obviously has great schematic value, upon closer investigation 
it will be found to be far from rigorous either mathematically or 
physically—if only for the fact that one can scarcely visualize 
fluid masses traveling a certain transverse distance and then 
abruptly changing in momentum. Taylor^ attempted to 
eliminate such fallacies through use of an expression for vorticity 
transfer to replace Prandtbs model of momentum transfer. 
Denoting by w' the vorticity fluctuation, from the basic equa¬ 
tions of uniform two-dimensional flow Taylor obtained; 

dp d--r-T -r--7 (121) 

Assuming a length I denoting the transverse path in the vorticity 
transfer, there will result the general expression, 

dp 

dx 
(122) 

which was intended to replace Prandtl's Eq. (118). 
Perhaps the most satisfactory approach is that embodied in 

von K^rmtln^s hypothesis of turbulent similitude," based upon 

1 Taylor, G. I., The Transport of Vorticity and Heat through Fluids in 
Turbulent Motion, Proc. Roy, Soc. {London)y A, vol. 135, 1932. 

2 First announced in 1930, the similarity hypothesis is discussed at length 
by VON KXrmAn in ^‘Turbulence and Skin Friction,"' and in “Some Aspects 
of the Turbulence Problem." 
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these two reasonable assumptions; (1) The mechanism of 
turbulence is independent of viscosity except in the immediate 
neighborhood of the flow boundaries; (2) the pattern of the 
secondary flow is statistically similar from point to point, varying 
only in time and length scales. The first assumption is in 
accord with experimental data on the relative magnitude of 
Tj and Ai. The second assumption simply entails a constant 
factor of correlation at all points in the flow, a condition also 
indicated by experiment. Schematically, the time and length 
scales may be thought of in connection with the mean frequency 
and the mean amplitude of the velocity fluctuations. More 
conveniently, the length scale may be represented by a quantity 
/, similar to the mixing length of Prandtl but not requiring the 
latter\s special concept of the mixing pro(^ess, whereas the time 
scale is then related to the mean velocity gradient. 

If this hypothesis is applied to th(‘ case of two-dimensional 
uniform motion, as shown by von Kdrmdn, the following three 
(conclusions will be reached: 

a. The components of fluc.tuation will be proportional to the 
length I and to the gradient dvxjdy. 

h. The intensity of shear will be proportional to p U {dvx/dyy. 

c. The length I will be proportional to dvx/dy -i- d^VxIdy'^, 

Each of these conditions depends upon a length scale of the 
secondary motion that is small in comparison with the scale (jf 
the mean flow. In c, for instance, derivatives higher than the 
second have been ignored. Actually, the relative scale of the 
turbulent process is greater than assumed, so that these propor¬ 
tionalities must be considered as first approximatioas. Never¬ 
theless, experimental evidence substantiates these conclusions 
to a very satisfactory degree, and indicates that the factor of 
proportionality, k (kappa), under c has the nature of a universal 
constant, with a magnitude of approximately 0.40. Through 
these relationships the mixing length may at last be eliminated 
from Eq, (118), leaving a simple expression for shear in terms of 
the mean velocity gradient: 

J^dVr/dyY 
(123) 

Still dissatisfied with the approximate qualities of this hypothe¬ 
sis and its failure to yield a complete picture of the turbulence 
mechanism, von Kdrmdn has recently made a radically different 
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attack upon the problem, neither assuming the relative scale of 
turbulence to be smaller than it actually is, nor ignoring the fact 
that viscous stresses play an essential role within the secondary 
movement. Proceeding from the basic mechanism of energy and 
vorticity dissipation, and extending the basic concept of cor¬ 
relation, after eliminating terms of negligible value von K^rmdn 
obtained the following salient ex})ressions:^ 

x,y,z x,y,z 

(124) 

(125) 

The sigmas indicate the sum of the mean squares of the deriva¬ 
tives of the three velocity or vorticity components, each taken 
with respect to each of the three coordinate directions. 

The first term of Eq. (124) represents the net rate of increase in 
turbulent energy per unit volume as a result of turbulent con¬ 
vection; the second term represents the rate of work done per 
unit fluid volume by the apparent shearing stress; the third term 
denotes the rate of energy dissipation through viscous action 
within the eddies. Similarly, the left side of Eq. (125) is a 
measure of the net rate of increase in eddy vorticity, whereas 
the right side represents the rate of dissipation of eddy vorticity 
through viscous shear. 

Not only do these two fundamental equations yield excellent 
results for those elementary cases of flow already treated by 
means of the Prandtl and Taylor methods and von Kflrmdn^s 
similarity hypothesis, but present indications are that they will 
provide a general means of investigating such conditions of 
turbulence as are encountered in converging, diverging, and 
curvilinear flow, as well as the diffusion and decay of turbulence 
in the wake of an immersed body, and the motion of a fluid of 
variable density. Nevertheless, until the method of each indi¬ 
vidual application becomes clear and the analytical results are 
verified experimentally, the engineer must remain content with 
such solutions as are possible by means of the earlier theories, 
as described in the remaining chapters of Part Two. 

1 KXrmXn, Th. von, The Fundamentals of the Statistical Theory of 
Turbulence, Aeronautical Sci., vol. 4, no. 4, p. 131, 1937. 



CHAPTER X 

CHARACTERISTICS OF THE BOUNDARY LAYER 
* 

47* Boundary Influence in Non-uniform Motion. Throughout 
the first part of this l)ook emphasis was placed upon the effect 
of the geometrical boundary conditions upon the pattern of the 
velocity field. It was shown that fluid motion proceeding from 
a state of rest must begin as one of constant energy, under which 
conditions the pressure and velocity distribution may be deter¬ 
mined through the principles of potential flow. Although such 
principles were developed without regard to the effect of viscjosity, 
it so happens that in rapidly accelerated flow the zone of appre¬ 
ciable viscous action is limited to th(i immediate neighborhood 
of the boundary itself. Under these (drcumstances, the general 
flow picture as determined by the given geometrical boundary 
conditions will remain essentially the same, viscous shear pro¬ 
ducing a marked modification of the potential pattern only in 
the boundary region. Recognition of this fact by PrandtU 
early in the present century remains one of the most important 
contributions that has been made to modern fluid mechanics. 

While Prandtl restricted his analysis to fluids of “low vis¬ 
cosity/’ it should be apparent that the actual magnitude of 
the viscosity is not a satisfacd^ory criterion unless the velocity, 
density, and characteristic linear dimensions of the flow are also 
specified. That is to say, if velocity, kinematic viscosity, and 
length are combined in the dimensionless form R = YLjv^ a 
given value of this parameter may represent a wide range in the 
absolute magnitudes of all three variables. Only if the numera¬ 
tor of this fraction is large in comparison with the denominator 
will those conditions assumed by Prandtl actually exist; other¬ 
wise, the boundary influence may extend an appreciable distance 
into the flow, whereupon the problem becomes primarily one of 
viscous shear, as treated in Chapter VIIL 

^ Prandtl, L., tlber Flussigkeitsbewegung bei sehr kleiner Reibung, 
Verhandlungen des 111, Intern, Mathematiker-KongresseSy Heidelberg, 1904. 

192 
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At the boundary itself the velocities of boundary and fluid 
must always be identical. If the viscous action is confined to 
the boundary vicinity, the fluid velocity must then change from 
this limiting value to that of the surrounding flow over a rela¬ 
tively short distance, while within this zone the work done by 
the viscous stresses opposing the relative motion will entail 
dissipation of energy in the form of heat. As may readily be 
seen, however, continued reduction of (‘iiergy as tlu? flow pro¬ 
gresses along th(^ boundary must, be accompanied by a steady 
growth in thickness of the laycu* that is notic'cably affected by 
the viscous action. Moreover, it should be possible to express 

y| h-i/H 
/Arbitrary limit of 
boundary layer. 

Boundary.^ 

- 

Fig. 84,—Houndary-layer growth in the direction of flow. 

the rat(i of change' of momentum involved in this process in 
t,erms of the boundary resistance and thc^ pressure gradient. 

In Eq. (17) there is aln^ady available a geneu’al statement of 
the momentum principle applicable to a finite region of the flow, 
in terms of the velocity distribution around the borders of this 
region. If the fluid is assumed to move past a stationary 
boundary, it is evident that the veloidty at the boundary itself 
must always be zero, increasing outward to the v(4o(aty V of the 
undisturbed flow, as shown in Fig. 84. Equation (17), written 
for the direction x parallel to the boundary, may be applied to 
two successive normal sections a distance dx ai)art by expressing 
the differential rate of discharge dQ as the product of the variable 
velocity component the increment of distance dy normal 
to the boundary, and some width of flow h. Moreover, the 
change in velocity over the distance dx may be related con¬ 
veniently to the velocity of the undisturbed flow by writing 

^dx = ~ dx. Then the force producing this rate 

of change of momentum will have the form . 
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dx h Vx dy 

in which 5 (delta) signifies the normal distance to the undisturbed 
flow. This expression may be written more significantly as 
follows, the force per unit area being pla(‘ed equal to t he combined 
effect of pressure gradient and viscous shear at the boundary: 

d:f\ 
h dx 

= ^ dx + ro 
dx dx\ 

r 
P I 
Jo 

{V - t;.) dy (126) 

Mathematically speaking, the effect of viscous shear along a 
boundary surface must always extend an infinite distance into 
the flow—that is, 5 = oo at every normal section, the magnitude 
of the viscous influence at any distance y being indicated by the 
difference between the velocity of the undisturbed flow and the 
actual velocity at the point in question. Nevertheless, as 
pointed out by Prandtl, the zone of appreciable variation in Vx 

is, under certain conditions, relatively narrow; this region is 
generally known as the boundary layer, and the symbol 5 is used 
to denote its apparent thickness. 

It is often of practical significance to exprciss the magnitude 
of the boundary resistance in terms of the kinetic energy of the 
undisturbed flow, through use of a coefficient of local ^T’riction’^ 
Cf—that is, 

pF2 
TO = Cf-^ 

whence 
_ _ To 
^ p7V2 

(127) 

Again, if the total resistance over a given portion of the boundary 
is divided by the corresponding boundary area, the resulting 
average intensity of shear may be referred to the kinetic energy 
of the undisturbed flow through a mean coefficient C/i 

(128) 

Equations (126), (127), and (128) are obviously quite general 
in form. Nevertheless, evaluation of the intensity of shear or 
the magnitude of either the mean or the local coefficient of 
resistance will require further knowledge of the velocity distribu- 
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tion. Such information should be available from the basic 
equations of motion. 

48. The Laxmnar Boundary Layer. From inspection of the 
Navier-Stokes equations one may at once draw certain important 
conclusions as to the relative order of magnitude of the several 
terms in the case of laminar motion in a thin boundary layer. ^ 
Again assuming the x axis parallel to the boundary and in the 
direction of flow, and the y axis normal to the boundary, these 
equations—together with that of continuity—will have the 
form 

dVx 

dx + Vy 
dVx 

dy 
= 

1 dp 
p dx + "( 

O^ Vx 

dx^ + 
~dyU 

(129a;) 

1 • s 6 • 1 a 
1 
s 

dVy 
+ Vy 

dVy 

dy 
= 

1 dp 

p dy ^ dx^ + 
dyU 

(1292/) 

1 1 
dVx dVy 

= 0 
dx dy 

Since the thickness of the boundary layer is relatively small, 
it is evident that linear characteristics of the flow in the direc¬ 
tions X and y will be definitely of a different order of magnitude. 

3v 
For instance, if Vs and are considered to be numerically 

ox 
dv 1 

of the order 1, then —- must be of the order -• 
dy d 

relative orders of magnitude as simple proportionalities. 

Writing such 

dv 
dx 1, 

dVz 1 1 Vx . 1 
whence -^-.7* 1 and 

dy b dx^ 
* .. •. dVy V xd 

of continuity, 

d^Vx 1 
62* 

dx 

dy^ 

1, whereupon Vy 

From the equation 

^2 Vu 1 
5, 

dy- 

dVy Si d^Vy 

dx ^ dx^ 
Inasmuch as no single term of either of the two equations may 

be of greater order than the greatest of the other terms in that 
equation, it will be seen that the kinematic viscosity must be 

^Blasius, H., Grenzschichten in Fliissigkeiten mit kleiner Reibung, 
Z. Math, und Physik, vol. 56, 1908. 
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of the same order as the square of the boundary-layer thickness. 
That is to say, 5 \/p, from which it follows that the lower 
the kinematic \dscosity of the fluid, the smaller should be the 
effect of a laminar boundary layer upon the flow; the limit 
p == 0 then denotes the type of motion discussed throughout 
Part One. Moreover, since the largest terms in Eq. (129?/) are 
of lesser order than the largest in Eq. (129i:), the pressure 
gradient dpjdy must be insignificant in comparison with dp/dx; 

in other words, the pressure intensity at the surface of the 
boundary cannot differ appreciably from that outside of the 
boundary layer. Under such circumstances, the boundary flow 
conditions are fully described by the momentum relationship 
[Eq. (126)], the equation of continuity, and the following modified 
form of Eq. (129x): 

Vx 
dVgf 

dx 

1 dp Vx 
(130) 

These equations apply correctly to curvilinear—as well as 
rectilinear—motion so long as the radius of curvature of the 
boundary is great in comparison with the boundary-layer thick¬ 
ness. If the boundary is planar, moreover, it is obvious that 
since the pressure intensity in the undisturbed flow must be 
constant, there can be no pressure gradient in the boundary 
layer in either direction. Such conditioiia- are4vell illustrated by 
flo'w ^oT'an otherwise undisturbed fluid parallel to a thin flat 
plate, for a laminar boundary layer will form at the leading edge 
of the plate, growing steadily in thickness with distance from 
the point of formation. The distribution of velocity and the 
intensity of shear at any section of this boundary layer may be 
found through solution of the foregoing differential expressions 
for the following boundary conditions: Vx — 0 = Vy at ^ = 0; 
Vx V and Vy = 0 y = d. The exact solution is, however, 
rather complex, but a significant first approximation may be 
obtained through two simplifying assumptions. 

The first assumption, substantiated by experimental data, 
is that the curves of velocity distribution at successive normal 
sections of the flow may be represented by a single analytic 
function of the form 
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The second assumption must determine the form of this function. 
Since a parabolic distribution curve is typical of uniform laminar 
motion, it would seem the most logical one to choose for this 
first approximation. Thus, if the vertex is presumed to lie a 
distance y — 5 from the boundary. 

52 

Then, from Equation (126), 

To = 
dx 

But To must also equal tln^ product of ju and the velocity gradient 
at the wall, whence 

To = M 
dVx 

dy 

After eliminating to, integration will yield the thickness 5 for 
any cross section of the boundary flow; thus, 

from which the intensity of shear at the boundary may now be 
obtained: 

T„ = 0.365^^-^ 

Owing to the fact that the second assumption gave the quantity 
8 a definite finite magnitude, and since Vx = V at the point 
y = 8, the foregoing approximate equations must be expected to 
provide values which deviate somewhat from those obtained 
through either rigorous analytical solution or experimental 
measurement. Actually, Vx will equal V only as 8 becomes 
infinitely great, despite the fact that practically the entire growth 
of Vx will take place within a short distance of the boundary. 
The exact solution, first obtained by Blasius, provides the curve 
of velocity distribution shown in dimensionless form in Fig. 
85; the approximate curve has been added for purposes of 
comparison. 

If 8 in the exact solution must have a magnitude of infinity, 
it is evident that some other definition of effective boundary- 



198 MECHANICS OF FLUID RESISTANCE [Chap. X 

layer thickness must be found. One may, for instance, 
choose as 8 that value of y at which the ratio Vx/V has attained 
some arbitrary magnitude close to unity (for instance, 0.99). 
Again, one may define 8 in terms of the velocity gradient at the 
wall, by extending the tangent from this point of the curve until 

V 
Fig. 85.—Dimensionless plot of velo(rity distribution in the laminar boundary 

' layer. 

it intersects the vertical = F, as indicated in Fig. 86a. By 

far the most significant result is obtained by using the mean 
ordinate of the velocity curve; designating this parameter by the 
symbol 6*, 

Since the shaded areas in Fig. 866 are therefore equal, 8* thus 
represents the distance the stream lines of the surrounding flow 
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are shifted away from the boundary as a result of the redistribu¬ 
tion of velocity in the region of app)reciable viscous shear. 
Blasius found for this characteristic parameter the magnitude 

and for the intensity of boundary resistance 

TO = 0.332^1"-^ 

(132) 

(133) 

Two essential facts are to be noted in these equations:^ The 
boundary-layer thickness is directly proportional, and the 
intensity of boundary shear is 
inversely proportional, to the 
square root of distance from the 
leading edge, as shown schema- \ 

tically in Fig. 87. It must be 
recalled, nevertheless, that such 
relationships are not valid in the 
immediate neighborhood of the Fig. 87.—Variation of 8 and ro 

leading edge itself, for here the di- laminar boundary 

mensions 8 and x approach the 
same order of magnitude—a condition contrary to that upon 
which the entire solution was based. 

Since boundary-layer development involves both mass accel¬ 
eration and viscous shear, designation of the conditions of motion 
by means of a characteristic Reynolds number is most appropri¬ 
ate. The velocity of the undisturbed flow and the kinematic 
viscosity of the fluid are pertinent variables, while either the 
boundary-layer thickness or the distance from the leading edge 
is a suitable linear dimension. If the latter length is chosen, 
Eq. (132) may be written in the form 

l,73x 

VR* (134) 

Evidently, R». = 1.73\/R^, whence 

1 For experimental verification of Blasius^ solution see Burgers, J. M., 
Proc. First Intern, Congress Appl, Mech,f Delft, 1924; Hansen, N., Die 
Geschwindigkeitsverteilung in der Grenzschicht an einer eingetauchten 
Platte, Z, angew. Math. Mech.y vol. 8, no. 3, 1928. 
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0.332 0.574 
(135) 

from which the coefficients of local and mean boundary resistance 
may be obtained as follows: 

Cf = 2c 

^64 ^ 1.149 

1.328 2.298 

Vr. 

(136) 

(137) 

.It is evident that both c/ and Cf decrease as the boundary layer 
develops, owing to the fact that the velocity gradient at the 
wall (and hence the intensity of boundary shear) beconu‘s smaller 
as the layer grows in thickness. 

49. The Turbulent Boundary Layer. Laminar flow at a 
Reynolds number greater than a certain minimum critical value, 
readers will recall, may be unstable in the pix^sence of disturbances 
of one magnitude, yet stable for disturbances of lesser magnitude; 
the disturbance capable of producing instability decreases with 
increasing values of R. In the case of uniform motion cited at 
the time this fact was discussed, both the kinematic viscosity and 
the characteristic linear dimension of the boundaries remained 
constant, while the change in R was produced by varying the 
mean velocity of flow. In the development of the laminar 
boundary layer, on the other hand, V and v do not vary, the 
change in the Reynolds number resulting from a steady increase 
in the values of b and x. As the region of appreciable viscous 
influence steadily grows in thickness with distance from the 
leading edge, such motion will eventually become unstable for 
disturbances of magnitude varying inversely with Rar or R^^e. If 
such disturbances occur, in the neighborhood of the correspond¬ 
ing critical section secondary fluctuations will develop, spread¬ 
ing rapidly throughout the boundary layer with increasing values 
of X. After a relatively short transition zone the boundary 
layer will display the characteristic velocity pattern of true 
turbulence, and further growth of b must be described according 
to a different functional relationship. 

Experimental investigations indicate that the lower critical 
Reynolds number for the boundary layer is by no means so 
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clearly defined as in the case of uniform flow in circular tubes. 
Indeed, the transition has been found to begin at values of R* 
ranging between approximately 10^ and 10®, whereas if the lead¬ 
ing edge of the plate is not well sharpened, or if the approaching 
flow is not truly undisturbed, the boundary layer may be a 
turbulent one from the outset. 

Under any circumstances, mean conditions at a given section 
can no longer be described satisfactorily by the equations of 
Navier-Stokes. Although the equation of momentum written 
in terms of v is still very useful, the Re3T:iolds equations introduce 
such additional complexities that exact solution of the turbulent 
boundary layer has not yet been accomplished. Moreover, 
since the temporal mean velocity, as well as the components of 
fluctuation, must still be zero at the bound¬ 
ary, it is to be expected that a very thin 
laminar sublayer will exist at the boundary 
surface; careful measurements indicate 
that this is actually the case. It is there¬ 
fore apparent that the velocity-distribu¬ 
tion curve (Fig. 88) must include a film of 
purely laminar flow, a region in which the 
turbulent process is fully developed, and a 
transition zone between the two in which 
the motion is neither laminar nor yet completely turbulent. 

Nevertheless, it is not unreasonable to assume once again that 
the velocity-distribution function is the same over suctcessive 
cross sections of the boundary layer. In the very thin laminar 
sublayer, the velocity may be considered, with negligible error, 
to be directly proportional to the normal distance from the 
boundary; that is, 

(138) 

Laboratory data indicate that the velocity profile for the turbu • 
lent region may be approximated by the exponential function 

^ ^ (139) 

Of even more importance, it has been found that the intensity 
of boundary shear may be written in the exponential form 

C pF2 _ (7 pF2 

(Ffi/*')” '2 - R," "2 

Fig. 88.—Velocity distri¬ 
bution in the turtiulent 
boundary layer. 

(140) 



202 MECHANICS OF FLUID RESISTANCE [Chap. X 

in which C is simply a constant of proportionality. The expo¬ 
nents m and n are found to bear the relationship 

2 — n 
m =- 

n 

a fact which might be surmised after noting that in Eq. (140), 
for constant values of tq and 

2-n 

5 ^ V’ n 

Without regard to the actual velocity function, it will readily 

be seen that the momentum integral Vx (V — Vx) dy may be 

written in the form a pF^ 6, in which a is a dimensionless con¬ 
stant depending in magnitude upon the curve of velocity dis¬ 
tribution.^ Introducing the foregoing expression for tq into the 
momentum equation, 

a pF2 ^ __9.  
^ dx {Vb/vY 2 

If the factor a and the constant of proportionality are combined 
in the term C'. this relationship will then have the simplified 
form: 

Integrating, and assuming 5 = 0 when a: = 0, 

b = C'x (rf 

If this value for b is substituted in Eq. (140), the following 
three essential relationships are obtained; 

1 This development closely follows that presented by von Kdrmin in 
‘^Turbulence and Skin Friction.'* 



Sec. 49] CHARACTERISTICS OF THE BOUNDARY LAYER 203 

fittt 

C/ = (n + 1) C/ = (n + 1) —— 

(143) 

(144) 

In the case of laminar flow, n will have the value unity, under 
which conditions Eqs. (141-144) will become identical in form 
with those just discaissed in con¬ 
nection with the laminar bound¬ 
ary layer. Numerous laboratory j 
measurements of velocity dis- a 
tribution and boundary shear in 
the case of turbulence indicate 
that n will have a magnitude of 
34 lor Reynolds numbers just Fuj. 8<^.--Variation of 6 and TO with X 

above the critical, in which case h turbulent boundary layer. 

will vary with the four-fifths power of the distance from the lead¬ 
ing edge (Fig. 89), while 

0.059 pV^ 

0/ 

Cf = 

0.059 

0.074 

(145) 

(146) 

(147) 

As indicated in Fig. 88, the turbulent fluctuations produce a 

marked change in the velocity curve, becoming morci uni¬ 
formly distributed throughout the greater part of the boundary 
layer. Consequently, in the boundary vicinity the gradient 
must be much steeper, particularly in the laminar sublayer. 
And since the gradient at the boundary itself, which actually 
determines the magnitude of to, is within the region of purely 
laminar motion, one can readily understand the reason for the 
increase in to when turbulence sets in. Furthermore, the 
intensity of the turbulence will increase with the Reynolds 
number; as a result, the greater the value of Rx, the more uniform 
will be the relative velocity distribution in the region of turbulent 
mixing. Yet since d also increases with Rx, the velocity gradi¬ 
ent at the boundary actually grows smaller; to thereby varies- 
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inversely with However, if the form of the velocity curve 
is thus to change with the Reynolds number, it is apparent that 
n cannot remain constant; although it is still approximately 
equal to well beyond R^: = 10^, it gradually decreases with 
ascending values of R^. The limit n = 0, therefore, would 
correspond to a Reynolds number api)roaching infinity. 

Dissatisfied with the empirical nature of this development, in 
1930 von Kdrmiln extended his investigations leading to Eq. (123) 

Fig. 90.—Coefficient of resistance for smooth plates as a function of the Reynolds 
number. 

to the case of the turbulent boundary layer, obtaining the general 
expression 

— constant + - In (Ra, c/) (148) 
K 

which applies equally well to the (coefficient C/. With numerical 
constants found experimentally, this becomes, for C/, 

1 
1.7+ 4.15 log (R.C/) (149) 

Although the essential details of this derivation will be dis¬ 
cussed in a later chapter on pipe flow, in Fig. 90 the reader will 
find comparative plots of Eqs. (137), (147), and (149) (Curves I, 
II, and III, respectively), from which may be obtained a general 
picture of boundary-layer development. 
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60. Separation and the Turbulent Wake. Three general 
characteristics of the boundary layer have been discussed in the 
foregoing pages; (1) within a very small distance normal to the 
boundary the velocity increases from zero to practically that of 
the corresponding potential motion; (2) th(^ pressure intensity 
throughout the boundary layer is governed by the surrounding 
flow; (3) curvature of the l)Oundary is of no consequence if the 
radius of curvature is great in comi)arison with the boundary- 
layer thickness. To these must now be added a fourth character¬ 
istic, the importance of which cannot be overemphasized. 

Columbia 

Fig. 91.—Departure from pattern of potential flow at the edge of a thin plate. 

So long as the pattern of the corresponding potential motion 
indicates either a constant or a steadily increasing velocity at 
the outer border of the boundary layer, the boundary pressure 
gradient in the direction of flow will be equal to or less than zero. 
Growth of the boundary layer will then proceed as described, 
energy dissipation taking place at the expense of the kinetic 
energy of the boundary flow. If, on the other hand, the potential 
pattern requires deceleration along the boundary, the decrease 
in velocity must be accompanied by a corresponding increase in 
pressure intensity, according to the basic principle of energy. 
Needless to say, this positive gradient would have to exist within 
the boundary layer as well as in the surrounding region of 
potential flow. 

Nevertheless, energy once dissipated in the form of heat 
cannot be regained by the flow, from which it follows that the 
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kinetic energy lost in the growth of the boundary layer is no 
longer available for restoration of pressure; obviously, such 
restoration is essential if the potential motion is to continue. 
In other words, the existence of a boundary layer must tend 
to prevent any deceleration in the boundary region normally 
indicated by the pattern of potential motion. From this 
conclusion it would seem clear that flow under given geometrical 
boundary conditions is physically possible only if the potential 
pattern so modifies itself that no deceleration is required. This 
seemingly paradoxical statement merely signifies that the 
potential flow net must detach itself from the boundary at the 

Colurabia 

Fig. 92.—Departure from pattern of potential flow at the boundary of a cylinder. 

point where deceleration becomes api)reciable, and beyond that 
point enclose a region of discontinuity instead of a solid boundary. 

Separation of the flow from a boundary surface necessarily 
involves a complete change in the velocity distribution within 
the layer. This is indicated schematically in Fig. 93, in which 
conditions within the boundary layer are clarified by enlarging 
the scale of normal distance y. The point at which separation 
takes place is seen to be a point of stagnation on that stream line 
which divides the oncoming flow from the reverse flow of the 
region of discontinuity. As this point is approached, the velocity 
profile displays a gradual change in shape, the velocity gradient 
in the y direction becoming zero at the actual separation point. 
That the change in direction of curvature of the velocity profile 
is definitely * connected with the pressure gradient may be seen 
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from Eq. (130), written for the boundary (z.e., — 0 = Vy 

when y — 0): 
d'^Vr. _ dp 

^ dy- dx 

Since dvxldy indicates the slope of the velocity profile, dhx/dy‘^ 
must show the rat(^ of change of this slopf^ with distance normal 
to the boundary. A reversal in curvature of the profile will 
then occur when d'^Vx/dy^ changes sign—simultaneous with a 
like change in sign of the ]jr(\ssure gradi(ait. 

It must not be concluded, however, that separation will 
invariably take place at the point, at which th(^ pressure' gradi(ait 
of the original potential motion Ih'coivu's positive. Since 
separation produces a completes modification of the potential 

Fig. 03. - Separation of flow from a eiirvod boundary; vortical scale is enlarged. 

pattern, the force distribution in the resulting state of motion 
cannot be found directly from the geometry of the boundary 
surface—indeed, it depends to a considtu'abh'! extent upon the 
stage of developiiK'nt already attained by the boundary layer 
in the ui)strcam region. Owing to the more uniform velocity 
distribution in the turbulent layer, moreover, tiie latter is far less 
susceptible to separation than a layer in which the motion is still 
laminar; that is, a laminar boundary layer would lead to separa¬ 
tion at an earlier point than a turbulent layer. Regardless of 
the exact point at which separation may be expcH'ded, it may 
definitely be stated that a region of appreciable deceleration is 
certain to cause separation if a boundary layer of either sort has 
formed. That the existence of a boundary layer actually is 
essential to separation was proved experimentally by Prandtl, 
who eliminated the effect in a diverging conduit by carefully 
drawing off the fluid of low velocity at the boundary. 



208 MECHANICS OF FLUID RESISTANCE [Chap. X 

The pattern of stream lines in Fig. 93 is typical of separation 

at relatively low values of the Reynolds number—in fact, the 
lower R, the more orderly and steady the flow in the region of 

discontinuity. While at low Reynolds numbers reverse flow 
displays the essential characteristics of laminar motion, as R 
increases, this region becomes even more susceptible to dis¬ 
turbing influences than the boundary layer itself. Once insta¬ 
bility occurs in the wake of the boundary, the vortex that forms 
in the zone of reverse flow is swept downstream, whereupon 
another quickly forms and the process repeats itself. The 

rapidity of this intermittent action, as well as the speed of 
rotation of the vortex filament, increases with the Reynolds 
number. It is evident that such unsteady vortex motion in the 
region of separation must further modify the pattern of the 
surrounding flow. And since the interaction of these vortices 
rapidly produces true turbulent motion in the wake, the energy 
transfer of the turbulent process must lead to continuous growth 
of the wake with distance from the point of formation, the 
fluctuations thereby decaying’^ as a result of viscous action. 

Similar to conditions within the thin boundary layer, the mean 
pressure intensity within the turbulent wake is essentially the 
same as that of the surrounding flow, although the instantaneous 
magnitude of p depends upon the instantaneous velocity dis¬ 
tribution within the vortex. Since the initial point of separation 
occurs in the region of lowest boundary pressure, it follows that 
the pressure intensity will remain at this low value along those 
portions of the boundary in contact with the wake. Further¬ 
more, it is evident that the continual formation of vortices at 
the beginning of the region of discontinuity must represent a 
steady drain on the energy of flow. Thus, the phenomenon of 
separation not only modifies the force distribution along the 
boundary, but also results in energy loss to a marked degree. 



CHAPTER XI 

FLOW AROUND IMMERSED BODIES 

61. Fundamental Concept of Drag. So long as the flow 
remains irrotational, a submerged body moving steadily through 
a fluid of constant density will experience no resistance to 
motion, for the resultant of the pressure distribution over the 
surface of any body in potential flow can never have a component 
in the direction of motion. Since the equations describing 
such motion involve only those forces due to fluid pressure, 
the resistance actually encountered in the movement of immersed 
bodies is evidently due either directly or indirectly to the influence 
of fluid viscosity. 

From foregoing chapters, it will be apparent to the reader that 
viscous action may produce three essentially different types of 
resistance. At very low Reynolds numbers inertial effects 
caused by steady movement of a body are completely secondary 
to those of viscous stress, the latter then extending a great 
distance into the surrounding flow and causing more or less 
widespread distortion of the flow pattern; this type of resistance 
is known as ^Reformation drag.^' At much higher Reynolds 
numbers the region in which appreciable deformation occurs is 
limited to a thin fluid layer surrounding the body, the resulting 
shear along the boundary surface (regardless of whether the 
boundary layer is laminar or turbulent) then producing what is 
called surface drag.^^ Finally, if the form of the body is such 
that separation occurs, the low intensity of pressure in the wake 
leads to a resultant force which opposes the motion; since the 
magnitude of this force varies with the shape of the body, it is 
customarily termed ‘^form drag.^^ The latter is, however, a 
somewhat misleading expression, for the form and position of 
a body also determine to some extent the magnitude of the other 
two types of resistance. 

Under favorable conditions form drag itself may reach such 
proportions as to reduce viscous stresses to relative insignificance* 
So far as form drag alone is concerned, one may distinguish 

209 
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three different—though progressively related—types of body 

contour: (1) That in which the point of separation is determined 

almost wholly by angularity of profile, a thin flat plate normal 

to the flow l^eing the simj)lest illustration of this case. (2) That 

in which the surface curvature is apprec'iable, yet gradual enough 

for the actual point of separation to be dcdx'rmined in part by 

conditions within th(^ boundary lay('r; the si)liei’e is an ele¬ 

mentary example of this type. (3) d"hat of such very easy 

curvature that the i>oint- of separation occurs close to the rear, 

the size of the wake tliereby being reduced to a minimum as in 

the case of the streamlined body. Evidently, there must exist 

a gradual transition from one type to th(^ next. It should also 

be obvious that form alone is not a sufficient geometrical 

criterion, for orientation with resj^x^'t to direction of rnotioTi can 

play an important role; for instance, a thin flat plate moving 

parallel to its own plane reprc'sents the ideal limit of streamlining, 

although it presents extreme boundary angularity when turned 

through 90°. 

If a boundary of the fluid exists in the neighborhood of the 

relative motion, additional compk'xities may be expe(*ted. A 

solid boundary, for example, will increase deformation drag 

through transmitted shear, or will alter the pressure distribution 

when inertial effects are involvc^d. If the boundary is a free 

surface, wave motion may be produced, and thercd)y require 

additional expenditure of (‘nc.Tgy; such wave resistance is an 

essential part of the total resistance eiicountei’ed by a moving 

ship. On the other hand, elastic waves will be propagated if a 

body moves through a fluid with a velocity greater than that 

of sound, again augmenting the drag. Such phenomena as 

these must be excluded from the following presentation. 

The actual resistance encountered by an immersed body will 

then depend only upon the Reynolds number characterizing the 

motion and upon the geometrical form and orientation of the 

body. Dimensional analysis of the several variables involved 

in the general phenomenon will lead to the following expression 

for the resultant force opposing motion: 

, form^ /oF* 

The general form of this equation was first determined by 

(VL 
- 
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Newton, although through imperfect analysis of the actual 
mechanism of drag. Newton reasoned that the resisting force 
must be proportional to the rate at which the momentum of the 
fluid is increased by the passage of the body; <p would then 
necessarily be constant for a given body form. Moreover, such 
conditions would require a steady increase in the momentum 
of the fluid—a condition possible in non-viscous flow only if the 
body undergoes continuous acceleration. Actually, the only 
quantity which increases in steady motion is the amount of flow 
energy which has been transformed into heat through viscous 
shear. 

The basic drag relationship is generally written in the more 
convenient form 

F = <p{^, form) = CdA"^ (150) 

in which A represents the projected area of the body on a plane 
normal to the direction of motion, whereas is a variable 
coefficient of drag: 

= .p(R, form) = (151) 

Only in the most elementary cases of deformation drag has 
it been possible to determine Cd analytically for certain basic 
body forms, although application of the boundary-layer equa¬ 
tions to problems of surface drag of streamlined bodies has 
yielded quite satisfactory results. Cases of motion involving 
separation and the formation of a wake have been attacked from 
various angles, but such methods have provided at best only 
qualitative indications. Quantitative study of drag, therefore, 
has remained largely experimental, although analytical methods 
are still needed to systematize, explain, and extrapolate labora¬ 
tory measurements. 

Widespread interest in drag first arose among ship designers, 
since surface and form resistance account for an appreciable 
part of the total resistance of surface craft. Aeronautical 
engineers further stimulated drag investigation, for a knowledge 
of resistance plays an even more important role in the design of 
craft in which only very small “factors of ignorance^^ are permis¬ 
sible. In recent years the magnitude of wind action on such 
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stationary structures as buildings and bridges has been the 
subject of further resistance investigations, while the hydraulic 
engineer is beginning to realize that drag phenomena are to be 
encountered in practically every type of flow with which he deals. 

Since the mechanism of drag is essentially the same in all 
of these fields, the methods of approach to the general problem 
vary only slightly. The magnitude of the total resistance for 
a given body form is usually determined experimentally as a 
function of R, either in the wind tunnel or the towing tank, 
the body being held stationary in the first case, and moved with 
constant velocity in the second; needless to say, bodies may be 
moved through still air, or suspended in moving water, with 
similar results. Practical considerations have limited fluid 
media to air and water, except in special instances, although the 
variable-density wind tunnel has enabled greater latitude in the 
parameter R by using air under high pressure. In any case, 
the total resistance is measured by some form of balance, the 
pressure distribution over the surface of the body being deter¬ 
mined piezometrically whenever desired; velocity distribution is 
generally of secondary importance. From these data the 
mechanics of the drag phenomenon may be studied in detail.^ 

Since the fundamental variation of Cd may best be under¬ 
stood through analysis of the elementary profiles, in the following 
pages considerable attention will be paid to the drag of spheres, 
cylinders, flat plates, and airfoil sections, followed by a limited 
discussion of the more complex cases. Application to problems 
of flow in closed and open conduits will be found in succeeding 
chapters. 

62. Resistance of Spherical Bodies. Stokes was the first to 
determine analytically the deformation drag encountered by a 
sphere falling steadily through a fluid as a result of its own 
weight. 2 Proceeding from the Navier-Stokes relationships, 
and assuming that the terms for convective acceleration could 
be ignored completely in comparison with those for viscous shear, 
he ultimately obtained the equation 

' The reader will find abundant experimental material in the numerous 
Technical Reports and Memoranda of the National Advisory Committee 
for Aeronautics. 

* Stokes, G. G., Cambridge Trans.y vol. 9; Collected Papers,” vol. Ill, 
See Lamb, “Hydrodynamics,” pp. 597-604, or Prandtl, “Aerodynamic 
Theory,” yol. 3, pp. 71-75, 
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f (7. - 7/) = ^ (152) 

in which r is the radius of the sphere and (7* — 7/) the difference 
between the specific weights of sphere and fluid. 

Since the resultant force upon the body must equal the 
specific-weight difference times the volume of displaced fluid, 
Stokes^ expression may be given the following form, correspond¬ 
ing to that of Eq. (150): 

F = (ye - ys) = dw^rV = A (153) 

fj- 

Evidently, introdu(*tion of p is merely a convenient means to an 
end, since true deformation drag is independent of fluid density 
(inertial effects being negligible) and varies with the first power 
of the velocity. It is now apparent, however, that under these 
circumstances the coefficient of drag will have the magnitude 

94. 
C/> - ~ (IM) 

The Stokes relationship has found extensive application in 
the study of the rate of settlement of very small particles of solid 
matter through liquids and gases. Nevertheless, it must be 
noted that in the case of deformation drag the proximity of 
boundary surfaces will markedly augment the resistance—such 
effects being measurable even for boundary distances of con¬ 
siderably greater order than the diameter of the particle. These 
effects may be taken into account through use of a correction 
factor determined analytically by Laden burg with slight modifi¬ 
cation of the second numerical term, as noted by Fax^n,^ this 
factor is of the form 

for a sphere moving along the axis of a cylinder of diameter L. 

iLadenburq, R., Ueber den Einfluss von Wanden auf die Bewegnng 

einer Kugel in einer reibenden Flussigkeit, Ann. Physik^ vol. 23, 1907. 

*FAx:j6jr, H., “Einwirkung der Gefasswande auf den Widerstand gegen 
die Bewegung einer kleinen Kugel in einer z^hen Fltissigkeit.'’ Uppsala 

1921, 
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It has been pointed out by Oseen and others that the accelera¬ 
tive terms negle(‘ted by Stokes are actually of lower order than 
those for viscous stress only in the neighborhood of the body, 
whereas at a considerable distance the situation is quite the 
reverse. Oseen, therefore, attempted an improvement^ upon 
the Stokes analysis by retaining certain of the neglected terms, 
with the approximate result: 

Goldstein,2 in turn, obtained the following exact solution of 
Oseen^s analysis: 

Cc = ^ (l + R - R2 + 20^480 R" - • • • ) (156) 

It is evident that both the Oseen and the Goldstein equations 
approach that of Stokes as R becomes less than about 0.1. 
Indeed, the Stokes relationship has been proved valid experi¬ 
mentally up to this limit. Oseen’s expression yields good results 
somewhat beyond that of Stokes, whereas Goldstein^s is trust¬ 
worthy to approximately R = 2. 

With increasing values of R, marked deviation from experi¬ 
mental evidence is shown by all three equations. Although 
slight discrepancies at lower Reynolds numbers may be attributed 
to the simplifying assumptions regarding inertial effects, the 
latter become of paramount importance as the region of apprecia¬ 
ble viscous deformation is gradually restricted to the immediate 
neighborhood of the boundary surface. But at the same time 
that a true boundary layer develops, the rapid deceleration of 
flow toward the rear of the sphere also tends to produce boundary- 
layer separation. The resulting wake behind the body is at 
first laminar; but as the Reynolds number increases, flow in the 
wake becomes unstable, and finally the body leaves in its course 
an expanding trail of eddies. Under such circumstances, the 
boundary resistance over the front surface of the sphere is 

1 Oseen, C. W., *‘Neuere Methoden und Ergebnisse in der Hydro- 
dynamik,^^ Akademische Verlagsgesellschaft, Leipzig, 1927. See Lamb, pp 
608-617, or Prandtl, pp. 75-80. 

* Goldstein, S., The Steady Flow of Viscous Fluid past a Fixed Spherical 
Obstacle at Small Reynolds Numbers, Proc, Boy, Soc» {London) t A, voL 123, 
1929. 
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comparatively slight, from which it may be expected that the 
drag coefficient will then be practically independent of R—hence, 
directly proportional to the square of the velocity. 

Such progressive developments in the resistance of the sphere 
may be followed closely in a plot of the drag coefficient against 
the Reynolds number, logarithmic coordinate scales showing the 
successive stages to best advantage. In Fig. 94 the Stokes 
relationship is indicated by a straight line with the slope — 1, 
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Fig. 94.—Drag coefficients for spheres and disks as functions of the Reynolds 
number. 

while the upper curves correspond to the equations of Oseen 
and Goldstein. Experimental data obtained by a great many 
investigators under a wide variety of conditions^ form the basis 
for the full line, which is seen to lie between Stokes^ and Gold¬ 
stein's plots as the region of deformation drag is passed. Devel¬ 
opment of the true boundary layer, as the inertial qualities of 
the motion become important, leads to the gradual upward trend 

^ Schiller, L., Fallversuche mit Kugeln und Scheiben, ^^Handbuch der 
Experimentalphysik,’^ vol. IV-2, Akademische Verlagagesellschaft m. b. H., 
Leipzig, 1932; Rouse, H., Nomogram for the Settling Velocity of Spheres, 
Annual Report^ Committee on Sedimentation^ National Research Council, 
1937. 
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in the experimental curve, whereas the growth of eddies in the 
wake produces the more abrupt rise. Once the wake is fully 
turbulent, the curve becomes essentially horizontal, indicating 
almost complete independence of the drag from the Reynolds 
number. 

Although surface resistance is then quite secondary to that of 
form, it must not be assumed that the boundary layer has no 
further influence upon the flow. So long as flow in the boundary 
layer remains laminar, ihe point of separation will lie somewhat 
ahead of the plane of maximum cross section; once the boundary 
layer becomes turbulent, however, tlie energy transfer within 
the turbulent region abruptly reduces the inndency toward 
reversal of flow, whereupon the point of separation is shifted 
toward th(i rear of the sphen^ The accompanying reduction in 
size of the turbulent wake decreases the areai of low pressure 
at the rear of the sphere^, the change in the pattern of the sur¬ 
rounding flow also reducing the magnitude of the pressure 
intensity, with a corresponding drop in the resistance to motion. 
Under normal conditions this change will occur at the value of R 
indicated in Fig. 94, but Prandtl has caused this to take place 
much earlier by fastening a wire around the front of the sphere 
to produce artificial turbulence in the boundary layer. ^ 

The fact must be emphasized that if such experiments are 
conducted with a stationary body and a moving fluid (as in 
the case of a wind tunnel), initial turbulence of the approaching 
flow will have a marked effect upon the measured drag, the 
magnitude of this effect depending upon the degree of turbulence 
and the Reynolds number of the mean flow. Moreover, surface 
roughness may also produce an earlier transition from the 
laminar to the turbulent boundary layer, and thus further 
influence conditions in the wake. These factors have not yet 
been investigated so systematically as to warrant more than 
general comment at this time. 

63- Drag Characteristics of the Cylinder. As will be seen 
from Fig. 95, the resistance coefficient for an extremely long 
circular cylinder, with axis normal to the direction of motion, 
varies with the Reynolds number in much the same way as that 
for a sphere. The differences in numerical values, as well as 

^ The change in size of the wake may be seen from the photographs in 
Hat© 14, of Peandtl-Tibtjens' ** Applied Hydro- and Aeromechanics.'^ 
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slight local changes in the function, merely distinguish parallel 
cases of two-dimensional and three-dimensional motion. Owing 
to mathematical difficulties, solution for the deformation drag 
of the cylinder at low values of R after the manner of Stokes has 
not proved possible, but Lamb^ has succeeded in obtaining an 
equation corresponding to that of Oseen, the form of which is 
shown by the broken line in the illustration. It is apparent, 

Fia. 95.—Drag coefficients fiir circular cylinders. 

however, that the curve for very small values of R is asymptotic 
to a straight line with the slope 

Because of the two-dimensional symmetry of the cylinder, 
the initial separation is evidenced by the formation of two sym¬ 
metrical vortices directly behind the profile; these vortices grow 
in size with increasing Reynolds number, and eventually reach 
such a stage of development that they pass off together into the 
wake, whereupon two more form to replace them. Under such 
circumstances, the wake will consist of a series of vortex pairs, 
as shown schematically in Fig. 96a, the velocity of the vortex 
system relative to that of the body being less than that of the 
surrounding fluid. 

Such a system is unstable, however, and at higher values 
of R the vortices begin to alternate in formation and in departure 
into the wake. Two-dimensional vortex trails of this nature 

^Lamb, '^Hydrodynamics,” pp. 614-616. 
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were studied analytically by von Kdrmdn/ without regard to the 
viscous stresses involved; he not only proved that the sym¬ 
metrical series of vortex pairs must be unstable to small oscilla- 

(a)*Unstable 

—(k?-^-^-^-^— 

-^--^-(Jv__ 

--^- 
-^- 

(b)-Stable 

Fig. 96.—Vortex trails. 

tions, but showed that alternate vortices (Fig. 966) will be stable 
if arranged according to the expression 

^ = i cosh“^ y/2 — 0.2806 
0 TT 

He obtained in addition an equation for the velocity of the 
vortex system, 

r 
V = -7= 

6\/8 

Although these expressions are in close accord with experimental 
measurement, it is apparent that they contain no reference either 
to the dimensions of the body producing the wake or to the 
relative velocity between the body and the undisturbed fluid. 

Fio. 97.—Instantaneous stream lines of the Kdrmdn vortex trail. 

It has been found, however, that if the magnitudes of the ratios 
b/D and v/V are determined experimentally, these relationships 
may be used to compute the drag of the long cylinder (and of 
other ^Hwo-dimeiisional” bodies as well) with a fair degree of 
accuracy. 

The cylindrical body lends itself very conveniently to visual 
and photographic studies of vortex behavior in the wake, the 

1 KXbmXn, Th. von, tJber den Mechanismus des Widerstandes, den ein 

bewegter Kdrper in einer Flttssigkeit erfahrt, Nctchr. Ges, Wise, ObUingm^ 

1911-1912. 
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flow pa1t(irn being made visible through introduction of finely 

divided particles of solid or fluid mattcir, such as aluminum flakes 

or dro})s of an immiscible oil. With satisfactory illumination, a 

short time exposure of relative motion at any Reynolds number 

Columbia 

Fig. 98.—Development of the wake behind a cylinder, 

will yield excellent instantaneous flow patterns, the direction 

of the stream lines and the relative magnitudes of the velocities 

being indicated by the short paths of the brilliantly lighted 

particles during the interval of exposure. In Fig. 98 are repro- 
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duced a series of photographs made in this way, which are 
qualitatively indicative of the conditions at various magnitudes 
of R. It must be remarked, however, that these pictures repre¬ 
sent the sequence of events as a body is accelerated from a state 
of rest, conditions in the wake then depending in part upon 

Columbia 

Fig. 99.—Kdrm&n vortex trails in the wake of a grid. 

development of the boundary layer with time. In Fig. 99, 
furthermore, the reader will find photographs of the vortex trails 
produced by the parallel bars of a grid. In one case (a) the 
camera moved with the grid, in the other case (6) remained at rest 
with respect to the undisturbed fluid; since the velocity of any such 
vortex system differs from that of either body or fluid, in neither 
case do the vortices yield patterns of steady motion. However, 
the relationship of the two velocity fields is clearly visible, as 
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well as the gradual dissolution of the vortex motion into true 
turbulence as the distance from the grid increases. 

Such unsymmetrical vortex development behind the cylinder 
must evidently give rise to a side thrust that continually reverses 
its direction. If the cylinder is not rigidly supported, it will 
tend to oscillate from one side to the other, in particular if its 
natural period of vibration is in resonance with the frequency 

P 
pvVz 

Fig. 100,—Pressure distribution around a circular cylinder. 

of the vortex formation (witness the tendency of telephone wires 
to ‘^sing^^ at certain wind velocities). 

If one consider only the mean distribution of pressure intensity, 
a very illuminating portrayal of the forces involved in the form 
drag itself is to be found in the accompanying reproduction of 
pressure measurements made by Eisner^ (Fig. 100). The 

relative pressure curve—the dimensionless parameter P 
pV^72 

representing the ratio of actual pressure to the stagnation pres- 

^ Eisner, F., ** Widerstandsmessungen an umstromten Zylindern,^^ 
Mitteilungen der Preussischen Versuchsanstalt fiir Wasserbau und 
Schiflfbau, Springer, Berlin, 1929. 



222 MECHANICS OF FLUID RESISTANCE [Chap. XI 

sure of the oncoming flow—under conditions of potential motion 
is seen to be symmetrical about both axes. In the subcritical 
range (z.e., for a laminar boundary layer) the relative pressure 
in the fully dciveloped wake is very low and extends over more 
than half the boundary. In the supercritical range, turbulence 

within the boundary layer has not only mad(^ the wake effectively 
smaller, but raised the relative pressure in this region. 

At either end of a cylinder of finite length the motion will 
necessarily be three-dimensional. In the end zone’s there will 

no le)nger be a region of high stagna¬ 
tion pressure in front of the cylinder, 
for the fluid temds to '^eak^' around 
the) emd into the region of low pres¬ 
sure in the wake. Evidently, the 
extent to which end effects modify 
the drag of ,the cylinder as a whole 
will depend largedy upon tl)e relative 
magnitudes e)f length and diameter. 
The larger the ratio D/L, the lower 
the value of Cd (refer to Fig. 101); 
on the other hand, as D/L approaches 
zero, conditions become more nearly 
tiiose already discussed. 

In Chapter V it was shown that 
the combination of circulation and 

parallel flow around a cylinder would produce a resultant 
pressure action normal to the direction of parallel motion. 
Such circulation may be effected in the neighborhood of an 
immersed cylinder by viscous shear if the cylinder is rotated about 
its axis, although the surrounding velocity field will not be iden¬ 
tical with that of potential motion. Nevertheless, simultaneous 

VcAj 
Fig. 102.—Coefficients of lift and 

drag for a rotating (cylinder. 
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tranHlation and rotation of a cylinder in a viscous fluid will 
actually result in a force vector having? components both parallel 
and normal to the direction of translation. Needless to say, the 
drag and side thrust are by no means independent of one another, 
indeed, the point of separation is shifted considerably on either 
side, since the fluid in the boundary layer tends to rotate with 
the body. Ex])erimental measuremenis of the two force com¬ 
ponents are customarily plotted as iudi(;ated in Fig. 102, Cl 
denoting the coefficicmt of side thrust or ^Mift.” 

64. Lift and Drag of the Airfoil. Although lift can be pro¬ 
duced on a symmetrical body such as the cylinder or sphere 
only by actual rotation of the body (note the tendency of a 

Fig. 103.—Circulation around an airfoil stariiiiK from rest. 

spinning ball to curve in flight), sf'paration at one side of an 
unsymrnetrical body will also result in (drculation, and thus give 
rise to a very useful normal forces component. Since such lift 
is the very basis of pcirformance in the case of an airplane wing 
or the blade of a turbine or propeller, efforts have long been made 
to develop body jirofiles having the maximum lift and the 
minimum drag coeffi(‘ients for the given conditions of flow. 
Proceeding with the Joukowsky profile, the airfoil has gradually 
been perfected, until today abundant information exists for a 
wide variety of shapes. 

A brief description has already been given of the Joukowsky 
transformation and the accompanying pattern of flow, mention 
having been made of the fact that the region of high velocity at 
the sharp trailing edge could be avoided by superposing upon the 
parallel motion a circulation of such magnitude that the flow 
would leave the trailing edge in a tangential direction. This is, 
in effect, what actually occurs. While the flow around an airfoil 
is truly potential at the instant motion begins, the very high 



224 MECHANICS OF FLUID RESISTANCE [Chap. XI 

velocity at the trailing edge immediately cauKses the formation 
of a starting vortex.” As the vortex develops, the point of 
stagnation on the upper boundary surface moves toward the rear 
and finally vanisluis at the trailing edge, yielding a velocity dis¬ 
tribution around the foil (higher above, lower below) that is fully 

characteristic of circulation. 
—1^^force ^ Moreover, the circulation of the 

/ starting vortex is exactly equal 
/ and opposite, so that around a 
/ closed curve including both 
/ vortex and airfoil (Fig. 103) the 
/ circulation will continue to 

1^ ' have a magnitude of zero—in 
perfect accord with Thomson's 

-to 80). 
_It is evident that the lift and 

<x-Angle of offack of the airfoil will depend 
F1«. I04.-Alrfoil oharactoriaties. Reynolds number of 

the flow as well as upon the form and position of the profile. But 
sin(;e su(;h foils are normally used at relatively high values of R, 
viscous resistance within the boundary layer is generally second¬ 
ary to the influence of form and position upon the point of separa¬ 
tion—and hence upon the lift and drag. 

Fig. 105.—Coefficients of lift and drag for a typical airfoil. 

From Fig. 104 may be seen the essential characteristics of a 
typical foil profile. Since the projected area as normally defined 
would change with angle of attack, it is customary to regard A 
as the product of chord and span. The coefficients Cd ctnd Cl 

then become 
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ApVy2’ ApVy2 

Unless these coefficients are considered to apply to an infinite 
width of foil (or to conditions at a given cross section), the fact 
that end effect may have a considerable influence upon the total 
lift and drag of a foil of finite span makes it essential to specify 
tffe aspect (span-chord) ratio for the airfoil so described. In 
Fig. 105, for instance, will be found plots of Cl and Cd as func¬ 
tions of angle of attack for a typical foil with an aspect ratio of 
5:1. The same information is presented more compactly in 
Fig. 106 in the form of a polar 
diagram, with Cl a function of 
Cd. 

From either diagram it will be t o 
apparent that increasing the o.8 

angle of attack will at first in- 
crease the coefficient of lift— 

0.4 
because of increased circulation 
—but at the same time the wake 

also becomes larger, and thus 0.04 0.08 0.i2 o.i6 0.20 

causes greater drag. Eventually, Co 
however, the point of separation 106.—Polar diaRram corre- 

, , f r J spending to Fig. 105. 
will have moved so far forward 
on the foil that further increase in the angle of attack can only 
serve to reduce the lift, the drag coefficient at the same time 
increasing rapidly. The relative magnitudes of lift and drag 
may be controlled over a wide range, through variation of the 
airfoil shape to meet the particular requirements of a given 
problem. Application of these elementary principles to aeronau¬ 
tics and to such hydraulic fields as propeller, pump, and turbine 
design may be found in standard references.^ 

66. Relative Drag of Miscellaneous Profiles. Since develop¬ 
ment of the airfoil proceeded from the simpler case of a flat 
plate held at an angle to the flow, it is evident that such plates 
must also encounter both lift and drag. Owing to the size of 
the wake (Fig. 107) the lift is relatively small, and it was soon 
found that if the plate is given both camber and properly varied 

^N.A.C.A. Technical Reports; Prandtl-Tibtjbns, ‘‘Applied Hydro-and 
Aerodynamics,” Chap. VI; Kaufmann, “Hydromechanik,” vol. 2, 
Chap. VII. 
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Columbia 

Fig. 107.—Flow past an inclined plate. 

Columbia 

Figl 108.—'Devolopjwent of the wake behind a plat© held at right angles tp the 
flow. 



Sec. 56] PLOW AkOVNt) IMMEMPD BOOIES 227 

thickness (as in the Joukowsky transformation) the lift-drag 
ratio may be greatly increased. For such reasons, the problem 
of inclined plates has become largely an academic ofce. 

In Fig. 108 will be found a number of photographs of the wake 
produced by a thin flat section, the sequence again proceeding 
from a state of rest. In each case it will be noted that the actual 
point of separation lies at the edge of the plate. Indeed, if the 

pVV2 

Fig. 109.—Mean pressure distribution over a plate of infinite length. 

plate is normal to the flow, surface drag is of no consequence 
whatever, as may be seen from the diagram of mean pressure 
intensity in Fig. 109. It is obvious, however, that the length, 
as well as the width, of a rectangular plate must play an appre¬ 
ciable role in determining the over-all form resistance, the 
coefficient of drag approaching a constant limit only as the length 

1 1 . 
\ • Wiesefsberger (1923) 

V . 
o tiaens oarnfyjt )) 

1 
0 0.2 0.4 0.6 0.8 1.0 

D 
L 

Fig. 110.—Drag coefficients for plates of finite length. 

becomes very great—the problem thereby becoming essentially 
two-dimensional. From Fig. 110 may be seen the trend of the 
drag coefllcient as the width-length ratio varies. 

Inasmuch as two-dimensional flow past an infinitely long plate 
corresponds to three-dimensional flow around a circular plate, 
it is apparent that the foregoing general conclusions must apply 
equally well to the latter case of motion. Measurements of 
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Table III.—Approximate Values of Drag Coefficient and Disk Ratio 

FOR Various Body Forms 

Form of body LID R Cd 
Disk 
ratio 

Circular disk >10» 1.12 

Tandem disks {L = spacing) 0 >10‘ 1.12 1.0 
1 0.93 0.83 
2 1.04 0.93 
3 1.54 . 1.37 

Rectangular plate (L = length) 1 >10’ 1.16 
5 1.20 

20 1.50 
CO 1.95 

Circular cylinder (axis \\ to flow) 0 >10’ 1.12 1.0 
1 0.91 0.81 
2 0.85 0.76 
4 0.87 0.78 
7 1 0,99 0.88 

Circular cylinder (axis J_ to flow) 1 10^ 0.63 
5 0.74 

20 0.90 
] 00 1.20 

5 >5 X 10*^ 0.35 
00 0.33 

Streamlined foil (1:3 airplane strut) 00 >5 X 104 0.10 

Hemisphere: Hollow upstream >103 1.33 1.19 
Hollow downstream 0.34 0.30 

Sphere 
i 
1 10® 0.47 0.42 

>3 X 10® 0.20 0.18 

Ellipsoid (1:3, major axis 1| to flow) >2 X 10® 0.06 0.054 

Airship hull (model) >2 X 10® 0.042 0.038 

the drag encountered by such a disk held normal to the flow 
indicate that the coefficient of drag is practically constant over a 
wide range of R—Ci> *= 1.12^—value so obviously a convenient 
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reference that it is frequently accepted as such. Thus, the ‘^disk 
ratio'^ of a given body represents the ratio of its drag to that 
of a disk having the same projected area. Only if the body is 
circular in cross section will its disk ratio—numerically equal to 
the ratio of its drag coefficient to the value 1.12—be significant. 

In Table III the reader will find disk ratios for a number of 
elementary body forms. Since these ratios will vary with the 
Reynolds numbers in the majority of cases, the given values 
should serve only as a basis for comparison, an actual plot of 
Cu as a function of R always being pref{?rable. One may see at 
a glance, however, the essential (effect of change in form, proper 

Columbia 

Fia. 111.—Flow around a streamlined body. The wake is further reduced in 
size when the boundary layer becomes turbulent. 

streamlining reducing the wake—and hence the drag—to a 
surprisingly low relative magnitude. While the recent vogue 
of streamlining almost every possible type of body has often 
produced results more ornamental than practical, the fact remains 
that reduction in size of the wake behind a moving body not only 
lowers the rate of energy loss but makes the problem more 
susceptible to analytical solution. 

66. Wind Pressure. Although airplane and propeller design¬ 
ers are primarily concerned with total lift and drag, and hydrauli- 
cians with the energy loss caused by separation, there are certain 
problems which require a knowledge of the pressure distribution 
over the sqrface of a body exposed to fluid motion; in particular 
is this true in the design of structures to be erected in regions 
subject to winds of appreciable magnitudch 

Certain structural forms are so similar to the elementary bodies 
already discussed that the corresponding drag relationships may 
be expected to yield quite satisfactory results. For instance, 
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such cylindrical structures as chimneys, oil and gas tanks, masts, 
pipes, and conduits differ from the elementary cylinder of finite 
length only in that they are generally in contact with a plane 
boundary (such as the earth) at one or both ends. But at the 
same time that this reduces or completely eliminates the end 
effect of leakage/’ the reduced velocity near the plane boundary 
will have an influence of approximately the same order of magni¬ 
tude. It must be noted, however, that the effect of boundary 
roughness may be appreciable, and hence laboratory experiments 
on smooth models are not properly transferable. 

Fig. 112.—Distribution of wind pressuro on an elementary building. 

The majority of structural forms are by no means so simply 
handled. Yet so far from streamlined are present-day buildings 
that one fact can safely be asserted: wind pressure on the average 
structure may be considered a function of form and position 
alone, without regard to the magnitude of the Reynolds number. 
Evidently, early practice of computing the force of wind on the 
basis of the stagnation effect on the windward side was not in 
error because of neglect of viscous influence; in fact, such struc¬ 
tures were amply strong to resist positive pressure of any probable 
magnitude. The fallacy in these methods lay rather in wide¬ 
spread ignorance of the fact that the more effective negative 
pressures on the leeward side are always distributed over a far 
greater area, with the result that buildings that failed through 
improper design usually blew out instead of in. 
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So complex and unsymmetrical are the forms of buildings 

and their orientation with regard to variable wind direction that 

analytical solution of pressure distribution is still completely 

out of the question. However, wind-tunnel tests on building 

models are satisfactory and economical means of investigation, 

although it should be apparent to the reader that su(;h studies 

might just as well be conducted in the towing tank or in a 

channel of flowing water. Results of such experiments on a 

simple type of building are presented in dimensionless form in 

Fig. 112. It is quite apparent that negative pressures may 

produce resultant forces far greater than the positive—a situation 

particularly dangerous if the structural members have been 

designed for exactly the opposite type of stress. 

Needless to say, the accompanying diagram can give at best 

merely an indication of the complex distribution of wind force 

on office buildings, factories, railroad stations, and the like, 

partially op(m as many are, and lo(;ated in close proximity to 

others of different form. Only laboratory investigation can 

provide adequate quantitative information, although sound 

knowledge of flow principles may prevent many a serious blunder 

in design. 



CHAPTER XII 

FLOW IN CLOSED CONDUITS 

67. General Aspects. Essential as the closed conduit has 
become to civilization, the engineer has been forced to depend 
to a great extent upon formulas for discharge and energy loss 
developed many decades ago, with only slight modification from 
time to time in acknowledgment of fresh experimental data. 
Fortunately for the practical engineer, the subject of pipe 
resistance has been well suited to empirical investigation, for the 
one-dimensional method of treatment is simple to an extreme, 
and a well-chosen cocifficient is all that is needed to make the 
engineering adaptation of the Bernoulli theorem a handy tool. 
On the other hand, this apparent simplicity of the phenomenon 
has tended to confine hydraulic advancement to a course set 
long ago—for recent dev(ilopments of vast importance to the 
hydraulic engineer have come largely from outside the hydraulic 
world. Far from benng as simple as it appears, flow in closed 
conduits actually involves every phase of confined motion that 
has been discussed in the foregoing chapters of this book. 

By far the most elementary type of conduit is straight, smooth, 
and of uniform circular cross section; similarly, the most ele¬ 
mentary type of fluid movement through this conduit is uni¬ 
formly laminar. From the analysis of Chapter X, it is evident 
that the resistance to such motion corresponds generally to 
deformation drag in the case of immersed bodies at low Reynolds 
numbers, for inertial effects are completely absent and the viscous 
influence extends to the innermost region of the flow. From the 
point of view of establishment of motion, however, it should be 
clear that at the very beginning of the conduit—if the latter 
leads from a large reservoir—the motion must be essentially 
one of constant energy; it follows that a laminar boundary 
layer must commence to develop over the entire inner surface 
at the entrance, growing in thickness with distance in the direc¬ 
tion of flow as indicated by Eq. (132). Evidently, the uniform 
motion is fully established (Fig. 113) only as the effective 
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boundary-layer thickness becomes equal to the radius of the 
conduit. During this development the factor Ke will vary from 
1 to 2, as indicated by the energy diagram. 

If the Reynolds number of the flow is above the critical, and 
if initial disturbances of sufficient magnitude are present, the 
boundary layer will become turbulent bc'fore reaching the 
centerline of the conduit; further growth will then correspond 
to the (conditions (cxpressc^d by Eq. (141). it is apparent that 
such circumstances are displayed in the Reynolds apparatus 

Fig. 113.—Establitthment of laminar flow in a circular pipe. 

previously described, in which the initial formation of eddies 
takes place oiitsidfc of the (central region of undisturbed flow. 
Moreover, the existence of a laminar sublayer is definitely indi¬ 
cated by traces of dye that persistently cling to the walls of the 
glass tube, moving forward comparatively slowly and without 
diffusing. 

From this point of view, once flow is established the entire 
body of moving fluid might be regarded as the boundary layer. 
It will be realized, nevertheless, that conditions of motion differ 
from those discussed in Chapter X, in that the latter deals specifi¬ 
cally with non-uniform flow, whereas in the case of the uniform 
conduit boundary-layer growth has reached an end at the section 
at which the flow is fully established. In the sense that estab¬ 
lished laminar flow was suggested as the counterpart of deforma¬ 
tion drag, moreover, it has seemed more expedient to treat the 
laminar sublayer at the wall of the conduit as the effective bound- 
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ary layer, the high intensity of boundary shear in this layer 
thereby producing the counterpart of surface drag. From both 
dimensional and mechanical aspects, the characteristics of such 
established motion must depend entirely upon the magnitude 
of the Reynolds parameter. 

Form drag, on the other hand, is primarily a function of 
geometrical boundary conditions. And while a straight pipe of 
circular cross section is nominally uniform in diameter, its 
boundary surface is actually covered with innumerable geome¬ 
trical irregularities, the size, form, and distribution of which 
may vary between wide limits. It might be reasoned that the 
degree of roughness of a boundary surface is a relative quality, 
the effect of roughness of some characteristic linear dimension 
depending upon its magnitude in comparison with the diameter or 
radius of the conduit—that is, upon some relative-roughness 
parameter. Such reasoning is well vindicated by experiment. 
Further reflection might then lead to the conclusion that rough¬ 
ness influence could also depend upon the relative dimensions 
of the average roughness element and the boundary layer, since 
surface roughness that is wholly enveloped by the laminar film 
of the conduit must have a totally different influence from that 
which is coarse enough to disrupt the laminar boundary flow. 
Once again, laboratory measurements have thoroughly sub¬ 
stantiated this conclusion. 

Thus, form drag in straight circular conduits may be caused 
by geometrical irregularities in the boundary surface, the wake 
of an isolated body immersed in a flow being reproduced, in effect, 
behind each individual roughness projection. Needless to say, 
the net result must depend upon a complex process of mutual 
interaction and interference, but the mechanism is essentially 
the same. Moreover, just as certain angular body profiles show 
an influence that is nearly independent of viscous influence, 
certain types of roughness display identical characteristics at 
sufficiently high Reynolds numbers, whereas other types produce 
a boundary drag that varies continuously with increasing 
magnitude of R. 

Although the ratio of boundary-layer and roughness dimen¬ 
sions has been stated to indicate the character of the roughness 
influence, it must be recalled that the relative thickness of the 
boundary layer itself is a function only of the Reynolds number. 
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Dimensionally, therefore, the mean intensity of boundary drag 
or shear may be expresstni in the following form: 

rel. roughness ) 
pF2 

2' 
(158) 

This relationsliip is seen to be praeth^ally identical with that 
for the drag of an immersed body. In terms of rate of energy 
loss with distance in tlie direction of flow, 

+ 7/i) ^ louglinosa^ ™ y (159) 

If the conduit is now pr(‘sum(‘d to vary in (*ross section, it is 
apparent that the analogy is even mon^ a])t. Non-uniformity of 
section indic ates tliat—aside from th(^ dynamics of the flow as a 
whole—further development within the l>oundary layer is to be 
expected, accomjianied by a change in magnitude of the surface 
drag. If local deceleration occurs in the boundary regions, a 
wake will result, the eff(‘ct of which is of far greater order than 
that of the boundary roughness. As in tlu^ (ais(‘ of a submerged 
body, foi’iii drag resulting from change in section will then be a 
function of th(‘ Reynolds number and the g(‘ometry of the con¬ 
duit, as will the cniergy lost along the boundary and in the 
resulting turbulence of the wake: 

-A (/) + yh) = f (R, form) (161) 

The problem of change* in direction of flow, as well as change in 
sectioji, is again described by a parallel dimensionless relation¬ 
ship. The case of unsteady motion, however, introduces com¬ 
plexities of a different nature, for in addition to the dynamics of 
acceleration or deceleration of the flow as a whole, boundary- 
layer developments now become a function of time as well. 

Dimensional treatment of this sort serves to provide a sound 
foundation for either experimental or analytical investigation. 
The case of uniform laminar flow, it has been seen, is readily 
solvable without recourse to laboratory measurements; analysis 
of turbulent flow has recently produced relationships of essen¬ 
tially correct form, only the constants of which depend upon 
experimental data. But although the analytical study of form 



236 MECHANICS or FLUID RESISTANCE [Chap. XII 

resistance in closed conduits has progressed rapidly so far as 
roughness itself is concerned, attempts at rigorous investigation 
of non-uniform flow have as yet met with negligible success. 
The case of unsteady flow in closed conduits remains approach¬ 
able only through the simplifying assumptions of the one-dimen¬ 
sional method of attack. 

Abundant experimental data have been obtained in the past 
decade or two, covering the essential phenomena encountered in 
steady flow in conduits, and in many instances investigators 
have appreciated the advantages of dimensionless presentation 
of results in terms of the essential parameters. These data, 
therefore, are not only applicable to a wide range of flow condi' 
tions, but give dependable indications of the physical mechanism 
involved in the phenomena. Nevertheless, since it is not the 
purpose of this text to provide the reader with an inclusive 
resume of numerical results, the reader is referred elsewhere for 
such information,^ The purpose of the following pages is rather 
to describe successful analytical methods of attack, and, in cases 
in which such methods have not yet succeeded, to seek the 
underlying mechanism of the phenomena through general 
principles now at hand. 

68. Velocity Distribution in Uniform Flow. 2 First realized by 
Stanton,^ of fundamental importance is the fact that the form 
of the velocity-distribution curve in the central region of uniform 
turbulent flow is independent of the gradient at the boundary 
so long as the intensity of boundary shear remains the same. 
Since the velocity gradient at the wall of a conduit will vary 
with the Reynolds number and with the surface roughness, it is 
evident that the foregoing fact would indicate complete inde¬ 
pendence of the turbulence mechanism from viscous influence 
and wall effects. 

This condition was described by Stanton in the following 
dimensionless form: 

^ Daugherty, R. L., “Hydraulics,^’ McGraw-Hill Book Company, Inc., 

1937; Forchheimer, P., ‘‘Hydraulik,” B. G. Teubner, Leipzig and Berlin, 

3d ed., 1930. 
® A more extensive treatment of flow in pipes may be found in Bakhmbteff, 

B. A,, ^‘The Mechanics of Turbulent Flow,” Princeton University Press, 

1936, or Rouse, H., Modem Conceptions of the Mechanics of Fluid 

Turbulence, Tram, A.S,C,E.^ vol. 102, 1937. 

® Stanton, T. E., Proc, Roy^ Soc, (London), A, vol. 86, p. 366, 1911, 
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Vr^ — V / r\ 
(162) 

The term (Wma* — v) represents a so-called “velocity defect/* 
or the difference between the velocity at the centerline and that 
at the point in question, a quantity which must then vary as a 
function of relative distance from the center. (The bar denoting 
the temporal moan velocity is henceforth omitted.) Thus, 
the dimensionless velocity curves taken from measurements by 

Fig. 114.—Dimensionless plots of velocity distribution for various degrees of 
relative roughness. 

Nikuradse^ (Fig. 114a), for both smooth and rough pipe, should, 
when the points of maximum velocity are superposed, yield a 
single curve in the central region of flow—as shown in Fig. 114c. 

The fact was pointed out in Chapter IX that at high values 
of the Reynolds number any term for viscous shear as a function 
of the mean velocity gradient becomes quite negligible in com¬ 
parison with the apparent stress of momentum transport. This 
fact is strikingly portrayed in Fig. 115, showuig dimensionless 

^ Niktjeadse, J., Gesetzmassigkeiten der turbulenten Strdmung in glatten 

Rohren, 7JDI Forschungsheft 356, 1932; Stromungsgesetze in rauhen 

Rohren, VDI Forschungsheft 361, 1933. 
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plots of the mixing hnigth as a function of relative distance 
from the pipe wall. Nikuradse (-omputed the various magni¬ 
tudes of I from measuremenls of velocity distribution and 
wall resistance, not only for smooth pipes at differfait Reynolds 
numbers, but for various d('grees of relative rougliness, at high 
valu(\s of R, through usc^ of Eq. (118). As may be seem at on(*e, 
the ratio Z/ro becomes independent of viscous influence once R 
is greater than about. 100,000, indicating that Fa]. (118) is then 
applicable. 

Fig. 115.—Dimonsionlrss plots of the mixing length for (n) smooth pipes and 
{b) rougli pipes. 

Under such circumstances, von Ktirmdrds universal relation¬ 
ship for the intensity of turbulent shear [Eq. (123)] should also be 
applicable—that is, 

{dv/dyY 

^d'^v/dy'^ 
(163) 

It remains only to express the variation of r with relative distance 
from the center of the conduit in order to determine the function 
(Pi in Eq. (162). 

If the equations of Reynolds are written for the case of steady, 
uniform motion in which the terms y ^tc., are negligible, 

it will be seen that 

Yy(.p + yh) 

l^iP + yh) 

dy ' 

d "72 d 
— jr — n — 

dy 
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dz 

d * 
dz'' 
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It is at once evident that the quantity (p + yh) may be expected 
to vary in each of the throe directions, whereas in uniform 
laminar flow it was seen that the pressure must be hydrostatically 
distributed over any normal section. However, differentiation of 
each of these equations with respect to x will yield 

+ yh) = + yh) = + yh)=^Q 

from whi(di it is apparent that the potential gradient at any 
point of the cross section will not change with distance in the 
direction of flow. Furthermore, since the order of differentiation 
with respect to two quantities may be reversed, it is also apparent 
that the potential gradient with respect to x will not vary from 
point to point over the sec^tion. Thus, although the pressure 
may not be hydrostatically distributed over a normal cross 
section, the rate of change of (p.+ yh) will be the same at all 
points within the uniform flow. It follows at once that Eqs. 
(89-91) are fully applicable to the present case (see Fig. 1146): 

Combining Elqs. (163) and (164) through elimination of t 

dh/dy^ _ __ ^ 
idv/dy)^ ~ Vn^y 

This expression may readily be integrated, the constant of 
integration being determined through assuming an infinite 
velocity gradient at the boundary; this is obviously only a 
convenient means to an end, for conditions in the boundary 
region have no further bearing upon this phase of the problem. 
The resulting equation 

^   ^ \/tq/p_1_ 

dy 2k -y/ ro y/n — y — Vr^ 

may now once again be integrated, the second constant being 
evaluated through use of the fact that v = Vm** at y/n == 1: 
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A plot of this function, first obtained by von Kdrmjin, may 
be found in Fig. 114c (Curve I) for a magnitude of the universal 
constant k = 0.36. It may be seen at a glance that the experi¬ 
mental data obtained by Nikurad>se follow the trend of the 
curve with good approximation, even well into the boundary 
region. 

For th(i boundary region itself—exclusive of the laminar 
boundary film—von K«4rman reasoned that in the case of a 
smooth wall the velocity distribution must depend upon the 
intensity of wall shear, the fluid d(3nsity and viscosity, and the 
absolute distance from the wall; in other words, conditions in this 
region should be independent of the state of flow in the central 
portion for which Eq. (165) is valid. He thereby obtained the 
general function 

Further reasoning^ led to the conclusion that the functional 
relationship must again be logarithmic, and of the form 

V 

VVp 
Cl H— In 

K 
(167) 

It must be noted that the quantity at the right has the nature 

of a Reynolds number, for vWp is dimensionally equivalent to 
V, and is commonly called the “friction velocity/^ 

In the case of wall roughness of appreciable magnitude, the 
intensity of turbulence resulting from form drag will be so great 
as to render mean viscous shear relatively insignificant. Under 
such circumstances the velocity distribution should depend only 
upon wall roughness and distance from the wall. Assuming 
that roughness characteristics may be defined in terms of a 
linear dimension k, the general function will then become 

Again reasoning that the function must be logarithmic, von 
Kdrmdn obtained for the velocity distribution in the neighbor¬ 
hood of rough walls the expression 

^See Turbulence and Skin Friction'^ for a r6sum6 of this derivation. 
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V 

(169) 

Systematic investigation by Nikuradse of the velocity dis¬ 
tribution in both smooth and rough pipes over a very wide Rey- 
nolds-number range has yielded extensive data with which 
the validity of Eqs. (167) and (169) may be tested. In 
Fig. 116 the plotted points for smooth pipes are seen to fall 
along a single curve—regardless of the magnitude of R—if the 

Fig. 116.—Dimensionless plot of the velocity distribution in smooth pipes. 

quantities and ^ ^ are used as ordinate and abscissa of 
Vro/p yjp V 

the plot. The single curve is shown at two different scales in 
order to emphasize the continuity of the function over an extreme 
abscissa range. If the same data are plotted to semilogarithmic 
scale, as shown in Fig. 117, the trend becomes the more significant. 
It is seen that the points all lie essentially upon a straight line, 
and thus validate Eq. (167); sensible deviation becomes apparent 
only as the laminar boundary film is approached, whereas the 
function remains linear well into the central region. From the 
slope and position of this straight line Nikuradse obtained 
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the following constants for von Kdrmjtn^s basic equation: 

5.5+ 5.75 log (^S) (170) 

The constant 5.75 corresponds to a == 0.40 and includes the con¬ 
version factor 2.30 between the natural and common logarithmic 
systems. 

Under conditions of turbulent motion the laminar boundary 
layer is extremely thin in comparison with the pipe radius, so 

Fig. 117.—Universal velocity distribution for smooth pipes. 

that the variation of r over the thickness 8 may be ignored 
without appreciable error; in other words, the actual parabolic 
velocity distribution within this narrow zone of laminar motion 
is so close to linear that the velocity gradient is essentially con¬ 
stant—that is, V = ynl^x. Under such conditions it is evident 
that the velocity distribution within the laminar film may be 
plotted in Fig. 117 according to the equation 

V ^ [roy 

\/ro/p \P 

Although there is obviously no definite border between the 
zone of pure laminar flow and that of fully developed turbulence, 
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a convenient arbitrary limit of the boundary layer is represented 
by the intersection of the two plotted curves in Fig. 117, at which 
point 

= J- - = 11-6 
V^p yp " 

Writing 2/ = 5 at the intersection, it follows that 

6 = 11.6 
V^/p 

(171) 

It is to be noted that the only fixed point in the semilogarithmic 
plot is this arbitrary limit of the boundary layer. Owing to the 

nature of the logarithmic scale, the boundary itself lies an infinite 
distance to the left, whereas the location of the centermost point 
{y = ro) varies with the Reynolds number of the flow. 

Nikuradse extended his pipe research to the case of artificial 
roughness, controlling the relative magnitude of the roughness 
by cementing sand grains of uniform diameter to the inner wall 
of the pipe. Through judicious selection of grain size with 
respect to pipe diameter, he was able to vary the relative rough¬ 
ness To/k between limits of 507 and 15, the grain diameter being 
used to represent the roughness dimension fc. A semilogarithmic 
plot of his measurements is shown in Fig. 118; the linear character 
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of the plot validates von Kdrmdn^s Eq. (169), constants deter¬ 
mined by Nikiiradse from the slope and position of the straight 
line yielding the expression 

V^o/p 
== 8.48 + 5.75 log (I (172) 

It is evident from the trend of the measured values that no trace 
of a laminar boundary layer exists along the pipe wall, the points 
following a linear course practically to the extremities of the 
roughness projections. 

From the form of Eqs. (165), (170), and (172), it will be seen 
that the corresponding curves still have finite slopes dv/dy at 
the central axis. This is contrary to actual circumstances, 
although the error thus introduced is of small magnitude. 
Moreover, while Eqs. (170) and (172) were developed specifically 
for the boundary regions, experinKuital evidence indicates that 
they yield satisfactory results well into the central regions of flow, 
deviating only slightly as the axis of the conduit is approached. 
If each is written for the point y = ro. 

^-8,48+5.7610.0) 
and Eqs. (170) and (172) are subtracted therefrom, 
results will have the identical form 

(173) 

(174) 

the two 

= 5.75 log - = -I In tl - l) (175) 
Vro/p y •^ \ nj 

Eq. (175) not only embodies the general functional relationship 
of Stanton's original expression [Eq. (162)], but for the universal 
constant k = 0.40 yields a distribution curve for the central 
regions in very close accord with experimental findings (Curve II 
in Fig. 114c). Moreover, its simplicity in comparison with 
von Kdrmdn's fundamental equation (165) is an obvious advan¬ 
tage in succeeding developments. 

Since this relationship permits determination of the velocity 
defect with good approximation for all values of r from the central 
axis to the limit of the laminar film, it should also enable direct 
computation of the difference between the maximum and mean 
velocities of the flow for any values of fluid density and boundary 
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shear. Indeed, the quantity 
- V 

is nothing more than the 
VtoIp 

mean ordinate of tlu^ velocity defect curve over the entire flow 
section, and hence may be evaluated (as shown by Bakhmeteff) 
by the following operation: 

)7p VWp 
2t (ro (176) 

Although Nikuradse found that the value 4.05 would better 
correspond with experimental measurement of and F, 
the former value will be retained in this discussion. If Eq. (176) 
is now subtracted from Eqs. (173) and (174), the following 
expressions will result for the mean velocity in terms of the 
friction velocity, the universal constant, and the corresponding 
boundary parameters, for smooth and rough pipes, respectively: 

V 

V ro/p 

y/rolp 
-4.73+ 

(177) 

(178) 

69. Universal Laws of Resistance. Aside from Eqs. (177) 
and (178), as yet no means are at hand for determining the 
intensity of boundary shear in terms of readily measurable 
characteristics of flow and fluid. From dimensional considera¬ 
tions it has been seen that ro must depend upon mean velocity, 
viscosity, density, pipe diameter, and boundary roughness, with 
the following general functional relationship of these variables: 

Intensity of boundary shear, however, is not directly measurable 
without extensive apparatus, and it is more expedient to express 
boundary resistance in terms of the corresponding rate of energy 
loss. From Eq. (89), which has been shown to apply alike to 
laminar and turbulent flow, 

To (179) 

substitution of which in the foregoing functional relationship 
will yield 
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dx 
ip + yh) = if> leYl 

D 2 

The function 4^(R, k/ro) is commonly given the symbol f, and 
is called the coefiBcient of pipe re.sistance: 

/ = / 
ol(p+yk) 

pV^ 

2 

(180) 

Many generations of hydraulic engineers have produced a 
wealth of empirical data, all of which pointed definitely to the 

Fia. 119.-~~Logarithraic plot of / as a function of R for smooth pipes. 

variability of/, but it was not until Blasius^ analyzed an extensive 
series of measurements made by Saph and Schoder that the Bg- 
nificance of Eq. (180) was fully appreciated. Blasius found that 
the Saph-Schoder data for turbulent flow in smooth pipes lay 
along the straight line shown in the logarithmic plot of Fig. 119, 
the slope and position of the line indicating that / might be 
expressed in the following exponential form: 

0.3164 
RH (181) 

That the curve in the region of laminar motion must vary simply 
as / = 64/R may be seen by writing Eq. (94) in the form of Eq. 
(180). 

‘ Blasitjs, H., Das Aehnlichkeitsgesetz bei Reibungsvorgangen in Pliissig- 
keiten, ForBchimgmrbeiten auf dem Gebieie des IngenieurwesenSy 131, 1913. 
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Although the data upon which Blasius based his analysis 
extended to a Reynolds number of approximately 100,000, it 
was not long before Eq. (181) was assumed capable of considera¬ 
ble extrapolation—despite the fact that it was dimensionally 
sound but otherwise entirely empirical. More recent investiga¬ 
tions by Stanton and Pannell, Lees, Hermann, and Nikuradse 
(Fig. 120) proved conclusively that the function is not a linear 

Fi«. 320.- ■ Resistance coefficiorits for smooth pipes at hi^^h Reynolds numbers. 

one beyond the Blasius range, and therefore may not be con¬ 
sidered exponential unless the exponent is also treated as variable 
with R. As in the case of the turbulent boundary layer, the 
exponent n is equal to in the range immediately following the 
transition from laminar flow to turbulent, but with ascending 
values of R this exponent asymptotically approaches the limit 
zero. Although various empirical expressions have been offered 
to apply over a greater range than that of Blasius, each of these 
is limited to the region of the actual experimental measurements, 
and extrapolation beyond this region is no more warranted than 
in the case of Eq. (181). 

From Eqs. (179) and (180) it will be apparent that 

If these values are now introduced into Eq. (177), it will b^seen 
that 
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ys 
V7 

1.75 + - In 
K 

1.75 + -ln^^ +iln (RV/) 
«■ 4v2 

Finally, 

-4= = -0.91 + 2.03 log (Rv7) 
v7 

Thus, a very simple relationship for the resistance factor in 
terms of the universal constant and the Reynolds number has 

been developed directly from the general expression for the 
velocity distribution in smooth pipes. This basic relationship 
was first derived by von Kdrmdn in 1930 in terms of the maximum 
velocity, and later put into the more convenient form above by 
Prandtl. With slight modification of constants to agree more 
closely with Nikuradse^s experimental data, this becomes 

= -0.8 + 2 log (Rv?) (182) 
V7 

Equation (182) is shown by the sti^aight line in the semi- 
logarithmic plot of Fig. 121, from which it is seen that curves 
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corresponding to the several empirical relationships deviate 
markedly with ascending values of the Reynolds number. 
Owing to the nature of the basic von Kdrnijin expression, how¬ 
ever, solution for / for a given value of R must be found by 
graphical means. Nikuradse, therefore, has proposed the empir¬ 
ical relationship (Fig. 120) 

0 991 
/ - 0.0032 + (183) 

which follows closely the trend of Eq. (182) even for relatively 
high values of the Reynolds number. So far as extensive 
extrapolation is concerned, nevertheless, only the von Kdrmdn 
expression possesses sufficient analytical foundation to be 
dependable to very high—if not to infinite—magnitudes of R. 
In the Blasius range, on the other hand, it is seen to deviate 
somewhat from the empirical curve of Eq. (181). This may be 
attributed to the fact that viscous shear in terms of the mean 
velocity gradient is not negligible for low Reynolds numbers, a 
region for which no satisfactory analytical solution as yet exists. 
Needless, to say, no single function has been obtained to describe 
the continuous variation of / over the entire Reynolds-number 
scale. 

A parallel development proceeding from Eq. (178) will be 
found to yield a corresponding expression for the resistance 
coefficient in rough pipes; with slight modification of constants 
in accordance with Nikuradse^s experimental data this will take 
the form 

1 

Vf 
1.74 + 2 log ^ (184) 

It is seen at once that the Reynolds number does not appear in 
this expression, indicating that the magnitude of / is totally inde¬ 
pendent of viscous influence. At this point the reader must 
recall to mind two assertions made at the beginning of this chap¬ 
ter: First, boundary roughness that is enveloped by a continuous 
laminar boundary layer cannot be expected to have the same 
influence upon resistance as roughness projections of sufficient 
relative magnitude to disrupt the laminar film. Second, unless 
the roughness is sufficiently angular, the resistance will always 
depend in part upon the Reynolds number of the flow. 
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The first of these two statements will be clarified by reference 
to the plot of Nikuradse’s roughness data, shown in Fig. 122, in 
which variation with R is indicated by the abscissa scale, and 
variation with the ratio n/k by the sequence of curves, each for 
a constant relative roughness. It is quite evident from the 
several curves that the greater the relative roughness, the 
smaller the Reynolds number at which deviation from the curve 

. Fig. 122.—Resistance coefficients for artificially roughened pipes. 

for smooth pipes begins. In other words, so long as the roughness 
projections are rendered ineffective by a surrounding laminar 
film, the resistance coefficient remains the same as that for a 
smooth boundary; but with increasing values of R, the laminar 
film decreases in thickness, and must eventually begin to yield 
to the roughness of the boundary. That this effect depends 
entirely upon the relative magnitudes of 8 and k may be shown 
by replotting Nikuradse^s data in terms of the parameters 

—7= — 2 log ? and -j* Use of the former as ordinate scale 

will bring all horizontal portions of the curves in Fig. 122 
to the common ordinate 1.74, whereas use of the latter as abscissa 
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scale will align vertically all points for which the ratio of absolute 
roughness to boundary-layer thickness is the same. The 
magnitude of 5 is found from Eq. (171), from which it will be 
seen that 

h = S ^ Ry? 
6 11,6 \p V r^jh 

As is obvious from Fig. 123, this procc'dure reduces the curves of 
Fig. 122 to a single composite function, regardless of the absolute 
magnitude of R or the relative magnitudes of 6 and fc. 

Needless to say, only the horizontal portion of any resistance 
curve may be described by Eq. (184), and then only if the factor 

Fi«. 123.—Variation in roughness effect with relative thickness of the boundary 
layer. 

h is fully indicative of the roughness characteristics. That the 
relationship will then be valid is proven by the fact that Niku- 
radse’s measurements yield a straight line in the semilogarithmic 
plot of Fig. 124. But it will also be apparent from Fig. 125, 
showing general trends in experimental data for commercial 
pipe, that not all roughness has the same characteristics as 
Nikuradse's—those curves marked ^^wavy^' showing pronounced 
tendencies to vary continuously with R. 

60. The Roughness Problem. Despite the fact that von 
Kdrmdn^s analysis of the resistance of rough pipes is a decided 
step forward, it is but the first of many steps that must be taken 
before the problem of roughness finds a satisfactory solution. 
First of all, designation of a single linear dimension k to describe 
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in full the roughness characteristics will have quantitative sig¬ 
nificance only so long as the roughness elements remain similar 
in form, as in the case of Nikuradse’s sand grains. Once the 
same criterion is applied to the roughness of commercial surfaces, 
it is obvious that a single linear dimension cannot begin to include 
effectively the many types of roughness, unless k becomes merely 

1000 10,000 loqooo 1,000,000 
ReynoMs number 

Fia. 125.—Typical resistance curves for commercial pipe. 

an abstract parameter indicating relative performance rather 
than actual size. Furthermore, no satisfactory analysis has been 
made of the regime in which both roughness and viscous influ¬ 
ences are of the same order of magnitude; so many data have 
been obtained indicating functional trends (Fig. 125) between 
the limits of Eqs. (182) and (184) that it is apparent that some¬ 
thing more is involved than simply the relative magnitudes of 8 

and k as in Nikuradse's experiments. In other words, if k 

represents the height of the projections, there must be added a 
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factor indicating roughness form, and possibly a third charac¬ 
teristic dimension denoting the proximity of roughness elements 
—roughness effect at a given Reynolds number varying with 
eac^h of these three parameters. 

Schlichting^ has developed a method of testing commercial 
surfaces for effective roughness, whereby it is possible to desig¬ 
nate in terms of a parameter k the resistance of the surface in 
question in comparison with some arbitrary standard. He made 
us(^ of a closed conduit of wide rectangular section, three walls 
of which were very smooth, the fourth being formed by the actual 
surface to be investigated. Provisions were made for piezometer 
measurements along the wide smooth wall opposite the test 
section, and for Pitot-tube traverses between the smooth and 
rough boundaries, no further experimental data being necessary. 
Essential, of course, was a sufficient length of conduit (including 
the rough wall under investigation) for establishment of uniform 
flow upstream from the zone of measurement. 

Since the rate of energy loss—proportional to the negative 
pressure gradient if th(i conduit is horizontal—must bo the same 
for the smooth and rough walls, it is evident that measurement 
of this gradient along the smooth wall alone will suffice. Owing 
to the essential equilibrium between pressure gradient and 
boundary shear, 

(ro), + (r«). = (185) 

in which b is the spacing of smooth and rough walls, to which the 
subscripts 5 and r refer, respectively. The velocity distribution 
in the neighborhood of the smooth wall must satisfy Eq. (170), 
since this relationship was developed for the boundary region, 
without regard to conditions beyond the central portion of the 
flow. From Fig. 126 it will be seen that a typical velocity tra¬ 
verse near both smooth*and rough walls will plot as a linear func¬ 
tion on semilogarithmic coordinates; preliminary tests by 
Schlichtiiig indicated satisfactory accordance with E]qs. (170) 
and (172), despite essential asymmetry of the velocity diagram. 
From the velocity traverse near the smooth wall {to)s may at once 
be found, and substitution in Eq. (185) will then yield (To)r. 

1 ScHLicHTiNQ, H., Experimontelle Untersuchuiigen zum Rauhigkeitsprob- 
}em, Ingenieur^Arckiv^ voL 7, p, 1, 1936, 
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The velocity traverse in the neighborhood of the rough wall will 
finally permit solution for k through Eq. (172). Means are 
therefore at hand for determining the effective aV>solute rough¬ 
ness of the surface under investigation—^‘effective^^ in the sense 
that k is no longer an actual linear dimension of the roughness, 
but a parameter signifying behavior in comparison with Niku- 
radse^s experiments for which the constants in Eq. (172) were 
chosen. It should be apparent to the reader, however, that this 
method of roughness ^S‘,alibration^^ is possible only if the rough- 

Fiu. 126.—Velocity traverses between smooth and rough boundaries. 

ness is of such form, and* the Reynolds number of such magni¬ 
tude, that viscous influence is not appreciable. 

Further research by Schlichting deserves mention at this 
point. Instead of yarying the relative roughness and thereby 
keeping the boundary geometrically similar, as did Nikuradse, 
Schlichting chose elementary shapes of constant elevation 
(such as small spheres, hemispheres, or plates) and varied their 
spacing with respect to one another. Since each such element 
produces its own tiny wake, and since the effectiveness of each 
such wake varies with the spacing of neighboring elements, the 
following results were obtained: With increasing proximity 
of the elements the mean intensity of wall shear first grew in 
magnitude, because of the additional turbulence as more ele¬ 
ment's were contained in a unit area. But a maximum value of 
To was finally attained, further concentration of the elements 
merely increasing the mutual interference and serving to decrease 
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the intensity of shear; the limit would be reached—ideally, of 
(course—as the elements become so closely packed together as to 
produce, in effect, a smooth surface. Schlichting showed, 
moreover, that the resistance of each roughness element, when 
sufficiently removed from its neighbors, was essentially the same 
as though it moved as an indi\'idual body through tlie same fluid 
under the same velocity conditions. 

The significance of tliis research must not be undcirestirnated. 
Boundary rougliness, Avhether natural or artificial, (cannot be 
described only in terms of the magnitude (jf linear projection 
from a reference plane, for the form of the individual elements 
and their kx^ation with respect to one another ar(^ quite as 
important. If, for the present, practical considerations make it 
advisable to designate effective roughness action by a single 
linear i^arameier k, tlum it is far more desirable to sek'ct arbi¬ 
trarily a definite basis for comparison, for Nikuradse\s sand grains 
and method of application to the pipe walls are at best difficult 
standards to reproduce. Nevertheless, it is obvious that any 
such linear roughness scale, if internationally adopted, must 
suffer from the existenc^e of more than ojie common dimensional 
system, for conversion factors rob any basic scale of its sim¬ 
plicity. Even though this problem of roughness designation 
should find an early solution, that type of surface irr(‘gularity 
which does not fully eliminate th(^ influence of viscosity will 
probably trouble investigators for some time to conie. 

61. Sytnmetrical Section Changes. Closely analogous to the 
drag of immersed bodies, resistance to motion in non-uniform 
conduits will depend in part upon boundary shear and in part 
upon separation and the formation of a turbulent wake. The 
relative extent to which each of these will affect the flow must 
then vary with the Reynolds number and the geometry of the 
conduit boundaries. Nevertheless, two essential differences exist 
between flow around an immersed body of given form and flow 
through a conduit transition that is geometrically analogous 
(compare, for instance, a streamlined body and a Venturi meter, 
or a disk and a plate orifice): First, the immersed body is generally 
surrounded by a great expanse of fluid, whereas one wall of a 
conduit transition faces another wall not far removed; such con¬ 
finement should cause noticeable differences in the corresponding 
dynamic patterns. Second, boundary-layer growth begins 
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at the leading edge of an immersed body, whereas a boundary 
layer already exists at the beginning of a change in conduit cross 
section owing to i)rior development in the region of approach; 
as a result, tlie velocity distribution of the approaching flow 
plays no small part in determining the flow pattern in the 
transition region. 

The most representative example of a symmetrical boundary 
change is found in the plate orifice (Fig. 127), the analysis of 
which will apply in general to all transitions of this nature. 

Fig. 127.—Distribution of pressure and velocity at a pipe orifice. 

Customary hydraulic; treatment of this case is doubtless familiar 
to the reader. The equation of mean energy is first written 
between a section in the approach and the section of maximum 
jet contraction, ignoring the magnitude of Ke at each section 
but assuming a small loss of enc^rgy: 

^ + Pi = ~ + p. + 

The equation of continuity has the form 

Vc 

Cc denoting the ratio of jet area to orifice area a. The energy 
lost between the two sections is expressed through introduction 
of a velocity coefficient Cvf such that 

Vc = (JSi - Pc) = + Pi - 



8®c. 61] 

whence 

FLOW IN CLOSED CONDUITS 257 

AE - (1 - + P. - P.) - Q-, - l) 

These equations are then solved for the rate of discharge: 

pVc^ 

2 

Cc a /2 {pi - pc) 

(c;c7a73? \ p 
(186a) 

In deriving this n^lationship, the hydraulieian carefully includes 
the correction for the velocity of approach/^ yet inconsistently 
ignores the fact that the velocity-distribution factor is decidedly 
different at the two sections. On the other hand, to simplify 
Eq. (186a) the product Cc is generally dropped from the 
radical, the coefficient in the numerator then bearing the burden 
of this change; thus. 

Q . _£i?= BKEp!> (186!,) 

Measurements by Witte^ indicate that the magnitude of 
the measured differential pressure pi — pc will vary considerably 
with the location of the two piezometer connections (see Fig. 127), 
and thereby change the magnitude of the discharge coefficient. 
If results of different investigators are to be comparable, there¬ 
fore, it is essential that pressures be measured at geometrically 
similar points—the most logical position being the base of the 
orifice plate. Although this point on the upstream side is only 
nominally a point of stagnation (Fig. 127), and although the 
pressure at the base on the downstream side is not exactly the 
same as that within the contracted jet, such assumptions are 
justified if only for the fact that they greatly simplify the dis¬ 
charge equation. Thus 

V.. 

and 

Writing the differential pressure as Ap and the product C' as 

^ Witte, E.., Die Stromung durch Dtisen und Blenden, Forschung auf 

dem Gehiete des Ingenieurwesensy vol. 2, no. 7, p. 245, 1931. 
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Cq, this equation becomes essentially the same as that obtained 

by dimensional analysis; 

Q = Cq (186c) 

From dimensional considerations one would expect the coef¬ 

ficient Cg to vary with the ratio of orifice and conduit diameters, 

with the Reynolds number of the flow, and with the relative 

roughness of the conduit boundaries—all other factors (such as 

sharpness of the orifice and proximity of upstream disturbances) 

thereby remaining constant. Cg is tlius a function of three basic 

parameters: 

Needless to say, the Reynolds number may also be written in 

terms of the orifice diameter and the corresponding velocity. 

Since the following relationship exists among the several 

coefficients (assuming the piezometers to have the same locations), 

^ __Cd_^_C.Cc_ 

* (CqCqTHd/D)* 

it follows that C«, and Cc must all be related functions of 

the same three dimensionless parameters. Although Cv and Ce 

cannot be measured directly, as in the case of free efflux, visual 
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experiments such as those of Johansen^ permit a definite insight 

into their mutual effcjct upon the discharge (*oeffieient as the 

three basic i>aramet(^rs vary. At extrcanely low values of the 

Reynolds number (vd/p < 10) Johansen found the flow pattern 

to be essentially symmetrical about the plane of the orifice, 

the outermost stream lines closely following the boundary profile. 

As the parameter vd/v increased beyond 10, the flow began to 

separate from the downstream side, the divergence of the jet 

gradually decreasing and a slight contra(*Jion becoming per¬ 

ceptible. At vd/v == 150 the outermost stream lines of the jet 

reached the pipe wall 5 or 6 diameters downstream, the jet then 

being surrounded by a region of slow reverse flow. A slight 

instability of the outer filaments of tin? jet was a])parent at 

vd/v ■= 250, whereas ai 1000 I he j(d, was encircled by a succes¬ 

sion of vortex rings, although the flow within the j(‘t was still 

undisturbed. With the ons(‘t of turbulence in the wake of the 

orifice, the (jontracdion of tin'! jet gradually approached a maxi¬ 

mum, observation through use of dye thereafter beijig extremely 

difficult. 

These stages of development can be correlated with variation 

in the discharge coefficient through reference to the measurements 

of Johansen reproduced in Fig. 129. One must remember, first 

of all, that Cd is a coefficient of delivery, as opposed to the (coef¬ 

ficient of resistancce Cd for immersed bodices; the discharge coef¬ 

ficient must be looked upon, thereof ore, as a recciprocal function 

of the orifice drag, the latter yielding a curve essentially similar to 

that of Fig. 94. So long as the pattern of flow is symmetrical 

on both sides of the orifice, the phenomenon is purely that of 

deformation drag, an imerease in the Reynolds number producing 

a decrease in the resistance coefficient and hence a rise in Cd\ 

the initial portion of the curve in Fig. 129 thus corresponds to 

the Stokes region for immersed bodies. By the time vd/v = 100 

~ 10), the effect of separation becomes noticeable, 

just as in the case of an immersed body, whereupon the upward 

trend in Ca is gradually offset by the contraction of the jet. 

At this point, however, the essential difference between the 

immersed body and the conduit transition becomes readily 

apparent. Since the velocity of the approaching laminar flow 

1 Johansen, F. 0., Flow through Pipe Orifices at Low Reynolds Number, 
Proc. Roy, Soc. (London), vol. 126, no. 801, p. 231. 
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is considerably higher in the central region than near the walls, 

the degree of jet contraction will vary with the relative size of the 

orifice opening. Cc (and hence Cd) will then increase with d/D, 

resulting in considerable deviation of the several curves as iner¬ 

tial effects come into play. Once turbulence sets in, the velocity 

distribution in the conduit becomes more uniform, resulting in 

w 
Fig. 129.—Discharge coefficients for the plate orifice. 

further contraction of the jet, particularly for large values of 

d/D. With increasing turbulence, viscous effects decrease in 

relative magnitude, wherewith all curves begin to approach 

asymptotic limits. Such limits are actually reached, however, 

only when the Reynolds number is infinitely great, for not until 

then is the velocity of approach evenly distributed over the 

cross section. 

The close relationship between the trend of the discharge 

coefficient and the growth of turbulence in the conduit may be 

seen by plotting the same experimental data against the Reynolds 

number of the conduit. Figure 130 thus shows as a function 

of VD/p for orifices in smooth pipes, generalized from the 

measurements of Johansen, and from those of Witte for high 
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values of R. The approximate limits of these curves are plotted 

in Fig. 131a against d/Dj together with the corresponding values 

of Cd and Cc. 

Fia. 130.—Generalized logarithmic plot of Cq as a function of R and d/D. 

A. A 
D D 

Fig. 131.—Variation in discharfee coefficsients with d/D and D. 

As yet the influence of conduit roughness upon orifice discharge 

has not been analyzed quantitatively in accordance with known 

characteristics of flow in rough pipes. It is apparent, however, 

that the greater the ratio of maximum to mean velocity in the 

approaching flow (increasing with the relative roughness of the 
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boundary), the .smaller will bo the contraetion of the flow as it 
passes the orifice. Such effects are indicated by the measure¬ 
ments of Jacob and Kretzschmer^ on orifices in pipes of different 
diameters but of essentially the same absolute roughness. As 

Columbia 
Fig. 132.—Flow through a rounded orifice, showing relative effect of gradual and 

abrupt boundary transition. 

may be seen from the sequence of cmrves in Fig. 1316, the maxi¬ 
mum value of Cg corresponds to the minimum pipe diameter, and 
hence to the maximum relative roughness. 

In its general aspects the foregoing analysis is applicable to 
any conduit transition of related form, whether or not it is 

1 Jacob, M., and Kuetzschmer, F., Die Durchflusszahlen von Nonnal- 
dUsen und Normalstaurandem fiir Rohrdurchmesser von 100 bis 1000 mm, 
Zeikehnfi YDl, voL 73, no. 26, p. 935, 1929. 
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intended for flow measurement. In this category may be 
included flow nozzles and Venturi tubes, pipe inlets, abrupt con¬ 
tractions or enlargements, divergent or convergent sections, 
needle valves—in fact, all boundary changes that are sym¬ 
metrical about a central axis. In the case of flow measurement, 
interest centers in the coefficient of discharge, but this may 
readily be converted into a coeflicieut of resistance when energy 
loss is of primary concern. Either of the two related cooflScients 

will invariably be some function of the Reynolds number and the 
conditions of approach, the function varying from case to case 
with the geometry of the transition.^ 

If, in distinction to the plate orifice, the boundary change is 
relatively gradual, the flow phenomenon will involve primarily 
the distribution of dynamic pressure and velocity, the energy 
loss then being of secondary importance. That convergence 
effectively modifies the velocity profile may be seen from Fig. 
133, showing measurements of velocity distribution iii con- 

1 For numerical data the reader is referred to such standard texts as 
Daugherty^s “Hydraulics,” and to the extensive bibliography given by 
Krbtzschmer, F., in Strftmungsform und Durchflusszahl der Messdrosseln, 
VDI Forschungsheft 381, 1936. 
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vergent throats of different central angles. ‘ As is apparent 
from the same illustration, under sufficiently small angles of 

Columbia 

Fig. 134.—Establishment of flow through a Venturi throat; note beginning of 
separation as boundary layer develops. 

divergence turbulent flow will not separate from the conduit 
walls, and very gradual enlargements of section may then also 

^ Nikxtkadsb, J., Untersuchungen iiber die Strdmungen des Wassers in 
konvergenten und divergenten Kanalen, Forach.Arh. a. d. Geh. d, Ingenieur-- 
weaem, 289, 1929. 
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be treated in similar fashion. More rapid deceleration, how¬ 
ever, is certain to result in separation, conditions in the wake 
depending upon R and upon the form of the profile. At high 
values of the Reynolds number—in particular if the boundary 
curvature is abrupt—the coefficient of resistance will become 
independent of R, varying only with change in the boundary 
contours. 

Figure 135 illustrates a study by Kroner^ of energy loss in 
relation to the angle of divergence, all angles but the smallest 

Fig. 136.—Loss of potential energy in diverging flow. 

(10° 46') being sufficiently great for separation to occur, and the 
Reynolds number being of such magnitude that viscous influ¬ 
ences were negligible. In all cases the transition was two-dimen¬ 

sional. The dimensionless ordinate N denotes the magnitude 
of the energy loss up to any section in its ratio to the kinetic 
energy at the throat. It is apparent that the loss of energy 
increases with angle of divergence, indicating a correspondingly 
greater intensity of the eddy motion in the region of discon¬ 
tinuity. In other words, the restoration of kinetic energy to 
potential energy decreases with angle of divergence. Moreover, 
as will be seen from the magnitude of the ratio x/d at which the 

1 Kroner, R., Versuche liber Strdmungcn in stark erweiterten Kanalen, 
ForschArb, d. VDI, 222, 1920. 
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curves approach a constant slope, the restoration (such as it is) 
does not reach completion until quite some distance downstream. 

Reference to the velocity profiles indicated in Fig. 127 will 
show that the mixing process in the wake results in a transport 
of fluid with high velocity from the central region toward the 
walls, and thus tends to equalize the vekxdty distribution with 
distance downstream from the transition. At the same time, 
however, the eddies spread from the initial region of discontinuity 
toward the centerline. Since the energy of flow which is trans¬ 
formed into turl)ulence in this expanding wake cannot be abruptly 
dissipated in the form of heat, it follows that the degree of turbu¬ 
lence of the flow as a whole must be abnormally great by the time 
the wake has expanded to the axis of the conduit. Although the 
rate of energy dissipation within the eddies is high at this section, 
the intensity of the turbulent fluctuations is not reduced to a 
normal value before the flow has travekxl many pipe diameters 
in the downstream direction. Not until this excess turbulence 
is completely dissipated will the velocity distribution and the 
longitudinal i)ressure gradient again correspond to established 
uniform motion. 

62. Secondary Flow in Asymmetrical Conduits. Quite dis¬ 
tinct from the secondary pattern of the velocity fluctuations in 
turbulence is a type of secondary movement resulting from 
asymmetry of conduit boundaries. So long as these boundaries 
are surfaces of revolution, the enclosed flow must be perfectly 
symmetrical about the longitudinal axis—with the possible 
exception of intermittent pendulation of the wake downstream 
from an abrupt enlargement. Such symmetry may be destroyed, 
however, in two different ways: either by changing the shape 
of the cross section or by curving the axis of the conduit. Either 
modification will result in a form of se^condary flow that remains 
independent of time so long as the mean motion itself is steady. 
But it is then evident that the temporal mean velocity vector 
must be the resultant of primary and secondary components. 
If the primary flow is considered essentially longitudinal, it is 
apparent that the secondary flow must take place in the plane 
of the conduit cross section. In other words, the secondary 
movement is evidenced by the presence of circulation superposed 
upon the longitudinal translation of the fluid, the stream lines 
of the mean motion then assuming a spiral form. 
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The most penetrating investigation of secondary flow caused 
by cross-sectional form was undertaken by Nikuradse^ at 
PrandtPs suggestion. Rectangular, triangular, and grooved 
circular conduits were studied with respect to longitudinal 
velocity distribution and circulation, the latter being determined 

photographically through injection of a milky 
fluid at numerous points over the section. In 
every case there was found to exist a definite 
secondary flow toward the corners of the sec¬ 
tion and away from the sides, with the result 
that the isovels—velocity contours—were 
transposed locally in the direction of the sec¬ 
ondary motion. The measured velocity dis¬ 
tribution in the case of a narrow rectangular 
conduit is reproduced in Fig. 136, from which 
it is seen that the velocity in the corner regions 
is far higher than would normally be expected, 
whereas points of inflection are to be found 

Fig, 136.—Veloo- F i g. 137.—Second- Fig. 138.—Rcsult- 
ity distribution in a ary flow at the corners ant of tangential 
narrow rectangular of a conduit. fluctuations, 

conduit. 

in each isovel a short distance away. The pattern of circu¬ 
lation producing this effect is indicated in Fig. 137. 

Prandtl offered an explanation of the phenomenon in terms of 
turbulent fluctuation.*^ In the case of a symmetrical cross section 
the isovels are necessarily concentric circles, the three compo¬ 
nents of fluctuation being directed longitudinally, radially, and 
tangentially. In the foregoing ti-eatment of apparent shear, the 

^ Nikitradsb, J., Uritersuchungen fiber turbulente Strom ungen in niebt 
kreisfdrmigen Rohren, Ingerdeur-Arckiv^ vol, 1, p. 306, 1930. 

* Prandtl, L., tlber die ausgebildete Turbulenz, Proc, 2d Ini. Cong, for 
A'pp. Mech.f Zurich, p. 62, 1927. 
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tangential components were neglected—not because they were 
of lesser magnitude than the others, but simply because they 
were not ejffective in the mechanism of symmetrical pipe resist¬ 
ance. Once an isovel changes curvature, however, the tangential 
components of fluctuation are no longer in symmetrical equilib¬ 
rium, but produce a resultant stress normal to the isovel in the 
region of maximum curvature, as shown schematically in Fig. 
138. Inasmuch as the velocity decreases outward, the resultant 
force will also be outward, regardless of direction of the fluctua¬ 
tion. This force, reasoned Prandti, tends to produce a mean 
secondary flow across the isovels in this region—toward the 
corners of the rectangular conduit—which, by reason of con¬ 
tinuity, must be ac(;ompanied by an equivalent inward flow 
across adjacent parts of the isovels where the curvature is less 
pronounced. 

Although the secondary flow occurring at a conduit bend is of 
essentially the same nature, its cause is quite different. Were 
the energy of the fluid the same at every point, the distribution 
of velocity would correspond to conditions of potential motion, 
the pressure intensity reaching a maximum along the outer 
boundary at the midpoint of the bend. Since viscous resistance 
actually reduces the boundary velocity, the energy in the 
boundary region is less than that in adjacent layers; it must 
follow that at the outside of the bend the pressure intensity falls 
away abruptly toward the boundary. Since this pressure 
gradient normal to the boundary is exactly opposite to that of 
potential motion, secondary flow takes place in the direction 
of the outer w’^all, continuity requiring an inward flow along the 
side walls to compensate, according to the diagram in Fig. 139a. 

The resulting double spiral that is characteristic of flow at 
bends has long been observed, perhaps the most effective experi¬ 
mental studies being those of Hinderks.^ By constructing long- 
radius elbows in split sections and coating the inside surfaces 
with a heavy paint, Hinderks was able to secure the actual 
pattern traced in the partially dry paint by the moving fluid. 

The effect of this induced circulation at bends is threefold: 
In addition to the energy lost in normal boundary resistance, 
further energy is taken from the primary flow to produce the 

i Hinderks, A., Nebenstrdmungen in gekrtimmten Kan^len, Zeitachr%ft 
n. 1779, 1927, 
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secondary movement. The velocity distribution at the bend is 
completely modified, for the spiral motion transposes the region 
of maximum velocity toward the outside of the bend. Finally, 
the circulation persists a cjonsiderable distance downstream from 
the bend (from 50 to 75 pipe diameters), and until it disappears, 
conditions of established, uniform motion will not prevail. 

If the ratio of conduit diameter to radius of bend is large, it is 
evident that tiie rapid de(*-eleration of the flow (before th(‘ mid¬ 

point of the bend along the outer wall and past the midpoint 
along the inner wall) will produce two regions of separation that 
further add to the energy loss. Measurements by Nippert^ 
show that the effect of the secondary motion is still quite evident, 
even when separation occurs, as may be seen from the velocity 
distribution in Fig. 1396. Nippert found, however, that the 
pressure distribution does not differ appreciably from that of 
potential motion, despite the complete redistribution of velocity. 
Since in potential flow the pressure difference between the inside 

^ Nippert, H., Uber den Stromungsverlust in gekrummten Kanalen, 
Forsch.Arb. a. d. Qeb. d. IngenieurwesenSt 320, 1929. 
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and the outside of a given bend depends only upon the quantity 
pFV2, it is then to be expetded that the rate of discharge through 
a commercial pipe bend will vary direcdly with the square root 
of the pressure difference—the discharge coefficient remaining 
practically constant for high values of R. This fact has been 
utilized at the University of Illinois in adoption of the pipe elbow 
as a discharge meter. 

Many attempts have been made to determine the energy loss 
at bends as a function of the Reynolds number and the bend 

pipes. 

proportions, with results that are in general quite unsatisfactory 
—indeed, almost as many contradictory curves have been 
published as there have been investigators engaged in such 
research. Perhaps the most dependable of these are due to 
Hofmann,^ whose generalized results are presented in Fig. 140. 
It is apparent that in smooth bends the resistance coefficient f 
in, the expression 

= (187) 

is greatest when the ratio of radius of bend to pipe diametel is 
very low, since the effect of separation is then the most pro- 

1 Hofmann, A., Der Verlust in 90°-Rohrkriiminern mit gleichbleibendem 
Kreisqaerschnitt, Mitteilungm des hydravUschen Instituts der T, H. MUnchen, 
no. 3, Oldenbourg, Munich, 1929. 
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nounced; even then, however, the vi.scou,s influence is still appre¬ 
ciable, as evidenced by variation with R. That the resistance 
coefficient again incr(!ases as tht; ratio R/D becomes great is due 
to the increasing length of surface along which shear would occur 
under any circumstances. The effect of roughening the bound¬ 
ary is apparent from the neighboring (mrves, the loss from 
separation at low values of R/D no longer varying with R 

M.I.T. 

Fig. 141.—Secondary motion at the base of a weir. The vortex filament in 
a is colored by crystals of dye buried in the sand bed. In b is shown the pattern 

left in the sand. 

A first approximation for the loss at bends of a central angle 
greater or less than 90° may be obtained by multiplying f by 

the ratio a:°/90°. 
In the case of very abrupt changes in direction in conduits of 

rectangular cross section, the combined effect of separation 
and secondary spiral motion may give rise to intense, intermittent 
vortex motion in each of the outer corners. While the existence 
of a free surface is not essential to this phenomenon, similar effects 
may be observed directly upstream from a sluice gate or weir 
(Fig. 141). The reduction in velocity due to drag along the lower 
boundary produces a normal reversal of flow in the region of 
stagnation at the base of the weir, as shown by the sand pattern 
in Fig. 1416. However, the velocity defect is even more pro¬ 
nounced at the juncture between the floor and either wall, which 
considerably augments the tendency toward flow reversal at 
the Bides and leads to the fonnation of a vortex normal to the 
floor near each corner (Fig. 141a). As soon as such a vortex is 
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established, the pressure gradient leading to its formation no 
longer exists, and the secondary motion abruptly ceases. There¬ 
upon, the cycle begins once again. Since low pressures accom¬ 
pany the high tangential velocities, the vortex filament may be 
ventilated from the downstream side, a tube of air often penetrat¬ 
ing the flow well past the plane of the weir. Ventilation from the 
upstream side of the sluice gate may also follow the formation of 

depressions in the upper surface similar to 
those of Fig. 27. 

A very succesvsful method of eliminating 
practically every unwanted effect of the con¬ 
duit bend has long been used in aeronautics, 
and is gradually finding favor among hydraulic 
engineers. The bend is made as abrupt as 

FI o. i42.~Guide possible, the fluid being diverted through the 
j^nes in a conduit corresponding angle by means of a series of 

properly designed guide vanes, as shown in 
Fig. 142. If the form and spacing of these vanes^ are correctly 
chosen, the resistance coeflicient may be as low as 0.15, whereas 
the flow leaves the elbow free from secondary motion and with 
a practically uniform velocity distribution. Needless to say, such 
a method would be economically unsound in the case of small com¬ 
mercial pipe fittings, but in the larger sizes varied elbows have 
been welded to order at a cost similar to that of standard prod¬ 
ucts. Quite aside from the eventual probability of commercial 
recognition, the use of guide vanes in the experimental laboratory 
is extremely advantageous. 

^ Quantitative information is given in Krober, G., Schaufelgitter zur 
Umlenkung von Flussigkeitsstrdmungen mit geringem Energieverlust, 
Ingenieur-ArchiVf vol. 3, p.’ 516, 1932. 



CHAPTER XIII 

FLOW IN OPEN CHANNELS 

63. Survey of the General Problem. Fundamentally similar 
in every other respect, the open channel possesses one distinguish¬ 
ing characteristic that renders it considerably more difficult of 
investigation than the closed conduit—a free surface, the form 
of which introduces one further variable into any functional 
relationship. Open-channel flow thus displays almost the iden¬ 
tical phenomena of velocity distribution, resistance, and second¬ 
ary flow, described in the preceding chapter, but only in the case 
of established uniform motion does the free surface fail to intro¬ 
duce complexities of primary magnitude. 

The form of the surface profile is determined by the fact that 
all forces involved in the motion must produce as upper boundary 
a stream line along which the pressure intensity is constant. 
Except in small-scale models, the effect of surface tension is 
negligible, so that weight and viscosity are the two force proper¬ 
ties involved in open-channel flow. Although the most general 
case includes appreciable influence of both, solution of such 
problems is at best extremely difficult. For practical reasons, 
therefore, it has been found expedient to distinguish between two 
broad classes of motion: that in which the surf^^ce profile is 
determined primarily by boundary resistance, and that in which 
the surface curvature is the result of rapid or abrupt change 
in the boundary contour. The extreme case of the latter type of 
motion has been presented at length in Part One; on the other 
hand, the problem of resistance in established motion differs 
little from that in the closed conduit of uniform section, and a 
vast number of practical problems involve acceleration that is so 
gradual that inertial effects may be considered negligible in 
comparison with boundary drag. 

Owing to similarity of conditions, analytical study of uniform 
flow in open channels is quite as far advanced as that of uniform 
flow in the closed conduit—^so long as conditions of symmetry are 
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equivalent. In other words, the circular conduit finds its 
counterpart in the open channel of constant depth and infinite 
width, under which circumstances equations of velocity dis¬ 
tribution and resistance are practically identical in the two 
cases. But the channel of finite width is equivalent to the 
conduit of non-circular cross section, the secondary flow wdiich 
occurs in either case still awaiting satisfactory treatment in 
general terms. Needless to say, such difficulties in the trciatment 
of uniform motion are equally in evidence in the investiga¬ 
tion of non-uniform motion, and only in the case of two-dimen¬ 
sional flow can any approach to a rigorous analysis be hoped for 
at the present time. Both gradually varied flow and rapidly 
varied flow, in channels of finite width, have thus far yielded 
only to empirical investigation, although analytical methods are 
gradually eliminating many of the misinterpretations that 
seem to accompany pure empiricism, and are slowly throwing 
light upon a complex phase of fluid motion. It is the purpose 
of this chapter to clarify the basic aspects of the problem, in the 
effoft to provide a sound background for further advancement. 

64. Velocity Distribution and Resistance in Uniform Motion. 
Hydraulic literature contains considerable evidence of the 
attempts that have been made to fit velocity measurements to a 
parabolic, ellipsoidal, or exponential distribution curve of one 
sort or another. It is noteworthy, therefore, that Krey^ derived 
a logarithmic function both for pipes and for open channels at a 
time when exponential functions for pipe flow were much in 
favor—some years bc^fore von Kdrmdn introduced his similarity 
hypothesis which led to the universal logarithmic equations. 
Krey's expression for a wide channel actually yields a curve that 
differs little from that of Eq. (175): 

The factor ^ is a variable distance from the lower boundary, d is 
the total depth, and a is the very small distance between the 

^ Krby, H., Die Quer-Geschwindigkeitskurve bei turbvilenter Stromung, 
Zeit. angew. Math. Mech.^ vol. 7, no. 2, 1927. 

Even earlier (1893) a logarithmic function was obtained by Jasmund; 
see PoRCHHBiMBE, Hydraulik,'' p. 179. 
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boundary and the reference axis. The physical deductions that 
led Krey to formulate this expression, as well as the accuracy 
with which he found it to agree with experimental data, would 
lead one to conclude that Eqs. (170) and (172) should apply 
equally well to open channels as to pipes, so long as the problem 
is one of two dimensions. 

A question remains, nevertheless, with regard to the mecha¬ 
nism of the mixing process in the neighborhood of the free surface. 
Nikuradse, it will be recalled, found indirectly from laboratory 
measurement that the mixing length invariably reached a maxi¬ 
mum at the pipe axis (Fig. 115), a result which one would 
naturally expect in the case of pipe jflow. But at a relatively 
smooth free surface, on the contrary, the length characteristic 
of the mixing process must approach the limit zero, for otherwise 
the surface would be the scene of violent agitation in the vertical 
direction. Visual observation would indicate that only the 
vertical component of the turbulent mixing is reduced at the free 
surface, for relatively large surface eddies are visible in any 
open-channel flow of appreciable velocity. In Chapter XII, 
however, brief mention was made of the fact that von Kdrm^n^s 
logarithmic velocity functions necessarily have a finite slope 
dv/dy at the pipe axis, a discrepancy accompanied by a curve for 
the mixing length that approaches zero at the centerline of flow. 
Although these circumstances are at variance with actual condi¬ 
tions in the case of pipe flow, they still appear to introduce no 
serious error; and since they are more nearly in accord with 
surface conditions in the open channel, there is no reason to 
question seriously their validity until definite experimental 
evidence is at hand. 

Under normal conditions of flow in actual channels^ geometrical 
dimensions are usually so great that not only is the motion 
definitely turbulent, but the Reynolds number is well above 
the range of appreciable viscous influence. Although artificially 
lined channels are sometimes so smooth that a laminar boundary 
film may still exist, more often than not it is boundary roughness 
that determines the magnitude of wall shear. Under such 
conditions, Eq. (172) is applicable once boundary roughness may 
be described in terms of a linear parameter k. It remains, 
however, to determine to in terms of suitable flow characteristics. 
From Fig. 143 it is evident that the following relationship must 
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hold for very wide channels, the factor S == sin a denoting the 
identical slopes of energy line, water surface, and channel 

bottom: 

yhydx sin a — to h dx 

TO = 7 2/ S (188) 

On the other hand, just as in the case of flow in a closed conduit, 
the intensity of boundary shear will vary 
according to the following functional relation¬ 
ship : 

To 

The function <p is the customary dimension- 
l(‘Ks resistance coefficient [compare with Eq. 
(158)] and is equal in magnitude to one- 
fourth the pipe coefficient/; therefore, com¬ 

bining Eqs. (188) and (189), 

yydx 
Fig, 143.—Defini¬ 

tion sketch—boundary 
shear in an open 
channel. 

s = LYl 
41/ 2fi( 

(190) 

Just as the velocity distribution in the central regions of very 
wide channels of constant depth is fully described by Eqs. (170), 

jt 

V 
’^mox 

Fig. 144.—Velocity distribution in a narrow channel. 

(172), and (175), the resistance coefficient may be determined 
by Eqs. (182) and (184). 

Whereas the pipe of uniform circular cross section is that type 
of closed conduit most frequently encountered, its counterpart— 
the open channel in which side effects are negligible—splays only a 
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small role in engineering practice. To expect that the same 
relationships would be applicable to any channel, regardless of 
width and cross-secdional form, is at Ix'st optimistic—^in particular 
if one recalls the secumdary flow in a conduit of non-circular 
cross section. In Fig. 144, for instance, are plotted velocity 
measurements made by Nikuradse in a narrow oi)en channel, 
(X)rresponding approximately to the proportions of the closed 

Fig. 145.—Velcxtity distribution in a wider channel. 

conduit of Fig. 136. Comparison of these plots will show at 
once that the influence of the two boundary corners is essentially 
the same; but, in addition, the effect of the secondary flow in 
the upper regions is to depress the region of maximum velocity 
a considerable distance below the free surface. Figure 145, 
based on measurements by Bazin^ in a channel of greater width, 
indicates that the maximum velocity occurs considerably nearer 
the free surface—a trend that approaches the limit already dis¬ 
cussed as the width-depth ratio becomes very great. 

In other words, the velocity distribution in an open channel is 
definitely dependent upon the relative magnitude of channel 
width and channel depth. Evidently, it will also depend upon 
cross-sectional form, for the secondary flow in a semicircular 
channel, for instance, must differ to some extent from that in one 
of trapezoidal form, although the width-depth ratio is the same. 
But even for a given channel section the magnitude of the rough¬ 
ness must influence the relative position, and hence the relative 
shape, of the isovels (a fact vindicated by experiment), under 
which circumstances it will be seen that the location of the region 
of maximum velocity is not dependent upon form alone. Inas¬ 
much as the velocity gradient at the boundaries will therefore 

bDABCY, H., and Bazin, H., Recherches hydrauliques, MSm. pris, par 

divers savants, Paris, 1865. 
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vary from point to point of a cross section of finite width, it 
follows that the intensity of boundary shear cannot be assumed 
constant over the walls and floor of the channel. The distribu¬ 
tion of To must then be a function of the Reynolds number of the 
flow, the geometry of the cross section, and the relative roughness 
of the boundary. 

If, for convenience, to is nevertheless assumed to represent 
the mean intensity of boundary shear, in uniform motion the 
following equilibrium of forces must prevail, 

y A S dx ^ To P dx 

in which P represents the perimeter of the wetted boundary, 
whereas A refers to the area of the flow section. These two 
parameters are customarily combined in the form A/P = J?, 
the so-called hydraulic radius of the cross section, whereupon 

To ^ y R S (191) 

It is obvious, however, that the factor R does not fully describe 
the geometry of the cross section, for R may have the same 
magnitude for an infinite variety of cross-sectional forms. If, 
therefore, one seeks to express the mean boundary shear in terms 
of J? in a manner parallel to that of Eq. (189), the resistance 
coefficient must be a function of three distinc^t parameters—a 
Reynolds number VR/v, relative roughness k/Rj and a form 
factor 0: 

To = 

Combining with Eq. (191), 

iR 2g 

(192) 

(193) 

This is seen to yield Eq. (190) as R approaches tne limit y; 

moreover, it is identical with Eq. (180), since R = D/4 in the 
case of a circular pipe. 

Existing experimental data are not suflBcient to determine the 
characteristics of the factor jS—^indeed, the necessity of giving 
due weight to channel form has seldom been recognized by the 
hydraulician. On the other hand, variation of / with the Rey¬ 
nolds number is usually slight, owing to the negligible influence 
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oi mean viscous shear at the high values of R which usually 
prevail. Relative roughness, therefore, has been the parameter 
which has received the principal attention. 

Credit for the first comprehensive formulation of the effect 
of relative roughness is due von Mises,^ who derived from 
experimental evidence the dimensionally correct expression 
applicable alike to closed and open conduits: 

fk 0.85 
/ - 0.0096 + 4^^ + (194) 

At high values of R, or for high magnitudes of k/R, the last term 
becomes of negligible value. The factor k, evidently, must have 
the dimension of length, so that tables of this parameter will 
necessarily vary in numerical magnitude from one dimensional 
system to another. Table IV, indicates the variation of this 
factor with boundary material, after von Mises, the foot being 
used as the length unit. 

Equation (193) is more commonly written in the form derived 
in 1775 by de Ch(5zy, 

V = CVM (195) 

in which the Ch6zy coefficient C is neither dimensionless nor 
constant, as formerly considered, for 

C = (196) 

The magnitude of C, in turn, is generally computed through 
use of the empirical relationships of Ganguillet and Kutter, 
Manning, or Bazin; these are, respectively, as follows: 

(197) 

(198) 

(199) 

1 Mises, ‘^Elemente der technischen Hydromechanik,^^ p. 62. 
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The factor n appearing in the first and second expressions is 
the same (refer to Table IV), and is presumed to incorporate the 

Table IV.—Chakaci’eristic Values of the Koughness Factors 

k, rriy and n 

Boundary surface 
von Mises k 

(ft. X loq 
Bazin m Manning n 

Smooth brass. 0.3-1 .6 0.007-0.009 
Planed wood. 4-8 0.109 0.010-0.014 
Unplaned wood. 8-16 0.290 0.011-0.015 
Finished concrete. 1.2-2.4 0.109 0.011-0.013 
Unfinished concreUi . 3.3-6.0 0.290 0.013-0.016 
Cast iron. 16 33 0.013-6.017 
Biveted steel. 33-82 

. 
0.017-6.020 

Brick. 33-90 0.290 0.012-6.020 
Rubble. 
Earth. 
Gravel. 
Earth witli weeds. 

150-600 

1600-3300 

0 833 
1.54 
2.35 
3 17 

0.020-6.030 
0.020-6.030 
0.022-6.035 
0.025-0.040 

absolute roughness of the boundary; as will be seen, however, 
it has three different dimensions in the two equations. Bazin^s 
m, on the other hand, appears as numerator in a fraction having 

as denominator; dimensionally, therefore, it is the square root 
of a length, the ratio m-/R evidently being a true relative rough¬ 
ness parameter.^ Although these several expressions are in 
general use in many countries, and give fairly satisfactory 
results over the normal range of practice, they are at best empir¬ 
ical relationships with scarcely a trace of analytical foundation. 
Nevertheless, until methods which have proved so fruitful in 
the case of closed conduits are extended to the more difficult 
problem of open-channel flow, they are the best available to the 
profession. So long as the engineer bears in mind their empirical 
nature, they will continue to yield results of practical value— 
in particular for channels which do not have extremely different 
cross-sectional forms. Altogether too often, however, they have 
been accepted as a foundation for analysis of a more advanced 

^ While the ratios nlR}^ and njR^^' also indicate relative roughness, the 
numerical equality—})ut dimensional inequality—of the Kutter and the 
Manning n leaves their significance open to question. On the other hand, 
Eqs, (197) and (198) yield essentially the same results, while Eq. (199) will 
agree only if m (or n) also varies with R. The Manning formula is generally 
preferred. 
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nature—in particular in the field of sediment transportation. 
The danger in such methods should be self-evident. 

65. Energy and Discharge Diagrams. At any point in a given 
flow the total head (energy per unit weight of fluid) has been 
shown to consist of velocity head, pressure head, and elevation. 
Strictly speaking, the velocity head should include the kinetic 
energy of the mean flow and 
the kinetic energy of turbu¬ 
lence; the latter, however, is 
not recoverable as energy of 
flow, and may now be omitted 
from the general statement. 
Similarly, while the pressure 
head at a given point must 
vary with direction as a result 
of the secondary stresses, such 
variation is not directly 
measurable, and hence may 
also be neglected. In the 
most general case both veloc¬ 
ity head and pressure head will vary with elevation over a 
section normal to the flow—in part because of the dynamic 
effects of acceleration, in part because of the energy defect 
due to boundary resistance. 

If the discussion is restricted to cases of gradually varied flow, 
accelerative forces become quite negligible, under which circum- 

Fig. 146.—Pressure distribution in 
uniform flow on a steep slope. 

stances the sura must be constant over any normal 

section. It follows, therefore, that the pressure head at any 
point can equal neither the normal distance from the water 
surface nor the vertical distance, as is generally supposed, unless 
the water surface itself is horizontal. It may be seen from Fig. 
146 that the pressure head at any vertical depth is equal to this 
depth multiplied by the square of the cosine of the angle between 
the vertical and the normal; a similar relationship may be found 
by equating the total floor pressure in Fig. 143 to the normal 
component of fluid weight. If the angle a is small, however, it 
is apparent that its cosine will differ only inappreciably from 
unity. For a channel having a slope of 1:10, for instance, 
cos^ a — 0.99, which differs from unity by only 1 per cent. 
Under such circumstances, it makes little practical difference 
whether y is measured in the vertical or normal direction; simi- 
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larly, x may then represent distance in the horizontal direction or 
parallel to the channel bottom. 

The velocity distribution, on the other hand, causes a definite 
variation in total head from the top to the bottom of the section, 
as well as from side to side. Since it is expedient to express the 
weighted mean total head in terms of the mean velocity, the 
quantity V^/2g must be multiplied by Ke, the velocity-head 
correction factor, whose value becomes unity only when the 
velocity is constant over the section. The magnitude of Ke 
may be as low as 1.05 in the case of very smooth boundaries and 
high velocities of flow, rising well beyond 1.20 if the relative 
roughness is great. Accurate investigations require due regard 
for this factor, in particular if the velocity distribution varies 
from one section to the next. On the other hand, in the develop¬ 
ment of methods of practical engineering value, inclusion of this 
variable as a function of other flow characteristic introduces 
needless complexities—a gesture not in kee^ping, for instance, 
with such inexact methods as are involved in the empirical 
expressions for resistance, therefore, is considered to have 
the value unity in the following developments. 

The total head over a given vertical section will then be given 
by the simplified expression, 

Ew = + h (200) 
7 

But since the potential head is constant over the section, and 
equal to the depth y plus the elevation ho of the lower boundary 
of the flow, the elevation of the energy line above the lower 
boundary may be written simply as the sum of velocity head 
and depth: 

y2 
Etv ho = H = — + y (201) 

This quantity is commonly called the specific energy, H referring 
specifically to a datum which always coincides with the lower¬ 
most stream line. 

In two-dimensional motion, the rate of discharge q per unit 
width of section is merely the product of depth and mean velocity; 
Eq. (201) then becomes 

F - (202) 
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The foregoing expression is seen to involve only three variables 
(presuming g to remain constant), any one of which may be 
considered dependent upon the other two. In the most general 
case all three will vary, but in many types of motion one or 
another may change only slightly, if at all. Siudi states of flow 
may then be treated—at least as a first approximation—in 
terms of only two variables, in connection with which a plotted 
curve of the functional relationship is particularly helpful. 

For instance, if g r(‘mains constant, according to Eq. (202) 
there will })e two possible depths of flow y for every value of H. 

At some depth the specific energy must therefore reach a mini¬ 
mum value, which may be determined for any given q by dif¬ 
ferentiating Eq. (202) with respect to y and setting the result 
equal to zero; thus, 

whence 

(HI 
dy 

+ 1 = 0 

(203) 

The depth and velocity corresponding to minimum specific 
energy are designated as critical and given the subscript c; in 
terms of the (constant rate of discharge, 

and 

(204) 

As will be seen from Fig. 147, a convenient dimensionless plot 
of the function y:H (the spiH'ific-energy diagram) may be con¬ 
structed from the relationship 

2/+* 2V2// Vc 
(205) 

which is obtained by dividing the several terms of Eq. (202) by 
yc or its equivalent. 

Were H taken as the constant term in E]q. (202), it is apparent 
that for every value of q two depths of flow would again be 
possible. The rate of discharge must then have a maximum 
value for the given specific energy, which may similarly be 
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Vca/ 

■-—flnu/ 

Fig. 147.—Dimensionless specific-energy diagram for two-dimensional flow. 

energy is the same as that for minimum specific energy at a 
given rate of discharge. In other words, the terms maximum 

discharge and minimum energy both refer 
' to conditions of critical flow. The maxi¬ 

mum or critical discharge is seen to have 
the form 

qc=^V~gyc^ = Vg H)y‘ (207) 

As shown in Fig. 148, a dimensionless dis¬ 
charge diagram may be constructed from 
the equation 

Fio. 148.—Dimensionless which may be derived in the same fashion 
discharge diagram. jiq. (205). 

It now remains to examine the relationship that must obtain 
between H and q for constant depth. As may be seen from 
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inspection of Eq. (202), the minimum value of H is now reached 
when H — y (that is, when the energy line coincides with the 
free surface), under which circumstances the rate of discharge 
will be zero; obviously, there is no upper limit to the magnitude 
of either q or H so long as y remains constant. The function H',q 

may be plotted in the dimensionless form 6r 

H 1/ ^ \ 

y 
+1 (209) JL 

as shown in Fig. 149. 
A simple illustration of the use of the 

specific-energy diagram is seen in Fig. 150. 
It is assumed for simplicity that the energy 
line remains horizontal, the change in 11 

resulting from the fact that the lower 
boundary rises the distance A/io. Two sur¬ 
face profiles are possible, depending upon 
whether the depth of the approaching flow 

is greater or less than yc = seen 
from the figure, the surface will drop when yi > yc and will 
rise when y\ < y^ in accordance with the energy diagrams 
superposed on the boundary profile. In either case, both yi 

and 2/2 are definitely established by the rate of discharge and 

z 3 
q 

V§y^ 
Fla. 149.—Dimension¬ 

less energy-discharge 
diagram. 

Fig. 150.—Application of the energy diagram to a change in channel elevation. 

the energy-line elevation. Needless to say, the energy diagram 
caiinot be applied to the intermediate region of curvilinear flow, 
where the pressure is not hydrostatically distributed, nor will it 
yield more than qualitative results if appreciable energy is lost at 
the transition. 

Application of the discharge diagram may be illustrated by 
the case of a channel inlet at the side of a large reservoir. The 
energy line will coincide with the reservoir surface, whereas the 
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rate of discharge for constant H will vary with the depth of flow 
in the channel as governed by downstream conditions. Evi¬ 
dently, if the depth y is equal to //, no flow will take place. As 
y decreases, q will increase, until at some stage the flow profile 
will correspond to that in Fig. 151. Tlie maximum rate of dis¬ 
charge will obtain when y — Vc = y i H; no further increase 
in q is physically possible so long as H remains unchanged. 
If, instead, the flow is controlled by a slui(*e gate at the inlet, 
the discharge will obviously be zero w})en the gate is closed— 
^.c., when y ~ 0. As the gate is raised, q will increase with y 

Fkj. 151. - Use of the dis- 
fharge diagram at a channel 
inlet. 

Fi<^. 152.--Use of the 
discharge diagram at a 
sluice gate. 

according to the discharge diagram, passing through the inter¬ 
mediate stage shown in Fig. 152. The maximum rate of dis¬ 
charge under the gate must finally correspond with the foregoing 
case of free inflow at the depth yc. 

A somewhat different application of the discharge diagram 
may be seen in the case of flow between divergent or convergent 
vertical walls. For instance, if the flow passes between the 
plane boundaries shown in plan in Fig. 153, since Q necessarily 
remains constant from section to section, q will decrease in 
magnitude as the width of the flow section grows larger. If H 

is the same at all successive cross sections, it follows that y 

must either increase or decrease in the direction of flow, depend¬ 
ing upon whether the depth is greater or less than yc Since q 

is inversely proportional to distance in the direction of flow, the 
surface profiles are given directly by the two arms of the discharge 
diagram reproduced to the appropriate scale. As will be seen 
from Fig. 153, flow with hydrostatic pressure distribution is 
physically possible—^for the given magnitude of H—only after 
the width of the cross section has exceeded a certain minimum 
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iBagnitude. Similar conditions must obtain for flow in the 

opposite direction. 

Use of the energy-discharge diagram may be shown in con¬ 

nection with the overfall, the depth y being held constant a 

--- 

Ficj. 158.—Surface profiles for divergent or convergent flow. 

short distance ujistream from the crest (Fig. 154). When 

the energy line coincides with the free surface, the discharge must 

be zero, whicdi is possible only if the energy line coincides with 

the tailwater h'vel. As the magnitude of U is increased, the 

discharge will also rise, the value of q being given by the inter- 

Fig. 154.—Application of the energy-discharge diagram to the free overfall. 

section of the energy line with the energy-discharge curve. 

Once q = the tailwater elevation becomes immaterial, and the 

overfall may thenceforth be either submerged or free; q will 

continue to increase with //, as shown for the intermediate stage 

indicated in the illustration. 

Evidently, the terms maximum discharge'^ and ^^minimum 

specific energy*^ are significant only under conditions of constant 
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specific energy and constant discharge, respectively. In the 

case of constant depth of flow, II is limited only by the depth 

itself, while no upper limit exists for q. On the other hand, while 

maximum and minimum values take on entirely different aspects 

when the depth remains constant, conditions of critical flow still 

refer to very definite simultaneous values of q and H, 
These simplified equations of two-dimensional flow will apply 

to a channel of finite width only if the side walls are vertical. 

For any other channel, since the rate of discharge Q is the 

product of Y and the area A of the flow section, 

H - + y (210) 

Since dA — h dy^ in whifih h represents the surface width, 

whence, under conditions of critical flow, 

The corresponding energy and discharge diagrams will be 

similar to the foregoing, although the exact forms of the curves 

and the accompanying numerical values will vary with the 

geometry of the channel section. The reader must again be 

cautioned that the use of such diagrams will yield more than a 

first approximation of flow conditions only so long as the pressure 

distribution is essentially hydrostatic over the section in question. 

66. Equations of Gradually Varied Flow. Uniform motion 

is a limit that is approached only in very long channels of con¬ 

stant form, roughness, and slope. As a general rule, therefore, 

the depth of flow must be regarded as variable in the direction of 

motion, while for reasons of continuity the velocity head must 

change accordingly. Furthermore, as will be seen from the 

specific-energy diagram, variation in y and V^/2g under condi¬ 

tions of constaiit discharge will invariably result in a change in 

specific energy. It follows that the energy line, the water surface, 

and the channel bottom will all have different slopes, the rate of 

energy loss then differing from that in uniform motion. 
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Writing the mean total head at any cross section as the sum 

of velocity head, depth, and elevation of the channel floor, 

= ^ + 2/ 4* /lo (213) 

A single differentiation with respect to distance in the direction 

of flow will yield the corresponding rate of change of each of these 

quantities: 

dx dx dx dx 
(214) 

The first term evidently represents the rate of change of total 

head—a quantity which must always be negative in the direction 

dE 
of flow; —-—7 therefore, is proportional to the rate of energy 

loss, and as such should be expressible in terms of the essential 

flow characteristics and an appropriate coefficient of resistance. 

Unfortunately, such relationships have been developed only for 

the case of uniform motion, and their application to gradually 

varied flow would necessarily involve a certain amount of error. 

The fact has already been mentioned, for instance, that diverging 

flow is accompanied by a rate of loss that is greater than that in 

parallel flow, whereas convergence tends to produce just the 

opposite effect. Nevertheless, for want of a more satisfactory 

expression, one is forced to assume that the rate of energy loss 

in non-uniform motion is equivalent to that which would occur 

if the flow were uniform under identical conditions of depth, 

discharge, and boundary roughness. Thus, using the Chc^zy 

notation, 

dEy, ^ 
dx 

The rate of change of velocity head, in turn, may be written more 

conveniently by introducing the quantity V ^ Q!A and recalling 

that an increment of cross-sectional area dA is equal to the sur¬ 

face width h multiplied by the depth increment dy) therefore, 

£ (Yl\ « £ ( ^ 
dx \2g/ dx \2gA^/ gA^ dx 
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The ratio A/hy moreover, is equal to the mean depth of flow^ 
yr^] introducing this value, and again writing Q/A = F, the 
rate of change of velocity head will be simply 

gym dx 

The quantity dy/dx is obviously the rate of change of depth with 
distance, whereas dho/dx represents the slope of the channel 
bottom; since a downward slope is arbitrarily taken as positive, 
d.hi)/dx — —So. 

If these several equivalent terms are introduced into Eq. (214), 
the result will be as follows: 

gym dx dx ^ 

Solution for dyjdx as the dependent variable then yields the 
differential equation of gradually varied flow in its most sig¬ 
nificant form: 

q ^ Z1 
^ 
dx .i_Z! 

gym 

(215) 

67. Surface Profiles. Through Eq. (215) means are now at 
hand of evaluating the rate of change of depth with x for any 
point at which the depth itself is known. From inspection it 
will be seen that the depth will increase in the direction of flow if 
the numerator and denominator of the fraction at the right are 
both positive or both negative. Similarly, the depth will 
decrease in the dir(iction of flow if the numerator is positive and 
the denominator negative, or if the numerator is negative and 
the denominator positive. Without integration, however, the 
differential expression can yield no quantitative information as 
to the actual depth at any arbitrary section. Nevertheless, 
further inspection of the fraction at the right will permit at least 
qualitative deductions as to the form of the surface profile. 

Since the rate at which head is lost in the direction of motion 
determines the slope of the energy line, the numerator of the 
fraction is really the rate of change of specific energy with x\ 

q _ q O ^dH 
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Evidently, if the flow is uniform, the numerator will be zero; 
if Se is less than /So, H will increase with x and the numerator 
will be positive; if /S« is greater than /So, the numerator will be 
negative. But if dH/dx is positive, the energy line and the 
channel bottom diverge, indicating that the rate of loss is lower 
than in uniform flow; the velocity must therefore be lower than 
that for uniform motion (since the rate of loss varies with F^), 
and the depth correspondingly greater than the uniform depth 
2/0. Conversely, if dH/dx is negative, y must be less than i/o. 
These essential relationships are therefore apparent: 

-So > ^ > 0 2/ > 2/0 

So < Se ^ ® y < 

The denominator, upon comparison with p]q. (211), will be 
seen to represent the rate of change of specific energy with depth : 

^ dH 

gym dy 

The denominator thus has a magnitude of zero at the critical 
depth, when H is a minimum. If the depth is greater than the 
critical, corresponding to a point on the upper arm of the energy 
diagram, H will increase with y and the denominator will be 
positive. For points on the lower arm, where the depth is less 
than the critical, H will decrease as y increases, and the denomi¬ 
nator will accordingly be negative. In brief. 

72 

1 > — 
gym 
•72 

1 < — 
gym 

dy 
m 
dy 

> 0 

< 0 

y > yc 

y <yc 

Four limits of dyjdx are possible. The limit zero is approached 
as the numerator of the fraction becomes increasingly small; 
evidently, this limit must be approached asymptotically, for it 
corresponds to the case of uniform motion, wherein the energy 
line, the water surface, and the channel bottom are parallel. 
A second limit will be approached as the term V^/C^R == 
becomes increasingly smaller; since this condition indicates 
negligible loss of energy, the velocity of flow must also be inap- 
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preciable—in other words, dy/dx will then equal So, signifying a 
horizontal water surface and a great depth of flow. The third 
and fourth limits, positive and negative infinity, correspond to 
flow at minimum energy, the denominator of the fraction then 
being equal to zero. This implies a free surface at right angles 
to the channel bottom—a situation that is physically impossible 
and is indicated by the equation only because the conditions 
specified earlier in the derivation are no longer fulfilled; that is, 
it was assumed that the pressure would be hydrostatically dis¬ 
tributed over every normal section, wdiereas the stream lines 
in the region of critical depth become definitely curvilinear. 

From the foregoing conclusions it will be seen that the surface 
profiles in gradually varied flow may be classified according to 
the relative magnitudes of actual depth, normal depth, and 
critical depth, for a given rate of discharge?, a given boundary 
roughness, and a given channel cross section. Although the 
slope of the channel may in its own right be classed as sustain- 
ing (positive), horizontal (zero), or adverse (negative), sustaining 
slopes may be further grouped according to whether the normal 
or the critical depth is greater. If yo is greater than yc, it is 
apparent that the corresponding uniform motion would be in the 
tranquil state; if yo is less than y^ the uniform motion would be 
rapid. Slopes producing tranquil uniform flow are termed mild; 
similarly, slopes on which the unil'orm motion would be rapid are 
designated as steep. If yo exactly equals yc, the slope is classed 
as critical, for the uniform motion would then take place at the 
critical depth, under conditions of minimum specific energy. 

Adverse, horizontal, mild, critical, and steep slopes will hence¬ 
forth be denoted by the appropriate letters A, 0, M, C, and S, 
respectively. Furthermore, a surface profile for which the depth 
is always greater than both the normal and the critical is desig¬ 
nated by the subscript 1; the subscript 2 is used if the depth is 
always between yo and yc) similarly, the subscript 3 applies to 
those profiles in which the depth is always less than both the 
normal and the critical. It should be possible, apparently, to 
obtain at the most fifteen distinct conditions of gradually varied 
motion, involving three different types of surface profile on 
each of the five classes of channel slope. 

The trends of these several curves may be indicated diagram- 
matically after the method shown in Fig. 155, in accordance 
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with the foregoing discussion of Eq. (215). For convenient 
reference, imaginary lines of normal and critical depth are 
drawn parallel to the channel bottom. Considering, for example, 
a surface profile of the Mi type, reference to the energy diagram 
will show that the depth must increase with x, since y > yo > Vc] 
from the discussion of limits, it is evident that the curve will 
be asymptotic to the normal-depth line at its upstream end, 
approaching the horizontal in the downstream direction. While 

Fig. 155.—Surface profiles for channels of adverse, zero, mild, critical, and 
steei> slopes. 

the Si profile also approaches the horizontal for the same reason, 
it must be normal to the critical-depth line at its beginning, since 
yc > t/o. Similar reasoning will justify the form of each individual 
curve as given in the composite diagrams, although certain 
singularities warrant further investigation. 

For example, in the case of the critical slope, the C2 profile 
will be identical with the superposed lines of normal and critical 
depth. That the Ci and C3 curves must be horizontal may be 
seen from the fact that they are the limits of the Mi and Si 
curves, and the Mz and the S3 curves, respectively. The 0i 
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profile iwS not visible on the diagram, since it is a horizontal line 
an infinite distance above the channel, coincident with the 
energy line and the line of normal depth; only under conditions of 
zero velocity can the energy line be parallel to the horizontal 
floor of the channel. It follows that the O2 curve must then also 
approach infinity in the upstream direction. The normal-depth 
line for adverse slopes, similarly, must again be parallel both 
to the channel bottom and to the energy line—conditions that 
can be satisfied only if the corresponding uniform flow is in the 
negative x direction. Obviously, then, the A1 curve can have no 
practical significance, whatever academic interest it may arouse. 
The A2 profile approaches the horizontal in the upstream direc¬ 
tion, so that it is the one curve of type 2 which is not asymptotic 
to the line of normal depth. Curve A^ thoroughly disproves 
the adage that water cannot flow uphill. 

The reader must bear in mind the fact that the actual curvature 
of these profiles is very slight, except in the immediate vicinity 
of the critical depth; only bec^ause of the extreme reduction of 
horizontal scale do the composite diagrams tend to give a false 
impression. It must be noted, furthermore, that the relative 
length of the several curves, for a given rate of discharge, will 
vary with the relative depth of flow, since the rate of loss is 
proportional to the square of the velocity. Curves of type 3 
are therefore the shortest, so far as the region of appreciable 
change in depth is concerned. It will be evident from Fig. 155, 
nevertheless, that only the Cz and the Mz profiles are actually 
limited in length, for all the other curves are asymptotic to the 
normal-depth line, to the bottom, or to the horizontal. The 
latter curves are then infinite in extent, mathematically speaking, 
although for practical purposes it is expedient to consider that 
a curve has reached its end when the depth is within 1 per cent 
or 0.1 per cent of its asymptotic limit. 

68. Computation Procedure. These basic profiles are deter¬ 
mined in form by the rate of discharge, the channel slope, the 
boundary roughness, and the geometry of the channel cross 
section. Which of these profiles will actually develop in a given 
channel will depend upon one further characteristic: a local 
change in the longitudinal profile of the channel itself. This may 
take the form of a sluice gate, a spillway, or some such structure 
causing backwater on the upstream side and flow at super- 



8ec. 68] FLOW IN OPEN CHANNELS 295 

critical velocity on the other; or it may be an abrupt change in 
slope, roughness, or channel section; under extreme conditions, 
the change may be in the rate of discharge, caused by the junc¬ 
ture of two channels or a partial diversion of the flow. A single 

Fig. 166.—Typical profile combinations in gradually varied flow. 

control section of this nature will determine whether the cor¬ 
responding surface profile will be of type 1, 2, or 3; it will also 
definitely fix the profile with respect to the channel itself, in that 
the prescribed depth at that section will determine from which 
point on the basic curve the actual development will proceed 
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(Fig. 156). The extent to which development may continue 
obviou.sly depends upon th(i proximity of the next control section 
in the upstream or downstream direction. 

For example, an abrupt overfall at the end of a long adverse, 
horizontal, or mild slope is a control section at which conditions 
of minimum energy must prevail; the corresponding surface 
profile must then be of type 2, terminating at the fall with the 
depth y = yc- Similar circumstances must hold true if any one 
of these slopes abruptly changes to a steep one; this also serves 
as a control section for the steep channel, at which point the S2 

profile will begin. Curves of type 1 are determined at the end of 
maximum depth, the magnitude of this depth being governed by 
the head required on a spillway or sluice to deliver the given flow, 
or by the surface elevation of a reservoir into which the channel 
discharges. Curves of type 3 are invariably controlled at their 
upstream end, by the depth at which water leaves a sluice gate 
or the apron of a dam. 

With these points in mind, one may now proceed to the com¬ 
putation of surface profiles for various conditions of discharge 
and channel characteristics. The method of solution involves 
integration of the varied flow equation by steps, beginning with 
known conditions at the control section, the size of the steps 
determining the accuracy of the results. Equation (215) may 
be written in the more convenient form 

Ax = (216) 

the magnitude of Ax being determined for the corresponding 
difference in depth Ay; evidently, the slope of the energy line then 
represents a mean over the distance Ax. The change in depth 
from the control section to the limit which the curve approaches 
is first divided into an appropriate number of increments, thereby 
establishing a series of vertical sections along the curve for which 
the depths of flow are known quantities; the location of these 
sections is as yet unknown. For the given discharge it is then 
possible to compute for each section the cross-sectional area, 
the velocity, the velocity head, and the specific energy; AH then 
represents the change in specific energy between each successive 
pair of sections. Since the hydraulic radius of the flow section 
and the Clh5zy coeffi(dent art> also functions of the depth, the 
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quantity Se = V^jC^R may be computed for each value of y] 
the mean slope of the energy line between any two sections may 
then readily be found, and evaluation of Ax is at once possible. 
This simple process is applicable to any type of siirl’ace curve, 
and to natural water courses as well as artificial channels. It is 
evident, however, that the ultimate accuracy of the solution will 
depend upon three factors: the extent to which assumptions 
leading to Eq. (215) are justified; the degree of accuracy with 
which the proper roughness parameter may be selected; and the 
shortness of the steps adopted for the integration. Since the 
method is not exact, it is futile to strive for greater accuracy 
in one respect than can be attained in either of the others. 

Since early in the last century efforts have been made to 
integrate Eq. (215) analytically, in order that the somewhat 
bothersome process of integration by steps might forever be 
eliminated. Such success as these efforts have encountered has 
invariably been at the cost of further simplifying assumptions, 
with resulting functions that are usually more tedious to apply 
in individual cases than the method just presented. The true 
value of analytical integration, however, is found in the routine 
determination of flow characteristics for artificial channels of 
standardized dimensions, such as are encountered in extensive 
irrigation or power projects. This is particularly true in the 
construction of delivery curves for given channels under con¬ 
ditions of variable depth at one or both ends. 

Any method of integration is based upon the fact that all 
variables in Eq. (215) are functions of the depth of flow; once 
these functions are expressible in simple form, there is at hand a 
differential equation for x in terms of y. For special cases the 
integration is then mathematically possible; otherwise the 
process must be graphical, the results in either case being (com¬ 
piled in the form of curves or tables for use in routine computa¬ 
tion. The most recent of such endeavors is that by Monoiiobe/ 
who assumed both A and P to be monomial functions of y—an 
assumption that appears to introduce little error for the depth 
range of the Mi and the M^. curves in many types of channel. 
Applying his method specifically to these two types of surface 
profile, Mononobe submitted plots of his integration functions, 

^ Mononobe, N., Back-Water and Drop-Down Curves for Uniform 

Channels, Proc. A.S.C.E,^ vol. 62, no. 5, p. 643, 1936, 
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compared his results at length with those of nine earlier investiga¬ 
tors, and presented a series of ingenious laboratory tests to 
substantiate his computations. One such measured profile is 
reproduced in Fig. 157. Since his experimental channel was 
considerably shorter than the surface curve in its entirety, for 
each succeeding run the water level at the downstream end was 
lowered sufficiently to provide an initial depth approximately 
equal to the smallest depth of the run before. Although com¬ 

parison with the curves obtained by the methods of previous 
investigators is an indication of progress during the past seventy- 
five years, it is to be noted that Stevens^ checked the step-by- 
step method for this particular profile, with results scarcely 
discernible from the experimental data. 

Mononobe's method differs little, however, from that per¬ 
fected by Bakhmeteff^*—a system which has met with wide¬ 
spread favor among hydraulic engineers. Finding that for 
prismatic channels the product A^C^R may satisfactorily be 
represented as a constant power of y over a considerable depth 
range, Bakhmeteff was able to develop by analytical and graphi¬ 
cal means a series of integral tables, use of which gi'eatly simplifies 

^ Stevens, J. C., Proc, A.S.C.E.^ vol. 62, no. 9, p. 1489, 1936. 
* Bakhmeteff, B. A., “Hydraulics of Open Channels,'' Engineering 

Societies Monograph, McGraw-Hill Book Company, Inc., 1932; see also, 

Proc, A,S,C.E., vol. 63, no. 3, p, 556, 1937, 
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routine computation of surface profiles for sustaining slopes. 
Under Bakhmeteff’s guidance, Matzke^ recently extended this 
method to the case of adverse slopes, the nature of which requires 
a different set of tables. More detailed discussion of the pro¬ 
cedure is pointless at this time, for it is ably presented in Bakhme- 
teff^s text. Although the general principles of gradually varied 
flow have been dev(‘loped over a period of many years, it has 
remained to Bakhmebiff to organize these principles for ready 
engineering use, and the writer is indebted to the latter for the 
form—if not the actual substance—of many of the concepts 
herein presented. 

69. The Hydraulic Jump. On a preceding page the fact was 
mentioned that curves of the class are determined in position 
by an existing depth at their upstream end. However, such 
curves are definitely limited in extent; if the channel slope 
remains constant beyond this limit, it is evident that some 
change in reginu^ must occur, for it is physically impossible 
for the Ms profile to continue beyond the section of critical depth. 
Actually, in sucdi a case the flow regime changes before the 
depth be(;om(‘s equal to the critical, the surface rising abruptly 
to a depth greater than yc, and then following a curve of type 1 
or 2. This phenomenon is knowui as the hydraulic jump (Fig. 
225), its location depending upon the existence of depths and 
velocities of flow which will satisfy the principle of momentum. 

If one may assume, as in the foregoing pages, that use of mean 
velocities of flow will cause no appreciable error,the momentum 
equation applied to the two cross sections of linear motion at 
beginning and end of the jump will have the following form: 

yz2A2 -yziAi = pQ{Vi - V2) (217) 

The terms Zi and Z2, after Bakhmeteff, represent the depths of the 
centers of gravity of the respective sections below" the free surface. 
It is apparent that boundary resistance as an Cvssential force has 
been completely ignored; as a matter of fact, its effect is quite 
secondary, its omission introducing little error in results. On 
the other hand, the longitudinal component of weight may be of 

^ Matzke, a. E., Varied Flow in Open Channels of Adverse Slope, Trans. 
A.S.C.E., vol. 102, 1937. 

® Note that the velocity-head correction factor for use in the momen¬ 

tum equation, is always smaller than Kel see p. 54, 
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appreciable magnitude on steep slopes; due regard for this factor, 
however, would require a knowledge of the approximate form 
of the jump and of the percentage of air contained within the 
violent eddies which it produces. These are factors so difficult 
to formulate^ that the component of weight is generally ignored, 
or else the problem is restricted to channels of small slope. 

Equation (217) may be rewritten in the form 

= + (218) 

each individual term of which is a function of y alone so long as 
Q remains constant. Bakhmeteff recommends plotting the 

Fio. 158.~ Plot of conjugate depths for the hydraulic jump. 

Q2 
quantity + Az against y for the given discharge and channel 

section. If this plot is superposed upon the energy diagram, as 
in Fig. 158, it will be seen that the function reaches a minimum 
at the critical depth. But it will also be apparent that for any 
two depths between which a jump will occur, the specific energy 
of flow is not the same; in other words, the hydraulic jump 
involves a definite loss of head depending in magnitude upon 
the ratio of the conjugate depths. The location of the jump 
along the channel profile is determined by Bakhmeteflf as indi¬ 
cated in Fig. 159. Since “for any depth yi on the lower sur- 

1 See p. 392. 
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face curve there is only one corresponding depth which 
will yield a stable jump, that section must be found at wliich the 
depths on the two surface profiles satisfy Eq. (218). The length 
of the jump—approximately four or five times 2/2—is so small in 
comparison with the length of the remaining surface profile that 
it may be neglecd.ed in all profile computations. 

The reader must bear in mind the fact that the depth y\ of 
the hydraulic jump must be less than T/r, and the depth 2/2 greater 
than 2/c. It is then possible for a jump to occur from profile 

secfion 
Fig. 159.—Location of the jump below a sluice, 

Afa to M2 or Ml] from Sz or S2 to Si] from O3 to O2] and from 
Cz to Cl, If a jump forms at any point on an adverse slope, on 
the contrary, it will generally advance upstream until the sluice¬ 
gate opening or spillway apron is completely drowned; there is 
no point on class A profiles at which stable conjugate depths 
may be found, unless the channel slope is relatively close to zero. 

While such elementary knowledge of the jump is essential 
to the computation of surface profiles, further details of the inner 
mechanism of this phenomenon are unnecessary at this point. 
The jump is, in reality, closely related to the general field of wave 
motion, and as such will be discussed more fully in a later chapter. 

TO, Rapidly Varied Flow. Considerably more diflicult of 
solution than the problem of gradually varied motion is that 
type of non-uniform flow in which accelerative forces are fully 
as important as boundary resistance. Curvature of the free 
surface is then so pronounced that the pressure distribution 
cannot be assumed hydrostatic, and the simplified methods 
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discussed earlier in this chapter are hence no longer applicable. 
Despite the efforts of many investigators—chief among these 
being Boussinesq^—a satisfactory general analysis of this type 
of motion has not yet been obtained. Practical hydraulicians, 
therefore, have long sin(ie come to regard the various phenomena 
of rapid transition as a number of isolated cases of flow, each 
requiring its own particular empirh^al treatment. Not only does 
empirical hydraulics thus fail to establish a common physical 
background for all such problems, but the fiuidaniental aspc^cts 
of even the isolated problem are often so obscured that interpre¬ 
tation of experimental results is either superficial or definitely 
incorrect. 

Local transitions of this nature as a general rule involve a 
change from the tranquil to the rapid stage of flow, and as such 
are quite distinct from the reverse process typified by the 
hydraulic jump. Moreov('T, while the jump may occur at some 
distance from a change in boundary form, rapidly accelerated 
flow is always the direct result of more or less abrupt variation 
of the channel cross section or slopes Since rapidly varied motion 
ivS thus definitely associated with the concept of the control 
section, knowledge of such motion is essential for a twofold 
reason: First, profile computations for gradually varied motion 
upstream and downstream from the control section are governed 
by depth conditions at beginning and end of the transition. 
Second, the control section is of great practical value as a flow 
meter if the rate of discharge is a known function of measurable 
flow characteristics. 

From the dimensional point of view, the method of analysis 
presented in Chapter I will yield a significant expression for fluid 
motion of this nature, entirely without recourse to further 
analysis of the flow mechanism. Thus, the rate of discharge 
may be written as a general function of readily measurable 
characteristics of the motion, of the fluid, and of the boundaries: 

The terms fc, Z, m, n, and so forth are simply linear boundary 

1 Boussinesq, ‘‘Th6orie des eaax courarites.” Boussinesq’s treatment 

merits careful study by those interested in this particular phase of fluid 

motion. 
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dimensions, k again referring specifically to boundary roughness. 
The factor Ap is the intensity of pressure (referred to atmos¬ 
pheric) at some definite point in the curvilinear motion—or the 
difference in pressure between two such points. Evidently, 

the dimensionless quantity-y-=: is a general flow parameter 
P V Ap/p 

dependent in magnitude upon the boundary geometry, and 
upon dimensionless parameters incorporating the three pertinent 
force properties of the fluid. 

The basic significance of this relationship may be seen from 
the following illustration. Restricting the discussion, for 
convenience, to the case of two dimensions, 

<1 (220) 

For the boundary diagramed in Fig. 160a, the boundary condi¬ 
tions are amply described by the lengths I and m, by the angle a, 
and by the fact that the pressure intensity along all free 
surfac^es must be at mospheric. Both m and a, evidently, describe 
the fixed boundaries, while I alone will vary with the flow. It 
would se(mi expedient to measure the dynamic pressure at the 
base of the sloping boundary, Ap then referring to atmospheric 
zero. Moreover, since the unit rate of discharge q is the product 
of a length and a mean velocity at some section, velocity must 
therefore be regarded as a dependent variable—and hence 
must not be included in the several independent parameters 
upon which q depends. As shown in Chapter I, the factor 

^s/ApjP is not only dimensionally equivalent to velocity, but is 
directly proportional to the velocity in the basic dynamic 
equations, and as such may properly appear in its place in the 
Froude, Reynolds, and Weber numbers. The coefficient v?, 
for the given state of motion, will then have the form 

Assuming, to begin with, that F, R, and W are infinitely great, 
q 

the flow parameter vary only with the geometry 

of the boundary. In other words, the flow profile is unicpi' ^) 
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determined by the given boundary conditions, regardless of 
variation in the individual factors Z, Ap, and p, upon which q 
then depends. As shown in Fig. lOOb, the phenomenon in this 
elementary form is essentially the same as a two-dimensional jet 
striking an inclined plate. 

The coefficient «p—and hence the flow profile and the parameter 

^\/Ap/p 
must vary, however, once the force properties of the 

fluid begin to have appreciable influence. As indicated by the 
respective parameters, the absolute magnitudes of 7, p, and c are 
of no significance unless referred to the other essential variables 
of the given flow. The effect of specific weight, now the most 
important of these force properties, will serve to illustrate this 
point. 

For a given depth of flow, it should be apparent that F may 
be great if 7 (or g) is small, or if V (or Ap) is large; in either case 
the relative effect of weight will be the same. If F is sufficiently 
large, the force of gravity will have a negligible influence even if 
g is of normal magnitude, and the profile shown in Fig. 1605 will 
be obtained. For lower values of the Froude number, the nappe 
will be deflected downwards (Fig. 160c), the degree of curvature 



Sec. 70] FLOW IN OPEN CHANNELS 305 

increasing as F grows smaller; needless to say, the entire flow 
pattern will be modified accordingly. Since the Froude number 
is dimensionally equivalent to the ratio of a velocity head and a 
depth of flow, its magnitude is, furthermore, a direct indication 
of the height of the energy line with respect to the flow profile. 
For the given boundary conditions (including complete aeration 
of the nappe), the energy line will reach its minimum elevation 
(corresponding to a minimum value of F) as the flow becomes 
equivalent to that normally 
encountered at a sharp-crested —*-- 
weir (Fig. 161a). Only if the H | ^ -- 
tailwater is raised to a level ^ 
sufficient to drown the nappe ; ; rH ^ x 
may F decrease below this value (a) \\ 
toward zero; this, however, ^ 
would require the introduction-lfne(siop^_- 

of tailwater depth n as a further ~-^ - 
geometrical factor in the basic / -Vq-a] 
function. | ^ 

Assuming now that R as well (b) 
is no longer infinitely great, it v 
will be apparent that for a given p 5 

velocity of approach (indicated 
by Ap) the rate of energy loss will increase as R decreases. It is 
evident, moreover, that boundary roughness must now be 
included among the geometrical parameters, for the result of its 
influence is of the same nature as that of viscous shear. Bound¬ 

Une (slopes) 

Fio. 161.—Rapidly varied flow at low 
values of F and R. 

ary resistance will modify the conditions of motion in two distinct 
ways (ref6r to Fig. 1616): The flow will be characterized by a 
sloping energy line and a sloping surface, and the measurement 
of I some distance upstream from the crest will not in itself 
indicate energy conditions at the region of maximum curvature. 
In addition, the reduction in velocity near the lower boundary 
will modify the dynamic pattern in the region of appreciable 
curvature. The first effect tends to decrease the coefficient <p; 
the second tends to increase it even more markedly. 

The role of the Weber number is generally quite secondary, 
for capillary action becomes of importance in practical instances 
only when the radius of curvature of the free surface is relatively 
small. So-called surface tension then acts to decrease this 
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radius of curvature even more—and thus influences the pressure 
distribution and the flow profile; moreover; adhesion of the 
fluid at the point of separation from the fixed boundary tends to 
shift this point in the downstream direction as far as possible. 
The net result is to increase the discharge for a given depth of 
approach. 

Although this method of analysis will seem quite unorthodox 
to the hydraulician, it yields a complete and systematic func¬ 
tional relationship that is dimensionally sound and extremely 
broad in application. The height of the sloping boundary, for 
instance, may vary from infinity to zero—^a weir of zero height 
being simply a free overfall. The depth of approach may be 
greater or less than the boundary height; the latter case is an 
uncommon though quite eoin^eivable state of motion at high 
Fronde numbers, and is perfectly compatible with the function 
since the velocity of flow is not arbitrarily related to a measured 
head. The angle a may range from considerably greater than 
90°, through zero (again the free overfall), to values much less 
than zero; the latter condition corresponds to the juncture 
between channels of mild and steep slope. Slight modification 
of geometrical parameters permits application to flow under 
(rather than over) an obstacle, as in the case of a sluice gate, 
whereas the addition of further linear dimensions will enable 
extension of the problem to three-dimensional phenomena of any 
desired type. In every case, F, R, and W are properly to be 
regarded as independent parameters, variable over an unlimited 
range. 

Analytical determination of the coefficient is at best an arduous 
task; success has been attained in isolated instances, though 
only through ignoring all but the most essential variables. As 
explained in Chapter V, use of the concepts of potential motion, 
conformal mapping, and the Cauchy integral theorem will 
permit investigation of the flow profile as a function of boundary 
geometry and the Froude number, but only if the actual bound¬ 
ary resistance is negligible will such methods be practically 
applicable. Therefore, until it becomes possible to determine 
the form of the resulting function analytically, the engineer must 
remain content with empirical treatment—but not in the tradi** 
tional manner, however, for the dimensional approach offers 
definite interrelationship of phenomena onc^e considered quite 
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distinct from one another. Systematic experimental studies 
will then yield functional trends in graphical instead of analytical 
form—information quite as valuable to the practical engineer 
as to the investigator seeking a full understanding of the dynamic 
aspects of the problem. But only if experimenters duly recognize 
the significance of the pertinent dimensionless parameters will 
their results be of maximum value. 

Methods of approach that are probably more familiar to the 
reader fail to consider the dynamic pressure as an essential 
variable. This is equivalent to assuming that a given discharge 
always occurs under conditions of minimum energy—in other 
words, that the elevation of the energy line is determined only 
by the boundary conditions. Under such circumstances, the 
dynamic pattern of the flow (as shown by lines of constant 
potential head) is also determined by the boundary geometry, 
whence Ap yh. This simplification obviously precludes the 
possibility of more than one rate of discharge for a given depth 
of approach, aside from the secondary variation due to boundary 
resistance and effects of capillarity. 

Such limitations have seemed unimportant in the past; but 
with attention turning more and more to cases of flow in the 
rapid state, the more general analysis will soon be imperative. 
Suggestions have already been made to take account of energy¬ 
line elevation indirectly by introducing as an additional para¬ 
meter a depth within the transition itself. This method is 
perfectly sound, for the form of the surface profile is definitely 
dependent upon the conditions of energy. But if one attempts to 
measure this depth piezometrically, as is the usual custom, such 
measurement in a region of non-hydrostatic pressure distribution 
will not yield the actual depth, but a head proportional to the 
dynamic pressure factor Ap exactly as required by Eq. (219). 

71. Weirs and Sluice Gates. The vertical sharp-crested weir 
without side contractions has been the object of empirical treat¬ 
ment for well over two centuries. In 1716 Poleni proposed the 
formula 

Q = (222) 

which he obtained by integration after assuming that the velocity 
over the vertical section at the crest must vary with the square 
roo^. of the distance below the level of the approaching flow. 
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A correction factor C must be introduced, however, owing to the 
fact that conditions are by no means so simple as he assumed. 
Hydraulicians of tliis country, somehow prone to think of 
velocity of approach as an independent variable, favor Weis- 
baches extension of the Poleiii formula, obtained in a similar 
fashion: 

+ (223) 

The factor Cc is commonly known as th(^ coefficient of contrac¬ 
tion, although the weir nappe at no point reaches a minimum 
section equivalent to the vena contracta of the orifice. 

Although Cc is frequently considered to be a constant, it 
actually varies over a considerable range, if only as a function 

of the boundary parameter (Fig. 164a). In reality, not 

only does the nappe contraction vary with boundary resistance, 
but Cc also includes perforce a velocity factor taking account 
of the energy loss in the approach and at the weir itself. On the 
other hand, if flow is assumed always to take place under condi¬ 
tions of minimum energy, it is evident that the elevation of the 
energy line is predetermined by the ratio of head to total depth 
of flow; in other words, the velocity of approach is not an inde¬ 
pendent variable, and need not be treated as such in a discharge 
relationship. The weir equation may then be given the more 
logical form, 

Q = C, HVTg (224) 

in which, if one will, the discharge coefficient Cq may be regarded 
as the product of Cc and a velocity-of-approach coefficient, 

1 + 
V,y2gy _ (V,y2gy 

(225) 

Cq is a function primarily of the boundary geometry, although 
varying to an appreciable degree with boundary resistance and 
the effects of capillarity. 

For many decades efforts have been made to determine this 
functional variation of C,, both analytically and experimentally. 



Sec. 71] FLOW IN OPEN CHANNELS 309 

As has already been mentioned, Lauck proved that for potential 

h 
\.h + w 

flow over an infinitely high weir 
"G+»■“)' 

C, = C. = = 0.611, 

whereas voii Mises adapted tlie eoeffieieiil of the two-dimensional 
orifice to the weir, on the assumption that the influence of gravity 
upon the nappe would have no appreciable effect upon the 
coefficient of contraction. Others have attempted greatly 
simplified analyses of the general problem, but since curvilinear 
flow of this nature does not lend itself particularly well to simpli¬ 
fied treatment, their results scarcely warrant mention. Far 
more practicable are several formulae based upon experimental 
data, although it must be recalled that the empirical process 
of curve fitting cannot be depended upon to reveal the true 
analytical form of the function. 

Most formulas have been of the type proposed by Weisbach in 
1844: 

Ca = C( A + B 
\h + W _ 

in which Co is the discharge coefficient for — = 0. Bazin, ^ 

for instance, expressed Co, A, and B as follows: 

C, = [o.6076 + ^^] [ 1 + 0,5.5 I (226) 

Rehbock,^ on the other hand, has shown that the formula 

C, = 0.605 + 0.08 - + (227) 
^ w h {cm) ^ 

may be expected to yield very accurate results under controlled 
conditions of the laboratory. Numerous other weir formulas 
may be found in hydraulic literature, but these are the most 
representative. 

1 Bazin, H., ^‘Exp6ritmces nouvelles sur I’^coulement par d6versoir,” Paris, 

1898. 
2 Rbhbock, Th., Trans. A.S,C.E.^ vol. 93, p. 1143, 1929. 
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Both Bazin and Rehbock introduce a term dimensionally 
inconsistent with the remainder of the relationship—a common 
empirical habit; this term appears to indicate the effect of capil¬ 
larity at small heads, and—as Prandtl has shown—will be 
properly dimensionless if replaced with a form of the Weber 
number. Aside from this single term, however, both discharge 
coefficients are functions of the boundary geometry alone, and 

as such are plotted in Fig. 162, together with von Mises’ adapta¬ 
tion of the contraction and discharge coef&cients of the two- 
dimensional orifice. Von Mises^ Cq curve becomes infinite as 

h 
and Ce approach unity (the free overfall, a weir of zero 

height), owing to the fact that fluid weight was assumed to have 
no effect upon the nappe contraction. Rehbock’s curve for -Cq 

approaches the same limit, because of the nature of the assumed 
function. Bazin's expression does not indicate an infinite dis¬ 
charge for a very low weir, but does approach a limit somewhat 
lower than that actually obtained for the free overfall. As will 
be shown at a later point, this must have the magnitude 1.061, 
corresponding to a contraction coefficient of 0.716. Moreover, 



M.I.T. 

Fig. 163.—Modification of flow profile as the weir height changes from zero to a 
finite value. 

Needless to say, both the Bazin and the Rehbock formulas do 
not embody the true function for Cq—even so far as boundary 
geometry is concerned. It is probable t^iat the Rehbock curve 
is the more nearly correct of the two, for the abrupt change 
in flow profile as the weir height becomes very small (Fig. 163) 
indicates a discontinuity in the function as approaches the 
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limit 1.061. On the other hand, as r—,— becomes large, 

boundary resistance causes both energy line and water sur¬ 
face to slope appreciably in the channel of approach, the 
magnitude of h then varying with the point of measurement; 
the practical use of weirs, therefore, is ordinarily confined to 

xf 
i y SfaQnafion-^ 

_ 

r\\N^^,7 i (c) 

\ » v 

--B-.. 

Fiu. 104.—Variation of weir discharge with conditions downstream. 

cases in which w is at least as great as h. Even then, Schoder^ 
has shown, variation in the velocity distribution in the channel 
(caused, for example, by variation in relative roughness) may 
easily affect the rate of discharge for a given head by as much as 
5 per cent. This is probably the reason why formulas developed 
from flow over weirs in short, smooth, laboratory flumes often 
fail to yield satisfactory results in the field. 

^ ScHODEB, E. W., and Turner, K. B., Precise Weir Measurements, 

Trans. A.S.C.E., vol. 93, p. 999, 1929. 
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Needless to say, the region beneath the nappe of a sharp- 
crested weir must be freely ventilated, in order that the pressure 
may be atmospheric along both free surfaces; otherwise, an 
additional variable must be included in the basic functional 
relationshij), for the depression of the nappe (Fig. 1646) and the 
increase in. velocity in the region of lowered pressure may produce 
a marked increase in Cg. Investigation of this effect might well 
be based upon the flow-net construction, although it has little 
other than academic interest because of the instability of flow 
under these conditions. The pressure below the nappe may be 
increased, however, if the tailwater level is sufficiently high. 
Influence upon the rate of discdiarge begins somewhat before 
the level of the crest is reached, owing to the fact that the pres¬ 
sure intensity within the nappe does not approach zero until well 
past the weir; moreover, the deflection of the nappe by the lower 
boundary always results in a backwater effect below the nappe, 
as shown in the several diagrams. When the tailwater elevation 
is considerably above the crest, the nappe abruptly changes in 
direction, no longer plunging below the surface but assuming a 
gently undular surface profile. The successive stages are 
indicated in the accompanying illustrations, taken from Koch^ 
and from unpublished measurements by the author. While no 
general analysis of these conditions is available, it is a noteworthy 
fact that Bazin's weir investigations were extremely broad in 
scope, covering rate of discharge, pressure and velocity distribu¬ 
tion, weirs of different slopes, and submergence of the nappe. 

Although there is basically a close relationship between the 
weir and the sluice gate, the latter has received comparatively 
little attention from either the analytical or the experimental 
point of view. As indicated in an early chapter, the pressure 
distribution in the neighborhood of the sluice may be closely 
approximated by means of the flow net once the form of the free 
surface is known. Were such flow exactly comparable to the 
upper half of the two-dimensional orifice pattern (Fig. 16), the 
surface form would be the same and the coefficient of contraction 
would vary according to von Mises' curve in Fig, 162. However, 
not only is the pressure constant along the free surface, but owing 
to the effect of gravity the velocity head at the surface must 

iKoch, a., and Cabstanjbn, M., ‘‘Bewegung des Wassers,'" Springer, 

Berlin, 1926. 



314 MECHANICS OF FLUID RESISTANCE [Chap. XIII 

equal the distance below the energy line at every point, Cc is 
therefore identical with that of the orifice only when a/h (Fig. 
165) equals zero. Through use of the hodograph method, 
Pajer^ has obtained analytically the following relationship 
between Cc and a/h: 

a/h 0 0.2 0.3 0.4 0.5 

Cc 0.6110 0.6046 0.6036 0.6043 0.6066 

In the actual case, there is a slight loss of energy between sections 
a short distance upstream and downstream, so that the coefficient 

of contraction will depend not only upon the boundary geometry 
but upon boundary resistance as well. 

From the notation in Fig. 165, 

VJ V 2 

Introducing a velocity coefficient, 

K = C,yj2g(h+^ - 

while from continuity, 

q^V,h=- VcCca 

whence, 

- {h - 0 2j7 

Substituting this latter value in the energy relationship, and 

^ Pajek, G., tJber den Strdmungsvorgang an einer unterstromten scharf- 

kantigen Hanschtitze, Zeit, angew. Math. Mech.^ vol, 17, no. 5, p. 259, 1937. 
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replacing the velocities by the ratios of unit discharge to depth, 

q2 q2 

Solution for q will then yield the customary equation for dis¬ 
charge under the sluice gate: 

Cy Cc a\/2g (h Cc a) 

~ vT^ 
(228) 

This relationship is perfectly general and correct as it stands—“ 
but useful only if one knows how Cc and vary with the geome¬ 
try and resistance of the boundaries. Although Cc may be taken 
from Pajer so long as is approximately unity, little informa- 

Pia. 166.—Shiice-gate discharge at various stages of submergence. 

tion exists as to conditions actually to be expected in the field. 
From the dimensional point of view, it would seem more reasona¬ 
ble to write Eq. (228) in the elementary form. 

q = Cq a\/2gh (229) 

in which Cg is a single coefficient of discharge, varying as before 
with the usual boundary and fluid parameters. Introdufdion of 
a term Ap is not essential in this case, for the nature of the 
boundary conditions results in a close proportionality between 
Ap and yh. It is evident that in terms of the original coefficients 
Cq will be equivalent to 

== Cc yi - Cc a/h 

* y/r- 
(230) 

For small values of the ratio a/h the discharge and contraction 
coefficients approach the identical value 0.611; as the ratio 
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becomes larger, Cq will increase, Cc changing very slowly; 
but at the limit a/h = 1, Cc must also equal unity, whereas Cq 

becomes indeterminate. In the latter region conditions are 
extremely unstable, and hence this limit is of little practical 
import. 

The sluice gate is also subject to submergence, as indicated 
by the sequence of experimental results, after Koch, shown in 
Fig. 166; such conditions require a further variable ht in the basic 
function. It is common practice to compute the rate of dis¬ 
charge on the basis of the effective head h — ht, using the value 

Fig. 107.—Pressure distribution at a spillway designed after the ventilated 
nappe of a weir. 

of Cg determined for free efflux. The extent to which Cc and Cv 

are influenced by the effect of submergence upon the contracted 
section is not accurately known, but it is certain that such 
practice must introduce appreciable error. 

72. Spillway Design. Spillways differ from weirs in two 
important respects. From the dynamic standpoint, the lower 
surface of the nappe is in contact with a fixed boundary along 
which the pressure intensity is not necessarily either constant 
or atmospheric. From the economic standpoint, a given length 
of spillway crest must safely deliver a peak discharge under the 
smallest possible head. American engineers usually pattern 
the spillway crest after the nappe profile of the sharp-crested 
weir, in order to obtain the maximum dehvery without reducing 
the pressure below that of the surrounding atmosphere. Struc¬ 
tural considerations have much to do with this practice, for 
although pressure distribution near the spillway crest is of little 
moment in designing for stability, it is feared that intermittent 
separation of the nappe might endanger the structure as a whole. 
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Experiments have shown ^ that a spillway so designed will 
produce a nappe that is not affected by the presence of a fixed 
lower boundary, so long as the spillway curve conforms exactly 
to that of the weir nappe for the same rate of discharge (Fig. 167). 
As may be seen from Fig. 168, however, the spillway profile must 

necessarily vary according to the parameter for the form 

of the weir nappe is definitely a function of the boundary geome¬ 
try. Moreover, a spillway designed to produce zero pressure 

along the downstream fa(;e at one rate of discharge will no longer 
do so if the discharge changes. A lower head, for instance, will 
produce positive pressures at all points of the profile (since the 
weir nappe at that head would normally have a lower trajectory), 
whereas a greater head will produce negative pressures through¬ 
out the crest region. 

Nevertheless, if the spillway profile is smoothly curved, 
according to a given nappe profile, the absence of abrupt changes 
in curvature at any point will permit considerable increase in 
head without danger of separation. Indeed, model studies- 

1 Rouse, H, and Reid, L., Model Research on Spillway Crests, Civ, Eng.f 

vol. 5, no. 1, p. 10, 1935. 
® Dillman, 0., IJntersuchungen an Ueberfalien, Mitteilungen des hydrau- 

ItBchen ImtituiB der T, H, MUncherif no. 7, Oldenbourg, Munich, 1933. 
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indicate that the design head may be exceeded by 300 per cent, 
flow still occurring in a perfectly stable state. ^ Abruptness of 
curvature is a relative matter, however, and separation must 
eventually occur, even though the nappe does not spring entirely 

Coefficient of discharge, M Coefficient of discharge.M 

Fig. 169. • CocfFicient of spillway discharge as a function of relative head. 

free. The Munich (experiments, general results of which are 
plotted in Fig. 169, show an abrupt drop in the customary 
discharge coefficient 

M = hm 
at the point of separation, a result that is to be expected with 
the accompanying change in nappe profile. It is apparent that 
the evil to be avoided is not necessarily underpressure, but rather 
a too-rapid change in curvature of the spillway face. Figure 
170'^ is a good example of the latter danger, for separation Is 

1 Needless to say, this applies solely to the two-dimensional case of 

flow. Abutment irregularities, or the presence of piers along the crest, 
would permit aciration of the nappe under far lower rates of discharge. 
To what extent the design head may then be exceeded will depend largely 

upon the distance the piers and end walls are continued smoothly down the 

spillway face. 
*Escande, L., *‘fitude th<k)rique et exp^rimentale sur la similitude des 

fluides incompressibles pesants,^' Toulouse, 1929. 
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\Separcifi(m 

evident at two points of abrupt boundary transition, even under 
normal rates of discharge. 

Although model studie^s are of inestimable value in spillway 
investigations of this nature, hydraulicians have come to expect 
flow measurements to be readily convertible to prototype scale 
solely through use of the Fronde criterion for similitude. Indeed, 
within th(i last decade it has become quite customary to calibrate 
large-scale spillways by means of models often a hundredfold 
reduced in size. EisnerUias shown 
conclusively, however, through -- 
measurements on geometrically 
similar models at five different 
scales, that definite variation in th(‘ 
(‘oefficient of discharge with the \ 
scale ratio is to be ('X])ected. r 1 ''p \ 
Although the influeiu^e of viscosity p \T \ 
could be noted, the essential factor p (j/ 
was appanmtly the relative rough- F 
ness of the boundary surface- • the p % 

absolute roughness being the same p 

in each of the several models. p 

Moreover, so systematic was the 

variation oi the discharge cocffi- crest of poor <losign. 

cient with relative roughness (hat- 
Eisner was able to extrapolate with a fair degree of certainty to 
conditions for the prototype itself. Though Eisner considered 
the discharge coefficient a function of the Fronde number instead 
of the boundary geometry [compare with Eq. (219)], his general 
method warrants the attention of those engaged in such research, 

73. Critical-depth Meters. Probably no phase of open- 
channel motion is so often misunderstood as flow under condi¬ 
tions of maximum discharge and minimum specific energy. 
So long as gradually varied flow is considered, the critical depth 
as previouslyMescribed is a very useful parameter—in particular 
since the regions of transition in which the^ flow is curvilinear 
are of relatively negligible length. But Eq. (204) applies 
specifically to rectilinear motion, and can have mere qualitative 
significance when otherwise used. Indeed, flow can pass from 

^ Eisneb, F., Uebcrfallversuche in verschiedener Modellgrdsse, 
Versitch^amUiU fUr Wasserbau und Schiffbau, Berlin, 1933, 

Fk;. 170.— Separation at {» spillway 
crest of poor design. 
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the tranquil to the rapid stage only as the result of surface curva¬ 
ture—under which circumstances it is seldom possible to assume 
hydrostatic distribution of pressure at the true critical section 
without introducing appreciable error. 

A salient example of traditional practice is seen in the case of 
the broad-crested weir. It is usually presumed that for a given 
reservoir level (i.e., energy-line elevation) upstream from the 
weir, the maximum possible cjuantity of water will be discharged 
per unit time. Still assuming parallel motion, the flow profile 
would have the form shown schematically in Fig. 171, after the 

Fig. 171.—Customary troatmont of the hroad-cresiocl weir. 

usual textbook illustration. The rate of discharge should then 
be determinable from a single depth measurement: 

g = Vg 

Aside from the fact that this expression applies only to weirs 
of very great height, four essential discrepancies are involved 
in this elementary method of attack; 

1. The regions of curvilinear motion at either end of the 
weir extend a considerable distance in each direction; unless 
the weir is very broad, at no section will the flow be truly 
parallel. 

2. For a given specific energy, maximum discharge for parallel 
flow is not necessarily the same as maximum discharge for 
curvilinear flow. 

3. If the weir actually is broad enough to eliminate effects 
of curvature near the midsection, the energy line (and hence 
the water surface) will have an appreciable slope; the section at 
which y ^ yc will wander along the weir with changing discharge. 

4. The true section of minimum energy does not then lie at 
some intermediate point along the weir, but at the very end— 
which is a region of maximum curvature. 
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Since the rate of discharge is actually a function of boundary 
geometry and resistance (note, for instance, the various surface 
profiles in Fig. 172), it is evident that the discharge coefiicient 
in the general expression 

q = C, y/2g (231) 

is by no means a constant. Use of an uncalibrated weir in the 
field is warranted, thereof ore, only when accniracy of measurement 

Separation 

^ 7. ^ 
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Fig. 172.—Variation in flow profile with form of weir, the head remaining 
constant. 

is of no great consequence; in this respect it has the particular 
advantage of being relatively insensitive to conditions down¬ 
stream, for the tailwater may rise at least the distance yc above 
the crest without marked effect upon the rate of discharge. 

The necessity of determining the functional form of the dis¬ 
charge coefficient for the broad-crested weir when used for more 
accurate measurement really defeats its purpose as a critical- 
depth meter. Efforts to develop such a meter through addition 
of side contractions (the Venturi flume) have been little more 
successful, for each such meter requires careful rating; even 
under the most fortunate conditions, Cq may be held approxi¬ 
mately constant only over a limited range of head. One begins 
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to wonder, therefore, whether it is physically possible to devise 
a critical depth meter with a truly constant coefficient. 

In order to answer this question capably, one must first 
investigate more thoroughly the general problem of critical 
flow. It follows from facts already discussed that a true critical 

Fig. 173.—Variation in flow profile with Fronde number, the crest depth remain¬ 
ing constant. Note that yc corresponds to the local magnitude of H. 

section for given boundary conditions must fulfill a two-fold 
requirement: 

1. At that section the distance H between the sloping energy 
line and the lower boundary of the flow must be less than at 
any other point in the vicinity. 

2. For this magnitude of the specific energy H, the rate of 
discharge must be the greatest that is dynamically possible 
under the given boundary conditions. 

In Fig. 173 are shown schematically (after Koch) three types 
of flow over a relatively low broad-crested weir, all with the 
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same depth at the crest. Case a corresponds to a very high 
Froude number, Case ?> to a very low one. In every instance, the 
section at which the energy line lies nearest the boundary is 
located at the downstream end of the weir—at which section true 
critical conditions are to be sought. It may be seen by inspec¬ 
tion, however, that for the magnitude of H at this section in 

Fig. 174.—The free overfall as a true critical-depth meter. 

Case a a greater depth would produce a greater rate of discharge; 
similarly the discharge for Case b would increase if for the same 
magnitude of H the depth were reduced. Evidently, neither of 
these cases represents true critical discharge, which will actually 
occur at some intermediate stage as shown by Case c. 

Nevertheless, it is obvious that as H varies with respect to 
the dimensions of the weir, the flow profile for corresponding 
naaximum discharge will also be modified. It is then apparent 
that although a true critical section has been found, the flow at 
this section is a definite function of the boundary geometry. A 
true critical-depth meter, on the contrary, must be of such form 
that the flow profile remains geometrically similar in the immedi¬ 
ate vicinity of the crest, regardless of change in absolute depth. 
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Only then can the discharge coefficient be expected to remain 
essentially constant. 

The free overfall at the end of a long, mild slope (Fig. 174a) 
is an excellent example of boundary conditions that satisfy this 
requirement. Since the curvilinear flow at the crest is marked 
by decidedly non-hydrostatic pressure distribution (refer to 

Fig. 175.—Variation in flow profile and pressure distribution with change in 
bottom slope. 

Fig. 15), it is evident that the critical depth for parallel flow will 
be found a short distance upstream. The actual location of this 
section is indeterminate, however, for it will move upstream with 
increasing discharge, and downstream with increasing boundary 
roughness. The crest itself, however, is a true critical section; 
experiments indicate^ that the ratio between the true critical 
depth at the crest and the nominal critical depth for parallel 

^ Rotjsb, H., Discharge Characteristics of the Free Overfall, Civ. Eng., 
vol. 6, no. 4,'p. 257, 1936. 
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flow is 0.715—which happens to be exactly equal to the coefficient 
of contraction for the weir of zero height. A single measurement 
of depth at the crest will then permit immediate computation of 
the discharge: 

q = Vg = Vg Yig) * = 1.6542/0^'^ (232) 

It should be apparent that if the flow approaches the overfall 
region in the rapid state, although the crest section is that at 
which H is less than at any point upstream, the rate of discharge 
is not a maximum for this specific energy (P"ig. 1746). On the 
other hand, if the channel is steep, the energy line may or may 
not slope as rapidly as the channel bottom (depending upon 
whether the flow profile is of type 3 or 2), and H is therefore 

p"-. 

Karlsruhe 

Fia. 176.—Abrupt change in channel slope, showing flow profile and distri¬ 
bution of floor pressure. Note region of separation colored by dye. 

not necessarily a minimum at the crest (Fig. 174c). Even when 
the approaching flow is in the tranquil state, if a mild slope does 
not end in a free fall (or if the fall is not fully ventilated), it 
should be apparent that the constant factor in Eq. (232) will have 
a different value, depending in magnitude entirely upon the 
boundary conditions. 

For instance, in Fig. 175 are shown two variations in the 
problem, after measurements by the author, representing 
the transition between mild and steep slopes. As will be seen, 
the entire flow profile—and hence the depth or pressure at the 
crest—varies appreciably with the downstream slope. As the 
latter becomes less and less, the crest depth gradually approaches 
yc\ strictly speaking, of course, the entire surface profile should 
coincide with the line of normal depth when the downstream and 
upstream slopes become identical. 
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Since the ratio of depth to specific energy at the true critical 

section is so definitely a function of the curvature imposed by the 

fixed boundaries, it is almost futile to expect that a simple rela¬ 

tionship may bo found expressing this ratio in terms of the 

boundary geometry. It is to be hoped, nevertheless, that a 

broader understanding of true critical discharge may soon lead 

to definite progress in this essential field. 



CHAPTER XIV 

TRANSPORTATION OF SEDIMENT 

74. Essential Aspects of the Problem. Strictly speaking, 
the phenomenon of sediment transportation does not rightfully 
belong in a treatise on the fundamentals of fluid mechanics, 
since the type of matter ordinarily treated in such a volume 
ix>ssesses the qualities of homogeneity and complete fluidity. 
Two closely related phenomena—the passage of fluid through a 
porous medium, and the movement of solid particles through a 
fluid—are obyiously wdthin the specified category, since each 
involves th(^ relative motion between a fluid and solid boundaries. 
The transportation of such granular bodies by a fluid that moves 
with resi^ect to other boundaries, on the contrary, not only com¬ 
bines the essential aspects of both phenomena, but through that 
combination produces a mixed substance that may no longer be 
regarded as cither homogeneous or completely fluid. 

Despite the complexity of the resulting problem, its eventual 
solution is of extreme importance to the hydraulic engineer. 
And remote as a general solution still appears to be, a careful 
examination of the present status of the problem seems pertinent 
at this time. Not only to the hydraulic engineer is the phe¬ 
nomenon of interest, for in such allied fields as meteorology, 
sanitary engineering, and geology the essential aspects of the 
problem are found to recur in one form or another. Hence, 
while the following review is presented in connection with open- 
channel flow, the principles outlined are applicable to other 
fields as well. 

So far as the hydraulic engineer is concerned, the movement 
of solid matter in artificial and natural watercourses is of 
paramount importance. Under what circumstances will water 
scour the channel bed—and under what circumstances will 
material be deposited? How may a channel be forced to pre¬ 
serve a given conformation—and what amount of material will 
it discharge at its mouth under such conditions of equilibrium? 
By what means may reservoirs be prevented from filling with 

327 
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silt over a reasonable period of years—and how can irrigation 
waters be relieved of suspended matter harmful to productive 
fields? With questions such as these demanding immediate 
answer, it is only to be expected that the first attempts at the 
analysis of such complex phenomena would be entirely empirical 
in nature, for even partial remedies for existing ills are better 
than none at all. In such investigations the hydraulic model 
has often proved its worth, despite the fact that model studies 
of this nature still yield purely qualitative indications. 

Simultaneous with a concerted attack by empirical means, 
efforts have been made to comprehend the basic features of 
sediment transportation by reducing the problem to its barest 

Fia. 177.—Distribution of velocity and shear in an open channel with bed 
material at rest. 

essentials. To be sure, the ultimate application of the ele¬ 
mentary principles thus discerned is by no means near at hand, 
but only in this way will eventual mastery of the problem be 
possible. Indeed, the slowness with which progress has been 
made is due in no small measure to the fact that the problem has 
often been approached in far too involved a form. It is the 
purpose of this chapter, therefore, to examine the phenomenon 
in as elementary a manner as possible, and then to review 
briefly the present status of our knowledge with an eye to future 
research. 

Inasmuch as the physical analysis of open-channel flow is by 
no means well advanced, it follows that the analysis of sediment 
transportation by such flow is therefore handicapped at the 
outset. Although efforts have been made to permit the study of 
sediment transport in flumes of finite width, it seems advisable 
to restrict the following analysis to purely two-dimensional 
uniform flow. The problem thus proceeds from the state of 
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motion discussed at the beginning of the foregoing chapter. As 
indicated in Fig. 177, the limiting case of zero transport would 
correspond to parallel motion at a depth yo over a stationary bed 
of slope S and absolute roughness k. It will be recalled that 
the intensity of fluid shear will vary as a linear function of 
normal distance from the free surface, 

r = 7 (yo - y) S (233) 

with the limiting value at the lower boundary, 

TO ^ yyoS (188) 

whence, 

r = r„(l-|-) (234) 

As has already been discussed, the shearing stress at any 
point in the flow may also be expressed statistically in terms of a 
mean viscous stress and an apparent stress resulting from the 
turbulent momentum transport across the flow. By this 
means it was possible to derive expressions both for the velocity 
distribution and for the boundary resistance in terms of the 
mean velocity. The form()r expression yields the curve shown 
schematically in the illustration, conditions near the bed depend¬ 
ing upon whether the average surface irregularity or the bound¬ 
ary-layer thickness is of greater order of magnitude. The 
latter expression has been seen to have the form 

To LpYI 
4 '2 

(189) 

which may be combined at once with Eq. (188): 

.LYl 
4^/0 2g 

(190) 

The quantity f remains a bothersome factor, for the roughness 
problem is still far from solved—^in particular for movable beds. 
One is sorely tempted to revert to an empirical relationship of 
the Manning form, but in so doing one must not lose sight of the 
fact that such practice at once incorporates every inherent 
weakness of the formula adopted. 

Needless to say, a state of shear must also exist throughout the 
stationary bed. Although the intensity of shear at any point 
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in the flow is in equilibrium with the forces involved in the 
turbulent motion, within the bed a balance must exist between 
the longitudinal component of weight and the static .friction 
of the sediment mixture. As shown in the diagram, 

r6 = To 4- Jm ( — y) S 

jm representing the specific weight of the bed mixture (water 
plus sediment). It must be realized that the velocity of the 
fluid itself does not reach zero at the boundary, for a certain 
amount of percolation must take place through a porous material. 

If one now consider the entire flow to consist of a mixture of 
water and sediment—whatever the mechanism of suspension 
may be—the picture becomes decidedly more complex. In 
Fig. 178 such conditions are indicated in a manner parallel to 
that of Fig. 177. So far as the intensity of shear at any point is 

Fig. 178.—Distribution of velocity and shear for an advanced stage of sediment 
transportation. 

concerned, Eq. (233) will have to be modified only through 
replacing y by the specific weight 7m of the mixture: 

Tm = 7m {yo — y) S (235) 

7m, however, must now be expected to increase with depth 
as the concentration gradually approaches a maximum at the 
bed. Although the function is necessarily continuous, the mag¬ 
nitude of T no longer varies directly with depth, owing to the 
change in 7**. Moreover, it is necessary to consider separate 
velocity curves for the fluid and the sediment, the two approach¬ 
ing one another in the upper region of the flow, but diverging 
toward the bottom as contact between particles becomes the 
more frequent. Owing to the mechanical friction resulting from 
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such contact, the sediment velocity is always less than that of 
the fluid. 

It will be apparent that such a state of motion will, in general, 
represent some intermediate condition between the motion of a 
true fluid and that of a lubricated granular mixture, depending 
upon the sediment concentration. Evidently, the lower the 
(concentration, the more nearly complete the fluidity and the 
greater the role of turbukmce in producing the shearing stress; 
conversely, the great(^r the concentration, the greater is the 
probability of contact of neighboring particles and the more 
preponderant the effect of solid friction. It has s(3emed expedient 
to subdivide the vertical flow section according to these criteria— 
the upper region of relatively low concentration being considered 
the zone of suspended load, and the lower region that of bed load. 
Nevertheless, no fixed dividing line can be established between 
the two regimes. Indeed, turbulent mixing will occur well into 
the bed vicinity, whereas the ('fleet of sedime^nt concentration 
upon the apparent shear of the mixing process may extend nearly 
to the free surface. In the most general case, th(3refore, some 
complex function must be considered to apply to the entire flow 
section, the magnitude of Tm depending upon both the intensity 
of the turbulent mixing and the internal fri(jtion of the sediment- 
water mixture—factors varying with the distribution of velocity 
and sediment. Unfortuiiat(3ly, neither is this complex function 
already known, nor has any approach been made toward treating 
the phenomenon as a whole. On the contrary, bed-load move¬ 
ment and sediment suspension are still treated perforce as two 
distinctly diflerent phenomena. And although the ultimate 
solution of the problepa must necessarily relate these two inter¬ 
dependent phases, the elementary method of attack remains 
for the present the only feasible one. 

76. Bed-load Movement. If one arbitrarily restrict the 
zone of sediment transport to the immediate vicinity of the bed, 
it follows that the material in motion must roll along the bed or 
advance in a series of intermittent bounds (so-called saltation). 
Such restriction, however, limits the problem either to relatively 
low rates of discharge, or to material which is of sufficient size or 
weight to resist the tendency toward suspension resulting from 
the turbulent mixing. Although this has tended to confine the 
study of bed-load movement within narrow limits, from the 
standpoint of immediate applicability the restriction also has its 
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merits. Indeed, many streams transport material of appreciable 
size, in which suspended matter is quite negligible, whereas model 
studies must often, for practical reasons, simulate movable beds 
with material of low density and relatively large diameter. 
Nevertheless, the narrowness of such limitations is far too often 
ignored. 

The process of rolling, as general movement of the bed begins, 
is due simply to the drag exerted upon individual particles more 
exposed to the boundary flow. Jeffreys^ has shown that the 
initial rise of particles from the bed in the more advanced stage 
of motion called saltation may be ex^jlained by the resultant 
upward force due to the pressure distribution of the surrounding 

Fig. 179.“ Longitudinal section through sand ripples. 

curvilinear flow (low pressure just above a particle in the region 
of greater velocity, higher pressure below in the region of stagna¬ 
tion). Simultaneous with this lifting action, the development 
of skin and form resistance produces a forward translation; as 
the particle attains the velocity of the surrounding flow near the 
summit of its trajectory, such forces approach zero and the 
particle returns to the bed. Needless to say, the turbulence 
of the actual flow makes the general picture considerably more 
complex, and instead of investigating the movement from the 
standpoint of the individual particle, E]insteirri has treated the 
problem statistically, according to probability criteria. 

Perhaps the most troublesome feature of bed-load research 
within this restricted range is the tendency of the bed to develop 
surface ripples. Once such ripples exist (see Fig. 179), movement 
of the sediment is no longer general, for it varies from practically 
zero in the ripple troughs to a maximum at the crests. Moreover, 
if the material is not of uniform grain diameter, considerable 
sorting occurs, the distance a particle is carried past the crest 

’ Jeffreys, H., On the Transport of Sediments by Streams, Froc. 
Camh. Phil Soc., vol. 25, pp. 272“276, 1929. 

* Einstein, A. H., Der Gesehiebetrieb als Wahrscheinlichkeitsproblem, 
MiUeiiung der VersuchansiaU der E. T. H.f Zurich, 1937. 
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increasing with its size. And owing to the fact that a ripple 
advances in the downstream direction by a very slow “rolling’^ 
process, once a grain is buried beneath an advancing ripple, it 
must necessarily remain at rest until exposed in the succeeding 
trough. 

For a given material, it has long been known ^ that ripples will 
develop gradually in size and rate of movement with increasing 
flow, reaching a maximum at approximately the critical v(docity 
for the given depth of the stream. Under such conditions, 
however, the free surface is marked by pronounced undulations 
spaced according to the underlying ripples. When the discharge 
much exceeds the critical, the high local velocities will soon level 
off the ripple crests, the movement then becoming uniform at all 
points. At even higher rates of flow, bed irregularities will 
again form, but will now travel upstream as a series of long, low 
undulations. 

Ripple formations of this nature are not limited to sand in 
water flowing at low depth, for they often accompany tidal 
phenomena, and are produced as well by tlie action of wind on 
sand and snow. In addition, ripple systems may be superposed 
upon bed undulations of a far greater order of magnitude, such as 
river bars or sand dunes. Although the present treatment must 
necessarily avoid such involved problems, the ripple question 
Is not so easily dismissed even in a simplified study, for ripples are 
bound to develop at one time or another as well in the best as in 
the poorest of laboratory flumes. Their appearance is always 
marked by a rise in flow resistance, for the undulations cannot 
fail to increase the relative roughness of the bed. It is evident, 
however, that the scale of the ripple pattern in relation to the 
depth of flow is of considerable moment in determining this 
relative roughness; thus, although laboratory ripples are almost 
invariably quite large in proportion to the depth, one must 
remember that such conditions are not typical of all states of flow 
in nature. Moreover, consistent association of the critical 
velocity for ripples with that for open-channel flow is not fully 
warranted, for sand ripples are frequently leveled off in similar 

fashion by wind—to which the critical flow relationship Fc = \/gyc 

cannot apply. To what extent ripple characteristics are gov- 

1 Gilbert, G. K., The Transportation of Debris by Running Water, 

U, S. Geol Survey Prof. Paper 86, 1914. 
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erned by the characteristics of the sediment itself still remains 
to be determined satisfactorily—indeed, the mechanics of ripple 
formation is a most inviting subject for fundamental research. 

Among the earliest attempts to analyze the rate of bed-load 
transportation was that of du Boys,^ which warrants review at 
this point if only because of the considerable influence that it has 
had upon more recent endeavors: The bed is arbitrarily con¬ 
sidered to move in a series of superposed layers, their thickness 

d' presumably being of the same order 
of magnitude as the particles themselves. 
By assuming the velocity of the layers to 
vary linearly (by equal increments Av) 
from zero to a maximum (Fig. 180), it is 
evident that if the nth layer from the top 
remains at rest, the topmost layer must 

Fio. ISO.—Analysis of bed have the velixdty (n - 1) Av. The 
movement, (After dv Boys.) weight tUschargc s of the Sediment in 

motion, per unit width of bed, may then be found by multiplying 
the mean velocity of t he layers (n — 1) At;/2 by the total thick¬ 
ness nd' and by the specific weight 7* of the sediment in bulk: 

% — d 
, (n — 1) Ay 

2 

It now remains to relate one or another of these independent 
variables to known flow conditions. Du Boys assumed the 
longitudinal component of fluid weight y to be counter¬ 
balanced by the friction of the sediment-water mixture at the bed. 
In this manner the intensity of boundary shear, already desig¬ 
nated as To, becomes the so-called tractive force T—the force 
per unit area tending to move the bed. Evidently, reasoned 
du Boys, the frictional resistance between successive layers 
must depend upon the effective weight of the overlying material, 
the coefficient of friction f between layers arbitrarily being taken 
as a constant for the given material. It then follows that move¬ 
ment of successive layers will occur down to that level at which 
the weight of the overlying material produces a resistance equal 

1 Du Boys, P., fitudes du regime du Rh6iie et Paction exerced par les eaux 
sur un lit k fond de graviers indMniment affouillable. Annales des Fonts et 
ChausaSeSf Series 6, vol. 18, pp. 141-195, 1879. 
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in magnitude to the tractive force of the stream. At this point, 

T = yyeS = ^ {ys - y) nd' 

If conditions of flow ai'C such that the topmost layer of sediment 
will just resist motion, a critical valium of T is reached, marking 
the limit of bed movement. Since n then equals unity, this 
(critical force may be written 

T. = f (7« - 7) d' 

whereupon it is apparent tJiat 

T = nTc 

Introducing this expression into the equation for the rate of 
transport. 

7s Av d/ 

“27V 
T {T Tc) 

If the quantity 7« Av d'/2Tr is (amsidered to depend entirely 
upon sediment characteristics, the above rc'lationship may be 
reduced to the form 

Te) (236) 

in which ^ is the foregoing sediment parameter. 
The general structure of th(^ du Boys equation has been 

adopted in many a sucaaaaling investigation. For instance, in 
the latest of these—that by Change—the expression is used with 
practically no modification. Nevertheless, the extreme sim¬ 
plicity of du Boys^ treatment of a very complex phenomenon is 
in itself reason for a certain amount of skepticism. The concept 
of sliding layers, as well as the failure to. consider the weight 
component of the sediment itself in aiding the motion, are perhaps 
warranted simplifications, though surely open to question. 
But the velocity distribution within the sediment would hardly be 
linear, while f would certainly vary from layer to layer in all 
but the earliest stages of motion. O^Brien and Rindlaub'-^ have 
sought to eliminate the latter objection by considering the bed 

^ Chang, Y. L., Laboratory Investigation of Flume Traction and Trans¬ 
portation, Proc. A.S.C,E., vol. 63, no. 9, 1937. 

® O^Brien, M. P., and Rindlaub, B. D., The Transportation of Bed-load 
by Streams, Tram^ Am. Geophysical Union, pp. 593-603, 1934. 
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friction to vary exponentially with depth below the bed surface. 
The same method may also be applied to the velocity distribu¬ 
tion within the moving sediment (note Fig. 178), the two devel¬ 
opments yielding a relationship approximately of the form 

3 = (T - Tc)^^ (237) 

This type of equation has been selected by the United States 
Waterways Experiment Station,^ but modified somewhat 
through introduction of the Manning n: 

The common assumption that the critical tractive force Tc 
depends alone upon sediment characteristics is thought to be 
justified by the fact that various investigators have rioted a 
definite exponential relationship between particle diameter and 
critical force. Nevertheless, although the function appears to 
change slope more or less abruptly at a certain particle diameter, 
the experimental evidence is limited to a single fluid under 
approximately the same conditions of temperature. As shown by 
O^Brien,2 portions of the curve doubtless apply to two 
different regimes of boundary motion, depending upon whether 
or not the surface particles of the bed lie within the laminar 
boundary film. Under such circumstances the ratio between 
particle diameter and thickness of the boundary layer becomes 
an essential parameter, much as the ratio k/8 was found to be 
significant in the case of pipe roughness. Needless to say, 
boundary-layer thickness (a function of the Reynolds number) 
and average sediment diameter cannot be sufficient to determine 
Tc, since the specific weight, shape, and grading of the sediment 
are also of importance. Moreover, the stage at which movement 
begins over a uniformly flat bed cannot be expected to correspond 
to the point of cessation once ripples have developed. 

Whether or not the boundary shear actually equals the true 
tractive force, it is not unreasonable to consider that some sort 

^Studies of River Bed Materials and Their Movement with Special 
Reference to the Lower Mississippi River, U. S. Waterways ExperimerU 
Station, Paper 17, 1935. 

* O^Bribn, M. P., Notes on the Transportation of Silt by Streams, Trans. 
Am. Geophysical Union, pp. 431-436, 1936. 



Sec, 75] TRANSPORTATION OF SEDIMENT 337 

of functional relationship exists between g and tq. On the other 
hand, this would imply that corresponding functions exist in 
terms of other flow characteristics, for through use of the Ch6zy 
relationship the quantity T (and, similarly, Tc) in any of the 
above expressions may be replaced by various combinations of 
depth, slope, and either velocity or the ratio of discharge and 
depth; thus, 

r = 7^0-8 = ^ = ^, (239) 

Nevertheless, departures from the concept of tractive force 
are not in accord with the above transformation. Schoklitsch,^ 
for instance, proposed the expression 

Q = (240) 

for sand of uniform grain diameter d, the beginning of bed move¬ 
ment being marked by a critical rate of discharge 

- 

MacDougalP used a relationship of the same general character 
for graded material. On the other hand, the laboratory of the 
Technische Hochschule at Zurich* has adopted the expression 

d 
a + b (241) 

Herein both q and g have the same dimension of weight per 
unit time per unit width of bed. The critical discharge qc 
(for 3 = 0) evidently has the value {ad/SY''^. This relationship 
is, nevertheless, specifically restricted to material of relatively 
large and uniform size, the investigators feeling that the ratio 
d/s plays an essential role in determining not only the beginning 

^ ScHOKiiiTSCH, A., Der Geschiebetrieb und die Geschiebefracht, Wasser- 
kraft und Wasserwirtschaft, p. 37,1934. See also “Stauraumverlandung und 
Kolkabwehr,^' Springer, Vienna, 1935. 

* MacDottgall, C. H., Bed-Sediment Transportation in Open Channels, 
Trans. Am. Geophysical Union, pp. 491-495, 1934. 

® Mbybr-Peteb, E., Favbb, H., and Einstein, A., Neuere Versuchresul- 
tate liber den Geschiebetrieb, Schweizerische Bauzeitung, vol. 103, no. 13, 
1934. 
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of movement but the form of the function once such motion is 
established. They show, moreover, that this form of bed-load 
function is particularly advantageous in comparison of model 
and prototype behavior, since the several factors are grouped in 
accordance with the Froude criterion for similarity. 

Despite the abundance of experimental data upon which these 
several relationships were based, one fact remains apparent: 
the research w^orld still cannot agree upon the actual form of the 
bed-load function. Indeed, continued efforts seem only to 
produce further variations in experimental trends, and the 
problem is far from a satisfactory end. Much of the discrepancy 
is undoubtedly duo to differences in experimental technique, for 
bed-load measurement is not an easy matter. Experimental 
flumes arc seldom of sufficient width to eliminate wall effect 
completely, and in many cases the material in motion is not 
completely trapped or the measurement is not continued for a 
sufficient length of time to average? a series of ripple crests and 
troughs. Moreover, although sediment weight and mean grain 
diameter are generally given due heed, little attention has been 
paid to grading characteristics, except to note that uniform 
material never behaves the same as graded. 

In all probability, many investigators have unknowingly 
dealt with different phases of the general problem, to which 
circumstance the lack of agreement in results may in part bo 
attributed. That the Zurich studies show a relationship different 
from Eq. (241) for material of small size is evidence of this 
situation. On the other hand, apparently no investigation has 
included the more advanced stage of motion (Fig. 178) in which 
material is also carried in suspension and in which ripple forma¬ 
tion probably plays no part. 

If progress is to be made in this essential field, it would seem 
that two features must soon become essential: a satisfactory 
analysis of the general problem, at least from the dimensional 
point of view; and a truly extensive series of experimental 
measurements, conducted systematically and under conditions 
free from the usual sources of error. From the foregoing dis¬ 
cussion, the Froude and Reynolds numbers, the slope, and the 
pertinent sediment properties p*, dm, and erg (discussed in Section 
77) •would appear to include all independent variables involved 
in the phenomenon. In order to obtain F and R as parameters 
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(refer to Chapter I), 2/0, V, and p must be selected as the three 
repeating variables, under which circumstances the bed-load 
function would have the dimensionless form 

g = R, S, pV^ 
\ pyoyoj 

Evidently, the resulting expression would be decidedly more 
involved than any of the empirical relationships already cited; 
indeed, although this function is perfectly sound dimensionally, 
it remains a moot question whether or not the parameters are in 
their most significant and convenient form. Whatever the final 
parametric arrangement, complete control of every pertinent 
variable—and not haphazard study of one or another over a 
small range—must be the ultimate experimental objective. 

76. Sediment Suspension. Within the past one or two 
decades, progress in the statistical analysis of fluid turbulence 
has been so rapid that application of the resulting knowledge to 
probh^ms other than that of fluid resistance has tended somewhat 
to lag. Thus, while the phenomenon of sediment suspension 
depends primarily upon the turbulent mixing process, for many 
years the study of this effect^ retained the same empirical aspects 
still encountered in research on bed load. As a matter of fact, 
the attention paid to bed-load movement in the field and labora¬ 
tory has far exceeded that given to material carried in suspension, 
and only recently has the latter begun to receive the notice 
merited by its importance to hydraulic engineering. 

In discussing the essential aspects of bed-load transportation, 
it has been found expedient to consider at first only those condi¬ 
tions i|i which material is moved at or near the lower boundary. 
But although the turbulent suspension of sediment might be 
looked upon merely as an advanced stage of bed-load saltation, 
the problem of sediment suspension may best be approached by 
considering only those regions of flow that lie at some distance 
from the bed. Under such circumstances, boundary effects 
involved in the bed-load transport need not be taken directly 
into account, and the mixing process may then be analyzed 
according to the methods of^ Chapter IX. Indeed, Eq. (120m) is 
immediately useful, for it expresses in simple form the rate at 

1 Jakuschoff, P., Die Schwebestoffbewegung in Flussen in Theorie und 
Praxis, Die Waseerwirtsekafiy vol, 25, nos. 5-8, 11, 1932. 
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which suspended material is carried across the flow as a result of 
the turbulent mixing. Since the present discussion is restricted 
to the case of fully established uniform motion, it follows that 
the normal curve of sedimc^it distribution will, like the velocity 
profile, remain statistically the same at all successive flow sec¬ 
tions. In other words, a state of equilibrium must exist between 
the rate at which sediment is raised by turbulence (i.e,, carried 
in the direction of decreasing concentration) and the rate at which 
it falls as a result of its own weight. 

Designating by v) the velocity of fall of a given type of particle, 
the product wc will then indicate the rate at which such material 
settles per unit horizontal area—the dimension of wc depending 
upon that of the concentration c (that is, c may represent the 
number, weight, or even volume of the particles per unit volume 
of the water-sediment mixture). If a state of equilibrium is to 
obtain, this rate of settling must exactl^^ equal the rate at which 
the material is lifted by the turbulence; thus, 

wc 
dc T—TT j dc 

= “ hli] (242) 
dy ^ dy 

It is to be noted that this expression places no restriction upon 

the relative magnitudes of w and In this respect the 
reader must remember that the entire analysis is statistical, 

]v^j Z, and c representing mean values about which considerable 
local variation will necessarily occur from instant to instant. 

Integration of Eq. (242) leads at once to the general expression 

' 

Ja * 
In (243) 

which refers the concentration at any elevation y to a known 
concentration at the elevation a. Evidently, the final evaluation 
of the sediment distribution must depend upon knowledge of 
the variation of e with y. The validity of the general expression, 
however, has been checked by making e independent of 
through producing with some sort of stirring device a fairly 
constant degree of turbulence from bottom to top of a jar 
containing a mixture of water and sediment, and then deter¬ 
mining the concentration of samples taken at various elevations. 
The experiments of Hurst, ^ conducted in this manner, yielded 

^ Htjrst, H. E., The Suspension of Sand in Water, Proc, Roy, Soc, {Lonr- 
don), vol. 124, p. 196, 1929, 
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results ill good qualitative accord with Eq. (243), whereas more 
recent investigations by the author—as y(‘t unpublished—indi¬ 
cate that ihe relationship is valid quantitatively as well. 

In open-channel flow, however, e must nec^essarily vary with y. 
Such variation may be writtcai in tijrms of the mean velocity 
gradient by combining Eqs. (118) and (234): 

dv 

e TO (1 — y/tjo) 

Upon substitution in Ecp (243) 

,„£= _Ef« (\dv/dy_^j 
Cn To/p Ja Vq - y 

(244) 

If the depth, the slope (sinc(^ tq = 7 yo S), and the velocity dis¬ 
tribution are known, Eq. (244) may be used to determine by 
graphical integration the curve of sediment distribution referred 
to the concentration at some arbitrary level a. This method has 
been tested by Christiansen^ for vertical distribution curves in a 
wide channel, with satisfactory agreement between measurement 
and calculation. It has, moreover, been adapted by Leighly*^ 
to the more general case of a relatively narrow cross section, 
through grajihical analysis of plotted isovels. 

If one assume that the velocity distribution in a very wide 
channel is of the universal logarithmic type (see page 275), 
it follows from Eq. (175) that 

^ ^ 1 VTo/p 

dy ~ K y 

Substitution in Eq. (244) tlien yields an (expression which may 
be integrated to give 

1 ^ 1. £ 
z 

c _ yo y yo _ 770 

Ca L 1 ~ — 1+1 
,2/0 yo_ a 

(245) 

1 Christiansen, J. E., Distribution of Silt in Open Channels, Tram, 
Am. Geophysical Union.j pp. 478-485, 1935. 

^Leiqhly, J., Turbulence and the Transportation of Rock Debris by 
Streams, Geog. Rev.y voL 24, no. 3, 1934, 
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in which ri = y — a and 

_ ty _ ly 

K\^To/p KVy/fJS 

It is apparent that the exponent z, for a given state of motion, 
will depend in magnitude upon the settling velocity of the sedi¬ 
ment—and will, therefore, be different for the various particle 
sizes. In other words, the curve of total sediment distribution 

Fig. 181.—Dimensionless x)iot of suspended-load distribution. , 

must be considered as the summation of a series of individual 
curves for the particle sizes in the suspension. In Fig. 181 will 
be seen a number of these curves for various magnitudes of the 
exponent 2, plotted from Eq. (245) on the assumption that the 
logarithmic velocity-distribution curve is valid between some 
arbitrary elevation a and the free surface of the flow. 

The reader will realize that the foregoing development^ is 
applicable only so long as the assumed conditions actually are 
fulfilled: FirsI, the flow must be steady, uniform, two-dimensional 
motion, and hence free from the circulation encountered in chan¬ 
nels of low width-depth ratio. Second, similarity of the turbu- 

^ Rouse, Modern Conceptions of the Mechanics of Fluid Turbulence, 
pp. 534-536. 
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lonce mechanism must obtain over the entire section considered; 
this excludes at once the region of the lower boundary, leaves 
open to question the immediate neighborhood of the free surface, 
and presumes that the presence of sediment will have no appre¬ 
ciable effect upon the mixing process. Mention has already 
been made of the fact that secondary motion in channels of 
relatively small width tends to bring the zone of maximum 
velocity below the free surface, which must necessarily influence 
the sediment distribution. Needless to say, the pronounced 
circulation at bends and in channels of irregular cross section will 
only magnify this effect. As for the boundary regions, little can 
be said at present as to conditions at the free surface, whereas 
the necessary exclusion of the zone near the bed may well afford 
a c«i:ivenient basis for differentiating between bed load and 
suspended load. In this connection it is to be noted that Eq. 
(245) affords no means of determining the capacity of a stream, 
for the concentration at any point would seem to depend entirely 
upon the amount of material carried above the level a as the 
r(\sult of conditions in the bed region. 

Analysis of the actual effect- of sediment concentration upon 
the mixing process may eventually lead to a means of prophesy¬ 
ing the capacity of a given flow, although at present only the 
following brief comment may be made. So long as the concen¬ 
tration is low, the density of the water-sediment mixture will 
differ little from that of the water alone. Once the change in 
density becomes appreciable, however, it must be remembered 
that Pm can no longer be treated as a constant in determining the 
apparent shear due to the mixing process at any depth. That is, 
the stress resulting from the momentum transport will vary with 
the gradients of both density and velocity, 

d{pmv) dv . dpm 
r e - = epm-j- + € y -7— 

dy dy dy 

while € will probably no longer be a function of the velocity gra¬ 
dient alone. 

77. Sediment Characteristics.^ In problems of sedimentation 
and percolation, as well as those of sediment transportation by a 

1 The methods discussed in the following pages were first brought to the 
author^s attention by Mr. George H. Otto, to whom the author is also 
indebted for careful examination of this portion of the manuscript. 
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moving fluid, systematic and conclusive results cannot be 
expected without due regard to the characteristics of the material 
involved. In the past, all too little consideration has been given 
to this important .aspect of the investigations, due in part to a 
regrettable lack of coordination among research men in the 
various fields of endeavor. Brief mention seems justified at 
this i)oint, therefore, of certain methods of sediment analysis 
that may well prove of gemn-al value. 

So far as the material itse^lf is concerned, the essential properties 
may be listed as follow\s: density, or specific weight, commonly 
expressed in relation to the corresponding property of the fluid; 
average grain diameter, sometimes taken as the median, some¬ 
times as the g(M)m(‘tri(^ mean;^ characteristics shape of grain, which 
may be defined in terms of relative si)hericity, and reUtivc 
roundness of Ihe surface irregularitic^s; and, filially, size-frequ(uicy 
distribution, or t he relative proportions by weight of the different 
grain size's, determined by sieving in the coarser range and by 
hydraulic metliods in the finer. 

To these tiie reader may feel inclined to add the porosity or 
voids ratio of the sediment as a whole, and the velocity of fall 
of the individual particles. One must realize, however, that 
these qualities defx'iid in part upon those already listed—-and 
can seldom be used (‘ither as satisfactory substitutes or as 
independent jairameters. To be sure, the velocity of fall was 
used exclusively in the foregoing treatment of sediment suspen¬ 
sion, and replacc's the sieve criterion for size in the hydraulic 
determination of grading in the finer range. But in either cast^ 
this usage is tacitly limiU?d to parti(i(^s of fairly uniform density, 
for pai’ticie size would surety play a role (bfx^ause of unequal 
interfereiK'e) in a mixture of very light and \ ery heavy materials. 
As for Ihe voids ratio, knowiedge of this facdor is very essential 
in probhims of percolation, in which it indicates the degree of 
compaction of the material. But in the case of sediment 
transportation over a bed whose other characteristics govern its 
porosity, laboratory determination of the voids ratio for an arbi¬ 
trary degree of compaction will yield no information that is not 
available from the other sediment characteristics. 

^ The term *dnedian” refers to the center of area of a distribution curve, 
the term ‘^mcan^^ to the center of gravity of that area; if the curve is sym¬ 
metrical, the mean and the median will coincide. 
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The question of density needs no further comment. Deter¬ 
mination of the shape factors^ is a difficult matter, and for 
normal sands and silts the shape is fortunately a'secondary 
characteristic. Average grain diameter and the grading of the 
material, on the other hand, are two properties of primary 
importance. Results by weight of sieve analyses were formerly 
plotted on ordinary coordinate paper against either mesh number 
or mesh size, a smooth curve through the plotted points yielding 
such diagrams as those shown in Fig. 182. Cumulative plots 
of the corresponding curves, also to arithmetic scale, would 
then have the form of the familiar percent-finer diagrams of 
Fig. 183. The average grain size expressed as the median is 
indicated on the cumulative curves by their intersection with 
the 50 per cent line. 

This method, however, gives undue prominence to the coarse 
end of the distribution, and completely masks the distribution 
of the fines. Hence, plotting the results of mechanical analyses 
on semilogarithmic paper eventually gained favor, in particular 
since this method 3delds equal intervals on the abscissa scale for 
sieves of the Wentworth and Tyler series, which advance in 

mesh size by the factor The added significance of the 
resulting diagrams is at once apparent from Figs. 184 and 185. 
They take on marked qualities of symmetry, and use of the 
geometric mean size embodies in this parameter a corresponding 
degree of emphasis for the distribution in the fine and coarse ends. 

Although the curves shown as broken lines are taken from 
actual analyses of sediment, they differ little in character from 
the full line, which is the elementary curve of probability. 
Indeed, the deposition of sediment by natural causes is distinctly 
a matter of chance, the statistical treatment of which should 
yield a size-frequency distribution following a basic probability 
function so long as the conditions under which deposition occurs 
remain essentially constant. That distribution curves of other 
types are frequently encountered in practice is attributable to a 
great extent to improper methods of securing samples for mechan¬ 
ical analysis—for, in securing these samples, materials deposited 
under different conditions are often withdrawn together. On 
the other hand, if materials of a sufficient variety are combined, 

1 Wadbll, H., Volume, Shape, and Roundness of Quartz Particles, 
/. Geol, vol. 43, pp. 250-280, 1935. 
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the resulting grading characteristics should again approach the 
probability equation. 

In movable bed material, segregation is bound to occur at 
various points, just as permeable soils are almost certain to 

vary in composition from one zone to another. Nevertheless, 
in a given zone conditions should be essentially constant; as a 
result, the local grading of the sediment should follow the 
probability law. On the other hand, if a large number of such 
zones are represented in a single sample, the probability relation- 
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curve by its intercepts at, say, the 20 and 80 per cent ordinates, 
or by using the ratio of areas enclosed by certain ^bitrary por¬ 
tions of the curve. By far the most useful method yet devised 
proceeds from the characteristics of the probability diagram of 
Fig. 184. The position of the curve is established by the geo¬ 
metric mean size which corresponds to the abscissa of the 
center of gravity of the omclosed area. The relative proportions 
of the curve are defined by the standard geometric deviation ag 
from this mean, which is equivalent to the radius of gyration 
of the enclosed area about a vertical axis through the center of 
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Fig. 186.- "Relationship of Krumbein's </> scale to sieve mesh and nominal grain 
diameter. 

gravity. If the curve is not symmetrical, a third parameter is 
necessary to define the skewness,^ a characteristic that will not be 
discussed in these pages. 

Krumbein^ has further systematized such classification by 
replacing particle size by its logarithm to the base 2, arbitrarily 
selecting for this parameter <li the value of zero for the 1-mm. size 
and letting ascending values of correspond to descending 
magnitudes of grain diameter, and vice versa. The relation 
between <l> and d will be evident from Fig. 186, in which it will be 
seen that the units correspond closely to the original Went¬ 
worth series, in which each size is twice the preceding. In terms 
of Krumbein^s <t> notation, the probability function may be 
expressed in the simple form 

y = 
100 

e 
1/ ^ •— 0w\ * 
A ) (246) 

in which represents the standard deviation—the radius of 

* Camp, B. H., ‘^The Mathematical Part of Elementary Statistics,'^ 
D. C. Heath & Co., 1931, Chapter II. 

*Krumbein, W. C„ The Use of Quartile Measures in Describing &i^ 
Comparing Sediments, Am. J. Sd., vol. 32, pp. 98-111, 1936. 
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gyration abont the mean <t>m—whereas the y scale (in per cent) is 
so chosen theyb the area under the curve is equal to 100 per cent. 

Since the cumulative probability curve must plot a straight 
line on logarithmic probability paper, the diagrams should be 
the more significant in this form. Figure 187 thus shows the 
same three grading curves appearing in the other diagrams, each 
one of w'hich may now be characterized in full by the position 
of the mean and by the slope—which is inversely proportional 

Diameter in (f> units 

Fig. 187.-—Logarithmic probability plot of cumulative curves. 

to the standard deviation in <t> units (that is, 1/tan a). 
It is evident that any cumulative curve must be inclined at 
some angle between the vertical = 0), corresponding to mate¬ 
rial of constant size, and the horizontal = oo), signifying 
the widest possible dispersion of sizes about the mean. Only 
one objection can be found to Krumbein\s <^> unit: since it is a 
logarithm, it is not a length; yet it is not truly dimensionless, for 
its magnitude depends upon the arbitrary selection of the milli¬ 
meter scale, some question thus arising as to its significance in 
the process of dimensional analysis. 

Not only is any‘.grading curve that plots a straight line on 
logarithmic probability paper completely defined by the geomet¬ 
ric mean size and the standard deviation, but departure from the 
rectilinear is in itself a measure of skewness. Reduction of 
mechanical-analysis results to the necessary form is not a 
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difficult matter/ whereas the general clarity and significance 

of the method well warrant its adoption. Indeed, perhaps 
the greatest engineering value of this probability relationship 

lies in the fact that means are now at hand whereby the charac¬ 
teristics of sediment used in controlled laboratory investigations 

may be varied over an extreme range in a logical and systematic 

fashion. 

^ Krumbein, W. C., Appli(*.ation of LogaritliHiio Moinonts to Size Fre- 
(luency Distributions of Sediments, J. Sedimenlanj Petrology, vol. 6, no. 1, 
pp. 35-47, 1930. 
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CHAPTER XV 

GENERAL CHARACTERISTICS OF WAVE PHENOMENA 

78. Propagation of Disturbances in Fluid Media. In any 
pattern of fluid motion, variation of the velocity vector with 
either space or time represents, in effect, a disturbaiK^e of an 
otherwise steady, uniform state of flow. Such disturbances 
as those produced by the movement of an immersed body, by a 
pipe orifice, or by boundary roughness have already been dis¬ 
cussed at length.. In every case it was tacitly presumed that the 
effect of such disturbing factors was felt instantaneously through¬ 
out the surrounding fluid, the flow pattern thereby being gov¬ 
erned primarily by the geometrical boundary conditions. 

It is physically impossible, nevertheless, for such disturbing 
impulses to travel with an infinite velocity. Indeed, the velocity 
of propagation of any disturbance in a fluid medium has a 
definite, finite magnitude, depending upon the nature of the 
disturbance, the characteristics of the undisturbed flow, and the 
properties of the fluid in question. In many cases, to be sure, 
the velocity at which disturbances are propagated through a 
fluid medium is greatly in excess of the relative velocity between 
fluid and boundary; one may then conveniently assume that the 
velocity of propagation is infinitely great, and thereby avoid 
needless complication. If, however, these two velocities are 
roughly of the same order of magnitude, such an assumption will 
introduce appreciable error. And if the velocity of flow is actu¬ 
ally greater than the velocity at which a disturbance can be 
propagated, the resulting pattern of flow will bear little resem¬ 
blance to that assumed. 

Needless to say, such phenomena involve the interplay of 
pressure intensity, density, and velocity, for the problem is 
essentially dynamic in its fundamental aspects. Yet the true 
nature of the fluid disturbance is determined by that force 
property which plays the predominant role in its propagation. 
Such force properties, as the reader will recall, include specific 
weight, dynamic viscosity, surface tension, and elastic modulus— 

353 
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each of which is associated wdth a different type of disturbance. 
For instance, a chapter or more has already been devoted to 

disturbances in which viscosity is the ^ovcTning factor. In the 
case of deformation drag, it was pointed out that the movement 
of an immersed body w^ould be felt throughout the fluid, pro¬ 
vided the Reynolds numbc^r was of sufficiently small a magnitudes; 
in other words, the disturbance caused by siu*h motion through 
the action of viscosity would be propagated throughout the 
fluid at a velocity so miudi in excess of the velocity of the body 
that the slight time lag could be neglected entirely. At con¬ 
siderably higher Reynolds numbers, on the contrary, the relative 
velocity of the boundary was sufficiently great to confine the 
major part of the distiirbanc(‘ to a layer at the boundary—a layer 
growing in thickness, howTver, with distaii(‘t‘ from the leading 
edge. Evidently, the ratio of thickness to dit^ance must then 
be a measure of the ratio bc^twe^en the velocity of proi)agation of 
a viscous disturbance and the relative velocity between bound¬ 
ary and undisturbed fluid. Needless to say, the spread of a 
viscous disturbance has its counterpart in the diffusion of turbu¬ 
lence, which again has a characteristic velocity of proi)agation. 

Aside from this closely related phase of viscous action, dis¬ 
turbances of the type classed as waves are generally (considered 
to proceed through the action of weight, surface tension, or 
elasticity; viscous action, however, is always present in wav(\s 
of any of these three types, opposing the deformation of the fluid 
elements and gradually reducing the energy of the disturbance 
through dissipation in the form of lieat. The nature of the 
several force propertie^s determines to a large extent the condi¬ 
tions under which they play essential roles. Capillary waves 
(disturbances governed by surface tension) require the existence 
of a boundary surface between a liquid and a gas, or between 
two liquids; however, the radius of curvature of the surface 
disturbance must be relatively small if the capillary action is to be 
appreciable. Gravity waves (disturbances governed by fluid 
weight) are also restricted to liquids with a free surface, or to a 
liquid interface, but surface curvature is not the controlling 
factor. Elastic waves, on the other hand, may be propagated 
through liquid and gas alike, regardless of whether or not the 
fluid is confined by solid boundaries. 
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Unfortunately, wave motion is probably that branch of fluid 
mechanics which is least susceptible to rigorous mathematical 
treatment—except for certain limiting cases—for the general 
problem involves all the obstacles of steady, non-uniform flow, 
with one additional variable: time. In the following introduc¬ 
tory treatment, therefore, the problem is reduc(d to its barest 
essentials in the effort to stress the fundamental mechanics of 
wave motion and the basic similarity of the several different wave 
types. 

79. Relative Velocities of Wave and 
Fluid. The steady movement of a body 
through a fluid might be imagined to pro¬ 
ceed through a series of infinitesimal 
impulses; each of these then generates an 
infinitesimal disturbance or wave which 
moves outward with a celerity c, the veloc- fig. 188.--Waves gen- 

ity of wave propagation relative to the fluid eratod at a stationary 

under the existing conditions. The rapid 
sequence of these tiny impulses thus produces in the surrounding 
fluid a pattern of flow that depends in form upon the celerity 
of the wavelets in relation to the mean velocity of the body. 

For convenience in illustration, one may imagine further 
that the source of the disturbances is represented by a single 

point advancing through the fluid. If 
the mean velocity of. translation v is 
extremely small in comparison with the 
celerity of the wavelets, over a brief inter¬ 
val of time the source will move only 
imperceptibly and the series of impulses 
generated during this interval will appear 
to travel through space with the same 

advances slowly through velocity ill every direction. Such a 

condition is shown in two dimensions in 
Fig. 188 by a series of circles practically concentric with 
the body at point A. If, on the other hand, the velocity of 
translation approaches the magnitude of the celerity of wave 
propagation, each successive wavelet will be generated at a 
different point in space, owing to the continuous movement 
of the source. Thus, in Fig. 189, wavelets are generated at 
points u4i, Az^ and A 4; by the time the source has reached 
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point wavelets 1, 2, 3, and 4 have attained the proportions 
indicated in the illustration. Evidently^ although the individual 
wavelet preserves a circular form (since the celerity c is measured 
relative to the fluid), the circles are no longer concentric. 

Should the velocity of translation exactly equal the wave 
celerity, it is evident that the source will advance through the 
fluid at precisely the same rate as that portion of each wavelet 
lying in its path. Under such conditions an instantaneous 
picture of the wave pattern will consist of a seri(\s of circles 
tangent to one another at their intersection with the path of the 

Fio. 190.—Velocity of wave Fia. 191.—Velocity of wave 
source equals wave celerity. source exceeds wave celerity. 

source, as shown in Fig. 190. If the celerity of propagation is 
now exceeded by the velocity of translation, each succeeding 
wavelet will at once be left behind; lines tangent to the successive 
wavelet circles now represent the wave fronts of what is actually 
a continuous process of disturbance. As will be seen from Fig. 
191, the wave angle ^ (commonly known as the Mach angle) is 
the following simple function of the celerity and the velocity 
of translation: 

sin /3 = ? (247) 

Since the foregoing illustrations correspond to the motion of a 
body through a fluid originally at rest, the flow pattern must 
vary from instant to instant. Yet so long as the velocity of 
translation and the wave celerity retain their relative magnitudes, 
the unsteady pattern of flow may be transformed into a steady 
one simply by translating the coordinate system at a velocity 
equal to that of the moving body. Obviously, the resulting 
pattern of steady motion will be similar to that caused by fluid 
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moving with the same velocity past a stationary body, provided 
the coordinate system then remains at rest. But since the 
celerity c is invariably measured with respect to the fluid, the 
velocity of wave propagation with respect to the source of 
disturbance must always be considered as the vc(*tor sum of 

V and c. 
If the flow pattern for given boundary conditions is deter- 

mined on the assumption of an infinite velocity of propagation, 
it should now be apparent that the })att('rn actually obtained 
will differ from this limiting ccuidition by an amount d('pending 
on the ratio of the mean velocity of flow to the celerity of an 
infinitesimal wiivo.. For the condition of instantaneous propaga¬ 
tion of fluid disturbances, presumed in classical hydroniecdianics 
and indicated by tli(‘ wav(‘ pattern of Fig. 188, tlie paranuder v/c 
obviously has th(^ magnitude zero; for conditions typified by 
Figs. 1811, 190, and 191 this parameter is l{^ss than, equal to, and 
gr(*ater than unity, respc'ctively. As was mentioned in ('!ha])ter 
I, the’Fronde, Welxa*, and CViUchy numbers are none other that) 
specific forms of this basic ratio, as is also 1h(^ Reynolds number, 
in the light of tiie foregoing nunarks. d'hus, the dimensionlt'ss 
ratio v/c is a fundanu-ntal ])araniet(u- not only of wave mechani(*s, 
but of fluid motion in gcaieral. 

It is Ix^yond the scope of this text t.o invc^stigatci more thor¬ 
oughly the distortion of the basic flow pattc'rn as this parameter 
gradually becomes of finite magnitude. Once it exceeds unity, 
howcAmr, the problem becomes primarily one of wave mf‘(*hani(*s, 
a field that has direct bearing upon hydrauli(; (aigiiuH^ring. It 
may not be unwise, th('r<‘foro, to refresh the r(^ader^s memory 
on certain basic ])rinciples of wave g(Hmietry as taught, in ele¬ 
mentary physics, whereafter expressions for the (celerity of tin? 
several wave tyj)es will be developed from the basic, equations 
of fluid motion. 

80. Wave Forms; Interference and Reflection. Needless to 
say, the original form of any disturbance in a fluid medium 
depends entirely upon the manner in which tfiis disturbance is 
generated. Thus, if a moving piston at the end of a conduit 
acts as the generating mechanism, the temporal rate at which the 
piston changes its position will determine the form of the wave 
disturbance in the immediate vicinity of its source. For instance, 
if the piston were given a reciprocating motion, a continuous 
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train of similar waves would result, as indicated in Fig. 192. 

If, after a half cycle, the piston were to remain at rest, a solitary 

wave would be produced, like that in Fig. 193. In either case 

the diagram represents the change in flow conditions with tinui 

at a fixed section a short distance ahead of the piston. The 

abscissa scale therefore measures the passage of time, whereas 

the ordinate scale might properly indicate the total energy of 

the disturbance per unit fluid volume. More generally, however, 

it is the potential energy of the motion that is plotted, the wave 

form then representing the change in pressure intensity, in the 

case of an olasli(; wave, or the change in (devation of the free 

surface, in t he (*as(' of (.ntlier gravity or capillary waves. 

In the most gcmc'ral cas(?—even of irrotational motion—the 

form of the whyv must b(' considered to vary with tiling as it 

travels through space. Yet under certain conditions, to be 

discussed presently, the wava> form may remain sensibly the 

same, the rate of eiu'rgy loss due to viscous action and heat 

conduction being so slight as to produce a noticeable effect 

only after the wave has traveled a considerable distance. Under 

such circumstances, appropriate translation of the coordinate 

axes will transform the wave disturbance into a pattern of 

steady flow with constant energy. The Bernoulli equation 

then being fully applicable, velocity changes witliin the wave 

may readily be investigated through the basic equations of flow. 

Should two wave systems approaching from opposite direc¬ 

tions cross one another, it is evident that the energy of the 

individual elements of the two systems (and, similarly, the 

velocity components and increments of pressure intensity or 

elevation) must be added algebraically as the elements coincide 

in position. Assume two systems of simple harmonic motion, 

of equal amplitude and wave length, and equal and opposite 

celerity, as shown by broken lines in Fig. 194. Addition of the 

coincident elements of the two wave profiles will yield the curve 
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shown as a full line, which represents the resultant wave form at 

the given instant. As the two systems continue in their respec¬ 

tive directions, the original profiles will eventually coincide, 

under which circumstances the resultant profile will attain its 

maxirnurd proportions (Fig. 195). When the nodes next coin¬ 

cide, however, the resultant profile will simply be a straight line 

(Fig. 196). Under the given circumstances the resultant wave 

system will have the velocity of neither of its components, but 

will oscillate symmetrically with respect to a stationary coordi¬ 

nate system. The reason for this is simple: Although such 

scalar quantities as pressure intensity and elevation require only 

algebraic addition, the velocity fields of the two original wave 

systems must be combined vectorially—and since the celerities 

of the two component systems arc of opposite direction, the 

resultant celerity must be of zero magnitude. 

Had either wave system had a velocity of propagation other 

than that assumed, it is obvious that the celerity of the resultant 

motion would have been of finite magnitude. An interesting 

case is provided by two wave systems of equal amplitude but 

different wave length, traveling in the same direction with 

unequal celerities. As shown in Fig. 197, the resultant system 

will take the form of a series of wave groups quite distinct from 

one another. Upon closer investigation it will be found that the 

rate at which the wave groups appear to move through the fluid 

will differ from the celerity of the individual waves of the result¬ 

ant system. 
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When a wave of any type strikes a solid boundary, each ele¬ 

ment is reflected }>ositively by the boundary. The reflected 

wave elements, howevcn*, must be regarded as quitch distinct 

from th(i remaining ('lements of the oncoming wav(i—the phe¬ 

nomenon of reflection giving rise to a new wave system, similar 

to the original in every respect save direction of propagation. 

Since the velocity component normal to the boundary must 

always remain equal to zero (Fig. 198), it follows that the 

angle of incidence will exactly equal the angle of reflection. 

Should a wave train approach a boundary at right angles (zero 

angles of incidence and reflection), the resultant system of oscil- 

Fkj. 198.— Roflor- Fkj. 199.---Osrill atory 
tioii of a wave by a waves resulting from the re¬ 
solid boundary. fleetion of a wave train. 

latory waves will be that shown in Fig. 199, the reflecting 

boundary always coinciding with an antinode, or sf^ction of 

maximum amplitude, where the longitudinal velocity component 

is invariably zero. 

The converse of a reflecting boundary must then be a section 

of flow at which the velocity may change without appreciable 

eff('ct upon the pressure intensity or the elevation of the free 

surface, as the case may be. Such a section is illustrated by 

the juncture between a closed or open conduit and a large reser¬ 

voir. The wav(^ train is then reflected in the negative sense, 

the resultant wave system again being of the oscillatory type; the 

section of negative reflection, however, then coincides with a 

nod(i {NN in Fig. 199). 

It will be evident to the reader that such elementary rules of 

interference and reflection apply fully as well to solitary waves 

(note Fig. 200) as to wave trains—^indeed, to any type of wave 

motion, regardless of form. The actual form of the wave, on 

the other hand, has a definite influence upon its stability and 

velocity of propagation. In general it may be said that wave 

celerity depends not only upon conditions within the undis¬ 

turbed fluid, but also upon the extent of departure from these 
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original conditions within the wave itself. The celerity of a 

gravity wave, for instance, is a function of the amplitude of the 

wave as well as of the original depth of flow. It is obvious, 

..— Oncoming wa\^e 
-wave 

Fig. 200.—Positive and negative reflection of a solitary wave. 

therefore, that in a wave of finite amplitude the departure from 

the original state of motion will vary from section to section of 

the wave profile. For example, the wave shown in P^ig. 201 

may be regarded *as a series of superposed wav(‘lets; the first 

wavelet will, on passing, change the velocity of the fluid relative 

to which the celerity of the next wavelet must be measured. 

Fig. 201.—Wave of finite amplitude. Fia. 202.—Development of a 
shock wave. 

Relative to the undisturbed fluid, therefore, each element of 

the wave must then move somewhat more rapidly than that 

directly below. Under such circumstances the wave profile 

cannot preserve a constant form, for the front of the wave will 

tend to become progressively steeper, whereas the rear, on the 

contrary, will gradually flatten out. 

As may be seen from the diagrammatic sketches of Fig. 202, 

the wave front must eventually take the form of an abrupt dis- 
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continuity in the flow characteristics—a condition that is physi¬ 

cally impossible unless accompanied by appreciable loss of 

energy. Use of the term ^‘shock wave^^ to characterize such 

conditions is therefore quite apt. Although waves in a gaseous 

medium are ordinarily adiabatic (constant heat), the sudden 

change in density caused by an elastic shock wave results in loss 

of heat through conduction, and adiabatic conditions then no 

longer hold. And whereas gravity waves may ordinarily be 

treated as cases of potential motion, a shock wave at the free 

surface of a liquid gives rise to a considerable degree of turbulence 

at the wave front, 

A somewhat different aspect of shock-wave formation should 

throw further light upon this important phenomenon. In Fig. 

203 is indicated the pattern of flow past a thin curved plate. 

For the sake of clarity the smooth curve has been replaced by a 

series of short tangents, each of which produces a small but 

finite disturbance in the flow. If the fluid approaches as shown 

with a velocity greater than the celerity c of wave propagation, 

the series of disturbances will give rise to a succession of wave 

fronts extending from the plate on either side. 

For reasons of continuity (and as must follow from the geome¬ 

try of the illustration) the stream lines will converge on the 

concave side of the plate, where the waves are positive, and 

diverge on the convex side, where the waves are negative— 

changing direction in every instance only as J^hey cross a wave 

front. Moreover, it is apparent that the celerity of successive 

wavelets on the concave side must gradually increase, owing 

to the growth in amplitude of the wave proper along the plate; 

conversely, the wavelets on the convex side suffer a gradual 

reduction in celerity, as is indicated by the slight change in wave 

angle. Even were the wave celerity to remain sensibly constant, 

however, it will be seen that on the concave side the wave fronts 

will eventually intersect; it is because of the actual increase in c 

that the locus of successive intersections increases gradually in 

curvature. Such interference of wave fronts can only signify 

the existence of an abrupt discontinuity—^in other words, a 

shock wave of steadily increasing magnitude must result. 

Conditions within this shock wave may be more clearly 

visualized by investigating a series of cross sections normal to 

the wave front, shown schematically in Fig. 204, It would 
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appear from this that tlie shock wave must exist as such at the 

very beginning of tiie plate. It must be recalled, nevertheless, 

that the plate actually has the form of a smooth cairve, and that 

Fig. 203.— Wave pattern at a curved boundary. 

wave front 

the disliirba.nce generated at the point of initial curvature is of 

infinitesimal amplitud(‘. Only as the wave front attains finite 

proportions docs i1 iK^eoinc truly of the shock type. Evidently, 

therefore, the proximity of the resulting shock wav(‘ to the 

boujidary will increase with the degree of l)oundary curvature. 

Th(5 obvious limit of such a trend is shown in the case of a 

plane boundary fixed at a finite angle to the oncoming flow. 

Under such circumstances (refer to Fig. 205) 

the resulting shock wave will be linear, the 

wave angle varying according to Eq. (247) 

with the velocity of the undisturbed flow ---— , 1 1 . .. 1 1 . Plate'' 
and the celerity of the resulting wave— 204.—Sections 

which is by no means that of an infinitesimal normal to the wave front 

disturbance. As the angle of attack of the 

plate is increased, c will also grow in magnitude, and the wave 

angle will eventually approach 90°. Further change beyond this 

limit will cause the w^ave front to move away from the plate in 

the upstream direction, for the celerity of the wave will then have 

increased to .such a magnitude that it exceeds the velocity of the 

oncoming flow. 

81. Properties of Elastic Waves. The celerity of an elastic 

wave of very small amplitude may be determined directly through 

use of the fundamental equations of motion. Restricting the 
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discussion to the case of propagation in one direction, assume 

that an infinitesimal disturbance traveling through a fluid 

with the celerity c (to the left in Fig. 206a) produces a local 

V 

Fia. 205,—Wave pattern at a boundary angle. 

change in pressure intensity dp. The picture may be reduced 

to a steady one by translating the coordinate system with 

the same velocity as that of the disturban(*.e, resulting in an 

apparent flow from left to right as shown 

in Fig. 2066. The pressure differential dp 

then produces a slight velocity change —dv 

as the fluid passes through the disturbance, 

in a(;cordance with the differential equation 

for acceleration: 

pv dv — —dp 

In addition, conditions of coTitinuity require 

that the rate of mass discharge be the same 

at all sections: 

p t’ = constant 

Writing the continuity equation in differ¬ 

ential form, 

pdv + V dp ^ 0 

and combining with the above equation of acceleration, 
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Recalling from Chapter I that dp/dp = c/p, the velocity of the 

steady flow may now be expressc^d in tc'rms of the elastic modulus 

and the fluid density: 

Since translating the coordinate axes with the disturbance i.o 

produce a pattern of steady motion is equivalent to superposing 

the velocity —c upon (wery portion of the unsteady pattern, it is 

evident that v must equal — c, whereupon, 

Owing to the method of derivation, the above expr(\ssion for 

the celerity of an elastic wave applies only to disturbances of 

exceedingly small magnitudes—whether positive or negative ~ 

such as those by which sound of normal intensity is transmitted 

through a fluid medium. The quantity c = Ve/p is, therefore, 

commonly known as the acoustic velocity. An elastic wave^ of 

finite magnitude, on the other hand, must be expected to have a 

velocity of propagation in excess of the acoustic velocity the 

determination of which requires more detailed investigation. 

In the case of liquids, it will suffic(i for the prestnit to express 

the momentum relationship (refer to Sections 1 and 2 in Fig. 

2066) in the form 

P2 — Pi = Pi — P2 V2^ 

which, together with the equation of continuity. 

Pi Vi = P2 V2 

may then be written: 

P2 - pi = Pi Vi^ 

Expressing the changes in density and pressure intensity as 

finite increments, 

Ap = pv^ 
Ap 

p + Ap 
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and 

V ± Ap p + Ap 

Ap p 

whence, neglecting quantities of the order (Ap)-^, 

e 

p ~ Ap 

According to this approximate relationship, c should increase 

with Ap. Nevertheless, if one n^call that licjiiids are only slightly 

compressible, it will be apparent that nndcn’ normal conditions 

the quantity Ap will remain quite negligible in comparison with p, 

even for pressure differences of considerable magnitude. Not 

only is Eq. (248) thus applicable to practically all elastic; wav(;s in 

liquid media, but successive elements of any given wave will 

have semsibly the same celerity. Once such waves are generated, 

therefore, they will undergo no apprcndable variation in form so 

long as other factors do not enter the problem. 

Since gases, on the contrary, are readily comprc'ssible, it is 

quite possible that a finite density (diange Ap may even exceed 

in magnitude the density of the undisturbed medium. Such 

variation in fluid characteristics must o[)viously involve thermo¬ 

dynamic principles, the most common assumption bcdng that the 

density change caused by the disturbance takes pla(*e adiabati- 

cally—that is, without loss of h(;at. Eq. (248) will then have the 

form, _ 

Assuming, for the sake of argument, that Fig. 206b represents 

the pattern of steady motion for a finite disturbance, the momen¬ 

tum, continuity, and aciiabatic relationships may be combined 

in the following manner: 

V2 - Pi = Pi Vi^ - P2 V2^ 
Pi Vi = p2 V2 

c = 
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During the time dt the fluid yicdt (shown by single crosshatching) 

acquires the momentum per unit volume pv of the disturbance, 

while the resultant force accomplishing this steady rate of change 

of momentum is produced by the difference in hydrostatic 

pressure over normal sections either side of the wave front. 

Equating resultant force and rate of momentum change, 

I- Vi^) = yicpv 

Introducing the continuity relationship and rearranging terms, 

I iVi + 2/i) (2/2 - 2/1) = ^ (2/2 - 2/1) 

from which it is apparent that 

This expression will be recognized as that for the celerity of a 

gravity shock wave, derived in a somewhat different manner in 

Chapter XIV. A disturbance of this type is aptly termed a 

777Z^77777777777777777p7777777777777777777777^ 
Diffusion of eddies 

Fig. 220.—Source of eddies in a surge of the shock type. 

surge, a basic type of gravity wave that is encountered in one 

guise or another in a wide variety of open-channel phenomena.^ 

Mention has already been made of the fact that any true 

shock wave occasions a definite rate of energy loss. In the case 

of a gravity shock wave this loss apparently takes place at the 

wave front, which is generally a zone of violent eddy motion. 

To an observer looking down upon a passing surge, the front of 

the disturbance seems to be covered by a surface roller in a high 

state of agitation—a distorted vortex with horizontal axis, which 

to all outward appearances remains distinct from the fluid 

passing underneath. Nevertheless, careful observation through 

^ The word “bore,’* for instance, refers to a surge produced in large rivers 
or estuaries as the result of tidal action. 
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the glass wall of an experimental flume will establish beyond 

question the intimate relation of this roller to the flow beneath— 

for, as shown schematically in Fig. 220, small masses of rotating 

fluid are constantly being fed from the under side of the roller 

into the passing flow. 

As is indicated in the illustration, the phenomenon closely 

parallels conditions in the wake of an immersed body, or at the 

abrupt enlargement of a closed conduit, for at the same time 

that the eddies spread downward across the flow section, the 

resultant mixing process accomplishes the necessary upward 

expansion of the mean flow. Just beyond this region of transi¬ 

tion, therefore, the eddy motion will extend from top to bottom 

of the flow section. Needless to say, viscous dissipation of 

energy begins at once within the eddies, but the intense turbulent 

agitation of the fluid is not reduced to a normal value for a 

considerable distance from the front of the surge. In other 

words, the apparent energy loss at the wave front itself does not 

represent immediate dissipation in the form of heat, and only 

the necessity of an independent expression for the kinetic energy 

of turbulence prevents analytical study of the surge by the 

simple energy principle. 

In the light of the foregoing discussion of the solitary wave, 

the statement that surges generally involve loss of energy must 

be further questioned. So long as the depth of the disturbance 

is more than twice as great as the depth of the undisturbed flow, 

it is evident that the wave front must eventually become one 

of the shock type. For depth ratios appreciably less than. 2, 

however, such is not necessarily the case. Consider, for instance, 

a surge originally having the form indicated by the broken line 

in Fig. 221. In accordance with Eq. (261), the curved wave 

front would tend to advance more rapidly than the level portion 

just behind it, thus leaving a depression in the surface, followed 

by the development of another crest and depression, and so on. 

Such undulations, nevertheless, will travel as rapidly as the 
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original horizontal disturbance only if the crests lie above and 
the troughs below the original level of the disturbed fluid. If 
the undular profile is to have a permanent form, needless to say a 
definite relationship (as yet uninvestigated) must obtain between 
wave length and amplitude, for a given relative depth of the 
disturbance. 

Undular surges of this nature are found in practice so long uiii 
the ratio 2/2/2/1 is considerably less than 2, the amplitude of the 
undulations gradually decreasing with distance from the wav'^ 
front. As the limit 2 is approached, a small surface roller begins 
to form just below the crest of the first undulation; and as the 
roller grows in size, the amplitudes of the successive undulations 
are diminished, attaining negligible magnitude when = 2yi. 

But since the medium of energy dissipation—generation of 
eddies within the roller—does not exist in the purely undular 
profile, a question immediately arises as to the significance of 
Eq. (253) under such conditions. Two facts must be considered 
in seeking the answer: The energy loss defined by this relationship 
is quite small when y^/yx < 2; and although the relationship was 
derived on the assumption of parallel motion a short distance 
either side of the wave front, the train of undulations necessarily 
gives rise to a pressure distribution departing sufficiently from 
the hydrostatic to introduce into the computations an error of at 
least the same order of magnitude. 

Inasmuch as the celerity c of any wave is measured with 
respect to the undisturbed fluid, the wave velocity relative 
to a point fixed in space will vary with the mean velocity Vi of 
the undisturbed flow: 

Vu, == Fi ± c (267) 

Obviously, this expression is additive when the wave travels in 
the direction of the primary motion, and vice versa. While any 
state of uniform motion necessarily involves a rate of energy loss 
depending upon the velocity, depth, and boundary conditions of 
the channel, evidently both depth and mean velocity will be 
changed by the passage of a surge, thus establishing a different 
rate of energy loss in the disturbed flow. And as the wave 
front travels farther and farther from the original zone of dis¬ 
turbance, it follows that y^—and hence c—must gradually change 
in magnitude. Yet the form of the surface profile behind a surge 



386 MECHANICS OF WAVE MOTION [Chap. XVI 

may be found by other methods (c/. Chapter XIII), so that 
means are at hand of determining the magnitude of c, and hence 
of at any point along the channel. As indicated by Fig. 222, 
the magnitude of l/vw may be plotted against distance along the Jdx 

—y graphical integration of the area 
Vw 

under the curve will permit solution for the location of the travel¬ 
ing surge at any instant of time. 

It should be evident, moreover, that a surge can advance 
against a state of uniform (or non-uniform) motion only so long 
as the celerity c is greater than the velocity of the oncoming flow, 

Fig. 222.—Determination of the progress of a surge with time. 

and that once these two are equal in magnitude the surge will 
come to rest. Such a standing surge is merely a hydraulic 
jump, and methods have already been given whereby the loca¬ 
tion of the jump may be determined; by the method of Fig. 222 
it is now possible to estimate the time required for the jump to 
approach a stable position. Needless to say, a surge may be 
formed regardless of whether the undisturbed flow is in the 
subcritical or the supercritical stage—but, as will be explained 
shortly, a standing surge is physically possible only if yi < yc. 

Certain inaccuracies in the foregoing treatment of the surge 
must still be noted. In developing Eq. (266) only pressure was 
considered to produce the/essential change in fluid momentum. 
Boundary resistance was ignored, for that portion of the 

boundary included between the normal sections must be rela¬ 
tively short. And the longitudinal component of fluid weight 
was conveniently eliminated by considering a horizontal channel. 
Yet it is readily conceivable, notwithstanding the small slopes 
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ordinarily encountered in practice, that the slope may under 
some conditions be so pronounced that the weight of the fluid 
included between these sections will have a longitudinal com¬ 
ponent of considerable magnitude. Evidently, this will augment 
the wave celerity in the direction of downward slope, a surge 
thus traveling faster, with respect to the fluid, in one direction 
than in the other. 

Despite the difficulty of analysis, one particular case in which 
such weight action is paramount has intrigued hydraulicians for 
more than half a century. Although supercritical flow has 
been treated in Chapter XIII by the usual methods of steady, 
gradually varied motion, it has been found in practice that such 
flow often takes place in a decidedly unsteady fashion, the water 

proceeding down the channel in a procession of intermittent 
^^slugs.'’ So-called slug flow of this nature really consists of a 
series of wave fronts (sometimes referred to as roll waves) of the 
shock type, behind each of which the depth rapidly decreases to a 
minimum, as indicated in Fig. 223. 

The reason for the original formation of these disturbances is 
still a moot question, although the problem is evidently one of 
instability of regime. Whatever irregularity in flow gives rise 
to the original superelevation of the surface, it is apparent that 
this wavelet will have a velocity in the downstream direc¬ 
tion in excess of the mean velocity V of the fluid, the celerity 
c — Vu, — V varying with the slope and the relative magnitude 
of the superelevation. A large wavelet will therefore travel 
more rapidly than a small one, with the result that the largest 
intermittent disturbances will gradually overtake and absorb 
those immediately ahead, and thereby increase repeatedly in 
amplitude and velocity of propagation. This process is readily 
observed in nature, often to such a degree that the channel bot- 
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tom is practically between successive surges. Although 
the minimum depth of flow resulting from this phenomenon is 
zero, the maximum depends largely upon the length of the 
channel—and unless the latter has been designed with ample 
freeboard, the crests of the surges will overflow the channel walls. 
It has been found that such intermittent motion will not occur 
if the channel bed is sufficiently irregular, which suggests a simple 
remedy to the problem; actual analysis of the phenomenon 
remains an inviting field for investigation. 

86. The Hydraulic Jump as a Standing Surge. Certain 
important characteristics of the surge may best be studied in the 
pattern of steady two-dimensional motion on a horizontal bed 
obtained by superposing upon the flow a velocity equal and 
opposite to the velocity Vy, of the surge. This pattern is evidently 
identical with that of the hydraulic jump, a case of steady motion 
that has attracted considerable attention among hydraulic 
engineers since the beginning of the last century. As the initial 
step in such a study, Eq. (266) may be written in the following 
pertinent form:^ 

Vl 
yi 0 

Obviously, the depth of the standing surge is a function of a 
dimensionless ratio identical in form with the Froude number: 

gyi fl'yi* \yi/ 
whence 

(Vl + 8F» - 1) (268) 
yi It 

Needless to say, the same general conclusion would be reached 
through dimensional considerations, on the assumption that 
boundary resistance plays a negligible role. Although a similar 
Froude parameter could be written for Section 2, one need only 
note that the above choice is far more significant, in that it 
involves the depth of undisturbed flow and a velocity equal in 
magnitude to the celerity of the standing surge. That the 
functional relationship between and F which was derived 
analytically is in close accord with actual conditions may be 

‘ Hydraulics of Open Channels," p. 240. 
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seen from the proximity of plotted data obtained by Bakhmeteff 
and Matzke^ to the analytical curve reproduced in Fig. 224. 
The slight discrepancies are attributable to the neglect of uneven 
velocity distribution (see page 54) and boundary drag. It will 

Fig. 224.—Depth ratio of the hydraulic jump as a function of the P'roudo number. 

be noted from the plot that = 3 when 2/2/2/1 = 2, conditions 
marking the boundary between jumps of the undular and shock 
types. 

In like fashion it is possible to express other characteristics 
of the standing surge (height of jump, loss of head, and so on) 

Columbia 

Fio. 225.—Profile of the hydraulic jump. 

in their ratio to the undisturbed depth of flow 2/1, again as func¬ 
tions of the Froude parameter. This would indicate, in brief, 

the effect of variation in the numerator of F = Fi/\/^, the 
denominator thereby remaining constant. On the other hand. 
Bakhmeteff has shown that far more light is thrown upon the 

1 Bakhmeteff, B. A., and Matzke, A. E., The Hydraulic Jump in Terms 
of Dynamic Similarity, Trans, A,S.C,E*f vol. 101, 1936. 
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phenomenon by noting the variation in velocity and poten¬ 
tial heads with F while the total head at Section 1 remains 
unchanged. In other words, the linear characteristics of the 
profile would then be referred to H\ instead of to yi. Thus, 

Fig. 226.—Vertical elements of the hydraulic jump. 

in Fig. 226 are reproduced in dimensionless form the following 
analytic functions, which may easily be verified by the reader: 

2/1 2 
//, 2 + F2 

(269) 

2/2 -2 + p.(Vl+8F= 1) (270) H, ■ 

^2 (Vl +~8T2 - 1)« + 4F2 
(271) 

(Vrr 8F2 -1)2 (2 + F2) 

11 (272) 

Three essential facts are to be noted from the accompanying 
illustration: (a) That portion of any curve lying to the left 
of the abscissa F = 1 is without physical significance; as may be 
seen from Fig. 224, a Froude number less than unity would 
correspond to a negative surge, whereas from the plot of AH/Hi 

it is evident that a negative surge would require a gain in energy 
as the fluid passes the wave front—a physical impossibility. 
(b) For a given total head of the approaching flow, the maximum 
value of yi occurs when = yc, whereas y^ attains its 
maximum value at the upper limit of the undular regime, {c) 
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There is a maximum height of jump relative to ilie original 
energy-line elevation, occurring at = 7.67. 

Aside from thus bringing attention to a proper dimensionless 
treatment of the vertical characteristics of the jump, the Bakhme- 

Fi(i. 227. Dimensionless profiles of the hydraulie jump. 

Fia. 228.—Relative length of the hydraulic jump. 

teff-Matzke investigations gave particular heed to the longi¬ 
tudinal dimensions of the flow profile. Generalized results 
of their measurements may be seen from Fig. 227, in which all 
linear dimensions are based upon the depth of the undisturbed 
flow (note that the horizontal scale is reduced 2}^ times). 
The gradual change from the undular profile to a mean surface 
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slope that is practically linear is readily followed through the 
sequence of curves. Logically defining the limit of the jump 
as that section at which the flow again becomes essentially 
parallel, Bakhmeteff and Matzke determined the functional 
relationships between the relative length of jump and the Froude 
number reproduced in Fig. 228. The ratio of length L to 2/2 

is seen to remain nearly constant, with a mean value somewhat 
less than 5. As the limit = 3 (2/2 = 2yi) is approached, 
however, the relative length of the transition becomes inde¬ 

terminate, for the development of undulations makes the region 
of parallel flow increasingly remote from the wave front. 

In a more recent paper,^ Bakhmeteff and Matzke extended 
their investigation of the jump to chaimels of appreciable slope. 
As may be seen from Fig, 229a (and as will be recalled from the 
discussion of the surge), the forces producing the change in 
momentum will then include the longitudinal component of the 
fluid weight between sections 1 and 2: 

p v^ y, (7i - F*) = r - TF So (273) 

Evaluation of the quantity W — y A1-.2 evidently requires 
prior knowledge of the jump profile, which one might reasonably 
expect to vary with both the slope and the Froude number. 
However, measurements by Matzke of the actual profiles for 
slopes up to 0.07 substantiated earlier observations by Bakhme- 
teff that within this range the surface curve varies little from 
that of the jump in a horizontal channel. In no case was the 
length of the jump more than 20 per cent greater, while the 

Bakhmeteff, B. A., and Matzke, A. E., The Hydraulic Jump in Sloped 
Channels, Tram. A,8.M.E., Hydraulics Division, p. Ill, February, 1^8, 
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drop in tailwater elevation was always small in comparison with 
the drop in the channel floor, as indicated in Fig. 229a. 

In view of the relatively small magnitude of the term W So, 

it was considered satisfactory, therefore, to use instead of the 
actual profiles those determined for the jump in a horizontal 
channel at corresponding Froude numbers. Since for slopes 
less than 0.1 it makes little difference whether y is measured 
in the vertical or normal to the channel bottom, the area of the 
profile was subdivided as shown in Fig. 2296, sections 1 and 2 being 

vertical and a constant distance 6y2o apart. The elementary 
triangle and rectangle are simple functions of depth and slope, 
whereas from measured diagrams similar to those of Fig. 227 
the portion Ai was determined in the form Ai = w the coef¬ 
ficient c*) is a function of the Froude number alone and, as seen 
from Fig. 230, was found by Bakhmeteff and Mat^ke to vary 
linearly with F^. 

Although a solution of Eq. (273) is possible once this function 
is introduced, its usefulness is limited by the fact that it is cubic 
in form. Nevertheless, a plot of y^/yi as a function of So and F, 
determined from this equation and checked experimentally, 
showed that this ratio varies linearly with So for any value of F. 
In other words, 

^ ^ + Xi So yi yi 
(274) 
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the magnitude of Ki depending only upon F, as shown in Fig. 230. 
This relationship was even further simplified to the form 

^ = l + Ki So (275) 
Vu 

in which is again a function of F (see Fig. 230)—varying only 
slightly, in fact, from the value 5. 

Although this semi-empirical expression will yield satis¬ 
factory results for slopes as great as >So = 0.1, Bakhmeteff and 
Matzke pointed out that the rate of divergence of the flow 
within a jump will not greatly exceed 20 per cent. If the 
channel slope is excessive, therefore, the presence of a surface 
roller will not necessarily indicate that the flow beneath is 
immediately decelerated. Indeed, under such conditions the 
high-velocity stream will simply plunge into the tailwater and 
continue in the rapid state a considerable distance beyond the 
toe of the roller—this phenomenon of submergence bearing little 
resemblance to the true hydraulic jump. 

87, Wave Effects at Boundary Changes in the Vertical Plane. 
So far as the hydraulic engineer is concerned, the problem of wave 
propagation in confined flow is limited almost entirely to water 
hammer and allied phenomena. In other words, the celerity 
of an elastic wave is so much greater than normal velocities 
of flow that the rate at which disturbances travel through an 
enclosed fluid may be considered practically infinite. Flow with 
a free surface, on the contrary, has been found to offer no such 
convenient simplification. As a matter of fact, although non- 
uniform motion in open channels was treated in detail in Chapter 
XIII without direct reference to wave effects, the reader will 
long since have realized that the consistent use of the critical 
depth ye as a flow parameter is in reality a tacit recognition of 
the dependence of that analysis upon wave criteria. From 

Eq. (212) it follows that when 2/ == 2/c, F = Fc == VgA/F; 
and since A /6 is the mean depth of flow, Fc is equal in magnitude 
to the celerity c of the basic Lagrangian wave. It is evident, 
therefore, that the sole distinction between tranquil and rapid 
flow lies in the relation of the velocity to the celerity of an 
infinitesimal wave for the same mean depth of flow; the Proude 

parameter F « V/y/g^ is less than unity in the former case, 
greater than unity in the latter. 
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From those considerations it will ba seen that surface profiles 
in gradually varied flow are controlled at their downstream ends 
when F < 1, and at their upstream ends when F > 1, for the 
reason that disturbances can travel upstream so long as c > F, 
but only downstream when V > c. As a matter of fact, any 
surface profile may be considered that of a standing wave, 
although boundary resistance can no longer be ignored in deter¬ 
mining its stable form; indeed, the latter influence is now of 
paramount importance. Such a conception will immediately 
become clear, for instance, if one visualize the formation of a 
non-uniform profile by the partial closure of a sluice gate in an 
originally uniform state of flow. A vsurge will form at once 
above the sluice and begin to travel upstream at a rate approxi¬ 
mately in accordance with Eqs. (266) and (267). Boundary 
resistance necessarily leads to a gradual change in wave profile, 
the latter including not only the front of the wave but the entire 
portion of the flow involved in the disturbance. The height 
of the wave front must then diminish with distance from the 
source of disturbance, either approaching zero in the case of a 
disturbance of the Mi class or remaining of the shock type for the 
wave profile Sv In a similar manner the negative disturbance 
traveling downstream from the sluice gate will have as its ulti¬ 
mate form a curve of the M.3, 82, or Ss type. A negative 
disturbance traveling upstream, on the other hand, will result 
in the M2 profile. 

It will be recalled by the reader that surface curves are classified 
generally according to whether So is greater or less than zero, 
and whether yo is greater or less than yc. Evidently, the relative 
magnitude of So determines the direction of action of the longi¬ 
tudinal weight component of the wave. Moreover, if yo > 2/c, 

F == < 1; whereas when yo <yc,'^> 1. In a word, 
each surface profile of gradually varied motion represents the 
stable result of a positive or negative disturbance, the form 
of the standing wave depending upon the magnitude and nature 
of the disturbance and the magnitude of the Froude number for 
the undisturbed flow. 

Similar considerations must apply to the case of rapidly varied 
flow, the sole distinction lying in the fact that resistance effects 
within the disturbance now give way to the inertial effects of 
curvilinear motion. The example used previously will suffice 
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to illustrate this conception. A change in vertical flow section, 
such as that caused by the sloping plate shown in Fig. 160, 
must necessarily disturb the otherwise uniform motion. For 
high values of the Froude number this disturbance will advance 
only sufficiently far upstream to establish equilibrium between 
the acting forces and the mass acceleration of the curvilinear 
motion; that is to say, although the surface curve is infinite in 
length, mathematically speaking (refer to the discussion of the 
solitary wave), the major portion of the disturbance is limited 
to the immediate vicinity of the boundary change. The celerity 
of every element of the wave is then exactly equal to the velocity 
of the oncoming flow. As the Froude number grows smaller, 
the reversal in curvature of the free surface will become more 
pronounced, until a limiting value of F is reached at which 
the celerity of the wave elements is greater than the mean 
velocity of the uniform motion, A surge will then form, and 
advance in the upstream direction until, as before, a state of 
equilibrium is reached in the region of gradually varied flow. 
Conditions at the vertical boundary change are thereby modified 
completely, the functional relationship between F and profile 
form then becoming discontinuous if based upon the constant 
depth of approach assumed in the illustration. It is to be noted 
that such discontinuity will not result if the ratio l/m exceeds a 
certain magnitude—the determination of which still invites 
experimental investigation. Under any circumstances, a study of 
profile form, and of the accompan3dng pressure and velocity distri¬ 
bution, must proceed as has been indicated in the foregoing pages, 
the gravity-wave parameter F playing thereby a very essential role. 

88. Wave Effects at Boundary Changes in the Horizontal 
Plane. Variation in the longitudinal boundary profile of an 
open channel has a direct counterpart in horizontal variation 
of the channel walls—with the added feature that the resulting 
disturbance not only will be three-dimensional but also may be 
dissimilar along opposite walls. Equal convergence or diver¬ 
gence of the sides, for instance, or the presence of evenly spaced 
bridge piers, will produce a state of rapidly varied motion which, 
although definitely three-dimensional, is still symmetrical about 
a vertical plane through the channel axis. A change in direction 
of the channel axis, on the other hand, must necessarily result in 
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completely unsymmetrical surface contours. Even if the flow 
pattern is sensibly symmetrical in plan^ since the problem is 
three-dimensional it can be treated at present in the light of 
two-dimensional motion only if the characteristic Froude 
parameter is well below unity. Similarly, channel curvature 
in the horizontal plane may be regarded as approximately 
symmetrical about a vertical axis of rotation only so long as the 
celerity of propagation of the wall disturbance is in excess of the 
mean velocity of flow. 

A more rigorous treatment of three-dimensional motion at 
low values of F is so difficult that such cases have been ignored 
almost completely in the foregoing portion of this text. On 
the other hand, wall disturbances in flow at a velocity above the 
critical are far more susceptible to close analysis, owing to the 
nature of the resulting wave pattern. It is in this connection 
that the analogous characteristics of elastic and gravity waves 
are of particular importance, for methods originally used in the 
study of elastic effects are now proving of value in open-channel 
hydraulics. 

If one assume that the curved boundary shown in Fig. 203 
forms a portion of a vertical channel wall, it is reasonable to 
expect that when the Froude number of the undisturbed flow is 
greater than unity, the wall disturbance will take the form of a 
series of wavelets diverging from the boundary at the Mach 
angle jS. As indicated in Fig. 231, the direc¬ 
tion of a stream line will change only as it 
passes through the front of a wavelet, the 
character of the change being determined by 
the equations of continuity and momentum 
and by the geometry of the vector field. In 
other words, the reduction in fluid momentum 
on passing the wave front must be accom¬ 
panied by an increase in depth, and vice versa. 
If forces other than pressure are ignored, this 
change in depth will be the same at all cross 
sections of a wavelet. It then follows that 
only the normal component of the velocity vector is involved in 
the momentum relationship, the tangential component thereby 
remaining unchanged (see Fig. 232). 

Fig. 231.—Change 
in momentum normal 
to wavelet resulting 
from boundary curva¬ 
ture. 
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Ippen and Knapp^ were the first to analyze the problem 
of high-velocity flow at bends in this manner, in the effort to 

provide satisfactory principles for the design of 
bends in the flood relief channels of Los Angeles 
County. Assuming (a) hydrostatic distribution of 
pressure, {h) negligible effects of the longitudinal 
component of weight, and (c) constant specific 
energy of flow, they were able to integrate the result¬ 
ing differential expression for depth as a function of 

-,-, . the energy of flow and the angle of curvature of the 
Fig 232-- The resulting equation, though some- 

Vectordiagram what involved, provided for the first time a means 
for Fig. 231. qI* determining the approximate superelevation of 
the water surface at the outside of the bend, as well as the drop in 
level along the inside wall. 

As these writers pointed out, none of the foregoing assumptions 
is stri(;tly fulfilled: the pressure distribution is sensibly hydro¬ 
static only if the curvature is very gradual; the 
weight component on a slope of appreciable magni¬ 
tude tends to modify the wave celerity; and the 
rate of energy loss decreases with increasing depth. 
A means was sought, therefore, of deriving a simpler 
expression yielding results in even closer accord 
with experimental measurements. It was found 
that the arbitrary assumption of a velocity vector^ 
of constant magnitude was actually in close agree- Fig. 233.— 

ment with measured results, and served in part to Vector diagram 
, „ , 1*11. ... , for constant V. 

compensate tor the slight discrepancies in the second 
and third assumptions. The corresponding vector diagram 
would then be that of Fig. 233, the momentum relationship 
still being applied only to the normal component of velocity. 
Integration of the resulting differential expression yielded the 
equation 

1 Ippen, A. T., and Knapp, R. T., Study of High Velocity Flow in 
Curved Sections of Open Channels/^ Report/ prepared at the California 
Institute of Technology for the Los Angeles County Flood Control District, 
March 29, 1936. KXkmXn, Th. von, Eine praktische Anwendung der 
Analogic zwischen tJberschallstrdmung in Gasen und uberkritischer Stro- 
mung in offenen Gerinnen. Zeil. angew. Math, ilfedi,, voL 18, no. I, p. 49, 
1938. 
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K 
Vi 

(276) 

in which the Mach angle /3i of the wave front at the beginning oi 

the curve is the following simple function of the Fronde number 

for the undisturbed flow: 

sin" ^ 
1 
F 

These wTiters showed in addition that the negative wave pro¬ 

ceeding across tlu^ channel from the inside of a bend w^ould so 

counteract the tendency toward superekwation along the outer 

wall that no further ris(' would be encouni(‘red beyond the point, 

of first reflection of the negative 

wave (except under unfavorable 

conditions of reflection and inter¬ 

ference at sections farther down¬ 

stream). The simple geometric^al 

method by which Ippcui and Knai)p 

determined the loc^ation of t his first 

section of maximum elevation is 

indicated in Fig. 234. 

Since the series of negative 

wavelets produced at the convex 
side of a bend steadily diverge elevation at outside 

of channel bend. 
from one another, the front of 

the first wavelet remains free from interference on the part of its 

immediate neighbors (s(3e Fig. 203). On the other hand, the 

series of positive wavelets generated at the concave side gradually 

converge; hence, unless the wave pattern at the outside of a 

channel bend is modified by interference from a negative wave 

generated at an adjacent inner wall, continued growth in wave 

amplitude must lead eventually to the formation of a wave front 

that is not only curved but of the shock type. Although the 

effect of shock-wave development is not felt immediately at the 

wall, it is evident that the extent of such influence is a relative 

matter, varying with the Froude number of the approaching 

flow and the rate of boundary curvature. From the standpoint 

of pressure action alone, therefore, the ultimate depth ratio 

at the end of a concave wall will be the same whether the wall 

Fig. 234. -Point of first maxi- 
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curves gradually or abruptly. Just as in the case of an elastic 
disturbance, the limiting case of a zero radius of curvature is 
thus of special interest. 

As shown by the author and Dr. Merit P. White, in an unpub¬ 
lished study conducted early in 1937 for the Soil Conservation 
Service, the problem may be analyzed in the following manner: 
The vector relationship of the velocity pattern will be similar 
to that originally studied by Ippen and Knapp, the sole dis¬ 
tinction being that the abrupt changes in velocity, depth, and 
energy will be of finite magnitude. Application of the momen¬ 
tum and continuity relationships between vertical sections 
parallel to and on either side of the wave front (see Figs. 235 and 
236) will yield the following expression, indicating that the 

Fig. 235.—Vector relationship at the Fig. 236.—Normal section 
front of a shock wave resulting from an through wave front of Fig. 236. 
angle in a vertical boundary. 

depths and the normal components of velocity correspond exactly 
to the velocity-depth characteristics of the standing surge: 

The vector diagram, moreover, indicates that 

Vi cos p = V2 cos (/3 — d) 

while the equation of continuity provides the following relation¬ 
ship of depth, velocity, and angularity: 

yi Vi sin == 2/2 F2 sin (/? - $) 

Solution of these three simultaneous equations results in the 
expression 

(277) 
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which is strikingly similar to that for the standing surge, differing 
only with the Mach angle for the wave front; the latter, in turn, 
may be expressed in terms of the depth ratio and the boundary 
angle: 

tan = 
j(t^ -1)’ - 4 ^ tan* e 

yi ' /\2/i / yi 
2 tan 6 

(278) 

Equations (277) and (278) are presented in plotted form in 
Fig. 237, showing in full lines the depth ratio 2/2/2/1 as a function 
of the Froude number for a series of boundary angles, 6, and 
for the same Mach angles of the wave front, as broken lines. 

F2 

Fig. 237.—Relative depth as a function of the Froude number, for various angles 
of the boundary and of the wave front. 

From this diagram it would seem that the assumed conditions 
are impossible below certain limiting values of F, since all curves 
are terminated at the broken line near the left of the plot for 
tan /3 = 00. This merely signifies that if the boundary angle is 
too great for a given Froude number, the disturbance will have 
a celerity greater than the velocity of the oncoming flow, the 
Mach angle will tend to exceed 90®, and the wave will advance 
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'//////////////^ 

upstream from the deflecting boundary. Such conditions are 
shown schematically in Fig. 238. 

Preliminary experimental study of this phenomenon indicates 
that the foregoing analysis is physically sound so far as the 
assumed conditions are actually fulfilled. The wave front a 
short distance from the boundary change displays all the charac¬ 

teristics of the standing surge (with 
an additional component of velocity 
parallel to the wave front), even 
to the extent of a surface rollet 
at high values of y^/y\ and a hint 
of undulation when y2/yi becomes 
less than 2. However, near the 

front caused i>y large boui>dary abrupt change m boundary angle, 
since the profile shown in Fig. 236 

has not yet fully developed, the necessarily rapid vertical acceler¬ 
ation produces a local increase in y^/yi beyond that of the fully 
developed wave a short distance downstream. The effect shown 
in Fig. 238 may be produced with ease; needless to say, negative 
waves of the shock type are physically impossible, the surface 
falling away more or less abruptly, as indicated in the illustration, 
but without trace of induced turbulence. 

Positive... 

shock wave Negative 
wave 



APPENDIX 
PHYSICAL PROPERTIES OF COMMON FLUIDS 

As noted in the opening chapter of tliis volume, it is customary 
to relate the units of length, time, mass, and force according to 
the basic equation of mass acceleration. In any dimensional 
system, therefore, a unit force must accelerate a unit mass one 
unit length per unit time in one unit time. Any three of these 
units may then be arbitrarily established. Once established, 
however, corresponding units in all systems will bear a definite 
numerical relationship to one another, since they must describe 
the same characteristics of matter and motion. 

In the metric system the primary standard of length is the 
International Prototype Meter, preserved in metal but reproduci¬ 
ble in terms of the wave length of an arbitrary portion of thc^ 
spectrum; the centimeter is Koo standard meter. The 
primary standard of time is based upon the mean solar day, of 
which the second is 1/86,400. The primary standard of mass is 
also preserved in metal, as the International Prototype Kilogram; 
the gram is Kooo of the standard kilogram, and is almost exactly 
equal to the mass of a cubic centimeter of water under normal 
atmospheric pressure at 4°C. The unit of force, the dyne, is 
then defined as that force which will accelerate one gram one 
centimeter per second in one second. 

Of the units adopted in America, only the second is the same 
as that in the metric system. The foot, slug, and pound are 
related as follows to the respective metric units: 

1 foot = 30.480 centimeters 
1 slug == 14,594 grams 

1 pound = 444,822 dynes 

1 centimeter = 0.032808 foot 
1 gram = 68,522 X 10“° slug 
1 dyne = 22,481 X 10“^° pound. 

Too great emphasis cannot be placed upon the fact that the 
foregoing relationships are totally independent of terrestrial 

403 
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gravitation. The latter factor becomes important in defining 
dimensions only when relating quantities that are used simul¬ 
taneously as units of force and mass. Thus, the gram as a force 
unit is arbitrarily taken as that force which will accelerate one 
gram mass 980.665 centimeters per second per second; similarly, 
the pound mass will be accelerated 32.174 feet per second per 
second by one pound force. The gram force is then equivalent 
to 980.665 dynes, the slug is 32.174 pounds mass, and the pound 
force is 32.174 poundals. This “standard” magnitude of g 

corresponds roughly to that at sea level and 45® latitude, gravi¬ 
tational acceleration varying with latitude and*elevation owing 
to the form and rotation of the earth: 

g = 32.1721 - 0.08211 cos 2<x - 0.000003/1 

The reader must be cautioned that the measurement of both 
force and mass by the familiar process of “weighing” may lead 
to slight inaccuracies, as a direct result of such variation in g. 

Temperature in degrees Centigrade 

Fig. 239. Density p of pure water as a function of temperature and pressure 
intensity. 

Balances of the spring type and of the beam type are used inter¬ 
changeably, although, strictly speaking, the former measures 
relative force and the latter relative mass. If the balances are 
calibrated for standard gravitational conditions = 32.174 
ft./sec.®), the spring balance will indicate an apparent variation 
in mass, and the beam balance an apparent variation in force, 
for other values of g, unless the proper corrections are made. 
Due care is therefore essential in precise determinations of flow 
characteristics and fluid properties. 
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The density p of any fluid is necessarily independent of g, but 
will change with temperature and pressure. In the case of 
liquids, which are relatively incompressible, p will depend pri¬ 
marily upon temperature, as shown for pure water in Fig. 239. 
The specific weight of a fluid, ordinarily presented in similar 

Table V.—Values of p and 7 for Common Liquids 

Liquid 
Temperature 

°F. 

Density 

P 

slugs/ft. 

Specific weight 

7 

lb./ft.» 

Alcohol. 32 1.55 1 50.0 
Gasoline. 1.37 , 44 

Glycerine. 32 2.44 78.6 

Kerosene.1 1.59 61 
Mercury. 32 26.38 848.7 

60 26.31 846.3 

Oil: 

100 26.20 843.0 

Crude. 1.71 55 

Fuel. 1.83 59 
Lubricating. 

Water: 
1.80 58 

Fresh. 60 1.94 62.4 

Sea. 60 1.99 64.0 

form, will depend as well upon the magnitude of p, since 7 = pp. 
Needless to say, the density of a liquid—and, therefore, its 
specific weight—will also vary with the nature and concentration 
of dissolved salts; in such cases density determinations must be 
made through use of a calibrated hydrometer. On the other hand, 
extensive data for liquids of known chemical composition may be 
obtained from such standard references as the International Criti¬ 
cal Tables and the Smithsonian Physical Tables. Typical values of 
p and 7 for common liquids are given in Table V, the data for 7 

referring to the standard magnitude of g] values for which no 
temperature is shown must be regarded as rough averages. 

For all practical purposes, the change in density and specific 
weight of a gas with either temperature or pressure may be found 
from the ideal relationships 

^ = g,RT and ^ RT 
P 7 



406 APPENDIX 

this value of y referring specifically to Qs. The factor T repre¬ 
sents absolute temperature—459.4 Fahrenheit degrees and 273 
centigrade degrees below zero on the respectiv(‘ scales; likewise, p 

denotes absolute pressure intensity. R will be seen to have the 
dimension length/temperature, and will therefore depend in 
magnitude upon the dimeiivsional system and the nature of the 
gas. Typical values of R based upon feet and degrees Fahrenheit 
will be found in Table VI. The accompanying values of p and y 

are for a temperature of 32°F. and a pressure of 14.7 pounds per 
scpiare inch. # 

Table VI.—Values of i?, p, 7, and k for (U)mmon Gases 

Gas 
R 

ft.rv. 

Density 

p 
slugs/ft.’’ 

Speenfie. weiglit 

7 
11)./ft.’’ 

k 

Acetylene. 59 34 0.00237 0 0703 1 28 
Air. 53.34 0 00251 0.0807 1.40 
Ammonia. 90.50 0.00150 0.0481 1.31 

Helium. 3SG.0 0.000340 0.01114 1.00 

Ilydrogcm. .705.9 0.000174 0.00501 1 .40 

Methane. 96.31 0 00139 0 0448 1.32 

Oxygen. 48.25 0.00277 0.0892 1.40 

Nitrogen. ' 54.99 0.00243 0.0781 1.40 

Figures 240 and 241 show the variation of dynamic viscosity p 

and kinematic, viscosity v with temperature for a number of 
common liquids and gases, after data presented in similar form by 
Daugherty.^ As was mentioned in the opening chapter, the 
dynamic viscosity is generally independent of pressure intensity 
over a considerable range. On the other hand, th(^ kinematic 
viscosity will vary with pressure in so far as the latter affects 
the density; the plots of v correspond to normal atmospheric 
pressure. It is to be noted that a special unit is often used for 
dynamic viscosity in the metric system—the poise—correspond¬ 
ing to one dyne-second per square centimeter; similarly, the stoke 
is sometimes taken as the unit of kinematic viscosity, equal to one 
square centimeter per se(*ond; water, therefore, has dynamic and 
kinematic viscosities of approximately one centipoise and one 
centistoke, respectively. 

^ Daugherty, “Hydraulics," pp. 7, 209. 
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Temperature in degrees Centigrade 

Ft(j. 2'^0.—Dynamic viscosity /u of common fluids as a function of temperature. 

D
yn

am
ic
 v

is
co

si
ty

 i
n 

dy
ne

 s
ec

/c
m

 



408 APPENDIX 

A number of simple devices have been developed for the meas¬ 
urement of the kinematic viscosity of liquids, which yield results 

Temperature in degrees Centigrade 
-5 0 10 20 40 60 80100 200 400 

Tempcrorture in degrees Fahrenheit 

Flo. 241,—Kinematic viscosity v of common fluids as a function of temperature. 

of sufficient accuracy for general purposes. A viscometer of this 
nature generally consists of a container with a short capillary 
outlet in the bottom, through which the flow of a prescribed 
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quantity of fluid is timed. Owing to the relative shortness of the 
capillary tube, conversion of the measurements into basic 
viscosity units by analytical means is a difficult matter, and it 
has been found convenient to use the time of efflux as an^indirect 
measure of v. Such units, however, are peculiar to the type of 
viscometer used—and hence to the country in which that particu¬ 
lar meter has been adopted; thus, America uses Saybolt seconds; 

Fig. 242.—Viscoraeter characteristics. 

England, Redwood seconds; France, Barbey seconds; and 
Germany, Engler degrees (the ratio of time of efflux to that 
required by water at 68®F.). The several units may be corre¬ 
lated empirically, with the results shown in Fig. 242. It is 
evident from the diagram that the Saybolt Furol and the Red¬ 
wood Admiralty viscometers are designed for liquids of high 
viscosity. 

Since molecular attraction is a secondary characteristic in 
fluid mechanics, a single plot of the surface tension of the water- 
air interface (Fig. 243) will suffice to indicate the variation in 
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with temperature. The surface tension of mercury in air is 
about 0.0352 and in water about 0.0269 pound per foot. The 
capillary rise (or depression) of a liquid in a tube of very small 
radius may be computed from the equation 

yr 
cos 6 

in which B represents the anj2;le of contact between the liquid 

Temperafure in deqrees Cenfigrade 

Fig, 243.—Surface tension o- of pure water in air. 

Diameter in inches 
Fig. 24,4.—Capillary rise in j^lass tubes as a function of tube diameter. 

surface and the boundary wall; this angle is practically zero 
between water and glass, if the surface is very clean. For larger 
diameters the analysis becomes more complex, the comparison 
between computed and measured values being shown, after 
Daugherty, in Fig. 244. 

The elastic modulus of water is indicated as a function of 
temperature and pressure in Fig. 245; the plotted curves must be 
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regarded as approximate, particularly in the higher ranges. In 
comparison with a typical value for water of 300,000, glycerine 
has a modulus of about 630,000, mercury about 3,800,000, 
whereas that for oil will range in the mean from 180,000 to 270,- 
000 pounds per square inch. So far as gases are concerned, it 
has already been shown that the elastic modulus under isothermal 
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Fig. 245.—Elastic modulus e of water as a function of temperature and pressure 
intensity. 

conditions is equal to the absolute pressure intensity, whereas 
for adiabatic variation it will depend as well upon the ratio of 
the specific heats for constant pressure and constant volume; 
that is, 

e = kp 

in which k = Cp/c^. In Table VI will be found characteristic 
values of k for a number of common gases. 
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SUBJECT INDEX 

A C 

Absolute pressure, 12, 127, 129, 405 

Absolute roughness, 234, 251-255, 

262, 280, 281 
Absolute viscosity, 8 

Acceleration, convective, 44 
equations of, 44-47, 149, 179 

gravitational, 28, 404 
local, 44 

total (substantial), 44 

Acoustic velocity, 28, 365 
Adhesion, 9, 10 
Adiabatic variation, 11, 128, 367 

Adverse slope, 292-294 

Air, properties of, 406-408 

Airfoil, 119, 223-225 
Ammonia, properties of, 406-408 

Anemometer, hot-wire, 178 
Angle of attack, 224 

Angular deformation, 67-70 

B 

Backwater curve, 293, 295, 298 
Bazin roughness coefficient, 279, 280 
Bazin weir coefficient, 309-311 
Bed load, 331-339 
Bends, in closed conduits, 268-271 

in open channels, 397-400 
Bernoulli tlieorem, 48 

Bore, 383 
Boundary conditions, definition of, 

12, 37 

Boundary layer, in bed-load move¬ 

ment, 336 

laminar, 195-200 

in pipeS) 232-234, 249-251 
thickness of, 198 

turbulent, 200-204 

Broad-crested weir, 320-323 

Capillary effect on weir discharge, 

305, 306, 310 
Capillary rise in tubes, 410, 411 

Capillary waves, 373-376 

Cartesian coordinate system, 42 

Cauchy integral theorem, 121-124 

Cauchy number, 17, 23, 357 

Cauchy-Riemann equations, 101 

Cavitation, 129-134 

Celerity, capillary wave, 374, 375 

definition of, 355 
elastic wave, 364-368 

gravity wave, 368-373 

Centripetal acceleration, 45 

Ch6zy coefficient, 279, 289, 296 
Circulation, definition of, 72, 73 

Classical hydrodynamics, 2, 13, 19, 

31 
Cohesion, 9 

Complex numbers, definition of, 96 

operations with, 97-98 

Components, of, acceleration, 43, 44 

of force vector, 59-64 

of velocity vector, 43 
of vortex vector, 70, 71, 74 

Compressibility, 10 
Conformal mapping, significance of, 

98-102 

Continuity eijuation, 52, 69, 70, 95 

Contraction coefficient, 256-262, 

308, 310, 313-315, 325 

Convective acceleration, definition 

of, 44 

Converging flow, 172, 263, 287 

Correlation, 177, 178 

Critical depth, 283-288, 291-294, 

300, 319-326, 333, 394, 395 

Critical-depth meters, 319-326 
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Critical flow, Cauchy criterion, 356, 

35V 
Froiidt^ criterion, 283 

Reynolds criterion, 172 
Oitica] sIop(^, 292-294 

Critical tractive forcio, 335-337 
Cunmiativt; grading curves, 346—349 

Curl, definition of, 70 
Cylinder, flow’ around, 110-112, 216- 

222 

rotating, 222 

C\vlindrical coordinate system, 42, 

87, 160 

D 

Deformation, 7, 8, 67-70, 79, 143- 

146 

Deformation drag, 209 

Density, of common fluids, 409 
definition of, 6 

variation in, 126-129 

of water, 404 
Deviation, standard, 348, 349 

Diameter, sediment, 336, 338, 344, 

349 
Differential e(|uation, of stream line, 

66 

of vortex line, 74 
Dimensional analysis, 2, 13, 18-24 

Dimensional homogeneity, 13 

Dimensional units, 3-^5, 403, 404 
Diimmsionless parameters, 17 

Dimensions, table of, 11 

theory of, 2-5 
Discharge coefficient, 257-262, 308- 

316, 318, 321 
Discharge diagram, 284-287 
Discontinuity, 136 

Disk ratio, 228, 229 

Disks, drag of, 215, 228, 229 
Dissipation of energy, 146-148, 183, 

184, 208, 235, 265, 266, 283-285 

Diverging flow, 173, 263-266, 287 
Doublet, three-dimensional, 88 

two-dimensional, 110 
Drag, of airfoils, 223-225 

of cylinders, 216-223 

Drag, of disks, 215, 228, 229 

of flat plates, 225-227 

fundamental concepts of, 209-212 
of spheres, 212-216 

Drag coefficient, 228 
Drop-down ciirvt;, 293, 296 

Du Boys ])ed-load equation, 334-335 

Dynamic pn^ssure, 48 
Dynamic viscosity, 8, 11, 405-407 

E 

Kddy viscosity, 185-188 
Elastic modulus, of common fluids, 

411 

definition of, 10-12 

101 as tic w’avf^s, 363-368 

h^lectrical analr)gy, 121-124 

TOmpiricism, 1, 2, 31 
lOnergy cribu'in, 126 

10nergy-dis(diarg(‘ diagram, 285, 287 
Energy ecpiations, 47-49 

Energy line, 49, 50 
Establishment of flow, 232, 233, 395, 

396 

hjuler, ecpiations of, 47, 66, 70, 71 

method of, 35 

F 

Filament, stream, 36, 37 
vortex, 74, 75 

Flow’ characteristics, 12, 13 

Flow’ net, 54-59 
Flow patterns, steady vs. unsteady, 

37-42 . 

Fluctuation, velocity ofj 176, 177 

Fluid mechanics, 1, 2, 13, 30, 31 

Fluid motion, characteristics of, 12, 

13 

Fluid particle, definition of, 35 

Fluid properties, 5-12, 405-4r 

Force, 3-6, 403, 404 

Force field, 60-63 

Force potential, 59-63 

Force properties, definition of, 6^12 

Forced vortex^ 78 
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Forces acting on a fluid element, 45, 

46, 141-146 

Form drag, 209, 210, 234 
Free surface, influence of, 49, 57, 123 

Free vortex, 77 

Froude numi)er, 17, 23, 28, 29, 303- 

305, 357, 376, 388-402 

Cj 

Gasoline properties of, 405, 407, 408 

Gciodetic head, 49 

Geometric mean diameter, 344 

Glyc(5rin(i, ])roperties of, 405, 407, 

408 
Gradient, energy, 165, 289 

potential force 5<.t-64 

velocity, 84-85 

pressure, 46, 59 -64 

velocity, 44, 65 
weight, 46, 59-64 

Grading characteristics of sediment, 

338, 344-350 

Gradually varied flow, 288-301 

Gravitational jicceleration, 28, 404 

Gravitational attraction, 1 

Gravity waves, deep-water, 371-373 

solitary, 377-382 

surges, 382-388 

Grid, 220 

Group velocity, 375 

Guide vanes, 272 

H 

Half body, three-dimensional, 89 

Head, 49 

Heat transfer, 189 

Ilcle-Sbaw apparatus, 153, 154 
Flelium, properties of, 406-408 

Hodograph, 122, 314 

Hydraulic jump, 299-301, 388-394 

Hydraulic radius, 278 

Hydrodynamics, classical, 2, 13, 19, 

31 

Hydrogen, properties of, 406-408 

Hydromechanics, fundamentals of, 
35-137 

Hydrostatic pressure, 48 

I 

Imaginary number, definition of, 96 

Immersed bodies, resistance of, 209- 

229 

Inertia, 6 

Instability, 155, 170-173 

Interference of waves, 358 

Irrotational motion, cbaracteristics 

of, 84, 85 

definition of, 71, 72 

Isothermal variation, 11 

Jsovel, 267, 268 

J 

Joukowsky profile, construction of, 

120 

Joukowsky transformation, 118 

Jump, hydraulic, 299-301, 388-394 

K 

Kinematic viscosity, 11, 28, 406-411 

Kinetic energy, 48 

of turbulence, 182-184 

Kutta transformation, 118, 119 

Kutter formula, 279 

L 

Lagrange, method of, 35, 65 

Lagrangian wave, 369, 371 

Laminar flow, through circular tube, 

160-163 
definition of, 150, 169 

between parallel boundaries, 150- 
156 

through pervious material, 163- 

168 
Laminar sublayer, 201 

Laplace, equation of, 85, 94 

Length, 3-6, 403 

of hydraulic jump, 391-393 

Lift, 223-225 

cofficient of, for airfoils, 224-225 

for rotating cylindei^s, 222 

Line integr^al, 72, 73 

Linear deformation, 67-69 
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Local acceleration, definition of, 44 

Lubrication, 156-160 

M 

Mach angle, 356, 300, 401 

Magnus effect, 114 

Manning formula, 270-280 

Mass, 3-6, 403-404 
Mass attraction, 6, 7 

Maximum discharge, 284-288 
Mean, 344 

Mean diameter, geometric, 348, 349 

Mechanical analysis of sediment, 

344-349 
Median, 344 
Mercator projection, 102 

Mercury, properties of, 405, 407,408, 
410, 411 

Methane, properties of, 406-408 

Metric system, 403, 404 

Mild slope, 292-294 

Minimum energy, 283-288 

Mixing length, definition of, 188,189 
Models, 24-30 

Modulus, of elasticity, of common 

fluids, 411 

definition of, 10-12 

Molecular attraction, 9 

Molecular friction, 8 

Momentum equation, 52-54 
Momentum transport, 180, 181, 188 

N 

Nappe profile, 63, 64, 122-124, 304, 

305, 311, 312, 317 

Natural coordinate system, 42, 43 

Navier-Stokes equations, 148, 149 
Newtonian equation of acceleration, 

12 
Nitrogen, properties of, 406-408 
Non-uniform flow, definition of, 36 

Normal depth, 291-'299 

O 

Oil, properties of, 405, 407, 408, 411 
Open channels, flow in, 273-326 

Orifice discharge, 18-20, 256-261 

Overfall, 59-62, 287, 323, 324 

Oxygen, properties of, 406-408 

P 

Path line, 36, 41, 42 

Percolation, 163-168 

Permeability, coefficient of, 164, 165 
Phi-notation, 348-350 

Pi-theorem, 13-18 

Pipe resistance, 245-251 
Pipes, velocity distribution in, 236- 

245 
Pitting, 131 

Plate, flow around, 115-117 

Poise, 408 

Porosity, 344 
Potential energy, 48 

Potential flow, 83-123, 153, 154 

165-168 
Potential head, 49 
Pressure distribution, around a cyl¬ 

inder, 221 
in a steep channel, 281 

Pressure gradient, 46 

Pressure head, 49 
Pressure intensity, 13, 141 

Pressure line, 49, 50 
Probability function, 345-350 

Propagation of waves, 353-355 

R 

Radius, hydraulic, 278 
Rankine combined vortex, 76, 79, 80 

Rankine-Hugoniot equation, 367 
Rapid flow, 284 ^ 

Rapidly varied flow, 301-307 

Rational analysis, 1, 2 
Real number, definition of, 96 

Reflection of waves, 360, 361 

Rehbock weir equation, 309-311 ^ 

Relative roughness, 234, 235, i 

240, 241, 243-255, 261, 278-^ 

Relative velocity, 39 ^ ^ 

Resistance, boundary layer, 192-2 

circular jpipes, 245-271 • ’ 
immersed bodies, 209-229 ' 

opeu channels, 276-280 

Reynolds apparatus, 171, 172 
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Reynolds equations, 179 

Reynolds number* 17, 150, 170, 192, 

199-204, 20S-220, 224, 228-230, 

232-255, 258-206, 270, 271, 275, 

276, 278, 279, 302, 303, 305, 

306, 338, 339, 354 

Ripples, sand, 332, 333 

waves, 374, 375 

Roll waves, 387, 388 
Rotation, 67-70 

of flow pattern, 102, 103, 115-117 

Rotational motion, definition of, 71 

Rotoscope, 39 
Roughness, 234, 235, 243, 249-255, 

261, 262, 278-280 

coefficients of 280 

S 

Hcale ratios, 25-30 

table of, 26 
Secondary flow, 266-272 

Section changes in closed conduits, 

asymmetrical, 266-272 

symmetrical, 265-266 

Sediment, characteristics of, 164, 

165, 335, 336, 338, 343-350 

distribution of, 330, 340-343 

suspension of, 339-343 

transportation of, 327-343 

Separation, 134-136, 205-208, 264, 
265, 317-319 

Shape, sediment, 344 

Shear, 7, 8, 141 

Shock waves, development of, 361- 

363 
elastic, 366, 367 

gravity, 370, 371, 382-402 

lit transport, 188 
imilarity hypothesis, 189, 190 

, militude, 24-30 

; ^lar line, point, 86 

}. three-dimensional, 87 

. .wo-dimensional, 105, 106 

edrequency curves, 346-348 

, ’ ewness, 348 

ope, channel, 276, 290, 292 
energy-line, 2?'$, 289-292 

free surfa«^, 276, 2^ 

Sluice gate, 58, 286, 313, 316 

Sound wave, 367 

Source, three-dimensional, 87 

twoHlimensional, 105, 106 

Specific energy, definition of, 282 

Specific-energy diagram, 283, 284 

Specific gravity, definition of, 6 

Specific heat, 11, 189, 411 

Specific weight, of common fluids, 

405, 406 

definition of, 405 

Sphere, flow around, 91, 212-216 

Spillway design, 316-319 

Spiral flow, 266-269 

Stagnation pressure, 58, 91 
Stagnation point, 58, 62, 63, 90, 91, 

111, 112, 117, 134 

Standard deviation, 348, 349 

Standard gravitational acceleration, 

404 

Steady flow, definition of, 36 

Steep slope, 292-294 

Stoke, 408 

Stokes' law, 213 
Streak line, definition of, 42 

Steam filament, definition of, 36, 37 

Stream function, definition of, 93 

Stream lino, definition of, 35, 36 

differential equation of, 66 

Streamlining, effect of, 229 

Submergence, of sluice, 315 

of weir, 312, 313 

Substantial acceleration, definition 
of, 44 

Superelevation at a bend, 397-400 

Surface drag, 209 

Surface profiles, 290-294, 296, 395, 

396 

Surface tension, definition of, 9 
of water, 410, 411 

Surge, 382-388 

Suspended load, 339-343 

Sustaining slope, 292-294 

T 

Thomson's law, 80, 81 

Time, 3-6, 403 
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Total acceleration, definition of, 44 

Total energy, 48 

Total head, 49 

Tractive force, 334-337 

Tranquil flow, 284 

Translation, of the coordinate 

system, 39 

of a fluid element, 67“69 

Trochoidal wave, 372 

True critical depth, 322-325 

Turbulence, 169-191 

development of, 170-175 

kinetic energy of, 182-184 

similarity hypothesis, 189, 190 

Turbulent boundary layer, 200-204 

Tyler standard sieve series, 345, 348 

U 

Undular jump, 389, 390 

Undular surge, 384 

Uniform flow, definition of, 36 
Universal resistance equations, 248- 

252 
Universal turbulence constant, 190 

Universal velocity equations, 238- 

245 
Unsteady flow, definition of, 36 

V 

Vanes, guide, 272 
Vapor pressure, 129, 132, 133 

Vector, force, 59, 63 

velocity, 35, 36 
vorticity (rotation), 70, 71 

Velocity, of fall, 340, 344 

Velocity coefficient, 256-261, 314, 

315 
Velocity distribution, circular pipe^, 

236-245 

converging flow, 263 

diverging flow, 263 
laminar flow, 152, 155, 162, 174 

open channels, 274-277 
sediment-laden flow, 328-330 

turbulent flow, 174 

Velocity fields, 37*-42, 60-62 

graphical combination of, 41 

Velocity head, 4f) 

Velocity-head corre(‘ti(ni fact()r, en¬ 

ergy, 51, 52 

momentum, 54 

Velocity potential, definition of, 83 

in viscous flow, 149, 153, 165 

Velocity vector, 35, 36 
Venturi flume, 321 

Venturi meter, 263 

Venturi throat, 130-133, 264, 265 

Viscometer characteristics, 409, 410 

Viscosity, dynamic, definition of, 8, 

144 

kinematic, definition of, 28 

Voids ratio, 344 

Vortex, combined, 79 

forced, 78 

potential free, 77 
Vortex filament, 74, 75 

Vortex motion, 80, 81 
Vortex trails, 217, 218, 220 

Vorticity, 72-76 

Vorticity transport, 189 

W 

Wake, turbulcnl, 208 
Water, properties- of, 404-411 

Wave celerity, 355 

Wave front, 355, 362 -364, 398-40r 

Wave group, 359 
Wave interference, 358 

Wave reflection, 360, 361 

Waves, capillary, 373-376 

deep-water, 371-373 

elastic, 363-368 
gravity, 368-373, 377-401 

roll, 387, 388 
shock, 361-363, 366, 367, 370,37 

382-402 

solitary, 377-382 , i 

Weber number, 17, 23, 357, 376 

Weight, 7 
Weir discharge, 20, 21, 63, 64, 30 - 

313 
Wentworth sieve series, 345, 348 

Wetted perimeter, 278 . 

Wind pressure, 229--231 








