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PREFACE

In this book the authors have covered that subject matter which they
believe to be of importance in a well-organized sequence of undergraduate
courses dealing with the theory of structures for civil engincers. Some
material is also included which, because of restricted schedules, may have
to be left out of formal assignments. Such portions of the book include
the material in fine print throughout the text; Chap. 16, which deals
with structures not directly related to civil engineering; and Chaps.
17-19, which treat the analysis of structures by means of models.
Such material will, however, serve to develop the structural knowledge of
the student whose interest has become genuinely aroused, and it will be
valuable in connection with thesis work.

The material covered by this book has been confined almost entirely
to methods of Stress analysis. Design procedure, where mentioned at all,
is covered only incidentally, since the length of the book as written indi-
cates the desirability of & separate book dealing with design, and since
our practice, which igjalgp followed in a number of other schools, consists
of teaching the theo stress analysis and the principles of design as
separate subjects.

The authors have attempted in this présentation to accomplish two
results: (1) to tie in the various ppcedures of structural analysis with the
principles of applied mechanics on which they are based, thus showing
that the theory of structural analysis is but one phase of advanced applied
mechanics, and (2) to show that the methods of analysis derived for civil
engineering structures are applicable in principle to structures lying out-
side the field of practice of most civil engineers. With these thoughts in
mind, they hope this book will prove to be of help both to students
of structural engineering and to young practicing engineers.

The authors wish to acknowledge with appreciation the assistance
of Mrs. Grace M. Powers who typed the manuscript; of Donald R. F.
Harleman who prepared the figures; and of Prof. Myle J. Holley, Jr., who
proofread the manuscript.

Both authors are also deeply grateful to those responsible for their
training in structural engineering, particularly to Profs. Charles Milton
Spofford and Charles Church More. They likewise acknowledge: with
appreciation the help they have received from their colleagues, Profs.
W. M. Fife and Eugene Mirabelli, and the late Prof. J. D. Mitsch.

Jonn Benson WiLBUR

CuARLES HEAD NORRIS
C AMBRIDGE, MASS. )
March, 1948
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CHAPTER 1 L
INTRODUCTION

- ]

1-1 Engineering Structures. The design of bridges, buildings, -
towers, and other fixed structures is very important to the civil engineer.
Such structures are composed of interconnected members and are sup-
ported in a manner such that they are capable of holding applied external
forces in static equilibrium. A structure must also hold in equilibrium
the gravity forces that are applied as a consequence of its own weight.
A transmission tower, for example, is acted upon by its own weight. by
wind and ice loads applied directly to the tower, and by the forces
applied to the tower by the cables that it supports. The members of the
tower must be so arranged and designed that they will hold these forces
in static equilibrium and thus transfer their effects to the foundations of
the tower.

There are many kinds of structures in addition to those mentioned
above. Dams, piers, pavement slabs for airports and highways, pen-
stocks, pipe lines, standpipes, viaduets, and tanks are all typical civil
engineering structures. Nor are structures of importance only to the,
civil engineer. The structural frame of an aircraft is important to the
aeronaulical engineer; the structure of a ship receives particular attention
from the naval architect; the chemical engineer is concerned with the
structural design of high-pressure vessels and other industrial equipment;
the mechanical engineer must design machine parts and supports with
due consideration of structural strength; and the elecirical engineer is
similarly concerned with electrical equipment and its housing.

The analysis of all these structures is based, however, on the samne
fundamental principles. In this book the illustrations used to demon-
strate the application of these principles are drawn largely from civil
engineering structures, but the methods of analysis described can be used
for structures that are important in other branches of engineering.

12 General Discussion of Structural Design. A structure is
designed to perform a certain function. To perform this function satis-
factorily it myst have suflicient strength and rigidity. Economy and
good appearance are further objectives of major importance in structural
design. 4,

The complete design of a structure is likely to involve the following
five stages: -

1. Establishing the general layout to fit the functional requirenwnts\v‘
of the structure
’ 1

'



2 ) INTRODUCTION [§1-3

2. Couwsideration of the several possible solutions that may satisfy
the functional requirements

3. Preliminary structural design of the various possible solutions

4, Selection of the most satisfactory solution, considering an eco-
nomic, functional, and aesthetic comparison of the various possible
solutions

5. Detailed structural design of the most satisfactory solution

Both the preliminary designs of stage 3 and the final detailed design
of stage 5 may be divided into three broad phases, although in practice
these three phases are usually interrelated. First, the loads acting on
the structure must be determined. Next, the maximum stresses in the
members and connections of the structure must be analyzed.  Finally,
the members and connections of the structure must be dimensioned, i.e.,
the make-up of each part of the structure must be determined.

That these three steps are interrelated may be seen from considera-
tions such as the following: The weight of the structure itself is one of the
loads that a structure must carry, and this weight is not definitely known
until the structure is fully designed; in a statically indeterminate strue-
ture, the stresses depend on the elastic properties of the members, which
are not known until the main members are designed. Thus, in a sense,
the design of any structure proceeds by successive approximations. For
example, it is necessary to assume the weights of members in order that
they may be properly designed. After the structure is designed, the
true weights may be computed; and unless the true weights correspond
closely to those assumed, the process must be repeated.

In designing a structure, it is important to realize that each part
must have sufficient strength to withstand the maximum stress to which
it can be subjected. To compute such maximum stresses, it is nccessary
to know, not only whal loads may act, but the exact posilion of these loads
on the structure that will cause the stress under consideration to have its
maximum value.

Thus, when a railroad locomotive crosses a bridge, a given portion
of the bridge receives its maximum stress with the locomotive at a given
position on the bridge. A second part of the structure may be subjected
to its maximum stress with the locomotive in another posijion.

In this book, the emphasis is placed on the stress analysis of structures.
But, in order to discuss stress analysis satisfactorily, it is desirable to give
some attention to the loads acting on a structure and to the design of
members and cohnections.

» 1:3 Dead Jooads. The dead load acting on a structure consists
off;'ﬁe weight of the structure itself and of any other immoyable loads

. b ! b



§1-3] DEAD LOADS 3

&
that are constant in magnitude and permanently attached to the struc-
ture. Thus, for a highway bridge, the dead load consists of *the main
supporting trusses or girders, the floor beams and stringers of the’ floor
system, the roadway slabs, the curbs, sidewalks, fences or railings, lamp-
posts, and other miscellaneous equipment.

Since the dead load acting on a member must be assumed before the
member is designed, one should design the members of a structure in
such a sequence that, to as great an extent as is practicable, the weight
of each member being designed is a portion of the dead load carried by
the next member to be designed. Thus, for a highway bridge, one would
first design the road slab, then the stringers that carry the slab loads to
the floor beams, then the floor beams that carry the stringer loads to the
main girders or trusses, and finally the main girders or trusses.

In designing a member such as a floor slab, stresses due to dead loads
are likely to be only a small percentage of the total stress in a member,
so that, even if dead loads are not very accurately estimated, the total
stress can be predicted with fair accuracy and hence the first design be
quite satisfactory. For main trusses and girders, however, the dead

Table 1-1
Weight, 1b
Material per cu ft
teel or cast steel. . . e e e e e e e . 490
Castiron . . . . . . .. e e e e e e e e 450
Aluminum alloys . . . . . . e e e e e 175
Timber (treated or untreated) . . . . L e e .. . 50
Concrete (plain or reinforced) . . . . . . R 11)
Compacted sand, earth, gravel, or ballast . F . 51 ]
Loose sand, earth, and gravel. . . . . . . . . . .. . . . . 100
Macadam or gravel, rolled . . . . . . . . . .. P & (1)
Cinder filling. . . . . . . . . .. .. e e e e e e 60

loads constitute a greater portion of the total load to be carried, so that
it is more important to make a reasonably accurate first estimate of dead
weights.  Often data concerning the dead weights of other similar struc-
tures will serve as a guide'to the designer. Many investigations have
been carried out with the purpose of presenting such data in a convenient
form.! It should be emphasized, however, that the original dead-weight
estimate is teletiv*e, whatever the source of the data may be. After a

! The student is reférred to p. 72 of “Structural Theory’* (John Wiley & Sons, Inc.,
New York, 1942) by II. Sururriano and H. L. Bowman for tables giving the weights
of roof trusses and to p. 81 of the same book for an excellent summary of formulas
giving the weights of bridges. Charts dealing with the weights' f railroad bridges,
highway brldg(-s, and signal bridges are given in Chap. I of C. M, S§pofford’s “* Theory
of Stru(‘turew ” 4thaﬂ McGraw- Hx]l Book Company, Inc., New Yo;k 1939.
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structure is designed, its actual dead weight should be accurately com-
puted and the stress analysis and design revised as necessary. This is
necessary for safety and desirable for economy.

If the dimensions of a structure are known, dead loads may be computed on
the basis of unit weights of the materials involved. Unit weights for some of
the materials commonly used in engineering structures are given in Table 1-1.

Unit weights for other materials are readily available in many books and

handbooks.!

1:4 Live Loads—General. As contrasted to dead loads, which
remain fixed in both magnitude and location, it is usually necessary to
consider live loads, i.e., loads that vary in position. It is sometimes
convenient to classify live loads into movable loads and moving loads.
Movable loads are those which may be moved from one position to
another on a structure, such as the contents of a storage building. They
are usually applied gradually and without impact. Moving loads are
those which move under their own power, such as a railroad train or a
series of trucks. They are usually applied rather rapidly and therefore
exert an impact effect on the structure.

When live loads are involved, attention must be given to the placing
of such loads on & structure so that the stress in the structural member or
connection under consideration will have its maximum possible value.
Thus, while we speak of dead stresses due to dead loads, we refer to
maximum live stresses due to live loads.

1-5 Live Loads for Highway Bridges. The live load for highway
bridges consists of the weight of the applied moving load of vehicles and
pedestrians. The live load for each lane of the roadway consists of a
train of heavy trucks following cach other closely. The weight and
weight distribution of each truck vary with the specification under which
one designs, but a typical example is afforded by the H-series trucks speci-
fied by the American Association of State Highway Officials (AASIIO).

These H-series trucks are illustrated in Fig. 1-1. They are desig-
nated H, followed by a number indicating the gross weight in tons for
the standard truck. The choice as to which of the H-series trucks shall
be used for the design of a given structure depends on circumstances
such as the importance of the bridge and the expected traffic. Actually,
the traffic over a highway bridge will consist of a multitude of different
types of vehicles. It is designed, however, for a train of standard trucks,
so chosen that*the bridge will prove safe and economical in its actual
performance.

+ o} The student is seferred, for example, to the section on Weights and Speciﬁc
gtavities in “Steel Gonsiruction,” American Institute of Steel Construction, New

{ o
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It is seen that the loading per lane of roadway consists of a series of
concentrated wheel loads. The stress analysis involved in computing
maximum live stresses due to a series of concentrated live loads may
become rather complicated. Under some conditions it is permissible to
substitute for purposes of stress analysis an equivalent loading consisting
of a uniform load per foot of lane, plus a single concentrated load. Thus,
for the H-20 loading, the equivalent live load consists of a uniform load
of 640 Ib per lin ft of lane, plus a concentrated load of either 18,000 Ib or
26,000 1b, depending on whether live moments or shears, respectively,
are being computed. This equivalent live load is not exactly equivalent

100 clearrance and.
lane width

D W= otal weight of
truck and load

Curd

T TAY 7
H20-8000 /bs 32,000 /b, 29|60 ]
HI5-6000/bs AxLe Loaps 24 000 /bs. sl
HI10-4000 /bs. 16,000 Ibs -

40" I

4T..___.+_

Width of each rear f/re
| equals I-inch per fon of |
fotal weight of loaded :

Y. C— — ]

Fic. 1-1

to the series of concentrated wheel loads, but it permits a simpler com-
putation of maximum stresses that correspond closely enough to those
which would be computed from the actual loads to be used for design
purposes.

It is often necessary to design a highway bridge to carry electric-
railway cars. Specificatiéns define the wheel loads and spacings to be
used for this purpose. ;

1-6 anegloaﬂs for Railroad Bridges. The live load [or railroad
bridges consists of“the locomotives and cars that cross them. The live
load for each track is usually taken as that corresponding tor two loco-
motives followed by a uniform load which represents thte weight of the
cars. To standardize such loadings a series of E-loallings was devised ¢
by Theodore (‘ﬁoﬁ;:er These -loadings are desngngtpﬂ by the lettex B, ..

v -~ LA ¢ & .
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followed by a number indicating the load in kips! on the driving axle.
The loads on other axles always bear the same ratio to the load on the
driving axle. The uniform load following the two locomotives always
has an intensity per foot of track equal to one-tenth the load on the
driving axle. 'The wheel spacings do not vary with the Cooper’s rating.
Figure 1-2 illustrates a Cooper’s E-50 loading. Modern railroad bridges
are designed for at least an E-60 loading and often for an E-70 or even a
heavier loading. It should be noted that the wheel loads for these
Axle loads in kips

7
25‘/50 D050 RSRERSHE B 50 00K SRERSINS ,

S0 kips per/in.tt of
l l l l l frack, uniform load

Uz

8 558 9 516|818 | 8 |s5)|s1s] 9 18 |6'|5]s
T T 1 T T
COOPERS E-50 LOADING

Fic. 1.2

heavier Cooper’s loadings can be obtained from Fig. 1-2 by direct
proportion.

Simplified equivalent loadings are sometimes used in place of actual
wheel loadings to represent live loads on railroad bridges.

1-7 Live Loads for Buildings. Live loads for buildings are
usually considered as movable loads of uniform intensities. The inten-
sity of the floor loads to be used depends on the purpose for which the
building is designed, as indicated in Table 1-2.2

Table 1-2
Minimum
Live Load,
1b per sq ft
Human occupancy:
Private dwellings, apartment houses, etc . . . . . . . . . 40
Rooms of offices, schools,etc. . . . . . . . . . . .. ... 50
Aisles, corridors, lobbies, etc., of public buildings . . . . . . . 100
Industrial or commercial occupancy:
Storage purposes (general) . . . . . . . . . . .. . ... .250
Manufacturing (light). . . . . . . . . . . . . ... ... 75
Printingplants . . . . . . . . . . . . ... ... ... 100
Wholesale stores (light merchandise). . . . . . . . . .. 100
Retail salesrooms (light merchandise) . . . . . . . . . . .. 5
Garages
All types of vehicles, . . . . . . . . . .. ... ... 100
Passengercarsonly . . . . . . . . . . . . .. ... 80
Sidewalks . . . . . 250 1b per sq ft or 8,000 Ib concentrated, which-

ever gives the larger moment or shear

*
1 To facilitate computations, loads are usually given in units of kips, 1 kip being
equal to 1,0001b, | .
1 “Steel Construction,” op. cil.

’
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When floors are to carry special live loads of known intensities greater
than those suggested above, these special loads should of course be used
in design.

1:8 Impact. Unless live load is applied gradually, the distortion
of the structure to which the live load is applied is greater than it would
be if the live load were considered as a static load. Since the distortion
is greater, the stresses in the structure are higher. The increase in stress
due to live load over and above the value that this stress would have if
the live load were applied g1adually is known as impact stress. Impact
stresses are usually associated with moving live loads. For purposes of
structural design, impact stresses are usually obtained by multiplying
the live-load stresses by a fraction called the impact fraction, which is
specified rather empirically. The determination of a wholly rational
fraction for this purpose would be very complicated, since it depends on
the time function with which the live load is applied, the portion of the
structure over which the live load is applied, and the elastic and inertia
propertics of the structure itself.

For highway bridges, the impact fraction I is given in the specifica-
tions of the AASHO by

I= I"——?-s—zﬁ but not to exceed 0.300 (1-1)
in which L is the length in feet of the portion of the span loaded to pro-
duce the maximum stress in the member considered. For example, sup-
pose that the maximum live positive shear at the center of a 100-ft
longitudinal girder of a highway bridge equals 1,000,000 1b and occurs
with the live load extending over half the 100-ft span. Then the loaded
length L is 50 ft; the impact fraction I = 50/(50 4+ 125) = 0.286; the
impact shear is obtained by multiplying the live shear by the impact frac-
tion and therefore equals 1,000,000 X 0.286 = 286,000 lb. The total
effect of the live load, i.e., live shear plus impact shear, is equal to 1,000,-
000 1b plus 286,000 b, or 1,286,000 lb.

The Specifications for the Design and Construction of Steel Railway Bridges,
published by the American Railway Engineering Association (AREA), treat
impact as follo¥vs (qoh, that impact percentage discussed equals 100 times the
impact fraction as previously defined):

“To the maximum computed static live-load stresses, there shall be added
the impact, consisting of

a. The lurching effect: - v

A percentage of the static live-load stress equal tb ..... CoTg



b
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S = spacing, in feet, between centers of longitudinal girders, stringers, or
trusses; or length, in feet, of floor beams or transverse girders.

b. The,direct vertical effect:

With steam locomotives (hammer blow, track irregularities, and car

impact) a percentage of the live-load stress equal to

R |
For L less than 100 ft. .

...‘.........‘....100—0.601,
1,800
For L100ftormore . . . . . . . . . . . .. l__ 1_o+10
With electric locomotives (track irregularities and car impact), a percent-
age of static live-load stress equalto . . . . . . . . . . . §69+195

L = length, ft, center to center of supports for stringers, longitudinal
girders, and trusses (chords and main members)
or L = length of floor beams or transverse girders, ft, for floor beams, floor-
beam hangers, subdiagonals of trusses, transverse girders, and sup-
ports for transverse girders’

To illustrate the application of the foregoing impact specification, let us
assume that the longitudinal girder described in the previous example is one of
the two main girders of a steam-railroad bridge and that these two girders are
spaced at 18 ft center to center. Then, for the lurching effect, since § = 18, the
percentage impact equals 109,4 = 5.5¢; for the direct vertical effect, since
L = 100, the percentage impact equals 1,800/(100 — 10) + 10 = 10.0¢; (note
that in this case L = 100 because this is the span of the girder, whereas in the
previous example we used L = 50 because the loaded length of the girder was
50 ft); thus the total percentage impact equals 5.5 + 40.0 = 45.5%; the impact
shear equals 1,000,000 X 0.455 = 135,000 lb; the total effect of the load, i.e.,
live shear plus impact shear = 1,000,000 4 455,000 = 1,455,000 1b.

Other specifications give still other rules for determining impact, but the two
methods discussed are perhaps the most important of those in common use.
They illustrate, moreover, the type of impact equations specificd elsewhere.

It is usually unnecessary to consider impact stresses in designing for
movable live loads such as the live loads for buildings. Moreover, when
a structure is designed of timber, impact is often ignored. This is largely
because timber, as a material, is much stronger in resisting loads of short
duration than in resisting permanently applied loads, and it therefore
can use this reserve of strength to carry impact loads.

1:9 Snow and Ice Loads. Snow loads arc often of importance,
particularly in the design of roofs. Snow should be considered as a
movable load, for it will not necessarily cover the entire roof, and some
of the members supporting the roof may receive maximum stresses w1t.h
-.the snow covgring only a portion of the roof. The density of snow, of *

¢ »



§1-11] .WIND LOADS 9

course, will vary greatly, as will the fall of snow to be expected in different
regions. In a given locality, the depth of snow that will gather on a
given roof will depend on the slope of the roof and on the roughness of
the roof surface. On flat roofs in areas subjected to heavy snowfalls,
snow load may be as large as 45 lb per sq ft. Whether or not snow and
wind loads should be assumed to act simultaneously on a roof is prob-
lematical, since a high wind is likely to remove much of the snow.

Ice loads may also be of importance, as, for example, in designing a
tower built up of relatively small members which have proportionately
large areas on which ice may gather. Ice having a density equal approxi-
mately to that of water may build up to a thickness of 2 or more inches
on such members. It may also build up to much greater thicknesses,
but when it does it is apt to contain snow or rime and hence have a
lower density. When ice builds up on a member, it alters the shape
and the projected area of the member. This should be considered in
computing wind loads acting on members covered with ice.

1-10 Lateral Loads—General. The loadings previously dis-
cussed usually act vertically, although it is not necessary that live loads
and their associated impact loads shall act in that direction. In addi-
tion, there are certain loads that are almost always applied horizontally,
and these must often be considered in structural design. Such loads
are called lateral loads.  We shall now consider some of the more impor-
tant kinds of lateral loads.

Wind loads, soil pressures, hydrostatic pressures, forces due to earth-
quakes, centrifugal forces, and longitudinal forces usually come under
this classification.

1-11 Wind Loads. Wind loads are of importance, particularly in
the design of large structures, such as tall buildings, radio towers, and
long-span bridges, and for structures, such as mill buildings and hangars,
having large open interiors and walls in which large openings may occur.
The wind velocity that should be considered in the design of a structure
depends on the geographical location and on the exposure of the structure.
For most locations in the United States, a design to withstand a wind
velocity of 100 mph is satisfactory.

The AASHO specifies that the wind force on a highway bridge shall
be assumed as a movable horizontal load equal to 30 Ib per sq ft acting
on 11 times the area of the structure as seen in elevation, including the
floor system and railings, and on one-half of the area of alltrusses or girders
in excess of two in the span.  This amounts to specifying 30 1b for each
square foot of projected area on the windward truss or girder but only
half that amount for other trusses or girders, since they are partly
“ shielded from the wind by the windward portion of the structure.
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. Spegifications for railroad bridges usually call for wind loads com-

: parable to those specified in the foregoing paragraph for highway bridges.

‘ ch buildings, the specifications of the American Institute of Steel

Constgaigtion (AISC) state that the frame of a building must be designed

' bo carry a wind pressure of not less than 20 1b per sq ft on the vertical

projection ®f exposed surfaces during erection and 15 lb per sq ft on the
vertical projection of the finighed structure.

For buildings with gabled or rounded roofs, more exact data for wind loads
on roofs should be used. The student is referred to a report entitled Wind Brac-
ing in Steel Buildings,! where, for convenience, roof pressures (and suctions) are
expressed in terms of g, the velocity pressure, which is defined by

g = H4m? )

in which m is the mass of a unit volume of air and V is the velocity of the wind in
units corresponding to m. For average conditions, and where the wind velocity
is expressed in mph, the velocity pressure in pounds per square foot may be
taken as

q = 0.0025581 (1-3)

For gabled roofs, it is recommended that the following loadings shall be
adopted for the windward slope:

1. For slopes of 20°, or less, a suction (uplift) of 0.7q

2. For slopes between 20 and 30°, a suction of

p = (0.07a — 2.10)q 14

in which « is the roof slope in degrees.
3. For slopes between 30 and 60°, a pressure of

p = (0.03a — 0.90)q (15)

4. For slopes steeper than 60°, a pressure of 0.90¢q
It is suggested that the wind load on the leeward slope of a gabled roof shall be
taken as a suction of 0.6g for all slopes. All pressures and suctions are perpen-
dicular to the surfaces on which they act.

The American Society of Civil Engineers (ASCE) report to which reference
has been madgalso discusses the magnitude and distribution of wind pressures on
rounded roo! ch as are used on hangars.

! Proc. hCE, March, 1936, p. 397.

The recommendations of this report are undoubtedly more consistent with the
actual aerodynamic forces acting on a roof than the wind forces often used in the
design of roofs. The practice often followed in determining wind pressures on sur-
faces which are’not vertical is to follow #formula such as that of Duchemin, whereby

P,=P i—i_—%‘%’ in which P, is the intensity of normal pressure on a given surface,

P is the intensit o’ pressure on a verticdl surface, and { is the angle made by the sur-

face with the hdjiz8ntal. Such a procedure leads to wind pressure on the windward

slope of a gable raof and makes no attempt to accdunt for suction on the lceward slape.
. 5! . #



§1-12] SOIL PRESSURES .11

In the AISC specifications for wind loads on buildings, it is assumed that the
entire pressure specified acts on the windward vertical surface of the building.
This procedure is satisfactory for the design of typical tall buildings, although
the actual lateral load due to wind consists of pressure on the windward side and
suction on the down-wind side. This matter also is discussed in the ASCE report.

1:12 Soil Pressures. Loads on ret walls, on walls of build-
ings, and on other structures due to the pressure of soil must frequently
be considered by the structural engineer. The lateral pressure caused
by soil on a wall varies when the wall yields. After a small movement
of the wall, the soil pressure reaches a minimum value known as the
active pressure. If, on the other hand, the wall is forced into the back-
fill, the pressure between the wall and the backfill increases to a maximum
value known as the passive pressure. Under usual conditions, the
active pressure at any depth is about 14 the vertical pressure, and the
passive pressure is about 4 times
the vertical pressure. Since the
lateral pressure would equal the
vertical pressure if the material
were a fluid, the approximate
values of 1{ and 1 are sometimes
called “ hydrostatic-pressureratios”
for the active and passive cases,
respectively.

According to the above discus-
sion, any wall that may yield with-
out detrimental results may be designed on the basis of active pressure,
although the pressure that will actually act on the wall will in general be
somewhat above this value. Further, the distribution‘of pressure over
such a wall may be assumed to be triangular, although this assumption is
not strictly correct. ”;i' 3

For cohesionless soils, the total resultanﬁ&ce corresponding to active
soil pressure acting on a strip of wall 1 ft long may be conﬁubed on the
basis of the theory developed by Coulomb, which assumes failre of soil
by rupture along an inclined plane through thé soil. Referring to Fig.
1.3, this total resultant force is denoted by P, which acts two-thirds of
the way down from the top of the wall, in a direction making the angle
¢’ with a line perpendicular to the face of the wall, ¢’ being the friction
angle of the soil on the masonry. H is the vertical depth of soil above
the base of the wall. The angle that the surface of the soil makes with
the horizontal is defined by i. ' The batter of the.wall is defined by the
angle 6.

Fic. 1.3
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‘! Tuﬁtotal force P in pounds, according to Coulomb’s theory, is
expr&sed by
#y, 1 csc 6 sin (0 — ¢)

",x., - 2 : - sin (¢+¢)sm (¢ — 1)
N # ¥ Vsin (8 + ¢') + sn (0= 7)

2
(1-6)

-where v is the weight of the earth in pounds per cubic foot, ¢ is the
angle of internal friction of the soil (easily obtained by shear tests in a
labotatory, and with typical values of from 30 to 40°), and ¢’, the friction
angle of soil on masonry, has about the same value as ¢ for a rough wall
but is somewhat less than ¢ for a smooth wall.

Ifi =0, 8 = 90°, and ¢ = ¢/, Kq. (1-6) reduces to

. =1 mp cos ¢ )
» Pyl [(1+\/zsm¢>] o

If, for example, we consider a sand for which ¢ = ¢’ = 30°, and
= 100 lb per cu ft, acting on the back of a vertical wall 10 ft high,
the resultant thrust on a strip of wall 1 ft long, by Eq. (1-7), is given by

0.867
1 F 1.4114(0.500)]:

This resultant force acts 3.33 {t above the base of the wall, in a direction
. toward the wall and downward, making an angle of 30° with the horizontal.

For a more complete treatment of soil pressures, the student is
referred to books on soil mechanics.

1-13 Hydrostatic Pressures. Dams, tanks, etc., are subjected
to hydrostatic loads that as a rule may be easily computed in accordance
with the elementary principles of hydraulics. Hydrostatic loads should
in general be considered as movable loads, inasmuch as critical stresses
in a structure do not necessarily occur when the liquid involved is at its
highest possible level. In me structures,, the presence of certain hydro-
static pressures actually relieves stresses in a structure. Thus an under-
ground tank might be more likely to collapse when empty than when
full, or a tank built above the ground mlgﬁ't undergo a critical-stress
condition when it is only partly 'ﬁlled

It is sometimes necessary to‘»consxder hydraédynamic loads, such as
occur whexﬁgater traveling at a gh velocity sﬁlkes a bridge pier or a
caisson. *

1-14 hquake Forces. Important structures located in reglons
subject to ere earthquakes ar® oftemdesngned» to resist earthq
effects. D an earthquake, structural dama,fge maysresult from*
fact that the fmu(datxon of the structure undergoes accelerations. Such

P aav b e t #®

d P=3 (100)(10) { = 1,490 Ib
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accelerations are largely horizontal, and vertical components of #¢cclerat
tion are usually neglected. The rate of horizontal acceleration of the
foundations may be of the order of magnitud:‘& one-tenth thg acgelera-
tion due to gravity, that is, 3.2 ft per sec?, and is commonly refefred to
as 0.1g. If the structure is assumed to act as a rigid body, if il accels,
erate horizontally at the same rate as its foundations. Henceeagh pai‘t'
of the structure will be acted upon by a horizontal inertia force equal to
its mass multiplied by its horizontal acceleration, or ;

weight

Lateral force = mass X acceleration = X 0.1g

= one-tenth of its weight

Structures arc often designed to resist earthquakes on the foregoing
basis, although it is quite approximate, inasmuch as the assumption that
the entire structure accelerates as a rigid body is usually not particularly
valid. Actually, the structure will undergo elastic distortions that will
affect the acceleration of its various members.

The horizontal acceleration of a structure such as a dam will produce
not only horizontal inertia forces due to the mass of the dam but alsg
hydrodynamic forces as the dam moves rapidly into the water that it
retains.

1-15 Centrifugal Forces. In designing a bridge on which the
tracks or roadway are curved, vehicles crossing the structure exert
centrifugal force that may be of sufficient magnitude to require consid-
eration in design. Such centrifugal forces are lateral loads and should
be considered as moving loads.

If a weight W travels at velocity V around a curve of radius R, the
centrifugal C (which acts through the center of gravity of the object of
weight W) is expressed by

. . . W v:_ Wy
C = mass X cucu?r acceleration = 7 R = 322R (1-8)

116 Longitudinal F8rces. For a bridge, horizontal forces acting
in the direction of the longttudinal axis of the structure, i.e., in the direc-
tion of the roadway, are called longiludinal forces. Such forces are
applied whenever the vthcles crossing $he structure increaseor decrease
their speed. Since they are inertia fogces resulting from t?cceleration
or deceleration of vehicles, they act through the centers of gravities of
the velifieles. The magnitude of such :‘:fes is limited py,  the frictional
forces that can be developed Between the contact qurfaco& of the wheels
of the vehicles. -applying these, forces .to the roadway;qr track and the
surface of the road\yay or tmck
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For railway bridges, ‘\9 AREA specifications state that longitudinal
forces shall be assumed tosct 6 £t above the top of the rail and that such
forces shall be considered as being applied by the live load on one track
only. For that track, longitudinal forces shall be taken as the larger
of the following:

1. Due to braking, 15%, of the total live load, without impact
2. Due to traction, 25% of the weight on the driving wheels of the
locomotive, without impact

For highway bridges, the AASHO specifications state that provision
shall be made for the effect of a longitudinal force of 10 per cent of the
live load on the structure, acting 4 ft above the roadway.

1:17 Thermal Forces. Changes in temperature cause strains in
the members of a structure and hence produce distortions in the struc-
ture as a whole. If the changes in shape due to temperature encounter
restraint, as is often the case in a statically indeterminate structure,
stresses will be set up within the structure. The forces set up in a struc-
ture as a result of temperature changes are often called thermal forces.
In addition to considering the forces set up by changes in temperature,
it is important to take into consideration the expansion and contraction
of a structure, particularly in connection with support details.

. In amoderate climate, one should consider a variation in temperature
of 0 to 120°F. In cold climates, this range should be extended to from
—30 to 120°F.

1-18 Make-up of Girders. In a structure built of structural
steel, rolled sections such as standard I beams or wide-flanged beams are
commonly used to support loads across a span. When rolled sections
can be used, they are economical because they require less fabrication
than built up girders. For longer spans and for heavier loadings, how-
ever, the bendiigfapoments di shears will be found to be too large to be
carried safely by rolled sectiotis, and built-up girders must be used. The
most importaigd.parts of a typical built-up plate girder, as shown in
F’rg 1- 4‘ e the web plate, the top flange, which is composed of flange

M9 over plates, and:thd bottom flange, which is similarly com-

[ex the end bearing pldtes are vertical angles called end stiffen-
ilgi@lgither points along fhe span it is usually necessary to have
further verfial angles, which are called intermediate stiffeners.: The
component- pgrtg of the girder shown in Fig. 1-4 are riveted togcther

Welding is offen used instead of riveting, in which ‘case the dctails of the

girder differ somgwhat but the essential component pPagls, viz., the b,

top and bottom Ilaqge, and web stiffeners, must still be pro'hded




§1-19] ; MAKE-UP OF TRUSSES 15

A b/

w

Bearing
plate

O—0—010- 60— 60

Intermediate
skiffener

angles

- £nd stiffener
angles

Yo "
o400 e elalh

")

v

=
1
;

[o5e 0—4—0—0—0—0—{ e

Ma.son‘ry support )

1-19 Make-up of Trusses.

Fia. 1-4

¥4
Al

Cover

|“| Plafes
~Flange g’;

angles

/Web plate

Flange
angles

ver
plate

Sec.A-A

Fabrication, shipping, and erection

considerations usually limit the depth of built-up girders to about 10 ft.
When bending moments and shears are so large that they cannot be
carried by a girder of that depth, it becomes necessary to employ a truss.
The layout of a typical truss is shown in Fig. 1-5a. Members LoL,,

L\L,, . . ., LLgare called bottom chords; members U U,, U,Us, .

¢« oy

U, Uy are called top chords; members LoU; and UsLg are called end posts

Ul U 4 U
9 8
Lot fbmg L‘
aprchord L, L, L, L, Lg ew
(a)
Flange plofe
y (arcogeip'afe)
. Channels
- (webs)
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and are often included as top-chord members; members UL,
. ., LJUj are called diagonals; members U,L,, UsL,, . .

called verticals.
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L‘JU.!,
UL, are

Figure 1-5b shows a typical connection delail for the

members of a riveted truss and the make-up of typical truss members.

The plates to which the members
intersecting at a joint are con-
nected are called gusset plates.
For long-span trusses, members

Fi1c.1-6

are  dometimes conm;cted at a
J()lllt by a }ﬁn passing through the
webs-of the members themsel Wl
or tiréugh pin plates connected
to these webs. Trusses may be
welded rather than riveted.

1:20 Make-up of Floor
Systems.  For aplate-girder rail-

road bridge, if the girders are not too far apart and if the track is located at
the top of the girders, it is cconomical to have the ties rest directly on
the cover plates of the top flanges of the girders, as shown in Fig. 1-6.

Such bridges are called deck structures.

As the distance between girders

mM ,Girder [}
Stry Stry -
F£8. ’FB ’F B
Stry Str
[rm
Girder” LJ
PLAN VIEW
(a)
Knee brace - Roadway slab,  Curb
:i H o - 1 : .:[. > ‘/:l"
Q N
G ;g', E \qS'lr/f?.qer.f//’1 | “g’
& Floor bean” o 2 Floor beam” 4S8
TRANSVERSE SECTION TRANSVERSE SECTION
(Railroad bridge) AHighway bridge)
(6) . (c)

Frc. 1:7

becomes larger, such construction becomes unegnomical

bl
‘ a

It is more-

over obvious that it cannot be followed if the tracks are to be lodated

below the -; of the girders.

Under cither of the l;pr(,gmng»,cn‘éum-

« stances, it- becomes  Jecessary to build up a floor system. mmposod of
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stringers and floor beams, as shown in Fig. 1-7. If such a built-up floo# .
system is at the top of the girders or trusses, the bridge is still cafled 3
deck structure; if it is at the bottom of the girders or trusses, the briﬂge
is called a through structure; if it is at an intermediate elevatiop it 19 A
called a half-through structure. Figures 1-7a and b illustrate a half-
through single-track railroad bridge and show the make-up of floor sys-
tems for such bridges. The ties rest directly on members called stringers,
which are “farallel to the main girders. These stringers frame into
members églled floor beams, which are transverse to, and frame into,
the main @ders. T% a load applied to the rails is transferred by the
ties to the stringers, whichigarry the load to the

Column
floor beams. The floor bgatgs carry the load to 4
the girders, which in turn™transfer the load to the
foundations of the structure. L oo/J bepm
Figure 1-7c shows a transverse section through ¥ 5&
a typical highway bridge with a floor system. © 5%
Such a floor system is similar to that described
for a railroad $ridge, with the floor slab of the
bridge resting on stringers that frame into floor
beams, which in turn frame into the main girders.
Similar framing may be used for the floor of a
building, as shown in Fig. 1-8. In this case the A fPLAN VlEfv:, d
floor slab would rest on the floor beams and girders oor' ':‘:‘m: 08 uiding

as well as on the stringers, but loads applied to the
floor slab directly over a stringer would be carried by the stringer to
the floor beams, thence to the girders, thence to the columns, and ﬁnall)
to the foundations.

For bridges in which the gaain load-carrying elements are trusses
rather than girders, floor systems are always used. The floor beams
are located at the panel poigts (joints) of the loaded chord, so that the
members of the truss will 1; be subjected to transverse loads and thus
undergo primary bending.

1-21 Bracing Systems. Trusses, girders, floor beams, stringers.
columns, ete., which are de‘zignod primarily to carry vertical loads, are
often referred to as the main members of a structure. In addition to
the main members, mosfstructures require bracing systems, which serve
a number of purposes,.ghe most important of which is that of resisting
laterakloads. The mogf:important bracing systems of a typical through
truss bridge are shown'in Fig. 1-9. The top-chord lateral system lies
in the plane of the top chords and consists of a cross strut at each top-
chortl panel poingand diagonals conneotmg the ends of these;efoss struts.
The bottom-¢ho t{llateml system lies in the plane ofythg bdttom chords




18 INTRODUCTION . sz

and consists of the floor beams, which occur at each bottom-chord panel
point and which serve as cross struts, and diagonals connecting the ends
of the floor beams. In the planes of the end posts is the so-called * por-
tal” bracing, which stiffens the end posts laterally.

Djagonal of top chord lateral sysfem
Cross sirut of fop chord lateral sysfem

Porfa Portal

TOP PLAN VIEW

A SIDE ELEVATION A
Dragonal of bottorn chord lateral system

AN
X X X x X X AStringers

N/ N/ N/ NX N/

SECTION PLAN AA " Floor bearm, serving as
cross sirut of bottom
chord lateral system

™
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1-22 Fiber Stresses. Sometimes stress denotes force per unit
area. In structural analysis, however, it is customary to speak of the
total tensile or compressive force acting in a truss member as the siress
in the member. The term stress infensity or fiber siress is usually employed
to denote force per unit area. In structural design, the total stresses and
moments in members are first computed, so that the stress intensities can
then be investigated. In order that the structure shall perform satisfac-
torily, it is necessary that these stress intensities, or fiber stresses, be
kept within certain specified limits. The fiber stresses to be permitted
are called the ‘“working stresses,” the ‘‘ permissible stresses,”” or the “‘allow-
able stresses’ and depend, of course, upon the physical properties of the
material used.

A transverse section through a structural member is likely to pass
through rivets. "Since a well-driven rivet is tight and substangially, fills
. the rivet hole, it1s gustomary to assume that in transferr;nd combreggive
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stresses the member is not weakened by rivet holes. The area of a
transverse sectlon with no deduction made for rivet holes, is called the

“gross area.” Even though the rivet is well driven, however, i is*not
customary to assume that tensile stresses can be transferred across the
rivet hole. The area of a transverse section, reduced by the area of
those rivet holes located where the section is in tension, is called the
“net area.” In defining permissible fiber stresses, it is necessary
to define whether they are applicable to the net or gross area (or
section).

In riveted fabrication, the rivet hole is punched }{g in. in diameter
greater than the diameter of the rivet itself, and it is assumed that the
material punched is damaged to a diameter }{¢ in. greater than the
hole itself. Thus, in computing net areas, the effective diameter of
the hole is taken as 1§ in. greater than the diameter of the rivet.

The following allowable stresses for structural steel are specified by
the AISC for structural-steel buildings, with all values in pounds per
square inch:

Tension: Structural steel, net section. . . . . . . . . . . . . .. 20,000
Rivets, on area based on nominal diameter . . . . . . . . . . 20,000
Bolts and other threaded parts, on nominal area at root of thread 20,000

Compression: Columns, gross section
For axially loaded columns with values of I/r not greater than 120

2
17,000 — 0.485 ;l;
_For uxially loaded columns with values of I/r greater than 120
18,000
l'l

~ ! + 18,000
in which [ is the unbmed length of the column and r is the correspond-
ing radius of gyration of*the section, buth i» inches

Bending: (based on gross moment of inertia) Tension on ea ceme
fibers of rolled sections, plate girders, and built-up members . 20,000
Compression on extreme fibers of rolled sections, plate girders,
and built-up members,

S

AN

with ld/bt not inexcessof 600 . . . . . . . . . . . .. 20,000
with ld/bt in excessof 600. . . . .. . . . . . .. 12,000,000
Id bl

in which ! is the unsupported length, and d the depth, of the
* jnember; b is the width, and ¢ the thickness, of its compression
flange; all in inches.

Shearing: Rivets . . . . . . . . . . . .. .. ... C.o. .. 15,000
% Pins, and turned bolts in reamed or drilled holes . :‘ < #w . . 15,000
‘Unfisishéibolts . . . . . .. .. ... ... . wy e .. 10,000

Webs of beams and plate girders, gross section. ® X.. . . . 1300

s‘\

r'o
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Double Single
Shear  Shear

Bearing: Rivets. . . . . . . . . . . ... ... ... 40,000 32,000
Turned bolts in reamed or dnlled holes . . . . . . .. 40,000 32,600
Unfinished bolts . . . . . . . . .. .. ... ... 25,000 20,000
Pins. . . . . . ... s . . 32,000 32,000
Contact areas

Milled stiffeners and other milled surfaces . . . . . . . . 30,000
Fitted stiffeners. . . . . . . . . . . . . . ... .. .. 27,000

Permissible structural-steel stresses for highway and railroad bridges
vary somewhat from the foregoing values. For such values, the student
is referred to the specifications of the AASHO and the AREA, respec-
tively. Permissible stresses in concrete, timber, and other structural
materials are available in various specifications and handbooks.

1-23 Factor of Safety. It should be obvious that for a number
of reasons the permissible fiber stress should be less than the ultimate
or breaking strength of the material used. Loads, particularly loads
of certain types, cannot be predicted with too much accuracy. Certain
simplifying assumptions are almost always made in stress analysis, so
that even for the assumed loads the computed stresses will be somewhat
in error. Even though care is used in the control of structural materials
employed, some variation in the properties of these materials will exist,
even when the materials are new. With the passage of time, partiai
disintegration must be expected.

It is, moreover, desirable to keep the actual stresses in a structure
within the yield-point stresses, since otherwise plastic, flow witt permit
deformations without increased loads. Usually 2.0 attempt is made to
keep actual stresses within the elast.c limit.

Hence allowable fiber stresses must be appreciably lower than ulti-
mate fiber ‘resses, For rolled sections of structural steel, the ultimate
tensile strength in pounds per square inch may be 60,000 to 72,000; the
yield point is about half the ultimate tensile strength. The ultimate
stress divided by the permissible stress is defined as the “factor of
safety.” Thus for a 60,050-psi ultimate-strength steel, where a permis-
sible stress of 20,000 psi is specified, the factor of safety is 3.

It should be clearly understood, however, that this does not mean
that the loads could be increased by a factor of 3 without damaging the
structure. Suppose that the elastic limit of this steel is 30,000 psi, and
suppose further that, owing to the neglecting of so-called *‘secondary
stresses” and other factors, the actual fiber stresses are 25 per .cent
higher than the computed fiber stresses. Then the factor by which
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the loads could be increased without exceeding the elastic limit of the
steel is actually given by
30,000

1.25(20,000) 1.2

This factor of 1.2 is probably of greater importance than the factor of
safety of 3.

1:24 Practical and Ideal Structures. Rarely if ever does an
actual structure correspond to the idealized structure that is considered
in its analysis.  The materials of which the structure is built do not have
the exact, properties assumed, nor do the dimensions correspond exactly
with their theoretical values.  Structural details such as lacing bars and

}
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gusset plates introduce effeets that might make an analysis very com-
plicated indeed; but because they have little actual effect, they are
usually negleeted in the analysis of stresses in main members.  Because
of the width of members, considerable difference may exist between clear
spans and center-to-center spans which are ordinarily used in analyses.
Support details may vary considerably from the idealized type assumed
for purposes of analysis. A member may not actually be prismatic, and
yeb it may be assumed to be, to simplify computations.

The practical structure of Fig. 1-10q, for example, might be analyzed
on the basis of the idealized structure of Fig. 1-100, in which the footing
has heen assumed to be perfeetly fixed, although it could not be so in
natuve; the extra column area of the anchorage detail and the material

-

' [y .
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of the gussct piate have been ignored; the gusset plate has been assumed
as a truly rigid connection, whereas it will actually permit some rotational
yielding between the column and the horizontal girder; the effective
height of the column has been taken as the distance from the top of
the bedplate to the center line of the girder; and the effective span of
the girder has been measured from the center line of the column to the
center of the applied load.

It is necessary to idealize a structure in order to carry out a prac-
tical analysis. Experience and judgment are necessary in determining
the idealized structure that should be used in a given case. In important
structures, where doubt exists as to the most logical assumptions to be
made in idealizing a structure, it is sometimes desirable to compute
stresses on the basis of more than one possible idealized form, and to
design the structure to resist the stresses corresponding to all the analyses.

1:25 Problems for Solution.

Problem 1:1 An end-supported girder with a span of 50 ft carries a dead
load of 500 Ib per ft and a live load of 600 Ib per ft. ‘T'he dead load extends over
the entire span of the girder, and maximum live moment at the center of the
girder occurs with the live load extending over the entire span.

a. Assuming that the intensity of dead load varies directly with the girder
span but that live-load intensity remains constant, compute the total maximum
moment (dead plus live) at mid-span, for spans varying from 20 to 100 ft, hased
on 10-ft intervals.

b. Assuming that by the use of lizhtweight alloys the dead load is reduced by

40 per cent, what is the percentage reduction in total moment at mid-span for
each span specified in part a?

Problem 1:2 The rear tire of an H-series truck has a width of 20 in.

a. What is the load on this rear tire?

b. What is the total weight of the truck, and how is the truck designated?

Problem 1:3 For a Cooper’s E-70 loading,

a. What is the load on one driving wheel?

b. What is the spacing between driving wheels?

50 50’ ¢. What is the equivalent uniform load
S -‘-—— of the cars, in kips per foot of track?
Problem 14 Compute the impact
20’ moments corresponding to Prob. 1-1a in

accordance with the specifications of the

- AASHO.
/ \ Problem 15 Figure 1-11 shows the

20' bent of a mill building. These bents are

spaced 20 ft, center to cepter. Determine
L——H- the wind loads for which an intermediate
Fig. 1-11 bent should be designed, basing your load
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determination for vertical surfaces on the specifications of the AISC and the load-
ings for inclined surfaces on the recommendations of the ASCE for a wind velocity
of 100 mph.

Problem 1:6 The retaining wall of Fig. 1-12 is acted upon by sand weighing
120 1b per cu ft and having an angle of internal friction of 35°. The friction angle
between this sand and the vertical contact face of the wall is 30°. Determine
the magnitude, direction, and point of applieation of the resultant force exerted
by the sand on a strip of wall 20 ft in length, in accordance with Coulomb)'s theory.
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Problem 1:7 Considering a strip 1 ft long of the dam of Fig. 1-13, determine
the moment, about point a, of the total hydrostatic pressure acting on the
upstream face of the dam.

Problem 1:8 The dam of Fig. 1-13 is subjected to an earthquake involving
horizontal accelerations of the foundation of 0.1g. Treating the dam as a rigid
body and assuming the reservoir to be empty, determine the moment, about point
a, of the lateral forces to which a 1-ft strip of the dam is subjected.

Problem 1:9 The compression flange of a girder consists of two angles,
each 6 X 6 X 15", and one cover plate, 14 X 1,”. The girder is 10 ft deep.
It has a span of 96 ft, and the top flange is braced laterally at intervals of
16 ft. In accordance with the AISC specifications, what fiber stress would
be permissible in the design of the compression flange?



CHAPTER
REACTIONS

2:1 Definitions. The major portion of this book will be devoted
to the aralysis of so-called planar structures, i.e., structures that may be
considered to lie in a plane that also contains the lines of action of all
the forces acting on the structure. Such a structure is by far the most,
common in structural analysis. The analysis of three-dimensional, ¢
space, structures involves no new fundamental principles beyond those
required for planar structures, but the numerical computations are
greatly complicated by the additional geometry introduced by the third
dimension. For these reasons, the emphasis will be placed on planar
structures, and a limited discussion of space structures will be reseryed
for later portions of the book.

Since the discussion in this chapter is limited to planar struetures, all
the force systems will be so-called coplanar force svstems, i.e., systems
consisting of sevcral forces the lines of action of which all lie in one plane.
Some of these systems have special characteristies, and it will be found

5 5
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* convenient to elassify them accordingly and to identify them by speeial
names.

A concurrent coplanar force syslem is shown in Fig. 2 la.  This sys-
tem consists of several forees the lines of action of which all interseet at
a common point. A parallel coplanar force syslem consists of seyeral
forces the lines of action of which are all parallel as shown in Fig, 2 1h,
A general coplanar force syslem consists of several forees the lines of
action of which are in various directions and do not intersect in a common
point, as shown in Fig. 2-1¢c. Another important system, a couple, is
shown in Fig. 2-1d. A couple consists of two equal and opposite parallel
forces that do not have a common line of action.

Since, in a planar structure, the lines of action of all the fnrces lie

in the plane of the structure, each of the forces F could be resolved into
. 24 I '
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two components F, and F,, where the z and y reference axes may be
taken in any directions as long as they do not coincide. It is almost
always desirable to sclect 2 and y axes that are mutvally perpendicular,
in which case F, and F, are called rectangular components.  Further, it
is usually most convenient to take the x axis horizontally and the y
axis vertically,

2-2 General—Conventional Supports. Most structures are
either partly or completely restrained so that they cannot move freely
in space.  Such restrictions on the
free motion of a body are called P
restraints and are supplied by sup-  (a) 4 B
ports that conneet the strueture to
some stationary body.  For ex-
ample, consider a planar structure
such as the bar AB shown in Fig.
2 2. If this bar were a free body
and were acted upon by a force P,
it would moye freely in space with
some  combined translatory and  (d)
rotational motion,  If; however, a
restradnt were dndroduced in the
fornt of a hinge that connected the
bar to some stationary body at
point 1. then the motion of the (€/
bar would be partly restricted
and could consist only of a rota-
tional moyvement about the hinge.,

. . : /P
During such a rotation, point B :
- . (g) R, -
would move along an are with M
point .4 as the center.  lustanta- ‘I’RA)'
neously, point B could be con- Fio. 2.9

sidered to moye normal to the line
AB, or, in this case, vertically. If, therefore. another restraint were
introduced that would not allow point B to move instantaneously in a
vertical direction, the rotation about the hinge at point A would be pre-
vented and thus the free motion of the bar would be completely restricted.
Tt is evident that this type of restraint would be supplied by the sup-
ports shown at B in cither ¢ or d of Fig. 2.2,

The supports at A and B, in restricting the free motion of the bar,
are called upon to resist the action that the force P imposes upon them
through the bar.  The resistances that they thus develop to counteract
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the@c;ion of the bagyypon them are called reaclions. The effect of the
supports may therefore be replaced by the reactions that they supply
the structure.

In future discussions, it will be necessary to deal ccentinually with
the reactions that different types of supports supply, and it therefore will
be convenient to use a conventional symbol for describing these different
types. A hinge support, as shown in Fig. 2-2e, is represented by the

symbol mé” In such a support, if it is assumed that the pin of the

hinge is frictionless in the pinhole, then the contact pressures between
the pin and its hole must remain normal to the circular contact surface
and must therefore be directed through the center of the pin. The reac-
tion R that the support supplies to the structure must completely counter-
act the action of the force P/, and therefore R and P’ must be collinear
and numerically equal but must act opposite to one another. It is
therefore evident that a hinge support supplies a reactive foree the line
of action of which is known to pass through the center of the hinge pin
but the magnitude and direction of which are unknown.! These two
unknown elements of such a reaction could also be represented by the
unknown magnitudes of its horizontal and vertical components, R, and
R,, respectively, both acting through the center of the hinge pin.

A roller support, as shown in Fig. 2-2f, is represented by either the

symbol ﬁr or % In the same manner as above, it may be

reasoned that the reactive force of a roller support must be directed
through the center of the pin. In addition, however, if the rollers are
frictionless, they can transmit only a pressure which is normal to the
surface on which they roll. Hence, a roller support supplies a resultant
reactive force which acts normal to the surface on which the rollers roll
and is directed through the center of the hinge pin. It is therefore evi-
dent that a roller support supplies a reactive force which is applied at a
known point and acts in a known direction, but the magnitude of which
is unknown. Roller supports are usually detailed so that they can supply
a reaction acting either away from or toward the supporting surface.
Consideration of the link support BC shown in Fig. 2-2d shows that.

for small movements it effectively reproduces the action of the roller sup-

=« portshown at Bin Fig.2-2¢c. By the same approach as used above, it may
- be reasoned that, if the pins at the ends of this link are frictionless, the
Joice transmitted by the link must act through the centers of the pins
at each end. Therefore, a link support also supplies a reaction of a

r

1 According to this terminology, the ‘“ direction of a force” is intdhded to define the
slope of its line of action, while the * magnitude” indicates not only its gemerical size
bug also the sense in which the furce acts along this line&holion, i.c., wh®ther towerd
or away frora a bod-. 1 ‘,"Jm , PR
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known direction and a known point of application but of an unknown

magnitude. A link support is denoted by the symbol ; .

One other common type of support used for planar structures is that
shown at A in Fig. 2-2¢g and called a fired support. Such a support
encases the member so that both translation and rotation of the end of
the member are prevented. A fixed support therefore supplics a reac-
tion, the magnitude, point of application, and direction of which are all
unknown. These three unknown elements may also be considered to
be a force, which acts through a specific point but has an unknown mag-
nitude and direction, and a couple of unknown magnitude. For example,
the three unknown elements could be selected as a couple and a horizontal
and a vertical force, the two latter acting through the center of gravity
of the end cross section. A fixed support is designated by the symbol

The external forces acting on a body therefore consist of two distinct
tyvpes —the applied loads P (shown thus —) and the reactions R (shown
thus ). A reactive force at support a will be designated as R,, while
its r and y components will be called R,; and R,,. A reactive couple at
support a will be called AM,.

2:3 Equations of Static Equilibrium—Planar Structures. If _
the supports of a planar structure are considered to be replaced by the
reactions that they supply, the structure will be acted upon by a general
coplanar force system consisting of the known applied loads and the
unknown reactions. In general, the resultant effect of a general coplanar
force system could be either a resultant force acting at some point and .
in some direction in the plane or a resultant couple.

A body that is initially at rest and remains at rest when acted upon
by a system of forces is said to be in a state of static equilibrium. For
such a state to exist, it is necessary that the combined resultant effect
of the system of forces shall be neither a force nor a couple; otherwise,
there will be a tendency for motion of the body. In order that the
combined resultant effect of a general system of forces acting on a planar
structure shall not be cquivalent to a resultant force, it is necessary that
the algebraic sum of all the F, components shall be equal to zero and
likewise that the algebraic sum of all the F, components shall be equal
to zero. In order that the combined resultant effect shall not be equiva-
lent to a couple, it is necessary that the algebraic sum of the moments of
all the farces about any axis normal to the plane of the structure shall also
be edal o zero. The three following conditions must therefore be ful-
filled simultaneoysly by the loads and reactions of a planar structure
for the’structure to remain‘iy, a state of static equilibrium:
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& » o, SF, =0
' K, =0 2-1)
XM =0

These equations are called the equalions of stalic equilibrium ol a planar
structure subjected to a general system of forees.

In the special case where a planar structure is acted upon by a concurrent
system of loads and reactions, it is impossible for the resultant effect of
the system to be a couple, for the lines of action of all the forces of a concurrent
system intersect in a common point. Therefore, for the structure to remain in
static equilibrium in such a case it is necessary only that the two following condi-
tions be satisfied:

DO AR
e 2 2)
~y
These equations are the equations of static equilibrium for the special case of a
planar structure subjected to a concurrent system of forees.

Quite often in the discussions that follow, structural members will
be referred to as being rigid bodies. In an exact sense, a rigid body is
one in which there is no relative movement between any two particle;
of the body.  Of course, any structural element is never absolutely rignd
since it is made of materials that deform slightly under the loads imposed
on them. However, such deformation is so slight that the chonges of
dimension, the shifting of the lines of action of forces, ete., may usually
be neglected during the investigation of the condition of equilibrium of
the body. Thus, in most problems, in applying the equations of static
equilibrium to structural elements, it will be assumed that they are
rigid bodies for all practical purposes and hence that the geometry after
application of the loads is essentially the same as before,

2-4 Equations of Condition. Many structures consist of simply
one rigid body—a truss, frame, or beam —restrained in space by a cer-
tain number of supports. Sometimes, however, the structure may be

" built up out of several rigid bodies partly connected together in some

¥

manner, the whole assemblage then being mounted on a certain number
of supports. In either type of structure, the force system consisting of
the loads and reactions must satisfy the equations of static equilibrium if
the structure is to remain at rest.  In the latter type of structure, how-
ever, the details of the method of construction used to conneet the sepa-
rate bodies together may enforce further restrictions on the foree system
acting on the structure. The separate parts may be connected together
by hinges, links, or rollers in some way, and in cach egse these details
can transmit only a certain type of force from one part of the structure
t‘oathe other. ‘ )
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Figure 2-3 illustrates this type of structure. _ggjs composed f two
rigid members ab and be connected together by a fidctionless hinge at point
b and supported by hinge supports at points ¢ and ¢.  Since a frictionless
hinge cannot transmit < couple, its insertion imposes the condition that
the action of one portion of the structure on the other portion connected
by the hinge can consist only of a force acting through the center of the
hinge pin.  Therefore, the algebraic sumof the moments

of the loads and reactions applied to any one such por- P

tion of the structure taken about an axis through the b

center of the hinge pin must be equal to zero.  Such /
conditions introduced by the method of construction Hinge
(other than the manner in which the supports are % ¢
detailed) result in so-called equalions of construclion or Fic. 23
condilion.

2-5 Static Stability and Instability—Statically Determinate
and Indeterminate Structures. Consider first a planar structure
which is acted upon by a general system of loads and into which no equa-
tions of construction have been introduced.  If the supports are replaced

by the reactions that they supply to the structure, the structure will be®

acted upon by a general system of forces consisting of the known loads *

and the unknown reactions. If the structure is in static equilibrium.
under these forees, the three equations of static equilibrium may be
written in terms of the known loads and the unhnown elements defining
the reactions.  The simultancous solution of these three equations will
in certain cases determine the magnitude of the unknown reaction ele-
ments. Whether or not these three equations are sufficient for the
complete determination of the reactions, they must be satisfied for the
structure to be in static equilibrium and therefore they form a partial
basis for the solution to obtain the reactions of any structure that is in
static equilibrium.

If there are fewer than three unknown independent reaction elements,
there are not enough unknowns to satisfy the three equations of static
equilibrium simultaneously, Fewer than three unknown reaction ele-
ments are therefore insufficient to keep a planar structure in equilibrium
when it is acted upon by a general system of loads.  Under such condi-
tions, a structure is said to be slalicallv unstable.

Under certain special conditions, a planar structure having fewer than
three unhnown independent reaction clements may be in static equilib-
rium. Of course, if the system of applied loads acting on the structure is
in equilibrium_jtself, no reactions are required; also, if the loads and
reactions have certain mutual characteristics, fewer than three reaction
elements mnay be sufﬁvie}ut for equilibrium.  For example, considering the

. . -
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bar_shown in Fig. 2-2b, if the resultant effect of the applied loads is a

-

force whose line of action goes through the center of the hinge pin at
point A, the forces acting on the structure are concurrent and the hori-
zontal and vertical components of the reaction at A will be capable of
maintaining static equilibrium. Moreover, if the bar were supported at
both points A and B by rollers which rolled on horizontal surfaces, the
reactions supplied by such supports could maintain in a state of static
equilibrium any system of applied loads of which the resultant effect is
either a couple or a vertical force. Such structures, although stable
under special types of loading but unstable under the gencral case of
loading, are said to be in a state of unstable equilibrium and are still classed
as unstable structures.

Since three unknowns can be obtained from the solution of three
independent simultaneous equations, the reactions of a stable planar
structure having exactly three unknown reaction elements may be
obtained from the simultaneous solution of the three equations of static
equilibrium. In such a case, the reactions of the structure are said to be
slatically determinate. However, if there are more than three unknown

- independent reaction elements supplied to a stable planar structure, the

three equations of static equilibrium are not sufficient to determine the
unknown reactions. This is evident since all but three of the unknowns
could be assigned arbitrary values and then the remaining three deter-
mined from the simultaneous solution of the three equations of static
equilibrium. In such cases, there are an infinite number of related sets
of values for the unknown reactions that could satisfy the conditions of
static equilibrium. The correct values for the reactions cannot therefore
be determined simply from these three equations but must also satisfy
certain distortion conditions of the structure, as will be discussed later
in this book. If the unknown reaction clements cannot be determined
simply by the equations of static equilibrium, the reactions of the structure
are said to be slalically indelerminale. The structure is then said to be
indeterminate to a degree equal to the number by which the unknowns
exceed the available equations of statics.

From the above discussion it may be concluded that at least three
independent reaction elements are necessary to satisfy the conditions of
static equilibrium for a planar structure acted upon by any general system
of loads. It may easily be demonstrated, however, that three or more
elements are not always sufficient, and therefore a planar structure hav-
ing three or more independent reaction elements may still be unstable.
This is the reason why a stable planar structure was specified in the
discussion of the previous paragraph. ,

The question of sufficiency of the reactions for stability may bé.dis«
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cussed by an extension of the approach used in the egrly part of Ast. 2-2.
For example, the bars shown in Figs. 2-2c and d aré'#ble when suppofted
by the horizontal and vertical components of the reaction at A and the
vertical reaction at B. These structures are equivalent to that shown in
Fig. 2- 4, where the hinge support has been replaced by two links attached
to the hinge pin at point A. These two links may be in any directions as
long as they are not collinear. This structure would be stable as long
as the line of action of the link at B did not also pass through the center
of the hinge pin at A. If this line of action did pass through A, the
structure would be only partly restrained and therefore unstable under
the general system of loads because there would be nothing to prevent
the instantaneous rotation of the structure P
about the hinge at point A. In such /

cases, where there are nominally sufficient % A B
reaction elements but the geometrical ”L' 1
arrangement is such that the structure is . .
unstable, the structure is said to be Fie. 2-4
geomelrically unslable.

One other case where three independent reaction elements are not
sufficient for stability should be discussed. Consider a bar supported by «
three parallel links as shown in Fig. 2-5. It is apparent that there is no_
restraint to prevent a small translation of the structure normal to the
direction of the links. Hence, if the resultant effect of the applied loads
has a component in this direction, motion will be produced and such a
structure must be classed as geometrically unstable. These and similar
considerations lead to the following conclusion: If the reactions are equiv-
“Yﬁ, alent to those supplied by a system of three or

more link supporls that are either concurrent
A== ==9C or parallel, they are not sufficient to mainlain
"I: "\1 latic equilibri lanar sl
& P ¢’ Slatic equilibrium of a planar structure sub-
Jected lo a general syslem of loads even if there
are three or more unknown reaction elements.
In other words, the stability of a structure is determined not only by the
number of reaction elements but also by their arrangement.

It should be noted that unstable structures having three or more
independent reaction elements usually could also be classed as statically
indeterminate. Counsider the structure shown in Fig. 2-5. While it is
unstable and starts to translate horizontally under the load P, it is not
completely unrestrained. Instantaneously the bar translates horizon-
tally, and the three links rotate about points A’, B’, and C’, respectively.
After a finite Fotation of the links, points A, B, and C will have moved
vertically as.well as horizontally. A vertical movement of these points

FiG. 2-5
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can be accomplished only by making the bar ACbend.  The final equilib-
Aium position is determined not only by the geometry of the structure
but also by its elastic distortion due to the stresses developed in the links
and the bar. [n this final position, the links will have moyved through
such finite rotations that the algebraic sum of the horizontal components
of the stresses in the links is equal to the horizontal component of the
load. Hence, the analysis of this structure in its final equilibrium position
involves not only the equations of static equilibrium but also its distortion
properties, and the structure may therefore be classed as statically inde-
terminate. The structure shown in Fig. 2.1 also falls into this same
category if the line of action of the link at B passes through the hinge
at A.

If the structure shown in Fig. 2 5 were acted upon by a system of
vertical loads, there would be no tendency for it to move horizontally,
i.e., the structure would be in unstable othbnum. In such a case, note
that the reactions would also be statically indeterminate,

2:6 Stability and Determinancy of Structures Involving
Equations of Condition. So far the discussion has been restricted to
structures in which no special construction conditions have been intro-

“duced. If, however, such conditions are introduced into a planar struc-
ture, a like number of equations of condition are added to the three
equations of statics. It is then necessary for the loads and reactions acting
on the structure to satisfy simultaneously both the equations of static
equilibrium and the equations of condition. If the number of unknown
reaction elements is fewer than the total number of equations, the struc-
ture is statically unstable or possibly in unstable equilibrium for certain
special conditions of loading.  If the number of reaction elements is more
than the total number of equations, the structure is classed as statically
indeterminate. If, however, there are the same number of reaction
elements as there are equations, the structure is statically determinate
unless the reactions are so located and arranged that geometrical instabil-
ity is possible.

Such a condition of instability may be simply illustrated by a con-
sideration of a structure of the type shown in Fig. 2-3.  The structure

-shown there is, of course, stable; but if the hinge at b lay on the line
joining points a and ¢, there would be no restraint to the instantaneous
rotation of members ab and bec about points a and ¢, respectively.  After
a certain finite rotation of both members, direct stresses will be developed
in members ab and be that in view of the new slopes of the members will
have vertical components that will keep the load P in equilibrium.  The
computation of the equilibrium position of joint b and the resulting djrect
stresses that are developed involves a consideration of the distortion
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propertics of the structure.  Therefore, this btrm‘_’,u;;e is not only unsgable
in its original position but also statically indeterminate.

Geometrical instability similar to that just illustrated is most likely
to occur whenever equations of construction are introduced into an
originally stable structure. It is therefore evident that care must be
used in introducing construction hinges, ete., so that geometrical instabil-
ity is not produced.  Such a condition will always be apparent, for solu-
tion of the combined equations of static equilibrium and equations of
condition will yield inconsistent, infinite, or indeterminate values for the
unknown reaction elements.!

2:7 Free-body Sketches. In the previous discussion, it is shown
that the unknown reaction elements of a statically determinate and stable
structure may be computed from the simultaneous solution of the equa-
tions of static equilibrium, augmented, in certain cases, by equations of
condition.  All the equations involve some or all of the forces acting on
the structure, including both the applied loads and the reactions supplied
by the supports.  To assist in formulating these equations, it is desirable
to draw so-called free-body skelches of either the entire structure or some
portions of it.  The importance of drawing an adequate number of these
free-body  sketehes cannot be overemphasized to the student. Such”
shetehes are the basis of the successful stress analysis of structures.  The
student should be admonished that it s impossible lo draw loo many free-
vody skelches and that time spent in so doing is neyer wasted. -

A free-body sheteh of the entire structure is drawn by isolating the
structure {rom its supports and showing it acted upon by all the applied
loads and all the possible reaction components that the supports may
supply to the structure.  Such a sheteh is illustrated in Fig. 2-7b. In
this same manner, any portion of the structure can be isolated by passing
any desired section through the structure and a free-body sketeh drawn
showing this portion acted upon by the applied loads and reactions,
together with any forces that may act on the faces of the members cut
by the isolating seetion.  Any force the magnitude of which is unknown
may be assumed to act in either sense along its line of action. The
assumed sense is used in writing any equation invohving such a foree.
When the magnitude of such a foree is determined from the solution, if
the sign is positive, the force is then hnown to act in the assumed sense;
if negative, in the opposite sense.

Sometimes it becomes desirable to isolate several portions of the
structure and to draw free-body shetches of these portions.  In such

1 For a discussion of this subject, see W. M. Firr and J. B. Wnsur, “Theory of
Statically Indeterminate Structures,” Art. 8, p. 9, McGraw-Hill Book Company,
Ind., New York, 1937,
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cag& it is necessary to show the internal forces acting on the internal

> aces that have been exposed by the isolating section. If free-body
sketches are drawn for two adjacent por-

A B tions of the structure and the internal forces
58 ¢ 52, have been assumed to act in certain senses

on an internal face of one portion, the cor-

responding forces must be assumed to act

g 'ﬁif with the same numerical values but in
MAS opposile senses on the matching face of the
p.—é% adjacent portion. This is evident since the

L action and reaction of one body on another

Fic. 2-6 must be numerically equal but opposite in

sense. Such free-body sketches are shown
in Fig. 2-6. If this practice is not followed, equations of static equi-
librium, written using two such free-body sketches, will not be consistent
with one another and it will be impossible to obtain a correct solution from
them. It is of course obvious that any particular reaction which is
assumed to act in a certain sense on one sketch must be shown in the same
sense on all other sketches in which it appears.

2:8 Computation of Reactions. If no equations of condition
have been introduced into a statically determinate structure, the com-
putation of the reactions involves only a straightforward application of
the equations of static equilibrium. Such computations may be illus-
trated by considering the simple end-supported beam shown in Fig. 2 7Ta.
The unknown reaction elements may be taken as the vertical and hori-
Zontal components of the reaction at A and the vertical component of
the reaction at D. These may be assumed to act as shown in the free-
body sketch, Fig. 2-7b.

To obtain these three unknowns there are available the three equa-
tions of static equnhbrmm IF. =0, ZF, = 0,and XM = 0, and therefore

“1such a structure is statically determinate. It is possible to write the
;- following three equations of static equilibrium and solve them simul-
taneously for the three unknowns Ry, R4, and Ry,:

Y 2F3=0,:,R43-'36=0
¢ ZF, = 0,1+ Riy + Ry — 60 — 48 = 0
IMc = 0,+), 12R4, — 6R,, — (60)(6) = 0

While such a solution is always possible, it is not very ingenious and
it is inefficient, particularly in a complicated structure. Consider the
advantages of proceeding as follows: By taking the summation of moments
about an axis through point A, the only unknoyn entering the gqugtion
will be R, and a direct solution for it will be oezb

0
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IMa =0, +), (60)(6) + (48)(12) — (R1)(18) = G L
o Rpy = 938{g = 52 kips 3«
In the same manner, R,, may be found directly from
IMp =0, +), (R4)(18) — (60)(12) — (18)(6) = 0
_ 1,008

" R‘y = ‘—18" = 56 kips 4:

Of course, these values should satisfy the equation 2F, = 0, and the
following check is obtained:

ZF,=0,1+5 +52—60 —48 =0 .. O.K.
From =F, = 0, R, is obtained directly,
SF,=0,5 Ry —36=0 - Ra = 36 kips +

Thus, by ingenuity in applying the equations of static equilibrium, the
solution for the reactions is facilitated.

k k

60 ,60
(a) =7 e =P
Te FPole

6ok 48k 60k o

N
S

F16. 2-7

To enlarge on this discussion, it should be noted that the three con-
ventional equations of static equilibrium ZF, = 0, ZF, = 0,and M = 0
may always be replaced by the independent moment equations M, = 0,
IM;p = 0, and XM, = 0, when points A, B, and C are three points which
do not lie on a straight line. This may be verified in the following man-
ner: If a system of forces satisfies any one of these moment equations,
such as SM, = 0, then the resultant effect of the system cannot be a
couple but may be a resultant force acting through point A. If the
system also satisfies the equation =M = 0, then the resultant effect of
the system may still be a resultant force; but, if so, such a force can act
only along the line joining points A and B. If in addition, however, the
system also satisfies the equation XMc = 0 (where C does not lie on a
line going through A and B), this eliminates the possibility of the result-
ant force existing and acting along the line AB.  Therefore, if the system
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r
*

R

static equilibrium.!

This principle may often be used to advantage in writing equations of
static equilibrium, for it is often possiblc to select a moment axis so that
only one unknown reaction element is involved in the summation of
moments about that axis, thus leading to a direct solution for that one

unknown.

REACTIONS (§2-9

es all three moment equations, its resultant effect can be neither a

[ Y
. ) C.
“4odpl

e nor a resultant force and the system must be in a condition of

The student should study the illustrative examples in Art.

2:11 in conjunction with this article, since methods of arranging the
computations and applying the aboy e general approach will be discussed
with a view to facilitating the numerical computations.

2:9 Computation of Reactions—Structures Involving Equa-
Whenever special conditions of construction have

tions of Condition.

20%

k

.;0'
/s’ ’
551 25" | 15'| 25"
ml ml

20k w0k
Rox

’Ray ,ch

\ ’ 't‘ "RCy
Fic. 2-8

been introduced into a structure, the evalu-
ation of the reactions involves both the
equations of static equilibrium and the
equations of condition. Iven when such
structures are statically determinate, the
computation of the reactions is more diffi-
cult and requires more ingenuity than cases
where no equations of condition hayve been
introduced.

To illustrate the method of attack in
such cases, consider the strueture shown in
Fig.2 8. This structure isofa type already
discussed and may be shown to be statically
determinate and stable,  There are four

- unknown reaction elements, but in addition to the three equations of
static equilibrium there is the equation of condition introduced by the
frictionless hinge at point b. As discussed previously (Art. 2-4), such a

* hinge is neither capable of transmitting a couple from the portion ab to

 the portion be, nor vice versa.

It is therefore necessary that the algebraic

sum of the moments about an axis through point b of all the forces acting
on either the portion ab or the poruon be must add up to zero.  Stating
. €this in equation form,

ab

z M,

b
0 or 2,11,,—_-0

1 Question: If two moment equations were obtained, first from XAM4 = 0 and then
= 0, would a third independent equation be obtained by summing up the
force components perpendicular to the line AB and setting this sum equal to zero?
Why? Would summing up the force components in any direction other than parallel
to AB result in a satisfactory independent equation)

from

Mg
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. 5
At first glance, a student might infer from this that such a hinée? 11 \
introduces two independent equations of condition.  This is not sg. *
There is only one independent equation introduced, as may easily be
shown by the following reasoning: One of the equations of static equilib-
rium requires that for the entire structure the summation of the moments
about any axis of all the forces shall be equal to zero, and hence, with b

as an axis, M, = 0. If onc then writes the equation of condition that,
llb

b
for the portion ab, Z M, = 0, it immediately implies that the algebraic

sum of the moments about b of all the remaining forces acting on the
be

remainder of the structure be must add up to zero. Thereforvz M, =0

is not an independent relation—it is simply equal to the equation £, = 0

ab

2\
minus the equation 2.\],, = 0. The student should constantly keep
these ideas in mind when setting up the equations of condition of the

structure.  He should never be fooled into thinking that he has more

independent equations than he actually has.  In this case any two of
ab

b
g & &

these three equations—XV, =0, > M, =0, }» M, = 0—can be used
dd ded

independently, but the remaining one is not an independent relation.

To proceed now with the solution of this example, the reactions may

be obtained easily if ingenuity is used in setting up the equations of

statics,

M, =0, 7 (20)(13) + (10)(55) — 80R,, + 15R.. = 0
o Ry = 3125 + 3 6Rey  (aV
be
N M, =0, %0, (100(13) — 100y, 4 15Re; = 0
e

S Re: = 8gR., — 1333 (D)
Substituting for R, from Eq. (@) into Eq. (0,

Rer = 8g(31.25 + 3[R — 13.33 s R = 17.33 hips ¢+
And then substituting back in (a).

R, = 315 kips 2
In a similar manner,

M, =0, 3, 80R,, 4+ 15R,, — (200(65) — (10)(25) =0
S Rey = 2875 — 3 gRa: ()

* Nymbers such as 13.333 . . . will often be written 13.3, the dot over the last
digit indicating that it may be repeated indefinitely.
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b
Za%ﬁ =0, 7, 40R,, — 30R,; — (20)(25) = 0
" Re; = 43R,y — 16.67 (d)
Then substituting from Eq. (¢) into Eq. (d),
Ra: = 33(28.75 — 3{gR..) — 16.67 .. R,, = 17.33 kips +
And substituting back in (c),
R,y = 25.5 kips %
Using equations XF, = 0 and =F, = 0 for checks on the solution,

SF,=0,7,1733 -1733 =0 . OK.
SF,=0,1+255—20 —40 +34L5=0 . OK.

If the supports of a and ¢ of this structure had been on the same
elevation, it is evident that the solution of the reactions would have
been much easier, for in that case a direct solution for the vertical com-
ponents of the reactions would be obtained from the equations 2M, = 0
and XM, = 0. From a consideration of some of the illustrative exam-
ples in Art. 2-11, it will be apparent that the solution of the reactions of
complicated structures involving special conditions of construction may
be expedited in some cases by isolating internal portions as free bodies
and applying the equations of static equilibrium to those portions. It
should again be emphasized to the student, however, that such a tech-
nique does not add any new independent equations besides the three
equations of static equilibrium for the entire structure plus the equations
of condition resulting from the special conditions of construction. The
equations used may be in a different form, but they are not new inde-
pendent ones.

2:10 Examples for Classification. In this article, examples are
discussed illustrating the methods of determining whether a structure is
stable or unstable and whether it is statically determinate or indetermi-
nate with respect to its reactions. Note that all beams are represented by

" straight lines coinciding with their centroidal axes and that their depth is
‘ot shown in the sketches of Fig. 2-9. This will be common practice in
’ ?he remainder of the book whenever the depth does not essentially aftect

the solution of the problem.

Consider the beam shownin Fig. 2-9A(a). The unknownindependent
reaction elements are the magnitude and direction of the reaction at A
and the magnitude of the reaction at B or a total of three. These clés
ments may also be considered as the magnitude of the horizontal and
vertical components of the reaction at A and of #ther the horizontal or
vertical component at B. Note that, if the point of application and the ¢
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direction of a reaction are known, the one unknown element !ti't o
reaction may be considered as the magnitude of the resultant reaction*
itself or the magnitude of either its vertical or horizontal component,
since either component may be expressed in terms of the other, using
the known direction of the reaction. Since the reaction supplied by the

L\ AN
(@ ?,,o (b);% ! %b
a
(o]
A A
// \\ //| ~
0 AL\ LB @ YLN\el .8
aﬁ A s ?f ”L \F‘\b
A \ B c A B c
(e)
(S s s (PR e e
a 6 c a \°& c

¢
Fic. 2-94

support at B does not pass through point A, this structure is stable. The
three unknown reaction elements may therefore be found from the three
available equations of static equilibrium, and the structure is statically
‘leterminate.
Copsideration of thebeamin Fig. 2-9A(b) shows that there are only two
unknown reaction elements—the magnitude of the reactions at A and B.
“These two unknown elements may also be considered as either the hori-
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al or the vertical component of cach reaction.  Since the three equa-
fions of static equilibrium cannot be satisfied simultancously by these two
independent unknown reaction elements, this structure is statically
unstable under a general system of applied loads.  The lines of action
of the two reactions intersect at point 0. If the resultant effect of the
applied loads is a resultant force whose line of action also passes through
point O, the two reactions will be capable of keeping such a special system
of loads in equilibrium.  While the structure is still classed as unstable, it

D _C P
o

(p) (q)

b P
o
&

(s) ,

(u)

(v)

e, 2-98

will be in a state of unstable equilibrinm under this loading and its
reactions can be determined by the equations of static equilibrium,

If a roller support is added at point € as shown in Fig. 2 9.4(¢), the
reactions of the structure will be equivalent to three links whose lines
*of action are neither concurrent nor parallel,  The structure will therefore
be stable and also statically determinate, for the three unknown reaction
elements- - the three unhnown magnitudes-- can be found from the three
equations of static equilibrium.  On the other hand, if the link support is
applied at point, € in Fig. 2.9A(d), the structure will be geometricall§
unstable since the supports will consist of three links whose lines of action
all intersect at point 0. The structure is not completely unrestrained,
of course, but will rotate instantancously about point O through some”



.

§2-10] EXAMPLES FOR CLASSIFICATION ,,;; . :g-;l .
O e
finite angle until equilibrium is attained. In this new posluonwe
reactions will be statically indeterminate, '

The structure shown in Fig. 2-9A(g) is obviously stable and has a total
of six unknown reaction elements—a horizontal and vertical component
and a couple at each support. Since there are only three equations of
static equilibrium available, the structure is indeterminate to the third
degree.  The insertion of the hinge in the structure shown in Fig. 2-9A4 ()
introduces one condition equation and therefore makes the structure
indeterminate to the second degree.  The insertion of the roller in Fig.
2 9.A(k) makes it possible to transmit only a verticalforce from one part of
the structure to the other, This in effect introduces two equations of
condition, one that the sum of the moments about a of the forces acting
on either portion shall be equal to zero and the other that the sum of the
horizontal components of the forces acting on either portion shall be equal
to zero.  As a result, this structure is indeterminate to the first degree
only.

In the figures from p on, all the truss portions should be considered
as rigid bodies whose bar stresses are statically determinate once the
reactions have been caleulated.  The arrangement of the bars of a truss
necessary for stability, ete., is discussed in detail in Chap. . For the
purposes of the present discussion, the trussed portions may be considered
as solid bodies.  The structures in Figs. 2-9B(p) and (q) are casily seen to
be stable and statically determinate under any general system of loads.
In Fig. 2 9B(r), the structure has four unknown reaction elements—the
magnitude of the reactions at the link supports A and B—and both the
magnitude and direction of the reaction of the hinge support at C. To
solve for these four unknowns there are only three equations of static
equilibrium.  The structure is therefore stable and statically indetermi-
nate to the first degree.

For structures similar to that shown in Fig. 2-9B(s), it is often better
to use a different approach to determine their stability or statical deter-
minancy. In such structures, the counting of the available equuliom
may be awkward and obscure. Suppose instead that the structure is
broken up into separate parts and the solution for the forees connecting
edch part to the rest of the structure is considered. It in this case an
isolating section is passed through the link BD and the hinge support
At I is replaced by the horizontal and vertical reaction componeunts that
it supplics, the truss portion will be isolated as a free body acted upon by
the applied loads and three unknown forces—the link stress and the two
components of the reaction at £, If this free body is to be in equilibrium,
these three unknowns may be determined so as to satisfy the three equa-
gions of static equilibrium. Taking Mg = 0 on the free body will
yicld an equation involving the link stress as the only unhnown.  Know-
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R

'ing’ﬂg,be stress in the link BD, we can find the stresses in links AB and B(.
by 2F, = 0 and XF, = 0 applied to hinge B isolated as a free body. Tke
reactions of this structure may therefore be found by the equations of
static equilibrium, and the structure is thus said to be stable and statically
determinate.

2:11 Illustrative Examples of Computation of Reactions.
The student should study the following examples carefully. All the
structures are statically determinate, but the student should investigate
them independently for practice.

Example 2:1 Determine the reactions of the beam ab:

Method A:
60%  q0* sok ok qox Wt ok
a yall, i i fgg__ ! M_"Qfgx%"koy
7| g 8’ |41 408 1 8 141N
24’ Ray Ry 6
M. =0,7
t(60)(4) — (40)(12) + (40)(20) — (Rv,)(24) =0 ooy = 80044 = 235 3
< Ry = 341, =_l=7;.5‘(+
M, =0, ’:
(Ray)(24) — (60)(20) + (40)(12) — (40)(4) = 0 . Ray = 8805, = 36.6
TF, =0, R, —30 =175 =0 . R, = 4154
Check: "'"
ZF, =0, T+,36.6 — 60 + 40 — 40 + 23.3 =0
0=0 -~ O.K.
Method B:
o,
R = l ' Réx'i!Rby
Ray Ry TINRy
M, =0, IM. = 0,7
+ - + -
L —(60)(20) = 1,200 +(60)(4) = 240
+(40)(12) = 480 —(40)(12) = 480
—(U0)@) = 160  +(40)(20) = 800
+ 480 — 1,360 + 1,040 — 480
+_ 480 ~ 480 .
n,,-%':_s_nq:.._ 880 Ry, = + 550-3_{:!.:[:

Y R

v 24
Reg = 47.5* +> Ry = = 34 X 23.3 = 47.5* &+
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# '*
Method C: " f
60% 40 w0k /
Rax-l—’a l I L\—R&x
R“y Rby JR
EM, = 0: Ry T IM, = 0: Ry, T 1
40 X 454 = 6.6 60 X 464 = 10
40 X 1354 = 20 40 X 134, = 20
80 X 29, =50 _ 4 X 2% =333 _
56.6 20 43.3 20
n_ 20
Ry = ==_ $ Ry = 2__ ¢
B, = 5* + Ros = 17.5% &

32

Discussion®

The three methods of solving for the reactions are all fundamentally the same and differ
only in the delails of the arrangement of the compulations. Melhod A is probably the
best way to organize the compulalions for an unusual or complicaled structure. Hou'ever,
the systemaltic arrangement of either methods B or C will be found most useful for the simple
or conventional lypes of beams and lrusses.

Nole that it is usually extremely conveniend lo replace inclined forces by their horizontal
and vertical components and lo use lhese components instead of the forces in wriling the
equalions of stalic equilibrium.!

Note also that il is helpful in checking work to indicale the directions of couples or
forces which were assumed as plus in wriling the equalions.

The compuler should clearly indicale his resulls by underlining them and also by
indicating the unils and directions of the forces. Remember thal if an answer comes oul
plus, the force was assumed acling in the correct direction on the free-body skelch; if the
answer comes oul minus, lhe force acls opposile to the direction assumed.

Note that in this problem two moment equalions and one force equalion were used in
the solulion. The check equation =F, = 0 gives a check on the verlical componenls of
the reactions bul does not check the horizontal components. If M = 0 were wrillen
about any aris that did nol lie on a line through a and b, a check would be obtained on the
values of the horizonlal reaclions.

L If hoth a force and its components are shown on a free-body sketch, a wavy line
should be drawn along the shank of the force arrow, thereby indicating that the force
has been replaced by its components
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Example 2:2 Defermine the reactions of this structure:

w0k sok , Jo*
4\5 4/\’/
a 1 f“ c‘[‘; v 3] ld
[ v M \ - 1
Lo 1T el e L)
| ' /5’ 2
| R Suns
: 0k
Raxa | 6 _F
’ A
3[__4' i :%50 40% 24 0k
Ray F Jo* i l— ] 1 od
b ’ R c 8’ ’ .
I 17173
W b R':.Y ﬁd}’
! dsolate ab: Isolate bd:
o M. =0,7% + -
'“z,y. =0, SMe=0,7 —(17.7\6) = 106.0
TRy — (40)(5) =0 —(17.)(18) = =320 —(0)(3) = 120
Ry =222 % —(W0)(15) = —600 +(5TX 8)(4) = 198
—(5 X 8)(K) = =256 +(30)(10) = 300
M, =07 + 928 — 296 6
(40)(%) — 1519) =0 —(30)(2) = —60 =206 6
‘ §;= 17.7¢ ] R., = .l().?kq: = —1.23 Ray =+2013 = 16+
¢ . 12 12
IF, =0 XK, =0
o Raz = 30* &+ R = 30k —

Check: ZF, = 0, T +, for enlire structure

222 — 40 — W0+ 103 — 32 —30+ 167 =0
172 — 142 = 0 - O0.K.

7

Discussion:

o When isolating the two portions ab and bhd from one another, imagine thal the hinge
pin s remeved.  The hinge may lransmil a force acling in any direclion through the
cenler of the hinge pin. If the horizontal and vertical components of this foree are desig-
nated by F and S and assumed (o acl as shown on the porlion ab, they must acl in the

- opposile senses on the porlion bd. Nole thal an independent check could be obtained on
both the horizonlal and the verlical reactions by taking XM = 0 abouwt some aris which
does nol lie on the line through a and d.
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Example 2:3  Delermine (he reactions of this beam:

20k 30k g0k
iqs a | | 5 ‘77 c I+
et q?ié
S e |6 |66 | 6 f
T i T
l: 20’ 12!

20k 30k a7k s0%
3 4
HaxiBay a I l 5 2236 & Rox=7Rcy
8’ la' 6'} 6| 6"}
Ry ‘20" /2

R
R, R,

sV =0,
(R 0200 — (40,012) — (30)(6) + (12.72)(6) — (R)(12) =0,

0Ray = 121, + 391.68
SEoo 0,7 N R, = 2236 — LR, =0,

Rey = 0.5625R,, — 1677 -
SO20R, - 6758, = 0025 + 39068, Ray = +1537% % Ree = 10 785 4% 7,
and A N 3
R, =808 — 1677 = =869 R, = —86% %, R, = —11.59%+ %
RV A
NS @B — (R ) (20) & (3570260 + (8 69)(32) = 0,
Ry = 109.0* 2
Check: SF,o= 00
1537 — W — 30+ 109.0% — 1570 — 869 =0 -
12340 — 19341 = 0 S O0K. r o4
(Check:

o

F - 0,77
1078 — 9236 + 11.59 - 0
—9236 19937 =0 - O.K.

Example 2.t Defermine the reactions of this structure:

8% 6+ er/’
IR N o e
Lo Lo a7 e
8k 6k
o}{';“ L b F-0
i L?ay 1s=/ok Py

onblillc

s TRy
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Isolate bc:

. M, = 0,7, (DUOB) — (R)10) =0 o Ry =10+ F
? IM,. =0, 7%, (S)(10) — (2)(10)(5) = 0 o8 =104 .
v

Igolate ab:

SM, = 0,73, (100(12) + (6)(9) + 8)(6) — Ma =0 - M, = 2920

Y 3P, =01+ Ry —-8—6—10=01, =22 ¢

GCheck: TF, = 0, applied lo enlire beam,
24 —8—6— 20+ 10
0

0
0 - 0.K.

[

Example 2:5 Delermine the reactions of this truss:

*

ZF, =0, Ry = 2"+

My =07, (R.,)(/;E — (40)(37.5) = 0, Roy =375 3

M. = 0,7, (40)(12.5) — (21)(30) — (R,)(40) = 0, Ry, = —5.5* ¢
Check: *Fy =0,1+,375 -32 -55=0 - O.K.
Discussion:

In problems such as this, first compule the loads acting on the struclure. Thiz may

done by isolaling the roller, that is in equilibrium under ils own weight, the lension

in the cable, and the reaction of the truss on the roller. The loads acting on the structure

" Raving first been determined, it is a straigh'forward problem o delermine the reaclions.

*Nole thal it has been assumed that lhere is no friction between the roller and truss and

therefore that the interacling force belween the lwo acts normal lo the line ab and is direcled
’ﬂ:rough the center of the roller.

Bl
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Example 2:6 Delermine the reaclions of this structure:

| K .
\Ok

20' ‘OV'

0 e £ g

20'

20’

Free-body sketch A:
M ] —_ (L)_(__.?O) =
SMq = 0,7, (H1)(30) o (10) = 0, H, =5H

M, = 0,3, 200 90) - (Ru)(30) = 0, Ras = 100>

Free-body sketch B:

My = 0,7, (40)(22.36) — (V))(80) = 0, Vi =1148T & Ry = 11.48 3
IF, =0, 7,179 =5-F, =0, F, =129~ = F, =2%(129) =516 }
EM, = 0, T, (17.9)(10) — (35.8)(60) — (5.16)(80) + (V1)(80) = 0,
Vg = 29-77T
o Rey = 29.77°%
Check: ZF, = 0, T+, —5.16 + 29.77 — 35.8 + 11.18 = 0
& =001=0 ~OK.
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Frée-body sketch D
- IO ’+‘ (12.9)020) = (R)U5) =0 = Ry = 1.2 %
¥
=M, = 0,7, (12.9)(20) — (5.16)(15) — (Ru,)(15) =0 SRy = 12.00 1
K, = o, Ry = 12954+

, $Check on structure as a whole:

8k —0, 3 —129+ 179+ 10 - (”f—?ﬁ) =0 ~0=0 OK.
. 3F, =0, T+ —17.9 4+ 12.0% + 29.77 — 35.8 4- 11.18 = 0, —0.01 =0 O.K.
ML = 0,77, — U0 (15) ~ (29. 77)(,0) — (LL18)(120) 4 (17.9)(40)
+ (35.8)(60) — “ 130 (19 -

—2,863 4+ 2,864 =0 O.K.

Discussion:

In problems of this lype, the structure is broken up into ils separate structural elements,
and the free-body skelches are drawn for each element.  The inleracting forces between
elements may be assumed lo acl in etther sense, bul they must act in opposile senses on two
adjacenl elements. For example, if force F is assumed lo act down lo the left on sketch B,
it must act up to the right on sketch D.  Since the structure as a whole is in equilibrium,

< pach of ils elemenls must be in equilibrium. The equalions of stalic equilibrium for
- each element must be satisfied, and they therefore form a basis for the solution of the
+ gnkrown reactions and unknown inferacting forces.
* Note that when all the unknown reaclions have been obtained the resulls may be checked
& by applying lthe equations of static equilibrium lo the structure as a whole lo sce whether
o or not they are salisfied.

' ¢ 2:12 Superposition of Effects. At this point, a brief discussion
% of the principle of superposition is appropriate. This principle is used
® continually in structural computations. As a matter of fact, its use has
already been implied in the solution of EKxample 2-1 by method €. There
the reactions due to each of the three loads were computed separately
and added algebraically to obtain the reactions due to all three loads
acting simultaneously. In other words, the separate effects were super-
imposed to oblain the total effect.

Such a procedure is usually permissible.  However, there are two
1mp0rt.mt cases in which the principle of superposition is nol valid: (1)
" when the geometry of the structure changes an essential amount (lunng
the application of the loads; (2) when the strains in the structure are not
adirectly proportional to the corresponding stresses, even though the effect,
£of change in geometry can be neglected.  The latter case occurs whenever
tthe material of the structure is stressed beyond the elastic limit or when

it does not follow Hooke'’s law through any portion aof its stress-strain
curve.

In Art. 2.3, it is poinl(-d out, that usually the deformations of o struc-
ture are so slight that it is permissible to consider ‘the. structare gs .o

rigid body in appl ymg the equations of statie cqulhbnum and thom,loro to
AV e
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neglect the effect of slight changes in geometry on the lever arms of forees,
the inclinations of members of the structure, ete.  However, consider the
structure shown in Fig. 2-10.  In this case, all three hinges lic along the
same straight line in the unloaded structure. It will be found necessary
to consider the alteration of the geometry caused by the deformation of
the structure, for the lever arms, slopes of the members, cte., are changed
by an important amount. As a result, it will be found that the stresses’
and deflections in the structure are not

. . 2
directly proportioned to the load P even
though the material of the structure ] Hinge
may follow Hooke’s Inw.  This is there- g . —3
fore an illustrationof the first case noted a \“45——’ - .
above where the principle of superposi- Fie. 2-10

tion is not valid.  In this structure, the

effects of a load 2P are not twice the effects of a load of P, nor are the
effects of a load equal to Py 4+ P- equal to the algebraic sum of the effects
of Py and of P, acting separately. From applivd mechanics, a more
important case may be recalled where superposition is not valid—the case-
of a slender strut acted upon by both axial and transverse loads. Therk s
the stresses, moments, deflections, ete., due to an axial load of Py 4 Py aré’
not equal to the algebraic sum of the values caused by P, and P acting
separately.  Fortunately, most cases of this type where superposition is
not valid are easily recognized.

It is mentioned above that superposition is not valid in cases where,
although the effect of change in geometry can be neglected, the material
of the structure does not follow Hooke’s law. I such structures are also -
statically determinate, then quantities that can be found by statically
determinate stress analysis (such as reactions, shears, and bending
moments) may be superimposed but (iber stresses and deflections cannot
be superimposed.  For example, in the case of an end-supported cast-iron
beam, the reactions and the shear and bending moment on the transverse R
cross sections are statically determinaw gwantities and may be super-
imposed.  However, the fiber stresses and deflections produced by the
bending moment due to a load 2P are not equal to twice those due to load
P, and hence such quantities cannot be superimposed.  If the reactions
of a cast-iron beam are statically indeterminate, then none of these quan- *
tities may be superimposed, since the stress analysis is then a function of
the distortion of the structure. ‘

v

2:13 Problems for Solution.

l’mblem 2.1 hClaSBlﬁ‘ho structures shown in Figs. 2-9¢,f, 1. [too,and {to v
as stable w ungtable , and.’ statically determinate or indeterminte. Discuss
and state msons fop your-answer.
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Problem 2:2 Determine the reactions of the beams of Fig. 2-11. . A
Problem 2:3 Determine the reactions of the structures of Fig. 2-12.
20%
N
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Problem 2-4 It is sometimes difficult to convince a student that there are
only a certain number of independent equations. To demonstrate this, consider
the structure shown in Fig. 2:8. Draw three free-body sketches—one of the
entire structure, one of the portion ab, and one of the portion bc. Write three
equations of static equilibrium for each sketch. Compare and combine these
nine equations thaining six unknowns, and show that there are only four
independent eqmtigns oo%taining four unknowns among them.



CHAPTER 3
SHEAR AND BENDING MOMENT

3:1 General. The ultimate aim of all stress analysis is to deter-
ne the adequacy of a structure to carry the loads for which it is being
signed.  The criteria for determining this involves a comparison of the
iber stresses developed by the applied loads with the allowable stresses

*for the structural material being used. The stresses acting on any cross

section may be studied by passing an imaginary seetion that cuts through
the structure along this cross section and isolales any convenient portion
of the structure as a free body. If all the other forces acting on this

_isolated portion have alrcady been determined, the required resultant
effects of the fiber stresses acting on the cross scction being investigated
may ecasily be computed by the cquations of static equilibrium.

One of the commonest structural elements to be investigated in this
manner is a beam, i.e., a member that is subjected to bending or flexure
by loads acting transversely to its centroidal axis or sometimes by loads
acting both transversely and parallel to this axis. The following dis-
cussions are limited to straight beams, i.e., beams in which the axis
joining the centroids of the cross sections (centroidal axis) is a straight
line. It is also assumed that all the loads and reactions lie in a single
plane which also contains the centroidal axis of the member. If this
were not so, the beam might be subjected to both twisting and bending.

3:2 Determination of Stresses in Beams. Suppose that, in
determmmg the adequacy of the statically determinate beam in Fig.
3-1, it is necessary to compute the fiber stresses on o transverse cross
section mn. The reactions necessary for static equilibrium may be

- computed easily and are shown in free-body sheteh A, The portions of
the beam to the left and right of cross section mn may be imagined to
be isolated from one another by cutting the structure in two along this
section. Free-body sketches B and C may then be drawn showing all
the forces acting on these two portions of the beam.

When one considers the external forces acting on either of the por-
tions B or C, it is immediately apparent that the portions are not in static
equilibrium under the external forces acting alone. If the beam as a
whole is in equilibrium, however, then each and every portion of it must
be in equilibrium. It is therefore necessary that there shall be internal |
forces or stresses distributed over the internal faces which haye beent

exposed by the imaginary cut. These stresses must be of such & magaj-
52 '
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f‘-v.‘,
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tude that their resultant cffect balances that of the external fordes ac
on the isolated portion and therefore maintains the portion in a’stéte g j
static equilibrium. “ }
The fiber stresses acting on the exposed internal faces may be brc?n
down into two components, one component acting normal to the face
and called the normal fiber siresses and the other acting parallel to the %
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face and called the shear fiber stresses. In the free-body sketches B and
C, these fiber stresses have been replaced by their resultant effect as
represented by the stresses S and F, acting through the centroid of the
cross section, and the couple M. Note that the resultant effects S, F, and
M of the fiber stresses acting on the portion in sketch B are shown to be
numerically equal but,ppposite in sense to the corresponding effects
‘shown in sketch C. Rt this must be so is apparent from the following

cdnmde'ﬁmons :
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SHEAR AND BERDING MOMENT 1§33
¢ -‘*"tonsﬁer the free body sketch A showing the entire beam acted upon
ﬁ? # the extdrhal loads and reactions. Suppose that the resultant of
the external forces applied to the beam on the left of section mn is
uted in magnitude and position. Suppose similar computations
ade for the resultant of the remaining external forces applied to
e right of mn. Now if the beam as a whole is in equilibrium under all
{Mhe forces acting on it, it must be apparent that the resultant of those
Sarces apphed to the left of mn must be collinear, numerically equal, but
7 ite in sense to the resultant of the remaining forces applied to the
ght of mn. It therefore follows that the resultant of the external forces
$n sketch B must be numerically equal but opposite in sense to the
resultant of the external forces in sketch C and hence the resultant effects
of the fiber stresses in sketches B and C must likewise bear the same
relation. .
It is convenient to assign names to F, S, and M, the resultant effects
*of the fiber stresses acting on a cross section of a member. The axial
force F acts through the centroid of the cross section and will be called
the axial siress. The transverse force S will be called the shear stress
and the couple M the resisting momendt.

In order to satisfy the three equations of static equilibrium for either
the portion of the beam in sketch B or the portion in sketch C, the magni-
tudes of F, S, and M must be such as to counteract the resultant of the
external forces acting on the portion considered. Which portion is used
makes no difference theoretically. The portion having the fewer external
forces is ordinarily used so as to simplify the computations. Static
equilibrium will be maintained by values computed in the following
manner: The axial stress F and the shear stress S must be equal and oppo-
site to the axial and transverse components, respectively, of the resultant
of the external forces acting on the portion of the beam under considera-
tion. Upon taking moments about an axis through the centroid of the
cross section, i.e., the point of intersection of the stresses F and S, it is
Ahen apparent that the resisting moment M must be equal in magnitude
but opposite in direction to the moment of the resultant of the external
forces acting on this portion.

Once the axial stress, the shear stress, and the resisting moment have
been determined at any section, the intensities of the normal and shear
stresses at any point on the cross section may be computed by using well-
known equations given in standard textbooks on the strength of materials.

3:3 Shear and Bending Moment Defined; Sign Convention.
From the previous discussion, it is evident that, in order to determine the
magnitudes of the axial stress, the shear stress, and the resisting moment.
acting on a cross section of a beam, it is advisable to compute first the

x
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magnitude and position of the resultant of the external forces actnfg'oﬂ;bl

the portion of the beam on either side of that cross section. It4s usually

convenient to represent this resultant by its axial component, its trans- *
verse component, and its moment about an axis through the cen’oid"’
of the cross section under consideration. These three elements ‘ata-
statically equivalent to this resultant and are given the following threg" -
names, respectively: azxial force, shear force, and bending moment. Tlie
definition of these three terms may therefore be summarized as followyg:" !

Azial Force F: The axial force at any transverse cross section o?a; i
straight beam is the algebraic sum of the components acting parallel ay’,
the axis of the beam of all the loads and reactions applied to the portion’
of the beam on either side of that cross section.

Shear Force (Shear) S: The shear force at any transverse cross section
of a straight beam is the algebraic sum of the com-
ponents acting transverse to the axis of the beam of all
the loads and reactions applied to the portion of the
beam on either side of the cross section.

Bending Moment M: The bending moment at any
transverse cross section of a straight beam is the
algebraic sum of the moments, taken about an axis ) Shear force
passing through the centroid of the cross section, of all o~ N
the loads and reactions applied to the portion of the M
beam on either side of the cross section. The axis ()gending moment
about which the moments are taken is, of course, Fic. 3-2
normal to the plane of loading.

While it is not the purpose of the authors to encourage the memgorizing
of structural principles, forinulas, etc., these definitions recur constantly
and are so fundamental to structural engineering that students should
study and understand them so thoroughly and completely that they are
indelibly impressed on their minds.

With these definitions introduced, this discussion may now be sum-
marized by saying that the axial stress acting on a cross section will be
equal but opposite to the axial force at that section; the shear stress will
be equal and opposite.to the shear force (or shear); and the resisting
moment will be equal and opposite to the bending moment.

In subsequent calculations, the following sign convention will be used
to designate the directions of axial force, shear, and bending moment at
any transverse cross section of a beam. The convention is that ordinarily
used in structural engineering. It is clear and simple to employ and will
be referred to as the beam convention. As shown in Fig. 3-2, axial force

wis plus when it tends tapull two portions of a member apart, i.e., when it
tends qm:toduce a teg)ﬁél"é stress on the cross section. Shear force is plus

Wr

(+) Axial force
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g/ 1t~:tends to push the left portion upward with respect to the right.
Béndingrmom®iit is plus when it tends to produce tension in’the lower
. fibers of the beam and compression in the upper fibers, i.e., to bend the
Oy m concave upward. Many beams are horizontal, and thls convention
bt be applied without confusion. When a member is not horizontal,
‘:. owever, either side may be selected as the “lower side’” and the beam
.é‘,?onvention applied to correspond.
% 34 Method of Computation of Shear and Bending Moment.
’5' Fhe procedure for computing the axial force, shear force, and bending
Mmoment at any section of a beam is straightforward and may be explamed
* easily by the illustrative problem shown in Fig. 3-3. In this problem, it is
desired to compute the axial force, shear, and bending moment at the
cross sections at points b, ¢, and d. The computation of the axial force
is simple and needs no explanation in this case, as is true of this computa-
tion with respect to most beams. If the couple applied by the bracket
. @t point ¢ is assumed to be applied along the cross section at point ¢,
there will be an abrupt change in the bending moment at this point and
it is necessary to compute the bending moment, first on a cross section
an infinitesimal distance to the left of ¢ and then on a cross section an
infinitesimal distance to the right of c.

It will be recalled that the shear and bending moment at any cross
section may be computed by considering all the external loads and
reactions applied to the portion of the beam on either side of the cross
section under consideration. FEither portion may be used, but the com-
putations may usually be performed more efficiently by using that involv-
ing the smaller number of forces. One portion having been selected,
only the loads and reaclions acling on thal portion are included in the
summation of the force components or moments.

The left-hand portion of the beam was chosen for computing the shear
and bending moment at section b, and at the sections to the left and right
of point c. Free-body sketches B, C, and D, respectively, show the por-
tjon used in each case. To illustrate the advantage of using one portion
instead of the other, the shear and bending moment at section d are
computed by using first the left- and then the right-hand portion, as
shown in free-body sketches E and F, respectively. Note the simplicity
of the computations for sketch F as compared with sketch E.

To explain typical computations, consider those for the shear and
bending moment on the cross section just to the left of point ¢, as shown in
sketch C. The shear force at this section is the algebraic sum of the
57-kip reaction, the uniformly distributed load totaling 16 kips, and the
concentrated load of 30 kips, where the reaction causes positive shear
(tends to push left portion up) and the two loads cause negative shear

SHEAR AND BENDING MOMENT [§3-4
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x e

(tend to push the left portion down). Ience, the shear forceis ™ e e S
S = +57 — 16 — 30 = +11 kips

having a resultant positive effect tending to push the left portion up %

respect to the right. For equilibrium, the total shear stress obvi
must be 11 kips acting down on the cross section in sketch C. In th‘l!k
same manner, the bending moment is the algebraic sum of the moment&"
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about the centroid of the cross section of the same three forces.  Since
the reaction tends to produce tension in the lower fibers at the section
and the two loads tension in the upper fibers, the bending moment is

= (57)(12) — (16)(10) — (30)(4) = 4404 kip-ft
having a resultant positive tendency to produce tension in the lower
fibers. Again for equilibrium, it is necessary for the resisting moment to

be 404 kip-ft acting counterclockwise on the cross section in sketch C.
The remaining computations are sclf-explanatory.

.
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It isim oF it to note that if the axial force, shear, and bending
momentare k at one cross section, similar items may be*gompuﬁd
. at any other cross section, by using these known quantities rather than
ing with all the external forces on the entire portion of the beam on
5 tather side of the new cross section. For cxample, the axial force, shear,
and bending moment at ¢ could be computed with the quantities already
ymputed at b. This is apparent since the shear, axial force, and bending
'.. ‘moment at b are statically equivalent to the resultant of the external
rorces applied to the left of b. Hence, the contribution of these forces to
sthe resultant cffect of all the forces to the left of ¢ may be evaluated by
‘using their statical equivalent rather than the forces themselves. The
advantage of this procedure increases with the number of external forces
applied to the left of point . Such computations are illustrated under
* sketch G of Fig. 3-3, and the forces acting on the isolated portion be are
" shown in this sketch.
<% 35 Shear and Bending-moment Curves. When a beam is
l*mg analyzed or designed for a stationary system of loads, it is help-
ful to have curves or diagrams available from which the value of the
shear and bending moment at any cross section may readily be obtained.
Such curves may be constructed by drawing a base line corresponding in
length to the axis of the beam and then plotting ordinates at pointsalong
this base line, which indicate the value of the shear or bending moment
at that cross section of the beam. Plus values of shear or bending
moment are plotted as upward ordinates from the base line and minus
values as downward ordinates. Curves drawn connecting the ends of all
such ordinates along the base line are called shear and bending-moment
curves. In Fig. 3-4, shear and bending-moment curves are shown for
the beam in Fig. 3-3.
The construction of these curves is quite straightforward, but needs
some explanation. The shear on a cross section an infinitesimal distance
.. to the right of point a is +357 kips, and therefore the shear curve rises
Abruptly from zero to 57 at this point. In the portion af, the shear
on any cross section a distance x from point a is
S =57 — 4z
which indicates that the shear curve in this portion is a straight line
decreasing from an ordinate of 457 at a to +41 at point f. Since no
additional external loads are applied between points f and g, the shear
remains +41 on any cross section throughout this interval and the shear
curve is a horizontal line as shown. An infinitesimal distance to the left
of point g the shear is 441, but at an infinitesimal distance to the right
of this point the 30-kip load has caused the shear to be further reduced to
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+11. Therefore, at point g, there is an abrupt change in the sbear
curve from +41 to 4-11. In this same manner, the remainder of fhe
shear curve may easily be verified. It should be noted that, in effect,’ A5 3
concentrated load is assumed to be applied at a point and hence at s N
point the ordinate to the shear curve changes abruptly by an amouqf -
equal to the load. Physically, it is impossible for a load to be applied a

a point without developing an infinite contact pressure, and it is therefo
necessary for such loads to be distributed over a small area. lIowevefy

O
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for computations such as for shear and bending moment, such incon-
sistencies are ignored, and it is considered mathematically possible that
concentrated loads may be applied at a point.

In the portion af, the bending moment at a cross section a distance
from point a is M = 57z — 2z2. Therefore, the bending-moment curve
starts at 0 at point a and increases along a curved line to an ordinate of
4196 kip-ft at point f. In the portion fg, the bending moment at any
point a distance z from point fis M = 196 + 41z. Hence, the bending-
moment curve in this portion is a straight line increasing from an ordinate
of 196 at f to 360 at g. Likewise, in the portion ge, the bending-moment

" curve is a straight line increasing to a value of 404 at a cross section an
infinitesimal distance $0 the left of point ¢. However, at.a cross section

.
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. an‘inﬁmteﬁm dlstance to the right of point ¢, the bending mgment has
mcreaqed by 28'to 428. Assuming the external couple of 24 Kip-ft tothe

@lled exactly on the cross section at point ¢, there will be an abrupt
‘change in the bending-moment curve similar to the abrupt changes
in the shear curve already discussed. In an analogous manner, the

remainder of the bending-moment curve may easily be verified. The
‘tomputations for the controlling ordinates of the curve are shown in
Fig. 3-4.

3:6. Relations between Load, Shear, and Bending Moment.
In those cascs where a beam is subjected to transversc loads, the con-
struction of the shear and bending-moment curves may be facilitated by

recognizing certain relationships

z 5 that exist between load, shear, and

l £ l bending moment. For example,

i VTR 5%  consider the beam shown in Fig.
x ‘dx 3-5. Suppose that the shear S and

"L the bending moment M have been

' computed at the cross section for

any point m. Point m is located by

P, the distance x, which is measured
l from point a, being positive when
6  measured to the right from that

P,
| '
a —
R, ‘L_-T B { Ry, point. Suppose that the shear and
A—J bending moment are now computed
x, at the cross section at point n, a

Fre. 3.5 differential distance dx to the right

of point m. Assuming that a uni-

formly distributed upward load of an intensity p per unit length of beam

has been applied to the beam between m and n, the shear and bending

moment will have increased by differential amtounts to values of S + dS
Qand M + dM, respectively.

* The new v'ﬁ of shear and bending moment at point n may be

computed by ¢ the values already computed at point m, as is dis-
cussed in Art. 3:4. Thus,

S+dS=8+ pdr (a)

M+dM=M+Sdz+pdx£2—z (b)

*Therefore, from (a) it is evident that

E-r »
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g B
and, differential quantities of the second order being neglected f!om
Eq. (b) it.may be found that: * ; ~,

8 daM =S { d)
dx 0
It should be particularly noted that, in addition to the usual beam con«
vention being used for shear and bending moment, upward loads have l
been considered as positive and « has been assumed to increase from left
to right.

The relationships stated mathematically in Egs. (¢) and (d) are
tremendously helpful in constructing shear and bending-moment curves.*
Consider first Eq. (c). It states that the rate of change of shear at any
point is equal to the intensity of load applicd to the beam at that point,
i.e., that the slope of the shear curve at any point is equal to the intensity
of the load applied to the beam at that point. The change in shear dS
between two cross sections a differential distance dx apart is

dS—gf—gda: pdzx

Therefore, the difference in shear at two cross sections A and B is
—Su=" Sz=8 “pd
Sg — Sa j;‘pdx or B .4+_/;‘p z

Thus, the difference in the ordinates of the shear curve at points A and B
is equal to the total load applied to the beam between these two points.

According to Eq. (c) and the sign convention used in its derivation, if
the load is upward, or positive, at a point on the beam, the shear is chang-
ing at a positive rate at this point. This means that if the shear is com-
puted on a cross section just to the right of this point, i.e., at a slightly
greater distance x from the left support,.it will tend to be more positive,
or algebraically larger, thin it was at the first point. Of course, if the
load is downward, or negative, at a point, just the reverse will be true.
If we think of this interprétation in terms of slope of the shear curve and:
use the ordinary calculus convention for slope of a curveg dS/dz is plus,
the curve slopes upward to the right, since positive valuag0¥ S are plotted
upward and z increases from left to right. If dS/dx is miaus, the shear
curve slopes downward to the right.

To apply these ideas, if a uniformly distributed load is applied to a
portion of a beam, p will be constant and therefore the shear will change
at a constant rate and the shear curve will be a straight sloping line in
such a portion. However, if the load is distributed but its intensity

ﬂi:: continuously, the shear curve \ﬂ'ahe a curved line whose slope
I

es continuously to correspond. no load is applied to a beam

kN



62 : "SHLAR AND BENDING MOMENT §3+6

f \l
between twwpolﬁs the rate of change of shear will be zero, i e the shear
will remain con%tant and the shear curve will be straight and ﬂarall
the base line in this portion. At a point where a concentrated loa
“applied to a beam, the intensity of load will be infinite, and therefore t
Bope of the shear curve will be infinite, or vertical. At such a pomt
~t.here will be a discontinuity in the shear curve, and the difference in
drdinates from one side of the load to the other will be equal to the con-
centrated load. These ideas conform to the discussion of the previous
article.

Equation (d) may be interpreted in the same manner. It states that
the rate of change of bending moment at any point is equal to the shear
at that point in the beam, i.e., the slope of the bending-moment curve
at any point is equal to the ordinate of the shear curve at that point.
The change in bending moment dM between two cross sections a dif-

_ferential distance dr apart is
’ aM

dM——d—da: Sdz

Therefore, the difference in the bending moment at two cross sections A
and B is

JordM =My — Ma= [*Sdz o Ms=Mi+ [*Sda

or the difference in the ordinates of the bending-moment curve at points
A and B is equal to the area under the shear curve between the two
points.

From Eq. (d) it is evident that, if the shear is positive at a point in a
beam, the rate of change of bending moment is also positive at this point.
This means that if the bending moment iscomputed on a cross section just
to the right of this point, i.e., at a slightly greater distance z from the left
. support, it will tend to be more positive, or algebraically larger, than it
. was at the first point. If the shear is negative, just the reverse will be
“$rue. In terms of slope of the bending-moment curve, it may be said
‘that if dM/dz is positive (or negative), the slope of the bending-moment

eurve at this point is upward (or downward) to the right, since positive
values of M are plotted upward and z increases from left to right.

If the shear is constant in a portion of the beam, the bending-moment
curve will be a straight line in this portion. However, if the shear varies
in any manner within a portion, the bending-moment curve will be s
curved line. At a point where a concentrated load is applied, there is
an abrupt change in the ordinate of the shear curve, and therefore an
abrupt change in the slope of the bending-moment curve at such a po
At a point where the shear curve goes through zero and the ordmale*
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the left of the point are positive and those to theiighif ﬁégati‘ve; the ‘ﬂope
of the bending-moment curve will change from positive at theTeft of the
point to negative at the right of the point. Therefore, the ordina; "@j
the bending-moment curve will be a maximum at such a point. ,'é’ht
the other hand, the shear curve goes through zero in the reverse maff.
ner, the ordinate at that point on the bending-moment curve will b%:{
minimum.

3:7 Construction of Shear and Bending-moment Curves.’
The ideas of Art. 3-6 may be utilized most efficiently in constructing shear"
and bending-moment curves for beams subjected to transverse loads if
the following procedure is adopted: After computing the reactions of a
beam, first plot a load curve. The load curve is a curve the ordinates of
which show the intensity of the distributed load applied to the beam at
any point. In addition all concentrated loads should be indicated.
Upward, or positive, loads should be drawn above the base line and
negative loads below. Then the shear and bending-moment curves may
be constructed in turn, proceeding from left to right across the beam, apd
establishing the shape of the curves by using the following principles,
which are summarized from the above discussion:

1. The slope of the shear curve at any point is equal to the intensity
of the distributed load at that point.

2. Abrupt changes in the ordinates of the shear curve occur at points
of application of concentrated loads.

3. The slope of the bending-moment curve at any point is equal to
the ordinate of the shear curve at that point.

4. At points where concentrated loads are applied, there are abrupt
changes in the ordinates of the shear curve, and hence abrupt changes in
the slopes of the bending-moment curve.

It is usually necessary to compute the numeral values of the ordinates
of the shear and bending-moment curves only at the points where the -
shapes of the curves change or at points where the maximum or mini-,
mum values occur. Such values may usually be most casily compulnﬁ
by direct computation as in Fig. 3-3. Such computations may be
checked using the following principles if the value of one ordinate of*a
curve is known:

5. The difference in the ordinates of the shear curve between any
two points is equal to the total load applied to the beam between these
two points, i.e., the area under the load curve between these two points
plus any concentrated loads applied within this portion.

6. The difference in the ordinates of the bending-moment curve

. hetween any two points is equal to the area under the shear curve between
t ese two points.
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This mgthod of constructing shear and bending-moment curves will
be illustrated in the examples that follow. . ’ i&;‘
~ Although all these relations and this discussion apply specifically gp
the case of a beam loaded by transverse loads, it should not be inferred
that they are useless in analyzing a beam subjected to a more general
condition of loading. The method of handling such cases will be dis-
cussed in the examples that follow. For cases of loading involving any-
thing more complicated than transverse loads, it will be seen that a load
curve loses its utility and becomes impractical. While some of the above
relations may be used to advantage, it will be found that, in most of the
more complicated cases of loading, they must be revised. To illustrate,
in Example 3-5 it will be seen that abrupt changes in the ordinates of
the moment curve occur at points where external couples are applied to
the beam. Therefore, the difference in the ordinates of the bending-
moment curve between any two points will be equal to the area under
the shear curve between these two points plus or minus the sum of any
external couples applied to the beam within this portion. However, the
student will find that the experience gained in drawing the shear and
bending-moment curves for the simpler cases of transverse loadings will
enable him to proceed to the more complicated problems with very little
difficulty.

3-8 Illustrative Examples—Statically Determinate Beams.
The following examples will illustrate the construction of shear and bend-
ing-moment curves for statically determinate beams, utilizing the ideas
and principles discussed above:
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gxample.’i-l : . 4';; .
;& »
M, = 0,7 ),
—(2)(16)(8) = —256 3y
+@)(2%)(1%) = +33.3 -
2k Roy = 1143 —222.6 "
c d Tt e —=
a”f;:? 67 w0 M, = 0,7}
p X 2)(16)(12) = +384%
» ¥ y7087 (9)(194)(23.3) = +233.3
p=0y § | | | TE +617.3
==2k/! Pty " Rey = 30.87% 3
|—»-2C l——2C ———
2k, =0, T+,
11/6M +iok 11.13 + 3087 —32 —10 = 0 . O.K.
sk [~ Shear:
—;;7:' 2087k Sc(left) = 11.13 — (2)(16) =;i(_)=8=7‘
Location of point of S = 0 belween b and ¢,
/ S;: =1113 - 22 =0 sz o= 557
4”,,,*7‘55“ Bending moment:
MK | l \ M, = +(11.13)(4) = +44.52"’
_ U0 r10 y
¥ M. =~ () = o
Between b and ¢,
9 2
Mmus = (11.13)(9.57) - g—‘_)(—.;—'ﬂ)'—
- 47548
Discussion:

In establishing the shape of the shear and bending-moment curves, follow the ideas of
Art. 3-7.  Slarting at the left end of the shear curve, the curve rises abruptly to a value of
+11.13. From a to b, since p = 0, the shear curve is horizonlal. From b lo ¢, since
p = —2, the shear curve slopes downward lo the right al a constan! slope lo a value of
—20.87 just to the left of c. Al ¢, the reaction causes an abrupt increase in the ordinale of
the shear curve to + 10 just o the right of point c. From clod, sincep = —2 + (z/5),
the shear curve slopes downward to the right with a slope that varies linearly from —2 af'c
to 0 al d.

In the same way, the bendmg-momenl curve slarls at 0 al a and progresses from a to*b
wilh a constant posilive slope (upward to the right). To the right of b, the slope decreases
linearly from a slope of +11.13 at b lo zero al the point of marimum moment, and further
lo a slope of —20.87 at c. There is an abrupl change in slope al ¢ lo a value of 410 just
lo the right of c.  Between ¢ and d, the slope decreases from +10 o 0 at d.

The numerical value of the conirolling ordinales of the shear and bending moment may
be most easily compuled by direct compulation in the manner discussed in Arl. 3-4.
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Example 32 A
&
. b
W
&
&3 <
I © #*
8 3§ b 1 3
w S~ Y ) &
) O\ N b2 "
R § S 3 9 N
S 3 L\ ]
v S <
q Y
8 N *
N R
W 2. Y §
2 /a 22/ 'V *Q

.y M

&
15
.
60150,
N
10125 #

3F: = 0,F, Ras — (1,125)(134) = 0, Ry = 10,125 4+
EM. = 0,3, (1,125)(184)(6) — M. = 0, M, = 60,750't <+

Shear and bending moment:
Aly = 9, p = —1,125 4+ (62.5)(9) = —1,125 + 562.5 = —562.2¢"

8 = +(562.5)(%) = +2,531.3¢
M = —(562.5)(%)(3) = —7,593.8'¢

|

Discussion:

A fler the reactions have been delermined, the load, shear, and bending-momen! curves
may be drawn, the fibers on the righl-hand side of the cantilever being considered as the
*“lower fibers” in applying the beam convention. Then, the uniformly varying load
would be considered downward or negalive in plolling the load curve.

The shear curve rises abruptly al a lo a value of +10,125. Progressing toward b, the
shear curve slarls downward wilh a negalive slope of 1,125 bul gradually flattens oul to zero
slope as well as a zero ordinale at b.

On the other hand, the bending-moment curve slarls from an ordinate of —60,750 al a
with a posilive slope of +10,125. Proceeding toward b, the magnilude of slope remains
p?iilive but steadily decreases unlil al b both the slope and the ordinale of the bending-
momenl curve are zero.

The shape of these curves having been established, an ordinate of either the shear or the
bending-momen! curve af any intermediale poinl such as y = 9 may most easily be com-
puled directly by considering Lhe portion of the beam belween thal point and b.
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g,Exampb 3-3 ' "
* sz = 0?? Mﬁ ‘v
00X 2= 60 &%
30X 8= 240 .
40 X 14 = 560 .
40 X 18 = 720
ok ok ok ok 40 X 22 = 880
Al A St 40 X 26 = 1,040
a b 220 3,500
ke 6’ 41 ¢ | & ' 6’ |2 o R“, = 109.37* ¢
32! M, =0,%
=109 4% Roy'/’d"' 30 X 30 = 900
pe0 1 30 X 2 = 720
P J l ‘L 'L l l 40 X 18 = 720
I PO T R T 40 X 14 = 560
oot "tk ok 40X 10 = 400
40X 6= 240
Liid 3,540
T‘m o Ry = 110.63* 3
s ] 2F, = 0,1, 109.37 + 110.63 - 220 = 0
-10.6 -~ 0K.
x -50 6 S = 19‘3./1 X 6 = gggg ‘l
A = Mg
§ -60¢ ] S= 694 X4=+216
p -108 —40 T934.0 = M,
\ S= 9294X4=+1176
/ =40 1051.6 = M.,
S= —106X4= —424
=40 1009.2 = M,y
A S= —506X6=—23036
8OOy N\ —30 705.6 = Ma,
§ 3 8§ § g R S= —80.6X6=—148.6
M L I ) L) B —30 2920 = M,
S = —1106 X 2 = —221.2
iLo‘g —ﬁ_ = A‘Iu Y
0 0 .
- 0.K. . O.K. )
NOTE: M. occurs where shear passes
through zero (14 ft from a).
Discussion:

In computing ordinales to the shear and bending-moment curves for concenirated load
systems, il is convenient lo arrange the compulalions in this manner, the ordinales being«
compuled successively from left to right by means of principles 5 and 6 slated near the end
of Art. 3-7. Nole thal a check of the compulations is oblained if boli curves come back lo
zero al point b.
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Example 3:4

sk
P B D S RV
L g 6 /8 c 6’ (i) (18) — (32)(5)(10) = 0
wa’k 7//‘* oo 1{1,,, = 88.5% $
P =M, = 0,73 -
S Y N Y N ~(Ra) (18) + (39)(5)(8) = 0
p=-5
__;_t____l SRy = ?j.l" T
156" 2F, = 0,7+,88.8 4 71.1 — 160 = 0
20 . 0.K.
M, = —(5)(8)(4) = —160¥
s m\ M. = —(5)(6)(3) = —90¥
40 -4Li In portion b {o c,
976" S = 48.8 — 5z
WhenS = 0 = 48.8 — 5z, -z = &Z
+ 7902*’ AN nlmax - l"b = '(ég.s"i)z—(‘l?:a
M / Moz = M, + 239.02
m \ = —160 4 239.02
> = +79.09%
-li60*’
Discussion:

Nole that the magnilude of the mazimum ordinate of the bending-momenlt curve
belween b and ¢ may easily be compuled by adding algebraically the area under the shear
curve belween b and m lo the ordinate M,. In this case, this is particularly easy because
the area under the shear curve is one (riangle.
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E:', Example 3:5

%
All pulleys have 2' diameler

1

M, =07
\ (5)(30) — (4)(30) — (R,)(24) =0
2 13 Ry = 1.25%
A : == M, = 0,7
= (Ray)(24) — (30)(19) — (30)(4) = 0
6 ') o |2 & ¥ ©+ Ruy = 2875,
ZF, =0, T+, 28.75 + 1.25 — 30 = 0

L OK.
Bending moments:
30k |a io c” a e Al b (just o left),
H)_4’ | My, = +(28.75)(6) = +172.5¥
I

30k | At b (just to right),
Ry M, = (28.75)(6) + (30)(3)

= +262.5*'

Al ¢ (just to lefl),
v _ " ’
() B j 125k M., = 262.5 .- (1.25)(8) = +252.5%
28.75% —J0 Al ¢ (just to right),
30k Jo* isolale element of beam
428,75 30k between  {wo  cross
- o seclions—one just fo
left, one just to right of
cx point c. This element
=125 -125 ”‘"J 125k will have a differential
o+ length, say, of 0+ fl.
M., =0,%
+252.5 — (30)(3) — (1.25)(0+)
— M., =10
My = 2525 — 90 — 0 = +16?.§:_"
At d (just to left),
M, = (1.25)(8) + (30)(3) = +100%
At d (just lo right),
Ma, = (1.25)(8) = +10¥

25257

262.5

172.5,

M

Discussion:

As is enident in Chap. 2, the compulalion of the reaclions of such structures may be
carried oul without first compuling the forces that the individual pulleys apply to the beam.
However, for the construction of shear and bending-moment curves and the compulation of
inlernal stresses in the beam, il is necessary to compule the delailed manner in which the
pulleys apply the loads. The reaclions from skelch I and the pulley loads having been
compuled, skelch IT may be drawn, showing the precise manner in which the siructure is
loaded.

As explained in the lalter part of Art. 3.7, it is unwise to altempt to draw a load curre
in such problems. Instead, the load curve is replaced by a free-body sketch such as skelch
II. The studen! may now proceed to draw the shear and bending-momenl curves, using
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the fundamenlal definitions and methods of computation and, of course, ulilizing the
ezperience gained in simple problems such as Examples 3-1 to 3-4. All the above cal-
culations may be followed without difficulty.

Example 3:6

M. =073
(50)(4) + (10)(6) — (40)(12)
sok 40k g0k Sok + (40)(16) + (40)(20) — (30)(1)
ok ‘ — (Ra)(24) = 0
¥ 4 200 + 60 — 480 + 640 + 800 — 30
ag— —b—clit -d- -e{.Hf— = 243“'
o> A TA E 4 Ry = 49.58 3
0% —~ ——
4! ‘I L4r ‘I ‘I 4/ ZA’, = 0, +
L (Ray)(24) — (50)(20) + (10)(6)
+ (40)(12) — (40)(8) — (40)(4)
— (30)(1) =0
24R., = 1,000 — 60 — 480 + 320
+ 160 + 30
& Rgy = 40.42¢ £
IF, =0, T+,
40.42 + 49.58 — 50 + 40 — 40 — 40
1042 =0 .~OK
Bending moment:
5 My =4042 X 4 = 161.68 = M,
~9.58 X h = —38.32
958 257 123.36 = M.(lef1)
+60
+183.36 =M. (right®
—958 X & = —38.32
-4258| “145.04 = M,
- 30.42 X 4 = 121.68
. N ¥266.72 = M,
2 /\ —958 X 4= _—38.32
= +228.40
\l\ = M, (left)
Now el N e +198.40
g 8 § § ® = My (right)
M —49.58 X & = —198.32
508 = M,
0
Discussion:

This ezample is similar lo Example 3-5, and the same commenis are applicable. In
addition, it should be noled that inclined loads are somelimes applied lo the lop or boilom
edges of a beam, such as the 50-kip load af f. In such cases, it is evident thal the horizontal
componen! of such loads will produce a couple which will cause an abrupt change in the
ordinales of the bending-moment curve at this poin.
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.
:ngxample 3-7
" _—
IM, =0,7
(5)(30)(12) — (Roy)(24) = 0 )
oo Ra, 5:02'_5:
M, =0,
—(5)(30)(12) + (Ray)(24) = 0 .
& Ry =Z§
Shear and berding moment:
Al a distance = from a,
S: = 60 — 4z
M; = 60z — 2z*
k
Pfs" T e A ST ootk
B
P =44 '
i *
4
s When z = 15/,
x S1s = 60 — 4(15) = 0
-60 My, = (60)(15) — (2)(15)* = +450%
B
3
M
Discussion:

When inclined beams are acled upon by a uniformly disiribuled verlical load per unit
of azial length, such as their own dead weight, the load inlensily may be resolved inlo
componenis perpendicular and parallel to the azis of the beam. If the load is applied lo
the azis of the beam, only the component perpendicular to the axis contribules to shear
and bending moment, the component parallel lo the azis conlribuling only to the axial
force. If the reactions are also resolved inlo componenis paratlel and perpendicular lo
the azis, the shear and bending-moment curves may easily be constructed in the usual
manner. These curves may be drawn aboul azes drawn parallel to the member or, for
convenience, in the manner illustraled above. The load curve may also be used lo advaniage
in such problems.
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,3-9 INMustrative ,Example——Gnrders with Floor Beams. In all
the previous examples, the loads have been applied directly to the beam
itself. Quite often, however, the loads are applied indirectly through a
floor system that is supported by girders. A typical construction of this
kind is shown diagrammatically in Fig. 1-7 and also in Fig. 3-6. In
such a structure, the loads P are applied to the longitudinal members S,
which are called stringers. These are supported by the transverse

B — ¢ < members FB, called
AF 2| < Pa o floor beams. The floor
| - + I a @ beams are in turn sup-
Q N P8 s ﬁ Q R 2 ported by the girders G.

&, T f 8 Therefor
p ; G | , > 1erefore, no matter
- B~ - © whether the loads are
applied to the stringers
p as a uniformly distri-

1
¢ s B - buted load or as some
a — I———1 e system of concentrated
[ c d loads, their effect on
Section A-A

" the girder is that of
Fia. 36 concentrated loads
applied by the floor beams at points a, b, ¢, etc.

To illustrate the construction of the shear and bending-moment curves
for girders loaded in this manner, consider Example 3-8. For simplicity,
it will be assumed in this example that the loads are applied to stringers
supported on the top flange of the girder as shown. The stringers and
girder will be assumed to lie in the same plane. It will further be assumed
that the stringers are supported as simple end supported beams, with a
hinge support at one end and a roller at the other. As a first step, it is
necessary to obtain the stringer reactions and from them to determine
the concentrated forces acting on the girder. From this point on, the
construction of the shear and bending-moment curves for the girder
proceed as for any beam acted upon by a system of concentrated
loads.

The student should study the following questions concerning this type
of structure: How do the shear and bending-moment curves differ in the
two cases, i.e., with and without the stringers? Is there any notable
similarity? If a uniformly distributed load is applied to the structure,
how will the shear and bending-moment curves compare with and with-
out stringers? If the stringers are not supported as simple end-sup-
ported beams by the girder, will the answers to the previous questions
be altered? Problems at the end of the chapter will emphasize some of
these points.
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. Example 3-8

=

40"40" Jo" .70" Jok Jak ,20%

.1.

i

_.e___ —

ﬁ“-LL-L

Spanels @6’ 'JO !

L_Lé””’

0% 40*

Jox .3’0"

‘_J_,
50 20 40 I 20 30
[20 20t /0 20

0% 20k

20 %0 30
a 1 L 1 i I
) c d e I
136% /2]1"
/3'6 k 124k
D % p=0 1
0k oik 410* Jik 40k Jol/f

|1 |

+J6.

+696%'
+912%

+888%"

+564 %'

Considering isolaled girder acled
upon by siringer reactions,

M, =0,7

(80)(1P) = &oP
(40)(2P) = 80P
(50)(3P) = 150r
(40)(4P) = 160P
(5P)(Ryy) = 470P
NetR;,y, = 94 7%
Gross Ry, = 120¢ +

ZM; =0, ?

(80)(4P) = 320P
(40)(3P) = 120P
(50)(2P) = 100P
(40)(1P) = 40P
(5P)(R.y) = 580P

Net R, =116+ %

2
Gross Ra, = 136* +
F, =0, T+
124 + 136 — (3)(40) — (4)(30)
—20 =0

260 — 120 — 120 — 20 =0 .. 0.K

These reactions may also be checked
by using the applied loads directly.
Shear and bending moment on

girder:
Gross Ray =

Sa—b =

Spe=

Se—a=

Si .=

Sc_[ =

136*
—20 0
116X 6 = +696%
F6967
—80
7736 X6=+216
F912
—40
T4 X6= —2
+888
—50
=54 X6=—2324
+564
—40
—94 X6=~564
=
—30"'
—124

Gros: R,,== -H24
- 'T'

=M,

=MD

=M,

M.
=M,

=M,
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Discussion: P >

Note the terms *‘gross” and ‘‘nel” reaclions. The gross reaction is the lotal force
supplied by the support and includes any load applied to the beam immediately over the
supporl poinl. The nel reaction is the reaction al a support due lo all loads excepl the
one applied right at this support. Nole that only the net reaction enters the computalions
Jor shear and bending moment.

3:10 Illustrative Examples—Statically Indeterminate Beams.
From the discussion in Chap. 2, it will be recalled that the stress analysis
of indeterminate structures involves the satisfaction of not only the
equations of static equilibrium but also certain conditions of distortion.
The analysis of such structures is discussed in detail later in this book.
In these later chapters, it will be seen that, after some of the unknown
stress components (such as reactions, shears, and moments) have been
found so as to satisfy the conditions of distortion, the remaining unknowns
may be found so as to satisfy the equations of static equilibrium. Thatis,
the remaining portion of the problem is statically determinate and may
be handled by means of the techniques explained in Chaps. 2 and 3 for
statically determinate structures.

Once the reactions of a statically indeterminate beam have been
determined, the shear and bending moment may be computed at any
desired cross section in the same manner as that used for statically
determinate beams. The same principles may also be followed in con-
structing shear and bending-moment curves.
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Example 3-9 The following bending moments have been c’omp:ded by using methods
discussed later for analysis of sialically indelerminale structures:

M, = —8547¥
M, = —60.05%
M, =0
60* Skl
onsT % 7 ; .
6’ _L 41 /o; Sketch I.
0" 0’ M, = 0,7, (R.y)(10) +60.05—85.17
60k - (60)(4) =G
' | ) lskﬁL I Ry = 2651+ 3
agn(t oSy, = 26.51 — 60 = —33.49%
%.51% 60k gqqok 1900k  Sketch II:
60.05 M, =0, 7,
it ({ 72 P skl ‘ (5)(10)(5) — 60.05 — (R.,)(10) = 0
Ray 620s(; ! ‘(ml t Ry = 19.00+ 3
5005( )5o.as Rey & Sg = —19.00 + 50 = +31.00%
(1) 3349 mxf.oo Sketch III:
Rey ZF, = 0, T+, Ry = 33.49 + 31.00
251 64.49 1900 = 64.49 %
05./7(1 p0 1 Bending moments:
P 1 ! },j. ! M, = —85.17 + (26.51)(6)
60 = $73.89%
426 51 +31.00 Between b and ¢, find My,
s s Sz = 31.00 - 5l
When S; = 0 = 31 — 5z
-1900 ,
3349 = .z = 6.90'
620' ‘6 20L20
11289 Ma.. = —60.05 + (31.00) (_2—)
+36.05 k1 i
= +36.05%
——
M \V i
-60.05
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have been compuled by methods of analysis of indeler-
minate structures:
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B PROBLE#S FOR SOLUTION 7
. ¥ h
3:11 Prdblems for Solution. '%,
Problem 3:1 Draw the shear and bendmg-moment curves for the condi-
tions of loading of a simple end-supported beam as shown in Fig. 3-7.
Suggestion: What is the maximum bending moment in each case? If, in
part b, k equals 0.5, what is the maximum bending moment?

> "

Ay

w kLP(l-IcL
S T S N a + 1s

ML 7 T__ L7
(@) (b)
F16. 3-7

Problem 83 Draw the load, shear, and bending-moment curves for the
beam of Fig. 3-8.

200"
scxuwananiill
A4 2
3 2 BTy
- R
Fi16. 3-8

Problem 3:3 Draw the shear and bending-moment curves for the beam of
Fig. 3-9.

10k 10k 10k sk sk 155 ok 0k 10k
2'1 4| 4 6 5 6 ¢ | ¢ | 4 12
ar [ i d
’/97 H/nge ’?97 779/7
I e 6 l 24"
I T 1
Fi1c. 3-9

Problem 3:4 Draw the shear and bending-moment curves for the beams
shown in Probs. 2- pnd b.s.

Problem 3:5 the shear and bending-moment curves for beam AB
of Fig. 3-10. «,«'m,
4 - ' . .
T awe? 2 Ry 2%
Radius of beth 6 S ¢ 7.5
pulieys=1" I I 32
[ %
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froblem 3:7 Draw the shear and bending-moment curves for beam ab
of Prob. 2 2d and for beams ab and ed of Prob. 2- 2e.

Problem 3:8 Draw the shear and bending-moment curves for members
* ab and be of the structure of Fig. 3-12.

»

k k k
. 6'30 6"206"40

6’
bl— "|c
e

L5
9l

Fic. 3-12

Problem 39 Draw the shear and bending-moment curves for girder ab
of Fig. 3-13.

k k k k k k k k k
, y , , / 3 30
6 X% o f g 0" g N7, jo_ g' 7 g i 6’ 13
— T T 7
ck % % o —3d
aal Jb E
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6’ 60’ 9’
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Problem 3:10 Draw the shear and bending-moment curves for girder ab
of Fig. 3-14.
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CHAPTER 4

TRUSSES

41 General—Definitions. In this chapter, the general theory
of the stress analysis of trusses is discussed. Consideration is also given
to the manner in which the members (bars) of a truss must be arranged
in order to obtain a stable structure. In a subsequent chapter, the stress
analysis of some of the more important types of bridge and roof trusses
under design loading conditions is considered in detail.

A iruss may be defined as a structure composed of a number of bars,
all lying in one plane and hinged together at their ends in such a manner
as to form a rigid framework. For the purposes of the discussion in this
chapter, it will be assumed that the following conditions exist: (1) The
members are connected together at their ends by frictionless pin joints.
(2) Loads and reactions are applied to the truss only at the joints. (3)
The centroidal axis of each member is straight, coincides with the line
vongecting the joint centers at each end of the member, and liesin a
plane that also contains the lines of action of all the loads and reactions.
Of course, it is physically impossible for all these conditions to be satisfied
exactly in an actual truss, and therefore a truss in which these idealized
conditions are assumed to exist is called an ideal {russ.

Any member of an ideal truss may be isolated as a free body by dis-
connecting it from the joints at each end. Since all external loads and
reactions are applied to the truss only. at the joints and no loads are
applied between the ends of the members themselves, the isolated member
would be acted upon by only two forces, one at each end, each force
representing the action on the member by the joint at that end. Since
all the pin joints are assumed to be frictionless, each of these two forces
must be directed through the center of its corresponding pin joint.
For these two forces to satisfy the three conditions of static equilibrium
for the isolated member, ZF, = 0, =F, = 0, and ZM = 0, it is apparent
that the two forces must both act along the line joining the joint centers
at each end of the member and must be numerically equal but opposite in
sense. Since the centroidal axes of the members of an ideal truss are
straight and coincide with the line connecting the joints at each end of
the member, every transverse cross section of a member wil} be subjected
to the same axial force but to no bending moment or sl:%:orce. The
stress analysis of an ideal truss is completed, therefore, n the axial
stresses have been determined for all the members of the truss.

79
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Three-dimensional structures composed of a number of bars hinged
together in such a manner as to form a rigid framework are called space
frameworks. Such structures are discussed in detail in a later chapter.

4-2 Ideal vs. Actual Trusses. While it is true that the ideal
truss is hypothetical and can never exist physically, the stress analysis
of an actual truss based on the assumption that it acts as an ideal truss
usually furnishes a satisfactory solution for the axial stresses in the mem-
bers of the actual truss. The axial stresses in the members, or bars, of a
truss will be referred to as the bar stresses. The stress intensities due to
the bar stresses computed on the basis that the truss acts as an ideal
truss are referred to as primary siress intensilies.

The pins of an actual pin-jointed truss are never really frictionless;
moreover, most modern trusses are made with riveted or welded joints
so that there can be no essential change in the angles between the mem-
bers meeting at a joint. As a result, even when the external loads are
applied at the joint centers, the action of the joints on the ends of a
member may consist of both an axial and transverse force and a couple
The transverse cross sections of a member may be subjected, therefore,
to an axial force, a shear force, and a bending moment. In addition,
the dead weight of the members themselves must necessarily be dis-
tributed along the members and therefore contributes to further bending
of the members. If good detailing practice is followed and care is taken
to see that the centroidal axes of the members coincide with the lines
connecting the joint centers, additional bending of the members due to
possible eccentricities of this type may be eliminated or minimized.

All these departures from the conditions required for an ideal truss
not only may develop a bending of the members of an actual truss but
also may cause bar stresses that are somewhat different from those in an
ideal truss. The difference between the stress intensities in the members
of an actual truss and the primary stress intensities computed for the
corresponding ideal truss are called secondary stress inlensilies. It may
be demonstrated, however, that in the case of the usual truss, where it is
detailed so that the centroidal axes of the members meet at the joint
centers and where the members are relatively slender, the secondary
stress intensities are small in comparison with the primary stress intensi-
ties.! The primary stress intensities computed on the basis that the
truss acts as an ideal truss are therefore usually satisfactory for practical
design purposes.

In subsequent discussions, the term lruss will be used to denote a

1 See PARcEL, J. I, and G. A. MaNEY, *“Statically Indeterminate Stresses,” 1st ed.,
Chap. VII, John Wiley & Sons, Inc., New York, 1926.
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framework that either is actually an ideal pin-jointed truss or may be
assumed to act as if it were an ideal truss.

4-3 Arrangement of Members of a Truss. In Art. 4-1, it is
stated that the members of a truss must be hinged together in such a
manner as to form a rigid framework. The term rigid as used in this
instance has the same significance as when used previously in Art. 2-3,
i.e., a framework is said to be rigid if there is no relative movement
between any of its particles beyond that caused by the small elastic
deformations of the members of the framework. In this sense, a rigid
framework may be obtained by arranging the truss members in many
different ways. When the bars have been satisfactorily arranged in one
of these ways, the entire truss can be supported in some manner and used
to carry loads just like a beam.

Suppose that it is necessary to form a truss
with pin joints at points a, b, ¢, and d. If this is
attempted by pin-connecting four bars together
as shown in Fig. 4-1a, the resulting framework
will not be rigid and may collapse in the manner
shown owing to the loads P, until, in this case,
joints a, d, and ¢, are lying along a straight line.
After a little thought, it is apparent that any d ¢
attempt such as this to connect four or more
joints together with a like number of bars hinged
at their ends will ‘result in a framework which 2
will collapse under all but a few special conditions
of loadings. If, however, points a and b are first
connected by a bar ab, then two other bars of lengths ad and bd can be
hinged at a and b, respectively. If the d ends of these bars are then
hinged together at point d, a rigid triangle will be formed connecting joints
a, b, and d. Bars of lengths dc and be can then be connected to the pin
joints at d and b, respectively. The ¢ ends of these bars can then be made
to coincide at point ¢ and pinned together at this point, thus rigidly con-
necting joint ¢ to the triangle abd and resulting in a rigid framework of
five bars with joints at a, b, ¢, and d.  As alternate arrangements, point ¢
can be connected to joints a and b by bars ac and be or to joints a and d
by bars ac and de. Several other alternate arrangements can be used by
first forming a triangle with joints a, b, and ¢; or with a, d, and c; or with
b, ¢, and d. Any of these arrangements will result in a rigid framework
capable of withstanding any system of joint loads without collapsing.

In this same manner, any number of pin joints can be connected
together with bars to form a rigid framework. The procedure is first to
select three joints that do not lie along a straight line. These three points

(6)
Fic. 4-1
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_cark then be connected by three bars pinned together to form a triangle.
Each of the other joints can then be connected in turn, two bars being
used to connect it to any two suitable joints on the framework already
~ constructed. Of course, the new joint and the two joints to which it is
. connected should never lie along the same straight line. Each of the
* trusses shown in Fig. 4-2 has been formed in this manner by starting with

a rigid triangle abc and using two additional bars to connect each of the

. other joints in alphabetical order.

¥
6 e . 6 d

> o Q

> Q

Fic. 4-2

Trusses the bars of which have been arranged in this manner are
called simple trusses, for this is the simplest and commonest type of bar
arrangement encountered in practice.

In all truss diagrams such as those shown in Fig. 4-2, the members
will be represented by single lines and the pin joints connecting them by
small circles. Sometimes bars may cross each other but may be arranged
in such a manner that they are not connected together by a joint at their
point of intersection.

When the members have been arranged to form a simple truss, the

“
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entire framework may then be supported in the same manner as a beam. .
In order to approach the conditions of an ideal truss, the supports should
be detailed so that the reactions are applied at the joints of the truss.
Upon recalling the discussion in Art. 2-5, it is apparent that, if the sup-
ports of the truss are arranged so that they are equivalent to three-link
supports neither parallel nor concurrent, then the structure is stable and
its reactions are statically determinate under a general condition of load-
ing. Illustrations of a simple truss sup-
ported in a stable and statically determi- 6 d f
nate manner are shown in Fig. 4-3.

Sometimes it is desirable to connect two
or more simple trusses together to formone g
rigid framework. In such cases, the com- c € 9
posite framework built up in this manner
is called a compound fruss. One simple
truss can be supported adequately by
another simple truss if the two trusses are 3(‘8 b d_f
connected together at certain points by
three links neither parallel nor concurrent
or by the equivalent of this type of con- 4 A
nection. Hence, two trusses connected in i’ 1" e /.9 ?L

A Vi 4

this manner will form a composite frame-
work that is completely rigid. Additional
simple trusses can be connected in a similar
manner to the framework already assembled b d f
to form a more elaborate compound truss.
Several examples of compound trusses \
are shown in Fig. 4-4. In all these cases a \ h
the simple trusses that have been connected c (4
together are shown crosshatched. In ';‘L E, lﬁi
trusses a, e, and f, the simple trusses have ’
been connected together by bars 1, 2, and 3.
In cases b and ¢, the trusses have been hinged together at one common
joint, thus requiring only one additional bar to form a rigid composite
framework. In case d, the additional bar connecting trusses A and B
together has been replaced by the simple truss C.
The members having been arranged to form a compound truss, the
entire framework may be supported in the same manner as a simple truss.
4:4 Notation and Sign Convention Used in Truss Stress
Analysis. Before the stress analysis of trusses is discussed, it is neces-
sary to establish a definite notation and sign convention for designating
the bar stresses in the members of a truss.

Fic. 4-3
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“The various members of a truss will be designated by the names of
the joints at each end of the member. The letter F will be used to denote

» the bar stress in a member. Thus, subscripts being used to denote the
bar, Fa denotes the bar stress in member ah. The values of the bar

. stresses in the members of a truss are often tabulated or written alongside
" the various members on a line diagram of the truss. For this purpose,
it is convenient to have a definite convention for designating the character

. of stress in a member, i.e., whether the internal stress is tension or com-
" pression. The most convenient convention is to use a plus (+) sign lo
designale a lension and a minus (—) sign to designale a compression. Thus,

0 . /
TSN N XN o) AN 2

; ?& AN A4S
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Fic. 4-4

+10 means a tension of 10, and —10 a compression of 10. A plus sign is
used to designate tension because such a bar stress causes an elongation,
or an increase in the-length, of the bar. Thus, a plus stress causes a plus
change in length. ¥ On the other hand, a compression, or minus, bar
stress causes a decrease, or minus change, in length of a bar.

In the stress analysis of trusses, it is often convenient to work with two
rectangular components of a bar stress rather than the bar stress itself.
For this purpose, two orthogonal directions x and y are selected (usually
horizontal and vertical, respectively), and the two corresponding com-
ponents in bar ah are designated to Xa and Y. It is particularly
‘mportant for the student to be completely familiar with the various
relationships between a force and its two rectangular components.
These relationships are so important in truss analysis that a student must

wh
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have complete facility with them. For this reason, some of them-are .
revicwed at this time. When it is realized that a bar stress acts along -
the axis of a member, the following statements are self-evident: ¢

1. The horizontal (or verlical) component of a bar stress is equal to the
bar stress mulliplied by the ratio of the horizontal (or vertical) projection of a
member lo ils axial length. {'

2. The bar stress of a member is equal lo ils horizontal (or vertical) com- .
ponent mulliplied by the ratio of the axial length of the member to its horizontal, *
(or verlical) projection. ¢

3. The horizontal component of a bar siress is equal to the vertical com-
ponent mulliplied by the ratio of the horizontal to the vertical projection of
the axial length, and vice versa.

The following principle is also useful and important in dealing with bar
stress computations:

4. Any force may be replaced by ils rectangular components as long as
the components are both assumed to act at some one convenient point along the
line of action of the force.

4:5 Theory of Stress Analysis of Trusses. To determine the
adequacy of a truss to withstand a given condition of loading, it is first
necessary to compute the bar stresses developed in the members of the
truss to resist the prescribed loading. The fundamental approach to
studying the internal forces, or stresses, in any body is the same whether
it be a beam, a truss, or some other type of structure. In the case of a
truss, this approach consists in passing an imaginary section that cuts
through certain of the bars and isolates some convenient portion of the
truss as a free body. Acting on the internal cross sections exposed by the
isolating section will be internal forces, or stresses. In the case of a
member of an ideal truss, the resultant of these stresses is simply an axial
force referred to as the bar stress in the member.

If the truss as a whole is in static equilibrium, then any isolated por-
tion of it must likewise be in equilibrium. Any particular isolated
portion of a truss will be acted upon by a system of forces which may con-
sist of certain external forces and the bar stresses afting on the exposed
faces of those members which have been cut by the isolating section.
It is often possible to isolate portions of a truss so that each portion is
acted upon by a limited number of unknown bar stresses, which may then
be determined so as to satisfy the equations of static equilibrium for that
portion.

This procedure may be explained quite easily by considering a specific
example such as the simple truss shown in Fig. 4-5. This truss is sup-
ported in such a manner that the reactions are statically determinate and
are easily computed as shown in the figure. Proceeding now with the
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determination of the bar stresses in this truss, suppose an imaginary
section is passed around joint @, cutting through bars ah and ab and thus
s completely isolating joint a from the rest of the truss as shown in free-

body sketch A of this figure.

Such an isolated joint will be a body acted upon by a concurrent
" system of forces since the bar stresses in the cut bars of an ideal truss and
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the external forces are all forces the lines of action.of which are directed
through the center of the isolated joint. The resultant of a concurrent
system of forces cannot be a couple, and hence the force system will be
in equilibrium if ZF; = 0 and ZF, = 0. Therefore, if there are only two
unknown bar stresses acting on a given isolated joint and these do not
have the same line of action,! the two conditions for static equilibrium
will yield two independent equations that may be solved simultaneously
for the two unknown stresses. If there are more than two unknown bar |
stresses, the values of all of the unknowns cannot be determined immedi-#
ately from these two equations alone.

In this particular case, however, the isolated joint a is acted upon by
the known reaction and only two unknown bar stresses Fu, and F,.
The slopes of the members being known, the horizontal and vertical com-
ponents of the two unknown bar stresses may be expressed in terms of
the bar stress as shown in sketch A. The two equations of static equilib-
rium may then be written, assuming both F,, and F,; as being tensions,

EFﬂ=0’+T’58+§§FGh=O (a)
EF: = Oa ?y ?ngb + ]'Tab =0 (b)
Then, from Eq. (a),

-

Fo = —72.5 kips (compression)
and hence, from Eq. (b),
Fop = —36Fa = —(34)(—72.5) = +43.5 kips (tension)
Then the components of F, are

= (34)(—172.5) = —43.5 kips
Yo = (46)(—72.5) = —58 kips

Thus, the minus sign indicates that F, is opposite to the assumed sense
(a compression), while the plus sign indicates that F, is in the assumed
sense (a tension). The sign of the results, therefore, automatically
conforms to the sign convention that has been adopted to indicate the
character of stress. These results may now hﬁ ed on the linc
diagram of the truss as —72.5 and +43.5, the mgna-mdlcatmg the proper
character of stress. The components of the stréss in ak may be recorded
conveniently as shown on the line diagram. -

Such conformity in the signs of the results will always be obtained if,
in drawing the free-body sketches and setting up the equations of statics

1 If the two unknown bar stresses have the same line of action, will the two equa-
tions be consistent and independent?

-

.
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the sense of the unknown bar stresses is assumed to be tension. If this is
- done, then a plus sign for an answer indicates that the assumed sense is

-ggorrect and therefore tension, while a minus sign indicates that the
assumed sense is incorrect and therefore compression. Thus the sxgns
*of the results will automatically conform with the established sign
convention.

The procedure just used may be applied in principle to solve for the
unknown bar stresses at any isolated joint that is acted upon by only two
unknown bar stresses. In this particular truss, the remaining unknown
bar stresses could be computed easily by isolating the remaining joints
one after the other, always selecting the next joint to be isolated so that
the stresses in all but two (or fewer) of the cut bars have previously been
computed. Of course, it is also necessary for these.two unknown bar
stresses to have different lines of action. This technique of passing a
section so as to isolate a single joint of a truss is called the method of joints.

Sometimes it is more expedient to pass a section that isolates a portion
containing several joints of a truss. This latter technique of passing the
cutting section is called the method of seclions. An isolated portion con-
sisting of several joints of a truss will be a body that is dcted upon by a
nonconcurrent system of forces that may consist of certain external forces
and the bar stresses in those bars cut by the isolating section.  For equi-
librium of such a portion, the three equations XF, = 0, 2F, = 0, and
ZM = 0 must be satisfied by the forces acting on this part of the truss.
Therefore, if there are only three unknown bar stresses acting on this part
and these three bars are neither parallel nor concurrent, the values of
the three unknown stresses may be obtained from these three equilibrium
equations.

A typical application of the method of sections is shown in free-body
sketch E of Fig. 4-5. In this case, the cutling section is passed through
bars hg, he, and be, thus isolating the portion of the truss to the left of
this section. The unknown stresses in these three cut bars may now be
determined by solving the three equations of equilibrium for the isolated
portion. In previous discussions of the computations of reactions, it has
been demonstrated that it is often possible to expethe the solution in
such cases of nonconcurrent force systems by using ingenuity in writing
the equations of statics. For example, to solve for Fj,, take moments
about point ¢, the point of intersection of Fj. and Fy., and resolve F,, into
its horizontal and vertical components at point g. Then only X,, enters
the moment equation, and

IM, = 0, 3%, (X»,)(42) + (58)(48) — (32)(24) = 0
whence X,, = —48 and by proportion Ys, ='—20 and F), = —52. In
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a similar manner, . ' .
My =0, 73, (58)(24) — (F>.)(32) =

whence F, = +43.5. Then either ZF, = 0 or ZF, = 0 may be used to
obtain the horizontal or vertical component, respectlvely, of F.. bl

SF, =0, 7, X+ 435 — 48 =

whence X, = +4.5 and by proportion Y;, = +6 and F;., = 4+7.5. Of
course, any three independent equations of statics could be written and,
solved for these three unknown stresses. However, if ingenuity is not
used, the three equations may all contain all three unknowns and have
to be solved simultancously, whereas, as just shown, it is possible to
write three equations, each of which contuins only one unknown.

4-6 Applicition of Method of Joints and Method of Sections.
In the previous article, the equations involved in applying both the
method of joints and the method of sections were set up in a rather formal
manner. However, it is often unnecessary to do this. For example,
consider joint a, which was used in fllustrating the method of joints in
the pru ious argicle. At the present time, consider this isolated joint as
shown in free-Dody sketch B of Fig. 4-5. By inspection, it is obvious
that, for ZF, = 0 to be satisfied, the vertical component in bar ah must
push downward with a force of 58 kips in order to balance the reaction.
Then, by proportion, the horizental component and the bar stress itself
in this bar are equal to 43.5 and a compression of 72.5, respectively,
acting in the directions shown. The horizontal component in ah being
known, it is now apparent that, for =F, = 0 to be satisfied, the stress in
ab must be a tension of 43.5 acting to the right to balance the horizontal
component in ah acting to the left.

Since the bar stress in ab is known, it is a simple matter to find the
stresses in be and bh by passing a section that isolates joint b as shown in
free-body sketch C of Fig. 4-5. Again, this simple case may be easily
solved in an informal manner to obtain the two unknown bar stresses
Fy. and Fy.  To satisfy 2F, = 0, it is apparent that F, must a tension of
43.5 and, tosatisfy XF, = 0, Fy, must be a tension of 20.

If joint h is isolated in a similar manner, as shown in free-body sketch
D, the isolating scction will cut through four bars, two in which the bar
stresses are known and two in which they are unknown.  Again these two
unknowns may be found from the equilibrium conditions TF, = 0 and
ZF, = 0 for the isolated joint. Assuming the unknown stresses to be
tension, the two equations may be written as follows:

YF, =0, 7, 12{3F,, + 35F. + 435 =0
IF, = ¢, +1, 34 3kne — 501«,,, — 12 — 204 58 =
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In this case, unfortunately, both equations contain both unknowns, and
it is necessary to solve the equations simultaneously for these two values.
. -Of course, the two unknowns can be obtained quite easily in this manner,
but consider the advantages of proceeding as follows:
. In the discussion of computation of reactions in Chap. 2, it will be
recalled that it was often advantageous to replace either or both ZF, = 0
and ZF, = 0 by one or two moment equations. A similar technique is
likewise desirable in the present case of the isolated joint h. Suppose
that in free-body sketch D the positions of joints a, ¢, and ¢ are located in
space as shown. Then, ZM, = 0 could be used instead of the equation
2F, = 0 or ZF, = 0. Taking moments about point ¢ not only elimi-
nates Fj. from the equation but also makes it possible to simplify the
computation of the moments of the stresses in bars ah and hg. These
two bar stresses may now be resolved into their vertical and horizontal
components at joints a and g, respectively, and then only the vertical
component of Fa and the horizontal component of Fj, will enter the
moment equation and the lever arms of both these components are easily
obtained. In this way,

EM. = 0, 7, (Xa,)(42) + (58)(48) — (32)(24) =0 Xy = —48

and by proportion Y3, = —20 and F,, = —52.

F, and its two components being known, it is an easy matter to use
either F, = 0 or £F, = 0 and obtain, respectively, either the horizontal
or vertical components of the stress in he directly. For example, since
X, = —48, the horizontal component in hc must act to the right with
4.5 kips so as to balance the 43.5 kips in ah and make ZF, = 0. This
means that this bar is in tension and by proportion the bar stress and
vertical component are +7.5 and + 6.0, respectively. All these computa-
tions may now be checked by sceing whether the results satisfy TF, = 0.

In the following illustrative examples, additional techniques and
*““tricks” will be used to expedite the application of the method of joints
and the method of sections. In the first few examples, all the free-body
sketches will be shown in detail. To train the student to visualize free-
body sketches when possible, such sketches will be omitted in the later
examples. When desirable, the numerical computations will be carried
out in an informal manner. If the student finds it difficult to follow these
short cuts, he should draw the necessary free-body sketches and set up
the equilibrium equations in a fundamental manner. The student should
recognize that it is desirable to develop a facility for visualizing free-body
sketches and solving equilibrium equations in an informal manner; but
he should also recognize that even the expert has to go back to funda-
mentals—draw sketches and write cquahon@— -whenever he is confused
or faced with a difficult probI(,m

-
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n?

The student should also note carefully the technique of draw;r:é'?;ee-
body sketches of isolated portions of a truss. Any bar stress that is .
known in magnitude' from previous computations should be shown actingy.
with this known magnitude on any sketch that is drawn subscquentl)
For example, in drawing free-body sketch D of Fig. 4-5, the stresses in *
bars ah and bh have previously been computed and recorded on the line
diagram of the truss as —72.5 and +20, respectively. Hence, the bar
stresses acting on the stub ends of these two bars should be shown push- ~
ing the stub end of ah into joint h and pulling the stub end of bh out of
this joint. Thus the sense of these known bar stresses having been
indicated by arrows, the forces should be labeled with their numerical
value only, »iz., simply by 72.5 and 20, not by —72.5 and 420. As
suggested in the previous article, the free-body sketch is completed by
showing the unknown bar stresses as being tensions.

When the value of a bar stress is recorded on the line diagram of the
truss, it will be found helpful also to draw arrows at each end of the mem-
ber, indicating the dircction in which the force in the member acts on
the joint. This procedure will be followed in recording the bar stresses
in the remaining illustrations of this chapter.

1 Note that magnitude has previously been defined as including the sense in which
a force acts.

Example 4-1 Compule the bar stresses in members Ce, CD, cd, ¢D, and DE of this
truss, due to the loads shown.

M, =0, ?
20 X1 = 20
207 40 X 2 = 80
—_—y 20 X5 = 100
’ 200
o ~10 X1 = —10
'/;)r a e > g 190
/01 (é 1 (51 é £ 20 Ry = 4751
=M, =0, N
40 X2 = —80
20X 3= —60
10 X 5= —50
—190
20 X 1 = 20
—170
= 4231
2F¥ = o’ T +

47.5 4 42.5 — 10 — 20 — 40
-2 =0
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Bar Cc Section (D-@
Bar CD
C /IZ'D
— - - 1’2’(‘
Moo= ___ ___
|._2@30%60"

0 925

Bar cd Section @-2)
Bar cD

Do"\ E
Dg 7
\ -
~
~
O e Y =
d e f% g T n
475 20

<~ Xeop

o Feop = —6.88 X ——

(§4-6

M, =0,
10x2 = +20
425 X 3 = —191.5
=107 5~
o Feo = + ’03—5 - 1+26.88
M. =0, i~

425 X 1 = +425
10X2 = :_20___
+22.5~
- —(22.5)(30)
40
= —16 88

31.63

- Fop = —(16.88) (—---—

= —17.80

M, =0,
10X2= +%0
WX4= 80

¥100

425X 3 = —197.5

TZ97 5~

o Yo =20 _ges

4
583

= 2802

ZMp =0, gy
20 X1 = —20
10 X 3 = —30

—50

425X 2= 485
F35- 4
30

&S Feg = 435 X 50 = +21

=M. = 0, -
47.5 X 1 = —47.5
20 X2 =4/,

N
Y Xpr = —7.5 X ?0
= =562
& Fpg = —5.62 X = 316

307
= —592
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Discussion: < "

Nole that, afler the siress in Cc has been found, the vertical componenl of the stress in cD
can easily be found by isolaling joint c. Note also that, the stress in cD) being known, the
verlical component in CD can be found from ZF, = 0 rather than ZM. = 0 for the frceli
body skelch for section 2-2. The stress in CD being known, the stress in cd can be oblained
from ZF, = 0 applied lo this free-body skelch.

The stress in member DE can be oblained by isolaling the portion of the truss to either
the right or the left of section 3-3. The portion lo the right was chosen because il has fewen.iL
erternal forces acling on il.

In all these compulations, the moments of the verlical forces are compuled in terms
of panel lengths. When necessary, the panel length of 30 fl is substituted at the end of the
compulation. This lrick simplifies the numerical work in such compulations.

w

Example 4:2 Delermine the bar stresses in members dg, eg, gh, and hm.

20 20 2 20
/0 6 0 a r.) c
a C
0 d /‘/e\'\ f o, nvd e £
7/ N\ <
. S—— N +/0
N N -t Iy
& N2
0 g A PR walf -20 A %
+5 -/5
‘2’_—._,—_ Q N
D + xcf) e $
l L m 30 ¢ m
77 7 v J
! 4 +
/5 /5 P 60
M =07
20V (30) = 600
(30)(40) = 1,200
1,800 ~
& Ray = 60%F
M, =0,7%

(30)(40) = +1,200
(20)(30) = — 600
+ 600 ~
& Ry = _?_q¢
Check by =F, = 0, +1.
=20 — 20 +60 — 2 =0

ie
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., Bardy: Section @-@
20 20
0 _a ) _Jc M, = 0,7

(10)(20) = +200
(20)(30) = —600

— 400 »~
—2—:‘— — o KR F‘ﬂ == e (%) = _13.33

Bar eg: Section @-@

20 20
0 a [ c My =0, ?
(13.33)(30) = 4400
(10)(20) = 4200
(10)(40) = 4400
0 d e I'd oorc3 ——*'+"%
(20030) = -—
+ /\ N +400 ~
\I / \ | “ Yy = 400 _ 11333 X = +10
| /% N 30 +10
X Ng Fy, = +16.67
9 9
|¥eg
Bar gh: Isolale joint g. ' é\
g3,
——
ﬂ Q—-—m

[§1-6
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Bar hm: Isolate joint h. Then, consider portion above isolaled by-section 3-3. From

A ZF, = 0, Yu must be equal and opposite lo Yim.
— - Assume Y = A; then Yym = —A, ele.
f‘" ~i4
l
i 4
lo om
k]
20 20 *

10

Then ZF, = 0,

0 10 + 10 + 10 — ¥4 A — YA =0, A =20
s X = 415 and Xim = —15
Yin =420 Yim = —20
Fin = 425 Fim = 235

10

%4 /\’/44_'
I /' N

Discussion:

If the stresses in all the bars are required, the method of joinis can be applied, the joinis
being isolaled successively in the following order: a, ¢, b, d, f, ¢, g, k, h, I, m. This is
probably the most efficienl method of finding all the bar siresses in this parlicular truss.
If only a few particular bar stresses are required, the compulation can be carried oul as
illustraled in this example.
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Example 4:3 Compule the bar stresses in members be, BC, aC, and bC.

)

M, = 0, +
0wa®8P ¢ p & 10 X $ip = -+H13.3p
: | : 20X 1p= 20 p

0’ 30X 2 = 60 p
i 40X 3p = 120 p
al” | e +213.3p
5 lc d &Ry, =533%
205 130k 140k M, =0,
4@30'=120 20X 3p= —60p
30X 2p = —60p
10 -10  _-10 40 X 1p = —40p
> —160p
AR 10 X 3ip = _+13.3p
S 4 7 |§ —146.6p
1|0 45 “ Ry =366%F
] 40 1 Check:
) * )
%6 20 30 40 533 kK, =0,1+ 366 — 20 — 30
—40 +53.3 =0
Bar be: Portiontoleftof 1-1, 2Mc = 0,77',36.6 X 2p =  73.3p

20 X1 p = —20.0p

53.3p s B = 40
Bar BC: Isolate joint A, then B. Fpc = —10
Bar aC: Portion lo left of 2-2, ZF, =0 o Yae = =366
32 1 92 .
o b = NES T (_366) = —66.1

Bar bC: Portion lo left of 1-1, wilh slress in a(C known, then, from ZF, = 0,
) & Yie = +20
or, from joint B, Fg, = 0; then, from joint b, 2F, = 0
4 Yoo = +20
-
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Example 4-4 Compule lhe bar stresses in members ed, BC, bm, nf, nF, and md.

0%

B C ?’) E?F

|
|| v e
| |

a | | a 30
o ) é)c (l) (b d é) e 1 P
\ 20k bk l
5@.}0 =80’
I 1
10
-90 -90
0 NI
-30 i,oj' ! 575 ?
Q % o N
0 P ,3606 o 2>
" { +80 1
666 433
0k  90F a0k
=M, =0, 3 =M, =0,

WX1= 2 10X2= 20
X2 = 80 40 X3 =190 "
WX 3 =120 40 X 4 = 160
10X 4= 40 20X5 =100

260 400
R, =4331% o R,y =666

Bar cd: Porlion to left of 1-1, EMg = 0,7}, 66.6 X 1p + 40 X 1p = 106.6p
o Fea = —80
Bar BC: Same portion, SV, = 0, :_',
66.6 X 3p — 40 X 1p — 20 X 2p = 120p . Fep = ;;9_0
T ~. Isolale joint C, Fp¢ -9

n . o

..

Bar bm: Isolaling joinl C shows Fen = 0. Hence, considering portion isolated by
seclion 2-2,

~
m Mg =0,"F, +40 X 1p = +40p
fbﬂ" \ A me = ;_20
-2 :I'_’ Sod 5 Xim = —30
bm §| 80 c w o P = _:Zb'_oﬁ

S
k 40 » Y
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Bar nf: Isolaling joint E shows Fg. = —10. Hence, considering porlion isolaled by
seclion 3-3,

M. =0,7, 10 X 1p = 10p ~ Ya = =5, Xop = =7.5,  Fuy = —9.01

*  Bar nF: Portion {o right of 4-4, ZF, = 0 o Yar = 4383
Bar md: Portion o right of 1-1, ZF, = 0 o Yma = +6.6

Example 4:5 Delermine the bar siresses in all members of this truss:

Jo’
20’
ol Q Q
#x60=40 20+4x60
7 =
jr0°4 .20

“ Porlion to left 1-1

2Mp=0,/.:

50 X 3p = 150p

60 X 1p = —60p g
W DX n5h o Xea = 154

Discussion:

In the solution of this problem, il is possible lo start oul and apply the method of joinis
successfully al joinis A, B, G, and F. However, if one allempls lo apply this same pro-
cedure al any one of the remaining joints, he finds il impossible since there are more than
two unknown bar siresses al each of these joinls. It is therefore desirable to resort lo
the method of sections. In this problem, the bar slress in member bd is found by con-
sidering the portion to the left of section 1-1. The method of joinls can then be applied at
Joini b and then successively al each of the remaining joinls.

1t should be noled thal this is a compound truss. In such lrusses it is usually impos-
sible to solve for all the bar siresses by using simply the method of joinls. As illusirated in
this problem, it is usually necessary lo make al least one application of the method of
seclions.

e — — =
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Example 4:6 Delermine the bar stresses in all the members of this truss.

401
a | | | L\g
7 | 5 | c | d | e | |
Jok 60k  60% Jok ok
6@ 30'=/80’
{

1425 -IS1S _ -I528 /228

25 % T s

- 2625 | #82.5 | +/425 -

3 5

ig; 10 30 60 60 Jo 30 00 %

710 700
Discussion:

In the solution of this example, it is possible to slart al one end of the truss and work
through lo the other end, using only the method of joinis to compule the bar stresses. This
is a simple truss, and it is always possible to find all the bar stresses in such a truss in this
manner once the reaclions have been computed.

It also should be noted thal the vertical components of the bar siresses in the diagonals
can also be easily oblained by using ZF, = 0 on the portions either to the right or lo the
left of the indicated vertical sections through the panels. The stress in the verticals can
then be obtained from ZF, = 0 al the joinls, and the stress in the chords from ZF, = 0 al
the joints, working across from end o end of the truss.

4-7 Discussion of Method of Joints and Method of Sections.
The examples in the previous article illustrate that isolations of portions
of the truss using both the method of joints and the method of sections
must be employed in the stress analysis of trusses. Experience in such
computations will teach the student how to combine these two methods
most effectively. It is the purpose of this particular article to summarize
and clarify the important points concerning them.

In the previous discussion of the method of joints, it is pointed out
that this procedure enables one to determine immediately all the unknown
bar stresses acting on an isolated joint, provided that there are not more
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than two unknown stresscs and that these two unkuown stresses have
different lines of action. It sometimes happens that there is enly one
unknown bar stress acting on an isolated joint. In such a case, one of

+ the two available equilibriuin equations may be used to solve for the one

¥ unknown stress, and the other may be used as a check that must be

" satisfied by all the forces acting on this joint. If there are more than two
unknown stresses acting on an isolated joint, it is usually impossible to

_obtain an immediate solution for any of the unknowns from the two equa-

®tions of equilibrium that are available at that joint. In such cases, it is
necessary to isolate additional joints and write two additional equations
for each joint. In this manner, it is sometimes possible to obtain n
independent equations, involving n unknown bar stresses. Then these
n equations can be solved simultancously for the n unknowns.

e S
1352 5
N A

Fy a Fae Foe=0
20 - .
So
(A) (B) ()
Fi1G. 4-6

There is one important case where there are more than two unknown
bar stresses, acting on an isolated joint but so arranged that it. is possible
to obtain the value of one of them immediately. If all the unknown
stresses except one have the same line of action, then the stress in that
one particular bar may be dectermined immediately. Such a case is
shown in sketch A of Fig. 4-6. If the x axis is taken as being parallel to
the line bac and the y axis perpendicular to this line, then the y component
of the unknown stress Foq may be determined imnfediately from the
equation XF, = 0. No immediate solution may be obtained from
ZF, = 0 at such a joint since this equation involves both the unknowns
Fa and F,.. A special case of this type is shown in sketch B of Fig. 4-6,
where the joint is acted upon by only the three unknown bar stresses.
If F, and F,. have the same line of action, then it is apparent that the
only remaining force at the joint, F,4, must be zero. It is also of interest
to consider the case shown in sketch C of Fig. 4-6. In this case, the joint
is acted upon by only two forces, which do not have the same line of
action; therfore, in order to satisfy XF, = 0 and ZF, = 0 for such a

"-joint, both F,, and F,. must be equal to zero.
~_. It is also interesting to note that, once the reactions have been deter-
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mined on a simple truss, then all the bar stresses can be determined by
using only the method of joints and never resorting to the method of
gections. It is apparent that this is so, since there are only two unknown
bar stresses acting on the joint that was located last in arranging the lay-

.out of the bars of the truss. After these two bar stresses have been .
determined by isolating this joint, then it will be found that the joints
at the far ends of these two members are acted upon by only two unknown
bar stresses. Thus, by isolating the joints in the reverse order from that
in which they were established in laying out the truss, the method of ¥
joints may be used to determine all the bar stresses.  This is the explana-
tion of why it is possible to solve Example 46 in this manner. It should
be noted, however, that in many cases of simple trusses the calculation of
all the bar stresses may be expedited by combining the use of both the
method of sections and the method of joints, as is illustrated by some of
the examples in Art. 4-11.

When applying the method of sections, if the isolated portion of the
truss is acted upon by three unknown bar stresses that are neither parallel
nor concurrent, then all three unknown stresses may be determined
from the three equilibrium equations available for the isolated portion.
It is presumed, of course, that the reactions acting on any such portion
have been determined previously.  Of course, if there are only one or two
unknown bar stresses, these may be determined by using a like number
of the available equations. The remainder of the equations that must
be satisfied by the system of forces acting on the isolated portion may then
be used simply as a check on the calculations up to this point.

It is sometimes possible to find some of the unknown stresses by the
method of scctions even when there are more than three unknowns acting
on the isolated portion. For example, suppose that the lines of action of
all but one of the unknown stresses intersect at a point a. Then, the
stress in this oneygemaining bar can be determined from the equation
=M, = 0, that is by summing up the moments of the forces about point
a. Another similar case would be onc where all the unknown bar stresses
except one arc parallel.  The stress in this remaining bar can then be
determined by summing up all the force components that are perpendicu-
lar to the direction of the other unknown bar stresses. In each of the
above cases, the remaining two equilibrium equations for the isolated
portion will involve more unknowns than there are equations, and hence
no immediate solution for these remaining unknowns is possible.

In applying either the method of joints or the method of sections, it is
important to realize that it makes no difference how many bars have been
cut in which the bar stresses are¢ known. Only the number of unknown;
bar stresses is important, -
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4-8 Statical Stability and Statical Determinancy of Truss
Structures. Up to this point the emphasis has been placed on the
methods of computing the bar stresses in trusses. For this purpose, all
,the examples that have been used have been statically determinate and
wstable. With these ideas as a background, it is now possible to discuss
“the question of statical stability and determinancy of trusses from a
" general standpoint.
In discussing the arrangement of the members of a simple truss, it
" was shown that a rigid truss is formed by using three bars to connect
three joints together in the form of a triangle and then using two bars to
connect each additional joint to the framework already constructed.
" Thus, to form a rigid simple truss of n joints, it is necessary to use the
three bars of the original triangle plus two additiona] bars for each of the
remaining (n — 3) joints. If b denotes the total number of bars required.
then
b=34+2n—-3)=2n-3

This is the minimum number of bars that can be used to form a rigid
simple truss. To use more is unnecessary and to use fewer results in a
nonrigid or unstable truss. If a simple truss having n joints and (2n — 3)
bars is supported in a manner that is equivalent to three links that are
neither parallel nor concurrent, then the structure is stable under a
general condition of loading and the reactions are statically determinate.
In the previous article, it is pointed out that, once the reactions are found,
all the bar stresses of a simple truss can be computed by the method of
joints.

It may be concluded, therefore, that a stable simple truss having three
independent reaction elements and (2n — 3) bars is statically determinate
with respect to both reactions and bar stresses. If there are more than
three reaction elements, the structure is statically indeterminate with
respect to its reactions; if there are more than (2n — 3) bars but only
three reaction elements, it is indeterminate with respect to the bar
stresses; and if there is an excess of both bars and reaction elements, the
structure is indeterminate with respect to both reactions and bar stresses.

The same discussion and conclusions apply equally well to a compound
truss. Suppose a compound truss is formed by connecting two simple
trusses together by means of three additional bars that are neither paral-
lel nor concurrent. If the two simple trusses have n, and n, joints,
respectively, the total number of bars b in the compound trussis

b=(2n1—3)+(2nz-3)+3=2(n1+ng)-3
or if n denotes the total number of joints in the compound truss, i.e.,



§4-8] STATICAL STABILITY . ° s 108

-

" P TSP

if n = n, + n., then , » e
=2n—3 ’

$

Thus, the minimum number of bars that can be used to form a rigid com--.
pound truss is the same as in the case of a simple truss. If the remainder”
of the discussion were carried out in a similar manner for a compounds
truss, it would be found that the conclusions of the previous paragraph
apply equally well to both simple and compound trusses.

It is desirable to discuss this question of determinancy and stability
from a more general standpoint. Suppose a truss structure has r inde-
pendent reaction elements, b bars, and n joints. If the truss as a whole
is in equilibrium, then every isolated portion must likewise be in equilib-
rium. To isolate an entire bar or some portion of it would produce no
new information since the equilibrium conditions of the bars were con-
sidered during the establishing of the definition of the term bar stress.
However, it is possible to isolate each of the n joints in turn and to write
for each of these joints two new and independent equations of static
equilibrium, 2F, = 0 and ZF, = 0. In this manner, a total of 2n
independent equations would be obtained, involving as unknowns the r
reaction elements and the b bar stresses, a total of (r + b) unknowns.
These 2n equations must be satisfied simultaneously by the (r 4 b)
unknowns. By comparing the number of unknowns with the number of
independent equations, it is possible to decide whether a truss structure is
unstable, statically determinate, or indeterminate. The reasoning
involved is similar to that used in Art. 2-5. If r + b is less than 2n,
there are not enough unknowns available to satisfy the 2n equations
simultaneously and therefore the structure is said to be stalically unstable.
If r + b is equal to 2n, the unknowns can then be obtained from the
simultaneous solution of the 2n equations and therefore the structure is
said to be stalically determinale. If r 4 b is greater than 2n, there are
too many unknowns to be determined from these 2n equations alone and
therefore the structure is said to be sfalically indeterminate. The cri-
terion establishes the combined degree of indeterminancy with respect
to both reactions and bat stresses. It is apparent that these conclusions
agree with the foregoing discussion of simple and compound trusses.

At first glance, it might seem that the total number of independent equations
of static equilibrium in a truss structure should include not only the 2n equations
noted in the previous paragraph but also the three equations ZF. = 0, £F, = 0,
and ZM = 0 applied to the entire structure as a free body. However, the follow-
ing demonstration will prove that this offhand opinion is not so and that there
are only 2n independent equations: Consider any truss as a free body acted upon
by its reactions and applied loads such as the truss shownin Fig. 4: 7TA. Suppose

3
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the system of forces shown in Fig. 4-7B is superimposed on the system in Fig.
4-74; the combination of these two loading systems will then be as shown in
Fig. 4-7C. The load system in B is a special system consisting of several pairs of
equal and opposite forces, one pair for each member of the truss. For any
particular member, both forces of its pair act along the member, one acting on
the joint at one end of the member and the other on the joint at the other end.
Each of the forces is numerically equal to the siress in that member produced by
the forces in system A and acts in a scnse that is the same as the action of this bar
stress on the joint. Each pair of forces is in equilibrium, of course, and hence
all the pairs acting together form a system that is in equilibrium.
Considering now the combined system in C, it is found that the forces acting
at each joint of the truss are the same forces that would be acting on that joint
~if, under the loading of A, it were isolated by itself as a free body. If, however,
the applied forces, reactions, and bar stresses satisfy simultaneously the 2n
equations of statics obtained by isolating the n joints and writing £F, = 0 and

(B)
Fic. 4.7

ZF, = 0 for each joint, the forces acting on each joint in C form a concurrent
system of forces that are in equilibrium. Since at each joint the forces are in
equilibrium, the combined system in € of all joints is in eqailibrium and satisfies
the equations ZF, = 0, £F, = 0, and M = 0 for the entire truss. Since the
combined system in C is in equilibrium and the portion of this system shown in
sketch B is also in equilibrium by itself, then the remaining portion of the system
as shown in sketch A must be in equilibrium and therefore must satisfy the equa-
tions ZF, = 0, ZF, = 0, and XM = 0 for the entire truss. It may be con-
cluded, therefore, that, if the reactions, bar stresses, and applied loads satisfy
the 2n equations of equilibrium obtained by isolating the joints of the truss, then
the reactions and applied loads will automatically satisfy the three equations of
equilibrium for truss as a whole and that thus there are only 2n independent
equations of s . equilibrium involved in a truss.

It should be noted that comparing the count of the unknowns and the
independent equations establishes a criterion which is necessary but not
always sufficient to decide whether a truss is stable or not. If b + ris
less than 2n, then this comparison is sufficient for deciding that the truss
is stalically unstable. 1If, however, b + r is equal to or greater than 2n,
it does not automatically follow that the truss is stable. This statement
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may be verified by considering the examples shown in Fig. 4-8. In all’
four of these cases, the structures are unstable, whereas the count by
itself indicates that A and B are statically determinate and C and D are
indeterminate to the first degree. A and D are unstable under a general

condition of loading because in each case the reactions are equivalent to

parallel links. B and C are unstable, not because of the arrangement of
the reactions, but because of the arrangement of the bars. In B, for
example, the reactions are statically determinate, but the truss is unstable
and would collapse because there is nothing to carry the shear in the
second panel from the right end.

These and other considerations lead to the conclusion that, even
though the count indicates that the structure is either statically determi-

Jp ’ P
b:13 r-3 n-68 6=/13 r=3 n=8
b+r:l6 2n-=/6 b+r=/6 2n=/6
(A) (B)
4 P
b=17 r-4 n=1/0 b=25 r-=4 n=/4
btr=2/ 2n-=20 b+r=29 2n=28
c) (D)
Fic. 4-8

nate or indeterminate, for it to be stable also, it is necessary that the follow-
ing conditions shall likewise be satisfied: (1) The reactions must be
equivalent to three or more links that are neither parallel nor concurrent.
(2) The bars of the iruss must also be arranged in an adequate manner.
It is sometimes difficult to determine whether or not thgarrangement of
the bars is adequate. In such cases, if the arrangemen@ls inadequate it
will become apparent; for when a stress analysis is attempted, it will yield
results that arc inconsistent, infinite, or indeterminate.

4-9 Examples Illustrating the Determination of Stability and
Determinancy. It is easy to investigate the stability and deter-
minancy of a truss structure that is formed by supporting in some manner
a truss that is in itself a rigid body. The truss itself may be merely a
simple or compound truss or, in some cases, a simple or compound truss
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modified by adding more than the necessary number of bars. In either
case, the bars, reactions, and joints can be counted and the criteria of the-

W

last article applied to decide whether the structure is unstable, statically”

determinate, or statically indeterminate. This count, of course, enables
one to classify the structure with respect to both bar stresses and reac-
tions. If the count shows that the structure is statically determinate or
indeterminate, the question of stability must still be decided, for the
count by itself is not sufficient to prove that the structure is stable.

L4

e

.

. 1 2

6:9 r=4 n=6 8=12 r=2 n:7
(A) (B)

1
'
i
NA/ b:27 r-6 ns/k
a

~N ’,
N 7
N
b:18 r=3 n=0 (D)
()

b=35 r=5 n=/18
(E)
Fic. 4-9

It is also easy to classify this type of structure with respect to its
reactions only. If there are less than three independent reaction ele-
ments, ‘the structure is statically unstable under a general condition of
loading regardless of how the bars of the truss are arranged. If there are

« three or more independent reaction elements and they are arranged so as
. to be equivalent to three or more links that are néither parallel nor con-
current, the structure is stable with respect- m‘its reactions. For a
stable structure, if there are exactly three’ reactjon elements, these ele-
ments are statically determinate; if there are more than three reaction
elements, the structure is statically indeterminate with respect to its
reactions alone to a degree that is equal to the number of reaction ele-
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ments in excess of three. Structures in this gelxeralqbategory are shown in
Fig. 4-9.

The count of the bars, joints, and reaction elements is shown in each
of the sketches in Fig. 4-9. Considering only the reactions, structure
A is stable and statically indeterminate to the first degree. Since
b+ r =13 and 2n = 12, it is also indeterminate to the first degree,
considering both reactions and bar stresses. The count of structure B
indicates that it is statically determinate since b + r and 2n are both
equal to 14. A consideration of the reactions, however, discloses that this
structure is actually unstable. Likewise, the count indicates that
structure C is statically indeterminate to the first degree, but considera-
tion of the reactions shows that it is unstable. Both the count and the
consideration of the reactions indicate that structure D is indeterminate
to the first degree. With respect to the reactions only, structure E is
indeterminate to the second degree, but a count of both bars and reactions
discloses that it is actually indeterminate to the fourth degree.

There is another important type of truss structure that is built up out
of more than just one rigid truss. In this type, the structure is composed
of several rigid trusses connected together in some manner and then the
whole assemblage mounted on a certain number of supports. In such
cases, the supports are usually arranged so as to provide more than three
independent reaction elements. The connections between the several
rigid trusses are, however, not completely rigid, so that certain equations
of condition (or construction) are introduced so as to reduce the degree
of indeterminancy or perhaps even to make the reactions statically deter-
minate. This type of structure is the hardest to analyze from a stability
or determinancy standpoint. However, some of the most important
trussed structures—for example, cantilever and three-hinged arch bridges
—belong in this category, and therefore it is important for the student to
master the methods of investigating this type. Structure of this general
type are illustrated in Fig. 4-10.

The stability and determinancy of structures of the type shown in
Fig. 4-10 may be investigated by comparing the count of the bars and
reaction clements with the count of the joints. With this criterion, it
will be concluded th?t ructures A, B, D, E, and F are statically deter-
minate and structlﬁ' is indeterminate to the first degree. In structures
of this type, it is alst rtant to consider whether or not the structure
is statically determi with respect to its reactions alone. This may
be done by compari @eount of the unknown reaction elements with
the number of available equations in the same manner as discussed
previously in Arts. 25 and 2:6. In these cases, the available equations
include the three equations of static equilibrium for the structure as a
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whole plus any equations of condition which may be introduced by the

amanner in which the several rigid trusses are connected together. .

If two trusses are hinged together at a common joint, such as tlw;
joints marked a in Figs. 4-10 A to E, one equation of condition is intro-
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g d 25:
b3/ r=5 n=/8
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Fic. 4:10

* duced, viz., that the bending moment about that point must be zero since
. the hinge cannot transmit a couple from one truss to the other. If two
" trusses are connected together by a link or roller, such as the link marked [
:in structure D, two equations of condition are introduced since then both
-the direction and point of application of the interacting force are known.
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. This means, therefore, (1) that the bending moment about either end of
the link must be zero and (2) that the interacting force between the two
Arusses cannot have a component perpendicular to the link, If two
trusses are connected together by two parallel bars, as is done in panels p
of structures D and E, one equation of condition is introduced, viz., that
the interaction between the two trusses cannot involve a force perpendicu-
lar to the two bars. In the case of structures D and E, this means that
the shear acting on panel p must be zero.

From this discussion, it is apparent that one equation has becn intro-!+
duced in structure A, two in B, one in C, four in D, and three in E. It
will be concluded, therefore, that, with respect to reactions only, struc-
tures A, B, D, and E are statically determinate and structure C is inde-
terminate to the first degree.  Structure F is a special type of structure,
called a Wichert! truss in this country, that can be counted only by
considering the bars, joints, and rcactions.

There is no obvious instability in any of the structures of Fig. 4-10.
If, however, one attempts to compute the reactions and bar stresses for
either structures E or F, the results will be inconsistent, infinite, or inde-
terminate; therefore, these structures are actually unstable. In both
cases, by changing only the geometry of the structure, it is possible to
make the structure stable. Structures E and F are therefore said to be
geomelrically unstable. This type of instability may arise whenever
equations of condition are introduced by the arrangement of the struc-
ture. Sometipaes the instability is obvious, but usually it does not
become apparen‘l until one attempts to compute the reactions, ete.?

4:10 Conventional Types of Bridge and Roof Trusses. The
members of a truss'may be arranged in an almost unlimited number of
ways, but the vast majority of trusses encountered in bridge or building
work belong to one of the common types shown in Figs. 4-11 and 4-12,
Since they are encountered so frequently, the student should be familiar
with the names of thgsé conventional types.

Trusses A, B, C, D, and E of Fig. 4-11 are simple trusses, while the
remaining trusses are compound trusses built up out of the simple trusses
(shaded). In order to achieve economical design of single-span steel-
truss bridges, it is essential for the ratio of depth of truss to length of
span to be between 1§ and !4, for the diagonals to slope at approximately
45° to the honzontnl and for the panel lengths not to exceed 30 to 10

1 SteinmAN, D. B., *The Wichert Truss,” D. Van Nostrand Company, Inc., New
York, 1932.

? For a more complete discussion see W. M. Fire and J. B. WiLBuR, “Theory of !
Statically Indeterminate Structures,” McGraw-Hill Book Company, Inc., New York}”
1937,
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ft. Trusses A, B, C, and D can meet these requirements if the span is
not tco long. For long-span bridges, however, it becomes necessary to‘
use one of the subdivided types such as F, G, or H. o
All of the roof trusses shown in Fig. 4-12 are simple trusses with the
exception of the Fink truss. This is a compound truss.

(A) (B)
Howe Truss Pratt Truss
(«c) ) (D)
Warren Truss Worren Truss with verticals
NGOV
(E) (F)
K Truss Sub-divided Warren Truss

( G) (H) )
Sub-divided Pratt Truss Bathmore Truss with inclined
or Baltimore Truss chord or Petit Truss
BRIDGE TRUSSES
Fic. 4-11
(A) YB)
Mowe Truss Pratt Truss
i /<Vw>\ m
) (D)
Fan Truss Fink Truss
i ROOF TRUSSES
‘ Fio. 4-12

4°11 Tllustrative Examples of Stress Analysis of Determinate
‘Trusses. The following examples illustrate the application of the
previous discussions to the stress analysm of several conventional types
-of trusses. The analysis of such trusses is discussed further in Chap. 7.
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Example 4:7 Delermine the bar slresses in all members of this Prall truss with a

“turved lop chord: ..
.
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0 =M,
126.95 X 30 = 3,787.5
-20 37875 = M,
T106.25 X 30 = 3,187.5
—45 776,975.0 = M.
T 61.25 X 30 = 18375
-50 88135 = My
T2 X 30 = 3375
—45 79,1500 = M,
—3375 X 30 = —1,012.5
-30 T 81375 = M,
T=6375 X 30 = —1.9125
-30 7 6,225.0 = M,
T-9375 X 30 = —2812.5
—20 73,4125 = My
11375 X 30 = —3,412.5
0 =M

Discussion:

This Prall truss is a simple lruss and can therefore be analyzed by using simply the
method of joints. This procedure, however, is not parlticularly efficient in a case where
the two chords are nol parallel. Probably the best procedure is first to find the horizonlal
components in the members of the curved chord. These may be compuled by passing a
vertical section through a panel and taking momenls aboul the appropriale joinl on the
bottom chord. These compulalions are facilitated if the bending momenls are known at
the various joinls along the boltom chord.

The bending momenls al the bollom-chord joinls may be compuled very convenienlly
by drawing the shear and bending-moment diagrams as shown. In this case where all
the loads and reactions are verlical, the bending momenl about any top-chord joinl is the
same as thal aboul the boltom-chord joint directly under il. Of course, if there are hori-
zonlal loads, this relalionship is nol necessarily true.

The horizontal components in the lop chord being known, the remainder of the siress
analysis can be accomplished by the method of joinls. It should also be noled that it is
easy lo compule the verlical componenls in the diagonals once the shears in the panels and
Lhe verlical componenls in the lop chords are known.
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Example 4:8 Delermine the bar stresses in all members of this Fink roof truss:

2 3
h o8 NeD ¢
‘4\ ,6% 2 6
A e\ \% | ¢ ,
2 '6,11' ” = 7% 7 J0 -
_t_
% b c é g 79;
18.75' 1, 18.75" 2250’ 22 50° 8.75" Th/n;' R
8@ /5=/20"

775 " K 4334 142906 +20.94 T Y VR TT ]
/583 2247
82.5 33.54
143 X *op = 983 16 X Spont = 447
30 A 20 _
24)(7-?—0———6__ 2% X o5 = 18
1583 247 24
= B8 143
Fo: 99.47 X gg Y 38.30 38.3
—(18 X 30 + 3 X 60) }lb - —2 0.K.

Fey = +20.9%
Discussion:

Although this Fink fruss is a compound fruss, it can be analyzed by using only the
method of joinis. For exrample, after the reaclions have been compufed, the method of
Joints can be applied successively al joinls i, H, and h. Since there are more than two
unknown bar stresses al each of joinis g and G, it is not possible lo consider these joinls as
the nezxt step in the analysis. One can, however, determine the stress in bar Ff by isolating
Joint F and the stress in bar fG by isolaling joinl f. Then the stress analysis can be com-,
pleled, slill by means of the method of joints. This procedure is possible, however, onlyj
becauaejoinl.f E‘.‘ F, and G and likewise joinis E, f, and g lie on straight lines. A
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However, il is usually preferable to proceed as follows: Afler applying the method of
Joinls al joints i, H, and h, the stress in bar cg can be oblained by isolaling the portion lo
the right of section 1-1 and laking moments about point E; the rest of the analysis can then
be completed by the method of joints.

Note also that the siress analysis can be expediled by finding the siresses in bars Cd,

3+ Cb, Gf, and Gh, using sections similar lo section 2-2, and taking momenls aboul poinls
. such as point E in the case of seclion 2-2.

k4

N The main point lo remember is to consider the application of both the method of joinls

and the method of sections and combine the two approaches in such a way as lo erpedile
the caleulations.

Nole thatl the geometry of the lruss is rather complicaled. This is oflen true in the

case of roof lrusses.
4[!: truss by graphical methods.

In such cases it is often easier to accomplish the siress analysis of

Example 4:9 Delermine the siresses in all the members of this Howe truss:
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Bar stresses:

10 0
~/2/87 y 13031 <8719  -58]2 =206
\ \ \ N\
Qk’ W & O\ | & |o\&
¥ 9 D > I8N\ IR \& |s \%
A g ,‘c’ § > 3 % > § >

. N B,
TA;:J.J/‘F//&%‘ +16.25 48719 +58.12 +29.06
3
101,25 0 40 20 2 5 *
For verlicals, bar stress = 1 X (indezx stress)
For diagonals, bar slress = 599 X (index stress)
For chords, bar stress = 3% ¢ X (index stress)

Check: F., = 3875 X 12%¢ = +116.25

Discussion:

Afler the reactions have been compuled, il is possible {o compule the verlical componenis
in all the web members by working from one end of the truss lo the olher, using either the
method of joinls or lhe method of seclions. Then il is possible o compule the horizonial
componenis in the diagonals and apply the method of joinis to oblain the chord stresses.
In this case, however, the compulalion of the chord siresses depends only on the horizontal
componenls in the various diagonals. Since all the diagonals have the same slope, the
ralio belween the verlical and horizonlal components is lhe same for all of them—in this
case as 40 is lo 30. Inapplying ZF,; = 0 at the various joinis {o oblain the chord siresses,
il is therefore permissible lo use the values of vertical components temporarily in place of
the horizontal components in the diagonals. In this manner, the values oblaired for the
chord slresses are not equal lo the lrue bar stresses in the chords, bul the ralio belween these
values and the lrue values is constan! and equal to the ratio belween the vertical and hori-
zonlal components in the diagonals.

These values of the chord stresses which must be mulliplied by a conslani faclor to
oblain the true bar sitress are called index stresses for the chords. Likewise, the vertical
componenls in the web members may be referred lo as index stresses for the webs. These
indez slresses may be wrillen down easily, as shown by the numbers in parentheses in the
first stress diagram.  Then, the true bar slresses may be oblained by mulliplying the index
slresses by cerlain faclors, as indicaled in the second stress diagram.

The use of inder stresses is helpful in analyzing parallel-chord trusses that have equal
panels and are acled upon by Iransverse loads. In olher cases, the indez-stress method
becomes involved and is usually inferior to the olher methods already discussed.

4:12 Exceptional Cases. Occasionally one encounters certain trusses
that cannot be classified as either simple or compound. Such a truss is shown in
Fig. 4:13a. In these cases, it is usually difficult to tell by inspection whether
the truss is rigid or not and whether it is statically determinate or indeterminate.

_Iv In this particular case, a count of the structure shows that there are nine bars and
six joints, which indicates that the structure is statically determinate. Whether
or not the truss is stable is not apparent, but one way of finding out is to attempt -
a stress analysis and discover whether the results are consistent or not. ’-

After computing the reactions, it is found that there is no joint at which there



116 kLo TRUSSES [§4-12

»

are only 2 unknown bar stresses. Applying the method of joints will therefore

not yield immediate solutions for the bar stresses as in the case of simple trusses.

It is also found that the method of sections likewise will not yield an immediate

solution for any of the bar stresses. Of course, it is possible to set up and solve

9 simultaneous equations involving the 9 unknown bar stresses by using 9 of the

12 equations that result from applying the method of joints to the 6 joints of the

structure. If the 3 reactions have already been computed, the 3 remaining
. 0 20 equations may be used for checking the
N ol results obtained for the 9 bar stresses.
Setting up nine equations in this
/0’ manner is a poor way to solve this
» — problem, however. Several other
approaches are much superior, one of
‘Ya) 20’ which is to proceed as follows: After
¥ computing the reactions, assume that
the horizontal component of the bar
stress in member FE is a tension of H.
Then, from joint F, the horizontal com-
ponent in FA must also be +H, and
the bar stress in FC is —0.5H. By
isolating joint C, it is then found that
the horizontal and vertical components
in both bars BC and CD are +0.5H
and +0.25H, respectively. The
stresses in these five bars having been
found in terms of H, it is now possible
to pass section 1-1 through the truss,
thus isolating the portion to the right of
this section. bummmg up the
moments about plnnt a, an equation is

Fic. 4-13

obtained involving H as the only unknown.

E M. =0, 5 15H — (20)(0.5H) — (15)(20) = 0

whence H = +60. With H known, all the other bar stresses may be found by
the method of joints as shown in Fig. 4-13c. Since, in this manner, it is possible
to make a consistent stress analysis of this truss under any condition of loading,
it may be concluded that it is statically determinate and stable.

Trusses of this type, which cannot be classified as either simple or compound,
may be called complexr trusses. Prof. S. Timoshenko uses this terminology.t
In his excellent discussion of complex trusses, Timoshenko describes a general
method of analysis of complex trusses called Henneberg's method.?

While the student should know how to recognize a complex truss and some-

1 TimosueNko, S., and D. H. Youna, *“Enginecring Mechanics—Statics,”
McGraw Hill Book Company, Inc., New York, 1937,

wWﬂ"ls method was developed by L. Henncberg in his “Statik der Starren Sys-

teme,’ Darmamdt 1886.
B
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thing about investigating its stability and stress analysis, he will not encounter
this type often enough to warrant devoting more space to the subject here. If
additional information is required, the student is referred to Timoshenko’s hook.!
Several problems at the end of this chapter emphasize the fact that complex
trusses may often be arranged so as to be geometrically unstable. Cases of this
type are not always obvious and may not become apparent until the stress
analysis is attempted and is found to lead to inconsistent results.

4-13 Rigid Frames. Before closing this chapter on truss struc-
tures, it is important to call to the attention of the student the difference:
between an ideal truss and a so-called “‘rigid frame.” The members of a
rigid frame are usually connected together by moment-resisting (rigid)
joints instead of being hinged together as in an ideal truss. Thus, a
rigid frame may be defined as a structure composed of a number of mem-
bers all lying in one plane and connected together so as to form a rigid
framework by joints, some or all of which are moment-resisting (rigid)
instead of hinged.

A moment-resisting joint is capable of transmitting both a force and
a couple from one member to the other members connected by the joint.
Such a joint can be formed by riveting or welding all the members to
gusset plates.  The detail of such joints is such that the angles between
the ends of the various members at a joint remain essentially unchanged
as the frame distorts under load. , For this reason, moment-resisting
Joints are usually referred to as rigid joints.

By a strict interpretation of these definitions, a modern truss with
riveted or welded joints should actually be classified as a rigid frame.
However, sined a satisfactory stress analysis may usually be obtained by
assuming that suc h a truss acts as if it were pin-jointed, such structures
are called trusses. The term rigid frame is reserved to designate struc-
tures of the type shown in all of Fig. 4-14 except sketch . When rigid
frames are represented by line diagrams as is done in this figure, moment-
resisting joints are designated by indicating little fillets between the
members meeting at a joint.  Any pin joints are represented in the usual
manner.

The stability and determinancy of rigid frames may be investigated
by methods similar to those used for trusses. For this purpose, a cri-
terion may be established comparing the number of unknown stress
components and reaction elements with the number of independent
equations of static equilibrium available for their solution. As in the
case of trusscs, the number of unknowns and equations may be expressed
in terms of the number of members, joints, and reaction elements.

The total number of independent unknowns is equal to the sum of

‘TimosnenNko S., and D. H. Young, *“Engineering Mechamcs—Slaucs_, 4
McGraw-Hill Book Company. Inc., New York, 1937. Bt
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the number of unknown reaction elements plus the number of independent
unknown stress components in the members. In a frame with rigid
joints, the action of a joint on a member may consist of a couple as well
as a force. Likewise, this force may have both axial and transverse com-
ponents. As a result, the cross sections of a member may be subjected
to an axial force, shear, and bending moment. However, if the axial
force, shear, and bending moment are known at one end of a member,
then similar quantities may be found for any other cross section of the

' member. There are therefore only three independent stress components
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Fre. 4-14

for each member of the frame. Jf the number of reaction elements is r
and the number of members is b, the total number of independent
unknowns in a rigid frame is equal to 3b + r.

If a rigid joint is isolated as a free body, it will be acted upon by a
system of forces and couples. For equilibrium of such a joint, this
system, therefore, must satisfy three equations of static equilibrium,
2F, =0, ZF, = 0, and M = 0. If the entire frame is in equilibrium,
then each of its joints must be in equilibrium. If there are n rigid joints
in the frame, each of these joints can be isolated as a free-body and a total
of 3n equations of static equilibrium obtained. As in the discussion of
%’2“,"' it may be shown that the three equations of equilibrium of the
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entire structure are not independent of these equations, and therefore it
may be concluded that there are only 3n equations of static equilibrium
for the entire rigid frame.

Occasionally hinges or some other special conditions of construction
are introduced into the structure. If in this manner s special equations
of condition are introduced, the total number of equations available for
the solution of the unknowns will equal 3n 4 s. The criterion for
stability and determinancy of the rigid frame is obtained by comparing-
the number of unknowns, 3b 4 r, with the number of independent equa-+
tions, 3n + s. As before, it may, therefore, be concluded that

If 3n 4 s > 3b + r, the frame is unstlable.

[}

If 3n + s = 3b + r, the frame is stalically determinate. e
If 3n + s 3b + r, the frame is stalically indeterminale. y
If the criterio icates that the frame is statically determinate or inde- v

terminate, it should be remembered from the similar discussion in Art.
4.8 that the count alone does not prove absolutely that the structure is
stable.

This criterion establishes the combined degree of determinancy with
respect to both reactions and stress components. The degree of deter-
minancy with respect to reactions only may be established in the same
manner as discussed in Art. 4-9 for truss structures and also in Arts.
2.5 and 2-9.

Table 4-1 shows the application of the above criterion to the frames
in Fig. 4-14:

Table 4:1

Frame | n s b r |3n4+s|3+r Classification
a 8 0 10 3 24, 33 Indeterminate—9th degree
b 8 0 13 3 24 | L, 42 Indeterminate—18th degree
e |4 lo]| 3|3 | 1 ﬁ 12 | Determinate
d 4 0 3 3 12 L2 Determinate
e 4 0 3 6 12 *.15 , | Indeterminate—3d degree
J 9 0 10 9 27 ¢ 39 Indeterminate—12th degree
g 6 0 6 6 18 24 Indeterminate—6th degree
h 6 (1] 5 9 18 24 Indeterminate—6th degree
k 6 2 5 9 20 24 Indeterminate—4th degree
m 4 1 3 6 13 15 Indeterminate—2nd degree
n 6 3 6 6 21 24 Indeterminate—3d degree

In applying this criterion, any extremity of the frame, such as those
marked E in Fig. 414, should be counted as a rigid joint even though just
one member is connected to it. Sometimes the count of the s special
equations of condition is rather difficult to make. It is quite obviousin

* ® ‘,'*‘-
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structure k of Fig. 4-14 that the insertion of the two hinges has introduced
two equations of condition. The insertion of the hinge joint A in struc-
ture m introduces one equation of condition, but the insertion of a similar
joint A as shown in structure n introduces two equations of condition.
In each case, the validity of these counts is more apparent if one considers
the auxiliary sketches of the joints shown in each case. The auxiliary
sketches show the manner in which the same structural action may be

i obtained at these joints by insertion of hinges in the ends of the members

.
"

‘meeting at the joint. These alternate arrangements require one hinge

for structure m and two hinges for the joint A in structure n. To general-

¥ ize, it may be stated that the number of special condition equations
xintroduced by the insertion of a hinge joint in a rigid frame is equal to

the number of bars meeting at that joint minus one. If the s special
equations are counted in this manner, the criterion yicelds the correct
results. ,

After reading this last paragraph, the reader will no doubt appreciate
the truth of the statement that it is almost impossible to count some
structures properly without first knowing the answer. Because of the
difficulties encountered in counting some structures, the authors feel
that, while criteria such as the above are sometimes very useful, the
stress analyst should rely on a more fundamental approach to determine
the degree of indeterminancy of an indeterminate structure.  The most
fundamental approach is to remove supports and/or to cut members
until the structure has been reduced to a statically determinate and stable
structure. The number of restraints that must be removed to accomplish
this result is equal to the degree of indeterminancy of theactualstructure.

4:-14 Problems for Solution.

3

Problem 4-1 Classify the trusses of Fig. 415 as being simple, compound,
or complex.

/

(f)

(d) e

(g)
FiG. 4-15

NP I
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Problem 4:2 Classify the truss structures of Fig. 4-16 as being statically
determinate or indeterminate, stable or unstable. If the structure is indeter-
minate, state the degree of indeterminancy both with respect to reactions and
bar stresses and with respect to reactions only. If the structure is unstable,
state the reason for the instability.

d) %o :,E

(f)

(m)
F1c. 4-16

7
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v
Problem 4:3 Compute the bar stresses in the lettered bars of the trusses of
Fig. 417 due to the loads shown.
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Problem 4:4 Compute all the bar stresses in the trusses of Fig. 4- 12 due to
the loads shown.
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CHAPTER 5
GRAPHIC STATICS

5:1 Introduction. Graphic statics is that branch of mechanics
which deals with graphical rather than algebraic solutions of problems of
- statics. In this country, there seems to be an aversion toward graphical
solutions among students and engineers. There are some problems, how-
ever, where the graphical solution is distinctly superior to the algebraic
approach. There are other problems where just the reverse is true.
In the middle ground between these two extreme situations, which
method the engineer decides to use usually depends on his personal
preference and background.
Among the problems that may be solved advantageously by graphical
methods are the following:

1. Determination of the bar stresses in a truss that has a complex
configuration and that is to be analyzed for a limited number of
loading conditions, for example, the analysis of a roof truss or the
determination of erection stresses in certain types of structures,
such as cantilever trusses

Cases where the true resultant deflection is required for every joint
of a truss

18]

The student will find not only that a knowledge of graphical methods
is useful in the solution of problems such as these but also that there are
certain educational advantages which result from a study of the basic
principles of graphical methods. He will find that these ideas aid him in
visualizing and representing physical phenomena and often assist him
in thinking about the algebraic solution of certain problems.

In this book, the discussion of graphic statics will be limited to the
solution of two-dimensional, or planar, structures. Graphical methods
can be extended, of course, to the more gencral three-dimensional prob-
lems, but in most cases the complexities introduced by the third dimension
are greater for the graphical methods than for the algebraic methods.

5:2 Definitions. Before the fundamental principles of graphic
statics are discussed, it is first necessary to emphasize certain ideas and
definitions concerning forces and force systems. A force may be defined
as any action which tends to change the state of motion (or rest) of the
body to which it is applied. The forces acting on a body may be clas-
sified as either outer forces or inner forces (stresses). The outer forces

126
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may be further subdivided into the loads (active forces) applied to the
structure from without and the reactions (resisting forces) balancing or
restraining the effects of the loads. The inner forces, or stresses, are
usually developed between the particles of the body by the outer forces
acting on it.

A force may be completely identified by the following specifications:
(1) its point of application; (2) its direction; (3) its magnitude. Accord-
ing to this terminology, the “direction of a force” is intended to define *
the slope of its line of action while the “magnitude” indicates not only,
its numerical size but also the sense in which the force acts along this line
of action, i.e., whether toward or away from a body. A force is there- 'g‘
fore a vector quantity since it has both )
magnitude and direction. Hence, a force may
be represented graphically by a line drawn
toward or from the point of application and n
having a length that indicates the numerical 3000
size of the force to a certain scale. The slope
of this line indicates the direction of the force
and an arrowhead the sense in which the force
acts along this line. A 3,000-lb. force is represented in this manner by the
vector AB in Fig. 5-1. When this vector notation is used, the order of
the letters indicates the sense of the force. Thus, AB means that the
force acts from A toward B.

The use of the term ‘“point of application’ of a force implies that it is
possible to concentrate a force at a point. Physically, of course, this is
impossible since a finite load applied at a point, i.e., applied to a zero
area, would develop infinite contact stresses intensities in the material.
No material can withstand such stresses, since it will deform at the point
of contact until a small finite contact area is developed over which the
load is distributed at finite stress intensities. However, as far as the
equilibrium condition of the body as a whole is concerned, it is legitimate
to replace the actual load distributed over a small area by the equivalent
total load concentrated at a point.

As previously explained in Art. 2-3, it is usually permissible to assume
structures as being rigid (nondeformable) bodies in investigating their
equilibrium conditions. Thus, in most problems of graphic statics, it
will be assumed that the structure is a rigid body and hence that the
geometry after the application of the loads is essentially the same as
before.

5:3 Composition and Resolution of Forces. It is sometimes
dssirable to replace two forces by a single force that exerts the same effect.
This single force that would have the same effect in producing motion is

FiGc. 5-1
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* called the resultant of these forces. It may be demonstrated that the
magnitude and direction of the resultant of two concurrent forces may
be obtained by drawing the diagonal of a parallelogram which has been

. constructed with the vectors representing these two forces drawn as

(6)

A F2
(c) g
b 77}
0 R
/7
0 %
A Fy

Fi1G. 5-2

sides. Thus, to determine the
magnitude and direction of the
resultant of the forces F; and F,
shown in Fig. 5- 2a, a parallelogram
is constructed as shown in Fig.
5-2b. This parallelogram is con-
structed on the basis of two sides
0OA and OB obtained by drawing
through point O two vectors 0A
and OB representing the forces F,
and Fs, respectively. The magni-
tude and direction of the resultant
Ri2 is given by the vector OC,
which is the diagonal of this
parallelogram.

From Fig. 5-2d, it is apparent
that the same results would be
obtained from a parallelogram
constructed by drawing vectors
A0 and BO both running into
point O rather than away from
this point. Likewise, from Fig.
5-2¢, it is apparent that the same
results could also be obtained by
drawing cither of the vector
triangles OAC or OBC instead of
the parallelogram. In construct-
ing these triangles, ecither force
may be drawn first and then the
other force laid out from the end
of the first vector. The resultant

is then obtained in magnitude and direction from the closing vector of the
triangle drawn from the beginning of the first vector to the end of the

second.

The magnitude and direction of the resultant R,. having been deter-
mined in one of these ways, its point of application may be considered tc
be located at any point along its line of action. The line of action of the
resultant must pass through the point of intersection of the two forces



D h Ty
§5-3 COMPOSITION AND RESOLUTIGN:OR ryncns 129

Fi and F,, or through point 0’ in Fig.5-2a. If this were not so, theresultant
would not exert the same effect as the two forces that it replaces since
the moment of the resultant about an axis through any point in the plane
would not be the same as the sum of the moments of the two forces about
that axis. For example, the moments of both F; and F, about an axis
through O’ are zero, but the moment of the resultant R, will also be zero
only if the line of action of R,; also passes through point 0.

The validity of this parallelogram construction for determining the magnitude
and direction of the resultant of two concurrent forces may be demonstrated in
the following manner: Consider the
two forces F, and F, acting at point A ________ — .

. . /
0 on the body shown in Fig. 5-3. o Y Ry /|
The resultant R,, of these forces also /)
acts at point O along some line of ?\\ 7 « ¢ :
action specified by the unknown I~~~ "= B /:\f_J
angle «. The unknown magnitude : ;
and direction of this resultant may [ |
be determined in the following /L}_____;
manner: If this body is moved so that e
point O is given some arbitrary move- .d_‘LI
ment§, the forces F, and F; will per- Fic. 5-3
form a ceptain amount of work. If
the resultant R,; is to exert the same effect as the two forces F; and F,, then it
must perform the same amount of work during the movement 6. Suppose the
body is given an arbitrary translation so that point O moves to point 0’. Upon
equating the wgrk done by F, and F; to the work done by R, Eq. (a) is obtained,

(Riz cos ) (81) = (F2)(81) + (Fi cos B)(81)

or
R = E@-%%‘Bi@ (@
In the same manner, translating the body so that point O moves 0”,
[Riz cos (B — @)](82) = (F1)(82) + (F: cos B)(82)
me = G ®)

These two equations may now be solved for R;. and a. Equatmg the right-hand
sides of these equations leads to the following expression for a:
F, sin
tan a = Fs ‘P‘LFT_C?);B (c)
Therefore,
F:+ F, cos B8 .
\/(F, sin [3)2 + (Fs + F, cos B)?

(d

cos
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Substituting in Eq. (a) from Eq. (d) leads to
R,g = \/(F[ Sin ﬂ)ﬂ + (FZ + Fl cos ﬁ)z (e)

_ By use of Eq. (¢), the angle @ may be laid off graphically as indicated in Fig. 5-3,
while the magnitude of the vector R,; is shown by Eq. (e) to be given by the
length of the hypotenuse of the right triangle ODC. It is obvious, therefore,
that the vector OC representing the resultant is likewise the diagonal of the

¢ parallelogram of forces OACB, which justifies the parallelogram construction
described above.

This process of replacing forces F; and F; by a single resultant force
I?;cis known as the composition of forces Fy and F,. The reverse of this
process, that of replacing the effect of a single force R by two equivalent
forces (called two components) F, and F, is called the resolution of force R.

« 4In the latter process, the direction of the two components might be given
' ‘and their magnitude obtained from the force triangle or parallelogram;
or the direction and magnitude of one component might be given and the
direction and magnitude of the other component determined in a similar
manner. The magnitude and direction of the two components F, and
F3 having been determined, they may both be applied at the point of
application of the force R. Of course, it is permissible to apply both the
components F, and F, at any point along the line of action of the force R.

5-4 Resultant of Several Forces in a Plane—Force Polygon.
Consider a body subjected to a coplanar system of forces Fy, Fe, F;, and
F,asshown in Fig. 5-4a. Suppose that it is required to find the resultant
of these forces graphically. As described in the previous article, the
resultant R); of the forces F; and F; may be obtained in magnitude and
direction from the force triangle 012. The line of action of this resultant
is drawn parallel to the vector 02 and through the intersection of the
lines of action of the forces F; and F,. In the same manner, the resultant
Riz; of the forces Ry; and F; may be obtained; and then the resultant
Ri234 of the forces Ryy; and F,. The last resultant Ryss is of course the
resultant of all four forces F,, F,, F;, and F..

The figure obtained by combining the force triangles 012, 023,
and 031 and then omitting the dashed lines 02 and 03 is called the
Jorce polygon for the forces F,, Fs, F,, and F,. From this force polygon,
the resultant Ri2a of the entire system may be found directly without
completing the intermediate force triangles. The magnitude and direc-
tion of this resultant are given hy the vector drawn from the initial to the
final point ot the force polygon—iu this case by the vector 04. To
establish the line of action of this resultant in the space diagram, the lines
of action of the intermediate resultants I7:1 and R,3; must be established
as described above
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This method of obtaining the magnitude, direction, and line of action
of the resultant is applicable as long as the lines of action of the forces
are not parallel and intersect within the limits of the drawing. When
this method is not applicable, it is necessary to resort to the use of a
so-called *‘equilibrium (funicular) polygon,” which will be described in
Art. 5-7.

It should Le noted that the order of drawing the forces in the force
polygon is immaterial and that they are usually considered in a clockwise
order simply as a matter of convenience.

|

{Rna
/
o\
(a) (6)
#1224 Space Diagram Force Polygon
. . 5-4

5:5 Equilibrium Conditions for Concurrent and Nonconcur-
rent Coplanar Force Systems. Suppose that the force Fs is added
to the nonconcurrent force system already shown in Fig. 5-4a. The new
system F, F,, Fy, F, and F; is shown in Fig. 5-5. Let the force F; have
the same line of action as the resultant Rja.y, and further let it be
numerically equal to this resultant but acting in the opposite sense.
Then in this case it will be found that the force polygon for all five forces
will close back on the original starting point O. Closure of the force
polygon indicates that the equations *F, = 0 and TF, = 0 are satisfied
by the five forces themselves and that therefore their resultant effect
cénnot be a resultant force. The fact that, in the space diagram, F;
tﬁ Ri23 have the same lines of action and are also numerically equal, but
opposite in sense, indicates that F; in effect holds the other four forces in
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equilibrium. In such a case, the force Fs is called the equilibrant of the
other four forces.

Suppose, however, that force Fs, instead of having the same line of
action as Ry, is displaced laterally a distance a as indicated by the
dotted force F'; in Fig. 5:5. Now, although F’; closes the force polygon,
thus satisfying equations ZF; = 0 and 2F, = 0, in the space diagram the

}. equal and opposite forces F's and Rjs are parallel, but their lines of

action are displaced by the distance a. Obviously, therefore, the result-
ant of the new system Fy, Fy, Fy, Fy, and F’5 is a couple equal in magnitude

y 2 to F'sa, and the system is not in equi-
librium since =M 3 0,

In the case of a nonconcurrent force
system, it is therefore evident that
closure of the force polygon is a
necessary but not a sufficient condition
to show that the system is in equi-
librium. In addition to this condition,
it is necessary to show in the space
diagram that the system is not equiva-
lent to a couple, i.e., that one force has
the same line of action but is opposite
in sense to the resultant of theremaining
forces of the system.

Of course, if the force system is a

/ concurrent system with the lines of

/ action of all the forces intersecting in a

’2: common point, then it is impossible for
i ;"; the resultant effect of the system to be

a couple. In such a case, closure of the
force polygon indicating that the resultant effect of the system is not a
resultant force is then sufficient to prove that this concurrent force system
is in equilibrium.

5:6 Determination of Reactions by the Three-force Method.
If only three nonparallel forces act on a body, it is easy to show that they
must be concurrent in order to be in equilibrium. Consider any two of
these three forces. The line of action of the resultant of these two forces
must pass through their point of intersection. Then, in order for the
remaining force to be the equilibrant of the other two, the line of action of
this third force must coincide with that of the resultant of the other two.
It may therefore be concluded that the lines of action of all three forces
must intersect in a common point if the system is to be in equilibrium.
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This conclusion furnishes the basis for the so-called ** three-force method ™
of determining the reactions of a statically determinate structure.
Consider, for example, the beam shown in Fig. 5-6. Suppose that
it is desired to find the reactions which are required to keep this structure
in static equilibrium. First determine the magnitude and line of action of
the resultant of the applied loads, using the force polygon and the space
diagram. Then the structure may be considered to be acted upon by #
three forces—the resultant of the applied loads (R;. in this case) and the
two reactions (R, and R,). For
equilibrium of the structure, it is % Iz

necessary for these three forces to -
be concurrent. In this case, the &«

b
magnitude of both reactions and \ R
the direction of R, arc unknown, R R
but the point of application of R, @ \ %6

and the line of action of R, are >

both known. The line of action
of Ry is known to be a vertical line
passing through point . Point o,
the point of intersection of Ry, and
Rs, must therefore be the point of
concurrency of the three forces. F
The line of action of R, must 3
therefore be along the line oa.

Now, the diregtions of both reac- Ry 7

tions being known, their magni- F; 0
tudes may casily be determined
since it is known that the vectors
representing these reactions must
close the force polygon. In this case, upon drawing a line through point 2
parallel to R, and through point 0, a line parallel to R establishes the
intersection point 3, which determines the length of vectors 23 and 30
representing the reactions R, and R, respectively. Of course, it is
immaterial whether the force polygon is closed in this manner or by draw-
ing the line parallel to R, through point O and the line parallel to R.
through point 2,

It should be noted that this three-force method is not a completely
general method of determining the reactions of a staticaliy determinate
structure. Tt may be used only when the line of action of the resultant
of the applied loads intersects the known line of action of one of the
reactions,

2
Fic. 5-6
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!' 5:7 Funicular (Equilibrium) Polygon. A method is discussed
Fin Art. 5-4 by which the resultant of scveral coplanar forces may be
determined. This method fails when any point of intersection on the
space diagram falls outside of the paper and is not applicable to a system
o of parallel forces. However, a general method using the funicular
¥ (equilibrium) polygon is applicable to any coplanar force system.
* Suppose that the resultant of the forces Fy, Fj, and F; shown in Fig
"5-7a is required. The magnitude and direction of the resultant Rizs is
‘gbtained from vector O3 in the force polygon 0123, The line of action
of this resultant on the space diagram may be determined as follows:
Syppose, by using the force triangle OP1, that force F), is resolved into
‘an¥ two components P1 and OP at some point on its line of action.
Te

?
<
Qg o o e o o e e = ——— e —— —————

Fi16. 5-7

" Suppose that the line of action of the component P1 is extended until it
intersects the line of action of F,. At this point, resolve F, into com-
ponents one of which, 1P, is collinear with, but equal and opposite to,
P1, and the other is equal to P2 as obtained from-the force triangle
1P2. In the same manner, resolve F; into components 2P and P3 as
shown. Now the original force system of F,, F,, and F has been replaced
by six components, OP and P1, 1P and P2, and 2P and P3. Of
these six components, the pairs P1 and 1P and P2 and 2P are collinear
but equal and opposite, and therefore each of these pairs is in equilibrium.
The resultant of the six components and therefore of the original force

¥ system is the resultant of the two remaining components OP and P3 and
acts through their point of intersection.

The construction thus drawn between the lines of action of the forces
in the space diagram is called the equilibrium, or funicular, polygon. The
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sides of this polygon drawn between the forces are called strings. The -
point P on the force polygon through which all the components are °
directed is called the pole. The lines drawn from the vertices of the force
polygon to the pole P are called rays.

In an actual problem, the line of action of the resultant is located by
constructing the funicular polygon in a slightly different manner from that
described above. First a convenient pole P is selected, and rays are ,
drawn from this pole to the vertices of the force polygon. Then the
strings of the funicular polygon are drawn on the space diagram parallel
to the corresponding rays of the force polygon. Note that a string is
drawn between the lines of action of two forces which are adjacent to’

3

—r

2P

2
]

? I
F16. 5-8

each other in the force polygon and further that this string is drawn
parallel to the ray directed through the intersection of these two adjacent
force vectors. While it is not necessary to do so, usually the starting point
for the funicular polygon is selected as some point on the line of action of
the first force to have been laid out in the force polygon. Then, the
intersection of the first and last string of the funicular polygon (such as
the string between F, and R,,; and that between Fs and R, respectively)
is a point on the line of action of the resultant of the system, which has
been determined previously in magnitude and direction from the force
pdlygon.

Suppose that a fourth force F, is added to the system in Fig. 5.7.
Suppose further that F, is collinear with, but equal and opposite to. .
Ry2s.  The new system will then be as shown in Fig. 5-8.

In such a case, the force polygon will close, indicating that ZF, = 0

tand 2ZF, = 0. Likewise, when the funicular polygon is drawn, it is

i
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* found that the first and last strings drawn from forces F, and Fj, respec-
tively, are actually collinear.  Of course, drawing the funicular polygon
actually is just a means of replacing the four forces by the eight com-
ponents shown. It is apparent that these eight components may be
considered as four pairs, each of which is in equilibrium, and therefore
the original force system must be in equilibrium,

Suppose that, instead of F, being collinear with Ry, its line of action
i is displaced to the dashed-line position, still being parallel and equal and

opposite to Ryo;.  Then, the force polygon will still close, but the first
s and last strings will no longer be collinear.  They now will be parallel
by displaced a distance a apart. In this case, the eight components
sgepresented by the funicular polygon will consist of three equal and
“gpposite pairs in equilibrium, but the fourth pair OP and PO will be
parallel, equal, and opposite and will be equivalent to a couple equal to
(OP)(u). The original force system will now be equivalent to a couple of
(OP)(«) and will no longer be in equilibrium.
It may therefore be concluded that, for a system of nonconcurrent
forces to be in equilibrium, it is necessary not only for the foree polygon
to be a closed figure but also for the funicular polygon to be a closed
figure, i.e., the first and last strings of the funicular polygon must be
coincident. If the force polygon closes but the funicular polygon does
not, the force system will be equivalent to a couple.
. There is another principle associated with a funicular polygon, which

gay often be used to advantage. The strings of a funicular polygon
- may be considered to represent links connected together at the vertices
of the polygon by frictionless pins. If one considers the fundamental
principles involved in the construction of a funicular polygon, it is evident
that a linkage of this shape will support the system of loads applied to its
joints. Of course, in cases where the funicular polygon is not a closed
figure, it is also necessary to provide the proper reactions for the linkage
acting along the directions of the first and last strings of the polygon.
The magnitude of these two reactions are given by measuring the length
of the first and last rays of the force polygon.

5:8 Use of Funicular Polygon to Determine Reactions. The
use of the funicular polygon in determining the reactions of a statically
determinate structure may be explained by considering the heam and
loading shown in Fig. 5-9. In this case, the point of application and
direction of the right reaction and the point of application of the left
*rea~tion are known, leaving as unknowns the magnitude of both reactions
, and the direction of the left one. These three unknowns may be found

by knowing that both the force and funicular polygons must close if the
scopbined system of loads and reactions is to be in equilibrium,
Yo

3
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A portion of the force polygon may be drawn immediately, viz., vcc-g

tors O1 and 12 representing the applied loads. Now sclect a pole P,
and draw the rays to points O, 1, and 2. Draw a string parallel to ray
PO between the unknown line of action of R, and the force ;. While
the direction of Ry, is unknown, it is known that point a is one point on its

1

line of action and therefore this string may be drawn from point a to -
an intersection with F;. Likewise, draw successively the strings between¥
F; and F, and then between /2 and the known line of action of Rg. 4

This last string intersects Re at point b. The closing string of the

funicular polygon will be the string ab. Now the corresponding ray may "

be drawn in the force polygon parallel to this closing string. This ray
must go through the vertex that is the intersection of the vectors, re prcgr
senting Rr and R;. Since string 3 was drawn between ¥, and R parallel’

0
LA
®/——®~—7( Paer— / 1

Fre. 5.9

to ray P2, one’end of the vector representing Rx must be at point 2 on
the force polygon. 1t is known further that this reaction is vertical.
Through point 2, therefore, draw a vertical vector representing Rz. The
other end of this vector must lie on the ray parallel to the closing string,
and thus vertex 3 of the pol) gon is located. Vector 23 gives the mdgm-
tude of Re, and vector 30, the closing vector of the force polygon, gives
the direction and magnitude of R;.

This procedure is straightforward, but sometimes students become
confused as to whether to draw the yector for the reaction with the known
direction through the first or last vertex of the force, i.e., in this case
whether through point O or 2. Such confusion is not necessary if one
remembers that a given string drawn between the lines of action of two
forces is parallel to the ray which passes through the intersection of the
two vectors representing these forces in the force polygon. In this case,
string 1 is drawn parallel to ray PO and string 3 parallel to ray P2.
This implies that one end of the vector representing R, is at point O on
the force polygon and one end of the vector for Ry at point 2,



138 GRAPHIC STATICS [§5-9

;? This method of determining reactions is general and is not limited to
+ special cases as is the three-force method.

59 Funicular Polygons Drawn through One, Two, or Three

Specified Points. When one reconsiders the procedure for drawing a

_ funicular polygon for a given set of forces, it is apparent that it is possible

< to draw an infinite number of funicular polygons for that partigalar set

of forces, for any one of an infinite number of points can be s&g as

the pole of the force polygon. Sometimes, however, it is nec to

" draw the funicular polygon so that it will pass through certain specific

points in the space diagram. Under such conditions, it becomes neces-
sary to limit the selection of the pole to certain specific points.

* First consider the case where it is necessary to pass the funicular

polygon through one specific point in the space diagram, such as point a

in Fig. 5-10. This may be done by drawing between forces F; and F,

FiG. 5-10

_ dny desired string that also passes through point a. The ray correspond-

ing to this string may now be drawn parallel to it and passing through the
intersection of the vectors for F; and F, in the force polygon. The pole
P may now be selected as any point along this ray and the remainder of
the corresponding funicular polygon completed as shown. Obviously,
any one of an infinite number of poles P can be selected in this manner,

i and hence an infinite number of polygons can be drawn passing through
the single point a.

When it becomes necessary to pass the funicular polygon through two
particular points such as a and b in Fig. 5-11, the procedure must be
altered somewhat. Suppose temporarily that these forces are imagined
to be applied to a structure supported by a hinge support at point a
and a roller support supplying a vertical reaction at point b. Then,
proceeding in the usual manner, these two imaginary reactions can be

gobtained, using the funicular polygon labeled with the strings 1, 2, 3, and
* 4 and the closing string ab’. This funicular polygon is drawn using the
# pole P. Of course, the value so determined for the reactions Rz and R.

) %;ill be the same regardless of what point is chogen for the pole P, and
LA D% '
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therefore the position of vertex v in the force polygon is unique. If's
the pole P has been selected as desired, the resulting funicular polygon
will pass through points a and b and the closing string of this polygon
will be the line ab. The corresponding ray for this string will be parallel
to ab and will also pass through vertex v of the force polygon. This ray .
has begn so drawn and labeled 5. Any point along this ray may now be‘“
selected as the pole P/, which will result in a funicular polygon with strmgs
1, 2, 3, 4, and 5, which pass through the two specified points a and b"s
in the space diagram. Again, it is apparent that any one of an infinite
number of poles P’ can be selected in this manner and hence an infinite»

Fic. 5-11

number of funicular polygons can be drawn passing through two specified
points a and b.

Now consider a case where it is necessary to pass the funicular poly gon
through three spccxﬁtd points a, b, and ¢, as shown in Fig. 5-12. As
before, assume temporarily that these forces are acting on a structure
supported by a hinge support at a and a roller support supplying a verti-
cal reaction at ¢. Continue as before, and determine these reactions
R, and Ry by drawing the funicular polygon with strings 1, 2, 3, 4, and
5 and thus locating vertex v in the force polygon. As demonstrated in
the preceding paragraph, the pole of a funicular polygon passing through
points a and ¢ must.lie somewhere along the line vz parallel to line ac.
Now consider only the forces lying between points a and b, and assume
these forces to be supported by a hinge support at @ and a roller support
supplying a vertical reaction at point b. These reactions R’; and R’z
may be determined by using the funicular polygon with strings 1, 2, 3,
and 6 and thus locating vertex w in the force polygon. Likewise, the
pole of a funicular ssing through points a and b must lie some-
where along the mnel to Jine ab. Hence, for the polygon to
pass through all three fiints a, b, and ¢, the pole P’ must be located at
the intersection of the vz and wyg In this case, only one pole P’ may.
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be locat¥d in this manner, and hence only one funicular polygon may be
passed through three specified points. Further, a funicular polygon
cannot be made to pass through more than three specified points.

Frc. 5-12

5:10 Graphical Determination of Shear and Bending Mo-
ment. After finding the reactions of a beam graphically, shear and
bending moment may also readily be found by graphical methods.
Shear, being the transverse component of the resultant of the forces
applied either to the left or to the right of a section, may easily be found
from the force polygon. Graphical determination of bending moment,
however, requires additional considerations beyond the techniques

_ already discussed.

The bending moment at a section is equal to the moment of the
resultant of the forces applied either to the left or to the right of the
section.  Of course, the magnitude and direction of such a resultant may
be determined from the force polygon, while a point onits line of action is
located by the intersection of the appropriate strings of the funicular

» polygon. By using this information and scaling the lever arm of the
resultant, it is possible to compute the desired moment. It is simpler,
however, to compute the moment by using the procedure developed by
the following considerations:

Consider the force system Fy, Fy, and F3 shown in Fig. 5-13, and sup-
pose that it is desired to compute the sum of the moments of these three
forces about point ¢. The sum of the moments of these three forces is
equal to the moment of their resultant about point a, which will be called

+ M,. Then,

M, = (Ryz3)(m) = (67') (m) (a)

fygere OT is measured to the force scale and m to the distance scale. If
)
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the line de is drawn parallel to OT, then the triangles OPT and cde are i
similar. . Therefore, drawing H perpendicular to OT,

de _ OT

i m H
Hence,

or Hde = OTm )

M, = Hde (o

where de is measured to the distance scale and II to the force scale. His
called the pole distance.

In general, determining the product of Hde furnishes a convenient
way of evaluating the moment of the resultant (and hence of the three
forces) about point a. The following procedure summarizes this graph-

73

F1Gc. 5-13

ical method of determining the moment of a system of forces about a
given point a:

1. Construct the force polygon for this system. Select a pole P,
and draw the corresponding funicular polygon.

2. Draw through point a in the space diagram a line parallel to the
direction of the resultant of the system as determined in the force polygon.

3. Measure to the distance scale the intercept of this line between the ©
strings of the funicular polygon, the intersection of which determines a
point on the line of action of the resultant.

4. Also measure to the force scale the pole distance H that is the per-
pendicular distance from the pole P to the resultant vector in the force
polygon.

5. The moment of the force system about point a is then equal to
the product of the intercept, from step 3, and the pole distance, from
step L. ;

The following examples illustrate how conveniently this procedure
may be applied to the computation of Ltle bending moment at various
points in a beam. . * W

N WY, o
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It is often necessary to consider cases where the load is distributed
instead of concentrated. In such cases, the portion of the beam so loaded
must be divided into a series of short sections. The total load acting
on each section is then assumed to be concentrated at the center of
gravity of the load for that section. The graphical solution for reactions,
shear, and bending moment is then carried out as usual, considering the
distributed load to be replaced by this series of concentrated loads.
The values of the reactions found in this manner are not in error, but the
values of shear and bending moment are exact only at the ends of
the various short sections into which the distributed load is divided.
The ordinates of the shear and bending-moment curves at intermediate
points are not appreciably in error, however, provided that the lengths
of the sections are reasonably small.

Example 51 Draw the shear and bending-moment diagrams for lhis beam:
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”g’ Cc - d e 6
¢ 6 6’ 2’ o
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4 a N 3
Ror/17k N / Ry223%
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s Scale . 1°=12%
3
=123
(2.3 M =3/0x 230 =7.3%
My=3/0x 280 =117.9
/ M =31 0x 145 = #49
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$M ¥ '
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M, = 31.0 X 2.30 = 71.3¥ ”»
M, = 310 X 3.80 = 117.9%
M, = 31.0 X 1.45 = 44.9%

Discussion:

In this example, all the loads are verlical and develop vertical reactions. As a resull,
at any point along the beam, the resullant of the loads either lo the right or lo the left of that
section is a vertical force. The compulation of shear and, particularly, bending moment is
therefore considerably simplified. For example, in compuling the bending moments
al various poinis, the pole distance H, will be constant for every point, and the intercepls
measured in the funicular polvgon will all be along verlical lines.

Example 5:2 Draw the shear and bending-moment diagrams for this beam:
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Computed by using forces on
Left Right

M, = 39.7 X 0.60 = 23.8 or 30.0 X 0.90 = 27.0

M, = 30.0 X 3.10 = 93.0 or 39.2 X 2.40 = 94.0

Mg = 39.2 X 0.60 = 23.6 or 39.7 X 0.60 = 23.8
Average M, = 25.*
Average M. = 93.5%' a
Average My = 23.7%

, Discussion:

In simple problems such as Example 5- 1, the graphical method may be applio.n'lhout
-difficulty. As soon as the loads are in¢lined or the beam is no longer supported in a simple
%nd-supported manner, the method becomes considerably more complexr.

# In this case, afler finding the reactions using force and funicular polygons I, il is

+ necessary to redraw the force polygon so thal the forces are laid out in the same order as
they are encounlered in lraversing the member from one end to the other. Afler force
polygon II and ils corresponding funiculur polygon have been laid oul in this manner,
il is possible lo compute the shear and bending moment at all the various poinls along the
beam. Normally, the second funicular polvgon may be superimposed on the first. IHere,
however, two separale space diagrams have been drawn to avoid unnecessary confusion.

Note that the bending moments have been compuled from the forces on each side of the

section lo oblain a check.

5-11 Stresses in Trusses—Maxwell Diagram—Bow’s Notation.
The graphical method of joints is a convenient method for determining
the bar stresses of certain statically determinate trusses. Assuming
that the reactions have been determined previously by either graphical or
algebraic methods, the bar stresses can then be determined by drawing a
series of force polygons, one for each joint. It will be found convenient,
however, to combine all these polygons into one composite figure called a
Mazxuwell diagram after its originator, Clerk Maxwell. .

At any joint, the bar stresses and external forces forga a concurrent
coplanar force system, which to be in equilibrium must produce a closed

s force polygon. Closure of the force polygon is equivalent to satisfying
the two algebraic conditions XF, = 0 and XF, = 0. Since the directions
of all forces acting on a joint are known, the magnilude of fiwo unknown
bar stresses may be determined, therefore, by making the force polygon
for the joint close. Tt is thus possible to determine all the bar stresses
in a simple lruss by starting at a joint where there are only two unknown
stresses and then considering each of the other joints in turn, always

_working with a joint where there are not more than two unknowns.

; In applying the graphical method of joints, the external and internal

» forces may be identified by using Bow’s nolation. To apply this notation,
the spaces between external forces are designated by Roman numerals
and those between bars by Arabic numerals as illustrated in Fig. 5-14.
-”Plkp, an external force may be identified by reading the numbers on cach
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side of it in a clockwise order; for example, the force acting at joint Bis ¢
called force I-1I. Likewise, the internal force with which a member
acts on a joint is identified by reading the numbers on each side of that
member in a clockwise order about that joint; for example, member Be
acts on joint B with a force 32. 4
Afteg the space diagram has been labeled according to Bow’s notation, :
the roa‘ﬁ'lons of a truss such as the one in Fig. 5- 14 may be computed by
either graphical or algebraic methods, whichever is more convenient. *
Thengg is possible to isolate joint @ where two bar stresses are unknown
and to determine these unknowns by drawing the force polygon showny ™

c y/4 @
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1 3
Joint e Joint & Jo/ntB
Fic. 5-14

The vectors (w\is polygon should be laid out in the clockwise order
of the forces ardand the joint.  The ends of a vector should be identified by
the same numbers that lic on each side of the corresponding force in the
space diagram, arranged so that reading the number first at the rear and
then at the front end of a vector places them in the same order as that in
which they are encountered in going clockwise around the joint. If
this procedure is followed, then the numbers of the vertices from start to
finish of the force polygon read in the same order as that in which the
numbers are encountered in going clockwise around the joint. In this
way, it is found from the force polygon for joint a that the forces with
which bars aB and ab act on joint a are measured by the vectors T-1
and T-VT, respectively, which indicate that the character of stress in aB
is compression and that in ab is tension.

Having the stress in ab, it is now possible to proceed to joint b and

construct a force polygon from which the stresses in bars Bb and bc mgy,
% .
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be determined. Then proceeding to joint B, there are only two unknown

stresses, in bars Bc and BC, which may be determined from the force

polygon for this joint. Considering the remaining joints in turn enables

one to complete the stress analysis of the truss. Instead of constructing a

. separate polygon for each joint, however, it is more convenient to draw

. one Maxwell diagram that in effect combines all the separate joint
polygons.

To construct a Maxwell diagram, first draw a force polygon for all

the external forces, laying out the vectors in the same order as the forces

are encountered in going clockwise around the structure. If the reactions

R
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have been determined graphically and the resulting force polygon has
not been laid out in this manner, then a new polygon must be drawn
- with the vectors so arranged. The vertices of this polygon should be
labeled in the same manner as described above for the joint force polygon.
The Maxwell diagram for the truss of Fig. 514 was started in this manner
and is shown in Fig. 5-15. Now consider a joint such as a where there
are only two unknown bar stresses, and note the numbers of the spaces
surrounding this joint. All but one, 1, have corresponding vertices in
the part of the Maxwell diagram drawn so far. The missing vertex,
number 1, may be located by drawing through the two adjacent vertices,
I and VI, lines parallel to the intervening bars, aB and ab, respectively.
Now, considering joint b in the same way, vertex 2 is the only one missing
" and is located by drawing through vertices 1 and V lines parallel to bars
bB and be, respectively. The remaining missing vertices 3, 4, 5, and 6
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may be located in turn by considering successively joints B, C, ¢, and d
(or D). Note that, at the time when each of these joints is considered,
there is only one missing vertex associated with that joint.

The construction of the Maxwell diagram having been completed, it is
a simple matter to determine the magnitude and sense of the force with
which a bar acts on a given joint. Read the numbers on each side of a :
bar in a clockwise order around a joint. The magnilude and sense with
which that bar acts on thal joint are given by the vector measured from the "
verlex of the first number lo the vertex of the second number. The bar °
stresses so determined in this example are recorded on the line diagram o™’
the truss. .

After comparing the Maxwell diagram with the force polygon for »
the separate joints, it is evident that the diagram is simply a composite
figure in which all the joint polygons have been superimposed. It is also
evident that the use of the clockwise direction throughout this discussion
is arbitrary: the whole system would have worked equally well if every-
thing were reversed and taken in a counterclockwise order throughout.

5:12 Certain Ambiguous Cases—Fink Roof Truss. The Max-
well diagram described in the previous article may be drawn without
difficulty for any simple lruss. When the ideas are applied to a compound
{russ, the diagram may be drawn up to a certain point; then one discovers
that at each of the remaining joints there are more than two unknown bar
stresses and therefore more than one missing vertex.

Consider a compound truss such as the Fink roof truss shown in Fig.
5.16. After finding the reactions, a force polygon for the external forces
may be laid out and the Maxwell diagram started in the conventional
manner by considering first joint a and then proceeding in turn to joints
B and b. Considering now either joint C or ¢, there are three unknown
bar stresses and therefore two unknown vertices at either of these joints;
it is thus impossible to continue with the Maxwell diagram. Of course,
it is possible to go across to joint i and work back successfully at joints h
and H, but then the same dilemma is encountered at either of joints G
or ¢ One of the several alternative methods available to circumvent
this difficulty is discussed below:

Suppose temporarily that we replace bars Cd and dD by the bar De¢
as indicated by the dashed line. We shall call the space enclosed by
triangle ¢cDE by number 6’ and the space enclosed by triangle ¢cCD by
number 4’. Such a replacement does not alter the stresses in bars
aB, ab, bB, be, bC, BC, DE, Ed, or cg of the original truss. This is evident
when one considers the computation of the stresses in these members
using the sections indicated. The locations of vertices 1, 2, and 3 of the
Maxwell diagram, therefore, remain the same for either the original or the
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altered truss. It is thus possible to locate vertex 4’ of the altered truss
by considering joint C and then to proceed to joint D to locate vertex 6.
The location of vertex 6’ so determined for the altered truss coincides with
6 for the original truss, since in ecither case the stress in bags DE and
dE is the same. It is now possible to return to the origillal;ffruss and,
by considering in turn joints D and C, to locate the correcfiipositions
of vertices 5 and 1, respectively. Now it is easy to pr in the
conventional manner and locate the remaining vertices 7 to

[ X1

kqg/jﬁish\'!alshw
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5:13 Reactions and Bar Stresses of Three-hinged Arches.

" Once the reactions of a three-hinged arch have been determined, there
is no difficulty encountered in drawing a Maxwell diagram to find the
bar stresses. The reactions may be determined, of course, either ana-
Iytically or graphically. The graphical solution for the reactions of
three-hinged arches requires some additional considerations, however.
One graphical method of finding the reactions utilizes an important
characteristic of a three-hinged arch. Consider the arch shown in Fig.
5-17. The reactions of the structure may be computed by superimposing
the separate effects of (1) the loads applied to the left half acting by them-
selves and (2) those applied to the right half. It is casy to find the
separate effects, for in each case one half of the arch is not acted upon by
any external loads. In such cases, the reaction acting on the unloaded
half must be directed through the center of the crown hinge at point b
s0 that the bending moment about the hinge will be zero.  In both cases
T and I, therefore, the graphical solution is the same as the case of an
end-supported beam where the magnitude of both reactions but the
direction of only one of them is unknown. The reactionsin cases I and IT
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are obtained by sclecting the poles Py and P, and drawing ilie funicular
polygons shown. If the two force polygons are plotted together as shown,
it is then a simple matter to superimpose the two cases graphically and
find the resultant reactions R, and R. developed by the combined system
of loads.

A second graphical method of finding the reactions involves passing
the funigular polygon of the external loads through the three hinges
a, b, and e. In Art. 5.7, it is pointed out that a system of external forces
can be supported by a linkage system which has the same shape as the
funicular polygon for those forces, Considering one half of the arch at a+s

Fi16. 5:17

time, the external loads acting on each half can be supported on a linkage
with end reactions corresponding to a funicular polygon whose end strings
pass through the hinges at the support and crown. Since the action of
the left half on the right half must be equal and opposite to the action of
the right on the left, the end strings at the crown hinge of the funicular
polygon of each half must be collinear. This means that the two separate
polygons must be capable of being combined into one continuous polygon
for the entire arch, which passes through all three hinges a, b, and c.
If a pole is found so that the funicular polygon for all the external loads
passes through these three points, the end reactions may then be obtained
by measuring the first and last rays on the force polygon.
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5-14 Problems for Solution.

Problem 5-1 Find graphically the resultant of the forces shown in Fig. 5 18.
Indicate its magnitude. Show its direction by indicating its horizontal and
vertical components. Use scale 1 in. = 1 ton.
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Problem 5-2 Find graphically the forces necessary to hold each of the
frames of Fig. 5 19 in equilibrium. Indicate the magnitude of both the force
and its horizontal and vertical components. Locate the line of action of the
resultant force with reference to horizontal and vertical axes drawn through
the center of each frame.
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Problem 3:3 Fiund the resultant of the forces shown in Fig. 5:20 by use
of the funicular polygon. Indicate its magnitude and direction, and locate
the intersection of its line of action with the horizontal base line. Scales
lin. =5 ft, and 1 in. = 50 Ib.
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Problem 5-4 Find the horizontal and vertical components of the reactions
of the structures of Fig. 5-21, using the three-force method.
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Problem 5:5 Find the horizontal and vertical components of the reactions
of the structures of Fig. 522, using the funicular polygon.
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roof truss of Fig. 5-23.
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Problem 5:7 Find graphically the bar stresses in the members of the Fink
roof truss of Fig. 5-24.
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Problem 5°9 Draw the curves of shear and bending moment for the beams
of Fig. 5-26, using graphical methods.
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k
Problem 5:10 Draw the 0 60%
funicular polygon for the beam and l
loading of Fig. 5-27, so that it passes > P
/5’ L 0! |
T 1

through the points of support and 10"
also through a point 20 ft below the ¢
center of the span. Fic. 5-27

Problem 53:11 A cable is suspended from two points at the same elevation
and 20 ft apart. The cable supports nine weights of 100 lb each, spaced 2 ft
apart, the distance between each support and the nearest weight being 2 ft. The
lowest point on the cable is 5 ft below the line joining the supports. What is the
length of the cable, and what is the maximum tension in it? Use graphical
methods.

Problem 5-12 Find the reactions and bar stresses of the trusses of Fig.
5 28, using graphical methods.
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Note. Top and 10 10k
bottom chord
panel ponts 6 ox
leona gk—s 10k
parabola
sk 40'
24’
(e) 20k 10k |
N L
L 8@ /5120’ n
FiG. 5-28

Problem 5:13 Using graphical methods, find the reactions and bar stresses
of the truss shown in Example 4-5.
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CHAPTER 6
INFLUENCE LINES

61 Introduction. Chapters 2 to 5 are devoted to a consideration
of the basic ideas involved in the computation of reactions, shears, bend-
ing moments, and bar stresses for statically determinate structures.
Before any of these functions can be computed, it is of course necessary

% to establish the condition of loading for which the analysis is to be made.

“In Chap. 1, distinction is drawn between dead loads, such as the weight
of the structure itself, which remain stationary, and live loads, which
may vary in position on a structure.

When one is designing any specific part of a structure, it is necessary
to proportion the part under consideration so that it has sufficient
strength to withstand the greatest stress to which it may be subjected
during the life of the structure. In order to design such a part, the great-
est contribution of the live load to the total design stress is one of the
items that must be determined. The stress produced in a given part by
the live load varies with the position of the load on the structure. There
is always one position of the live loads on a structure that will cause the
maximum live stress in any particular part of the structure. The part
of the structure and the type of stress involved may be, for example, the
reaction at a support; the bending moment or shear at a section in a
beam or girder; the tension or compression in a truss member; or the load
carried by a particular rivet. The proper design of the various parts
will, in general, depend on different live-load positions.

It should therefore be clear that it is essential for the structural
' analyst to understand clearly the methods by which the position of live

load which causes the maximum stress at any point may be determined.

6-2 Illustration of Variation in Stress with Position of Load.
Suppose that a downward load of unity be placed at point A on the beam
AB of Fig. 6-1. By taking moments about B, the reaction R,, is found
to act upward and to equal 1. At A’ on the base line A’B’, A’ being direct-
ly beneath A, let the distance +1 be plotted vertically. Let the applied
unit load now travel to C; upon taking moments about B, R, is found to
equal +9%{o. Plot this ordinate +%{¢ at C’ on the base line A’B’, C’
being directly below the point of application of the unit load. Let the

* unit load now travel to D; R4, becomes +8{¢; plot +8{¢ vertically at
D/, which is directly below D.
y Repeat the procedure for all positions of the unit load between 4
154
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and B. The resultant reaction values, plotted in each instance from the
base line A’B’, and directly below the particular load position, all lie
on a straight line. This might have been foreseen, since, for the unit
load at any section at distance z from B, R., equals -+2z/20. The
ordinate +x/20 is plotted at distance z from B’, and the plot of z/20
against z is linear.

’
Because of the manner of plot- YT 2
ting this curve from the base line ~—-f-—§+§-|-3-| X
A’B’, a number of important con- ;‘v CDEF B
i B
clusions can be drawn. j{R '
1. The ordinate at any point on I 4y
this curve equals the value of Ry, if L Influence /ine | -
a unit load is applied at that sec- s ? r Ray
tion. (Note that all ordinates || 18|3|lg7,2 —
refer to the reaction at point A, and 411 1t f 10 ,
oy o ops . A C' D' E'F B
that it is the position of the unit Fro. 61

load causing this reaction which
is the variable in constructing the curve.)

2. As the unit load travels from B to A, the reaction at A increases
linearly. The maximum value of R,, is seen to occur when the load is
applied at A.

3. Since all the ordinates to this curve arc positive, it may be con-
cluded that a unit load applied at any point along the span AB causes an
upward reaction at A. Hence, if this structure were to be loaded with a
uniform live lqad, the live load should extend over the entire span AB
in order to give a maximum value to R,,.

6:3 The Influence Line—Definition. The curve drawn in Fig.
6-1 is called an influence line because it shows the influence on a certain
function of a unit load as it travels across the structure. In this particu-
lar case the function under consideration is the vertical reaction at A.
The function may, however, be anything that varies as the load moves
across the spen, such as moment or shear at a given section in a girder or
beam, or stress in a particular truss member, or deflection of a given
point on a structure. :

An influence line may be defined as follows: An influence line is a
curve the ordinate to which at any point equals the value of some particular
Junclion due to a unit load acting at thal point.

Curve b of Fig. 6-2 shows the influence line for moment at C, the
oenter of an end-supported beam. That this curve satisfies the definition
of an influence line may be verified by checking the ordinate at any point.
H, for example, a unit load is applied at D, the moment at C equals
34 X 10 = +2.5. Thisis the ordinate to the influence line at point D.

W

¥,
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Curve ¢ of this figure shows the influence line for shear at D, the left
quarter point. That this curve satisfies the definition of an influence
line may also be seen by checking the ordinate at any point. If, for
example, the unit load is applied just to the right of D, the shear at D
equals +34.

By definition, an influence line shows the effect of a unit load as it
travels across the span. It should be apparent that such a curve is
closely related to a live load moving across a bridge. The usefulness of
influence lines is not, however, limited to bridge structures, since they

20’
s’ s’
A D C B
; = 2, (a)
+2.5 *50
i (6)
Bending rmoment at €
J
+3
(c)
\ _I_-;' Shear at D

Fic. 6-2

are of importance in the determination of maximum stresses in any
structure subject to the action of live loads. These live loads"may be
the movable loads in an office building, or the acrodynamic loads on the
wing of an airplane, or the hydrostatic support caused by the iisplacc-
ment of waves on the hull of a ship.

6-4 Construction of Influence Lines for Beams. Consiiler the
beam shown in Fig. 6-3a. To illustrate the method of constructi
ence lines, an influence line for the shear just to the left of point 4
first be constructed, as shown in Fig. 6-3b. When a unit load is af

at any position to the left of this section, the shear just to the left of‘.ﬁ
equals the unit load and is negative. Hence the influence line has the
ordinate —1 from C to A. When a unit load is applied in any position
between A and B, the shear just to the left of A is zero. Hence the
ordinate to the influence line is zero in this portion of the beam.
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The influence line for the shear at D will now be constructed, as shown
in Fig. 6-3c. If a unit load is applied at C, the shear at D maybe com-
puted fromi-the reaction at B and is seen to equal 4-14.  As the unit load
travels fro C to A, the reaction at B and hence the shear at D decreases
to zero. Hence the influence line for the shear at D varies from 414 at C
to zero a%:ﬂ. Actually, this variation between C and A is linear. That

t 5' /0’ (]
| — |
A D B
= I = (a)
"RA)' TRB),
| I (6)
. l Shear fo left of A
| T |
*_,I -le\ */_02 \
’ 20 ' (c)
Shear at D i3
T/ Morment at A fd)
J
-
; +75: (e}
I / | | Moment at D
"Z'I

6. 6-3

the influence line between C and A is a straight line may be seen by either
of the fallowing two methods:

* 1. The unit load may be applied at any point between C and A and
the shear at D computed. When this value is plotted at the point of
gipplication of the load, it will be found to lie on a straight line,

+2, If the distance from A to the load is denoted by x, the vertical
reaction at B acts downward and has the value r/10. The shear at D
therefore equals +x/10. The plot of +x/10 against z is a straight line.
As the unit load travels from A to a point just to the left of D, the
reaction at B increases from zero to +3i9. Hence the shear at D goes
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from zero to —3{o. The ordinate to the influence line at a polht just to
the left of D is therefore —3{¢. That the influence line is a straight line
varying from zero at A to —3{¢ at D may be seen on the basis of either of
the arguments which led to the conclusion that it was straight between C
and A.

Now consider the unit load placed just to the right of D. If the shear
at D is computed from the forces to the right éf D, as has been done
previously, it is necessary to consider two forces, the reaction at B and
the unit load itself. If, on the other hand, the shear at D is computed
from the forces to the left of D, it is necessary to consider only the reac-
tion at A.

It is often preferable, in computing ordinates to influence lines, to
work from the forces on the side of the section that is away from the
unit load. For the case under consideration, R4, = +7{0, so that the
shear at D is +7{o. This is the ordinate to the influence line just
to the right of D. It is to be noted that as the unit load passes D, while
moving from left to right, the shear at D increases suddenly from —34{¢
to +7{o. As the unit load travels from just to the right of D to B, the
reaction at A, hence the shear at D, decreases linearly from +7{¢ to
zero. Hence the influence line is a straight line running from +7{¢ at D
to zero at A. .

The influence line for the moment at A will now be constructed, as
shown in Fig. 6-3d. When a unit load is placed at C, the moment at A
equals —5. As the load travels from C to A, the moment at A decreases
linearly to zero. With the load at any position between A and B, the
moment at A equals zero, as can be seen from a consideration of the forces
to the left of A.

To construct the influence line for the moment at D, as shown in
Fig. 6-3e, one may proceed as follows: Owing to a unit load at C, the
moment at D equals —74, as may easily be computed from the reaction
at B. As the load goes from C to A, the moment at D decreases linearly
to zero. Hence the influence line is a straight line from —74 at Cto
zero at A. As the load goes from A to D, the reaction at B increases
linearly from zero to +3{¢; the moment at D, computed from this reac-
tion, increases linearly from zero to +3{¢ X 7 = +21{o; hence the
influence line is a straight line from zero at A to +2){o at D. As the
load goes from D to B, the reaction at A decreases linearly from +7{ to
zero; the moment at D, computed from this reaction, decreases linearly
from +7%{o X 3 = 2}{o to zero at B.

6:5 Properties of the Influence Line. Influence lines may be
used for two very important purposes: (1) to determine what position of
live loads will lead to a maximum value of the particular function for
which an influence line has been constructed; (2) to compute the value
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of that
condition.

Since the ordinate to an influence line equals the value of a particular
function due to a unit load acting at the point where the ordinate is
measured, the following two theorems hold:

1. To obtain the mazimum value of a function due to a single concen-
trated live load, the load should be placed al the point where the ordinate lo
the influence line for thal function is @ maximum. It is obvious that if the
maximum positive value of a function is desired, the load should be
placed at the point where the ordinate to the influence line has its maxi-
mum positive value, while, if the maximum negative value is to be.,,
obtained, the position of the load is determined by the maximum nega-#
tive ordinate.

2. The value of a funclion due lo the action of a single concentrated live
load equals the product of the magnitude of the load and the ordinale to the -
influence line for thal function, measured at the point of applicalion
of the load. This follows from the principle of superposition. Further,
the total value of a function due to more than one concentrated load can
be obtained by superimposing the separate effects of each concentrated
load, as determined by theorem 2.

To illustrate the application of these two theorems, suppose a con-
centrated live load of 10,000 1b is applied to the beam of Fig. 6-3a. If
the influence line of Fig. 6-3c¢ is used, the maximum positive shear that
this load can cause at D occurs with the load just to the right of D and
equals 10,000(47{¢) = +7,000 Ib. The maximum negative shear at
the same section occurs with the lead just to the left of D and equals
10,000 (—3{o) = —3,000 lIb. From Fig. 6-3e, the maximum positive
moment at D occurs with the load at D and equals

10,000(+21{o) = 421,000 ft-b

From the definition of an influence line, the following theorem, deal-
ing with uniformly distributed live loads, is apparent:

3. To obtain the maximum value of a function due lo a uniformly dis-
iribuled live load, the load. should be placed over all those portions of the
structure for which the ordinates o the influence line for that function have
the sign of the characler of the function desired.

To compute, from the influence line, the actual value of the function
due to a uniformly distributed live load, the following theorem should
be used:

4. The value of a function due to uniformly distributed live load is equal
to the product of the intensily of the loading and the nel area under that
portion of the influence line, for the funclion under consideration, which
corresponds lo the portion of the struclure loaded.

ction with the loads so placed or, in fact, for any loading
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That the foregoing theorem is correct may be seen from the following:
Let AB be the influence line for a given function ¥, for a portion of
a structure, as shown in Fig. 6-4, that is subjected to a uniformly dis-
tributed load of w Ib per ft, applied continuously to the structure between
two points M and N. That portion of the uniform load applied in
distance dr may be treated as a concentrated load equal to w dzr.
By theorem 2, the value of the function F due to this differential load
is given by dF = w dry. The total value of F due to the load between M
and N is obtained by integrating dF between =0 and z= q, or

) a F= [)a wydr = w j(;ay dr = w multi-
plied by the area under that portion of
the influence line which corresponds to

B the portion of the structure loaded.

To illustrate the application of
theorems 3 and 4, suppose a uniform
live load of 1,000 Ib per ft is applied to
the beam of Fig. 6-3a. To obtain the
W~ 3 maximum positive shear at D (Fig.

’Fm. 64 6 3c), the uniform load should extend

from € to A and from D to B. The
value of this maximum positive shear at A is given by

L000{1:(5)(+12) + 2 (D(+7{0)] = +3,700 b

For maximum negative shear at D, the structure should be loaded from A
to D, leading to a resultant shear at D equal to

1,000{15(3)(—3{o)] = — 1430 1b

For maximum positive moment at D, refer to Fig. 6-3e.  The structure
should be loaded from A to B; the resultant moment equals

1,000{! 5(10) (421 {¢)] = +10,500 ft-lb

For maximum values of functions due to a concentrated live load
and uniformly distributed live load acting simnultancously, the maxitnum
function due to each acting separately should be computed by the
methods already given and the results superimposed. For example, to
obtain the maximum negative moment at A, in the beam of Fig. 6-3a,
due to a uniform load of 1,000 Ib per ft and a single concentrated load of
10,000 1b, it is found by reference to Fig. 6-3d that the uniform load
should extend from C to A, and the concentrated load should be placed
at C. The maximum negative moment at A is then given by

1,000{14(5){—5)] 4+ 10,000(—5) = —62,500 ft-lb
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Suppose that a uniform load of 1,000 lb per {t extends over the entire
length of the beam of Fig. 6-3a. Functions are then computed on the
basis of the algebraic sum of the component areas that comprise the entire
influence line. From Fig. 6-3e, the resultant moment at D would, for
example, be given by 1,000[}5(5)(—72) + 14(10)(+2!50)] = —3,500
ft-1b.

6:6 Influence lLines for Girders with Floor Systems. The
structural action of floor systems is discussed in Art. 3-9. The con-
struction of influence lines for girders with floor systems may be ilius-
trated by a consideration of Fig. 6-5. An influence line for the shear in
panel BC will first be drawn, as shown in Fig. 6-5b. It should be noted

A B C D E F G
; T ;4 T T
- ’ I (a)
~.RA)[ - ..Rcy
! )
i
%] (b)
%/ I Shear in pane/ BC
-
| LNl
! O + N 20
., 20 J 3 | %0
0 +5 PS b (e)
S i3 B |
Moment at B
Fic. 6-5

that, since live loads can be applied to the girder only by the floor beams
which are located at panel points A, B, . . ., G, the live shear has the
same value at any sectionin a given panel of the girder.

When a unit load is placed at A, Rgy = 0. The floor-beam reactions
to the right of panel BC, that is, the forces applied to the girder by the
floor beams at C, D, K, F, and G, are also zero. Hence, by computing
the shear in panel BC from'the forces acting on the girder to the right of
the panel, the shear equals zero.  When the unit load is placed at B,
Ry, = +1§; the floor-beam reactions at C, D, . . . , G slill equal zero;
hence the shear in panel BC equals —1¢.

As the unit load travels along a stringer from one panel point to
another, the influence line will be a straight line for the panel under
consideration, provided that the stringers act as end-supported beams
spanning the adjacent floor beams. That this is so may be seen from the
following: As the unit load travels from one panel point to another, the

., .
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reactions on the stringer, which are also the forces applied to the girder
by the floor beams, vary linearly; hence any stress function for the girder,
such as shear in a given panel, will also vary linearly. The influence
line for shear in panel BC is therefore a straight line from zero at A to
—1¢ at B.

When a unit load is placed at C, R, = +3§, while the floor-beam
reactions at A and B are zero. Then the shear in panel BC equals +23,
as is easily computed from the forces to the left of the panel. The
influence line is a straight line from B to C.

The ordinates to the influence line at panel points D, E, F, and G
may be computed by a procedure similar to that used in determining the

-ordinate at C, and the influence line will in each case be a straight line
between panel points. It will be found that the influence line is a straight
line from C to G. These computations can be eliminated by the following
reasoning: As the load travels from C to G, R4, decreases linearly from
+234 to zero, as is easily seen from a consideration of the exzlernal forces
acting on the structure; sincg the floor-beam reactions at A and B remain
zero, the shear in panel BC decreases linearly from + 23 to zero.

It should be pointed out that an influence line may always be con-
structed by computing the value of the function under consideration for
successive positions of the unit Icad and taking care that one includes all
points where the slope of the influence may change. Panel points con-
stitute such points; but as will be seen later, it is possible to arrange a
structure so that other points may also be critical. Experience in con-
structing influence lines makes it possible for one to recognize the fact
that certain portions of the line are linear. This leads to a saving in
computations, but it is not a necessary procedure.

Consider now the influence line for the moment at panel point E of
the girder of Fig. 6-5a, which is given in Fig. 6-5c. As a unit load travels
from A to E, R,, increases linearly from zero to 423, as may be seen from
a consideration of the external forces, while the floor-beam recactions at F
and G are zero. Hence the moment at panel point E increases lincarly
from zero at A to a value equal to +324 X 20 = +495 at K, and the
influence line is a straight line from zero at A to 4494 at E. As the unit
load travels from E to G, R,, decreases linearly from +!4 to zero; the
floor-beam reactions at A, B, C, and D are zero; hence the influence line
is a straight line from +14 X 40 = +494 at E to zero at G.

It is not necessary for the stringers in every panel to be simply sup-
ported by the adjacent floor beams. Figure 6-6a illustrates a case where
the stringers are cantilevered in panel BE and where the end stringer in

> panel EF cantilevers to point G. The construction of an influence line

for such a structure will be illustrated by considering the moment at
[ " K
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panel point E in the girder, as shown in Fig. 6-6b. As the unit load goes
from A to C, consideration of the forces acting on the free body consisting
of the girder plus stringer AC and the floor beams connecting stringer AC
to the girder shows that Ry, increases linearly from zero to +14. Since
the floor-beam reactions at £ and F are zero, the moment in the girder at
E increases linearly from zero at A to +14 X 10 = +5 at C. With the
unit load at D, R, = 414; the floor-bcam reactions at A and B are
zero; hence the moment at E equals +!3 X 20 = +10. As the unit
load travels from D to G, Ruy

. . A B CD F F
varies linearly from +14 to —14; T L9
the floor-beam reactions at A - b L (e
and B remain at zero; hence the J oo 1 "
S Ry | | lz,,
moment at E varies linearly from o sl sl o ;
LSS S ]
+10 at D to —1¢ X 20 = —3.33 ._.--_-f.v_IJO_.’ I
at G. l I
6-7 Interpretation of l (6
Influence Lines for Girders 45 | 1"'0
sl

with Floor Systems. The four
theorems of Art. 6-5 dealing with
the use of influence lines are per-
fectly general and are applicable to influence lines for girders with
floor systems. Suppose that live loads consisting of a uniform load
of 1,000 b per ft and a single concentrated load of 10,000 lb are
applied to the structure of Fig. 6-5a. To obtain the maximum live
shear in panel BC, refer to the influence line of Fig. 6-5b. It is first
necessary to locate point a at which .this influence line crosses the base
line. Such a point is called a neutral point, since a load applied at this
point has no effect on the function under consideration. This point may
be located by similar triangles; its distance from B will be found to be
2 ft. The maximum positive live shear in panel BC occurs when the
uniform load extends from the neutral point to G and when the concen-
trated load is at C; it is equal to

1,000(! 5(4235)(48)] + 10,000(+23) = 22,667 1b

Maximum negative live shear in this panel occurs when the uniform load
extends from A to the neutral point and the concentrated load is at B; it
has a value equal to 1,000(!,(—1§)(12)] + 10,000(—!¢) = —2,667 lb.
In Fig. 6-5¢, the maximum positive live moment at panel point E, due
to the same live load, occurs with the uniform load extending over the
entire span and with the concentrated load at E. Its value is equal to
1,000{14(4494)(60)] + 10,000(+49¢) = +533,333 ft-lb.

The foregoing method of computing maximum live shears and

ks

Moment at B ‘I :{-3 33
Fic. 6-6
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moments, based on locating neutral points and using exact areas under‘)i
" infiuence lines, is eract. The following approximate method is of impor-
tance, since it often involves less computation and is well suited to effi-
cient organization of computations for complicated structures. In the
approximate method, it is assumed that for uniform live load there is
acting at each panel point either a full panel load or no panel load what-
ever, depending on whether the ordinate to the influence line indicates
that a load at that panel point increases or decreases the value of the
function for which a maximum value is desired.

A full panel load is the maximum possible load that can begipplied to
a girder by a floor beam. It can occur only when the stringemd adjacent
to the panel are fully loaded, and it is equal (for panels of equal length)
to wl, where w is the intensity of the uniform load and ! is the length of
the panel.

Consider again the structure of Fig. 6 5a acted upon by live loads con-
sisting of a uniform load of 1,000 Ib per ft and a single concentrated load
of 10,000 lb. For the uniform live load, the full panel lo id cquals
(1,000)(10) = 10,000 Ib. To compute the maximum positive ?l\(' shear
in panel BC by the approximate method, this full panel load ss placed
at C, D, E, and F, since the influence line of Fig. 6-5b has positive ordi-
nates at these panel points. No panel load will be placed at B, where
the ordinate to the influence line is negative. The concentrated load will,
as in the exact method, be placed at C. The resultant maximum posi-
tive live shear in panel BE is equal to

10,000(25 + 14 4 15 + 9¢4) + 10,000(25) = 23,333 1b

The corresponding value was 22,667 Ib by the exact methogl, so that the
result by the approximate method is seen to be slightly on the safe side,
i.e, slightly larger than the exact value. The approximate method
assumes a full panel load acting at ¢, which could not occur without com-
pletely loading stringer BC; loading stringer BC would cause a floor-
beam reaction at B equal to half a full panel load, which by itself would
cause negative shear in panel BC. Because the negative shear due to the
partial panel load applied at B is neglected in the approximate method,
the resultant positive shear computed is necessarily on the safe side.
The approximate method of computing maximum values of functions
never gives smaller values than does the exact method.

To find the maximum positive live moment at £ for the same struc-
ture and loading by the approximate method, refer to the ‘influence line
of Fig. 6-5¢. For the uniform load, a full panel load of 10,000 1b is
- applied at all intermediate panel points, since all thét corresponding
ordinates to the influence line are positive. The ,cm,(mtmted load is

-
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placed at E. The maximum positive live moment is given by

10,000(+195 + 295 4 395 + 494 + 205) 4+ 10,000(+404)
= +533,333 ft-Ib

This is the same value as that obtained by the exact method.

6-8 Series of Concentrated Live Loads—Use of Moment
Diagram. The methods of using the influence line as previously pre-
sented apply to uniformmly distributed live loads and to single concen-
trated live loads. 'They cannot, however, be used directly when the live
load congists of a series of concentrated loads of given magnitude and
spacing, Buch as are actually applied by the wheels of a locomotive or of a
series of trucks. When there is more than one concentrated load, it is
not possible, in general, to tell by inspcction which of the concentrated
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loads should be placed at the maximum ordinate of the influence line
in order to make the given function a maximum.

The method that should be followed for such a live load is essentially
one of trial.  In order to expedite the various trial solutions, it is desirable
to organize such an analysis carefully, so as to minimize computations.
For a series of concentrated loads, a moment diagram, such as is shown in
Fig. 6-7, can be used to advantage.  This particular moment diagram is
computed for the seven concentrated loads spaced as shown. The
diagram is practically self-explanatory. The numbers in the six bottom
rows may be explained by a single illustration: The number 1,900 under
load t and in the horizontal line labeled Sum of moments about load 7
represents lhe moment about load 7 of loads 1 to t; thus

10(10) 4 20(30) + 20(25) + 20(20) = 1,900

To illustrate the use of the moment diagram, suppose that it is desired
to compute the moment at load 3 in the beam of Fig. 6-8, due to the
k .
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loading of Fig. 6-7 located as shown in Fig. 6-8. The moment about B )
of the applied loads is equal to 1,650 (the moment of loads 1 to 5 about
load 6) plus 110 (the sum of the loads from 1 to 6), multiplied by 2 (the
distance from load 6 to point B), whence 1,650 4+ 110(2) = 1,870 kip-ft.
Dividing this moment by the span of the beam, R,, is found to equal
1,870/50 = +37.4 kips. Hence the moment at load 3, working from the
forces to the left, is given by +37.4(28) — 250 = 4798 kip-ft. It is
to be noted that the moment of 250 kip-ft which was subtracted is the
moment of loads 1 and 2 about load 3.

b b4 5

10% 20k 20k 20% 20k 20k
A
1 | '
3 | | { | L .
Y ’ T ’ 1 | Y
3 | 10 | K3 15 ’ 10 | S
S0
Fi:. 6 8

As a second example of the use of the moment diagram, the shear in
panel BC of the girder of Fig. 6-9 will be computed for the loads shown
acting, these loads being a part of the loading of Fig. 6-7. For the loads
so placed, load 1 is not on the span. The girder reaction at A is given by

_ (1,650 — 350) + (110 — 10)3
B 36

Ry = +44.5 kips

The sum of the floor-beam reactions at A and B is equal to
20 + 34(20) = 31.1

Hence the shear in panel BC equals +44.5 — 31.1 = +13.4 kips.

In using the moment diagram

k 20k 20k k 20% . .
, 0" 20t 2 0t 0 it is usually convenient to repro-

8 S ! R Ed .

sl w sl duce it to scale on cardboard and
t : = £ place it in the proper position on
4 B C D E a drawing of the structure to be
- analyzed, which is drawn to the

R, 1 4 panels @ 9'-36° -tR,y same scale.
6°9 Seriesof Concentrated

Fia. 6-9

Live Loads—Computation of
Maximum Moment. The computation of maximum moment at a
given section in a girder will be illustrated by computing the maximum
moment at C of the girder of Fig. 6-10a, due to the liyg Joading corre-
sponding to the moment diagram of Fig. 6-7. The ln?&hce line for the

»

"!':4 4 ,‘o” .
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“moment at C is first constructed, as shown in Fig. 6-10b. The maximum
moment at C will occur when one of the concentrated loads is at C;
the first part of the problem consists in finding out which load should be
at C in order to cause this maximum moment.

Before attempting this trial solution, the slope of each portion of the
influence line, going from right to left, is first computed. For example,
the portion of the influence line for the moment at C, which runs from F
to C, has a slope of +124, = +24.*

Using the moment diagram of Fig. 6-7, place load 1 at C.  This causes
a certain moment at C, which, however, will not be computed at this

A4 B C D E £
1 [ 1 1
b L L L ‘a)
/s @ 10" =50' '
1 | T |
3
IPF f 7t
(6)
Moment at C
17 A
4
o A
i (c)
5,:5 —~ _/35 Shear in panel BC
Fi1G. 6-10

stage of the analysis. Instead, the entire system of loads will be moved
to the left until load 2 is at C, and computations will be carried out to
determine whether the moment at C has been increased or decreased
by this change in the position of the loads. To see whether the moment
has become larger or smaller, it is convenient to divide the loads under
consideration into three groups: (1) thése loads which were on the
structure before the loads were moved and which remain on the structure
after the loads are moved; (2) those loads which were on the structure
before the loads were moved but which have passed off the structure after
the loads are moved; (3) those loads which were not on the structure
before the loads were moved but which are on the structure after the loads

* The ordinates to an influence line for moment may be interpreted to give the
moment per pougd of applied load and hence are in units of foot-pounds per
pound = feet. THe increment in ordinates per ft. are therefore in units of ft. per foot:
that is, they are nlgnq.imensionnl

A
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are moved. For convenience we shall refer to these three load groups as
load group 1, load group 2, and load group 3, respectively.

The following computations determine whether this load move has
increased or decreased the moment at C. It should be noted that, if a
load P moves a distance d and if the slope of the influence line is m, the
corresponding change in moment equals Pdm.

168

Load 1 at section; move up load 2 Increase in moment | Decrease in moment

Load group 1.... Toads 1 to 5 80(10)(+23) = +320 | 10(10)(—3;) = —60
load group 2 .. . ... None 0 0
‘Load group 3 ... .... Load 6 00G)(+23) = +10 0
All loads combined ................ +360 —60

The net change in moment is 4360 — 60 = 4-300 kip-ft, so that a
larger moment at C occurs with load 2 at the section (i.e., at (0) than with
load 1. However, it may be that a still larger moment occurs with load
3 at the section. The loads will now be moved to the left until load 3
is at C, and computations will be made to determine whether this new

movement of loads has increased or decreased the moment at C.

Load 2 at section; move up load 3

Loadgroup 1............... All loads
load group 2. . ........ . None
load group 3 .. ...... ... None

All loads combined.... ...........

Increase in moment

100(0)( +23

' Decrease in moment
|
+°00 ’

‘o

1:20() |

—-90
0
0

—-90

30¢ ))(—,3

Since 200 is greater than 90, the moment has again increased. We
shall now find out whether there will be still a further increase if load 1 is

moved to the section.

Inad 3 at section; move up load

Load grou[rl_.. . Y | | lnud«
Load group 2 . ........... None
Load group 3

All loads combined....... ...... ...

Increase in moment,
80(5)(+25) = +160
0
0

+160

Decrease in moment

50(3)(—

335) = —150

Again, the moment has increased.

We shall now move up load 5.

Load 1 at section; move up load 5

Load group 1........ Loads 2

Load group 2........ JToad 1

Load group 3........ None

All loads combined. .. .............

to 7| 60(10)(+35) =

Increase in moment

+240

Decrease in moment

60(10)(—3;) = —360
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Note that, although load 1 was considered as on the structure with
Joad 4 at the section, it caused no moment at C, so that no change occurred
when it passed off the structure. Since 240 is less than 360, moving up
load 5 caused a decrease in the moment at C. Hence the maximum
moment at C occurs with load 4 at €.  With some expericnce in moving
up loads, one might have foreseen that the maximum moment at C
would not occur with load 1 at the section and that it probably would not
occur with load 2 at the section. This would have eliminated a portion .
of the foregoing computations.

With the position of loads causing maximum moment at C known, the
value of this moment may now be computed, either from the ordinates
of the influence line directly or by using the moment diagram. By the*:
latter procedure, ¢

2,2 30010 .
Ry, = 2200 23%0(1 ) _ 470 kips

The moment of the floor-beam reactions at A and B about C is equal
to the moment of loads 1, 2, and 3 about load 4, which is 500 kip-ft.
Hence the maximum positive live moment at ¢ equals

+70(20) — 300 = +900 kip-ft

6-10 Series of Concentrated Live Loads—Computation of
Maximum Shear. The foregoing method of moving up loads, based on
the usc of the influcnee line, is perfectly general and may be used for any
influence line. »As a second illustration of its application, the maximum
positive shear in panel BC of the structure of Fig. 6-10a, due to the live
loading of Fig. 6-7, will be computed.  The solution might start by plac-
ing load 1 at € (the maximum positive ordinate to the influence line)
and moving up load 2 to find out whether the shear in panel BC increases
or decreases.  This step is scarcely necessary, however, since an examina-
tion of the loading and the influence line of Fig. 6-10¢ will lead to the
conclusion, without computations, that this movement will increase the
shear in panel BC.

Loud 2 at section; move up lond 3 Increase in shear Decrease in shear

Load group 1 ... Allloads] 100(5)(+150) + 10%(5)(+350) = +11 0 | 20(5)(—44q) = —8 O

Load group 2 None 0 0

Load group 3 . . None 0 0

All loads combined . . +11.0 -80
4

* This term is IBr‘onncl 1. The negative shear due to this load has decreased, leading to an increase
in the positive ahtﬁr‘h,*nnnl BC.
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This shows an increase in the positive shear in panel BC. Hence we
shall move load 4 up to the section.

Load 3 at section; move up load 4 Increase in shear Decroase in shear
Load group 1........... All loads | 80(S)(+360) + 10(5) (+380) = +9.0| 40(5)(—5%50) = —16.0
Load group 2............ None [ [}
Load group 3..... ...... None 0 l)
All loads combined. ... ........ +9.0 -16.0

This shows a decrease in the positive shear in panel BC. Hence the
#maximum shear in panel BC occurs when load 3 is at C. The value of
this maximum shear may be obtained as follows, using the moment
* diagram of Fig. 6-7:
R = 2—'@—}()—@@ — 457.0 kips
The sum of the floor-beam reactions at A and B equals 10 + 2% = 20
kips; hence the maximum positive live shear in panel BC equals

+57.0 — 20.0 = +37.0 kips

6:11 Absolute Maximum Live Shear. The methods which
have been given for the computation of maximum shear due to live loads
assume that the section or panel in which the shear is to be computed is

. known. It is often desirable to compute the absolute maximum'live
shear in a member, i.e., the maximum live shear that can occur at any
section in the member. For a simple end-supported beam or girder,
absolute maximum live shear will occur at a section immediately adjacent
to one of the end reactions. If the beam or girder is not a simple end-
supported member, the absolute maximum live shear will occur on one
side of one of the reactions. The true value of absolute maximum live
shear can be determined only by computing the maximum live shear at
each such section.

6-12 Absolute Maximum Live Moment. Similarly, the methods
which - have been given for the computation of maximum moment due to
live loads assume that the section at which maximum live moment is to
be computed is known. It is often necessary to compute the absolute
maximum live moment for a beam or girder. For a simple end-supported
beam, this occurs at mid-span for either a uniform live load or a single con-
centrated live load. For a simple end-supported girder with a floor
system, absolute maximum live moment occurs at the p point nearest
the center of the span. For a girder wholly or partly cariigevered, abso-

Y
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lute maximum live moment is likely to occur at a reaction. If the section
where absolute maximum live moment occurs cannot be definitely
identified by inspection, it is necessary to compare maximum moments
computed for various sections where absolute maximum live moment is
likely to occur.

A special case of importance consists in determining the absolute
maximum live moment due to the action of a series of concentrated live
loads on an end-supported beam, as shown in Fig. 6-11. The moment
curve for a series of concentrated loads ‘ R
is a series of straight lines intersecting T B g4 } cD

at the positions of the loads, so that af x l \ »
absolute maximum live moment must " | 5, | | & lc: 7n#
occur directly beneath one of the loads. *Ruy' L2 \ i
Two questions must be answered: (1) Z

Under which load does absolute maxi- Fro. 6.11 -

mum live moment occur? (2) What is
the position of this load when absolute maximum live moment occurs?

The answer to the first question must often be determined by trial,
but the second question is subject to direct analysis. Assume that in
Fig. 6-11 the absolute maximum live moment will occur under load B.
Let the distance from the center of the span to load B be denoted by z
and the distance from load B to the resultant R of all the loads A, B,
C, and D be denoted by d. We wish to determine the value of x that will
make the moment at load B a maximum. * The value of Ry, may be

determined by taking moments about N and considering the resultant
force R rather than the actual loads 4, B, C, and D. Thus

Denoting by AM; the moment under load B,

M3=R,,,({;-—1->_'-Aa=<§+§g___l%d_)(_2[1__z — Aa

_BL _Rd_Re R _
4 "2 L 'L

For a maximum value of M,

dM, 2Rz , Rd
R “Ha AL Al
whence z = &/é.
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We may therefore conclude that the marimum momen! direclly beneath
one of a series of concenlraled live loads thal are applied lo a simple ¢nd-
supporled beam occurs when the center of the span is halfway belween that
particular load and the resullant of all the loads on the spun.

If there are only two concentrated loads to consider, the absolute
maximum live moment will occur under the heavier of the two loads.
Such a case is illustrated in Fig. 612, where the distance irom the 10-kip
, load to the resultant R of the two
ke =2t % —— o loads equals (5 X 12)/15 = 4 ft.

i For absolute maximum moment,

sk the 10-kip load is placed 2 ft from

hd FINY G T -—-. the center of the span, and thus the
J resultant R is 2 [t on the other side

| of the span center. At this point

‘ one should check to see whether
#, 24" ' or not both loads are on the span.

B . If not, the absolute maximum
moment occurs at mid-span when
the heavy load is at the center of the span. For this case, both loads
are on the span. The absolute maximum live moment occurs directly
beneath the 10-kip load and is given by

Fie. 6-12

L3

= 9
M= 102 =28 6o 5 Kip-ft

If there are more than two concentrated loads, it may not be possible
to tell by inspection under which load the absolute maximum live moment
will occur. It will usually occur under a large load near the center of
the group of loads. The maximum moment that can occur under each
of the loads may be determined by the foregoing method, and the largest
of these moments will be the absolute maximum live moment.

6-13 Influence Lines for Trusses—General. Influence lines
may be constructed for the stresses in truss members and are important
in determining the location of live loads leading to maximum str in
truss members, as well as for computing the actual values of thmml-
mum stresses. The same general procedure as that used for constructing
influence lines for beams and girders is applicable to trusses. Tt is always
possible to compute the ordinate to the influence line for a unit load at
each panel point of the truss. Usually the stringers act as end-supported
beams between the floor beams, so that the influence line is a straight
line between panel points. As was the case with be nd girders,
it is often possible to reduce the amount of computation ¥¥-recognizing

oF 2%
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the fact that the influence line is a straight line for several successive
panels.

Once the influence line has been constructed for the stress in a given
truss member, the interpretation of the curve with respect to loading
criteria and stress analysis is identical with that for beams and girders.

Influence lines for trusses are drawn to correspond to a unit load
traveling across the loaded chord, i.e., the chord containing the panel
points at which the live load is applied.

6:14 Influence Lines for a Pratt Truss. The construction and
use of influence lines for trusses will be illustrated by a consideration of

B A :
4 L\ G U ¥
\ !
! 2’ ()
Lo SIN Lo
WLy Ly 2 ¢ |Ls
R 4 B R,
oy 5pane/sa,LJo'= 80" i
.|
4/ *
(6)
Stress in bar Ly Ly .
/ ¢ |
L T .
- Stress i bm: leL'J (c)
2\g ’
6
+/ \ 5
/] o]
V (a)

Stress in bar UpLg
Fii. 6-13

the Pratt truss of Fig. 6-13a. To construct the influence line for a chord
méber, such as bar LeLs, take moments about U of the forces acting on
one alde of section A-A.  With the unit load to the left of the section, the
tendion in L,L; cquals Re multiplied by 120 and divided by the truss
height of 40 ft and hence is directly proportional to Re,. Since Rs, varies
linearly as a unit load travels from Ly to Le, the influence line is a straight
line from zero at Lo to 41§(12040) = +1 at L,, Had this linearity not
been recognized, the value of the ordinate to the influence line at L,
might have be computed independently and would have been found to
equal +15(1 3048 = +1,. With the unit load at L, or at any point to
the right of ‘UO‘W‘ -A, the tension in LoLy equals R,, multiplied bv
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60 and divided by 40. Since R,, varies linearly as a unit load travels
from Ls to L, the influence line is a straight line from +235(6%¢) =

at L, to zero at Ls. This influence line is shown in Fig. 6-13b, where
tension is plotted above the base line.

The construction of an influence line for stress in a web member will
be illustrated by Fig. 6-13c, where the vertical bar U,%, is considered.
When a unit load is to the left of section B-B, the tension in this member
equals the reaction Rs,.. Hence the influence line is a straight line from
zero at Ly to +13 at L,. When the unit load is to the right of section
B-B, the compression in UL, equals the reaction Ry,. Hence the influ-
ence line is a straight line from —15 at L; to zero at Le, negative stress
values being plotted below the base line and indicating compression.
Between panel points L, and Ly, the influence line is a straight line, assum-
ing that the stringers are constructed so that they act as end-supported
beams between the panel points L; and L.

For both the bars that have been considered, the influence lines
extend over the entire length of the truss. Such bars are called primary
truss members. Consider now the vertical member U,L,, the influence
line for which is shown in Fig. 6-13d. Upon applying the method of
joints to L,, it is seen that the stress in this bar is zero if the unit load is
applied to any panel point other than L,, in which case it equals +1.
Such a member of the unit load, which is stressed for certain positions
only, is c a secondary truss member.

To obtdin maximum live stresses in truss members by use of the
influence line, no new principles are involved. For example, suppose
that it is desired to determine the maximum compression in the vertical
U.L; due to a uniform live load of 2,000 1b per ft and a single concentrated
live load of 15,000 lb.

By the exact method, the neutral point of the influence line of Fig.
6-13¢c is determined by similar triangles as being located 12 ft to the
right of L,. For maximum compression in UsL,, the uniform load should
extend from the neutral point to Le, while the concentrated load should
be placed at L,. The value of this maximum compression is given by

2,000(! ;)(108) (= 14) + 15,000(—14) = 61,500 Ib
By the approximate method, the panel loads for the uniform goad

<. equal 2,000 X 30 = 60,000 Ib and are placed at L;, L,, and Ls. The

»,

ntrated load is placed at L;, The maximum live compression is given

Y .
60,000(—15 — 14 — 14) + 15,000(—1,) = <67,500 1b

6:15 Influence Lmes for Truss with K l)nagond’ For simple

cases, such as that of the Pratt truss of Art, 6-11, lt,*s relatwely simple to

[
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eliminate as many computations as possible in the construction of influ-
ence lines by recognizing the fact that certain portions of the influence
line are linear over several successive panels. For morc complicated
trusses, it is often necessary either (1) to compute ordinates for each
successive panel point or (2) first to construct influence lines for members
other than that under consideration and use the data thus obtained in
constructing the influence line actually desired. This latter procedure
may be illustrated by considering the diagonal U,M; of the truss of

Us Us

Y%

[

M s
i Y M, <$uy U

1 0 . ) 3 73 (a)
Le Ls Lg Ly z

8panels @ 30'-240 !

Shear in panel 2-3 . (6)

Vert comp of LUz

g ‘c)
-4-I \_
A R —— (d)
/ | Vert comp of Uy My
. >
-t q’
4 .
FrG. 6-14

Fig. 6-14a, which Bas K-type diagonals and for which the top-chord
panel points lie on a parabola.

consideration of joint M; shows that the horizontal components of
thefresses in bars U;M; and L,M; are always equal in magnitude but
opposite in character. Since the slopes of these two bars are the same, ~
the vertical 8omponents of these stresses are likewise equal in magnitude
and oppogite in dharacter: thus they act in the same direction when
holding in e ium the vertical forces applied to that portion of the
structure on ot side of section A-A. The top chord U;U, has a vertical

I
o
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component of stress that must also be considered in the foregoing condi-
tion of equilibrium.
The influence line for the total shear in panel 2-3 is first drawn, as
. shown in Fig. 6-1th. Next, the influence line for the vertical component
of the stress in bar U.Us is constructed, with stresses in that member
~determined by taking moments about L; of the forces acting on one side
“ of section B-B. This influence line is found to be a triangle with its apex
at panel point 3, where the ordinate is equal to —(3§)(15930)(830) = —33.
Upon applying ZF, = 0 to that portion of the truss to the left of
section A-A, the tensile vertical component of the stress in U7y V5 equals
half the sum of the positive shear in panel 2-3 and the tensile vertical
" component in U,U,. Thus each ordinate to the influence line for the
vertical component of stress in U,M; equals half the algebraic sum of the
ordinates, at the same section, to the influence lines of Figs. 6-11h and
¢. Since these two influence lines change directions at L. and L; only,
the influence line for the vertical component of stress in U, V; will
change direction at those panel points only. The ecritical ordinates,
i.e., the ordinates where the direction of the resultant inﬂu?nce line
changes, will be as follows:

ACLs, =1+ (Z1D1 = =1 ALy [+36 + (= 301'f = +14

The resultant influence line for the vertical component of the stress in
bar U,M; is shown in Fig. 6-11d.

6:16 Maximum Stress in Truss Member Duec to Series of Con-
centrated Live Loads. Once the influence line has _been constructed

Fi1c. 6-15

for stress in a truss member, the position in which a series of concentrated
live loads should be placed, in order to make a given character of stress
in that member have a maximum value, may be determined by moving
up loads in the manner already described for girders. To illustrate, the
position of the loads of Fig. 6-7 that gives maximum tension in bar
LsLs of the truss of Fig. 6-13a will be determined. The necessary por-
tion of the influence line for this member (see Fig. 6-13b for the complete
influence line) is reproduced in Fig. 6-15.

The computations are as follows (load 1 at L, does not.gives maximum,
by inspection): L
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Increase in tension  Decrease in tension
Load 2at L,;moveupload 3

Load group 1—All loads 100(5)(+}{20) = +59% 2 >30(5)(—1§¢)= — 39
Load 3 at L,;moveupload 4

Load group 1—All loads  80(5)(+1{20) = +195 <50(5)(— }60) = — 2% -
.. Maximum tension in L,L; occurs with load 3 at L,

To compute the value of this maximum tension, two different pro-
cedures are suggested.
Method 1 (based on moment diagram of Fig. 6-7):

2,200 + 130(95)
W = 180

= 80.8 kips

Hence the stress in L,L; is given by

+80.8(60) — 250
10

= 115.0 kips

.

} . . . .
Method 2 (based on computing ordinates to the influence line at each
panel pomt):

Panel Floor-beam reaction Influence-line Increment of
point ordinate stress in L.L,
1 10(%q) + 20('4) -+ 83 +33 + 42
2 10(76) + 20(% + 5§ + %4 + 26 + %5 + J8) = +78,3 +1 +78.3
3 20('s + Y6 + 26 + 36) - 443 3 +3{ __+3s
Total stress in Lol = = = +115 0 kips

6:17 Influence Tables. It is often advantageous to express
influence data in the form of influence tables rather than in the form of
curves. The influence table (Table 6 1) refers to the truss of Fig.
6-13a. It gives the stress in each bar of the truss due to a unit load at
“each panel point. Stresses in bars L.Ls, U.L,, and U,L, were taken
directly from Figs. 6-13b, ¢, and d, respectively. Stresses for other bars
may be checked by the student.

In utilizing an influence table to compute maximum live stresses by
the approximate method, it is convenient to prepare a second table that
is a summary of the influence table, as illustrated by Table 6- 2.

In the summary of the influence table, the sum of the positive ordi-
nates for a migh#ber is obtained by adding up, for that member, all the
positive valuci¥rop _the influence table. The product of this sum and
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the panel load for uniform live load equals the maximum tension in that
member due to uniform live load.

Table 6:1 Influence Table for Truss of Fig. 6-13a

Stress due to unit load at

Bar
Lo Ll Lg La L| Ll 14.

L.L, 0.000 | 4+0.625 | 40.500 | +0 375 | 40 250 { +0.125 | 0.000
L\L, 0 000 +0.625 | +0.500 | +0 375 | 40.250 | +0.125 | 0.000
L,L, 0.000 +0.500 | +1.000 | 4+0 750 | 4+0.500 | +0.250 { 0.000
LU, 0.000 —1.041 | —0.833 | —0 625 | —0.417 | —0 208 | 0.000
U\U, 0.000 —0.500 | —1.000 | —0.750 | —0.500 | —0.250 | 0.000
U, U, 0 000 —0.375 | —0.750 | —1 125 | —0.750 | —0.375 0.000
U\L, 0.000 —0.208 | +0.833 | 40 625 | +0.417 | 40.208 | 0.000
UsL, 0.000 —0.208 | —0.417 | 40 625 | 4+0.417 | +0.208 | 0.000
UL, 0.000 +1.000 0.000 0.000 0.000 0.000 | 0.000
U,L, 0.000 +0.167 | 4+0.333 | —0 500 | —0.333 [ —0.167 | 0.000
UL, 0.000 0.000 0.000 0.000 0.000 0.000 | 0.000

The sum of the negative ordinates for a member is obtained by adding
up, for that member, all the negative ordinates from the influence table.
The product of this sum and the panel load for uniform live load equals
the maximum compression in that member due to uniform live load.

The sum of all the ordinates for a member is obtained by adding alge-
braically, for that member, the sum of the positive ordinates and the sum
of the negative ordinates.

If the dead panel loads are equal, the product

Table 6:2 Summary of Influence Table for Truss of Fig. 6-13a

Sum of ordinates

Max. ordinates

Loaded length for

Bar Co
Positive | Negative All Positive | Negative | Tension sri!:);:lres-
" LiLy | +1.875 0.000 | 4+1.875 [ +0.625 0.000 180 0
Ials || 4+1.875 0.000 | +1.875 | +0.625 0.000 180 0
, Lals +3.000 0.000 | +3.000 | +1.000 0.000 180 0
LU, 0.000 | —3.124 | —3.124 0.000 | —1.041 0 180
u\U, 0.000 | —3.000 | —3.000 0.000 | —1.000 0 180
U,U, 0.000 | —3.375 | —3.375 0.000 | —1.125 0 180
UL, | +2.083 | —0.208 | +1.875 | +0 833 | —0.208 114 36
UsLy | +1.250 | —0.625 | +0.625 | +0.625 | —0.417 108 72
UL, | 41.000 0.000 | 4+1.000 | +1.000 0.000 60 0
UsLs | 4+0.500 | —1.000 | —0.500 | 40.333 | —0.500 72 108
UsL; 0.000 0.000 0.000 0.000 0.000 0 0
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of this sum and the dead panel load equals the dead stress for any mem-
ber except the verticals. For verticals, this product must be corrected
for that portion of the dead load applied at the top-chord panel point.

The maximum positive ordinate for a member is obtained by choosing, .
for that member, the maximum positive value from the influence table.
The product of this value and the concentrated live load equals the
maximum tension in that member due to the concentrated live load.

The maximum negative ordinate for a member is obtained by choos-
ing, for that member, the maximum negative value from the influence
table, The product of this value and the concentrated live load equals
the maximum compression in that member due to the concentrated live
load.

The procedure for determining the total dead plus live stress in any
member from the summary of the influence table will be illustrated by
counsidering bar U,L; and the following loads:

Dead load = 2,000 1b per ft Uniform live load = 1,000 lb per ft
Concentrated live load = 10,000 1b

Max. tension, kips | Max. compression, kips

Dead ................. ....... 60(+0.625) = +37.5 +37.5
Live:
Uniform.... .................. 30(+1.250) = +‘L 5130(—0.625) = 8.8
Concentrated. . .. .. FRTTRTRRIITE 10(+0.625) = 6 3[10(—0.417) = 4.2
Total dead plus live stress... . +§1 3 +14.5

Hence there is no stress reversal in this case.

6:18 Loaded Length. The loaded length is the length of that
portion of a structure loaded with uniform live load to produce maximum
live stress of a given character. This loaded length may be determined
from the influence line for the member under consideration. For exam-
ple, consider the girder of Fig. 6-5. The loaded length for positive
moment at E is 60 ft. The loaded length for positive shear in panel BC
is 48 ft; for negative shear in the same panel it is 12 ft. Loaded length is
the controlling parameter in many formulas for impact.

When equivalent live loads are used in place of a series of concen-
trated live loads, the concentrated live load is not physically dissociated
from the uniform live load. Hence it is correct to use the same loaded
length for the concentrated live load that is used for the uniform live
load, i.e., the jmpact factor for both components of the equivalent live
load is based on'the loaded length corresponding to the uniform load.
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In computing loaded lenm it x&ften permissible to estimate the
ocation of the neutral point to the nearest half panel. This saves com-
iutauons and does not introduce important errors into total computed
gptrcss&s (dead + live + impact).
r If desired, two columns may be added to the influence-table summary
R(Table 6-2) in which loaded lengths for tension and compression are
given. The inclusion of these data in the summary of the influence
table is helpful for computing impact stresses in the various members.
619 Alternate Approach for Determination of Influence
Lines. An alternate approach to the construction of influence lines may
be made by introducing an imaginary distortion into the truss member or
girder section under consideration. This method is of more interest than
Use in connection with statically determinate structures, but it is of

Distorted position of fruss after furnbuckle is turned
Original position of truss before furnbuckle is furred
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importance in constructing influence lines for statically indeterminate
structures, by both analytical and structural-model procedures.

The method will be illustrated by a consideration of the truss of Fig.
6-16a, in which it is desired to construct the influence line for member
L:L;. Suppose a turnbuckle is imagined as inserted in"member L,Ls.
If this turnbuckle were turned so that bar L;L; were shortened by a small
amount A, the structure would take the shape indicated by the dotted
position of the truss. Since the truss is statically determinate, no elastic
restraint would be encountered as the turitbuckle is turfjed; and if there
were no loads on the structure, there woyld be no stofés in any of the
members. Suppose, however, that a unit load is imagined as being
applied at any particular panel point such as L,. Let F be the tension in
LsLs due to this ynit load. Then, when the turnbuckle is taken up, it
WO meesaxI F ywork on the structure, to an amount equal to
+F( kle would exert a tensile force equal to +F on
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bar L,L; at each end of the turngguckle, %d the total distance traveled by
the two for&s F, as shown in Fig. 6-16b, would equal A. The unit load
at L, would move vertically through a distance 8, and while so moving
would do work on the structure equal to (—1)(8;). The negative sign
is introduced because the movement 4, is in a direction opposite to that’
of the unit load.

The stresses in the structure will not change during this distortion,’g
so that the elastic strain energy stored in the members of the truss due to
the fact that they are stressed will remain constant. Since the strain
energy remains constant, there has been no net work done on the truss
during the distortion, when all the forces are considered. Expressed in
symbols,

+F@) — (1)) =0

where

—_ 61
) F=+3

Had the unit load been placed at any other panel point L,, similar con-
siderations would lead to the conclusion that

da
=+ "

But F is the stress in bar L.L; due to a unit load at La; hence it is the
ordinatg at panel point L, to the influence line for the stress in bar LoL;.
The vely of A is independent of the panel point considered. We may
therel%onclude that the bottom chord of the truss as shown by the
dotted Mres of Fig. 6:16a has the shape of the influence line for tension in
L,Ls. The scale of the influence line is determined by dividing the deflec-
tions 8, by the imposed distortion A. If A is made equal to unity, the
values 8, are themselves numerically equal to the ordinates to the influ-
ence line,

To use fully this method of constructing influence lines requires either
a model of the structurc or a knowledge of the methods for computing
deflections. However, even without computing deflections, it is often
possible to visualize the shape that a structure would take and thus arrive
at the shape of the influence line. In this manner, the critical points at
which influence-line ordinates must be computed may be located. The
position of live loads to car'se maximum live stresses can often be told
from the shape of the influence line, mthout actually computing the
values of the critical ordinates. «

For example, the dotted lines in Fig. 6-17 éifffiw tii position the truss
would take if the diagonal U,Ls were shortened. ,,Mthe bottomghord
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3

¢ would change slope only at L, and L,, ordinates to éix;ﬁnence line for
tress in UsLs need be computed at these two panel paintsonly. It may
concluded, moreover, without actually computing these ordinates,
that by the approximate method
the maximum live tension in U,L;
will occur with panel loads for uni-
form live load at Lj, L, and Ls
) and with the concentrated live
. Frc. 6-17 load at Ls. The actual value of
this maximum live stress can be computed by the equations of statics,
with the loads in the foregoing positions.

A
5 @20 Problems for Solution.

Problem 6-1 Referring to Fig. 6-18, construct the influence lines for
(a) shear at a; (b) moment at a; (c) reaction ;
at b. 0

Problem 6-2 Referring to Fig. 6-18 and b a
using a live load consisting of a uniform load —— —
of 500 1b per ft and a concentrated load of L , , ,
5,000 lb, compute (a) the maximum upward |5 20 _10
v . . o ) {
;, reaction at b; (b) the maximum positive and Frc. 6-18

gative moments at a; (¢) the maximum posi-
tive and negative shears at a section just to the right of the support at b. (d) If
the dead load is 1,000 Ib per ft, compute, from the influence line, the maximum
moment at a due to dead plus live load.
Problem 63 For the structure of Fig. 6-19, construct influence lines for
A B c D E F (a) shear in panel AB; (b) moment at
I I T i panel point C.
—aI X Problem 6-4 Compute, by both
the exact and the approximate
methods, the maximum live shear in
. panel AB and the maximum live
S parels @12 =60 moment at panel point C of the struc-
Fro. 6-19 ture of Fig. 6-19, due to a uniform

) live load of 1,200 1b per ft and a single
concentrated live load of 18,000 1b.

,ol ’ ’ ] Y
Problem 6:5 For the structure | Io.z; © T Ot
of Fig. 6-20, construct influence lines A 8 |Z' D E G,
for (a) shear in panel DE; (b) moment - T
at panel point E. ] i)
Problem 6:-6 Compute, by the Fic. 6-20

approximate method, the maximum
live shear in panel DE and the maximum live moment at panel point E of Fig.
6-20, due to the live load of Prob. 6-4. &
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Problem 6¢ 7 Cdﬁstruct a moment diagram for the loading of Fig. 6-21.
Problem 68 Using the moment diagram for the loading of Fig. 6 21 and
the structure of Fig. 6-19, determine (a) the left girder reaction when load 3 is
at C; (b) the left girder reaction when load 5 is at C; (c) the shear in panel AB.
when load 3 is at E; (d) the moment at (Al loads are in kips)
panel point D when load 2is at D. /5 0 30 %0 30 % 25 25
Problem 6:9 For the loading of
Fig. 621, compute the maximum live (t) (g é
moment at panel point B of the girder I I | I |_ L |
of Fig. 6-10a. s'14'14'| 8 |44
Problem 6:10 For the loading
of Fig. 6-21, compute the maximum Fic. 6-21
positive shear in panel CD of the girder of Fig. 6-10a.
Problem 6:11 Compute the absolute maximum shear in the beam of Fig.

“

&

6-3a, due to a live load of 1,000 lb per ft, plus a single concentrated live load of .

5,000 1b.

Problem 6:12 Compute the absolute maximum moment due to two con-
centrated live loads of 10 kips each, spaced at 10 ft and acting on an end-sup-
ported beam with a span of 20 ft.

Problem 6-:13 Compute the absolute maximum moment due to four con-
centrated live loads of 12 kips each, spaced at 6 ft each and acting on an end

a supported beam with a span of 25 ft.

5 ‘lf‘fl Problem 6:14 Compute the

S M- maximum live stress in bars a and b 8f

| 8 panels @ 25'- 200" | the truss of Fig. 6 -22, due to a uniform
I 1

live load of 750 1b per ft. Consider
Fie. 6-22 both tension and compression.
Problem 615 The top-chord panel points of the truss of Fig. 6-23 lie on a
parabola. Draw influence lines for (a) horizontal component of the stress in bar
a; (b) stress in bar b; (¢) stress in bar
¢; (d) stress in bar d. 36’
Problem 6:16 Construct an in- 32’ g
fluence line for the stress in bar U.M; 2’
of the truss of Fig. 6-14a. S ° 3 —R
Problem 6-17 Compute the .,
maximum stress in bar a of the truss Bpancls @30 =180 {
in Fig. 6-23, due to the loading of Fig. Fic. 6-23
6-21.
Problem 6-18 Prepare an influence-table summary of bars a, b, ¢, and d of
the truss of Fig. 6:23. Include loaded lengths in the summary.

’." «
N "
N



CHAPTER 7
BRIDGE AND ROOF TRUSSES

7-1 Introduction. Loadings for trusses are discussed in Chap. 1;
stress analysis for trusses is treated in Chaps. L and 5, by mathematical
and graphical procedures, respectively; influence lines for trusses and
the determination of maximum live stresses are considered in Chap. 6.
In this chapter, we shall bring together the ideas contained in the earlier

apters and apply these concepts to the broader aspects of truss analysis.
ﬁ addition to considering the general analysis of a typical roof truss and
'a _typical bridge truss, we shall consider some further specific matters of
m\portdn(-e such as stress reversal and the effect of counters.  Attention
will then be given to the effect of shewing a bridge with vespect to its
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* abutments,  Finally, a brief consideration will be given to movable
bridges.
The trusses considered will be analyzed as planar structures, but it
. should be understood that actually they are portions of three-dimensional
“frameworks.  To sce why this procedure is permissible, refer to the deck
bridge of Fig. 7-1, in which only the lateral loads Py, P, . . ., Py will
be assumed as acting, these loads lying in the plane of the top-chord
lateral system. Suppose that a horizontal plane is passed through the
structure at some elevation between the top and bottom chords,  Con-
sidering the isolated part of the structure above this plane, it will be
seen that the horizontal egmponents of the stresses in the sway-bracing
diagonals at the ends of -the structure must hold the top-chord lateral
system, acted upon by the lateral loads, in equilibrium.!  These horizontal
components provide the end reactions on the top-chord lateral system,
1 This statement is not completely correct, because under an unsymmetrical sys-
tem of lateral loads, the horizontal components of the stresses in the diagonals of
the main trusses would likewise assist in furnishing the reactions to the top-chord

lateral system.
184
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which may therefore be analyzed as a planar truss. The vertical com-"
ponents of the stresses in the sway-bracing diagonals must be held in |
equilibrium by the stresses in the end verticals of the main vertical trussef,
Thus the sway bracing in each end acts as a planar truss that transfers
reaction on the top-chord lateral system to the foundation.

Next, consider the same structure, with only the vertical load#
Py, Py, ..., P'sassumed to be acting, these loads lying in the plane o
the rear vertical truss. Suppose that a vertical plane, parallel to the
main vertical trusses, is passed through the structure between these.,
trusses. 'The sway-bracing diagonals at each end will be the only mem-
bers cut that are capable of carrying vertical components of stress.  If
the diagonals a are capable of carrying compression, they will be stressedi
and this will affect the stresses in the end verticals of tlu, rear \(‘lll(‘-‘i
truss. This effect is of secondary importance, however, so that it is per-"
missible and on the safe side to analyze the rear vertical truss as a plaiar
truss acted upon by the loads Py, Py, . . . , P’

If additional sway bracing is introduced at intermediate panel points,
the situation becomes more complicated. As the panel points of the
loaded vertical truss defleet vertically, the sway bracing at cach inter=-
mediate panel point acts in a manner such that the corresponding panef}
point on the unloaded vertical truss must also undergo a certain amouny
of vertical movement. This produces what are called parlicipating
slresses in the unloaded vertical truss. However, if both vertical trusses
have the same loading, there would, because of symmetry. be no partici-
pating stresses of this type. In an actual bridge, the vertical loads on
the two main vertical trusses will not always be the same, but they are
usually so nearly the same that the stresses in the diagonals of sway
bracing at intermediate panel points may be assumed as zero. Each
main vertical truss can then be analyzed separately as a planar structure.

72  General Analysis of a Roof Truss. The gcnvml analysis of
a roof truss includes, not only the computation of stresses in each mem-
ber due to the various types of load that must be supported by the truss.
but the combination, for each truss member, of the stresses due to each
type of loading, in a manner such that the maximum stress that can
result from the combined effects of the different types of loading is
obtained. To illustrate this procedure, consider the wall-supported roof
truss of Fig. 7-2, which will be taken as an intermediate truss of a
series of trusses spac ed at 20 ft center to genter. It will be assumed
that the framing of the 1oof is such that loadsg from the roof are applied to
the truss atl the top-chord panel points only. The roofing, including
the purlins that support the roofing between trusses, will be assumed
to weigh 4.3 1b per sq ft of roof area; the truss itself will be assumed
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to weigh 75 lb per horizontal foot, with the weight equally divided
between the top- and bottom-chord panel points. The snow load will
_Be taken as 20 1b per sq ft projected horizontal area of the roof. The
ce load will be taken as 10 1b per sq ft projected horizontal area of the
® roof. Wind loads shall be in accordance with the recommendations of
,.the ASCE report! discussed in Art. 1-11 and shall be based on a maximum
' Intermediate trusses wind velocity of 100 mph. The
U, spaced 20°c foc. analysis will belimited to the follow-
ing combinations of loads: (1) dead
' plus snow over the entire roof; (2)
dead plus wind plussnow onleeward

. L . .
f_".; . L, Lo L, Ls L side;? (3) dead plus ice over the
Ca 6 panels@ 1060" | entire roof plus wind. It is to be
Fio. 7.2 h noted that the wind can blow from
et 16. £+< either the right or the left.

The dead stresses will first be computed. For the bottom chord,
the dead panel loads are given by 77,(10) = 375 lb; for the top chord,
tfe dead panel loads are given by 375 + 4.3(11.2)(20) = 1,3451b. These
panel loads, together with the dead stresses they produce, are shown in
Fig. 7-3. Since the dead stresses arc symmetrical about the center line
of the truss, only half the truss is shown. The computations leading to
the determination of the dead stresses are omitted, since they involve no
new procedures.

Loading condition 1 calls for snow over the entire roof ; loading condi-
tion 2 calls for snow on the leeward side only. We shall first compute
the truss stresses for snow on the leeward side only; because the truss is
symmetrical, we may then determine the stresses due to snow over the
entire roof by the principle of superposition, thus avoiding a complete
second stress analysis. The snow panel load is given by

20 X 10 X 20 = 4,000 Ib

1 Wind Bracing in Steel Buildings, Proc. ASCE, March, 1936, p. 397.

2 This combination of loads is considered in the present discussion hecause it is
one frequently investigated. It corresponds to a reasonable condition if wind loads
are computed by a formula such as that by Duchemin (see footnote, Art. 1-11), since

snow might be likely to be blown from the roof by the presgure on the windward
slope but remain on the leeward slope where there is neither pressure nor suction.
When the recommendations of the ASCE report are followed, however, this particular
lodd combination does not appear to be so likely to occur, since one may encounter,
as in this particular problem, suction on both slopes, with the greater suction on the
leeward slope. With this condition of wind load, the snow, if it remained on the roof

» at all, would appear more likely to remain on the windward side. However, it is
, always possible that snow, baving fallen previous to the action of the wind, would
heve crusted over h,manner such as to act as assumed for loading condition 2,
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With the snow on the leeward side only, the snow panel load at U, equals
only half this value. These panel loads, together with the stresses the

produce, are shown in Fig. 7-4. Since this is an unsymmetrical loadmé‘,ﬂ
condition, stresses will be computed for the entire truss.
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To obtain the stresses due to full snow load, we may use the principle

of superposition, as indicated by Fig. 7 5, since the stresses due 1o loading'
a (as already computed in Fig. 7-4), superimposed upon the stresses due
to loading b (which can be obtained from Fig. 7-1 by symmetry), equal
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the stresses due to loading ¢, which corresponds to full snow load. For
example, the stress in bar Ly U, due to full snow load equals

—6,720 — 15,680 = — 22,400

for bar U,Ls, it equals 0 — 5,660 = —5,660; etc. Since this is a sym-
metrical loading condition, only half the truss is shewpy The stresses in
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Fig. 7- 6 could, of course, have been obtained by a separate stress analysis
for the full snow-load condition.
_3-‘ Loading condition 3 calls for ice over the entire roof.  Since the inten-
$ity of the ice load is half the intensity of the snow load, the stresses due
#to full ice load may be obtained from Fig. 7-6 by dircct proportion,
" equaling half the stresses due to full snow load.  Stresses due to full ice
Joad are shown in Fig. 7-7.
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For a wind velocity of 100 mph, by Eq. (1-3),
q = 0.002558(100)2 = 25.6 Ib per sq {t

For the roof, tan a = 1345 = 0.5; a = 26.6°, whenee, by Eq. 1-4, the
windward slope is subjected to a suction of

p = [0.07(26.6) — 2.10](25.6) = 6.1 b per sq ft

The, suction on the leeward slope equals 0.6(25.6) = 15.4 Ib per sq ft.
Thus, for the windward side, the wind panel load equals

6.4(11.2)(20) = 1,4351b

For purposes of analysis it is more convenient to treat the vertical and
horizontal components of the wind panel load, which equal 1,280 Ib
. upward and 640 lb upwind, respectively. For the leeward side, the
¥ wind panel load equals 15.4(11.2)(20) = 3,450 lb. This panel load has
+ an upward vertical compdnent of 3,080 Ib and a down-wind horizontal

w
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component of 1,540 Ib. Figurc 7-8 shows the truss acted upon by the’
vertical and horizontal componengs of the wind panel loads and the
stresses for that condition of loading. The half panel loads at L, an§®

Ls were included in the analysis since the horizontal component of loa(§
applied at L, causes stresses in the truss.
ansymmetrical, stresses are computed for the entire truss.

Since the wind loading is;

)

Table 7-1 Stress Table for Roof Truss of Fig. 7-2 t
(Al stresses in 1b) H
I Load
(2) 3) !
Ba | D s S 1 w D Ap+w|pyw| Mex | wm
D+ S +8 +1 stiess | bina-
’ L tions
- D D T e ——:s
+ 6,000 —- 9,460 + 51100 49,140 |
LoL, +8,600| +20,000 1 og! +10.000) Ty ol +28.600 1 gl T ieso | T286000
- I —— —_ _ oo ‘
| 1 |
) + 6,000 — 9460 , . !4 5110 +9,180 |
Lals | +8.600| +20,000] 17,'{"U0) +10,000 “13950 +.s,oooi ¥ wies0 14650 +28,600] 1
T |4 6000 — 7.860| + 502! +7,020 4
. \ A oo At e "o
L:Ly | +6,880| 416,000 100 + 8990 1700 +22.880, 7 6.780i T 780 | T22:880 1:
, - 6,720 anal 410,950 o= 514200 —9,900 o
Lolly | —9,650] —22,400 ~ 15,00 11200 )zl 32050, T 'ggo _73go | 32050 1
— maep] = 6:720] + 9,880| —~ 1550 —6,790 | _
AU | =770 —17,920) T a0l = 8.960) 1 gq) —25.630 T gl “gigg | —25.6300 1
—— - - ——— —_—— _.I» ———
. ) - 6,720 ap| + 8.800 — 37000 —3,700
sty | =570 = 13,0800 T 00— 67200 oo —19.2200 T il T~ 19,2200 1
- |
0 + 1,790 - 110} —-2,380 [+ 150, 3
-— -— -— 92 —_—
ULy | =1.930) = 4,380 _ 4 4g0| = >4 4 yiaz0l = &M _ 2000 + 150 | — 6410 1
0 + 2,260 - 170 —3,000 [+ 190 3
Uil | —2,430 = 5.660) _ 560 — 2830) 4 5450] = 899 _ 2640l + 190 | — 8000 1
0 0 . .
ULe |+ 375 o o 0 o |+ 35|+ 3| + 375 |+ 351,23
0 - 800 + 435 +1.435 R
Uk | +1.235) + 2,000 | o oo0l+ 1,000~ ool + 3.235‘ T 1at0| + 310 |* 3238 1
Uil, | 43,815} + 8,000 + 4.000l + 4,000} — 5,150 +u.315|+ 2,365 +2,365 | +11,815( 1
In Table 7-1, we shall list the stresses as given in Figs. 7-3, 7-4, and

7-6 to 7-8. Then we shall combine these stresses to give the total stress
in each member corresponding to the three specified loading combina-
tions. Finally we shall choose, for each member, the maximum stress of
each character which occurs in any of the three loading combinations,
these maximum stresses being those which would control the design of



190 BRIDGE AND ROOF TRUSSES [§7-3

the members. The abbreviations used in the column headings are as
foliows: D = dead stress; S = stress due to snow load on both sides;
8. = stress due to snow on the leeward side only; I = stress due to ice
:on both sides; WV = stress due to wind. We shall list in the table only
~'the bars in half the truss; but, in entering stresses for the columns headed
.S, and W, we shall enter first the stress in the member itself, due to the
loading under consideration and second the stress in the symmetrically
‘placed member, due to the same loading.? This second entry covers the
case which would exist were the direction of the wind to reverse, a condi-
tion for which the design must, of course, provide. In carrying forward
the totals that include cither S, or 1}, the sums corresponding to both
entries arc computed.
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7:3 Permissible Fiber Stre«ses for Members Stressed by Wind.
When members carry stresses due to wind loads, it is usual to permit
somewhat higher fiber stresses in design than would otherwise be the
case. For example, the specifications of the AISC state that members
subject to stresses produced by a combination of wind and other loads
may be proportioned for unit stresses 33!4 per cent greater than those
specified in Art. 1-22, provided that the section thus required is not less
than that required for the combination of other loads, without including
wind. They state further that this increase of 3314 per cent is also per-
missible for members subject®only to stresses produced by wind loads.

Instead of designing members carrying wind loads on the basis of
increased fiber stresses equal to 44 of the usual permissible fiber stresses,
it is obvious that the same results will be obtained by designing on the
basis of the usual permissible fiber stresses, but allowing for only 37 of
computed total stresses in such members, since F/44f = 3{F/f. 1lence,
in preparing a stress table such as Table 7-1, one might proceed by enter-
ing in the column headed Max. stress the largest of the following: D + S;

1 This procedure was not followed for the lower-chord members. Why?



§7-4] GENERAL ANALYSIS OF A BRIDGE TRUSS 191

34(D+ W+ 8Su); 3{(D+ W+ 1). The member would then be s
designed for this maximum stress, with the usual permissible fiber stresses.,
74 General Analysis of a Bridge Truss. The general analysis_,
of a bridge truss consists in computing the stress in each member, due tos,
each type of loading, and the combination, for each truss member, of
these stresses into the maximum total stress that will control design. 4%
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To illustrate this procedure, we shall consider the Warren type of high-
way truss of Fig. 7-9, which will be analyzed for dead, live, and impact
loads. It will be assumed that the truss, including details and secondary
bracing, weighs 0.500 kip per ft, with this dead weight divided equally -

Table 7:2 Influence Table for Truss of Fig. 7-9

Stress due to unit load at

Bar ;

L, L, L. Ls L, Ls L, L, L,
L,L,* 0 +0.875(+0 750’-‘]—0 625|4+0 500,40 375{+0.250{+0.125] O
L.L, 0° |40.625/+1 2501+1.875(41.500'+1 125/+0.750{+0.375] O
LU, 0 |—1 238/—1.060{—0.885|—0 708, —0.530,—0.351|—0.177{ 0
U,\U, 0 |—0 750/—1.500{—1.250{—1 000;—0.750,—0 500/—0 250/ 0
UsU, 0 |—0 500{—1.000/—1.500|—2 000!—1.500|—1 000|—0.500{ 0
U.L, 0 [—0 177|41.060/40 885!4+0 708'-{-0.530 40 351140 177 O
L U, 0 |+0 177|4+0.351—0.885/—0.708,—0.5301—0 351{—0 177| O
U,L, 0 |—0177/—0.354—0.530 +0.708|+0 530:4+0.354{4+0.173( O
U.L, 0 |41 000 0 0 0 0 0 0 0
U.L, 0 0 0 0 0 0 0 0 0
U,Ls 0 0 0 +1.000f 0 0 0 0 0
U, 0 0 ) 0 0 0 0 0 0

* By the method of joints, the stress in Lol is equal to the stress in Lil: as long as only vertical loads
are applied at joint L;. Hence to save space in this and tae following tables, these two members will be

treated as a si member.

between t:E top- and bottom-chord panel points. The weight per foot
of that portion of the floor system carried by the truss will be taken as
0.800 kip, acting at the bottom-chord panel points. For live load, an
equivalent live-load system will be used, consisting of a uniform load of
0.650 kip per ft and a single concentrated load of 20.0 kips. Impact will
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be computed in accordance with Eq. (1-1). Maximum live stresses are
to be computed by the approximate method. For cach member of the

- left half of the truss, the maximum total stress of each character is to

&
Li

be obtained.
We shall first compute the ordinates to the influence line for each

* member of the left half of the truss, considering the effect of a unit load

at each bottom-chord panel point of the entire truss. These ordinates
are summarized in the influence table (Table 7-2). Since no unusual
conditions are encountered in the computations of these values, the details
of the computations will be omitted.

A summary of the influence table (Table 7-2) will next be prepared

1Table 7-3).

. Preparatory to the construction of a stress table for the members
under consideration, we shall compute the panel loads for dead and live

.
.

Table 73 Summary of Influence Table for Truss of Fig. 7-9

s

Sum of ordinates Maximum ordinates | Loaded length ft. for

- Bar b iee . . Lo —_— Compres-
Positive | Negative All Positive | Negative | Tension sion
) oY +3.500 0 +3 500 | 4+0.875 0 210 0
L.L, +7 500 0 +7 500 | +1.875 0 210 0
LU, 0 — 1952 | —1 952 0 —1 238 0 240
LUy 0 —6 000 | —6 000 0 —1.500 0 240
LU, 0 —8 000 | —8 000 0 -2 000 0 210
U,l, +3 71t} —0 177 | +3 537 | 41.060 | —0.177 206 34
LU, +0 531 { —2 654 —2 123 [ +0.35t | —0.885 69 171
L, +1 769 | —1.061 | +0 708 | +0.708 | —0.530 137 103
Uil -+1 000 0 +1 000 | +1 000 0 60 0
/o1, 0 0 0 0 0 0 0
U, +1 000 0 +1 000 | +1.000 0 60 0
UL 0 0 0 0 0 0 0

load. For dead load, the top-chord panel load equals 30(0.250) = 7.5
kips; the bottom-chord panel load equals 7.5 4+ 30(0.800) = 31.5 kips.
For uniform live load, the panel load equals 30(0.650) = 19.5 kips; the
concentrated live load, which is already expressed as a panel load, equals
20.0 kips.

In the stress table (Table 7-4), the dead stresses are computed by the
principle of superposition, as shown in Fig. 7-10. The stresses due to
the loading of Fig. 7-10a are first computed. TFhis loading assumes that
the total dead load is applied at the bottom chord, so that the dead panecl
load for bottom-chord panel points equals 31.5 + 7.5 = 39.0. Since
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Table 74 Stress Table for Truss of Fig. 7-9
(All stresses in kips)
L = live stress )
D= |— I X I= Total -.
Bar dead Con- frr'lxl({)t?::n impact | L + 1 =
stress | Uniform| cen- Total e stress +L+1 K
trated
L +136.5| + 68.3] +17.3( + 85 8] 0.137 | +11.8{ + 97 6 +234.1
‘ ‘2 -------------------------
+292.5 4116 2| +37.5| +183 7| 0.137 | +25.2| +208.9/ +501.4.
LLe b b >
LU, ) B RSO O NN IEEESEE INEEerS
—193.00 — 96 3 —21.5 —121 0 137 16.6] —137.8] —330,8
Ulls | _agy0f =117 00 =300 =117 0, 0 137 | —20 2| —167.2 —101.2
Uslie | 15 0] 136 0 —10 0] —196 0/ 0.137 | —26 8 —222 8 —331.8
+138 00 + T2 5 4212 4+ 937 0151 | 112 +107.9 4215 9
UiLe — 35 —35 — 70 030 —21 — 91
Ll e 00+ Tl 175 38| 4+ 13 + 220
s — 8300 — 318 —17.7 — 695 0169 —11.8 — 81 3, —161 3
UL 42760 4 313 4112 187 0191 4+ 9.3 + 380 + 856
fala - 20.7 =10 o: — 313 0219 — 6.9 — 382 — 106
S S R R R
UL + 31.5] + 19 5] +20 0 + 39.5[ 0.270 | +10.7] + 50 2| + 81.7
tis1
Uil e 7% P A B I ORI I - 7.5
Ui + 31.5| 4+ 19.5] 420.0{ 4+ 39 5| 0.270 | +10.7 + 50.2| + 81 7
313
U | gl o e - 7.5

the influence table is based on the application of loads to the bottom-
chord panel points, the stresses for this condition of loading are obtained
by multiplying, for each member, the sum of all the ordinates to the
influence line by the total dead panel load of 39.0. The stresses due to
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the loading of Fig. 7-10b are next computed, the value 7.5 being that of
the top-chord dead panel load.  This stress analysis is exceedingly simple,
_and results, as shown in the figure, in a stress of —7.5 in all verticals and
zero stress in all other members.  If the loadings of Figs. 7-10e and b
are superimposed, the loading of Iig. 7-10¢, which corresponds to the
- actual dead loading, is obtained. Ilence the dead stresses may be
obtained by superimposing the stresses computed for the loadings of
Figs. 7-10a and b. To summarize, tie dead stresses for a given member
may be computed as follows: (1) Multiply the folal dead panel load by
' tthe sum of all the ordinates to the influence line.  (2) To the stress from

". 75 15 75 15 75 75 15 1§
- , 0ololol
Symm. © | Symm Symm.,
abteg + o/ ONG| /| ANt ¢ = _/_ abt ¢
L otoloto
390 390 30 390 5 15 75 18 S IS NS IS
(a) (b) (c)
Fic. 5-10

step 1, subtract, for the verticals only, the magnitude of the top-chord dead
panel load.

Had the dead load not been uniformly distributed, the stresses cor-
responding to the loading of Fig. 7-10a would require recourse to the
influence table, with stresses obtained by summing the tross products of
the individual panel loads and corresponding ordinates from the influence
table. Itis, of course, possible, and sometimes desirable, to obtain dead

& stresses by a separate analysis for dead loads, without making use of
influence data.

Maximum tension and compression due to uniform live load are
entered in the next column.  These values are obtained by multiplying
the uniform live panel load (19.5) by the sum of the positive and negative
ordinates, respectively, to the influence line. Maximum tension and
compression due to concentrated live load are entered in the following
column. These values are obtained by multiplying the concentrated
live panel load (20.0) by the maximum positive and negative ordinates,
respectively, to the influence line. Total live stress of each character is
then obtained by sumnming the cffects of the uniform and concentrated
live loads. ,

Impact fractions, computed in accordance gith Eq. (1-1), are then
entered; these impact fractions multiplied by the folal live stresses give
the impact stresses, which are then added to the total live stresses, lead-
ing to the total stresses due to live load and impact. Total stresses due
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to dead load plus live load plus impact are entered in the final column.
It is to be noted that live and impact stresses of both characters are
carried forward in the stress table, until it is definitely ascertained that
no stress reversal (see Art. 7-5) can occur. In the actual design of a
truss, stresses due to other causes, such as wind loads, would be con-
sidered, such stresses being combined with dead, live, and impact stresses
in additional columns in the stress table. In this example, stresses due
to wind have been omitted because the analysis of lateral systems and
portals has been reserved for discussion in a later chapter.

7:5 Stress Reversal. In the highway truss analyzed in Art. 7.4,
all the members were assumed to be capable of carrying either tension or-
compression, and the maximum stress of each character was obtained. .
In preparing the stress table of Table 7 1, the total stress due to dead”
plus live plus impact was obtained by simply adding the L + I stresses
algebraically to the dead stresses. In the case of only one member,
U,L,, did the live plus impact total exceed the dead stress, when the live
plus impact total was of opposite character from the dead stress.

For U;ls,, the interpretation of this condition is as follows: Depending
upon the position of the live Joad on the structure, the total stress due to
dead + live 4+ impact may be either tension or compression. This
alternation of stresses as live load travels across the span is called stress
reversal. When members are subjected to stress reversal, it is usual to
follow a more conservative design procedure than would result if the usual
permissible fiber stresses were used in conjunction with the D 4 L + I
totals of Table.7°4. For example, the specifications of the AASHO state
that “if the alternate stresses (stress reversals) occur in succession during
one passage of the live load, each shall be increased by 50 per cent of the
smaller. . . . If the live-load and dead-load stresses are of opposite sign,
only 70 per cent of the dead-load stress shall be considered as effective
in counteracting the live-load stress.”™  The following of such a specifica-
tion results in a build-up of total stress for which a member subject to
stress reversal shall be designed.  Since the usual fiber stresses are used
in conjunction with this increased total, a more conservative design results
than would otherwise be the case.

To illustrate the application of the foregoing specification, consider

U‘la:

Dead +27.6 0.7(427.6) = 4193

Live 4+ impact +58.0 —38.2
1856 189
+ 9.5 = 18.9(0.50) — 9.5 = 18.9(0.50)
495.1 kips —28.1 Kips

* . .
The member should be designed to withstand both these stresses.
[N
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76 Counters. A member with a large slenderness ratio (length
divided by radius of gyration) will buckle when subjected to relatively
small compressive forces. Such a member can carry tension satisfactorily
but can carry only a negligible amount of compression. The diagonals of
a truss may be designed so that they act in such a manner, in which case
they are called tension diagonals. If a truss were to carry dead loads
only, as shown in Fig. 7-11a, single tension diagonals in each panel would
be satisfactory, since their slopes could be chosen in a manner such that
the dead shear in each panel would produce tension in the diagonals.
When live loads are considered, it is always possible that, for some posi-

) tion of the live loads, the maximum shear in a given panel due to live loads
- plus impact, of a character opposite to that of the dead shear, may exceed
‘sthe dead-load shear. This would tend to produce compression in the

(a) (%)
Fic. 7 11

" tension diagonal, a condition that must be avoided, unless a second
tension diagonal, called a counter, is added to the panel, the counter hav-
ing a slope opposite to that of the main tension diagonal.  The counter
will have no stress due to dead loads only, sinee it buckles slightly under
the action of the dead shear. When the shear in the panel changes sign
owing to live loads and impact, however, the main tension diagonal
buckles and has zero stress and the counter comes into action, carrying
the resultant shear due to dead plus live plus impact as a tension member.

In designing a truss with tension diagonals, one should first determine
the panels where counters are required. Counters are most likely to be
necessary in the panels nearest the center of the truss, since the dead shear
in such panels is smaller than in the end panels, while the live shear of
opposite character to that of the dead shear is larger than in the end
panels and hence more likely to exceed the dead shear. A typical truss
with counters is shown in Fig. 7-11b, in which the counters are indicated
by the dotted diagonals of the four panels nearest the center of the truss.

To illustrate the determination of maximum stresses in a member of
a truss with counters, consider the computation of the maximum com-
pression in member UsL; of the structure of ¥g. 7-12a. An influence
line can be constructed that will show how the sthiss in U aLs will vary as a
unit load moved across the span. Such an indueuce line cannot be used

L



§7-6] COUNTERS 197

to determine how to place live loads for maximum compression in Usls,
however, for the following reason: The computation of each ordinate will
depend on whether the main diagonal or the counter is in action in cach
of the two center panels. This condition will vary for different positions
of the unit load. For example, with the unit load at L,, L.U'; and LsU,
will be in action and U,L; and U;Ls will have zero stress, while, with the

uy U U 4 U
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unit load at L;, U,lL; and L;U, will be in action and L,U; and U,L, will
have zero stress. Hence, in effect, the different ordinales to the influence
line will correspond lo the action of different structures, and under such cir-
cumslances the principle of superposilion does nol hold. The maximum
compression in Usls due to dead plus live plus impact loads depends on
which diagonals are in action under the folal loading leading to that
maximum compression.
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To simplify this illustration, let us assume that the dead panel loads
are applied to the bottom chord only and equal 30.0 kips; that the uniform
live panel is 20.0 kips and the concentrated live load is 25.0 kips; and that
impact is to be neglected.

The four possible ways in which the diagonals of the two center panels
can act are shown in Figs. 7-12b to e. If they act as shown in Fig.
7-12b, U,Ls cannot be stressed, as may be seen by applying the method
of joints to joint Us. If they act as shown in Fig. 7-12¢, the live load
cannot be placed so as to produce compression in U;L;, as may be seen
by applying the method of joints to L;. Even under dead loads this
represents an impossible condition, since it is necessary for L,Us and
¥/sL+ to carry compression. If the diagonals act as shown in Fig. 7-12d,

" the Jive loads will be placed as shown to produce maximum compression
in U;L;. This is a possible condition since U,L; and U;L4 are both in
tension and leads to a resultant compression of —3.3 kips in UsL;. If
the diagonals act as shown in Fig. 7 12e, there results the same compres-
sion of —3.3 kips in UsL;, this also being a possible condition, since LU,
and LU, are both in tension.

Hence we may conclude that the maximum compression which can
occur in L3L;is —3.3 kips.

When a truss has counters, the determination of maximum stresses in
members influenced by the action of the counters must be approached by
trial. Each position of live load that may reasonably lead to the maxi-
mum stress desired must be investigated. If diagonals capable of
carrying tension only have been assumed to be in action, the results of
any investigation are invalidated unless the computed stresses in such
members indicate that they actually carry tensile stresses.

77 Movable Bridges—General. When the topography of a
bridge site is such that it is desirable to have the roadway close to the
surface of the body of water crossed by the bridge, the vertical under-
clearance requirements of the navigation passing beneath the bridge may
require a movable bridge. A movable bridge is one that may be moved
to permit the passage of navigation. The three most important types of
movable bridges are (1) bascule bridges, (2) vertical-lift bridges, and
(3) horizontal-swing bridges. The type to be used depends largely upon
the horizontal and vertical clearance requirements of the navigation.
Whether a low-level movable bridge or a high-level fixed bridge should be
used in a given site can usually be determined only by a careful economic
study. 3

78 Bascule Bridges. A bascule bﬁd@?ay prove economical
where horizontal navigation requirements do got. necessitate too long a

span and where a high vertical clearance is l'e(‘ﬁ:}?(}. A typical bascule

A Rl
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bridge is shown in Fig. 7-13. Motive power drives a pinion at D, which
engages the rack E, thus opeming or closing the span. The required
motive power is reduced by the action of the counterweight C.

The dead-load stresses in a bascule span change as the bridge is
opened or closed, and it is possible that the dead stresses in certain mem-
bers during such an operation may exceed the total stresses with the
bridge closed and subjected to traffic.

To find the maximum dead stresses that occur while the span is being
raised or lowered,! lct F; be the dead stress in any member, with the spar

B .

*

c
E c
aG” "'_,A rEPmB o E”e’ TTTTTTTTT T T T
(a) (b)
Fic. 713

horizontal, and Fy be the dead stress in the same member after the span
is vertical (i.e., after having rotated through 90° from its closed position),
both these values being easily computed by the usual methods of analysis.
With the bridge partly operned and the bottom chord making an angle
a with the horizontal, as shown in Fig. 7-11, each dead panel load may
be resolved into two components, one perpendicular and one parallel to
the bottom chord. The components of dead load that are perpendicular
to the bottom chord will cause stresses equal to Fy cos «, while the com-
ponents of dead load that are parallel to the bottom chord will cause
stresses equal to Fy sin @. Hence, for any angle «, the total dead stress
Fp in any member is given by

Fo = Fysina+ Fycos a (a)

Placing the derivative of Fj, with respect to a equal to zero,
dr . .
—a—" =Fycosa— Fysina =0
Q
whence tan « = Iv/Fy. Substituting this value of a into Eq. q,
L
“F v F H VR R T}
Max Fp = I’Vv —— + Fn eV 1’3 + F} (71)
VTR, VTR
1See Hovey, O. E., “Movable Bridges,” Vol. 1, p. 219, John Wiley & Sons, Inc.,
New York, 1926 ¥ .
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With the bridge closed, the dead-load reaction at the free end will be
zero, since the counterweight holds the dead loads in equilibrium, but
live loads produce reactions at each end, in the same manner as for an
end-supported span.

Fic. 7.1t

79 Vertical-lift Bridges. When the horizontal-clearance require-
ment is greater than the vertical-clearance requirement for navigation,
a vertical-lift bridge is likely to prove economical. A typical vertical-
lift bridge is shown in Fig. 7-15. The span AB is raised or lowered
vertically by cables running over sheaves at D that are supported
at the tower tops.  The motive power required for this motion is reduced
by the counterweights €£.  These counterweights are usually designed to
balance the entire dead load of the movable span, so that the dead-load
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reactions are taken by the cables. Live loads on the movable span pro-
duce reactions on the piers at A and B, however.

7:10 Horizontal-swing Bridges. lorizontal-swing bridges give
unlimited vertical clearance, but the center pi onstitutes an obstruc-
tion to traffic. A large horizontal area is requi r this type of movable
bridge. Horizontal-swing bridges may be ., g'ger the centgr-bearing
type, as shown in Fig. 7-16a, or the rim-bcan& ‘ ipc, as shown in Fig.
»
N
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7-16b. In either case, the bridge is opened by swinging it horizontally
about the vertical center line. When the bridge is open, the two spans
cantilever from the center pier and are statically determinate. When
the bridge is closed, the trusses are continuous and hence statically inde-
terminate. Stress analysis for the closed condition depends on principles
discussed in the portion of this book dealing with statically indeterminate
structures.

When a swing bridge is closed, the dead reactions developed at the
outer ends of the structure depend on the design. 1f these ends just

¢ ¢ .
' !
L
> > 2 7 : 7 g
SHiff Floor bearn ELEV Main support on ELEV.
%o carry truss loads pivot at center
fo center pivot
] \
Small stabilizer
suppor’s  PLAN PLAN
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touched their supports, any live load on one span would cause uplift at
the far end of the other span.  This condition is usually avoided by lifting
the ends a slight amount when they are closed.  The desired dead-load
reaction can be computed so that it will exceed the maximum live-load
reaction of opposite character.

7:11 Skew Bridges. If the abutments are not perpendicular to
the longitudinal axis of a bridge, the bridge is said to be shewed.  Figure
7-17b shows the plan view of such a

structure. In order to keep the con- (a)
nections from becoming complicated, a
the floor beams are usually kept per- Z R

. . . Q
pendicular to the main trusses.  This \ N
. . . c‘\ (b}
is likely to make the main trusses 5 o
unsymmetrical. The two end posts & \

\ \

of a truss should have the same slope
so that the end portals will lie in a
plane. This may lead to an inclined hanger as shown by bara, Fig.7 17a.

When analyzing stresses in the members of a truss of a shewed bridge,
one may proceed by the same general approach followed for a bridge that

Fra. 7-17
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is perpendicular to the abutments. However, in dealing with live loads,
one should take into consideration the irregularity of the floor system.
This will alter the details of the computation of live panel loads, which
may not be the same for all panel points.

7-12 Problems for Solution

Problem 7-1 For the roof truss and loadings of Art. 7-2;
a. Compute the maximum stress of each character for each member of the
sleft half of the truss, due to dead plus wind loads combined.
b. Comparing the stresses computed in part a to the maximuin stresses given
in the stress table of Table 7 1, for what members if any would the loading
. condition of part a control design? (Note: In part b do not consider permis-
+dble increases in fiber stresses for members stressed by wind.)
c. Is it necessary for this truss to be anchored at its supports to prevent
. 1000* uplift? If so, determine the uplift force
for which each anchorage should be
Uz designed, allowing a factor of safety of
F 50 per cent in this force.
1000% Problem 7:2 The roof truss of
L} Iigz. 7-18 is an intermediate truss of a
20" eries of trusses spaced on 15-ft centers.
The dead loads acting on this truss are

. as shown in the figure. The snow load

L,
,L fu{ L o ?2 : is 20 Ib per sq ft horizontal projected
| ‘250# area.  Wind loads are to be computed
' 2panels ®/5'=30' by the Duchemin formula and based
—t2 - , i
‘e Fie. 7-18 on a wind-pressure intensity of 20 lb
IG. ¢+

per sq ft on a vertical surface. Com-
" pute the maximum stress of each character in each member due to each of the
following load combinations: (1) dead plus snow; (2) dead plus wind (note that
wind may blow from either dircction).  What stress will control the design of
each member?

Problem 7:3 The dead panel loads in kips are shown on the bridge truss
of Fig. 7-19. The truss is subjected
to a uniform live load of 1.0 kip per 50 50 S50 S50 50
ft and a concentrated live load of 15.0 b o o |t 1%
kips. Impact is to be computed in 2’
accordance with Eq. (1-1). Prepare Lo Lg
a stress table for the members of the T L, |Lz Lo |Le [Ls 7=
I

t

left half of this truss, in which the 200 200 200 200 200

following columns are included: dead; 6 panels @ /5= 90’ |
uniform live; concentrated live; total Sl FLG. 7419

live; impact; livej"glus impact; total .

v

dead plus live pl

.
te ¢ i N ’ -

%o
impact. For live stresses, u () approxir;u{te*pethod of
_analysis. Give stresses of both characters wherg th#® exist. CWiﬁé dead

]

4
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stresses with live plus impact stresses, (a) by algebraic addition; (b) in accordance
with the specifications of the AASHO for members subject to stress reversal.

Problem 7:4 Assuming that the
diagonals of the truss of Fig. 7-19 can
carry tension only, at what panels are
counters necessary ?

Problem 7-5 The loads shown act-
ing on the truss of Fig. 7-20 are the
dead panel loads in kips. The diagonals
of this truss can carry tension only. The
truss is acted on by the following live
load: uniform, 0.700 kip per ft; con-
centrated, 20.0 kips. Impact is to be

computed in accordance with Eq. (1 1).

dead plus live plus impact in (a) L3Us

Sym. abt. & except
roller support at Lg
70 70 70 70
U Uz 4] Us
Jo’*
Lo
e L, L L PR
300 300 300 300 :

8panels @ 30'=240"

F16. 7-20

Compute the maximumn stress due to *
5 (b) U,U,.

Problem 7-6 Figure 7-21 shows a bascule span acted upon by its dead

(2N
—.\4;: %
N&s50 50 50
Nz o
10.0 100 |30’
Lo
vf» Ly Ly |L3 77Le
L 200 20 200
b 4 panels @ 20'= 80’

Fm.)‘z'-:ll

Problem 7-7

panel loads in kips.

a. Compute the dead stresses, includ-
ing the tension in the link to the coun-
ter-weight, with the span in the closed
position as shown.

b. Compute the maximum dead stress
that will occur as the span is raised
through an angle of 90°, for all members
except Lol'l.

¢. Is the method of analysis used in
part b applicable to the determination of
the maximum dead stress in Lol™}?

%

Figure 7 22 shows a horizontal-=wing bridge truss acted upon

by its dead panel loads in kips.  Dashed line members carry tension only.
50 50
50 S0 50 50 50
L U5
U\ %R R A /S
/
50 X 50 e
Ly s NEs
7 L, l[,z Ly grr Ls |L,; s 77Lg
100 00 o 00 100 100
9 parels@ 30'= 270’
¢ -~

| STEN

.
a. Compute the dead sfrésses wlen t

99

—

T

he bridge is swung into its open position.

_ b. When thebridge is élostd, each end of the structure is raised 1in. above the

elevatipn itvvhas when the bridge is ope

1. If a force of 10 kips applied upward
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at L, when the bridge is open would raise L, by 1@ and lower L, by }{ in., com-
pute the dead reaction at L, and Ly with the brid e closed position.
. Compute the dead stresses in the truss with the bridge in the closed posi-
tion, based on the dead reactions corresponding to part b.
Problem 7:8 For the single-track railroad skew bridge for which the plan

view is shown in Fig. 7-23, the weight of the track and ties is 500 Ib per ft of

54! /8’
2 12" 12t 12" 6
4 Ic_ b E B
¥ 7
, sl |8
6[

Fie. 7-23

. track; the weight of each stringer, including details, is 125 b per ft; the weight of
each floor beam, including details, is 175 Ib per ft.
a. Compute those portions of the dead panel loads acting on girder AB that
* are applied by the floor beams to the girder at panel points G, D, E, and F.
.+~ b. If the track is subjected to a uniform live load of 5,000 1b per ft, extending
+. ‘over the entire structure, what are the live panel loads acting on the girder AB
-that are applied by the floor beams to the girder at panel points C, D, E, and F?



CHAPTER 8
LONG-SPAN STRUCTURES

8:1 Introduction. As the span of a structure becomes larger,
the bending moments to which the structure is subjected increase rapidly
if simple end-supported structures are used. Even if the load per foot®
to be carried by the structure did not increase with the span, the monient
due to distributed loads would vary with the square of the span. Actu-
ally, the dead weight increases with the span, so that bending moment
increases at a rate greater than the square of the span.  Since the chord
stresses in trusses depend on bending moments to be carried by the truss,
these considerations are of importance in the design of trusses as well as
in the design of beams and girders.

For an economical structure, it is desirable, for the case of long’
spans, to adopt some means of construction that will reduce the bending”
moments to values less than would occur for simple end-supported struc:
tures.  There are a numberof methods by which thiscan be accomplished.
In this chapter, some of these methods will be illustrated by considering,
the analysis of several types of

2

oS ucbures Erd s ted N
long-span structures. Contrlever — be Cantiiever
8-2 Cantilever Structures arm et arr
— General. Inacantileverstruc- 1 i 1 RERERRAY! 1 VL ; | m |

ture. bending momentsare reduced

by shortening the span in which
positive bending occurs, by sup- Lk _ap 5/6:-1
porting an end-supported beam, Z

of a length shorter thaw the total L

span, on cantilevered arms that
act in negative bending.  The structure of Fig. 8 1 shows cantilever
construction and is statically determinate.  The maximum moment in

beam BC equals »
S\T) T I8

The maximum moment in the cantileyer arm AB occurs at A and equals

w 2’1 Il I ' - .-)“'112 .
— (3) (6), - (%) =- 5 Had a simple span of length

L been an&gi the maxiuny moment would have been +wl?/8. Hence,
in this pnmculdr case, the reduction in maximum moment resulting from
« 205

Fie. 8-1

v
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cantilever construction is from wL?/8 to 5wL?/72, or about 45 per cemnt.
It should be pointed out that maximum moment is not the only criterion
by which the relative merit of alternate types of construction should be
judged, but it is an important factor in determining the desirability of
using a particular type of structure for a given span. Moments and
shears along the entire length of the strucfure, computed for all types of
loads including live loads, must be considered in the actual design.

To obtain the fixity of supports at A and D for the cantilevers AB
and CD of Fig. 8-1 would be difficult under many conditions. The
same principle of cantilever constructidi is present, however, in
the structure of Fig. 8-2, where this difficulty has been eliminated.  The

"moments in this structure, between A and D, are identical with the

HHIHHHHHllﬁ#lflllllllllllllllll
i ——%
L/6‘| 2L/3 I14/6

E

moments in the structure of Fig. 8 1. The moments at A and D how-

ever, are resisted by the flanking spans AE and DF. The moment at A,

for example, is held in equilibrium by the reaction at K and the load
. applied between E and A.

8-3 Statical Condition of Cantilever Structures. For a canti-
lever structure to be statically determinate with Tespect to its outer
forces, there must be as many independent equations available for the
determination of these outer forces as there are independent reactions for
the structure. Except for a simple cantilever beam, there are always
more than three independent reactions for a cantilever structure, but
there are only three independent equations of statics that can be apglied
to the entire structure. To make a cantilever structure statically mer-
minate, it is therefore necessary to introduce certain construction features
that make it possible to apply the equations of statics to certain portions
of the structure, thus obtaining additional independent equations of
condition. Some of these construction featureg arc inherent to canulever
construction; others must be specially provuded

Such construction features are illust Q\l by the st& !:‘:{ Flg
8-3. The hinge at a constitutes one su comf,rucl,wn fxuf{ smc;

LY

ton .7 P ‘f' e .-l-‘.’«- P
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ZM, = 0 may be applied to those forces acting on that portion of the
structure lying on either side of joint a. The hinge at b is similar in its
effect, since it permits one to apply ZM, = 0 to those forces acting on
that portion of the structure lying on either side of joint b.

The hinge at ¢ permits the application of ZM, = 0 to those forces
acting on that portion of th® structure lying on either side of joint ¢.
Instead of utilizing the hinge at ¢ in this manner, the following alternate
interpretation is usually advantageous: Because there are hinges at both
b and ¢, the hanger be carrigs dircct stress only and hence has no com- '
ponent of stress perpendicular to be, thatis, beis a link. One may there-
fore conclude that, if a section is taken through be, the sum of the forces
perpendicular to be which act on either side of the section equals zero
For the case under consideration, this means that the equation ZF, = 0
may be applied to those forces acting on that portion of the structure
lying on one side of section A-A.

B
AL dl e
50: 40[ 7 === '

h Ry (¢ fe ; @ B J
TR Fix |7 4 100% = {B-.g R,

‘hy s Rfy ng JY «
!* Ry 2/ panels @ 30'=630’ |

- .

F1c. 8-3

The omissioy of the diagonal in panel defg constitutes another con-
struction feature that permits an additional independent equation of
statics with respect to external forees, since, as a result, no shear can be
carried by this panel. Hence the equation =F, = 0 may be applied to
the forces acting on one side of section B-B.

There are, therefore, the following seven independent equations ay ail-
able for determining the reactions of this structure:

(1) SM =0 for all forces acting on the structure

2) ZF, =0 for all forces acting on the structure

(3) ZF, =0 for all forces acting on the structure

4) =M, =0 for all forces acting on one side of hinge a

(5) M, =0 for all forces acting on one side of hinge &

6) 2F, =0 for all forces acting on one side of section A-A
(O 2F, =0 le forces acting on onc side of section B-B

% . R .
Thewp aregalso sevor®Independent reactions, Ry, Rw, Rin Ry, Ryo
R,, add*R,. T hercfore.tﬁia structure is statically determinate with
rspect. tauits outer fordes. L'i‘hat the structure is also statically determi-
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nate with respect to both outer and inner forces may be verified from the
fact that the total number of bars (75) plus the total number of reactions
(7) equals twice the number of joints (2 X 41) =

8:4 Stress Analysis for Cantilever Trusses. To determine the
reactions for the structure of Fig. 8-3 due to the load acting as shown, one
may proceed as follows: Assume all reactions to act in the directions
shown in the figure. Apply the equation XF; = 0 to that portion of the
structure to the left of section A-A ; this shows that R,, = 0.

Apply =F. = 0 to the entire structure; this shows that Ry, = 0.
vApply X1/, =0 to that portion of the structure to the left of hinge b:
¢ + R (6)(30) + Ru(2)(30) = 0; R, = —3Ry,
WApply =3/, = 0 to that portion of the structure to the left of hinge a:
B —(100)(3)(30) + R (12)(30) + (—3R)B)(30) = 05 Ry, = —25;
R, = =3(=25) = +7)
Apply =F, = 0to that portlon of the structure to the left of section B-B:
25+ 53— 100+ R, =0: Ry = 4350
Apply XF, = 0 to that portionof the structure to the right of section B-B:
+R,+R,=0; R,=—R,
Finally, applying VM, = 0 to that portion of the structure to the right

of hinge a:

.=30(3)(30) — (= R,))(H(B0) — R,(9(30) =0; R, = —30;
R R, = +30

*

The available equations can often be applied in different sequences;
but if the structure is stable, the same results will be obtained, regardless
of the sequence followed.

Once the reactions are known, the bar stresses can be computed by
the usual methods of analysis for statically determinate trusses.  Since
the analysis can be carried out for a unit load at any panel point, the con-
struction of influence lines for reactions or bar stresses involves no special
difficulties, although it is often advantageous first to construct influence
lines for reactions or bar stresses other than the one under consideration
and use the data thus obtained in constructing the influence line actually
desired.

The foregoing procedure is illustrated by constructing the influence
line for bar @ of the structure of Fig. 8-4a. The influence line for the
stress in bar FE will first be constructed, with stress computed by taking
moments about D of the forces acting on that part of the structure
between D and section M-M. The influepgg Jine for th* Ppar a
is then drawn, with stresses computed l&lﬂung momenits G of
the forces acting on that part of the stwcﬁ.ure b(,tgveen s“qﬁé M-M

¢ EESRT K A

4 .2 PPN &
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and N-N. The forces entering into the resultant equations consist of
the stress in the hanger FE, the applied unit load, and the stress in bar a
itself.

M N
\ F a
%' . : /
1 4 B . G \1 P5 (a)
7, 777
M N ‘.
| Spanels@30":/50" | 4panels®20:80'|  Spanels @ 30’150’ -
€
0’ &
o 38 ay
o
¥
+/

b)

Stress 1n bar FE |
/5

Stress in bar a
Fia. 8-4

8:5 Continuous Structures. The reduction in  maximum
moment that results from the shortening of the span effective in produe-
ing positive bending in cantilever construction may be obtained in a
somewhat similar manner by continuity in a structure, although continu-
ous structures are usually stutically indeterminate.  The fixed end beam
shown in Fig. 8-3a will deflect under a uniformly distributed load as
shown by the dotted line ABCD. At points B and C, the bending
changes from one character to another, so that the curvature of the
deflected beam reverses. At such points (called points of inflection) the
bending moment is zero, so that the curve of moments for the beam AD
is just as it would be il there were hinges at these inflection points.
Because of construction difficulties in developing the fixed end moments
at A and D for long-spagi¥tructures, partial restraint against changes of
slopo’a Rliese goints maﬁ‘e obtained by the addition of flanking spans,
as shovat 4y Mg, 8-5b. The location of the points of iunflection B’ and
C’ will depgpd on the span raﬁo"a. The continuous truss shown in Fig.

fc) &'~
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8- 5¢ derives the same advantages from continuity as does the continuous
beam of Fig. 8-5b. With five independent reactions, this continuous
truss is statically indeterminate to the second degree, and its analysis

w?ft
(o JITTT T,
/ \5‘ \\\\\\\\\\ "b/ 2
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. w?/ft
TCIJ W T T T 0 1 I o S
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depends on methods that take into consideration the elastic properties
of the structure.

It is possible, however, by omitting certain bars, to make a continuous
truss statically determinate. This is acg mphshcd ingthe

1 See StTeinMaN, D. B., “The Wichert Truﬂa V"nybstrml
NO' Yol'k, 1932. N va ‘”‘g, '{~ .‘k A

-
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truss, invented and patented by E. M. Wichert of Pittsburgh, Pa., by
omitting the vertical members over intermediate points of support.
Such a structure is shown in Fig. 8-6. This structure has 40 bars and 4
reactions, or a total of 44 unknowns; there are 22 joints, hence 44 equa-
tions of statics available for the determination of inner and outer forces;
the structure therefore has the correct count for statical determination
and is actually statically determinate unless certain slopes are given to
bars a and b, in which case it is possible for the structure to become
geometrically unstable, a condition that can be recognized by inconsistent
results from the application of the equations of statics.

For the structure of Fig. 8-6, acted upon by the load shown, the g
application of £F, = 0 to the entire structure shows that Rz, = 0. To';
determine the vertical reactions, one may proceed as follows: Taking™®
moments about D of the forces to the right of section N-N and assuming®
all vertical reactions to act upward,

—Rc,(5)(30) + Xu(50) = 0;  Xp = +3Rcy; )
Yy = +25X = +2Rq,
Taking moments about D of the forces to the left of section M-11,
4+ R4,(5)(30) — 100(3)(30) — .X.(50) = 0; Xo = +3R4, — 180
Y. = +23X. = +2R4 — 120
Applying ZF, = 0 at joint B,
+Ray + 2Rey + 2Ray — 120 = 0

whence
Rgpy = 120 — 2R4, — 2R¢,

Since the foregoing equation expresses the center reaction in terms of
the two end reactions, these end reactions may now be determined by
applying M = 0 and ZF, = 0 to the entire structure. For M, =0,

+ 100(2)(30) — (120 — 2R4, — 2R,)(5)(30) — Rc,(10)(30) = 0
For ZF, = 0,
Ra, — 100 + (120 — 2R4y — 2Rey) + Rey = 0

The solution of these two equations leads to Ry, = +40 and Rey, = —20,
whence Ry = 120 — 2(+40) — 2(—20) = +80.

With the reactions kngwn, the bar stress analysis presents no further
difficglg®, Sigee an ana §is can be carried out in the foregoing manner
for a ahRdoad at any pane‘ point, influence lines for reactions and bar

stresss tdngpe constructed.
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8:6 Arches—General. Another method of reducing maximum
mements in long-span structures consists in adopting a structural layout
in which applied vertical loads produce horizontal reactions that act in a
manner such that the moments due to these horizontal reactions tend to
reduce the moments that would otherwise exist. Figure 8-7 shows an
arch, which is a structure that develops horizontal thrust reactions under
the action of vertical loads. This particular arch is of the two-hinged

stype. The vertical reactions on this structure may be determined by

&

kL P (1-k)L

Fr N\
A N\
% b N
Ry—+ A ’B" -Rpy=Rqx
- RAy=P/I'I‘ I L —IRByzpk
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statics by taking moments about an end hinge of all the forces acting on
the arch; for the load P acting as shown, they have the values given on
the figure. The relation between the horizontal reactions Ra, and R,
can be determined by statics (ZF, = 0), but the actual values of these
reactions can be obtained only on the basis of an elastic analysis, since

with four independent reactions
this two-hinged arch is statically
indeterminate to the first degree.

If the hinge at one end were
replaced with a roller, as shown
in Fig. 8-8, the structure would
be, not an arch, but a statically
determinate curved beam, and the
moment .at the point of applica-
tion of the load would equal P(1 — k)kL. For the two-hinged arch of
Fig. 8-7, however, this moment is reduced by the moment R4.h.

An arch may be made statically determinate by building in a third
hinge at some internal point, such as at the crown, in addition to the end
hinges. Such a structure is shown in Fig. 8-9 and is called a three-
hinged arch. This structure has four independent reactions; thgee
equations of statics can be applied to the structurt, as a whole, and-phe
equation of condition can be obtained 4 .
hinge at C of the forces acting on either

‘\s
moments about A of all thc forces actmpb‘ tﬂﬁ
ﬁ » ‘ '

LA P nwr

L

*RAy “P(1-k) {R‘,’ﬁplr
o -
r |

Fic. 8-8
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Ry = +100(2%{00) = +20

similarly, taking moments about hinge B, Ry, = +100(8%{ ) = +80.
Now, taking moments about the hinge C, of the forces acting on that por-
tion of the structure to the right of the hinge,

+  +Ru(30) — 20(50) = 0; Ry, = +33.3

Applying ZF. = 0 to the entire structure, Ra, = +33.3.
The floment at the point of application of the load is given by

My = 4+80(20) — 33.3(25) = 4767 kip-ft

ol

~

For a simple end-supported beam of the same span and loading,
the moment at the load would equal +80(20) = 41,600 kip-ft. Hence ;
the arch construction has reduced 20’
this moment by 52 per cent.  The 1
arch ribs must, however, carry
compression that is not present in Es’
the end-supported beam. For g, '
example, the compression at the R [

|

cronn C in the arch of Fig. 8-9,
where the rib is horizontal, equals
the horizontal reaction and there- .
fore has a value of —33.3 kips Fic. 89 :
for the load considered. It is, however, usually more economical to
carry loads in direct stress than in bending, although, if the direct
stress is  compression, one must provide stability against -elastic
buckling. )

8-7 Analysis of Three-hinged Trussed Arch. The arch ribs AC
and BC of the structure ¢f Fig. 8-9 may be replaced by trusses as shown
in Fig. 8-10.  Since theresare four reactions on this structure, it would be
staticglly indeterminate were it not for the hinge at e, which is effective
since the bar EF, shown dotted, is connected at its ends in such a manner
that it can carry no direct stress.

ﬂ‘hc reactions for this structure may be computed as follows: Taking
motnents about «, of all the forces acting on the structure,

+100(30) + 200(2)(30) 4 300(6)(30) — R.,(8)(30) = 0;
3 ) Ry = +287.5 kips

]
‘ for all_.g cting on the structure,
. EY Y
R

100" 200 Sl 2875 = 0; R, = +312.5 kips

s0’

1
100’
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To obtain R, apply M = 0 about the hinge at e, considering the forces
acting on the part of the structure to the right of the hinge.

+300(2)(30) + R..(48) — 287.5(1)(30) = 0; R:. = +344 kips

Siuce TF, = 0 for the entire structure, R,. also equals +344 kips. Ras
might have been computed by taking moments about the hinge at e

This bar
carries
100k 200k nostress 300k
4 cp E/FMlc H I
e S 50’
C ‘ ’ g
=100 |45 |48 ~
Rax | T M TRN(i
T a * \sz
_~T 4
-0 Ray Riy‘. 0 ~
L 8panels@30':240' _I
nt r 1
’ Fi: 8 10

of the forces to the left of the hinge, leading to

+312.5(1(30) — Ra.(48) — 100(3)(30) — 200(2)(30) = 0;
R.. = +344 kips

In computing bar stresses, the effect of the horizontal reactions must
not be overlooked. To compule the stress in FG, for example, taking
moments about f of the forces to the right of section M-AT,

+300(30) + 314(15) — 287.5(90) — Fre(15) = 0; = Frg = —93 Kips

If there is no load between the center hinge and one end of the truss,
the resultant reaction at that end of the truss must have a direction such
that it passes through the center hinge, because the moment about the
hinge of the forces acting on that side of the hinge must equal zero.
Thus, if we consider the action of a unit vertical load at B on the structure
of Fig. 8:10, R,, = +!§; since the resultant reaction at i lies along the

#'dotted line drawn through i and e, we conclude immediately that

= +14099) =
This fact is often convenient in analysis, particularly in constructing
influence lines.
If the three-hinged arch of Fig. 8-10 were subjected to equal vertical
panel loads at each top-chord panel point (or at e'lch bottem-chord

pancl point), the following stress condition woul(ﬁesu ¥ (1) Mhe stress
in each top chord would be zero.  (2) The stress ip ea(,h dxac%nal would
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#8) The stress in each vertical would equal the top-chord panel
load. m’rhe borizontal component of stress in each bottom chord
would béthe same and equal to the horizontal reactions. These facts
may be verified by the student and would be useful, for example, in com-
puting dead stresses for a uniformly distributed dead load. Such
conditions exist because the bottom-chord panel points of this structure
lie on a parabola. If a funicular polygon were drawn for the loads under
consideration, so that it passed through the three hinges, the polygon 4
would coincide with the location of the bottom chords.

8-8 Influence Lines for Three-hinged Trussed Arch. Influ-
ence lines for a three-hinged trussed arch may be constructed by consider-
ing successive positionsoftheunit 4 82 ¢ b £ » ¢ H 1

load, but a method similar to the 1

following will often prove advan- [XEsibarFGdubunit loadand ertcal | . .
tageous: We shall construct the reachons on

influence line for bar FG of the el i ot L
structure of Fig. 8-10. We shall ,” %

first construct the influence line Forizontal reaction (8)
for that portion of th.e stress in Lz

bar FG due to the unit load and ' 14262

the vertical .reacuons only. Since o bor il due b o

these reactions have the same T reschions anly (c)
values they would havo.a for an P 34075:

end-supported beam, the influence ol shes\m bor G

line for this portion of the stressis g (d)
a triangle with its maximum value __l /ii' J-a 9 Ndreas-50
occurring when the load is directly 17~

over the center of moments f, Fie. 8-11

where the ordinate equals —5§(99{5) = —3.75, as shown in Fig. 8-1la.

We shall next construct an influence line for R,, = R,.. As the unit load
travels from A to E, R,,, hence R,; (which equals 55 R,,) increases linearly.
With the load at E, R,; equals 535(+12) = +1.25. Ience the influence
line for R;; is a straight line from zero at A to +1.25 at E. By similar
reasoning, considering the reactious at a, the influence line for R,, = R, is
a straight line from +1.25 at E to zero at I.  The influence line for the
magnitude of this horizontal reaction is shown in Fig. 8-11b. Tke
stress in bar FG due to the horizontal reactions equals

T R(*2{5) = +3R.

u‘cnce lmqﬂ his portion of the stress in bar FG is a tri-
anglq mﬂ its apex at E, whébg the ordinate equals +3(+1.25) = +3.75,
an shhwn tnt Fie R.11a.  Thednfluence line for the total stress in bar ¥G
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is now obtained by superimposing the influence lines of Figs. 8-11a and
¢, leading to the influence line of Fig. 8-11d.

It will be noted that the net area under this influence line is zero, as
should be the case, since a uniform load extending over the entire struc-
ture would cause no stress in the top chords.

8:9 Three-hinged Trussed Arches with Supports at Different
Elevations. The points of support of a three-hinged trussed arch may

. be at different elevations, as shown in Fig. 8- 12, The vertical reactions
“will then differ from the values they would have for an end-supported

10
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o Fay
100*
Fep—
3
(6)
Fic. 8-12

truss, since, when moments are taken about one point of supporl, the

horizontal reaction at the far end enters into the equation.  The reaclions

can, however, be obtained by statics. Referring to Fig. 8 12¢ and tak-
»ing moments about a of all the forces acting on the structure,

+100(60) — R..(20) — R, (210) =

»
whence R, = +300 — 12R,,. Now, taking moments about the hinge
Yate of the forces acting to the right of the hinge,
. +R|¢(38) - Riy(lzo) = 0; Ru‘y = +3%20Ra
= +38{40(+300 — 12R,)
whence
= +19.8 kips and R,, = +300 — 12(19. 8) +62 k:ps“

The foregomg solution required the solutiofy of twg qlmulmmous
quatxons, which might have been avoided by ta,king the rcm'l\ous.. a3
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shown in Fig. 8-12b, where R’;, is taken as acting along a line passing
through the two points of support and R’,,, while a vertical reaction,
differs from R,,, since R',; has a vertical component. Taking moments
about a,

+100(60) — R’y (240) = 0; Ry = 4250
Taking moments about e and considering R’;; to act at point o,

12.00
+

LY

whence R’,; = +62.7 kips. Hence the actual horizontal reaction at i is
given by

12.00 .
R.. = +62.7 (12.—0—‘) = +62.5 kips

while the actual vertical reaction at i is given by

R +-00_i)_0_L

For the particular case under consideration, since there are no loads

applied to the right of the hinge at e, we might have concluded immedi-
ately that the resultant reaction at i passed through e. whence

B., = 1293,8}?,‘” = +3.161{,y
Then, taking moments about a,

4+100(60) — 3.16R,,(20) — R, (210) = 0

(62.7) = +19.8 kips g

»

whence
R, = +19.8 kips and R,, = +3.16(4+19.8) = +62.5 kips

8:10 Suspension Bridges. An important method of reducing
bending moments in long-span structures consists in providing partial
support at points along the span by means of a system of cables, as in a
suspension bridge. Referring to Fig. 8-13, a suspension bridge is usually
erected in a manner such that all the dead load is carried by the cable.
When live load is applied to such a structure, tension in the hangerse
transfers a large portion of the live load to the cable. Hence, the stiffen- |’
ing truss AB is subjected to no dead moments, and the live moments it ¥,
must carry are substantially reduced. For long-span structures, this is
of particular importance, since so much of the load is carried by the cable v
in tension, which is a highly efficient manner of carrying loads.

A suspcmion bridge such as that of Fig. 8-13 is statically indetermi-
nate: By mlngduw of certain features of construction, it may,
howpv 2, be umdc slfam, determinate. The analysis of statically
d%nn naw sqigensmn brndges is treated in Art. 11-10.
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8:11 Problems for Solution.

Problem 8-1 a. Construct an influence line for the vertical reaction at A
of the structure of Iig. 8 2, takinga = L, 2.

b. How does the maximum reaction at .1 due to a uniform live load of 1,000 Ib
per ft compare with the maximum pier load that would result at A if EA, AD,

_and DF were simple end-supported spans?
A, .é’ joblem 8-2 Referring to the cantilever bridge of Fig. 8 3, construct an
ipMience line for (a) the stress in the hanger be; (b) the vertical reaction at i;
" (c) the stress in the top chord de. (d) Compute the maximum stress in bar de
Jdl{“() the following loading: dead load, 2,000 1b per ft; uniform live load, 1,000 1b
pef ft; concentrated live load, 10,000 1b.
Problem 8:3 Determine the stresses in all the bars of the Wichert truss of
2. 8 6 due to a load of 100 kips acting at D.

Problem 8-4 Construct an influence line for the reaction at A of the Wichert
truss of Fig. 8-6.

Problem 8:5 A three-span Wichert truss is the same on each side of an
axis of symmetry as that portion of Fig. 86 to the left of UsLs, except for the
fact that the pier symmetrical to B has a roller support.  Compute all the reac-
tions on this structure due to a uniform load of w Ib per ft extending over the
entire structure, applied to the top-chord panel points.

Problem 8:6 Compute the shear and direct stress at point D of the struc-

w. ture of Fig. 8 9 due to the load shewn, assuming that the slope of the arch rib
1481 D is 30° from the horizontal.
+ Problem 8:7 Compute the stresses in all the members of the three-hinged
arch of Fig. 8-10 due to a uniform load of 1,000 1b per ft applied along the entire
"+ length of the structure. Panel loads are to be applied at the top-chord panel
points.

Problem 8-8 Construct an influence line for the stress in bar bc of the
structure of Fig. 8-10.

Problem 8:9 What is the maximum stress in bar Bec of the structure of
Fig. 8-10 due to the following loading: Dead load, 1,000 Ib per ft; uniform live
load, 500 Ib per ft; concentrated live load, 5,000 Ib?

Problem 8-10 Solve Prob. 8-8, using Fig. 8-12q. )

Problem 8-11 Solve Prob. 89, using Fig. 8-:12a. : -,

7Y »,



CHAPTER 9
THREE-DIMENSIONAL FRAMEWORKS

9:1 Introduction. Although most engineering structures are
three-dimensional, it is often permissible to break a three-dimcnsional
structure down into component planar structures and to analyse cach
planar structure for loads lying in its plane. Consider, for example, a
typical through-parallel-chord truss highway bridge. Such a structure
is three-dimensional, but it can be broken down into six component struc-
tures, each of which is planar, the two main vertical trusses, the top-chord
lateral system, the bottom-chord lateral system, and the two end portals.
Often a given member must be considered as part of more than one com-
ponent planar structure: a bottom chord of a vertical truss, for example,
is also likely to be a chord of the bottom chord lateral system. Tfis
introduces no difficulty, since for such members the stresses can be cqn-
puted for each component planar structure in which it p‘u‘tl(‘lpates and
the resultant stresses superimposed to give the total stress in the member.

In some three-dimensional structures, however, the stresses are intert
related between members not lying in a plane, in a manner such that the
analysis cannot be carried out on the basis of compunent planar struc-
tures. For such structures, a special consideration of the analysis of
three-dimensional structures is necessary.

Structures that may fall into this latter classification include towers.
guyed masts, derricks, framing for domes, and framing for aircraft,
to mention only a few. Such structures may be either statically deter-
minate or statically indeterminate. In this chapter, consideration will
be given to statically determinate three-dimensional structures, but the
methods for analyzing statically indeterminate structures, given else-
where in this book, are applicable in principle to statically indeterminate
three-dimensional structures.

In this treatment of three-dimensional structures, analysis will be
made with reference to three coordinate axes. 0X and OY will be used
as in the case of planar structures, i.e., with 0X horizontal and OY ver-
tical; the third axis OZ is horizontal and perpendicular to the plane
X0Y.

It should be pointed out that the basic approach to the analysis of
three pensl*ml % cw.yes is the same as for planar structures. Any
equy, hed to the structure as a whole or to any
pq;‘ X ol" the structure. There are, however, more equations of statics

PR . T219 ¢
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available, since forces may be summed up along a new coordinate axis
and moments may be taken about two new coordinate axes.

9:2 Statical Condition. It is usually assumed that the members
of a three-dimensional framework are pin-connected in a manner such
that the members carry axial stress only. Hence there is only one
independent component of stress for each member of the framework.
Although each member can have three components of stress, one parallel
to each of the three coordinate axes, the relations between these three
components can be computed from the projections of the member.

Y 4
o¢ Zoc foc
R,
’ =  rE, Y oaln O Lol
2 R R, Roy

" ¥y oy oy
4 ﬁ*’ | ELEV | ELEV. b ELEV.
&% ' l I
. |
& | |
s l Zon | 7o | #g
® - | | |
R |
°x Foalo0 Foutoc Fou4boc
R,y R,
PLAN PLAN PLAN
(a) (6) (c)
' Fre. 9-1

. At a point of support of a space framework, it is possible to have three
. independent components of force reactions, although the structure may
+Ibe designed at a point of support so that one or more of these reaction
components equals zero. In Fig-9-1a, the hinge support shown, which
is actually a universal joint, can develop three independent reactions,
" Rz, R,, and R,.. Suppose that the hinge is replaced with a roller, as
shown in Fig. 9-1b. Since this resists horizontal movement in the Z
direction only, the reactions R,y and R,. can be developed but R,, (-qﬁals
zero. If the roller is replaced by a spherical ball, there can be no hori-
zontal reaction whatever and only the vertical reaction R,, can be
developed. This condition is shown in Fig. 9-1c.
To represent these three fypes of support in plan view, heavy dotted
lines will be drawn along the lines of action where hori@ntal reactions
can exist. This is illustrated in Fig. 9-2, where g repfesents o hinge-
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type support in which horizontal reactions can be developed in both the
X and Z direction; b represents a roller-type support, with the roller so
placed that a horizontal reaction can be developed in the Z direction
only; ¢ represents a roller-type support, with the roller so placed that a
horizontal reaction can be developed in the X direction only; and d
represents a ball-type support, in which there can be no horizontal
reaction.

Thus the total number of independent unknown stress eclements
present in the analysis of a three-dimensional framewerk cquals the
number of bars plus the number of independent reaction components,
there being one, two, or three of the latter at each point of support,
depending on the ty pe of construction used at the reacticn point.

For a three-dimensional framework, six independent equatiors of
statics may be written regarding the equilibrium of the externs! loads

’ E AT
01/ q/ ,)/ OL/ .

&
| ‘ #‘e;‘
PLAN PLAN PLAN PLAN LA
(a) (b) (z) d) b

Fi1c.9 2 &

and reactions acting on the entire siracture.  If 0.X, 0Y, and OZ repre-
sent tho three coordinate axes, these (‘qu.mons are XF; =0, IF, = 0,
Sk, =0, XM, =0, 2V, = 0,and XM, = 0. X1, denotes the sum of
the momvnls about the 0. axis of J“ the forces acting on the structure,
ete.

It may therefore be coneluded that a necessary (although not sufficient)
condilion for stalical delermination of a three-dimensional framework with
respecl lo ils ouler forces is that the lolal number of independent reactions
shall equal si.. .

If we now consider both the internal and the external forces, three
independent equations ol' staties can be written for each joint, riz.,
ZF XF, =0, and XF, = 0. Equations of statics applied to the

cturc as a whole \\1ll m)t furnish further independent equations.
Il «Qpay therefore be concluded thal a necessary (although not sufficient)
condition for slalical delermination of a three dimensional framework with
reapect o bolh inner and ouler forces is that the tolal number of bars plus
the tolal number of independent reactions shall equal three times the number
of joinls.

T apph&uomof tuseprinciples mdthe illustrated by considering
“ig. 984 s‘!&ldoung first only the extérnal forces, if the horizontal

e,
B
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reactions are arranged as shown in the plan view, there is a total of 9
independent reactions, so that the structure is statically indeterminate
to the 9 — 6 = third degree. If rollers are substituted for hinges, so
that the horizontal reactions act as shown in Fig. 9-3b, the number of
independent reactions is six and the structure is statically determinate.
Suppose, however, that the rollers are placed so that the horizontal
reactions have the directions indicated in Fig. 9-3c. Then, while the
numerical count indicates that this structure is statically determinate
with respect to its outer forces, it is actually unstable. The Z reaction
at b for example, will, apparently have two values, depending on whether
it is determined by, applying
SF, = 0 to the entire structure
(in wluch case it equals zero) or
whether it is computed by apply-
ing the equation =1/, = 0 about
a vertical axis through a (in which

(a') | ) case it must have a value). This
% 16 fe) shows that the numerical count,
(o . o e
R while a necessary condition for
Y statical determination, is not a
c S\ . o . " .
» ~z o ¢ - sufficient criterion.  Thereactions
R R R must be placed so that they can
. by Tey resist translation along and rota-
. ELEV. PLAN

tion about each of the three coor-

dinate axes, if a three-dimensional
structure is to be stable. The reactions shown in Fig. 9-3¢ all pass

‘through point o; they cannot resist rotation about a vertical axis passing
through that point.

Considering now both internal and external forces, in Fig. 9-3a,
there are present 15 independent stress unknowns: 6 bar stresses and 9

~ reactions. There are 4 joints and hence 4 X 3 = 12 independent equa-
tions of statics. Therefore the structure is statically indeterminate to
the 15 — 12 = third degree. With the horizontal reactions arranged
as shown in Fig. 9-3b, there are only 12 independent stress unknowns:
6 bar stresses and 6 reactions. There are still 12 independent equations
of statics. Hence the structure is statically determinate with: respect
to both inner and outer forces.

9-3 Determination of Reactions. If a three-dimensional frame-
work 1s statically determinate with respect to its outer forces and if it is
supported at only three points, its reactions can be readily determined by
applying the equations of statics to the structure as a whole. Whefi there
are more than three points of support it is usually necessarv to determin.

v FiG. 9-3
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3
some or all of the bar stresses before the reactions can be evaluated. In
this article, consideration will be given to structures where the reactions
can be determined directly.

In Fig. 9-4, the vertical reactions will first be determined. If mo-
ments are taken about a horizontal axis passing through any two points
of support, the vertical reaction at the third point of support will be the
only unknown occurring in the resulting equation. Upon applying .
ZM., = 0 about ac as an axis, Ry, is the only external force that could have
a moment; hence, R, = 0. Upon
applying ZM, = 0 about the line of 0000,

action of I,
+10,000(20) — R.,(20) =0
2 ’
from which R, = +10,0001b.  Apply- o
ing 2F, = 0 to the entire structure, ",'
R., + 10,000 = 0 a 6 \¢

from which R,, = —10,000 lb. ‘;Ray TRsy 1'}"’

To determine the horizontal reac- 0. o x

tions, if XV, = 0 is applicd about a
vertical axis passing through the inter-
section of the lines of action of any two
horizontal reactions, the third hori-
zontal reaction will be the only
unknown occéurring in the resulting
equation. Taking moments, for ex-
ample, about a vertical axis through
point 0 and assuming R, to act toward the rear of the structure,

—10,000(5) — R..(20) = 0; R.. = —2,500 1b

F16. 9-4

Now, applying =F. = 0 to the entire structure and assuming R,, to act
toward the rear of the struclurc,

R.. — 2,.)()0 = 0; Ras = 42,500 1b

Finally, applying XF. = 0 to the entire structure and assuming Ry, to act
to the left,
110,000 — R,. = 0; Ry. = 410,000 1b

As was the case with plmmr structures, the particular equations of
statics used ¢ i@d the order in which they are applied may be varied in

accor&anw the mgemutv of the antlyst
&
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9.4 Determination of Bar Stresses. A bar of a three-dimen-
sional framework may have projections on each of three coordinate axes.
This is illustrated in Fig. 9-5, where the bar ab has the projections az,
ay, and az in the directions of the 0X, 0Y, and 0Z axes, respectively.

In terms of these projected lengths, the length of the
———---,)qf bar ab is given by ab = [(ax)? + (ay)? + (az)?*.
Since the stress F,, is axial, the components of Fg
parallel to the coordinate axes are

Q

\,

\
JNPRUSUPRUPN g,

»
N
i

ar , ay. az
Xo = Fab?; w = Fay =1 b Za = Fa b

|
l
I
|
l}
!
1
1
|
7 By combining these relations, it is casy to express one

e / component of stress in terms of either of the other
K stress components.  For example, Xop = Yau(ar/ay),
Fic. 9-5 ete.

3“\ .any joint where the converging bars do not lie in a plane, three
e(fu'ltlons of statics are available for bar stress determination.  Henee,
" if ngt more than threc bars with unknown stresses meet at such a joint,
thege stresses may be determined.  This general method of procedure,
which is the method of joints expanded to three dimensions, may be
illustrated by its application to joint d of the structure of Fig. 9- 1.t "The
fallowing table of dimensions will first be prepared:

. ': * Table 9-1
% )
[ Projections
Member Length — --—- - -~
1 X Y Z
|
ad 22.9 i 10 20 5
s bd 20.6 0 20 5
cd 22.9 10 20 5
ab 11.1 10 0 10
be 141 10 0 10
ac 20 0 | 20 0 0

* At joint d, assuming all bars to be in tension, the following cquations
may be written:

2F. =0, 410,000 — Xua + X.a =0

. ZF,=0, —YM—YM'—YM =0
ZF; = 0, FZoa— Zoa+ Zea =0

1 The student should note that this particular applioation is given solely for the
purpose of illustrating a procedure of general importance.  The solution of this joint
could be substantially simplificd by the application of theorem [, Art. 9-6.
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The nine components of stress involved in these three equations may be
expressed in terms of the three independent bar stresses Fog, Fia, and
F.a as follows:

10 ., X
+10,000 — 535 Fur + o5 Fua = 0
20 20, 20,
=396/~ 206 Fin = 5y gFa=10 :
5k Fu + 52 Fug = 0
+§:ﬁ 041—906 e + 99l =

The simultaneous solution of these three equations leads to
F.a = +11,150 1b; Fou=0; Fa= —11,450 1b

In this particular structure, the vertical reactions can first be deter- ;
mined, as is shown in Art. 9.3, and the stresses in bars ad, bd, .md ed can .
be computed more easily by taking advantage of that fact. _% a,?
for example, the wm( al reaction acts downward and vqudl% 10 Sb
Apphying ZF, = 0 at joint «,

—10,000 + Y, = 0; Yoo = 410,000, ‘*: :

10,000 22.9 11, 150*
ad = + .700 - + y ')D

Fu and F can be similarly obtained from XF, = 0 at joints b m;(l'c,."
respectively.  However, it is im- .o
portant for the general approach
based on writing three simultane-
ous cquations at joint d lo be
understood, since in more com-
plicated three-dimensional struc-
tures it may be  the only
procedure that can be used. L

The analysis of the bars con- 2 w0’
necting the points of support of ! PLAN
Fig. 9-1 will now be carried out, Fie. 9.6
advantage being taken of the fact
that the horizontal reactions are determined in Art. 9-3.  The values of
these reactions are shown in Fig. 9-6. As an illustration, joint a
will be considered and the equation EF, = 0 written. Noting that
Zea = +11,450(5/22.9), '

b'*’u» “ -
'

* Note that this (‘qllllli()n may be written directly as

Q‘t 10,000 + :‘13 Fag=0;  Fag = +11,150

LA 4
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-
LN

»

+2,500 + 11,450(

5 10 . _
§T9- + F,w (m) = 0, Fab == 71070 lb

* The stress in bar ac can now be found by a similar procedure, by applying

. ZF.= 0 to joint a.

L

Fi. can be obtained by applying ZF, = 0 at joint c.

9-5 Case Where Reactions Cannot Be Computed without
The structure of Fig. 9 7 is statically

‘gConsidering Bar Stresses.
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Fic. 9-7

determinate with respect to its
inner and outer forces combined.
Since there are only three hori-
zontal reactions, these may be
determined by a consideration of
the external forces only but the
vertical reactions cannot be com-
puted without taking the bar
stresses into consideration. If
the siresses in ab, ac, ad, and ae
can be computed, then the vertical
reactions may be obtained from
the vertical components of these
bar stresses.

At joint a, 4 unknown bar
stresses are present, so that, with
only 3 equations of statics availa-
ble, a direct solution for these bar
stresses cannot be made. A stress
analysis of this structure, on the

basis of statics only, should be possible, however, since with 5 joints there
are 15 independent equations of statics, and there are only 15 independent
dnknown stresses—8 bars, 4 vertical reactions, and 3 horizontal reactions.

R Table 9-2
Projection
Bar — Length
: X Y VA
ab 5 20 5 21.2
ac 15 20 5 25.5
ad 15 20 10 26.9
ae 5 20 10 22.9
be 20 0 0 20.0
cd 0 0 15 15.0
de 20 0 0 20.0
eb 0 0 15 15.¢C
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For this structure, however, the equations of statics are simultaneous
in character. A convenient approach under this condition is to adopt,
as a temporary unknown, one of the bar stresses. Other bar stresses
and reactions can then be expressed in terms of this temporary unknown,
and eventually one of the equations of statics will permit its cvaluation.
To illustrate this procedure, take Fe; as the temporary unknown. At
joint ¢, apply ZF. = 0. .

Fut goiFop = 0 Fo = —5.10F
25.5

At joint d, apply ZF, = 0.

b} 10 v
["d + 26.9 Fad = 0; I’ad = —2.()9ch X
Assume that the vertical reactions at ¢ and d act up. Then at joint ¢, °
applying ZF, = 0, &',& .
a
R., + 22—05 Fo. = 0; R, = —0.784F,,= —0.784(—5.10F.,) :
* 4
= +4.00F .

At joint d, applying =F, = 0,

O pi=0: Ry = —0.741F,, = —0.744(—2.69F.;)

2
Rdu + ’2‘"6_.9
= +2.00F,

Now, taking thoments about be of all the [orces acting on the structure

F150(20) — Rey(20) — Ryy(20) = 0 ¥

whence
+150(20) — 1.00F4(20) — 2.00F(20) = 04; Faa = 425 kips -

Since R.,, Ray, Fa, and Foy have already been expressed in terms of F.q,
they may now be evaluated. With these stresses known, the remainder
of the structure can be analyzed without difficulty.

9:6 Special Theorems. While three-dimensional frameworks
can be analyzed by the methods that have been presented, the following
theorems are of importance because they often result in an appreciable
saving in computations:

1. If all the bars meeling at a joinl, with the exception of one bar n, lie
in a plane, the component normal to that plane of the siress in bar n is equal
to the component normal t» that plane of any external load or loads applied
at thal joint. ¥That this theorem is correct may be seen from a considera-
tion of the static cquilibrium of the joint, summing up all the forces

DR
v a
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o
normal to the plane that contains all bars except n. In the structure of
Fig. 9-4, for example, suppose that this theorem is applied to joint d.
+ Bars ad and dc lic in the plane adc; the component of stress in bar bd,
*: normal to plane adc, must equal the component of the applied load normal
¥2.t0 the same plane. For this particular casc, the @pplied load also lies in
the plane adc and hence has no component normal to that plane. We can
Jaonclude, then, that the stress in bar bd is zero.  Recognition of this fact

228

¥ ) would simplify the analysis of
?&Ig}'ag‘; ﬁ,‘; 2’;’/7’;0;.,;’:":)'{:‘" "y joint d carried out in Art. 9-4 by

means of three simultaneous equa-
tions, since only two equations
would be necessary.

On the basis of theorem I, two
corollary theorems may be stated:

I1. If all the bars meeling al a
Joint, with the exceplion of one bar
n, lie in a plane and if no external
load is applied al thal joint, the
slress in bar n is zero.

L. If all but two bars al a joint
have no siress and these lwo are not
colinear, und if no ealernal load acts
al thal joint, the slress in each of
these hwo bars is zero.

9.7 Application of Special
Theorems—Schwedler Dome.
The importance of these three
theorems in the analysis of three-
dimensional framcworks may be
illustrated by considering the
Schwedler dome showninFig. 9 8,
acted upon by a vertical load P
applied at joint A. The bars
shown by dotted lines in the plan view have no stress, as may be con-
cluded from the foregoing theorems, applied as follows:

At joint F, bars EF, KF, and LF all lic in a plane, but AF does not.
Since no load is applied at joint F, the stress in bar AF is zero, in accord-
ance with theorem II. A similar consideralion of joints E, D, C, and B
leads to the conclusion that bars EF, DE, CD, and BC, respectively,
all have zero stress.

Considering joint F again, since the stresses in FA and FE are zero,
bars KF and LF comprise two bars mecting at a joint where no load is

¢

- »
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applied. Hence the stresses in KF and LF are zero, on the basis of
theorem III. A similar consideration of joints E, D, and C leads to the
conclusion that bars KE and JE, JD and ID, and IC and HQ, respec-
tively, all have zero stress.

Now, considering ﬁlnt K, since KE and KF have zero stress, bar KL -
is a single bar lying outside of the plane of bars JK, PK, and QK. Hence
bar KL has zero stress. In a similar manner, a consideration of _]omts*’ir
J and I shows that bars JK and IJ have zero stress.

Considering Jomt K again, since bars JK, EK, FK, and LK have zero
stress, bars QK and FK comprise two bars meeting at a joint where no'
external load is applied. The stresses in these two bars are therefore®.
zero. A similar consideration of joint J shows that bars PJ and 0.J also
have zero stress.

Hence, when this framed dome is acted upon by a vertical load at A,
only the bars shown by solid lines in the plan view of Fig. 9-8 carpy .
stress. 'To complete the analysis of this structure, the method of
may now be applied successively to joints A, B, L, G, II, and I, and the
stresses in all the bars except those of the base ring thus determufed.
The vertical reactions can then be determined by applying ZF, = 0 at
each point of support.

\

To determine the horizontal reactions and the stresses in the base-ring bars¥
all of which lie in a plane, it is necessary to take the stress in one of the base-ring
bars as a temporary unknown. Suppose Fa is taken as the temporary unknown,
At joint R, the application of F, = 0 and ¥F, = 0 permits one to express Fgz
and the horizontabreaction at Rin terms of Fry. (Note that joint R is also acted -
upon by the X and Z components of stress in bars LR and GR.) Proceeding
clockwise around the base ring and successively writing similar equations at
joints Q, P, 0, and N cnable one to cxpress the stresses in all the base-ring bars,
and all the horizontal reactions except that at M, in terms of Fry. If the equa-
tions XF, = 0 and XF, = 0 are now applied at joint M, the values of Fgy and™
the horizontal reaction at M may be obtained. Since all the other stresses and -
horizontal reactions have been previously expressed in terms of Fry, their values -
may now be determined.

It is possible for a Schwedler dome to be geometrically unstable, even though
the statical count holds, if the angles between the horizontal reactions and the
base ring bars have certain values.!

9:8 Towers. Unless the legs of a framed tower have a constant
batter throughout their length, the structure should be analyzed on the
basis of threc-dimensional considerations. Figure 9-9a shows the side
clevation of a tower of triangular cross section, in which the batter of

1 Sporrourn, Gg M., “Theory of Structures,” 4th ed., Chap. XVI, Space Frame-
works, McGraw-Hill Book Company, Inc., New York, 1939,

¢
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the legs is not constant. Figure 9-9b shows the arrangement of hori-
zontal reactions. This structure is statically determinate, as may be

. verified, and it may be analyzed panel by panel, beginning with the top
# panel and working down. Whenever, as in this case, adjacent legs of the
*s top panel lie in a plane, the stress in any of the top ring bars may be com-
+ puted most easily by utilizing the three theorems of Art.9-6. For example,
‘®F ., may be computed by noting that its component normal to the face acfd
¥ must balance the component of the external load at joint a, which is also
normal to this plane. Once the top ring

5’* a c\ b bar stresses are known, the stresses in the
}? \ : N legs and diagonals of the top panel may be
\ip AN computed. The stresses in these bars to-
d ~ e gether with any external loads at joints d, e,
\\\ : . and f comprise the loading on the second
NI panel which may now be analyzed simi-
"W N SN larly. ele.
AN ' \\\ H". I.u)wever, adjacent legs of a panel do
N N not lie in a plane, a more general approach
J L o must be used to obtain the ring bar stresses.
‘f Ry }Rly 1By Starting as before with the top panel, the
(a) stress in any top ring bar may be taken as a
L temporary unknown. If F,, is chosen for

this purpose, application of the method of
joints at joint b permils one to express Fi,
¢ in terms of F,. Similar treatment at ¢
gives Fq in terms of F,,.  Finally, ., may
be evaluated by applying the method of
joints at joint a.

. *J 5 It is customary to have secondary
F 9 bracing members in each horizontal plane
S 1. 9- where the batter of the tower legs changes

" and often at panel points where no change in batter occurs. In a tower
with a rectangular cross section, for example, this bracing may consist of
horizontal diagonals connecting diagonally opposite panel points. The
presence of such members may make a tower statically indeterminate. It
is common practice, however, to assume for the purpose of analyzing the
main members of the tower that the stresses in these secondary bracing
members are zero, thus permitting such analyses to be carried out by the
principles of statics.

9:9 Tower with Straight Legs. If the batter of the tower legs
is constant over the entire height, the tower may be analyzed on the basis
of component planar trusses. Such a structure is shown in Fig. 9-10.
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A load P, applied at any joint, may be resolved into three components:
C,, parallel to the tower leg; C,, horizontal and lying in the plane of one
adjacent face of the tower; and Cj, horizontal and lying in the plane of
the other adjacent face of the tower.

It is easy to show by the theorems of Art. 9.6 that C; causes stresses Py
in the bars of leg GC only, C, i
causes stresses in the bars of tower
sidle CDGH only, and C; causes
stresses in the bars of tower side
ACEG only.

Thus the stresses due to each
of the components Cy, C,, and G,
can be obtained by carrying out a
separate planar analysis, and the
total stress in any bar due to load
P can be obtained by superposi-
tion of the effects of its three com-
ponents. Since each panel load
can be handled in the foregoing
manner, this constitutes a general
procedure for analysis.

If all the faces of such a tower ! !
are identical, influence data can - _ -
be prepared, giving the stresses in |
cach bar of one of the faces due to !
(1) a unit horizontal load, applied :
successively at each joint of that |

|
|

n

|

i

|

i

!
face; and (2) a unit load parallel :
to Lhe tower leg, applied succes- C2 !
sively at each joint of that face. |
Such influence data, prepared for —
one face of the tower, will be G, il
applicable to all facesof the tower. !
By resolving panel loads int6 com-
ponents as previously outlined and by using these influence data, stresses
in any member, due to any condition of external loading, may be obtained
by superposition.

Fic. 9-10

9:10 Problems for Solution.

Problem 9:1 Show that the tower of Fig. 9-10 is statically determinate.
Problem 92 Find the reactions on the structure of Fig. 9 11 due to the
load of 1,000 b acting as shown.
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Problem 9:3 "Find the bar stresses in the structure of Fig. 9-11 due to the
load of 1,000 1b acting as shown.
Problem 9:-4 Find the reactions and bar stresses of the structure of Fig
i& 9-11 if the load of 1,000 Ib is applied at joint d but with a direction such that it
= passes through point g, which lies at the center of the equilateral triangle def.

¥ ’ Problem 9:5 a. Show that the structure
41000 { e of Fig. 9-12 is statically indeterminate to the
‘ﬁ' a \ :\\ first degree.
\ 1A b. Find the reactions on the structure of
- \ VAN Fig. 9-12 and the stresses in‘all the bars, for
3 \ /
: g N\ 20" the load of 10,000 Ib acting as shown, assum-
i \
bl \\: \\ 10000%e f ef
a e ) ™
) J [ N / 20'
¢t \\
- i ac a7 ° cd
(\) - Ry Rey Ryy Ry RayRoy Rey Ry
v o
c a
% , 0
. 1000 < £l 4 2’
1000% Yad e o'
* . r 20/ a 20’ ]
’
“y Fi1c. 9-11 F1i. 9-12

ty

ffng that bar ef is in compression and has a stress equal to half the applied load.
™ Problem 9:6 If the angle a between the horizontal reaction and the base-
* ring bar has the same value at each point of support of a Schwedler dome, as
shown in Fig. 9 8, prove that, under the action of any vertical load on the dome,
the algebraic sum of the horizontal reactions is zero.

Problem 9-7 A tower similar to that of Fig. 9 9 has 10 panels with a height
of 10 ft each; ab = bc = ca = 10 ft; de = ef = fd = 12 ft; at the tower base,
Jk =kl =1 =40 ft. At joint a, the following external loads are applied:
a horizontal load of 10,000 Ib, acting to the right, in a direction parallel to the 0X
axis; a horizontal load of 5,000 b, acting to the rear, in a direction parallel to the
OZ axis; and a vertical load of 20,000 b, acting downward.

a What are the stresses in bars ab, bc, and ca?

b. What are the resultant X, Y, and Z components of the forces applied at
joints d, ¢, and f by the legs and diagonals of the top panel?

¢. What are the reactions on the tower?

Problem 9-8 The tower of Prob. 9:7 weighs 50,000 1b. The maximum
wind load acting on the tower exerts a lateral pressure equal to 400 1b per ft of
tower height. Against what uplift must a point of tower support be designed if
the specifications state that the tower supports shall be designed for 150 per cent
of the maximum net uplift?

%,
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CHAPTER 10
GRAVITY STRUCTURES g

10:1 Introduction. A gravity structure is one in which the.ﬁ
weight of the structure itself plays an important part in holding in equi-
librium the forces to which the structure is subjected. In a gravity dam, 3
for example, the tendency of the dam to overturn by rotating about i
downstream toe, because of the hydrostalic pressure on the upstrcatrzﬁ
face of the dam, is resisted by the moment, about the down stream toe,
of the weight of the dam. Similarly, the lendency of the dam to slide
horizontally in a downstream direction is resisted by the friction of the
dam on its foundation, which in turn is a function of the weight of dhe
dam. A retaining wall, built to resist earth pressure, is another example
of a gravity structure. Such a wall may be designed with a thickness
such that on a horizontal plane the vertical stresses are all compressive;
for a thinner wall, the presence of tensile stresses on the side to which -
carth pressure is applicd may require vertical reinforcing rods. In either
event, however, the weight of the wall is an important factor in the
stability of the structure, so that retaining walls are classified as gravity
structures. .

102 Stresses in a Gravity Dam. Let us consider the dam shown.
in Fig. 10-1a with the object of investigaling the distribution of normal

2/
AT
. w=625*
“ [\ percv F 24'
x/
atd/__ w4 4.d
w=150* £,
percu f d_%z
rvrromre v Cenfer of
I“J—- gravity
(@) (6) tc)

Fic. 10-1

stresses along section A-A. We shall consider a strip of the dam 1 ft

in thickness, measured along the length of the dam, and assume that this

strip, under the external loads to which it is subjected, acts independently

of the adjacent strips. There will be applied to this strip above section
233
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A-A the resultant hydrostatic force H and the forces W, and W,, which
comprise the weight of the dam, as shown in Fig. 10-1b. The intensity
of hydrostatic pressure at elev. A-A is 62.5(24) = 1,500 lb per sq ft.
" Since the distribution of this pressure is triangular, the resultant pressure
¢ His given by 14(1,500)(24) = 18,000 lb and acts 8 ft above section A-A
as shown. The forces W; and W, are computed as follows:

Wy = 150(2)(24) = 7,200 b, W, = 150(14)(14)(24) = 25,200 1b

They act as shown in the figure.
. If we assume the normal fiber stresses to be distributed lincarly along
“'section A-A, the following relation may be used:

P
f=Z+—I— (10-1»

where f = compressive stress! developed, with a positive value indicating
compression?
= resultant vertical force applied above the section under con-
sideration, with downward forces taken as positive

g it A = cross-sectional area at the section under consideration;
#w M = resultant moment about the center of gravity of A of all forces
. applied above the section under consideration, with moments
causing compression in the downstream face taken as positive
N z = horizontal distance, measured from the center of gravity of A

to the point where f is to be determined, with this distance
taken as positive for points downstream from the center of
gravity

I = moment of inertia, about the center of gravity of A of the
cross-sectional area A itself

For the problem under considcration
P = 7,200 + 25,200 = +32,400 b
A =16(1) = 16 sq ft
M = +18,000(8) — 7,200(7) — 25,200(1.33) = 460,000 ft-1b
x4 (to downstream face) = +8ft, . (to upstream face) = —8ft
I = 1{5(1)(16)% = 341 ft*
Hence, at the downstream face,

32,400 , 60,000(+8)

= 43,440 1b per sq ft (compression)

! In this chapter, for the sake of brevity, the term siress instead of stress intensily is
used where the meaning is obvious.
t This is opposite to the customary sign convention for stresses and is used in this
instance because of the predominance of compressive stresses in dam analysis.
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while, at the upstream face, o

fo = 32400 | 60.000(=8) _ 5030 — 1,410
16 341 M
= 620 lb per sq ft (compression) ,;
From d to u, the strcss intensity varies linearly, giving a trapezoidal |
distribution. -
it should be noted that the foregoing intensities are for stresses per- #
pendicular to section A-A.  For the upstream face, the value computed
in this particular case represents the principal stress since the upstream-.
face is vertical. Owing to the slope of the downstrcam face, howeverg®:
the value of stress computed at d is not a principal stress. In Fig. 10 1c, A
since bd is a free face, the shear on this plane is zero. Since the shear on
any two mutually perpendicular planes has the same value at a given
point, the shear along be is also zero. This identifies be as the plane on
which the principal stress f, occurs. To evaluate f,, take moments
about ¢ of the forces acting on the differential wedge element bed.
(dx cos 6)2 (dx)? :
f ? 2 = f d 9 ?'e v
whence f, = fi sec® 6. For this problem, sec 8 = 1.16, whence, at':&‘,
f» = +3,440(1.16)2 = 44,640 lb per sq {t (compression)

10-3 Location of Resultant Force. The forces applied to a dam
above a given elevation can be /4’ ’
represented by a single resultant
force, and the-axial force and
bending moment at that elevation
can be computed from this re-
sultant. The resultant force R
applied above section A-A of the
dam of Fig. 10-1a is shown in Fig. 24'
10-2. The horizontal component
of this resultant must equal 18,000
lb; the vertical component must
equal 7,200 4+ 25,200 = 32,400 lb.

The moment of the resultant R
about any point such as @ must
equal the moment of the forces
that have been combined, whence Fic. 10-2

+18,000(8) + 25,200(5.67) = 32,400 d

from which d = 8.85 ft. The resultant therefore intersects plane A-A
at a distance of 8.85 — 7.00 = 1.85 ft downstream from the center of

’

>
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gravity of the cﬁ: section. Now, working directly from the resultant,
P = 432,400 Ib and M = 32,400(4+1.85) = 460,000 ft-lb

These values check those previously obtained.

For the gencral case, assume that the resultant intersects a given
- horizontal section at distance e downstream from the center of gravity of
~thc cross section. Denoling by ¢ the width of the dam at the section
"under consideration and by V the vertical component of the resultant R,
and then referring to Eq. (10-1), P=+V; A =t; M = +Ve; 24 (to

w;ﬂ‘" T

#downstream face) = +£/2; 7, (lo upstream face) = —{/2; I = 3/12,
#whence, at the downstream face,
) ‘f
fo= 4+ +—~(+‘;‘?/—(13,5’/—) (1 +6 ) (@)

while, at the upstream face,
(+Vey(=172) _V e

f “'+'"‘+ t;/l) __l<l—6l> (b)
',; crom Egs. (¢) and (b), it may be seen that, if the resultant acts within
{:se middle third of the cross section, ie., if —1/6 <e < +1/6, the
ire cross section will be in compression. If the resultant is at the
_downstream limit of the middle third. ie., e = +1/6, fs = 2V/l and
f. = 0. Under this condition, the distribution of the normal fiber
. stresses along the section is triangular, with the intensity at the down-
» stream face equal to twice the value it would have if the vertical
i« scomponent of the resultant were uniformly distributed over the cross-

Sﬁctional area A.
5 10-4 Resultant Qutside of Middle Third. If, however, the
» resultant acts outside of the middle third of the cross section, tension will
be developed at one face. Plain masonry has little tensile strength,
and for design purposes it is usually assumed to have none. Unless the
dam is adequately reinforced with steel so that it can develop the neces-
sary tensile strength, the previously given method of analysis is not wholly
applicable, since it is based on the idea that stresses vary linearly across

the entire section.

Consider the stress distribution along section A-A of the dam of Fig.
10-1a if, by means of flashboards, thegelevation of the water surface is
raised to a height of 3 ft above the top of the dam, as shown in Fig. 10-3.
The resultant horizontal water pressure equals 62.5(27)(14)(27) = 22,90
Ib and acts 9 ft above section A-A. To determine the location of the
resultant, take moments about a:

-+ 22,700(9) + 25,200(5.67) = +32,400 d; d = 10.7 ft
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pt
Hence e = 10.7 — 7.0 = 3.7 ft. Since this is greater than 164 = 2.67

ft, the resultant lies outside the middle third of the section. Applica-
tion of 1iq. (10-1) would lead to tensile stresses on the upstrecam face of
the dam. Since the dam could not resist linearly distributed tensile *
stresses, the stresses computed by Eq. (10-1) would not be valid. w,

To determine the stress distribution along scction A-A, static equi- ¢
librium of the portion of the dam above this section requires that the®
resultant of the normal stresses along the section shall be equal and
opposite to the vertical component

of R and applied at the point " 2} ‘?g
where R intersects section A-A. ﬁf
Hence, the resultant of these 7

normal stresses is an upward force A - S

of 32,100 Ib applied at a distance 3

of 8.00 — 3.7 = 1.3 ft from d, the -
downstream edge of section A-A. 200 { -

Consistent with a linear stress 551 | Fﬂ/;;‘—
distribution involying compressive " | 57700 .
stresses only, the stresses will be 400 2 g \ ﬁ*-‘a
distributed  triangularly. The | o I — AN
center of gravity of this triangle _J 22700 " . j
will coincide with the resultant of 44— =5 - 4"
the normal stresses on the section. fy ‘ " l ‘
Hencee the length of the triangle - "“ﬂ .
along section A-A  will equal [ /2_9_{__! ,
3(1.3) = 12.9 ft, as shown in Fig. & .. & #
10-3. N

Moreover, because of the tri- Fic. 10-3

angular distribution, the intensity

of normal stresses at the downstream face equals twice the value that
would occur if the vertical component of the resultant were distributed
uniformly over the entire area under compression.  Hence

D)

4= “—(‘%2190—02 = 5,020 Ib per sq ft

The principal stress at d is given by f, = 5,020(1.16)2 = 6,750 1b per
sq ft. *

105 Determination of Gravity-dam Profile. The profile of a
vity dam is usually laid out so that for a horizontal scction at any
ation the resultant lies within the middle third. For a given profile,
ocation of the resultant will depend upon the loading condition con-
. For reasons of economy, it is desirable, under what proves to
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be a critical loadit‘;g condition for a given elevation, for the resultant at
that clevation to be as near as is practicable to an outer edge of the middle
third. Thus, for the maximum overturning condition, i.e., water at
highest elevation, plus ice pressure, etc., the resultant should be near
. the downstream edge of the middle third, while, with the dam empty,
* the resultant should be near the upstream edge of the middle third. The
Joregoing criteria can rarely be completely met in an actual case, but they
serve as a guide for profile determination. For the following procedure,
either analytical or graphical

¥ 5 1 methods, or a combination of the
B L § two, may be used:

s;& The width of the dam at the

dp S top will be determined from

practical considerations, such as

minimum width for durability,

required width for equipment,

roadway, etc. Through the up-

’; . &,  Stream edge of the top of the dam,

e construct a vertical reference line,

vy Llevtl) | : called the dam axis, as shown in

. / pra ;;;;,,f,’,’f;},;— T \evpstromm  Fig. 10-4. At any elevation, the

‘ / wy| PV ij horizontal distance u from the

. 1 : —\ 2 dam axis to the upstream face is

, Ry ds 2382 called the upstream projection;

Zlev(2) : the corresponding d.istance to the

i—'.—7l"25‘2 1 3@ | G |\ downstream fa(.:e is called the
# = ™ LA downstream projection.

; Axis of Divide the height of the dam

‘ Frc. 10-4 by horizontal lines at representa-

tive elevations such as elev. (1) or
elev. (2) at which the upstream and downstream projections are to be
determined. Compute the resultant horizontal water pressure applied to
each vertical portion of the dam (H,, H,, etc.).

At elev. (1), assume tentative values of u; and di. On the basis of
these tentative values, evaluate and locate Wi, the weight of the dam
above elev. (1), and, provided that u, # 0, V; the vertical component
of water pressure applied above elev. (1). Evaluate and locate R,,
the resultant of the forces W, H;, and V. On the basis of the tentative
values of u; and d;, investigate in the foregoing manner cach loadifig
condition that may affect the profile. If, considering all loading condi-
tions, the tentative values of u; and d, are not satisfactory, successively
investigate new valbes of u; and d; until acceptable values are obtained.
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&

Then, at elev. (2), assume tentative values of u. a?lﬂd d;. On the basis
of these tentative values, evaluate and locate W,, the weight of the dam
between elevs. (1) and (2), and, provided that us — u, 5 0, V, the ver-
tical component of water pressure applied between elevs. (1) and (2).
Evaluate and locate R, the resultant of Ry, W,, H,, and V,. Still using |
the tentative values of u; and d., investigate each loading condition in
the foregoing manner. By successive trials, establish acceptable values?
of uz and d,.

Working down the dam, section by scction, in a similar manner,
establish u and d at each representative clevation. With the proﬁleg
determined as described, no tensile stresses will occur in the dam. This':{ g
does not, however, ensure that the compressive stresses in the dam will
be within allowable limits. The actual stresses at cach elevation should
be computed, and this would often influence the layout of the profile.

10-6 Stresses at Base of Gravity Dam. If an impervious dam is
bonded at its base to an impervious foundation, so that no upward water

)

PR

L

5‘;”;;’? Keyway\\ Cutofrwall |
IMPERVIOUS IMPERVIOUS PERVIOUS “ -
FOUNDATION FOUNDATION FOUNDATION Y
(a) (b) (c) {

Fic. 10-5

pressure can act on the base of the dam, the determination of the stress
distribution along the base of the dam can be carried out by following
the same procedures as those used for any other horizontal section through
the dam. Such a dam is shown in Fig. 10-5a. Actually, it would be
unlikely that the dam could be bonded to the foundation so sccurely as
to ensurc that therc would be no upward water pressure under the dam.
To prevent such pressure a keyway embedded near the upstream side
of an impervious foundation might be used, as shown in Fig. 10-5b.
For a pervious foundation, a deep cutoff wall near the upstream side of
the foundation, as shown in Fig. 10-5¢, may be effective.

f the foundation is such that upward water pressure cannot act on
th of the dam, stresses along the base may be determined by Eq.
(10§1), provided that the resultant acts within the middle third of the
b. 86, 80 that no tension ocours. 1t the resultant lies outide of the middle
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third but Wlthm;t e base of the dam, the compreqsmn on the base of the
dam will be distributed triangularly, with the center of gravity of the
triangle at the point of application of the resultant force to the founda-
tion. The maximum foundation stress will then occur at the edge of
the foundation and will equal twice the value obtained if the vertical
component of the resultant were uniformly distributed over the area in

" compression.

Should the resultant lie outside of the base of the dam, the dam would
fail by overturning. A reasonable factor of safety against ov (,rtmmng
“*should be provided.

If the angle made by the resultant with the vertical exceeds the fric-
tion angle of the dam on its foundation, the dam will fail by sliding. A
liberal factor of safety should be observed in this connection, since the
friction angle cannot as a rule be predicted with precision.

10-7 Upward Water Pressure. Consider the dam shown in Fig.
10-6a in which the water is at the same elevation on both the upstream

Reservorr Reservoir

ST

PERVIOUS
FOUNDATION

(a) (6) (c)
F16. 106

and downstream sides. At the base of each side, let the hydrostatic pres-
sure be p. Since the foundation is pervious, there will be water under
the dam. No flow of water occurs, however, and thus there is an upward
water pressure of intensity p over the entire base of the dam. In the
dam of Fig. 10-6b, the tail water is at a lower elevation than the water in
the reservoir. Let the hydrostatic pressure at the base of the upstream
face be p, and at the base of the downstream face be pa.  Since p, > py,
water will flow downstream under the dam, losing pressure as it flows.
If this loss of pressure is assumed to be lincar, the upward water pressure
on the base of the dam will be distributed trapezoidally, having intensities
pu and p, at the upstream and downstream faces, respectively.  If there
is no water on the downstream edge of the basge, as shown in Fig. 10- 6c,
pa = 0 and the distribution of upward waler pressure is triangular.
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It is often assumed that the upward water pressufé does not come in
contact with the entire arca of the base of the dam. It might be specified,
for the dam of Fig. 10-6¢c, for example, that the structure should be
designed for an upward water pressure varying linearly from half the
hydrostatic pressure at the upstream edge of the base to zero at the down-

stream edge. 3

As pointed out in the preceding article, the amount and distribution *
of upward water pressure can be controlled by such means as keyways
and cutoff walls. The use of drains to carry away seepage water provides
another means of control. ]

While we have discussed upward water pressure as a phenomenon that "«

occurs along the base of the dam, it is evident that it will occur along any
pervious horizontal section through the dam itself. In the following
article, the effect of upward water pressure on stress computations along
the base of the dam is considered. The methods given are equally appli-
cable when one considers the effect of upward water pressures on other
horizontal scctions.

10:8 Effect of Upward Water Pressure on Stresses at Base of *

Dam. Let us consider the stresses along the base of the dam of Fi g
10 1, assuming that the water is 6 ft below the top of the dam and that *
the base of the dam is subjected to upward water pressure varying uni-
formly in intensity from half the hydrostatic pressure at the upstream .
edge of the base to zero at the downstream edge of the base, as shown in
Fig. 10 7. As in previous examples, H, W, and W, are first evaluated.
On the base of the dam, there will act upward, first, the upward water
pressure and, second, the soil pressure. The resultant U of the upward

water pressure cquals 937(15)(23) = 10,800 Ib and acts at the third ;

point of the base as shown.
To evaluate V, the vertical component of the resultant of the soil

pressure on the base of the dam, apply ZF, = 0 to all the forces acting
on the dam,

+ 56,700 + 10,800 — 10,800 — V =0

whence V = 456,700 Ib. To locate V, take moments about any point
such as a of all the forces acting on the dam.

+56,700d + 10,800(6.67) — 56,700(8) — 28,100(10) = 0

whence d = +11 63 ft and e = 12.63 — 11.50 = 1.13 ft. Since this is
less than 23§ = 3.81 ft, the resultant soil pressure lies within the middle
third and thc soil is in compression along the entire width of the basc.
The intensities of soil pressures may therefore be computed by Eg.
(10-1), in which P = V = +06 700 1b and

M= +V¢m.= +56 700(1.13) = 464,000 {t-Ib ’
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This leads to soil pressures of 3,191 Ib per sq ft and 1,739 b per sq ft at the
downstream and upstream edges, respectively, as shown in Fig. 10-7.
The total pressure on the base of the dam is obtained by superimposing
the soil pressure and the upward water pressure and is also shown in the
figure.

Had the resultant soil pressure been applied outside 4e middle third,
the distribution of soil pressure would have been trifMgular, with the

23’
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Total pressure I
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Fi6. 10-7

center of gravity of the triangle coinciding with the resultant soil pressure
and with a maximum intensity of soil pressure equal to twice the value
obtairied if the vertical component of the resultant soil pressure were
uniformly distributed over the area acted upon by the soil pressure. The
total pressure on the base of the dam would still be obtained by super-
imposing the soil and upward water pressures, the resulting pressure curve
being discontinuous at the point where the soil pressure equals zero.

It is to be noted that the presence of upward water pressure increases
the tendency of the dam to fail by both overturning and sliding.

10:9 Gravity Retaining Walls. While the weight of all retaining
walls plays an important part in enabling the wall to resist the carth
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pressure to which it is subjected, we shall distingul%h between gravity

retaining walls, in which the resultant is kept within the middle third at

all elevations, and cantilever retaining walls, in which the wall acts as a

vertical cantilever beam, carrying its lateral load in bending and requir-

ing steel reinforging.
The detern:iﬂtion of soil pressures that act on the back of retaining
walls is discu: in Art. 1-12, where it is pointed out that the lateral
pressure caused by soils varies when the wall yields, reaching a minimum
value calleh the active pressure after the wall has yielded a small amount.
Although a gravity retaining wall is a relatively rigid structure, it is#®
nevertheless customary to assume that it will yield sufficiently to permit
its design on the basis of active soil pressures, unless the top of the wall i
actually restrained against lateral movement by a rigid connection to a
relatively immovable support.

In Art. 1-12, the general equation for the resultant of the active soil
pressure on the back of a retaining wall, based on the theory developed
by Coulomb, is given in Eq. (1-6). It is further shown that, where the
surface of the soil retained is horizontal (i = 0), where the back of the
retaining wall is vertical (¢ = 0), and where ¢, the angle of internal fric-
tion of the soil, equals ¢', the friction angle of the soil on masonry, Eq.
(1-6) reduces to Eq. (1-7),

pP=1Y,m cos ¢ 1.7
37 [(1+\/2 sin @)? -7

where P is the resultant soil pressure for a strip of wall 1 ft long and acts
as shown in Fig. 1-3; v is the weight of earth per unit volume, and H is
the vertical depth of the soil above the base of the wall.

The analysis of retaining walls follows the same general procedure used
for gravity dams. Consider the gravity wall shown in Fig. 10-8 with
the object of determining the soil pressures developed along the base of
the wall. For this case, Eq. (1-7) is applicable, whence, considering a
strip of wall 1 ft in length,

P = % (100)(20)* [ 0.867 ] = 5,980 Ib

(1 +.0.500 +/2)?

This resultant earth pressure acts one-third of the way up from the base
of the wall, making an angle of 30° with the normal to the back of the
wall as shown. The horizontal mb vertical components of P are also
shown on the figure. For the wall,

Wy = 150(1)(20) = 3,000 Ib and W, = 150(14)(20)(6) = 9,000 Ib



244 “ Lk cgnAVITY STRUCTURES [§10-10

The vertical component V of the resultant prossu{rc on the base of the
wall is obtained by applying =F, = 0 to all the forces acting on the wall.

+9,000 + 3,000 + 2,990 — V =0

whence V = 414,990 lb. To locate the resultant, taking moments
about a of all the forces acting on the wall,

+14,990d + 2,990(0.5) — 5,180(6.67) — 9,000(2.50) = 0
whence d = 3.70 ft and e = 3.70 + 0.50 — 3.50 = +40.70 ft, which i:

7/ ¥
6/
r T
o Y=100%/¢F?
S lg| ¢=0=0°
=

#/ffJ
150", 350! ,
6.67
| %
d |'—' cglale S ;
fd= 3 3
3425/

H-=5160% ¢ |V=14990
R
Fic. 10-8 ~°

less than 7§ = 1.17 ft. Hence to detertine soil pressures, Iiq. (10-1)
is applicable. Upon using P = V = 14,990 1b and

M = +14,990(0.70) = +10,500 ft-lb

this leads to the values shown at the base of the wall in Fig. 10-8.
10-10 Cantilever Retaining Walls. A typical cantilever retain-
ing wall is shown in Fig. 10-9. The detcrmination of stresses on any
horizontal section such as A-A involves the same procedures as would
be followed for a gravity retaining wall, although the resultant would
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" n
doubtless lie outside of the middle third or even outside of the section
itself. This, however, would lead to no serious difficulty, since with
proper steel reinforcing the section could be designed to withstand the
axial stress and bending caused by the resultant.

In determining the distribution of soil pressures on the base of the
footing of the wall, we must give careful consideration to the forces acting
on the wall. There will be acting on this wall P, the resultant soil pres-
sure acting on the vertical line BB; W,, the weight of the earth directly
over the footing of the wall; W,,
the weight of the wall itself; and
R, the resultant Soil pressure
acting on the base of the footing.

To determine P, note that ¢’
should be replaced by ¢, since the
angle which P makes with the
normal to BB is determined by
the angle of internal friction of the
soil rather than by the friction
angle of soil on masonry. The
application of Eq. (1-7) leads to

20'| B’

1
P = 5 (100)(20)® r
—— —| = 5,980 1b
[(1 + 0.500 \/2)2] */f12
Wy = 100(3)(18) = 5,400 lb; W, R
= 150[2(18) + 2(8)] = 7,800 1b F1c. 10-9

To evaluate V, the vertical component of R,
7,800 + 5,400 + 2,990 — V = 0; V = 416,190 b
To locate R, .

+16,190d + 2,990(L.5) — 7,800(2.5) — 5,180(6.67) = 0;
d=305ft; e=3.05+ 150 — 4.00 = 4-0.55 ft

Since the resultant lics within the middle third of the base of the footing,
Eq. (10-1) is applicable for determining soil pressures on the base.
Upon using P = V = 416,190 Ib and M = +16,190(0.55) = +8,900
ft-1b, this leads to the values shown on the figure.

An alternate approach to the determination of P, the resultant earth
pressure acting on the side of the wall, which is considered preferable by
some engineers, consists in computing the resultant pressure along line

V=/6/90
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oo

“ ‘{t b ey o8
CC as shown in Fig. iO 10. This necessitates theﬁﬁs of Eq. (1-6), since
6 no longer equals zero. In computing W, to corresgpnd to this method
of determining P, only the weight of the trianghilar wedge of earth is
included. The line CC corresponds more closely to the failure plane of
the earth than does line BB of Fig. 10-9. Ordinarily, the two methods of
determining P lead to much the same values of soil pressure along the
c base of the footing.

.<: R

10-11 Problems for Solution.

Problem 10-1 Find the distribution of normal
Ie stresses along section A-A of the dam of Fig. 10-11,
which is not reinforced so as to be capable of carrying
1 l tension.

Problem 10-2 Find the maximum elevation to

T T which the water behind the dam of Fig. 10-11 can rise

T s (using flashboards if necessary), the entire section
Fia. 10 10 e o s .

A-A remaining in compression.

Problem 10-3 Find the distribution of soil pressure along the base of the

dam of Fig. 10-11, assuming no upward water pressure on the base of the dam.
The water level is to be assumed at the top of the dam.

Problem 10-4 Referring to the dam of Fig. 10:-11 and with the water level
at the top of the dam, let the base of the dam be subjected to upward water
pressure varying linearly from one-third of the hydrostatic pressure at the
upstream edge of the base to zero at the downstream
edge of the base. Determine (a) the distribution of
soil pressure along the base of the dam; (b) the dis-
tribution of total pressure along the base of the dam.

Problem 10-5 Consider that the structure of gy

.‘,‘-J QM 1

Fig. 10-11 is a gravity retaining wall, retaining soil A —_—t—a
that is level with the top of the wall. The earth
weighs 100 lb per cu ft; it has an angle of internal w =/50;;
friction of 30° and a friction angle on masonry of 30°. percar
Determine the distribution of soil pressure along the T 2 Fe{d
base of the wall. 30’

Problem 10-6 Referring to Prob. 10-5, what is
the minimum width of the base of the wall that can Fie. 10-11

be used if the soil is to be in compression along the entire base of the wall? The
width of the base is to be changed by varying the dimension of 24 ft.

Problem 10-7 Determine the distribution of soil pressure along the base
of the cantilever retaining wall of Fig. 10 -9, using the soil pressure on the back
of the wall in accordance with the method described in the discussion of Fig.
10-10.

4
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CHAPTER 11
CABLES

11-1 Introduction. Cables are used in many important types of
engineering structures. They form the main load-carrying elements for
suspension bridges and cable-car systems. They are used extensively
for permanent guys on structures such as derricks and radio towers.
They are also used for temporary guys during erection. Although exact
cable analyses may require mathematical procedures beyond the scope
of this book, a knowledge of certain fundamental relationships for cables
is important in structural engineering.

When a cable supports a load that is uniform per unit length of the
cable itself, such as its own weight, it takes the form of a catenary; but
unless the sag of the cable is large in proportion to its length, the shape
taken may often be assumed to be parabolic, the analysis being thus
greatly simplified.

11:2 General Cable Theorem. Consider the general case of a
cable supported at two points @ and b, which are not necessarily at the

R,

P
L"WF‘be’H
. . 5
t/ Ltany
Ray ] (a)
R B B
& ax s
II} 2 o
L
5 P i a (5)
,- r .
Frc. 11-1

same elevation, and acted upon by any system of vertical loads P,, P,,
..., P, asshownin Fig. 11 1la. The cable is assumed to be perfectly
flexible, so that the bending moment at any point on the cable must be
zero. Since all the loads are vertical, the horizontal component of cable
stress, which will be denoted by H has the same value at any point on
the cable and the horizontal reactions are each equal to H.

' 247
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Let sz == the sdm of the moments about b of‘ all the loads P,, P,
o o 9 Pn

ZMa = the sum of the moments about any fioint m on the cable of
those of the loads P,, P,, . . . , P, that act en the cable to
the left of m

Taking moments about b, of all the forces acting on the cable,

+H(L tanv) + R,,L — My =0
from which

R,y = Eﬁﬁ’ — H tan v (a)

Taking moments about m of those forces acting on that portion of the
cable to the left of m,

+H(z tan ¥ — yn) + Ryyx — ZM,, = 0
Substituting R, from Eq. (a) and simplifying,

Hy, = ; M, — M, (b)

In interpreting Eq. (b), it should be noted that y. is the vertical
distance from the cable at point m to the cable chord ab which joins the
points of cable support. The right side of Eq. (b) may be seen to equal
the bending moment that would occur at point m (sec Fig. 11-1b) if the
loads Py, P,, . . ., P, were applied to an end-supported beam of span
L and m were a point on this imaginary beam, located at distance z
from the left support.

From Eq. (b), we may therefore state the following general cable
theorem: At any point on a cable acled upon by vertical loads, the producl of
the horizontal component of cable stress and the verlical distance from that
point to the cable chord equals the moment which would occur at that section
if the loads carried by the cable were acting on an end-supported beam of the
same span as lhat of the cable.

It is to be emphasized that this theorem is applicable to any set of
vertical loads and holds true whether the cable chord is horizontal or
inclined.

11-3 Application of General Cable Theorem. Suppose that the
loading on a cable is defined and that the distance from the cable to the
cable chord is known at one point, as is the case in Fig. 11-2. Neglecting
the weight of the cable itself, the bending moment at point d on an imagi-
nary beam of equal span is equal to

2,330(20) — 1,000(10) = 36.600 ft-lb
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Hence, by the general cable theorem, 10H = 36, 600 or Il = 3 660 Ib.
To determine the distance of any other point such as ¢ from the cable
chord, the general cable theorem is applied at section ¢, leading to
3,660y, = 2,330(10), from which y. = 6.38 ft. The segment of the cable
between a and ¢ lies along a straight line, since the weight of the cable
has been neglected, and has a length equal to 4/(10)2 + (6.38)2 = 11.85
ft. Since the horizontal component of cable stress equals 3,660 lb,
the actual cable stress between a and ¢ equals 3,660(11.85/10) = 4,340
Ib. The left vertical reaction on the cable equals the vertical component
of cable stress in segment ac and is given by 3,660(6.38/10) = 2,330 1b.

For this particular case, this value

. . R R
equals the left vertical reaction on a} @y b”"
the imaginary end-supported beam, =+ c o' e — *~H
Had the cable chord been inclined, Ye a 00"
however, these two vertical reac- IQOO" 2000 , ,
tions would have had different 10 /0.J|_ 20/ 2
60
values. |
. 1000% 2000*  s00*

11-4 Shape of Uniformly a de la . b
Loaded Cable. The case of a o
loading that is uniform per hori- R=1000(50) *2230(40/ *500(20).. 2330"
zontal foot and applied over the Fic. 11-2

entire span of the cable is important

not only because it is substantially the type of cable loading occurring
in suspension bridges, but because a cable carrying only its dead weight
can be treated approximately on the assumplion that the dead weight is

uniform per horizontal foot.

In Fig. 11-3, the gencral cable theorem

Y leads to . ..
wLr  wx?
Hm="3"=7% @
Yy T : Let the particular value of y, at
1122 LL!?* ctany mid-span be denoted by h. The
m 2 distance h is called the cable sag
x and is measured vertically in all

Fia. 11-3

cases. For the mid-span, where
z = L/2and y, = h, theforegoing

equation reduces to I1h = wl?/8, whence

H=

This relation for H is of primary importance.
the cable chord is inclined or horizontal.

wL?

ah (11-1)

Note that it holds whether
Substituting this value of H
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into Eq. (a) and sb‘lv‘mg for yw lead to vy _r
4h$ !iy’ *‘; :" 9‘\
y,..=—E;(L—x) " Jooa11-2)
~ v:‘v

Equation (11-2) defines the shape of the cable, located with respect to
the cable chord, and in terms of the cable sag. It is often desirable to
define the shape of the cable with respect to a horizontal axis. If the
origin o of the axes is taken at the left end of the cable, as shown in Fig.
11-3, the relation y = 42 tan y — y. may be used. Substituting y,
as expressed by Eq. (11-2) leads to

y=%’llz"'_"(z—L)+a:tan-y (11-3)
If the cable chord is horizontal, tan v = 0, whence
y=2 @1 (11-4)

If the cable chord is horizontal and if it is desired to define the cable curve
with respect to axes with their origin at ¢, the low point on the cable,

- which is at mid-span, reference to

‘Agoy R, Fig. 11-4 shows that, since
H e ——— Gl
| x S 5 z=(§—‘)+m,andy=_—h+y.
’ WA
_ / Gl x these relations may be substituted
L/z Lfa into Eq. (11-4), leading to

4h
Fic. 11-4 Ye = 1z x} (11.5)

11-5  Stresses in Uniformly Loaded Cable. The stress at any
point in a cable is axial. For a uniformly loaded cable, the horizontal
component of cable stress can be computed by means of Eq. (11-1).
Consider a differential element of cable, of length ds and horizontal pro-
jection dz. Then T, the tension in the cable at any distance z from the
origin, is given by H ds/dx. For the case of the inclined cable chord, as
shown in Fig. 11-3, differentiation of Eq. (11-3) leads to

d; 8h 4h
&= Tr ~ L Tuny
=-‘%§—40+tan7

where 6 = h/L and is called the sag ratio.
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Further, since ‘ds = [1 + (dy/d2)""* dz, T. = H[ + (dy/d)?, or

- 202
T, = H(1+ %57 4160 4 tane 4 — 802
.
o ¥4
4 + 1(29:6 tan v — 86 tan .,) (@)

The maximum stress occurs at one end of the cable.
Forz =0, Tu=H( + 1662 + tan?y — 86 tan v)*
Forz =L, Tuw = H(l 4 1662 + tan?y 4 86 tan v)*

If the cable chord is horizontal, tan ¥ = 0, whence at either end of the
cable

(11-6)

Toa = H(1 + 1662 ar 7
For the special case of the horizontal cable chord, Eq. (11-7) may also be
derived as follows: The maximum cable stress occurs at the end of the
cable and equals the resultant reaction on the cable. For this reaction,
the horizontal component is H, while the vertical component equals half
the total load on the cable, or wL/2, which may also be expressed as
4Hh/L = 4H9, since H = wL?/8h; hence
Tuu = (H* + R})*
= (H* + 16H?)*
= H(1 + 166)*

11:6 Illustrative Examples.

Example 11°1 A cable supporting a uniform load of 1 kip per horizontal fool is
suspended belween two poinls of equal elevation, which are 2,000 ft apart, with a sag ratio
such that the horizonlal component of cable stress is 2,500 kips. What is the maximum
slress in the cable?

Solution: Since H = wL*/8h, 2,500 = 1(2,000)*/8h; h = 200 ft;
g=h_200 _1
L 2000 10
Tmas = H(1 + 1660 = 2,500(1 + 18{00)* = 2,690 kips

Example 11:2 A cable supporting a uniform load of 100 Ib per horizontal fool is
suspended belween two poinis 200 ft apart horizonlally, with one point of support 50 ft
higher than the other. The tension in the cabic is adjusted uniil the sag at mid-span (i.c.,
the vertical distance from the cable to the cable chord at mid-span) equals 12.5 ft. What is
the mazimum siress in the cable?

wL! _ 100(200)* _
Solution: H = Bh T 815 40,000 1b

- h 125 . 50
?--I:J-'z—o-o- = 0.0625; lan7=m=0.25
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The ma:rlmum cable stress occurs al the high point of cupporl and is gwen by

Tmaz = H(I + 1602 4 tan? v + 80 lan v)'? .’;. :
40,000(1 + 16(0.0625)2 + (0.25)* + 8(&0625)(0 25)]“
44,700 1b

11:7 Length of Uniformly Loaded Cable. If s, is the total
length of a cable, then

S, = /;Lds= /;L [1+(%)2]Mdz (a)

For the case of a horizontal cable chord, using Eq. (11-5), which is based
on the origin being located at the low point on the cable, which is at
mid-span,

dy _ 8hr
dr  L*
whence
L/2 14
5o =2 f [ n 6*"2"2] dz ®)
0

Integration of this relation leads to the following exact expression:
S, (l + 166%)% + 58 ln [46 + (1 + 166%)%] (11-8)

The use of Eq. (11-8) requires the use of natural logarithms. A very
useful approximate expression for determining cable length when the
cable chord is horizontal may be obtained by expanding the term

(4227

occurring in Eq. (b) into an infinite series by the binomial theorem and
considering only the first few terms of the resultant series. This leads to

_ Lz 1. hz
so=2 [) [(1)% + 5 (D7(64) .
404
+ %(—% W-eay B4 ]dz
which simplifies into

(1+——-—§2——9‘+ ) (11-9)

This equation converges rapidly, the first three terms givipg sufficient
accuracy for many purposes.

.

RN
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If the cable chordds inclined, an exact equation for 3, could be obtained
by substituting dy/dz as obtained from Eq. (11-3) into Eq. (¢). This
leads, however, to an.extremely cumbersome result. For many purposes
the follow;ng approximate treatment gives results of sufficient accuracy:

Assumd that the length of such a cable is the same as it would be for a
cable with a horizontal cable chord, where the span equals the length of
the inclined cable chord, that is, L sec v, and the sag equals h cos v, which
is an approximate expression for the maximum perpendicular distance
from the cable to the cable chord. With these assumptions,

_ (hcosy) @
~ (Lsecy) secy

0!

Now, applying Eq. (11-9) to this hypothetical cable and using only the

first two terms,
8 6
8 = Lsec'y(l +§sec—‘7)

=L(sccy4+8_2_ (11-10)
3 secdy
To find the approximate length of the cable of Example 11-1, Art.
(11-6), use Eq. (11:9) (8 = 1{o).

8/ 1 32 1
$o = 2,000 [1 t3 (166) % ((rom)]
= 2,000(1.000 + 0.0267 — 0.0006) = 2,052 ft

To find the approximate length of the cable of Example 11-2, Art.
(11-6), use Eq. (11-10).
6 = 0.0625; secty =14 tan?y =1 + (0.25)2 = 1.0625;
sec ¥y = 1.031
8 (0.0625)*
3 (1.031)°

11:8 Elastic Stretch of Cables. When a cable supports a load,
it undergoes an elastic stretch, which is often of importance in determin-

ing cable sags and for other purposes, By the definition of the modulus
of elasticity,

8, = 200 [1.031 + ] = 208 ft

F/A FL
AL/L AE

An element of a cable of length ds is subject to a tension T,. A con-
venient method of determining the elastic stretch of a cable consists in
first determiging T.,, which by definition will be taken as that average

tension which if applied throughout the length of the cable will cause
P
B

E= whén%AL=
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the Bame tota] elastic change of length as gctually occurs Stated
mathematically, R
Tus, _ [*T.ds v -
AE — |, AE '

where A and E are assumed constant. Hence

T..=-s!; . T,ds——f Hdsds—H/[ ( )]dz (a

Considering a loading that is uniform per horizontal foot, and an inclined
cable chord, dy/dr may be obtained from Eq. (11-3), and equals
(8hz/L?) — (4h/L) + tan y. Substituting this value of dy/dr into
Eq. (a), and integrating,

T., = HL (1 + T 02 + tan? ) (b
Using Eq. (11-10) to express s,,
1+ —16—0 + tan? y
Te = H D (11-11)
sec vy + 3 5007y

If the cable chord is horizontal, ¥ = 0, whence

86
1+-§—

Suppose, for example, that it is required to find the elastic stretch of
the cable of Example 11-1, Art. (11-6), for which s, was found to equal
2,052 ft in Art. (11-7). Taking E = 27,600,000 psi and A = 50 sq in.,

164(100) .
T..._2500 1+a/(/ ) = 2,570 kips
_ Tus, _ 25702052)  _
Elastic stretch AE = 507,4(27,000)(148) 3.91 ft

To the nearest foot, the unsiressed length of this cable would be
2,052 — 4 = 2,048 ft

11:9 Guyed Structures. The application of the various relations
for cables to guys can be shown by a consideration of the structure shown
in Fig. 11-5. Suppose that a cable weighing 4.16 Ib per ft is to be used
as a guy and that it is required that this guy hold the mast BC vertically
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when the load of 100,000 Ib is applied. Takmg"‘xﬂoments about C of

the forges actmg'on the mast and noting that H, the horizontal component
of cablé stress, ‘acts torthe left on the mast,

';; " 100H = 100,000(10); H = 10,000 Ib

This valué of H must be developed to hold the mast vertically; thus the
cable sag must conform to the
following value [in this approxi-

mate solution the cable is assumed /ﬁ

to be parabolic and acted upon by ! "/ooooo'
a uniform load of \b°"£ : ‘ 2
w = 4.16(180.2/150) mg‘ 100"

= 5.00 lb per horizontal foot]: ;

_wl? _ 5.00(150)2, l_
10,000 = 8= 8h , c
h = 1.41 ft /50
Fic 11-5

The maximum tension in the guy
would occur at B and by using Eq. (11-6) equals

1.41 100 1.41\ / 100\ **
T e = 10,000 [1 000 + 16(150) + (1;;0) +8 (150) (m)]
= 12,240 Ib

It should be noted that a close approximation to the foregoing solution
can be obtained by considering the cable to act as a straight tie rod lying
along the chord AB. The length of this chord is 180.2 ft; the tension
would equal

180.2
10,000 (13—0—) = 12,000 b
The only error introduced in this approximate solution arises from the
fact that the slope of the cable at B is actually steeper than that of the
chord. Unless the sag ratio of the cable is large, this difference in slope
is not likely to be of importance.

It is usually necessary to have more than one guy on a mast or other
guyed structure, in order that the mast may be held against overturning
in more than one direction. Under these conditions, the guys are
adjusted so that they have a certain initial tension; an initial tension
equal to about half the maximum tension that will occur under load is
commonly used. In Fig. 11.-6, suppose that the sags of the guys AB
and AC have been adjusted so that, with no horizontal load applied to
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the mast ‘the horizontal component of cable tepsnon in each suy is 6,000

lb. Under these circumstances, the maximum inttial stress in gach guy,

following the approximate method of analysis suggested in the discussion

of Fig. 11-5, will equal 46,000 X 1.414 = +8,500 lb.- '

When the load of 5,000 b is applied at the top of the mast, a resultant
horizontal force of 10,000 Ib, acting to the left, must be applied at A by
the two guys to maintain equilibrium. By an approximate method of
analysis that leads to reasonably accurate results, it may be assumed that
this load of 10,000 Ib is applied by increasing the horizontal component
of tension in guy AB by 5,000 Ib and decreasing the horizontal component

S000* of tension in guy AC by the same
amount, leading to Hs = +11,000 lb
and Hac = 4+1,0001b. The maximum
guy stress is then equal to

411,000 X1.414 = 415,500 Ib

Actually, when the load of 5,000 lb
is applied at the top of the mast, point
A moves to the right. Guy AB per-
mits this movement since it undergoes
> . additional elastic stretch and since its

S0’ T s0’ sag decreases. The sag in guy AC in-
! ' creases, and the length of that guy
Fic 11-6 . .
shortens elastically. Anexact analysis,
taking into account eclastic changes of length and sag changes, can be
made, but it is relatively complicated. The foregoing approximate solu-
tion is more practical for usual design problems.

11-10 Statically Determinate Suspension Bridges. A suspen-
sion bridge is usually constructed in a manner such that the dead loads
are carried entirely by the cables. A large portion of the dead load comes
from the roadway and is uniform. It is commonly assumed that the
entire dead load is uniform per horizontal foot. On the basis of this
assumption, the cables are parabolic.under dead load only. When live
load is applied, with partial loading® so as to give maximum stresses in
members, the cables tend to change tjeir shape. In order to prevent local
changes of slope in the roadway, due to live load, from being too large,
the floor beams of the floor system are usually framed into stiffening
trusses, which in turn are supported by hangers running to the cables.
These stiffening trusses distribute the live load to the various hangers,
in a manner such that even under live loads the cable may be assumed to
remain essentially parabolic. As long as the cable remains parabolic,
it must be acted upon by a load that is uniform per horizontal foot.
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Since the hangers are equally spaced, this is equivalent to statmg "that
the hanpet stresses in a given span must be equal In the “elastic”
theory of suspension bridges, all the hangers in a given span are assumed
to have equal 8tresses. That this assumption is not atrictly correct
may be shown by the more accurate and more complicated *deflection”
theory of suspension bridges. However, unless a suspension bridge is
long and flexible, the elastic theory may lead to results that are not greatly
in error.
If the stiffening trusses of a suspension bridge are arranged and sup-
ported as shown in Fig, 11.7a, with a hinge at some intermediate point
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in the main-span stiffening truss, the structure is statically determinate,
provided that it is assumed that all the hangers in a given span have equal
stresses. The application of the various relations for cables to a stati-
cally determinate suspension bridge will be illustrated by an analysis of
the structure shown in that figure. ’

Suppose this bridge is subjectod} to a live load of 40 kips acting as
shown in the figure. Consider the equilibrium of all the forces acting on
that portion of the structure shown in Fig. 11-7b. The horizontal com-
ponents of cable reaction at each end of the cable are equal and have the
same line of action. Taking moments about point A,

(Vo + l{' 1) (240) — 40(60) = 0; Vi + V'L = +10 (upward)

Now consider the equilibrium of all the forces acting on that portion

-



258 ' CABLES . [§11-11

of the structure 8hown in Fig. 11 7¢, taking moments of these forces about
the hinge at B.

(Vi + V7o = 10)(120) + H(30) — H(54) = 0; = 50.0 kips

The maximum cable stress in the main span occurs at the ends of the
cable and by Eq. (11-7) equals 50.0(1 4 18{00)* = 53.9 kips.

Let X equal the stress in each hanger. The equivalent uniform load
of the hangers equals X/20 kips per ft. To evaluate X, use the relation
H = wL?/8h, where w = X/20.

X (2402
20 8(24)°’

Once the hanger stresses have been determined, the stresses in the
bars of the stiffening truss are readily evaluated. For example, to find
the stress in bar a, first find V, by taking moments about B of the forces
acting on the portion of the structure shown in Fig. 11-7d.

+120V, 4 195(20 + 40 + 60 + 80 + 100) = 0; Vi = —234 (down)

Now taking moments about ¢ of the forces acting on the portion of
the structure to the left of section C-C (Fig. 11-7d),

—254{10) 4+ 194(20) + F.(20) = 0; F, = +13.33 kips

For this particular structure, the side spans are not suspended. The
cables of the side spans act as guys to the towers. The horizontal com-
ponent of cable stress is the same for side and center spans, as can be
seen by taking moments about the hinge at a tower base of the forces
acting on a tower. V is assumed to act on the center line of the tower.

50.0 = X = +1—39kips

11-11 Problems for Solution.

Problem 11:1 A cable with a span of 1,000 ft carries concentrated loads
spaced at horizontal intervals of 200 ft. The magnitudes of these loads, from
left to right, in kips, are 100, 50, 200, and 300. The right end of the cable is
100 ft higher than the left end. The maximum distance, measured vertically
from the cable to the cable chord, is 50 ft. Neglecting the weight of the cable
itself,

a. What is the vertical distance from the cable chord to the point of applica-
tion of each load?

b. What is the length of the cable?

¢. What is the maximum tension in the cable?

Problem 11:2 A side-span suspension-bridge cable has a span of 500 ft
and a sag ratio of 3{o. The slope of the cable chord is defined by tany = 0.7.
The load on the cable is 1,000 Ib per horizontal foot; E = 27,000,000 psi; the area
of the cable is 50 sq in.
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a. What is the maximum slope of the cable? «

b. What is the maximum stress in the cable?

¢. Compute, 1o the nearest foot, the length of this cable.

d. Camphte, to the nearest foot, the unstressed length of this cable.

Problem 11:3 Prepare a set of curves from which the ratio s,/L can be
read, for values of 8 ranging from 0 to 0.25 and values of tan v ranging from 0 to 1,
for cables where the loading is uniform per horizontal foot.

Problem 11:4 A cable with a span of 1,000 ft and a horizontal cable chord
carries 1,500 1b per horizontal foot. The tension is adjusted until the maximum
cable stress is 2,000,000 1b. The temperature is 4+50°F; E = 27,000 kips per
8qin.; A = 40 sq in.

a. What is the corresponding sag at mid-span?

b. What is the unstressed length of this cable at +100°F?

Problem 11:5 The top of a derrick mast is guyed with 12 guys, spaced 30°
apart as seen in plan view. Each guy has a span of 400 ft and a vertical rise of
150 ft. The guy cable weighs 5 1b per ft of cable; the sag of each guy is 4 ft.

a. What compression is exerted on the derrick mast by the sum of the vertical
cable reactions?

b. What is the maximum stress in each guy?

¢c. The mast of the derrick is 150 ft high. If the boom line exerts a horizontal
force of 100,000 lb at the top of the mast, what is the approximate value of the
maximum stress occurring in any guy? (Assume that each guy participates in
resisting this force, in proportion to the cosine of the angle between the guy and
the force, as seen in plan view.)

Problem 11-6 A suspension bridge is similar to that shown in Fig. 11-7a,
having 20 panels of 20 ft each and a cable sag ratio of ¥{,. The stiffening truss
is 20 ft deep. |

a. If a live load of 1,000 Ib per ft acts over the entire bottom chord, compute
the maximum cable stress in the suspended span and the maximum bottom-chord
stress in the stiffening truss.

b. Construct influence lines for (1) horizontal component of cable stress;
(2) hanger stress; (3) stress in the stiffening-truss diagonal of the second panel
from the left tower.

¢. The dead load on this structure is 5 kips per ft. The live load consists of a
uniform load of 2 kips per ft and a single concentrated load of 20 kips. Neglect-
ing impact, what cross-sectional area is required for each hanger, using a working
stress of 50 kips per sq in. for cables in tension?
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CHAPTER 12 i/

APPROXIMATE ANALYSIS®
OF STATICALLY INDETERMINATE STRUCTURES

»

[

12:1 Introduction. From a broad viewpoint, the analysis of
every structure is approximate, for it is necessary to make certain assump-
tions in order to carry out the analysis. For example, in computing the
stresses in a pin-connected truss, it is assumed that the pins are friction-
less, so that the truss members carry axiual stress only. It is, of course,
impossible to build a pin connection that is frictionless, and as a result
the stres