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PREFACE

It is essential that the student beginning the study of structural
design obtain a thorough grounding in theory before he becomes involved
in the intricacies of the details he will encounter in putting the pieces of
members and the parts of structures together, just as a thorough under-
standing of statics is a necessary foundation for the study of structures
in all the various related fields. If, in the early stages of the study of
design, too much attention is given to the details of the structure, the
underlying principles of design are likely to become obscured in the
student’s mind. .

This is a textbook on the basic theory of flexure as applied to the
design of members in bending. It is necessary to give some attention
to details, as they are an important part of design, but the purpose has
been to keep such attention down to a minimum. If at any point the
details outweigh the basic design concepts, the authors apologize.

The book covers a beginning course in design as taught by the authors
and their co-workers during the past several years. The course is a
result of many years of constant development of the curriculum and
was established in order to utilize the students’ time more effectively
by covering the common materials. The first five chapters are covered
in the course. The first five articles of Chapter 6 are also included so
that the student, in beginning his study of design, will have brought to
his attention the fact that the common application of the flexural formula
is true only for symmetrical members, for members restrained in their
movements, or in bending about certain axes. The authors have also
endeavored, in their presentation, to avoid unnecessary use of formulas
since they believe that the student will obtain a clearer picture of the
behavior of the member if he avoids excessive formularization.

_Although it is necessary, in following specifications, to have separate
chapters for discussing the use of different materials, this textbook en-
deavors to show that the same physical laws govern any of the common
materials, and that there are no fundamental differences in the analysis
if the material is properly applicable. However, certain peculiarities of
the material must be taken into account. For example, in Chapter 5
mention is made of the effect of time yield in the design of reinforced
concrete, in order to agree with present specifications, but in the course
as taught there is no deviation from the method of transformed sections.
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vi PREFACE

This is believed to be the best method for the beginner. The other con-
cepts should be reserved for the advanced undergraduate courses in
structural design. In all such advanced courses in building and bridge
design taught by the authors and their co-workers, steel, timber, and
reinforced concrete are covered.

The book is therefore appropriate for an elementary design course that
comes between strength of materials and stresses on the one hand, and
courses in building and bridge design on the other, or it can be used to
precede separate advanced courses in steel and reinforced concrete. In
curricula in which structures are not emphasized, the book will fill the
need for a first course in design, to be followed by a single course in
bridge and building design. It is also suitable for a single course for
non-civil engineers.

The authors wish to acknowledge their indebtedness to Professor
Thomas C. Shedd who directed the establishment of the course for
which the book was written and who has assisted in its development.
They also wish to acknowledge their indebtedness to their co-workers
who have made use of the rough class notes that formed a basis for
this book, and who have made many valuable suggestions for its im-

provement.
JAMISON VAWTER
JAMES G. CLARK
Urbana, Illinots
August 1950



CONTENTS

INTRODUCTION . . . . . . . . . .t s e e e e e e e e e e e
Design of Structures—Dead Load—Live Loads—Impact—Other Forces
—Handbooks and Specifications—References.

CHAPTER
1. PURE BENDING IN HOMOGENEOUS, SYMMETRICAL SECTIONS

Types of Members—Bending in S8ymmetrical Beams—Location of Neu-
tral Axis—Bending Stresses in Rectangular Beams—Illustrative Example
—Beams Symmetrical about One Axis Only—Illustrative Examples—
Flexural Formula—Shear in Beums—Illustrative Examples—Problems.

2. BENDING IN NOl\:I}!OMOGENEOUS, SYMMETRICAL BEAMS

Nonhomogeneous Beams—Relation between Modulus of Elasticity and
Stress—Transformed Sections—Illustrative Example—Shear in Non-
homogeneous Beams—TIllustrative Example—Problems.

3. ELEMENTARY DESIGN OF STEEL BEAMS AND GIRDERS . .

Rolled Beams—Design of Rolled Beams by Section Modulus—Effect of
Lateral Support—Shear in Rolled Beams—Net Section—Lateral Forces
—Illustrative Example—Plate Girders—Economical Depth—Modified
Flange Area Method of Design—Illustrative Example—Design by Mo-
ment of Inertia—Cover Plate Length—Stiffener Spacing—Rivet Pitch—
Net Width—Bearing Stiffeners—Beam and Girder Connections—Flange
and Web Splices—Welded Girders—Illustrative Design of a Typical Floor
Panel—Problems—References.

4, ELEMENTARY DESIGN OF STEEL COLUMNS WITH BENDING

Design of Compression Members—Column Reduction Formulas—Bend-
ing in Columns—Design of Columns Subjected to Bending—Illustrative
Example.

5. ELEMENTARY DESIGN OF REINFORCED CONCRETE BEAMS
AND COLUMNS . . . . . . . o it e e e e e e e e e e
Concrete—The Use of Concrete with Steel—Placement of Steel—Trans-
formed Sections—Design of Rectangular Beams and Slabs with Tension
Steel—Illustrative Example—Moment Coefficients in Continuous Beams
—Illustrative Example: Slab Design—Design of T Beams—Illustrative
Example—Design of Beams with Compression Reinforcement—TIllustra~-
tive Problem—Effect of Time Yield—Limited Depth Beams with Tension
Steel—Shear and Diagonal Tension—Bond and Anchorage—Stirrup
Spacing—Inclined Stirrups—Bending Tensile Reinforcement—Design of
Reinforced Concrete Columns for Axial Loads—Illustrative Example—
Design of Reinforced Concrete Columns with Bending—Illustrative Ex-
vii

18

27

95

103



viii CONTENTS

CHAPTER
ample—Illustrative Design of & Typical Floor Panel—Problems—Refer-

ences.

6. BENDING IN UNSYMMETRICAL SECTIONS . . . . . . . ...
Properties of Plane Areas—Location of Principal Axes—General Expres-
sion for Stress—Illustrative Example—Unsymmetrical Beams with Lat-
eral Loads—Bending about Principal Axes—Location of Neutral Axis—
Illustrative Example—Deflection of Unsymmetrical Members.

7. BENDING IN SPECIAL BEAMS INCLUDING THOSE WITH THIN
WEBS . . . . . e e e e e
Introduction—Complete Tension-Field Beams—Flange Compression and
Tension—Flange Bending—Stiffencr Loads—Rivet Spacing—Semi-Ten-
sion-Field Beams—Tapered Beams—Illustrative Example.

167

188

APPENDIX: ILLUSTRATIVE DESIGN OF A FLOOR IN TIMBER 203



INTRODUCTION

1. Design of Structures. In the design of any structure, whether it
be a simple beam or a member (or members) of a more complicated
character, it is first necessary to take account of the function of the
structure and the loads that must be provided for. The characteristics
of the material used, the stresses to be permitted, and the manner in
which the various parts are connected to each other are all part of the
problem of design.

This is an elementary textbook in the theory and design of flexural
members, but the student in elementary design should have a back-
ground in mechanics of materials and should have had a course in struc-
tural theory (or stresses). A thorough background in these two subjects
is essential for anyone attempting to go very far in designing structures.

2. Dead Load. The two general classes of loads that a structure has
to support are the dead load and the live load (including the effect of
any impact that may exist).

The dead loads are the loads that are always acting on the structure
and that remain constant in magnitude. The weight of the material
making up the structure and the weight of any permanent equipment
that is built into the structure constitute the dead loads. Dead loads
are the result of the action of gravity.

It is necessary to make an estimate of the dead loads before designing
a structure. A beginning designer may not be able to make a very close
estimate and may have to correct his design for these changed loads.
The experienced designer will be able to make a very close estimate and
will rarely have to make corrections. He is, of course, fortified by data
accumulated during his years of experience.

3. Live Loads. Live loads are not of constant magnitude, and they
are not always acting. They can be movable, such as goods on a ware-
house floor, or similar loads; or moving, such as trains, highway traffic,
cranes, etc. Other live loads, both movable or moving, are: building
occupants, furniture, snow, ice,.wind, any stored goods, machinery, ete.
Moving live loads often produce an effect greater than they would pro-
duce in a fixed position, and this effect is called impact.

1



2 INTRODUCTION

A more detailed discussion of various types of loads and weights of
stored goods, together with building code recommendations for loads,
can be found in Chapter I of Theory of Simple Structures by Shedd and
Vawter.

4. Impact. The vibration effects caused by a load (or loads) moving
along a structure, due to imperfect balance, irregularities in the contact
surfaces, or blows, result in stresses greater than those that would be
produced if the load were in g static position. These additional stresses
are called impact stresses and are usually expressed in terms of a per-
centage of the live load stresses. A great deal of experimentation and
study has been made regarding impact, but the values used are largely
empirical and vary greatly with different authorities. More knowl-
edge of the subject is desirable.

The amounts of impact for different structures and parts of structures
are given in the various technical specifications for design.

5. Other Forces. There are other forces, in addition to the loads
previously mentioned, that will be encountered in the design of struc-
tures. Forces due to traction and stresses due to temperature changes
are common examples. Their existence, or importance, will depend on
such factors as the type of loading, the size of the structure, and the
likelihood of extreme temperature changes. The consideration of
temperature stresses often necessitates a knowledge of statically inde-
terminate structures. The designer must be able to recognize when
they are important and make proper provision for their effect.

Forces due to earthquake must also be included in localities where
earthquakes are encountered.

6. Handbooks and Specifications. It is essential that anyone de-
signing a structure of steel, wholly or in part, have ready access to a
steel handbook. The manual of the American Institute of Steel Con-
struction, Steel Construction, is the one in most general use. The 1949
printing has been utilized in the general discussion in this volume.
Therefore the student using this textbook in designing steel flexural
members should have that, or a similar, handbook at his disposal.

The handbook contains the “Specification for the Design, Fabrication
and Erection of Structural Steel for Buildings,” as revised in 1949 and
adopted by the American Institute of Steel Construction (A.I.S.C.).
The authors make general use of these specifications in their discussion
of steel design, and the illustrative examples are based on them, with
certain minor modifications.

In this discussion the authors refer to the ‘“Standard Specifications
for Highway Bridges” (1949) of the American Association of State
Highway Officials, and also to the “Specifications for Steel Railway
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Bridges” (1947) of the American Railway Engineering Association.
These are the two leading specifications in their fields.

The student should also have at his disposal the “Recommended
Practice and Standard Specifications for Concrete and Reinforced
Concrete,” as submitted in 1940 by the Joint Committee on Standard
Specifications for Concrete and Reinforced Concrete, or the ‘“Building
Regulations for Reinforced Concrete,” as adopted by the American
Concrete Institute in 1946; preferably both. The authors have made
more reference to the Joint Committee report in their discussion as it is
the basis of practically all reinforced concrete specifications in cur-
rent use. _

Handbooks with sets of elaborate tables and diagrams are not recom-
mended for the beginning student. They are confusing and largely
useless, and they detract the student’s mind from the simple principles
involved in reinforced concrete design. Dependence on such material
will destroy initiative and independent thought on the part of the stu-
dent. Experienced designers of reinforced concrete structures naturally
develop and acquire tables and charts that are valuable and time sav-
ing. The “Proposed Manual of Standard Practice for Detailing Rein-
forced Concrete Structures’” published by the American Concrete
Institute, and mentloned in Chapter 5, has important information for
detailing.

Although, as stated in the Preface, timber is a third important struc-
tural material that is widely used, it is not treated separately in this
text. All the information necessary for the design of timber beams, or
beams composed of timber and some other material, can be found in
Chapters 1 and 2. The student will need information on timber de-
tails and connections. Modern Timber Engineering by Scofield and
O’Brien, published by the Southern Pine Association (third edition,
1949), is recommended for this purpose. Timber design is illustrated
in the Appendix.

The authors have made frequent reference to Theory of Simple Struc-
tures by Shedd and Vawter, published by John Wiley and Sons (sec-
ond edition, 1941), and Siructural Design in Steel by Shedd, also pub-
lished by John Wiley and Sons (1934). Other references can just as
well be used by the student, depending on his preference. Appropriate
references are given at the end of Chapters 3 s,nd 5, and in the Appendix,
as well as in the body of the text.



CHAPTER 1

PURE BENDING IN HOMOGENEOUS,
SYMMETRICAL SECTIONS

7. Types of Members. There are three types of members en-
countered in structural design:

(a) Beams or members resisting transverse loads, often called flexural
members.

(b) Tension members, i.e., members resisting a pulling force.

(¢) Compression members, generally called columns, which are de-
signed to resist compressive stresses.

Since this book will be devoted primarily to a discussion of flexural
members, there will be no further discussion of beams at this time.

Tension members are so proportioned as to have sufficient area to
resist the applied load without exceeding the proper working stress for
the material. Where it is necessary to reduce the area of the member
because of details (rivets, threads, etc.), the net section of the member
must be considered. In considering the tension side of beams it is also
necessary to take account of the net area.

Unless the compression members are short, some type of column re-
duction formula is required in computing the allowable stress for their
proportioning. Since compression members are very commonly sub-
jected to flexure also, the elementary principles in their design will be
considered later.

Although there are only three separate types of members, as listed
above, many members are subjected simultaneously to transverse and
axial loading, and some members are subjected, under varying condi-
tions of loading, to either tension or compression, or both. Classi-
fication of a member under any one type depends primarily on the
kind of load that produces the critical stresses in the design of the
member.

8. Bending in Symmetrical Beams. The principles discussed now
and later, except for Chapter 6, are applicable only to beams that have
at least one axis of symmetry. Bending in unsymmetrical sections is

discussed in Chapter 6.
4



BENDING IN SYMMETRICAL BEAMS 5

The beam A B, shown in Fig. 1, is subjected to a load P which causes
the beam to bend. In bending, the beam takes a shape somewhat as
shown in Fig. 1d. In the discussion of members in flexure, it is assumed
that the stresses are within the elastic limit of the material, that there is
a linear distribution of stress, that stress is proportional to strain, and
that plane sections that are normal to the axis before bending remain

planes after bending.

' P W
i e g

> 8
a1 Jo_
1 AN A
(a) (e)
L
Pb .
‘___+ L 111 \2 2 e,
v [ 1A HF Neutral axis
S T 3
P ] S I > =0
—ba ”'..”1),"‘/0')
(b) S R
Pab s\
+ L el
P 12z
M
(c) (f)
1 2 ’
) .
il e, = total strain at
top for length s
Df /| ey = total strain at
7 distance y
1 2’ for length s
(@
Fia. 1

If two parallel planes are taken, such as 1-1 and 2-2, a distance s
apart, as shown in Fig. la, and the beam is considered as being bent as
in Fig. 1d, then the planes take a position such as shown in Fig. 1f. The
fibers in the top of the beam have been shortened, and those in the
bottom of the beam lengthened. Those in the top of the beam are there-
fore in compression, and those in the bottom of the beam in tension.
Somewhere there is a fiber that has not chianged in length. This is
called the neutral axis or the axis of zero stress. Since the plane sec-
tions remain planes, the change in length of the fibers varies as the dis-
tance from the neutral axis, and therefore the unit stress varies as the

same distance.



6 HOMOGENEOUS, SYMMETRICAL SECTIONS [CHaP. ]

9. Location of Neutral Axis. In Fig. 2 is shown the cross section
of a beam symmetrical about the vertical axis.

Mﬁ_ﬁ—_
Q
~
Neutral =Y “
axis dAL 7 ©
Fia. 2

Let dA = a small element of area either above or below the neutral

axis.

y = the distance from the neutral axis to d4.

f = the unit fiber stress on this element of area.

¢; = the distance from the neutral axis to the top of the beam.

¢ = the distance from the neutral axis to the bottom of the
beam.

C = the total compression at the section.

T = the total tension at the section.

C=j:fdA and T=j:fdA

If f; = the fiber stress at the top of the beam and f; = the fiber stress
at the bottom of the beam, then

Then

Therefore fl/cl = f2/02.
C=£fqydA and T=érydA
C1 Yo Ce Jo

From statics (when there is pure bending), C = T'; therefore,
h f' yaa =2 f y dA
€1 Y0 C2 Yo

and, since f,/¢; = f/cs, then

f‘ydA=fydA
V] 0

or the neutral axis is at the gravity axis of the section when there are
bending stresses only on the section.



BENDING STRESSES IN RECTANGULAR BEAMS 7

10. Bending Stresses in Rectangular Beams. The cross section
of the rectangular beam shown in Fig. le is shown again in Fig. 3a, the
section being taken at section 1-1.

The stresses in the beam at this section can be evaluated from the

moment of the resisting couple from f f X bdy X y, but in the simpler

shapes it is usually easier to calculate the stresses directly by means of

the relations previously obtained.
If M equals the bending moment at the section, then the resisting
moment is equal to C X d, or T X d., in which C and T are the result-

.
: %%-Z:f EN
— —_— T

(a) o, ©®
A
c
(1 K
L/ y T
g @ lr, @
Fia. 3

ants of the compressive and tensile stresses, respectively, and d, is the
effective depth, or the distance between these resultants.

Therefore
M=CXd, or T Xd,

Since we have a linear distribution of stress, the unit stress varies as
shown in Fig. 3c. If the unit compressive stress in the top fiber of the
beam is f., then the average unit stress is f,/2, the total compression is

Je d foXbd
= — b - =
2>< x2 4

and the resultant of these compressive stresses is (where there is a con-
stant width) at the centroid of the triangle between the neutral axis

and the top.
Likewise, if f; represents the unit tensile stress in the bottom fiber of

the beam,
e d _fi

= b —=—de
2X X2 4

and the resultant is at the centroid of the lower triangle.
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Therefore d, = %d, and we can evaluate f, and f,, the two being equal
in this case.

These are not formulas to be remembered, but in each instance the
stresses should be evaluated from the given data, as shown in the fol-
lowing illustrative examples.

11. Ilustrative Example. For a rectangular beam:

At section z—z: Area in tension = Area in compression = 20 X 16 = 320

8q in.
Total tension = 7' = i%
Distance between T and C = 40 X 2 = 26.7 in.

Resisting moment = 1607,(26.7) = 4500 in.-kips.

= Total compression = C = §2—ij-‘5 = 160f. (Ib).

fo = 1054 1b per sq in. = f,

100,100 . 10°_._ 10 20
|20k l40k RA.' 12 x 20 =9
2h 5 | l 20x 2 =10
A - B 40
: 40 x i—g =10
( 29*
15 ﬂ! M, 29x15 =435
R, X 40 Rp 12x 5 = _60
> °K
(a) 375 "
. = 4500
10° 12¢ 16
/40 el
A g K6 :
\ ; S
R, 15
(®) Cross section of beam AB
Area = 640 sq in.
(c)
Fia. 4

12. Beams Symmetrical about One Axis Only. The method for
finding stresses (or resisting moments) in rectangular beams, as shown
above, is usually the most direct approach in similar calculations involv-
ing beams having only one axis of symmetry, particularly when they
have rather regular cross sections. The examples given in the illustra-
tive examples in the next article are intended to show these applications.
Necessary explanations are given with the examples. .

13. IMustrative Examples. For nonrectangular beams and beams
with holes:
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A. Use the same span and loads as shown in Fig. 4, but replace the cross
section of beam in Fig. 4 with the one shown in Fig. 5, which has the same
depth and area.

Neutral axis, or centroid: 40"
*
fyaa=o eyl
. Neutral N
Take reference axis at top: axis N
Moment of area around reference axis: - _“_'i
10 X 32 X 5 = 1600 I§:l
40 X 8 X 20 = 6400 (a)

8000 + 640 = 12.5 in.
Area in compression = 10 X 40 4+ 2.5 X 8 = 40 X 12.5 — 32 X 2.5 = 420sq in.

Fia. 5

Average Arm Mo-
Area Stress Force about T ment
40 X 12.5 = 500 fz— 250f. 2XxX40* 66671
—-32X 25=— 80 %;—)fc - 8 Z2Xx30 — 160f,
420 242f, = C 6507f.
8 X 27.5= 220 2—;5—? fe 242f. =T
6507f. = 4500

fe = 0.691 kip per sq in. = 691 Ib per sq in.
fo =22 X 0.691 = 1.52 kips per sq in.
*3x125+ % x27.5 = % x40

B. Use the same span and loads as shown in Fig. 4, but replace the cross section
of beam in Fig. 4 with the one shown in Fig. 6, which has the same depth and

area.
[}

e (V-]
40" Y r_ r .
Neutral » C
open || paxs Spair fax17
hole | [+} N Reference 1% x 21 %x23
< <5 axis / 7 E

40"

5"

23"

=51,
(a) (b)
Fia. 6

2>«
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Neutral axis: Take reference axis at mid-depth:
Moment of hole around reference axis:

Moment of hole = —30 X 32 X —2 = +1920 - 640 = 43 in.

Average

Area Stress Force Arm Moment

40X 17 =680 % 340.01, $x17 38501

30X 11 = —330 3. —106.8f. Px11 - 784,
350 233.2f, = C 30661,

40X23= 920 &Y. 622, 2x23 95407,

30X21=-630 #if. —389. $x21 —5150f,
290 233, =T 40901

7156,
7156f, = 4500
fe = 0.629 kip per sq in. = 629 b per sq in.
= 43 X 0.629 = 850 Ib per sq in.

14. Flexural Formula. Consider the cross section of the beam
shown in Fig. 2, and assume a bending moment M at the given section.

Since the bending moment is equal to the moment of the resisting
couple, we can write:

M=j:fdA-y+j:fdA-y
M—‘:—irsz+ f‘y’dA

using the same nomenclature as before.
If I = moment of inertia of the area about its gravity axis,

=fqy2dA+fqy2dA
0 ()

and, since f1/¢; = f2/¢c, We can write

h Mc,

= I = —
Clx or f‘ I .

MCQ

I

or

Likewise
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We also have f = My/I, by substituting in the expressions for f in
Art. 9.

This is the flexural formula, widely used in beam design; it is very
convenient in the design of sections where the moment of inertia is
readily computed, and especially so in the design of steel beams where
the values of I are furnished in the steel handbooks. Its use is not always
advantageous, and the authors believe that sections such as those shown
in Art. 13 can best be solved by the method shown in that article.

15. Shear in Beams. Since the student is presumed to have a
working knowledge of strength of materials, he knows that the intensity

7
=
Neutral axis ] \ b L
y o\ |
(b)

F1a. 7

of vertical shear is equal to the intensity of horizontal shear and that,
if the unit horizontal shear can be evaluated, the unit vertical shear will
be known. This relation will not be further discussed in detail, there-
fore, and the same symbol (v) will designate either kind of unit shear.

In Fig. 7a is shown a longitudinal view of a length of beam s between
sections 1-1 and 2-2, and in Fig. 7b is shown a cross section of the same
beam. The shaded area shown in Fig. 7b is acted upon by the compres-
sive force C;’ at section 1-1 and C;’ at section 2-2.

Let M; = the bending moment at section 1-1.
M, = the bending moment at section 2-2 = M; + AM.

If f = the fiber stress of any fiber,

M M
CY = qudA = —I-rydA since f = l )
¢ IJ, I

M

cz'=j"fdA-—I—’ ydA ©
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Substituting M, = M, + AM in equation 2 and subtracting equa-
tion 1 from equation 2, we have

AM o AM
Cz"—Cl,=—I— ydA:_I-XQ

Q being the static moment about the neutral axis of the shaded area
above “c” shown in Fig. 7b. This is the difference in compressive
stresses acting on the shaded areas at the two sections and is resisted
by the horizontal shearing stress on the horizontal area s X b, where b
is the width of the beam at the horizontal section where ihe shear is
being computed.

|<_b_. The average unit shearing stress will
% 4 1, then be ——AM X q
< IXsXb

If s is made very small, then AM /s

represents the rate of change of mo-

(a) () ment, and from statics this is known

Fia. 8 as V, or the total vertical shear at the

section. Making this substitution,

v = VQ/Ib, which is the general expression for unit horizontal shear

at any certain distance above or below the neutral axis. The same

expression can be derived from the tensile side of the beam as well as

from the compressive. The unit vertical shear will be the same as the
unit horizontal shear at the same place.

As can be seen from the expression, at the top or bottom fiber @ is
equal to zero, and consequently the unit shearing stress at that point is
Zero.

The average unit horizontal shearing stress between two vertical
sections a small distance apart may be obtained at any elevation by
cormputing the change in total stress between those vertical sections for
the area either above or below the given elevation and dividing by the
area on which the shearing stress acts.

' If the unit horizontal shear is calculated for a rectangular beam, the
2

b/d
gection being shown in Fig. 8a, the value of Q is -2-(1 - y”) . This is

Neutral
axis

<
[}
Nlw
<
gl

the equation of a parabola, and the value of unit shear in a bear of this
cross section varies as the ordinate to a parabola. At the neutrak axis,

0, and 3XV
Y , and v 5%
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16. Ilustrative Examples. Shear for regular or irregular beams:

The cross section shown in Fig. 9 is the same as that in Fig. 4. With data
from Fig. 4:
10’ , 10°, 10, 10’, 10’

400"
l 300 200% y00x | Ra  400x =320
i Y v 300 x 32 =180
A ! B 50
i 200x 22 = 80
i 50
A5, | 'Y 100x 8= 20
x g *
RA 50 > RB 600
(a)
16~
Cross section M. 600 x 15=9000
. L of beam AB 400 x 5=2000
? V, =200 7000,
=84,000"%
)
(b
Fi1G. 9

At section z—z:
160 X f. X 26.7 = 84,000 in.-kips
fo = 19.7 kips per sq in.
or, from f = Mc¢/I = 6M/bd? for a rectangle,

_ 6X84000 . .
Je = 16 % 40 XX 40 19.7 kips per sq in.

Shear:
VQ _ 200 X 20 X 16 X 10

_ve_ = 0.469 ki in. h .
v= 3 T3 X 16 X 40° X 16 0.469 kip per sq in. at the neutral axis

For a rectangle

3.V 3_ 200 . .
v—§XZ_§X6_46 = 0.469 kip per sq in.
The AM between section z-z and a section 15 ft 1 in. from A is 200 in.-kips.
84,000
Cs = 67
Cont = 84,000 + 200
=+ 26.7
p = Cotr — Co _ 200/267 0.469 kip per sq in.

bXs 16 X 1
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The cross section shown in Fig. 10 is the same as that in Fig. 5a but
is used with the span and load of Fig. 9a. The computations for unit
shear follow.

The calculations shown below Fig. 5 indicate the total resisting
moment of this cross section to be 6507f,. Also, the total compressive
force is shown to be 242f,, which, of course, is equal to the total tensile
force.

At section z-z in Fig. 9a, the bending raoment is 84,000 in.-kips;
therefore 6507f, = 84,000, and f, = 12.9 kips per sq in. The maximum
tensile stress is (27.5 + 12.5) X 12.9, or 28.4 kips per sq in. For com-

h
40~ o f
Moment of inertia, I: y \ < 856" )
40 x175° &y q =2
=3~ =26050 Neutral/’ . 2
_32_ 588 _ axis 0 Q _
T X 25 == 167 ~ T = 242f,
— — T (35 x 27.5"
8x275 = 55,500 > |le§g ,;=m,.‘
81,383 @ )
F1a. 10

parative computations, using f, = Mc/I, f, = (84,000 X 12.5) + 81,383
= 12.9 kips per sq in.

If the compressive force = 242f, and the resisting moment = 65077,
then the vertical distance from the center of compression to the center
of tension (distance between C and T) is 6507f,/242f, = 26.89 in. The
center of compression, then, is 26.89 — % X 27.5 = 8.56 in. above the
neutral axis.

The intensity of shearing stress at the neutral axis for this cross sec-
tion at section z-z can be obtained from the expression » = VQ/Ib.

T 200 X 27.5 X 8 X 27.5/2
v -
81,383 X 8

= 0.929 kip per sq in.

The same value can be obtained more easily if the change in the total
compressive force is divided by the area of the shearing surface. The
change in the total compressive force is equal to the change in moment
divided by the distance between the centroid of tension and centroid of
compression. The change in moment per unit of length is the shear;
therefore,

AM 200
AC = AT = —— = —— = 7.44 kips
26.89 20.89
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and
7.44

v = —— = 0.929 kip per sq in.
8 X1 P persd
If the cross section of Fig. 6 and the calculations for it are used in a
similar manner with the span shown in Fig. 9a, the values of f, and v
can be obtained as follows:

24
7156f, = 84,000 ' |
, 5
fe = 11.74 kips per sq in. §L l l

The distance between the center of t,en§ion and ‘I_‘ g
the center of compression is 7156f,.,/233f, = 30.7 Neutral
in., and the change in the total compressive force axs
is 200 <+ 30.7 = 6.52 kips. At the neutral axis, Ry
v = 6.52 + (10 X 1) = 0.652 kip per sq in. Fia. 11

Again the beam span and loading from Fig. 9a
will be used, but the section will be as shown in Fig. 11, which has
the same area and depth as the previous cross section.

Dividing the area into two triangles and a rectangle and taking the
references axis at the top, the following computations result.

Arm to Reference

Area = A Axis = y,q AYra

8 X 40 = 320 20 6,400

2 X § X 40 =320 13.33 4,267
640 10,667

+ 640 = 16.67 = 7
or, by using a common formula,

d_2b+b 40 8X2+24

!7=§Xb+b1—§- —-m—=ﬂ=16.67m.
About the reference axis,
8 X 40° | 16 X 40° _ .
I,= 3 13 = 256,000 in.
About the neutral axis,
I, = 256,000 — 640 X 16.67> = 78,200 in.*
84,000 X 16.67 = 17.9 kips per sq in.

Je=—"78200
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84,000 X 23.33 _ S .
Je=—= 78,200 = 25.0 kips per sq in.
Ve
=T
b at the neutral axis = 8 + %% X 16 = 17.33 in.
_ 841733 2333 2X 841733\ . . ,
Q=T X 2333 X ( 5 X Tyt = 3020in.
200 X 3020

v = 78,200 X 17.33 = 0.445 hp per sq in. at the neutral axis.

PROBLEMS

1. In the figure is shown the cross section of a beam. (a) For a bending moment
of 8000 ft-kips, what is the maximum intensity of flexural
stress? (b) For an external shear of 750 kips, what is the

* ”

L'__34_,' maximum intensity of shearing stress?

r.E'_—_l 2. (a) In Problem 1, if the shear of 750 kips is assumed to
27 lle be resisted by the web only and the shearing stress is assumed

N g to be constant throughout the depth of 187

‘L the web, what is the shearing stress in
C—— the web? (b) What is the percentage :Dr

L of error in the answer for Problem 2a

24"

Pros. 1 as compared with Problem 1b, if the 6"
depth of web is taken as the distance

between the centroids of the 9anges? J

3. In the figure is shown the cross section of a beam. Pros. 3
(a) For a bending moment of 1200 ft-kips, what is the max-
imum compressive stress? the maximum tension stress? (b) For an external shear
of 600 kips, what is the maximum shearing stress? How far from the top does it
oceur?

4. In the figure, a, b, and ¢ show the cross sections of thrce beams. Each cross
section is 20 in. deep and has an area of 200 sq in. (a) If the allowable f, = f; =

10" ” Iy
= | 5" 20" 3
8 ) g > !
‘Tof
j 30”7 15"
(a) (%) (c)
Pros. 4

1600 1b per sq in., what is the maximum resisting moment for each of the beams
shown above? (b) If the allowable shearing stress = 500 Ib per sq in., what is the
maximum total shear that each of the beams can resist?
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5. (a) Draw the shear and moment diagrams for the structure shown. (b) The
cross section of beam A BC is as shown to the right with two rectangular holes. What
is the maximum flexural stress in the beam ABC? Where is this stress with respect
to the span? At this section, what is the stress in the bottom fibers?

20"
N
2"
é > |27
200" .
530"/ ' \ 3 %
AN TN N e | | S
b 40 [ 200 ] b
Cross section of ABC
Pros. 5

6. (a) With the data of Problem 5, what is the maximum shearing stress in beam
ABC? Where is the maximum stress with respect to the cross section? with respect
to the span? (b) What is the maximum shearing stress at the neutral axis? Where

is this stress with respect to the span?
7. The figure shows the loading and cross section of a beam ABCD. 1If the allow-

able flexural stress is 2000 1b per sq in. and the allowable shearing stress is 300 1b

P 6" 18”
¢ =

A AB ,@)C D

10, 20 47 |4~
10; 30’ 20’

15*

24"

Cross section of ABCD
Pros. 7

per sq in., what is the maximum value that the load P can safely have (neglecting
the weight of the structure)?



CHAPTER 2

BENDING IN NONHOMOGENEOUS, SYMMETRICAL BEAMS

17. Nonhomogeneous Beams. The beams considered previously
have all been homogeneous beams, i.e., beams composed of one material
throughout the entire section which has, for the common materials
employed in structures, the same elastic properties in both tension and
compression. Composite, or nonhomogeneous beams, can be handled
in a similar manner if cognizance is taken of the relation of the elastic
properties of the different materials that go to make up the beam. The
most common combination of materials is that of concrete and steel,
although timber and steel are often used together, and brick and steel
have been combined. It is apparent that many combinations of two
or more materials can be made that are useful or economical.

The different materials in a nonhomogeneous beam can be located in
horizontal layers; or they can be side by side as when timber members
are bolted together with steel plates on the outside, or between, or
both. These latter combinations are often called flitched beams.

18. Relation between Modulus of Elasticity and Stress. The
student is familiar with the following expression from his physics and

mechanics, E = f/e, in which f = unit stress,

£ 10,000 ¢ = unit strain, and E = modulus of elastic-
? 8,000 ity and is expressed in the same units as f.
E‘ 6,000 Y |E For an example, take three materials
P / A whose moduli are as follows:
Q 4‘000 [
@ 2,000 HAA E4 = 2,000,000 1b per sq in.
(3
3 e § § Ep = 4,000,000 Ib per sq in.

§888 Ec = 8,000,000 Ib per sq in.

Strain (¢) in mches

Fia. 12 These values represent the stress, relative

to strain, in the materials A, B, and C, re-

spectively. If the stress-strain relationships are plotted, we have the

curves shown in Fig. 12, these curves being straight lines below the
proportional limit of the materials.

For a composite beam composed of these materials, the stram varies

linearly from top to bottom, being zero at the neutral axis; but the
18
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stress varies linearly, only within the confines of each given material.
From the figure, or from the relationship f = Ee, it is seen that for a
given strain the unit stress in material A is one-fourth the unit stress
in material C, or in accordance with the ratio E4/Ec. It follows then
that for two beams of identical dimensions, one composed of mate-
rial A and one of material C, the beam composed of material C is capable
of sustaining a load four times as great as the beam composed of mate-
rial A with the same amount of strain deflection, or the beam composed
of material C is equivalent to one of material A with a width of four
times that of either original beam.

19. Transformed Sections. The above relationship can be indi-
cated better by means of a study of the cross section of an assumed
beam composed of materials A, B, and (". In Fig. 13a is shown the
cross section of a beam composed of the same three materials discussed
above. The force on any differential area, dA (= b X dy), is equal to
the stress (f) times the area; dF = f X dA. Since strain is a linear
variation, the variations for e are as shown in Fig. 13b, and, sirce
f = Ee, Fig. 13c shows the variation in f.

If the moment of the resisting stresses about the neutral axis is equated

to the bending moment, we have M =ffdA-y or M =ffb dy-y.

From Fig. 13c it can be seen that, at any given distance from the neutral

£ + A) €, /&
Y /

Y

] €; Assu:neld g
Y I neutr.
e WY el
iaﬁ _
=3 Ic
I

18~
]

30::
!
!

& /
\ (o] Ll
10" Variation for € Variation for f
! f=Exe
(a) (b) ()

Fia. 13

axis, fo = (E¢/Ea)fa, or fs = (E/E4)fa. The stress on an area dA
in material C is then fo dA or fob-dy. This can be written (E¢/E4)
b-fa dy, and therefore, if we wish to assume a linear distribution of
stress (such as f4) over the entire section, it will be necessary to increase
the width by the multiple E¢/E 4 or Ep/E 4 within the confines of mate-
rials C and B, respectively, if we wish to maintain the same total stress
in the area dA as in the original material. If we wish to maintain the
same resisting moment, there must be no change in the dimensions
perpendicular to the neutral axis of the section; only the dimensions
parallel to this axis are changed.
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This procedure of transforming one material in terms of another, in
the ratio of their moduli, is usually more convenient than employing a
variation of unit stress that is other than a continuous straight line.
This is usually referred to as the “method of transformed sections.”
The transforming can be done in terms of either material, as is illus-
trated in Fig. 14. In Fig. 14b the section has been transformed in terms

107 10 2 x10=5 §x10=25
il A == N -~
A ] 3x10=20[A4] A A
» 4 - R
. 30 B \ J10 3 x10=5
e~ B B B
o | c | c | [ ¢ | c
|
£ x 10 = 40" 8x10=20" 1o
In terms of A In terms of B In terms of C
(a) (b) (c) (d)

Fia. 14

of material' A, in terms of material B in Fig. 14¢, and in terms
of material C in Fig. 14d. If unit stresses are computed for the section
shown in Fig. 14b, the computed stresses are the correct ones for mate-
rial A, and one-half and one-fourth the correct stresses for materials
B and C, respectively. Similar relations hold for the other sections.

20. Illustrative Example. In Fig. 15 is shown a beam of span
M-N having a cross section the same as in Fig. 14a and the same values

15’ x
50% 50% 50 50%
I
M r AN
” | s
10’ =100 100 10’ 10’
50’
100*
Fia. 15

of E4, Eg, and E¢c. The bending moment at section z—x is 1250 ft-kips
or 15,000 in.-kips. The shear is 50 kips.

In Fig. 16a the transformed section of the above beam is shown in -
terms of material B, and below are the computations for the location
of the neutral axis. The variation in stress is shown in Fig. 16b. The
variation in strain is linear and continuous, whatever the shape and
whatever the materials, according to the assumptions made. The
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5= 2x10
b A f
< -
0; b 35
L3 bl < H
© Vo w =0
- _'L_i ¥ = i \\ } '/_-Neutr.al axis
o} 1
l “Reference axis i —
Variations in stress in
8 ' terms of material B
2%10=20"
(a) ()

Fi. 16

variation of stress is lincar, whatever the shape and whatever the
materials; however, this variation is discontinuous at sections where
materials are disconiinuous.

5X 4= 20
10 X 18 = 180
20 X 8 =160

360

X 20 = 4+ 400
X 9=+10620
X —4=— 640

+1380 =+ 360 = 4-3.83 in.

An inspection of the cross sections shown in Figs. 14a, b, and ¢ shows
that the neutral axis is in the same location, irrespective of which sec-
tion is used in the computations.

The computations for determining the unit stress at various points
in the different materials are given below. They should be self-ex-

planatory.
Area
5X 1817 = 90.85
5X 1417 = 70.85
161.70
20 X 11.83 = 236.6
-10 X 3.83 = — 383
197.3

Average
Stress Force
S
2 45.42f
7.08
517 I 27.60f
73.02f
5.92
1817 s 77.00f \
1.92
w1 T
72.95f

Arm about

Neutral
Axis
% x 18.17

3 x 14.17

3 x 11.83

$x 383

Moment
about Neutral
Axis

550f

261f
811t

606f

- 10f
596f

1407f



22 NONHOMOGENEOUS, SYMMETRICAL BEAMS [CHaP. 2
1407f = Bending moment = 15,000 in.-kips
f = 10.67 kips per sq in. at top
(For material A, this would be 10.67 X $ = 5.33 kips per sq in.)

}]8?’? X 10.67 = 6.95 kips per sq in. at bottom

(For material C, this would be 6.95 X § = 13.90 kips per sq in.)

%']1; X 10.67 = 8.31 kips per sq in. at 4 in. below top in material B

21. Shear in Nonhomogeneous Beams. The student will recall
from the discussion on shear in Chapter 1 that the total horizontal
shear on an area s X b (for length s of a beam) is equal to the change
in stress on the area of the beam cross section above (or below) the
horizontal plane, the unit shearing stress being equal to the total hori-
zontal stress divided by (s X b). In calculating the change in stress it
is usually more convenient to calculate the change per unit length (or
rate of change), which, divided by the width of beam, gives the unit
shearing stress. Since the stress in the beam is a function of the bend-
ing moment, it follows that the rate of change of stress is a function of
the rate of change of moment, or a function of the shear.

Since the unit stress is computed by means of the transformed section,
and since the computed unit stress times the beam width is the same at
any definite point, irrespective of whether we are transforming in terms
of material A, B, or C, as shown in Fig. 14, it follows that we can com-
pute the rate of change of total stress in terms of either material, and
this divided by the actual width of beam gives the unit shearing stress.
The unit shearing stress 4 in. below the top of the beam shown in Fig. 13
is therefore the same in either material A or material B.

Shearing stress in nonhomogeneous beams can also be computed by
means of the expression v = VQ/Ib, although there is usually no advan-
tage in doing so in this type of beam. The student should recognize
that in this expression VQ/I represents the change in total stress per
unit length on the area above the horizontal plane where shearing stress
is being calculated, @ being the static moment of this area about the
neutral axis.

If

I, = the moment of inertia in terms of material 4,
I, = the moment of inertia in terms of material B, and
I, = the moment of inertia in terms of material C,

and if



ILLUSTRATIVE EXAMPLE 23

Q. = the static moment of the area in terms of material 4,
Q» = the static moment of the area in terms of material B, and
Q. = the static moment of the area in terms of material C,

it follows, since the widths are changed in proportion to the modulus
ratio in computing both @ and I, that

This is merely a restatement of the one made previously that it makes
no difference which transformed section is utilized in the computations
as long as the change in stress is divided by the actual width.

Computations for shear are given in the following illustrative example,
using the same beam as in Art. 20.

22. Tllustrative Example. In Fig. 17a is shown the cross section of
the beam in Fig. 15, in Fig. 17b the transformed section in terms of
material B, and in Fig. 17¢ the variation in unit shearing stress. The
intensity of shear varies as a parabola, although the equation of the

.2
10" ; /—5 =TX10 x/o*
(S ~0.063
e
0.260%/0"

”» T
g, L4 - T
B|= 3 7=
/| N - i
c |y /| ] * 0.245"/a"
—/ o
Neutral axis l 2 (c)
(a) =
£x10=20"
(b)
Fia. 17

parabola changes at points 4 in. below the top and 8 in. above the
bottom of the beam. The moduli have the same values as before.

" The shear at section z—z in the beam in Fig. 15 is 50 kips, and that value will
be used here. If M = the rate of change of moment = V, and 8f = the rate
of change of unit stress in the top fiber, then V = 1407 &f, since, from the
example in Art. 20, M = 1407f.

1407 & = 50.
of = v38r = 0.0356 kip persqin. X % = 0.0178 kip per sq in. in material A.
Average rate = -:—g-:—-; X 0.0178 = 0.0158 kip per sq in.

Change in stress in material A = 0.0158 X 10 X 4 = 0.632 kip.
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. . . 0.632
Shear in material A 4 in. below top = v, = 0x1

Change in stress above (or below) neutral axis = 73.02 X 0.0356 = 2.60 kips.
(See calculations for total stress in Art. 20.)

= 0.0632 kip per sq in.

Shear in material B at neutral axis = v, = % = 0.260 kip per sq in.
Average rate in material C = 0.0356 X 1;8137 — = 0.0306 kip per sq 1n.

Change in stress in material C = 0.0306 X 10 X 8 = 2.448 kips.

2.448 .

ox1- 0.2448 kip per sq 1n.
These same shearing stresses will now be calculated from the expression

v = VQ/Ib.

Shear in material C 8 in. above bottom = v, =

X 5X 18173 = 9,990
IX 5X 14173 = 4730
1 Xx20x11.83 = 11,050
$X10x 383 =— 190
25,580 in.t = T
I, = 25,580 X 3 = 51,160 in.*

I. = 25,580 X ¢ = 12,790 in.*
50 X 5 X 4 X 16.17

Vg = 25,580 X 10 = 0.063 kip per sq in.
50 (20 X 1617 + 10 X 1417 X 14217

v = 55380 X 10 = 0.260 kip per sq 1n.
50 X 20 X 8 X 7.83 . .

Ve = 25,580 X 10 = 0.245 kip per sq in.

PROBLEMS

1. In the accompanying figure, the material B has a modulus of elasticity which

20" is eight times as much as that for material A4, (EE = -) .

(a) For a bending moment of 1000 ft-kips, Eq 1
what is the maximum flexural stress in
material A? in material B? (b) If the ex-
ternal shear is 200 kips, what is the i) A

[ :Qi A
& maximum shearing stress? In which
material is this stress? :ca :9 B
B 2. The figure shows the cross section
of a beam composed of three materials. W e

The moduli of elasticity are 12,000,000 b
B. 1 per sq in. for 4, 3,000,000 b per sq in. Pros. 2

g 4"
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for B, and 6,000,000 Ib per sq in. for C. For a bending moment of 500 ft-kips, com-
pute the maximum flexural stress in each material.

3. A 6 by 1 in. steel plate is attached to the bottom of a 16 by 16 in. timber as
shown. It is assumed that E,/E,; = 20 and that the allow-
able flexural stresses are 18,000 Ib per sq in. for steel and 16"
1600 Ib per sq in. for timber. What is the maximum bend-
ing moment that this composite beam can safely resist?

4. (a) Using the data from Problem 3, what is the max-

imum shear the composite beam can resist for a shearing :3 Timber

stress of 150 Ib per sq in. at the neutral axis? (b) Is the

unit shearing stress greater at the neutral axis or at the

attachment between the timber and steel? (¢c) What is LT—T .

the maximum shearing stress in the steel for the shear 6" x 17 steel
found in part a? Pros. 3

5. A load P is applied to an 8 by i6 in. beam of
southern pine (No. 1 structural longleaf) at the center of a 20-ft span. The allow-
able flexural stress = 1600 1'» per sq in., the allowable horizontal shearing stress =

p
l .
|
|

1

%z

16"

10° 10’

1
oy
|

o

Pros. 5

120 Ib per sq in., and the modulus of elasticity = 1,600,000 Ib per sq in. If the
weight of the beam is neglected, what is the maximum safe value for the load P?
6. In Problem 5, if a steel plate 8 by 1 in. were attached to the bottom of the
8 by 16 in. beam, what would be the maximum safe value for the load P? For the
steel plate, assume that the allowable flexural stress is 20,000 Ib
10" per sq in. and E = 29,000,000 Ib per sq in. For this value of
P, what is the shearing stress between the steel plate and the
wood?
A 7. In Problem 5, if a steel plate 8 by ¥ in. were attached to
the bottom of the 8 by 16 in. beam and another 8 by % in. steel
plate were attached to the top, what would be the maximum safe
] value for the load P? What is the shearing stress in the wood for
2% e & this value of P?
o 8. As shown in the figure, a beam 10 in. wide and 22 in.
Pros. 8 deep is composed of material A with a hole 2 in. by 2 in. filled
with material B. Material B is attached to material A and has
a modulus of elasticity which is twelve times that of A. For a bending moment of
115 ft-kips, what is the maximum flexural stress in material A? in material B?
9. In the figure shown is the cross section of a beam which is composed of a
U-shaped member of material A with a plate of material B attached to the top of

22"

-]
e
2"

>4



26 NONHOMOGENEOUS, SYMMETRICAL BEAMS [CuaP. 2

the legs. The inside of the U (8 by 12 in.) is open. (a) For a bending moment of
250 ft-kips, what is the maximum flexural stress in A? in B? (b) For an external

/12" x 1” plate (B)
l<-A

-

4"
12”

E,
f-10

2" LS

¥
&~ 12”

Pros. 9

shear of 90 kips, what is the maximum shearing stress in A? What is the shearing
stress at the attachment of B to A?



CHAPTER 3

ELEMENTARY DESIGN OF STEEL BEAMS AND GIRDERS

23. The most common specifications for steel structures are those of
the American Institute of Steel Construction (A.I.S.C.), the American
Association of State Highway Officials (A.A.S.H.0O.), and the American
Railway Engineering Association (A.R.E.A.). These were referred to
in the Introduction. Each of these specifications has been revised from
time to time, and further revisions of the current ones are being made
constantly. Since it is desirable that designers be able to apply the
structural principles involved in a design to any set of specifications
and since, where specifications are followed, it is further desirable that
the most recent ones be used, no formal set of specifications is incor-
porated in this text. The three specifications above, or others, are
available, depending on the purpose for which the members are intended.

Many different shapes of steel sections are manufactured (rolled) by
various companies. Each shape is rolled in different sizes and is iden-
tified by linear dimensions (such as depth, width, or both) and also by
weight. The designating dimensions are nominal dimensions only.
The actual dimensions, allowing for permissible tolerances, are given
completely in a handbook or catalog published by the company produc-
ing the shape. These dimensions include thicknesses, tangent lengths,
and rivet gages, as well as widths and depths in both fractional and
decimal values. Weights, areas, radii of gyration, section moduli, and
moments of inertia are also tabulated. Some of the shapes rolled
include plates, angles, zees, tees, H sections, channels, and I beams of
two types, American Standard and wide flange. Information concern-
ing the available lengths of some of these shapes is also available in
handbooks.

In the design of rolled sections to be used as beams, or sections com-
posed of fabricating two or more of these shapes together, as shown in
Fig. 18, the student will find some type of handbook indispensable. As
mentioned in the Introduction, the one most generally available is the
handbook Steel Construction, published as a manual of the American
Institute of Steel Construction. This handbook contains data on the

shapes rolled by practically all the steel companies. The latest edition
27
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Rivets.\: I Welds;l

Wide flange American Plate Plate Channel
Standard girder girder
(riveted) (welded)
Fia. 18

at this writing is the fifth edition (ninth printing, 1949), containing the
1949 A.1.S.C. design specifications used largely in this text, with some
modifications.

24. Rolled Beams. Rolled steel beams, usually referred to as I
beams from their shape, play an important role in structural design.
The two general types ordinarily met with in design are the American
Standard beams, rolled by practically all rolling mills, and the wide-
flange (WF) beams, any of which can be obtained promptly from the
Carnegie-Illinois Steel Company and the Bethlehem Steel Company.
The wide-flange beams have wider and heavier flanges and are rolled
with greater depths, and are thus capable of resisting greater bending
moments. American Standard beams are rolled in depths from 3 in. to
24 in., and wide-flange beams from 8 in. to 36 in. The wide-flange
beams have, with some exceptions listed in the handbooks, flanges of
uniform thickness, whereas the American Standard beams have tapered
flanges. For wide-flange beams of a given nominal size such as 30 X 10,
as the weights change from 108 Ib per ft to 116 to 124 to 132 lb per ft,
the heavier beams are obtained by increasing the distance between the
rolls laterally to make the web thicker and the flange wider and increas-
ing the distance between the rolls vertically to make the flanges thicker.
For American Standard beams of a given nominal size such as 24 X 7,
the heavier beams are obtained by spreading the rolls only in a lateral
direction, thus keeping the depth a constant (24 in.). In both the wide-
flange beams and the American Standard beams the increase in web
thickness is always equal to the increase in flange width as weights
are increased within any nominal size group.

When beams deeper than the above are required, they are obtained
by building up an I-shaped section by means of plates and angles. This
type of section is called a plate girder; the design principles involved
will be discussed later in this chapter.

Another type of rolled section often found advantageous when a«hght
beam is desired is the channel. In the channel section the flange is on
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one side of the web only. They are often found more economical in the
design of purlins for carrying the load to roof trusses.

25. Design of Rolled Beams by Section Modulus. In the design
of rolled steel beams, best use can be made of the previously derived
expression, f = Mc¢/I. This can be expressed as M/f = I/c, in which
I/c = the section modulus (called S in the handbooks). It is a geometric
property of the cross-sectional area, independent of span or loading.
Thus, if the maximum bending moment on any span is divided by the
allowable unit stress, the resulting value is the required section modulus
of the beam section. Any beam having a section modulus not less than
the required value will have a unit stress not greater than the allowable.
It will be seen that the depth does not enter directly into the requirements
of a suitable beam (within the limits of the available section moduli),
but it is true that deeper beams will have lighter weights and smaller
deflections than more shallow beams.

Taking as an example a simple beam span of 20 ft with a uniformly
distributed load of 6 kips per ft of span, the maximum bending moment
is (6 X 20°) + 8 = 300 ft-kips = 3600 in.-kips. If the allowable unit
stress is 20,000 lb per sq in. in either tension or compression, then
3600 in.-kips divided by 20 kips per sq in. = 180 in.® = the required
section modulus. A study of the handbook will show that the lightest
weight beams that will give this section modulus will be a 24-in. I at
90 Ib or a 24-in. wide-flange at 84 lb. Since the wide-flange beams are
priced at a higher cost per pound, it is quite probable in this case that
the 90-1b I beam will be the cheaper. Also, deeper beams are usually
priced at a higher cost per pound than more shallow ones; therefore, at
the point of price change it is possible that a slightly shallower beam
will be the cheaper.

Because of limitations in headroom, or other factors, it sometimes is
necessary to employ a shallower beam than the least weight section.
Reference to the handbook will show that the least depth that can be
used in the above example will be a 12-in. wide-flange at 133 1b. In
general, the least depth beam is found to be uneconomical. The most
economical beam, considering all factors, may be one with a weight
intermediate between that of least weight and that of least depth.

A shallower beam can also be used, or a given beam can be made to
carry more load, by riveting or welding a cover plate on both flanges of
the beam. This increases the moment of inertia, and consequently the
section modulus, with very little increase in the depth of the beam.

The addition of cover plates to the flanges of rolled beams adds little
or nothing to the shearing strength of the beam. However, except for
heavy loadings and short spans, shear is seldom critical for rolled beams;
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but, when cover plates are necessary to increase the flexural strength of
a rolled beam, the likelihood of critical shear is increased.

26. Effect of Lateral Support. In the beams considered in the
previous article it was assumed that the allowable unit stress was the
same in both the tension and compression flange, namely, 20 kips per
sq in. Where the compression flange is supported against lateral move-
ment, this is permitted by the various specifications and is entirely
logical. If the beam flange is not restrained against lateral movement,
there may be additional stresses produced in the flange, as it acts essen-
tially as a column.* Any imperfection in the make-up of the flange,
any eccentricity in the application of load, or several other possible
causes will tend to accentuate this lateral deflection.

To take account of this additional stress due to lack of lateral support,
various formulas are available. They are derived from the basic ex-

pression f=fi+/a 1)

in which f = the maximum unit compressive stress.
f1 = the intensity of stress due to bending caused by applied
loads.
fo = the intensity of stress due to lateral deflection or buckling.

The above expression may be written
h=f—r )

Mc
=T

and, since

the stress f can be kept within any stated value, such as a maximum
allowable unit stress, provided a satisfactory expression for f, can be
found.

All expressions for f» used heretofore contain some form of the value
L/b, in which L = the distance between points of lateral support, and
b = the width of the compression flange, both in inches or in the same
unit of measure. Where L/b is used, the formula takes the form

L
f1=f'-k3 3)

which is a straight-line reduction formula. The most widely adopted
formula of this type for many years was
* Two major differences between the compression ﬂange'of a beam and a golumn

are (1) the compression flange of a beam has a varying axial load and (2) xt is attached
to the web of the beam.
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L
Ji = 16,000 — 150 @)

This formula appeared in many specifications.

If L?/b? is used, a curve is produced that more nearly follows a curve
representing column action than is obtained from the straight-line for-
mula. Expressing f; in terms of L?/b%, we have

2

f1=f-k1§ (5)

which is the formula for a parabola

A reduction formula of this type,
2

L
fi = 18000 — 5 = (6)

is found in the current American Railway Engineering Association’s
“Specifications for Steel Railway Bridges,” and also in ‘“‘Standard
Specifications for Highway Bridges” of the American Association of
State Highway Officials. The base design stress in both specifications
is 18,000 lb per sq in.

Since f; is a function of the total stress on the compression flange,
many designers feel that f, is therefore a function of f; and, accepting
that relation, we can rewrite formula 5 as,

L2

Ji=F—kafi 7 )
or Lo
f=h+kafy 7

from which we obtain

f

=T

@®
which is the general form of the Rankine-Gordon formula. In the
A.1.8.C. specifications printed in the 1941 edition of Steel Consiruction,
this appears as

22,500

1 + (L?/1800b%)

)

The value of f in the formula is often taken at a value that is higher
than the maximum allowable unit stress, and this is compensated for in
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the value of k. In formula 9 the maximum allowable unit stress is
20,000 1b per sq in., which agrees with an L/b of 15. Beyond 15 the
formula is used with a maximum allowable unsupported length of 40

times the flange width.
A formula of a different type is given in the 1949 A.I.S.C. specifica-

tions. This is
12,000,000

T L xd
bXt

(10)

in which d = depth of the beam, and ¢ = thickness of the compression
flange, L and b having the same meaning as before. This formula was
derived from studies made on a series of rolled beams. It is given in
the specifications for girders as well, but the authors believe that there
is some doubt regarding the general application of this formula. This
will be discussed further under girders.

The use of this formula gives some uneconomical weights in certain
cases (at least compared with older satisfactory methods of design).
Specifications should be consistent within themselves, but it will be
found that formula 10, for some beams, gives a less allowable unit
stress than is obtained by applying the column reduction formula in the
same specifications to the top flange acting alone as a column. Column
reduction formulas are discussed in the next chapter.

Referring to the beam of 20-ft span in the previous article (M =
3600 in.-kips), and assuming no lateral support for the top flange for the
entire 20 ft, it will be necessary to use a larger beam. The allowable unit
stress in the top flange will control the design.

A 24-in. wide-flange at 94 1b has a flange width of 9.061 in., giving an
L/b of 240 + 9.061 = 26.5, and applying formula 9, an allowable unit
stress of 16.19 kips per sq in. 3600 + 16.19 = 222. Since this beam has
a section modulus of 220.9, it is satisfactory.

With an American Standard beam, a heavier section is required. A
24-in. T beam at 120 lb has a flange width of 8.048 in. (240 + 8.048
= 20.8) and an allowable unit stress of 15.07. 3600 <= 15.07 = 239.
This is satisfactory (S = 250.9).

Formula 10 applied to the 24-in. wide-flange at 94 1b gives an allow-
able unit stress of

12,000,000

240 X 24.29
9.061 X 0.872

= 16.28 kips per sq in.
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For the 24-in. I at 120 lb, the formula gives
12,000,000
240 X 24

8.048 X 0.798

The two formulas agree very well in one case but not in the other.

The student should understand that the value of f;, as obtained from
these formulas, is the average unit stress in the top fiber over the width
of the top flange. This stress plus the possible maximum unit stress due
to lateral bending or eccentricity of the total flange stress is presumed
to be equal to the maximum allowable unit stress, which is represented
by f in the basic formula.

27. Shear in Rolled Beams. In Chapter 1 the value of the unit
shearing stress in beams was expressed in the form v = VQ/Ib. In
rolled beams this is usually expressed as v = VQ/I¢, in which ¢ = the
thickness of the web. It can be seen from this expression that @ (the
static moment of the area above the point at which unit shear is being
computed, about the neutral axis) varies within rather narrow limits
since the large concentration of area is in the flange. It is therefore
assumed in steel beam design that the total shear divided by the web

S
S JSAS IR S S

= 13.38 kips per sq in.

Ve _ Vi v v
Tt 'IE ='T£Q x¢ Ay 1, x ¢
(a) (b) () (d) (e)
F1a. 19

area gives a value of unit shearing stress close enough to the maximum
value so that the error involved is small enough to be neglected as far
as design purposes are concerned. The student should compute the
more exact values to satisfy himself that the error is small.

For rolled beams the difference between the value obtained by divid-
ing the external shear by the area of the web and the value obtained
from the expression VQ/It is even smaller if the area of the web is taken
as the thickness times the depth between flange centroids. Figure 19¢
shows the shear resisted per inch of depth, which is the intensity of
shearing stress times the thickness. The summation of the shear per
inch of depth for the depth of the beam must be equal to the external
shear, or area of Fig. 19¢c = area of Fig. 19¢ = external shear. Con-
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sidering these two figures, the two areas are more nearly equal if the
depth of web is taken as the distance between the centroids of the flanges.
However, specifications invariably give an allowable intensity of shear-
ing stress which is based on the gross area of the web and the assump-
tion that the unit shearing stress is uniform. This allowable stress is
less than would be permitted for a computed maximum unit shearing
stress; and consequently, in the design and analysis of I-shaped members
resisting shearing forces, the overall depth of the web is used.

Shear normally is not a factor in the design of an I beam, but it is in
plate girder design, as will be seen later. In short-span beams carrying
a very heavy load, shear might control the size of the section. In a
beam of 20-ft span carrying a load of 6 kips per ft, the maximum end
shear is 60 kips. The A.I.S.C. specifications allow a unit shearing stress
of 13,000 Ib per sq in. If 60 is divided by 13, a required web area of
4.62 sq in. is obtained, which is considerably less than the web area
available in all the beams previously considered.

28. Net Section. Whenever it is necessary to have holes in the
flanges of I beams, for bolts or any other such purpose, the beam must
be designed for the moment of inertia of the net area. This can be
easily obtained by multiplying the area of each hole by the square of its
distance to the neutral axis and subtracting the values from the moment
of inertia of the entire section. The neutral axis is at the gravity axis
of the gross area since the holes occur at regular or infrequent intervals
and the neutral axis cannot move up and down like the corrugations in
a washboard. It should be recalled that the neutral axis is the axis of
zero stress, with all that that implies. From this a little study will give
the following rules for computing net sections of beams when the holes
are not symmetrical in both flanges. If unfilled holes are in the com-
pression flange only, holes should be deducted from both flanges in
obtaining the net moment of inertia for computing the stress in the
compression flange. If the holes are in the tension flange only, the holes
should be deducted from both flanges in computing the tensile stress,
but the gross area of the beam should be used to compute the com-
pressive stress.

Holes are generally punched 4 in. larger than the diameter of the
rivet or bolt, but, on account of damage to adjacent metal in punching,
the diameter of the hole deducted is } in. larger than the diameter of
the rivet or bolt. Driven rivets or turned drjven bolts are presumed to
fill the holes, and no deduction is made for net area where compressive
stress is being computed. Full deduction should be made in computing
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tensile stress according to most specifications and in the opinion of the
authors; however, the 1949 A.I.S.C. specifications do not require any
deduction for rivet holes in beams or girders if the reduction in the area
of the flange for these rivet holes does not exceed 15 per cent of the gross
flange area. Full deduction is made for computing compressive stress
where ordinary bolts are used.

In Art. 39, the calculation of net area (or net width) for members
having two or more lines of rivets is discussed and computations for a
typical member are shown.

29, Lateral Forces. Beams are sometimes subjected to lateral forces
as well as to vertical loads. These can be due to inclined loads on a
vertical beam, to vertical loads on an inclined beam (such as purlins on
a pitched roof), or to a combinatior of vertical loads and lateral thrust.
From data on strength of materials, or as shown in Chapter 6, the gen-
eral expression for bending in two directions for symmetrical sections
is given as

Mic M262
]l:l:

I=—*7

(11)

the values of M,, I,, and ¢; being about the horizontal axis 1-1, and
the values of M,, I, and ¢, being about the vertical axis 2-2.

The above expression for symmetrical sections applies only if the
resultant of the applied load acts through the center of gravity of the
section; that is, there is no axial load or torsion on the section. In
beams the lateral force, or resultant, is usually applied to one flange
only. A precise analysis of this case would be extremely complicated,
but sufficiently accurate results can be obtained by considering that
the lateral forces are resisted by the one flange only and the vertical
forces are resisted by the entire section. In using the above formula on
this assumption for rolled beams, the section modulus of the flange in
question, about the axis 2-2, is conveniently taken as one-half of I5/c,
for the entire beam. The accuracy of the assumption that the lateral
force is entirely resisted by the flange to which it is applied is obviously
dependent on the dimensions of the beam. For deep beams with thin
webs it would be essentially correct, but for shallow heavy beams some
error would be involved.

In applying formula 11 it is customary to assume a beam that appears
to be of proper size and by means of the formula to calculate the max-
imum stress in the flange. If this does not exceed, and is sufficiently
close to, the allowable stress, the beam is satisfactory. When the
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lateral force is appreciable it is generally necessary to choose a wide-
flange beam.*

For economy in weight a section such as that shown in Fig. 20 is
often used. This consists of an American Standard I beam combined
with a channel. The channel and top flange of the I beam is assumed
to resist the lateral load. The entire composite section resists the
vertical load. This type of section is often employed
for light crane girders.

Other types of sections for resisting forces in two

->=5£ directions will be considered in Chapter 6 on unsym-

<--r

metrical sections.
30. Illustrative Example. Alternative designs for
a crane beam (or crane girder) as a rolled wide-flange
section and a smaller rolled beam with a channel added
to the top flange are given below. The assumptions
made in the computations for selecting the sections
to support a 15-ton Whiting crane are as follows. The
Fra. 20 width of the building (or more accurately the span
for the traveling crane) is 60 ft. The span for the beam
supporting the crane is 30 ft. This crane has a truck at each end (each
side of the building), and each truck is supported by two wheels whose
loads (not including impact) and spacing are shown in Fig. 21a. The rails
on which the wheels run are shown in Fig. 21b or ¢, and the weight of the

leemeleeme 1

-~
&

* On page 110 of Structural Design in Steel, Professor Shedd derives the following
formula for determining the size of a rolled section to resist bending in two directions.

(341 + 5 g—:)

8

Si =

where M; = bending moment about the major axis 1-1.
M3 = bending moment about axis 2-2.
81 = section modulus about axis 1-1.
Sz = section modulus about axis 2-2.
8 = maximum allowable unit fiber stress.

Where the lateral force is resisted by one flange only, the value of Sz should be taken
as one-half the section modulus of the entire beam about axis 2-2. This formula is
of value in selecting the section that will resist bending in two directions. It is
necessary to know the ratio S;/Ss. After a ratio is assumed and the approximate
size of beam is obtained, a close value of the ratio can be obtained from the values
of the two section moduli in the handbook. The ratio is, of course, doubled when
one flange resists the cntire lateral force. The student should try proportioning a
beam by means of this expression. ’
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rail is 60 Ib per yd. The live load is the load on the crane wheels,* which
includes the crane weight (approximately 55 kips for the entire crane)
and the lifted load of 15 tons. The critical position for the wheels on

30.6* 306"

" Rail Rail clips
Rail - clip bolts (")

Channel d

Rolled beam

I

Eccentric fillers
between clips
and channels

(%)

Hook bolts (%7)

This type of connection is used if
flange is too narrow for rail-clip bolts.
Use rail clips if flange is wide enough.

(c)

Fia. 21

Maximum moment:
Live load = 30.6 x 2 x 5322 x12.125 = 301"
Impact = 0.25 x 301 = 75.2™

12.125' . | 12.125'

|-
, 2.875

2875 | 575

P
C‘B) 4 (d)
Y ]
LCenter of gravity of wheels
15.00° le—¢ of span
- 30’-0”
Fia. 22

the beam is shown in Fig. 22. The maximum live load moment occurs
under the left wheel a distance 2.875 ft to the left of the centerline of

the span.

* For data cancerning crane sizes, capacities, weights, and dimensions, & designer
generally refers directly to the company producing the crane to be used. The Whiting
Corporation published a book entitled Crane Engineering, from which the data used
here were taken. This book is now out of print.
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According to A.I.S.C. specifications, the effect of impact is 25 per cent
of the live load, and the bending moment for impact therefore is 0.25 of
that for live load. The lateral load is taken as 20 per cent * of the sum
of the lifted load and weight of the crane trolley (30 4+ 11 = 41 kips)
and is equally distributed between the four wheels. The lateral load
per wheel is therefore (0.2 X 41) <+ 4 = 2.05 kips. The critical posi-
tion for the 30-ft span is the same as shown in Fig. 22 for live load, and
the maximum lateral moment can be obtained by taking the ratio of the
lateral to the vertical wheel loads times the meximum live load moment,
or (2.05 + 30.6) X 301 = 20.2 ft-kips.

If it is assumed that the beam and rail attachments weigh 160 1b
per ft, the total dead load for beam, attachment, and rail then is
160 + (60 = 3) = 180 lb per ft, and the dead load bending moment at
the center of the span is (0.180 =+ 8)(30)% = 20.3 ft-kips. The dead
load moment has been computed at the center of the span, which is the
general practice of designers as a matter of convenience. If the dead
load moment were computed at the point of maximum live load mo-
ment, the value would be 19.5 ft-kips instead of 20.3 ft-kips. This dif-
ference is too small to be concerned with, and for longer spans and
heavier cranes the percentage difference would be even less.

In the selection of a section to support the crane girder, first a wide-
flange shape will be considered, and then a rolled beam with a channel
attached to the top flange. For both it is assumed that the top flange
alone resists the lateral bending moment. The rail is attached by bolts
that do not have a tight fit, and, therefore, the rail is assumed to trans-
mit the vertical and lateral loads to the beam but not to participate in
resisting either the vertical or lateral bending moment.

Vertical Bending Moment Lateral Bending Moment
L.L. = 301 ft-kips 20.2 ft-kips
Impact = 75.2
D.L. = 203
396.5 ft-kips

The ability of a designer to choose the proper section to check increases
with his design experience. The beginner probably will have to check a
few sections before he can determine the most economical one. The

* The A.I.8.C. specifications provide that the above lateral force shall be 20 per

cent of the sum of the lifted load and the weight of the crane t.rolley This crane
trolley has a weight of approximately 11 kips.
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method mentioned in the footnote on page 36 probably will decrease the
number of trials.

Checking a 30 X 15 WF that weighs 172 b per ft:

_396.5 X 12 | 202X 12

f= 598.2 784 X1 = 9.01 4 6.60 = 15.61 kips per sq in.

The flange is wide enough for rail clips; consequently 2—3-in. holes should be
deducted for the 2—3-in. bolts in the top flange.

Gross area of flange = 1.065 K 14.985 = 15.96 sq in.
Net area of flange = 1.065(14.985 — 2 X ) = 14.10 sq in.

Correcting for holes:

C
f =901 (%) + 6.60 = 10.20 + 6.60 = 16.80 kips per sq in.
12,000,000 : .
Allow ﬁ,blef = '3—0—><—12—><‘ 1.87 = 17.83 klpS per sq 1n.

The section is satisfactory, since 16.80 is less than 17.83.*
To check a composite section composed of a rolled beam with a channel

attached to the top flange:

Required section modulus for vertical bending moment only equals 396.5
X 3% = 238.

* Some designers would check flanges subject to both vertical and lateral bending
by the stress ratio method. Taking the position that the top flange has an average
stress of 10.20 kips per sq in. due to vertical bending and an allowable stress of 17.83
kips per sq in., the ratio of its useful capacity that is utilized is 10.20 + 17.83 = 0.572.
However, for the lateral bending moment only half the top flange is in compression
while the other half is in tension; also, only the extreme fibers have a stress of 6.60
kips per sq in. For these reasons, the allowable stress for lateral bending should
be 20 kips per sq in., and the ratio of capacity which is utilized is 6.60 + 20 = 0.330.
The sum of these ratios is 0.572 + 0.330 = 0.902. Since this sum is Jess than unity,
the section is satisfactory.

A 27 WF 177 is also satisfactory if a shallower beam is desirable. The computed
stresses, including the correction for holes, are 11.04 and 6.58, giving a total of 17.62
kips per sqin. The allowable stress is the maximum of 20 kips per 8q in. (the formula
gives a value of 20.45).
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17.38" | 10.05”

NWMJE

2
Fia. 23

A 27 W 94 has a section modulus of 242.8, so the first trial will be this beam
with a 15-in. channel at 40 Ib, as shown in Fig. 23.

Area y Ay Ag? I, I,

27-in. W& 94 1b 2765 0 0 0 32667 57.5= 1—1—25-1
154n. U 401b 1170 1320 1544 2038 9.3 346.3
134 1b 39.35 154.4 2038 3276.0 403.8 in.4
154.4 + 30.35 = 3.92 in. = g 3276
5314
30.35 X 3.02° = — 605

11_1 = 4709 in.*

= -3—?—64—%>;—lg X 17.38 = 17.56 kips per sq in. (tension at bottom)
396.5 X 12 202 X 12X 7.5
J= 09 X 10.05 + 038 " 10.15 + 4.50

= 14.65 kips per sq in.

This composite beam will also have bolt holes for the attachment of the rail
clips, and the correction is as follows:

Gross area = (9.99 X 0.747) + 11.70 = 19.16 sq in.
Net area = 19.16 — 2(0.747 + 0.520) X § = 19.16 — 2.22 = 16.94 sq in.

10.16 . .
f=1015 (m) + 480 = 1148 + 4.50 = 1698 kips per sq in

The rivet holes in the top flange are filled with rivets to attach the
channel and the beam flange together in order to make the two shapes
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act as a composite member. Since these holes are filled, no correction
is necessary for compressive stress. The spacing of such rivets will be
taken up later in the discussion of rivet pitch.

22,500
+_1_8']776 (360

This formula for allowable stress in a flange without lateral support
will be used for all sections except rolled beams. Although the com-
pressive stress is less than the allowable, a smaller beam would give a
tensile stress greater than the allowable, and with a 33.9-lb channel the
computed compressive stress, corrécted for holes, is 17.32 kips per sq in.

Although the expression 12,000,000 = (Id/bt) was not developed for
built-up flanges, some designers have suggested a modification of this
expression in order that it can be used for composite flanges. The
authors believe that the value, 12,000,000 <+ (ld/bt), should not be
applied to composite flanges (including plate girder flanges), but, for
the sake of comparison with the allowable stress above, this modifica-
tion can be made by substituting for the quantity b X ¢ the quantity
121,/b* where I, is the moment of inertia of the top flange about a
vertical axis and b is the width of the top flange. For a rectangular
shape,

Allowable f = = 17.05 kips per sq in.

121, 12(%%/12)
¥
and for the composite flange of this example
121, 12 X 403.8

Tl 157 = 21.54
Allowable f = 12,000,000 = 12,000,000 Ib per sq in.
360 X 27.43 458
21.54

but, since Id/bt is less than 600, the allowable stress to be used is the base
stress, 20,000 Ib per sq in.

The dead load assumed for the beam and rail attachments was 160 1b
per ft, but no correction was made for the 172-b wide-flange beam or
for the composite beam which weighed 134(= '04 + 40) Ib per ft. Such
corrections would be extremely small and would not affect the design;
however, most design offices desire that the calculations filed with all
designs be made with the correct dead loads including the weight of
detail material (attachments, etc.).
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Although the composite section would save 38 1b per ft, it is composed
of two members riveted (or welded) together, and the additional fabri-
cation costs would offset to some extent the saving in weight. Where
the percentage of saving in weight is much less, the added fabrication
costs could make the composite section the more expensive one.

31. Plate Girders. When a member is required that is larger than
is available in rolled beams, it is necessary to build up a section which,
for the sake of economy, has a general shape of an I beam. This built-up
I beam is called a plate girder. Three common types of plate girders
are shown in Fig. 24. In Fig. 24a the I beam is formed from a plate,
called the web plate, and four angles which compose the flanges. Fig. 24b

is similar to Fig. 24a, the main ex-

‘—‘= T ception being that additional area
\Fi"et has been obtained in the flanges by

adding cover plates at the top and

=

- = < il bottom. In Fig. 24c the girder is

e .
‘ welds composed of plates only and is a
A —lé Y / form of plate girder widely used in
(@) (b) () welded construction. The flange
Fra. 24 plates are welded to the top and

bottom of the web plate.

In welded plate girders, each flange should consist in general of a
single plate rather than two or more plates superimposed. A series of
shorter plates may be laid end to end and butt-welded at their junctions
to form the single plates. However, more than one flange plate can be
utilized in a welded girder, and when this is done the outer plates should
be made wider, or narrower, than the inside plates in order to facilitate
the welding.

When the web depth is large or the web thickness is small, stiffener
angles are necessary for the girders shown in Fig. 24a and b, and a
stiffener plate would have to be welded to the web in Fig. 24c.

The girders shown in Fig. 24 are types that can be employed in ordi-
nary construction where extremely large bending moments are not en-
countered. Where heavy girders are required the flanges will be more
complicated, as far as shape is concerned, by side plates; by four angles
and cover plates; by built-up channel sections; or by other variations.
Details of the heavier types are discussed more properly in text-
books on steel design. The principles involved are no different from
those discussed here in connection with the design of the more com-
mon types. ’

In proportioning plate girders it is necessary to make them of suffi-
cient size to properly resist the shearing and bending stresses.
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In resisting shearing stresses it is assumed, as it was for I beams, that
the shear is resisted entirely by the web and that the allowable unit
stress is the average shearing stress in the web.

For many years, in resisting bending, plate girders were proportioned
on the assumption that the tension and compression in the flanges were
concentrated at their respective centers of gravity, that the average
stress in the flange was the allowable unit stress on the extreme fiber
(this being equivalent to assuming that the unit stress was uniform over
the flange), and that the web resisted its portion of the bending as a
rectangular beam with its extreme fiber stress being equal to the flange
unit stress. This methed of proportioning, called the flange area method
of design, gave fairly satisfactory results for a number of years, although
the stress in the extreme fiber would be higher than the allowable unit
stress. For deep girders this error was small, but for shallow girders
carrying heavy loads the error could be appreciable.

Present specifications require that plate girders be proportioned by
the net moment of inertia of the section or the gross moment of inertia
as in the A.I.S.C. specifications. The flange area method will not meet
these specifications, but the student will find that proportioning and
designing a girder by the moment of inertia method is a rather cumber-
some procedure. Article 33 presents a method, called the modified
flange area method of design, that has all the advantages of the flange
area method and gives results that are closer to those obtained with
the moment of inertia method, and slightly conservative. It is a satis-
factory substitute, conforming to all specifications calling for the moment
of inertia method. This modified method was published first by Profes-
sor Thomas C. Shedd in his Structural Design in Steel, and it has been
used by the authors ever since its introduction. They have found it
satisfactory, and it is given here as the preferred method.

32. Economical Depth. The least weight depth of plate girders
generally met with in practice varies from about 1% to § of the length of
the span. For building girders an average value is about v of the span
length, and about 1% for bridge girders. For heavy loads the economical
depth is increased, and for long spans this ratio is decreased. An ex-
perienced designer is able to estimate the required depth for economy
within very close limits, taking into consideration the various factors
that enter into the proper choice.

In Art. 84 of Structural Design in Steel, Professor Shedd has derived
several formulas for economical depth of plate girders under various
conditions and has drawn several diagrams for the value of his factor k.
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He suggests two approximate formulas as:

/

for girders with intermediate stiffeners, and

M
d=462/—
f

for girders without intermediate stiffeners. In these formulas M = the
maximum bending moment in inch-kips, and f = the allowable intensity
of bending stress in kips per square inch.

These two formulas prove very satisfactory for obtaining an estimate
of girder depth. For a given loading and span, if a curve were plotted
with depth as the abscissa and cost (or weight) as the ordinate, on the
basis of comparative designs, it would be found to be rather flat over a
fair range in depth at the low point of the curve. There would there-
fore be considerable latitude in choosing the depth, but the expressions
above will prove to be a useful guide. The web slenderness ratio and
other factors will have some bearing on the depth chosen.

33. Modified Flange Area Method of Design.* After determining
the approximate depth of a plate girder, the design is carried forward
in the following order:

(a) Proportion the web.
(b) Proportion the flange.
(c) Check the depth and modify it if necessary.

The web must have sufficient area to resist the maximum shear, and
it must also have a great enough thickness so that the requirements for
minimum thickness of material, or the proper slenderness ratio (h/t),
shall be met. This latter requirement is more likely to determine the
size of the web plate used rather than the area required to resist shear.
It is a usual requirement in specifications that the thickness of plate
girder webs (f) be not less than 13 of the unsupported distance between
flanges (h in Fig. 24). It is common practice to place the backs of the
flange angles £ in. beyond the edge of the web plate, and, if a preliminary
estimate can be made of the size of the required angles, the unsupported .
distance will be known for the assumed depth. If, in assuming a depth

* As stated in Art. 31, this method was first introduced by Shedd in his Structural
Design in Steel.
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of web, it is found that the unsupported depth is slightly more than that
permitted for a given thickness to meet the T4 ratio, it will be more
economical to reduce the depth the small amount necessary to use the
given web than to use a web 1y in. thicker, provided the web area re-
quirements are satisfied. As an example, suppose the expression for
least weight depth gave a depth of web of 88 in. and 6-in. flange angles
were to be used, then h, the clear depth between flanges, would be
8 +2X31—-2X6=176} in. The minimum thickness of web is
therefore 763 + 170 = 0.45 in., or 4 in. Tf the depth of web were de-

f

” | \ -
— e A
W f h / f=allowable
ol & stress
f, = unit stress
. L 3 at centroid
5 - - —t- - -— of flange
| L___JF:J L o
True variation in f
(a) (b)

F1a. 25

creased to 86 in., the web could have a thickness of 1% in. The depths
and thicknesses of webs, as well as other parts, should be consistent with
readily available sizes. The A.I.S.C. specifications permit a minimum
thickness of  in. on interior construction. The authors are not inclined
to favor a web this thin except in light girders where the clear depth is
considerably less than 170 X % in.

The flange is proportioned so as to be able to resist the bending mo-
ment with the assistance the web provides as a rectangular beam. In
proportioning the flange it is assumed that the average unit stress in the
flange is that at the center of gravity of the flange, and this value must
be such that the unit stress at the extreme fiber of the girder is not
greater than the allowable value given in the specifications. It is
assumed that the unit stress varies as its distance from the neutral axis,
as shown in Fig. 25. In order to assume correctly the average unit
stress, it is necessary to know the ratio between the distance between
centers of gravity of the flanges (the effective depth) and the overall
depth of the girder. The correctness of the design depends on the cor-
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rectness with which the assumed effective depth is chosen. The proce-
dure can be as follows:

Let dy’ = the assumed overall depth.
d; = the assumed effective depth.

Then f; = f(d1/d,’) = the estimated average unit stress.
If A; = the estimated flange area, including the portion of the web
effective as flange area, then

v: 31

_ M
dy X fi

The dimensions for the assumed girder are shown in Fig. 25.

The flange can be proportioned on the basis of 4;, and the design
can then be checked by calculating the location of the center of gravity,
the overall depth, and the new average stress fo = f(d2/ds’), in which
ds' and d; are the overall and effective depths, respectively, for the
girder as proportioned. The final required flange area Ar would then be

AF = A1 X ﬁ X é
d2  Jf2

If there were very little difference, it would not be necessary to recal-
culate the location of the center of gravity. Where cover plates are not
required, it probably will be possible to locate the center of gravity and
overall depth on the first calculation accurate enough for final design.
An experienced designer is quite likely to estimate his values closely
enough so that a recalculation of area is not necessary, but the student
probably will find it necessary to go through one or more trials in the
process of his design.

Practically all specifications require that the tension flange be propor-
tioned for the net area, i.e., that rivet holes be deducted, and they also
provide that the compression flange cannot be smaller than the tension
flange. This means that the design of the tension flange controls the
design of the girder if the compression flange has sufficient lateral sup-
port. The above discussion applies with equal force, however, to the
design of either flange. The computed center of gravity is the center
of gravity of the gross area, no matter which flange is being considered.

Where the compression flange does not have lateral support, it is
possible that the allowable unit stress is reduced to a low enough value
80 that the required compression flange is larger than the tension flange,
even though it is figured on the basis of gross area. In this case the
center of gravity of the girder is above the center of the web, and the
portion of the web effective as compression flange area is 3 of the area
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above the center of gravity rather than # of the total web area. The
student should be able to show why this is so after he has studied
the development presented in the next paragraph. The formulas for the
reduction in allowable stress, where there is lack of lateral support, are
usually the same for girders as for beams, except that for girders the
authors feel that more consistent results can be obtained with the older
formulas than with the 12,000,000 <+ (ld/bt) formula. This formula
was derived from a study of rolled beams, and in welded or riveted
girders, especially where the webs are deep, the results are not con-

P A d
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sistent with the generally used column formulas. Since the base stress
used in this chapter is 20,000 lb per sq in., the authors believe that the

expression 292 500
B Ak

180062

should be used to compute the allowable stress for compression flanges
without continuous lateral support. The maximum stress permitted is
20,000 1b per sq in., which corresponds to an L/b ratio of 15.

The web is a rectangular beam with a section modulus of d?#/6 and
therefore can resist a moment equal to f,(d?t/6), where d is the depth of
web, ¢ is the thickness, and f) is the stress at the extreme fiber of the
web. This can be written f,(dt/6) X d. If f; is assumed to be the same
as f, and therefore d = the effective depth, it will be found that the
web is as effective in resisting moment as if § of its area were concen-
trated at the center of gravity of the flange, and consequently it can
be assumed that § of the area of the web can be subtracted from the
required flange area in proportioning the flange. This is illustrated in
Fig. 26.

1+
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This value of § is based on the gross area of the web. Where the
flange is being proportioned for net area, as is common for the tension
flange, a suitable deduction should be made from the area of the web.
The greatest concentration of rivet holes in the web occurs at web splices
or stiffener angles. The maximum deduction normally encountered in
design is about 4 the web area. It is customary to assume that the net
area of the web is 3 of the gross area, and therefore 2 X % = %; and in
proportioning the tension flange } of the web area is considered effective.
Where the flange is proportioned for gross area, & the area of the web
is effective.

This method differs from the flange area method outlined in Art. 31
only in that the unit stress used in proportioning the flange is that
occurring at the center of gravity of the flange with the extreme fiber
stressed at the allowable working stress. In the flange area method it is
assumed that the working stress is distributed uniformly over the entire
flange.

The method of proportioning a girder, as outlined above, can best be
exemplified by means of an illustrative example. Article 34 gives a
discussion of the steps taken, as well as the design calculations.

34. Illustrative Example. Assume a girder span of 48 ft carrying
a uniform load of 8 kips per ft of span, including the weight of the girder
itself. .,

M= —8—%}8— = 2,304 ft-kips V =8 X 24 = 192 kips
= 27,650 in.-kips

-in. rivets will be used, giving a computed hole diameter of 1 in. The follow-
ing allowable stresses will be used:

Tension on extreme fiber = 20,000 Ib per sq in. on net area.
Compression on extreme fiber = 20,000 Ib per sq in., with lateral support.
Shear on webs = 13,000 lb per sq in. on gross area.

The compression flange is assumed to have lateral support.

3[27,650

5.5 0 = 61 in. 182 = 14.77 sq in. required web area -
With a 60-in. web and 6 by 6 in. flange angles,
14.77 . 60.5 — 12 .
—63— = (.246 in. —1—7-(-)—-— = (.286 in.

A thickness of not less than 1% in. will be required.
1 web 60 X % = 18.75 sq in.
X 3 = 2.34sqin.
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The overall depth will be assumed to be 62 in., and the effective depth 59.5 in.
59.5

20 X 2 19.19 kips per sq in.
27,650 .
—'—59.5 ;E-ﬁ = 24.22 8q 1n.
Trial section:

1 web 60 X %5 = 18.755q in. gross X § = 2.34
2 bottom £ 6 X 6 X § = 14.225q in. — 2.5 = 11.72
1 bottom cover 14 X 3 = 7.00 - 1.0 = 6.00
1 bottom cover 14 X § = 5.25 —075 = 4.50

24.56 sq in. net
1422 X 1.73 = 24.60
1225 X 0438 = 5.36

26.47 )19.24
0.73 in.
60.5
1.0
0.75

Overall depth = 62.25 in.
Effective depth = 60.5 — 1.46 = 59.04 in.

20 X 59.04 _ 18.97 kips per sq in. 27,650

62.25 59.04 X 1897 _ 24.69 sq in. net

The section is satisfactory and is shown in Fig. 27. If the outside plates were
made 14 by 15 the net area would be 25.31 sq in.

[CS=—= Sameas
fyw I--\\tension
flange

| .—1 web, 607 x -1%.

62.25"
60.50”
3' 59 04. 73-

R 2Us,6"x6"x
-—ﬁéfl cover plate,14” x 3~

1 cover plate, 14" x-g-"
Fia. 27
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The specifications require that the center of gravity of the flange lie
within the flange angles. This can usually be met, in flanges of the
type in this example, if the area of the angles is from 33 to 40 per cent
of the required flange ares, or if the cover plates do not exceed 60 to 70
per cent. Thinner angles and thicker plates could be used and still
meet this requirement. Some specifications limit the cover plate area,
in moderate-sized girders of this type, to 50 per cent of the required
flange area. This flange meets this requirement.

The student should design this girder with a shallower web and check
on the total required weight as compared with the weight of the above
girder. Using a different size of rivet would also be good practice. The
approximate weight of this girder can be computed as follows:

Maximum top flange net area = 22.22
Maximum bottom flange net area = 22.22
Web gross area = 18.75
Details, 60 per cent of web

(approximate) = 11.25

74.44 sq in. at 3.4 Ib per ft = 253 Ib per ft *

Some designers prefer to use 6 by 4 in. flange angles rather than
6 by 6 in. angles, although there are certain advantages in the latter
as far as shop work is concerned. For 6 by 4 in. angles (the long legs
out), the effective depth of the girder is increased a small amount, thus
resulting in a slightly less required net area. For this particular girder,
however, the extra thickness of material required results in a slightly
greater gross area.

35. Design by Moment of Inertia. Although most specifications
require that plate girders be proportioned by the moment of inertia of
the net section, and the A.I.S.C. specifications allow the gross section,
there is no direct method of approach in proportioning a girder to meet
some predetermined moment of inertia or section modulus. Any direct
attack of the problem would entail a design by some method comparable
to the one above and then computation of the moment of inertia for a
check on the specification requirement. The above method should
prove satisfactory without the moment of inertia check.

The computations for checking the girder in Art. 34 by the net
moment of inertia are as follows:

* In these calculations the common assumption is made that where cover plates

are cut off the average gross area of a flange is approximately equal to the net area
at point of maximum moment. One square inch of steel weighs 3.4 1b per ft of length.
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Top flange 2 X 24.2 = 48.4
14.22 X 2852 = 11,566
,,,,, e
1225 x 255 _ o8
12
12.25 X 30.69* = 11,538
Bottom flange  (same) = 23,153
Web = 5,625.0
51,931
Web holes * ¥ X 2968 = 424
2 holes 1 X 14% X 2800 = 2,450
4 holes 1x1} x 3038 = 5,537
8,411
I= 43,520
. 43,520
Section modulus = 3113 = 1398.
Required section modulus = 22% = 1383.

36. Cover Plate Length. When cover plates are used in a plate
girder flange, their area is proportioned so that in combination with the
flange angles and web they can resist the maximum bending moment on
the span. At other points the maximum flange area is not required,
and, as the bending moment decreases toward the end of a simple span,
one or all the cover plates can be omitted. On outside construction,
specifications require that at least one cover plate on the top flange
should extend the full length of the span, and some specifications re-
quire that one on the bottom flange should extend the full length also.
On inside construction, it is permissible for all cover plates to be cut off
when they are no longer needed to resist stress.

If we assume that the effective depth of the girder is a constant, which
is essentially true, and if we assume that the allowable stress at the cen-
ter of gravity of the flange is a constant, then the required area of the
flange will be directly proportional to the bending moment in the girder.
This provides a very simple way in which to determine the points at
which the cover plates are no longer needed to resist stress. These
points are called the theoretical points of cover plate cutoff.

* These are the holes for the stiffener rivets that go through the web only. If
the maximum spacing of 8 diameters is used, it will be 7 in. For a 1-in. hole every
7 in., the deduction will be approximately + of the moment of inertia of a plate,

48% X 5.
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If the moment curve for a girder is drawn as in Fig. 28, where the
moment curve for the girder previously designed is shown, and the
maximum ordinate (in this case the middle ordinate) is divided in pro-
portion to the various parts that make up the area of the flange, the
theoretical points of cutoff of the cover plates can be obtained by draw-
ing horizontal lines through the ordinates corresponding to the relative
area of the respective cover plates. From the points where these hori-
zontal lines intersect the moment curve, the theoretical length of cover
plates L; and L,, can be obtained. If one prefers, he can choose a scale

Plot either net or gross

area on this inclined line

L, )

450
Outside cover
6.00
/< Inside cover
14.06 )
Eff. web + angles
2

L =480 -

Fia. 28

for the flange area so that the ordinate for the total flange area is equal to
the ordinate for the maximum moment, thus eliminating the inclined
line in Fig. 28. ‘

Although the moment curve shown in Fig. 28 is a regular symmetrical
curve, the method of obtaining cover plate length shown there can also
be applied where the moment curve is unsymmetrical. As a matter of
fact, the method in Fig. 28 has its greatest measure of applicability
when the moment curve is unsymmetrical or consists of a small number
of straight lines.

Where the moment curve is a parabola, as in Fig. 28, it is usually
more satisfactory to employ a simple expression, that utilizes the
properties of the parabola, in finding the theoretical cover plate length.

If L = span length,
L, = theoretical length of the cover plate in question, :
a = area of the cover plate in question plus area of all cover plates

outside it, .
Ap = total flange area including the effective web area (} of the
web area for net areas, § for gross areas).
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Since the offsets to a parabola, from a tangent, vary as the squares of
the distances along the tangent, the following relation holds:

(Lc/2)2 _ a
(L/2)?  Ar

L—L\/z 12
e =Ly7 (12)

A cover plate length obtained by either of the two methods above is
the theoretical length, i.e., the point where cover plate area no longer
is required. Since there is stress in the cover plate up to this point, it is
necessary to extend the cover plate some additional length in order that
the rivets through the cover plate shall not be greatly overstressed.
Specifications vary as to the requirements for this additional length.
Some of the variations are that it must be at least 1 ft beyond the the-
oretical point of cutoff, and that it is sufficient to allow two rows of
rivets at the regular pitch beyond the theoretical point; and many
girders have been designed with the cover plates having an additional
length beyond the theoretical point that permits enough rivets to
develop in the cover plates the average flange stress at this theoretical
point. No matter how far the cover plate extends, there will be some
rivets overstressed unless the plate extends to a point where the flange
stress is very low. The authors believe that an extension of some con-
venient amount, approximately 1 ft at each end, makes good practice,
considering all points concerned in the problem.

If expression 12 is applied to the girder designed in Art. 34, the fol-
lowing values would be obtained.

Therefore

4.50
Ly = 48 |——— = 20.54 ft
24.56

.

10.50
L, = 48, [—— = 31.38 ft
24.56

Lengths of 23 ft and 33 ft are satisfactory.

It will be observed that in obtaining these lengths the areas, a and Ap,
were net areas. Either the net areas or the gross areas could be used, or
each could be used in separate solutions to obtain two values. This is
also true for a graphical solution, such as Fig. 28. Since the net area of
the tension flange usually determines the size of both flanges, it is gen-
erally customary to calculate the cover plate lengths for the tension
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flange and make the lengths for the compression flange the same. If
the gross areas had been taken, the following results would have been
obtained.

5.25
L, = 48\/——— = 20.22 ft
29.60

12.25
L, = 48\/—— = 30.88 ft
29.60

This has no material effect on the lengths used; 22 ft and 33 ft are
satisfactory.

Flange plate lengths for welded girders can be obtained by either the
graphical method or the arithmetical method described here. Because
current specifications permit the same intensity of stress for butt welds
in tension and in compression, the tension flange plates and compres-
sion flange plates will be the same in length if the compression flange
has sufficient lateral support.

It is possible to write an equation (or series of equations) for an
unsymmetrical moment diagram and solve for the points of theoretical
end of cover plates, but the work involved is such that the graphical
method shown previously is more satisfactory. Where the moment
diagram is a parabola (or where it is the result of a large number of
equal and equally spaced concentrated loads so that it is essentially a
parabola), the expression in formula 12 is more advantageous.

37. Stiffener Spacing. Shear was not discussed to any great extent
under rolled beams since it is not important in their design, except in
rare cases. Diagonal compression was not mentioned. Both shear and
diagonal compression are of importance in the design of plate girders
because of the deep slender web plates encountered. Where shear
occurs alone, as at the neutral axis of a flexural member, the vertical
and horizontal shear can be combined into tensile or compressive princi-
pal stresses making angles of 445 deg with the neutral axis. These
values will be discussed in more detail in Chapter 5, where the value of
diagonal tension is important in the design of reinforced concrete mem-
bers. The diagonal compression is important in steel girders as it acts
as a compressive force on a thin diagonal column, and, if not properly
reinforced where necessary, the girder can fail by diagonal buckling in
the web.*

At the neutral axis the compressive principal stresses are equal to the
unit shearing stresses. On the compressive side of the neutral axis they

* A method is presented in Chapter 7 whereby a girder can be designed safely
even though the web may buckle.
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are greater than the shearing stresses and act at an angle with the
neutral axis of less than 45 deg, and on the tensile side they are less
than the shearing stress and act at an angle greater than 45 deg.
The actual value is of no importance since methods of spacing stiffener
angles to stiffen the web against buckling are based on formulas that
include the value of the shear and, although semirational in derivation,
are largely empirical in fact. It is somewhat beyond the scope of this
book to discuss the detailed background of the various formulas. It is
sufficient to say that they have been based on the idea of column action
in diagonal strips of the web, but attention here will be given only to
formulas in current specifications.

Where carbon steel is used, specifications generally state that inter-
mediate web stiffeners shall be provided where the clear depth of the
web between flanges is greater than 60 times the web thickness (the
A.1.8.C. specifications use 70). Since this ratio in rolled beams is less
than 60, it is seen that buckling is not a problem in normal beam design.

The A.I.S.C. specifications provide that, if 2/t is equal to or greater
than 70, intermediate stiffeners shall be required at all points where v

exceeds 64,000,000
(h/t)?

in which A = clear depth between the flanges in inches.
t = thickness of the web in inches.
v = unit shear in pounds per square inch.

It further provides that where intermediate stiffeners are required the
clear distance between them, d, shall not exceed 84 in. or the value given
by the formula 11.000¢

Vo

The A.A.8.H.O. (American Association of State Highway Officials)
specifications are somewhat more conservative. They require stif-
feners, for girders of carbon steel, if h/f is equal to or greater than 60,
and they give for spacing a maximum of 6 ft, or the clear unsupported
depth of the web, or

d =

d= 9000¢
Vv
The A.R.E.A. (American Railway Engineering Association) specifica-
tions give i 10,500
Vo

with a maximum of 6 ft.
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Taking the girder designed in Art. 34 and assuming the dead load
at 300 1b per ft and the live load as a moving uniform load of 7700 1b
per ft, the following values of maximum shear * and unit shearing stress
are obtained:

At the end V =192kips v = ]?z’ggo = 10,240 Ib per sq in.
At the quarter point V = 107.6 kips » = 1(1);’320 = 5,740 Ib per sq in.
At the center V=462kips v= %98% = 2,460 Ib per sq in.
64,000,000
@85 = 153')2 = 2660 Ib per sq in.

Since this is so near the maximum shear at the center, the authors are
inclined to have stiffeners there also.
The following spacing is obtained.

11,000 X <
/10,240

5
At the quarter point 11,000 X v _ 45.4 in.

/5740
11,000 X 5

V2460

The easiest way to take advantage of these values would be to plot a
curve of stiffener spacing as shown in Fig. 29 and choose stiffener spac-
ings that conform to the required value and also make the total of the

At the end = 34.0 in.

At the center = 69.3 in.

©
5
2
=
g
E
g
b o @
& 0 6 12 18 24
Length of girder in feet
Fia. 29

* The maximum shear at any given point, for the live load, is obtained by placing
the live load on that part of the span between the given point and the far reaction,
for a girder span without floorbeams. Dead load covers the entire span. A curve
of maximum shears is constructed for the girder span with floorbeams in the illustra-
tive design at the end of this chapter.
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spaces equal the span of the girder. It will probably be found easier to
draw a smooth curve if the stiffener spacing is computed for at least
four points rather than three as shown in the figure. The following
stiffener spacing, as shown for the left half of the span, is satisfactory:
3 at 36 in., 2 at 42 in., and 2 at 48 in. = 24 ft 0 in. It will be observed
that an end spacing of 36 in. is indicated although the curve shows 34 in.

Fig. 30. Plate girder for Chinesc National Railways, showing rivet spacing, crimped
stiffencrs, and bearing stiffencrs. (Courtesy of American Bridge Company.)

The formula is for clear spacing whereas the spacing above is center-to-
center spacing measured from the end of the span.

If this girder is for a highway bridge and d = (9000 X ?)/ Vi is used,
the following values are obtained.

At the end 27.8 in.
At the quarter point 37.1in.
At the center 56.7 in., with a maximum of 48.5 in.

For proportioning the stiffener angles the A.I.S.C. specifications
provide that the moment of inertia of intermediate stiffeners I, about
the centerline of the web be equal to 0.00000016H*, where H is the total
depth of web. This expression permits the use of absurdly small angles
for moderate-size and small girders. A rule for proportioning inter-
mediate stiffeners given in some specifications and followed by many
designers is that the outstanding leg of the stiffener angle be not less
than 2 in. plus 4% the depth of the girder, and its thickness be not less
than 4% the width of the outstanding leg. For the girder just discussed
thig is 2 + (62.5 =+ 30) = 4.08 in. Strictly speaking, this should call
for 5 by 3 by % in. stiffener angles. It is satisfactory to use 4 by 3
by % in. angles.
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Intermediate stiffener angles may be crimped over the flange angles
and fit directly against the web. Where they function also as connec-
tion angles, they should not be crimped but should have filler plates
between them and the web. The thickness of the filler plates should be
equal to the thickness of the flange angles. Most specifications require
that stiffener angles be attached to the web in pairs with one angle on
each side, but the A.I.S.C. specifications allow them to be staggered.
The authors prefer intermediate stiffeners to be placed in pairs; how-
ever, if they are staggered, each angle should be larger than when they
are placed in pairs.

Where concentrated loads are applied to the flange of the girder, the
intermediate stiffeners at or near that point should be replaced by a
pair of bearing stiffeners under the load. Bearing stiffeners will be dis-
cussed in Art. 40.

38. Rivet Pitch. Where there is a change of total stress in the flange
of a beam or girder, there must be some means available to hold this
flange to the web; otherwise the unbalanced force will have a tendency
to cause the flange to slide with respect to the web. In beams this is
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taken care of by the horizontal shearing stress, as discussed previously;
in a riveted plate girder the flange rivets perform this function; and in a
welded girder the welds, intermittent or continuous, perform this same
function.

Figure 31 shows a short length s of a plate girder having a moment M
at the left section and a moment M 4+ AM at the right section. -If the
length s is very small, or if there are no vertical loads applied between
the sections, the shears at the two sections may be taken as equal, as
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shown on the figure. If one assumes all the flexural stresses to be con-
centrated in the flanges, it follows that

c-r-%
d
ac =AM
d

AC being the change in total flange stress in the distance s. Therefore,
AC/s = the rate of change of total stress in the flange = AM /(s X d).
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Since AM/s = the rate of change of moment = V, the relation, V/d
= the rate at which the total flange stress is changing per unit length,
is obtained. This also represents the tendency of the flange to slide
along the web and is equal to the horizontal shearing force, at the flange,
per unit length in the web. It also represents the load on whatever
medium attaches the flange to the web; in this case, rivets.

If R represents the allowable load on one rivet and p represents the
required spacing of the rivets in order that the allowable load be main-
tained, then this relationship can be written,

R y Ed (13)
E or B —

a? TP Yy

The value of R is the allowable load on the rivet in single shear,
double shear, or bearing, whichever is the smaller value. These values
are given in Steel Construction and in other handbooks.

In Fig. 32a is shown in elevation a short length p of a compression
flange including the top of the web. Figure 32b shows a cross section of
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the flange, and Fig. 32c shows a bottom view. Figure 324 is an enlarged
view at the rivet, showing the flange angle thickness as mu, the web
thickness as uw’, and the rivet diameter as mn. If the change in total
flange stress for a length p is taken as 6C, 6C/2 is the change in total
stress in each flange angle and also the bearing load on one angle or the
shear load on one shear plane (ux or w'z’). The total load 6C bears on
the web. The bearing area for each flange angle is the thickness of the
angle times the diameter of the rivet. This is single shear bearing (bear-
ing area with a plane of shear on only one side), and according to the
1949 A.I.S.C. specifications the allowable stress is 32,000 1b per sq in.
The shearing area for each plane of shear is the vross-sectional area of
the rivet. The bearing area for the web is the thickness of the web
times the rivet diameter. This is double shear bearing (bearing area with
a plane of shear on both sides), and the specifications above permit
40,000 1b per sq in.

In the above discussion it was assumed that all the flexural stress is
in the flange. Since the web resists some of the bending, an area equiv-
alent to A,/6 can be assumed, concentrated at the compression flange
and acting as a part of the compression flange. This is a proportional
part of the change in total flange stress that is already in the web and
does not need to be transmitted to it through rivets. The rate of change

to be transmitted is -g . —iA— , where A4 is the gross area of the
A+

flange exclusive of A,/6.
Therefore, the relation for p is as follows:

R 1 4 A
6

Ay .
A —_
_Rd( " 6) —Rd(1+A'”> (19)
P=v\Ta TrPTYy 64

For the tension flange with the net area = A,, this is

Ay
Rd (A,. + ?) Rd( A.,)
P== e or p=- 1+8A,, (15)
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The values obtained from formulas 14 and 15 differ very little in
value but are somewhat larger than the values from formula 13. It is
usual to calculate the pitch for one flange only, generally the tension
flange, and to have the same pitch in both.

The values of V, d, 4, and A, should be those at the section where
p is being computed. No serious error results, however, if the values of
d, A, and A, at the point of maximum moment are used, which is com-
mon practice with some designers.

The rivet pitch will be computed for the girder previously designed,
first by the simple relation shown in formula 13. The computations
will be made for the pitch at the end, the quarter point, and the center,
using the shears computed for these pcints in Art. 37, 192 kips, 107.6
kips, and 46.2 kips, respectively. The following are the allowable
loads on a &-in. rivet.

40,000 X % X I = 10.94 kips (bearing on web)
32,000 X § X 2 X = 35.0 kips (bearing on two angles)

2
15,000 X 2—”%-)— = 18.04 kips (double shear)

The bearing on the web will govern. These values can be obtained
directly from Steel Construction. If account is taken of the cover plate
lengths as obtained in Art. 36, there will be no cover plate at the end
where the effective depth of the girder will be 57.04 in., there will be one
cover plate at the quarter point where the effective depth will be 58.34 in.,
and there will be two cover plates at the center where the effective depth
will be 59.04 in.

At the end = 10_94129<ZL7(E = 3.25in. (use 3% in.)

At the quarter point p = 1—0—9%6);:& = 5.92in. (use 5% in.)

At the center = l—q%?;—;i% = 14.0in. (use 6} in.)
16 X § = 10in. 20 X % = 6.25in.

The A.I.8.C. specifications provide that the maximum pitch be limited
to 16 times the thickness of the thinnest outside plate or 20 times the
thickness of the thinnest inside plate (including the web) with a max-
imum of 12 in.
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If formula 15, derived for the tension flange, is used:

At the end p =325 (1 +
At the quarter point p = 5.92 (1 + -

At the center p = 14.0 (1 +

18.75
8 X 11.72

_18.75
8% 17.72

18.75
8 X 2222

= 3.90 (use 3%in.)
= 6.70 (use 6% in.)

= 15.5 (use 6% in.)

The above computations are based on the areas and effective depth
that are obtained where the cover plates have been cut off. If the area
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and effective depth at the point of maximum moment are used, the com-
putations are as follows:

10.94 X 59.04 18.75
- = 'a i
At the end o (1+3 sg5) = 373 (use 3} in)
. 10.94 X 59.04 18.75 .
At the quarter point p = 1076 (1 + Fx23) = 6.65 (use 6% in.)
~10.94 X 59.04 1875 \ _ L
At the center == (145 Cong) = 155 (use 6} in)

If a flexural member does not have panels (or in the rare case where
the variation of shear within a panel is considerable), the value of pitch
should be computed at a sufficient number of points to draw a diagram
of maximum rivet pitch such as the diagram shown in Fig. 33 for this
girder.

Cover plates are attached to the flange angles by means of rwets If
it is assumed the stress is uniform over the flange, the required pitch
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will be that necessary to transfer the change in total stress in the cover

plates to the angles, or
Rd (A p')
P=v\4,

where A_ is the area of the cover plates in one flange at the section, and
Ar is the total area of that flange at that section. This relation holds
true for cover plates that extend the entire length of the girder and also
for cover plates shorter than the girder, provided that the plates extend
beyond the point of theoretical cutoff an«! have sufficient rivets at the
end to properly develop the stress in the plate. After the stress in the
plate is developed, the above relation holds.

As stated in Art. 36, there is some disagreement as to how far a cover
plate sbould extend beyond thc point of theoretical cutoff. If the com-
mon specification reynirement of two rows of rivets at normal pitch is
used, there is no doubt but what the end rivets will be greatly over-
stressed. If the cover plate is extended a sufficient amount to develop
in it the average flange stress with rivets at the normal pitch, it will
usually require a rather long extension. It can be safely said that in
any case where the cover plates are cut off, even if they are extended,
some of the end rivets will be overstressed, unless the point of cutoff
occurs where the average flange stress is very low. Frequently, cover
plates are extended 1 ft or so beyond the theoretical point of cutoff, and
the rivets in the cover plates are given the same pitch as those in the
vertical legs of the flange angles.

For a discussion of rivet pitch covering these points, the student is
referred to Structural Design in Steel by Shedd. Particular attention
should be given to the footnotes on pages 124, 126, 139, and 141.

The above discussion covers the requirement that sufficient rivets
are needed to transmit the change in stress from the flange to the web
(or provide for horizontal shear), but the specifications also require
that provisions must be made for any vertical load applied directly to
the flange. This latter is taken care of by obtaining an expression for
p that includes the resultant of the horizontal load on the rivet together
with the vertical load. The occasion for these combined loads is rare
and will not be further discussed here. A full treatment can be found
on page 140 of Shedd’s Structural Design in Steel, or in other advanced
textbooks on steel design. '

Cover plate rivets are generally placed symmetrically with respect to
the web. For each rivet on the near side there is one on the far side, and
the pitch is determined by taking a value of R equal to the capacity of
both rivets. Since each rivet is in single shear, the two rivets provide
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two areas the same as a single rivet in double shear. For thin cover
plates the maximum pitch may be limited by the value equal to 16 times
the thickness of the thinnest outside plate.

Rivet pitch is measured in common fractions of an inch, usually to
the nearest 1 in., although some shops work to the nearest § in. In
actual fabrication the spacing between rivets is not changed for every
1-in. change in computed rivet pitch but rather at more convenient
increments so as to have a constant pitch over a greater length for
economy in shop work. Where stiffeners are used, the change in pitch
usually occurs at the stiffeners. In order to make the sum of the rivet
spaces equal the distance between stiffeners, it is sometimes necessary
to have an odd pitch immediately adjacent to the stiffener.

The methods discussed relative to spacing of rivets apply equally to
the design of welds in a welded girder. If they are intermittent welds
of a given size and length, the treatment is practically the same as the
foregoing. A similar treatment can be used for a continuous weld of
varying size. Welds will be further discussed in Art. 43 in which a
welded girder is designed.

39. Net Width. When the legs of angles are 5 in. or more in width,
they may have two lines of rivets (two gage lines) ; in fact, the A.A.S.H.O.
specifications require two lines of rivets in legs of flange angles which
have widths of 5 inches or greater. When there are two lines, the rivets
are normally staggered. Standard dimensions for the location of these
gage lines, or the lines along which the rivets are placed, are given for
the various sizes of angles in many handbooks, including Steel Construc-
tion. These gages are the ones usually used, but any convenient dimen-
sion that conforms to the spacing, edge distance, and driving standards
is acceptable.

In Fig. 34a is shown the elevation of a girder flange, and in Fig. 34b
is shown the top view. The dimensions shown in the figure are for the
girder that has been discussed in the previous articles, where calcula-
tions indicate that the rivet pitch near the end is 3% in. and also that
the inside cover plate length can be 33 ft. For exterior construction the
first cover plate should extend to the ends of the girder. In the follow-
ing discussion it is assumed that this plate does have the full length of
48 ft, also that the pitch of the rivets connecting it to the flange angles
is the same as that for angle to web (3% in.). This figure is for illustra-
tive purposes only. Net width is seldom computed for a compression
flange or near the end of a tension flange in a simple beam.

The matter of net section was discussed in Art. 28, but it is now
desirable to discuss net area, or net width, when the rivets are stag-
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gered, and where, if they are closely spaced, a tensile failure could occur
along a zigzag rather than a straight line across the section.

In Fig. 34b a section 1-1 straight across the cover plate is shown. The
net area of the cover plate, along this section, is the net width of the
plate times the thickness; the net width is (for -in. rivets or 1-in. holes)
14 in. — 2 in. = 12 in. The specifications provide: “In the case of a
chain of holes extending across a part of any diagonal or zigzag line, the
net width of the part shall be obtained by deducting from the gross
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width the sum of the diameters of all the holes in the chain, and adding,
for each gage space in the chain, the quantity

s

1
where s = longitudinal spacing (pitch) in inches of any two successive

holes.
g = transverse spacing (gage) in inches of the same two holes.

The critical net section of the part is obtained from that chain which
gives the least net width.”

The above quotation is taken from the A.I.S.C. specifications, but
it represents present practice in practically all specifications.

In applying this to section 1-1 in Fig. 34b, there are no diagonal or
zigzag lines, and therefore only the two holes are deducted, giving a net
width of 12 in. as calculated above. If section 2-2 is taken there are
four holes and two zigzag lines. The net width is computed as follows:

@GP | 6D’ .
14 4+4X2%+4X2=} 12.11 in.
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The critical net width of the cover plate is therefore 12 in. If the pitch
had been 3 in. the critical net width would have been

2 2
4><2%+4><2% 11.8 in.
For angles the width is taken as the sum of the two legs less the thick-
ness of the angle. In the handbook Steel Construction is a chart, Net
Section of Riveted Tension Members, giving the solution of the expres-
sion s?/4g. This expression is also used in cslculating the net width of
shapes making up a tension member as found in a truss or frame.

It is often desirable to obtain the pitch that carn be used and still main-
tain a net width equal to the width minus the number of rivet holes on
a straight section. This can be easily done by means of the chart in the
handbook. In the above example it will be found to be between 3 in.
and 3% in.

In designing the girder in Art. 34, the number of holes deducted was
that on a straight section through the angles and cover plates. This
was done because, at the point of maximum moment, the rivet pitch
was the maximum and the zigzag net width would not govern.

40. Bearing Stiffeners. As stated at the end of Art. 37, bearing
stiffeners are attached to webs at points where concentrated loads are
applied in order to strengthen the webs against buckling or crippling.
In Fig. 35a the concentrated load is an end reaction. As shown, four
end bearing stiffeners distribute the end reaction to the web and prevent
excessive crippling stresses in the web. Stiffeners occur in pairs; here,
two pairs (total of four angles) are used, but in other cases it can be
one to four pairs. The end reaction is a concentrated load and is applied
to the girder through a bearing plate. The bearing stiffeners must have
sufficient contact area with the outstanding legs of the bottom flange
angles to resist the end reaction load without exceeding the allowable
bearing stress. The contact area between the milled or fitted end of a
stiffener and the horizontal leg of the flange angle is limited to the thick-
ness of the stiffener leg times the length that the stiffener leg extends
beyond the fillet of the flange angle, as shown as e in Fig. 35b. The
amount of the stiffener leg that is deducted on account of the fillet in
the flange angles is usually § in. for 8-in. flange angles, % in. for 6-in. or
5-in. angles, and § in. for 4-in. or smaller angles. This reaction load
which is applied to the outstanding legs of the stiffener angles is dis-
tributed to the web by means of the rivets connecting the web and the
stiffeners. .

The A.I.S.C. specifications require that the bearing stiffeners be
investigated as a column having a length equal to § of the depth of the

14 — 4+
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girder although many designers use } of the girder depth as the length.
It is extremely rare that the action as a column will control the design
of a bearing stiffener.

There must be sufficient rivets through the bearing stiffeners to trans-
mit the entire load to the web. Where tight fillers are employed (a tight
filler being one extending beyond the stiffener angles and having an
independent row of outside rivets), there must be enough rivets through
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the stiffener angles to transmit the load by means of double shear, and
there must be sufficient rivets through the filler plates (including those
through the angles) to transmit the load through bearing on the web.
Where the filler is loose, the required number of rivets is increased be-
cause of bending in the rivets, and, in general, the number is increased
from 1 to 3.

It is assumed that the girder designed in Art. 34 rests on a bearing
plate at one end and that the other end frames into a carrying girder
by means of connection angles. The bearing.stiffeners will be designed
to transmit the end reaction of 192 kips into the web. Tight fillers will
be used.

It is assumed that the stiffeners will be fitted rather than milled, and
the allowable bearing value is therefore 27 kips per sq in. The required
contact area is then 192 + 27 = 7.11 8q in. If 5-in. bearing angles are
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used, allowing % in. for the fillet of the flange angle, 7.11 + 4.5 = 1.58 in.,
the total thickness required in the bearing angles. If four £ 5 by 3
by 1% in. are used, the area of contact will be 4 X 43 X 1%x = 7.88 5q in.
If §-in. angles are used, the area will be 6.75 sq in. With Z-in. rivets
having a value of 10.94 kips for bearing on a y%-in. web and 18.04 kips
in double shear, the total number of rivets required through the filler
plate will be 192 + 10.94 = 17.6, or eighteen rivets, and the number re-
quired through the angles only will be 192 + 18.04 = 10.6, or eleven
rivets.

One arrangement is to have three rows of six rivets each, making
eighteen through the filler plate and twelve through the angles. This
does not take account of the four rivets at the top and bottom of the
stiffener angles that are also in the flange angles. Although these rivets
transmit some load from the bearing stiffeners into the web, they are
usually not included in the calculations. If account were taken of these
four rivets, it would probably be found satisfactory to have three rows
of five rivets each, making a total of fifteen rivets between the flange
angles.

The specifications provide that the maximum pitch in stiffeners shall
be 8 times the diameter of the rivets used. Since the rivets are % in. in
diameter, this permits a maximum pitch of 7 in. For that reason the
bearing stiffeners designed above would require two rows of seven
rivets each in the four angles, and for simplicity in shop work the out-
side row of rivets through the filler plate should also have seven.

Although intermediate stiffeners can be crimped when they are not
used as connection angles, bearing stiffeners are never crimped.

If checked in accordance with the A.I.S.C. specifications, the capacity
of these bearing stiffeners acting as a column will be 286 kips.

The design of a bearing stiffener occurring under a concentrated load
applied to the flange at a point other than an end reaction follows the
same procedure. Such stiffeners are designed to have sufficient contact
area with the loaded flange, rivets to the web, and column strength to
resist the concentrated loads.

41. Beam and Girder Connections. In building construction, the
most common method of supporting beams at their ends is by means of
connection angles fastening them to columns, other beams, or girders.
When beams are supported by girders, advantage is often taken of the
fact that the connection angles can serve also as stiffener angles and
thus replace a pair of stiffener angles.

In Fig. 36a is shown the end view of a beam with the outstanding legs
of its connection angles, in Fig. 36b an elevation with a cross sedtion of
the beam to which it is attached, and in Fig. 36¢ two beams of different
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size framing into a larger beam. Beams also frame into the flange or
webs of columns as shown in Fig. 36d and e, respectively.

The number of rivets required in the outstanding legs of connection
angles is usually determined by the allowable stress in single shear,
especially when a beam from only one side frames into another beam or
girder, although bearing may govern where the beam frames into a
thin web. Where two beams frame into a web at the same place but
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from opposite sides, it is usually found that bearing on the web gov-
erns. The value of one rivet, in single shear or bearing, divided into
the value of the end reaction, gives the total number of rivets required
in the two outstanding legs. Where beams are framed opposite, as in
Fig. 36¢ or f, the bearing value is taken for one-half the web into which
they frame.

The rivets through the angle legs along the web of the beam, as shown
in Fig. 36b, are in double shear, and this value, or bearing on the en-
closed web, governs.

In connecting rolled beams it is customary to use standard connec-
tions in order to eliminate a multiplicity of design and shop work. All
fabricating shops keep a stock of standard connections on hand, making
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it cheaper and easier to use them. Standard connections for the various
size beams are shown in Steel Construction. They are shown in six series,
A, H, HH, B, K, and KK. Series A, H, and HH are for §-in. rivets,
series A for ordinary connections, and series H or HH where connections
of greater capacity are desired. Series B, K, and KK are the correspond-
ing series, respectively, for 3-in. rivets. The tables accompanying the
standard connections give their series number and size for the various
size beams and also give the capacity of the connection in shear or
bearing on various thicknesses of web. These standard connections
have a uniform pitch and gage for the rivets and therefore can be used
when beams of different depth frame opposite, as in Fig. 36¢.

If 3-in. rivets are used in the connection angles for the beam designed
in Art. 25, using the 24-in. I at 90 Ib, the web has a thickness of 0.624 in.
so that the double shear value of 13.25 kips governs. The end reaction
is 60 kips; and 60 < 13.25 = 4.53, or five rivets. In the 24 WF 84 the
web is thinner (0.470 in.), but double shear still governs, making the
computation the same. If it is assumed that the outstanding legs of
the connection angles frame into a web (or plate) so thick that single
shear governs, then ten rivets will be required in the two outstanding legs.

Turning to the B series of connections in Steel Construction it will be
found that the B—6 connection for 24-in. I or wide-flange beams has six
rivets in the leg of the angles along the web and also in each outstanding
leg. The table gives the capacity of this connection in shear as 79.5 kips.
If two of these 24-in. beams frame from opposite sides into a y%-in. web,
the two connections would be limited to 112.5 kips total, or 56.25 Kips
per connection, which is less than the 60 kips required. The calculation
for twelve rivets in double shear bearing is:

40 X ¥ X % X 12 = 112.5 kips

In Fig. 37a and b is shown how this connection would be made in
order to act also as an intermediate stiffener of a girder; in Fig. 37¢ the
intermediate stiffeners have been shortened, and a seat angle is attached
for ease in erection. Regular standard connection angles are used, and
a stiffener angle has been placed below the seat angle on each side of
the girder web. The loose fillers are shop-riveted to the girder in
Fig. 37a, and enough rivets are in the connection angle, which acts also
as a stiffener, so that bending in the rivets because of the loose filler is
not critical. It is doubtful that a loose filler under the connection angle
in Fig. 37¢ is always economical since it is difficult to hold in place in
field erection and since additional rivets are sometimes needed because
of the bending in the rivet.
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Where connection angles are like those above on either beams or
girders, they are considered as simple supports as they are unable to
resist any appreciable amount of bending moment. For that reason
they are not made thick enough to make them unduly stiff. They
should be thick enough so that shear will govern, instead of bearing
on the angle itself.

The design of connection angles for girders follows the procedure out-
lined above for beams. For the girder designed in Art. 34, using Z-in.
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rivets, the number of rivets required in double shear would be 192 =+
18.04 = 10.6, or eleven rivets. Since the web is 1% in. thick it will be
necessary to have a tight filler or a larger number of rivets in the con-
nection angles. The number of rivets required in both the angles and
filler will be 192 <+ 10.94 = 17.6, or eighteen rivets.

The rivet lines in the web should be kept to a minimum and be such
that all rivet holes can be punched during a single pass through a mul-
tiple punch machine. To accomplish these conditions, the gage lines
for end connections, stiffener angles, intermediate connections, and web
splices should be as similar as possible. If the maximum spacing of
7 in. (8 X §) is used for intermediate stiffeners, then a spacing of 33 in.
(3 X 7) would probably be most economical for this end connection.
The connection is shown in Fig. 38. If, in accordance with a rather
common practice, the two rivets that also go through the flange angles
are not considered, the connection angles have thirteen rivets, or an
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excess of two more than required. The total for bearing on the web
is twenty rivets, and bending in the rivets would not be critical.

If this girder frames into a carrying girder, it will probably be neces-
sary to have a tight filler on the carrying girder in order that the 4-in.
leg can be used on the outstanding legs of the connection angles. Then,
it is desirable to have one connection angle shop-riveted to the carrying
girder, the other being loose, since neither angle can be shop-riveted to
this girder. In this case, the end row of rivets would be field rivets.

/2 £56"%6"x %"
LY
prar s I
&
2/54"X 4" x %" \.
Connection angles j:i &)
: 13
. Ll e R
2 filler plates b 2
77X %" 4°-0” l o i
(These are ~ l I ) See
tight fillers) ® <
o~ 0
L
Web = 60" x 346" & érl‘
-t—#——#—“ o— ér'
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Seat connections serve sometimes for supporting beams carrying
small loads. However, since the more complex connections, such as stiff-
ened seat connections, moment connections, etc., are beyond the scope of
this book, the student who is interested in such connections should refer
to Structural Design in Steel by Shedd or to similar steel design textbooks.

When rolled beams are supported by masonry or reinforced concrete
walls as shown in Fig. 39, the length of bearing, a, should be enough to
prevent the web from crippling. In Steel Construction the following
procedure is recommended for computing the bearing capacity of an

tiffened web:
uns en we Ca,pacity = 24,000t(a + k)

where allowable stress = 24,000 Ib per sq in. on effective area.
t = web thickness.
k = distance from outside of flange to toe of fillet.
a = length of bearing (bearing plate).

Where a concentrated load is applied at an intermediate point, the
bearing capacity of the web is 24,000t(a; + 2k), as shown on the right
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in Fig. 39. If stiffener angles are used on the web of the rolled beam, the
procedure is the same as discussed in Art. 40.

The above method is only approximate and obviously cannot be con-
sidered exact. It gives fairly satisfactory results. In Structural Design
in Steel, Shedd presents a

method of computing web a,

crippling which is a little Y ' |\_ _

advanced for an elementary F ‘E - ] -
k dl+ 2k

textbook such as this but -—.l“ th &
which is preferred by -the B
authors. The interested
student is referred to it.
42. Flange and Web
Splices. Normally it is Fia. 39
unnecessary to splice the
flanges or the web of a plate girder, and this should never be done
unless circumstances demand it. Circumstances of erection procedures,
the means of shipment, or the available lengths of plates and shapes
would be most likely to require splices.
Since angles and cover plates can be obtained in adequate lengths for
all but the largest girders, flange
2 cover plates splices are seldom encountered.
6 x 6" angles They are necessary in long girders
T o 5 51 that are continuous over the sup-
: 2 = ports. The specifications usually
T provide that, where practicable,
flanges shall not be spliced at points
of greatest moment, and also that,in
general, not more than one part shall
be spliced at the same cross section.
Web splices are more common
than flange splices since, where a
J ) deep web is encountered, the plate
b may not be available in the length
° 4+ %6 ¢ o ° o] needed for the girder. Some mills
could not furnish the plate shown
Fia. 40 in the web of the girder designed in
Art. 34. When webs are spliced,
the splice should be designed to transmit all the shear and moment that
the web is calculated to resist. In other words, the splice should be no
weaker than the required web ; however, the authors believe that the splice
should be equal in strength to the web that is used. The general appear-
ance of a web splice is shown in Fig. 40.

a;= length of bearing

—~T5TM
o
(]

(Use the same pitch as
for end connection)

Shop rivets for shop splice
Equal pitch for rivets
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There are two splice plates, one on each side of the web. Some de-
signers proportion these splice plates so that their combined moment
of inertia equals that of the web and they can resist the same bending
as the web with the same bending stress as in the adjacent portions of
the web. This provides more than sufficient area for shear. The rivets
have to be sufficient in number to resist both the shearing and bending
stresses.

A better way to proportion this splice, preferred by some designers, is
to make the combined splice plates equal to or greater than the web
and to consider that it replaces that part of the web under the splice
plates. The rest of the shear and moment in the web under the flange
angles is resisted by an additional plate on the flange or, at points other
than maximum moment, by additional area in the flange.

There are other types of web splices, but the second type mentioned
above is generally the most satisfactory.

The student is referred to more advanced texts in steel design for a
complete treatment of the various types of flange and web splices.

43. Welded Girders. The advantages and disadvantages of riveted
fabrication as compared with welded fabrication will not be discussed
in detail here. It is sufficient to say that in many cases there is no
marked advantage in either riveting or welding, whereas in other cases
there is a distinct advantage of one method over the other, depending
on many various factors. The design procedure for a welded girder
follows the same order as that outlined in previous articles, taking proper
cognizance of the different means employed to tie the members together.

The welding symbols shown on drawings for welded structures were
developed by the American Welding Society. They are now stand-
ardized and are shown in Fig. 41 with the Society’s permission. These
symbols are used in the figures accompanying this article.

The specifications of the A.I.S.C. (1949) apply to both welded and
riveted building structures, and the specifications on welding are in
agreement with those of the American Welding Society for similar
structures. '

The first step in proportioning the web is to make some determination
of the depth. The authors believe that, for the average web, a good
approximation of the least weight depth can be obtained from the

relation
M
d=53=
/



WELDED GIRDERS 75

where there are stiffener plates and a variable thickness of the flange
plates. In this expression,

= the depth of the girder in inches.
M = the maximum bending moment in inch-kips.
f = the allowable intensity of bending stress in the critical flange
in kips per square inch.

The value, 5, in the above expression was obtained by following a
procedure similar to that followed by Shedd in obtaining the expressions
given in Art. 32.

ARC AND GAS WELDING SYMBOLS
TYPE OF WELD FIELD | WELD
GROOVE PLUG | WELD A/u.t'.“ln.u.:su

BEAD "‘""“% v ar-.vu. U T J_]&stot ROU
—~ D VIiVVIV e |O|—

LOCATION OF WELDS

ARROW (OR NEAR) OTHER (OR FAR) BOTH SIDES
SIDE. OF JOINT SIDE OF JOINT OF JOINT

SEE FIELD INCLUDED ANGLE;, SIZE. WELD ALL
° ° INCREMEN
NOTE S, WELD % a0 S1Z; \NENGT AQDUNDJ

3 ROOT | sSEs
Zs’uz;s rLusn Esize |MSIZE GRENINGINOTE 51 STASCERED) 1nie metanrs

1. THE SIDE OF THE JOINT TO WHICH THE ARROW POINTS IS THE
ARROW (OR NEAR) SIDE AND THE OPPOSITE SIDE OF THE JOINT
IS THE OTHER (OR FAR) SIDE.

2. ARROW SIDE AND OTHER SIDE WELDS ARE SAME SIZE UNLESS
OTHERWISE SHOWN.

3. SYMBOLS APPLY BETWEEN ABRUPT CHANGES IN DIRECTION OF
JOINT OR AS DIMENSIONED, (EXCEPT WHERE ALL AROUND
SYMBOL 1S USED).

4. ALL WELDS ARE CONTINUOUS AND OF USER'S STANDARD PRO-
PORTIONS, UNLESS OTHERWISE SHOWN

8. TAIL. OF ARROW USED FOR SPECIFICATION REFERENCE (TAIL
MAY BE OMITTED WHEN REFERENCE NOT USED.)

E.G. *C. A."—AUTOMATIC SHIELDED CARBON ARC
“g. A."—-AUTOMATIC SUBMERGED ARC.

6. IN JOINTS IN WHICH ONE MEMBER ONLY IS TO BE GROOVED.
ARROW POINTS TO THAT MEMBER.

7. DIMENSIONS OF WELD SIZES, INCREMENT LENGTHS, AND SPAC-
INGS, IN INCHES.

Fia. 41. Taken from “Standard Specifications for Welded Highway and Railway
Bridges,” American Welding Society, 1947. (Courtesy of American Welding Society.)

The web must have a sufficient area so that the allowable shearing
stress is not exceeded, but the thickness is usually determined by the
slenderness ratio (h/t). The unsupported distance & between the flanges
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of a welded girder is the distance between the flange plates and can be
taken as the depth of the web, as shown in Fig. 42a. Since there are no
rivet holes, § the area of the web and

Flange plate the gross area of the flange plates are

—C ] — effective as flange area in either the
r > L,-Tee  tension or compression flange.

| —K Welded girders sometimes are com-

< 4~ Web posed of two tees butt-welded to the

| Plate  ends of a plate, as shown in Fig. 42b.

Structural tees are obtained by split-

M ting the webs of wide-flange beams.

C-Tee  The strength of this type of girder

—
EFlange plate can be increased by adding one or
() (b) more cover plates to each flange by
Fie. 42 means of fillet or plug welds.
The girder for which design com-
putations were made in Art. 34 will be redesigned here as a welded
girder.

!

ing single-flange plates and plate stiffeners. (Courtesy of American Bridge Company.)
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With the same span and loads, M = 2304 ft-kips, and the maximum end
shear = 192 kips.

3/
Approximate value of d = § 23—0;TXE = 55.7 in.

assuming the compression flange to have lateral support. A depth a few inches
greater or less than this value might give a girder with a lesser total weight,
but the difference would be small and a complete design of all parts would be
necessary for final determination of this point. For these computations a
depth of web of 56 in. is assumed.

Web area required = 4%2 = 14.77 sq in.

14. 77 13"x 1*'
Minimum thickness based on shear = %6 = 0.264 in.
Minimum thickness based on slenderness ratio = %% =
0.330 in.
56" x %*
Use a web 56 X ¢ in. = 21.00 sq in.
The overall depth is assumed to be 60 in., and the effective
depth 58 in.
58 __ 3 3
20 X §8 = 19.33 kips per sq in. 13°x %"
2304 X 12 _ . . Fia. 44
585 1033 24.6 sq in. required

Trial section (see Fig. 44):

1 web 56 X & = 21.00 sq in. gross X § = 3.50 sq in.
1 top plate 13 X 1§ = 21.13
1 bottom plate 13 X 1§ = 21.13 21.13

24.63 sq in. gross

57.62 X 20 = 19.45 kips per &q in. 2804 X 12

59.25 57.62 X 1045 ~ 2467 sqin.

Although the area supplied is slightly less than that required, the
difference is well within allowable limits in design. The student should
be cautioned in this connection that the modified flange area method
as applied to welded girders is slightly on the unsafe side, since  the
area of the web is assumed to be acting at the center of the flange, which
is always outside the edge of the web. In this instance the area involved
is 3.50 < 24.63 = 0.1421, or 14.21 per cent, and the difference in mo-
ment arm is (57.62 — 56) + 56 = 0.029 or 2.9 per cent. The error in-
volved is 0.1421 X 0.029 = 0.00412, or about 0.4 per cent. This per-
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centage is slightly reduced by the fact that the center of stress in the
flanges is outside their center of gravity.

Although the moment of inertia of a welded girder is not difficult to
compute at various sections, the above method is simple and direct
and sufficiently accurate. This method is also convenient for deter-
mining the location of butt welds where the flange plate is reduced in
thickness.

Whether the saving obtained by reducing the thickness of the flange
offsets the cost of the butt welds is an economic problem involving labor
costs and other factors. Three flange segments per flange would prob-
ably be justified; five might not be. However, for illustrative purposes

- Maximum slope
o lon2%
(a) (]

Fia. 45

it will be assumed that there are five flange segments 13 in. wide, two
being § in. thick, two being 1} in. thick, and the middle one being 18 in.
thick, as obtained in the above design.

The procedure is the same as for determining the length of cover
plates. For unsymmetrical or concentrated loads, the determination
can be made graphically. For the uniform load, equation 12 of Art. 36
is more convenient. With this equation, the following values are

obtained:
/ 6.50
L1 =48 -24_65 = 24.7 ft (use 26 ft)

Ly = 48 \/ 13800 _ 2006t (use 36 ft)

24.63
The §-in. plates are each 18 —2 36 _ 61t long
The 1}-in. plates are each 8-12-26 5 ft long.

2

The butt welds between the 3-in. plate and the 1}-in. plate and between
the 13-in. plate and the 13-in. plate can be single-bevel butt welds, as
shown in Fig. 45a. The joint is to be welded from both sides, but there
is a single bevel on the thinner plate. For a structure designed for re-
peated loads, a single-V butt joint, welded both sides, should be used
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with a maximum slope of 1 on 2, meaning that the thicker plate will
probably have to be tapered.

In order to compute the stiffener spacing at any given point in the
span, it is necessary to know the maximum shear that can exist at that
point. Taking the values in Art. 37 for maximum shear, the unit shear-
ing stresses are as follows:

At the end V = 192 kips v = }222’—?09 = 9150 Ib per sq in.

At the quarter point V = 107.6 kips v = 1072’?00 = 5120 Ib per sq in.

At the center V = 46.2 kips = % = 2200 Ib per sq in.
9‘{(%93;_‘;:@ = 2860 lu per sq in.

This indicates that stiffcners are not needed at the center of the span;
however, the maximum stiffener spacing is computed below for all three

points.

3
At the end 1,000 X5 _ 43.1 in.

11,000 >_<_§
V5120

3
11,000 X § _ 88.0in. (maximum spacing where

vV 2200 required = 84 in.)

At the quarter point = 57.51in.

At the center

Although stiffeners are not required at the center of the span, if they
are used there the spacing should not exceed the maximum spacing
permitted, which is 84 in.

Using a stiffener plate width of 2 in. plus 5% the depth of the girder
=24 (59.25 + 30) = 3.98 in. (or 4 in.), and a thickness {5 of the
width = % = 1 in., the stiffener plates will be 4 by 1 in., attached in
pairs, one on each side of the web. According to the A.I.S.C. require-
ment for stiffeners, namely, I, = 0.00000016H*, a pair of stiffener
plates, each 1§ by % in., or a single plate, 2§ by % in., can be used. The
authors are inclined to prefer the 4 by % in. plates in pairs as representing
better design.

With intermittent fillet welds * of 1-in. size to attach the stiffener
plates to the girder web and with the length of each weld as 1} in., the

* Intermittent fillet welds can be replaced by a smaller continuous fillet weld of
equal strength which can be made by an automatic process at a saving in cost; how-
ever, when sequence welding is required to prevent shrinkage stresses or distortion,
the use of intermittent welds may result in an overall economy.
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clear spacing between these welds is limited by 12 in., or 16 times the
thickness of the thinner plate joined. In this case, $-in. intermittent
fillet welds, each 1} in. long, would be spaced at 53-in. centers, as shown
in Fig. 46, giving a clear distance between welds of 4 in. (16 X %); how-
ever, some specifications permit the welds to be staggered on the two
sides of each stiffener plate so that the distance between welds on each
side would be 11 in.

The same maximum shears govern in calculating the attachment of
the flange plate to the $-in. web as were used for spacing the stiffeners.

ﬁy— f;y-(AII stiffener plates, top flange ¢
BT A S S & >, S— —
% '
o ’?;\13*,1*?'- ‘o .
g /13,‘,‘” xs-o\ _ /13x15£PI.x26-0 !
o= | s | s | s [
:’é :‘_.|° 56 x % web '
j&x > .>2-4x5l‘fl.x4'-8"4____-—-———*’ !
6_";\ < 3'-6" < 3-6" 4'-0” l 4'-6" I 5-0" [ 3-0”
i ' ' 48"0"
Fie. 46

The allowable stress for shear on a section through the throat of a fillet
weld is 13,600 1b per sq in. For a 45-deg fillet weld the throat dimen-
sion is 0.707 times the fillet size; therefore the capacity of a 3-in. fillet
weld is 13,600 X 0.707 X 3 = 1200 Ib, and for any fillet weld it is
1200 Ib per % in. of size.

Specifications indicate the minimum size of fillet weld to be used on
a given thickness of material. For a 1§-in. plate, the minimum size for
fillet welds is § in. The minimum length of fillet welds is 1-% in., or 4
times the nominal size. The capacity of a $-in. fillet weld is 3 X 1200
= 3600 Ib per in. of length, and if §-in. fillet welds are placed on each
gide of the web the capacity is 7200 lb per in. of length. The capacity
of the §-in. web in shear, however, is only § X 13,000 = 4880 b per in.
and would control. If the fillet welds are intermittent and staggered
the 3600 Ib per in. controls.
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Using 2-in. intermittent fillet welds on each side of the $-in. girder
web and opposite, the capacity of each 2-in. segment is 4880 X 2 = 9760
Ib. If equation 14 of Art. 38 is used (R in the equation being 9760 Ib)
the following spacing between the centers of these 2 in. segments is
obtained:

9760 9760 X 56.62 56.62 . .
At the end = 192,000 (1 + == 8 13 = 4.121in. (use 4in.)
. 9760 X 57.62 . .
At the quarter point p = 107,600 (] + 91 ]3 = 6.10 in. (use 6 in.)
_ 9760 X 57.62

At the center (1 +2 13 = 142in. (use8in)

46,200

At the center the maximum clear distance between segments is limited
to 6 in. (16 X 2), and therefore the center-to-center distance cannot be
over 8 in,

F1a. 47. Erection view of ramp-type garage, Cincinnati, Ohio, showing beam and
girder construction. (Courtesy of American Bndge Company.)
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44. IMustrative Design of a Typical Floor Panel. Figure 48 is a
line diagram of the plan of the second-floor framing for a warehouse
building. The structural floor consists of a reinforced concrete slab
supported on rolled steel beams which frame into the webs of steel plate
girders. The interior columns are spaced longitudinally at 54-ft intervals
which is therefore the span of the carrying girders. Although the spacing
of interior columns at 27-ft intervals would result in a saving in total
steel weight, the authors have assumed that the purpose of the building
makes a 54-ft spacing desirable along this line of columns; they also
desire to bring into this illustrative design a larger girder to proportion

10 bays @ 27°-0" = 270'-0"

T~ I T

P

T
T

22'-61

90'-0"c.toC.
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Receiving and
shipping bay
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[
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[
L
H
T
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and one with a different loading condition. The reinforced concrete
slab has a wearing surface consisting of wood blocks, 3 in. thick, resting
on a sand cushion } in. thick.

The design will be based on the 1949 A.I.S.C. specifications (with
modifications *) and a live load of 360 lb per sq ft. It is assumed that
the nature of the stored material and the manner in which it is handled
is such that the effect of impact can be neglected.

Slab. In order to proceed with the design of the steel beams and
girders it is necessary to know the weight of the slab. The design of
reinforced concrete members will not be discussed until Chapter 5.
The method given here of estimating the weight of the slab is based on
a relationship involving a factor, R, that will not be developed until
that chapter. ’

The distance between the beams is 7 ft 6 in., and the span of the slab
will therefore be taken as that amount. The slab is continuous over the
beam supports, and for an interior panel the maximum moment at the
support due to live load will be assumed equal to 4 wrL? and that due
to dead load as 5 wpL?.

* The modifications are those applying to net section and compression flanges
without continuous lateral support. These points were discussed previously in
this chapter.
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If the slab is assumed to be 5 in. thick and the wood block and sand cushion
to weigh 20 b per sq ft of floor area, the dead load is:

£ X 150 = 63
20

83 Ib per sq ft
Therefore:

T X 83X 75 = 388
1 X 360 X 7.5° = 2250

Moment at support = 2638 {t-Ih

This is the bending moment on & strip of slab 12 in. or 1 ft in width.
The slab is proportioned on the busis of the moment on a typical strip.

Y Bar welded to beam

L& £ [ % =

(a) (b) (c)
Fia. 49

The relation mentioned above is M = Rbd?, in which R is a constant
for given permissible unit stresses, and b and d are the width and depth
of the beam, respectively, d being the distance from the compressive
face to the center of the tension steel. For concrete having an ultimate
strength of 3000 Ib per sq in. at 28 days and an allowable unit stress
of 1350 1b per sq in., and, allowing a unit stress of 18,000 Ib per sq in.
in the steel, the value of R is 248 1b per sq in. Then

]M
d= \|—
Rb
and, using inch units,

2638 X 12
d= |2 =32in. (use3}in)
248 X 12

If one additional inch of concrete is used to provide protective covering
for the steel, the overall depth of the slab is 3} + 1 = 4% in.

Beams. The continuous slab is constructed in such a manner that it
gives lateral support to the compression flanges of the interior beams
as shown in Fig. 49a, b, or c. The wall beams in the receiving and
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shipping bays, however, have no lateral support between the end

connections.
Floor cover = 20 lb per sq ft
4}-in. slab = 53
Live load = 360

433 1b per sq ft

X 7.5 = 3250 Ib per ft of beam
Assumed weight of beam = 100

3350 1b per ft of beam
% X 3.35 X 272 = 305 ft-kips = 3660 in.-kips

Any of the following are satisfactory for interior floorbeams:
24 W 84 8 = 196.3 in.3
24190 S =1858in3?
1I8W 96 S = 184.4in2

If headroom on the first floor is controlled by the girder depth, the
lightest weight beam (24 WF 84) will probably be preferred, although
the price per pound might give the 90-1b standard I a slight cost advan-
tage. The 84-lb beam will be chosen here.

The load on the wall beam in the receiving and shipping bay will be
its own weight and the weight of the wall. The total weight is assumed
to be 500 Ib per ft of beam.

M =} X 0.500 X 27° = 45.6 ft-kips for the 27-ft span

The allowable compression stress is:

7 = 12,000,000
LXd
bXxt
Trying a 10 W= 39,
d Ld
b—>?-£=2'36 —bT=27X12)<2.36—764
J= lg'—o%l’—q—oo = 15,720 Ib per sq in. = 15.72 kips per sq in.
45.6 X 12 - -
1572 34.8 in. 8 for beam = 42.2 in.

5 WLt 5 ML* _ 5456 X 12X 27X 144 ~ oo
384 EI 48 EI 48 29,000 X 209.7 R

A (at center) =
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(The A.I.S.C. manual, Steel Construction, recommends E = 29,000,000 b per
8q in.)
a 0.98 1

I~ 27 xis - 000303 =35

If it is desired to limit this ratio to 1 in 360 (depending on the likelihood of
cracking in the wall), a slightly stiffer beam should be selected.

Girder. The beams frame into the interior girders from both sides.
The girder loads, the shear and moment diagrams, and the necessary
calculations for a typical interior girder are shown in Fig. 50. The

90.0* 900% 90.0* 900" 90.0",/320 Ib per ft

¥ P o
| 3250
8
| ! 3334 x 1000 = 90.0"
. om . An 3
23224 l 6@ 7"-67=45-0 2322

| 3 % 90.0 = 225.0*

+232.2% +2298%
w1574 | 20320=_72

sh /m_+l45" - 1398 232.2k
ear L k — s
+ 139.8 - 45K 474 f
- k '
| | 1374°_ so9g% —2322%

2322x% =525

187.2x %2 =2106
3119™

w 9772% _3119™ 275,54
aB 2 2

Moment 1 | l

b

Fia. 50

12334

girder is assumed to weigh 320 Ib per ft. The top flange has lateral
support provided by the beams.

3/311 12 .
Least weight depth = 5.5 \/3—1—92TX— = 67.8in

Required area of web = —2—?;?,’—2 = 17.86 sq in.
Using 6 by 6 in. angles and a 68-in. web:
17.86 . 685 —2X6 _ .
680 0.263 in. 70 = 0.333 in.

A 3-in. web is required.
With a 64-in. web, 64.5 —2X 6
. 170
or a %-in. web would be adequate.
64 X 1% = 20.0 sq in.

= 0.309 in.



86 STEEL BEAMS AND GIRDERS [CHaPp. 3

A larger number of rivets is required with the thinner web, but the 64-in. web
is the more economical. Assume the effective depth to be 64 in.

Assume (di/dy’) X 20 = 18.5 kips per sq in.

3119 X 12 = 585 kips 1388—55 = 31.62 sq in. net

Using Z-in. rivets and deducting 1-in. holes for net section, the following section
will be obtained:

1 web 64 X % = 20.00 sq in. X § = 8.33 sq in. gross X § = 2.50 sq in. net

2 bottom £ 6 X 6 X § = 16.88 — 3.00 = 13.88
1 bottom plate 16 X % = 9.00 - 113 = 787
1 bottom plate 16 X § = 8.00 —1.00 = 7.00
37.21 sq in. gross 31.25 sq in. net

The girder section is shown in Fig. 51, and since the compression
flange cannot be smaller than the tension flange the sections will be

16 x 2 16x3 62" 20ME
f — “f‘f >/
. c
Reference axis

6x6x %/ 63.26
B x20=1899
16.88 x 1.78 = 30.05
17.00 x 531 = _9.03 o B
3388 2102 g 8
21.02 + 33.88 = 0.62" . i ]
64.50 g g -2
2x062= 124 3 x x
N
63.26 N
8 =
3 3
64 x % e
! | \ T 18.99
— I‘

EES—
[62' 20"/0' on
net section

Fia. 51 .

the same. Figure 51 also shows the calculations for the location of the
center of gravity of the flanges, the effective depth, and the allowable
stress at the center of gravity of the tension flange.



ILLUSTRATIVE DESIGN OF A TYPICAL FLOOR PANEL 87
Checking the weight of the section:

Top flange gross area (average) = 28.75 sq in. (net area at maxi-
mum section)

Bottom flange gross area = 28.75

Web gross area = 20.00

Details—60%, of web (approximate) = 12.00

89.50 sq in.
at 3.4 1b per ft = 305 Ib per ft

This is less than the 320 Ib per ft assumed, but correcting for the smaller weight
will have only a negligible effect on the design. From the previously computed
moment:

3119 X 12
63.26
The net area in the above section is 31.25 sq in. This is so close to the required

area that no check * is necessary to determine whether a 1s-in. thinner cover
plate would be satisfactory even if the smaller dead load weight were used.

= 592 <+ 18.9% = 31.17 sq in. net, required area

In Fig. 52 are shown sketches of the top flange at the points where
there are no cover plates, where there is one cover plate, and where

'19-. Pl i% P %' Pl

64.50 16.88 x 1.78 = 30.05 16.88 x 1.78 = 30.05
2x178= 3.56 9.00 x 0.281 = 2.53 17.00 x 0.531 = 9.03
d, = 60.94" 25.88 27.52 33.88 21.02
27.52 + 25.88 = 1.06 21.02 + 33.88 = 0.62

64.50 —L. 64.50

2x106= 212 2x062= 124

d, =62.38" d,=63.26"
Fia. 52

there are two. Also are shown the calculations for the location of the
centers of gravity for these three conditions and the corresponding
effective depths.

Cover Plate Lengths. When a uniform load is applied to several panel
points, the resulting moment curve is almost identical with a parabola,

* The student should make this calculation in order to satisfy himself that for the
same moment a change in cover plate thickness of 1% in. has practically no effect
on the allowable unit stress and therefore will not modify the required area; also
that the change in dead load makes no significant change in the design moment.
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since the value of the moments at the panel points all lie in the arc
of a parabola and are the same as the corresponding values for a span
without floorbeams. Therefore formula 12 in Art. 36 is the most con-
venient and direct way to determine the theoretical lengths of cover
plates.

For the outside plate,

7.00
L; =45 (—— = 2131t (use 24 ft)
31.25

For the inside plate,

14.87
Ly = 45 4 /-—— = 31.0ft (use 33 ft)
31.25

Curve of Maximur Shears. * In Fig. 53 are shown the influence lines
for shear for the panels of the girder, the dead loads, the shear diagram
for dead loads, and the curve (or diagram) of maximum shears. The
weight of the girder is taken as 305 1b per ft rather than the 320 1b per
ft as originally assumed. The live load = 360 X 27 = 9.72 kips per ft
of girder. The student will recall from his previous work with influence
lines that for maximum live load shear in panel 0-1 the entire span is
loaded, for the maximum in panel 1-2 the load extends from C to B,
and for the maximum in 2-3 it extends from D to B. The live load

shearsare:  p 10-1 3 X § X 45 X 9.72 = 182.3 kips
Panel 1-2 % X % X 86 X 9.72 = 116.6 kips
Panel 2-3 3 X 3 X 27 X 9.72 = 65.6 kips

Rivet Pitch. For %-in. rivets, the following values are obtained from
the table of rivet values in the handbook:
Bearing on %-in. web at 40,000 Ib per sq in. = 10.9 kips.
Bearing on angles at 32,000 1b per sq in. = 42 kips.
Double shear = 18.04 klps
R = 10.9 kips.
Panels 0-1 and 5-6:
d = 60.94 in. with no cover plate
d = 62.38 in. with 16 X T’g—in plate
10.9 X 60.94 .
p= s (1 + 1388 = 2.86 X 1.18 = 3.37 in.
10 9 X 62.38
231.8

Use 3%-in. pitch in panel.

(1 +i 75 =293 X 1.115 = 3.27 in. .
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Panels 1-2 and 4-5:

10.9 X 62.38 .
= T1467 (1 + 57 75 = 4.63 X 1.115 = 5.16 in.
10.9 X 63.26 2.50 )

Use 5-in. pitch in panel.
Panels 2-3 and 3-4:

10.9 X 63.26 2.50 .
p=—r (1 + 5e7z) = 9.02 X 1.087 = 981 in.

20 X % = 6.25 in.

16 X % = 9 in.
Use 6}-in. pitch in panel.
The same pitch will be used in the cover plates as in the vertical legs of the
flange angles. Cover plate thickness will not control, since 16 X % = 8 in.

Stiffeners. Following the recommended practice given in Art. 37,
intermediate stiffeners will consist of 5 by 33 by % in. angles,* placed
in pairs on opposite sides of the web.

64 000, 000 76.4
Y ESTEY = 2270 20 = 3820 1b per sq 1n.
0.3125
It is seen that intermediate stiffeners are required in all panels.
Panel 0-1:
2—§l—8 = 11,590 1b per sq in.
20
11,000 X % .
————" =31.8in.
V11,590
Panel 1-2:
146.7 _ 7535 b per sq mn.
20
11,000 X n - 40.1 in.
T \V7335
Panel 2-3:
764 = 3820 Ib per sq in.
20
11,000 X 1 = 55.5 in,
3820 ’ )

* This size for stiffener angles is more than a.dequate to meet the A.I.8.C. Specifica-
tions that I, = 0.00000016H.
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The center-to-center spacing of beams framing into the girder is
7 ft 6 in., or 90 in. If it is desired to have stiffeners at all connections,
the spacing is as follows: 6 at 30 in., 4 at 45 in., and 6 at 30 in., a total of
15 intermediate stiffeners. On the basis of the computations above,
the following could be used: 3 at 30 in., 2 at 40 in., 4 at 50 in., 2 at
40 in., and 3 at 30 in., a total of 13 intermediate stiffeners. In the
latter spacing, two of the beams are connected apart from the stiff-
eners, necessitating separate connection angles. These two connec-
tions would be fairly close to stiffener angles and might give difficulty
in erection, and the authors prefer the first spacing given. There should
be little difference in the cost of the two arrangements.

Connections. Figure 37 illustrates two methods by which the beams
can be connected to the girder. For the full-length stiffener angle
shown in Fig. 374 and b, a special connection angle with a 5-in. outstand-
ing leg is used. Thie connection needs to resist the total load of 90 kips,
or 45 kips on each side of the girder. If the connection is as shown in
Fig. 37¢c, standard connection angles can be placed above the seat angle,
and the erection will be somewhat easier. The authors normally favor
this latter connection.

The girder connection, either to the column or the carrying girder,
should be designed for an end reaction of 231.8 kips, following the
procedure given in Art. 41.

Carrying Girder. Only sufficient computations will be given as are
necessary to determine the section.

Uniform load on girder:

360
20
53
433 X 7.5 = 3250
|4 M
Estimated weight = 590
3840.0 X %% = 103.7 kips
x B2 = 1400 ft-kips
2318 X 2= 4636 X1 =2318
X 54 = 6260

336.5kips 7660 ft-kips
335.5 + 13 = 25.81 8q in. (minimum web area)

3
5.5 \/-7-5‘6—0%—13 = 91.4 in. = least weight depth
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A 90-in. web is a convenient value, but it requires a y%-in. thickness, even if
the flange angles have 8-in. legs. As a matter of fact, a tg-in. web barely meets
the 145 requirement. It is generally found that, where a thinner web can be
obtained by a few inches further decrease in depth, the girder should be no
heavier and possibly lighter. In this case a shallower girder will give more
headroom. With 8 by 8 in. angles, a 79-in. or 78-in. web with a thickness of
£ in. is satisfactory, although this girder may be slightly heavier.

For a depth of web = 78 in.:

78.5
16

62.5 + 170 = 0.368 in. (use § in.)

78.4 . . 7660 X 12 .
o X 20 = 18.89 kips per sq in. 784X 1889 62.07 sq in. net

Using #-in. rivets:

1web 78 X § =29.25sqin. X § = 4.88sqin. gross X § = 3.66 sq in. net

248X 8X 3 22.88 — 3.00 = 19.88
2 plates 20 X 2 = 30.00 — 3.00 = 27.00
1 plate 20 X = 13.75 —1.38 = 12.37
71.51 8q in. gross 62.91 sq in. net
22.88 X 2.28 = 52.17 78.5 78.5
43.75 X 1.094 = 47.86 2 X 0.065 = 0.13 4.375
66.63 ) 4.31 78.37 in. 82.875 in.
0.065 in.
78.37 . . 7660 X 12 .
3288 X 20 = 18.91 kips per sq in. 7837 % 1801 — 62.02 sq in. net

This is satisfactory. Decreasing the outside cover plate from 20 by i to
20 by § provides a total net area of 61.79 sq in., and the required area again is
62.07 sq in. net. This section is also satisfactory.

The carrying girder was designed, as to section, so as to illustrate the
proportioning of a heavier girder flange. The calculations for cover
plate cutoff, rivet pitch, and stiffener spacing have not been made, as
they would illustrate no new principles. It should be noted that, since
the moment diagram consists of two parabolic arcs meeting at the center
of the span with a large angle between their slopes, the graphic method
illustrated in Fig. 28 should be used in determining the lengths of cover
plates. Also, since the change in shear on the half span is less than
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% of the end shear, there will not be a great difference in the rivet pitch
or stiffener spacing at the end and center, nor many changes in their
values. The student should complete the design of all parts of this
girder.

PROBLEMS

In the following problems, unless otherwise specified, the allowable stresses for
steel members are those of the latest “Specification for the Design, Fabrication and
Erection of Structural Steel for Buildings” of the American Institute of Steel Con-
struction.

1. For a simple span of 30 ft, a rolled steel bcam is to be used. The live load is
4 kips per ft of beam. There is no impact, and the dead load is 500 Ib per ft of beam,
plus the beam weight. The compression flange has continuous lateral support.
Select a rolled beam and indicate by calculations that it is adequate.

2. A short heavily loaded beam has a span cf 6 ft and a total load (including its
own weight) of 30 kips per ft. This is a simple span, and the compression flange has
lateral support. Sclect a wide-flange beam that is adequate; select also an American
Standard beam. Show calculations.

3. From the data of Problem 1, except that the compression flange has lateral
support at the ends only, sclect a rolled beam that satisfies the requirements, using
as an allowable stress the following expressions:

IJ2
(a) f =18,000 — 5 (b—Q) (A.R.E.A., 1947; AAS.H.O., 1949)

22,500
L2
180062

() = (A.LI.S.C., fourth cdition)

1+

12,000,000

(o) I ) (A.L.8.C., fifth edition)

4. In Art. 30 alternate designs for a crane beam are presented as an illustrative
cxample. Using the data from this example, design a crane beam for a span of 40 ft
(a) as a rolled wide-flange section, and (b) as a rolled beam with a channel added to
the top flange.

5. A girder has a span of 42 ft and is loaded with 7.5 kips per ft (not including
the weight of the girder). (@) Assuming that the compression flange has lateral
support, what is the rolled beam of least weight that would be satisfactory? (b) As-
suming that the compression flange has lateral support, determine the section re-
quired for a plate girder with a web 54 in. deep and F-in. rivets. (c) Assuming that
the compression flange has lateral support at the ends only, determine the section
required for a plate girder with a web 54 in. deep and F-in. rivets.

6. If, in Problem 5b, 6 by 6 by § in. flange angles are used, a cover plate is re-
quired. What is the length required for this cover plate?

7. An illustrative design of a typical floor panel is shown in Art. 44. From the
data given, what is the rivet pitch at the end of the carrying girder?

8. Redesign the girder in Art. 44 as a welded plate girder.
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CHAPTER 4

ELEMENTARY DESIGN OF STEEL COLUMNS
WITH BENDING

45. Design of Compression Members. A detailed discussion of
the design of steel compression members would be foreign to the general
subject matter of this book. For such a discussion the student is
referred to the many excellent {extbooks on steel design, one of them
being Structural Design in Steel by Shedd.

In the design of members subjected to bending it is often found that
such members are subjected to axial loads also. Where such axial loads
are compressive, it becomes necessary to take cognizance of the prin-
ciples of design of compression members as well as those of flexural
members.

In the design of a short compression member there is no great difficulty
involved. It is necessary only to divide the total stress (or load) by the
allowable unit stress in compression and thus determine the required
area. It is assumed that the member will be proportioned in such a
manner that the thicknesses of all parts (webs and flanges) meet the
requirements of the specifications and that the slenderness ratio of the
entire section is less than that for which the specifications require a
column reduction formula. In the design of longer compression mem-
bers, column action is involved, and it therefore becomes necessary to
take account of the properties and general shape of the section. Some
assumptions as to these values must be made as the first step in design.

46. Column Reduction Formulas. Only a very brief treatment of
column reduction formulas will be attempted in this article—just enough
to give the ones most commonly used, both now and in former years,
and a little of their background. The discussion will closely parallel
that in Art. 26 of Chapter 3 regarding the design of compression flanges
that do not have full lateral support.

The same basic expressions

f=hHh+f or i=f—fo

are equally applicable in the study of columns as in that of compression

flanges. In the present instance,
95
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f = the maximum unit compressive stress, as before.

fi1 = the average intensity of stress on the column = P/A.

f2 = the intensity of stress due to eccentricities in load application,
whether caused by imperfections in manufacture or column
action, including lateral displacements and end rotations.

In the above, P is the axial load, and A is the cross-sectional area of
the member.
All common expressions for f; contain some form of the ratio L/r, in
which
L = the length of the column in inches.
r = critical radius of gyration of the column section in inches.

The value of r is about that axis which gives the maximum value of
L/r.

Where L/r is used, the expression takes the form f, = f — k(L/r),
which is the formula for a straight line. The most widely adopted
straight-line formula for many years was

L
fi = 16,000 — 70 — 1)
r

with a maximum of 14,000 lb per sq in. allowed. This appeared in
specifications written for a base stress of 16,000 1b per sq in. There
were a number of others utilized to a somewhat limited extent.
Where L?/r? is used, the basic expression takes the form
2

'f1=f"k172'

which gives a parabolic formula or a Rankine-Gordon type of formula,
depending on whether or not %, is made a function of f.
The 1949 A.1.S.C. specifications use a parabolic formula for values of

L/r less than 120, namely,
2

f1 = 17,000 — 0.485§ )]
The base stress in these specifications is 20,000 1b per sq in., but the
above formula limits the stress in a column to some value less than
17,000 1b per sq in.
The current A.R.E.A. and A.A.S.H.O. bridge specifications give

2

1L .
15,000 — i3 for columns with riveted ends 3)
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and
2

1L
15,000 — 37 for columns with pin ends 4)
T
Both specifications have a base stress of 18,000 Ib per sq in.
If k, is replaced by kaf;, the Rankine-Gordon formula is obtained.

f1='—j"_§

L
1+ ke—
N

There have been many forms of this formula in recent years, but the
current specifications usually require a parabolic formula.
For bracing and secondary members having a value of L/r greater
than 120, the A.L.S.C. specificaiions give
18,000
h=— ®)
L 18,000
This was also the formula for all values of L/r from their earliest specifi-
cations in 1923 until 1936, during which time the base stress was 18,000
Ib per sq in. Formula 5 has given very good satisfaction in previous
years.

In the design of a compression member it is necessary to make some
estimate of the probable value of » and obtain the resulting allowable
stress. Working from that starting point the column is proportioned.

47. Bending in Columns. Bending in columns * may be due to
wind and other lateral loads, to the fact that beams are framed con-
tinuous with the column, or to an eccentricity of the applied axial load.
The latter is often due to the fact that the axes of building truss members
meet in the connection angles at the ends of the truss, thus causing an
eccentricity of the reaction between the truss and the column. A com-
mon type of lateral force, other than wind, is the horizontal force from

- crane girders.

The computation of bending moments in columns, due to lateral
forces, is a problem in statically indeterminate structures. They are
often computed by means of simplifying assumptions. Where the

* In reinforced concrete columns especially, but also for steel columns in some
instances, large changes in temperature may be the cause of critical bending moments.
Advanced textbooks treat this subject as well as the bending moments caused by
shrinkage in reinforced concrete. In earthquake areas, the bending moments in
columns caused by earthquake forces should be considered.
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columns are of equal size and height, a common assumption for the dis-
tribution of stress due to wind loads is that the plane of contraflexure
occurs at the mid-height of the column, and that the shear for the forces
above the plane of contraflexure is equally distributed between the
columns. The foregoing is based on the assumption that the column is
not free to rotate at the bottom of the truss or at the ground, and it
applies to normal building bents. Proper account must be taken of
columns that are hinged at the base or have different sections or lengths.
For a discussion of approximate methods of computing stress and
moments in columns, due to lateral loads, the student is referred to
Chapter IX of Theory of Simple Structures by Shedd and Vawter. A
more exact treatment can be obtained by applying the methods dis-
cussed in Chapter X of the same book.

Where a single lateral force is applied at some mid-point of a column,
as a side thrust from a crane girder, it is customary to treat the column
as a fixed end beam with a single concentrated load. The end moments
for this case can be obtained from the relation,

where a and b are the two segments into which the length L is divided by
the load, a being the segment on the A end, and b the segment on the
B end.

Where a column supports 2 beam framed integrally with the column,
it is necessary to use one of the methods of solving statically indeter-
minate structures to obtain a proper solution.

48. Design of Columns Subjected to Bending. If it is assumed
that a column has at least one axis of symmetry and that bending is about
the axis of symmetry or the axis perpendicular to it, the following
expression for stress is obtained:

f_P+Mc
T4 T

where P = the total axial load.
A = the cross-sectioned area of the column.
M = the bending moment.
¢ = the distance from the gravity axis to the extreme fiber on
the compression side, due to bending.
I = the moment of inertia about the axis perpendicular to the
plane of bending.



DESIGN OF COLUMNS SUBJECTED TO BENDING 99

The above expression gives the computed stress in the member if the
additional stress due to column action or due to lack of lateral support
in the compression flange is neglected. Allowance is made for these
additional stresses by the value of the allowable computed stress, when
a compression member or a beam is being designed, and can similarly
be made for the combined action.

Since I = Ar?, the above expression can be written

A==+ ®)

In this equation f is the allowable unit stress, whether due to axial load
or bending. It is more satisfactory from a rational standpoint to account
separately for the allowable stress due to column action and for the stress
due to bending; equahon 6 can then be written

4= @
i f?
where f; = the allowable stress from the column reduction formula,
using the least radius of gyration (or that for maximum
L/r), and
fo = the allowable stress in the compression flange of a flexural
member, taking account of any lack of lateral support.

In the application of equation 7, it is necessary to make some assump-
tion regarding the physical dimensions of the cross section of the member
in order to obtain approximate values of f; and f, and also to estimate 7.
The design is entirely by trial, and the number of trials is determined by
the accuracy of the estimates. Experience is the best teacher in making
these assumptions, and the experienced designer can make a fairly
accurate estimate on his first trial. A table of approximate radii of
gyration is of aid in estimating these properties. A useful table of this
character may be found on page 421 of Structural Design in Steel by
Shedd. This table covers most column sections.

The 1949 A.I.S.C. specifications provide that members subjected to
both bending and axial stresses shall be proportioned so that

Jo o

— + ~— sghall not exceed unity

F,
where F, = axial unit stress perm1tted if axxal stress only existed.
bending unit stress permitted if bending only existed.
computed axial unit stress = P/A.
computed bending unit stress = Mc/I.

%)
o
]

Ja
s
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The above relationship is merely a restatement of equation 7. The
authors believe that equation 7 provides as direct a method of propor-
tioning as any other and recommend its use.

‘f’/“’—

F1a. 5. Erection view of United Nations Secretarial Building, New York, showing
girder to column connections, including connections to resist moment. (Courtesy of
American Bridge Company.)

If there is bending about both rectangular axes, a third quantity,
similar in form to the second quantity in equation 7, can be added to
include the effect of the bending moment about the other axis.
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Although the maximum axial load that a column must resist is an
important design condition, it is also true that, if a column connects
to other structural members by means of connections capable of resisting
bending moments, a lesser axial load with an accompanying bending
moment may be a more critical design condition. Connections some-
times are designed to resist bending moments caused by unsymmetrical
vertical loads, or lateral forces, or both. Three of the many possible
types of moment connections are shown in Fig. 54.

Where the members are attached by welding,
the connections may be designed to resist bend-
ing moments even though the effect of lateral
forces is unimportant. Although it is not nec-
cssary that welded connections be designed to
resist bending moments, sometimes it is econom-
ical to do so.

Even the simplest riveted connection designed
to resist shearing force will resist a small bending
moment. Generally, however, the amount of
bending that exists at a riveted shear connection
is unimportant in the design of either member
being connected. One exception would be a deep
girder framed into a short column by means of QE% 1
long connection angles attached to the flange of
the column. Here the bending moment in the - Fia. 56
connection could be of sufficient magnitude to
materially influence the design of the column. Figure 56 illustrates this.

49, Illustrative Example. In Fig. 57a is shown a column supporting
a girder on each side and two beams, which frame into the web of the
column. Figure 57b shows the condition of maximum vertical load with
no bending, and Fig. 57¢ shows the condition of maximum bending
with the accompanying vertical load. The bending moment is the
result of a partial floor loading. Lateral forces such as the wind loads
would also cause bending in the column; however, when wind loads are
included along with the live load, impact, and dead load, the unit stresses
may be increased by 331 per cent, according to the A.I.S.C. specifica-
tions. For this example it is assumed that wind loads are not critical.

The design conditions to be considered, as shown in Fig. 57, are an axial load
of 500 kips or an axial load of 350 kips, plus a bending moment of 90 ft-kips.
The length L used in computing L/r is taken as the distance from the column
base to the mid-depth of the beam. L = 19.50 ft. For the axial load of 500
kips, assuming an allowable stress of about 15 kips per sq in.,

A =55 =33.33sqin.

0 0000000 00|
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£ Pook /333:90"
3 1 F T
in
;‘.’ @ 2
1 e e —L— bl

1500" 45
350"
Fia. 57

Using a 14 X 14} W 119, 4 = 34.99 sq in., r;—, = 6.26 in., and r,_, = 3.75 in.
L 1950 X 12

PR ¥

fi = 17,000 — 0.485(62.4)2 = 15,110 Ib per sq in
500 .

A= 1531 = 33.1 sq in.

For the axial load of 350 kips and a bending moment of 90 ft-kips, using
equation 7 and f; = 17,000 lb per sq in. and f; = 20,000 lb per sq in., since
at the point where this bending moment occurs the column is supported in both
directions,

4= 350 , 90 X 12 X 7.25

A= T x 620
Use a 14 X 143 WF 119,

A section taken a sufficient distance below the beams so that reduced
allowable stresses should be used would have a bending moment so
much less than the maximum that this section would not be critical.
The 14 X 143 WF 119 is the least weight section, since the next smaller
section has an area of only 32.65 sq in.

= 20.6 4+ 10.0 = 30.6 sq 1n.



CHAPTER 5

ELEMENTARY DESIGN OF REINFORCED CONCRETE
BEAMS AND COLUMNS

50. Concrete. Concrete is a structural material, as are steel, alumi-
num, timber, brick, stone, etc. Tt must conform to certain definite
strength specifications. It differs; from other materials in that it is
manufactured on the job, or hauled from a central mixing plant in the
vicinity, and placed immediately after the manufacture, or mixing,
while still in the semifluid state.

The strength of concrete is dependent on the size, the gradation, and
the type of aggregate; the proportioning of the aggregates; the amount
and quality of cement; the ratio of the water content to the cement; and
the time and type of curing and mixing. Methods of depositing also
influence the strength. The strength of concrete to be used in any
structure is normally given in the specifications for that structure.
General specifications, notably those of the American Society for Test-
ing Materials, tell how concrete of a given specified strength can be
obtained. Also, test cylinders are made on the job, and these cylinders
are tested after a given number of days in order to determine whether
concrete of the desired strength is being obtained. The time interval
between pouring and making the cylinder tests is usually seven days for
one group of cylinders and twenty-eight days for the remaining cylinders.

The details of selecting and grading the aggregate, and of proportion-
ing, mixing, and depositing the concrete are somewhat beyond the scope
of this chapter. These details can be found in the specifications of the
various societies and in textbooks on plain concrete. The material will
be treated herein as if it is a finished product, of specified strength, and
ready to be used with proper reinforcing material.

In Chapter 1, Art. 8, it was assumed that within the elastic limit of the
material there would be a linear-distribution of stress in a member in
flexure, or that stress is proportional to strain. In concrete, if the stress-
strain curve were plotted it would be a curve somewhat like a parabola
in shape. Within the limits of the allowable design stress this curve
will deviate slightly from the straight line, and, after repeated loads,
the stress-strain curve will be essentially straight. At this stage the

concrete will not entirely recover its initial length upon removal of the
103
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load, and it first appears that the secant line would prove to be the
correct stress-strain relation for some given stress. The phenomenon
of time yield, which will be discussed later, also enters the problem;
therefore there is no justification in considering the stress-strain relation
as other than a straight line, on the basis of values that have proved
satisfactory by years of application and by experiment. The building
code of the American Concrete Institute recommends for the modulus of
elasticity of concrete a value of 1000 f.’, in which f.’ = the ultimate
strength of concrete after twenty-eight days.

51. The Use of Concrete with Steel. Although concrete is one of
the more important materials used in various types of structures, it
has the disadvantage of being extremely weak in tension although
relatively strong in resisting compression. This strength deficiency in
tension can be overcome by the addition of some other material that is
capable of resisting the tensile forces; the most common material is
steel. These two in proper combination make reinforced concrete, the
bond between the concrete and the steel causing the two materials to
act together. The steel resists the tensile stresses in general but fre-
quently assists the concrete in resisting the compressive stresses.

The combination of steel and concrete is not confined to the tensile
side of flexural members or to tension members; as will be seen later, it
has an important application in compression. The combination has one
great advantage in that the two materials have about the same coefficient
of thermal expansion, and, consequently, the stresses due to temperature
changes are small. Concrete does shrink in setting, causing some initial
stresses, but these normally can be ignored in reinforced concrete as
they are immaterial compared to the normal working stresses. Sound
concrete also protects the steel against corrosion and to some extent
against fire hazards.

Since the concrete is weak in tension, it cracks long before the steel
is stressed to its normal working stress in tension. For this reason the
steel has to take all the tension in a tension member of concrete and steel.
In a flexural member the steel is assumed to take all the tension as the
small amount of uncracked concrete on the tensile side adjacent to the
neutral axis does not resist enough bending moment to justify its inclu-
sion in the computations.

52. Placement of Steel. Since the stresses in concrete and steel are
calculated on the assumption that the steel is to occupy a certain space,
it is important that extreme care be exercised in placing the steel so that
these stresses are at least approximately realized. The placing of the
reinforcement in reinforced concrete structures should be done by
experienced workmen.
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A number of various types of bar supports and spacers are becoming
increasingly more common compared to small blocks of concrete and
similar means of support. Welding of the reinforcement before it is

l

F1a. 58a. View of reinforcing steel in place. Note W stirrups in foreground, slab
steel in background. (Courtesy of Portland Cement Association.)

placed helps to keep it in proper location. Beam and column steel is
often wired or welded into units before being placed in the forms.
Where beams frame into columns, it is often necessary to spread the
steel in the top of the beam in order to avoid interference with the
column steel, possibly placing some in the slab beyond the side of the
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beam. Bottom steel may be slightly raised in order to avoid steel in
the bottom of the beam on the other side of the column. Such details of
steel placement have been purposely omitted. The student is referred
to more advanced textbooks for the complete details. The Proposed
Manual of Standard Practice for Detailing Reinforced Concrete Structures,

F1a. 58b. Close-up view of slab reinforcing steel in place. (Courtesy of Portland
Cement Association.)

published by the American Concrete Institute, has valuable information
on the placement of steel.

53. Transformed Sections. The combination of concrete and steel
in a beam forms a nonhomogeneous beam, and the necessary computa-
tions can best be made by means of the method of transformed sections
similar to the method followed in Chapter 2. Many handbooks con-
tain complicated formulas and extensive and elaborate tables and dia-
grams for the design of reinforced concrete. It is believed that the
beginning student should ignore these and confine his work to the appli-
cation of the method of transformed sections to the use of steel with
concrete. For transformed sections there are certain common expressions
that will be obtained and that can be easily remembered if frequently
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used, but the student should not try to remember them, since anyone
familiar with the fundamental relations in reinforced concrete design
should be able to obtain all the necessary expressions in five to ten
minutes. After the student has become thoroughly familiar with the
fundamental procedures in the design of reinforced concrete, he is in a
position to choose which tables or diagrams might be valuable to him.

The following nomenclature is common in the literature on reinforced
concrete; more will be added as needed.

E. = modulus of elasticity of concrete in compression.
E, = modulus of elasticity of steel.
fc = unit stress in extreme fiber of concrete.
f' = ultimate strength of concrete at the end of twenty-eight days.
unit tensile stress in sieel reinforcement.
fs' = unit compressive stress in steel reinforcement.
A, = area of tensile steel.
A,’ = area of compressive steel.
b = width of beam.
d = depth of beam to center of steel reinforcement.
kd = distance from compression face of beam to neutral axis.
jd = moment arm of resisting couple, or distance between resultant
compressive and tensile forces.

an
I

n=E,/E. *
p = A,/bd, the steel ratio (sometimes expressed as percentage
of steel).

Figure 59 presents a reinforced concrete beam with dimensions as
shown. In Fig. 59b, the transformed section has been drawn, following
the same principles as in Chapter 2. It will be noted that, since the

b=10" 10" Fe
—7.2" €c f,

of | | = 7 . e
" Neutral axis : =

® ooo) 2= zﬂclm— LY,

n=12 n-A, =249 € _’f',. T
(a) () (© (d)
Fia. 59

* According to the 1940 report of the Joint Committee, if

Jo' = 2000-2400, n = 15.
= 2500-2900, n = 12.
= 3000-3900, n = 10.
= 4000-4900, n = 8.
= gbove 5000, n = 6.



108 REINFORCED CONCRETE BEAMS AND COLUMNS [Crar. 5

concrete is considered incapable of taking tension, the only material
considered on the tensile side of the beam is the transformed steel area.
Since the amount of concrete considered in the transformed section is
dependent on the location of the neutral axis, a quadratic equation is
involved in finding this value. The calculations for locating the neutral
axis of the beam in Fig. 59 are as follows:

Taking moments about the neutral axis (kd = z) and equating the first
moment of the compressive area to the first moment of the tensile area:

1ox:c><f”2-=12x2(1s—x)

522 = 432 — 24z
72 4 4.8z = 86.4

By completing the square,
2% + 4.8z + 5.76 = 92.16
T+ 24 =x96
z=172 or —120
therefore,

kd = 7.2 in.

The deformations for the fibers in the beam shown in Fig. 59¢ are
based on the assumption that plane sections remain planes after bending;
the stress distribution shown in Fig. 59d is based on the assumption
that we have a linear distribution of stress. It should be noted that the
only stress below the neutral axis is that in the steel, the unit value
being f, in the steel or f,/n in the transformed area. The assumption
that we have a linear distribution of stress is not entirely correct as
far as the concrete is concerned, but within the values of the working
stresses normally permitted this assumption is exact enough for design
purposes.

A study of Fig. 59d also shows a definite relation between kd, fc, foy
and n. From the geometry of the figure, we can write

kd d Ie
—_—=—— or k=——"7-—
Je Je + (fo/n) Je + (fo/n)
also
id =d kd =1 k
=d—— or j=1-—-
I 3 &7 3

This value of k is a relation that will always hold true in any rein~forced
concrete member subjected to bending and having both tensile and
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compressive stresses. It is not an alternate method for locating the
neutral axis to be used where the physical dimensions of the beam are
given, as in Fig. 59a. Where the complete physical dimensions of the
beam are given, including the area of the steel, these locate the neutral
as was done with the quadratic equation. However, once the location
of the neutral axis is determined, there is also determined a definite
ratio between the stresses f. and f,. Also, where a beam is being propor-
tioned for certain working unit stresses to be completely realized, the
neutral axis is thereby determined according to the relations above.
When a beam is proportioned for certain Jefinite values of the stresses
fo and f,, it is called a “balanced design.”

54. Design of Rectangular Beams and Slabs with Tension Steel.
Figure 60 shows a beam similar 1o the one shown in Fig. 59, except that
it has not been assigned finite dimensions. If it is desired to proportion
this beam to resist : certain bending moment M, there are certain
working stresses that must not be exceeded. The ideal condition would
be to realize these stresses f, and f, simultaneously, and where this is
done a balanced design is achieved, as discussed in the previous article.
This is not hard to attain where it is not necessary to consider the effect
of shear or where the beam is not limited in its dimensions. If these

b
A
—n~_k
2 C==5 b-kd
S ) ,
- A, T=5-An=[ A
A or T=f-pbd
n
(a) (v
F1a. 60

stresses are realized simultaneously, there are certain relations that
must be maintained, one of which is the location of the neutral axis, or
determination of k, as discussed in the previous article.
Since the total compressive force C' must equal the total tensile force
T for ZH = 0,
Je

C=5Xbxkd=T=f,Xpbd

or
Je Xk

2fs
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which gives a definite relation between the area of steel and the area
of concrete. Also,

M=Cde=§Xkaded=(§ij)bd2

and M =T X jd =f, X pbd X jd = (fspj)bd®

These two éxpressions [(fe/2) X kj] and (f,pj) are equal and are com-
monly called R in the concrete literature. Definite values of R are
obtained for any combination of f,, f;, and n, and, where the values of
b and d satisfy the expression M = Rbd?, a balanced design is obtained.

These are not formulas to be remembered but are merely relations
that can be easily obtained and that must be observed if it is desired to
secure a balanced design. A balanced design is not always obtained
in beams, but it is usually fairly well observed in the design of slabs.

Another common problem is to check an existing beam as to its
capacity or as to the stresses produced by given loads. Although this
does not involve any new principles beyond those discussed under
flexure and nonhomogeneous beams, the critical stresses in both con-
crete and steel will be computed for the beam shown in Fig. 59a for a
bending moment of 50 ft-kips.

d=18in.,b = 101in., kd = 7.2 in,, A, = 2.0 5q in.

jd =18 — 33—2 = 15.6 in.
M 50,000 X 12
C_ﬁ_—l—gﬁ—_ss,soom
'12" X 10 X 7.2 = 38,500 Ib f. = 1070 Ib per sq in.
T = 38,500 Ib = 2.0, fo = 19,250 Ib per sq in.

55. Illustrative Example. Figure 61a shows a reinforced concrete
beam in elevation. The span is 20 ft, and the live load is 1500 Ib per ft
of length.  Taking f,/ = 2500 Ib per sq in., n = 12, and f, = 20,000 1Ib
per sq in., the beam can be designed on the basis of the discussion in
the preceding articles. The maximum bending moment for this simple
span will be at the center, and, if we assume the beam to weigh 300 Ib
per ft of length, the center bending moment is 3 X 1800 X 20% = 90,000
ft-lb = 1,080,000 in.-lb. The allowable compressive stress * f. for

* Allowable stresses, protective covering, bar spacing, etc., for this illustrative
example and for the remainder of this chapter follow closely the ‘“Recommended
Practice and Standard Specifications for Concrete and Reinforced Concrete” sub-
mitted in 1940 as a report of the Joint Committee on Standard Specification for

Concrete and Reinforced Concrete, and also follow closely ‘“‘Building Regulations
for Reinforced Concrete,” published by the American Concrete Institute in 1946.
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concrete in flexure is 45 per cent of f,/, and here f, = 0.45 X 2500
= 1125 lb per sq in. For balanced design, the calculations can be made
as follows:

_ Je _ 1125 _
k= fe+ (fo/n) — 1125 + (20,000 + 12) 0.403
. k
j=1-73=0866
. fc 13 fC .
M = Cjd =3 kjbd* = Rba* for B = Zkj
R = %,-5 X 0.403 X 0.866 = 196 b per sq in.

‘M
M = Rbd® or d= _RI;

For a given b, d is definite; therefore b can be assumed, and, for each

12"
[ {;‘]\
' iLd—Stirrup

e |

I

20° S h

Elevation i: :I o
I L4 -
(a) la. -’g 1? bars
2F
=" 30 25 S
Enlarged
Cross Section
(%)
Fia. 61
value, the corresponding value of d can be determined. From the
) 1,080,000 . .
‘equation d = \/ -’Ws’b-— , Table 1 can be obtained. It is not recom-
TABLE 1
b d

8 26.2
10 23.5
12 21.4
13 20.6
14 19.8
16 18.6
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mended that such a table be made. It is shown here merely to indicate
that a designer does have a choice which should be governed by other
factors than just those in the equation. For an economical design, the
ratio b/d should be about 3 to 2 for small beams and % to % for large
beams.

The weight and cost of the beam depend on the overall depth of the
beam which is the distance d plus the thickness of the protective covering.
The protective covering insures adequate bond between steel and con-
crete, helps prevent corrosion of the steel, and mainly protects the steel
from damage by fire. The amount of protective covering is dependent
on the type of structure and the estimated duration of fire. Average
values would be £ in. to 1 in. for slabs and 1 in. to 2 in. for beams and
girders.

If b = 12in., d = 21} in., and the protective cover is 2 in., the weight of the
beam would be

12 X 23.5 X 13% = 294 b per ft of length

if the usual assumption is made that reinforced concrete weighs 150 1b per cu ft.
This checks closely enough with the assumed 300 b per ft.
The required steel area A, is obtained as follows:

M 1,080,000

= 774" 20,000 X 0.866 X 215 _ 220 sain.

4.

Reinforcing steel bars are readily available with diameters from { in. to 1 in.,
in increments of % in. for round bars, and with the side dimensions of 1 in., 1} in.,
and 1} in. for square bars. For this problem any of the following would provide
sufficient steel area:

4—1-in. round = 4 X 0.785 = 3.14 sq in.
3—1-in. square = 3 X 1.00 = 3.00 sq in.
5—%-in. round = 5 X 0.601 = 3.01 &q in.
7—3-in. round = 7 X 0.442 = 3.09 sq in.

Table 2 lists the areas and perimeters of bars.

Reinforcing steel must be placed, or spaced, in such a manner that the
concrete can surround it so that sufficient bond can be developed between
the two materials to permit them to act together. The clear distance
between bars should not be less than 1} times the maximum size of
coarse aggregate, with a minimum of 1 in. for beams, and the center-
to-center distance for bars should not be less than 2} diameters for
round bars or 3 times the side distance for square bars.
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TABLE 2
CRoss-SECTIONAL AREA OF Barms *
Number of Bars
Size in Inches
1 2 3 4 5 6 7 8 9 10
Round bars ‘
i— 0.05| 0.10 | 0.15 { 0.20 | 0.25 | 0.20 | 0.34| 0.39| 0.44| 0.49
% 0.11]0.22 | 033 | 044 | 0.55 | 0.66 | 0.77| 0.88{ 0.99| 1.10
} 0.20]0.39 | 0.59 { 0.79 | 0.98 | 1.18 | 1.37| 1.57| 1.77| 1.96
ﬁ- 031061 |092 [ 1.23 ; 1.52 | 1.84 | 2.15]| 2.45| 2.76| 3.07
3 044! 088 | 1.33 | 1.77 | 2.21 | 2.65 | 3.09| 3.53| 3.98| 4.42
% 0.60| 1.20 | 1.80 | 2.41 | 3.01 | 3.61 | 421 4.81| 541 6.01
1 0.79) 1.57 | 2.36 | 3.14 | 3.93 | 4.71 | 550 | 6.28| 7.07| 7.85
Square bars
1 1.00| 2.00 | 3.00 | 4.00 | 5,00 | 6,00 | 7.00| 8.00{ 9.00|10.00
l-‘g 1.27 ] 2.53 | 3.80 | 5.06 | 6.33 | 7.59 | 8.86|10.13(11.39|12.66
1% 1.56 | 3.13 | 4.69 | 6.25 | 7.81 | 9.38 |10.94 | 12.50 | 14.06 | 15.63
PERIMETER OF BaRrs *
Number of Bars
Size in Inches
1 2 3 4 5 6 7 8 9 10
Round bars
1 0.79| 1.57| 2.36| 3.14| 3.93| 4.71| 550 6.28| 7.07| 7.85
3 1.18f 2.36| 3.53| 4.71| 5.89| 7.07| 825| 9.42|10.60|11.78
3 1.57| 3.14| 4.71| 628 | 7.85| 9.42|11.00 | 12.57 | 14.14 | 15.71
3 1.96| 3.93| 5.89| 7.85| 9.82|11.78 |13.74 | 15.71 | 17.67 | 19.63
3 2.36| 4.71| 7.07| 9.42|11.78|14.14 |16.49 | 18.85 | 21.21 | 23.56
3 2.75] 550 825|11.00]13.74 | 16.49 | 19.24 | 21.99 | 24.74 | 27.49
1 3.14| 6.28| 9.42|12.57|15.71 |18.85|21.99 | 25.13 | 28.27 | 31.42
Square bars '
1 4 8 12 16 20 24 28 32 36 40
1 45 | 9 13.5 |18 225 |27 31.5 |36 40.5 |45
1 5 10 15 20 25 30 36 40 45 50

* See note on page 166.
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The number of bars that can be placed in a single horizontal row
depends on the spacing of the bars, the width of the beam, and the
amount of protective covering at each side. Shearing stresses in con-
crete cause diagonal tension stresses that will be discussed later. Vertical
steel stirrups, shown as dotted lines in Fig. 61b, are employed to resist
these diagonal tension stresses, and protective covering is required for
these stirrups which lie outside the longitudinal reinforcing steel bars.
If 4—1-in. round bars are spaced 2} in. from center to center and the
vertical stirrups are §-in. round bars, the minimum width of beam would
be as follows:

b(minimum) = (1 + § +3)2 + (3 X 23) = 11} in.
However, a width of 12 in. was used. For 5— J-in. round bars,
b(minimum) = (1§ + 1%)2 + (4 X 2}) = 12§ in.

or 13 in. could be used. If b = 13, then d of 20.6 in. is the minimum
allowed.
Taking d = 20.75 in.,
_ 1,080,000
~ 20,000 X 0.866 X 20.75

= 3.01 sq in.

Although this equals the area of 5— Z-in. round bars and would be satis-
factory, the section will be as shown in Fig. 61b; b = 12 in., d = 21} in.
(overall depth = 23% in.), and 4—1-in. round bars.

56. Moment Coefficients in Continuous Beams. In the illustra-
tive design of the beam in Art. 55 it was assumed that the beam was
simply supported at the ends, and consequently the maximum moment
was at the center and equal to wL?/8. In steel construction most beams
are simply supported; in reinforced concrete construction the reverse
is true. Simply supported reinforced concrete beams and slabs are
commonly encountered in the construction of short-span bridges, but
in building construction the beams and slabs are normally poured
continuous with each other. They therefore have to be treated as con-
tinuous beams in their design, and the maximum bending moments
occur at the supports and are negative in sign.

The codes and specifications provide that in this type of construction
the members shall be designed to resist the moments and shears as
computed from the principle of continuity. They also permit certain
arbitrary moment coefficients when loads are uniformly distributed
and the spans are equal in length, or nearly so. In general, the principles
of continuity should be followed in computing the moments and shears
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in continuous structures although the arbitrary coefficients give very
good results within the limitations named. Since the beginner in beam
design will have had little, if any, training in the theory of indeterminate
structures, the authors will make use of arbitrary moment coefficients
in the illustrative examples of continuous beams. Most designers
employ arbitrary moment coefficients in their preliminary designs, and
many final designs have been based on them. These coefficients are
based on the supposition that the beams or girders are generally much
stiffer than the members that support them and can thus be considered
as being essentially continuous over knife-edge supports.

The specifications of the 1940 Joint Committee give separate coef-
ficients for dead load and live loud, which is entirely logical since the
maximum moments in each case are produced by different loadings.
They are given in decimal form but would average about as shown in
Table 3 for beams of {cur or more spans. The coefficient shown is to be

TABLE 3

MoMENT COEFFICIENTS

Center of First Interior  Interior Span
End First Span Support Center Support
D.L. -5 Tz -% 71 -z
LL. & -3 |

multiplied by wL?, where w is the uniformly distributed load. The
coefficients do not apply to concentrated loadings unless the concentra-
tions are sufficient in number and equally spaced so as to be essentially
a distributed loading. The span length L is the distance center to center
of supports unless the supports restrain the rotation of the ends. It is
stated that these coefficients are for continuous slabs, but the authors
see no reason why they cannot be used for beams as long as the beams
conform to the requirements of span length and uniformity of load.
At supports, the moments are obtained for the centerline of the support.

The “A.C.I. Building Code” permits the use of the coefficients shown
in Table 4 where one span does not exceed an adjacent span by more
than 20 per cent and where the unit live load does not exceed three times

TABLE 4
A.C.I. MoMENT COEFFICIENTS
Center of  First Interior Interior Span
First Span Support Center Support

1T -To Ts -7r
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the unit dead load. These values are for more than two spans. The
value of shear in the end span at the first interior support is to be in-
creased 15 per cent over the value for a simple beam. The span length
L’ is to be the clear span. The coefficients are multiplied by w(L’)?,
and at the supports they represent the moment at the face of the support.
The dead load and live load together equal w.

The authors recognize that the recommended values of the Joint
Committee represent more conservative practice and will use similar
values when computing the moments separately due to dead load and
live load. They agree with the increase of 15 per cent for the total
shear in the end span, but they also believe that the live load shear in
the interior spans should be increased by at least 10 per cent over that
of a simple beam. Shear should be computed on the clear span.

Where the center to center of supports is taken as the span length
in computing the negative moment at the end of the beam, the designer
is justified in computing the moment at the face of the support, allowing
for a normal moment diagram, in proportioning the steel at the support.

57. Illustrative Example—Slab Design. In Fig. 62a is shown a
reinforced concrete slab that is continuous over several supports. The
elevation view in cross section shows three span lengths of the slab.
The spans are equal, and the center-to-center distance between the
supporting beams is 8 ft. The live load for which the slab will be de-
signed is 300 Ib per sq ft, and the weight of the floor covering (wood
blocks on a sand cushion) is 20 Ib per sq ft, giving a total of 320 b per
sq ft exclusive of the weight of the slab itself.

The width of the slab normal to the slab span, i.e., the span of the
supporting beams, is not shown. If this width is large relative to the
slab span, the entire load can be assumed to be resisted by the strength
of the slab in the direction of the span only. Each foot of width of the
slab should have the same strength as any other foot of width of slab
for a uniform load. If the uniform load = w pounds per square foot,
and for purposes of design we take a 12-in. or 1-ft width of slab, then w
is the load per foot of slab span in pounds.

The span length for computing bending moment will be 8 ft, or the
distance, center to center, of the beams. The negative moment at the
t;[’ w12>> L?, which actually
is for the centerline of the support and the posmve moment at the center

of the span is (+ + )L"’ where dead load = wp and live load

face of the support will be assumed(

=wz. Itis understood that these moments occur with different groups
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of spans loaded. The span length would depend on the torsional rigidity
of the supporting beams and for a completely fixed support would be
the clear span, but the span above agrees with general practice for
beams of normal size.

The bending moment at the support, being the greater, controls the depth
of the slab. The tension steel is at the top of the slab over the support. If the

. . 8"’@ 5%7c.toc.
"‘,’*é",* N / 4 %*@7ctoc

P . g —— — P

Not all bottom
bars continue

into support
. 80" | 8-0" B g-00 |
(a)
[,
o 7 Section A - A (enlarged)
)
Fia. 62

overall depth of the slab is assumed to be 5 in., the weight per foot for a strip
1 ft wide is % X 150 = 63 Ib. The total w = 320 + 63 = 383 Ib per ft.

M = (—23° — $3)8 = —2580 ft-lb = —30,960 in.-lb

Using the same stresses and value of R as in Art. 55,

2580 . .
d= ‘,196 <1 3.62in. (use 3%in.)

If the minimum cover of § in. were used outside the steel, the overall depth would
be 4% in., with 3-in. bars. The required area of steel A, per foot width of slab
would then be M /f,jd. For rectangular beams and for slabs, it is quite common
to assume § as the value of j, as this represents a fair average value. Then

_ 30,960
~ 20,000 X § X 3.75

A, = 0.472 sq.in. per ft of width

Bars % in. round require 0.472 + 0.20 = 2.36 bars per ft of width, or one bar
every 12 + 2.36 = 5.09 in. Spacing over support = }-in. round bars spaced
every 5 in.
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At the center of the span M = (352 + $3)8 = 1820 ft-Ib.

21,840 .
At the center 4, = 30,000 X § X 375 0.334 sq in. per ft.
0.334 .
020 = 1.67 bars per ft of width
12
167 = 7.18 in.

Spacing of bottom tension steel = 3-in. round bars spaced every 7 in. The
authors do not recommend bent-up bars in any slabs less than 5 in. in depth,
especially if the bars are 3 in. or more in diameter.

The cross section of the slab is shown in Fig. 62b. The overall depth
of slab is 1 in. less than the assumed depth. The change in moment is
negligible. With 2-in. round bars, the protective covering is 43 — 33
— 1 X 1 = £ in., which is sufficient for slabs designed for short periods
of resistance to fires. The steel bars shown normal to the main rein-
forcing steel are known as shrinkage (or temperature) steel; they prevent
the opening up of cracks that are parallel to the longitudinal steel and
are caused by shrinkage or temperature changes. The quantity of
shrinkage steel is generally determined by using an ares of steel between
0.2 per cent and 0.3 per cent of the slab area. The minimum overall
depth of slab should not be less than 4 in., the minimum clearance
between bars is the same for slabs as for beams, and the maximum

7 spacing between main longitudinal steel
b bars should preferably not exceed
Y about 1} to 2 times the slab depth and
E{ in no case be more than 3 times the

= T T “Neutrai axis slab depth.
A, Bond stresses, shearing stresses, and
‘;,h length and embedment of reinforce-
> ment in beams will be discussed later
Fig. 63 in this chapter. Shear is, in general,

not of great importance in slabs.

58. Design of T Beams. The term T beam is applied to beams that
are shaped such as the beam shown in Fig. 63. They most commonly
occur as a part of a floor system, the slab not only acting in the function
discussed in Art. 57 but also composing the flange of the T beam. A
T beam can occur as a separate member, but that is rare. In.either
event the flange provides additional area of compressive concrete, and,
if there is sufficient steel to resist the tension, a greater moment can be

>
|
I
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resisted than could be done with only a rectangular beam whose width
is just that of the stem, b'.

The location of the neutral axis in a T beam is rather indefinite and
does not have a great deal of meaning. Although a value for z (or kd)
can be obtained for the beam in Fig. 63 by equating the first moment of
the area above the axis to that of effective area below as

t 1
bXt(:c—§)+b'(x—t)2)<§=nXA.(d—:c)

it has little meaning except for an isolated beam. Where a T beam
occurs as a part of a floor system, the flange width b is rather a nebulous
quantity.

Specifications require that b be limited to the smallest of the following
values: 1 the span length of the beam, 16 times the thickness of the slab
plus the thickness of the web (where there is slab on both sides of the
beam), or the distance from center to center of the beams. The first
two are empirical requirements, but the last one is entirely rational as it
permits a length of the slab (for each side of the flange) equal to § the
distance to the next beam to be considered as flange area.

Balanced design does not commonly occur in the design of T beams
since the flange area usually supplies more compressive area than is
needed. The slab is designed to perform its primary function where its
compressive stress is parallel to the span of the slab and its thickness is
determined on that basis. The action of the slab as a flange of a T beam,
with the compressive stress perpendicular to the span of the slab, is
entirely incidental and has no bearing on the selection of the slab thick-
ness. If a balanced design did occur in a T beam, the location of the
neutral axis would still be the same function of the allowable stresses
as previously developed:

Je

i
n

k=

It is usually quite convenient to treat a T beam as if it were a balanced
design when a check is made of the compressive stresses. The steel
will be stressed to its allowable value. If it is assumed that the concrete
at the top is also stressed at its allowable value, it is very easy to compute
the corresponding location of the neutral axis and then compute the
amount of flange necessary to resist the compression, using the allowable
stress. It will usually be found that the required area is much less than
the flange area available.
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In proportioning the tension steel the total tension and total compres-
sion form a couple M = Tjd = Cjd, the same as in any other beam
Since T = A.fs, As = M /f,jd. The exact value of j is a rather uncertain
quantity, but within the range of stresses that occur j varies within
rather narrow limits. An approximate value is all that is justified, and
a value of 0.9 is commonly taken. Experience has shown that this
value gives satisfactory results, and computations show that the value
can hardly be less than 0.9. In some unusual cases the computed value
of j may be as large as 0.95.

Where there is negative moment at the support of a T beam, the com-
pressive stresses are in the bottom of the beam and the flange is in ten:
sion. The beam is now a rectangular beam whose width is that of the
stem (or web) of the T beam. Since a certain amount of the bottom
steel is required, by specifications, to extend into the support, this is
also a rectangular beam with compressive reinforcement (see Art. 60).

59. Illustrative Example. In the T beam shown in Fig. 64 it is
assumed that b = 60 in. and ¢ = 4 in., and the maximum bending mo-
ment is 500 ft-kips or 6000 in.-kips.

The allowable stresszs are as follows:

fe = 0.45f, = 0.45 X 2800 = 1260 Ib per sq in.

fs = 18,000 b per sq in.

n = 12, according to the specifications (1940 Joint Committee) for an f.’
value of 2800

The area of a beam or the beam stem (b X d for a rectangular beam,
and b’ X d for a T beam) is usually determined by the maximum vertical
shear. The effect of shearing stresses will be considered in Art. 64, so
at this point it will be assumed that the maximum shear value is such
that an area of 620 sq in. (value of b’d) will be required. This will be
satisfied if b’ X d = 17 in. X 37 in. = 629 sq in.

Since the value of j for T beams is usually 0.90 or more, a value of
0.90 will be assumed.

M 6000 ' .

T = ]_d = 6—9-67—3—7 = 180.4 klpS

180.4

18

Ten bars would require two layers of steel; the cross section of the T beam
and the arrangement of the steel are shown in Fig. 64. The width of
17 in. was chosen as it is the minimum width that will permit adequate
cover and bar spacing. Similar considerations require an overall depth
of 41 in. if the vertical center-to-center distance of the rows is 3 in.

= 10.02 sq in. (use 10—1-in. square bars)
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Some designers would separate these rows by a 1-in. bar, making the
center-to-center distance 2 in. and the overall depth 40.5 in.

The computations for the location of the theoretical neutral axis and
the value of j are given below. If this were an isolated T beam of the
dimensions given in Fig. 64, it could be assumed that the compressive
stress across the flange on fibers a given distance from the neutral axis
is fairly constant. If the flange shown is a portion of a continuous slab
whose span is normal to the beam span, this stress varies. For such a

60”
P —— r——irt
" | | !
Neutm1_7— _I—-—_+___
axis ~ I | [N
] ‘l
:\‘EStirrup/Yi I ? ?
2 | | & <
3 o | | ]2
§: e 4@3” A
E\“ ,_.,L -—[!u—e—e——a—
T 10-1 “Tf e [T Y]

bars gnl 17 I
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flange the computations below are indicative, but obviously they cannot
be correct unless the assumed effective flange width is correct.

To locate the neutral axis:

602 43(x — 4)?

2 2

= 10 X 12(37 — z)

30x2 — 21.522 + 172z — 344 = 4440 — 120z
8.522 4+ 292x = 4784
2% + 344z = 563
(z 4+ 17.2)2 = 859

z =kd =293 — 172 = 12.1 in.
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To determine the value of j:

60 X 12.1 = 726 x% = 363, X 3X121= 2925f,
4.05
—43X 81= —349 X E—lfc = —117f. X %X 81= — 630f,
246f. 2295f,
37 —12.1 = 24.9
22951,
o56f, ~ 9.3

342 +37=0924 =
To determine the value of f, and f:

o= 6000
' 0924 X 37 X 10

T=Af, =10 X 17.6 = 176 kips = C

1= 176,000
¢ 246

= 17.6 kips per sq in.

= 715 Ib per sq in.

60. Design of Beams with Compression Reinforcement. The
combination of steel and concrete to resist tension has been discussed in
Art. 54. Steel is also very effective when combined with concrete to
resist compressive stresses. When a compressive load is applied to a
reinforced concrete mernber, the two materials will have equal strains
since there is bond between them, and therefore the ratio of the unit
stress in the steel to that in the concrete will be the same as the ratio
of their moduli of elasticity. If a constant value is assumed for E,, the
modulus of elasticity of concrete, for stresses below the allowable work-
ing stress, then the ratio of these moduli, E,/E. = n, is considered a
constant.

It would not be economical to substitute compression steel for con-
crete merely because the steel can resist more stress. The cost of the
steel would be more than that of the concrete replaced. If the beam
dimensions are limited by some requirement such as headroom or
architectural features, compression steel may be necessary to resist the
bending moment. In continuous beams the tensile reinforcement is at
the top of the beam over the support, but reinforced concrete specifica-
tions require that a certain amount of the bottom tensile steel, which
resists the positive bending moment at the center of the span, extend
into the support at the bottom of the beam. If this bottom reipforce-
ment is properly anchored or bonded, it acts as compression steel and
therefore is available.
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These represent two examples where compression steel is justified
or economical. In floor construction where the beam and slab constitute
a T beam, the moment at the support is negative, and compression is
therefore in the bottom of the beam. The flange is on the tension side
of the beam, and, since the concrete does not resist tension, the beam at
this location for structural considerations is a rectangular beam with
compression reinforcement. In computing the transformed section of
this beam, the transformed area of the compression steel will extend
sideways and have somewhat the same effect as a T beam, since this
transformed area constitutes added compression area.

b _ C=A4,(n-1)f
fc."-f; EEQ) fc _'.17,/. "‘4" f!
f o — —To—]
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In Fig. 65a is shown a rectangular beam, the area of which (b X d)
has been determined by the amount of shear to be resisted, or other
requirements. This beam is to resist a bending moment equal to M,
which is a greater moment than M,, which is the bending moment the
beam could resist if balanced design existed, that is, if the allowable
stresses f, and f, were realized simultaneously, as shown in Fig. 65b. For
balanced design, the tensile steel required to resist the bending moment
M, is designated as A, and is equal to p X b X d, or A, = M,/f,jd.
The derivation of p (the steel ratio) for balanced design was presented
in Art. 54, and from it was obtained the expression

_ 1
P= o

If AM = M ~ M,, some provision must be made to take care of
this increment of moment. This can be done if the compression and
tensile areas are increased, which can be accomplished by putting com-
pression steel A, in the top of the beam and by increasing the area of
the tensile steel by AA4,. If the compression steel is placed 3 in. below
the top of the beam, and if C" = the added compression due to the
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compression steel and 7’ = the added tension in the tensile steel, then,

AM
-  =C'=T
d-—3

The stress in the concrete adjacent to the compression steel is
kd — 3 . e e . .-

o X fe(= f.,), and if C’ is divided by this value the additional
transformed area required to resist AM will be obtained. The trans-
formed area of the compression steel is nA4,’, but since the steel replaces
an equal area of effective concrete the additional effective transformed
area in compression is (n — 1)A,’. Therefore

Jo,(n — 1)
and ™

AA,=:f~— or A, = A, + AA,

8

A/

The added steel is indicated in Fig. 65d. The complete beam is shown
in Fig. 65e.

It should be obvious that the addition of this steel, both A,’ and AA,,
makes no change in the location of the neutral axis. In obtaining the
required areas of the added steel, it was assumed that f. and f, were

e
fe+ (fo/n)
in this value as long as the actual added amount of steel is close to the
required amount. .

This method of analysis for beams with compression reinforcement
is simple, direct, and equally effective whether the beam is being designed
or being checked for sufficiency of steel. The method is not approximate
as it is where some assumed value of j is used (generally 0.9 for beams
of this type, although that would probably be large for shallow beams).
In checking the sufficiency of the compression steel, as at a support, it
is necessary only to determine the amount required to resist the bending
moment. If more is needed, add it; if there is an excess, the beam is
satisfactory.

61. Illustrative Problem. If we assume a continuous beam with a
negative bending moment at the support of 350 ft-kips = 4200 in.-kips
and an end shear requiring an area of 464 sq in., the computations for
its proportioning would be as below. The area of 464 sq in. required
for shear was determined in accordance with the principle presented
in Art. 64. The positive moment at the center is assumed to be less
than the end moment.

unchanged, and, since k = , there is no appreciable change
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The allowable stresses are as follows:
f<' = 3000 Ib per sq in.
fe = 20,000 Ib per sq in.

fe = 1350 1b per gq in.

n =10
15 SCL: o
] _%_?_2000 | _A4, L_i—o—o-g—qr__'t
A, =632 I ! T e
& | 785" |
. . . | .
s 5 s | = S
0 |4-17¢=
- " | 3247 I
I 3 :ﬂ're———ﬁ!—o-e-lﬂ‘—gp
fc = 1350 15”
(a) () (c) (d)
F1a. 66

Takeb = 15in.,and d = 31in. b X d = 4658q in. A beam of these dimen-
sions is shown in Fig. 66a, and the stress variation is shown in Fig. 66b. The
proportioning for a balanced design with no compression steel would be:

1350

k= m = 0.403 kd = 0.403 X 31 = 12.5in.
j=1- (—)—:2% = 0.866 jd = 26.8 in.
C= 1§2§q X 12.5 X 156 = 126,5001b = T
126,500 _ .
A;, = W = 6.32 8q 1n.

The bending moment this beam can resist is
126.5 X 26.8 = 3390 in.-kips = Rbd?, or moment for balanced design
4200 — 3390 = 810 in.-kips
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If the compression steel is 3 in. above the bottom,
810

AA. = '2§>'<—éa = 1.45 8q 1.
A, =632+ 145 ="7.77 (10—1-in. round = 7.85 sq in.)
o = 5 1350 = 1026 Ib i
w =135 = per sq in.
, 810 . .
A, = 3.13 (4—1-in. round = 3.14 sq in.)

= 28(10 — 1)1.026

The indicated additional steel and moment arm are shown in Fig. 66¢, and
the total steel areas are shown in Fig. 66d. Because the actual areas exceed the
required areas, the theoretical location of the neutral axis for the areas and
dimensions shown is computed below, although this calculation is unnecessary.

2
BL 9619 — 3) = 7851 - 2)

z = 12.54 in.

As expected, the neutral axis is, for all practical purposes, in the
original location dictated by balanced design. It should be pointed out
here that the compression steel is not stressed to its capacity. Its
stress is determined by the strain in the concrete to which it is bonded.

62. Effect of Time Yield. When a load is maintained on concrete
over a period of time, there is a slow gradual increase in the deformation.
This increase in deformation, although small, may continue over a
period of several years. This is known as time yield or plastic flow.
It should be clear that the effect of this progressive yield causes the steel
to take an increasing amount of the load or stress to be resisted.

The effects of shrinkage and volume changes have bearing on the
stresses. However, a detailed discussion of this phenomenon is beyond
the scope of this volume; therefore, application of the more or less
empirical methods recommended in the specifications is all that will be
attempted. .

To take care of this increased stress in the steel, the Joint Committee
recommends that in a beam or girder having compression reinforcement
the effectiveness of such reinforcement in resisting bending may be
taken at twice the value indicated from the calculations; i.e., twice n
times the stress in the adjacent concrete, as discussed in Art. 60. “In
no case should a stress in compression reinforcement greater than
16,000 * Ib per sq in. be allowed.” .

* The “A.C.I. Building Code” (1946) permits this value to be the same as in
tension.
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If this recommendation is followed in the design of the beam for which
computations were made in Art. 61, the following results are obtained.

With the same data and Fig. 66, the section shown in Fig. 66a can resist a
bending moment of 3390 in.-kips as calculated in the previous article, leaving a
moment of 810 in.-kips to be resisted by the compressive and added tensile
steel. From this set of computations the stress in the compression steel 3 in.
from the bottom is 10,260 Ib per sq in.; 10,260 X 2 = 20,520 Ib per sq in. Since
this is greater than 16,000 b per sq in., the latter is the allowable unit stress in
the steel. Let n’ = the ratio between the allov-able steel stress and the stress
in the adjacent concrete. Then

, 16,000

Toze ~ 18

_ 810
T 28 X 14.59 X 1.026

A similar line of reasoning is that each square inch of steel resists 16,000
— 1026 = 14,974 1b more than 1 sq in. of concrete.
810
T 28 X 14.974

The 3—1-in. round bars give more than the required area but are apparently
the best combination.

A = 1.93 8q in. (3—1-in. round = 2.36 sq in.)

4, = 1.93 8q in.

AA, = 1.45s8q in. as previously calculated.

The beam will be the same as that shown in Fig. 66d except that 3—1-in. round
bars will be used instead of the 4—1-in. round bars as shown in the figure.

63. Limited Depth Beams with Tension Steel. Where a beam
is limited in depth and width but must resist a larger bending moment
than can be resisted by this section as a balanced design, a greater
resistance to bending can be accomplished by increasing the area of
the tensile steel. This increase in steel area changes the location of the
neutral axis and thus increases the area of the compressed concrete.
This also tends to decrease the value of jd, but the increased compression
area offsets this to the extent of increasing the carrying capacity of the
section.

The authors do not recommend this procedure as being at all eco-
nomical in the normal design problems. ' ln such instances it will be
found that, if some of the additional steel is added to the compression
side of the beam, a smaller total amount is required to resist the addi-
tional moment than if the total addition is made to the tensile steel.
For very shallow beams or slabs, however, it may be found economical
to add tensile steel only. This is because any compression steel, with
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proper embedment, will be so close to the neutral axis that it will not
be sufficiently stressed to have much effect in resisting the moment.
Where a slab is proportioned for proper depth in an interior span, it is
often desirable to maintain the same depth in the end span. Since this
will not be as deep as that needed for a balanced design, on account
of greater moments in the end span, the additional moments can be
resisted with compression steel or by adding only to the tensile steel.

0.56 sq in.
0.51 sq ip. per Fwidtha
1667 1-1./. ft of width
-% —
v i2s
2 For M', balanced design
(a) ft of width
For M, using compression steel
0.66 sq in. per ()]
1_710_00.. 1417 /[ ft of width
2 ———F—r -_
™ arl S Bottom steel extended from the
W center of the end span is
8 1125 not shown, except in (b).
~ For M, using tensile steel only
(c)

Fia. 67

Figure 67 shows the depth and location of the steel for the slab de-
signed in Art. 57. At the first interior support the moments are (using
the same data as in Art. 57)

M = (—292 — 83)82 = 2990 ft-Ib = 35,880 in.-Ib

This slab has a depth of 3.75 in., but the depth required for a balanced
design for the above moment is

2990 .
d= 4o/—— =391lin.
196 X 1

For the slab shown in Fig. 67 with the steel located as shown, the calcula-
tions for compression steel required are as follows:

kd = 0.403 X 3.75 = 1.51 in. jd =.3.25 in.

1125 X 0.51 = 380 Ib per sq in. = stress in concrete adjacent to compression

151 ool
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¢ = 1125 % 151 X 12 = 10,200 Ib = 7"

M, = 10,200 X 3.25 = 33,150 in.-Ib
M = 35880 in.-Ib

Moment to be provided for = 2,730 in.-Ib

10,200 .
m = 0.51 8q In. = A,l

2730

m = 0.05 sq In. = AA,

0.56 sq in. = required 4,

2730 . ,
380X 11 X 275 ~ 024 uin. = 4,

0.80 sq in. = total steel required

To increase the compression area by means of added tensile steel it first is
necessary to determine the compression area required. Let z = kd.

C = 1125 % 122 = 6750z
x
6750z (3.75 - §) = 35,880

Solving this quadratic equation, z = kd = 1.66 in.
C=21528%X12X1.66=112001b =T

1125

= _—1.66 X 2.09 X 12 = ]7’000 1b per sq 1n.

Je
11,200

1—7,0_66 = 0665q in. = 4,

The total steel required in this case is 0.66 sq in. per ft of width of
slab rather than the total of 0.80 sq in. required when compression steel
was used. This is an example of economy in increasing the area of the
tensile steel. The fact that the tensile steel would be carried through
to the support and thus give all the compression steel needed detracts
somewhat from the illustration, but in some instances there would be a
possible economy in strengthening a beam or slab in this manner.

64. Shear and Diagonal Tension. Shear was discussed in Art. 15
of Chapter 1 and in Art. 21 of Chapter 2; therefore here it will be
discussed only with regard to its distribution in a beam of reinforced
concrete.
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The beam shown in Fig. 68a is subjected to a positive bending moment
with the tension on the bottom and with no compression steel. Since V
is equal to the rate of change of moment, it also represents the increment
of change in moment in a unit length of beam; consequently the value
of AT in Fig. 68b is equal to V/jd. Since it is assumed that there is no
tension in the concrete below the neutral axis, AT is also equal to the

<b l,,‘ "'AM=Aijd=Vx]
c—| |«~—c+ac
_ Neutral axis
Y N AT=,%
=5, b-1=AT
ceeal T __T+AT
— Unit - u=l
length bjd
(a) (b) (c)
Fia. 68

total horizontal shear on a horizontal area any distance y below the
neutral axis of this unit length of beam. Therefore it can be stated
that the value of the unit horizontal shear on the tension side of the
neutral axis of a reinforced concrete beam can be expressed by v = V/bjd.
As stated in Chapter 1, this is also the value of the unit vertical shear.

Since AT represents the total change in tension on the tensile side of
the neutral axis, it follows that the unit shear will be a constant on that

vV2
1
v
Neutral axis \ ,X
leutralaxis L Q7
Unit cube Tensile steel u] // [u

Elevation > \
(a)
Cube enlarged NVE
(b)

Fia. 69

side and will be as represented in the lower part of Fig. 68¢c. This is
also true for T beams and beams with compression steel. Where there
is no compression steel, as in Fig. 68, the action above the neutral axis
is no different from the action on the compression side of any other
rectangular beam; therefore Fig. 68c, with the parabolic distribution
shown on top, gives the correct unit shear distribution for the beam shown.

In Fig. 69a is shown a portion of a beam in elevation, and in Fig. 69b
a small unit cube taken from the tensile side of the beam with the shear-
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ing stresses shown thereon. Shear itself is not a matter of concern in
concrete, but the tensile principal stresses are, since the concrete is weak
in tension, and these tensile principal stresses will be a maximum where
the shear is a maximum and where there is no compression. Conse-
quently, the computations have been made at the location shown.
Since the concrete is considered as taking no direct tension, this location
has the added advantage of simplifying the work. It is believed that
the relations shown in Fig. 69 are clear. The shearing forces can be
combined into resultant tensile forces, eack: equal to v+/2, and, since
this force acts on an area equal to /2, the unit diagonal tension is v,
which is the same vulue as the unit shearing stress.

This diagonal tension is a tensile stress that must be resisted by the
concrete, or by steel, and, since the concrete is weak in tension, this
weakness will act as a limit on the allowable shear. The specifications
generally assume that ihe concrete can safely resist a unit tensile stress
of 0.02f,’, and any diagonal tension beyond that value must be resisted
by web reinforcement. Where the reinforcing steel has ordinary anchor-
age the maximum allowable unit diagonal tension, or shear, is usually
given as 0.06f,". This will be discussed more fully when web reinforce-
ment is considered.

65. Bond and Anchorage. When there is a change in stress in the
reinforcing steel in a reinforced concrete beam, this change is trans-
ferred from the steel to the concrete by means of the bond between the
two materials, and this bond is analogous to the rivets or welding in the
flanges of a plate girder. These bond stresses are resisted by the hori-
zontal shear in the concrete.

Figure 68 shows that the value of AT for a unit length of beam is
V/jd. If this value of AT is divided by the area of contact, which is the
sum of the perimeters of the bars times the length in question, the expres-
sion u = V/Zojd is obtained, in which u is the unit bond stress and Zo
is the sum of the perimeters of the tensile steel at the section where the
value of the total shear is V. In most specifications the allowable
value of u is given as 0.05f," for deformed bars.

In the end anchorage of steel in flexural members or in members in
direct stress, the bond stress is assumed to be uniformly distributed
over the embedded length. For bars with bent or hooked ends the
length of bend or of hook is considered as a part of the embedded length.
The dimensions for hooks are given in the various specifications and in
the Proposed Manual of Standard Practice for Detailing Reinforced
Concrete Structures, published by A.C.I.

The bond stress in the tensile steel of the beam shown in Fig. 66 will
be computed, assuming the total shear at the face of the support as
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75 kips. The value of j will be assumed as §. For 10—1-in. round bars,

Zo = 31.42.

_ 75,000

T 3142 X § X 31
The allowable value is 0.05 X 3000 = 150 lb per sq in.

Since this steel is at a point of maximum moment, it is also necessary to check
for the length of embedment required in order to secure proper anchorage.

20,000 X 7.85
31.42 X 150

u = 88 Ib per sq in.

= 33.3 in. embedment

The extension of the compression steel should be checked for proper embed-
ment as well as the tensile steel.

10,260 X 3.14 _ 17.Lin
12.57 X 150

66. Stirrup Spacing. Where the unit diagonal tension exceeds the
value of 0.02f., the specifications require that web reinforcement be
provided to resist all diagonal tension above this value, the concrete
resisting all diagonal tension up to 0.02f,. As stated in Art. 64, the
specifications limit the maximum unit shear (and diagonal tension) to
0.06f.’ for ordinary anchorage but permit higher values where there is
special anchorage. However, the 1940 Joint Committee specifications
provide that, where the values are greater than 0.06f." under conditions
of special anchorage, web reinforcement must be provided to resist
all the diagonal tension, the concrete not being considered as acting.
Special anchorage (called end anchorage by the 1940 Joint Committee)
is defined in the specifications but will not be further discussed here;
in all following discussions it will be assumed that ordinary anchorage
is provided.

The most common type of stirrups are vertical U stirrups as they are
easier to place and the labor costs are consequently lower. Stirrups of
this type are shown in Figs. 64, 65, and 66. The hooks may be turned
in or out, and the angle of bend may be 90 deg or 135 deg or any
value between 90 deg and 180 deg. The principles involved in comput-
ing the proper spacing for vertical stirrups are extremely simple and
will therefore be discussed first. Discussion of the proper spacing for
inclined stirrups will follow.

In calculating the proper spacing for vertical stirrups it is assumed
that the vertical component of diagonal tension; above that resisted
by the concrete, is resisted by the stirrups and that the horizontal com-
ponent of diagonal tension is resisted by the longitudinal steel. Since
the unit horizontal component is equal to the vertical, they are both
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equal to », and therefore the total horizontal component for a unit
length and width b is equal to V/jd, or the change in stress in the steel.
There is, therefore, always a sufficient area of longitudinal steel to
resist this horizontal component of diagonal tension.

In Fig. 70 is shown a short longitudinal elevation of a beam having
vertical stirrups with a spacing s. Let

V'’ = the total vertical shear o be resisted by the web reinforcement
(V-V’ being that resisted by the concrete).
s = the stirrup spacing corresponding; to the value of V”.
A, = the area of the stirrup (area of 2 bars for a U stirrup).
VI

/o= — Stirrups

" b TPy T

Therefore e = AL Clr _!_ll__l _|_|_Lu
V08 = Ayfs

or rrr Islsls‘ /

. Tensile steel
= Aofsjd (parallel to beam)
1’4 Fia. 70

As stated previously in regard to other examples, this is not a formula
to be remembered but is merely a statement of relationship in finding
the proper spacing for vertical stirrups. The principles and relationships
for vertical stirrups are so simple that it hardly seems necessary to show
them in this manner. The basic principle is simply that the vertical

Maximum shear = V),

T i

It
_91_2 ‘ﬁ 14 0;"
L.L. only 4 DL +LL !
(a) l (d) I
Fia. 71

stirrups will resist that part of the vertical component of diagonal tension
that is in excess of what can be safely resisted by the concrete, and that
the stirrups must be so spaced that the steel will not be overstressed.
The student should not assume that this is an exact procedure. It is
purely approximate, but it gives results that have proved satisfactory
in the past and represent standard practice in design.

The value of shear to be used in computing stirrup spacing is the
maximum shear at the section considered. In Fig. 71 are shown curves
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of maximum shears for the left half of a simple beam. As seen from the
figure, the maximum shear is represented by a curve that is concave
upward. In spacing stirrups, however, the common practice is to con-
gider the maximum shear curve to be a straight line between the end
and the center, and the curve of maximum shears shown in Fig. 71b
then appears as the one shown in Fig. 72¢. In Fig. 72b the shear is

V. -VY'=
S,
)
NINE ’ \i
4 H [
L/2 e L1 |
(a) L/2 '
(%)
Fia. 72

shown separately as that representing the diagonal tension to be resisted
by the stirrups (V’), and that to be resisted by the concrete. L, repre-
sents the length, on each end of the beam, where stirrups are required.
Figure 73a is similar in shape to Fig. 72b, but the values shown repre-
sent the total vertical component of diagonal tension across a width of
beam b, per unit length. In Fig. 73b the values are given for the beam

e

2700
, ,
i ' Sy 389 ,

0.2 ’:' b l § 23.2" l 553
|- L, j 45 | a5" |\ | _to18
b Lj2 ) 11'-3" = 135

(a) (%)
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shown in Fig. 66, assuming a dead load of 1 kip per ft, a live load of
5 kips per ft, and a span of 24 ft between centerlines of supports or 22.5 ft
between faces of supports. The dead load has been assumed much
larger than the weight of the beam to allow for weights of other parts
of the structure. *
Some texts show methods of computing stirrup spacing by dividing
the upper triangle in Fig. 73a into a series of equal-area trapezoids



STIRRUP SPACING 135

(two of which are shown in the figure), each area being equal to the

value of one stirrup, the stirrup being considered as being in the center

of the trapezoid. Since stirrups are not thus placed, it is not considered

lt)l;?,t this method has any advantage over the simple method illustrated
ow.

’
For the beam used in Fig. 73b the end shear is (1.10w. + wp)—I;— = (1.10

22.5 . .
X5+1) - = 73.13 kips (11.25 kips D.L. and 61.88 kips L.L.), and the

shear at the center would be 15 kips = (5 X ¥4 X 1). The values shown in
the figure are obtained as follows:

‘l
{3;%% = 2700 Ib per in.
%I—'Z’—(O—%% = 553 Ib per in.

The approximate value of § was assumed for the value of j as it represents
conservative practice. This is the usual value for rectangular beams, and 0.9 is
a common value for T beams. Rectangular beams with compression reinforce-
ment, such as this, are frequently computed for %, although 0.9 or the compuied
value is preferred by some designers.

The vertical component of diagonal tension resisted by the concrete is 0.02f./,
or 0.02 X 3000 = 60 lIb per sq in. (60 X 15 = 900 lb per in.). The diagonal
tension to be resisted by the stirrups per inch length of beam is 2700 — 900 = 1800
Ib per in. at the end of the beam. Assuming a straight-line distribution of shear
and computing the ordinates at the sixth and third points of the beam span,
1084 and 369 are obtained for the values to be resisted by the stirrups at these
points, respectively. Assuming §-in. round U stirrups and a stress of 16,000 Ib
per sq in. (the Joint Committee specifies 16,000 1b per sq in., regardless of the
grade of steel; however, A.C.I. permits the same for web reinforcement as is
used in main tensile steel), the capacity of one U stirrup is 0.61 X 16,000 = 9760
1b.

9760 + 1800 = 5.42 in.

9760 + 1084 = 9.00 in.
9760 + 369 = 26.45 in.

These represent the required spacings at the respective points. From these
values the curve shown in Fig. 74 is obtained. The curve has been drawn through
the three computed points. The horizontal line at the ordinate of 153 represents
the maximum allowable spacing which is usually limited by the specifications
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to one-half the depth of the beam. The distance from the center where stirrups
are no longer needed can be computed thus:

2700 900
553 553
2147 347

4% X 135 = 21.8 in.

For this beam, the end spacing would be assumed to be 5% in., and the first
stirrup placed 2% in. from the left end. There would be three or four stirrups
put in at this spacing, then a second group at the spacing permitted where this

= = N

Spacing in inches

Fia. 74

new group starts, and so on to the point of maximum permissible spacing of
15% in. On account of the labor costs involved in the bending and the greater
ease of placing concrete where the spacing is larger, it is desirable not to have
stirrups too small in diameter, but they must be consistent with proper stress
in bond. If the diameter of the stirrup is no larger than <% of the depth d, this
latter requirement can usually be met if hooked ends of normal size are used and
if f./ is 2500 1b per sq in. or more. On account of the bending involved it is
desirable that about £ in. be the limit of diameter of the stirrups. If this gives
too small a spacing in large beams, W stirrups can be substituted.

67. Inclined Stirrups. It is believed by some designers that in-
clined stirrups are more efficient than vertical stirrups, especially those
at an angle of 45 deg; this idea is based on the fact that the maximum
diagonal tension acts at an angle of 45 deg. Since the vertical
stirrups together with the horizontal steel are capable of resisting both
components of the diagonal tension, there is no reason why they should
not be entirely satisfactory. It is true that for higher shear stresses
in cases of special anchorage inclined stirrups better meet the require-
ments of the specifications for the number of stirrups to be intersected
by any 45-deg line extending downward and toward the nearest sup-
port from the mid-depth of the beam. .

The 1940 Joint Committee specifications state that inclined stirrups
are assumed to contribute to diagonal tension resistance only the
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component of the total stirrup strength that lies in a direction of 45
degrees with the axis of the beam. On this assumption the following
formula is obtained:
A ,fsjd(cos X + sin X)
VI

in which the nomenclature is the same as that previously given, except
that X = the angle the stirrups make with the axis of the beam, s still
being the longitudinal spacing,.

The above formula is a general expression for stirrup spacing if one
should be desired. If

A‘U a'
X = 90 deg s = Juid
VI
and if
A,f.jd 1.4
X=45deg s=_f'7—x_]ﬁ

VI

The last value shows that for stirrups inclined at 45 deg the hori-
zontal spacing is 1.414 times that of vertical stirrups of the same size,
but, since the length of the inclined stirrup is 1.414 times that of the
vertical stirrup, the same volume of steel is required. Inclined stirrups
are more expensive to place than vertical stirrups.

68. Bending Tensile Reinforcement. For any beam of constant
depth the value of jd is essentially a constant throughout the entire
length of span, and therefore the area of tensile steel required is a direct
function of the bending moment. For a simple beam the points of
theoretical cutoff of the tensile steel bars can be obtained from the
moment diagram, the same as was done for cover plates in a plate girder.
The problem is analogous. Each bar must extend beyond its theoretical
point a sufficient distance to develop the stress in the bar in bond.

Since most concrete beams are continuous or have restrained ends,
it is desirable to have the tension steel continuous throughout the
beam, and the usual problem is to find the points where the bars can
be bent. In Fig. 75 are shown the curves of maximum positive and
negative moment for a span of a continuous beam. If at the major
positive and negative ordinates of these moments there are laid off, to
some scale, the required areas of tensile reinforcement (or the number
of bars where all bars are equal in size), the point where any bar or pair
of bars can be bent up or down can be found by drawing horizontal lines
through the proper points. The bars bent up should match some
corresponding bars to be bent down. Bars are usually bent in pairs, as
it is desirable to keep the steel symmetrical about the vertical longitudinal
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axis. The points of bend are usually adjusted so that the angle of bend
is the same throughout the beam. The possibility of negative moment
at the center of a span should be investigated.

Where Lars are bent, as in Fig. 75, the inclined rods can be considered
as inclined stirrups, and vertical stirrups can be omitted for the length of

Extension for anchorage
¢ \ / 2 bars here if necessary for ¢
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beam where the inclined stirrups are effective. Where this length is
small, there is no real economy in the omission of the one or two vertical
stirrups.

69. Design of Reinforced Concrete Columns for Axial Loads.
The design of members subjected to compression only does not properly
belong in a text on flexure. This was discussed in Chapter 4 in connection
with steel columns. Like steel columns, reinforced concrete columns are
often subjected to flexure, and it is necessary to study the effect of com-
pressive loads alone before combining these stresses with the stress due
to bending. In fact, it is very rare that flexural stresses can be avoided
in reinforced concrete columns.

Reinforced concrete columns may have a variety of shapes in cross
section, but they are usually either square, rectangular, or round. The
reinforcement consists of longitudinal bars spaced around the perimeter
of the column and inside the surface a distance of 2 in. to 3 in. under
normal conditions. These longitudinal bars are held in position by
lateral ties or a helix (commonly called spiral reinforcement) and are
tied to them by means of wiring, welding, or fasteners. The spiral is
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used for a circular arrangement of the longitudinal reinforcement, and
lateral ties for rectangular arrangements, as shown in Fig. 76.

The lateral ties are encircling bars (} in. to § in. in diameter), but
they are not continuous like the spiral (helix), and they are spaced at
intervals that prevent buckling of the longitudinal bars. The spirals
have a closer spacing than the ties, and spiral columns are designed to
resist larger loads than tied columns of the same areas.

If, as before, the concrete is assumed to have a constant modulus of
elasticity E, for stresses within the working range, a reinforced concrete
column can be designed on the basis of transformed sections. Some
specifications still provide for this method of design, although those of the

S »
e__J el 7y R,
\Lateral ties 7
(a) (b) (c) )
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Joint Committee and the American Concrete Institute require the steel
to resist a larger portion of the stress. The first part of the following
discussion will be based on transformed sections as that is the founda-
tion for the entire theory of reinforced concrete design. Afterward the
recent modifications to take account of time yield will be discussed and
illustrated.

The list of definitions of symbols is given below.

A, = overall or gross area of the column.

fa = permissible compressive stress in concrete (usually about one-
half of allowable stress in flexure).

f» = working stress in longitudinal steel.

A, = area of longitudinal steel.
P = ratio of longitudinal steel to gross area of column = A,/A,

n = E,/E..
P = axial load on the column.

The transformed area of the column is the area of the concrete (4,— 4,)
plus the transformed area of the steel (nd,), or 4, + (n — 1)4,.
The load a column can resist is then

P = flA; + (n — 1)4,]
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Since
A, = pg X Aq

P = f[Ag + (n — 1)pg X Ag] = faA([l + pe(n — 1)]
or
P

" Ll + pe(n — 1)]

This expression is valuable in determining the required gross area of a
column for any desired value of p; within its allowable range, or it can
be applied in solving for f, for a given column with a given load under
the assumption, f, = nf,. It is applicable for either a tied column or a
spiral column, with the proper value of f, in each case, although in
some of the older specifications the area of the core would be substituted
for A, for spiral columns. The area of the core is defined by the Joint
Committee as the area within the out-to-out dimensions of the spirals.
A column with lateral ties could be either square or rectangular, using
the proper dimensions to obtain the value of 4,.

The following relations and requirements are illustrative of those in
recent specifications. The ratio of steel area to gross area p, should lie
between 0.01 and 0.04 for lateral ties, and between 0.01 and 0.08 for
spirals. The minimum-size bar for longitudinal reinforcement should
be £ in. round, and at least 4 are needed with ties and 6 with spirals.
When more than 4 bars arc used with lateral ties, additional ties should
be employed to hold the additional bars properly in position, as in Fig.
76b. Lateral ties should be at least 1 in. in diameter and spaced apart
not over 16 bar diameters, 48 tie diameters, or the least dimension of
the column. The longitudinal reinforcement should be placed with a
clear distance from the column surface of at least 1} in. plus the diam-
eter of the tie. For spirals the core diameter is the distance out to out
of spirals. Spiral bars may be % in. in diameter for core diameters up
to 18 in., and they should be £ in. round for core diameters above 18 in.
The center-to-center spacing of the spirals should not exceed one-sixth
of the core diameter, with a clear spacing not over 3 in. nor less than
1§ in. or 1} times the maximum size of coarse aggregate.

This discussion of the transformed section method should be clear in
its application and need no further illustration. The more recent
requirements in column design, as given in the Joint Committee speci-
fications, will be discussed and illustrated below. For both requirements
it is assumed that the column is in the short column range and will not
require a reduction in allowable stress. For short columns the length
should not exceed 10 times the least lateral dimension.

(1

4
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The Joint Committee requirements for column design have been
modified in their 1940 specifications as follows for spirally reinforced
columns.

P
Js

0.225f'A, + A.f, 2

16,000 Ib per sq in. for intermediate grade steel, and 20,000 1b
per sq in. for hard grade or rail steecl.

A, and A, are as defined above, and f,’ s the ultimate strength at
twenty-eight days, as previously defined.

For tied columns the values are to be 80 per cent of those given in
formula 2 above.

It will be observed that the area of the steel has not been subtracted
from the gross area in formula 2. The Joint Committee states that the
effect of this small area was taken into account in arriving at the co-
efficient 0.225.

70. Ilustrative Example. An interior column supporting a floor
structure has a total axial load of 540 kips with no bending when all
adjacent panels are loaded. A tied column will be used.

The capacity of the tied column is given by

P = 0.180f.’A; + 0.84.f,
or
P = 0.180f./4, + 12,8004,

if intermediate grade steel is used. Assuming f.” = 3000 lb per sq in., and esti-
mating p, = 0.03,

‘- 540,000 _ 540000 _ o
£ = 0.18 X 3000 + 12,800 X 0.03 _ 540 + 384 a1
A, = 0.03 X 584 = 17.52 sq in.
540,000 Ib
12—13-in. square bars = 18.753 sq in. X 12,800 = 240,000
300,000 Ib
i‘%%?% 556 sq in. /556 = 23.6 in.

A square column 233 by 23% in. is satisfactory, or a rectangular column
(20 X 28 = 560) if it best fits the dimensions of the beams and girders framing
into the column. Obviously, a column 24 by 24 in. can be used, and some
designers would ; however, it requires more concrete and does not agree with the
nominal size of form lumber any better than a column 23% by 23% in.
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The cross section of the column is shown in Fig. 77. If it is desirable to have
more steel, the size of the column should be reduced; and if it is desired to use
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only 8 bars, a larger column is required. This decision can be made after the
first trial computation is made for 4,.
With 4-in. round ties:

48 X 1 = 12in. (use 12 in. center to center)

16 X 11 = 20 in. Least dimension of column = 23 in.

With 3-in. round ties:
48 X 3 = 18in. (use 18 in. center to center)
16 X 13 = 20 in. Least dimension of column = 23% in.

An alternate manner for tying 12 bars can be found on p. 45 of Proposed Manual
of Standard Practice for Detailing Reinforced Concrete Structures, published by
A.CIL

71. Design of Reinforced Concrete Columns with Bending.
Bending in columns can be caused by lateral forces, by the column
acting as a part of a continuous framework, or by an actual eccentricity
of the axial load. Temperature changes in structures exposed to great
changes in temperature may cause appreciable bending moments in
columns, but the distribution of shears and moments is a problem in
statically indeterminate structures and is not a problem of elementary
theory and design. Whatever the cause of the bending moment in
the column, it can be expressed, if desired or convenient, as an axial
load times some eccentricity. The effect in the design of the column
will be the same.
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From the general expression for combined axial load and bending
about one axis:

f= P Mc
A
the following can be obtained:
f= P + Mc 3
Ag Agr? ( )
or
P Pec
A, = -4 4
‘ Ja fcr.' @

where A; = transformed area = A,[1 + (n — 1)p,].

P = axial load.

e = eccentricity of the resultant load, measured from the
gravity axis (M = Pe).

r = radius of gyration of the transformed area.

¢ = distance from the gravity axis to the extreme fiber in
compression.

fo = average allowable stress on an axially loaded column.

f. = allowable stress in bending (usually 0.45f,").

Formula 4 can be used with any values of f, and f, the designer
chooses. The Joint Committee recommends

~ 0.225f 4 fop,
Y14 (= 1)p,

for spiral columns, obtained by dividing the carrying capacity of a
column (P = 0.225f,’A; + A.f,), as given in Art. 70, by the transformed
area. For tied columns, 0.8 of the above is specified.

If P is divided by the value of A; as given in formula 4, the average
stress on the transformed section is obtained for the column having the
combined axial load and bending. If this average stress is multiplied
by [1 + (ec/r?)], the following is obtained:

1+2
o = fo—— ®)
o

in which f,, = the maximum allowable compressive fiber stress.
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A convenient expression can be obtained for the extreme fiber stress
in the concrete from formula 3 by replacing M with Pe and A, with
Al + (» — 1)p,], obtaining

1 +CC
,'.2

Ay gt ©)

Expressions 5 and 6 are in the Joint Committee specifications. The
authors have made a slight modification in symbols. These expressions,
together with formula 4, can be applied to the design of reinforced
concrete columns with bending with the values of allowable unit stress
as recommended by the Joint Committee, or with any other specified
values. Formula 6 gives the computed stress, which should not exceed
the allowable stress as expressed by formula 5.

In preliminary design, for medium-size columns, it will be satisfactory
to replace ec/r> by 6e/d for rectangular columns and 8e¢/d for round
columns, with a fair degree of accuracy (d = overall depth of section).

The previous discussion in this article is based on an uncracked section
where there is compression over the entire area or where the tension
in the concrete is not greatly in excess of 0.02f,’. It gives very satis-
factory results as long as the resultant load lies within the column,
although some cracked concrete can be expected when ¢ = d/2. Where
larger eccentricities are encountered it will probably be necessary to
ignore the cracked concrete. The determination of the neutral axis,
in this situation, involves the solution of a cubic equation. A thorough
discussion of the design of columns with appreciable tension in the steel
is beyond the scope of this book, and the student is referred to one of the
complete textbooks on reinforced concrete design for such a treatment.

Bending about two axes will not be discussed here as it is also beyond
the scope of an elementary discussion of reinforced concrete members.

72. Illustrative Example. The example in Art. 70 was assumed to
be an interior column with all four panels loaded. If only two adjacent
panels on the same side of the column are loaded, the axial load will be
reduced but there will be bending in the column. If only one panel is
loaded, the load will be further reduced and there will be bending about
two axes. This latter does not normally control in the design of the
column. However, the reduced load with bending about one axis often
does control in the design.

The column in Art. 70 is assumed, in the followmg calculation, to
have an axial load of 380 kips and a bending moment of 1200 in -klps

e =32%" = 3.16 in.
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Using the column designed in Art. 70 to check these conditions:

_ 1875 1875
Pe = 5375 % 23.75 564
_0.18 X 3000 + 12,800 X 0.0332 _ 965

Ja= 1+ 9 X 00332 = 130 = 7421bper sq in.

= 0.0332

If the approximate form of formula 4 is used,

380 1200 X 6

A =572t {30 < 2375~ 137 sain.
A
A‘ = l—'3-'0—- 5678(1111.

This is almost exactly the area used. A more precise check would give:

2

564 X 2—31%5—- = 26,500

12.50 X 9 = 113 X 8.62* = 8,400
625X 9= 56 X288 = 460

A, =733sqin. I,= 35360in.* + 733 = 48.2 = 2

Required
380 1200 X 11.88 .
4e=573 1 1350 x 482~ oL sain.
731 . :
130 = 562 sq in. = required 4,

The column is satisfactory.

Instead of proportioning for area, some designers prefer to check a column
of prescribed dimensions for the fiber stress. From formula 5 the maximum
allowable stress would be

142 1779
Im = 7421 L 2 316 X 1188 ~ (22145 ~ 924 Ibpersqin.
1350 48.2
The computed stress on the extreme fiber from formula 6 is
| 4 316X 1188 _
380 482 380 X 1779 _ o0 _ 995 Ib per sq in.

S = 564 TF0x 00332 ~ 564 X 1.30

These computations show that the design chosen for the axial load is
almost exactly that necessary for the reduced load combined with bend-
ing of 1200 in.-kips. The same design is satisfactory for an intermediate
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condition of bending moment and axial load. If a bending moment
larger than 1200 in.-kips had occurred with the axial load of 380 kips,
it would have been necessary to increase the concrete or steel area, or
both.

Sometimes it is necessary to design a reinforced concrete column for an
axial load combined with bending where an axial load alone does not
enter into the design. An approximate area can be obtained from the
simplified form of formula 4.

From the same data, P = 380 kips and M = 1200 in.-kips, a spirally
reinforced column will be designed. It should be realized that the
amount of bending moment that a column must resist increases as the
stiffness of the column increases, and a decrease in column stiffness
results likewise in a decrease in bending moment; however, the same
load and moment are being assumed in the following calculations.

Assuming a value of p, of about 0.04,
_ 0.225 X 3000 + 16,000 X 0.04 _ 1315

Ja 1+9 X004 = 736 ~ %67 Ib persqiin.
It is necessary to make some estimate of the diameter of the column. Assum-
ing & = 25 in., 380 , 1200 X 8 :
Ae = 5967 T Tas0 x 25 ~ 077 sain-
677 .
A, = 136 = 498 sq in.

This requires a diameter of 25% in. and a steel area of 0.04 X 498 = 19.92sq in.
13—1%-in. square bars = 20.32 sq in.
16—1% in. square bars = 20.25 sq in.
20—1-in. square bars = 20.00 sq in.

A column 25 in. in diameter with 20—1-in. square bars as shown in Fig. 78 will
be checked. This column has a transformed area of 670.9 sq in. In Fig. 78 the
column is shown as a square, 25 by 25 in. A spirally reinforced concrete column
may be built as a square, octagonal, or other shaped section of the same léast
lateral dimension; however, in such cases, the allowable load, the gross area
considered, and the required percentages of reinforcement should be taken as
those of the circular column.

Computing the radius of gyration:

X (95)4 = 625 _
7 (25) 490.9 X 6 = 19,180

9X 20 X 180 X = 9,110

radius? - 10.06°
2

670.9 : 28,290 + 670.9 = 42.2 = r?
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Checking stress:

20
De = m = 0.0407
7. = 0:225 X 3000 + 16,000 X 0.0407 _ 1326 _ .. )
o 1+ 9 X 0.0407 ~ 1366 persq in.
30 1T 3'164;< 212.5 380 _ 1.936
7= 3909 1306 ~ 2900 X 1365 — 1097Ibpersqin.
1.936 1936 . )
Jm =971 T o0 0036 5T (0.036) 971 167 = 1124 1b per sq in.

The allowable stress (1124) is slightly greater than the computed (1097);
therefore the column shown in Fig. 75 is satisfactory.
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Since the column has a core diameter (213 in. out to out of spiral) greater than
18 in., a $-in. round spiral will be used. The ratio of spiral reinforcement p’
should not be less than that shown in Formula 7.

4

o =045 (A—' - 1)}'— @

where p’ = ratio of volume of spiral reinforcement to volume of concrete core
(out to out of spirals).
% = ratio of gross area to core area of column.

c

f+' = useful limit of stress of spiral reinforcement to be taken as 40,000
Ib per sq in. for hot rolled rod of intermediate grade, 50,000 Ib
per sq in. for hard grade, and 60,000 Ib per sq in. for cold drawn
wire.
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_ w21 21.88°

490.9 1)
376 40,000

Volume of spiral per inch of column height = 0.01031 X 376 = 3.88 cu in.

Volume of spiral for one complete turn = 0.11 X 2137 = 7.43 cu in.

Maximum pitch = 7.43 + 3.88 = 1.915 in., or 21} + 6 = 3.65 in., or 3 in.
clear. The 1.915 in. controls.

Minimum clear distant between spirals = 13 in. Use pitch of 13 in., as shown
in Fig. 78b.

The spacing of the 1-in. square bars around the spiral = (203 X 3.14) + 20
= 3.16 in., which is greater than the minimum requirement of 3 in.

= 0.45 = 0.01031 (intermediate grade spiral)

F1a. 79. Hecht Company Garage, Washington, D. C., showing slab, beam, and
girder construction in reinforced concrete. (Courtesy of Portland Cement Associa-
tion.)

73. Illustrative Design of a Typical Floor Panel. The floor de-
signed in steel in Art. 44 of Chapter 3 will be redesigned here as a rein-
forced concrete structure. The first three bays are shown in Fig. 80.
It will be noted that additional columns are desired, making the interior
panels 22 ft 6 in. by 27 ft 0 in. The floorbeams have been turned the
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other way (perpendicular to the length of the building) as it is generally
preferable not to have the span of the floorbeams greater than that of
the girders. The floorbeams are spaced 6 ft 9 in. This spacing should
be slightly more economical than a spacing of 9 ft 0 in., although com-
parative designs would be necessary to be absolutely certain.

The recommendations for moment coefficients and shear given in
Art. 56 of this chapter will be followed, as will other recommendations

10 bays @27°-0” = 270’-0”
270" . (4@6'-9"=27"-0"
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given in articles following Art. 56. Aside from such deviations preferred
by the authors, the recommendations of the 1940 Joint Committee
will be followed. One deviation is the use of the transformed section,
neglecting the effect of time yield. The effect of time yield will be briefly
discussed at the end of this design, but the authors do not wish to
detract from the application of the basic principles in the illustrative
design.
The following values will be used:

fe' = 3000 b per sq in.
n = 10.
fe = 1350 Ib per sq in.
fa = 20,000 lb per sq in. (intermediate grade steel)
Live load = 360 1b per sq ft.
Impact is negligible.

Floor cover = 20 b per sq ft. .
Allowable tension in web reinforcement = 16,000 lb per sq in.
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From these: 1350
* = 1350 + 2000 ~ 0403
j=1=2408_ o566
3
R = 1352 % 0.403 X 0.866 = 236
1350 X 0.403
" Zzx2000 - 0%
Slab: assuming a 4-in. slab:
15 X 150 = 50
Floor cover = 20
70 b per sq ft
Moment Moment
center of center of
support span
Tt
D.L. moment = 03875 _ o6 tedb  x 12 = 133 ft-lb
12 24
—2
L.L. moment = S0 X675 _ 1503 x 2 1367
9 12
2089 ft-1b 1500 ft-lb
d=V3EE =298 use3in.
Cover 1 in.

Depth of slab = 4 in.
jd = 3.00 X 0.866 = 2.60 in.

Tensile steel at support:

2089 X 12 .
m = 0.482 8q 1n. per ft
%-in. round at 41 in. = 0.495 sq in. per ft

Tensile steel in center of span:

1500 X 12

m = (0.346 sq in. per ft

-in. round at 6% in. = 0.348 sq in. per ft

The value of 2.60 in. for jd is conservative with the smaller moment.

[CHAP. 5



ILLUSTRATIVE DESIGN OF A TYPICAL FLOOR PANEL 151

Shrinkage steel: $-in. round at 12 in. = 0.11 + (4 X 12) = 0.23 per cent
of slab area.

Beam: assume 18-in. width for girder.

Beam span = 22 ft 6 in. center to center = 21 ft 0 in. clear span.

Computing shear at the first interior column:

70 X 6.75 = 473 Ib per ft
360 X 6.75 = 2430

2903 Ib per ft X 21-70 X 1.15 == 35,000 Ib

Estimated stcm weight = 240 X g~1;,£ X 1.1F = 2,900 1b

V = 37,900 + (0.875 X 180)
= 241 sq in.

10 X 25 = 250 sq in.
Cover = 31 in. for two rows of bars

28} in. overall depth

The 10-in. width will not be sufficient to take 4 bars in one row, which will
probably be required, and, since it is not desirable to decrease the depth, a

width of 11} in. will be taken, making the beam 11} X 25 = 287 sq in.

Weight of stem = 11—5-1-7;%4% X 150 = 294 b per ft
Recalculating the shear,
21.0 35,000 Ib
204 X 5= X 115 = 3,600
38,600 Ib
The shear in an interior panel will be:
473
204
767 X 2L20' = §,1001b
2430 X 2—122 X 1.10 = 28,100
36,200 Ib

The same-size beam will be used for interior spans as for end spans, however.
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The computations for bending moments can be made very easily as follows:

473
294
767 X 22.5* = 388,000 ft-lb 2430 X 22.5% = 1,230,000 ft-1b
TaBLE oF BENDING MOMENTS
(Values in Foot-Pounds)
Location
2
wL Center of Cen‘te v of Center of Center of
1 . First X . End of
nterior A Interior First
Support Interior Span Span End Span
Support
Dead load
388,000 | X 5 = 32,400 X3 = 43,100 | X 75 = 16,200 X %5 = 32,400 | X F& = 15,500
Live load
1,230,000 | X 3 = 136,700 | X } = 153,800 | X 1% = 102,500 | X s = 123,000 | X 75 = 49,200
Total 169,100 196,900 118,700 155,400 64,700

As stated in Art. 56, the negative moment at the face of the support
may be used in proportioning the steel at a support. This is also per-
mitted in Section 808(d) of the 1940 Joint Committee specifications,
where a recommendation for obtaining the value of this moment is
given. In this floor the greater number of the beams are supported by
the girders, and, in order to obtain the moments at the face of a girder,
it is necessary to know the width of the girder. At this point, preliminary
calculations for the girder indicate that a size of 18 by 46 in. is satis-
factory.* 'This agrees with the value of 18 in. previously assumed.

The specifications of the 1940 Joint Committee, Section 808(d), state
that the moment at the face of a support may be obtained approxi-
mately from the moment at the centerline by subtracting a quantity
Va/3, where V is the shear at the face of the support, and a is the width
of the support. The authors believe that this approximation is both
conservative and simple to apply. It is used as follows:

* Approximate computations indicate a shear of about 130 kips, requiring an
area of girder of 825 sq in., and a negative moment of about 800 ft-kips. 18 X 46
= 828 5q in. The steel required is about 11.8 sq in. Three rows of 5 bars each = 15
1-in. round = 11.78 sq in. The 18-in. width is more than sufficient for this number
of bars.
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3—-—-——-6'2003X 15 151,000 ftb

Moment at an interior support 169,100 —

196,900 —

Moment at first interior support w = 177,600 ft-lb

The steel required at an interior support could be calculated as follows:

25 X 0.403 = 10.08 in.
25 X 0.866 = 21.65 in.

151,000 X 12 = 1,812,000 in.-Ih 25X 09 =225 in

3.90 X 20,000 X 21.65 = 1,689,000 00136 X 287 = 3.90 sq in.
123,000 in.-lb
+ (22} X 20,000) = 0.27
3.90

A, = 4.17 sq in. at face of support

1350 .
10.08 X 7.58 = 1015 Ib per sq in.

123,000 .,
T015(10 — D22 ~ 060 sain- = 4.
At center of interior span:

118,700 X 12 _ .
m = 3.16 sq in. = A, at center of span

The concrete is not overstressed in compression.
Figure 81 shows a sectional view at the face of the support and at the

center of the span.

o
20000 1~¢
T (o U\a=6-xtaz1m
P B by Stirrup
‘3“ § 0 4 5 spacer
- =] %"
. A=7-%"*
g 1350 ¥ (113"
g X kY
o~ (1]
At center of span

At face of support
Fia. 81
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For the end span:

177,600 X 12 = 2,131,000 in.-lb
1,689,000

442,000 in.-lb (2 rows comp. steel, arm = 213 in.)

+ (21} X 20,000) = 1.03
3.90

A, = 4.93 5q in. at face of first interior support

1350 .
1008 X 6.58 = 881 Ib per sq in.
442,000

881(10 — 1)213

(155,400 X 12
22.50 X 20,000

=2.59s8qin. = 4,
= 4.15 sq in. = A4, at center of span

The concrete is not overstressed, since the flange of the T beam is available.

64,700 X 12

31,65 X 20,000 ~ 179 sain. = 4, atend

The following steel arrangements will be used:
End span:

7—3%-in. round = 4.21 sq in. at center. Bend 3 up.

4—3-in. round = 2.41 sq in. in bottom, and 3—3-in. round = 1.80 sq in. in
top at end.

8—1}-in. round, 3—4%-in. round, and 2—1-in. square (added straight bars)
= 5.13 8q in. in top at first interior support.

4—Z-in. round and 2—$-in. round = 3.29 sq in. in bottom at first interior

support.
Interior span:

7—3%-in. round = 3.09 sq in. at center. Bend 3 up, cut 2.

6-—2-in. round and 2—1-in. round (added straight bars) = 4.22 sq in. in top
at interior support.

2—43.in. round (extended from center of span) = 0.88 sq in. in bottom at

support.

The perimeters of bars are given in Table 2. Checking the bond stress
for an interior beam at the face of the support, the average stress is

36,200 _ )
equal to (1212 + 629)5(2) 81 Ib per 8q in. The larger the bar, the
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greater the stress in bond; therefore the 1-in. round bars have a bond
stress greater than 81 lb per sq in. (but less than the allowable of 150 1b
per sq in.), and the 2-in. round bars have a bond stress less than 81 Ib
per sq in. The intensity of bond stress should be checked at sections
near a support where bars are bent or cut off, especially if the bond
stress at the support is close to the allowable.

Stirrups: 2-in. round U stirrups will be used.
A, = 0.22 5q in. 0.22 X 16,000 = 3520 Ib

Shear at center:

1.0
2430 >2< 2 x ;1 = 6380 -+ (§ X 25) = 202 Ib per n.
36,200 .
%3?"25 = 1655 1b per in.

292

1363 X 4 = 454.3 Ib per in.

Shear resisted by concrete = 60 X 11.5 = 690 lb per in.
202

398 1b per in.

At end, 1655 — 690 = 965 Ib per in.
At # point, 1201 — 690 = 511 Ib per in.
At # point, 746 — 690 = 56 Ib per in.
3520 + 965 = 3.65in. (use 3}-in. spacing at end)
+ 511 = 6.89in. (use 63-in. spacing at § point)

+ 56 = 62.8in. (maximum allowable = ;—l = 12} in. at } point)

(10.5 X 12)398
1363

A curve of required spacing should be drawn, as shown in Fig. 82, as
an aid in spacing the groups of stirrups. The stirrups can be placed in
groups of the same spacing, using Fig. 82 for the allowable spacing and
placing the first stirrup not more than 1% in. from the face of the support.
If this first stirrup were 1} in. from the girder, the stirrup spacing to the
beam centerline could be 7 at 3} in., 3 at 4 in., 4 at 6 in., and 5 at 12} in.

With %-in. round stirrups, the calculated spacing would be 6.47 in. at
the end and 12.21 in. at the § point. Although more stirrups are needed
with the §-in. stirrups, there will be a saving in steel since the maximum
spacing is reached at a point much nearer the end if the 3-in. round are

Within = 36.8 in. from center, stirrups are not required.
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used. Most designers would carry the stirrups through the center of
the beam at the 12} in. spacing rather than discontinue them 36.8 in.
from the center.

Girder calculations:

Girder span = 27 ft 0 in. center to center of columns. Columns assumed to be
18 by 18 in.

Shear:

First
Interior Interior
Support Support

8100 X 2 = 16,200
X § = 24300 X L15= 27,900
21.0

2430 X —— X 2 = 51,000

2
X 3 X 1.10 = 84,100
X § X115 = 88,000
For 18-in. width of load over girder:
360X1.5Xg§2'—§=6900
X110 = 7,600
X115 = 7,900

Weight of girder and floor surface:

1000 x 222

> 12,800 X 1.15 = 14,700

128,800 Ib 138,500 1b

+ (3X 180)=818 sq in. |+(}X180)=879 sq in.
18X 46 =828sqin. | 18X49 =882sqin.
%0.0136 =11.26 sq in. | X0.0136=12.00sq in.
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Corresponding moments:

First
16,200 X § X 13.5 = 328,000 Interior Interior
16,200 X 6.75 = 109,300 Support, Support,
ft-1b ft-1b
_ 218,700
1,000 X Z7* = 91,100 309,800 X % = 206,500
X$§ = 275,400
51,000 X § X 13.5 = 1,032,700
51,000 X 6.75 = 344,200
. 688,500
360 X L5 X = 49,200 737,700 X § = 655,700 737,700

1,047,500 ft-Ib 862,200 1,013,100

Approximate computations indicate that the column will be a little larger
than the 18 by 18 in. estimated, but this value will be used in obtaining the
moment at the face of the supports.

Moment at face of an interior support:

128,800 X 1.5

862,200 — — 3 = 797,800 ft-lb

Positive moment in interior span:

309,800 X 7z = 103,300
737,700 X {5 = 491,800

595,100 ft-Ib

Moment at face of first interior support:

138,500 X 1.5

1,013,100 — 3

= 943,900 ft-lb

Positive moment in end span:

309,800 X { = 206,500
737,700 X & = 590,200

796,700 ft-Ib

With the floorbeams as shown in Fig. 80, the moment curve for the
girder for a simple span is so close to a parabola that the moment co-
efficients above give results accurate enough for design purposes.
Since there are six interior spans, the girder will not have a constant
depth, as the beam did, but will be as follows.
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Interior span:

d =46 in. %'S—IXMO=9561bperft
Cover = 5 980 assumed
51 in.
End span: 18 % 54
d =49 in. lf4 X 150 = 1012 Ib per ft
Cover = 5 980 assurmaed
54 in.

For an interior span:

46 = 18.54 in.
49 = 19.75 in.

0.403

49 = 42.43 in.

46 = 41.40 in.
X 49 = 44.10 in.

X
X

0.866 X 46 = 39.84 in.
X

09 X

0.0136 X 828 = 11.26 sq in.
X 882 = 12.00 sq in.

797,800 X 12 = 9,574,000 in.-Ib
11.26 X 20,000 X 39.84 = 8,972,000

602,000

<+ (43 X 20,000) = 00.70
11.26

At face of support, A, = 11.96 sq in.

1350 .
18.54 X 15.54 = 1132 1b per sq in.
602,000 _ . ,
595,100 X 12 .
41.40 X 20,000 = 8.62 sq in. = A, at center qf span

[CuAP. b

Figure 83 shows a sectional view at the face of the support for an

interior span.
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For the end span:
796,700 x 12 . .
TET RV YT il .= A,
4410 X 20,000 84 sq in. = A, at center

943,900 X 12 = 11,330,000 in.-kips
12.00 X 20,000 X 42.43 = 10,183,000

1,147,000 in.-kips

+ (46 X 20,000) = 1.25
12.00

13.25 sq in. = A, at first inte-
rior support
1350 .
1975 X 16.75 = 1145 Ib per sq in.
=~ 1,147,000
1145(10 — 1)46

1,047,500 X o5 X 12 _ .
110 X 20,000 4.56 sq in. = 4, at end

= 2423qin. = 4,/

The steel arrangements will be as follows:
End span: 11—1-in. square bars = 11.00 sq in. Bend 7 up.

At end: 7—1-in. square = 7.00 sq in.
First interior support:

7—1-in. square = 7.00 sq in.
7—1-in. round = 5.50
1—1-in. square (straight) = 1.00

13.50 sq in.

A, = 4.00 8q in. in bottom at support
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Interior span: 11— 1-in. round bars = 8.64 sq in. Bend 7 up.
Interior support:

14— 1-in. round = 11.00
1— 1-in. square straight = 1.00
12.00 sq in.

A,/ = 3.14 sq in. in bottom at support

Since the steel required at the centers of the spans is less than the
critical moments for balanced design (11.26 and 12.00 sq in.), there is no
compression steel required in the top of the beam, nor is any of the slab
required as flange area.

The depth of the girder would be the same on both sides of the first
interior column. For that reason the bottom of the girder in the first

+3
|+ %x%x18=+4.5
- T 1,1
\/ 4.5" 135 Iixf* 9="L13
-1 | e - > 3.38
4

Fig. 84

interior span should be given a flat taper so as to increase the overall
depth from 51 in. to 54 in. at the face of the column.

Girder stirrups for an interior span:
Shear in end panel = 128,800 1b maximum.

This is reduced 1540 X 5.48 = 8400 lb at the first floorbeam, but the
difference is so small that the stirrups have a constané spacing between
floorbeams.

For the second panel the influence line is as shown in Fig. 84, using
centers of supports for convenience.

D.L. shear: 8100
1000 X 3.38 = 3380
11,480
L.L. shear:
360 X 22.5 X 4.5 = 36,450
47,930 Ib
With §-in. round U stirrups: * ,
* At the ends of beams or girders, if sufficient length for bond is provided, the
stirrups may be turned up (as they would be in the center of the span) for convenience
of placing the longitudinal bars. '
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A, = 0.88 5q in. 0.88 X 16,000 = 14,080 Ib
128,800 . 47,930
F—— = 3200 . - = i
T 46 3200 Ib per in T 46 1192 b per in.
18 X 60 = 1080 1080
2120 b per in. 112 1b per in.

14,080 + 2120 = 6.64 in. (use 61-in. spacing)

In the second panel 3-in. round stirrups spaced at the maximum spacing of 23 in.
is satisfactory.

For dimensioning the bars and other details, the student is referred
to more advanced texts devoted to reinforced concrete design. The
points wherc bars may be ient up or down can be obtained by the method
outlined in Art. 68.

Effect of Ttme Yield. The above design has been made on the basis of
transformed sections. As was explained in Art. 62, current specifications
for reinforced concrete take account of the effect of time yield by per-
mitting an increase in the compressive stress in the steel. If this were
done in the present instance, the design of the compressive steel at the
supports would be modified as follows:

At an interior support of the beam:

123,000 .
A/ = = (.36 sq in.
1015 X 14.76 X 22.5

This is less than the 0.60 sq in. obtained in the previous calculations,
but 2—3-in. round bars would still be used, since the specifications
require that one-quarter of the center steel extend into the support.

At the first interior support:

16,000
n = —— = 18.16
881

442,000
T 881 X 17.16 X 21.5

A, = 1.36 sq in.

as compared with 2.59 sq in. obtained previously.
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At an interior support of the girder:
n = —— = 14.13

602,000
1132 X 13.13 X 43

as compared with 1.38 sq in. obtained previously.
At the first interior support:

’
8

= 0.94 sq in.

16,000
n = —— = 1397
1145
1,147,000

’
8

= 1.68 sq in.

1145 X 12.97 X 46

as compared with 2.42 sq in. obtained previously. -
There will be no change in the steel arrangement as given before

because of the requirement that not less than 25 per cent of the steel

at the center should be carried to the support.

Interior column:

Girder stem: 881 X 27.0 = 23,800
4 X 294 X 21 = 24,700
70 X 22.5 X 27.0 = 42,500 91,000 D.L.

360 X 22.5 X 27.0 = 218,700 L.1.

309,700
5,300 est. weight of column

315,000 Ib = total load
On basis of transformed sections, assuming p = 0.03,
fe = 675 1b per sq in.

315,000

6751 + 0.03 X 9 — S0/ sain.

X 0.03 = 11.01 sq in.

8—1}-in. square = 10.13 sq in. 315,000 1b
XOX675= 61,50

253,500 1b

253,500 _ 376 o0 in. /376 = 19.39 in.

675
193 by 193 in. is satisfactory.
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Using the Joint Committee recommendation as illustrated in Art. 70 for a
tied column, assuming p, = 0.03:

315,000

m = 341 sq in.

X 0.03 = 10.23 sq in.
8—13-in. square = 10.13 sq in. 315,000 1b

X 12,800 = 129,700
185,300 Ib
1
8:;::,00 = 343 sq in. 4/343 = 18.52 in.

184 X 183 = 352 sq in. is satisfactory.

Approximate computations indicate that when the live load is on one
side only the moment at the top of the column should not exceed 50
ft-kips = 600 in.-kips. This is based on a clear length of column of
10 ft or more to the bottom of the girder.

The total load at the top of the column is,

D.L. 91,000 1b
L.L. 109,350

200,350 Ib  (use 201 kips)
According to the method illustrated in Art. 72:

e = $89 = 2.985 in.

10.13
0.18 X 3000 + 12,800 X 0.0288 _ 909 _ .
Ja = 1+ 9 x 0.0288 = 1259 ~ '22Ibpersqin.
201 600 X 6 .
A= 555t 1350 x 1875 ~ 270 T 142 = 420 sqin.
220 _ 334 5qin. /334 = 1827 in.

1.259
18} X 18} = 333 sq in.

The column 182 by 18§ in. is satisfactory.
If 1-in. round ties are used:
48 X 1 =12in,

16 X 1} = 18 in.
Column width = 18% in.
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The spacing for the }-in. round ties is 12 in. Since 8—13-in. square bars
are used for vertical steel, two ties are required in each 12 in. of column height.
A sectional view of the column is shown in Fig. 85.

The student. will have observed that various values of jd were used in
the design of the beam and girder. The reasons for these various values
have been mentioned at appropriate points in this chapter but will be
summarized here.

"In proportioning the steel at the support where there was compressive
steel, the value of j was that for a balanced design. The moment arm

1-6%" = 18%"
2% |«———-12@ < 25
v 63{’=l135§"
5\:{ I 7‘ \:‘,?Fr%”"@m”ctrs.
ol A
MRS A
:,*___A' _:L 8-1%"¢

Fia. 85

I-6%" = 18%"
6%" =13%"

2%" >

for obtaining the additional tensile steel and the required compressive
steel was the distance between these two and, with stresses consistent
with the stress diagram, this gives the correct value of the area of steel
required.

For the T beam and the girder at the center of the span, a value of
0.9 was assumed for j, representing conservative practice in normal
design.

A value of § was used in determining the size of the beam, the bond
stress, and the stirrup spacing. This is common practice and is con-
servative. A value of 0.9 is permissible where an actual T beam occurs
at the point of maximum shear.

The bond stresses for the girders were not checked, as it is obvious by
inspection that the perimeter of the bars is much greater than § the
width of the girder. The student should check the bond stress for his
own satisfaction.

A typical interior column was designed on the basis of an axial load,
when all panels were loaded, and then checked for moment, where
loaded for maximum eccentricity about only one axis. This illustrates
all essential points in elementary column proportioning. If all maximum
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loading conditions are considered, it is possible to obtain a larger axial
load, also bending about two axes, bending in end columns, and bending
in corner columns, which involve the most indeterminant types of un-
symmetrical loading conditions. The student will encounter these in
his advanced design work, and for proper solution of these problems he
will need to be fortified with a thorough course in statically indeter-
minate structures.

Specifications do not require a designer to investigate all the loading
conditions implied above. Some of thesz co:ditions are so unlikely
that increased allowable stresses would be justified.

In making the detail drawings for this design, it will be necessary to
consider the itenis mentioned in Art 52 corcerning the placement of
steel. The arrangement of steel as shown in the various cross sections
in this article may require modification to facilitate the placement of
steel for a given construction plan.

An alternate design in timber, with a reduced live load and closer
column spacing, is shown in the Appendix. These calculations are in the
form of design plates.

PROBLEMS

1. A simple beam of reinforced concrete has a width of 12 in. and an overall
depth of 24 in. If the center of the steel is 23 in. from the bottom face, 4, = 2.41 sq
in., and » = 10, what is the value of kd?

2. If f,/ = 3200 1b per sq in. and f; = 20,000 lb per sq in. (a) What is the value
of n, according to the 1940 Joint Committee? According to A.C.I.? (b) Taking the
value of n according to the 1940 Joint Committee and assuming balanced design,
what is the value of k? (c) If in (b) there is no compression steel or flange, what is
the value of j? of p?

3. Taking the data of Problem 1, with f./ = 3000 b per sq in., and f, = 20,000 Ib
per sq in., what is the maximum bending moment permissible for the simple beam?

4. If the depth from the compression face to the center of tension steel is limited
to 23% in. for a beam, how wide must the beam be to resist a shearing force of 48,000
Ib, if f./ = 2800 Ib per sq in. and stirrups are to be used?

5. In Problem 4, what would be the maximum spacing for §-in. stirrups? Would
4-in. stirrups permit a more practical spacing?

6. A reinforced concrete T beam has an effective flange width of 55 in., a flange
thickness of 5 in., and the depth to the center of the tension steel is 24 in. If the
stem is 12 in. wide, 4, = 6.00 sq in., and n = 12, what are the stresses f. and f, for
a bending moment of 200 ft-kips?

7. A reinforced concrete beam is 20 in. wide and 40 in. deep to the tension steel
which has an area of 16.00 sq in. For f./ = 3200 lb per 8q in. and f, = 18,000 1b per
8q in., what area of compression steel is needed 3 in. from the compression face of
the beam in order to develop the allowable stresses in the concrete and tension steel?
What moment would this reinforced beam be capable of resisting?

8. If no compression steel were added in Problem 7, what would be the permis-
sible bending moment?
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9. A reinforced concrete girder has a bending moment of 2400 ft-kips and a shear
of 280 kips. For f# = 3000 Ib per sq in. and f, = 18,000 Ib per sq in., determine the
width and overall depth for the girder and the size and number of reinforcing bars.

10. In Problem 9, what would be the spacing for 4-in. (W) stirrups?
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Note: After this book had gone to press it was announced by the steel industry
that the manner of designating steel reinforcing bars is being changed from the use
of diameters to numbers. Also, the square bars are being replaced by equivalent
round bars. The new standard designations are numbered from 3 to 11, inclusive,
in which numbers 3 to 8 are identical in area and perimeter to the $-in. round to
1-in. round as shown in Table 2 on page 113. Numbers 9, 10, and 11 replace the
1-in., 1}-in., and 1}-in. squarc bars with round, having the same arecas as the
square bars and having perimeters of 3.544, 3.990, and 4.430 in., respectively. This
change was made at the same time the deformations were being changed to con-
form with the A.S.T.M. Standard A305-49 which would permit higher bond stresses.
Some mills are still rolling square bars, and there have been no changes at this time
in the design specifications for reinforced concrete referred to in this chapter.



 CHAPTER 6

BENDING IN UNSYMMETRICAL SECTIONS

74. In Chapter 1 it was stated that the principles discussed there,
and in later chapters, were applicable only to beams with at least one
axis of symmetry and that bending in unsymmetrical sections would
be discussed in Chapter 6. It will be seen later in this chapter that the
foregoing statement could have bee.: amplified to state that the prin-
ciples discussed in Chaptcr 1 were applicable only where bending was
about the principal axis, but that would have presupposed a knowledge
of matters yet to be discussed. Since the sections previously dis-
cussed and designed were for types of members that normally have
at least one axis of symmetry, the statement was sufficient for that
place.

There are many cases where the functional shape of the member is
such that a section can have no axis of symmetry, and where the member
is not restricted in the direction in which it deflects. Some unsym-
metrical crane girders, some eave struts, and most lintels would be
examples where there was little or no restraint against deflection in any
direction. Where deflection is restrained to one direction only, then
bending would be about a neutral axis perpendicular to the movement
of the member, and the principles developed in Chapter 1 would apply
for that axis. The subject of bending in unsymmetrical members whose
deflections are not restrained is important since, where the principles
of unsymmetrical bending apply, serious errors can result if these prin-
ciples are ignored. The engineer should have a concept of a general
expression for stress; it is also an advantage in certain methods of
analysis in advanced structural theory.

The matter of torsion and twisting, a discussion of shear center, and
such other subjects that belong in an advanced textbook on strength of
materials will not be covered in this chapter.

75. Properties of Plane Areas. As a preliminary to a general dis-
cussion of bending in unsymmetrical sections, it is desirable to review
briefly the properties of plane areas, giving particular attention to their

second moments, commonly called moments of inertia.
167
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In Fig. 86 is shown an irregular area with axes X and Y which are
perpendicular to each other and both of which pass through the centroid

0”

Fic. 86

Xn

of the area at 0. If the summa-
tions of the second moments of a
differential area dA are made, the
moments of inertia of the area
about the X axis I, and that about
the Y axis I, can be expressed as

follows:
I, =fy2 dA

1, =fx2dA

If it is desired to obtain the
moment of inertia about some
axis X’, which is a distance d from
the X axis, it can be obtained by
taking the second moment about
the X' axis, or

I, =f(y+d)2dA =f(y2+2yd+d2)dA

=fy2dA + 2d ydA+d2fdA

Since X is a centroidal axis f y dA = 0, therefore

I =fysz+d2fdA=Iz+Ad2

In like manner,

I, = I, + Ab?

If it is desired to transfer the moment of inertia from one noncentroidal
axis to another noncentroidal axis, it cannot be done directly as above
but must be transferred through the gravity axis. The moment of
inertia about the axis X', a distance d’ from X and a distance h from X/,

would be

I =1, + A@)? = I, — Ad?* + A(@)? = I, + Al(@d)? — d*]
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not I, = I, + AR®, which is incorrect. Since h = d’ — d, h? cannot
equal (d)? — d2.
The polar moment of inertia of the area is

frsz =f(y2+x2)dA =|y*dAd + |2?dA =1,+1,

Since I, and I, are the moments of inertia about any pair of rectangular
centroidal axes, it follows that the sum of the moments of inertia will
remain a constant if the axes remain rectangular. This is also true of
noncentroidal axes, so the statement can be made: “The sum of the
moments of inertia about any pair of rectangalar axes through a given
origin is equal to the polar moment of inertia referred to the same
origin, and the sum is therefore a constant.”

There is a quantity anulogous to moment of inertia that is called
product of inertia, obtained by multiplying each elementary area by the
product of its coordinates. It is designated variously by I, K.y, Pz, or
Jzy- The authors will use I, to denote the product of inertia of an area.

I, =fxydA

Although the moment of inertia is always positive, the product of
inertia can be cither positive or negative, and care should be taken to
determine the proper sign when computing the value. This expression
is equal to zero for any area that has an axis of symmetry, since any
elementary area on the positive side of the axis of symmetry has an
equal elementary area on the negative side of the axis.

The product of inertia of an area is always referred to a pair of rec-
tangular axes. They do not have to be centroidal axes. If the product
of inertia about the centroidal axes is known and it is desired to obtain
the product of inertia about parallel axes, as X’ and Y in Fig. 86,

Ly =f(:c +b)(y +d)dA = I, + Abd

the values of | zdA and | y dA being zero.

76. Location of Principal Axes. Although principal axes, or axes
of maximum and minimum moments of inertia, can be determined for
any point of origin, in calculations for flexure the bending occurs about
a centroidal axis, as developed in Chapter 1. Consequently, principal
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axes of the cross-sectional area of a member will be used in this discussion
as the perpendicular axes through the center of gravity of the area about
which the moments of inertia I, and I, are a maximum and a minimum.
The absolute minimum moment of inertia for the area will be about one
of the principal axes through the center of gravity.

In Fig. 87 the rectangular centroidal axes X and Y are rotated through
some angle ¢ into the position indicated by the new axes X; and Y;.

Y
4

Fia. 87

The moments of inertia about the axes X; and Y, can be expressed as
follows:

Izl =fyl2 dA

Iy‘ =fx12 dA

For an elementary area of dA the coordinates x; and y; can be written
in terms of z and y and as functions of the angle ¢, as shown in Fig. 87.

Y =ycos¢ — zsin ¢
T, =ysing + zcos ¢

These relations hold for an angle ¢ falling within any duadrant as long
as proper care is shown in using the correct algebraic signs for z, ¥, and
the sine and cosine of ¢.
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The values of I, I, and I,, are known. Then

I, =fy12 dA =f(y cos ¢ — z 8in ¢)? dA

=fyzcosz¢dA + | 2% sin? ¢ dA ——f2xysin¢cos¢dA

Since 2 sin ¢ cos ¢ = sin 2¢,

I, =1I.c08%¢ + I,sin® ¢ — I, sin 2¢ 1)
I, = |x,%dA =f(ysin¢+zcos¢)”dA =fyzsin2¢dA

+J 7% cos? ¢ dA +f2xysin¢cos¢dA

or
I, = I,sin® ¢ + I, cos? ¢ + I, sin 2¢ (2

If equations 1 and 2 are added,
I=1+Iv1 =IZ+III (3)

The same relation was obtained by means of the polar moment of inertia
in Art. 75. This relation must hold true, since the sum of the moments
of inertia remain a constant for rectangular axes through the same
origin.

Subtracting I, from I,

I, — I, = (I, — I,)(cos® ¢ — sin® ¢) — 21, sin 2¢
or, since cos? ¢ — sin® ¢ = cos 2¢,
I, — I, = (I — I,) cos 2¢ — 21, sin 2¢ 4)
Formulas 3 and 4 are sometimes more convenient than formulas 1

and 2 for solving for I,, and I,, when the sections are regular.
To obtain a value for I,

I =f:c1y1dA =f(ysin¢+:ccos¢)(ycos¢—xsin¢)dA
=fyzsin¢cos¢dA — | % sin ¢ cos ¢ dA

+ | zy(cos® ¢ — sin? ¢) dA
or

sin 2¢

Iy = (I — I
an ( ﬂ) 2

+ I, cos 2¢ 5)
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Since the principal axes are those about which the moments of inertia
are a maximum and a minimum, the location of these axes can be ob-
tained by considering the angle ¢ a variable, differentiating one of the
values of I with respect to ¢, and equating to zero. From formula 1,

dI
z;-’ = —I,2sin¢cos¢ + I, 2sindpcos¢p — I;,2cos2¢ =0

(Iy — I,)sin2¢ — 2I,,cos82¢ =0

and therefore

ol,,
tan 2¢ = 7 (6)

v"]z

The same value would be obtained by differentiating I,,, which is
apparent since both sets of axes are rectangular and the Y axis must
be rotated through the same angle as the X axis.

If either axis X or Y is an axis of symmetry, the value of I, is zero,
and therefore the value of ¢ for obtaining maximum and minimum values
of I, or principal axes, is zero. From this it follows that, if an arca has
an axis of symmetry, this axis and the centroidal axis perpendicular to
it constitute principal axes.

A study of Fig. 87 should show that if the axes X and Y are rotated
through an angle of 90 deg, the values of # and y for any area dA
would be interchanged, and the algebraic sign of one would be changed.
This will hold true for an area d4 in any quadrant. Therefore, for a
rotation of 90 deg, I,,, = —I.,. From this it follows that some-
where during the rotation the value of the product of inertia must
be zero.

If, in formula 5, I,,,, is equated to zero,

in 2
(I, — I,)El2—¢+I,,,cos 2 =0

Iz — I,) sin 29 = —2I,, cos 2¢
and
2I,,

u—Iz

tan 2¢ = (6)

This is formula 6 as previously derived for principal axes, and it is
therefore seen that the axes about which the product of inertia is zero
are the same pair of axes about which the moments of inertia are u
maximum and a minimum; or the product of inertia about prineipal
axes is zero.
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77. General Expression for Stress. The expressions for stress in
members with one or two axes of symmetry have been derived and dis-
cussed in previous chapters, and it was stated in Chapter 1 that the
principles discussed were applicable only if the members had one axis
of symmetry. These same principles hold if the bending is about
principal axes. Many members such as zees, unequal leg angles, and
built-up shapes have no axis of symmetry, but it is more convenient
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to choose axes parallel to certain parts of the section rather than to
rotate for principal axes. For such axes a general expression for stress
can be derived.*

In Fig. 88 is shown an unsymmetrical section of a member having an
axial load P and subjected to bending moments about the X and Y axes
equal to M, and M, respectively. These moments can be due to trans-
verse loads or to eccentricities of the applied load (e, and e,), M, being
equal to Pe, and M, being equal to Pe,. The effect of the moments
would be the same for the computation of stresses, whatever the cause.

* This expression was first introduced by Swain in Strength of Materials; it is also
given in substantially the same form as shown here in The Column Analogy by Hardy
Cross, Bulletin 215 of the University of Illinois, Engineering Experiment Station.
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If the unit stresses in the member are below the elastic limit of the
material, then according to the assumptions in Art. 8 of Chapter 1 they
will have a planar distribution, and the unit stress at any point, such
as the elementary area dA, can be expressed by f = a + bz + cy, where
f is the intensity of stress at any fiber and x and y are the distances to
the fiber from the ¥ and X axes, respectively. fdA is the total stress
on the area dA.

Since P is the total load on the section,

P=ffdA= fdA+bfdi+cfydA

Since the X and Y axes are centroidal axes,

fdi=0 fydA=0

P = fdA=aA

and

or
P

a=—

A

A being the area of the section. Also,

M, =ffdA-y afydA+bf:cydA+cfy2dA
M,,=ffdA-z=af:ch+bf:c2dA+cfxydA

f z dA and f y dA being zero,

M, = blyy + cl,
M, = bl, + cl,
Solving these simultaneous equations to eliminate c,
M,I,, = bl,? + cl.I,,
M,I; = blI,+ cl.I,,
Subtracting the first and dividing by I.I, — I,,2
b= M, I, - M,I,,
L1, — I,?

and

With
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In like manner,
M., - M1,
IzIy - I:y2

These values for a, b, and ¢ give the following general expression for
stress:
P MJI, - M., M,I,— MU,
f=—+ P
A IzIy"'Izy I:cI;/_Izy2
If both the numerator and the denominator oi the coefficient of z are

divided by I, and those of the y coefficient by I,, the following form is
obtained:

)

I I,
M, -M,= M, -M=
P 1, I,
/= 1 + 7 x + 7 1} (8)
Ty

I"—-I—:I;y Iz—"z—:lzz/

Many designers prefer formula 8 as it does not involve the difference
between large quantities; but either formula constitutes the general
expression for stress.

It is convenient to follow an arbitrary convention of algebraic signs
in applying the above general expression. The most convenient one is
to assume a compression axial load as positive, and z as positive to the
right and y as positive upward. M, is positive when the eccentricity is
above the origin, and M, when it is to the right (or when compression is
in the top fiber or the right fiber, due to bending). A positive value of f
will be compression, and a negative value tension. The sign for M,
agrees with the convention for bending moment signs when bending is
about a horizontal axis.

If the most convenient axes chosen are principal axes, then I, = 0,
and formula 8 becomes
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If the axes are principal axes and there is only bending about the X axis,

M,
f= Y
which is the flexural formula previously derived.
78. Illustrative Example. An unequal leg angle, acting as a lintel,
is shown in Fig. 89. It is assumed that the angle resists a bending mo-
ment of 350 in.-kips about the X

vy axis. There is no bending mo-
7 f_lv e ment about the Y axis, and no
[ Critical fiber axial load. The initial calculations
of the properties of this cross sec-
| [0],~Centroid tion are first taken relative to ref-
% ™ X  erence axes X’ and Y’, and later
% R A referred to centroidal axes X and
: \, 4 ) X’ Y. The angle will be divided into
L—L L two parts as shown in the figure, V
Fro. 89 being 4 by 1 in. and U being 1

by 8 in.

The computations for the properties are tabulated below and should
be self-explanatory except that I, and I, are the moments of inertia
of each part about the centroidal axes of that part.

Part Area (4) v Ay’ z’ Az’ Ay)? I, A@)* I,
V 4X1=4 43 + 200 +2 + 8.00 1.00 033 1600 5.33
U 1X8=8 +5 +4000 +3 + 400 20000 4267 200 0.67

12 +42.00 +12.00 201.00 43.00 18.00 6.00
+12 = +12 =
+3.50 in. +1.00 in.
. 43.00 6.00
201.00 18.00
244.00 in.* = I, 24.00 in* = I,

The centroidal axes X and Y are 3.50 in. above and 1.00 in. to the right,
respectively, of the reference axes, X’ and Y.

244.00 . 24.00
12 X (3.50)2 = —147.00 _ 12 X (1.00)2 = —12.00

I.= 97.00in¢ I, = 1200int
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The product of inertia of the angle about the centroidal axes can be deter-
mined by multiplying the areas of the parts V and U by the product of their
coordinates. The product of inertia of each part about its own centroid is zero.

4 % (1.00)(—3.00) = —12.00
8 X (—0.50)(+1.50) = — 6.00
I, = —18.00 in.*

Substituting these values in formula 8, the general expression for stress is

0—350(_]8) 350 — 0 18)
f_0+ 97 R "\ 12
= 23218 © "~ or—jg18 Y
t
f=g ’49 o+ 20 _ 7.40: + 500y

70

It is apparent that the maximum intensity of stress occurs at one of the corners
of the angle, and by inspection it will be seen that the maximum positive value
of the above expression will be obtained at the upper right-hand corner of part U
and that this point also has the absolute maximum value of stress.

The coordinates are zero and 5.50:

f = 5.00 X 5.50 = 27.50 kips per sq in. (compression)

If this angle had been proportioned under the erroneous assumption that the
expression f = Mc¢/I could be applied for such unsymmetrical sections, the
following stress would have been obtained in the same fiber:

= 350 %%9—'2(—) = 19.85 kips per sq in. (compression)
The excess is
27.50
—19.85

7.65 <+ 19.85 = 0.385 or 38.5 per cent on the unsafe side

79. Unsymmetrical Beams with Lateral Loads. A composite
crane beam consisting of a wide flange was designed in Art. 30 of Chapter
3 and is shown in Fig. 21 of that chapter. These composite beams are
sometimes formed as shown in Fig. 90, with the channel riveted to the
web of the beam. This arrangement forms an unsymmetrical beam.

In Fig. 90 is shown a 16-in. wide-flange beam at 50 b combined with
a 10-in. channel at 15.3 Ib. Various combinations of wide-flange beams
and channels are given in the A.I.S.C. handbook, Steel Construction, and
the dimensions shown are largely taken from there, including the location
of the center of gravity.
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The computations for the moments of inertia and product of inertia
can be made from the values of section moduli given in the handbook,
or they can be developed as follows:

6554 . 34.8

1470 X 1.28% = 24.1 1470 X 1.212 = 21.5 14.70 X (—1.21)(—1.28) = 22.8
2.3 66.9

447X 4212 = 792 447 X 398 = 708 4.47 X 3.98 X 4.21 = 75.0

I.=1761.0 I, = 1940 I, =978

It will be assumed that this beam is subjected to vertical loads, causing a
bending moment about the X axis of 41460 in.-kips, and to a lateral load acting
from the left, causing a bending moment about the Y axis of 75 in.-kips. It
will be further assumed that the lateral force is so acting that the entire section
will resist the load with no torsion. According to the convention of signs given
in connection with the general expression for stress, they will be as follows:

M. = +1460 in.-kips M, = —75 in.-kips
I 97.8 I 97.8
T — 0129 2= T =0.504
I, 761 I, 194

Substituting in the general expression for stress and remembering
P =0,
—75 — 1460 X 0.129 1460 + 75 X 0.504

= z + Y
194.0 — 0.129 X 97.8 761 — 0.504-X 97.8
7 —263.3 1497.8

wia T Y

i)

= —1.451z + 2.105y
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It can be seen by inspection that the above equation has its maximum
positive value at the point marked a in Fig. 90 and its maximum nega-
tive value at the point marked b. Therefore maximum compression
is at a, and maximum tension at b.

At q,
—1.451 X (—4.75) = 6.90
2.105 X 6.85 = 14.42
f = 21.32 kips per sq in. (compression)
At b,
—1.451 X 232 = — 3.37
2.105 X (—9.40) = —12.79

f = —23.16 kips per sq in. (tension)

These stresses are too high. If this beam had been proportioned by
the erroneous assumption that bending was about the two axes per-
pendicular to the loads, X and Y, the computations would have been

as follows: y u
- it}
f 7, Y + 7,°

or
1480 6.85 + 1 4.75 = 13.14 + 1.84 = 14.98

f = 14.98 kips per sq in. = compression at a
1480 940 + v 2.32 = 18.03 + 0.89 = 18.92
f = 18.92 kips per sq in. = tension at b

The actual stresses are in excess of the above; the excess is:

1(1394{; = 0.423, or 42.3 per cent for compression
4.24 i
5 = 0-224, or 22.4 per cent for tension

80. Bending about Principal Axes. In Art. 77 it was shown that,
when bending is about the principal axes of a section, the value of I,
is zero, and the expression for stress becomes

P M,
f=q+71° + 2% “y
I,
For symmetrical sections the locatlon of the principal axes is apparent;
for unsymmetrical sections it is necessary to determine their location as
was illustrated in Art. 76.
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Some designers prefer to compute the stress in bending of unsym-
metrical sections about the principal axes. The authors prefer the
general expression for stress with convenient axes since the stress can
usually be obtained more easily than with principal axes. Also, in most
cases, the point at which maximum stress occurs is obvious by inspec-
tion of the equation derived from the general expression.

It may be more convenient to use the principal axes for these computa-
tions, if it is also desired to obtain the deflections of a member having an
unsymmetrical section. However, these deflections can be obtained

h Y
b 17
o
\4— d\:’s X!
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‘ - 2
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by locating the neutral axis of the section in question, and this question
of deflection will be discussed in Art. 83.

The determination of stress in the angle of Art. 78 and the composite
beam of Art. 79 will be discussed below, using principal axes.

Unequal Leg Angle. The same moment of 350 in.-kips will be used.

I.=97in4 I, =12in¢ I, = —18in*
From formula 6, ) X
tan 2¢ = ii(———l% = —g% = 0.4235
2¢ = 22 deg 57 min ¢ = 11 deg 29 min
sin 2¢ = 0.3899 sing = 0.1991
cos 2¢ = 0.9208 cos ¢ = 0.9800

The position of the principal axes X, and ¥, are shown in Fig. 91. The values
of I, and I, can be computed by means of formulas 3 and 4.
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I,+ 1, =97+ 12 = 109
I, — I, =85X09208 + 2 X 18 X 0.3899 = 92.31
21, = 201.31 21, = 16.69
1., = 100.65 I,= 835
M, = M;cos¢ = 350 X 0.9800 = 343 in.-kips
M, = M.sin¢ = 350 X 0.1901 = 69.7 in.-kips

Both are positive, according to the sign convention given with the general
expression for stress.

69.7 343
=535 e Tooes Yt = 8.35r; + 341y,

The maximum intensity of stress occurs at the same point as was determined
in Art. 78, although it is not always so easy to determine the proper point by
inspection with the rotated axes. However, it is necessary to calculate the
coordinates of the point with reference to the principal axes, X; and Y;.

21 =ysing + zcos¢p = 550 X 0.1991 + 0 = +1.09
y1 = ycos¢p — xsing = 550 X 0.9800 — 0 = +5.39

8.35 X 1.09 = + 9.10
3.41 X 5.39 = +18.38

= +ﬂ kips per sq in. (compression)

Composite Beam. The moments are the same as in Art. 79.
M. = 1460 in.-kips M, = —75 in.-kips

I, = 761 in4 I, = 194 in.4 I, = 97.8 in4

From formula 6,
2X97.8 _ 1956 _

b2 = oy — 761~ —sor ~ 40
2 = —19 deg 2 min ¢ = —9 deg 31 min
sin 2¢ = —0.3261 sin¢ = —0.1653

cos 2¢ = 0.9453 cos ¢ = 0.9862
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The positions of the principal axes X; and ¥, are shown in Fig. 92. The
angle of 160 deg 58 min has a tangent of —0.3450, and the X axis could have
been rotated through an angle of 80 deg 29 min, which would place it where
the Y, axis is. The small rotation of X is more convenient.

From formuias 3 and 4:

I, + I, = 761 + 194 = 955

I, — I,, = 567 X 0.9453 — 195.6(—0.3261) = 600
2I, = 1555 21, = 355
I, =17115 I, =1715

The signs for the sine and cosine have no real significance in moment
computations. Following the convention given with the general expres-

s5g0-] T
a
. :r_
5|
j \
X
¢ = - 9031.
Xl
&
&
QO
—
6
3.84~
Fia. 92

sion for stress, compression on the top or right-hand fibers is positive
moment; this convention should be followed in giving signs to M, and
M,,. If an axial load were present and M, and M, were expressed as
Pe, and Pe,, an arbitrary convention of signs could be followed in the
algebraic signs of the angle functions and e, and e,,, but taking cogni-
zance of the direction of bending is the easiest and safest method for
determining the sign of a bending moment.

1460 X 0.9862 = 1440 1460 X 0.1653 = —241
—~75X0.1653 = — 12 —75 X 0.9862 = — 74
M, = 1428 in.-kips M,, = —315 in.kips-
—315 1428
,f = m:ﬁ + 7—7-7--5 YN = —1.775131 <+ 1.8361/1
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At a:
z; = 6.85(—0.1653) — 4.75 X 0.9862 = —1.13 — 4.69 = —5.82
y1 = 6.85 X 0.9862 4+ 4.75(—0.1653) = 6.76 — 0.79 = 5.97

—1.775 X (—5.82) = 10.33
1.836 X 5.97 = 10.96

S = 21.29 kips per sq in. (compression)
This checks the computed value in Art. 79 with reasonable accuracy.
At b:
zy = —9.40(—0.1653) + 2.32 X 0.9862 = 1.55+ 229 = 3.84
1 = —9.40 X 0.9862 — 2.32(—0.1653) = —9.27 + 0.38 = —8.89

—1.775 X 3.84 = — 6.82
1.836 X (—8.89) = —16.32

f = —23.14 kips per sq in. (tension)

81. Location of Neutral Axis. The neutral axis was defined in
Chapter 1 as the axis where there was no change in lengths of the fibers
(or no strain) and consequently as the axis of zero stress. If there is no
axial load (P = 0), one point of zero stress is the centroid of the cross
section, and the angle the neutral axis of the cross section makes with
a reference axis through the centroid can be determined from the general
expression for stress. If the general expression is equated to zero (where
there is no axial load) and the ratio y/z is obtained, this is the tangent
of the angle ¢,,, which the neutral axis X,, makes with the reference
axis X.

Using the form in equation 7 with P = 0,

M, — M.I,, M,I,—- M,,,
= z
I,I,,—I;,,,2 I,I,,—I,,,z
MIy — ML)y = —(MyI, — M.I.)x
MJI,— M.,
M1, - M,I,,

f y=0

g = tan ¢y = (9)
z

It was stated in Chapter 1 that one of the basic assumptions in
flexure is that plane sections that are normal to the longitudinal axis of
members of constant section remain planes after bending. If this is
true, the bending in any unsymmetrical section would be about its
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neutral axis, and, since stress is proportional to strain, the stress would
have a linear variation as shown in Fig. 93.

Since these relations are identical with those obtained when the
flexural formula Mc¢/I was developed in Chapter 1, Art. 14, a similar
relation must hold in this case.

Let My,
Ina

the resultant bending moment about the neutral axis.

the moment of inertia of the section about the neutral
axis.

Yna = & coordinate perpendicular to the neutral axis.

Then
M., .
f= T Yna (for axial load = 0) (10)

na

Although it is true that there is normally a moment about a centroidal
axis perpendicular to the neutral axis and, in unsymmetrical sections, a

4

4

N

N

Fia. 93

product of inertia for the two axes, still the simple expression of formula
10 gives the same stress in a fiber that is obtained by applying the general
expression for stress and using the neutral axis and its perpendicular axis.

If there is an axial load P, then the unit stress at the centroid is P/A, or

P MJ,—MJI, MI,—MlI, P

AT L -z ‘vt —n; '"2a
Therefore the neutral axis has the same slope as given in formula 9,
and its perpendicular distance from the centroid is
P/A
Mo/Ina

The determination of the neutral axis is very useful in computing
deflections.
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The neutral axis can be located with respect to the principal axis X,
in a similar manner. The value of the tangent of the angle between the
principal axis and neutral axis, 8, will be in a more simple form since the
product of inertia is zero for principal axes.

M!Il le .
= x, + y1 = 0 (for axial load = 0)
Illl IZ'I.
M., M,
Y= ——mn
Izl IUI
n M,I,,
—=tanf = — —— 11
I MxlIll ( )

The above expression assumes no <xial load (P = 0). If there were
an axial load, the effect wouild be similar to that discussed when locating
the neutral axis with reference to the axis X.

Y
o> 1"
a N
y ’<>\ RS
¢ .

3¢ Pr'\\'\d‘pa‘ a\s X

$=11°29
X

82. Ilustrative Example. The angle used in Art. 78 is shown in
Fig. 94. With the same data as in Art. 78:

 0X97—350(—18) _ _ 6300 _
tanna = — 350512 — 0(—18) 2200

s = —56 deg 19 min
8in ¢, = —0.8321
€08 ¢na = +0.5546
sin 2¢n, = —0.9230

It
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Mus = M cosdn. = 350 X 0.5546 = +194.1 in.-kips
I = 0.5446% X 97 + 0.8321% X 12 — (—0.9230)(—18)
= 20.83 + 8.31 — 16.61 = 21.53 in.*
Yna = 5.50 X 0.5546 — 0(—0.8321) = +3.05

194.1
7= 21.53

If it is desired to locate the neutral axis with reference to the principal axis X3,
using the data for the unequal leg angle from Art. 80,

_ _ (469.7)(+100.65)
tan 6 T3i5)(is3n ~ 2%

0 = —67 deg 48 min

——— X 3.05 = 27.50 kips per sq in.

In Art. 80, the value of the angle between the reference axes and the principal
axes ¢ was found to be +11 deg 29 min.

—67 deg 48 min + 11 deg 29 min = —56 deg 19 min

This checks with the value of ¢ne.
The values of M s, Inq, and yaq could be determined with respect to the prin-
cipal axes using § = —67 deg 48 min, and the same values would be obtained.

83. Deflection of Unsymmetrical Members. The deflection of an
unsymmetrical member can be obtained with the data for bending about
the principal axes, or for bending about the neutral axis. The computa-
tions are generally more direct in the latter, but it must be remembered
that the location of the neutral axis is a function of the moments (or
loads) as well as the physical properties of the section, and it changes
with a change of relative loading. The principal axes are determined
by the physical properties of the section, and once computed can be
used with any changes in both the vertical and lateral loads.

The deflection of the unequal leg angle will be computed: first, from
the data of Art. 80; and second, from the data from Art. 82.

It will be assumed that the angle has a span of 12 ft, or 144 in., and a uni-
formly distributed load of 1.62 kips per ft. The bending moment is

2
M, = L82X12

X 12 = 350 in.-kips

which is the same moment previously used.

For a uniform load,
5= 5 WLt _ L 5L
T 384 EI = 8 48E]
or
5L2

§=M om
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all units being in inches.
E = 29,000 kips per sq in.

From the data for principal axes from Art. 80, the downward deflection per-
pendicular to the principal axis X is
5 X 1442

343 X 287X 29,000 X 100,65 ~ 02538 in-

and the deflection parallel to the principal axis X; anc toward the left is

5 X 1447 .
69.7 X 18 X 20,000 X 535 — 0.6217 in.
The tangent is 0.6217 =+ 0.2538 = 2.4496, or the line of deflection makes an
angle of 67 deg 48 min with the axis ¥;. The resultant deflection is (0.25382
+ 0.6217%)* = 0.6715 in., as shown in Fig. 95.

Y
%
_ pincpd e X4
.4 X
o]
o 6)- é
o621 % J
P
X1 \ 06\\/ — Y Y\
o fo)'#’ Y ‘:
&% %
ey
Fi1a. 95
From the data for neutral axis from Art. 82:
2
1041 X -0 X 144 ~ 0.6715 in.

48 X 29,000 X 21.53

downward to the left in a direction perpendicular to the neutral axis.



CHAPTER 7

BENDING IN SPECIAL BEAMS INCLUDING
THOSE WITH THIN WEBS

84. Introduction. In aircraft structures, semi-tension-field beams *
are quite common, and frequently the diagonal compression that can be
resisted by the webs is so small that the beams are practically complete
tension-field beams. In other structures, such as those previously dis-
cussed and designed, the webs of beams are completely shear resistant;
however, stiffeners are often added, especially in plate girders, to prevent
the web from buckling due to the diagonal compressive stresses. This
book thus far has dealt only with heams having shear-resistant webs.

In tension-field beams the diagonal compressive stresses exceed the
capacity of the web in buckling at smaller applied loads than those for
which the beam is designed. In complete tension-field beams, any
applied load, however small, produces diagonal compressive stresses
beyond the buckling strength of the web. (Obviously a complete tension-
field beam is never completely realized.) For a semi-tension-ficld beam,
small applied loads do not cause web buckling, and the beam acts the
same as one with a shear-resistant web, but increased applied loads
cause web buckling.

It was found in Chapters 1 and 5 that the horizontal or vertical
maximum unit shearing stress (f;) T in a beam subjected to flexural
stresses only occurs at the neutral axis and is equal to the unit diagonal
tensile stress f; and likewise to the unit diagonal compressive stress f,,
orfs = f; = f.. Thisrelationship is shown in Fig. 96, where an extremely

* The procedures presented in this chapter follow closely the theories and design
procedures presented by Professor Herbert Wagner of Danzig, Germany (as trans-
lated in publications of the National Advisory Committee for Aeronautics), and
Paul Kuhn in publications of the N.A.C.A.

t The symbols in this chapter differ from those in the previous chapters in order
to agree better with the major part of the printed literature on this subject which
follows ‘“Strength of Metal Aircraft Elements” (ANC-5a), issued in May 1949 by
the Munitions Board, Aircraft Committee. For example, f, here is the same as v
in the previous chapters. This should cause no confusion, however, since edch new
symbol is defined the first time it appears.

188
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small unit cube is shown at the neutral axis. The shearing forces acting
on it and the forces acting on the diagonal are shown in Fig. 96b.

In a beam having a very small web thickness ¢, and a very large
flange area Ay, the moment of inertia I of the beam can be taken as

h2
equal to 2(A f Z) without appreciable error. In the expression for

unit shearing stress previously developed, f, = VQ/It,. In this expres-

o L
Neutral axis ‘
_ e
f ( Small area T =%
enlarged in (&)
(a) (b)
Fia. 96

A
/f = unit stress e

= force 25> r
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‘_ -_—
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sion, Q = the first moment of area about the neutral axis, and, since the
web is so thin, the first moment of any web area about the neutral axis
is negligible compared to that of the flange and can be ignored. This
gives Q@ = As(h/2) for any section between the neutral axis and the
flange for which shear is to be computed. Using these values of I and Q
in the computations shown in Fig. 97, and taking the web area 4, as

A
= — I\ Q=4,(3)
VQ V(A[)‘f
f, Itw 2A (h )tw
—>fle— 1, -~
eV Y
hts Ay

-mAﬁ_-;_—:_./

(a) (%)
Fia. 97

t. X h, the unit shearing stress within the depth of the web is found to
be a constant, or f, = V/A,.

If the small unit cube of Fig. 96b is taken as shown in Fig. 98a (the
faces of the cube perpendicular to the web making an angle of 45 deg with
the neutral axis), the same relationship between f,, f;, and f. exists.
This is shown in Fig. 98b. If the web can resist no compressive stresses
(a complete tension-field beam), the relationship between f, and f; is
as shown in Fig. 98¢; that is, f; is now twice as large. Also, the horizontal
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component of the diagonal tension is resisted by tensile stresses on the
vertical face, the unit value of these tensile stresses being equal to f,.
These tensile stresses on the vertical face of the web are in addition to
any other stresses due to bending.

Another way of indicating how the diagonal tensile forces are doubled
when the diagonal compressive forces are zero is shown in the single

4 Lok

NP/ X 5= f,~V/2 = force
\\: jzf Q‘\<]F’;force :E 3
= uni = [ V2 = force
’:/ \\ y; f;- unit ="
4/ Q« ,;/4( ) stress ,,/){/ L»
ERN
<>
(a) (%) * (o)
Fia. 98

panel truss in Fig. 99. For the panel in Fig. 99a with both tension and
compression diagonals, the applied load P, which is the shear in the
panel, will be resisted by the joint action of the two diagonals. If the
members AB, BD, DC, and CA are infinite in area and stiffness as com-
pared to the diagonals, then these members will not change in length
under load. A view of the deflected structure (vastly exaggerated) is
shown in Fig. 99b, with A B parallel to CD, and AC parallel to BD. For

()

small deflections as occur in structures, and consequently small angle
changes, the increase in length of CB equals the decrease in length of AD.
For diagonals of the same area and the same material, the tension in CB
equals the compression in AD, or the vertical component of each is
equal to P/2.

If, as shown in Fig. 99¢, the compression member is removed, the
vertical component in the tension member is equal to P. The compres-
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sion in AB is PL/2h in Fig. 99a but PL/h in Fig. 99¢, and the tension in
CD is PL/2h in Fig. 99a, but zero in Fig. 99¢c. The change in stress in
both members when the compression diagonal is removed is equivalent
to adding a compression of PL/2h. Such compressive stresses exist
in the flanges of tension-field beams and resist the horizontal tension
shown on the vertical face in Fig. 98c.

85. Complete Tension-Field Beams. In Fig. 100a is shown a
beam with a web that is assumed to be incapable of resisting compression.

| ——
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A vertical section between stiffeners, at a distance e from the right sup-
port Rg, is shown in Fig. 100b. The forces on the left vertical face of
the right segment of the beam can be considered as acting in either of
the three manners shown.* If a saw-tooth vertical section is shown,
only the faces slanting downward to the right are stressed, as the other
faces would have compressive stresses and the web can resist no com-
pression. If, as in the center section, the shearing stresses parallel to

* In this discussion, as well as in the previous article where these web stresses
were developed, all tension (as well as compression) in the web due to flexural action
of the beam has been neglected. In very thin webs this flexural tension would be
negligible in resisting bending, as compared with the flange stresses, and would be
small in its effect on the other stresses in the web. It is on the basis of this assumption
that the resultants of the web stresses act at an angle of 45 deg at all points.
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the vertical face are shown, there must also be the normal tension stress,
as previously shown in Fig. 98c.

In the right diagram of Fig. 100b the resultant diagonal tensile
stresses f, are shown, acting downward and to the left. Where the
tension due to bending is neglected, as where the web is extremely
thin, this diagonal tensile stress acts at an angle of 45 deg with the
horizontal and on a projected area (normal to the line of action of f;) of
(h/A/2) X tu. The total diagonal tension is f,(h/A/2)t., its vertical com-
ponent is 0.707f,(k/A/2)tw = (fihtn)/2 = V (in this instance V = Rjp).
From the previous article, f, = V/A, = V/ht,,. Therefore f, = 2f,, as
previously shown in Fig. 98¢c.

86. Flange Compression and Tension. Since in Fig. 100b the
diagonal tension f; is acting at an angle of 45 deg and the vertical
component of the total diagonal tension is equal to V, then the horizontal
component (or the total of the normal web tension) is also equal to V.
F. and F,, as shown in Fig. 100b, represent the total stresses in the
compression flange and the tension flange, respectively. Taking mo-
ments about F,, and remembering that V can represent the total web
tension normal to the section,

Fh—-vi-m oo £, oMY
2 h 2
If moments are taken about F,,
¢h+V——M or F,—A—I—K
A 2

This means that each total flange stress, as computed from the bending
moment at a section as for ordinary girders, would be modified by a
compressive force equal to one-half the external shear at the section.
This, of course, increases the total compression and decreases the total
tension by that amount.

87. Flange Bending. The small triangular element shown dotted
and greatly enlarged in Fig. 100a is shown further enlarged in Fig. 101a.
The segment is taken just below the top flange, with the sides making
an angle of 45 deg with the horizontal. The small area of the hori-
zontal face has a unit value. The area of each inclined face is 1/4/2.
The stress values shown are unit stresses. Since the web is assumed
to be incapable of resisting compression, the only fortes acting on the
inclined faces are those from diagonal tension. Along the horizontal
face the shearing stresses f, act to the right, and in order that the veitical
forces be in equilibrium there must be a vertical tensile stress f, acting
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on this horizontal face. Therefore, since the flange is pulling on the
web, the web exerts a downward pull on the flange. From a similar
segment at the bottom flange, it should be clear that the web exerts an
upward pull. From the equilibrium of the vertical forces,

S g
Jo = \/QXOJO?-E

Therefore f, = f,. This is an average value for f,, and is conservative.
The flange does not have an infinite stiffness, and its deflection causes
the value of f, to increase near the stiffener and decrease midway between
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stiffeners; however, near the stiffeners the web is shear resistant (or
almost s0), and for this reason the effect of f, decreases near the stiffener.

In Fig. 101b is shown a portion of the top flange together with the
forces that are acting on it. The horizontal web shearing stress f, is
acting to the left, and the vertical stress f, is acting downward. If it is
assumed that the stiffeners are uniformly spaced in this region of the
beam, the spacing being the distance d, the flange would act as a flexural
member continuous over supports (the stiffeners). For such a condition
the maximum moment would be approximately equal to tiwd?, where
w (the load per unit length) = f,t,, The maximum moment occurs
at the interior stiffeners and is comparable to the negative moment at
the supports of a continuous beam. Since the web can resist no com-
pression and is itself pulling on the flange, the flexural stresses in the
flange will be a factor of the moment of inertia of the flange Ir about its
own gravity axis, and the distance ¢ from the gravity axis to the ap-
propriate extreme fiber. In the compression flange the inside fiber is
the critical one, whereas the outside fiber is the one to consider in the
the tension flange. This stress due to bending in the flange is wd?c/12Ip
and is added to the unit stress in the flange due to the action of the beam.
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88. Stiffener Loads. From Fig. 101b it is readily seen that the
compressive load on an interior stiffener P, is fut,d = Vd/h, since
fn = fo. With the web unable to resist compressive stresses, this load P,
is the required strength of the attachment of the stiffener and the flange
and remains a constant load in the stiffener between flange attachments.

Where a load is applied to the flange at a stiffener, account must be
taken of this load in the strength of the flange attachment, and the load
in the stiffener is also modified on account of the change in shear V.
This modification is also true when the load is applied to the beam
through a connection to the stiffener.

End stiffeners in tension-field beams are subjected to bending due to
the horizontal component of the diagonal tensile stresses. The attach-
ment of the stiffener to the flange is such that the end stiffener for these
flexural loads is considered as a simple span between flange attachments.

Loads applied to tension-field beams should be applied only at points
where stiffeners are located unless the resulting bending in the flange
is considered.

89. Rivet Spacing. In a beam with a shear-resistant web, the load
on a rivet R is measured by the shearing stress f,, as shown in Fig. 101,
over the distance between rivets p. In the tension-ficld beam there is
also the normal force f,, as shown in Fig. 101, the intensity of which is
equal to f,. The total load on a rivet in a complete tension-field beam
in a distance p is therefore the resultant of the two forces, pf,t, and
Dfntw, and therefore is equal to pfut,\/2.

If there is a shear-resistant web,

p= V
R being the capacity of the rivet.
In a complete tension-field beam,
Rh

P=1Vav

Since the web is connected to the flange by means of rivets which
require holes in the web, the capacity of the web is reduced to the ca-
pacity of the net section of the web, since tension is the controlling stress.

90. Semi-Tension-Field Beams. The design of semi-tension-field
beams (sometimes called incomplete tension-field beams) requires,
among other things, the knowledge of experimental data obtained from
physical tests. An adequate treatment of the design procedure for
this type of beam can be found in textbooks on the design of aircraft
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structures, but a lengthy treatment is inappropriate here. Some of
the factors affecting such designs will be briefly mentioned.

For tension-field beams with webs that can take small compressive
stresses, the beam acts as one with a shear-resistant web, where f; = f,,
when the applied loads produce diagonal compressive stresses within
the capacity of the web in compression. For applied loads producing
diagonal compressive stresscs greater than the weh can resist it is
assumed that the diagonal compressive stresses continue to exist at a
value equal to the capacity of the web in comp.ession. For the smaller
first portion of such an applied load the web is shear resistant, but for
the remainder it is tension field, and the total diagonal tensile stress f; is
greater than f, but less than 2f,. Alsc, the angle that the diagonal
tensile stresses make with the horizontal is other than 45 deg when
the web can resist compression, whether it be the result of shear or of
flexure.

The compression change in the total stress in the flange of a semi-
tension-field beam is less than V /2 if the web resists some of the shear
as a shear-resistant web.

The flange bending stresses are reduced in a semi-tension-field beam
because the vertical component of the diagonal tension is less and also
because some of the web is acting with the flange as a flexural member.

For similar reasons the stiffener loads are decreased and the required
rivet spacings increased.

In all cases the web can take flexural stresses in tension. This fact
is neglected in a complete tension-field beam because the effect on the
design is extremely small. For a semi-
tension-field beam the effect of the flex-
ural stresses in both tension and com-
pression should be included in the design.

91. Tapered Beams. Tapered beams
(beams with nonparallel flanges) are
found in bridges, buildings, and many
other structures, although their use is
not extensive. Because of the desira-
bility of saving weight, they are more
common in aircraft structures. A ta- Fia. 102
pered beam can have one sloped flange,
or both can be sloped as shown in Fig. 102. An extensive discussion
of tapered beams will not be attempted in this article. The main in-
terest here is in connection with lightweight beams, or beams with
thin webs, and the effect of the tapered flange on the shear in the
web which is shear resistant.
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A short tapered cantilever beam is shown in Fig. 102, with an upward
load P at the right end and an effective depth & at the left support. If
a section is taken at the left support and the flexural stress in the web is
neglected, the horizontal component of stress in the compression flange
F_. and the horizontal component of stress in the tension flange F,’ will
each be approximately equal to PL/h. The neglect of the flexural stress
in the web is conservative for any size of web, and the difference is
negligible for very thin webs. The total stress in the compression flange
due to flexure in the beam is PL/h sec o, and the total stress in the
tension flange is PL/hsec 8. PL, of course, represents the bending
moment at the section. These values are safe and rather accurate for
values of a and 8, and (« + ), that are not too large. For larger angles
the error is disproportionately greater, but it is always on the conserva-
tive side. This method of analysis is simple and sufficiently accurate
for ordinary design purposes. More accurate analyses can be found in
advanced treatments on strength of materials and other technical pub-
lications. An excellent theoretical paper on this subject is “A Theory
of Flexure for Beams with Nonparallel Extreme Fibers,” by W. R.
Osgood, in the Journal of Applied Mechanics, September 1939, Vol. 6,
No. 3, page A-122.

These total flange stresses have vertical components (F.”” and F,”,
as shown in Fig. 102). These vertical components act in the direction
shown and reduce the shearing stresses in the web. The total shear in

the web in this case is P— F,/)' — F,) = P — % (tan a + tan B).

The unit shearing stress in the web is, therefore,

PL
P — T(ta,na + tan B)

L
=_|1-==
e e [ ; (tan a + tan ﬁ)J

There is a small amount of shear in the flanges that is ignored in these
expressions. This is the same as the shear in the flanges of beams and
girders that is also ignored where the web is assumed to resist all the
shear.

In calculating the unit compression in the flange, the student should
realize that the horizontal component F,’ is acting on a vertical section
through the flange, the vertical flange area being A.’. - The total stress
F, also acts on this same area, but to compute the unit stress F, should
be divided by the cross-sectional area of the flange which is A, = 4.’
cos a. Therefore,
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PL
— 8€C o
Lo _PL_, _PL
T A cosa hAy 0 ¥ T pa, 0
Similarly
oo PE g L
= —sec’f = —
t hA, hA,secﬁ

in which f, and f; are the unit flexural stresses in the compression and
tension flanges, respectively.

It will be seen from these relations that, if the total stress in the flange
is divided by the cross-sectional area perpendicular to the slope of the
flange, the result will be the unit stress. If the area of the vertical section
is used, the value will have to be further multiplied by the secant of the
angle of slope of the flange. Consequently, if the unit stress were com-
puted by the flexural formula Mc/I (I being the moment of inertia
of the vertical section), the correct unit stress would be very closely
(Mc/T) sec® « (or sec? B for the bottom flange in Fig. 102).

92. Illustrative Example. The specifications for the design of air-
craft structures differ from those for the design of bridges and buildings.
The stresses produced by design loads in aireraft structures are com-
pared to the stresses that the structures can resist at ultimate strength; *
however, the design loads are obtained by multiplying the applied loads
by some factor greater than 1 (frequently 1.50). Also, the stresses
resulting from applied loads are required to be less than the yield stress.

Because the examples of design given thus far have been based on
specifications for the design of buildings, the following example con-
forms for the most part to specifications for buildings. Since tension-
field beams are not allowed under current building specifications, it will
be necessary to deviate slightly from these specifications, especially
from a clause such as the one that states: “Plate girder webs shall have
a thickness of not less than 135 of the unsupported distance between
flanges.”

As an example problem, a steel plate girder with a span of 100 ft will
be considered. The distance between the centroids of area of the flanges
will be taken arbitrarily as about 10 ft. The total load to be supported
is shown in Fig. 103. The choice of span, depth, and loads as well as the
cross-sectional dimensions and arrangements of the members which will
be suggested are not typical for buildings or aircraft structures but are

* For parts of some structures, the ultimate strength is equal to or less than the
area times the yield stress, in which cases the stresses caused by design loads are
thus limited to lower stresses.
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given here merely as a simple means of explaining the application of
the theory of tension-field beams.

The maximum total stresses in the flanges will be equal to the algebraic
sum of the bending stresses and those due to diagonal tension in the web,

10 @ 10’ = 100’
40% 40* 40* 40* 40% 40% 40* 40 40
S R I R N R
MEE L. 1so*f
180 140 ook
Shear I ' 160 20
| = (PP
Moment g(|)037.(|)0 4200 4800 5000 | =140 - 180"
. A
diagram
(ft-kips)
T1a. 103

as shown below. It is the algebraic sum of the moment divided by the
effective depth (115.76 in., see Fig. 104a), and the shear divided by 2.

TABLE 5
Compression Flange Tension Flange
Panel
Bending | Shear Total | Bending | Shear Total
0-1 —187 —90 -277 +187 -90 + 97
1-2 —332 —-70 —402 +332 -7 +262
2-3 —435 —50 —485 +435 —50 +385
34 —497 -30 —-527 +497 -30 +467
4-5 —518 -10 —528 +518 -10 +508

The 40-kip loads are applied to the girder by means of connections
to the stiffeners on the web; also, it is assumed that the girder has con-
tinuous lateral support for the upper flange, and the allowed stress in
this flange is 20 kips per sq in. The allowable stress in tension for any
member will be taken as 20 kips per sq in. on the net section. -

If the web is in tension and has a net section of 75 per cent of the:gross
section, then the allowable tension stress on the gross section of the
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web is 75 per cent of 20 kips per sq in., or 15 kips per sq in. The maxi-
mum shear is 180 kips, the effective depth is assumed to be about
120 in., and the diagonal tensile stress f, is twice the shearing stress f,;
therefore f, is limited to 7.5 kips per sq in., and the web thickness t:

2-/58x8x1

—ATF T
Crimped

g | J

2 & (b)

= ©

1) &=

£ Sl g

e 3: :'2 %3%)(315:\9; ‘

I %m{_b_
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'l'l‘ ﬁq ,! h Area =2 x 2.48 = 4,960~

e 2 S § ()

x vy x vy

N o~

! |

0 7

S S

2-/58x8x1

(a)
Fia. 104

must be at least 180 + (120 X 7.5) = 0.200 in. The web thickness
will be § in.

The trial section shown in Fig. 104a will be checked, using 1-in. round
rivets (in the flanges) which have a capacity in double shear of 0.785
X 15 X 2 = 23.56 kips and 10 kips in bearing on a }-in. web.

Using both gage lines (see Fig. 104b), the attachment of the stiffener angles
to the flange angles has a capacity of 2 X 23.56 = 47.12 kips (§ X 32 X 4 = 48
kips) if the stiffener angles are § in. or more in thickness. The load on a stiffener
(P,) is8 Vd/h, or d = P,h/V = (47.12 X 115.76) + 180 = 30.3 in. in the end
panel, and 39.0 in. in the second panel, 54.6 in. in the third panel, 91.0 in. in
the fourth panel, and 273 in. in the center panel, if the spacing is determined
by a P, of 47.12 kips.

The stiffeners act much like columns hinged at the ends, with lengths each
of which is equal to 108.5 in. Two angles 34 by 3} by § in. separated by £ in., as
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shown in Fig. 104c, have a radius of gyration of 1.56 in., an L/r of 108.5 + 1.56
= 69, an area of 2 X 2.48 = 4.96 sq in., and a capacity in compression of
14.69 X 4.96 = 73 kips.

The moment of inertia of the flange I» composed of 2 angles 8 by 8 by 1 in. and
the 8 in. of 1-in. plate between the angles is 194 in.* The flange bending stress
for an interior panel is wd%/12IF, but at the first interior stiffener it is about
wd?/10Ir, where w = fy(tu) = (V/Aw)(tw) = V/h. If the end panel of 10 ft
has a pair of stiffeners every 23 ft, thend = 30in.,w = 180 + 115.76 = 1.56 kips
per in., and the flange bending stress just to the left of the first 40-kip load is
1.56(30)%5.63 + (12 X 194) = 3.38 kips per sq in. The axial load in the flange
at this first load is —(M/d) — (V/2) = —[(1800 X 12) + 115.76] — (180 + 2)
= —277 kips (see Table 5), and the flange area is 2 X 15 + 2 = 32sq in. The
maximum unit stress is —(277 + 32) — 3.38 = —12.04 kips per sq in.

In the first panel where the shear is 180 kips, the diagonal tension stress
fo= (2 X 180) + (115.76 X 1) = 12.4 kips per sq in., f, = 6.2 kips per sq in.,
and the spacing of 1-in. round rivets with a 10-kip capacity for bearing on a -in.
web is 10 + 4/2(1.56) = 4.54 in. (say 43 in.).

For the second panel, the following calculations are made:

foltw) = V/h = 140 + 115.76 = 1.21 kips per in.

Rivet pitch = 10 + 4/2(1.21) = 5.85in. (say 5% in., unless 20 X 1 = 5 in.
is assumed to be maximum).

Stiffener spacing = 40 in. (3 at 3 ft 4 in. = 10 ft). (39 in. has previously been
computed, based on the capacity of attachment of flange angles to stiffener
angles, but some small amount of load can be transmitted vertically from
the flange angles to the web which lies between the two stiffener angles.)

Flange bending stress = 1.21(40)25.63 + (12 X 194) = 4.68 kips per sq in.

Total axial stress = —402 kips.

Maximum unit stress = (402 <+ 32) 4+ 4.68 = 17.23 kips per sq in. (com-
pression).

For the third panel:

V/h = 100 + 115.76 = 0.865 kips per in.

Rivet pitch = 10 + /2(0.865) = 8.19 in. (If 20 X ¥ is a limit, then
smaller rivets should possibly be used.)

Stiffener spacing = 40 in. (3 at 3 ft 4 in. = 10 ft); 33 by 3} by % in. angles
may be used in this panel.

Flange bending stress = 0.865(40)25.63 + (12 X 194) = 3.34 kips per sq in.

Total axial stress = —485 kips.

Maximum unit stress = (485 < 32) + 3.34 = 18.49 kips per sq in. (com-
pression).

For the fourth panel:
V/h = 60 <+ 115.76 = 0.518 kips per sq in.
Stiffener spacing = 40-in., and 3} by 3} by % in. angles.
Flange bending stress = 2.01 kips per sq in.
Total axial stress = —527 kips.
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Ma.xin)mm unit stress = (527 + 32) + 2.01 = 18.49 kips per 8q in. (compres-
sion).

For the center panels:
V/h = 20 + 115.76 = 0.173 kips per sq in.
Stiffener spacing = 60 in. (2 at 5 ft = 10 ft), and 3} by 3% by 1 in. angles.
Flange bending stress = 0.173(60)25.63 + (12 X 194) = 1.50 kips per sq in.
Total axial stress = (—5000 X 12) + 115.76 — (20 ~ 2) = —528 kips.
ngin)xum unit stress = (528 + 32) + 1.50 = 18.00 kips per sq in. (compres-

sion).

Net area of tension flange = 26.94 sq in.
Maximum flange stress = +508 ~ 26.94 = 418.87 kips per sq in.

To this should be added the flunge bendiug suress 1 tension. At the stiffener
it is 1.50 X (2.37 + 5.62) = 0.63 kip per 5q in. At the center of the stiffener
spacing (using a sir-moment coefficient) it is 0.75 kip per sq in. The maximum
unit stress is under 20 kips per sq in.

Smaller angles with cover plates can be used with a saving in weight if the
cover plates are cut off.

If the end reactions are vertical forces applied to the bottom flange,
the end bearing stiffeners must be designed to resist not only this load
but also the bending due to the horizontal components of the diagonal
tensile stresses in the end panel. If the end of this member frames into
a column by means of an attachment to the web, then the column plus
any attachments to the other side of the column are available to assist
in resisting the bending.

Actually the web is capable of resisting some compression, and the
girder is not a complete tension-field beam. Where the stiffeners have
a spacing of 30 in., the web will not buckle and thus it will be shear
resistant for shearing stresses less than 10.5 kips per sq in.* This
means that the web will be shear resistant. However, if the diagonal
compression is combined vectorially with the compression due to bend-
ing, this web will probably buckle, and it has been considered as the
web of a complete tension-field beam. The fact that it is not a complete
tension-field beam indicates that the calculations are unduly conserva-
tive and that the stiffener spacings and rivet pitches can be greater
and the flanges smaller.

* This value is conservative, according to data given in recent publications of the
National Advisory Committee for Acronautics. It is obtained from the procedure
suggested in the “Strength of Aircraft Elements” (ANC-5), issued December 1942
by the Army-Navy Civil Committec on Aircraft Design Criteria; that is, the shearing
stress at which the web would buckle = K,E(ty/d)? where K, is a constant depending
upon the panel dimensions and the restraint the flanges and stiffeners offer to web
rotation, and E is the modulus of elasticity.
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The deflection of this girder will be greater than for a similar one
with a thicker web. Whenever a web buckles, the deflection is increased
considerably.

The web splice for a tension-field beam contains more rivets than one
for a beam with a shear-resistant web, just as the number of rivets
between the web and the flange must be increased for a tension-field
beam.
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The design of timber beams involves no prin:iples beyond those dis-
cussed in Chapter 1, unless one attempts to introduce the discussion of
timber connectors and other dctails. There are many excellent text-
books, handbooks, and uther publications covering these details, and a
partial list of references is given below. Timber makes an excellent struc-
tural material for many purposes, but cognizance must be taken of certain
propertics peculiar to the material. As steel I beams are weak in diagonal
compression in the web and reinforced concrete beams are weak in
diagonal tension, so timber beams are weak in horizontal shear. Also,
timber is much stronger in compression parallel to the grain than in
compression perpendicular to the grain.

The floor system that was previously designed in steel and reinforced
concrete is redesigned here as a timber floor. The computations are
shown on the following pages about as they would be made by the
designer. The design is limited to the subfloor, a typical interior beam,
girder, and column. The live load has been reduced to 200 Ib per sq ft.
Although in the previous designs it was assumed that the roof was
carried by steel roof trusses, 90 ft in span, supported by steel columns, it
is here assumed that the roof is supported by timber trusses, 45 ft in
span, supported by a line of columns down the center of the upper
story. The bays have been made 13 ft 6 in. in length, and the girder
spans 15 ft in length.

The working stresses are as shown in the calculations and are for good
structural grade material. Since the tongue and groove flooring is
continuous over the beams, the same moment coefficients are given for
the floor as were previously recommended for a concrete slab. For
simplicity, the beam and girder spans were taken as simple spans to the
center of the supports instead of the centers of the bearing areas, although
good practice permits the latter. The small difference makes no change
in the design. The weight of the roof, purlins, and trusses, with snow
load, was arbitrarily assumed as 50 Ib per sq ft for the purpose of com-
puting the load on the center line of columns. The roof columns are

carried to the center columns by means of a cast iron pintle.
203
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A rTee Timber Floor
ooring: 17 maple ior P
Subfloor: T & G southern pine (f = 1450) lzéeoﬂrr ] Va nj'(; C
Beams and girders: Douglas fir (f =1700) A
or southern pine (f = 1600) Sheet 1 of 3
Allowable Flexure | Horizontal | Comp.I | Comp.II | Modulus
Species Stress f Shear Grain Grain E
Southern pine 1450 125 390 1200 1,600,000
Southern pine 1600 120 455 1150 1,600,000
Douglas fir 1700 145 455 1325 1,600,000
Live Load = 200%™
270’-0”
27°-0" 16 @ 13-6" = 216’-0”
&
o 'p———-u———c'rl———q———n——-crv——
§ oy H——O—O0— O ——O—¢
ol - NN
N 3 0 in |
B4 ®—
L¥IED @ e J——[J———{}———C}———{}——f}————f)———j
- £
8 g /
g o2 O J—\
S §0 fé E}-—-—{}—EJ———C}—-——EJ-—-—{P——-CF——’
<
S0 :b—————c:——c?—cp—c:—-—{z—-—c
& L ——O— O ———0—

For typical interior panel:

573 x 12

2
Subfloor- Est DL 8% x 3 = 17*¢

LL. 200#° x £ =556

=474= 1=

o}

d=-237 = 154"
Use 2” T & G subfloor (1%” net) = 5.424/%"
17T & G maple floor = 2.50

Mom. per 12" of width = 573'¢

79247 yse ¥
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Beam Timber Floor
208 x 5 = 1040*" Interior Panel
Est. wt. beam = __30 1950 | J.V, J.G.C.
T070% % B8 = 24400% = Shest 2 of 3
x 127 = 6800*= v
&‘}%’ﬁ =183=L  Use 8"x14" L =228 wt=28%
=3 S0 =101 1979x135 = 16 required for bearing
Girder
1040
28
1068 x 135 = 14,400* x 5 = 72,000 50 x 142 = 14,400
5 x182=_ 3585
bux @ =_1410 -
S = T3410° 14,755
73410x 12 o Use V = 14,800*
550 =L
Use 10”x 20" L 602 W =514% v=3 580 =120%"
#‘ﬂ = 337" required for bearing
Columns

Clearance to bottom of beams = 12°-0”
Length of column = 10-43%” =10.37"
Minimum column size for girder width = 10”x 10"

K =0702~/280%% _ 56

1150 [1 - 4 (1032212)] = 1150 x 098 = 1127%/°"
14,800 x 2 = 29,600
14,400

Est. col. wt. 250
44,250 +1127 = 39.3% 9% x 9% = 90.3%"
Checking this section for reduced load and bending
Reduced load = 44,250 — (200 x 13.5 x 5)= 30,750*
Required bearing length for girder = 33 + 9.5 = 3.57 .
Bendmg in column = (200 x 135 x 5)(4.75 - 1.75) = 40,500™*
M

= 30750
1127 + Té5 1600 w3z t ————143(1600) = 0.302 + 0.177 = 0.479 <1.000

Checking center column with roof load

135 x 45 x 50 = 30,400
Wt. roof col. =__ 200
74,850* +1127 = 6647°<<90.3 10”x 10" satisfactory

oanon + Tt = 0603 +0.177 = 0780 <1.000
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The columns will have a length more than 11 times the thickness and
the allowable unit stress is computed from the following:

(-]
c|l—-{—

3 \Kd
where K = 0.702V E/c.

¢ = the allowable stress in compression parallel to the grain,
1150 1b per sq in. in this case.

L = unsupported length in inches.

d = least dimension of the column in inches.

E = modulus of elasticity in pounds per square inch.

In computing the dead loads, the weight of all timber members has
been assumed to be 40 1b per cu ft.

If large timber members, such as a 10 by 20 in. girder, are not avail-
able, two 10 by 10 in. timbers are satisfactory, with one on top of the
other and with bolts and shear connectors provided to make the two
members function as a structural unit.

On sheet 3 of the computations there is shown an alternate floor design
in which the tongue and groove subflooring is replaced by a laminated
floor (2 by 6 in. placed on edge and nailed together). The ends of these
boards are staggered so that the subfloor will be continuous over the
beams. The girders have been eliminated as the 15 ft. span for the floor
is a little more economical than the 13 ft 6 in. span. The laminated floor
will require more material than the beam and girder layout; however, it
may not cost more. The deflection in the laminated floor will be greater
than the suggested 534th of the span where plastered ceilings are in-
volved, but this should not be a material consideration in a building
of this type. :

Plates I and II are shown, following the computation sheets, to illus-
trate heavy timber framing. They are not illustrations of the floor
systems designed here.
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Alternate Design:
Use laminated subfloor to replace planks and girders.
Span of laminated floor = 15
Maple floor = 25%
6” subfloor = 183

20847 x & = 300
2
200x B =s000
5350"* x m =446
d=v22.3 =473"
Use 2”x §” on edge
Beam:
Span = 13’-6"

220.8 x 15 = 3310%
Est. wt. of beam =__ 50

—t =2

3360% x 132 =76,500*

Use 10" x 20 % = 602
Clear span =12.7

3360 x 127 = 21,500*

Design shear = 21,500 (1— i) = 16,020*

~3 16020 _ »/0"
V=73 gex105 =130

Use 1700f Douglas fir )
allowable shear = 145%/°

Column:
Use 10”x 10"

Timber Floor

Interior Panel

1950 | J.V, J.G.C.

Sheet 3 of 3
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Allowable stress, timber columns, 206
Anchorage, ordinary, allowable shear for,
131

reinforced concrete beams, 131
special, 132

Angle, size of fillets, G6

Area of bars, 113, 166

Areus, properties of, 167

Axes, centroidel, rotation o1, 170
principal, bendiag about, 179

location of, 169

Balanced design, compression steel, 125
reinforced concrete, 109, 110
T beams, 119
Bars, arca of, 113, 166
perimeter of, 113, 166
Beams, American Standard, 28
bending in symmetrical, 4
complete tension-field, 188, 191
composite, 18
example of, 39
connections, 68
crane, 36
curves of maximum moment, 138
design of reinforced concrete, 110
design of steel, 82
flange reduction formulas, A.1.S.C., 32
parabolic, 31
Rankine-Gordon, 31
straight-line, 30
moment coefficients, 114
nonhomogeneous, 18
shear in, 22
nonparallel flanges, 195
nonrectangular, 8
rectangular, bending stresses, 7
with tension steel, 109
reinforced concrete, 151
bending of tensile reinforcement, 137
bond and anchorage, 131
diagonal tension, 129
limited depth, 127

211

Beams, reinforced concrete, maximum
shears, 134
shear, 129
spacing of stirrups, 132
width-to-depth ratio, 112
rclled, design by section modulus, 29
design for least weight section, 29
shear i, 33
steel, 28
semi-tension-field, 188, 194
shear in, 11
illustrative example, 13
tapered, 195
tension-field, 188, 191
design of, 197
flange bending, 192
flange stresses, 192
rivet spacing, 194
timber, design of, 203, 205
unsymmetrical, lateral loads, 177
webs, diagonal compressive stresses,
188
wide-flange, 28
with compression reinforcement, 122
with holes, 8
Bearing plates, length of, 72
Bearing stiffeners, 66
Bending, about principal axes, 179
flange, tension-field beams, 192
in columns, 97
design for, 98
in reinforced concrete columns, 142,
144
symmetrical beams, 4
two directions, 35
Bolts, diameter of holes, 34
Bond, reinforced concrete beams, 131
stresses, 154, 166

Column reinforcement, lateral ties, size
and spacing, 140
ratio of steel area, 140
spiral, size and spacing, 140
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Columns, 4
bending in, 97
design, 98
illustrative example, 101
design of, 95
moment connections, 100, 101
reduction formulas, 95
parabolic, 96
Rankine-Gordon, 97
straight-line, 96
reinforced concrete, 162
axial loads, 138
design of tied, 141
illustrative example, 144
lateral ties, 138, 140
ratio of spiral reinforcement, 147
spirals, 138, 140, 146
with bending, 142, 163
timber, allowable stress in, 206
design of, 203, 205
Complete tension-field beam, 188, 191
Composite beam, 18
unsymmetrical, bending in, 181
Composite sections, for lateral forces, 36
Compression, diagonal, 54
Compression members, design of, 95
Compression steel, 122
Concrete, mixing and proportioning, 103
modulus of elasticity, 104, 107
test cylinders, 103
use, with steel, 104
Connections, beam and girder, 68, 72
bending in rivets, 70
moment, 100, 101
seat, 72
standard, 69
welded, 100, 101
Cover plate length; 51
welded girders, 78
Cover plates, extension of, 53
rivet pitch, 63
theoretical length, 53
Crane, beams, 36
girders, 36, 38
impact for, 38
lateral moment or force, 38
sizes, 37 :
traveling, 36
Whiting, 36
Crippling, web, 72

INDEX

Dead loads, 1
Deflection, beam, 84
tension-field beams, 202
unsymmetrical members, 186
Depth, effective, 7
Design, floor panel in steel, 82
modified flange area method, 43, 44
welded girders, 74
Design loads, factor for aircraft struc-
tures, 197
Detailing, information for, 3
Diagonal compression, 54
tension, 129
vertical component, 132, 134

Economical depth, girders with inter-
mediate stiffeners, 44
plate girders, 43
welded girders, 74
Effective depth, 7
for girders, 45
values of jd, 164

Fillet, angle, size, 66
Fillers, loose, 67
tight, 67
Flange bending,
192
Flexural formula, 10
Floor panel, reinforced concrete, design
of, 148
steel, design of, 82
Forces, lateral, 35
types of, 2
Formula, beam reduction, see Reduction
formulas
column reduction, see Reduction for-
mulas
flexural, 10

tension-field beams,

Gage lines, angles, 64
General expression for stress, 173
sign convention, 175
Girders, carrying, 91
crane, 36
illustrative example, 38
plate, 42 .
bearing stiffeners, 66
connections, 68, 91
cover plate length, 87
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Girders, plate, design, 85
by moment of inertia, 50
flange area method, 43
maximum cover plate area, 50
maximum spacing of rivets in stiff-
ener angles, 51
modified flange area method, 44
economical depth, 43
effective depth for, 45
extension of cover plates, 53
flange, effective area of web, 46, 48
illustrative example, 48
length of cover plates, 51
maximum shears, 88
minimum thickncss of web, 45
modified flange area method of de-
sign, 43, 44
net area of flange, 16
proportioning flange, 46
rivet pitch, 58, 88
in cover plates, 63
size of web, 44
stiffener angle, size, 57
stiffener spacing, 54
stiffeners, 90
theoretical length of cover plates,
53
web, principal compressive stresses,
54 .
welded construction, 42
reinforced concrete, 156
width to depth ratio, 112
timber, design of, 203, 205
welded, design of, 76
modified flange area method, 77
flange plate length, 54, 78
least weight depth, 74
stiffener spacing, 79
web slenderness ratio, 75

Handbooks, types of, 2

Impact, 2
for crane, 38

Intermediate stiffeners, spacing of, 55
proportioning, 57

Lateral forces, 35
composite section for, 36
effective section modulus, 35
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Lateral loads, unsymmetrical beams, 177
Lateral support, effect of, 30
Lateral ties, size and spacing, 140
Lintel, angle, stresses in, 176
Live loads, 1
movable, 1
moving, 1
Loading conditions, 165
Loads, dead, 1
lateral, unsymmetrical beams, 177
live, 1
maximun: shear, 56
movable, 1
moving, 1
stiffeners, tension-ficld beams, 194

Materials, combination of, 18
Members, compression, 4
tension, 4
types of, 4
Modified flange area method, 43, 44
welded girders, design of, 77
Modulus of elasticity, concrete, 104, 107
relation to stress, 18
Moment coefficients, continuous beams,
114
Moment, curves of maximum, 138
face of support, 152
Moment of inertia, absolute minimum,
170
design of plate girders, 50
expression for, 10
of areas, 168
polar, 169

Net area, 64
Net section, 34
location of neutral axis for, 34
Net width, 64
Neutral axis, axis of zero stress, §
gravity axis, 6
location for net section, 34
location for transformed sections, 19
location of, 6, 183
reinforced concrete, 108
T beams, 121

Perimeter, of bars, 113, 168
Plastic flow, 126, 161
Plate girders, see Girders, plate
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Principal axes, bending about, 179
location of, 169
Product of inertia, 169
Protective covering, for reinforcing steel,
112

Rectangular beams, bending stresses, 7
Reduction formulas, beam, A.I.S.C., 32
parabolic, 31
Rankine-Gordon, 31
straight-line, 30
column, 95
parabolic, 96
Rankine-Gordon, 97
straight-line, 96
Reinforced concrete, allowable shear for
ordinary anchorage, 131
anchorage, special, 132
balanced design, 109, 110
beam, design of, 110
width to depth ratio, 112
design of T beams, 118, 120
neutral axis, 108
shrinkage and temperature steel, 118
slab, design, 116
steel, protective covering, 112
T beam, limitation of flange width, 119
transformed sections, 106
Reinforcement, compression, in beams,
122
lateral ties, 138
spiral, 138, 140, 146
tensile, bending of, 137
Reinforcing steel, placement, 104
protective covering for, 112
Rivet pitch, 58
cover plates, 63
effect of vertical loads on, 63
example of, 88
relation to welds, 64
Rivets, bearing area, 60
bending in, at connections, 70
capacity in shear, 60
diameter of holes, 34
Rivet spacing, tension-field beams, 194

Section modulus, amount effective for
lateral forces, 35
design of rolled beams, 29
Sections, transformed, 19

INDEX

Sections, transformed, example of, 20
shear, 23
Semi-tension-field beams, 188, 194
Shear, fillet weld, 80
illustrative example for beams, 13
in beams, 11
in rolled beams, 33
live load, 56
nonhomogeneous beams, 22
reinforced concrete beams, 129
unit horizontal, 12
unit vertical, 12
Shearing stress, unit, 12
unit horizontal, 12
Shear-resistant webs, 188
Shears, maximum, 88
reinforced concrete beams, 134
Shrinkage steel, reinforced concrete, 118
Sign convention, general expression for
stress, 175
Slab, design of, 116
reinforced concrete, 150
minimum cover, 117
with tension steel, 109
Spacing, of stiffeners, 54
of stirrups, 132
Specifications, for steel, 27
references to, 2
Spiral reinforcement, ratio of, 147
Spirals, size and spacing, 140
Splices, flange and web, 73
Standard connections, 69
Steel, compression, 122
reinforcing, 104, 112
shapes of sections, 27
specifications for, 27
Stiffeners, bearing, 66
maximum pitch in, 68
spacing of, 54
welded girders, 79
tension-field beams, 194
Stirrups, diameter of, 136
inclined, 136
spacing of, 132, 155, 160
vertical U, 132
Stress, general expression for, 173
relation to modulus of elasticity, 18
Stress ratios, 39, 99
Stresses, bond, 154, 166
flange, tension-field beams, 192
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Stresses, in angle lintel, 176

in unsymmetrical sections, 173
Stress-strain relationships, 18
Symmetrical beams, bending in, 4

Tapered beams, 195
T beams, design, 118, 120
neutral axis, 121
reinforced concrete, flange width limi-

tations, 119
Temperature steel, reinforced concrete,
118

Teunsion-field beams, 188, 191
deflection, 202
design of, 197
flange bending, 192
flange stresses, 192
rivet spacing, 194
stiffener loads, 194
Timber beams, 203, 205
Timber columns, allowable stress in, 206
design of, 203, 205
Timber construction, heavy, details of,
208, 209
Timber, laminated floor, 206, 207
structural material, 3
subfloor, design of, 203, 2056
Time yield, effect, 126, 161
Transformed area, columns, 139
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Transformed sections, 19
concrete and steel, 106
examples of, 20
neutral axis of, 19
shear, 23

Types of members, 4

Unsymmetrical beams, lateral loads, 177
Unsymmetrical sections, bending in com-
posite beam, 1K1
bending in unequal leg angle, 180
deflection ot. 186
location of neutral axis, 183
sign convention, 175
stresses in, 173

Wabs, crippling of, 72
shear-resistant, 188
splices, 73
Welded connections, 100, 101
Welded girders, see Girders, welded
Welding symbols, 75
Welds, butt, 78
capacity, 80
fillet, 76
intermittent, 79
minimum size and length, 80
plug, 76
relation to rivet pitch, 64
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