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PREFACE 

Although much of the subject matter of this book is not new, the 
arrangement of material and the methods of development are uncon¬ 
ventional and require some explanation. In the arrangement, it seemed 
logical to start with known forces and to develop, step by step, the 
methods of transmitting these forces through space. Consequently a 
treatment of the material usually found in the first quarter of a textbook 
on mechanics, with the omission of such subjects as friction and dynam¬ 
ics, was required. Special emphasis has been placed on methods of sum¬ 
mation of forces (and moments) with reference to an established system 
of axes, instead of treating this under shear and bending moment 
diagrams. 

From this point on, the arrangement has been dictated by the actual 
development and analysis of the structure as a means of force transmis¬ 
sion, with particular emphasis on the physical action involved. At the 
proper points essential information on the mechanical properties of 
materials is presented in a manner which permits a direct utilization of 
the stress-strain diagram in strength calculations. 

An attempt has been made to clarify the relationship between axial 
and transverse force transmission by showing that all force transmission 
over finite distances must be accomplished by axial forces or stresses. 
This treatment leads to new methods in the development of the classical 
equations for bending and shear stresses. 

Problems which have been found important in the author’s experience 
have been given special attention, particularly the subjects of unsym- 
metrical bending, shear flow, the tapered beam, and combined stresses. 
The principles essential to an understanding of instability and statically 
indeterminate structures have been included. Some of the more recent 
developments in column theory and interaction curves are presented 
because of their simplicity and basic importance. 

To make the text as useful as possible, calculus and advanced mathe¬ 
matical methods have been entirely avoided. As a result the develop¬ 
ment of new methods of attack has been necessary in some cases, but in 
general these methods correspond quite closely to those actually used in 
engineering (most structures require summation methods rather than 
integration). The use of the terminology of calculus as a mathematical 
shorthand is explained in appropriate places. 
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It is hoped that the book will be found useful in developing a clear 
understanding of the basic principles of force transmission and in 
supplying new material needed in the analysis and design of aircraft 
structure0. Suggestions for further improvement or correction of the 
text will be welcomed, as it has not been possible, under existing condi¬ 
tions, to devote a normal amount of time to the preparation and checking 
of the manuscript. 

The author gratefully acknowledges the permission granted by Mr. 
Hall L. Hibbard, Vice President and Chief Engineer, to reproduce many 
Lockheed photographs and porfions of the tables in Appendix 1 (from 
Lockheed Stress Memos). Mr. Randall Porter, of Lockheed Aircraft 
Corporation, was of much assistance in the preparation of the figures 
and problems. The authors of several other structural textbooks have 
kindly permitted the reproduction of certain useful material, as noted 
in the text. 

F. R. Shanley 
Los Angeles, California 

January, 1944 

NOTE TO STUDENTS 

Most of the figures in this hook have been reduced in size to con¬ 

serve space. In engineering practice it is customary to use larger 

scales, particularly for vector diagrams. This should he kept in 

mind in preparing sketches and diagrams for the problems. 

F. R. S. 
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SYMBOLS 

A = area 
c — fixity coefficient for columns 

D = diameter 

E - modulus of elastic ity for axial loading 

e ~ strain 

F = allowable stress 

/ = stress 
(r = modulus of elasticity (or rigidity) for transverse loading 

H ~ shear flow increment 
h = depth of a beam 

Ix = moment of inertia (second moment of area) about axis X-X 

Ixy = product of inertia with respect to axes X-X and Y-Y 
Ip — polar moment of inertia 

L = length 

M — moment of a force or forces 

n — effectiveness factor, for transformed sections 

P == force 
p — pressure 

Q = static moment (first moment of area) 
q — shear flow 

R — radius of curvature; reaction or resultant 

r = radius of a tube or shell 

S — shear force 

t = thickness 

U = unsymmetrical factor for beams 

w — distributed (running) loading 

x, y, z = distances along reference axes X-X, Y-Y, Z-Z 
y = distance from neutral axis of cross section 

Z = section modulus, for bending 

a (alpha) = angular measurement 

/3 (beta) = angular measurement 

A (delta) » prefix indicating change or increment 

d (theta) = slope due to bending; twist due to torsion 

M (mu) == Poisson’s ratio 
p (rho) = radius of gyration 

2) (sigma) = prefix indicating summation 



CHAPTER 1 

STRUCTURAL ANALYSIS METHODS 

1*1. External Loads. The starting point for any problem in struc¬ 
tural analysis is the determination of the external loads,* that is, the 
forces which the structure must transmit. This includes not only the 
magnitude of these loads but also tneir location, or their distribution 
over the structure. The methods used to determine the loading condi¬ 
tions for a given structure will depend on its nature and function. In an 
airplane, for instance, many of'the loading conditions are obtained by 
considering certain flight speeds and attitudes and then by calculating 
the resulting distribution of air pressures over the lifting and balancing 
surfaces. In bridge structures the pull of gravity is the major cause of 
the forces which must be withstood by the structure; dynamic forces 
must also be considered. Dams are built to resist water pressures. In 
electrical machinery magnetic forces may predominate; in high speed 
machinery centrifugal forces must be provided for; in control systems 
the maximum force likely to be exerted by the hand or foot must be 
estimated. 

Fortunately for the structural engineer the methods of load deter¬ 
mination are usually well established in each branch of engineering. 
For an airplane the loading conditions are specified in considerable 
detail by the military or civil authorities lf 2f 3 f, and new problems are 
attacked with the aid of the aerodynamic expert and the wind tunnel. 
In the design of buildings certain requirements are set up by safety 
authorities (Ref. 4, Chapt. 1). In electrical work the loads may usually 
be calculated with accuracy by means of highly developed theories and 
test data. 

Because of the wide variation in the nature of the external forces that 
must be considered, a detailed discussion of such forces is beyond the 
scope of this text. It will be assumed that the magnitude and location 
of the external forces to be resisted by the structure are known, or that 

* The term load is usually used with reference to a force imposed on something, 
while force is preferred as a general term which can refer to either external or internal 
forces. 

t Superior numbers refer to bibliography on page 368. 
1 



2 STRUCTURAL ANALYSIS METHODS 

they can be determined. The problem then becomes one of structural 
analysis and design. 

1-2. Internal Forces. Structural analysis (or stress analysis, as it is 
often called) deals largely with the determination of the forces or stresses 
within a structure. If the general design of the structure is dictated by 
function rather than strength alone, the stress analyst has little to say 
about the arrangement of the material. His work then consists largely 
in analyzing the structure to determine the internal forces and stresses 
under the action of the external loads. Ii the computed stresses are 
dangerously high, measures must be taken to reduce the chances of 
failure, such as, more material, stronger material, higher heat treatment. 
Although very important from the standpoint of safety, this type of 
structural analysis is secondary to the functional design process. 

Many examples of this type of analysis are found in mechanical 
engineering. For instance, the shape of a crankshaft of an automobile 
engine is determined primarily by the function which it performs. (The 
structural engineer would never choose such a complicated arrangement 
of material for the transmission of torque!) Nevertheless, it is possible 
to apply the principles of structural analysis to this problem to deter¬ 
mine the actual dimensions needed to prevent failure under the applied 
forces. 

On the other hand, the design of a bridge gives the engineer a chance 
to arrange the structural material to best advantage, with a minimum 
number of limitations. This type of problem may be thought of as a 
problem in force transmission, in which it is necessary to provide a 
structure which will transmit certain forces over a definite distance and 
without too much deflection. 

Actually, most structural problems represent a combination of both 
methods of attack. The shape of an airplane wing, for instance, is 
determined largely by aerodynamic considerations. Nevertheless, the 
designer is relatively free to arrange the structure within the prescribed 
contours of the wing in such a manner as to carry the required loads 
with a minimum of structural material. In fact, in the airplane, weight 
is so important that aerodynamic efficiency, comfort, and ease of con¬ 
struction must often be compromised to some extent in favor of the 
structure, in order to obtain the best all-round design. 

In summarizing the foregoing comments on internal loads, it is appar¬ 
ent that two different methods of attack are possible: 

a. Stress analysis of a predetermined structure under the action of 
known forces. 

b. The design of a structure for the specific purpose of transmitting 
known forces over definite distances. 
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Although the same basic principles apply to both these methods of 
attack, the method of approach differs considerably. Most treatments 
of this subject emphasize the stress analysis approach. In this text 
emphasis will be placed on the force transmission point of view, as this 
is of more direct interest and benefit to the designer. It is also of pri¬ 
mary importance in airplane design, where it is essential to visualize, 
from the beginning, the most efficient method of force transmission. 

1*3. Strength of Materials. Regardless of the method of attack 
employed, the designer usually wants to know one or more of the fol¬ 
lowing things about the behavior of the structure. 

a. Deflection of the structure at different stages of loading. 
b. The intensity of loading which will produce the first appreciable 

permanent set. 
c. The maximum load-carrying capacity of the structure, i.c., the 

ultimate or breaking load. 
d. The intensity of loading which will produce the first appreciable 

buckling deformation (of particular interest in airplane work). 

Depending on the type of structure involved, some of the above items 
may predominate or may be completely disregarded. Usually we are 
primarily concerned with the ultimate strength (item c). But if stiffness 
is the primary concern, the strength may not be the deciding factor. In 
heavy machinery buckling (item d) can usually be ignored entirely, but 
in airplane work it plays an important role in the design of the structure 
because of the slender members and thin sheets employed. 

In special cases it may also be desirable or necessary to know one or 
more of the following: 

e. Effect of repeated stresses (vibration, etc.). 
/. Resistance to impact loading. 
g. Effect of abnormally high or low temperatures. 
h. Effect of sustained (long-time) loading (creep). 

The behavior of materials under various loading conditions is com¬ 
monly studied under the heading “Strength of Materials.” This in¬ 
cludes the mechanical properties of the materials themselves (strength, 
stiffness, etc.) and usually goes beyond this into actual structural 
analysis methods. In approaching the subjeqt of structures from the 
design point of view, the study of material properties will be de¬ 
ferred until the basic principles of force transmission have been cov¬ 
ered. At this point it will only be noted that the majority of mechanical 
properties needed by the structural engineer concern the relationship 
between stress and strain} that is, the manner in which a material de¬ 
forms under load. The stress-strain diagram gives most of the needed 
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Fig. l'l. Lockheed Constellation. 

information and is therefore one of the most important tools of the 
structural engineer. 

1*4. Factors of Safety. There is no general agreement on the exact 
definition and application of factors of safety. Sometimes the expected 
loads are multiplied by a suitable factor to obtain design loads which 
provide for discrepancies between the actual strength of the structure 
and the predicted strength. This practice is usually employed in air¬ 
plane work. In other fields it is common practice to divide the actual 
strength properties by some factor of safety, to give reduced allowable 
stressesj or working stresses. Excess strength is sometimes indicated by 
a margin of safety. The structural engineer should be thoroughly familiar 
with the practice peculiar to the field in which he is working, as it is easy 
to become confused in the interpretation of factors of safety, working 
stresses, and margins of safety. 

To avoid misunderstandings, the treatment of structural theory and 
design in this text will be based on the actual behavior of the structure, 
as it is always possible to correlate this method of analysis with any 
system of factors of safety or working stresses. In other words,-the use 
of fictitious allowable stresses which have been arbitrarily reduced from 
the true ultimate or yield stresses will be avoided. 



CHAPTER 2 

FORCES AND MOMENTS * 

2*1. Designation of Forces. Although forces cannot actually be 
visualized (only their effects are visible), it is convenient to create a 
mental picture of forces by means of vectors (lines supplied with arrow¬ 
heads). This process becomes somewhat difficult when dealing with 
forces in three-dimensional space, as the textbook writer is confined to 
two-dimensional paper. For this reason, it is better to discuss funda¬ 
mental principles first in terms of the two-dimensional (plane) system 
and then to extend this discussion to the three-dimensional (space) 
system. In either system, reference axes are required, as well as units 
of measurement for the location, direction, and magnitude of the forces. 
These units may take any convenient form. In general, in this text the 
engineering units of feet (or inches) and pounds will be used. 

Figure 2 • 1 illustrates a force in the plane of the paper. The location 
of the point of application A is determined by the coordinates of the 
point, which have been designated za and za- (Note that z and x are 
used here as “vertical” and “horizontal” axes to agree with airplane 
practice. Any other reference system will, of course, serve equally 
well.) f 

It is necessary to establish positive and negative directions along the 
reference axes and to adhere to these conventions throughout the solution of 
any problem. Thus, in Fig. 21, distances measured away from the 
origin in the direction of the axes Z or X will be called positive. Meas¬ 
urements in the opposite direction will therefore be negative. 

The direction of the force is shown by means of the vector itself. Since 

♦ This elementary chapter may be read as a review by those already familiar with 
the subject matter. The new student should be sure he understands this chapter 
thoroughly before proceeding with the subsequent ones. 

t There is no well-established convention governing the use of subscripts in struc¬ 
tural work. Letters and numbers are used indiscriminately for this purpose. A sub¬ 
script may refer to a particular point, a reference axis, a loading condition, or almost 
anything else. The most important thing is to be consistent throughout a particular 
problem. In aircraft work, for instance, it has been found impracticable to devise one 
set of subscripts which can be used for all structural problems. But in analysing 
a particular structure (such as a wing beam) the subscripts chosen must be adhered 
to and properly used until the problem is solved. 

5 



0 FORCES and moments 

a force can act in either direction along a straight line, it is necessary to 
indicate which direction by means of an arrowhead. In general, the 
arrowhead should be directed away from the point of application, but 

Fig. 2 1. Illustration of a force by means of a vector. 

there is no established convention except in graphical addition, when it 
must be observed (see Sec. 2-5). The opposite procedure is usually 
followed in illustrating forces acting on a beam or column. 

In Fig. 21 the magnitude of the force is indicated as 2000 lb by estab¬ 
lishing an arbitrary scale of 1000 lb to the inch and making the vector 
2 in. long. 

2-2. Components. Although the vector picture may be used to con¬ 
vey information on both magnitude and direction of the force, it is often 
inconvenient to draw such pictures in extended structural calculations. 
The magnitude of the force can, of course, be specified numerically, i.e , 
P = 2000 lb. The direction can be given by specifying the angle made 
with reference to some known axis or plane (such as angle a in Fig. 
2-1), but it is also possible to take care of this by dividing or “resolving” 
the force into components. This is illustrated in Fig. 2*2, in which the 
force P has been divided into the components Pz and Px. These com¬ 
ponents can be thought of as representing the “effectiveness” of the force 
P along the axes Z and X, respectively. In Fig. 2*2, the effect of the 
force P « 2000 lb, acting as shown in Fig. 2 • 1, is obtained by the simul¬ 
taneous application of forces, Pt = 1000 lb and Px * 1333 lb. 

The determination of the components of a force or, conversely, their 
resolution into the resultant force, may be done graphically or analyti¬ 
cally. The components are actually the projections of the force vector 
on the new lines of action (represented in the illustration by lines drawn 
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parallel to the Z and X axes, respectively). When the components make 
a right angle mth each other, they may be determined analytically by the 
simple rule that the effectiveness of a force along a given line of action 

Z 

Fig. 2*2. Designation of a force by means of components. 

is proportional to the cosine of the angle between the original line and 
the new line of action. Thus in Fig. 2 • 2 the components are given by 
the equations 

Pz = P cos p 

Px = P cos a 
[2*1] 

It is sometimes more convenient to work with only one angle. This 
can be done by making use of the relationship between sines and cosines, 
giving the typical equations 

Pz = P sin a 

Px — P cos a 

or, alternatively, 
Pz — P cos P 

Px = P sin p 

[2 1 a] 

[2*16] 

These elementary relationships are constantly used in stress analysis 
and design work. If they are thoroughly understood there is little need 
for more advanced applications of trigonometry, except in special cases.* 

* The student who has not had a formal course^ in trigonometry need not be dis¬ 
couraged by the use of trigonometric symbols such*as sine and cosine. Actually 
these terms are derived from exactly the same relationships that we are now using for 
components, hence we are using them primarily as “shorthand” symbols because 
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2*3. Sign Conventions. In designating forces numerically (instead 
of vectorially) it becomes necessary to introduce definite conventions 
as to the sense of the forces. This is usually done by applying to the 
force or its components the same type of conventions that are used for 
distances. That is, certain axes arc designated as positive and all force 
measurements along these axes in a direction away from the origin are 
called positive (+). Measurements in the opposite direction are, of 
course, negative (—). 

If, in Fig. 2*2, the axes X and Z are assumed to indicate positive 
forces in the directions shown by the arrowheads, the components Px 
and Pz are likewise positive (being directed away from the origin). 

Z 

Fig. 2 3. Force with one negative Fig. 2 • 4. Positive components located 

component. by negative distances. 

Figure 2*3 shows one component (Px) positive, and the other (Pz) 
negative. In Fig. 2*4 the point of application is located by negative 
distances, but the components of the force are both positive. 

It is important to note that, although structural calculations may be 
carried out by working separately with each component, the final result 
will not be obtained until the effects are combined. Failure to recognize 
this principle may lead to serious errors or wrong conclusions. 

2*4. Space Systems. In three-dimensional space the preceding prin¬ 
ciples are extended by the use of an additional axis and an additional 
component along this axis. Tliis is illustrated in Fig. 2*5, which is, of 
course, diagrammatic in character, dimensions along the Y axis being 
out of scale. The point A is now located by the three coordinates x, y, 
and z. The components of the force P are Px, Py> and Pz. To help 
clarify the three-dimensional picture it is convenient to visualize com- 

their values have been worked out and tabulated for all angles. Tables pf trigono¬ 
metric functions are found in nearly ail engineering and mathematical handbooks 
and can also be purchased separately. (For instance, Wiley Tngormnetric Tables 
and Ralph G. Hudson, The Engineers* Manual.) 
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ponents as defining the sides of a box, as shown in Fig. 2*5. The com¬ 
ponents of a force are then seen to be edges of the box, of which the force 
itself is a diagonal. As in plane systems, the cosine is used to determine 
the component analytically, the angles being measured between the 

Fig. 2 * 5. Designation of a force in space (three-dimensional system). 

force itself and the respective components. (In space systems these 
angles are seldom actually measured, but the cosines are determined 
directly from length ratios. When so used, the cosines are often called 
direction cosines. Their actual use will be taken up later.) 

2-6. Vector Addition of Forces. Assume that two forces having dif¬ 
ferent magnitudes and directions are acting simultaneously at the same 
point (Fig. 2*6). It is desired to know the resultant force. The addi¬ 
tion may be done graphically by representing each force by an accurate 

Z Z 

Fig. 2 -6. Two forces acting at same Fig. 2-7. Vector addition of two 
point. forces. 

scale vector and “adding” these, as shown in Fig. 2*7. In adding vectors 
graphically the “tail” of one vector is placed at the arrowhead of another. 
The final result is obtained by drawing the vector from the original point 
pi application to the head of the last added vector. In Fig. 2*7, the re¬ 
sultant force, PTf is indicated by the dashed line. In this process the 
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convention of directing the arrowhead away from the point of applica¬ 
tion must be followed. The wrong way to add vectors is shown in Fig. 
2*8. 

Figure 2-9 shows a common process used to add vectors by construct¬ 
ing a parallelogram, the sides of which are parallel to the vectors in 

Fig. 2*8. Wrong method of adding Fig. 2-9. Parallelogram method of 
vectors. vector addition. 

question. The diagonal represents the resultant force. It can readily 
be seen that this agrees with the previous method, as either of the light 
lines used to construct the parallelogram can be thought of as one of the 
vectors being added to the other one. The main reason for using this 
construction is that the use of two lines eliminates the need for measur¬ 
ing off one of the vectors. The method shown in Fig. 2*7 is preferred as 
a means of illustrating the simplicity of vector addition. 

The vector addition of several different forces acting at the same point 
is accomplished in the same manner as that previously described for 
two forces. The sequence of addition is immaterial, provided that the 
proper directions of the forces are observed and maintained. Figure 
2*10 shows the addition of four forces by vector methods. The actual 

Pz 

(b) 
Fig. 2*10. Vector addition of four forces. 

location of the forces in space is shown by (a) which is called the space 
diagram. The figure formed by the vector addition (6) is called the 
force polygon. The resultant force is given by the closing line9 directed 
away from the starting point. This is the dashed line in Fig. 2*10. 

If the vector diagram closes, the resultant force must obviously be 
zero. This is an important means of checking the equilibrium of a 
structure. 
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Fig. Concurrent forces. 

V 

Forces whose lines of action intersect at the same point are called 
concurrent forces and may be treated in the same manner as forces 
which act at the same point, that is, they may be added vectorially or 
analytically. The resultant force will 
then act along a line through the common 
point of intersection. Three concurrent 
forces are illustrated in Fig. 2-11. The 
resultant of these forces will act through 
point 0. 

Forces not acting at the same point (or 
whose lines of action do not intersect at a 
common point) may be added vectorially to obtain the magnitude and 
direction of the resultant force. However, this process alone will not 
determine the effective point of application of the resultant force, which 
must be done by other methods to be described. 

The graphical subtraction of vectors may best be considered as a 
change of sign of the vector to be subtracted, that is, the arrowhead is 
placed on the other end, and the process of addition is then carried out 

in the usual manner. This is, of course, analogous 
to algebraic addition in which the sign of the 
quantity determines whether it increases or de¬ 
creases the total. 

2*6. Location of Resultant Force (Graphical 
Methods). As previously noted, if the forces, or 
their lines of action, all pass through a single point, 
the resultant force will also pass through that point. 
In such a case vector addition of the forces as de¬ 
scribed in Sec. 2*5 will be sufficient to determine the 

! resultant completely. But if all lines of action of 
\ P l\3 the different forces do not coincide (non-concurrent 
V j 2j \ forces), it becomes necessary to take additional steps 
\ ; f in the graphical solution. 

In a plane system it is possible to find the loca¬ 
tion of the resultant force graphically by successive 
steps, taking only two forces at a time. Figure 2 • 12 
shows how this is done. The resultant of any two 
forces (such as P\ and P2) acts through the inter¬ 
section of their lines of action (point A); hence these 

two forces may be replaced by a single resultant force passing through 
this intersection. In Fig. 2*12 force Pi is moved to point A (along its 
line of action, of course) and force P2 is added to it vectorially, to give 
the resultant force Plt2. This process may be repeated with another 

p'.’[) 

r 
\ 

y \ 

B 
Fig. 2 • 12. Vector 
method of locating 

resultant force. 
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force (such as P3) until all the forces have been combined in this 
manner. The resultant Pi,2,3 not only has the proper magnitude but 
also acts along the proper line. Although perfectly sound and straight¬ 
forward. this method may become cumbersome if the points of inter¬ 
section are widely separated. The method cannot be used, of course, 
if any two forces are parallel, since their intersection is at infinity. 

The resultant of two parallel forces may be located graphically by 
transforming them into non-parallel forces This may be done by 
adding (vectorially) equal and opposite forces acting along the same line. 
The net effect of such a pair is zero, so far as the resultant is concerned. 
Figure 2*13 shows how this is done. Arbitrary forces P0 are assumed 

Fig. 2 13 Resultant of parallel forces. 

to be acting at A and B, in opposite directions. The resultant forces 
at points A and B have lines of action which intersect at C, which de¬ 
termines a point on the line of action of the resultant force. The direc¬ 
tion and magnitude of this resultant may be determined by direct 
vector addition of Pi and P2. It is usually convenient to handle this 
separately by drawing a force polygon as described in Sec. 2-5. The 
polygon for this case is shown in Fig. 2 • 136. 

The process of adding a pair of forces is analogous to adding equal 
quantities to each side of an algebraic equation. In dealing with 
vectors, however, it is not sufficient that these added forces be equal 
and opposite in sense, but they must also act along the same line in 
space; otherwise a couple would be added. (See Sec. 2*13.) 

The process may also be carried out by working with the lines of 
action of the forces, rather than with their actual points of application. 
In Fig. 2 • 14a the line X-X has been arbitrarily drawn across the lines of 
action of Pi and P2 and a pair of forces Pq has been added at tfie inter¬ 
secting points M and N. The lines of action of the resulting forces P\ 
and P2 are found by drawing separate vector diagrams as indicated 
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in (5). (The lines forming these diagrams must, of course, be parallel 
with the forces in the space diagram.) Note that the pair of forces P0 
must be directed along the same line, X-X. 

(a) (b) (c) (d) 

Fig. 2 • 14. Evolution of string polygon. 

Sketch (c) shows a different sequence for addition of forces P2 and P0. 
Finally, in sketch (d) these two diagrams are superimposed to give a 
very simple vector diagram. This diagram combines the force polygon 
and the addition of the pair of forces P0. 

In practice, the intermediate steps are omitted and the construction 
is carried out as shown in Fig. 2*15, which shows that the method may 
also be used for non-parallel forces. The force polygon is first con¬ 
structed as in (b). Then an arbitrary point 0 is chosen, as shown. 
This represents the addition of P0 to force Pi and the “subtraction” of 
this same force frpm force P2. Point 0 is then connected with the ends 
of the force polygon. The line X-X 
is now drawn across the lines of 4 
action of Pi and P2, in the space 
diagram (a) parallel with the force 
vector P0 in the force polygon. 
(Line X-X represents the common 
line of action for the added forces Po.) 
Lines are drawn through the inter¬ 
secting points parallel with the lines 
through 0, thus establishing point C. (q) 

The resultant force Pr> already found yiq. 2 • 15. Resultant of non-parallel 
in the force polygon, acts through forces, by string polygon. 

this point. 
The lines MC and JVC, in Fig. 2*15, are called strings and the figure 

MNC is called a string polygon. The word string is used because the 
lines in question actually represent the positions which would be assumed 
by strings under the action of the force system in question. (In Fig. 2 • 15 
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forces Pi and P2 would have to be reversed in direction to put all the 
strings in tension.) Point 0 in Fig. 2*156 is called the pole and the 
lines originating at this point are called the rays. 

2*7. Bow’s Notation. Before proceeding to the vector treatment of 
multiple forces it is convenient to adopt a method of force designation 
known as Bow’s notation. This system is commonly used in the graphi¬ 
cal analysis of trusses. It eliminates the need for arrowheads and 
establishes a relationship between the force designation in the force 
polygon and the force location in the space diagram. 

Bow’s notation is based on two rules: 

а. Force vectors are represented in the force polygon by two capital 
letters, one at each end of the vector. The sense of the force is deter¬ 
mined by the alphabetical order of the letters. 

б. The sequence of application of the forces in space is denoted by 
lower-case letters, also in alphabetical order. 

Thus in Fig. 2* 16a, the lower-case letters are placed between forces 
and are arranged in a clockwise direction. In the vector diagram (6), 

B 

M (b) 
Fig. 2*16. Bow’s notation. 

the direction of the force is indicated by the sequence of the correspond¬ 
ing capital letters. In establishing this sequence it is necessary to 
adhere to the convention that the progression around the space dia¬ 
gram be made in alphabetical order. The force acting between a and 6, 
for instance, is properly designated by the vector AB, as the force 
actually acts in the direction from A to B. To avoid confusion the 
“space” letters may be placed on opposite sides of a force vector, as 
indicated for force AB, in Fig. 2*16. 

2*8. Resultant of Multiple Forces (String Polygon). The method of 
the string polygon may be applied to more than two forces by adding 
more pairs of forces and thereby extending the vector diagram accord¬ 
ingly. 

Thus in Fig. 2*17 the force polygon is drawn for forces AB, BC, and 
CD, determining the resultant AD. Point 0 is chosen and the rays are 
drawn as shown. At any convenient point on the line of action o&, line 
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bo is drawn parallel with force OB, intersecting the line of action be. 
Line co is now drawn from this point parallel with force vector CO, to 
intersect line of action cd. Lines ao and do are now drawn parallel with 
force vectors AO and DO, locating a point on the line of action of the 
resultant force, which is shown acting at this point. 

The physical significance of this operation may be explained by con¬ 
sidering each triangle formed by the rays to represent successive opera¬ 
tions of adding and subtracting pairs of equal and opposite vectors, as 

* 
l 
l 
I 

Resultant n 
I Force T 

a | d 

So 

f"' \ 

i ‘ c' 

C ^ 
le) 

ft / 

Fig. 2 17. String polygon for multiple forces. 

previously described for two forces. The entire system of forces is thus 
reduced to two equivalent forces (AO and DO) the directions of which 
establish a point on the line of action of the resultant force. The inter¬ 
mediate rays represent the added and subtracted forces, whereas the 
strings in the space diagram represent the common lines of action for 
these forces. 

It should again be noted that the space diagrams used in these illus¬ 
trations are not in equilibrium, as the object is to obtain resultant forces, 
not reactions. If the reaction is desired, the direction of the resultant 
would be reversed, i.e., in the force polygon the vector would be read 
DA instead of AD, and the resultant would be shown in the opposite 
direction in the space diagram. (See Chapt. 4 for further discussion 
of reactions.) 

2* 9.1 Analytical Addition of Forces. Forces which act along the same 
axis, or parallel to each other, may be added algebraically. For the more 
general case illustrated in Fig. 2-18 (forces at an angle to each other), 
it is necessary to resolve the forces into components which do act parallel 
to each other. These may then be added directly, thereby determining 
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the components of the resultant force. (Note that any system of axes 
will serve for this process, provided that all added components are taken 
parallel to the same axis.) 

Figure 2*18 illustrates the analytical addition of forces P\ and P%. 
This is best done by tabulating the computations as shown. 

Force X Component Z Component 

Pi +210 +400 
Pi +450 — 190 

Sum +660 +210 

The resultant Pr is given by components Px = +660 and Pz = +210, 
as illustrated in Fig. 2 -19. The use of rectangular* coordinates permits 

Fig. 2-18. Analytical addition of two Fig. 2*19. Resultant of forces shown 

forces. in Fig. 2-18. 

the determination of the magnitude of the resultant force analytically 
by means of the well-known formula 

Pr = VFJTP? [2-2] 
In Fig. 2 • 19 

PB = V(660)2 + (210)2 - 694 

The direction of the resultant force may be determined from the mag¬ 
nitudes of its components. In the illustration, the angle of the resultant 
force (with respect to the X axis) is given by any one of the following 
formulas. 

‘““-si’Isr0-318 
or 

P, 660 

608 “ = pf = i9i = 0 951 

* Cartesian coordinates, in which the major reference axes are mutually perpen¬ 
dicular.1 
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or 

From which, 

sin a = 
Pz 

Pr 

210 

694 
0.303 

a = 17° 40' 

Note that Figs. 2-18 and 2-19 are drawn only to illustrate the 
analytical process; the mathematical work will usually be carried out 
without the aid of the figures. 

In three-dimensional space the same process is followed, with the 
addition of a third component (Y component in this case). Equation 
2-2 then becomes 

Pr = VpJTPJTP? [2-2a] 

Assume that the forces in the previous example have components 
also along a third (Y) axis. The process of finding the resultant would 
then be shown by the tabulation, in which Y components have been 
added. 

Force 

Pi 
P2 

Sum 

X Component 

-f210 
4-450 

Z Component 

4-400 

-190 

Y Component 

4-650 
-50 

4-660 4-210 4-600 

Pr = Y~P} + Py + P,2 

= V(G60)2 + (210)2 + (600)2 

= 916 

The vector picture is obtained by considering these three components 
to be acting at the same point in space, parallel to the three reference 
axes, as described in Sec. 2 • 4. Analytically, the direction of the result¬ 
ant force would be completely described by the three direction cosines: 

P* Py 
Pr’ Pr’ 

and 
Pm 

Pr 

In three-dimensional work the analytical method becomes most use¬ 
ful, as the graphical method must be confined to the two-dimensional 
plane. (Special methods of applying two-dimensional graphical analysis 
to space frameworks have been developed, however.) As in vector addi¬ 
tion, forces not acting at the same point may be added by the above 
process, but the effective point of application cannot be determined by 

thi$ method alone. 
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2» 10. Moments. Although structural theory and literature are replete 
with references to moments (bending moments, torsional moments, 
moment diagrams, etc.), it should be clearly understood that the term 
moment has no structural significance unless associated with a force 
or forces.* It is often convenient to designate, by some symbol or 
quantity, the effect of a force with relation to some point in space. If 
the point in question does not lie on the line of action of the force, there 
will be produced a tendency to rotate about this point. This tendency is 
directly proportional to the magnitude of the force (denoted by P) and 
the distance over which the full rotational effect is exerted. Figure 2*20 

p illustrates a force JP, acting at a distance d 
t k from point A. The tendency to rotate about 

^ point A is proportional to P and also to d} 
and hence may be measured by the quantity 

^ Pd. Such a unit of measurement (force 
90° B times distance) is often used to denote the 
/ turning effect, or moment, of a force. 

^ Strictly speaking, turning moment, bending 

r? ooa nf 4. t t moment, torsional moment, etc., should 
Fig. 2 • 20. Moment of a force. * . 1 ’ 

always be referred to since the word moment 
really means magnitude or effectiveness. In structural usage, however, 
the identifying adjective is often dropped and only the word “moment” 
is used. 

The distance used in measuring turning moments must be taken nor¬ 
mal to the line of action of the force (see Fig. 2*20). This is true regard¬ 
less of the location or point of application of the force. In Fig. 2*20 it 
would be wrong to use the distance between A and B, even though the 
force acts at B. Whenever necessary the line of action must be extended 
to enable the correct distance to be measured. 

An alternative method of measuring a turning moment is to resolve 
the force into two components, one along the line between the two 
points in question and the other normal to it (Fig. 2*21). The com¬ 
ponent Ph measured along the line AB has no turning effect about 
point A and can consequently be ignored in computing the moment. 
The moment of force P about point A would therefore be given by the 
quantity Pnd. 

It should be noted that a moment is made up of two different quanti¬ 
ties: force and distance. From this it follows that the same moment may 
represent different combinations of force and distance. For instance, 
the two forces shown in Fig. 2 • 22, each have the same moment about A, 

* Webster's CoUegiate Dictionary defines moment as: “tendency, or measure of 
tendency, to produce motion, especially about a point or axis.” 
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as force P2 is half as large as Pi but acts over twice the distance (i.e., 
d2 - aii). 

Another consequence of this dual nature of moments is that the units 
in which they are measured must contain the units of measurement for 

A 

Fig. 2-21. Moment determined by 
components. 

H 

Fig. 2 • 22. Equivalent moments. 

both force and distance. Typical units of measurement for moments 
are, therefore, the inch-pound and the foot-pound. 

2*11. Moment Vectors. It is often convenient or necessary to desig¬ 
nate a moment vectorially. This is done by showing the axis about 
which the moment acts and denoting the magnitude of the moment by 
the length of the vector. The sense of the moment, that is, the direction 
in which it tends to turn, is indicated by the arrowhead, using either the 
right-hand or the left-hand rule. (Thumb toward arrowhead, fingers in¬ 
dicating turning direction.) If the left-hand rule were employed, the 
motion of the hands of a clock, for instance, would be indicated by a 
vector normal to the clock face and directed toward the person viewing 
the clock. If the right-hand rule were used, the vector would be pointed 
in the opposite direction. There is no standard convention as to which 
rule should be used. For convenience, a double arrowhead is often used 
to distinguish a moment vector from a force vector. In Fig. 2 *23, the 
vector M represents a turning effect about point A, indicating a tend¬ 
ency to rotate about the vector itself. The magnitude of the moment 
would be indicated by the length of the vector, using some previously 
established scale. In Fig. 2 *23, a curved arrow has been added to help 
indicate the nature of the moment (using left-hand rule). 

if— 
Fig. 2-23. Moment vector. 

M-10,000 brtb 

Fig. 2 * 24. Moment in a plane. 

If the axis of rotation is normal to the plane of the paper, it becomes 
impossible to indicate the moment vectorially. (The axis would appear 
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as a dot.) The curved arrow may be used to show the existence of such 
a moment, however, as in Fig. 2*24. To indicate the magnitude it 
would be necessary to quote the actual value, such as, M = 10,000 in.-lb. 

Turning moments are often visualized as a tendency to rotate in a 
certain plane. The plane of rotation is established by the axis of rotation, 
to which it is perpendicular. Hence either system may be used in visual¬ 
izing the effects of turning moments. However, the plane system does 
not lend itself to graphical or analytical solution, whereas the axis sys¬ 
tem does. 

2*12. Addition of Moment Vectors. The greatest advantage of the 
axis type of moment vector is that it may be treated in the same manner 
as the force vector. Thus, the effect of two separate tendencies to rotate 
may be combined vectorially into a single resultant effect. All the rules 
previously given for the addition, subtraction, and analytical treatment 
of forces and force vectors may be applied to moment vectors, with the 
exception that moment vectors may be added vectorially regardless of their 
point of application. (This is because the point of application has no 
effect on the resultant moment, as will be explained later.) 

For example, assume that in Fig. 2*25 there exist at a point A two 
turning moments about different axes. If the lengths of the vectors 

Fig. 2-25. Addition of moment vectors. 

Mi and M2 are made proportional 
to these turning moments, the net 
effect will be indicated by the 
resultant vector Mr, which was 
obtained by adding vector Mi and 
M2 vectorially. The new axis of 
rotation will also be shown by the 
direction of Mr. 

2*13. Couples. Turning moments are often indicated by means of 
couples. The significance of the couple is that the use of two parallel 
forces, oppositely directed, completely cancels out the direct effects of 
the forces, leaving only the turning effect. Thus in Fig. 2 • 26 the equal 

Fig. 2 • 26. Couple. Fig. 2 • 27. Half couple. * 

forces acting in opposite directions and separated by a distance d repre¬ 
sent a pure turning moment, Pd. The use of only one force, as shown in 
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Fig. 2-27, represents a turning moment (about point 4) of exactly the 
same magnitude, but now the direct effect of force P must also be con¬ 
sidered. 

This can be illustrated by a simple example such as shown in Fig. 2-28, 
which represents a typical control column of an airplane. In (a) the 
turning moment exerted by the pilot is equal to PiD (where D is the 
wheel diameter). Note that there is no direct force exerted on the verti¬ 
cal column. In (6) the moment about the wheel centerline is equal to 
P2R (where R is the radius), and therefore ha? the same magnitude as 

Fig. 2-28. Couple v&. direct force. 

in (a), (since P2 = 2Pi and D = 27?). In (&), however, the vertical 
column must resist or 4‘transmit” the entire force P2 directly, as indi¬ 
cated by the reaction Pr. (Moment reaction not shown.) 

2*14. Effectiveness of Force Systems. Since the structural engineer 
is usually more interested in the effect of the forces than in the forces 
themselves, it is useful to know under what conditions various force 
systems have identical effects. Disregarding local conditions at the 
point of application, the following general statements can be made. 

a. Forces of the same magnitude and direction will have the same 
general effect if they are applied anywhere along the same line of action. 
This is illustrated in Fig. 2*29. The general effect on the object will be 
the same in both (a) and (b). In stress analysis it is therefore possible 
to “move” a force from one point to another without changing its 
effect, provided that such movement is along the line of action of the 
force. 

b. The general effect at some point which does not lie on the line of 
action of the force may be represented by the force itself, plus a moment 
equal to the turning effect of the force about the point. Figure 2*30 
shows two force systems which have the same general effect on the 
object. 
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c. Moments (couples) will have the same general effect regardless of 
where they are applied; that is, the couple may be moved to any point, 
provided that the magnitude of the moment and the direction of its axis 

Fig. 2-29. Equivalence of forces. Fig. 2-30. Equivalent force systems. 

are unchanged. This is shown by Fig. 2 -31, in which the moments are 
shown by couples. In both (a) and (b) there will be the same tendency 
to rotate, although conditions within the beams (local conditions) will 
be different. 

Fig. 2-31. Equivalent moments Fig. 2-32. Equivalent moments on 

(couples). # steering wheel. 

At first sight it may be difficult to realize that a couple has the same 
effect regardless of where it is applied. This can be further illustrated 
by a condition such as shown in Fig. 2 • 32. Here the effect on the steering 
wheel is the same in both (a) and (6), even though the turning moment 
in (6) is not applied directly to the wheel. {Note. The foregoing state¬ 
ments apply to structures, not mechanisms. Obviously a turning 
moment may be changed in magnitude during transmission, through 
the use of pulleys, gears, and other mechanical devices.) 
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The principles underlying the equivalence of force systems are of 
great value in computing reactions and in analyzing a certain portion of 
a structure without making a complete analysis of the entire structure. 
These principles are also frequently applied in setting up structural 
tests, as they often make it possible to substitute a simple loading con¬ 
dition for a more complicated one. 

2*15. Forces Not Acting at Same Point (Non-Concurrent). Using 
the foregoing principles, it is possible to determine the net effect, at any 
point, of any system of forces, provided of course that the magnitude, 

H-Z 

-Z 

Fig. 2*33. Force system about point 0. 

direction, and location of the forces are known. (Location may refer 
to the line of action only; that is, it is not necessary to know the exact 
point of application in determining the net effect.) The process con¬ 
sists simply in adding all the forces (either vectorially or analytically) 
and then adding the turning moments of the forces about the point in 
question. The final result will consist of a single resultant force and a 
resultant moment, both acting at the point about which the summation 
is taken, or it may take the form of components of these resultants. 

If all the forces act in the same plane the process is simple. In the 
analytical method the components of the forces along two selected axes 
are determined and added, as described in Sec. 2*9. It is usually con¬ 
venient to determine the turning moments of these components, rather 
than tiie moment of the forces themselves, as each component is normal 
to one of the reference axes. 

For example, assume that it is desired to know the effectiveness at 
point 0, of the forces acting at points A, 5, C, and D, in Fig. 2*33. 
Table 2*1 is constructed as shown, using inch-pound units. 
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TABLE 21 

Summation of Forces Not Acting at a Point 

Point 
Location Forces Moments 

X z P px p# 

A 8 18 38 0 +35 15 +630 -120 
B 22 10 35 6 +22 -28 -t-220 +616 
C 18 -6 40 0 +40 0 -240 0 
D — 12 12 28 2 -20 -20 240 -240 

+77 -33 +370 +256 

Prx = +77 PHl - -33 

PR = V(77)2 + (—33)2 = 83.8 lb 

M0 = +370 + 256 = +626 in.-lb 

(These values are shown in Fig. 2*34.) 

By comparing Ta* e 2-1 with the table in Sec. 2*9, it will be seen 
that additional columns have been included for the determination of 
the moments of the force components about point 0. Two columns are 

for the tabulation of the moment arms 
of these components, which are equal 
to the coordinates of the points at 
which they act. All the moments due 
to the components are added algebra¬ 
ically, to determine the resultant mo¬ 
ment at point 0. (Algebraic addition 
is permissible because the moment 
vectors are parallel, since all the forces 
are in the same plane.) 

The most important part of this operation is to establish a definite 
convention for positive turning moments and to be sure that each value 
of moment entered in the table has the proper sign. In a plane system 
such as shown in Fig. 2 -33, it is possible to do this by inspection. For 
instance, having established positive turning moments as clockwise 
(shown by curved arrow) it is obvious that the moment of Pa» about 
point 0 is negative. The value for Pzx entered for point a is therefore 
shown as negative in the table. 

Z 
♦ 

Fig. 2 34. Resultant of forces in 
Fig. 2 33. 
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2*16. General System. It is possible to establish a system of sign 
conventions such that the algebraic multiplication of the forces and 
distances automatically gives the proper signs for the moments, thereby 
making it unnecessary to determine the sign of the moment by inspec¬ 
tion. Such a consistent system is indicated in Fig. 2*35. In this system, 
positive values for both force and distance will give positive values for 
turning moment. Therefore all cases are automatically covered by 
properly observing the signs in multiplying forces and distances. 

Generally, however, it will not be convenient to start out with an 
entirely consistent system. For instance, in airplane work positive 
forces are usually measured upward, as 
shown in Fig. 2*33. It would be confusing 
to change this convention just to obtain 
consistency between force, distance, and 
moment conventions. It is still possible, 
however, to make the tabulation process 
“automatic,” by the following scheme. 

Taking first the z forces (Fig. 2-33), 
positive values will be assumed for both the 
force and its moment arm (x distance). 
This gives an upward-acting force and a 
moment arm measured to the right of point 
0, causing a counterclockwise turning moment. Hence the moment 
Pzx will be negative (according to the convention established for posi¬ 
tive moments in Fig. 2 -33). It is only necessary to indicate this by 
attaching a negative sign to the term Pzx at the top of the last column 
in Table 2*1. In filling in the table, the sign of the moment would then 
be correctly determined by using the signs of the forces and distances 
algebraically. For example, the operation for point d would be 

-Pzx = —(—20) X (-12) = -240 

For the x forces, positive values for both Px and z will cause a positive 
turning moment; hence the column for Pxz may be left unchanged. 

Once a table has been set up in this manner it is unnecessary to 
observe the direction of moments by inspection. It is advisable, never¬ 
theless, to check the results by inspection of one or more typical opera¬ 
tions, as the matter of keeping track of signs can easily become con¬ 
fusing. 

This general method of handling signs algebraically is not only con¬ 
venient but becomes absolutely necessary when setting up equations 
for the analytical solution of force problems. The entire procedure 
simply amounts to considering the general case of positive forces and 

+Z l-► +? 

i 
-Z 

Fig. 2-35. Consistent conven- 

, tions. 
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distances and setting up equations and tables on this basis, including 
the proper signs for moments thus determined. 

2*17. Location of Resultant Force. In the preceding example the 
forces were summed up about point 0 and it was found that, in addition 
to the resultant force, there was a resultant turning moment of 626 in.-lb 
about this point (Fig. 2-34). If it is desired to convert the entire force 
system into a single resultant force having the same net effect, this 
resultant turning moment must be eliminated. This may be done by 
moving the resultant force away from point 0 until its moment about 
that point equals the resultant moment of the force system. The re¬ 
quired moment arm is obtained by dividing the moment by the result¬ 
ant force 

626 

83.8 
7.48 in. 

The resultant force may be located graphically by drawing it tangent to 
an arc of radius d, as shown in Fig, 2 *36. A force vector could be drawn 

tangent to either side of the circle: 
the correct location is, of course, 
determined so that the turning 
effect about point 0 is in the same 
direction as the resultant moment 
Mr, which is being replaced. 

The location of the line of action 
of the resultant force may also be 
obtained analytically by working 
directly with its two components Px 
and Pz (Table 2-1). Let the result¬ 
ant force be assumed to act at some 

unknown point having coordinates xR and zR. The total moment pro¬ 
duced by the resultant force will then be 

M - -(P*M) + (PxZr) [2*3] 

(Note that in writing this equation a minus sign is placed in front of 
the term Ptx, as explained in Sec. 2-16.) Since we are to determine 
xr and zr so that the moment of the resultant force about point 0 equals 
that of the original force system, the value 626 determined in Table 2*1 
is substituted directly for M in the above equation. Substituting also 
for the components Pz and Px (from Table 2-1) we obtain 

Z 

Fig. 2-36. Methods of locating result¬ 
ant force. 

+626 - -(-33a*) + (77**) 

xr *= 19.0 — 2.33** 
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This equation determines a line rather than a specific set of values for 
xr and zr. This agrees with the fact that the effect of a force is the same 
when applied anywhere along its line of action. To determine the loca¬ 
tion of this line of action it is only necessary to substitute convenient 
values of xr or zr. By successively setting these values equal to zero 
we obtain the two intercepts, x0 = 19.0 and z0 = 8.15, as indicated in 

Fig. 2*36. 
2*18. Progressive Summation. In structural work it is often neces¬ 

sary to sum up forces about a successive series of points, using only those 
forces to the right (or left) of the point in question. For example, assume 
that a cantilever beam is subjected 
to the force system shown in Fig. 
2*37. The summation for this 
would be made from left to right, 
using only those forces acting on 
the left of the point in question. 

A typical method of summation 
for this case would be as follows. 
First, a reference axis for the 
structural member is chosen. This 

is sometimes a simple matter; at Fig.2.37. Loaded beam, 
other times the choice will depend 
on the nature of the structure. However, it is always possible to choose 
any convenient axis and to transfer the results to some other structural 
axis as the analysis progresses. The axis along which the summation 
is conducted may be called the load axis. In Fig. 2-37 a line is drawn 
through the center of the beam. 

Next, conventions for positive forces and moments are established, 
with respect to the chosen axis. This is indicated in Fig. 2-37. (The 
use of a sketch to indicate the sign conventions is always desirable, in 
order to avoid confusion.) It is now necessary to select the successive 
points at which the forces are to be summed up. It may be convenient 
to use the points of application of concentrated loads. On the other 
hand, an arbitrary division into equal lengths may be desirable. 

Assume that the summations are to be made about the points of load 
application. A tabular method of computation is most convenient. 
Table 2-2 shows how this would be done for the example illustrated in 

Fig. 2-37. 
The process is essentially the same as that described in Sec. 2*15, 

which deals with finding the resultant of a number of forces. In Fig. 
2*37, however, it is desired to find the resultant at several progressive 
points and only for the forces which lie outside of these points. Hence, 
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TABLE 2-2 

Summation of Forces and Moments 

Station 

0 ® ® 0 0 

Ax 
Distance 

between 

Stations (in ) 

P 
Local 

Force 

(lb) 

2/> 

Summation 

at Each 

Station 

* 2© 

AM 
Moment 

Increment 

- ® X ® 

M 
Total 

Moment 

■ - • ;• 
-150 -150 0 0 1 

20 

2 -400 -550 -3,000 -3,000 
30 

3 +300 -250 -16,500 -19,500 
20 

4 +700 +450 -5,000 -24,500 

20 

5 0 +450 +9,000 -15,500 
///////////////////// 

in Table 2 • 2, column ® represents progressive summation of the direct 
forces, whereas column © represents progressive summation of the 
moments of these forces. 

Table 2*2 illustrates some simple working rules which facilitate the 
computations and help avoid errors. In column ® the distances between 
stations are located between the lines of the table representing these 
stations. This avoids any question of whether the distance is measured 
from the preceding point or the following point. 

The operations to be done in each column may be indicated symboli¬ 
cally by numerals or letters. This reduces the danger of looking at the 
wrong column when doing the arithmetical work. This practice is also 
very helpful when standard tabular forms are used in actual engineering 
work, as it permits the computations to be performed by inexperienced 
people who would otherwise be unable to understand the operations. 

Another small point which is used in practice is the “blanking out” 
of spaces which need not be filled in. This is demonstrated in column 

®. 
Figure 2*38 will assist in understanding the steps taken in Table 2-2. 

The arithmetical operations have been placed beneath the station to 
which they apply. Graphs have been drawn to show the variation of 
the computed quantities. Note that the moment increments (AM) 



PROGRESSIVE SUMMATION 29 

added at each station are equivalent to the area under the curve of net 
load. This important relationship will be used constantly in dealing 
with beams and bending moments, which will be taken up later. Figure 
2-38 also indicates that the moment curve will be a series of straight 

lines when the loading is produced by a series of concentrated loads 
normal to the load axis. 

In Fig. 2 *38 the only moment arms involved are x distances. This 
eliminates any need for a column of z or y distances and also reduces the 
moment computations to two columns, © and ®. In the more general 
cases additional columns will have to be included to take care of mo¬ 
ments about the other axes. 
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For example, Fig. 2*37 may be made more general by including x 
force components and introducing z distances, as shown in Fig. 2*39. 

Table 2-3 indicates the additional steps that must now be taken. One 
important point is that the x forces, once transferred to the load axis, 

TABLE 2.3 

Summation of Forces and Moments 

Sta¬ 

tion 

Distances Forces Moments 

® © © © © © © © © 

Ax 
Distance 

between 

Stations 

(in.) 

z 
Distance 

to 

Load 

Axis 

Force 

Com¬ 

ponent 

Pz 

Force 

Com¬ 

ponent 

Px 

2 P, “ 

2® 

2 P, = 

2© 

PxZ =* 

© x © 
(2P.A*) 

© x © 

ZAJW 

2© + 

2© 

1 
imnjnm 

mmfflL 

0 
; 

-150 -100 -150 -100 0# 0 0 

2 -15 -3,000 -3,000 -6,000 

3 +10 +300 -100 -250 0 -1,000 -16,500 -23,500 

□ 0 +700 0 -5,000 -28,500 

Hi 0 0 +450 -19,500 

may be “moved” from station to station without an increase m moment. 
The only additional moments are those due to the z moment arms. These 
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moment increments are computed in column < ) and must be added into 
the final summation in column ®. 

Finally, there could be forces or components along each of the three- 
dimensional reference axes (X, Y, and Z). As shown in Fig. 2*40, 
forces in the z direction, acting at y distances from the load axis, would 
cause moments about the load axis (X). These would be computed and 
summed up by using additional columns in the table. Similarly a force 
in the x direction acting at a y distance from the load axis would cause a 
moment about the Z axis and addi¬ 
tional columns would have to be 
added to take care of this. 

Forces in the y direction (such 
as Py in Fig. 2-40) require the 
same treatment as forces in the z 
direction. As they are summed up 
and moved along the load axis (X) 
they produce moments about the Z 
axis. 

2*19. Distributed Loading. Up 
to this point only concentrated loads 
acting at definite points have been considered. In structural work it is 
common to find distributed loads which are “spread out” over the length 
or surface of the structure. A load distributed over a length is usually 
specified as a running load, in units of pounds per inch, or pounds per 
foot. When distributed over the surface, the loading will obviously be 
in terms of pressure, in units of pounds per square inch, or pounds per 
square foot 

The general procedure is to convert pressure into running loads and 
running loads into concentrated loads, after which the procedure is the 
same as previously outlined. Pressures are converted into running loads 
by multiplying by a width. "Thus, if an airplane wing is subjected to a 
uniform (upward) pressure of 100 lb per sq ft, the running load (pounds 
per foot) is obtained by multiplying this pressure by the width (chord) 
of the wing. If the pressure varies along the wing, the local pressure at 
any point is multiplied by the chord at that point. Figure 2*41 indi¬ 
cates how this is done. Suitable stations are selected and values of pc 
(pressure X chord) are computed. These are plotted as shown and the 
points connected to determine a smooth curve. 

To obtain the equivalent concentrated loads the simplest approxi¬ 
mation consists in multiplying the value of running load at each station 
by the distance over which it may be considered to act (usually half the 
distance to adjacent stations). The resulting concentrated loads are 

z 

Axis 

Fig. 2 • 40. General case. 
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shown in Fig. 2*41. The dotted lines indicate the nature of this rough 
approximation. The accuracy obtainable is obviously increased by 

5' 

Fig. 2 • 41. Conversion of pressures to concentrated loads. 

usmg more closely spaced stations. From this point on, the summation 
of loads and moments may be carried out as previously described. 

Fig. 2-42. Use of trapezoids. 

Instead of representing the run¬ 
ning load curve by a series of 
steps, it may be considered to be 
made up of a series of straight 
lines as indicated in Fig. 2-42. 
Then the area under the curve is 
formed by a series of trapezoids. 
Each trapezoid represents the 
load between stations and the 
centroid of the trapezoid locates 
the resultant force. The equiva¬ 
lent concentrated forces are now 
located at these centroids and the 

process proceeds as before, except that new stations must be assumed. The 
trapezoid method is slightly more accurate than the average load method 
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previously described, as it takes into account the difference in effective 
moment arm between a trapezoid and a rectangle. However, if stations 
are selected at close intervals this refinement is unnecessary, as indicated 
by the values shown in Fig. 2*42. (Obtained from Table 11 in 
Appendix.) 

The equivalent concentrated loads may also be obtained directly by 
multiplying each section of wing area (between stations) by the aver¬ 
age pressure at that point. This method eliminates the computation 
of running load entirely. 

In working with pressures and running loads care must be taken to 
use consistent units of measurement. For instance, the pressure on air¬ 
plane wings is usually computed in terms of pounds per square foot, but 
the analysis is carried out on a powid-inch basis. Hence it is advisable 
to convert pressure to pounds per square inch before starting. If this is 
done, the chord must be measured in inches. It would, of course, be 
wrong to multiply pounds per square foot by the chord in inches, or 
vice versa. 

2*20. Integration. The process of converting running loads to con¬ 
centrated loads, summing these up along the load axis, and finally sum¬ 
ming up the resulting moments is often described as integration. Ac¬ 
tually this term refers to a mathematical process which is equivalent to 
assuming an infinitely large number of stations along the load axis. 
This eliminates all errors caused by approximating a curve with a series 
of straight lines, drawn between stations some distance apart. To apply 
this process it is necessary to know the equation of the curve of running 
load, in terms of the distance along the load axis. Furthermore, this 
equation must be fairly simple, or it will require an unreasonable amount 
of mathematical effort to integrate it. 

In engineering work there is no assurance that the loading curve can 
be expressed by any reasonable mathematical equation. In an airplane 
wing, for instance, the variation of chord with span may or may not be 
linear, whereas the variation of pressure from tip to root, if accurately 
computed, will be found to be highly complex from a mathematical 
standpoint. In addition, there are likely to be concentrated local loads 
superimposed on the pressure loads, making the problem almost im¬ 
possible for mathematical integration. It must be concluded, therefore, 
that integration will be useful only occasionally, and that more workable 
methods, such as those previously described, must be used for general 
engineering purposes. 

Mathematical symbols are sometimes used as a sort of shorthand. 

The integral sign, is often used in textbooks to indicate the step- 
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by-step summation, although this operation should really be indicated 
by the Greek letter sigma (2). The engineer should be familiar with 
this shorthand usage of the integral sign and should realize that it usually 
does not require the actual application of integral calculus. 

To show how the integral sign may be 
used to describe the summation of run¬ 
ning loads, consider Fig. 2-43. If w 
represents the running load at any sta¬ 
tion x) the total load at any specific point 
xn may be expressed by the equation 

w s r l» 
Pn=*Arec=J w dx 

? - J° 

SI 
K 

n ° 

\= J^WrLc [2-4] 

Figure 2*43 shows the operation 
graphically. The summation is carried 
out from station 0, to station n, as in¬ 
dicated by the small letters attached to 
the integral sign and by the subscript 
for P. The dx simply indicates the 
variable length over which the summa¬ 
tion is made. Actually what is found 
is the area under the curve, expressed in 
terms of the product of the two vari¬ 
ables (w and x). The area up to various 
stations is plotted in Fig. 2-43 as a 
curve of P against x. It represents 
the net or total load at each station. 
(Pounds per inch X inches = pounds.) 

This curve may again be integrated to obtain the moment as indicated 
by the following shorthand formula. 

Fig. 2-43. Integration. 

Pdx [2-5] 

The results are plotted as the third curve of Fig. 2-43, and are ex-* 
pressed in terms of inch-pounds. 

Equation 2-5 may also be written in the general form 

M ■//' wdxdx [2-6] 

This simply indicates double integration, exactly as already described. 
The process may be carried even further, as in beam deflections. At this 
point in the text it is necessary only to recognize the practical signifi- 
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cance of the integral signs when they are encountered in these particular 
operations. 

The area under a curve may be determined by means of a planimeter. 
In using this instrument, true integration is performed mechanically. 
A close approximation to the area under a curve may also be obtained 
by counting squares, if the curve in question is plotted on graph paper. 
Most of these methods are sufficiently accurate for structural work. 
(In measuring actual areas the results must of course be multiplied by 
the scales involved.) 

2*21. Rotation of Axes. In working with curved or irregular mem¬ 
bers it is convenient to sum up loads and moments along a^traight load 
axis, as previously described. Having done this it will eventually be 
necessary to transfer these values 
to some other axes, as indicated in 
Fig. 2*44. A direct shift of axes 
(without rotation) is accomplished 
by means of the rules and principles 
previously described (i.e., moments 
moved directly, forces moved axially 
without change.) If the new axes 
make an angle with the old ones, 
however, it is necessary to resolve 
the forces and moments into compo¬ 
nents along these new axes. 

If conditions are such as shown in Fig. 2-44, the following equations 
may be used. 

Pm — Pz cos a + Px sin a 

Pn = —Pz sin a + Px cos a 
[2-7] 

where a is the angle through which the axes are rotated, and m and n 
are the new axes. 

The same equations would be used for moment vectors. If the rota¬ 
tion of axes takes place about one of the three reference axes, no cor- 
fection of forces or moment vectors along this axis need be made. Thus 
in Fig. 2-44, the rotation is about the y axis, and no corrections of y 
forces or moments about the y axis need be made. 

It would be possible to write a set of general equations and rules 
which would take care of all cases, but it is considered better to under¬ 
stand the general method of making such corrections and to work out 
each specific case as it arises. A sketch should be drawn (as in Fig. 2 • 44) 
showing positive values of vectors along the original axes. The com¬ 
ponents of these values are then projected onto the new axes, indicating 
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the sign to be employed. It will be noted that the cosine always applies 
to the two axes between which the angle of rotation is measured. Thus, 

Fig. 2*45. Internal structure of horizontal tail surface for Lockheed Constellation. 

in Fig. 2-44, the component of Pz along the m axis is given by cosine a, 
as a is measured between the z and m axes. The other component 
(n axis) will always be given by the sine of the angle. 

PROBLEMS 

y 2*1. Determine the components of P acting 
I v ^ P—2500 lb along the X-X and Y-Y axes, (a) graphically 

and (b) analytically. 
2*2. In Fig. 2-1 (p. 6) assume that P 

equals 10,000 lb and that the angle a is 50 
degrees. Assume also that xa and za are each 
equal to zero. Select a suitable scale and 
draw the vector picture to determine the 
components along the X and Z axes. Calcu¬ 

late the components by using equation 2*1. Repeat the calculations for Eqs. 
2-la and 2*16. 

2 *3. Assume that a force of 1000 lb, acting at the origin, is rotated from the X 
axis to the Z axis (a varies from 0 to 90 degrees). Calculate the x and z com¬ 
ponents for each 10-degree interval (set up a table for this). Plot these values as 
curves of force against angle. 

Y 
Problem 2*1. 
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2*4, Determine the resultant (line of action, magnitude, and direction) of the 
following coplanar forces, (a) graphically and (b) analytically. 

2*6. Select a suitable scale and draw two parallel forces 3 in. apart, one having 
a value of 50 lb and the other 75 lb. Find the location of the resultant force and 
draw the vector which represents it. (Use graphical method of adding a pair of 
forces.) 

2«6. Find the resultant applied load on a beam loaded as shown, (a) graphi¬ 
cally and (b) analytically. 

2*7. What x, y, and z loads are applied at point 0 by members A and B when 
the load in A is 5000 lb compression and that in B is 6500 lb tension? 

2*8. Draw four vectors representing non-concurrent forces of different mag¬ 
nitude acting in the plane of the paper (similar to Fig. 2*17). Find the location 
and magnitude of the resultant force by means of a string polygon. (Use Bow’s 
notation.) Using the same construction, determine the resultant of any two 

adjacent forces. 
2*9. Using Fig. 2-38 as a basis, change the values of the distances and loads 

and carry through the summation of forces and moments as indicated in Table 
2*2. 
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2*10. In Fig. 2*32 prove that the moment about the wheel axis is the same 
for case (b) as for case (a). (Subtract moment of one force from that of the 
other.) Then in case (a) assume that the right-hand force is doubled. By what 
percentage does this increase the total turning moment about the wheel axis? 

2-11. Referring to Table 2*1, change all the values given for distances and 
components and redraw Fig. 2*33 to agree. Calculate the resultant force and 
its moment about the origin. Determine its location by the method of Fig. 2 • 36. 
Check analytically by drawing force and string polygons. 

2*12. In Table 2*3 change the values of the force components (to represent a 
different loading condition) and carry through the summation of forces and 
moments. Draw a diagram, to scale, showing the ne^ force vectors. Determine 
the magnitude and location of the resultant force vectorially. Determine, 
vectorially, the components of the resultant force and check against the summa¬ 
tion of forces. Measure the moment arm of the resultant about the root of the 
beam (Sta. 5) and check the calculated summation of moments. 

2*13. Find the summation of forces at stations 50, 60, 65, and 75 acting on 
the wing beam loaded as shown in the illustration. 

60 Ib/in. 

50 60 65 75 

Problem 2 • 13. 

2-14. Following the procedure shown in Fig. 2*41 draw a top view of an air¬ 
plane wing of any desired size and shape (not rectangular). Assume that the 
net applied loading consists of a uniform upward pressure of 250 lb per sq ft. 
Carry out the operations shown in Fig. 2*41 and determine the progressive sum¬ 
mation of forces and moments from tip to root (as indicated in Fig. 2*38). 

2*16. Determine the equivalent forces and moments acting along the wing 
load axes at point 0, due to the applied landing gear loads. 
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2*16. A flagpole is supported by four guy wires attached at a point 40 ft 
above the ground. The anchorage of the wires is made at the four comers of a 
20-ft square, symmetrically located with respect to the flagpole. If the load in 
each wire is 300 lb, what is the total vertical load which the wires apply to the 
flagpole? 

2*17. In Problem 2*16 assume that the load in one of the wires drops to zero, 
but that the other three continue to carry 300 lb each. Find the resultant 
vertical and lateral loads exerted by the wires at the attachment point. 

2 • 18. In the figure the X and Z axes represent the structural axes of an airplane 
wing, while L and D represent lift and drag, respectively. Assume that for a 

L Z 

given flight condition the total air load on the wing is given by the components 
PL = 10,000 lb and PD = 2000 lb. Find the corresponding components along 
the structural axes, using Eq. 2 • 7. Check vectorially. 



CHAPTER 3 

FORCE TRANSMISSION 

3*1. Structural Axes. In Chapt. 1 a brief discussion of force trans¬ 
mission was given. Chapter 2 described the methods by which forces 
and moments may be added, collected, and resolved into resultant or 
effective components with reference to any selected system of axes. 
The classification of these forces and moments with reference to a par¬ 
ticular structural axis and with respect to the effect on the structure itself 
will now be studied. 

The determination of the proper structural axis to use may be simply 
a matter of inspection (as in a round tube), or it may represent a stress 
analysis procedure in itself (as in an irregularly shaped box beam). 
The more complicated structures cannot be taken up until the basic 
principles of force transmission have been covered; hence the discussion 
will be confined to simple cases. 

The simplest axis is a straight line between the point of application 
of the force and the point to which it is being transmitted. This type 
of axis is used in dealing with a pin-jointed structure, in which the mem¬ 
bers may be represented diagrammatically by lines connecting the cen¬ 
ters of the pins. In determining the internal stresses in a structural 
member it is usually necessary to work with some axis about which the 
geometrical properties of the cross section may be computed. For a 
symmetrical section, such as a bar, a tube, or a rectangular beam, the 
centerline of the member itself is commonly used. 

At this point it is necessary only to assume that a structural axis has 
been selected; the forces and moments acting on the structure may then 
be classified with respect to this axis and designated by the commonly 
used structural terms (bending, torsion, shear, etc.). 

3*2. Axial and Transverse Forces. Let us assume that a force P is 
applied at point 1 and is to be transmitted to point 2, as illustrated in 
Fig. 3*1 (both points are assumed to be in the plane of the paper). 
The first step in clarifying the principles of force transmission, is to 
establish two basic types under which all cases can be classified. As 
indicated in Fig. 3-1, this is done by resolving the applied force (P) into 
two components, one along the axis of transmission, the other normal 

40 
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to it. These two classes of forces are called axial and transverse, re¬ 
spectively, and they will be designated by the symbols Pa and P9. The 
subscript 8 is used here for transverse forces because it is customary 
to call these shear forces; the term shear more accurately refers to a 
special type of transverse force trans¬ 
mission. In view of the common usage 
of the word shear, however, it will be 
used interchangeably with the word 
transverse when referring to the trans¬ 
mission of a force along an axis normal 
to its line of action. 

These two kinds of forces can now 
be dealt with separately, provided that 
the effects of separate components are 
recombined in obtaining the final 
answer. 

3*3. Axial Forces. It is evident that axial forces (Pa) are so called 
because of their direction; that is, they are directed along the axis of 
transmission. They can be further classified with respect to the struc¬ 
ture by considering whether the force is directed away from or toward 
the point to which it is being transmitted. These two sub-classes of 
force transmission are self-evident; one is called tension, the other com¬ 
pression. By established convention, tension forces are indicated by 
the positive (+) sign and compression forces by the negative (—) sign. 

Typical symbols used for these forces are Pt 
and Pc- The visual picture of this situation 
is given by Fig. 3 • 2, which shows both types 
of force transmission between points 1 and 2. 
If desired, the nature of the force transmis¬ 
sion may be indicated by placing the plus 
or minus symbols along the axis of transmis¬ 
sion, as shown. 

It is particularly important to note that this system of force classifica¬ 
tion is independent of the absolute direction of the force in space, i.e., 
with reference to some predetermined coordinate system. Instead, the 
governing feature may be thought of as the effect on the structure. Posi¬ 
tive axial forces (tension) will always tend to pull the member apart; 
negative axial forces (compression) will tend to force the elements closer 
together. 

The use of two different systems of force classification, both employ¬ 
ing plus and minus signs for identification, is bound to be confusing at 
times. The problem would be much easier to handle if, for instance, it 

St_J_J±>_l 
Tension 

Compression 

Fig. 3*2. Tension and com¬ 
pression forces. 

Fig. 3 1. Axial and transverse 
(shear) forces. 
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were possible to introduce into the literature a new type of sign which 
would be used only for identification of forces with respect to their 
effect on the structure. For instance, the usual signs might be encircled 
thus: 0 axid ©. When so used the circle would indicate that the signs 
referred to tension and compression forces, rather than to forces which 
were positive or negative with respect to some space convention. How¬ 
ever, because of the difficulty of introducing new symbols not already 
found in existing textbooks this idea will not be adopted. The struc¬ 
tural engineer mu^t become used to the systems already in existence 
and should be able io recognize the special nature of the signs em¬ 
ployed, without the aid of new symbols. 

3*4. Transverse (Shear) Forces. Referring again to Fig 3*2, the 
axial component, Pa, has been classified as to sense,* i.e., tension or 
compression. It is difficult, however, to establish a single logical con¬ 
vention for the sense of the transverse (shear) component, P9. This is, 
in fact, one of the most frequent causes of confusion and error in struc¬ 
tural analysis It is eas^y to obtain a mental picture of tension and 
compression by visualizing the effect on the structure itself. In tests, 

direct measurement of the deforma¬ 
tion of the structure under load will 
indicate the nature of the condition. 
In dealing with transverse (shear) 
forces it is impossible to distinguish 
between positive and negative condi- 

Ax,s tions by reference to the structure 
alone. An additional convention as 
to direction must be included. 

The simplest method of doing this 
is to show positive shear by means of 
a sketch such as Fig. 3*3. Actually 

Fig. 3-3. Shear conventions. this amounts to assigning a positive 
value for the rotational effect of the 

transverse forces acting on either side of a given cross section. The 
directions chosen should agree with the bending moment conventions, to 
be described later, i.e., the question of whether to draw the force vectors 
in Fig. 3-3 as shown, or in the opposite directions, will be decided by 
the conventions adopted for bending moments. 

The way in which the shear type of convention differs from the space 
type may be indicated by the fact that in the latter an upward force 

* “Sense” is here used as defined in Webster’s Collegiate Dictionary: “One of the 

two opposite directions in which a line . . . may be supposed to be described by the 
motion of a point.. 
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would always be positive (assuming it had been designated thus, of 
course), whereas in the shear type of convention, it would be positive 
or negative, depending on whether it acted to the left or right of the 
section in question. 

Shear conventions are not actually needed except in special types of 
beam problems, hence they will not be discussed further at this point. 
It is necessary only to realize that such conventions exist and to recog¬ 
nize the way in which they differ from the regular space type of con¬ 
ventions. 

3-5. Summary of Force Designations. Thus far forces, or their com¬ 
ponents, have been classified by two different systems. For clarification 
we may call these the space system and the structural system. 

In the space system (Chapt. 2) the forces are located in space, and 
their magnitude and direction are specified. This is done by means of 
some system of reference lines (usually rectangular coordinates) and 
definite conventions as to positive and negative values. 

In the structural system the nature of the force is classified with refer¬ 
ence to the axis of transmission and the effect on the elements of the 
structure. The system is resolved into two classes: axial, in which the 
force is transmitted along its own axis, and transverse, in which the 
force is transmitted in a direction normal to its own axis. The latter 
is more commonly referred to as shear. 

Axial forces arc further subdivided, as to sense, into two classes: 
tension (+), and compression (—). Transverse forces have no inherent 
quality by which a convention as to sense may be set up, but certain 
arbitrary conventions are sometimes used in special beam problems. 

It is most important to recognize that two different systems of classi¬ 
fications are employed and to know when to use each system. In 
analytical calculations (for instance, space frameworks) “space” and 
“structural” systems may be employed simultaneously, and it is there¬ 
fore essential to have a clear understanding of each. To clarify the 
picture, the two systems have been shown diagrammatically on Fig. 3 -4. 

3*6. Examples of Force Transmission. A simple example of the basic 
types of force transmission is shown in Fig. 3*5, which represents an 
ordinary swing. Obviously the force P must eventually be resisted at 
the ground and is divided equally between the two sides of the structure. 
Taking either half of the structure and starting with the applied force 
P, the types of transmission involved are, successively: transverse (seat), 
axial-tension (ropes), transverse (crossbar), and axialrcompression (up¬ 
rights). 

In Fig. 3-5 is an illustration of a simple “two-way” division of the 
applied force. Because of symmetry, no special computations were re- 
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or 
<>,, 
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"STRUCTURAL” SYSTEM 
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PQ (Axial) p (Transverse 
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Fig 3 • 4. Systems of force classification 
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Fig. 3-5. Example of force transmission. 
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quired to find the distribution of force between the two sides of the 
structure. 

Another somewhat different example is shown in Fig. 3-6, which 
represents a cantilever beam or strut to which the force P is applied 
at an angle. The solution of this problem 
is begun by separating the force P into its 
axial and transverse components Pt and 
Pt, respectively. 

3*7. Moment Transmission. InChapt. 
2, it was shown that one of the effects of a 
force acting at a distance could be repre¬ 
sented by a turning moment, M. It was Fi^. 3 -6. Cantilever beam under 

also shown how such moments could be axial and transverse ^ding- 

designated by vectors, wldch indicated the axis of rotation and the 
magnitude of the turning effort. Structures are often required to trans¬ 
mit tumin'g moments, and it is therefore necessary to classify the mode 
of transmission, just as was done for forces. This is covered in the 
following sections. 

3-8. Torsion. By using the same principles, the transmission of turn¬ 
ing moments can be classified by reference to the axis of the moment 

and that of the structure along 
which the moment is transmitted. 
Transmission of a moment along 
its own axis is called torsion. 
(Such turning moments may be 
referred to as torque, torsional 
moment, twisting moment, Mtf 
etc.) In torsion the axis of the 

Fig. 3 7. Torsional moment, or torque. tuminS ™°ment coincides with 
that of the structural member 

along which it is transmitted. Torsion is therefore analogous to axial 
force transmission. Instead of shortening or elongating the member, 
however, the effect is to twist it, or rotate it about its axis, as shown in 
Fig. 3 -7. 

The transmission of torsional moments is a very common and useful 
function of structures. The ordinary doorknob serves as an elementary 
example of torsion transmission. In the mechanical field the trans¬ 
mission of power by torque shafts is an outstanding example of this 
important form of structural loading. Torsion may also be a by-product 
of some other form of force transmission, because of eccentric loading 
or similar effects. 

There is no established convention for the sense of torsional moments 
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with respect to their effect on the structure and it will not be found neces¬ 
sary to set up such a convention. Space conventions, as described in 
Chapt. 2, will usually suffice. (Figure 3 • 7 would indicate that the left- 
hand rule had been used.) 

3*9. Bending. If the turning moment is transmitted in a direction 
normal to its axis of rotation it is classed as a bending moment This 
is because the effect of such a moment is to “bend” the member to 
which it is applied, i.e., to cause its axis to curve out of its original 
position. Bending moments are analogous to transverse forces. An 
example of bending is shown in Fig. 3*8. The top \iew indicates clearly 

that the moment is transmitted along 
a lino normal to its own axis. The 
side view shows the deflected position 
exaggerated. (The right-hand rule has 
been used in drawing the moment 
vector.) 

Pure bending is not usually found as 
a primary form of force transmission, but 
it is almost always the result of trans¬ 
verse forces. In the ordinary lever the 
bending moment is indirectly utilized to 
magnify the effect of an applied force. 
Usually, however, the bending moment 

serves no useful function, even though it is often found to be the most 
severe type of loading for a structure. In an airplane wing, for instance, 
bending moments account for the largest share of weight in the struc¬ 
ture, yet the useful force transmission is done by transverse (shear) 
forces. 

Bending moments can be identified with respect to their effect on the 
structure by using the conventions for tension and compression together 
with an arbitrary convention for the “positive” side of the structure. 
Thus if the bottom of a beam is considered as positive, the bending 
will be considered to be positive when the bottom portion of the beam 
is in tension. This convention is indicated in Fig. 3-8. This system 
of classification will be found useful in more advanced bending 
problems. 

3*10. Combined Bending and Transverse Force (Shear). Figure 
3*9 illustrates bending moment due to transverse force transmission. 
Sketch (a) shows the actual loading condition, consisting of a single 
transverse force acting at the end of the beam. Sketches (b) and (c) 

show the equivalent conditions at points 2 and 3. This is a direct appli¬ 
cation of the principles of Sec. 2*18, in which the progressive summation 

i 

Fig. 3 • 8. Bending moment. 
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of forces was described. Sketches (b) and (c) illustrate a very common 
procedure in structural analysis, consisting in hypothetically cutting 
the member at the point in question and placing at the cut section the 
summation of all forces and moments determined at that point. The 
practice of cutting is a convenient way to illustrate the effective loading 
condition at any point. It will also be used Jater in determining reac¬ 
tions and internal loads. 

Fig. 3 • 9. Bending moment due to transverse force. 

In Fig. 3*9 the assumed structural axis is not indicated, as it is clear 
that the centerline of the beam is a satisfactory axis. 

Sketch (d) is a plot of the bending moment along the span of the 
beam. Since this moment is caused by a single force P and is directly 
proportional to d, the curve is a straight line. 

The effective transverse force at any cut section is equal to the applied 
force P, for the case illustrated. This effective or net transverse force is 
usually called the shear, but the shear conventions described in Sec. 3-4 
have not actually been used. 

It will be seen that the processes of summation described in Chapt. 2 
may be used directly in determining the net shear and bending moment 
for a member. If the load axis happens to be the proper structural axis 
for the member, the axial and transverse forces and the net moments 
may be considered to be tension or compression, shear, bending moment, 
or torsion, as the case may be. It may sometimes be necessary to trans¬ 
fer the net forces and moments to a different structural axis, as described 
in Sec. 2-21. 
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3*11, Combined Shear, Bending, and Torsion. Figure 3*10 illus¬ 
trates a very common type of loading, such as found in the ordinary 
crank. Here the force P is applied at A and transmitted to B and then 
to C. At point A there is neither bending nor torsion, as the point lies 

on the line of action of the force. 
Between A and B the bending mo¬ 
ment increases as the distance y is 
increased, reaching a maximum at 
point B. Member AB is therefore 
subjected to combined shear and 
bending. The turning moment at 
point B has the same axis as member 
BC; hence it represents a torsional 
moment for this member. The value 
of the torsion does not change be¬ 
tween point B and C. (Moments or 
couples may be transferred without 
any change of effect, Sec. 2*14.) 
These conditions are indicated by 

the sketches in Fig. 3 • 10. 
In addition to the torsion acting 

Bending on member CB there is also the shear 

Torsion 

Fig. 3*10. Combined loadings. Fig. 3*11. Combined loading at 
cut section. 

force P, which must be transmitted transversely through the distance x. 
Hence a bending moment equal to Px is built up and is a maximum at 
point C. Member BC therefore is subjected simultaneously to shear 
(P), torsion (Py), and bending (Px). It would also be possible to apply 
an axial force at point B, thus adding another type of force transmission 
to the member BC. 

The loading conditions at any section through BC could be •repre¬ 
sented by space vectors such as shown in Fig. 3* 11. Note that the 
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double-headed vectors used to indicate turning moments must point in 
the proper direction to be consistent with the loading conditions (right- 

hand rule used here). 

3*12. Summary of Force Transmission. Figure 3-12 contains a 
number of examples which will serve to summarize the general types of 
force transmission. The main points brought out by this chapter are 
the classification of forces and moments with respect to a structural 
axis and the introduction of a structural system of loading conventions 
which is independent of space conventions. Both structural and space 
systems are used in analysis work, and it is therefore important to dis¬ 

tinguish between them. 
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Fio. 3-13. Large testing machine at Aluminum Research Laboratories. Capacity 
1,000,000 lb in tension, 3,000,000 lb in compression. (Courtesy of Aluminum 

Company of America.) 
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3*3. Lever AO is located at the extremity of a cantilever shaft and perpendicu¬ 
lar to it. The shaft is supported 20 in. from 0. Cable Y has a constant tension 

Problem 3 -3. 

load of 500 lb as shown. Find graphically the torsional moment and bending 
moment in the cantilever shaft at the support when the lever is at A, B, and C. 
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3-4. Determine the axial and transverse loads and 
the bending moments at points A, B, C, D, and E, 
which are equally spaced along the centerline of the 
half ring. (Neglect deflections and assume pin at E.) 

3*5. In Problem 3*4 assume that the 1000-lb load 
acts horizontally and to the right, and calculate the 
same quantities. 

3*6, In Problem 3 • 4 assume that the load at point A 
has a downward component of 500 lb and a horizontal 
component of 900 lb (acting to the right). Using the 
results from Problems 3*4 and 3‘5, calculate the axial 
and transverse loads and the bending moments, at the 
designated points. Check the loads by means of Eq. 
2*7 (Sec. 2-21). 

3*7. In Problem 3-4 assume that the 1000 lb load 
acts normal to the plane of the member (plane of 
paper). Calculate the bending and torsional moments 
at the designated points. (Note. Problems 3 • 4 to 3 * 7 

illustrate a common procedure of analyzing a member for unit loads—in this 
case 1000 lb—acting separately along the three reference axes. The results may 
then be used for any combination of loads or components along these axes.) 

3*8. In Fig. 3*10 assign any desired values to x, y, and P and compute the 
loading condition at point C (transverse load, torsion, and bending). Repeat 
the process with an additional load P acting at point A in the plane of the 
structure and directed outward, away from the wall. (In this example the axial 
force must be included. Also the maximum bending moment must be found by 
vector addition.) 

3«9. Draw a sketch similar to the figure and measure the distances a, b, and c, 
to a suitable scale (c should be between 40 and 60 in.). Select a value for P 
(between 1200 and 1900 lb) and a value for M (between 3200 and 3900 in.-lb). 
Find the loading conditions along the diagonal strut at points D, Ey and F) 
(axial force, transverse force, bending, and torsion). 

Problem 3 *9. 
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3 • 10. In the example used for Problem 3 • 9 assume that the moment vector is 
acting normal to the plane of the bent strut at point F, and that it is pointed 
away from the reader. Using the same vertical load, rework the problem. 

3*11. Select a value for P and find the maximum bending moment for the 
bent strut, neglecting deflections. Select another value for M, and determine 
the location and value of the maximum torsional moment. 

\ 

Problem 3*11. 

3*12. In Problem 3-11 assume that the force P and the moment M are 
applied simultaneously. Find the maximum bending moment at section B-B. 
Show its location by means of a vector drawn on a view of the cross section at 
point B. (Use right-hand rule.) 

3*13. Assume that the tubes shown in the sketch are welded together at A 
and that the ends B and C are restrained in such a maimer that the tubes can 
resist only torsion (could be done by using universal joints at B and C). Find 
the torsional moment in each tube. 

B 

Problem 3-13. 

3*14. In Problem 3*13 assume that the tubes can resist only bending (could 
be done by using “frictionless” screwed joints at B and C.) Find the bending 
moment in each tube. {Hint The bending moment veptors at point A must be 
normal to the centerlines of the tubes.) 

{Note. Problems 3 • 13 and 3 • 14 represent two simplifying assumptions which 
could be made if the tubes were rigidly attached to their supports at B and C, 
as they would be if they were welded. The true answer will lie somewhere be¬ 
tween the results obtained for the two simple cases. A direct solution would 
require a knowledge of redundant structures, which cannot be taken up at this 
point.) 



CHAPTER 4 

EQUILIBRIUM AND REACTIONS 

4*1. One-Way Force Transmission. Up to this point all illustrations 
of force transmission have been of the one-wajr type. For clarity these 
were illustrated by sketches showing a “wall” type of support (see 
Fig. 2*37). Beams so supported are usually called cantilever beams. 
In these the net effect at any point on the structure may be obtained 
by direct summation of all the forces and moments acting outside of 
that point. The conditions at the point of support are obtained in the 
same manner and represent the summation of all the forces and mo¬ 
ments acting on the structure in question. 

Cantilever beams always have a free end, just outside of which the 
applied forces and bending moments are zero. This permits the sum¬ 
mation for forces and moments to be started from zero. Another feature 
is that the conditions at the point of support have no effect on the shear 
and bending moment “outboard” of this point (except for localized 
effects confined to an area near the point of support). 

4*2. Two-Way Force Transmission. Another common type of force 
transmission for which structures are designed might be called two-way 

transmission. A simple example is found 
in the ordinary footbridge (Fig. 4*1). 
The force Pf acting at point A, must be 
transmitted to points B and C. Obviously 
part of the force goes in one direction and 
the remainder in the other. Unless the 
force happens to be applied midway be¬ 
tween points B and <7, it is not immedi¬ 
ately obvious how it is divided between 

the two supports. It is impossible to make an analysis of such a 
structure until the division of force between the two paths is determined. 
The method of determining this division involves the determination of 
the reactions, which in turn requires the use of the principles of static 
equilibrium. 

Before taking up reactions it should be noted also that in Fig". 4*1 
the bending moment at point A could not be zero; hence it would be 
impossible to start the summation of moments from zero at this point. 

54 

Fia. 4*1. Two-way force trans¬ 
mission. 
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If, however, the points of support are incapable of applying a bending 
moment, i.e., pin-jointed or roller support, it is immediately evident 
that the bending moments at each end (points B and C) are zero. This 
indicates that the summation of forces should be started from the points 
of support. The process may be thought of as reversing the force trans¬ 
mission picture by applying, at B and C, the forces which are needed to 
resist the force at point A. 

4*3. Hydraulic Analogy. The mental picture of this process may be 
clarified by considering a hydraulic analogy. Figure 4*2 illustrates a 

Fig. 4-2. Hydraulic analogy Fig. 4-3. Hydraulic analogy for 

for one-way force transmission. two-way force transmission. 

tube of variable cross section through which a liquid is flowing. If the 
rate of flow (gallons per minute) is known, the velocity at any point may 
be determined by dividing by the cross-sectional area. It is not necessary 
to determine the rate of flow at the outlet, as this is obviously the same 
as that at the inlet. This picture corresponds to one-way force trans¬ 
mission. Figure 4*3 represents an analogy for the two-way transmis¬ 
sion. A knowledge of the flow at the inlet Q\ is not sufficient to determine 
the local conditions throughout the tube. It is necessary to know the 
values of Q2 and Q3 before this can be done. Note that if either of the 
latter values is determined, the other may be found by subtracting the 
known value from Qi. 

4*4. Reactions. In any structure the points of support may be 
thought of as imposing external forces on the structure. Such forces 
are called reactions. Once the reactions have been determined, they 
may be regarded as any other external forces; the term reaction gener¬ 
ally implies that the forces in question are not known at the beginning 
of the problem. More specifically, reactions are those forces which will 
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be developed at the points of support or restraint when the structure is 
subjected to loading. The reactions resist the applied forces, and their 
net effect is always opposite to that of the applied forces. 

4*5. Free Body. At this point it is important to obtain a clear con¬ 
ception of the common structural practice of “isolating” a structure 
(or a part of it) in space and placing it in static equilibrium by applying 
the reactions as external forces. A structure so isolated is called A free 
body. In the hydraulic analogy used in Sec. 4*3, the flow of a fluid 
through a tube was compared with the transmission of force through a 
structure. Note that in Figs. 4*2 and 4*3 the volume of the flow Q 
was indicated as leaving the tube in the same direction that it entered, 
which is, of course, in accordance with the facts. In dealing with forces, 

however, we adopt the opposite procedure and 
show, not the forces that are leaving the struc¬ 
ture at the reaction points, but those that are 
resisting the forces at these points. 

This is an application of Newton’s third law 
of motion, which states that every action is 
opposed by an equal and opposite reaction. 
It would of course be possible to use the hy¬ 
draulic analogy and sketch the forces as shown 

in Fig. 4*4a, instead of as in Fig. 4*4b. But this would not permit us to 
apply the conception of static equilibrium, which is one -of the most 
useful structural analysis tools. 

As previously noted, a structure (or a part of one) which has been 
thus isolated in space by applying the reactions as external forces is re¬ 
ferred to as a free body. Physically, this implies that the structure has 
hypothetically been disconnected from its supports (or adjacent struc¬ 
ture) and that the supports have been replaced by the forces which 
they exerted. If this were actually done, the body would be free to 
move in space and to change its velocity. But since we know that it 
is not moving (with respect to the supporting points) it follows that the 
reactions applied must satisfy the physical laws of static equilibrium. 

Thus, through the application of the simple classical laws of motion, it 
is possible to determine the reactions as those forces which are required, 
at the points of assumed disconnection, in order to prevent motion 
with respect to these points. 

4*6. Equations of Equilibrium. Newton’s first law of motion tells us 
that if the free body is to remain at rest there must be no unbalanced 
external force acting on it. Actually there may be many external Torces, 
but the summation of all these must be zero, i.e., taken as a whole the 
forces must balance each other. The same statements may be made 

-■ > r i h-»» 

(o) Hydraulic analogy: 
NOT USED 

— 14i i 

(b) Reaction method: 
USED IN STRUCTURES 

Fig. 4*4. Method of isolat¬ 

ing a free body. 
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about turning moments. If there is an unbalanced turning moment 
the free structure will not remain at rest, but will rotate. 

These two statements may be expressed mathematically by the equa¬ 
tions : 

For forces 2P = 0 [4-1] 

For moments SAf = 0 [4-2] 

If all the external forces are acting along the same line, or have 
parallel lines of action, Eq. 4-1 may be used directly. If not, the equa¬ 
tion must be written for each assumed reference axis, as it is impossible 
to sum up algebraically forces which do not act parallel to the same 
axis (Sec. 2*9). If reference axes X) Y} anrl Z are used, for instance, 
the equations of equilibrium are written (for forces): 

Equilibrium Equations for Forces 

2P* - 0 

- 0 [4-3] 

2PZ = 0 

The same equations may be applied to turning moments, by using 
the subscript to designate the axis about which the turning effect is 
exerted. Equations 4 • 3 then become: 

Equilibrium Equations for Moments 

2 Mx = 0 

2 My - 0 [4-4] 

2M* = 0 

One or more of Eqs. 4 • 3 and 4 • 4 may be automatically satisfied, hence 
need not be used. For instance, if all forces act along the same reference 
axis only one of the Eqs. 4*3 need be used, and there is no turning 
moment about any point on this line. If the summation of forces (re¬ 
sultant force) equals zero, the system can have no turning moment 
about any point. Hence all three moment equations are satisfied auto¬ 
matically and need not be used. 

If all forces are in the same plane (such as X-Y plane), all turning 
moments will act in this plane about axes perpendicular to it (Z axis). 
Hence only one equation of equilibrium for moments need be used. 
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Using these principles, the following set of equations of equilibrium 
may be set up.* 

4*7. Specific Equations of Equilibrium, a. All forces acting along same 
line. 

2P = 0 [4-1] 

Taking four forces, for example, 

ZP = P, + P2 + P3 + P4 - 0 

la) lb) 

Fig. 4-5. (a) Concurrent forces in equilibrium. (b) Same system resolved into 

components. 

b. All forces acting in same plane and through same point (concurrent, 
coplanar forces). 

2PX - 0 

2 Py - 0 

For the example shown in Fig. 4-5: 

[4-5] 

2PX = P\x + P2x Psx = 0 

2P y — Ply — P 2y =0 

Then because lines of action of all forces intersect at a common point 
and hence have no moment about this point, 

2M = 0 

c. Forces acting in any direction but through common point (concurrent 
forces). Same as b except third component added. 

2PX = 0 

2Py * 0 [4*6] 

2P* = 0 

* In Chapt. 2 the X-Z plane was used for plane problems. The X-Y plane is used 
here for the same purpose. This is done to accustom the student to the use of different 
Systems of symbols. 
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d. All forces ousting in same plane and parallel to same line. 

2P - 0 

2M = 0 
[4-7] 

For the example shown in Fig. 4-6, 

2Px - Px + P2 - P3 - P4 - 0 

2Af* = Mi + M2 “f* M3 ~f" M4 — 0 

= Pm + P2.V2 -- Pm 4- P42/4 = 0 

Fig. 4-6. Parallel forces in equilibrium. Fig. 4 -7. Coplanar forces in equilibrium. 

e. AU forces acting in same plane. 

2 Px = 0 

2PV = 0 or 

2Af, = 0 

2PX =0 

2 P* = 0 or 

2Af„ = 0 

2 Py = 0 

2P* =0 

2 Mx « 0 

For the example shown in Fig. 4-7, 

2P* - Pi + P3 - P4 - 0 

2P„ - P2 - Pr = 0 

2ilf* = P1J/1 — P2^2 + P32/3 ~ P4?/4 — PjXS = 0 

[4-8] 

Note. In the above example it may be assumed that forces P2 and P3 
represent components of a single force. P4 and Pg likewise represent 
a single force. 
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f. Farces acting in any direction and at any point, i.e., having com¬ 
ponents along and moments about all three reference axes. 

2 Px = O') 

Forces s Py =0 

2 Pz = 0 

2 Mx = 0 

Moments 2My — 0 

2Af* = 0 

General case (Eqs. 4 • 3 and 4 • 4) 

This general case includes all the foregoing soecial one*, which were 
obtained by omitting those equations which were obviously satisfied by 
the stated conditions of the problem. If there is any doubt, it is always 
possible to use these general equations, as no error is introduced through 
the use of the “extra” equations. 

4*8. Determination of Reactions (Axial Loads). The equations of 
equilibrium just described may be used to determine the reactions. First 
it is necessary to “disconnect” the structure (or part being analyzed) 

at the reaction points, hypothetically 
replacing the connecting fittings by the 
unknown forces (or moments) which 
they were exerting on the structure. 
The structure now may be regarded 
as a free body, and the equations of 
equilibrium may be written. All the 
known external forces and moments 
must be included in the equations; the 
reactions may then be regarded as the 
unknown quantities for which the 
equations are to be solved. 

The simplest equilibrium equation is, of course, that of a series of 
forces which all act along the same line (a, Sec. 4-7). A physical con¬ 
ception of this may be obtained by imagining a string supporting a num¬ 
ber of different weights (Fig. 4* 8a). The problem is to find the load 
acting on the supporting fitting. Obviously this load is equal to the 
sum of the weights. To solve by the method of equilibrium the equation 
would be written 

t50 ^ * 
(o) (b) (c) 

Fig. 4 8. Reaction to axial loads 

[2P = 0] Pi + P2 + Pz + Pi - Pr - 0 

Pr — Pi + P2 + P3 + P4 

- 100 + 40 + 80 + 50 - 270 
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It is most important to note the manner in which the sign conven¬ 
tions were used in this elementary case. In drawing the free-body 
sketch in Fig. 4*86 the reaction Pr was shown acting in a direction 
opposite to that of the applied forces. Hence, if the latter forces are 
regarded as positive, the reaction, as sketched, must be given a negative 
sign in the equation of equilibrium. This practice of predicting the direc¬ 
tion of the reaction is quite satisfactory, if properly used, but it becomes 
confusing in the more complicated cases. 

In general, it is better to assume all reactions to be positive in making 
the free-body sketch and in writing the equations of equilibrium. The 
solution of the equations will then indicate the actual direction or sense 
of the reaction by the algebraic sign. 

The problem of the weighted string, if handled in this manner, would 
appear as in Fig. 4* 8c, and the equations would be 

[ZP - 0] Pr + Pi +P2 + P* + Pi = 0 

Pr - -Pi - P2 - P3 - P4 

= -100 - 40 - 80 - 50 

= -270 

The negative sign now shows that the reaction Pr actually acts in a 
negative direction, that is, opposite to the direction shown in Fig. 4* 8c. 

The most important rule to be learned from these elementary exam¬ 
ples is that of consistency. The unknown reactions may be assumed to 
act in either a positive or negative sense and the algebraic solution will 
indicate whether the assumption was correct or not (correct if sign 
comes out positive). But unless an unknown reaction is arbitrarily 
assumed to be positive to start with, the sign obtained from solving the 
equations of equilibrium will not mean anything with respect to the 
general conventions set up for the known forces. It is therefore most 
important that the free-body sketch and the equations agree with 
respect to signs. 

For example, assume that the sketch of Fig. 4-86 had been used 
(showing the reaction acting opposite to the known forces). Assume 
also that the correct equations were used, as shown. The answer for 
Pr comes out positive. It would obviously be wrong to interpret this 
as meaning that the force Pr is positive as to sense and therefore directed 
downward. 

The point which must always be kept in mind is that the signs ob¬ 
tained from solving the equations of equilibrium indicate whether the 

initial assumptions were right or wrong. The signs of the solution may 
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be used to indicate the sense directly only when the initial assumptions 
agree with the positive conventions. 

An illustration may be given of another elementary example in which 
it is more difficult to predict the direction of the resultant force. Assume 
that a cable is fastened to a permanent support (such as a post) and that 

a number of known forces are applied 
on opposite sides of this support 
(Fig. 4*9) At first glance it is not 
possible to predict the direction of 
the reaction at the support. It is 
therefore best to make no attempt to 
do so, but to assume that the reac¬ 

tion is in a positive direction (shown acting to left). If the support is 
replaced by its reaction on the cable the equation of equilibrium becomes 

100 

P2 P*L 
Supporting 
/Post 

A - p4 
30 no 

Fig. 4 -9. 

Pi + P2 + Pr - P3 ~ Pa « 0 

Pa = — P1 “P2 + P3+P4 

- -100 - 75 + 30 + 110 = —35 

The negative sign indicates that the assumption as to the direction 
of the reaction was wrong; hence the reacting force actually acts in the 
direction opposite to that shown in the sketch. 

This simple example also illustrates that the structure may be “cut” 
or isolated at any convenient point in order to obtain the desired force. 
For instance, if the fitting to which the left-hand cable is attached is to 
be designed, the cable is cut at this fitting, and the reaction is found as 
for Fig. 4*8. The reaction for the right-hand cable is likewise found 
separately. The summation of these two reactions obviously gives the 
same answer as that obtained by cutting the support itself. 

4*9. Action and Reaction. While still dealing with elementary ex¬ 
amples it is advisable to clarify the relationship between action and 
reaction. In accordance with Newton’s third law of motion the only 
difference between these two quantities is in the sign or sense—they are 
always equal and oppositely directed. The only point likely to cause 
trouble in structural analysis is to know which force acts on which part 
of the structure. When the reaction is obtained by solving the equations 
of equilibrium, this force (or moment) must always be considered as 
acting on the free body, that is, on the part of the structure on which 
the known external loads (used in the equations) are acting! Con¬ 
versely, the action of this structure on the point or points to which it 
is attached is always represented by the reactions reversed in direction. 
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For example, in Fig. 4-9 the reaction of 35 lb acting to the right 
(indicated by negative sign in solution) represents the net force exerted 
on the cable by the supporting post. To obtain the force on the post 
the sign of the reaction is reversed, the negative sign becoming positive, 
indicating that the force acts to the left on the post. 

At first sight it might seem that this process of writing the equations 
of equilibrium in order to obtain the reactions is unnecessarily compli¬ 
cated and that a straightforward summation of forces would give the 
same result more directly. This would be true for force transmission 
of the one-way type such as used for illustration up to this point. As 
previously noted, however, the need for obtaining reactions arises when 
there is more than one path for the force transmission. A direct sum¬ 
mation cannot then be made, and it is necessary to use the equations 
of equilibrium to determine the reactions, which in turn show how the 
forces are divided between the various paths. The simple one-way 
examples were used to help create a clear picture of the problem before 
taking up the more general cases. 

4-10. Reaction to Forces in Same Plane, Acting through Common 
Point. Assume that the problem is modified by having cables pulling 
on the post in various directions. To find the net reaction exerted by 
the post, the equations of equilibrium for (6) Sec. 4 • 7 are applied. It is 
first necessary to obtain the components of the forces along two mutually 
perpendicular axes. (These axes may be established in any convenient 
manner.) Both the magnitude and direction of the reaction must be 
found. The latter will be established by the relationship between the 
components of the reaction. These unknown components are sketched 
in Fig. 4- 10a, using positive force conventions. Assume that the follow¬ 
ing values are known, for the applied forces. 

PXx « +10; Ply - +10 

P2* = +15; P2v - ~5 

P3*=+l0; P3y = -15 

[S Px - 0] 10 + 15 + 10 + PRx = 1 

Prx = 35 

[2P„ - 0] 10 - 5 - 15 + PRv = 0 

Prv = +10 

PR = V352 + 102 - 36.4 
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Figure 4-106 may now be drawn to show the true free body in equi¬ 
librium. The direction of the reaction is easily obtained graphically by 
laying out the values of its components parallel to the reference axes 
and in tin direction indicated by the signs obtained in the solution. 

4*11. Reaction to Forces in Any Direction, through Common Point. 
The equations of equilibrium for this kind of force transmission are 
given in Sec. 4-7, Eq. 4*0. Referring to the previous example (Fig. 
4-10), imagine that, in addition to the forces acting parallel with the 
ground, there is another force winch acts normal to the ground, i.e., 
downward or upward. Assume, for instance, that Fig. 4-10a shows 
the post as it would be seen from above, and that an upward force of 
30 lb is acting simultaneously with the other forces. The reaction will 
now have a component in a vertical direction, which may be denoted 
by Prz. One more equation must be added to those of Sec. 4-10 to 
take care of the Z direction. If the upward direction is established as 
positive for loads normal to the ground, and the reaction is assumed to 
have a positive Z component, the third equation of equilibrium becomes 

[SPz - 0] 30 + PRz = 0 

Pz = —30 

This indicates, of course, that the reaction is equal and opposite to 
the applied load. But since this is only a component of the total reac¬ 
tion, the value of the latter must be obtained from the equation 

Pr = + PRy2 + PR? 

- V352 + 102 + 302 = 47.2 
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The procedure would be the same regardless of the number of loads 
acting in a vertical direction. If the applied loads were neither parallel 
nor normal to the ground, it would be necessary to resolve them into 
components in the Xy Y, and Z 
directions. The solution would 
then proceed as before, treating 
these components as separate 
loads. 

4-12. Reactions to Forces in 
Same Plane, Acting Parallel to 
Same Line. This condition is ex¬ 
pressed by (d), Sec. 4-7. To 
apply it to the example of the 
post, it is necessary to add another 
member, as indicated in Fig. 4*11. 
Equations 4-7 may now be ap¬ 
plied. These show that the post 
must have not only a reacting force (PR) but also a reacting turning 
moment (Mr). 

The equations become 

[2PX - 0] 100 + 50 - 30 + PR - 0 

PR = —120 lb 
[2 M = 0] 

Fig. 4*11. Parallel forces (reactions at 

post not shown). 

100 X 80 + 50 X 60 - 30 X 40 + MR = 0 

8000 + 3000 - 1200 + MR - 0 

Mr = -9800 in.-lb 

It must be kept in mind that these values represent the reactions on 
the free body, which is really the arm used to transmit the forces to 
the post. The effect on the post will, of course, be exactly opposite, i.e., 

P = +120 lb 

M « +9800 in.-lb 

Figure 4-11 shows, by the sign conventions, which way these forces 
and moments act, although they are not actually shown in the figure. 

4*13. Reactions to Forces in Same Plane (Not Parallel to Each 
Other). In Fig. 4*12 it is first necessary to resolve the loads Pl) P2> 
and P8 into components along suitable reference axes, as shown in (5). 
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The conventions adopted are indicated also. It is now necessary to 
write three equations of equilibrium, as follows. (See Eq. 4-8.) 

2PX = 0 

HPy « 0 

2 Mz = 0 

The solution of these equations will give the reactions on the am. 
The resultant force will be obtained by vector addition of the two 

resultant components, PRx and PRy. The forces acting on the post 
will, of course, be reversed in sign, with the resultant in the opposite 
direction. 

Note that Figs. 4-11 and 4*12 are not shown in equilibrium, i.e., as 
free bodies. 

4*14. Reactions to Forces in Any Direction. Assume that in Fig. 
4*12 there are also forces or components acting normal to the plane of 
the paper at the loading points. These components would be designated 
P9. It is now necessary to use the general equations of equilibrium 
(Sec. 4*7) and to adopt definite conventions for moment axes, as 
indicated. 

Note that none of the applied forces would have any moment about 
the Y axis; hence the equation for moment equilibrium about this axis 
could be omitted. It is always safe, however, to write all the equations 
of equilibrium, as any unnecessary equations will drop out when an 
attempt is made to evaluate them. 
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4*16. Reactions vs. Resultants. These simple examples should have 
made it obvious that the processes of finding reactions and resultants 
are basically identical, as the reaction is really nothing more than the 
exact opposite of the resultant. Hence the general rules and procedures 
outlined for resultants in Chapt. 2 may be used in computing reactions. 
The main reason for working with reactions rather than resultants is 
that their use makes it more convenient to apply the equations of equi¬ 
librium. The use of these equations permits the application of algebraic 
methods and sign conventions, which will be found to be essential in 
dealing with more complicated examples. 

4*16. Reactions for Two-Way Trans¬ 
mission. As previously noted, the main 
reason for computing reactions is to deter¬ 
mine the manner in which force transmis¬ 
sion is divided between several paths. In 
a simple beam, such as shown in Fig. 4 * 13, 
there are two paths for the forces to follow, 
as the beam is supported at points 1 and 2. 
Since it is impossible to tell immediately 
how much of each force goes to each sup¬ 
port, it is necessary to assume some un¬ 
known reactions at these supports and solve the equations of equilibrium 
to find these reactions. 

Accordingly, Fig. 4 • 13 is supplied with two force vectors, Ri and R2 
(shown dotted to indicate that their magnitudes are unknown). The 
direction (but not the sense) of these vectors is determined by the nature 
of the support. Thus if the beam is lying on two frictionless rollers, it 
is obvious that the reactions must be normal to the beam, i.e., there can 
be no component along the beam itself. It is therefore satisfactory to 
assume the reactions to be vertical. 

The sense (up or down) could here be determined by inspection, but 
this is not always possible. It is therefore better to use the general rule 
of assuming the reactions to be positive and letting the algebraic solu¬ 
tion determine whether the assumption was correct or not. (In Fig. 
4*13 it happens that the positive conventions coincide with the obvious 
directions of the reactions.) 

Since all the forces and reactions are parallel to the Y axis, the equa¬ 
tions of equilibrium for forces reduce to 

Fig. 4 • 13. Simple beam with 
two supports. 

[2P„ - 0] Pi - 100 - 140 + P8 - 0 

or 
Pi + Pa - 240 [4-9] 
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This solution gives only the sum of the reactions. It is therefore 
necessary to apply the equation of equilibrium for moments. (This 
could have been foreseen by referring to Sec. 4-7.) Since the free 
body is in equilibrium, the net moment of the external loads about any 
point should equal zero; hence it should make no difference which point 
is selected in summing up moments. It is usually convenient to select 
a point on the line of action of one of the reactions, as this eliminates 
this reaction from the moment equation. 

If point 1 is selected, the equation of equilibrium for moments be¬ 
comes 

[2 M = 0] (100 X 10) + (140 X 40) 

1000 + 5600 

D 6600 

Ba " ~70~ " 

- (fl2 X 70) - 0 

- 70 R2 = 0 

94.3 

The other reaction could be found by taking moments about R2, but 
it is simpler to substitute the above value of R2 in Eq. 4-9, giving 

R1 = 240 - R2 

= 240 - 94.3 

= 145.7 

Both methods can be used, giving two independent computations for 
Ri, which should check. This type of check is extremely valuable in 
structural work and should be employed whenever possible. 

4*17. Use of Fictitious Support. The physical action can perhaps be 
followed more easily by starting out as if the beam were fixed at one end, 
as shown in Fig. 4 • 14a. The equilibrium equations then become 

[2 P = 0] R\ — 100 — 140 - 0 

Ri = 240 

[2M = 0] (100 X 10) + (140 X 40) + Mr = 0 

Mr = -6600 

Actually there can be no resisting moment at point 1, but there can 
be a vertical force at point 2. The fictitious moment Mr must there¬ 
fore be supplied by a couple, acting at points 1 and 2, on a 70-in. mo¬ 
ment arm. The value of each of the forces composing this couple is 

Pm - 
Mr 

70 

6600 

70 
94.3 
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Since the computed value of Mr was found to be negative, the react¬ 
ing couple must act in a counterclockwise direction (clockwise assumed 
to be positive in Fig. 4* 14a). This couple is now substituted for the 
moment vector Mr, as shown in 
Fig. 4 • 146, and the net reaction at 
point 2 is obtained by algebraic 
addition. The results are, of course, 
identical to those obtained by the 
conventional method. 

Actually the numerical work is 
exactly the same in both methods. 
The physical conception of the 
couple is a very useful tool, and the 
analyst should attempt to visualize 
reactions in this manner. Examples 
will be given later to show how this 
conception may be used to simplify 
the work. 

4*18. Simple Beam: Non-Parallel Forces. As an example of non¬ 
parallel forces consider a bicycle held stationary on a sloping surface 
by means of a rear-wheel brake. Instead of using actual forces, symbols 
will be used. The solution will then be general, and it can be used for 
any similar example by direct substitution of forces and distances. 

J_* 

i 
• R, 
1 ' 

I _1 
240“ 

Fig. 4-14. 

} 145.7 

94.3^ 
(b) 

Use of fictitious fixed end 

support. 

Fig. 4 -16. Reactions on a bicycle. 

First, suitable reference axes and conventions are established, as noted 
in Fig. 4-15. (Note. Symbols V and D, for vertical and drag, are pur¬ 
posely used to illustrate the point that any system is satisfactory, pro¬ 
vided that it is adhered to during the problem.) The next step is to 
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examine the points of support (reactions) to see whether the direction 
of any of the reactions can be determined in advance. Since the brake 
is on the rear wheel only, it is obvious that the reaction on the front 
wheel must be normal to the ground line. 

The direction of the rear-wheel reaction cannot be determined by in¬ 
spection, as this reaction includes a drag force as well as a vertical force; 
this unknown reaction must be split into two components, the direc¬ 
tions of which are known, but the magnitude of which must be deter¬ 
mined. These arc labeled R2 and 723. 

The load acting on the bicycle (its own weight plus that of the rider) 
is assumed to be concentrated at the center of gravity of the combina¬ 
tion, which is located by the dimensions a and 6. This load must be 
resolved into components acting along the assumed reference axes. 
These components are 

pv = — p cos 0 

pD » -P sin 0 

where 0 is the slope of the ground. 
The equations of equilibrium may now be written (Sec. 4*7): 

(1) [EPV « 0J Rx + i?2 - P cos 0 = 0 

(2) [ZPD = 0] R3 -P sin 0 = 0 

(3) = 0] Rxc — aP cos 0 — bP sin 0 = 0 

Note. Moments are summed up about contact point of rear wheel. 
This eliminates two reactions from the equation. 

The second equation immediately gives the reaction R% = P sin 0. 
The third equation may be solved for Ri giving 

Rx — P 
a cos 0 + b sin 0 

[4-10] 

The first equation yields R2, after substituting for R\ as follows. 

R2 — P cos 6 — Ri 

cos 8 — 
(a cos 0 + b sin 6 

c )] [4-11] 

Equations 4 • 10 and 4-11 will give the answer for any specific case, 
simply by substituting numerical values for the symbols used. For in- 
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stance, if the bicycle were on level ground, 8 would be zero and Eqs. 
4• 10 and 4*11 would become 

Ri = P- [4 • 10a] 
c 

R2 = P^l - P* [411a] 

since cos 8 = 1, sin 6 = 0, and a = c — b. 
If the brake had been applied at the front wheel only, the conditions 

of Fig. 4*15 would be reversed, i.e., the drag component /?3 would act 
on the front wheel. The question then arises, “What if both wheels are 
braked.” Obviously the answer may lie anywhere between the two 
extremes already described, depending on the degree of braking applied 
to each wheel. The problem is therefore indeterminate, at least so far 
as the simple laws of static equilibrium are concerned, for additional 
information is necessary. It is most important to be able to recognize 
a statically indeterminate (or redundant) structure. This is more fully 
covered in Chapt. 5. From this point on it must be kept in mind that 
only statically determinate structures are dealt with, unless otherwise 
noted. 

4*19. Reactions for Distributed Loads. The use of the equations of 
equilibrium in computing reactions is relatively simple when the ex¬ 
ternal loads take the form of a few concentrated forces. For distributed 
loads, however, it is difficult to handle the problem in this way, and a 
somewhat different approach may be used to simplify the work. In 
Sec. 2*18 it was shown how distributed loads could be progressively 
summed up along arbitrary axes, giving resultant forces and moments 
at any desired point. This method can be employed to reduce the ex¬ 
ternal loads to equivalent resultants, which can be more easily handled 
in the equilibrium equations. 

An externally braced airplane wing offers an excellent example of the 
procedure, as shown in Fig. 4 • 16. It may be assumed that the external 
loads have been accumulated into a curve of running load (w) in the 
plane of the paper. By following the procedure given in Sec. 2*19, 
these running loads may be collected (summed up or integrated) into a 
curve of net vertical force (Pz), which is again integrated to give a curve 
of net moment at any station. These processes are indicated by the 
small sketches on Fig. 4*16. 

The first step consists of this summation process, under the assump¬ 
tion that the diagonal “lift” strut does not exist. Sketch (a) illustrates 
the assumed cut. Sketch (6) shows the fictitious resultants thus ob- 



72 EQUILIBRIUM AND REACTIONS 

tained at point 1. So far as reactions are concerned, the original loads 
may now be assumed to be replaced entirely by these equivalent result¬ 
ants, making the problem much easier to solve. 

Running Load (w) 

Lift strut Rxa =• KRn [d] 
Procedure 

1. Solve (c) for Rzr 
2. Substitute RZ2 in (a) and find Rn. 
3. Substitute RZi in (d) and find RXr 
4. Substitute RXi in (b) and find RXv 
5. Combine components of Rz to obtain resultant, 

R, - V'V + RJ 

Fig. 4*16. Computation of reactions for airplane wing. 

Now if the connection at point 1 is made by means of a pin joint, it 
is impossible for the computed moment to be resisted at this point. The 
only thing that keeps the beam from rotating upward is the lift strut, 
which must therefore resist such rotation by means of a tension load, 
pulling down on the beam. Since the direction of the lift strut is 
known, it can be replaced by an assumed reaction Rg> the magnitude of 
which remains to be computed. 
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According to the standard procedure for computing reactions, the 
components of the unknown reactions at points 1 and 2 are assumed to 
be positive, as shown in sketch (c). (Sketches b and c are separated for 
clarity; they must be combined to put the free body into equilibrium.) 
The equations of equilibrium are then written, combining the fictitious 
applied loads of sketch (b) with the assumed reactions of sketch (c). 
(This process is the mathematical counterpart of superimposing these 
two sketches.) Since the values of Pi, and M\ are already known, the 
equations can be solved for the unknown resultants, as indicated in 
Fig. 4-16. 

Note that the direction of the lift strut has an effect on the results. 
This is introduced mathematically by means of Eq. d, which gives the 
relationship between the two components of the lift strut force. The 
signs obtained from the solution of the equations will indicate which way 
the reactions act on the beam. It will be found in the illustration that 
all the signs of Rz\, Rz2, and Rx2 come out negative, indicating that the 
directions assumed for the forces in sketch (c) were wrong. 

There are many possible variations in this procedure, but the method 
used here contains most of the important principles involved. It would 
have been possible to assume tension in the lift strut and to draw the 
vectors Rx2 and Rz2 in the oppo¬ 
site directions from those shown. 
The solution would then indicate 
that the assumption of tension 
had been correct. 

4*20. Short-Cut Method. It 
is frequently possible to shorten 
the computations by direct appli¬ 
cation of the principle outlined 
in Sec. 2-13, that of the couple. 
In the preceding example it could 
be seen that the reaction to the 
vertical resultant Pz 1 would be an equal and opposite force acting 
at point 1, while the moment Mx could be replaced by an equivalent 
couple. Since the couple must act between the two points of sup¬ 
port, and since one of the forces must act along the line of the lift 
strut, it is obvious that the reacting couple will appear as shown in 
Fig. 4*17. Only the magnitude of the reaction R2 is unknown, and this 
is very easily found by dividing the moment by the moment arm of the 
couple. This distance is, of course, the perpendicular distance d from 
point 1 to the line of action of R2, as shown. The final resultant at 
point 1 is obviously obtained by combining the two vectors which act 

a 
Csf M, 

•-Pz, 

"f 
d. 

*rT 

Fig. 4 * 17. Computation of lift strut 
reaction. 
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there. The axial and transverse forces applied at point 2 may be ob¬ 
tained from the components of R2. 

This principle of taking moments is of great value in structural work, 
as it obviously reduces the mathematical work required and it gives a 
better physical conception of the problem. It is particularly useful if 
only the load in the cut member is to be found. But a method of this 
type must be used with caution, as it does not have the automatic 
features of the standard method, and it is therefore susceptible to mis¬ 
takes in signs. The best engineering procedure in the example used 
here would be to go through the standaid method and then check it by 
computing the reaction at point 2 by the short-cut method of taking 
moments. 

4-21. Distributed Loads. Although the foregoing methods take care 
of the reactions, they do not give the final conditions between the points 
of support. It would, of course, be possible to apply the computed 
reactions to the free body, putting it in equilibrium, and then start all 
over again to obtain the net forces and moments by the method of 
progressive summation. This is not really necessary, however, as this 
summation has already been done on the basis that there is no reaction 
at point 2. It should therefore be satisfactory to make a summation 
for the reactions at point 2 only and superimpose the results on those 
already obtained. This process is almost completely explained by Fig. 
4 • 18, which shows, side by side, the two separate summations, together 
with the final conditions obtained by combining them. 

In using the process of superposition it is obviously essential that 
exactly the same sign conventions be used. To avoid confusion, the 
plotted curves should adhere to these conventions also, as shown. How¬ 
ever, it is convenient to reverse the signs of the loads caused by the 
reactions and to plot them on the diagram for the external forces. The 
net values are then obtained by direct measurement of the differences 
between curves. This is indicated by the dotted lines in the figures. 

The following notes are of interest in connection with Fig. 4*18. 

а. The axial (x) component of the lift strut reaction has no direct 
effect on the shear or moment curves. (Secondary effects are discussed 
in Chapt. 19.) 

б. The final net vertical force (shear) at station 1 should be equal to 
the computed value for the vertical reaction at that point. 

c. The final moment at station 1 should turn out to be zero. (The 
last two points afford an excellent check on the work.) 

Since it is known that the net moment at station 1 must be zero 
(because of the pin joint) and that the moment at 2, due to the lift 
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strut, is also zero, the net moment curve can be obtained directly by 
drawing a dotted line as shown in Fig. 4-18. 

External Loading 

Fig. 4* 18. Computation of net loads and moments. 

4-22. Graphical Methods of Determining Reactions. Chapter 2 de¬ 
scribed various methods for determining the resultant of several forces 
graphically. The reaction is, of course, equal and opposite to the re¬ 
sultant and is given by the closing line of the vector diagram. If Bow’s 
notation is used (Sec. 2-7), the direction of the reaction is determined 
by continuing around the force polygon, instead of reading from the 
starting point (see Sec. 2-8). By means of the string polygon the re¬ 
sultant of a system of forces may be located on the space diagram, and 
the moment of this resultant about any point may be readily determined 
by measuring the moment arm. In one-way force transmission the 

reactions may be found by this process. 
The principle of the string polygon may also be employed to find the 

reactions in two-way force transmission. The force polygon is con¬ 
structed in the usual manner, a pole is selected, and rays are drawn as 
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described in Sec. 2-8 and shown in Fig. 4-19. Instead of using the two 
outer rays (OA and OD) to determine a point on the line of action of 
the resultant force, they are used to determine a closing line for the 
string polygon. This is done by extending the string polygon to meet Ithe lines of action of the unknown 

c I d ^[\ reactions. In Fig. 4*19, lines oa 
—1__ g N, and od are thus drawn and deter- 

|-4 mine the position of closing line 
°!e e 1 d c ® oe. (Two dotted lines have been 

! / included to show the alternate 
I e construction for a single resultant 

o"-or reaction, but thej^ are not used 
j here.) The string oe corresponds 

to a ray OE in the force polygon, 
which may now be drawn parallel 

Fig. 4-19. Graphical determination of . -n • x a ± 
1 ,. to oe. Point h detenmnes reac- reactions. . „ _ „ , 

tions DE and EA. 
The use of the string polygon may be extended to include cases in 

which the direction of only one of the reactions and the point of applica¬ 
tion of the other arc known to start with. 

Figure 4*20 shows such a case, in which the direction of Ri is pre¬ 
determined, but only the point of application of R2 is known. The 
polygon for the known forces is constructed as usual, including the rays 

Fig. 4 -19. Graphical determination of 

reactions. 

Fig. 4*20. Graphical method—general case. 

OAy OBf etc. The line AE may be drawn in the proper direction, but 
the length of the line cannot immediately be determined. It will be 
found when the final ray is drawn parallel with the closing line of the 
string polygon. Since the moment arm of reaction R\ about the other 
reaction point must be preserved, the string polygon cannot be started 
at any arbitrary point, but must pass through the point of application 
of R2* Hence the construction is started at this point and line od is 
drawn parallel to OD, oc parallel to OC, etc. The closing line oe gives 
the direction for force vector OE in the polygon and thereby determines 
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point E and vectors DE and EA. The dotted lines in the force polygon 
are those found during the solution of the problem. 

Many useful applications of the string polygon in determining reac¬ 
tions and bending moment curves are to be found in structural handbooks 
and textbooks. References 4 and 7 contain numerous interesting exam¬ 
ples and problems. 

4*23. 1‘Handbook” Curves. The foregoing examples have been used 
mainly to give a clear understanding of the processes involved, and so 
they have been made quite general. It is obviously possible to select a 
large number of types of loading conditions and to work out the reac¬ 
tions, shears, and bending moments for each one in terms of the load 
intensity, dimensions, and type of support. If the assumed conditions 
are s‘mple (uniform loading, triangular loading, etc.) the work can be 
done entirely by mathematics. 

General formulas and charts have been prepared for many simple 
types of loading and are very useful to the structural engineer. They 
may be found in almost any structural textbook or engineering hand¬ 
book and may be used for routine calculations. Appendix 3 covers 
most of the common loading conditions. 

PROBLEMS 

4*1. Draw a free body of the portion of the beam to the right of section A-A 
showing all the forces and moments acting at the cut. (Indicate the reaction 

as an external force.) 

Problem 4*1. 

4-2. Find the vertical reactions required at each wheel to balance the applied 

landing loads. 

W~43,750 lb 
M **50,000 in.-lb 

Problem 4*2. 
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4*3. A radio mast must resist a uniformly varying air load as shown. Find 
the forces required at pins A and B, which attach the mast to the structure. 

Problem 4 • 3. 

4*4. Make a free-body diagram of the portion of the beam to the left of section 
B-B, and indicate the shear and moment at this section. (Assume B-B at 5 in. 
from left end.) 

Problem 4 • 4. 

4*5. A dual control system for a light plane is illustrated. Considering the 
handgrip on the aft stick to be fixed, what is the torque in tube C due to an ap¬ 
plied side force of 50 lb acting at the forward handgrip? (Note: No side force 
can be transmitted through the connecting tube, due to the ball-and-socket 
arrangement. Likewise no torque may be transmitted through the base struc¬ 
ture.) 

Problem 4-5. 

4*6. Draw a number of concurrent force vectors as shown in Fig. 4 • 10, but of 
different magnitude and directions. Find the value and direction of the reaction 
analytically. Check graphically. 

4*7. To the forces used in Problem 4 • 6 add another acting normal to the plane 
of the paper (along Z axis). Compute the reaction analytically. Check its 
value graphically by adding the reaction to the new force, to the reaction ob- 
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tained in Problem 4 • 6. (The plane in which this addition takes place will actu¬ 
ally be normal to the paper, but the vectors must be drawn in the plane of the 
paper.) 

4*8. Change the values of the forces shown in Fig. 4*11 and find the reactions. 
Check by writing the equations of equilibrium, using the point of application of 
force Pi as a reference point. 

4*9. Draw a sketch of a cantilever beam loaded by three transverse forces of 
different magnitude. Assign values to the forces and to the dimensions. Cal¬ 
culate the reactions (shear and bending moment) at the fixed end and draw the 
shear and moment curves for the beam. Then assun e that the method of sup¬ 
port is changed to that of a simple beam and find the reacting couple required to 
replace the fixed-end moment. Show how this affects the shear and moment 
diagrams. 

4*10. Work out Eqs. 4-10 and 4-11 for a bicycle (Fig. 4-15) braked at the 
front wheel only. 

4*11. Set up a problem such as shown in Fig. 4-20 and obtain the reactions 
graphically. Check by computing the bending moment and shear force at the 
right end, assuming the beam to be fixed at this end. Then replace the fixed 
support by a pin and apply the required couple to supply the reacting moment. 
Find the right reaction by graphical addition. 

4*12. Make a scale drawing of an externally braced airplane wing beam, as 
shown in Fig. 4-16. Draw a curve of running load (w) similar to that shown and 
having a value of 100 lb/in. at the inboard end of the wing. Draw the shear and 
bending moment curves, assuming the wing to be fixed at the inboard end, with 
lift strut cut. Determine the reactions and draw the net shear and bending 
moment curves for the actual conditions. What is the axial force in the beam 
between stations 1 and 2? 
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CHAPTER 5 

STABILITY, CONSTRAINTS, AND REDUNDANCIES 

6*1. Statically Indeterminate Structures. The i xample of the bicycle 
(Sec. 4*18) introduced one of the most important principles of struc¬ 
tural analysis, the distinction between statically determinate and stati¬ 
cally indeterminate structures. In the h^st clas of structures the reac¬ 
tions may be obtained by treating the structure as a free body and 
solving the equations of static equilibrium, from which the term stati¬ 
cally determinate is derived. Statically indeterminate structures (also 
called redundant) cannot be solved by this process alone; it is necessary 
to consider other factors such as deflection or strain energy. The 
methods involved are considerably beyond the state of knowledge cor¬ 
responding to this point in the development of structural analysis 
methods; they must therefore be deferred until the necessary back¬ 
ground has been covered. 

Even in elementary structural analysis, however, the engineer must 
be able to recognize statically indeterminate structures, otherwise he 
may waste many hours trying to solve an impossible problem. It is 
also useful to know how to obtain approximate answers by making 
assumptions that will reduce the indeterminate structure to a deter¬ 
minate one. 

The bicycle example illustrated two extreme conditions which in¬ 
cluded all intermediate solutions. This method is often applicable in 
structural work. In general, the procedure is to reduce the problem to 
a statically determinate one by making one or more simplifying assump¬ 
tions. After obtaining a solution, the assumptions can be changed and 
another solution obtained. This is often referred to as a method of 
overlapping assumptions. Other examples of* this procedure will be given 
later, but at this point it is important to realize that the simple principles 
of static equilibrium can often be applied to indeterminate problems in 
this manner. 

5*2. Unnecessary Members. Another way to describe a statically 
indeterminate structure is to state that it has more members (or condi¬ 
tions of constraint) than are necessary for the transmission of the force. 
Thus, only one wheel of the bicycle needed to be constrained by the brake: 
the use of both brakes caused one extra constraint and made it impossible 
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to solve the problem by the simple laws of equilibrium. Stated mathe¬ 
matically, in a redundant structure the conditions of equilibrium do not 
supply as many equations as there are unknowns. 

Another simple example is the ordinary table. A three-legged table 
has just enough logs to support a load; the addition of a fourth leg must 
therefore make the problem statically indeterminate. This is literally 
true, as the load on each leg will now depend not only on the laws of 
equilibrium but also on the length of the legs, the condition of the floor, 
or both. The method of overlapping assumptions would be a logical one 
for a table, as it would be sensible to design each leg on the basis that 

w// any one of the others might be in- 

A vyy A^^IP active Hf The minimum number of mem- 
p— ^ Up j "   —jpp bers required to transmit a force will 
T P v P ^ depend on the type of structure and 

^011 num^er of space dimensions 
pp involved. For instance, transmission 

-of a force by axial tension involves 
only “one space,” and so only one 
member is required. A practical 

Statically Determinate Statically Indeterminate application of this rule is found in 

Fig. 5 1. Classes of plane structures. COrtain airplanes which use 

double tie rods (side by side). It is 
customary to use overlapping assumptions in computing the force in 
each rod, as the exact value will depend on the relative rigging loads. 
(For instance, each rod might be designed to carry 60 per cent of the 
total load, instead of 50 per cent.) 

In “two space” (plane) a minimum of two members, or one member 
and one constraint, are required. Thus, in Fig. 5-1, (a) shows two mem¬ 
bers, A and B, whereas (b) shows one member constrained at one end. 
Both of these problems arc statically determinate. But if one #f the 
members of (a) were also fixed at the end, as in (c), or if a third member 
were added as in (d), the problem would be classed as statically inde¬ 
terminate. 

The table, previously discussed, illustrates conditions in three space, 
A tripod is also an excellent example which is widely used in structures. 
If in Fig. 5 • Id the third member does not lie in the plane of the other 
two, the structure again becomes determinate, even though the load is 
still applied in the plane of the original two members. This will* be ex¬ 
plained under stability. 

6*3. Stability. Before proceeding farther with the determination of 
reactions it is advisable to discuss briefly the problem of stability. In 
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advanced structural work this is one of the most important subjects, 
but it also has an elementary application in connection with reactions 
and indeterminate structures. 

If a weight is supported by a pin-ended vertical compression member 
as in Fig. 5 • 2a, according to the foregoing rules this one member should 
be enough to transmit the force. But anyone would recognize the prac¬ 
tical impossibility of doing the job in this manner and would either 
drive the member into the ground (as in b) or attach some additional 
members (as in c). The problem is apparently made statically inde¬ 
terminate by thus adding a constraint or a member, but actually it may 
still be treated as a determinate one. 

Fig. 5 • 2. Examples of stability and instability. 

The answer is, of course, that we can neither escape from the reality 
of living in three-space nor can we load a structure perfectly. In Fig. 
5* 2a the slightest eccentricity of the load, or slant of the stake, would 
produce a force component in another space direction, and there would 
be nothing to resist it. Hence we must provide for these very small 
departures from perfection, which means that all practical structures 
must have sufficient members or constraints to take care of a three-space 
type of loading. If the applied force does not theoretically require these 
additional space members (or constraints), they may be neglected in 
determining whether the structure is statically determinate, even though 
they are required from a practical standpoint. 

The bicycle (Sec. 4*18) may be used as another example. As shown 
in Fig. 4*15, the problem is statically determinate, when considered two 
dimensional. Actually, if the bicycle were standing still it would tend 
to fall over sidewise and would require an additional member or con¬ 
straint to stabilize it in the third dimension. Similarly, if it were on level 
ground the constraint afforded by the brake would theoretically be un¬ 
necessary. However, the application of the brake would not make the 
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problem indeterminate, and from a practical standpoint it would take 
care of any slight departure from the assumption that the ground was 
level. 

One apparent exception to the above reasoning is the simple tension 
member. If the weight of Fig. 5 • 2 had been suspended by a cable, as in 
Fig. 5*3, it would be unnecessary to add lateral supports or constraints. 
This is because a tension member is self-stabilizing. Thus, if some dis¬ 

turbance caused the weight to move side- 
wise, as shown by the dash line, the weight 
component acting normal to the cable would 
pull it back into line again. This is not 
really an exception, however, as the addition 
of just enough member^ to keep the weight 
from swaying would not change the load in 
the cable, and the problem would remain 
statically determinate. Without these mem¬ 
bers the weight could be set in motion and 
the combination should then be classed as 
a mechanism (specifically, a pendulum). 

5*4. Mechanisms. It has been shown 
Fig. 5 3. Tension member, that a statically determinate structure should 

have just enough but not too many members 
or constraints. If there are not enough, there is no structure at all (except 
in tension members, as noted above). Such an arrangement of members 
is called a mechanism. From the standpoint of force transmission a 
mechanism is useless, as it will not transmit a force but will move as 
soon as the force is applied. 

Since it is of no practical use as a means of static force transmission, 
the mechanism is extremely important as something to be recognized 
and avoided. It is quite possible to find that a proposed design is not a 
structure but a mechanism, hence incapable of performing its function. 
Cases have even occurred in which this was not found out until the 
“structure” was built, only to cause extreme embarrassment to the 
designer 1 It is essential that the structural engineer be able to recog¬ 
nize a mechanism, so that he will waste no time trying to analyze it as 
a structure and will know what to do to correct it. 

An arrangement of members may constitute a structure with respect 
to one type of loading and a mechanism with respect to another.* Thus 
in Fig. 5-la the two members form a sound structure with respect to 
forces acting in their own plane, but if the attachments at the wall were 
made with ball-and-socket joints, the structure would be unable to 
transmit a load normal to its own plane. With respect to such loads it 
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would therefore be a mechanism. (Such an arrangement is actually 
used in hoists and brackets.) 

6*5. Constraints. It has been shown that the direction and nature of 
the reactions will depend on the conditions of constraint or support at 
the points in question. This is so important that some additional types 
of support will be examined. 

The simplest form of support is of course the roller. Such supports 
were assumed in Figs. 4*15 and 4-20, as they simplified the problem 
by compelling the reaction to be exerted normal to the contact surface. 
The frictionless roller may therefore be thought of as an idealized form 
of support which is incapable of transmitting a moment and which can 
transmit a force along only one line of action. (In some structures 
rollers are actually used to produce exactly these conditions.) 

The pin is an even more common 
type of constraint, represented in prac¬ 
tice by bolts, rivets, axles, etc. It is 
usually assumed that the pin can trans¬ 
mit no turning moment about its own 

Rollers 

axis, but that it can transmit a force 
in any direction in a plane normal to 
its axis. The combination of pin and 
roller is, of course, a wheel. Assuming 
no friction, the direction of the force on 
the pin will be determined by the point 
of contact of the wheel with the sup¬ 
porting surface. 

Pins may be installed so as to trans¬ 
mit moments about an axis normal to 
the axis of the pin by means of a 
couple or its equivalent. Thus a pin 
may be used to transmit torsion into a 
member without causing a bending 
constraint in one plane. To eliminate 
bending constraints completely, two pins 
may be used at right angles, making a 
universal joint. This type of joint is widely used in machinery (see 
Fig. 54). 

The ball-and-socket joint (Fig. 5-4) can transmit an axial force in 
any direction but is incapable of transmitting any moment about any 
axis. 

Various other types of joints may be used for specific purposes, such 
as the spline (transmits torsion and sometimes bending but no axial 
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force), sleeve (transmits bending but no torsion or axial force, as in 
airplane shock absorbers), threaded connections (may transmit axial 
forces and bending but no torsion, neglecting friction). 

5-6. Simplifying Assumptions for Constraints. In actual practice it 
will be unusual to find a structure that does not have at least some 
slight degree of redundancy. It is theoretically impossible, for instance, 
to consider a pin to be frictionless; this is particularly true if the pin 
takes the form of a tight bolt or rivet. Welded connections are certainly 
capable of transmitting both torsion and bending, as well as axial forces. 
But if every factor of this type were taken into account, the analysis 
would become almost impossible It is most important to recognize 

(a) 

Fig. 5 • 5. Pinned beam. 

(b) 

those forms of constraint which may be regarded as secondary and to 
eliminate them from the problem. This should not be done blindly, 
however, as it may be necessary to investigate such constraints more 
carefully if they appear to be relatively important. 

Although no specific rules can be set up at this point, common sense 
will usually suffice to show what simplifying assumptions can be made. 
A few typical ones will be discussed below to illustrate the reasoning 
involved. 

One of the most common assumptions is the hypothetical replace¬ 
ment of a pin joint by a roller supporting the beam. Except in special 
cases, beams are likely to be bolted, riveted, or welded in place. Even 
a single pin through each end of a beam (as in Fig. 5*5) theoretically 
makes it redundant, as each pin is capable of carrying “side” loads 
along the axis of the beam. As the beam bends under the vertical load 
P, it tends to pull the two supporting pins closer together, as indicated 
in Fig. 5 5b. If the beam is very flexible in bending, but strong in 
tension (as in a spring or cable), this process may go on until most of 
the load is carried by tension in the beam, instead of by bending. If, 
however, the beam is quite deep as compared with its length, the amount 
of deflection will not be enough to produce appreciable tension loads; 
it may consequently be assumed that one of the supports is replaced by 
a roller, and the problem becomes statically determinate. If one of the 
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holes should be “sloppy,” i.e., considerably larger than the pin, a con¬ 
dition equivalent to roller support is obtained. 

The tightrope represents the other extreme, in which the bending 
stiffness of the “beam” may be neglected. The suspension bridge is also 
based on this principle. In flat plates under normal pressure, conditions 
may vary from one extreme to the other, depending on the dimensions 
of the plate. Thick plates may be treated as beams (bending), whereas 
very thin plates behave like the suspension bridge (tension). Inter¬ 
mediate conditions involve both bending and tension. 

In taking up trusses, later, it will be found that Jhe analysis is greatly 
simplified by assuming all members of the truss to be pin jointed, even 
though they may be attached at the ends with gusset plates, or welded. 
This simplifying assumption may sometimes have to be modified to 
account for the bending moments introduced at the ends of the members. 
However, the simple pin-jomted assumptions are usually made first, 
after which more refined methods may be applied to take care of end 
fixity conditions. 

From these examples it can be seen that the underlying principle to 
be followed in simplifying the conditions of constraint is that of compari¬ 
son. In the beam pinned at each end a comparison was made between 
the two extreme assumptions of pure bending and pure tension (suspen¬ 
sion-bridge action). Common sense usually will determine which as¬ 
sumption is the more reasonable. 

This method can be applied to obtain an approximate solution for 
Fig. 5*lc. It would first be assumed that the two members A and B 
are pinned. In the alternative assumption member B would be assumed 
to act by itself as a cantilever beam. Usually the first assumption will 
be closer to the true conditions, and an approximate analysis may there¬ 
fore be made on that basis, by static methods. 

5*7. Summary. The foregoing discussion of redundancies and con¬ 
straints has been included at this early stage so that there will be no 
misconception as to the accuracy of structural analysis methods. The 
engineer must realize that much depends on intelligent assumptions and 
common sense, and he should start developing these indispensable tools 
as soon as possible. Many seemingly complicated structural problems 
can be solved quickly and with sufficient accuracy by simple methods 
based on reasonable assumptions. On the other hand, much time can 
be wasted by applying rigorous methods in order to take care of minor 
redundancies and secondary constraints. Finally, a clear conception of 
constraints and their effects will be of great value in connection with 
modem relaxation methods of analysis, which are built up along the 
lines discussed in this chapter.46-47 
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PROBLEMS 

6*1. A pin-jointed truss is loaded as shown. 

(o) Is this structure determinate or indeterminate? 
(b) If member AF is removed, will this truss collapse? 
(c) If member DF (only) is removed, will this truss collapse? 

6*2. The structure illustrated represents an elementary shock absorber instal¬ 
lation for an airplane. The cylinder may be regarded as capable of resisting axial 
load, through internal pressure. 

(a) Is the structure determinate under vertical load, Pyt 
(b) Is it determinate for drag load, Pdt 
(c) Assume that the piston is free to move in the cylinder and that an 

additional member AB is installed. Is the arrangement now redun¬ 
dant? (Note. Member AB not shown.) 

Problem 5-2. 
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5-3. The figure shows a top view of a square table having only three legs 
(A, B, C). Classify the structure (legs) as indeterminate, determinate, or a 
mechanism, for the following conditions and indicate how much of the weight 
will be resisted by leg C in each case. (Neglect weight of table itself.) 

(a) Weight at exact center (0). 
(b) Weight directly over leg B. 
(c) Weight at D (halfway between 0 and C). 

Problem 5*3. Problem 5-4. 

6*4. In the structure shown, either of the members may be removed without 
destroying the load-carrying capacity. Member ADC is considerably more rigid 
than member ABC. Is the structure redundant? Could it be analyzed by the 
principles of static equilibrium if both members were of the same size and stiff¬ 

ness? 
6-5. In Problem 5-4 assume that each of the curved members has the same 

stiffness and that a straight member AC is added. Is the structure statically 
indeterminate? Classify the structure with one curved member removed, i.e., 
one straight and one curved member remaining. 

6-6. Is the structure determinate under the loading condition shown? (Neg¬ 
lect effect of deflections.) 

Problem 5-6. 
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5*7. The tubes are welded together at A and are completely fixed at B and C. 
To what extent is the structure statically indeterminate when loaded as shown? 

6 «8. In Problem 5 • 7 assume that joint C is changed to a ball-and-socket joint. 
Is the structure statically indeterminate, determinate, or a mechanism? De¬ 
scribe the loading condition for member AB. 

6*9. Assume that the structure of Problem 5-7 has a universal joint at B, 
a ball-and-socket joint at C, and no support at A. What will happen under the 
loading condition shown? 

5 • 10. Member AB is free to slide at B but can carry bending. Is the structure 
determinate? 

Problem 5 • 10 



CHAPTER 6 

BEHAVIOR OF MATERIALS UNDER LOAD * 
(PHYSICAL PROPERTIES/ 

6*1. Tension Stress. To the structural engineer, the behavior of 
materials under tension is the most useful source of information avail¬ 
able. This information is usually obtained by pulling a test specimen 
and measuring the applied forces and resulting stretch, f Since struc¬ 
tural literature is replete with information on the tension test, stress- 
strain diagrams, and other similar subjects, the following discussion will 
be presented as a brief review of material which is essential to further 
understanding of structural phenomena. 

To arrive at a standard basis for comparing different materials en¬ 
gineers have adopted the terms stress and strain. Since there is often 
some confusion as to the exact meaning of these terms, the following 
definitions will be strictly adhered to throughout this text. 

Stress t may be defined as the unit force, or force per unit of cross- 
sectional area. It is obtained by dividing the axial (tension) force by 
the area of the cross section normal to the force, as indicated by the 
following equation: 

Axial stress [6-1] 

where / = stress. § 
P = force. 
A = cross-sectional area. 

* This chapter is included only as a basis for further development of force trans¬ 
mission principles. It is not intended to cover the entire subject of failure of mate¬ 
rials. 

t The technique involved in such tests has been highly refined and standardized. 
For further information see the publications of the American Society for Testing 
Materials (ASTM). For a complete discussion of the tension test see Ref. 8. 

t In some texts stress is more broadly used to include the total force; here its use is 
confined to unit force. 

$ The Greek letter sigma (er) is usually used in the theory of elasticity; in engineer¬ 
ing work the letter s is sometimes used. 
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Since the force is usually measured in pounds and the area in square 
inches, stress will usually be measured in pounds per square inch, which 
will be abbreviated in this text to psi.* 

For example, if the tension member of Fig. 6-la has a cross-sectional 
area of 2 sq in. and is subjected to a force of 40,000 lb, the axial stress 
will be 

p 40 non 
/ = j = 20,000 psi (or 20 ksi) 

A A 

Fig. 6 la. Tension specimen under 
load. 

Some observations on tension f 
stresses and the tension test should be 
carefully noted. 

a. The cros* section for which A is 
measured must be normal to the direc¬ 
tion of the axial force (see Fig. 6* la). 

h. The distribution of the force over 
the cross section is assumed to be uni- 
/orm,i.c.,Eq.6 *1 gives the average stress. 

c. The area A is usually measured 
before loading; reductions or “necking 
down” during loading are then not 
accounted for. 

d. The length of the member does not 
enter into the calculation. 

6*2. Ultimate Tension Stress. Most tension tests are carried to the 
point where the specimen breaks. If the maximum force exerted (P) is 
divided by the original cross-sectional area (A) at the point of failure, 
the resulting stress is a measure of the strength of the material in tension. 
In fact, this maximum stress is often referred to specifically as the ten¬ 
sile strength, but it is more accurate to call it the ultimate tensile stress 
(or ultimate tension stress). Tensile strength might be misunderstood 
to be the total strength of a member in pounds. 

The ultimate tension stress is used directly in determining the required 
size of a tension member. It is also considered to be the most useful 
indication of the general strength characteristics of a material. How¬ 
ever, modem structural design requires a much more extensive knowl¬ 
edge of the material properties, and it is therefore necessary to establish 

* Because of the large numbers usually involved in measuring loads and stresses it 
is convenient to use a larger unit of measurement. In British practice the ton is used 
sometimes. Recent U.S. trend is toward the ktlopoundt abbreviated kip, which is a 
unit of 1000 lb. The corresponding stress unit is kilopounds per square inch, abbrevi¬ 
ated ksi. 

t For consistency the word tension will be used in place of the more common 
tensile and compression will be used instead of compressive. 
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Fig 6 16 Tension test of a wood specimen Note the strain gages for measuring 
elongation. The wires lead to a resistance type of gage cemented to the specimen. 

other criteria that may also be obtained from the tension test. Most of 
these are associated with the stress-strain diagram, which is of utmost 
importance in structural engineering. 

6*3. Tension Strain. Under tension loading, a member will stretch 
or elongate. Since the total amount of stretch will depend on the length 
of the member, it is necessary to establish a unit of measurement that 
is independent of the length. This unit is the strainy defined as the 
elongation per unit length of the member. 

Axial strain 
AL 

L 

where AL = the change in length (read “delta L”). 
L = the length over which AL is measured. 

[6-2] 
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For example, if the member shown in Fig. 6 • 1 is 10 in. long (between 
points of measurement) and elongates 0.01 in. in this distance, the 
strain would be 

AL 0.01 „ ^ 
e = — = —— = 0.001 

L 10 

Some observations on strain follow. 

a. Strain is non-dimensional; it is expressed as a fraction or a per¬ 
centage, as it is obtained by dividing quantities having the same units 
of measurement. However, it is sometimes written inches per inch. 

b. Although the primary effect of length is eliminated by using non- 
dimensional strain units, local effects often make it necessary to know 
over what actual length the elongation measurements were taken. This 
length is called the gage length. 

c. For uniformity, a 2-in. gage length has been adopted as standard in 
comparing materials. However, other gage lengths are often employed. 

Fig. 6*2. Tension stress-strain diagram for aluminum alloy (24S-T). 

6*4. The Stress-Strain Diagram. If simultaneous readings of stress 
and strain are taken during a tension test it becomes possible to illus¬ 
trate the relationship between these two quantities by means of a graph. 
Such a graph is tailed a stress-strain diagram. A typical diagram is 
shown in Fig. 6-2. (Stress is usually plotted vertically.) The most 
important feature to note is that the diagram is divided into two fairly 
well-defined parts. The first part consists of a portion in which the 
stress increases very rapidly with strain. This portion is usually referred 
to as the elastic range and is characterized by the substantially con¬ 
stant ratio between stress and strain, i.e., by a straight line. The fact 
that most strong materials show a constant ratio between load and 
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deflection was first established by Hooke and is commonly referred to 
as Hooke’s law. The elastic range is of greatest interest to structural 
engineers because it is only within this range that a structure may be 
loaded and unloaded without permanent deformation. 

The remaining portion of the diagram is referred to as the plastic or 
inelastic range. In this portion the material undergoes a great deal of 
elongation (strain) without a corresponding increase in stress. The 

and Sturm, “Some Stress-Strain Studies of Tcmplin and Sturm). 
Metals/’ Journal of the Aeronautical Sci¬ 

ences, March, 1940.) 

proportionality between stress and strain does not hold in this range, 
i.e., the diagram departs from a straight line. The plastic range is of 
greatest interest in operations involving forming of the material (bend¬ 
ing, drawing, etc.), but it is also important to the structural engineer in 
dealing with columns, stress concentrations, energy absorption, and sim¬ 
ilar matters. Stress-strain diagrams for various materials are shown in 
Figs. 6*3 and 6‘4, from Ref. 10. 

6*5. Modulus of Elasticity. In the elastic range the most important 
characteristic of a material is the ratio between stress and strain. This 
is called the modulus of elasticity and is expressed by the equation 

Modulus of elasticity [6-3] 
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E is also called Young’s modulus, after the scientist who is credited 
with determining it for the first time. The modulus of elasticity does 
not refer to elasticity in the everyday sense but rather to the stiffness. 
Thus a so-called elastic material like rubber has a very low value of E, 
as compared with steel. E is in fact a measure of a material’s resistance 
to deformation. The term elastic implies that the deformation is not 
permanent. High values of E are obviously desirable in structural work 
to reduce deflections under load. 

Since / is in terms of stress (psi) and e is non-dimensional, the value 
of E is also expressed in terms of stress. Another interesting observa¬ 
tion can be made by assuming that a member has been stretched to 
twice its original length. Then the value of e would be 1.0, and E would 
equal the stress required to produce this elongation. Therefore E can 
be thought of as the stress which would be required to double the length 
of the member, assuming that the entire action is elastic. Actually, no 
metal will meet this condition, as the plastic range is reached at a rela¬ 
tively low value of strain, usually less than 1 per cent, and the specimen 
will break at a strain seldom exceeding 20 per cent. However, the idea 
will help explain the very high values of stress represented by E (about 
30,000,000 psi for steel; 10,000,000 psi for aluminum alloy). 

This conception is also useful in calculating elongations. Assume 
that a member 60 in. long is subjected to a stress of 20,000 psi. How 
much does it stretch? To get the answer we must know E. If the 
member is steel, we can use a value of about 30,000,000 psi for E. Thus, 
if a stress of 30,000,000 psi were applied, the (fictitious) elastic elonga¬ 
tion would be equal to the original length, or 60 in. Since the actual 
applied stress is only 20,000 psi, the elongation is equal to 

20,000 

30,000,000 
X 60 = 0.04 in. 

In more general terms, the equations for deflection within the elastic 
range are expressed as 

A L = eL 

Substituting for E from Eq. 6-3: 

[6* 4a] 

[6-46] 

Substituting for / from Eq. 6*1: 

PL 
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These are simply different forms of the same equation and express 
mathematically the conception just given above. If a clear understand¬ 
ing of stress, strain, and modulus of elasticity is obtained, it is unneces¬ 
sary to remember any particular equation for deflection, but Eq. 6* 4c is 
so convenient that it is well to memorize it. 

6*6. Proportional Limit (Elastic Limit). It is important to know at 
what value of stress or strain the material begins to enter the plastic 
range, i.e., at what point the stress-strain diagram begins to depart 
from a straight line. From a scientific viewpoint this is a difficult prob¬ 
lem, as much depends on the sensitivity of the measuring instruments. 
From an engineering viewpoint 
the exact point of departure, if 
there is one,* is not too important. 
The structural engineer is there¬ 
fore not very much concerned 
with the exact value of the pro- 
portional limit, although it is well 
to have a good understanding of 
the shape of the curve in this 
vicinity. The proportional limit 
is shown on Fig. 6 • 5. This point 
is sometimes referred to as the 
elastic limit, which, strictly speak¬ 
ing, means the maximum stress 
that can be withstood without causing permanent deformation. It can 
be seen that these two terms are almost synonymous, from an engineer¬ 
ing point of view. 

6*7. Yield Stress. In certain types of steels there is a definite stress 
at which the material abruptly begins to yield, that is, to depart from 
the straight line stress-strain diagram (see Fig. 6-4). But in most 
materials this departure is so gradual that the proportional limit is not 
practical as an engineering quantity. To take care of this, an arbitrary 
yield stress f has been established. This is done by selecting some 
standard value for the departure of the curve from the straight line. 
A common value used in engineering work is a strain of 0.002. This 
determines a definite point on the curved part of the stress-strain dia¬ 
gram (see Fig. 6*5). The stress so determined is Called the yield stress. 

• For some materials there seems to be no true elastic range, i.e., the stress-strain 
diagram has a slight curvature from the very beginning. 

t The term yield stress is used here in preference to yield strength, as the latter could 
refer to the total strength. The term yield point should be reserved for materials 
which yield abruptly. 

Fia. 6-5. Stress-strain diagram (partial) 
for Alclad 24S-T aluminum alloy. 
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It is located on the curve by drawing a straight line through a strain 
value of 0.002 and parallel with the straight line portion of the curve. 

From Fig. 6*5 it may appear that the 0.002 yield stress permits a 
considerable portion of the plastic range to be included in the elastic 
range. Actually, the figure is quite misleading, as the scale for strain 
is greatly magnified. To give a better picture of this it is necessary to 
show the entire curve, to failure, as in Fig. 6*2. Note how the details 
of the curve near the yield stress become relatively insignificant when 
the curve is so plotted. 

6*8. Permanent Set. Most materials exhibit permanent set after 
having been loaded beyond the proportional limit. The return or un¬ 
loading portion of the stress-strain diagram tends to be parallel with 

the original straight portion. For in¬ 
stance, if the material represented in 
Fig. 6*5 were stressed up to the yield 
stress and no farther, the return to 
zero stress would be very closely 
represented by the straight dashed 
line. Thus it is reasonable, but not 
strictly accurate, to consider the 0.002 
yield stress as that stress at which a 
permanent set of 0.002 (inches per 
inch) is obtained. 

Even after successive loadings this 

Fig. 6 *6. Effect of successive loadings, relationship for permanentset appears 
to hold, as indicated by Fig. 6*6. 

This shows the stress-strain diagram for a specimen which has been 
loaded and unloaded several times, the stress being made higher each 
time.10 

Note that a metal that has once been permanently stretched, i.e., 
stressed beyond its proportional limit, has a new stress-strain diagram. 
The new proportional limit and yield stress are both higher than before, 
and the knee of the diagram becomes more acute. This is of considerable 
importance in dealing with cold-worked materials. In Fig. 6*6 each 
successive repetition of loading creates a new stress-strain diagram. 

6*9. Elongation. Figure 6*2 illustrates what is meant by ultimate 
elongation. It is simply the total strain at failure. In general, the term 
elongation, used by itself, means ultimate elongation; the term strain is 
used when discussing conditions prior to failure. Elongation is important 
to the engineer, as it is a measure of the amount of deformation that 
can be withstood before failure occurs. It also plays an important part 
in the ability of the material to absorb energy, as the area under the 
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stress-strain diagram is a measure of the energy required to produce 
failure. 

It should be remembered that elongation, being a strain, must be 
measured over some definite gage length and then reduced to a unit 
value by dividing by this gage length. Much depends on the length 
used, as the distribution of strain, beyond the yield stress, may not be 
uniform over the length of the member. For instance, a certain metal 
might exhibit an elongation of 12 per cent, measured over a 2-in. gage 
length. If the measurement were made over a length of x/i in. at the 
point of incipient failure, the elongation 
might be as high as 30 per cent. This 
phenomenon Is closely associated with 
necking down, which is indirectly meas¬ 
ured by the reduction of area. (Shown in 
Fig. 6*1.) 

6*10. Tangent Modulus and Secant 
Modulus. Modern structural theory 
(particularly as applied to airplanes) 
makes considerable use of the tangent 
modulus of elasticity. The secant modu¬ 
lus is also employed occasionally. These 
two modifications of the classical modu¬ 
lus of elasticity apply in the plastic range 
and are illustrated in Fig. 6-7. The 
elastic modulus E is, of course, illustrated by the slope of the straight 
portion of the diagram. The tangent modulus Et is obtained by draw¬ 
ing a tangent to the diagram at the point under consideration. This 
gives the local or instantaneous rate of change of stress with strain. 

The secant modulus Es is illustrated by drawing a secant (straight 
line) from the origin to the point in question. This modulus measures 
the ratio between stress and actual strain. Mathematically, the two 
moduli are given by the equations 

Et ** [6* 5a] 
de 

= t [6-56] 
e 

Note that E, Etf and E8 are all identical below the proportional limit. 
The tangent and secant moduli may be thought of as extensions of the 

* Read “derivative of /with respect to e.” This is a symbol borrowed from calculus 
to indicate rate of change. 

Fig. 6*7. Tangent and secant 

moduli. 
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elastic modulus E into the plastic range; the two different forms result 
from different ways of defining E. It is apparent that the values of Ea 
and Et will vary with stress, both becoming lower (in general) as the 
stress is increased beyond the proportional limit. By selecting succes¬ 
sive values of stress (or strain) on a given stress-strain diagram and 
determining the moduli at each point it is possible to obtain data from 
which curves of tangent and secant modulus can be plotted against stress. 
Typical curves arc shown in Refs. 11 and 12. (See also Chapt. 19.) 

6*11. Lateral Contraction. One more physical characteristic of a 
material is needed to complete the general engineering picture. When 
a tension specimen is stretched, it undergoes a lateral contraction, even 
before the necking down stage is reached. Conversely, when the ma¬ 
terial is compressed it expands laterally. There is usually a constant 
relationship between the lateral and axial deformation and it is ex¬ 
pressed as Poisson's ratio, usually denoted by n (Greek letter mu). If 
e is used to denote the strain in the direction of loading and if ex de¬ 
notes the strain at right angles to the direction of loading, Poisson's 
ratio is given by the equation 

Poisson’s ratio [6-6] 

It should be remembered that tension causes contraction and vice 
versa. The value of \x might therefore be thought of as negative, but 
it is ordinarily given as positive. Most metals have about the same 
value (approximately 0.30). Some materials, such as cork, have a 
very low value. (In fact, corks are used as stoppers largely because 
they can be compressed without undergoing any appreciable lateral 
expansion.) 

Poisson's ratio applies only in the elastic range; in the plastic range 
the ratio of lateral to axial strain is higher.18 

6*12. Endurance Limit. This important physical property of a mate¬ 
rial pertains to the effect of repeated stresses and indicates the maximum 
allowable stress under such conditions. At this point it will only be 
noted that the other properties already described apply primarily to 
static conditions or relatively slow rates of loading. If the structure is 
subjected to vibratory loads or impact conditions it may be necessary 
to use considerably lower strength properties in the design. This is an 
important branch of structural analysis which is beyond the scope of 
this text. Reference 14 contains much valuable information. 

6*13. Compression Stress. Most of thd discussion of tension stress 
and strain may also be applied to compression stresses. The same basic 
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equation for stress may be used (/ = P/A) and a similar type of stress- 
strain diagram is obtained from actual tests.* The modulus of elas¬ 
ticity (E) is basically the same as for tension. For metals, the stress- 
strain diagram will have a knee and a plastic range, the values for pro¬ 
portional limit and yield stress being practically the same as for tension. 
(Any differences are usually due to cold-working effects, rather than to 

Tension 
Stress 

Compression 
Stress 

Fig. 6-8. Tension-compression stress-strain diagram. 

fundamental differences in the behavior of the metal under tension and 
compression forces.) 

The most important difference between tension and compression mem¬ 
bers is to be found in the manner of failure. In tension the material first 
yields and finally breaks, by actual separation of the part. In compres¬ 
sion the type of failure depends on the proportions of the specimen. A 
long slender rod, for instance, may buckle before the stress even exceeds 
the proportional limit Short heavy members may exceed the yield stress 
appreciably before failure as a column occurs. Blocks, in which no 
column action can occur, do not have any well-defined failing stress, 
as the material tends to spread out or pancake as the load is increased. 

* Because of the difficulty of making compression tests on thin sheets, most physical 
tests of materials have been made in tension. 
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In the weaker materials, such as wood and concrete, compression fail¬ 
ures are usually caused by shearing action, not by direct compression. 

A compression member may also fail by local buckling. Such failures 
are usually experienced in members having thin walls which collapse 
before the member as a whole begins to fail. 

Compression failures will be discussed in greater detail in a subsequent 
chapter. At this time it is necessary only to recognize the fact that sev¬ 
eral different types of failure are possible and that it is therefore impos¬ 
sible to assign a single value of allowable stress for a material in com¬ 
pression. 

By considering compression stresses as negative and plotting them 
below the horizontal axis it is possible to show, on a single diagram, the 
entire stress range. Such a diagram is illustrated in Fig. 6*8. Note 
that the elastic range for both tension and compression is given by a 
single straight line (same value of E). 

On Fig. 6*8 a dotted line has been included in the compression dia¬ 
gram to show a possible effect of buckling. This line might occur at 
almost any point on the diagram, depending on the dimensions of the 
part. However, no such limitation exists in the tension range, as buck¬ 
ling under tension is impossible. (Wrinkles in thin tension members 
are due to compression strains acting normal to the tension strain.) 

6-14. Bearing Stress. Joints and 
fittings subjected to highly localized 
loads offer a special problem in com¬ 
pression loading. Figure 6*9 indi¬ 
cates how a bolt or rivet may 
elongate a hole. To prevent this, the 
local pressures must be kept below 
certain values, which are called 
allowable bearing stresses. This stress 
is really the average intensity of 
loading on the projected area of tjie 
member, normal to the direction of 
loading. Thus, in Fig. 6*9, the area 
would be equal to the product of 

rivet diameter and sheet thickness (one sheet). The bearing stress is 
calculated from the basic formula 

p 

Bearing stress for = — - [6-7] 

where P = the load on the member. 
A = the projected area normal to the line of action of the load. 

Before Loading 

I 
JL 

After Loading 

Fig. 6-9. Bearing failure. 
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The allowable bearing stress is usually at least as high as the ultimate 
tension stress and frequently is considerably higher. Since the failure 
is not a true failure but a rather complex combination of axial yielding, 
buckling, etc., the allowable bearing stress is not a true strength property 
and will depend to some extent on the sheet thickness, rivet or bolt 
diameter, and other variables. 

In wood the allowable bearing stress is greatly affected by the angle 
which the load makes with the grain.24*43 

6*16. Shear Stress. The failure of a material under load is actually 
quite complex and involves two basic types of failure, which may be 
thought of as separation and sliding. Every solid material has a resist¬ 
ance to being pulled apart; likewise it resists sliding action within itself. 
The true nature of internal failure cannot be taken up in detail at this 
point, but it should be noted that 
the ultimate shear stress is an 
important mechanical property 
which is a measure of a material's 
sliding resistance. 

The type of loading involved is Fiq 6. ia Shear failure o{ rivet. 
illustrated by a rivet or bolt, as in 
Fig. G • 10. The loading on the rivet is transverse (see Chapt. 3) and the 
area involved is that of a cross section parallel with the load, instead of 
normal to it. Figure 6 • 106 shows how the rivet is forced to fail by slid¬ 
ing, under a force P. If the cross-sectional area of the rivet is A, the 
average shear stress over the area of failure is given by the basic formula: 

ps 

Average shear stress /,==-— [6-8] 
A. 

where f8 = the average shear stress.* 
P8 = the force parallel with the cross section in question. 
A = the area of the cross section in question. 

By testing materials under conditions approximating those of Fig. 
6 • 10 values for the ultimate shear stress are obtained. They are generally 
about half the magnitude of the ultimate tension stress, but this ratio 
may vary considerably. (For instance, the ultimate tension stress for 
a typical aluminum alloy is 62,000 psi and its ultimate shear stress is 

36,000 psi.) t 

* In the theory of elasticity the Greek letter r (tau) is used for shear stress. 
f The shear stress distribution for this type of loading is not actually uniform; 

hence the true ultimate shear stress is somewhat higher than the average value ob¬ 
tained in such tests.11 
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It should be noted particularly that no length is involved in true shear 
failure. In Fig. 6*10, for instance, the length, if any, would be the dis¬ 
tance between the two plates, which are actually in contact with each 
other. If the plates were separated, so that the force P had to be 
transmitted (transversely) over a finite distance, other types of stress 
would be introduced and the failure would no longer be that of pure 
shear. 

Similarly, since no length is involved, there cabe no stress-strain dia¬ 
gram for pure shear, as thus defined. It follows that there is no true 
modulus of elasticity in shear. However, a modulus of rigidity (G) is 
often employed to calculate deformation under transverse loading or 
torsion. It will be shown later that this has no connection whatever with 

the phenomenon of sliding action and is in fact entirely dependent on 
the values of modulus of elasticity (E) and Poisson's ratio (m), the two 
basic stiffness characteristics under axial loading. It is also possible to 

draw a shear stress-strain diagram on this same basis, but it is not a truly 
independent characteristic of a material. 

For engineering strength calculations it is sufficient to know the ulti¬ 

mate shear stress for the material in question. This applies only when 

the failure occurs by sliding between two planes which are zero distance 
apart. Typical values for ultimate shear stress are given in Appendix 
2. (See Chapt. 10 for further discussion of shear.) 

6*16. Temperature Effects. Temperature affects both the strength 
and the strain characteristics of a material. Obviously the strength 
disappears entirely when the melting point is reached; hence there must 

be an intermediate range in which the strength characteristics become 

poorer as the temperature rises. Structural materials are, of course, 
chosen so that they are very little affected by normal variations in tem¬ 

perature. (Most of them have high melting points.) The normal 
strength characteristics may therefore be assumed to be satisfactory for 
most applications. If the structure must function at relatively high 

temperatures, however, a special investigation should be made for the 
particular material involved. 

The combination of high temperature and constant loading may cause 
a flow of the material, defined as creep. This should be kept in mind 
in structural design. For instance, certain plastics may appear to be 

suitable for structural use, but if their creep characteristics are poor the 
structure might gradually acquire a permanent set in hot weather. 

A change in temperature causes a change in dimensions; increases in 
temperature cause expansion and decreases cause contraction. This 
change may be measured in units of strain (inches per inch). The strain 
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caused by a one degree change in temperature is called the coefficient 
of expansion. In Fahrenheit units the following values are typical. 

Steel 0.0000065 (inch per inch per degree Fahrenheit) 
Aluminum alloy 0.000012 “ “ “ " “ 
Magnesium alloy 0.000016 “ “ “ “ “ “ 

6*17. Stresses Caused by Constraint. To produce a given axial 
strain in a material usually requires the application of a corresponding 
stress. But there are conditions under which a strain is produced with¬ 

out actually applying a stress in the direction of the strain. One of these 
is the lateral contraction effect, measured by Poisson's ratio (Sec. 6*11). 
The other is the thermal effect, measured by the coefficient of expansion. 

Poisson's ratio is effective in two dimensions (normal to the direction 
of the applied tension), whereas the thermal effect acts in all three dimen¬ 
sions, i.e., a volume change. 

If for any reason these strains are prevented from occurring, the effect 

will be to induce stresses corresponding to the amount of strain which 
was not permitted. The physical action is clarified by assuming ^first 

that the constraint does not exist and then applying the stresses neces¬ 
sary to bring the structure back to the dimensions to which it is really 
held. The two most common cases are discussed below. 

6-18. Edge Constraint. If a long flat sheet is loaded in tension in 
one direction, it will tend to become narrower in width. Assume that 
before loading occurs, the sheet is rigidly clamped along the edges by 

some means which will not interfere with the tension loading, but which 
will prevent this narrowing from taking place. The strain due to the 

tension load may be calculated and multiplied by Poisson's ratio to get 

the normal lateral strain. Now if this is to be entirely prevented, it will 
require a lateral stress corresponding to the lateral strain. In the elastic 
range this is determined by multiplying by E. 

Since E was also used to determine the axial stress it cancels out, 
which means that the lateral stress may be determined directly by multi¬ 
plying the axial stress by Poisson's ratio. In doing this, however, it 

should be kept in mind that Poisson's ratio does not refer to stress 
directly, but is a measure of strain effects. 

6-19. Thermal Effects. The same general principles may be applied 
to determine stresses caused by changes in temperature. If a member is 
held rigidly so that it cannot change one of its dimensions, any change 

in the temperature will cause a corresponding change of stress. As in 
lateral constraint, however, the phenomenon is based on strain rather 

than stress. It is always safer to calculate the induced strains and then 
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convert them into stress, using the stress-strain diagram if necessary, 
to take care of conditions in the plastic range. 

For example, assume that an aluminum-alloy bar is rigidly clamped 
at each end so that its length cannot change. Referring to Sec. 6-16, 
the coefficient of expansion is about 0.000012 in./in./deg. F. Since E is 
approximately 10,000,000 psi for aluminum alloy, the change of stress 
per degree (F) will be 

A/ = 0.000012 x 10,000,000 

= 120 psi/degree 

Therefore a change in temperature of 10 degrees would cause a stress 
of 1200 psi. 

The above method may be summarized by the following formulas. 

Change in strain Ae = if (A?) [6-9a] 

Change in length A L = L(Ac) = LK (At) [6-96] 

Change in stress A/ = E(Ac) = EK(At) [6-9c] 
(rigidly restrained) 

where A signifies change. 
K = coefficient of expansion. 
At = change in temperature. 

Note that the change of stress is independent of length; also that the 
formulas do not give the actual strain or stress but only the change in¬ 
volved. To get the actual stress at a given temperature it would be 
necessary to know at what temperature the stress was zero (usually the 
temperature at which the member was installed). 

Thermal effects are put to practical use in shrinking operations and 
have many other important applications. 

6*20. Material Variations. The structural engineer should not make 
use of arbitrary allowable stresses without some knowledge of their re¬ 
lationship to the actual allowable stresses for the material involved. 
This is particularly true because of the different ways in which factors of 
safety are handled in different branches of structural engineering. As 
noted in Chapt. 1, it is possible to avoid this confusing subject to some 
extent by dealing with the actual behavior of the structure under 
load. 
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If the engineer were called on to predict the behavior of a specific 
structure he might attempt to obtain an actual sample of the material 

used and run a physical test to determine its properties. Usually, how¬ 

ever, we are not dealing with an individual structure but with a whole 

series of them; furthermore, a certain structure might have parts made 
up from various runs of the material, each of which might be slightly 

different from the other in quality. To obtain some control over this 

'45 6 7 8 9 I 1 23456789 I 123 
60,000 70,000 

Ultimate Tension Stress 

Fig. 6-11. Frequency distribution curve (Alclad 24S-T aluminum alloy, from 
Lockheed tests). 

situation specifications have been adopted for all widely used structural 

materials. These specifications usually require the producer of the 

material to guarantee specific minimum properties, such as ultimate 

tension stress. 
The minimum guaranteed value set up by a specification is usually 

selected so that most of the material produced at the mill will be ac¬ 
cepted. The actual properties will therefore tend to be higher than the 

specification properties and will also vary from specimen to specimen. 

This situation may be shown graphically by means of a frequency dis¬ 

tribution chart, such as shown in Fig. 6* 11. 

Such a chart shows the probability of getting a piece of material hav¬ 

ing a certain actual strength value. The chart is constructed from data 

obtained by making many tests over a wide range of samples and over 

a considerable period of time. The number of specimens falling within a 

certain stress range is plotted against the stress. Figure 6 • 11 is based on 
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actual values obtained for Alclad 24S-T material (Lockheed tests). 
Note that the specification value was about 13 per cent lower than the 

most probable value. 
It is interesting to note that the actual values of modulus of elasticity 

(E) show very little variation for a given material. In the strong ma¬ 
terials, E appears to be controlled mainly by 
the density. Light metals, therefore, have 
relatively low values of E as compared with 
heavier ones. In fact the ratio between E 
and the density is substantially constant for 
many different materials (steel, aluminum 
alloy, magnesium, etc.). 

The yield stress appears to be the property 
most severely affected by variations in 
fabrication processes, heat treatment, or 
fabrication. This is indicated also by 
Fig. G*(), showing the effect of cold working 
(stretcliing) on the yield stress. 

6*21. Summary of Strength Characteris¬ 
tics. The most important characteristics of 
a material under load are summarized as fol¬ 

lows. The letter F here indicates allowable 
stress, not actual stress. (See Ref. 16.) 

Modulus of elasticity, E. 

Ultimate tension stress, Fu. 

Yield stress, Fy. 

Proportional (elastic) limit. 

Elongation. 

Tangent modulus. 

Secant modulus. 

Poisson’s ratio, n. 

Endurance limit. 

Fig. 6-12. Tension test of a Allowable bearing stress, Fbr. 

flash-welded tube. Note effects 
of lateral contraction at point 

of failure. 

Allowable shear stress, F4. 

Coefficient of expansion. 

Typical values for the more important properties listed above are 

given in Appendix 2. 
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PROBLEMS 

6 • 1. A 25-in. steel rod is subjected to a tension stress of 50,000 psi. Assuming 
E = 30,000,000 psi, find the increase in length due to this stress. 

6*2. A square bar 30 in. long and % in. on a side elongates 0.0533 in. under 
an applied tension load of 10,000 lb. Of what material is it probably made? 

6*3. A 1-in. diameter steel rod 20 in. long is elongated so as to produce a 
tension stress of 50,000 psi at a temperature of 65° F. 

(a) What is the new length of the member? 
(b) If the temperature of the rod should rise to 80° F while the new length 

is maintained constant, what is the tension stress in the rod? 

6*4. Neglecting bending in bar AB, where must the Joad P be located so that 
AB remains level? 

6*6. Draw, on graph paper, a stress-strain diagram which will satisfy the 
following conditions: 

a. E = 6,000,000 psi. 
5. Yield stress (at 0.002 strain) — 25,000 psi. 
c. Ultimate stress = 40,000 psi. 
d. Ultimate elongation = 15 per cent. 

(Use Fig. 6*2 as a guide.) 
6*6. Using the diagram drawn for Problem 6*5, find the stress required to 

produce a permanent strain of 5 per cent. 
6*7. Draw a new stress-strain diagram for the material after being stretched 

as in Problem 6-6. 
6*8. Using the stress-strain diagram of Problem 6*5, select 10 points in the 

plastic range and determine the tangent modulus at each point. Plot these 
values as a curve of tangent modulus against stress. 

6*9. Select a value for W between 21,000 and 29,000 lb. Assume that the 
cables DA and AB must provide a factor of safety of 5 against failure and a factor 
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of safety of 2 against yielding. Select a material from Appendix 2 and determine 
the cross-sectional area required for each cable. 

Problem 6 • 9. 

6*10. In Problem 6-9 assume that member AC is a fixed-end (cantilever) 
beam and that the cable DAB passes over a pulley at A. Find the size of the 
cable AB, for the same design conditions. Also find the bending moment, shear, 
and axial force at the fixed end C. 

6*11. In Problem 6*10 compute the vertical deflection of the weight, neglect¬ 
ing the deflection of the beam AC. 

6*12. Select a value for P (between 60,000 and 90,000 lb) and determine the 
cross-sectional areas required for the steel rods AB and AC, such that the stress 

Problem 6-12. 

in each rod will be 50,000 psi under 
this load. Assuming that this stress 
does not exceed the proportional 
limit, find the total elongation of 
each rod. (Note. These elongations 
may be used to find the deflection 
of point A, by finding the point of 
intersection of arcs drawn with the 
extended lengths as radii. Because 
of the small deflections involved, 
however, special graphical or anar 
lytical methods must be used.) 

6*13. A heavy steel jig is used to 
assemble an aluminum-alloy tension 

member. Assume that the member is bolted rigidly to the jig at two points 30 ft 
apart, at a temperature of 80° F, and that the temperature later drops to 20° F. 
Find the stress induced in the member, neglecting the effect of its load on the jig. 



CHAPTER 7 

AXIALLY LOADED MEMBERS 

7 • 1. Tension Members. Tension members are of basic importance 
in structural design, as they represent the most efficient method of force 
transmission. The most important characteristic of a tension member 
is its stability. This is illustrated by Fig. 7•1,in which the straightening 
effect of the tension load is shown. Figure 7 • la shows a tension mem¬ 
ber (such as a string) before the load is 
applied. Assuming that it is flexible, it 
will become straight under load, due to 
the fact that bending moments caused by 
eccentricities (such as e) are in such a 
direction as to decrease these eccentric¬ 
ities. This may seem to be an obvious 
and trivial point, but it explains the wide¬ 
spread use of ropes, wires, cables, and tie 
rods for transmitting forces. In contrast, 
the compression member tends to be un¬ 
stable, requiring special analysis methods 
and excess material to prevent buckling. 

7-2. Design of Straight Tension Mem¬ 
bers (Ties), The procedure of designing 
a straight tension member (tie, tie rod, 
cable, etc.) is so simple that very little 
space will be devoted to it here. (This, of course, does not apply to the 
design of the end connections, which is ordinarily classed under fitting 
design.) For a given force, P, the required cross-sectional area is deter¬ 
mined from Eq. 6-1, as follows. 

A--e p-i] 

where F is the allowable stress. 
The term allowable stress requires some further explanation. If we 

consider it to be the ultimate tension stress and use it in Eq. 7 • 1, we will 
obtain a member which will break approximately when the load P is 
applied. (Actually there is always some variation in material proper- 

111 
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ties, so it is impossible to predict the failing load with absolute accuracy.) 
If, however, we wish to design a member which will not exhibit any 
appreciable yielding under the load P, wc must substitute the tension 
yield stress, Fty, in Eq. 7*1. 

For example, assume that a tension force of 180,000 lb is to be trans¬ 
mitted. If steel is to be used, we must decide on some particular 
type of steel and then determine its strength properties. Let us assume 
that X4130 steel (SAP] designation for chrome-molybdenum steel) is to 
be used. From some standard reference book (such as Ref. 16) it can 
be found that the allowable tension properties for X4130 steel are: 

Ptu = 90,000 psi 

Fty = 70,000 psi 

The cross-sectional area required, if P is considered as the breaking 
load, would be 

180,000 

90,000 
2 sq in. 

If the tie rod is to be capable of carrying the load of 180,000 lb 
without appreciable yielding, we must use the yield stress to determine 
the required area. 

180,000 

70,000 
2.57 sq in. 

Assume that the same force of 180,000 lb is to be carried by an alumi¬ 
num-alloy tension member for which the allowable stresses are 

Ftu — 56,000 psi 

Fty = 37,000 psi 

The cross-sectional areas required would be 

180 000 
(1) For no failure A = —4—- = 3.22 sq in. 

56,000 

(2) For no yielding A = — ^ = 4.87 sq in. 

7*3. Curved Tension Members. Under certain conditions a curved 
member may be subjected to pure tension. A common example is*found 
in the circular hoop subjected to uniform outward-acting radial loads, 
Fig. 7 *2. Such a hoop may be found in pressure vessels of circular cross 
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section by considering a section of unit length (1 in.) as shown in Fig. 
7 • 2b. The tension force in such a strip can be easily calculated by cut¬ 
ting the hoop into two halves, as shown. 

The total force, in a given direction, caused by a uniform pressure 
acting over a given area is equal to the product of the pressure and the 
projection of the area on a plane 
normal to the line of action of the 
force. In Fig. 7*2 the projection 
plane is shown by the dotted lines 
and has an area equal to D (be¬ 
cause unit length was assumed). 
The total force is therefore equal 
to pD, where p is the unit pressure. 
Since this is equally divided be¬ 
tween the two sides, the load in the 
strip is one-half this value, i.e., 

_ pD 
[7-2] 

where P = load in a strip of unit 
width. 

D = diameter. 
R = radius. 
p — internal pressure. 

The tension stress is now com¬ 
puted by applying the elementary stress equation (in which the area 
equals t). 

J A t 
[7-3] 

where / = the circumferential or hoop tension stress. 
t = the thickness at the point being investigated. 

The hoop tension formula, like most other structural theories, is based 
on an approximate assumption, which is that the thickness of the 
tension member is small in comparison with the radius. This assumption 
in turn permits the assumption of uniform tension stress in the member. 
If the wall is thick and the radius small, more advanced methods of 
analysis must be employed if accuracy is desired. 

The hoop tension formula may also be used for circular arcs, or seg¬ 
ments of circles, provided that the thickness t is relatively small as 
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compared with the arc length. The basis for this is indicated by Fig. 
7*3, which gives an exaggerated comparison between the condition for 
a complete hoop and a portion of one, i.e., an arc. Figure 7*3a indicates 
the expanded position of the hoop (greatly exaggerated) by a dotted 
line. Since the amount of expansion involved is actually very small, it 
is sufficiently accurate to assume that the radius of curvature is un¬ 
changed. Hence there will be no appreciable bending action. 

In Fig. 7*36 a portion of the 0hoop is removed and attached to 
fixed supports at each end. The 

\ k°°P tension formula may be 
^ applied by using the radius of the 
| arc. Deflection of the arc now 
/ causes a decrease in the radius of 

/ curvature, as shown. Ihis is usu- 
' ally quite small and will therefore 

^ produce negligible bending mo- 
-ments, unless the thickness of the 
^ strip is large, in which case part of 

the pressure load is taken by the 

ft) strip act*ng as a beam. 
7*4. Strings (Cables). Thefore- 

going example of hoop tension is a 

Fig. 7 3. Circular arc. specific example of a more general 
class of structures in which the 

member transmitting the load has no resistance to bending (thin string, 
cable, chain, etc.). Such structures may be classified by the general term 
string (or cable), which is simply a member capable of transmitting 
only axial force. (This force must, of course, be tension, as the absence 
of bending resistance would make it impossible for the member to trans¬ 
mit compression.) 

Under any given system of applied loads the string must automatically 
assume a configuration which will permit it to carry only tension forces. 
Several loading conditions are shown in Fig. 7*4. In the thin shell the 
cross section tends to become circular under uniform internal pressure 
(a). A string subjected to a constant running load (with respect to a 
line joining its two ends) will assume the form of a parabola (6). A 
cable carrying only its own weight will assume the shape of a catenary 
(c). A system of localized loads applied to a string will make it take the 
form of a polygon, often called a string polygon (d). The suspension 
bridge is, of course, an outstanding example of the practical application 
of the string theory. 

Fig. 7 3. Circular arc. 
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(b) 
Uniformly Distributed 

Loading 

X = Const 

(d) 
Local Loadi 

Fig. 
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It can be seen from Fig. 7-4 that for relatively flat cables (large ratio 
of radius to span) the loading conditions for (a), (b), and (c) tend to 
become identical as the curvature becomes less, and the hoop tension 
theory may be used to give an approximate answer for them. Unless 
the sag is large the parabola will give a good approximation to the 
catenary curve of (c). 

Any of these conditions may be approximated by a series of local loads 
by selecting a suitable number of points along the cable. It is then 
possible to solve the problem graphically by the methods described in 
Secs. 2-8 and 4-22. As illustrated in Fig. 7-4d, any system of local 
forces will cause the cable to assume the shape of a string polygon. (In 
solving such a problem the closing line between the two supports may 
not come out at the correct angle. This can be corrected by relocating 
the ordinates of the polygon, measuring from the proper base line. If a 
certain length of cable is involved the graphical solution requires a 
trial-and-error method.) 

Analytical solutions have, of course, been worked out for the para¬ 
bolic curve and the catenary.8 7 For an advanced treatment of sus¬ 
pension bridges see Ref. 19. 

7-6. Thin Shells. The sphere under internal pressure is similar to 
the hoop in principle. If a sphere of radius R is cut into two halves, 
the total load due to pressure equals pwR2. This acts over a circum¬ 
ferential length of 2xR. Hence the load per unit width is given by 

This is only half the value obtained for the cylinder. The physical 
explanation is that instead of working with a projected strip of constant 
width (Fig. 7-2), the projection is now triangular, hence has only half 
the area of the strip. Note that each unit square of material will be 
equally loaded in tension in both directions. 

The remarks made for arcs will apply also to portions of spheres. 
Such structural members are often used as bulkheads in pressure vessels. 

The longitudinal unit loading for a cylindrical shell under internal 
pressure may be obtained by the same general process. It will be found 
to have half the value of the circumferential (hoop tension) loading, i.e., 

pD pR 

4 ~ T 
'[7*5] 

It should be noted that all the formulas developed for tension will, 
theoretically, apply equally well for compression. Thus it is possible 
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to use them to calculate the compression stresses in a sphere subjected 
to external pressure. In general, however, stability requirements make 
it necessary to use relatively thick walls, and the formulas are therefore 
less accurate than for internal pressure (tension stresses).* 

7*6. Centroid of Area. The fundamental axial stress formula (f ** 
P/A) gives the average stress over a cross section of the member. If 
the actual stress is not to exceed this value it must be uniform, which in 
turn implies a uniform strain. This leads to the basic assumption (often 
overlooked in the tension theory) that plane cross sections remain plane 
and parallel during loading. This is the physical basis for the axial stress 
formula and a clear understanding of it will help greatly later on when 
comparable assumptions are made for bending. It will also clarify prob¬ 
lems involving different materials. 

Fig. 7-5. Plane cross sec¬ 
tions. 

Y 

Figure 7*5 shows a member under tension and gives an exaggerated 
picture of the change in length of a unit 1 in. long. The dotted lines 
indicate the new position of the cross-sectional plane. The strain e is 
determined by the distance between the two planes (before and after 
loading). Obviously the cross-sectional surface must remain plane and 
parallel with the original (unstressed) one, otherwise e will not be uni¬ 
form. If e is not uniform, the stress/, being proportional to e, will vary 
over the cross section, and the basic formula will not apply. 

Conversely, if the axial stress is uniform it will have a certain resultant, 
which acts at the centroid or center of gravity (c.g.) of the cross section. 
Methods of determining the centroids of areas are available in any 
engineering handbook, but it should be noted that the basic method is 

* See Ref. 18 for an advanced treatment of spheres under pressure. 
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the same as that of determining the resultant of a number of parallel 
forces. Because it is so often used it will be given here in detail. 

The area is divided into a number of small units, as in Fig. 7-6, and 
the distances from the centers of these units to two selected reference 
axes are tabulated. The moment of each unit about each axis is obtained 
and these are summed up and then divided by the total area, as shown 
in Table 7 ■ 1. The resulting distances locate the centroid, as shown in 
Fig. 7*6. (Note that if a uniform stress of unity h assumed to be acting, 
the areas may be regarded as forces.) 

The quantity 2Ax (or 2Ay) is called the first moment of area. Its 
value will be zero for any axis drawn through the centroid of area. This 
is, in fact, one way of defining the centroid. 

TABLE 7.1 

Centroid of Area 

Unit 

Number 

Area 

A 
X 

i 

V Ax Ay 

1 

2 

3 

Etc. 

Sum 2 A 2 Ax 2 Ay 

2 A Xq 
2 Ax 

~A~ 
yo 

2Ay 

A 

Since the assumption of a uniform axial stress causes the resultant 
axial force to act at the centroid of the cross section, it follows that the 
external force must be applied so as to act along a line through this 
centroid. Otherwise the axial stress will not be uniform. This is impor¬ 
tant in designing end fittings, particularly for compression. Note that 
the centroid of area will not necessarily lie within the cross section itself. 
(See Fig. 7-6, for example.) 

7*7. Different Materials in Combination. If two or more members 
of different materials are compelled to act together under axial load the 
distribution of force between them is easily determined by applying the 
parallel cross-section assumption. If the strain is uniform, the stress (in 
the elastic range) will be in proportion to the moduli of elasticity E for 
the two materials. Thus, in Fig. 7 • 7, the stress in the steel portion will 
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be approximately three times as great as that in the aluminum-alloy 
portion (E = approximately 30,000,000 psi for steel; 10,000,000 psi for 
aluminum alloy). Therefore, if one unit of aluminum-alloy area is con¬ 
sidered as representing a unit force, the steel units 
must be multiplied by 3 in determining the effective 
area and center of resistance. 

The effective area is the summation of all areas 
after multiplying the unit areas by the proper 
effectiveness factor. This transforms the composite 
structure to a hypothetical equivalent one of uni¬ 
form material (in this figure, aluminum alloy). The 
stress in the transformed section is now obtained by Alum. 

the regular axial formula (/ = P/A), where A is 1 he ^Moy 
effective area. The actual stress in each portion is 
then obtained by multiplying this stress by the 
effectiveness factor (in this case, 3). 

The center of resistance will no longer be the 
geometric centroid of the cross section, but will 
be the centroid of the transformed section. It is 
readily found by the usual process, after weight¬ 
ing the unit areas as described above. The loca¬ 
tion of each unit of area must not be changed, 
however. The center of resistance could be com¬ 
pared with the center of gravity of a section through 
the structure, assuming each portion to have a 
weight proportional to its modulus of elasticity. 
Composite structures should be loaded through the 
center of resistance, if the axial stress in each por¬ 
tion is to be kept uniform. This is indicated in 
Fig. 7-7. 

7*8. Load-Deflection Curves. A more general method of handling 
problems involving relative deflections is that of badrdefledion, or toad- 
strain curves. Since load equals stress times area, the stress-strain dia¬ 
gram may be converted into a load-strain diagram by multiplying it by 
the cross-sectional area of a member. If several members are working 
together (compelled to have the same strain) the composite load-strain 
diagram is readily obtained by adding the diagrams of the various mem¬ 
bers, as shown in Fig. 7 • 8 

This process not only takes care of different areas and values of E, 
but also gives the true picture in the plastic range. It will also show 
which member will break first (if the complete stress-strain diagram is 
known). At any given total load the load in each member may be 

Stress 

Fig. 7*7. Composite 
member. 
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found directly from the diagram, as indicated. If the stress-strain dia¬ 
grams are also included on the chart, the stress can be determined in 

the same manner, or the load in 
a member may be divided by its 
cross-sectional area, to obtain the 
stress. 

7*9. Local Conditions. If axial 
stresses are not applied uniformly 
over a cross section, the basic 
assumption that adjacent cross- 
sectional planes remain parallel 
will not be true near the point of 
application. The determination 
of the actual stress distribution 
involves the theory of elasticity 
and often represents an advanced 
mathematical problem. 

For instance, if a concentrated 
load is applied at the end of a 
member as shown in Fig. 7 • 9, the 
theoretical stress distribution at 

three different cross sections is given by (a), (6), and (c). (From Ref. 18, 
p. 50.) It can be seen that the distribution becomes substantially uni¬ 
form at a distance equal to the width of the member. 

This is an application of Saint-Ven ant’s 'principle, which states, in 
effect, that plane cross sections remain plane even under localized load¬ 
ings, provided that the distance 
away from the point of load appli¬ 
cation is at least equal to the width 
of the member (maximum width 
over which the load is to be dis¬ 
tributed). Stated somewhat dif¬ 
ferently, the local effects of con¬ 
centrated loads may be considered 
to vanish in a distance approxi¬ 
mately equal to the width over 
which these effects take place. 

One of the practical lessons to be learned from Saint-Venant’s princi¬ 
ple is that forces should be introduced into structural members in a 
manner reasonably consistent with the way in which they will tend to 
distribute themselves. Otherwise the member will tend to be over¬ 
stressed at the point of application and hence cannot be as efficient as it 

Fig. 7-8. Composite load-deflection 

curves. 
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would be otherwise. Alternatively, the regions of concentrated load 
application should be made stronger (heavier) than the major portions 
of the member. (In aircraft work it is customary to apply fitting factors 
for this purpose.) 

An exact application of the theoretical local stress distribution is not 
often required in engineering work, as the materials of construction 
usually have a sufficiently large plastic range to permit considerable 
readjustment of stress before actual failure occurs. For brittle materials, 
or under conditions of repeated stress or impact, the elimination of local 
effects is of primary importance. 

7*10. Stress Concentration. The foregoing discussion of local effects 
applies also when the dimensions of the member are varied locally, as in 
a notched bar, or a plate with a hole 
in it. Any abrupt change in cross 
section will cause a concentration 
of stress at the point of change. 
Although these increases are highly 
localized they are potential sources 
of failure. Under repeated or alter¬ 
nating stresses a crack may eventu¬ 
ally form and enlarge until complete 
failure occurs. An abrupt change of 
section is often referred to as a stress 
raiser. 

Figure 7 • 10 shows the nature of 
stress concentration around a hole 
and at an abrupt change of cross section. In an infinitely wide plate 
a round hole increases the local stress to three times the average value. 
If the hole is near the edge of a plate the stress concentration factor (maxi¬ 
mum local stress divided by average stress) is even greater. Figure 7-106 
shows the increase in local stress at a fillet. The stress concentration 
factor may be reduced by using larger fillets. 

A crack across the direction of tension stress represents an extremely 
powerful stress raiser; hence if a small crack once forms it is likely to 
grow rapidly under repeated stress. (The practice of drilling a hole at 
the end of a crack can be seen to be a matter of substituting a relatively 
low stress raiser for a much higher one.) 

Further detailed discussion of stress concentration would be out of 
place at this point. The foregoing material has been included at this 
early stage to show the limitations of the common formulas for average 
stress and to emphasize the dangers of abrupt changes of cross sec¬ 
tion. 

Fig. 7 • 10. Stress concentration. 
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Photoelasticity is a powerful experimental method for determining local 
stresses in models of actual parts. Figure 7-11 is reproduced from 
Frocht’s excellent text on this subject.*6 

Fig. 7-11. Photoelastic stress pattern of simply supported centrally loaded beam. 
(Reproduced from Frocht, Yol. I, Photoelasticity.) 

A thorough discussion of stress concentration will be found in Refs. 21 
and 22. Reference 23 contains an extensive collection of stress concen¬ 
tration factors for various cases. Reference 14 is highly recommended 
to designers, as it gives many examples of the results of stress concen¬ 
tration and tells how these dangers may be avoided. 

PROBLEMS 

7*1. A 1-in. O.D. X 0.049 wall alloy-steel tube (not heat treated) is subjected 
to a 12,000 lb axial tension load. Will this tube yield? Will it break? (Use 
Appendix 2.) 

7*2. What diameter high-strength aluminum-alloy rod is required to carry a 
load of 14,500 lb before breaking? (Use Appendix 2.) 

7*3. For the composite member shown (use Appendix 2): 

(а) Where must P be applied to produce uniform axial tension stress in 
each part? 

(б) Which material will fail first? 
(c) What load will cause the member to break? 

$*c A-A 
Problem 7 • 3. 
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7*4. The cylindrical tank shown is subjected to an internal pressure of 12 psi. 

(a) What is the hoop tension stress? 

(ib) What is the longitudinal tension stress? 

Problem 7 4. 

7*5. Draw, to any suitable scale, a series of ten parallel, equal, and equally 
spaced forces, as shown in Fig. 7*46. Construct a relatively flat string polygon 

(depth approximately one-fifth span), representing a cable carrying these forces. 

Calculate several points on a parabola passing through the lowest point on the 

polygon (the curves should agree). Draw a circular arc through this point to 
show the degree of approximation which this involves. 

7-6. Repeat Problem 7*5, using a relatively deep polygon (depth approxi¬ 

mately equal to half span). 
7*7. A spherical tank 32 in. in diameter will be subjected to a working pres¬ 

sure of 5 psi. For safety reasons it is desired that the stress in the shell, at that 

pressure, should not exceed one-third of the tension yield stress for the material. 

Select a material from Appendix 2 and determine the minimum wall thickness 

that may be used. 
7 *8. The figure shows a cross section through a pressure bulkhead in an air¬ 

plane fuselage of circular cross section. The bulkhead is of spherical shape and 

has a thickness of 0.050 in. Find the tension stress developed by an internal 

Problem 7 • 8. 
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pressure of 6 psi. Also determine the tension force per inch width of the fuselage 

shell at this point and calculate the tension stress for a sheet thickness of 0.032 in. 

Note, A convenient formula for the radius of curvature of a circular arc is: 

R = 
a2 + &2 

2a 

where a — the maximum offset (or sag). 

b = one-half the chord (or span). 

7 Assume that a cable is stretched across a span of 100 ft and that it sags 

18 ft at the midpoint. The safe tension load in the cable is assumed to be 

30,000 lb. Find the corresponding safe value of uniformly distributed loading 
(Fig. 7*4b) in pounds per foot, assuming that the hoop-tension fonnula is 

sufficiently accurate. (Note. The linear weight of the cable would have to be 
subtracted from the above answer to determine the net loading which the cable 

will support.) 

7*10. Assume that the distributed load found for Problem 7*9 is concentrated 

into a single force at mid-span and that the cable is shortened so that the sag 

at this point remains 18 ft. Neglecting the weight of the cable, find the 

tension load in the cable and compare with that used in Problem 7 • 9. (Con¬ 

centrated loading will be more severe.) 

7*11. Assume that two concentric tension members, each 100 in. long, are 

constructed as follows: 

Member A 2 in. X 0.035 steel tube 

Member B 1 in. X 0.058 aluminum-alloy tube 

Draw, to the same scale and on the same chart, approximate stress-strain 

diagrams for the two materials. Convert these into load deflection curves and 

plot the composite load-deflection curve for the two tubes loaded simultaneously. 

From this show the distribution of load at some point in the plastic range 

(beyond yield stress). Refer to Appendix 1*2 for tube data. 



CHAPTER 8 

TRANSVERSE FORCES 

8*1. The Basic Problem. Up to this point the discussion has been 
confined to the transmission of axial forces, for which tension or com¬ 
pression members are employed. The transmission of forces in a direc¬ 
tion normal to their line of action (designated as trans¬ 
verse) is a more complicated problem. In fact, this 
is found to be the basic problem of almost all stress 
analysis because it is seldom possible to find a simple 
case of axial loading; almost every structural problem 
will be found to involve transverse forces of some 
description. 

A very simple illustration of transverse forces is 
found in railroading. It may be desired to move a 
railroad car which is on a track adjacent to the main 
train or engine. This is done as shown in Fig. 8* 1 by 
inserting a bar (column) diagonally between the two 
cars. The engine then transmits its force axially 
through the string of cars, and it is transmitted side- 
wise (transversely) to the adjacent track by the diag¬ 
onal member. The important point to note is that 
this sidewise transmission of the force really is axial 
with respect to the bar itself. 

This seemingly minor point is essential to a clear 
understanding of force transmission. In fact, it can be 
stated that the only possible form of force transmission 
through a finite distance is axial. This may seem Fiq g l Example 

contrary to previous conceptions, but it will become 0f transverse force 
clearer with further examples. (Compare Sec. 6 ■ 15, transmission, 

on shear stresses.) 
Another lesson to be learned from Fig. 8*1 is that it is impossible to 

transmit a force sidewise (transversely) without, at the same time, trans¬ 
mitting it some distance along its own line of action (axially). Imagine 
trying to move the car by using a bar that went straight across the tracks 
(normal to the cars). Even if the ends were pinned, nothing would 

125 
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them also to transfer the force in the desired direction. This develops 
the Warren truss, as illustrated by (c). 

If the force to be resisted acts always in the same direction (such as a 
gravity load), it is most efficient to place the diagonal members of the 
Pratt truss so that they will be in tension. This puts the vertical mem¬ 
bers in compression. The advantage of having the shorter members in 
compression (instead of the longer ones) is obvious. It would then be 
possible to use a simple diagonal tension member such as a tie rod, wire, 
or cable. This type of construction is shown in (d), in which the dot- 
dash lines are used to indicate tension members, that is, members 
incapable of carrying compression. 

If there is a possibility of the force P changing its direction at any 
time during the life of the structure, the construction shown in (d) be¬ 
comes inadequate, owing to the inability of the diagonal tic rods to 
resist compression forces. Under these conditions it is necessary either 
to use diagonals which will act as columns (regular Pratt truss) or to 
provide another set of tension diagonals (counters) which will resist 
forces applied in the opposite direction. The latter form of construction 
is shown in (e). In airplane work it is often referred to as the wire- 
braced type. (It was formerly employed extensively in the side trusses 
of the airplane fuselage and in the drag bracing of the wing.) 

The wire-braced type of truss may be thought of as two different 
trusses superimposed on each other and having common horizontal and 

vertical members. When the external 
force is reversed, the opposite set of wires 
or tie rods (called counter-wires) comes 
into action, and the others become in¬ 
effective. In the analysis of this type of 
structure only those diagonal members 
subjected to tension forces are considered. 
(Some refinements of this method are 

sometimes necessary, to account for initial rigging forces, but «usually 
these forces may be neglected. Their effect disappears as soon as the 
counter-wires become slack.) 

Figure 8-5 shows a Warren truss, to which have been added vertical 
members (a). These members serve no useful purpose as far as trans¬ 
mission of the force Pi is concerned. They may therefore be neglected 
in making the analysis. (The resemblance of this truss to the Pratt 
truss may jbe confusing, but the action is essentially that of the Warren 
truss.) The extra vertical members are usually added to reduce the 
unsupported length of the horizontal (flange) members, or to transmit 
local forces into the structure (as indicated by P2). 



THE SUSPENSION TRUSS 129 

8-4. Two-Way Trusses. All the trusses discussed so far have been 
built up from triangles. Another significant feature is that the trans¬ 
verse force was being transmitted in one direction only, that is, there 
was only one possible path for the force to follow. Another class of 
problems is encountered when the force may be transmitted in more 
than one direction. A simple example, which may be thought of as the 
bridge problem, is shown in Fig. 8 • 6. This shows a symmetrical case. It 
is obvious from inspection that if a symmetrical structure is used, half of 
the load will go to the left and half to the right To design such a 
structure a double triangle can be used, as shown in Fig. 8-7. The ver¬ 
tical member A transmits the force P to the two diagonal (tension) 

Fig. 8-6. Two-way transmission. 

r 

_££_ 

rvJ A / 
><B jjjj 

Fig. 8-7. Double triangle (king-post). 

members B} each of which transmits half the force to the supporting 
points. A significant feature of this type of truss, called the king-post 
truss, is that the horizontal components of the two diagonal members 
resist each other at the apex of the triangle. At the other ends of the 
diagonals these components are resisted through the horizontal com¬ 
pression member c. 

8*5. The Suspension Truss. An even simpler version of this method 
of force transmission may be obtained by an arrangement in which the 
horizontal components of the diagonal forces are resisted by the sup¬ 
porting points (hence transmitted through the ground or structure to 
which these points are attached). As shown in Fig. 8*8, this is the sim¬ 
plest possible method of transverse force transmission. The basic prin¬ 
ciples have already been covered. (Sec. 7*4.) The high efficiency of 
this structure is due to the minimum number of members, use of tension 
members for transmitting the force, and the use of the earth itself as an 
equalizing compression member. 

The success of this structure is well demonstrated by the common use 
of suspension bridges for very long spans. The suspension bridge uti¬ 
lizes the same basic principle that is illustrated in Fig. 8-8, the difference 
in shape being due only to the distribution of the applied forces over 
the entire span, as explained in Sec. 7*4. 

If Fig. 8*7 were to be inverted, the diagonal members would have to 
carry compression and the vertical member tension. Such a form of 
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construction (Fig. 8*9) is less efficient but often more convenient than 
that shown in Fig. 8*7. (It is frequently seen in small bridges along 
country roads and is the basic roof truss for most small houses.) 

Fig. 8 • 9. Double triangle (compression 
diagonals). 

8*6. The Roof Truss. By combining more than one double-triangle 
element it is possible to develop various other forms of trusses. One of 
the most useful is the Fink type, shown in Fig. 8-10. ’ Careful examina¬ 
tion of this will show that the force P is transmitted by the compression 
member A as in Fig. 8 • 9, while the forces P' are taken care of by two 
king-post trusses superimposed on the first truss, as indicated by the 

sketches. This idea may be carried 
even farther, as shown in Fig. 8*11 
(compound Fink type). The effi¬ 
ciency of this type of truss is ex¬ 
plained by the minimum number of 
compression members (shown by 
heavy lines in Fig. 8 • 10) and their 

Fig. 8*10. Roof truss (Fink type). Fig. 8*11. Compound Fink truss. 

short length. This, incidentally, illustrates a fundamental principle of 
design for light weight, which is, compression members should he reduced 
to a minimum in number and length. It follows that tension members 
should be used as much as possible. 

8*7. Summary of Trusses. The foregoing examples show how axially 
loaded members may be combined in various manners to form a structure 
capable of transmitting forces transversely, i.e., in a direction normal to 
the line of action of the force. The analysis of trusses is based Qn the 
principles outlined in Chapt. 2. Before this subject is taken up in 
detail, however, other methods of transmitting forces transversely will 
be described. 



SHEAR WEBS 

8*8. Shear Webs. The diagonal brace wires of Fig. 8-4e can be 
replaced by a solid plate or web. Such a web will act as a series of 
diagonal members. (Its action will be described in Chapt. 10.) A 
typical web type of beam or girder is illustrated in Fig. 8-12. Vertical 
stiffeners are employed to prevent the web from buckling or to resist 
forces produced after buckling. If the web is relatively thick the struc¬ 
ture is usually called a plate girder. The design of such beams involves 
structural principles not yet discussed but which will be taken up later. 

Fig. 8 12. Plate girder Fig. 8 13. Beaded web. 

Another method of stiffening a web is to employ beads, as shown in 
Fig. 8-13. These take the place of separate vertical stiffeners. 

If the beads are placed close enough together the sheet becomes 
corrugated (Fig. 8*14). Such shear webvS are quite efficient for moderately 
heavy loadings, but require special attention in the design of the edge 
attachment. 

A type of web often used in aircraft work is the web with lightening 
holes (Fig. 8*15). Actually the use of holes makes the web relatively 
inefficient as compared with a solid web of the same weight. The term 

Fig. 8*14. Corrugated web. Fig. 8 15. Lightening or ac¬ 

cess holes. 

lightening hole can properly be applied only when the holes are used to 
remove excess material in a web which is so lightly loaded that even the 
minimum practical thickness of material is much too strong. However, 
the real purpose of such holes is usually to provide access for assembly 
or inspection. When so used the holes should be called access holes. 
The analysis of a web containing holes is quite complicated; in fact, 
tests are usually resorted to as a means of determining the strength of 
such webs. 

The idea of lightening or access holes may be combined with the 
basic principle of the wire-braced truss, as shown in Fig. 8*16. Here 
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the web is cut away so as to leave diagonal straps which act the same way 
as brace wires. This type of web is relatively simple to analyze and is 
quite efficient for lightly loaded structures. 

The sheetmetal stamping or hydropress type shear web is widely used 
in aircraft work. In general it is one of the foregoing basic types in 

which all the members are formed from 
a single sheet in one or more pressing 
operations. 

Obviously, the simplest possible shear 
web is the flat plate, without vertical 
stiffeners or beads. The plate serves as 

^ diagonal members (carrying both tension 
and compression) and as verticals. If 

the intensity of loading is high, such a type of construction may be used; 
the web must be relatively thick compared with its depth, however. 
When so used the web is often designated as shear resistant, indicating 
that it requires no additional stiffening to be able to carry the transverse 
(shear) loads. 

Fig. 8-17. Static test of wing rib. Note the types of shear webs employed. The 
loading is applied by hydraulic jacks through sponge rubber pads to simulate air loads. 

Various other combinations and ideas have been employed in the 
design of sheetmetal shear webs, but the basic principles of design are 
not essentially different from those already described. 

PROBLEMS 

8*1. Prove that the most efficient angle for a diagonal truss member (as in 
Fig. 8 • 46) is 45°, assuming that the allowable stress for the diagonal is unaffected 
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by the length of the member. Procedure: Write equations for the length of the 
diagonal and for the diagonal force in terms of the angle. Assume that weight of 
member is directly proportional to its length and cross section. 

8*2. Assuming constant allowable stresses throughout, calculate the relative 
weights of the shear members (diagonals and verticals) for the Pratt and Warren 
trusses, with diagonals at 45°. (For instance, what percentage weight increase 
in shear material is involved in changing from Warren to Pratt truss?) 

8-3. Design a truss which will efficiently carry the loads shown in the figure, 
using roller support at one end. 

4 / 

Problem 8 ■ 3. 

8*4. Design a cantilever truss for the loads shown, to give good efficiency for 
the diagonal members. (Omit consideration of flange member efficiency.) 

/—4 
/ 

Problem 8 • 4. 



CHAPTER 9 

TRUSS ANALYSIS 

(a) 

(b) 

9-1. Conditions at a Joint. In Chapt. 8 it was shown that the basic 
element of a truss is the triangle. The analysis of any truss is based on 
the behavior of the members of the triangle under load. The loads in 

the individual members are in turn in¬ 
fluenced by the conditions at the joints. 
It is therefore necessary to examine the 
physical behavior of a joint in order to 
get a clear understanding of truss 
analysis. 

In Fig. 9-1 the two members of the 
triangle (a) are shown separately at (b) 
and (c). In this condition they obvi¬ 
ously fall into the class of mechanisms 
(see Sec. 5-4) and are unable to resist 
the application of a force, P. Since they 
are pinned at the ends, they will describe 
arcs in their motion under the action of 
the force. These arcs will coincide only 
at one point, C, and will diverge on 
either side of this point, as shown in (a). 

Now if a pin is inserted at C and the 
force P is again applied the members will 
attempt to diverge as before, but will be 
prevented from doing so by the pin. 
More accurately, the pin, acting as a 
joint, requires the ends of the two mem¬ 
bers to move in the same path. This can 

take place only if one or both members change in length. It is this 
action that induces the axial forces in the members. 

For example, if a rubber band were substituted for member AC, 
rotation of BC under the force P would simply strdch member AC and 
very little axial force could be built up in it. The arrangement would 
therefore be useless for transmitting large forces, as it would not hold its 
shape, but would rotate about point B. In an actual structure there will 

134 

(c) 

Fig. 9*1. Elements of truss. 
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be only a slight change of length of the members and point B will there¬ 
fore deflect only a small amount. (The actual deflection may be found 
by considering the lengths of the members under load and drawing new 
arcs to determine their point of intersection, as will be shown later.) 

The action may be further illustrated by considering both members 
to be hinged at the same point on the wall. Their outer ends will then 
describe the same arc and the insertion of a pin will have no effect. Such 
an arrangement is obviously incapable of resisting any force which would 
tend to rotate the members about their point of attachment. It could 
resist only a tension force and hence is a mechav ism with respect to 
transverse forces. 

A 

D 

C 

P 
Fig. 9*2. Curved member. 

It is now obvious that the development of forces in members of a 
triangle or truss depends on the manner in which they are compelled to 
change their length under the applied loading condition. This in turn 
depends primarily on the location of the points about which the opposite 
ends of the members rotate. To show that the direction of the member 
at the joint is not the primary factor Fig. 9*2 has been included. A 
superficial examination of joint C might lead to an analysis based on the 
direction of the member between D and C. Actually, however, point C 
will tend to rotate about point A just as if the member had been straight. 
The analysis must therefore be started as if member ADC had been 
straight. This will give the correct force in member 1BC. The straight 
line AC is sometimes called a phantom member. (The analysis of the 
curved member ADC is a more advanced problem that will be taken 
up later.) 

One more example is given in Fig. 9*3. Here the force P is applied 
along the axis of member BC. Since the line of action of the force passes 
through the hinge at point B, there will be no tendency for member BC 
to rotate. Consequently, it will resist the entire force P without any 
assistance from member AC. (Compare Sec. 5*3.) 

A question may be raised about the effect of the elongation of mem¬ 
ber BC. It is true that point C will tend to move outward under load, 
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as member BC must elongate slightly. It might be supposed that mem¬ 
ber AC would have to elongate similarly. Actually, however, this change 
of position of point C is accomplished much more easily by a very slight 
rotation of members AC and JSC, involving no elongation of member AC, 
hence no load in it. This rotation is usually so small as to be negligible, 
i.e., the original geometry is assumed to be unaffected by actual distortion 
of the members. This basic assumption should be kept in mind, as occa¬ 
sionally it may cause appreciable errors. 

9*2. Joint Analysis. To determine the dis trio at ion of forces between 
two or more members meeting at a common joint the members may be 

considered as being replaced by the forces 
which they exert on the joint (actually, on 
the pin or bolt which forms the connecting 
link). Usually the value of the force in one 
of the members is known, and the forces in 
the others must be determined. The direc¬ 
tion of the forces in the unknown members 
is fixed by their location, or, as already dis¬ 
cussed, by the location of the points about 
which they rotate. Figure 9-4 is typical. 
The force in member C is known and the 
forces in members A and B must be deter¬ 

mined. If it is assumed that members A and B are straight and pinned at 
the opposite ends, they can transmit only axial forces; therefore the line 
of action of forces Pa and PB must be along the center-lines of members 
A and B. 

The principles of static equilibrium are now applied, as outlined in 
Chapt. 4. The pin connecting all three members is in a state of equi¬ 
librium, as it is not being accelerated in any direction by the action of 
unbalanced forces. Hence the net effect of all the forces acting on the 
pin must be zero. (This must hold for any direction.) 

If the net result of three forces is zero, the vector diagram must close. 
The joint problem can therefore be stated as follows. Given one of the 
forces acting at the joint (including its direction) and the lines of action 
of the other two forces, find the magnitude of the two unknown forces 
such that the vector sum of all three is zero. 

9*3. Graphical Solution. The graphical solution is readily obtained 
by constructing the vector diagram as follows (illustrated in Fig. 9*5). 

First a scale picture of the joint must be drawn, as in (a), showing 
the lines of action of the known force and the two unknown forces. 
These lines are usually the centerlines of the three members intersecting 
at the joint. (See Sec. 9 • 1 for exception.) Next the vector diagram is 

Fig. 9 • 4. Conditions at joint. 
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started by selecting a suitable force scale and laying out the vector for 
the known force PC} parallel with its lines of action and in the proper 
direction. This is indicated in (6). 

Next, a line is drawn through one end of the vector, parallel to one 
of the members (line A A). A line parallel to the other member is drawn 
through the other end of the vector Pc (line BB). The intersection of 
these two lines determines a triangle, which is the closed vector diagram 
desired. The arrows indicating the direction of the forces are now placed 
in accordance with the convention for adding vectors (Sec. 2*5), as 
three forces are being added to obtain the vector sum. of zero. If desired, 

the forces may then be shown as acting on the pin, as in (r). This 
assists in determining the nature of the loading in each member. Since 
these forces are being exerted by and not on the members, (c) indicates 
tension in member A and compression in member B. 

Note that the same result would have been obtained if line BB had 
been placed at the top of the vector Pc and line AA at the bottom 
(Fig. 9-5d). It is necessary only to remember to place the head of each 
vector away from the head of the adjacent one. (Heads should never 
be together in a closed diagram.) 

The foregoing simple analysis represents the basic process used in the 
graphical analysis of trusses and plane frames. More specific general 
methods will be given later; at this point it is most important to obtain a 
clear mental picture of the physical action and the significance of the 
vector operations. 

9*4. Analytical Method. A joint may be analyzed mathematically 
by working with linear components and the equations of equilibrium. 
Since vectors cannot be added and subtracted algebraically unless they 
all lie along the same line, or are parallel, all forces (both known and 
unknown) must be resolved into components which can be added and 
subtracted directly. In plane frameworks (two-dimensional) it is neces¬ 
sary to establish two independent reference axes. These are chosen per- 
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pendicular to each other to facilitate the computations. All forces act¬ 
ing on the joint (pin) along each reference axis are then added algebrai¬ 
cally and equated to zero. If there are two unknown forces, this yields 
two equations in two unknowns, which may then be solved algebraically. 

In the algebraic solution it is necessary to make an initial assumption 
as to the sense of the unknown forces in the members. It is most con¬ 
venient to make the arbitrary assumption that all unknown forces are 
tension, as shown in Fig. 9*6, using the “structural” convention that 
tension is positive (Sec. 3*3). Then if a negative sign is obtained in the 
first solution we know that the direction of the force is reversed, i.e., the 

member is under compression. (Compare 
Sec. 4-8.) 

Since the unknown forces must remain 
as symbols until the equations of equi¬ 
librium are solved, these symbols must 

X be multiplied by factors which will give 
their components along the reference axes. 
The direction cosines of the members are 
used for this purpose (Sec. 2*4). The 
direction cosines of a member may be 
thought of as the components of a unit 
tension force which the member is exerting 

Fig. 9*6. Analytical met od. on ^he joint. Thus the direction cosines 

of member A could be found by drawing a vector of unit length for 
the assumed tension force Pa and measuring its components along the 
X and Y axes. (In Fig. 9 • 6 the y direction cosine of member B would 
be negative with respect to the force conventions used.) 

For Fig. 9*6 the data may be tabulated as follows. 

Member X y 
or Direction Direction 

Force Cosine Cosine 

Pc 0.0 1.000 
Pa -0.866 4-0.500 

Pb -0.600 -0.866 

The equations of equilibrium are now written: 

[2PX] (0 X Pc) - 0.866PX ~ 0.500P* * 

pJP„] l.OOOPc + 0.500Pa - 0.866P* - 

From Eq. a, 

Pa 
-0.500 

Pb -0.577PB 

0 

0 

H 
W 

0.866 
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Substituting in Eq. b: 

Pc - 0.288PB - 0.866Pb - 0 

pB a* +0.866Pc (tension) 

Pa = —0.577 (0.86GPe) = —0.500Pc (compression) 

9*5. Solution by Taking Mo¬ 
ments. Another useful method 
of solving a triangle involves tak¬ 
ing moments about one of the 
hinges or joints. (This method 
was described in Sec. 4*20.) 
Assume that one of the members 
is replaced by the force J is 
transmitting, and that this force 
acts on the common joint. The 
remaining member must still be 
in equilibrium; consequently there 
must be no tendency to rotate 
about any point. 

Taking Fig. 9*7, for example, 
the turning moment of Pb about 
point O must exactly counteract 
the moment of Pc about the same point. (The axial force in member 
A will, of course, have no turning moment about point 0 and can there¬ 
fore be neglected.) 

Expressed mathematically, 

Fig. 9*7. Solution by taking moments. 

[2 M = 0] 

Solving, 

Psds + Pcdc = 0 

Pb = ~dfPo 
da 

Note that the solution gives a negative value for Pa- This is because 
Pa was assumed to represent a tension force in Fig. 9-7. The negative 
sign indicates that it is actually a compression force and that it acts in 
a direction opposite to that shown in the sketch. 

To obtain the force Pa by this method, moments may be taken about 
the lower hinge point. Or Pa may be obtained by vector addition of 
Pc and Pay to give a closed diagram. Both methods may be used, to 
obtain a check. 



140 TRUSS ANALYSIS 

9-6. Summary of Triangle and Joint Analysis. The foregoing brief 
discussion of joint analysis brings out the three basic methods of deter¬ 
mining the axial forces in a plane framework. Certain fundamental 
principles were also developed and emphasized. Each method will be 
more fully described later, but the following summary should be 
thoroughly understood. 

a. The basic element of the plane truss or framework is the triangle 
(or Vee). 

b. Pinned ends must be assumed in order to permit the direction of 
the forces acting on the joint to be determined. 

c. The joint must be in static equilibrium. 
d. The graphical method of solution involves the construction of a 

closed diagram in which one force is completely known but only the 
lines of action of the other two are known. 

e. The analytical method requires all forces to be resolved into com¬ 
ponents along arbitrary axes, after which the equations of equilibrium 
along each axis are set up and solved. 

/. In the analytical method it is best to assume all unknown forces 
to be tension. The sign of the solution then shows the real sense of the 
force. 

g. In the solution by taking moments the principle involved is to write 
the equation of equilibrium for turning moments about one of the joints, 
thereby eliminating one axial force and permitting the solution of the 
equation to determine the other. 

9*7. Truss Analysis. Since a plane truss is composed of a series of 
triangles having common joints the foregoing methods may be used to 
determine the loads in all the members. The process is started at a 
joint which has only two unknown loads (such as the free end of a 
cantilever beam). By properly choosing successive joints it is usually 
possible to proceed through all the members. If two-wray force trans¬ 
mission is involved, however, it is necessary first to determine the reac¬ 
tions at the points of support (Sec. 4-2). 

For plane trusses the vector method is usually more rapid than the 
analytical method and, if suitably large scales are used, the results are 
sufficiently accurate for engineering purposes. 

It should be noted that trusses may contain members which are not 
theoretically essential to truss action. From the example shown in Fig. 
9-8a it is apparent that before starting the analysis the truss can be 
simplified as in (6). The additional members do not make the "truss 
statically indeterminate, as might be supposed, even though two of the 
verticals are under load. One way to check this is to attempt removing 
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any of the other members which attach to the member in question. If 
none of these can be removed without destroying the continuity of the 
truss, the truss is not indeterminate. 

Fig 9 8. Removal of supeifluous members. 

In Fig. 9 -9a an extra member does make the truss statically inde¬ 
terminate. As shown in (6) and (c) either of two members may be 
removed without reducing the truss to a mechanism. Therefore, (a) is 
statically indeterminate, and it is impossible to analyze the members 
in question by anj^ of the methods given up lo this point. The remainder 
of the truss can be analyzed, however, by assuming one of the redundant 
members to be removed, as in (6) or (c). This will give conservative 

(too high) loads in the redundant members and in those to which they 
attach. 

9*8. Vector Analysis of Trusses. The use of Bow's notation, already 
described in Sec. 2-7, greatly simplifies the analytical solution of a truss. 
The solutions of the various joints can be done by means of a single 
diagram, similar to that used in determining the string polygon. In Sec. 
2 • 8 the force polygon was arbitrarily drawn and the lines of action on 
the space diagram were determined from it. In the truss the centerlines 
of the members (or phantom members) define the space diagram, and 
the problem is to find the force polygon for the members of the truss. 

Even if one-way transmission is involved, it is best to determine the 
reactions before starting, using one of the methods given in Chapt. 4. 
These reactions are then regarded as applied forces, and the force poly* 
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gon representing them and the known forces must close. Therefore the 

force polygon for the truss members (internal forces) must also close, 

which affords a check on the accuracy of the work. 

Figure 9*10 shows the graphical analysis of a simple truss. The 

reaction Ri was found by taking moments. R2 was found from the 

vector diagram (dotted line AC). Point D on the force polygon was 

first determined, by drawing a line through B parallel with bd and 

another line through A parallel with ad. Since point D must lie on 

both of these lines, their intersection obviously determines its location. 

The lengths AD and BD, multiplied by the force scale, give the loads 

in ad and bd. The direction of these loads is determined by reading 

clockwise around a joint in the space diagram and following the same 

sequence of letters on the force polygon. Thus the load in member gf 
will be found to be compression, as the force acts toward the joints, 

according to the foregoing rule. 

The remaining steps are similar and should require no further explana¬ 

tion. Note that the last line drawn (HC) failed to pass through the 

previously determined point C, indicating that the construction was not 

absolutely accurate. For extreme accuracy the diagrams should be 
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drawn to a relatively large scale, and care should be taken in keeping 
force lines parallel with their respective space lines. 

9*9. Other Methods. The method of taking moments about one of 
the joints (described in Sec. 9 • 5) may be used for various members in a 
truss. It is only necessary to cut the truss in such a manner that the 
“cut” passes through one joint and one member. An equation may then 
be written for the moment of all forces on the free body, acting about 
the cut joint. The force in the cut member will be the only unknown 
in the equation, and may therefore be determined directly. This method 
is convenient when it is not desired to analyze the truss completely. 
An example is shown in Fig. 9*11. 

Fig. 9 11. Solution by taking moments. 

P-300-200-100=0 
Py=600 
P=1.2 x 600 = 720 

Fig. 9* 12. Solution by section. 

If the cut passes through more than one member, a single equation 
of equilibrium is not sufficient to obtain the loads in the cut members. 
Additional equations of equilibrium for horizontal or vertical forces, or 
both, must be written and solved. This is usually referred to as taking 
a section through the structure. 

This process is particularly useful in determining the loads in diagonal 
members of parallel-chord trusses, such as shown in Fig. 9*12. Since 
the chords in the illustration have no vertical (y) components, it is un¬ 
necessary to include them in writing the equation of equilibrium for 
vertical forces. The solution of the equation gives the vertical com- 
portent in the diagonal member; the total load is then determined graphi¬ 
cally or analytically. (In Fig. 9 *12, P = 1.2 Py.) 

9*10. Space Frameworks. Although this volume is confined largely 
to plane problems, the analysis of space (three-dimensional) frameworks 
is such a common procedure that a brief discussion will be presented. 
The basic principles are essentially the same as those used in plane 
problems. If the analytical procedure is followed, each joint may be 
analyzed by writing three equations of equilibrium, instead of two. The 
direction cosines for the members being solved must, of course, be known, 
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or computed from available dimensional data. The unknown forces 
should be assumed to be tension. The sign of the solution will tell 
whether this assumption was correct or not. 

Graphical methods can also be applied to three-dimensional frame¬ 
works by determining the true view of various portions and analyzing 
them as plane trusses. This procedure is sometimes more convenient 
and more rapid than the analytical procedure. Examples of both 
methods will be given, for illustration. 

Fig. 9*13. Airplane nose gear. 

9*11. Airplane Nose Gear (Analytical Method). Figure 9 13 shows 
the nose landing gear of a large airplane. In designing such a gear it 
is customary to consider various loading conditions, one of which is 
selected for this example. In this side load condition it is assumed 
that the resultant load acting at the wheel hub is composed of two com¬ 
ponents, a vertical component (Vh = +15,000 lb) and a side component 
(Sff = —22,500 lb). The sign conventions to be used for applied loads 
are shown in Fig. 9*13. 

The loads applied at the hub H are transmitted up to point A en¬ 
tirely by the shock strut HB. The structure may therefore be thought 
of as being made up of two separate units, a beam supported at two 
points, (A and B) and tripod (ABCD). The analysis will be made 
accordingly. 

The first step is to calculate the direction cosines and lengths of the 
tripod members in Table 9 • 1. 
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TABLE 9.1 

Mem¬ 

ber 
V D S 

| 
V2 ! D2 S2 L2 

1 

L 
V 

L 

D 

L 

S 

L 

AB 50 10 0 2500 100 0 2600 50.99 0.982 0.196 0 
AC 60 60 20 3600 3600 400 7600 87.18 0.688 0.688 0.2295 
AD 60 60 20 3600 3600 400 7600 87.18 0.688 0.688 0.2295 

Next the shock strut is analyzed as a beam to find the reactions at 
A and B. The analysis for side load is shown in Fig. 9-14a. The 
reaction at A is determined by taking moments about point B, from 
which 

Has = 

22,500 X 100 

50 
45,000 (lb) 

where subscript A refers to point A, 
subscript S indicates side load. 

Note. The true lengths involved are 50.99 and 101.98 in., but the 
same ratio is obtained by using the vertical components only. 

The value of 45,000 lb is the load exerted on member HB by the 
tripod which supports it. Hence, when this load is applied to the tripod 
it must be reversed, requiring a negative sign (by inspection of Fig. 
9* 14a). 

Before this same process is carried out for the side view (Fig. 9-146), 
the applied load of 15,000 lb at H is resolved into axial and transverse 
components, using the direction cosines from Table 9*1. Since the 
axial component of 14,720 lb (compression) is carried directly through 
the shock strut to B, it may be dropped out of the subsequent tripod 
analysis. It must be added to the loads determined for member AB, 
however. (Compare Sec. 5*3 and Fig. 9-3.) 

The transverse component of 2940 lb is now treated in the same 
manner as the side component, to determine the reaction at A. 

Ran 
2940 X 101.98 

50.99 
= 5880 

Note. True lengths were used here. The same result would be ob¬ 
tained by using 50 and 100 in. 
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This reaction acts normal to the shock strut, as point A tends to move 
in such a direction when rotated about point B. The resisting force of 

Fig. 9 ■ 14. Analysis of shock strut. 

5880 lb must be supplied by the tripod, hence this force will be reversed 
and applied at point A in the tripod analysis. 

Figure 9»15 shows the loads for which the tripod must be analyzed. 
Note that the directions of the loads have been reversed with respect 

to Fig. 9 • 14. Before writing the equations of equilibrium the normal 
force at A is resolved into vertical and drag components, using the 
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direction cosines for member AB (reversed, since the force is normal to 
the member). 

Pv = 0.196 X 5880 - 1150 

Pd = -0.982 X 5880 = -5770 

The equations of equilibrium may now be written for point A. To 
determine the signs in the equations the unknown forces are assumed 
to be tension, i.o., they all pull away from point A. The proper sign is 
then determined with respect to the positive conventions already estab¬ 
lished. The letters used to designate members are also used to indicate 
the forces in them. 

[2PV = 0] 0.982.4£ + 0.6884C + O.mAD + 1150 = 0 

[2PD = 0] 0.1964£ + 0.688.4C + 0.688AD - 5770 = 0 

[2PS = 0] 0 + 0.22954 0 - 0.2295AD - 45,000 = 0 

Subtracting Eq. b from Eq. a gives 

0.7864 £ + 6920 = 0 

4£ = — = -8800 
0.786 

(The negative sign shows that this is a compression force.) 

Multiplying Eq. c by [» 3.0] gives 

0 + 0.688AC - 0M8AD - 135,000 « 0 

Adding Eq. b gives 

0.196AJ? + 1.37GAC + 0 - 140,770 = 0 

Substituting for AB and solving, 

AC = 140,7]°3^ 1730 = +103,600 (tension) 

M 
M 
M 

M 

Substituting this result in Eq. c 

0 + 23,700 - 0.229bAD - 45,000 = 0 

—45,000 + 23,700 
AD - 

0.2295 
= —93,000 (compression) 

In summarizing, the forces obtained from the tripod analysis are: 

AB *= —8,800 (compression) 

AC = +103,600 (tension) 

AD = —93,000 (compression) 
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The total force in member AB is found by adding the axial force 
obtained from the analysis of the shock strut. 

AB = —8800 — 14,720 = -23,520 (compression) 

It should be noted that this member transmits bending moments and 
shear forces in two planes, as well as the axial force just determined. 
Methods of analysis for such conditions are given in subsequent chapters. 

The foregoing method of analyzing the landing gear structure is only 
one of many possible variations. A method employing vector diagrams 
will be described and used as a check. 

Fig. 9* 16. Graphical analysis of landing gear tripod. 

9*12. Airplane Nose Gear (Graphical Method). Figure 9*16 shows 
a graphical analysis of the tripod, using the loads that were applied at 
point A in the previous analytical method. Sketch (a) shows the side 
load of 45,000 lb, while (b) shows the normal load of 5880 lb. By 
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using the centerlines of the members, the forces in AB and AK are found 
by forming a closed vector diagram of which one side represents the 
force of 5880 lb. The force in AB is found to be 8800 lb, acting toward 
the joint; hence AB is in compression. (This value checks the value 
obtained analytically in the previous section.) 

The force of 10,500 lb acts in the hypothetical member AK. This 
force is the net force exerted by the Vee members AC and AD on the 
joint, and it must therefore be reversed in direction in considering it as 
an applied force in (c), which is a projected or true view of the members. 

Fig 9-17. Lockheed Lightning (P-38) engine mount. Note combination of space 

framework and forging 

The side force of 45,000 lb is also drawn to scale in this view. The 
vector sum is found, as shown, and resolved into two components in 
members AC and AD, using the centerlines of these members as a basis 
for the vector diagram. The force of 93,000 lb (scaled from the diagram) 
acts toward the joint, showing that AD is in compression. The force in 
AC is obviously tension, as it acts away from the joint. These two 
forces check very closely the values found by the analytical method. 

PROBLEMS 

9*1. Draw a truss of the type shown in Fig. 9*86, using any desired propor¬ 
tions and dimensions. Assign values to loads P\, P2, and Fs* Use Bow's 
notation. 

(o) Solve each joint analytically to obtain member loads. 
(b) Solve the truss graphically. 
(c) Find the load in lower left member by taking moments. 

(All three solutions should agree.) 
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9*2. Using Fig. 8*46 as a basis, assume that diagonals are placed at 45° and 
that a load of 100 lb acts at each joint along the lower flange. 

(a) Calculate the forces in the diagonal and vertical members. (Use 
method of sections.) 

(b) Draw the vector diagram for the truss. 
(c) Check the lower flange member loads at any two places, by taking 

moments. 

9 *3. Draw Fig. 9 • 9 to a larger scale and apply an upward-acting vertical force 
of 1000 lb at the lower end joint. Analyze graphically far the two cases shown in 
(b) and (c) and show which members are affected by the redundancy. 

9*4. Extend Problem 9*3 by arbitiarily assuming one of the redundant 
members to be acting with a known force equal to half of the value determined 
in the first solution. (Apply the forces from this member as external forces at the 
joints to which it attaches.) 

9*6. Draw a roof truss such as shown in Fig. 8-10, assigning arbitrary dimen¬ 
sions. Assume any desired values for the loads shown and solve the truss 
(assuming roller support at one end). Check load in lower horizontal member by 
taking moments. 

9*6. Find the loads in the members of this structure by solving each joint 
analytically. 

H— 

Front 

Bottom 

Problem 9 • 6. 

(a) Assign dimensions and draw to scale. 
(b) Letter each joint and assign positive conventions for forces. 
(c) Note any members which are superfluous for the loading shown. 
(d) Solve equations of equilibrium for each joint, starting at point of 

load application. 
(e) Check load in rear top truss diagonal by method of sections. 

(Note. If the 1000-lb load had been applied at the top, the top’truss would 
have carried the load directly, without loading the side truss members. If 
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diagonal members were added to the bottom truss the structure would become 
redundant unless the front diagonal were removed.) 

9*7. Using the structure of Problem 9*6, assume that the 1000-lb load acts 
vertically at the point shown and determine the loads in the members. 

9*8. Draw to scale a tripod similar to that shown in the figure and measure 
the dimensions indicated. Establish positive space conventions and find the 
load in each member for each of the following loading conditions at point 0: 

(a) 1000 lb, acting horizontally to right (sketch a). 
(b) 1000 lb, acting directly upward. 
(c) 1000 lb, acting directly to rear (to the right in sketch 6). 

O O 

Problem 9 -8. 

9*9. Check the forces in OA and OC graphically, for loading condition (a) in 
Problem 9-8. (Draw a true view of triangle OAC.) 

9-10. Draw a pair of members, such as shown in Fig. 9* la, to a suitable scale 
(making BC about 60 in. long). Assume that force P is 10,000 lb. Select tube 
sizes (Appendix 1 • 2) such that the stress developed in each tube is about 40,000 
psi. Calculate the total axial deflec¬ 
tion of each tube (for steel). 

9*11. Using the data from Prob¬ 
lem 9-10 find the magnitude and 
direction of motion of point C under 
the assumed load. Note that this 
can be done graphically by swinging 
new arcs about points A and B, using 
the deflected lengths. An attempt to 
do this will show that the deflections 
are too small to be handled to the 
scale of the original drawing of the 
structure. The conditions at point C 
must therefore be redrawn on a 
greatly expanded scale. In this con¬ 
struction the arcs may be considered 
as straight lines drawn normal to the 
indicated in the figure. 

original centerlines of the members, as 



CHAPTER 10 

SHEAR WEBS 

10*1. The Frame. In Fig. 8-4e a wire-braced truss was shown. The 
essential feature of this structure was the use of two crossed diagonals 
one of which was assumed to be out of action. The development of the 
shear theory for webs and solid sections may be started from this simple 
structure by assuming that both of the diagonals are acting. 

Figure 10*1 shows an element of such a truss, which may be called a 
frame. The following important assumptions are made in developing 
conditions for pure shear. 

а. All members of the frame are pinned at the corners (free to rotate). 
б. The edge members are assumed to be entirely rigid (no change in 

length, no bending). 
c. Opposite edge members are parallel, i.e., the frame is rectangular. 

To start with, it will be further assumed that the frame is square, but 
this is not a necessary assumption. 

Figure 10-2 shows the deflected position of the frame under a load P 
(greatly exaggerated). The tension diagonal must undergo an increase 
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in length, AL. The compression diagonal undergoes a similar decrease 
in length. 

If the deflections involved are assumed to be small, it can be proved 
that these two deflections are equal. Hence the strain in each diagonal 
member is equal and opposite. If the two diagonals are made from the 
same material and are of the same size, i.e., if their load-strain curves 
are identical, they will exert equal forces against the action of the load 
1P, provided that the compression diagonal does not buckle (as it would 
if it were a wire or cable). 

The total load in one diagonal acting alone (for a square frame) is 
obviously, 

- r4: - ? V3 - I.41P [101] 

For crossed diagonals which fire equally effective the load in each is 
half this value.* 

Pdiag = ± tt^-TTo = ± 7^7 = ± -4 = ±0.707P [10-2] 
2sm45 1.41 y/2 

10-2. Deflection of Frame. The I 
relationship between the frame deflec- &L \ j . 
tion and the deflection of the diagonal N,--L 
can be easily determined by examining 
conditions at a corner of the frame. ^ 
Figure 10*3 shows these conditions in -—^7'sT—F 
enlarged view. The dot-dash lines are y y v ' 
arcs drawn with centers at the other / y \ 
ends of members A and D. (Since A / / 
is assumed to undergo no change in / y 
length only one arc is drawn for it.) If / /a. 
the deflections are very small, as in y ^45° 
structures, these arcs may be regarded / 
as straight lines drawn perpendicular to yD 
their respective members. With this 
assumption, the small shaded triangle Fig. 10 -3. Comer of frame 

becomes similar to the triangle repre- (enlarged), 

sented by one-half of the frame (since 
the lines composing it are normal to the lines of the frame). Hence the 
following relationship holds for the square frame. 

d = AL\/2 = 1.41AL [10-3] 

* These equations indicate the various forms in which this relationship may be 
expressed. 

Fig. 10 -3. Comer of frame 
(enlarged). 
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The same methods may be used to find the relationships for a rec¬ 
tangular frame. Figure 10-4 shows that the small shaded triangle is 
similar to the frame triangle; hence the following relationships hold. 

d_ _D_l_ 

AL B sin p 
[10*4] 

d 
A L 

sin p 
[10-4a] 

Equations 10-1 and 10*2 may also be generalized in this manner, to 
give the loads in the diagonals as a 
function of their angle. 

For one effective diagonal 

P d iag 

p 

sin /3 
[10-5] 

For two equally effective diagonals 

Fig. 10-4. Rectangular frame. These simple relationships are suffi¬ 
cient to analyze any rectangular truss 

with diagonal bracing. They apply to a test frame such as shown 
in Fig. 10*26. They will also enable the shear deflections to be deter¬ 
mined, but they do not account for 
deflections of the other frame members 
which have so far been assumed to be 
rigid. (It will be shown later that the 
shear deflections usually are relatively 
small as compared with those of the 
flange members.) 

10«3. Maximum Strain. Figure 10*5 
shows another member attached to the 
frame at some angle other than 45°. 
Since the frame is assumed to be rigid 
this member will be elongated through 
a distance ALi, as shown, if the frame 
is deflected through the distance do. 

It can be proved that for a given 
frame deflection the maximum strain 

Fig. 10*6. Variation in angle of 

diagonal. 

(AL/L) will take place when the angle P = 45°. Obviously, the'strain 
will be zero when p * 0° or 90°. Between these limits the strain varies 
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in proportion to sin p cos p (=sin 2/3). The nature of this variation 
is shown by Fig. 10*6. This curve may also be used to show the rela* 

- - 7.0 

0.8 

0.6 
£ 
•o 

0.4 

0.2 

_ _ 0 
0 15 30 45 60 75 90 

P (deg) 

Fig. 10*6. Variation of strain with angle. 

tionship between the strain e at any angle p and the maximum strain e0 
at 45°. 

In polar coordinates the resulting curve is a leminiscate. Figure 10*7 
shows such a curve, in which the vectors indicate the relative magnitude 
of the axial strain. These relationships 
hold also for the rectangular frame, even 
though the angle P is less than 45°. They 
do not apply, however, to the single di¬ 
agonal, as a decrease in the angle P will 
also require an increase in the load being 
carried by the diagonal. 

10*4. Multiple Diagonals. It can also 
be proved that any element placed at 45° 
will undergo the same strain as that of 
the main diagonal. This should be evi¬ 
dent from Fig. 10-8, which shows that the 
ratio d/L remains constant. The main points covered so far may be 
summarized as follows. 

а. The maximum strain occurs at 45°. 
б. The strain is the same for any element at this angle, i.e., for all 

parallel elements. 
c. One family of elements will undergo tension, while the other one 

(at right angles) will undergo compression. 

Fig. 10-7. Relative strain at 
different angles. 
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d. Elements at angles other than 45° undergo strains in proportion to 
the function sin p cos P, where ft is the angle which the element makes 
with one of the frame sides. 

e. Elements parallel with the sides of the frame undergo no strain 
(follows from d). 

/. The above rules hold for any rectangular frame, provided the frame 
can deflect only at the pinned comers. 

10-5. Flat Plate in Shear. It may now be assumed that a flat plate is 
attached to the frame along the centerlines of the frame members, re¬ 
placing the diagonals used for the truss. This plate can be hypothetically 
cut into strips which will conform with the foregoing analysis. The only 
real difference is that any element of the plate acts in both directions, i.e., 

the same element forms a part of the tension 
and compression diagonals, as indicated in 
Fig. 10*9. 

If the compression strip does not buckle, 
there will be a compression stress correspond¬ 
ing to the compression strain. Since the 

ft Compression tension and compression strains are equal, 

' Fig. 10-10. Axial Btresses on the eIement wil1 b? subjected to equal ten- 
an element in pure shear. sion and compression stresses, acting at 90° 

to each other as shown in Fig. 10* 10. This 
condition is designated as pure shear and is associated with the shear- 
resistant web described in Sec. 8-8. 

A sheet so thin that it has practically no resistance to compression is 

Tension 
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the other extreme of a plate in shear. The compression strains will cause 
buckling or wrinkling as indicated in Fig. 10*11, instead of building up a 
resisting stress. If it is assumed that zero compression stress is devel¬ 

oped, the element will appear as in Fig. 10*12. This idealized type of 
shear web is referred to as the tension-field web. It is very nearly 
approached in some forms of light sheetmetal construction. 

10-6. Shear Stress. The shear stresses acting on an element in pure 
shear may be visualized by making a vertical slice through the element 
giving a picture such as indicated 
by Fig. 10*13, in which the two 
halves are shown separated.* 

If the element is assumed to 
have unit width, i.e., 1 in. on a 
side, and unit thickness, the 
stresses shown may be thought of 
as forces, f By drawing vector 
diagrams as in Fig. 10 *14 it will 
be seen that there is no unbal¬ 
anced lateral component to cause 
any horizontal axial stress (which Fig. 10*13. Shear stress in element. 

* Half arrows are often used to indicate shear stresses or forces, as shown in Fig. 

10*13. 
f Stresses cannot be added vectorially, as the area on which they act changes as 

the angle of action varies. It is always necessary to convert stresses into forces by 
multiplying by the proper area, before vector addition is attempted. 
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agrees with previous findings). The reaction R is equal to \/2ft or 
\/2fe. It acts over the vertical face of the cut element, which has a 
length equal to %/2. The shear stress is therefore given by 

from which: 

Pure shear 

, R V% 
Ja~ V2~ \/2 

f' - ft = Sc [10-7] 

Equation 10-7 is very important, as it gives the relationship between 
shear stress and diagonal axial stresses for a state of pure shear. It 

should be kept in mind that the shear stress 
is always measured on a section 45° away 
from the section on which the maximum 
axial stresses act. 

Assume that a square element is cut 
from a shear-resistant web so that its sides 
are parallel with the frame, i.e., parallel with 
the direction of the transverse force. Such 
an element is shown in Fig. 10-15. Since 

there are no axial stresses in strips parallel with the sides of the frame 
there will be none acting normal to the sides of the element. Shear 
stresses will act on the edges of the element, as found in Fig. 10-13. It 
is incorrect, however, to show the shear stresses on the vertical edges 
only, as this would indicate an unbalanced couple (see Fig. 10-156). 

Fig. 10-14. 

Fig. 10 • 15. Element in pure shear. 

It is necessary to resist this turning moment by shear stresses on the 
other two free edges, as shown in Fig. 10 - 15c. 

The presence of these stresses could have been proved independently 
by cutting the element of Fig. 10-13 in a horizontal plane, instead of a 
vertical one. 
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Another way to indicate the need for shear vectors on all sides is to 
show the diagonal axial stresses acting on the square element, as in 
Fig. 10*16. Note that at every point there is a pair of tension and com¬ 
pression vectors which cancel out their components normal to the cut 
surface. The resultant of each pair acts parallel with the cut surface 
and may be represented by the shear vector 
already illustrated. (Note that Fig. 10-16 is 
for illustration only. Stress vectors cannot be 
added vectorially without first converting to 
force) 

10*7. Magnitude of Shear Stress. Sinf e 
every parallel strip in the shear web undergoes 
the same strain (Sec. 10-4) it follows thar the 
distribution of axial stress across a diagonal 
section is constant. Hence tie distribution of 
shear stress across a vertical or horizontal cut must be constant. This 
permits the use of the equation for average shear stress (Sec. 6*15). 

Shear stress f8 = — 

where A8 = the shear area 
h = the depth. 
t = the thickness. 

P 

hi 
[10-8] 

Note that the area is that of a cross section parallel with the line of 
action of the force instead of normal to it. 

The magnitude of the diagonal tension and compression stresses will 
also be given by the above equation, since all are equal for pure shear 
(Eq. 10*7). 

10*8. Shear Flow. It is often more convenient to work with a running 
shear load, which is usually called the shear flow. This is given by the 
equation 

P 
Shear flow q = — [10*9] 

h 

where h is the height or width in direction of loading. * 
This gives the value of the shear load over each inch of the cut sec¬ 

tion, as indicated in Fig. 10*24. The shear stress is obviously obtained 
from the equation 

Shear stress /, = - [10*10] 
z 

where t is the web thickness. 
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10*9. Axial Deflections in Pure Shear. An element in pure shear will 
deflect as indicated by the dotted lines in Fig. 10 • 17, in which (a) and 
(b) show the two equivalent ways to illustrate a shear condition. It is 
important to realize that all the deflection (in the elastic range) is caused 
by the axial stresses. This is difficult to see if the shear condition is 
shown as in (h), but sketch (a) should make it clear. 

In Sec. 6*5 it was shown that the axial strain e, in the elastic range, 
is equal to f/E. In pure shear, however, the compression stress acting 
at right angles to the tension stress causes an additional expansion 

Fig. 10*17. Deflections in pure shear. 

measured by Poisson’s ratio, ju. (See Sec. 6*11.) The total tension 
strain is therefore composed of two parts. 

_tl . fc 
E + 11 E 

Since ft =/c 

Axial strain in pure shear cl = (1 + m) 
E 

[10 11] 

[10-12] 

where subscript L indicates that the strain is measured in direction of 
axial stress (tension or compression). 

Since ft = fa, in pure shear, the equation may also be written 

cl ® (1 + m) 
f< 
E 

[10-13] 

Equation 10*12 shows that the presence of a compression stress normal 
to a tension stress and equal to it causes a reduction in the effective value 
of E, which could be shown by writing Eq. 10-12 in the form 

cl = 
E/{ 1 + m) 
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where E/ (1 + fi) may be regarded as the effective modulus of elasticity 
for such a condition. If n is taken as 0.30, for instance, the effective 
value of E is 2?/1.30 or 0.77E. 

10*10. Transverse Deflections in Pure Shear. It must be kept in 
mind that the shear web functions as a means of transmitting a force 
transversely, i.e., normal to its line of action. It is of interest to know 
the ratio between the deflection in the 
direction of the force and the normal dis¬ 
tance through which the force is trans¬ 
mitted. In axial loading the unit deflec¬ 
tion, e, was found by dividing the total 
deflection by the axial distance through 
which the force was transmitted. In pi no 
shear the same principle will be used, 
except that the two quantities involved 
are measured at right angles to each other, 
as showrn in Fig. 10* 18. 

The shear strain is given by the equation 

Fig. 10-18. Measurement of 
shear deflection. 

Shear strain [10-14] 

From Fig. 10-18 it is evident that this quantity is the tangent of the 
angle </>; hence the shear strain is not just a ratio (as for axial strain) but 
is a measure of an angular deflection. In fact, for the small angles usu¬ 
ally involved, the strain may very accurately be considered as a direct 
measure of the angle in radians. This can be expressed by the equations 

e8 = tan”1 <t> 

= 0 (radians) [10-15] 

= (degrees) 

10*11. Shear Modulus (Modulus of Rigidity). In computing shear 
deflections (particularly in torsion) it is convenient to work directly with 
shear stress and shear strain by using an effective modulus of elasticity 
which gives the ratio between them. This modulus is often called the 
modulus of rigidity and is usually denoted by G. Its value may be found 
by considering the unit element of Fig. 10-19, which is shown deflected 
under a pure shear loading. From Eq. 10-3 

e8 = AL\/2 

AL * eiL = ez,\/2 
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By substituting for cl from Eq. 10* 13, 

A7, = (1+m)|V2 

Therefore 

e. = 2(1 + M) 
fs 
E 

[10-16] 

The modulus of rigidity is defined as the ratio of shear stress to shear 
strain. 

[10-17] 

Modulus of rigidity 

fs 
2(1 + fijJE 

2(1 + m) 
[10-18] 

The foregoing basic shear formulas were derived for a square element; 
hence their use for a rectangular frame might be questioned. But a 

Fig. 10 *19. Fig. 10-20. Deflection of rectangular 
web. 

rectangle may be thought of as being made up of a series of squares as 
shown in Fig. 10*20. If the shear stress remains constant the deflec¬ 
tions of the squares are equal and the total deflection will be propor¬ 
tional to N. It has already been stated (Sec. 10-3), that the maximum 
axial strain will occur at 45° for a rectangular panel as well as for a square 
panel, so that the formulas may be used for a panel of any length (pro¬ 
vided the assumptions as to frame rigidity are complied with). 
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10’ 12. Significance of G. Equation 10 • 18 shows that G is not really an 
independent mechanical property or characteristic of a material but 
that it depends entirely on the values of B and n. If ^ is taken as 0.30, 

0 ~ wTSo) ‘ °-385£ ri0'19J 

This is approximately the relationship which holds for most metals. 
The method of deriving G also shows that the deflections which it 
measures are really caused by axial stresses, not b/ the shear stresses 

(a) Axial (b) Transverse (shear) 

Fig. 10*21. Relative deflections under same load. 

themselves. As noted in Sec. 6-15, shear stresses can cause no deflec¬ 
tion by sliding action until the plastic range is reached. Conversely, 
the relationships between G, E, and n just derived hold only in the 
elastic range. 

The relationship between G and E indicates that an element of ma¬ 
terial has considerably greater resistance to axial deformation than to 
shear (transverse) deformation. This ratio is given by 2(1 + n)f or 
about 2.6 for most materials. In Fig. 10*21, the value of d8 would then 
be 2.6 times as great as that for da, if the same element and same force 
were used in each case. Note that if /i were zero, axial transmission 
would be exactly twice as efficient as transverse. The lateral contraction 
effect simply makes matters worse for transverse loading. 

10*13. The Tension-Field Web. In Sec. 10*5 it was shown that if 
the sheet buckled or wrinkled at negligible loads, it would be nearly 
correct to assume that no compression stresses existed. (This is equiva¬ 
lent to placing a number of tension diagonals in parallel.) Although the 
design of a tension-field beam is beyond the state of knowledge up to 
this point, it is of interest to consider what happens to the basic shear 

formulas. 
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Since it has already been shown that for crossed diagonals the com¬ 
pression diagonal resists half the load, it can be inferred that the absence 
of a compression field will require the diagonal tension stresses to be 
twice as great. This is actually true, so that Eq. 10*7 becomes 

Tension-field web 
ft « 2/a 

/c = 0 

[10-20] 

The shear stress, /*, is computed as for a shear-resistant web, using 
Eq. 10*8 or Eq. 10*10. 

The axial strain along a diagonal would be found as in Sec. 10*9, 
except that in Eq. 10* 12, ft would be replaced by 2/* and /z would be 
considered equal to zero, giving (instead of Eq. 10*13), 

cl = 
2A 
E 

[10*21] 

If this equation is used in the derivation of the modulus of rigidity 
(Sec. 10*11) the value of G will be found to be 

[10*22] 

This indicates that the resistance to deformation is still further re¬ 
duced by the fact that the diagonal compression resistance of the 
material is not utilized. In fact, if Poisson’s ratio were neglected, we 
would find that in going from axial to transverse loading the stiffness is 
reduced by one-half, and that it is reduced again by one-half if the 
diagonal compression field does not act. Actually the relationship 
between the tension-field web and the shear-resistant web is in the order 
of 0.25/0.385 or about 0.65, instead of 0.50. In other words, the tension- 
field beam is about 65 per cent as stiff as the shear-resistant beam, or, 
conversely, the deflections would be approximately 50 per cent greater. 

10*14. Calculation of Deflection, The deflection of a flat plate or web 
in pure shear may be calculated by the following steps. 

а. Compute shear stress. 
б. Divide by G to obtain shear strain. 
c. Multiply by length through which force is transmitted to obtain 

deflection. 

Example. Assume that the frame of Fig, 10*22 has attached to it a sheet 
which is % in. thick and that a load of 10,000 lb is applied as shown, Assume 
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that the shear modulus for the material is 3,850,000 psi (about right for aluminum 
alloy). Then, 

/« 
P 

ht 
10,000 

10 X 0.25 
— 4000 psi 

4> = ea U 
G 

4000 
3,850,000 

= 0.00104 

d = N<t> = 20 X 0.00104 - 0.01208 in. 

If the plate were considered as a tension-field web (w* ich here would not be 
true), a value of G equal to E/4, or about 
2,500,000 psi should be used 

Fig. 10*22. Example of shear web. 

10-16. Strength of Shear Webs. A 
true shear-resistant web would not fail by 
buckling, hence the only types of failure 
possible would* be tension and shear. 
Since the maximum tension and shear 
stresses in the web are equal and since 
for most materials the ultimate tension 
stress is much higher than the ultimate 
shear stress, a shear failure would result. 
(This, of course, neglects the possibility 

web. 

of failure at the edges due to rivet holes, etc.) This could take place 
on either of the planes of maximum shear stress (vertical or horizontal). 
(See Fig. 10*23 a.) 

For a tension-field web the tension stress is twice as high as the shear 
stress, hence failure usually occurs in tension, at approximately 45° 
(Fig. 10*236.) 
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In the web shown in Fig. 10*22, for instance, assume that the allowable 
shear stress is 30,000 psi and the allowable tension stress 50,000 psi. The 
shear-resistant web would then be good for a maximum load of 

P = htFt 

- 10 X 0.25 X 30,000 = 75,000 lb 

As a tension-field web, the maximum load would be 

P = 

- H X 10 X 0.25 X 50,000 

= 62,500 lb 

Fig. 10*25. Compression failure of 

plastic material Note slippage along 
shear planes at 45°. 

10-16. Function of the Frame. 
All the preceding developments 
have been based on the assumption 
that the shear web is attached to a 
frame. The forces exerted on the 
frame by the shear web are of 
special interest, as they build up 
the bending moment; they are also 
of interest in designing the attach¬ 
ment of the shear web at its edges. 

Figure 10*24 shows the frame 
and the shear web separated. The 
vectors represent the running shear 
load, or shear flow, acting respec¬ 
tively on the web and the frame. 
They are, of course, equal and 
opposite. It is important to note 
that the shear flow is constant on 
all sides of a rectangular web "which 

This can be understood by consider- transmits a constant shear force, 
ing that each unit square has the same shear flow acting on all its sides, 
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Figure 10-24 also shows the effect of this shear flow on the horizontal 
or flange members of the frame. This effect is cumulativef causing an 
increasing axial force in the flange members. For the case shown this 
force is compression in the top and tension in the bottom. 

r 

Fig. 10*26. Tension failure of web under shear loading. Note wrinkles at approxi¬ 

mately 46° 

The value of the axial force thus produced is obviously given by 

Pa — 2$ = qx ■» -f-x 
n 

(See Fig. 10*24 for symbols) 

[10*23] 
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This simple formula could also have been derived by computing the 
moment of the force P and dividing by the depth to obtain the equiv¬ 
alent couple. The shear flow derivation has the advantage of showing 
how these so-called bending forces are produced. 

Conditions are slightly different for a tension-field web and consider¬ 
ably different for a frame which is tapered in depth. These modifica¬ 
tions will be taken up later. 

PROBLEMS 

10*1. A 10-in. square sheet is carrying a pure shear stress of 10,000 psi. 
Assuming that E = 10,000,000 psi and n = 0.30, find the increase in length of a 

diagonal. Check by calculating G and from it derive the shear deflection and 
convert into diagonal deflection (using Eq. 10 -3). 

10*2. In Fig. 10-22 assign values as follows: 

N between 30 and 40 in.; h between 12 and 18 in. 
P between 15,000 and 25,000 lb. 

Assume E = 10,000,000 psi, n = 0.30 

Calculate: 

(a) Shear flow. 

(b) Sheet thickness for which shear stress will be 12,000 psi. 
(c) Deflection, d, for shear-resistant web. 

(d) Deflection, d, for pure tension-field web. 

(e) Axial reactions shown in Fig. 10-24, based on shear flow. (Check 
by taking moments.) 

10-3. A steel plate is carrying a pure shear stress of 20,000 psi. 

(а) What is the value of the maximum axial strain? (Assume E = 
30,000,000 and m = 0.30.) 

(б) What is the axial strain at an angle of 22.5° from the direction of 
zero strain? 

10 *4, A shear load of 5000 lb is to be transmitted through an available depth of 
1 ft. Using an ultimate tension stress of 55,000 psi determine the web thickness 
required to provide a factor of safety of 2.0 against failure. (Assume that the 
web acts as a tension-field web.) 

10 *6. Assume that the aluminum alloy shear web of Problem 10 • 4 is 48 in. long 
and calculate: 

(а) The angular deflection in degrees (due to shear only). 
(б) The total deflection (due to shear only). 
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10-6. A shear web 50 in. long deflects 0.2 in. due to shear only. What is the 
shear strain? 

(a) If G is 11,000,000 psi, what is the shear stress? (Assume shear- 
resistant web.) 

(b) Assume that the web acts under a pure tension field and that the 
material is aluminum alloy (E = 10,000,000 psi). What is the 
shear stress? 

10-7. Select values for P and w as follows: 

P between 31,000 and 39,000 lb. 
w between 160 and 190 lb per in. 

Find the thickness required for the shear web, assuming that the maximum 

allowable shear stress is 8000 psi. Plot the required thickness against the length 

of the beam. Assume that the design permits only one sheet splice, at the middle 
of the beam, and find the require 1 thickness for the two sheets, to the nearest 

2 in. (Note. The design of the stiffeners is a more advanced problem.) 

w= 

Problem 10*7. 

10*8. Assume that, in addition to the concentrated loads shown, a uniformly 
distributed load, w, acts downward over the entire beam. Select a value for w 
between 120 and 150 lb per in. Assume uniform shear flow. Draw a curve 
showing the variation in web thickness for the condition that the allowable 
shear stress equals 10,000 psi. Select a single thickness for each bay, to the 

5000 tb 5000 5000 5000 

Problem 10-8. 

nearest one-hundredth inch. Indicate on the sketch the direction in which 
wrinkles would form if the web buckled. (Neglect the design of vertical stiff¬ 
eners and flanges.) 
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10*9. An airplane wing (cantilever type) has a total area of 200 sq ft and is 
20 in. deep at the centerline of the airplane. The net average wing loading 

(air pressure less weight of wing) is 16 lb per sq ft. Assume that all the shear 

load is carried through a single thin-webbed beam and is resisted at the center- 

line of the airplane. Find the shear flow across the web at this point, for a 

loading condition in which the net wing loading is multiplied by a load factor 

of 6.0. If the allowable shear stress is 12,000 psi, what web thickness would be 

required at this point? 

10*10. Assuming thai the same ultimate tension stress could be used in each 

case, determine which would be the lighter design for the shear-resisting member 

of a square frame: (a) a single diagonal tension member, (b) a tension-field web. 

(Neglect weight of attachment to frame.) 

Assume that a single tension member can resist no compression and that the 

frame must be able to resist the shear force in either direction. How does this 

affect the design and the weight comparison? 
10*11. Using Fig. 10-24 as a basis, assume that the web cannot resist com¬ 

pression strains and therefore acts as a tension-field web. If the maximum tension 

stresses act at 45°, prove that the inward pull on the frame members is a dis¬ 

tributed normal force having a value equal to the shear flow, q. (Note. Assume 
unit web thickness and work with a diagonal strip of unit width. Convert 

stress into force before finding the component normal to the frame.) 

10*12. From the relationship developed in Problem 10-11 prove that the 

vertical frame members are being pulled together (by the tension field) with a 

total lateral force equal to Pf hence they exert compression forces on each 

horizontal frame member equal to P/2. Show also that the horizontal frame 

members are being pulled together with a force equal to Px/k, where x is the 

distance between verticals. 

(Note. The preceding three problems represent an introduction to the design 

of elementary thin-web beams. Further information on the design of stiffen¬ 

ers and joints will be found in texts on aircraft structural design, such as 
Refs. 2, 3, and 44.) 



CHAPTER 11 

CURVED SHEAR WEBS 

11 • 1. Curved Shear Flow. It has been shown that a shear force may 

be transmitted by means of a flat plate or web and that the shear flow q 

across a section of the web is equal to the force divided by the depth of 

the web (Eq. 10*9). Such a shear flow may be visualized as a series of 

unit forces all acting in a straight line, as shown in Fig. 11*1. By defini¬ 

tion, the resultant S of a constant straight 

line shear flow over the distance h equals 

S = qh 

It will now be assumed that the web is 

curved and that the shear flow follows the 

curvature of the cross section, as shown 

in Fig. 11*2. The resultant of such a 

shear flow may be found by representing 

the flow as a series of consecutive straight 

force vectors of unit length and magni¬ 

tude q. If the lengths are considered to be very short the resulting curve 

will closely approximate the shape of the web, as in Fig. 11-3. This may 

now be treated as a vector diagram and the resultant will be equal to 

the closing line, the length of which is h. Since the scale used is equal 

to q pounds per inch, the resultant shear force is given by 

Resultant of curved shear flow S « qh 

where q = the shear flow along the curved line. 

h * the length of the closing line. 
171 

Fig. 11*3. Resultant of curved 
shear flow. 

[ii-i] 
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This is obviously the same equation as that for a straight flow, a fact 
which is very convenient in dealing with curved shear webs. The fol¬ 
lowing general statements can be made. 

a. The resultant of a constant shear flow over a curved path has the 
same magnitude as the resultant of the same shear flow acting in a 
straight line between the two end points of this path. 

b. The shear flow for a curved web transmitting a shear load is the 
same as that for a hypothetical straight web between the two end points 
of the curve (assuming constant shear flow in both the curved and 
straight web). 

In determining the shear stress in a curved web it is therefore unneces¬ 
sary to take into account the actual path of the web, provided it can be 

wing. 

Fig. 11-5. Corrugated shear 

web. 

assumed that the shear flow is constant. For example, assume that the 
leading edge of an airplane wing (Fig. 11*4) must carry a total shear 
load of 5000 lb. The shear flow in the web is then found from Eq. 11 1. 

Q 
S 
h 

5000 

20 
250 lb/in. 

If the web were 0.10 in. thick, the shear stress would be 

u 250 

0.10 
— 2500 psi 

Another typical example is found in the corrugated shear web, as 
6hown in Fig. 11-5, where the shear stress would be 

u t hi 

1000 

5 X 0.05 
= 4000 psi 

It is important to note that the equation for shear stress in the cor¬ 
rugated shear web is not the usual one of load divided by actual cross- 
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sectional area. In fact, the area used is that of a fictitious straight web 
of the same thickness. This point would indicate that the straight web 
is more efficient than the corrugated one. (Actually the curved web 
usually ha3 a higher allowable stress, in thin sheet; hence corrugations 
are often used in such structures.) 

11 • 2. Moment of a Shear Flow* Figure 11*3 indicates that a curved 
shear flow must be represented by a resultant shear force and a moment. 
Or, alternatively, the location of the resultant shear force is not actually 
on the line of closure but is dis¬ 
placed from it. This could have 
been predicted from the appear¬ 
ance of Fig. 11*3, which shows 
that the vectors have moment 
arms about any point on the line 
of closure. 

To determine the effective loca¬ 
tion of the resultant shear force 
it is necessary to know the turn¬ 
ing moment of the shear flow 
about some convenient point. To 
develop the simple rule which 
gives this answer, start with a 
single force, as shown in Fig. 
11 • 6a. The moment of this force 
about point 0 is obviously equal 
to the rectangular area repre¬ 
sented by Pd. (Note that if this 
area is the actual area in square 
inches it must be multiplied by 
the scale for the force vector. 
Also, if the drawing is not to 
actual size the area must be converted to full size by multiplying again 
by the square of the drawing scale.) Sketch (6) shows that a triangular 
area may be substituted, if it is then multiplied by 2 to obtain the 
turning moment. 

Sketch (c) shows that the principle still holds regardless of the loca¬ 
tion or direction of the force, as the area of the triangle is equal to \£Pd 
whether it is a right triangle or not. This important principle may be 
stated as follows. 

The moment of a force about a point is equal to twice the actual en¬ 
closed area of the triangle formed by the point and the force vector, 
multiplied by the force scale. 

P ~r*rTTm£)M=Pd*2ATria 

(b) wjMT 

Fig. 11 • 6. Moment of forces. 
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Finally sketch (d) shows that the moment of a consecutive series of 

force vectors drawn to the same scale is proportional to twice the area 

enclosed by the vector diagram.* This simply amounts to adding the 

triangles for the different vectors. Since a constant shear flow, q, can 

be considered as a series of force vectors drawn to a scale, q, this prin¬ 

ciple can be applied to find the 

resulting moment. 

Assume, for instance, that it is 

necessary 10 determine the mo¬ 

ment of a constant shear flow in 

the leading edge of an airplane 

wing, about some reference point, 

0 (Fig. 11*7). Lines OB and OC 

are drawn, and the shaded area 

is measured or computed. If 

the actual area turned out to 

be 800 sq in., and the shear flow had a value of 100 lb/in., the moment 

would be 

M = 2qA = 2 X 100 X 800 = 160,000 in.-lb 

Note that if the drawing were actually laid out quarter-size and the 

measured area had been 50 sq in., it would have had to be multiplied 

by 10. 

The foregoing rules may be summarized by the basic equation, 

Moment of shear flow M = 2qA [11*2] 

where M — the moment about a point in the plane of the cross section. 

q = the constant shear flow between two points on the cross 

section. 

A = the actual area of cross section enclosed by the triangle 

formed by the three points, plus the area enclosed by the 

contour over which the shear flow acts. 

Equation 11 • 2 may also be used for a variable shear flow by dividing 

the shear web into segments over each of which the shear flow is assumed 

to be constant. The area for each segment must then be determined 

and used in Eq. 11*2. The total moment is of course obtained by 

summation. 

11*3. Location of Resultant Shear. It is now apparent that although 

the magnitude and direction of the resultant shear force in a curved web 

may be based on the closing line, the location of the resultant will not 

be on this line itself. To determine the effective location it is necessary 

* Note that in Fig. IX -Qd the space diagram and force polygon are the same. 
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to find the moment of the shear flow. If this is done with respect to any 
point on the closing line, the resulting moment will equal twice the area 
between the web and the line. (Note 
that only one line is needed to enclose 
the area in this case.) 

Figure 11*8 shows the equivalent con¬ 
ditions for a typical curved web. The 
effective moment arm of the resultant 
shear, often called the shear center, is 
obtained from the equation 

_ M 2qA 

x ~ S ~ qh 

Shear center x — 
2A 

h 
[H-3] 

From Fig. 11 - 8 it can be seen that the 
term A/h represents the average height 
b of the rectangular shape having the 
base h and the area A. The location of 
the resultant shear force may therefore 
be estimated quite accurately by this 
simple rule. 

It is now evident that the resultant 
will lie outside of the web itself. This 
may seem to be irrational, but it is 
actually true and has an important 
bearing on the behavior of curved shell 
structures. 

11*4. The Single Curved Web. In 
Chapt. 10 the two-flange type of beam 
was used in discussing the straight shear web. If this beam is made 
with a curved web, it will be able to transmit a shear force, but only if 
the force is applied at the shear center and parallel with the plane of the 
two flanges, as shown in Fig. 11-9. If it is applied along any other line 
of action, it will be equivalent to loading a straight web beam off center. 
This is illustrated by the sketches in Fig. 11*10. Either of these two 
loadings will cause an unbalanced turning moment wnich the beam alone 
is unable to resist. 

The shear center determined by the foregoing methods is based on 
constant shear flow, which occurs only in the thin-web, two-flange type 
of beam. For other types of beams (such as channels), the location of 

Fig. 11*8. Location of resultant 
shear (shear center). 



176 CURVED SHEAR WEBS 

the shear center will be influenced by the variation of shear flow across 
the beam. This will be taken up later. 

Fig. 11 • 9. Proper method of load- Fia. 11*10. Effect of loading in 

ing curved web beam. plane of flanges. 

11*6. Shear Flow vs. Axial Force Flow. It will be noted that in treat¬ 
ing shear flow in curved webs the shear forces were apparently regarded 
as axial forces. There is an important distinction, however, which must 
be kept in mind. The shear forces shown in the plane of the paper are 
actually being transmitted normal to this plane, whereas axial forces 
thus shown are transmitted and resisted in the plane. 

11*6. Diagonal Stresses. Section 7*4 might indicate that the 
diagonal tension and compression fields in a curved shear web would 
require additional reactions normal to the sheet. Actually, however, 

_w^^ w these two fields are equal and opposite in 
//Y ^Sr pure shear, as explained in Chapt. 10 and 

f \ S ft shown in Fig. 11-11, and the tendency of 
( (r thc oomPressi°n forces to bow the sheet 

\ l outward is exactly offset by the tendency 
\ r V of the tension forces to pull it inward. It 
\\ is this phenomenon which makes it possi- 

^ *"* . ble to transmit forces “around a corner” 
Fig. 11-11. Diagonal stresses m . i ..t , . . , 

curved shear web. 111 PUrC shear Wlthout reClUinn« normal 
(radial) reactions. 

As in the flat plate, the diagonal compression stresses may cause 
buckling under certain conditions. In general, the curved plate has a 
higher buckling stress than the flat one of the same thickness and 
dimensions. After buckling occurs the tension field will predominate, 
and the balance will be disturbed; the tension field will pull the sheet 
inward along the diagonal, tending to make the web flatten out. * 

The calculation of the critical buckling stress for curved plates in shear 
is beyond the scope of this volume. For additional information see 
Refs. 2, 3,16, 26, 41, or 44. 

Fig. 11-11. Diagonal stresses in 
curved shear web. 
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PROBLEMS 

11*1. A rectangular corrugated shear web is 20 in. long on the straight side 
and 10 in. across the corrugation. The total shear load to be transmitted across 
the short dimension is 8000 lb, and this load is uniformly distributed over the 
length of the web. If the web thickness is 0.040 in., what is the shear stress 
acting on a cross section normal to the corrugations? 

11*2. Draw a curved web such as shown in Fig. 11*9, using any convenient 
depth and radius. Assume that a shear load S of 5000 lb is to be transmitted. 

(а) Calculate the shear flow. 
(б) Find the proper location for the application of the load (dimension 

*). 

11*3. Referring to Fig. 11-4, assume that the shear web has a depth h equal 
to 18 in. and that the cross-sectional area of the web itself is 3.0 sq in. If the 
web is 0.10 in. thick, what shear stress is produced by a shear load of 9000 lb, 
applied so as to produce constant shear flow? 

11 *4. Draw a curved shear web representing the nose of an airplane wing (as 
in Fig. 11-4). 

(a) Determine the enclosed area and the location of the resultant of a 
constant shear flow. 

(b) What unbalanced torsional moment would be induced by applying 
a shear force of 5000 lb in the plane of the flanges, i.e., across the 
free edges of the web? 
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11 *6. Assume that a torsional moment, Mt, of 100,000 in.-lb is applied to the 
shell structure shown and that this moment is resisted by constant shear flow in 
the curved webs. (Dotted lines represent cut-out material.) What is the value 
of the shear flow? 

11*6. The sketch shows the determination of the moment of a shear flow 
about point O. Explain why it is unnecessary to draw a line OC. Do the areas 
OAD and BCD add or subtract? (Explain by following procedure of Fig. 11*6 
of the text.) 

11*7. Make a scale drawing of a curved web and determine the location of 
the resultant shear flow as shown in Fig. 11-8. Check this by finding the 
moment of the curved shear flow about any point on the line of action of the 
resultant, using the construction shown in Problem 11*6. 

11 *8. Assume that the two flanges of a curved web beam are brought together 
as shown, so that the web forms a complete circle. Find the value of the resultant 
Bhear flow and its moment about the center of the circle, in terms of q and r. 
(Neglect the slight gap that would actually be required if two separate flanges 
were used.) 

Problem 11*8. 
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11 • 9. Find, analytically, the location of the resultant of a constant shear flow 
for the cases shown, expressing x in terms of the dimensions given. 

|<— x — 

Semi¬ 
circle 

Semi^ 
*ff(pse 

Problem 11 •&. 
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TORSION 

12*1. Thin Shells. The thin shell in torsion may be regarded as a 

curved shear web in which the free edges are joined, making a closed 

section. If the wall thickness of the shell is small in relation to the en¬ 

closed cross section, the shear stress may be assumed to be constant 

over the thickness of the sheet. The resultant shear flow will then be 

located at the median line of the sheet. 

If it is further assumed that the 

shear flow is constant around the 

section, the following statements will 

be true. 

a. The resultant force for a con¬ 

stant shear flow around any closed 

section will be zero. (This is because 

the ends of the vector diagram close.) 

b. The resultant moment will be 

equal to twice the enclosed area, 

multiplied by the shear flow. (This 

follows from Eq. 11*2, for the curved 

web.) 

The second point is expressed mathematically by the equation: 

Moment of shear flow M = 2qA [12 *1] 

where M — the torsional moment, or torque.* 

q — a constant shear flow around the section. 

A = the area enclosed by the median line of the shell (Fig. 12 • 1). 

Since it is more often required to find the shear flow caused by a 
given torsional moment the equation is usually found in the form 

Shell torsion q * [l2*2] 
JLA 

* Other symbols sometimes used: T, AT*. 

180 

flow. 
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This will be called the shell torsion equation. It may be regarded as 

the basic equation for the torsion of thin-walled shells and tubes. It will 

be found under various names, such as the membrane analogy, Batho's 
equation, and Bredt’s formula. Actually it is elementary in nature since 

it is derived without using the more general equations and theories 

developed for torsional stresses. The only assumption involved is that 

of a constant shear flow. The accuracy of the results depends entirely on 

how nearly this assumption is realized in the structure. 

Dividing Eq. 12*2 by t gives the formula for shear stress. 

Torsional shear stress 
(shells) 

[12-3] 

The value of the stress at any point around the cross section will be 

found by using the thickness / at that point, since q is assumed to be 

constant. 

12*2. Stresses in Circular Shells (Tubes). The shear flow in a thin- 

walled circular shell is readily derived from Eq. 12*2 by substituting 

rr2 for A. 

►Q
 II 
fc

- 

II 
to

 j
 .

 

U
*

 

[12-4] 

q M 

h ~ t 2xrH 
[12-5] 

Example. The tube of Fig. 12*2 has an average radius (to median line of 

shell) of 10 in. and is subjected to a ^5-==—-5,^ 
torque of 100,000 in.-lb. The shear flow 
is found from Eq. 12-4. 

100,000 

2?r X 10 X 10 
= 159 lb/in. 0.080 

The shear stress is found by dividing 

by the thickness. 

1 KQ 

/. = —= 1990psi 
Fig. 12*2. Torsion in thin-walled tube. 

If the wall thickness of the tube should vary around its circumference, the 
stress at any point is obtained by dividing the shear flow q by the thickness at the 

point in question. Thus if a portion of the tube of Fig. 12*2 were made out of 

0.020-in. sheet the stress would be, over that portion, 
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Equation 12 • 5 shows that the maximum torque which may be carried 
by a thin cylindrical shell equals 2wr2tf8. If the allowable stress ft is 
assumed to be constant, the strength is proportional to 2rrH. The cross- 
sectional area of the shell wall is given by 2trt. Hence the strength- 
weight factor, for constant allowable stress, is 

Torsional strength __ 2irr^t ^ 

Weight 2 irrt 

This shows that large diameter tubes arc basically more efficient in 
carrying torsion. However, the allowable stress tends to decrease as 
the ratio r/t is increased, thus offsetting this influence to a considerable 
extent. It should also be noted that the strength must be based on the 

Fig. 12*3. Comparison of square and round tubes (equal enclosed area). 

smallest wall thickness, if the thickness varies. The most efficient de¬ 
sign for torsion, therefore, is that of constant wall thickness. 

For a given wall thickness, t, and enclosed area, A, the minimum 
weight will occur when the developed length of the cross section is a 
minimum. Since the circle has the minimum ratio of developed length 
to enclosed area, it is the most efficient shape for carrying torsion. 

, For example, compare a square tube with a circular one having the 
same enclosed area, as in Fig. 12*3. The radius of the circle will be 
r = b/\Zr = 0.565b. For the same torsional moment, each of these 
tubes will develop the same shear flow. If they have the same wall 
thickness, the square one will be heavier in proportion to the periphery, 
or developed length, 

Weight 
Square _ _45_ ^ 4by/r _ 2 _ 

Circular 2wr 2ir b \/ r 

12-3. Torsional Deflection of Circular Shell. In Sec. 10*10 it was 
shown that the shear deflection of a flat plate is measured in terms of 
an angle, 4>, representing the deflection divided by the distance over 
which the shear force is being transmitted. In Fig. 12*4 this angle is 
shown for a circular shell. Its value is found from Eqs. 10*15 and 10*14: 

*- 
f* 

G 
[ia-6] 

where 4> is measured in radians. 
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In calculating torsional deflections it is more convenient to use the 

angle of twist, indicated as 6 in Fig. 12-4. This angle is equal to d/r 
(in radians). Using the shear deflection equation to determine d} the 

angle of twist in a unit length is found to be (since L = 1.0) 

Unit torsional deflection Q _ fa_ 1*19.71 
(circular shell) Gr L # J 

where 6 is measured in radians. 

/* == the shear stress. 

G = the modulus of rigidity (Sec. 10*11). 

r = the radius of the shell. 

Note that this compares directly witli the equation for unit axial 
deformation, e = f/E (Eq. 6*3). 

The total twist over a length L is 

given by 

fjL 

Gr 
Ol [12*8] 

If B varies over the length L, the 

total twist will be obtained by sum¬ 

mation or integration (area under 

curve of 6 plotted against L). 

It is interesting to express Eq. 

12*7 in terms of the torsional moment, 

ing for/* from Eq. 12*3, giving 

Fig. 12-4. Torsional deflection (shells). 

This may be done by substitut- 

M M 

G 2Atr “ G2ir^t 
[12*9] 

This equation shows that the torsional rigidity of a thin-walled cir¬ 

cular shell is proportional to the wall thickness and the cube of the 

radius, that is, the torque required to twist a unit length through a unit 

angle equals 2tttHG. The cross-sectional area of the wall is given by 

the term 2irrt. For shells of the same material G is constant; hence the 

stiffness-weight factor for such a structure is 

Torsional stiffness _ 2m*t __ « 

Weight 2irrt 

This relationship indicates the great importance* of using large diam¬ 

eter tubes or shells where high torsional rigidity is required, as in air¬ 

planes. In an airplane fuselage, for instance, maximum torsional rigid¬ 

ity is obtained by locating the structural material as near the surface as 

possible. 
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12*4. Torsional Deflection of Non-Circular Shell. Although the 
exact derivation of the general torsional deflection equation is beyond 
the scope of this text, an analogy can be presented which will give a 
clear picture of the problem and enable its solution in a simple manner. 
Consider any arbitrary cross section, such as shown in Fig. 12-5. If an 
equivalent circular shape can be found which has the same torsional 

rigidity, its radius f may be used in the deflection 
equation for the circular shell. 

The value of the effective radius may be deter¬ 
mined from the following equation. 

f = — [12-10] 

Fig. 12 • 5. Equivalent 

cross sections (shells). 

where A = the enclosed area. 
s = the developed length (perimeter) of 

the cross section. 

For a variable cross section the shear stress will vary inversely as the 
wall thickness. An effective stress, f8, must therefore be used. This is 
obtained as the integral or summation of stress over the periphery of 
the cross section (average height of area obtained by plotting stress 
against developed length around section). 

Using the “bar” notation to denote “effective” values, the basic equa¬ 
tion for torsional deflection of any shell having constant shear flow may 
be written 

Unit torsional deflection 6 = ^ [1211] 

where 0 = the angle of twist (radians) per unit length. 
Js = effective shear stress (average over periphery of section), 
f = effective radius (Eq. 12*10). 

Equation 12*11 usually appears in the following form. 

M fds 

e ~ Ta*gJ t [12*12] 

This can be shown to be identical with Eq. 12*11 by substituting 
2A/s for f and expressing f8 as M/2At (Eq. 12*3). The integral term 
can be thought of as the area under a curve of 1/t plotted against 8. 
For constant wall thickness Eq. 12*12 becomes 
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12 • 5. Warping of Cross Section. As noted in Sec. 12*1 the accuracy 
of the shell torsion theory depends entirely on how nearly the actual 
shear flow approaches the assumed constant value around the cross 
section. If the wall thickness is small in relation to the radius (or equiv¬ 
alent dimension) the radial variation in shear flow is negligible. For 
thick shells or solid sections this is not true and special methods must 
be used. 

Another type of error is caused, sometimes, by constraint of the cross 
section. This can be illustrated by assuming that a '•.hell, under torsion, 

Fig. 12*6. “Warping” of cross section. 

is cut open and flattened out, at the same time holding the distorted 
shape of the wall material. If the wall thickness varies the shear stress 
will vary. This causes a variation in shear strain. The result might 
appear as shown in Fig. 12*6, which represents a circular shell of vary¬ 
ing wall thickness. If it is assumed that the shell is composed of three 
separate sheets of different thickness, the shear deflection of each will be 
different, as indicated in (6). Since the free edges must be brought 
together again in the actual shell, it is necessary to rotate the picture as 
shown in (c) so that the ends are normal to the centerline of the shell. 
If this distorted sheet is rolled back into a tube, it is obvious that the 
ends will be warped, that is, they will not lie in the original plane. The 
degree of warping is indicated by the departure from the straight line 
B-B which represents the unwarped cross section. 
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If the shell has a non-circular cross section the unwarped line will not 
be straight but will depend on the shape of the section. Even a constant 
shear stress will then require some warping of the cross section. 

It can be seen, then, that for constant shear flow to be maintained 
the cross section must be free to warp, except when the deflected shape 
of the sheet agrees with that of the unwarped, but twisted, shell. Such 
a special case is found in the circular shell of constant wall thickness. 

If one of the ends of a shell is rigidly attached to a flat surface, the 
cross section will be forced to remain plane. The tendency to warp will 
induce axial stresses, the nature of which can be predicted by the flat 
pattern method previously described. The shear flow distribution 
around the cross section will no longer be constant where this occurs. 
Fortunately, the effects of constraint are not usually large and are con¬ 
fined mainly to the local region near the plane of constraint. It is neces¬ 
sary only to know that this effect exists and to realize the conditions 
under which it might be serious. * 

12*6. The Solid Round Bar. The general solution of the torsion 
problem for all cross-sectional shapes is one of the basic problems in the 
theory of elasticity, and a large amount of literature is available on it. f 
The reason for this is that the exact solution for any shape except a few 
simple ones becomes most complex mathematically. 

Fig. 12-7. Torsion in solid bar. 

The most common shape used to transmit torsion is that of the round 
bar or tube. It is also one of the few shapes for which the problem has a 
simple solution. Since the thin-walled tube has already been discussed, 
it is convenient to make use of it in deriving the equations for the solid 
bar. 

For a solid bar such as shown in Fig. 12-7a it will be assumed that all 
points rotate through the same angle, 0; i.e., radial lines drawn on the 

* The root of an airplane wing sometimes requires special checking on this point 

because of the end plate effect of the plane of symmetry. 

t The general solution was first obtained by SaintsVenant. 
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cross section would remain straight during twisting. Hence, for any 
tubular element such as indicated in (6), the value of d will be directly 
proportional to the radius, i.e., 

r 
d = d0 — 

r0 

Figure 12-4 and Eq. 12-6 show that the shear stress is proportional 
to d/L (in the elastic range). It follows that the stress is directly pro- 

Y 
Fig. 12*8. Computation of torsional moment. 

portional to r, giving a linear variation of shear stress from the center 
to the outer fiber. 

The total resisting moment is composed of the individual moments 
of each unit area about the center of rotation. The resisting moment 
will be calculated by arbitrarily assuming that the shear stress equals 
the radius (compare Sec. 13*6, on bending). Refer to Fig. 12*8 and 
assume that 

f8 - r [12.14] 
Then 

Pi * Arfi * Airx 

P2 = A2J2 = A2r2y etc. 

The individual moments are found by multiplying by the radii. 

Ml = PiTi = Ain2 

M2 = F*2r2 = A2r22, etc. 
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The total resisting moment than equals the sum of all these, for the 
entire cross section. 

M0 = 2 Ar2 [12-15] 

where Mo is the resisting moment corresponding to the assumption 

Ss = r. 
The quantity so obtained is called the polar moment of inertia (or 

moment of area), and will be designated by Ip (other symbols are Ip, J, 
etc.) Equation 12-15 may therefore be written 

M o — Ip [12-16] 

For any other torsional moment the stresses will be increased by the 
factor M/Mo or M/Ip, and the assumed stresses (Eq. 12-14) must be 
multiplied by this factor, giving 

Torsion in circular sections [12-17] 

where f8 = the shear stress caused by the torsional moment M. 
r = the radius measured from the axis of twist (centerline of 

bar). 
Ip = HAr2 = polar moment of inertia of cross section. 

The polar moment of inertia is similar to the moment of inertia used 
in computing bending stresses (see Chapt. 13). In analyzing bending 
the axis about which the second moments of area are taken lies in 
the place of the cross section, whereas in torsion the turning axis is 
normal to the plane of the cross section. Because of this the polar 
moment of inertia is larger than the moment of inertia about any axis 
in the plane of the cross section. It is, in fact, equal to the sum of the 
moments of inertia about any two mutually perpendicular axes. 

Polar moment of inertia Ip = Iz + Jy [12-18] 

For a doubly symmetrical cross section (such as a circular one) 
Ix = Iy. Therefore 

IP = 21 x 

where Ix is the second moment of area about any axis through the center 
of gravity. 

For a solid round bar the value of the polar moment of inertia is 

Ip = §trr4 [12-19] 
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The maximum shearing stress occurs in the outer fiber and is equal to 

_ Ml — 
fs max — j — i 4 “ “5 

Ip nr 

Or, since the cross-sectional area = tit2, 

_ 2M 
J8 max — . 

Ar 

[12-20] 

[12-21] 

12*7. Thick-Walled Tubes. Equation 12-17 also applies to thick- 
walled tubes, for which the polar moment of inertia is given by 

IP = - rt4) [12*22] 

where r0 = the outer radius. 
rt = the inner radius. 

For a thin-walled circular section such as discussed in Secs. 12*1 to 
12*3, the polar moment of inertia is equal to 

Ip = Asr2 = 2irrtr2 

= 2irrH 

where Aa = the cross-sectional area of the shell wall. 
r = the radius to the median line of the shell wall. 
t = the shell thickness. 

By substituting this value in Eq. 12*17, 

_ Mr _ Mr M 

1 = Tp = 2tt?H == 2nH 

This checks Eq. 12 • 5, which was derived on the basis of constant shear 
flow. It can be seen that for circular sections Eq. 12*17 is the more 
general formula, as it can also be used for the very thin wail. The shell 
equation, however, is applicable to any cross-sectional shape for which 
the shear flow can be assumed to be constant along a median line, and 
is therefore more general, in this respect, than either Eq. 12*5 or Eq. 
12*17. 

12*8. Non-Circular Solid Bars. The use of the polar moment of 
inertia in Eq. 12*17 implies that the resisting force in each element acts 
normal to the radius. If this reasoning were applied to a non-circular 
cross section, it would be found that shear forces exist which have com- 
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/ 
1 

Fig. 12-9. 

ponents normal to the free outside surface, as indicated in Fig. 12*9. 
This is clearly impossible, and the problem is therefore complicated by 
a boundary condition requiring the shear stresses in the outer fibers to 
be parallel with the surface. * 

Ali hough the solution of the torsion problem for 
non-circular cross sections is beyond the scope of 
this text, it is useful to know in general how the 
stresses vary over such a section. One method of 
showing this is to consider the section to be made 

V up from a number of concentric tubes or shells, 
each of which is carrying the same shear flow. If the 
lines defining these tubes could be determined, it 
would be a simple mattei to compute the total 
resisting moment for a given shear flow. From 
this relationship and the known wall thickness of 
the tubes, the shear stress at any point could be 
determined. 

12*9. The Membrane Analogy. The location of these lines of constant 
shear flow can be visualized by the aid of the membrane analogy.f It 
was shown by Prandtl that the equation for the deflection of a membrane 
under a uniformly distributed normal loading was basically the same 
as that developed by Saint-Venant 
for the torsion problem. Assume 
that a thin membrane is stretched 
across an opening having the shape 
of the cross section, and loaded by 
a uniform load, as shown in Fig. 
12*10. Contour lines are obtained 
by passing planes through the de¬ 
flected membrane parallel with the 
plane of the cross section and at 
constant spacing. It can be shown 
that the lines so obtained define 
tubes, which all have the same shear 
flow. Since shear stress equals g/t, the stress is proportional to the slope 
of the membrane. 

The contour lines so obtained also define the direction of the maximum 
shear stresses, but do not represent lines of constant shear stress (except 

Fig. 12 • 10. Rectangular bar in torsion 

(membrane analogy). 

* There will, of course, be shear stresses acting normal to those which appear on the 
cut section, but they are normal to the plane of the paper and cannot be shown in the 
same view. 

t See Ref. 18 for complete description. 
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for circular sections). For any given tube the shear stress will be a 
maximum where the thickness (distance between contour lines) is a 
minimum. If the tubes are closely spaced, i.e., thin-walled, the shear 
stress may be assumed to be constant from one contour line to the next. 

From Fig. 12*10 it will be seen that the tubes become narrower as the 
edges of the cross section are approached. In accordance with the 
linear shear stress distribution found for the circular section, the thick¬ 
ness of the tubes tends to vary inversely as the distance from the center 
of twist. This center is, of course, located where the shear stress is zero, 
determined by the point of zero slope 
(maximum deflection) of the mem¬ 
brane. 

Since the moment of any thin-walled 
tube equals the shear flow multiplied 
by twice the enclosed area, the total (a) (b) 
resisting moment of the solid section is Fl0 12. n ^ effectb in 
proportional to twice the volume repre¬ 
sented by the deflection of the membrane—each slice in Fig. 12*10 
represents the product of q and the area enclosed by the corresponding 
contour line. 

The membrane analogy is most useful in visualizing the effects of vari¬ 
ous modifications in cross-sectional shape. For instance, a projection on 
a circular bar will not be highly stressed in torsion, as the membrane 
would remain relatively flat over this projection (Fig. 12*1 la). A depres¬ 
sion, or slot, would tend to have the opposite effect, causing high local 
shear stresses as indicated by Fig. 12*116. 

It will be noted from Fig. 12*10 that the contour lines tend to have 
an elliptical shape near the center and that as they approach the out¬ 
side contour of the cross section they conform more closely to the 
external shape. Since the tubes must be continuous around the cross 
section, the contour lines will be forced closer together in the narrower 
portions. This means that the maximum shear stress will tend to occur 
across the shortest dimension. 

12 -10. Special Cases. Although the solution of the torsion problem 
has been worked out for many different cross sections, only a few of the 
more common ones will be given here. Table 12*1 gives the equations 
for shear stress and angle of twist in engineering form (based on Ref. 18). 

It is interesting to note that for long slender rectangles the constant 
in the shear stress equation (Eq. f) approaches a value of 3. This equa¬ 
tion may be used for calculating the shear stress in open sections, such as 
indicated in Table 12 *1. If the ratio of width to thickness is large, the 
shape of the cross section will have little effect on either stress or tor- 
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TABLE 12 1 

Torsion or Solid Bars 
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sional rigidity. This reveals the fact that a split tube is very inefficient 
in carrying torsional moments.* 

The torsional rigidity of a solid section can be estimated with con¬ 
siderable accuracy by assuming that it is an elliptical section having the 
same area (according to Saint-Venant). For built-up sections composed 
of several bulky portions interconnected by relatively thin webs the 
torsional rigidity may be estimated by considering the parts to act 
separately, through the same angle of twist. 

12*11. Warping. As in the shell theory, it is assumed that the cross 
sections are free to warp. The extent of such warping depends on how 

* It must be remembered that the cross sections are assumed to be free to warp. 
If a split tube is prevented from warping at the ends, it will be able to carry a much 

greater amount of torsion and will be much more rigid. This problem, however, in¬ 

volves bending and axial stresses and is beyond the scope of this text. 
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radically the shape departs from that of a circle, for which the warping 
is zero. For long slender bars the effects of end restraint disappear at 
a reasonably short distance from the end. (Saint-Venant's principle, 
see Sec. 7*9.) For short bars of irregular cross section (such as I-beams) 
the effects of end constraint may be so great as to change the behavior 
completely. This applies also for short discontinuities or cut-outs. The 

Fig. 12 • 12. Constants for rectangular bar in torsion, from Ref. 18. (See Table 12*1.) 

classical torsion theory must therefore be used with caution under such 
conditions. 

12^12. Plastic Range. Since the moment transmission is actually 
accomplished through diagonal axial stresses, it can be seen that high 
values of shear stress may cause these axial stresses to exceed the pro¬ 
portional limit. This will cause a reduction in E and hence a reduction 
in the effective modulus of rigidity G (since this depends on E, see 
Eq. 10-18). Further increases in shearing strain beyond this point will 
no longer cause the shear stress to increase proportionately. A plastic 
region will than be developed which increases in size as the applied 
torsional moment is increased. In this region the shear stress is not 
proportional to shear strain. In the extreme case the entire cross sec¬ 
tion would be in the plastic region. 

If it is arbitrarily assumed that the shear stresses are constant over 
the whole cross section, the slope of the membrane (in the membrane 
analogy) would have to be constant. Nddai18 has shown that this can 
be accomplished experimentally by replacing the membrane with a sand 
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heap in which the force of gravity acting on the sand replaces the assumed 
normal pressure on the membrane. The angle of repose, being constant, 
represents the constant shear stress over the whole cross section. 

NAdai has gone further and combined the membrane and sand heap 
analogies to determine experimentally the stress distribution in the 
plastic region. For additional information on this interesting subject 
see his book Plasticity,13 See also Ref. 15 for other experiments in this 

field. 
12 *13* Axial Stresses in Torsion. Although it has been convenient to 

deal with shear stresses in developing the equations for torsion, it must 

Fig. 12-13. Axial stresses in torsion. 

be recognized that axial forces are required to transmit any sort of load¬ 
ing over a finite distance (see Chapt. 8). In torsion these take the form 
of diagonal tension and compression stresses which “spiral” around the 
member at an angle of approximately 45°, as shown in Fig. 12-13. 

This conception will help to explain why the torsional shear stresses 
are low in projecting portions or sharp external comers (as on a square 
bar). The diagonal axial stresses tend to take a short cut in their spiral 
path through the member. Conversely, a sharp depression or internal 
angle will tend to cause these axial stresses to pile up, giving rise to in¬ 
creased shear stresses at such points. 

As noted in Sec. 11-6, the equality of the diagonal tension and com¬ 
pression fields results in an exact balance between the inward and out¬ 
ward radial forces produced.* In thin shells, however, the compression 
field may cause buckling, after which the shell will either fail completely 
or continue to resist the torsion through a diagonal tension field. Special 
stiffening members would then be required to resist the radial and longi¬ 
tudinal components of the tension field. 

* The geodetic form of construction employs individual members arranged spirally 
along lines such as shown in Fig. 12 -13. Such structures have been successfully used 
in aircraft employing fabric covering. 
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12*14. Failure in Torsion. Torsional failures may occur in several 
different ways. Obviously, there is a possibility of true shear failure by 
sliding action, and for this reason the maximum allowable shear stress 
should not be exceeded. Owing to plastic action, however, the assump¬ 
tion of a linear stress distribution in a solid bar may give fictitiously 
high stresses in the outer fibers, as previously noted, and the torsional 
modulus of rupture may at times exceed the allowable shear stress 

(Outside Diameter/Thickness) 

Fig. 12 14. Approximate torsional modulus of rupture for metal tubes. 

determined for uniform stress distribution (compare Sec. 15-5, on plastic 
bending). Thus the modulus of rupture obtained by twisting solid 
round bars may be too high for use in designing a thick-walled tube. 

The most probable type of failure in relatively thin tubes or shells is 
by buckling. The critical buckling load may be expressed as a shear 
stress (although it is actually caused by diagonal compression), and it 
depends to a large extent on the ratio r/t. (D/t is more convenient to 
use for tubes.) The location of stiffening members or bulkheads is also 
important. Although a detailed discussion of allowable stresses is be¬ 
yond the scope of this volume, Fig. 12 • 14 has been included to show 
approximately how the torsional strength is affected by the D/t ratio. 

It is possible also for the diagonal tension stresses to cause failure in 
certain cases. This can be true, however, only when the walls of the 
tube are very thick (or solid) and when the material is a brittle type, 
i.e., weaker in direct tension than in shear. Such brittle conditions are 
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sometimes reproduced in impact, or failure under repeated stress (fa¬ 
tigue). 

For members subjected to rapidly repeated or alternating torsional 
loads of considerable magnitude the endurance limit in shear must be 
used as an allowable stress. This is usually quite low, as compared with 
the ultimate shear stress.* 

The design criterion is sometimes absence of 'permanent set. The most 
common example of this is the coil spring, which is loaded primarily in 
torsion. To prevent permanent set the allowable shear stress must not 
exceed the proportional limit in torsion. This is related to the propor- 

Fio. 12 • 15. Square specimen after torsion test. Note shear failure along mid-plane. 

tional limit in tension and is usually between 60 and 80 per cent of that 
value (for steel and aluminum alloy). The actual value depends en¬ 
tirely on the nature of the material, some materials being quite unsuit¬ 
able for springs because of their low proportional limit. 

PROBLEMS 

12*1. Check the shell torsion equation for a rectangle by calculating the 
moment of the shear flow about any convenient point. (Use symbols to repre¬ 
sent quantities.) 

12*2. Assuming the same allowable shear stress to apply and using the shell 
torsion equation, calculate the relative weight (cross-sectional area) of circular 
and square shells of equal torsional strength, for the following cases: 

(a) Side of square = diameter of tube. 
(b) Diagonal of square = diameter of tube. 

(Note. Usually the allowable shear stress will be higher for a circular shell 
than for a square one.) 

* Reference 16 gives a value of 9000 psi for the torsional endurance limit of 24ST 
aluminum-alloy bar, as compared with 38,000 psi for ultimate shear stress. 
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12*3. Let a and 6 represent two sides of a rectangular cross section. By 
varying the ratio a/b show that the square cross section gives maximum torsional 
strength for a given amount of material, assuming constant thickness and allow¬ 
able stress. (Note. Use shell torsion equation and plot, against a/6, a curve 

of some quantity proportional to weight. The problem may also be solved 
directly by differential calculus.) 

12*4. A thin-walled shell has a mean radius of 17 in. and transmits a torsional 

moment of 189,000 in.-lb. Calculate the shear flow. If the allowable shear 
stress is 5000 psi, what wall thickness is required? 

12*6. A thin-walled shell of elliptical cross section has maximum and mini¬ 

mum dimensions of 20 in. and 10 in. The allowable shear stress is 12,000 psi 
and the wall thickness is 0.040 in. ^hat is the allowable torsional moment? 

12*6. If the circular shell of Problem 12*4 is 20 ft long, what total twist (in 

degrees) is produced? (Assume G — 3,850,0(K) psi.) 
12*7. Calculate the twist for the elliptical shell of Problem 12*5 under a 

torsional moment equal to two-thirds of the allowable moment. Assume shell 
to be 30 ft long. (Assume G — 3,850,000 psi.) 

12*8. A circular shell of 20-in. radius is made in three segments of equal 
width but which have the following thicknesses: 0.020, 0.040, and 0.080 in. 
Assume that a torsional moment of 500,000 in.-lb is applied. 

(a) Calculate shear stress in each segment. 
(b) Determine the maximum warpage, i.e., departure of actual cross 

section from a plane (refer to Fig. 12-G). 

12*9. A round shaft must transmit a torsional moment of 10,000 in.-lb. A 

factor of safety of 2.0 against failure is desired. 

(а) Find the diameters required for the various materials listed in 

Apj)endix 2. 
(б) Compare relative areas and weights. 
(c) Draw the cross sections to scale. 

12*10. In Problem 12-9 assume that the shaft is to be made from a thick- 

walled tube having an inside diameter of 1 in. 

(а) Find the outside diameters required for the various materials. 
(б) Compare relative areas and weights with those of Problem 12 • 9. 

(c) Draw cross sections to scale. 

(Note. A trial-and-crror method of solution may be used if necessary.) 
12*11. Work out Problem 12-9 for a solid square shaft. 
12*12. A solid shaft has a rectangular cross section 1 in. by 4 in. Assume 

that it transmits a torsional moment of 25,000 in.-lb through a distance of 30 ft. 
Find the maximum shear stress in the shaft and compute its total twist for: 

(а) Alloy steel. 
(б) Aluminum alloy. 
(c) Magnesium alloy. 
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12*13. Using Fig. 12-14, calculate the ultimate torsional strength of a tube 
having an outside diameter of 2 in. and a wall thickness of 0.080 in. for the 
materials listed in Appendix 2. 

12 • 14. A control wheel 16 in. in diameter must resist a couple of 80-lb forces, 
applied at opposite sides. Find the size of aluminum alloy tube required to 
transmit this torque with a factor of safety of 2.0 against failure. Procedure: 
Obtain approximate thicknesses required by using thin-shell formula for follow¬ 
ing average tube diameters: 1.5 in., 1.625 in., 1.75 in., assuming ultimate shear 
stress equal to one-half ultimate tension stress. Select lightest tube having 
a D/l value less than 50, and work out the wall thickness more accurately by 
using Fig. 12-14 and the thick-wall tube formula. 



CHAPTER 13 

BENDING—SYMMETRICAL 

13*1. Pure Bending. Although bending is almost always induced by 
the transmission of shear or transverse forces it is convenient to develop 
the theory for pure bending before considering its combination with 
shear. As noted in Chapt. 3, pure bending is caused by the transmission 
of a turning moment or couple in its own plane, that is, along a line 
normal to its own axis. The term beam is used as a general name for a 

Fig. 13-1. Illustration of pure Fig. 13*2. Effect of vertical 
bending. members. 

structure transmitting a bending moment, but there is no well-defined 
rule on this point (other names: truss, girder, etc.). 

A practical application of pure bending is illustrated in Fig. 13*1. 
(This symmetrical type of loading is often used in testing materials 
for bending strength.) Figure 13 • 16 shows a truss which will transmit 
these forces. In (c) the couple representing the bending moment is 
transmitted axially through the two flange members. In analyzing the 
action of pure bending it is convenient to use the frame analogy by 
dividing the truss into a number of units. If this is done by the addition 
of vertical members only, the structure will behave as indicated in Fig. 
13 • 2. The axial deflection of the flanges will cause the vertical members 
to slant, but no curvature of the truss will be produced. 

199 
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13-2. Frame in Pure Bending. Figure 13-3 shows a single rectangu¬ 

lar frame to which a diagonal member has been added, and which is 

transmitting a bending moment in the form of a couple. The term 

flange will be used to denote the members which transmit the axial 

forces of the couple. Instead of assuming the frame members to be 

rigid, as in Ohapt. 10, the diagonal 

member will be assumed to be inex- 

tensible. For a simple couple this 

assumption is actually true, in effect, 

as there is no shear force to load the 

diagonal. Likewise there is no verti¬ 

cal force to cause a loading of the 

vortical frame members. Hence the 

only deflections will be found in the 

horizontal flange members. These 

deflections are indicated in Fig. 13*3, 

greatly exaggerated. 

13*3. Bending Deflection of Frame. By following the process used 

for the shear frame in Chapt. 10, it can be shown that the contraction 

and expansion of the two flange members will cause an apparent shear 

deflection, indicated by d in Fig. 13-3. The relationship between the 

deflections is given by 

tan p 
[13-1] 

(Compare Eq. 10* 4a, for the shear frame.) 

Figure 13-3 shows that one of the flanges shortens while the other 

becomes longer. This causes the vertical member to acquire an angle 

a. This angle, which is measured with respect to the other vertical 

member, will depend on the depth of the frame and on the relative 

deflections of the flanges. If the latter are equal in size, i.e., stiffness, 

they will deflect equally, and the vertical member will rotate about 

its midpoint. The angle a is then given by the equation * 

A L 

(A/2) 
[13-2] 

where a is measured in radians. 

It is this change in angle that is most important in the bending deflec¬ 

tion of beams, as it causes each successive frame to start out at a differ¬ 

ent angle. Bending therefore produces deflections in two ways: first, 

* Because of the small angles involved it is quite accurate to use this simplifying 
assumption. 
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I l 
No 

Load (a) 

(b) 

(c) 

by the direct deflection of the frame itself, and second, by the rotation 
of the other frames attached to it. This is shown by Fig. 13*46, which 
is greatly exaggerated. 

This development also indicates the origin of the curvature which is 
found in members subjected to bending. Such curvature is, of course, 
caused by non-linear conditions; i.e., the total deflection of a beam can¬ 
not be found simply by adding all the 
individual deflections of the frames, as 
in shear. 

Figure 13* 4c shows, for comparison, 
the type of distortion that would be 
produced by deflection of the diagonals 
only. Note that the verticals remain 
parallel, even though one diagonal inav 
deflect more than another (This is 
illustrated by showing a greater deflec¬ 
tion for member 2 than for the other two 
diagonals.) 

Deflections of trusses usually involve 
both bending and shear and are com¬ 
puted by special methods which will 
not be taken up at this point. The fore¬ 
going simple principles, however, are 
sufficient as a basis for the development of any method of computing 
truss deflections, 

13-4. Flange Forces. In a truss having parallel flanges it is a simple 
matter to compute the axial forces which they must resist under an 
applied bending moment, or couple (see Chapt. 9). It is necessary only 

to divide the bending moment at any 
point by the distance between the cen¬ 
troids of the flanges. 

The principles developed for the truss 
may also be applied to the shear web or 
plate girder in which the diagonal mem¬ 
bers are replaced by a plate or sheet, 
acting as a shear web (see Chapt. 10). If 
the flange members are parallel and rela¬ 

tively large in cross section, as compared with the wfeb, the problem may 
be divided into two parts. The flanges may be assumed to resist all the 
bending moment, while the shear web resists all the shear (transverse) 
force. A beam of this type is shown in Fig. 13 • 5. The depth of the beam 
(h) is taken as the distance between centroids of the flange cross sections. 

Fig. 13-4. Truss deflections. 
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The flange forces are then obtained from the equation 

Pd 
h 

for a single shear force P 

[133] 

[13-3o] 

The shear flow and stress in the web are given by Eqs. 10*9 and 10*10, 
Sec. 10*8. 

This type of analysis is very useful in thin-web types of structures. 
It is important to note, however, that the following assumptions are 
implied. 

а. The flange members transmit all the bending moment in the form 
of an axial force couple. 

б. The web transmits all the transverse (shear) force, 
c. The flanges are parallel. 

Assumption (a) neglects the fact that the shear web must be fastened 
to the flanges and therefore must elongate and contract with them. 
If the web is thin as compared with the flange, the amount of axial 
force carried in the adjacent web material is correspondingly small and 
may be neglected without serious error. If the web is relatively thick 
it will transmit part of the bending moment, acting as a solid beam. 
An approximate method of correcting for this consists in replacing the 
web by an equivalent pair of flanges, the areas of which may be added to 
those of the actual flanges. For this purpose an area of one-sixth of the 
total web area should be added to each flange. This is based on the 
theory of bending of solid sections (to be discussed later). 

If the flanges themselves are deep, they may carry an appreciable 
portion of the shear. Hence Eq. 10*9 would not be strictly applicable 
and the rule for measuring h would require modification. 

The flanges must be parallel; otherwise some of the transverse force 
will be resisted by the axial forces in the flanges, which would haye a 
vertical component. The analysis of a beam with non-parallel flanges 
will be taken up later. 

13*5. Examples of Flange-Type Beams. The method of assuming 
concentrated flanges may be used on many different types of beams and 
is particularly useful in preliminary design calculations. Several exam¬ 
ples are shown in Fig. 13*6. The most important step is the estimation 
of the centroid of the flange material, which, of course, represents the 
location of the axial couple. In preliminary work this may usually be 
done by eye with satisfactory accuracy. 
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In the built-up type (a) a portion of the web is included as flange 
material. Sketch b shows a section through a tubular fuselage (airplane 
body). Note that the side truss members (verticals and diagonals) are 
not included; they are indicated in the sketch by dotted lines. Sketch c 
represents a more complicated type of structure often used for airplane 
wings, in which two or more shear webs may be employed. 

(a) Built up (b) Tubular box beam (c) Shoot metal box 
beam (aitplane fuselage) beam (airplane wing) 

Fig. 13 6. Flange-type beams. 

13*6. Development of the Bending Theory. The development of the 
classical beam theory will be started by assuming that the simple, 
parallel, two-flange beam is modified by adding additional flanges, as 
shown in Fig. 13*7. The two intermediate members will have some 
effect in resisting a bending moment, but their effectiveness is obviously 
not so great as that of the outer members. To obtain a measure of their 
effectiveness it is necessary to make p p 
some assumption as to the relative 
deflection of the members under 
load. The assumption made for this 
purpose forms the actual basis for Pa Pa} 

the bending theory and it should Fiq 13.7 Muld.flange beam. 
therefore be thoroughly understood. 

In Chapt. 7 it was stated that the basic assumption in the axial load 
theory is that plane cross sections remain plane and parallel during load¬ 
ing. (This implies that there is relative translatory motion of adjacent 
cross sections during loading.) In the bending theory the corresponding 
assumption is that plane cross sections remain plane during loading, but 
they do not remain parallel. For pare bending it may be further as¬ 
sumed that the cross sections rotate about some axis such that there is 
no net translatory motion causing a resultant axial load. 

Thus the two ends of the beam shown in Fig. 13*7 would remain 
straight, but not parallel, and would rotate about an axis normal to 
the paper. Such a condition is closely approximated in most actual cases, 
as the presence of the shear web prevents the flanges from acting inde- 
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pendently.* A vertical slice 2 in. wide is now assumed to be cut from 
the bent beam, giving a picture as shown in Fig. 13-8 (deflections greatly 
exaggerated). 

The deflections of each flange unit over a unit (1 in.) length are shown 
by e%9 e2, etc. These also represent the strains, since a unit length was 
used as a basis (strain = deflection per unit length). If the values of 
these strains were known it would be possible to determine the stress in 
each flange, using the stress-strain diagram for the material. Each 
flange area would then be multiplied by its stiess to find its axial force, 
and then by its distance from the axis of rotation to give its resisting 

moment. The summation of these 
moments for all flanges would give 
the total resisting moment. 

This process may actually be used 
in certain cases, but it is not adapted 
to stress analysis work, in which 
the problem usually consists in find¬ 
ing the stresses corresponding to a 
given bending moment. It is pos¬ 
sible, however, to obtain a general 
solution which will apply to nearly 
all types of beams. The equation 
which results is known as the flexure 

formula or the bending equation. It will be developed here by ele¬ 
mentary methods in order to emphasize the physical significance of the 
formula. 

To simplify the problem it is further assumed that the strains remain 
within the elastic range, so that the ratio between stress and strain is 
constant and equal to the modulus of elasticity, E; that is, stress is pro¬ 
portional to strain. Since strain has already been assumed to be pro¬ 
portional to the distance from the axis of rotation, it follows that stress 
is also proportional to this distance, i.e., the stress distribution is linear, f 
This may be expressed mathematically by the equation 

f=Cy [13-4] 
where C is a constant. 

* The assumption of plane cross sections may introduce appreciable errors when 
the flange units are widely separated and connected by relatively weak shear mem¬ 
bers, or at points of local loading where distortion of the cross section occurs. These 
refinements are not usually necessary, however, as Saint-Venant’s principle applies 
to bending as well as to axial loading. 

t It is important to note that this is not the fundamental assumption of the bending 
theory, but that it results from two other independent assumptions. 
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Since the value of C is unknown, its value will be taken initially as 
1.0 and the resisting moment will be computed. From this result the 
stresses for any other condition may be obtained by multiplying by the 
ratio of moments. The initial assumption is, therefore, that the stress 
equals the distance from the axis of rotation: 

A = 2/i 

h = 2/2, etc. 

By multiplying stress by area, the flange loads are obtained. 

[13-5] 

Pi — ^.i/i — A\y\ 

P2 = ^2/2 = -^22/2 
[13-6] 

Similarly, the moment of each flange load may be obtained by mul¬ 
tiplying but its moment arm. 

Mi = I\yi = Aidi2 

M2 = P22/2 = A2y2\ etc, 
[13-7] 

The total resisting moment is therefore given by the sum of these 
quantities 

M0 = 2Ay2 [13*8] 

where Mo is the resisting moment corresponding to the assumption 

/ = V- 

The quantity 2A y2 is the moment of inertia of the cross section, com¬ 
monly denoted by the symbol /. Equation 13*8 may therefore be 
written 

M0 = I [13*9] 

It can now be seen that if an arbitrary bending moment, M, is applied, 
the assumed stresses will be increased by the factor M/Mo or M/I. 
Hence Eq. 13.5 must be multiplied by this factor, which is actually the 
value to be used for C in Eq. 13.4. 

Flexure formula [13-10] 

where f is the axial stress caused by the bending moment M. 
y is the distance from the axis of rotation.* 
I = ISAy2 = moment of inertia of cross section about axis of 

rotation. 

* The symbol c is sometimes used in place of y. Usually c refers to the maximum 
value of y, which would give maximum stress. 
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This equation, often called the flexure formula, is one of the standard 
formulas used in structural analysis work and is of the same order of 
importance as the axial stress equation (f - P/A). These two equa¬ 
tions cover two of the three basic loading conditions into which almost 
all stress problems may be divided (axial loading, bending, and torsion). 

It is very important that the physical significance of the bending 
equation be realized (which is one reason why the development was 
carried out in such an elementary manner). In particular, the engineer 
should realize the limitations on its accuracy which were introduced by 
the assumptions made during the development. 

13*7. Moment of Inertia. The term /, in Eq. 13*10, is usually 
called the moment of inertia, but this name has no direct significance in 
connection with the bending theory. A more proper name for the 
quantity is second moment of area. In Chapt. 7 it was shown that for 
pure axial loading (uniform axial stress) the resultant force must pass 
through the centroid of area, which was located by computing the first 
moment of area i/LAy). The first moment of area is therefore associated 
with axial stress, while the second moment of area (I) is associated with 
bending stress. 

Since the term moment of inertia is so well known, it will be used in 
further discussion of the beam theory, but it should be thought of as 
second moment of area. 

TABLE 13.1 

Calculation of Moment of Inertia 

(Refer to Fig. 13.8) 

Flange 
Number 

A 
sq in. 

y 
in. v 

1 3 4 48 
2 2 2 8 
3 2 2 8 
4 3 4 48 

Sum 10 112 

A * 10 sq in. 1 — 112 in.4 

One of the most common procedures in stress analysis work is the 
computation of the moment of inertia of a cross section. Table* 13 • 1 
shows the usual procedure, as applied to a simple case such as shown 
in Fig. 13*8. Values for the flange areas were selected so that sym- 
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metry of the cross section makes it possible to locate the axis of rotation 
by inspection. 

Note that the procedure requires the tabulation of areas, thereby 
permitting the calculation of total area as one of the steps. (This will 
be useful when direct axial loading is combined with bending.) Note 
also that the units of measurement for moment of inertia are given as 
inches to the fourth power, since square inches have been multiplied 
by the square of a distance. The web areas have been neglected in this 
example. 

13*8. Neutral Axis (Neutral Plane). Up to this point it has been 
assumed that the bending occurs about a known axis of rotation. In 
fact, Eq. 13 • 10 could be used for any assumed axis of rotation, even 
though there is only one axis which will correspond to pure bending in 
a given plane. Thus if a certain member is forced to bend about a 
definite axis the moment of inertia about this axis could be calculated 
and used directly in Eq. 13 • 10. But if this were done, the calculated 
internal forces would very likely have a net axial component along the 
axis, indicating that the condition is not one of pure bending. 

In dealing with pure bending the internal forces must have no resultant 
axial component, as the definition of such bending implies that the 
external loading condition is a couple, or its equivalent. To determine 
the stresses for bending moments alone it is therefore necessary to select 
an axis of rotation that fulfils this requirement. Such an axis is called 
the neutral axis. On this basis the 
neutral axis may be defined as the 
axis of zero stress in pure bending * 

If several adjacent cross sections 
of a beam are considered, the neu¬ 
tral axes through each section will 
define a plane, which may be called 
the neutral plane. If the beam is 
not of uniform cross section, or if 
the axis of the applied bending moment changes, this plane may be 
warped. The trace of the plane on a side of the beam is sometimes 
called the neutral line (see Fig. 13-9). 

In the development of the bending formula it was shown that the 
axial force in each flange unit is proportional to its area and its distance 

* The term neutral axis is sometimes used to describe the axis of zero stress for 
combined axial load and bending. If so used, the term loses its direct connection with 
the geometric properties of the cross section. The author suggests the use of the 
terms axis of zero stress, or plane of zero stress, for the more general condition of com¬ 
bined loading (see Chapt. 19). 

Fig. 13*9. Bending terminology. 
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from the axis of rotation (Eq. 13 *6). It can also be seen from Fig. 13-7 
that flange forces on opposite sides of the axis of rotation will have 
different directions; on one side all elements will be in tension, and on 
the other side they will all be in compression. This can be indicated 
mathematically by letting the sign of y indicate which side of the axis 
of rotation is being considered. Refer to Fig. 13-8 and assume that 
stress equals the distance y. 

Pi = +yiAA . . ^ 
[positive values measured upward 

P2 = +2/2^2 j 

Ps = —2/3^3 ] . 
[negative values measured downward 

2P = yxAx + y2A2 - 2/3^3 - 2/4^4 

This quantity, which may be indicated by Q, is called the first mo¬ 
ment of area or the static moment of the cross section. It must equal 
zero if XP is to equal zero. Hence the axis of rotation must be located 
so that the following condition is satisfied: 

Q « 2Ay = 0 [13-11] 

where Q is the static moment, or first moment of area. 

This equation is identical with the equation representing an axis 
through the centroid of area, or center of gravity of the cross section (see 
Sec. 7-6). It can therefore be stated that in pure bending the axis of 
rotation (neutral axis) will pass through the centroid of the cross-sectional 
area* 

This statement is not just an assumption or a working rule—it is a 
physical fact. If pure moments are applied at the ends of a beam the 
bending will actually occur about the neutral axis through the centroid 
of area. Bending about any other axis would require the additional 
application of axial force, which does not agree with the assumed external 
loading conditions. 

13-9. General Method for Determining Neutral Axis and Moment 
of Inertia. When the neutral axis cannot be located by inspection, 
either of the following procedures may be followed. 

a. The location of the axis through the centroid of area may be deter¬ 
mined and this new axis may then be used to calculate I (second mo¬ 
ment of area). 

b. The first and second moments of area may be summed up -about 
any convenient axis and the results transferred to the neutral axis. 

* This statement is, of course, based on the assumptions mentioned in Sec. 18-6 in 
deriving the flexure formula. 
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Procedure (a) is covered by Secs. 7-6 and 13-8. Although easier to 
understand, it is generally less rapid than procedure (6), which is widely 
used in routine computations. Although the process of transferring 
moments of inertia from one axis to 
another is well covered, in mechanics 
textbooks, it will be described here in 
terms of the physical action which it 
actually represents. 

In Fig. 13 * 10 all the distances y are 
measured from an arbitrary reference 
line, XX, chosen at any convenient 
location. The computations are then 
carried out as in Table 13*2 (actual 
values inserted for illustration). 

The value of 12.0 obtained for the 
static moment Qx indicates that the 
chosen axis does not fulfil the require¬ 
ment that Q = I>Ay = 0. In fact this w unw 
quantity may be thought of as a meas- Fiq 13.10 General method. 
ure of the resultant axial force which 
would be obtained at the reference axis if the beam were required to 
bend about this axis. If it is further assumed that / = y, the value 

TABLE 13-2 

Calculation of Center of Gravity, Q, and I 

(Refer to Fig. 13 • 10) 

Flange 
Number 

1 
2 
3 
4 

Sum 

A- 1.8 Ox -12.0 Jx«108 

of Q gives the net axial force directly. The value of 108.0-obtained 
for Ix may similarly be thought of as the moment which resists bend¬ 
ing about the reference axis, assuming that / « y. 
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The location of the neutral axis is found from the equation for the 
centroid of area. 

In the example, 
A 

12.0 • 

Vo = — = 6.67 in. 

[13-12] 

This locates the point at which an axial force may be applied without 
causing an internal bending moment; conversely, the axis about which 
bending will produce no net axial force. 

M (b) (c) 

Fig. 13*11. Significance of static moment. 

The physical significance of these quantities is shown in Fig. 13-11. 
It can be seen from (b) that bending about the assumed reference axis 
is resisted by a moment Ix and an axial force Qx. For pure bending the 
axial force must be eliminated, which can be done by superimposing 
another hypothetical force —Qx, acting in the opposite direction. This 
force must be applied at the neutral axis, hence its moment arm equals 
y0, and its moment about the reference axis equals —Qxy0. From Eq. 
13-12, Qx = Ay0, so that the moment produced by the force — Qx is 
equal to — Ay02. The final moment is therefore given by 

Transfer formula 10 ~ Ix — Ay2 [13-13] 

This is nothing more than the well-known transfer formula for moment 
of inertia, but here it has a special physical significance which makes 
it easier to understand. As applied to the values, found in Table 13-2, 

J0 - 108 - 1.8 (6.67)2 

* 28 in.4 

The final condition is indicated by Fig. 13 * 1 lc, 
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13*10. The Solid Beam. The foregoing analysis was based on the 
assumption that the bending is resisted by a finite number of flanges, 
or members capable of resisting axial forces. The cross section of the 
beam is often solid, as in a bar or a channel. The procedure to be 
followed is basically the same as 
for the multi-flange beam and, in 
fact, consists in arbitrarily divid¬ 
ing the cross section into elements 
which are then treated as indi¬ 
vidual flanges. 

Thus in Fig. 13* 12a the beam 
could be divided into narrow hori • 
zontal strips and a form such as (a) (b) 

Table 13 • 1 would be used to com- Fro. 13-12. Solid beams, 
pute the moment of inertia about 
the horizontal axis through the c.g. For a shape such as shown in 
Fig. 13*126, the general procedure would be followed, using some 
arbitrary axis such as X-~X and employing a table such as 13*2. 

The use of strips or flange elements in this manner introduces a small 
error, depending on the number of subdivisions made in the process. 
As the number of elements is increased and their size is correspondingly 
decreased the error approaches zero. The physical significance of this 

t 

(a) Exact (b) Approximate 

Fig. 13*13. Significance of strip method. 

is simple; the computation of I in this manner neglects the bending 
resistance of each individual element and considers only its axial resist¬ 
ance. If the element is made thin enough its bending resistance be¬ 
comes negligible. 

Another way to illustrate this point is shown in Fig. 13 * 13. The exact 
application of the assumption of linear stress distribution would require 
a variable stress over each element, as in (a). The use of several strips 
would imply a stepped stress distribution as shown in (6). 

13*11. Integration Methods. For any mathematically simple shape 
(rectangle, circle, etc.) the value of I and the location of the neutral axis 
may be exactly computed by integration, a mathematical operation 
which is equivalent to the summation of infinitely small elements. 
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Appendix 1 gives several standard formulas which are derived in this 
manner. Many more can be found in handbooks and in textbooks on 

mechanics. 
It is often possible to compute the total moment of inertia of a cross 

section by dividing it into simple parts for which the c.g. and moment 

Fig. 13*14. Equivalent sections. 

of inertia may be readily computed. The moments of inertia of all the 
parts are added together (which takes care of the bending resistance of 
each part acting by itself), and the transfer formula is used to compute 
the axial effect of each part about the desired axis. 

Figure 13*14 shows how this system may be applied to an I-beam, 
for example. The actual cross section in (a) is first modified as in (6), 
so as to consist only of rectangles. The following table shows the 
method of computation. 

TABLE 13*3 

Computation of I 

Unit 
Number 

A 
(sq in.) 

V 
(in.) h Ay* 

1 0.75 1.625 0.0039 1.98 
2 0.75 0 0.5630 0 
3 0.75 1.625 0.0039 1.98 

Sum 2.25 0.5708 3.96 

I - 0.571 +3.960 - 4.531 in.4 

A clear understanding of these principles will aid in deciding tt> what 
extent the calculations for moment of inertia need be carried. For 
instance, a shell structure may be composed of many small units and 
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a few large ones. If the c.g. of each unit is used in the calculations, no 
error in the location of the neutral axis will be caused by neglecting the 
individual moments of inertia. A trial calculation will usually show 
that the / of a small unit is negligible in comparison with that of the 
whole structure. It might be found desirable, however, to include the 
moments of inertia of the larger units. Appendix 1 contains tables 
which may be used in computing the moment of inertia of various 
elements. 

13*12. Section Modulus. The maximum axial stress due to bending 
will occur at the point on the cross section which ib farthest away from 
the neutral axis, i.e., at the maximum value of y. If the letter c is used 
to indicate the maximum value of y the bending equation may be written 

[13-14] 

From this equation it can be seen that for a given bending moment 
the stresses produced will be inversely proportional to the quantity 
J/c, which may therefore be regarded as a measure of the strength in 
bending. This quantity is called the section modulus. It is usually 
identified by the symbol Z, thus, 

Z - - [13-15] 
c 

from which 
M 

/max = ^ [13-16] 

13*13. Efficiency in Bending. The section modulus has the same 
relationship to bending moment that the cross-sectional area has to axial 
load. It is a measure of the structural efficiency in bending. Various 
cross-sectional shapes may be compared on this basis. Such a com¬ 
parison will show that the best possible distribution of material in 
bending is that which will produce the largest value of the section 
modulus. 

Figure 13 • 15 shows several shapes which have the same cross-sectional 
area (hence same weight) but which have quite different values for Z. 

Obviously the most efficient shape is that in which the material is con¬ 
centrated as far from the neutral axis as possible. This is approached 
in the common I-beam. Sketch (c) shows a type of cross section which 
is to be avoided if possible. Here the outstanding flange gives a large 
value for c without a corresponding increase in I. 

A comparison of (d) and (e) shows why it is highly desirable to use 
hollow tubes and shells rather than solid bars, if bending loads pro- 
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dominate* Hollow rectangles are also employed to some extent. Box 
beams have been widely used in aircraft work. 

Fig. 13 • 15 Sections of same area. 

13*14. Unbalanced Sections. If the cross section is not symmetrical 
about the neutral axis the value of c will not be the same on each side. 
The stresses on the side having the smaller value of c will therefore 
exceed those on the other side. This may sometimes be an advantage, 

Fig. 13 *16. Test jig for applying constant bending moment over mid-portion. 
(For maximum accuracy roller support would be used.) 

as the allowable stresses in tension and compression are not usually 
equal. In airplane wings, for instance, it is customary to use more cross- 
sectional material in the top portion of the wing structure than in the 
bottom. This is because the maximum bending moment is usually 
produced by upward-acting air loads, causing compression stresses in 
the top portion. Since the allowable compression stresses for a shell 
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structure are generally lower than the allowable tension stresses (because 
of buckling), it is necessary to place more material in the region sub¬ 
jected to compression. Conversely, the addition of material in the 
lower pprtion, although it increases /, will not appreciably reduce the 
compression stresses in the top, as this causes an increase in c for this 
part of the beam. 

The same conclusions may be reached by treating the beam as an 
equivalent two-flange type. 

PROBLEMS 

13 • 1. It is estimated that a certain tube will have an ultimate bending strength 
of 60,000 in .-lb. The longest length available for testing is 5 ft. Sketch a loading 

method which will put the middle third of th*1 tube in pure bending and calculate 
the applied loads and reactions at the estimated ultimate strength of the tube. 

(Note. In actual practice the tube would have to be reinforced at the points of 
load application, to prevent local failure.) 

13-2. The two flanges of a square frame such as shown in Fig. 13*3 are 
composed of alloy-steel tubes, each 36 in. long and having a cross-sectional area 
of 0.60 sq in. A couple is applied as shown, in which the load P equals 50,000 lb. 
Find: 

(а) The deflection, d. 

(б) The angular deflection, a (degrees). 

13*3. Assume that three frames, such as described in Problem 13*2, are 
joined together to make a truss such as shown in Fig. 13 • 4a. The same couple is 
now to be transmitted through all three frames. Find: 

(а) The total deflection at the free end. 
(б) The angular deflection at the free end. 

(Note. Since the angular deflections are very small, the deflection correspond¬ 

ing to a given angular rotation may be found by multiplying the angle, in radians, 

by the length involved.) 
13*4. A bending moment of 100,000 in.-lb is to be transmitted by a parallel- 

flange type of truss, 1 ft deep. Assume that the allowable stresses are 80,000 psi 

for the tension flange and 50,000 psi for the compression flange. Find the 

cross-sectional areas required for the flanges. 
13*5. In Fig. 13.65 assume that h is 40 in. and that the cross section is that 

of an airplane fuselage, located 12 ft forward of the tail. A down load of 1000 

lb is assumed to be acting at the tail (no other applied loads). 

(a) Find the loads in the flanges (longerons). 
(5) Assume that the allowable ultimate stresses are 68,000 psi and 

40,000 psi for tension and compression, respectively, and determine 
the cross-sectional area required for each longeron in order to 

provide a factor of safety of 1.5 against failure. 
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13*6. Calculate the bending moment resisted by a rectangular cross section 
1 in. wide and 6 in. deep, assuming that axial stress equals the distance from 
the neutral axis (/roax - ±2.5). Use the following approximations and com¬ 
pare answers. 

(a) Divide into five units (1 in. by 1 in.) and assume stress to be uniform 
over each unit and equal to the value at the center of the unit. 

(b) Do the same for 10 units (each H in* deep). 
(c) Check against formula for moment of inertia. 

13-7. Draw an irregular unsymmetrical solid cross section of any desired 
shape (approx. 2 in. by 3 in.). Divide into units approximately V% in. square 
and set up a table (similar to Table 13*2) to find the area, static moments, and 
moments of inertia about any two mutually perpendicular axes (not through 
c.g.). (Note. By drawing the section on graph paper the areas of odd shapes 
may be determined by counting squares.) 

13-8. Find the centroid of the shape used in Problem 13-7 and determine the 
moments of inertia about axes through the c.g., using a similar tabulation. 
Check by means of the transfer formula. (Note. The values of Q should be 
computed as a check on the location of the c.g.) 

13*9. Draw a rectangular cross section of any desired dimensions. Assume 
that the maximum allowable axial stress (in bending) is 9000 psi. Find the 
bending strength of a beam of such proportions, about each axis of symmetry. 

13*10. Using the same maximum stress as in Problem 13*9, find the moment 
represented by bending about the smaller edge of the beam (instead of the 
center). What total axial force is thus induced? 

13*11. Calculate the maximum axial stress in a 2 in. O.D. by 0.083 in. tube 
subjected to a bending moment of 20,000 in.-lb. (Calculate A, 7, and Z.) 

13*12. Draw a cross section of a circular shell similar to Fig. 13*15d, assigning 
arbitrary values for diameter and wall thickness. Convert into an equivalent 
solid section of same height and note resemblance to an I-beam. 
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UNSYMMETRICAL BENDING 

14*1. Principal Axes. It has been shown that bending about any 
axis other than one through the c.g. of the cross section will require the 
application of an axial force in addition to a pure bending moment. 
Hence it is always necessary to use the neutral axis in dealing with pure 
bending. 

It will now be shown that unless the section has equal bending re¬ 
sistance (constant moment of inertia) about all axes through the c.g. 
there will be only two locations for which 
the axis of rotation and the axis of the 
applied bending moment will coincide. 
These two axes are called the principal 
axes and are perpendicular to each other. 
They are the axes for maximum and 
minimum moment of inertia. Methods 
of finding these axes are covered in 
mechanics textbooks, but it is desirable 
to understand their physical significance 
as applied to the bending of beams. 

A simple example is shown in Fig. 
14*1, which might represent a cross sec¬ 
tion through the longerons of an air¬ 
plane fuselage. (The shear members are 
not shown.) Assume that the loading 
condition causes a bending moment 
about the axis X-X which passes through the c.g. of the section. 
Another axis Y-Y is drawn normal to it. The logical method of attack 
might appear to consist in dividing the moment Mx by the distance 
h (=2/i + 2/3). If this were done, the axial loads obtained would be 

Unsymmetrical bending. 

Pi - ~Ps 

Taking moments about the axis Y-Y, 

Mx 

h 
[14-1] 

My — P&l + P3X8 ¥■ 0 
217 

[14-2] 
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+X 

This shows that something must be wrong with the method used, for 
although starting with an applied bending moment about the X-X axis 
only, a resisting moment was obtained which not only equals the applied 
moment Mx but also has an extra component of considerable magnitude 
about the Y-Y axis. This is a physical impossibility, as the Y-Y axis 
is normal to the X-X axis; there can, therefore, be no y component of 
the moment Mx. It will be evident later that the error lies in assuming 

that the beam will actually rotate 
or bend about the same axis as 
that of the applied moment. 

To find the correct loads it is 
necessary to determine the axes 
for which the bending action does 
agree with the applied moment. 
These are called the principal 
axes, as previously noted. The 
condition which must be satisfied 
is as follows. The axial forces 
produced by bending rotation of 
the cross section about one prin¬ 
cipal axis must produce zero result¬ 
ant bending moment about the 
other axis at right angles to it. 

This is illustrated in Fig. 14*2, which shows two assumed axes and sev¬ 
eral elements of area. Now assume that a moment M is applied about 
the X-X axis, such that the top portion of the beam is in tension. Since 
the actual values are of no interest, but only the condition for zero 
moment about the Y-Y axis, it is permissible to make the arbitrary 
assumption used in Sec. 13-6, that stress equals distance from the axis of 
rotation. 

For the four elements illustrated, this gives values for stress and force 
as shown in Table 14 • 1. 

TABLE 14-1 

Fia. 14*2. Elements in 

bending. 

un symmetrical 

Computation of Product of Inertia 

Stresses Forces Moments 

fi * 4-yi Pi - +y\Ai Mi - Pi(-xi) — Aixtyi 
h “ *+-^2 Pi — +VzA2 M% «= Pi(+xi) «■ +A$wyz 

h m —1/3 Pz *“ *” 1/8^3 Mz ** Pz(+xz) “ —Azzgyz 
fi - -Vi Pi • — 2/4A4 M4 « Fi(-Xi) * +A4XH/4 

The moment of all the forces about the Y-Y axis must equal zero. 
Since the signs of the z distances indicate the sense of the moment arm, 
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the moment of each force is obtained by multiplying by the algebraic 
value of x, giving typical values such as shown in the third column of 
Table 14*1. If this process is done for all the elements and the values 
of moment are summed up and equated to zero, the equation is 

2Axy = 0 [14-3] 

This quantity is called the product of inertia and may be denoted by 
the symbol Ixy, as in the following equation. 

Product of inertia hy = hAxy [14-4] 

Fig. 14*3. Symmetrical sections. 

A principal axis may, therefore, be defined as an axis through the c.g. 
for which the product of inertia is zero. From the nature of the operations 
in Table 14-1 it can be seen that if the product of inertia is zero for one 
axis, it will also be zero for the axis normal to it. 

From Fig. 14 • 2 and Table 14*1 it is evident that there will always be 
two diagonally opposite quadrants in which the individual values of 
Axy are positive and two more in which they are negative. Hence, if 
the section is symmetrical about two perpendicular axes, the effects 
cancel out, and the product of inertia becomes zero. From this it can 
be seen that axes of symmetry are principal axes. Figure 14-3 illustrates 
this by showing several sections in which the positive quadrants are 
shaded. In each section the positive and negative quadrants cancel out. 

It is useful to know also that any area which has the same moment of 
inertia about its two principal axes has the same moment about any 
other axis through the centroid, i.e., the product of inertia is zero about 
all axes. This applies to the circle, square, octagon, and similar doubly 
symmetrical shapes. For these shapes any axis through the centroid may 
be used to compute the bending stresses. 
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For sections which are not doubly symmetrical the moments of inertia 
about the two principal axes will be the maximum and minimum for the 
cross section. This applies to several of the shapes shown in Fig. 14*3. 

If no axis of symmetry exists for the section, it is not possible to deter¬ 
mine the direction of the principal axis by observation, but the pro¬ 

cedure is to compute IX) Iy, and Ixy for two 
convenient axes. From these quantities 
it is possible to find the location of the 
principal axes and the moments of inertia 
about them. (The computation of Ixy can 
easily be included in the table used for Ix 
and Iv.) 

The following equations may be used 
to determine the moments of inertia about 
any set of axes (X' and Y') which have 
been rotated through an angle 0, if the 

X(+) 

Y Y' 
Fig. 14*4. Rotation of axes. 

values of Ix Iy, and Ixy are known for the original axes (see Fig. 14*4). 

Ix' = Ix cos2 0 + Iy sin2 0 — Ixy sin 26 

Iy> — Iy cos2 6 + Ix sin2 6 + Ixy sin 26 
[14-5] 

The angle 6 at which Ix> and Iy> reach their maximum or minimum 
values determines the location of the principal axes and may be found 
from the equation 

tan 2d = 
21; xy 

Iy-Ix 
[14-6] 

If this value for 6 is substituted in Eqs. 14 *5, the principal moments 
of inertia will be found; or the following equation may be used directly. 

I _ J* + Ll± + 1 *V [14-7] 

Derivation of the foregoing equations has been omitted as it is seldom 
necessary to make use of them in routine analysis work. Problems of 
un8ymmetrical bending may be solved without finding either the prin¬ 
cipal axes or the principal moments of inertia, by methods which will be 
described later. It is important, however, to be able to recognize un- 
symmetrical bending when it occurs, and in this connection a clear 
understanding of the significance of the principal axes is essential. 

14*2. Unsymmetrical Bending. It will be assumed that the principal 
axes for a given cross section are known and that the applied bending 
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moment axis does not coincide with one of these. The procedure to be 
used is as follows. 

а. Resolve the applied bending moment into components acting about 
the two principal axes. 

б. For any given point compute the stresses separately about each 
axis. 

c. Add the stresses algebraically to obtain the net stress. 

Figure 14-5, which shows the box beam of an airplane wing, is a typi¬ 
cal example of unsymmetrical bending. If the resultant moment acts 

about the axis shown, it must be revolved into two components along 
the principal axes X-X and Y-Y. The stresses at any point are now 
determined with respect to each component and added algebraically. 
It is obviously necessary to be careful about the signs of the stresses in 
this process. 

14*3. Effective Bending Moment. In the example used to introduce 
the subject of unsymmetrical bending (Sec. 14-1) it was found that the 
use of the moment axis as an axis of rotation induced an extra com¬ 
ponent of bending about an axis 90° away. This suggests a method of 
analysis in which the induced moment is actually accounted for, thereby 
permitting the axes of the applied moments to be used directly. Such 
methods have been developed, but their formulas are usually somewhat 
difficult to understand. For that reason the following development of 
the method is presented, and simplified formulas are obtained. 

Consider Fig. 14*6, in which the axes X-X and Y-Y are not the prin¬ 
cipal axes. The bending moments Mx and Mv are assumed to be ap¬ 
plied to the cross section shown. Positive values of moment are indi¬ 
cated by the conventions, using the right-hand rule. Hence positive 
values of Mx will produce tension (+) in the positive quadrant (positive 
values of x and y), but positive values of Mv will cause compression (—) 
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in this quadrant. (This must be considered in the final step in which 
the stresses caused by these two moments are combined.) 

If, first, only the moment Mx is considered, it will be assumed that 
this causes a bending rotation about axis X-X (although it is known that 

y 
Fig. 14-6. General case of unsymmetrical bending. 

this assumption will be incorrect.) 
will then be given by 

. Mxyi 
Ji = ~j— 

1X 

The stress and force in element 1 

C«] 

Pi =/idi = 
MzyxAi 

h 
M 

Hie force P\ represents tension acting on Idle cross section, and the sum¬ 
mation of the moment of all these forces about axis X-X will equal Mx. 
(Pis not & reaction.) 

These forces also have moment arms about axis Y-Y. The moment 
of Pi about this axis is negative with respect to the convention adopted 
for positive values of Mv (see Fig. 14-6). 

AMvi — —P\X\ 

Substituting from Eq. b gives 

AMyl — MxAixm 
Iz 

M 

If the values of AMyl, etc., are now summed up over the entire cross 
section, their summation will represent an unbalanced moment AMy, 
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about axis 7-7. This moment does not actually exist externally; con¬ 
sequently it will equalize itself within the beam by tending to cause 
rotation about the 7—7 axis and by causing bending stresses in accord¬ 
ance with the beam theory. The net value of the induced, moment will 
be given by 

M T 
A My = - Tz 2 Axy = -Mx [fl 

1% lx 

This is the moment induced by assuming rotation about an axis other 
than a principal axis. (Compare Sec. 13 -9 in which an axial force was 
induced by assuming rotation about an aris other than one through the 
centroid of the cross section.) 

To eliminate this unbalanced moment it is necessary to apply a 
hypothetical counteracting moment equal to AMy and of opposite sign. 
The net result is that the section will be analyzed for a moment Mx and 
also for a hypothetical moment AMV, the value of which is given by 

A My = Mx J* [e] 

This is not the final answer, however, because the application of 
AMv will in turn induce a moment about axis X-X. Although it would 
be possible to approach the answer by successive approximations, it can 
be seen that the final answer can be obtained directly by the solution of 
two equations. In the following development it will be assumed that 
external moments Mx and My are applied. The problem is to find effec¬ 
tive values for these such that they can be used directly in the flexure 
formula, regardless of whether the moments act about the principal axes. 

Let M = applied bending moment. 
Mf = effective bending moment. 

AM = correction moment about one axis induced by bending about 
the other. 

Ixy ® product of inertia. 

(Subscripts x and y refer to axes when used with M or I.) 

From Eq. e 

AMy = MJ y* 
lx 

AM* = Mv' j* 
1v 

Similarly, 
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Let 

and 

Then 

By definition 

and 

By substituting for AMX, 

My = MX'UX 

MX = My'Uy 

Mx = Mx + A Mm 

My' = My + A My 

Mx = Mx + My'Uy 

- Mx + (My + AMy) Uy 

= MX + (My + Mx'Ux)Uy 

= Mx + MyUy + Mx’UxUy 

MX' - Mx'UxUy - MX+ MyUy 

The following equations for effective bending moment are obtained after 
the process is repeated for the Y-Y axis. 

Effective bending 
moments 

where 

M > — MjO. MyUy 

1 1 - UXUy 

My + MXUx 

V " 1 - UxUy 

[14-8] 

[14-9] 

Since these factors determine the extent to which the bending moments 
are influenced by lack of symmetry, they will be called the unsymiuetrical 
factors and have been designated here by the symbol U. If the product 
of inertia is zero, U becomes zero and Eqs. 14*8 show that the effective 
moments then equal the applied moments. This is in agreement with 
the previous findings concerning principal axes, as the bending moment 
axes would be the principal axes in such a case. 
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Note also that unsymmetrical bending about only one axis induces an 
effective bending moment about the other axis, in addition to changing 
the effective bending moment about the axis of application. 

14-4. Stresses in Unsymmetrical Bending. Tlic effective bending 
moments determined from Eqs. 14*8 may be used directly in the regular 
flexure formula, using the moments of inertia about the axes of the 
applied moments, i.e., 

The net stress at any point must, of course, be obtained by algebraic 
addition of the stresses caused by the iwo bending moments, giving: 

Unsymmetrical 
bending stress 

As previously noted the conventions used here are such that positive 
moments applied about two normal axes cause stresses of opposite sign 
in the positive quadrant. This accounts for the minus sign in Eq.14 • 10. 
If positive moments had been defined as those causing the same sign of 
stress in the positive quadrant, the opposite would be true. The con¬ 
ventions used here are consistent with the computation of the prod¬ 
uct of inertia, Ixy. 

This method of attack is particularly useful in dealing with sections 
such as shown in Fig. 14*5 which have no axes of symmetry. It is pos¬ 
sible to perform all computations with reference to the same set of axes, 
which greatly reduces the number of computations involved. This is a 
valuable feature in tabular computations such as used for routine stress 
analysis work. 

14*5. Axis of Zero Stress (Neutral Axis). The relationship between 
x and y which determines the axis of zero stress is obtained by letting 
/ = 0 in Eq. 14 • 10, giving 

Mx'y = My’x 

Iz I y 

From which 
v M ' 7 

Location of neutral axis ~ ~ [14 -11] 
X Mx ly 

Note. When bending moments are measured about principal axes, the primes may 
be omitted. 

[14* 10] 
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This equation determines the axis (through the centroid of the cross 
section) about which the relative rotation of the cross sections actually 
takes place. It is the neutral axis for unsymmetrical bending (see Sec. 
13-8). 

A knowledge of the position of this axis is useful in predicting the 
point of maximum stress on the cross section. Since linearity of stress 
distribution has been assumed for bending about both reference axes, it 
follows that the distribution from the axis of zero stress will also be 
linear, and the point farthest away from this axis will be most highly 
stressed. 

Fig. 14 • 7. Neutral axis in unsymmetrical bending. 

Beams which have much less bending resistance about one axis than 
about the other (normal to it) are very sensitive to the location of the 
axis of the applied moment. (This is indicated by the term Ix/Iy in 
Eq. 14*11.) Figure 14*7 illustrates a simple example. Assume that an 
ordinary two-by-four is subjected to a bending moment about a 45° axis. 
The quantities involved are 

My = 

Mx 

h 
h 

1.0 

bh3 2 X 43 

12 ~ 12 

bh3 4 X 2s 

12 “ 12 

10.67 J 

2.67 

10.67 in.4 

2.67 in 4 
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Substituting these values in Eq. 14.11 

x 

The line which corresponds to this relationship is shown in Fig. 14.7. 
It obviously does not coincide with the axis of the applied moment. 
The point of maximum stress is also shown. 

14*6. Summary of General Method. In developing the various 
formulas used in bending analysis it has boon convenient to start with 
Jbhe simplest ones and then to modify them one strp at a time. Thus it 

(a) Cross Section 

Through Structure 

(b) Method of 
Numbering Flanges 

(c) Symbols and Reference 
Axes for Distances 

yf y 

(d) Positive Conventions (e) Positive Conventions 
and Symbols, Load Axis and Symbols, at c.g. 

Fig. 14-8. Bending analysis of box beam. 

was shown first that the moment of inertia must be computed about the 
axis through the center of gravity. Then it was shown how this computa¬ 
tion could be performed about some other parallel axis, using the trans¬ 
fer formula to correct for the induced axial force. The next step was to 
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show that the theory held only for the 'principal axes, but the equations 
were further generalized to cover unsymmetrieal bending by the use of 
effective bending moments derived from the application of unsymmetrieal 
factors. This procedure accounted for the induced bending moments. 

Since the general method takes care of all of these problems, it is the 
one most frequently used in routine analysis work when the cross section 
does not have an axis of symmetry; also when the structure must be 
investigated for several different design conditions. A sample form will 
therefore be included to show how the computations are carried out. 
The example chosen is similar to the method de\ eloped in Ref. 27 and 
applies to a cellular type of structure. A cross section through such a 
structure is shown in Fig. 14*8, which also shows the conventions used 
and the manner in which the structure i& represented by flange elements. 
Table 14*2 represents a typical tabidar form which, in actual use, is 
printed on transparent paper and filled in by the computer, after which 
it can be blueprinted for direct inclusion in the stress analysis report. 

14-7. Plane of Maximum Stress. In determining the stresses due to 
bending it is assumed that the beam is cut at the station in question, i.e., 
the section properties are computed with reference to some particular 
plane through the beam. It is generally 
obvious that the section should be taken as 
the minimum cross section, which is usually 
normal to the centerline of the beam. For 
instance, it would be entirely wrong to use 
Sec. A-A in Fig. 14*9. The proper section 
is shown as B-B. (It would be correct, 
however, to compute the bending moment 
either as Px or P&d.) 

Although the rule of minimum cross sec¬ 
tion usually gives the correct answer, a more 
general definition for the cross section of 
pure bending would be that cross section for 
which the application of a bending moment 
would produce no induced forces or tor¬ 
sional moments (moment vector normal to plane in question). This is 
simply an extension of the previous steps in the development of the con¬ 
ditions for pure bending, which may be summarized as follows, 

а. The assumption of the wrong axis (not through the c.g.) for rota¬ 
tion of the cross sections causes an induced axial force for which a cor¬ 
rection is made by using the transfer formula for moment of inertia. 

б. The assumption that the axis of rotation coincides with the axis of 
the applied bending moment may cause an induced bending moment 

Fia. 14*9. Plane of cross sec¬ 
tion for bending computations. 
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about an axis at 90° unless the axis in question is a principal axis. A 
correction may be made by using an effective bending moment 

c. The assumption of the wrong cross section through the c.g. may 
cause induced forces or a torsional moment in the plane of the cross sec¬ 
tion. It is usually correct to use the minimum cross section. For con¬ 
venience it is sometimes desirable to use cross sections which are at a 
small angle to the plane of minimum cross section. Approximate cor¬ 
rections may then be made by methods such as suggested in Ref. 28. 

14*8. Limitations of Flexure Formula. The following points should 
be noted in connection with the material presented on bending up to 
this point. 

a. The beam or girder is assumed to be straight, not curved, before 
bending. 

b. The flanges of the beam, or the top and bottom elements, are 
assumed to be parallel. 

c. The stress distribution is not affected by local conditions, such as 
abrupt changes of cross section and end effects. 

d. The strain variation across a section through the beam is assumed 
to be linear, i.e., plane sections remain plane. 

e. Stress is proportional to strain, i.e., conditions are within the elastic 
range. 

/. As a result of assumptions (d) and (e), the stress distribution is 
assumed to be linear. 

PROBLEMS 

14 • 1. Using Problem 13 * 7 as a basis, calculate the product of inertia and locate 
the principal axes. Calculate the principal moments of inertia by setting up a 
table. Check results by means of the equation for principal moments of inertia. 

14-2. Assume that a 2 in. by 4 in. cantilever beam, 4 ft long, carries a concen¬ 
trated load of 100 lb, applied in a plane through diagonally opposite edges. 
Calculate the bending stress at the root (supported end) of the beam, for each 
corner of the cross section. (Note. Resolve bending moment into values about 
principal axes.) Calculate, and show by means of a sketch, the location of the 
neutral axis, also the point of maximum stress. (Neglect shear stresses.) 

14*3. Solve Problem 14*2 by computing the moments of inertia and the 
product of inertia for the axes connected with the loading plane. (Use Eqs. 
14 • 5 and 14 • 6.) Find the effective bending moments and compute the bending 
stresses for each corner of the cross section, to check results of Problem 14. • 2. 
Check the location of neutral plane by using Eq. 14*11. 

14*4. Using Eq. 14*7 show that the sum of the moments of inertia about 
any two mutually perpendicular axes is equal to the sum of the principal moments 
of inertia, hence equal to the sum of the moments of inertia about any other 
similar pair of axes. (Compare Eq. 12 • 18.) 
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It*5. Using Fig. 14*8 as a basis, draw a cross section to a convenient scale 
(make the beam approx. 40 in. wide) and assign values to the flange unit areas. 
(Values to range from 0.25 to 0.75 sq in., corner members to be between 1.5 and 
2.0 sq in.) Measure the distances from the reference axes used and set up Table 
14*2 to find the centroid of area, moments of inertia, product of inertia, and the 
unsymmetrical factors, Ux and Uy. 

14 • 6. In Problem 14*5 assume that a bending moment of 300,000 in.-lb acts 
so as to put the top surface in compression. Calculate the bending stress in 
each flange unit. Draw a line representing the neutral plane. (Note. The maxi¬ 
mum bending stress should occur at a point farthest away from this line.) 

14*7. In problem 14*5 assume that there exists also an additional bending 
moment of 10,000 in.-lb which tends to put the forward (left) edge of the box in 
compression. Calculate the bending stresses in each flange unit and locate the 
neutral plane. 

14*8. Assume that in problem 14-6 an additional axial load of 20,000 lb acts 
at the centroid of area, normal to the plane of the cross section. Find the new 
stresses in the flange units. (Assume the axial load to be compression.) 

14• 9. In Fig. 14*9 assume that the beam cross section is rectangular and 
assign values in the following ranges. 

Beam depth = 8 to 10 in. 
Beam width = 2.6 to 2.9 in. 
P = 7000 to 9000 lb 
x — 30 in. 
Angle with the horizontal = 30° 
Find the axial stresses in the top and bottom fibers. 
14*10. Prove that any beam of rectangular cross section, when loaded across 

one diagonal, will bend about the other diagonal. (Note. This can be done 
by proving that the stress in one corner will be zero. Write a general equation 
for the stress in a corner of a rectangle having dimensions a and 6, using the 
moments about the principal axes.) 



CHAPTER 15 

BENDING (SPECIAL CASES) 

15*1. Non-Linear Stress Distribution. Frequently the assumption 
of linear stress distribution in bending is considerably in error. Some 
typical examples are: 

a. Composite beams (different materials). 
b. Partially buckled shells. 
c. Bending beyond the proportional limit (plastic range). 
d. Curved beams (non-linear strain). 
e. Warped cross sections (non-linear strain). 

Since the bending theory has been so highly developed on the basis of 
linear stress distribution, it is very desirable to find some way to use 
this assumption for special cases. This can usually be done by the simple 
expedient of effective areas or transformed sections * 

16-2. Effective Area. The method of effective areas has already been 
described under axial loads (Sec. 7-7) in connection with composite 
members which include different materials. The difference in the re¬ 
sistance to strain (measured by E) was taken care of by modifying or 
“weighting” the units of cross-sectional area by a factor based on rela¬ 
tive values of E. The same method may be employed in bending. 

Let n denote an effectiveness factor, defined by 

Stiffness of any unit of cross section 
n =- 

Stiffness of a standard unit 

Stiffness here means resistance to deformation and standard refers 
to any unit or material which may be selected as a basis for the calcu¬ 
lation. (For example, in a composite beam made up of steel and alu¬ 
minum alloy, the latter might be selected as standard.) 

All the properties of the cross section may now be calculated in the 
usual manner, except that each unit of area of the cross section is first 
multiplied by n. This gives a fictitious section which is referred* to as 

* An excellent discussion of this subject will bo found in The Column Analogy by 
Hardy Cross.* 

232 
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the transformed section. The general types of equations for the trans¬ 
formed section are * 

At — S/Ij4 — n\A\ -f- W2A2 + etc. [15-1] 

Ixt — SnAy2 = n\A\y^ -f- n^A^y^ etc. [15-2] 

The terms nu Au etc., may be thought of as the effective areas. 
If the properties of the transformed section are used in the regular 

equations for axial stress and bending, the results must again be mul¬ 
tiplied by the value of n for each unit to obtain the actual stress. Thus, 

Axial 

Bending 

f = nft 

/= nft 

[15-3] 

[15-4] 

i r 
Steal 

16-3. Composite Sections. If steel members were added to an alu¬ 
minum-alloy beam as in Fig. 15-1, and if the aluminum alloy were used 
as standard, n would equal approximately 3 (ratio 
of E for the two materials). In computing the 
area, c.g., and moment of inertia, the actual area 
of the steel members would be multiplied by 3. 
The stresses thus determined would be correct for 
the aluminum-alloy parts but would have to be 
multiplied by 3 for the steel parts. 

Obviously the factor 3 would cease to apply in 
the 'plastic range as it is based on the relative 
moduli of elasticity, and other methods of attack 
would be required. 

The transformed section should not be considered 
as actually being different in shape, as this would 
lead to errors in computing moments of inertia. 
The mental picture should be that of a number 
of resisting units represented by points on the 
cross section and having relative resistances in 
proportion to their value of nA. 

The method of transformed sections is used in the analysis of reinforced 
concrete beams. Although the modulus of elasticity of concrete is not 

Aluminum 
Alloy 

Stool 

Fig. 15-1. Composite 
beam. 

Subscript t is here used to indicate “transformed.” 
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constant, it is customary to assume that it is about one-fifteenth that 
of steel. If the concrete is used as standard, the value of n therefore 
becomes 15. In calculating ultimate strength the tension stresses are 
usually assumed to be resisted entirely by the steel reinforcing members, 
as the concrete will probably crack before the steel fails. For deflection 
calculations, however, it may be found more accurate to include the 
concrete in tension. 

Since the proper design of reinforced concrete beams involves many 
special considerations it will not be taken up in further detail. The sub¬ 
ject is well covered in most textbooks on strength of materials and build¬ 
ing construction. 

15*4. Buckling Effects. In dealing with thin shell structures such as 
are found in airplanes, the phenomenon of buckling is frequently en¬ 
countered. If the shell is unstiffened by longitudinal members, it will 
fail when it reaches the buckling stress on the compression side. It is 
of course satisfactory to use the entire cross-sectional area in calculat¬ 
ing bending stresses up to the point of buckling. 

For a stiffened shell, however, it is possible for the thin sheet between 
stiffeners to buckle prematurely, after which the stiffeners may con¬ 
tinue to resist more load. One method of handling this is to ignore the 
buckling and to assume that all the sheet is effective. When this is 
done, the allowable stress used must be an average stress obtained for 

the particular sheet-stringer com- 
Comprossion -sj L_ 

o u "Tr- 
Effective 
Width 

Tension 

Fig. 15-2. Effects of buckling. 

n =* zero for concrete in tension.) 

bination employed. Even then 
some error is involved, as the true 
effective properties of the cross sec¬ 
tion are not obtained. (This error 
is usually small, however.) 

Another more accurate method 
is to leave out part of the buckled 
sheet in computing section proper¬ 
ties. (This is analogous to letting 

The remaining sheet is assumed to 
be fully effective, i.e., it has the same stress as the stiffener. The width 
of sheet thus assumed to be working with the stiffener is called the 
effective width. Figure 15-2 indicates how the transformed section 
appears (effective material shaded). Note that on the tension side of 
the beam all the sheet is assumed to be effective. 

The theory of effective width is quite involved, but for approximate 
results it may be assumed that it depends on the sheet thickness.alone. 
Thus a value of 3(M for aluminum alloy is often used. For instance, if 
the sheet were 0.050 in. thick, the effective width would be 0,050 X 30 
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= 1.5 in. If the stiffeners were spaced at 6 in., this would represent 
an effectiveness of 1.5/6 = 0.25, which could be thought of as the value 
for n for the sheet. 

For more refined methods see any modem textbook on airplane struc¬ 
tures, such as Refs. 2, 3, 16, and 40. 

15*5. Plastic Bending. In Chapt. 13 it was shown that the assump¬ 
tion of a linear stress distribution in bending depended on two other 
assumptions: 

а. Linear strain distribution. 
б. Proportionality of stress to strain. 

The first of these two assumptions is satisfied for a straight beam by 
assuming that plane cross sections rewaiiv plane. This is the most basic 

of all the bending assumptions and is seldom violated to any appreciable 

extent. 
In the plastic range it may be assumed that the first assumption is 

retained and that cross sections still remain plane during bending. But 
obviously the second assumption must be discarded, and the true varia- 
tion of stress with strain as given by the stress-strain diagram must be 

considered. 
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Figure 15-3 shows an assumed case in which the strain variation for 
the beam is plotted to the same scale as the stress-strain diagram and 
directly under it. The stresses corresponding to different points on this 
line are obtained from the diagram and plotted on the beam. The stress 
distribution is no longer linear but takes on the general appearance of 
the stress-strain diagram itself (here rotated 90°). 

It can be seen that as the degree of bending increases the strain 
progresses farther into the plastic range, and more of the stress diagram 
(for the beam) becomes curved. Different progressive stages of bending 
are indicated in Fig. 15*4. Note that the triangular shape of the stress 

Fig. 15-4. Progressive plastic Fig. 15*5. Modulus of rupture rela¬ 

bending. tionship. 

curve approaches a rectangle (dotted lines) as the plastic bending 
progresses. 

If the strain at the outer fibers were known (or assumed), the stress 
distribution could be plotted as shown. The computation of the resist¬ 
ing moment could then be carried out by multiplying each element of 
area by its corresponding stress and again by its distance from the 
bending axis. The application of the direct method here would be 
simpler than any attempt to use effective areas or transformed sections. 

16*6, Modulus of Rupture. Since the stress distribution curve 
changes shape for each degree of loading after entering the plastic range, 
it is impossible to represent it by a simple mathematical relationship, 
as was done for elastic bending, and the theory of plastic bending is 
therefore not utilized in structural analysis to any great extent. Instead, 
the error involved is usually taken care of in strength calculations by 
using a fictitious allowable bending stress, or modulus of rupture. This 
is obtained by testing a specimen in bending and substituting the allow¬ 
able bending moment in the elastic formula, / = My/I> to determine 
the allowable stress. The modulus of rupture so pbtained is, in general, 
considerably higher than the true maximum stress within the beam, as 
indicated by Fig. 16*5. If the true stress distribution were as shown 
by the solid line, the ratio involved would be A/B. 
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For solid bulky sections (not subject to buckling) it is almost always 
safe to assume that the allowable bending stress is at least as high as 
the ultimate tension stress.48 For thin sections, tubes, and shells this 
may not be true because of buckling effects. 

Fig. 15*6. Bending modulus of rupture for tubes. (D = outside diameter; 

t ~ thickness.) 

Many factors influence the modulus of rupture in bending, so that a 
complete discussion is beyond the scope of this text. Besides, the allow¬ 
able bending stresses are quite well established in different branches of 
structural engineering and can be obtained from design handbooks or 
government publications. One such chart, for tubes, is included as an 
example (Fig. 15*6). This was derived from standard charts used for 

aircraft work. 

f• 
Fig. 15*7. Limiting case of plastic bending. 

As a matter of interest, it might be noted that the limiting case of 
plastic bending would be a constant stress distribution over each half of 
the beam, as shown in Fig. 15*7. For the same stress in the outer 
fiber, this distribution would give a resisting moment 60 per cent greater 
than that given by the elastic (triangular) distribution, assuming a rec- 
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tangular cross section. This means that the modulus of rupture in 
bending cannot exceed the ultimate tension stress by more than 50 per 
cent for a rectangular cross section. (The ratio may be greater for 
sections of the type shown in Fig. 13 • 15c.) 

(a) Straight beam 

(b) Curved beam 

(c) Stress distribution 

Fig. 15*8. Curved beam. 

16*7. The Curved Beam. All the beams considered up to this point 
have been initially straight. In deriving the beam theory an element 
of unit or constant length, L, was assumed, as in Fig. 15* 8a. The 
strain (AL/L) was, therefore, directly proportional to AL, which was 
assumed to have a linear variation, based in turn on the assumption 
that the plane cross section remained plane during bending. 

In the curved beam the assumption of plane cross sections is again 
used as a starting point. However, in dividing the beam into unit seg- 
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merits by means of plane cross sections, it is impossible to use segments 
cut by parallel lines; these lines must now radiate from the center of 
curvature as shown in Fig. 15-86. This causes the length of the seg¬ 
ment to be greater on the outside of the beam than on the inside. 

In calculating the strain distribution over the cross section, the change 
in length (AL) at each point must be divided by the unit length at that 
point; for instance, 

ei 

e2 

AL\ 

AL2 

l2 

[15-5] 

It can now be seen that when the cross sections remain plane during 
bending, giving a linear distribution of AL, the strain distribution will 
not be linear. It will vary not only with the distance from the neutral 
axis (as in the straight beam), but also with the change in length of the 
unit segment. Since this length is directly proportional to the radius 
from the center of curvature, the strain will tend to vary inversely as 
this radius. This gives a hyperbolic type of strain distribution, as indi¬ 
cated in Fig. 15* 8c. If the stress is proportional to strain, it will have 
the same type of distribution. Hence, all the’beam theories based on 
linear stress distribution are in error when applied to curved beams. 

Although it is possible to develop a modified beam theory, using the 
hyperbolic stress distribution,* it is simpler to apply the method of 
effective areas, i.e., to use a transformed section. Since the departure 
from a linear stress distribution is due to the variation in length of the 
unit section, it should be possible to take care of this by modifying the 
unit area instead. 

The axial resistance of a unit area of cross section is given by 

Pi = Mi = EeiAi 

Substituting from Eq. 15 -5, 

_ „ . Ain 
Pi - EAi —i 

A/i 

which could also be written 

p'-E(f)ALi 
* The exact condition may be obtained from the theory of elasticity.18 A close 

approximation is given by the Bach-Winkler formula, found in most textbooks. 
Reference 22 contains working tables for various types of curved beams. 
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The term (Ai/Li) can obviously be considered as the effective area, 
making the equation identical with that used as a basis for the straight 
beam. 

In computing the section properties, it is therefore necessary only to 
divide each element of area by its corresponding unit length. From 
Fig. 15*9 it can be seen that the following relationship holds. 

1 L/2 

Rq R>2 
Therefore 

JL = Ro 

Z/2 R>2 

Since the term 1/L corresponds to the effectiveness factor, n (Sec. 
15*2) the latter may be defined as 

Ro 
~R 

[15*6] 

where Rq — radius of curvature to element used as standard. 
R = radius to any other element. 

Fig. 15*9. Relationship between Fig. 15*10. Transformed section for a 
radius and unit length. curved beam. 

If the section properties are being computed with reference to some ar¬ 
bitrary axis, it is convenient to use this for the basic radius of curvature. 
Hardy Cross29 recommends dividing each differential area by R, which is 
equivalent to assuming that the basic (or standard) radius of curvature is 
unity. Since the computed stresses must be multiplied by n to obtain 
actual stresses, it makes no difference what radius is assumed as standard. 

Figure 15 • 10 shows how the transformed section would look if the 
inner radius of the beam were used as standard and the effectiveness 
factor applied to the width of the beam. 

The transformed section derived in this manner converts the beam 
into an equivalent straight beam, both for bending and axial loading. 
It is, therefore, correct to use the centroid of the transformed section in 
dealing with pure axial loading, provided, of courset that the resulting 
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axial stresses are finally multiplied by the effectiveness factor n. If pure 
axial loading is to cause a change in length without change in curva¬ 
ture, it is obvious from Fig. 15-86 that plane cross sections cannot re¬ 
main parallel to their original positions during axial loading, as was 
assumed for the straight member. This accounts for the inconsistency 
encountered when an attempt is 
made to use straight beam theories 
without modifying the section 
properties. 

If the section properties of the 
actual section are known, or can 
be easily computed, it is convenient 
to follow a procedure suggested in 
Ref. 29 in which it is shown that it 
is necessary only to compute the 
area of the transformed section. 
The other properties may be ob- 
tained from the following equations, in which symbols are illustrated 
by Fig. 15-11 and Ro is defined as for Eq. 15-6. 

Rt = R0jt [15-7] 

It = AtRt{Rb — Rt) 

= AR0(Rb -Rt) [15-8] 

It is interesting to note that in the actual design of curved beams the 
most efficient cross section will have a shape similar to that of the trans¬ 
formed section. Thus for equal tension and compression stresses in the 
inner and outer fibers, a symmetrical cross section would be used for 
the straight beam. For a curved beam this would be transformed as 
indicated in Fig. 15-10, giving a wider section on the inside edge of 
the beam. 

Regardless of the method used, it is convenient to express the results 
in terms of a correction factor, by which the stresses obtained from the 
straight beam formula may be multiplied. The maximum axial stress 
due to bending may then be obtained from the formula 

/ = [15-9] 

where K = the curved beam correction factor. 
M = the bending moment about a principal axis through the c.g. 

c = the maximum distance from the principal axis. 
I = the moment of inertia of the actual cross section {not the 

transformed section). 
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Values of K for typical sections are given in Ref. 22, based on the 
work of Wilson and Quereau.'® Figure 15-12 is reproduced from Ref. 
22, to show how the correction factor varies with the degree of curvature. 

Dolan and Levine ** suggest that this factor also be applied to the 
axial stresses for combined axial load and bending in curved beams. 
This is to take care of an apparent stress-concentration effect. 

Fig. 15-12. Correction factors for curved beams. (Reproduced from Seely, 
Advanced Mechanics of Materials.) 

15*8. Radial Loads in Curved Beams. From the discussion of hoop 
tension (Chapt. 7) and curved shear webs (Chapt. 11) it will be evident 
that radial forces or pressures must accompany any transmission of axial 
force through a curved path. For if w represents the normal or radial 
load per inch of length along the path (Fig. 15-13), the hoop-tension 
force required to balance it will be 

P = wR [15-10] 

Conversely, if an axial force is transmitted through a curved phth, it 
will cause radial forces equal to P/R lb per in. along the path. These 
must be resisted in some manner. 
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In the curved beam the actions of the tension and compression flanges 
balance each other through the web, as indicated in Fig. 15-13. For a 

Fig. 15-13. Radial forces. 

solid beam the web area is so large that these radial stresses may usually 
be neglected. But for a thin web or box type of beam special provisions 
may have to be made in the form of stiffeners or knee braces. The latter 
type of fitting is particularly use¬ 
ful in preventing the collapse of 
thin outstanding flanges on 
I-beams and similar structures 
(Fig. 15-14). 

The total radial load per stiff¬ 
ener (or brace) may be deter¬ 
mined by multiplying the running 
load w by the distance between 
stiffeners (see Fig. 15-15). 

Pr = wL = [15-11] 
** Fig. 15-14. Knee braces for curved 

beams. 
where Pa = the axial force. 

L = the length supported by each member. 
R — the radius of curvature of the axially loaded member. 
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Equation 15*11 may be used to calculate the induced radial loads 
caused by bending deflections, but the value of R must be calculated first 
(see Chapt. 16). In the analysis of shallow box beams such as used in 
airplane wings these loads may become critical for the ribs or other 

Fig. 15-15. Computation of radial loads. 

internal supporting structure. They arc sometimes called crushing 
loads. 

15*9. Abrupt Curvature. The crushing loads may become very large 
if there is an abrupt change of angle of the beam, as shown in Fig. 15 • 16. 
The magnitude of the normal load may easily be computed for each 

Fig. 15-16. Effects of abrupt curvature. 

flange of a beam by finding the resultant of the two opposing axial loads 
at the point of curvature. Note that the direction of the crushing load 
will reverse if the direction of the bending moment is reversed, thus re¬ 
quiring a tension member across the beam at this point. 
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In solid beams it may be unnecessary to make this provision, but if the 
change of angle is quite large, it is well to determine the normal forces. 
This can be done by extending the process used for the flange type of 
beam, following the general methods used in developing the beam 
theory. 

A typical example of abrupt curvatm. is found in an airplane wing in 
which a dihedral angle exists at one or more joints (Fig. 15*17). A 
specially reinforced rib is required at such points. 

15*10. Local Conditions. The assumption of a linear stress distribu¬ 
tion in bending may be considerably in error near the points where high 

Fig. 15 • 18. Local conditions in bending. 

local loads are introduced, or at points where the cross section changes 
abruptly. A typical example is found at the end of a beam, as shown in 
Fig. 15*18. If the attachment is made by only two bolts as in (a), the 
cross section will be distorted as in (b) (exaggerated); and the local 
stress distribution will appear roughly as in (c). 
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Because of the continuity of the structure, however, this departure’ 
from the beam theory does not affect a very large portion of the beam. 
According to SaintrVenant’s principle (Sec. 7-9), the effect becomes 
negligible at distances greater than the depth of the beam. The exact 
conditions can be predicted analytically by the powerful methods of 
the theory of elasticity18 or experimentally by the use of photoelasticity.25 

From a practical point of view it is important that such high local 
stresses be avoided as much as possible. This may be done by introducing 
the forces in the manner in which they will eventually be resisted. Figure 

15*18d shows how this might be accomplished for the case previously 
mentioned by employing a fitting which distributes the loads roughly 
in the manner predicted by the beam theory. 

It is equally important to avoid abrupt changes in the distribution 
of the material along the beam. This applies particularly to large 
structures in which joints must be made, or in which the strength is 
varied by using sheets or members of graduated size. The entire theory 
of bending, up to this point, assumes that conditions are continuous 
through the cross section in question, i.e., that no appreciable changes 
in area, c.g., or moment of inertia occur for some distance on either side 
of the cross section. Obviously a reasonable degree of such variation 
can be introduced without any serious effects. If abrupt variations 
cannot be avoided, it is necessary to consider them as stress concentrar 
tions and to increase the computed stresses in some suitable manner. 

Cutrouts are common in airplane construction and are typical exam¬ 
ples of local discontinuity. Special reinforcements are usually required 
to avoid a considerable local decrease in strength. The methods of 
analyzing large cut-outs are beyond the scope of this volume, but the 
effect of bolt or rivet holes deserves attention. 
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If a beam is pierced by one or more holes at some particular point, it 
might be thought that the proper method of analysis would be to use 
a cross section through the holes in determining section properties. 
This is erroneous (unless the holes also extend span wise and are closely 
spaced in the span wise direction). The proper procedure is to obtain 
the section properties for the basic structure without the holes and to 
use these properties in determining the stress distribution over the cross 
section. The local effect of the holes is then obtained by increasing the 
the axial stress in the ratio of the basic area to the net area for suitable 
flange units or strips. The procedure is illustrated in Fig. 15*19. 

15*11. Shear Lag. In thin shell structures, such as used in airplane 
wings and fuselages, the introduction of the shear loads along the edges 
tends to cause the cross sections to warp slightly. The effect on the 
bending stresses is to cause them to increase near the points of shear 
loading and to decrease at points farthest away from the application of 
shear loads, as indicated in Fig. 15*20. This is what happens when the 
loads are not introduced in accordance with the beam theory. It can 
be seen that the increments of axial force AP are not applied uniformly 
over the top and bottom portions of the beam; hence there is a lag 
between the actual and calculated stress distributions (actual shown 
by heavy line in Fig. 15*20, calculated shown by dotted line). 

It is important to note that this phenomenon is due entirely to the 
flange load increments AP. It would not exist in pure bending, for 
instance, if the moments were applied through rigid end plates. It 
would also be eliminated if the increasing axial loads in the top and bot¬ 
tom of the beam were picked up by increasing comer flange areas at 
such a rate that no distribution over the shell was needed. (Taper of 

the beam in width has this effect.) 
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The methods of computing shear lag really belong under the head¬ 
ing of combined shear and bending and, in any case, are beyond the 
scope of this volume. The phenomenon can often be avoided or reduced 
to negligible proportions by proper design. (See Ref. 40 and NACA * 
reports for methods of calculation.) 

Fig. 15*21. Specimens which have been tested in bending. Note plastic deformation. 

PROBLEMS 

y 16*1. The aluminum-alloy I-beam shown in 
the figure has the following properties: 

A = 5.40 sq in. 

Ix = 57.55 in.4 

Iy = 3.73 in.4 

(а) Find its ultimate bending strength 
(about eiich axis) before reinforce¬ 
ment, assuming an allowable stress 

of 50,000 psi. 
(б) Using aluminum alloy as standard, 

calculate the transformed section 

properties of the beam when rein¬ 
forced by steel plates as shown. 
{Note. Moment of inertia of steel 
plates about their own X-X axes 
may be neglected, but the value 
about the Y-Y axis must of course 
be used.) 

' National Advisory Committee for Aeronautics. 
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15-2* (a) In Problem 15*1 find the maximum stress in the steel plate when 
the reinforced beam is subjected to a bending moment of 800,000 in.-lb (about 
X-X axis). 

(b) What is the maximum stress in the aluminum alloy for this loading con¬ 
dition? 

15*3. (a) Assuming that the allowable bending stress for the steel plate is 
75,000 psi (compression) under bending about the Y-Y axis, calculate the 
strength of the reinforced beam under such bending. 

(6) Compare with strength of plain aluminum alloy beam and explain results. 
16*4. Work out Problem 15*1 assuming that the I-bcam is alloy steel and 

the plates are aluminum alloy. Use an allowable stress c * 90,000 psi for the steel 
and 50,000 psi for the aluminum alloy. 

15*5. Work out Problem 15*2 for the assumptions used in Problem 15*4. 
16*6. A reinforced concrete beam of rectangular cioss section is 12 in. wide 

and 30 in. deep. Four steel rods, % in. in diameter, ere located 2 in. from one 
of the short sides. As»uming that the modulus of elasticity of the steel is 15 
times that of the concrete find tnc transformed area, centroid, and moment of 

inertia (maximum), assuming all the concrete to be effective. Compare with the 
properties of the unreinforced beam. 

15*7. In Problem 15*6 assume that half of the concrete is not effective in 
tension and find the bending moment which will produce a stress of 20,000 psi 

(tension) in the steel rods. {Note. Assume that the compression stress varies 
linearly from zero at middle of cross section.) Find the maximum compression 

stress in the concrete. 
15*8. Draw an arbitrary stress-strain diagram for any desired material and 

compute the bending modulus of rupture on the assumption that failure occurs 
at the maximum elongation. Assume also that the diagram is identical for 

tension and compression. {Note. Use a rectangular cross section, which permits 
the areas under bending stress diagrams to be used directly. See Fig. 15*3.) 

15*9. Assume that a tube has been designed on the basis that its ultimate 

bending stress equals the ultimate tension stress. What percentage of over¬ 
strength or understrength would this introduce, for the following examples? 

(Use Fig. 15*6.) 

“ (a) 1.5 in. X 0.028 in. alloy steel 

(6) 1.5 in. X 0.028 in. aluminum alloy 

(c) 1.0 in. X 0.035 in. alloy steel 
{d) % in. X 0.049 in. alloy steel 
(e) % in. X 0.049 in. aluminum alloy 

{Note. Above dimensions are outside diameter and wall thickness.) 
15 • 10. Assuming a beam of rectangular cross section 1 in. wide, select a depth 

between 2.1 and 2.9 in. and a radius of curvature between 3.1 and 3.9 in., 
measured to the inside edge of beam. Divide the cross section into strips of 
approximately 0.25 in. and compute the area, centroid, and moment of inertia 
for the transformed section, using the inside radius as standard. Find the bend¬ 
ing stress in the inside and outside fibers for a bending moment of 1000 in.-lb. 



250 BENDING (SPECIAL CASES) 

Compare with values for the straight beam and check accuracy of results by 
means of Fig. 15*12. 

15*11. In a flange type of beam the radius of curvature under load is com¬ 
puted as 1200 in. The centroids of the flanges are 10 in. apart and the flange 
loads are 40,000 lb. Find the axial forces in “vertical” stiffeners placed 20 in. 
apart. (Note. Assume that both flanges have the same radius of curvature.) 

15*12. Using the beam of Problem 15*11 find the transverse force caused by 
an abrupt change of angle, such as shown in Fig. 15*16. Use values of 5°, 10°, 
15°, and 20°, and plot results to show effect of increasing angle. (Note. Neglect 
curvature of beam itself, in this problem.) 



CHAPTER 16 

BENDING DEFLECTIONS 

16*1. Deflections in Pure Bending. In Chapt. 13, Sec. 13-3, it was 
shown that a truss subjected to a couple (pure tending) acquired a 
curved shape, which is characteristic of bending deflections. It was 
pointed out that the reason for the curvature was the change of angle 
caused by the distortion of each frame. 

Consider several adjacent frames under the action of a couple, as 
shown in Fig. 16-1, in which the deflections are greatly exaggerated. 

(Diagonals are present but remain unloaded.) If the flange members 
are the same size and length they will deflect equally in each frame and 
the verticals will acquire relative angles such that their projections pass 
through the same point. Under such conditions the beam will therefore 
have the general shape of a circular arc with a center of curvature and a 
radius of curvature. 

If the individual frames are assumed to be very short the curve 
becomes smoother, finally becoming a perfect circular arc when the solid 
beam is considered. Conditions for such a beam under bending action 
are shown in Fig. 16-2 (deflections greatly exaggerated). 

A unit length, AB, is measured off along the neutral axis, and parallel 
lines are drawn through A and B, normal to the axis of the beam. These 
represent the undeflected positions of two adjacent planes. As the 

251 
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bending progresses the line through B will remain normal to the axis of 
the beam and will rotate about the neutral axis, through the shaded area. 
If plane cross sections remain plane, as assumed by the beam theory, the 
line will remain straight and the shaded areas will be triangles. The 
maximum deflections are indicated by ec (compression) and et (tension) 
and, of course, occur at the outer edges of the beam. Since a unit length 
is used as a basis these deflections are actually strains (strain = deflec¬ 
tion per unit length). 

O 

16-2. Radius of Curvature. If the line through B, normal to the beam 
axis, is now extended it will intersect a similar line through A at point O, 
which is the center of curvature. The radius of curvature OA may now 
be found from the relationship between the two shaded triangles and 
the large triangle OAB, all three of which are similar, giving 

AB 1 ec et 

OA R yc yt 
[16-1] 

Another relationship may be found from the triangle indicated sepa¬ 
rately, giving three equivalent expressions for R. 

1 ec 

R yc 
[16-2a] 

1 _ e, 

R yt 
[16 -2&] 

1 ec + et 

R~ h 
[16-2C] 

(See Fig. 16-2 for meaning of symbols.) 
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These equations are special cases of the general relationship. 

Radius of curvature 
1 _ e 

R y 
[16*3] 

where R = radius of curvature, measured to neutral axis. 

e = strain at a point y. 

y = distance to neutral axis. 

This equation is based on the assumption that the strain distribution 

is linear (plane cross sections remain plane). It docs not require that 

the stress distribution be linear, hence it may be used in the plastic range. 

Equations 16-2 and 10-3 are expressed as reciprocals of the radius of 

curvature, as the degree of bending defection is inversely proportional 

to the radius. Thus an infinite value of R corresponds to zero curvature 

and zero bending; hence it is appropriate that the term 1/R be used, as 

its value is zero for this condition. 

16*3. Metal-Forming Strains. Equation 10-2 may be used to com¬ 

pute the strains corresponding to a given radius of curvature, as in metal¬ 

forming calculations. For example, assume that a round bar J/£-in. in 

diameter is to be bent to an inside radius of 4 in. It can be assumed that 

the neutral axis will go through the center of the bar, hence the value for 

yc or yt is 0.5/2 = 0.25 in. The radius of curvature at the neutral axis 

is 4 + 0.25 = 4.25 in. By substituting in Eq. lG-2a, 

-£ = i 
yt R 

Vt = 0^25 

R 4.25 
0.059 

The same value of strain would of course be obtained for the compres¬ 

sion fiber. By referring to the stress-strain diagram for the material it 

could be seen whether this strain would cause a permanent set, or 

whether it might exceed the maximum breaking strain. The important 

production problem of springback may also be analyzed by an exten¬ 

sion of these simple relationships.* 

The bending of a flat spring to a given radius can also be analyzed in 

this manner to see if the spring will recover its shape. The strain would 

have to remain in the elastic range. This could be readily determined 

by multiplying the strain by E to obtain the stress and noting whether 

this exceeded the proportional (elastic) limit. 

* See Reference 31 for a discussion of springback and related problems. 
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16*4. Minimum Bend Radius. For sheets or bars of thickness t 
(assuming midplane to be neutral plane) Eq. 16*3 may be written 

e = 
2 R 

[16-4] 

Conversely, this equation can be simply expressed to determine the 
minimum R/t corresponding to any permissible elongation emax: 

[16-4a] 

where R is measured to the mid-plane. 
emax is the permissible elongation or strain. 

Example: Find the minimum R/t for a sheet of 
material having an elongation of 10 per cent. 

t 2 X 0.10 

For a sheet 0.10 in. thick, R would be 0.5 in., 
as shown in Fig. 16-3. On the drawing the inside 
radius would be shown as 0.5 — 0.05 = 0.45 in. 
(approximately J{6). 

Equation 16-4a indicates the importance of elongation in a material 
which is to be formed by bending. It is obviously impossible to make 
sharp bends in sheet material having elongations much less than the 
10 per cent used in the preceding example. 

16• 5. Radius of Curvature—Flange Type Beam. In Sec. 13*4 a type 
of beam was described in which the bending moment is resisted entirely 
by two flanges, separated by a distance, h. (See Figs. 13*5 and 13*6.) 
For a given bending moment, M, the flange forces are given by Eq. 13*3 
which may be written 

where Pt = the force in the tension flange. 
Pc = the force in the compression flange. 

The flange stresses then become 
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In the elastic range the strains are obtained by dividing stress by E. 

From Eq. 16* 2c, 

ft = Pt M 

E AtE AtEh 

fc ^ pc M 

E ACE AcEh 

L = 6c +et 
R h 

[16*5] 

Equation 16-5 is not really necessary, as it is just as simple to com¬ 
pute the flange strains directly and substitute them in the equation. 
But it does indicate that the degree of curvature (1/R) is: 

a. Directly proportional to M. 
b. Inversely proportional to E. 
c. Inversely proportional to A2. 

Thus the stiffness of a flange type of beam is proportional to the square 
of its depth. The term involving areas is also interesting as it shows 
that if either flange has a low cross-sectional area the deflection will be 
high, regardless of the area of the other flange. For high bending stiffness 
or rigidity it is therefore desirable to use a material having a high modu¬ 
lus of elasticity E, to separate the flanges as far as practicable, and to 
make the flange areas large and approximately equal. 

16*6. Radius of Curvature Formula. Although the radius of curva¬ 
ture can be determined directly from the calculated bending strains 
(Eq. 16-2), it is usually more convenient to convert the formula into 
terms of bending moment and moment of inertia. Equation 16-3 states 
that 

JL e 

R y 
The flexure formula gives 

f = Ml 
J I 

Dividing both sides of this equation by E gives the strain (since 
E *= f/e). 
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Substituting this in the equation for 
1 

R’ 

Radius of curvature 
1 = M 

R~ El 
[16-6] 

This is the companion formula of the flexure formula (f = My/I). It 

is the basis for all calculations of deflection due to bending. The term 

El is of particular significance. It is often called the flexural rigidity, 
as it is a direct measure of the resistance to bending. It is comparable 

to the factor EA in the equation for deflection under axial force. Note 

that R is measured to the neutral axisf 
as it was derived in this manner in 

Sec. 16*2. 

16-7. Bending Deflection. One of 

the most common structural problems 

is the computation of deflections due 

to bending. Such deflections are in 

general considerably greater than those 

caused by axial or shear forces and are 

therefore of much practical significance 

in the design of buildings, bridges, air¬ 

planes, etc. 

If a beam of constant cross section 

(or constant El) were rigidly supported 

at one end and subjected to a constant 

bending moment over its entire length, 

it would appear as a circular arc, as 

shown in Fig. 16-4. The radius of 

curvature could be readily calculated from Eq. 16-6, and the deflection 

could be found by direct measurement or by using the equation of the 

circle. (Note that this measurement is made with reference to a line 

representing the undeflected position of the beam). 

Quite frequently, however, the bending moment and value of El 
are not constant. Besides, it is inconvenient to work with the equation 

of the circle even when it applies. For this reason the radius of curvature 

equation has been further modified so that it can be used more directly 

in computing deflections. 

16*8. Slope of a Line. The modification used is a purely geometric 

one, based on the fact that the quantity 1/R actually measures the rate 
of change of angle (or slope) along a line. In Sec. 13 *3 it was noted that 

this change of angle was the main source of truss deflections. Figure 

Fia. 16-4. Deflection of beam under 
constant bending moment. 
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13*4 showed the change of angle (greatly exaggerated) by the position 
of the verticals. 

This is indicated more clearly by Fig. 16*5, in which the slope of the 
beam centerline or axis at point b is shown by a tangent drawn normal 
to the radius at that point. The angle A0 is obviously the difference in 
slope between points a and b, which are separated by a distance Ax. 

For small deflections (large R) it is quite accurate to assume that dis¬ 
tances measured along the curved line are equal to those measured along 

the reference axis; hence it may be stated that the angle between the 
two radii equals Ax/R, in radians. Then, 

[16-7] 

This is the change in angle over a length Ax. The change over a unit 

length is obtained by dividing by Ax, giving 

AS _ l 

Ax R 
[16*8] 

The term Ad/Ax may be thought of as the rate of change of slope (6) 

with respect to distance along the axis (x). The symbol A indicates that 
small increments or units are used. This expression is a purely geo¬ 
metric one which does not depend in any way on the assumptions of the 
beam theory. Its accuracy depends on the smallness of the increments 
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selected for Ax. As these approach zero the formula becomes more 
accurate. For the hypothetical case of zero increments the formula 
would be written 

dfl 1 

dx R 
[16-9] 

in which the first term would be read “derivative of $ with respect to 

a?.”* 
16*9. Calculation of Slope. For a circle having a constant value of R, 

the rate of change of slope will be given as constant by Eq. 16*8, so that 
the total slope over a distance x would be x/R. 

Fig. 16*6. Calculation of slope. Fig. 16-7. Deflection of beam. 

For a line having a variable radius of curvature the slope may be cal¬ 
culated by using methods of summation similar to those employed in 
Secs. 2 • 18 to 2 - 20. Since l/R represents rate of change of 6 with respect 
to x, the actual change over the increment Ax is obtained by multiplying 
by Ax (see Eq. 16*8). For a series of successive increments these values 
may be calculated and summed up by using the average values of l/R 
over each increment. 

The variation of (l/R) over the length x may also be plotted to a suit¬ 
able scale. The area under this curve, up to any point x, gives the value 
of 0 at that point, as indicated in Fig. 16*6. 

By selecting a number of “stations” along the span it is possible to de¬ 
rive a series of values for 6, which may then be plotted as a curve giving 
the slope at any point x. (This is not the deflection curve, however.) 

16*10. Deflections in Terms of Radius of Curvature. If the slope of 
the beam at a series of points is known, or if a curve which indicates its 

* As previously noted, the terminology of calculus is often employed in structural 
equations, even when it is not actually possible to apply the methods of calculus. 
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value at every point is given, the next step is to convert these values into 
deflections normal to the reference axis. The slope has the physical 
significance shown in Fig. 16-7. The value of 6 at a certain point on a 
curved line represents the rate of change of deflection (y) with respect to 
distance along the axis (.r). This could also be stated as the rate at which 
the curve departs from the axis. This may be expressed by the equation 

[16-10] 

Actually this amounts to assuming that the curve is a series of straight 
lines over the lengths Ax, as indicated by the dotted lines in Fig. 16 *7. 

Fig. 16-8. Calculation of deflection. 

As for the slope, the equation becomes more accurate as the increment 
Ax is decreased in size, and the ultimate form of the equation becomes 

= 6 (Compare Eq. 16-9.) [16*11] 
ax 

To obtain the total deflection at any point it is necessary to compute 
the values for all the increments and then add them, as was done in 
determining the slope. Here again the process may be performed numer¬ 
ically, graphically, or by integration. The picture is given by Fig. 16*8. 

If the value for 0 given by Eq. 16*11 is substituted in Eq. 16*9 the 
latter becomes: 

d (dy\ 1 
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which may be written symbolically as 

Curvature equation 1 

dx2 R 
[16-12] 

The first term is read as “the second derivative of y with respect to x.” 
The equation indicates that the rate of change of the rate of change of y 
with respect to x is equal to 1/R. It may be considered as a simplified 
form of the exact equation which expresses the relationship between 
the radius of curvature of a line and its rectangular coordinates. 

d2y 

dx2 1 
[16-12a] 

The exact equation is not usually needed in structural work, as the only 
inaccuracy introduced by the simpler Eq. 16-12 is due to the assumption 
that distances measured along the line itself are equal to distances 
measured along the reference axis (see Fig. 16-5). The error becomes 
appreciable only when the ratio of x to R begins to exceed a value of 
about J^o- 

16*11. The Elastic Curve. Up to this point the equations for the slope 
and deflected position of any line have been given in terms of 1/R. This 
was done primarily to emphasize the fact that their relationships are 
geometric and that they do not depend in any way on the beam theory 
itself. Thus it is possible to use the foregoing equations in determining 
the deflection of a beam bent beyond the elastic limit, provided that the 
correct values for R are somehow obtained. 

In Sec. 16-6 it was shown that the assumption of a linear stress dis¬ 
tribution resulted in Eq. 16*6. 

1 ^ K 
R El 

This value may be substituted for 1/R in Eqs. 16-9 and 16-12, 
giving the following important formulas. 

Slope equation 
dO^JM 

dx El 

d*y M_ 

dx2 " El 

[16-13] 

Deflection equation [16-14] 
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Equation 16 • 14 is often called the equation of the elastic curve, as it 
applies only in the elastic range (because stress was assumed to be pro¬ 
portional to strain in deriving Eq. 16-6). It forms the basis for most of 
the mathematical processes used in handling more advanced problems 
in bending. It is seldom used directly in structural computations, so it 
is only important, at this point, to recognize the physical significance 

of the equation. 

Fig 16*9. Comparison of axial loading and bending. 

16 • 12. Length Effect. The flexural rigidity El has been shown to be a 
measure of a beam's resistance to bending, just as the factor EA measures 
resistance to axial deformation. The primary effect of bending, how¬ 
ever, is not deflection, but rotation or curvature. This can also be thought 
of as a change of slope. For axial loads the term P/EA gives the elonga¬ 
tion per unit length, or the strain e. The total change in length is there¬ 

fore given by the term PL/EA (Eq. 6-4c). 
Figure 16-9 shows a comparison between axial loading and bending. 

The quantity which is comparable to axial strain is 1/12, which might 
be thought of as the angular strain* This is equal to M/EI (Eq. 16*6). 
Therefore the total change of slope over the distance L equals ML/El, 
for a constant bending moment, M. 

Table 16 • 1 shows how the quantities compare. 

TABLE 16-1 

Axial Bending 

P M 

A I 

1 

6 R 

AL A $ 

* This term is not commonly used in structural literature. It is used here mainly 
to assist in the comparison. 
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The comparable equations are given in Table 16-2. 

TABLE 16.2 

Axial 

/ a 
P 

A 

e 

A L 

f 
E 

- eL 

_P_ 

PA 

PL 

' LA 

Bending 

/ _ M 

y~ I 
]_ M_ 

R~ El 

Although the change of slope is not often of direct interest, it is useful 
to know how this value is found for a given bending moment acting over 
a certain length. The following equation is therefore relatively im¬ 
portant. 

Ad = 
ML 

El 
[16-15] 

where Ad = the change of slope over the length L. 
M = the bending moment, assumed to be constant over length 

L. 

It should be noted that the symbol A is retained in Eq. 16 • 15 because 
the actual slope at a given point will not necessarily be given by this 
equation. If d is taken at zero at one end of the beam, however, Eq. 
16*15 will give the actual slope at the other. Under such conditions 
the slope will vary linearly from zero at one end to a maximum at the 
other, as shown in Fig. 16 *10. 

PJquation 16*15 can be transposed to indicate the resistance to angular 
rotation. If this quantity is defined as the bending moment required 
to cause a unit change of angle (Ad = 1), Eq. 16-15 becomes 

M _ El 

Ad~~ L 
[16*16] 

The term EI/L is of special significance in beam problems involving 
the relative stiffness of joined members. Since E is usually constant for 
a given structure, the term I/L gives the relative resistance to rotation. 
It is often referred to as the stiffness factor. 

From Sec. 16-10 and Fig. 16*10 it is evident that the total deflection 
y over the length L is equal to the summation (or integral) of 0 over this 
length, or the area under the curve in Fig. 16-10. Since this area is 
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equal to the total deflection for a constant bending moment is 
given by 

Deflection for constant 1 ML2 

moment y = 2~EI [16-17] 

This equation implies that y is measured normal to a reference line 
for which the slope is zero, i.e., a tangent to the elastic curve. This is 

Fig. 16 • 10. Relationships for constant bending moment. 

illustrated in Fig. 16 • 10. Figure 16 • 11 is more general. It is important 
to keep this in mind in dealing with beams which do not have zero slope 
at either end. 

Ref 
Axis 

Fig. 16*11. Measurement of deflection. 

Equation 16*17 reveals a very important point, which is that bending 
deflections (for constant moment) are proportional to the square of the 
length. This is obviously because the length enters twice into the sum¬ 
mation process (once for slope and once for deflection). 
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Since I/L (or EI/L) was shown to be a measure of relative resistance 
to rotation, the term I/l? (or EI/L2) is a similar measure of the relative 
resistance to deflection under a constant bending moment. 

16*13, End Conditions. Most of the examples used up to this point 
have been cantilever beams, for which one end was completely con¬ 
strained. For such a beam both the slope and the deflection may be con¬ 
sidered to be zero at the constrained end, and the original (undeflected) 
axis of the beam may be used as a reference axis in computing deflections. 

In Sec. 16*8 it was noted that the slope equation gave only the change 
of slope between two points due to the bending moment. If neither end 
of the beam is fully constrained the slope at the ends will not remain 
zero during loading, and the axis for which the deflections are computed 
will rotate. 

The most common example of this is the simple beam which is sup¬ 
ported at each end, but not constrained against rotation at the supports. 

fThe mid-portion of a beam loaded as in Fig. 16-12 represents such a 
beam subjected to a constant bending moment. The deflection may be 
computed by following the steps indicated in the figure. 

The calculations are started as if the left end were constrained against 
turning; this enables the curves for slope and deflection to be started 
from zero, as shown. The summation is carried out and the deflection 
curve is found, as shown in (e). But the conditions of support are such 
that y must equal zero at the right end. This end of the beam is there¬ 
fore figuratively pulled down to its point of support by rotating the entire 
beam about the left end. The deflection curve then appears as in (f). 

This rotation process can be done by drawing the axis x~x through 
the two ends of the deflection curve and measuring the vertical distances 
between this axis and the beam axis. The angle through which the beam 
is figuratively rotated is indicated on (e) as 8q. Since this applies to the 
entire beam, it represents a constant change of angle from end to end 
and would therefore appear as a horizontal line on Fig. 16- 12d. The 
rotation is obviously opposite in sense to the original curvature of the 
beam, and therefore 6q would be laid off below the base line and the net 
(final) values obtained by taking the difference between the two curves. 
Figure 16-120 shows the final curve of 0 for the simple beam. In prac¬ 
tice it is simpler to draw the line for 0q above the base line and regard it 
as the new axis for measuring slope. It can be seen that this gives a 
negative value for $l and a positive value for $r. Since the beam is 
assumed to have a constant value of M, E) and 7, the deflection is sym¬ 
metrical about the midpoint; hence 6#, and $q are equal in magnitude. 

This general process is applicable to any beam simply supported at 
two points, regardless of the type of loading. It should be noted that 
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0O may be taken as equal to y/x, in radians (it cannot be measured 
directly from the chart unless y and x are plotted to the same scale, 
which is impractical). 

For the example shown, the rest of the deflection curve could be found 
by treating the two overhanging ends as cantilevers. Here again the 

computations could be carried out as if the slope at the supports were 
equal to zero. After the deflections were found, the curves would be 
rotated through the angles $l, and Or to agree with actual conditions. 

Note that rotation of any deflection curve through an angle 0 (in 
radians) can be done numerically by adding (or subtracting) values of 
deflection equal to x6y where x is the distance along the axis measured 
from the center of rotation. 

16*14. Maximum Deflection. In Fig. 16*12/ it is obvious that the 
maximum deflection occurs at the mid-span of the beam. The value of 
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this deflection may be found from Eq. 16*17 and Fig. 16-12e. Let y 
denote the hypothetical deflections of the beam (before it is rotated) 
and let yr be the deflection of the line x-x. The conditions at mid-span 
(x = L/2) are then as follows. 

, 1 (L/2)*M 1 L2M 

y ~ 2 EI ~ 8 El 

1,11 L2M _ 1 L2M 

Vo ~ 2 VL ~ 2 ' 2 El ~ 4 ~El 

, 1 L2M 1 I2M 
y - y yo - g EI 4 EI 

_ i iHl 

v““"8 EI 
[16-18] 

+/ 

-+x 

16*16. Conventions and Signs. In dealing with simple cases it is 
possible to dispense with a rigorous system of conventions, as a sketch 

showing the applied forces or bending 
moments will usually indicate the nature 
of the deflection curve. In general, how¬ 
ever, it is desirable to establish a definite 
set of conventions and adhere to them 
throughout the solution of a deflection 
problem. 

The important point in this connec¬ 
tion is that there must be consistency 
between the positive conventions for mo¬ 
ments, slope, and deflection. In defining 
a positive bending moment either the 
space or structural type of convention 
may be used (see Chapt. 3). If the space 

type of convention is adopted it must include a rule as to which side of 
the beam is being considered. Thus in Fig. 16-13 a positive bending 
moment is shown as a counterclockwise moment acting on a section to the 
left of the point at which the moment is measured. This convention 
must be adhered to even though the section to the left approaches zero. 

In using the summation process to determine deflections it is neces¬ 
sary to start at some point for which the slope and deflection are known 
(or assumed) to be zero. This was also found to be true in computing 
bending moments, as it was necessary to start the process from a point 
of zero moment. These two starting points sometimes will not coincide 

.Fig. 16*13. Deflect ion conventions. 
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on the beam. For instance, in a cantilever beam the bending moment is 
zero at one end, but the slope and deflection are zero at the other end. 

If the summation processes are carried out numerically, using diagrams 
and working with areas, it is possible to make this transfer of reference 
points without any difficulty. But if mathematical methods arc em¬ 
ployed, the same reference point must be used throughout. 

In the cantilever beam this could be done by selecting the fixed end 
as a base. The expression for bending moment would then become 

i <+Y 

x L v 

- 

'A 

Shear = P 

Fig 16*14 Concentrated loading. 

M = P(L — or), and this value would have to be used in deriving the 
formulas for slope and deflection (see Fig. 10*14). 

16*16. Non-Uniform Bending. Although the theory of bending has 
been worked out for a constant bending moment, it is more common to 
find that the moment varies with distance along the beam. An obvious 
example is that of a concentrated load acting on a cantilever beam. 
Here the variation of the bending moment is linear, as shown in Fig. 

16-14. 
Although the general methods of summation previously described 

will take care of any variation of bending moment, very often the 
answers can be easily obtained mathematically. Appendix 3 gives the 
essential data on various types of beams and loading conditions in non- 
dimensional form. The curves may therefore be used for any specific 
case by multiplying their values by the factors peculiar to the problem 
in hand. As indicated in the figures, the numerical values for the curves 
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have been obtained by assuming values of unity for the dimensional 

factors involved (M, P, E, I, L, etc.). 
16*17. Fixed-End Beams. Although a detailed treatment of redun¬ 

dant structures is beyond the scope of this text, the fixed-end beam is so 
common that it will be discussed briefly. Figure 16- 15a shows a beam 
that is fixed at one end and has simple support at the other. This gives 
two possible methods of force transmission, as shown by (6) and (c), 
making the beam statically indeterminate, or redundant (see Chapt. 5). 

Co) 

(b) 

l 
V 

'?7/$77, V7$77> 

Fig, 10-15. Redundant beam. 

(c) 

In Sec. 16*13 it was shown how the computation of the bending de¬ 
flection for a simple beam required a figurative rotation about one point 
of support in order to satisfy the requirement of zero deflection at the 
other. In Fig. 16-15 there are two end conditions that must be satisfied: 
the deflection must be zero at the right end, and the slope must be zero 
at the left end. This problem can be solved mathematically by using 
simultaneous equations. It could also be solved by a trial-and-error 
process in which the trial would consist in guessing how much of the 
force P is resisted by the right-hand support. If the guess happened to 
result in zero deflection at the right end and zero slope at the left end, 
it would be correct. If not, the results would indicate in which direc¬ 
tion the error had been made, and a new trial would be carried out. 

This method is laborious, but the underlying principle should be 
thoroughly understood, as it represents a process of self-adjustment 
which actually takes place under loading. The trial-and-error process 
is also foundation for many other powerful analytical methods which 
have become widely used. 

It is obvious, of course, that the beam could be analyzed for two 
separate conditions such as represented by (b) and (c) in Fig. 16-15. 
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In general these conditions will bracket all intermediate conditions, but 
such assumptions are usually too severe to be used for practical pur¬ 
poses. 

Figure 16-16 shows a beam that is fixed at both ends. This gives 
three statically determinate types of force transmission, as shown by 
(6), (c), and (d). The end conditions now become: 

a. Zero relative deflection at ends. 
b. Zero slope at left end. 
c. Zero slope at right end. 

If the loading is symmetrical, it is easy to solve the problem by apply¬ 
ing to the slope (6) curve the same principle thut was applied to the de¬ 
flection curve in solving the simple beam problem. First the slope curve 
for the simple beam is determined, as in Fig. 16 -17c. Then the slope 
curve is rotated until its ena« are at zero. This is equivalent to apply¬ 
ing a straight-line slope curve which has end values exactly equal and 

V. 

Fig. 16-16. Fixed-end beam. 

(a) 

(b) 

(c) 

(d) 

opposite to those of the simple beam (dot-dash line). The final slope 
curve (d) is obtained by subtraction (using dash line). 

It has previously been shown that a constant bending moment (more 
accurately, a constant value of M/EI) causes a straight-line slope curve. 
The total difference in slope between the two ends of a beam subjected 
to a constant bending moment is equal to ML/El (Eq. 16*15). In 
Fig. 16-17c this corresponds to 260. The fixed-end moments may be 
obtained from this relationship. For the illustration 0O = PL/16. 
Therefore the fixed-end moment is PL/8. This constant value is sub- 
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tracted from that for the simple beam (Fig. 16* 17a), giving the final 
bending moment curve shown in (e). The final deflection curve (f) is 
obtained by integrating the slope curve (d). 

LC!' 
0 ^ 

(Simple) 

It 
(c) 

0Q 

0 _—,-,— .^<1- JZH (d) 
(Fixed) _1-W 

M 
(Fixed) 

Point of 
Inflection 

(M=o) 

(e) 

y (Defl)f 
(fixed) I' 

A 
(f) 

Fig. 16-17. Solution of fixed-end beam. 

16*18. General Principles. It will be apparent from the examples 
already given that there are several general principles which apply to 
the relationships between the various curves used in computing deflec¬ 
tions. The more important of these are as follows. 

a. For zero relative deflection at each end the net area under the'slope 
curve must be zero, i.e., the areas above the zero line must equal the 
areas below. 
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b. For complete fixity at each end the slope curve must start and end 

at zero. 

c. Moving the slope curve vertically corresponds to rotation of the 

entire beam through the coriesponding angle. 

d. The slope curve may be rotated by applying a constant bending 

moment over the beam. 

Fig. 16*18. Static tost of Lightning (P-3S) tail surface. This shows the deflection 

under very high loading, produced bv means of shot-filled bags. 

PROBLEMS 

16*1. Assume that the beam of Fig. 16*1 is 8 in. deep, the top flanges are 
1 sq in. in cross-sectional area, and the bottom flanges 1.5 sq in. The forces 

comprising the couple are each 50,000 lb. Using Eq. 16*2 find the value of 
l/R for the beam. 

(a) Both flanges aluminum alloy. 
(h) Both flanges alloy steel. 
(r) Top flange steel, lower flange aluminum alloy. 

(Note. Verticals may be assumed to be close together, so as to cause a smooth 

curve.) Check results by using Eq. 16 • 5. 
16*2. A square steel bar in. thick is to be formed into a circular hoop. 

(а) If the ultimate elongation is assumed to be 15 per cent, what is the 

minimum inside radius that may be used? 
(б) Compute the approximate bending moment that must be applied, 

on the basis that the stress distribution is constant at a yield stress 

of 40,000 psi (as in Fig. 15*7). 

16*3. In Problem 16*2, what is the minimum inside radius to which the 

bar may be bent without causing permanent set? (Assume that the yield 
stress and proportional limit have the same value.) 
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16*4. Assume that the bar of Problem 16*2 is to be used as a spring and is 
heat treated to raise the proportional limit to 150,000 psi. 

(а) What mean radius of curvature (at neutral axis) may now be 
developed without causing i>crmanent set? 

(б) What maximum elongation is involved in bending to this radius? 

16 «6. A beam has two flanges composed of aluminum alloy bars, each of 

0.5 sq in. cross section. The centroids of the bars are 12 in. apart. A bending 
moment of 200,000 in. lb is applied. Neglect the individual moments of inertia 
of the bars and compute the radius of curvature from Eq. 16 • 6. Check by means 

of Eq. 16*2. 
16*6. In Problem 16*5 assume for the area of one flange a value between 

0.35 and 0.45 sq in. and for the other a value between 0.55 and 0.6 sq in. Find 
the radius of curvature and check as in Problem 16-5. 

16 • 7. Assume that the beam of Problem 16-5 is 120 in. long. What is the 
change of slope caused by the bending moment? 

16*8. Find the change of slope for the beam used in Problem 16*6, assuming 

it to be 200 in. long. 
16*9. What is the rate of change of slope, in degrees, of a line drawn with a 

radius of 250 in.? How far does this line depart from another line drawn tangent 
to it, in a distance of 20 in.? 

16-10. A cantilever beam 40 in. long is subjected to a constant bending 
moment such that its slope at the free end is 3° with respect to that at the fixed 
end. 

(а) What is the radius of curvature? 
(б) What is the deflection? 

16*11. Two cantilever beams of the same length are subjected to the same 
value of constant bending moment. One beam is aluminum alloy and the other 
is heat-treated alloy steel. The moment of inertia of the aluminum alloy beam is 

twice that of the steel beam. What are the relative deflections at the free ends, 
i.e., which beam is stiffer and how much? 

16 • 12. In Problem 16-11 assume that the steel beam is 20 per cent longer than 
the aluminum-alloy beam. Find the relative slopes and deflections at the free 

ends. 
16 • 13. A wooden cantilever beam 10 ft long is made from a 2 by 4. If the 

maximum safe bending stress at the root is assumed to be 8000 psi, find the 
maximum deflection permissible; also the maximum load. (Appendix 2 may be 
used. Assume E = 1,200,000 psi. Neglect weight of beam.) Work this 
problem for two conditions: 

(а) Load in plane of major axis. 

(б) Load in plane of minor axis. 

16*14. Work out Problem 16 -13, assuming the beam to be simply supported 

at each end and loaded in the middle by a concentrated load. 
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16*15. A bar of alloy steel 1 in. in diameter and 20 ft long is simply supported 

at each end. How much does it sag under its own weight? (See Appendix 2 for 

properties.) 

16*16. Assume that the bar of Problem 16*15 is made from aluminum alloy 

which has a yield stress of 50,000 psi. What is the maximum length of bar that 

can be supported at each end without producing a permanent set? (Assume that 

yield stress and proportional limit are equal.) 

16*17. Find the moment of inertia required for a carbon-steel beam which 

must support a uniformly distributed loading of 20 lb per in. (including its own 

weight), without exceeding a deflection of % in., for the following cases. 

(а) Cantilever beam 10 ft long. 

(б) Simply supported beam 20 ft long. 

(c) Continuous beam with supports every 20 ft. (Assume fixed ends 

at each support.) 

16*18. In Problem 14*2 (page 230) calculate the displacement of the free end 

of the beam along the principal axes of the cross section. Show by means of a 

sketch that this displacement is not in the plane of the applied load. Assume 

E = 1,000,000 psi (approx, correct for soft wood). Appendix 3 may be used. 

(Note. This problem shows that the principles of unsymmetrieal bending 

develojjed in Chapt. 14 apply also to deflections. Effective bending moments 

(Sec. 14*3) may be used directly in the deflection equations to determine the 

components of the deflection along reference axes which are not the principal 

axes.) 

16*19. Show that the effective resistance to bending in the plane of an applied 

moment equals 7(1 — UXUV). (Refer to Eqs. 16*6 and 14*10.) 
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COMBINED BENDING AND SHEAR 

17*1. Flange Type of Beam (Unit Method). In beginning the study 
of bending in Chapt. 13, it was noted that bending almost always 
resulted from the transmission of shear (transverse) forces. In Sec. 10-16 
it was shown that a constant shear flow in a flange type of beam caused 

an increasing axial force in the horizontal flanges. For such a beam the 
distribution of shear flow was assumed to be constant over the depth of 
the beam. 

In Sec. 13-6 the theory of bending was developed by considering a 
multiple-flange type of beam, as shown in Fig. 13-7. This particular 
beam has three separate shear webs, and it cannot be assumed that the 
shear flow is the same across each of them. The distribution actually 

274 
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depends on the axial loads in the flange members, and hence on the 
bending theory used to determine these flange loads. 

This can be seen by considering a small length of such a beam under 
combined shear and bending, as shown in Fig. 17*1. Also shown are 
portions of the shear and moment diagrams corresponding to this sec¬ 
tion of the beam. 

The axial fbrces in the flanges are assumed to be known, or to have 
been calculated, at sections A and B. Since the bending moment at B 
is higher than at A the axial forces will be c< »rrespondingly higher. 
Taking flange 1, for example, the force Pib will be greater than Pi a. 
Since these two forces are not in equilibnum, flange 1 would start mov- 

Fjg. 17-2. Equilibrium of edge flange Fig. 17-3. Equilibrium of in¬ 

unit. teraal flange unit. 

ing toward the right, unless restrained by the shear web. It is therefore 
the difference between the axial forces at each end of the unit flange 
length which determines the shear loading for the web. 

This is further illustrated by Fig. 17-2, in which the conditions are 
shown for flange 1. The web force obviously equals the difference in 
axial forces (P* — Pa) = AP. If this force is distributed uniformly 
along the flange by the shear web, it can be expressed as a shear flow, q, 
determined by dividing the force by the length. (Actually the flange is 
usually connected to the web by rivets or bolts; then the load per rivet 
would equal AP/n, where n is the number of rivets in the length L.) 
Note that since flange 1 is on the free edge of the beam, all the unbal¬ 
anced load must be resisted by only one shear web. 

From Fig. 17*3 it can be seen that the shear load in the second web is 
equal to that in the first web, plus the difference in axial force over the 
unit length of flange 2. Therefore, 

02 = Qi + 
Pib — P2A 

L 

, A P2 
$2 = gi + — [17-1] 



276 COMBINED BENDING AND SHEAR 

where AP2 is the change in axial force in flange 2 over the length L. 
This equation can be put in a general form as follows. 

where n = the number of the flange unit in question. 
qn = the shear flow on one side of the flange unit. 

qn-i = the shear flow on the other side. 
APn = the change in axial force in flange unit n over length L. 

Equation 17*2 is elementary in nature, but because it represents the 
most general form of the shear flow equation it is very important. The 
following points should be noted. 

а. Since the shear flow in any web depends on the flow in the pre¬ 
ceding one, it is necessary to know the flow in at least one web in order 
to get started on the computation. 

б. If the beam has a “free” edge, the shear flow along that edge must 
be zero; hence the computation may be started from that edge. 

c. If the beam has no free edges (as in a closed shell), equilibrium 
conditions may have to be applied to determine the shear flow at some 
arbitrary starting point. (This will be explained later.) 

d. No new assumptions are introduced in deriving Eq. 17-2, i.e., the 
shear flow is indirectly based on the assumptions made in computing 
the axial flange loads due to the bending moment. 

17*2. Calculation of Shear Flow. Equation 17-2 may be called the 
bending shear flow formula to distinguish it from the torsional shear 
flow formula (Eq. 12-2). It is most useful in analyzing shell structures 
in which the cross section is assumed to be represented by axial flange 
units connected by shear webs. In such analyses it is arbitrarily as¬ 
sumed that the flange units resist only axial forces, and that the shear webs 
resist only shear flow. (This assumption is very nearly correct in thin 
shell structures such as used in airplanes.) 

Equation 10 * 10 (Sec. 10 • 7) is, of course, used to calculate the shear 
stress, after the shear flow is determined. This operation is nothing 
more than that of dividing the shear flow by the web thickness. It will 
be evident that the determination of the shear flow in a horizontal direc¬ 
tion also determines it in the vertical direction, since the flow around 
the edges of a rectangular web in pure shear is constant (see Sec. 10*16). 
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Figure 17-4 illustrates a simple example. The computations follow. 

Qi = 

$2 = 

Q's = 

(?4 = 

AI\ _ 3600 - 3000 

L 10 

. AP2 ngx , 200 
qi+— = oo + — 

, ™ 200 

® + Ti-80-' io 

ap4 ooo 
Qo —|--— 00 —   

™ L 10 

CO lb/in. 

= 80 

= 00 

= 0 (check) 

3600 
k- 10"- 

3000 

qi| 1200 1 
~ ^ - i. . _i 

h 
^7000 

I20cN 
[^2 
'1000 

...- -3— , - “ 

( 3600 ’‘I 
[*3 
1 3000 

L .... 4 

Fig. 17 • 4. Calculation of shear flow in webs. 

Note that the computation was started from the free edge and that 
the sign of AP changed in going from flange 2 to flange 3. The computa¬ 
tion for web 4 (which, of course, does not actually exist) is a useful check, 
as the shear flow must be zero on the free edge. If all the webs were 
0.050 in. thick, the shear stresses would be 60/0.05 = 1200 psi, and 
80/0.05 = 1600 psi, respectively. 

Equation 17*2 does not contain any term directly representing the 
total shear load over the cross section of the beam. Likewise, in the 
previous example no value was given for such a load, yet the total shear 
flow obtained must obviously be equal to the applied shear load. The 
explanation for this is that Eq. 17 • 2 is based on the change of axial loads 
over a unit length. This corresponds to a change of bending moment, 
which in turn is caused by a shear load. Hence the value of the total 
shear load does actually enter into the picture. 

{Note. An abrupt change in bending moment caused by the appli¬ 
cation of a couple acting in the flange direction is a different case. If 
the couple is applied in accordance with the distribution of axial loads 
given by the beam theory, no shear loads will be introduced in the webs. 
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If not so applied, the webs will act to redistribute the couple, in accord¬ 
ance with the principle of Saint-Venant. This is a local problem which 
is beyond the scope of this volume.) 

In Fig. I7 * 1, for instance, the difference in bending moment between 
stations A and B can be shown to be equal to the shear load multiplied 
by the unit length L, as indicated by the shear and moment diagrams. 
This reveals one approximation that is made in using Eq. 17*2, which is 

that the shear load is assumed to he con¬ 
stant over the unit length used. This is 
equivalent to using a straight line between 
the two corresponding points on the bend¬ 
ing moment curve. 

For constant shear loading this is, of 
course, correct, but for variable shear load¬ 
ing an error will be introduced, depending 
on the magnitude of the unit length used. 
The nature of this approximation is revealed 
by the dotted lines in Fig. 17-5, which illus¬ 
trates uniformly varying shear (uniformly 
distributed load). This also indicates that 
under such conditions the shear flow thus 
calculated will be correct for the midpoint of 

Fig. 17*5. Approximation in- the unit length. For rapidly varying shear 
volved in using unit lengths. i j xu* • i a x u j loads this simple refinement may be used. 
In the analysis of a shell type of structure the computations for shear 

flow by the unit method are easily included in the tabulation, as it is 
necessary only to multiply each flange unit area by its corresponding 
stress to obtain the axial force. The difference in this force, from one 
station to the next, is then divided by the length between stations to 
obtain the shear flow. As previously noted, however, it is not usually 
possible to find a starting point of zero shear flow unless the beam has a 
free edge or is symmetrically loaded. Hence the general computation 
methods will be deferred until this point can be further clarified. 

17*3. The Solid Beam. As in the bending theQry it is desirable to 
have a formula which can be used for the solid type of beam. The cross- 
sectional properties of such beams can often be determined by mathe¬ 
matical methods, but the flange method is not then used to determine 
the axial stresses and therefore cannot readily be employed to determine 
shear flow. 

The classical equation for shear stress in a beam is actually a modifica¬ 
tion of the more general unit method. It can be derived from it by the 
following steps. 
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First, the length of the unit is chosen as unity (1 in., for instance), as 
shown in Fig. 17*6. The change in bending moment AM over this unit 
length is obtained by multiplying it (the unit length) 
by the shear, giving 

AM = S 

Now if the cross section of the beam is assumed to be 
uniform over the unit length, the change in axial stress in 
the flanges may be computed from the flexure formula. 

A My __ Sy 

" 7 4f« 

The change in axial force, for any flange, is then found 
by multiplying by its area, for instance, 

AP, - ^ 

Fig. 17*6. Unit 
used in deriving 

shear flow equa¬ 
tion. (Not shown 
in equilibrium.) 

This equation gives the change in axial force over the unit length 
(1 in.); hence it gives the shear flow contributed by the flange in question. 
Thus, 

Atfx = jAxyx 

S A 
Aq2 = - A2y2j etc. 

Since the shear flow between any two flanges is the sum of the shear 
flows from the free edge up to that point, it may be expressed as 

Q = J 2Ay 

The term 'LAy represents the first moment of area, or static moment 
(see Sec. 13*8). The shear flow equation may therefore be written: 

Shear flow equation [17-3] 

where q = the shear flow (lb/in.) in a horizontal or vertical plane. 
S = the shear at the station in question. 
I = the moment of inertia about the neutral axis (second moment 

of area). 
Q = the static moment (first moment of area) of the cross-sec¬ 

tional area between a free edge and the point in question, 
the moments being taken about the neutral axis. 
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Figure 17*7 shows how this formula is applied to a solid beam. If it 
is desired to know the shear stress at section X-X the static moment of 
the shaded area must be computed. In making this computation the 
moment aim of each element of area must be taken to the neutral axis, 
as indicated by yi in Fig. 17 -7. 

Fig. 17 7. Shear flow m solid beam. 

The shear stress is found by dividing the shear flow by the minimum 
width or thickness through which it must be transmitted. This may be 
expressed by the equation 

Shear stress equation [17-4] 

where b is the minimum width or thickness at the point in question. 

Fig 17*8. Choice of cross section for shear flow 

computation. 
Fig. 17-9. Beam having 
more than two free edges. 

Figure 17*7 shows how b is measured ordinarily and Fig. 17*8 shows 
two cross sections in which the minimum shear area does not occur 
straight across the beam. If the true significance of the shear formula 
is understood there should be no difficulty in deciding how to measure 6. 
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Certain types of beams may have more than one free edge, as shown 
in Fig. 17-9, in which four flanges are connected by shear webs. Note 
that the shear flow for flanges 1 and 2 may be computed separately and 
that these two values are combined to obtain the shear flow in web 3. 

17 *4. Variation of Shear Stress. For a simple rectangular beam such 
as shown in Fig. 17 • 10, the shear stress variation over the depth can be 
obtained by direct summation or mathematical integration of the bend¬ 
ing stress curve corresponding to the change in bending moment over a 
unit length. (Since the width b is constant, it is unnecessary to multiply 
axial stresses by the width and then divide later to get shear stress.) 

Fig. 17-10. Shear stress in a rectangular beam under transverse loading. 

The resulting curve will have the shape of a parabola, as indicated, and 
the maximum value will occur at the neutral axis. This value will be 
numerically equal to the area under one-half of the bending stress curve 
(multiplied by proper scales, of course). 

From the flexure formula 

_ My SQi/2) 
Jhm&x j 

“ bh2 

The area under one of the triangles in Fig. 17*10 will then be equal to 

“ max 

i as h 
~ 2 bh2 2 

J, max 2 bh 

h 

2 

[17-6] 
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But 

Hence 

bh 

[17-5 a] 

This example shows that the maximum shear stress (or flow) for the 
rectangular beam is half again as great as the shear stress for the ideal¬ 
ized two-flange beam (See. 10-7). 

f _JL_ =_s. f =il 
* M * max 2 A 

(a) Flange Type Beam (b) Rectangular Bar 

Fia. 17*11. Shear stress in beams of various cross sections (for transverse loading 

in vertical direction). 

By similar methods it can be shown that the maximum shear stress of 
a circular cross section is four-thirds of the average shear stress, whereas 
that for a thin-walled tube is twice the average Value. The comparisons 
are shown by Fig. 17*11. 

The relationships shown in Fig. 17*11 are useful in estimating the 
maximum shear stress. Almost any normal cross section will correspond 
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roughly to one of the shapes shown. It is important to note, however, 
that if the flange type of beam is used as a basis, the area of the flanges 
must not be included in the calculation of average shear stress. (It was 
not included in deriving the shear flow formula for the flange type of 
beam, in Chapt. 10.) 

Since the shear flow for any beam always reaches its maximum value 
at the neutral axis, it is important to check carefully any cross section 
which shows a marked decrease in width in that region (Fig. 17 • 12a, for 
example). This same reasoning applies to builtrip beams, which are 
joined at or near the neutral axis by means of Dolts, nails, or other 

(a) (b) 

Fig. 17 • 12. Beams likely to be critical in shear. 

means (Fig. 17-126). The shear force on each connector may be com¬ 
puted by determining the shear flow and multiplying it by the spanwise 
distance between connectors (d in Fig. 17-126). 

The maximum shear flow at the neutral axis of a rectangular beam is 
(from Eq. 17-5a) 

3 3 S 
4 - 2 ^av 2 h 

The simplicity of such calculations is illustrated by the following 
example. Assume that two two-by-fours are joined (as in Fig. 17-126) 
with nails spaced 4 in. apart. If a vertical shear load of 100 lb is 
applied, find the horizontal shear force per nail. 

__ , 3 S 3 1000 , ^ „ 
Pa — dffmax ^ % h ^ 2 4 ~~ ^ 

17 • 5. Non-Connected Beams. It is of interest to know how the shear 
stresses are computed when two or more beams are joined in such a way 
that they deflect together but have no shear connection. (This would 
be true of the two beams in Fig. 17 • 126, if the nails were omitted.) A 
common example of such a structure is the ordinary leaf spring in 



284 COMBINED BENDING AND SHEAR 

which the distribution of load depends on the relative deflection of the 
beams. Once this distribution has been determined, each beam is 

treated separately to find the shear stresses. 
Thus if a shear load were to be transmitted 
by three identical beams free to slide on 
each other (Fig. 17*13), each beam would 
be treated as a separate beam carrying one- 
third of the load. (Note the evidence of 
sliding action shown by the deflected posi¬ 
tion of the beams.) The bending stresses 
and deflections would also be computed by 
treating the beams individually. 

17*6. Variable Depth (Tapered) Beams. The discussion up to this 
point has been based on the square frame and on beams of constant 
depth. Figure 17 • 14a shows an elementary frame in which the depth 
varies. Such beams are often called tapered beams. Figure 17-145 
shows a model constructed from a wooden 
frame and a sheet-rubber web. 

The tapered beam differs from the rec¬ 
tangular beam in two major respects. 

beams acting together. (De¬ 

flection exaggerated.) 

a. The assumption of infinitely rigid 
frame members does not result in a condi¬ 
tion of pure shear over the entire web. 

b. Axial forces in the flange members 
have components normal to the centerline 
of the beam. 

Fig. 17* 14a. Tapered beam 
(frame). 

The first point is not very important for beams that are not too sharply 
tapered. It is therefore customary to consider the web as having a con¬ 
stant shear flow over any cross section normal to the centerline. 

Fig. 17-146. Tapered frame before and after loading. Web is made from sheet 
rubber. Note wrinkles in end having greater shear flow. 
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The second point must be evaluated, as its effect on the shear flow 
may be considerable. Assume that the flanges of the beam in Fig. 17 • 15 
are carrying equal axial loads P at the cut section. (Forces shown are 
from the flanges.) The resultant of these forces acts at point 0 on*the 
centerline of the beam and has a value equal to Py, in the vertical 
direction. Point 0 is the point of intersection of the centerlines of the 
two flanges. 

Fig. 17*15. Resistance of tapered depth beam. 

If a is small (a few degrees or less), cos a may be taken as 1.0, and the 
equation becomes the same as that for the rectangular beam (Eq. 13*3). 

Figure 17 • 15 shows that the value of Py is given by 

Py = 2P sin a 

M sin a 
ae 2 — 

h cos a 
Therefore 

Py ~ 2— tan a 
h 

[17-8] 
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Equation 17*8 indicates that if the bending moment is fairly large, 
the flange forces required to resist it may cause an induced shear load 
Pv of considerable magnitude. The net shear load to be carried by the 
web will be the algebraic sum of the external shear load and the induced 
shear load. 

Sweb - S - Pv [17-9] 
or 

M 
Swcb = s - 2 — tan a [17-10] 

h 

(The negative sign is used because the force represented by the second 
term is usually opposite to the applied shear force.) 

Fig. 17 • 16. Condition for zero load in diagonal. 

Although it may not be obvious, any combination of shear and bend¬ 
ing moment which has a resultant at point 0 will cause no shear force 
in the web. Thus a stress analysis of the truss shown in Fig. 17-16 
would reveal zero load in the diagonal member (dotted line). A member 
of some sort would, of course, be needed, for stability, but from a purely 
theoretical point of view the open frame would carry the load without 
a diagonal or shear web.* 

It will also be noted that an axial load applied at point 0 along the 
centerline of the truss will require no shear diagonal (or web). Hence 
the unbraced tapered truss will theoretically carry a load applied in any 
direction at point 0, provided that it is in the plane of the truss. 

When a single transverse load is involved, it is convenient to deter¬ 
mine the shear in the web by the simple formula 

= [17-11] 

where a and b are measured as shown in Fig. 17-17. 

♦ This situation is often approached in airplane engine mount structures. Figure 
17 • 16 might be considered as representing such a mount in either side or plan view, 
with the center of gravity of the engine located at point 0. 
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The reference line used does not always represent the centerline of 
the beam, as indicated in Fig. 17-18. If the angles are not large (not 
more than several degrees), it is satisfactory to used the formula 

M 
^wcb = & ^an ai tan a[17 • 12] 

where a\ and a2 are both considered as positive. 

shear for single force. 

Fig. 17 • 19. Special cases of tapered beams. 

As previously noted the use of the negative sign in Eqs. 17 • 10 and 
17 • 12 is based on the idea that the bending moment caused by a certain 
shear load will always produce an induced shear that is opposite in sign 
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to the external shear load. This in turn is based on the assumption that 
the depth of the beam is increasing in the direction toward which the 
shear load is being transmitted. If the resultant shear should act out¬ 
side of th» point of intersection, as shown in Fig. 17 • 19a, the induced 
shear would exceed the external shear and the shear in the web would 
be in a direction opposite to that of the applied load. 

If conditions are as in Fig. 17-196, the induced shear will add to the 
external shear (negative signs in Eqs. 17 • 10 and 17*12 would be changed 
to positive). 

17*7. Tapered Shell. Equation 17*8 may also be used for the 
tapered circular shell (truncated cone) by replacing the quantity A/2 by 
the radius r, giving 

M 
Py = — tan oc [17 • 13] 

r 

where r = radius of median line of cross section. 
a — angle of taper (see Fig. 17*20). 

The net transverse shear is then given by Eq. 17*9. The maximum 
shear stress may be computed by the methods of Sec. 17*4. 

Equations 17*8 and 17*13 may be written in a more general form 
which may be used for linearly tapered beams of any cross section. 

M 
Pv = ~ [im<I b 

where Py = induced transverse shear force. 
M = bending moment at the section. 

b = distance to apex (see Fig. 17*17). 
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PROBLEMS 

17*1. Using Fig. 17*4 as a basis, assume that the distance between centroids 
of the flanges is 4 in., that the bending moment at the left section is 320,000 in.-lb 
and at the right section 290,000 in.-lb. (Sections are 10 in. apart.) Assume that 
flanges 2 and 3 are each 1 sq in. in cross-sectional area and assign to flanges 1 and 
4 some value between 1.1 and 1.9 sq in. 

(a) What is the total transverse shear load? 
(ib) What is the shear flow in each web unit? 
(c) What is the transverse shear load in each web unit? 

(Note. Sum of shear loads should check total shear. Neglect web area in 
connection with flange loads.) 

17*2. Draw a cross section similar to that of Fig. 17*7, using rectangular ele¬ 
ments. Assign dimensions and compute area, moment of inertia, and static 
moment (latter to be computed for area above neutral axis). For a shear load of 
1000 lb compute the maximum shear stress. Compare with average shear stress 
over cross section. (Actual should be somewhat greater than average.) 

17*3. Using Problem 17-2 as a basis compute the shear stress for a section at 
the juncture of flange and web, also at two other intermediate points. Plot a 
curve showing shear stress variation over depth of beam. Show average shear 
stress by means of a dotted line. 

17*4. A solid round bar 2 in. in diameter is carrying a shear load of 30,000 lb. 
What is the maximum shear stress? (Compute from Eq. 17*4 and check by 
Fig. 17-11.) See Appendix 1 • 1 for static moment. 

17*6. Assume that the three beams shown in Fig. 17-13 are made from planks 
12 in. wide and 2 in. thick and that the total applied load equals 3000 lb. 

(a) Using Fig. 17-11 find the maximum shear stress in the wood. 
(b) If the planks are glued together before the load is applied, what is 

the maximum shear stress? 
(c) What is the shear stress in the planes of the glued joints? 

17*6. A 3-in. diameter aluminum-alloy tube must carry a transverse shear 
force of 15,000 lb before failure. Consider the tube as a thin-walled tube and 
find the required wall thickness. (Note. Use Figs. 12 • 14,17 * 11, and Appendix 2. 
A trial-and-error method must be used. Assume a value of allowable shear stress 
to start with and check against resulting D/t.) 

17*7. Assign arbitrary centerline dimensions to the frame shown in Fig. 
17 • 14a and assume that P = 5000 lb. Find the shear flow in the web at each 
end of the frame. 

17 *8. In Problem 17• 7 locate the point at which the force must be applied to 
reduce the shear flow at the left end of the frame to half its original value. 

17*9. A tapered thin-walled shell is 50 in. long, 40 in. in diameter at one end 
and 20 in. in diameter at the other. A transverse shear load of 1000 lb is applied 
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at the small end and resisted at the other end. Find the maximum shear Sow at 
each end and in the mid-section. 

17*10. Compute the static moment (about neutral axis) of a thin-walled 
circular shell by dividing the cross section into small units of equal area. Use 
this value to show that the maximum shear stress is twice the average. (Note, 
The problem may be worked out by calculus, but it is desired to show the relative 
accuracy of using a number of finite units. Radius and thickness may be retained 
in symbol form. Only one quarter of the circle need be used. It should be 
divided into at least 10 parts.) 

17 *11. By taking moments about the (hypothetical) apex show that Eq. 17 • 14 
should apply to any assumed distribution of axial stresses due to bending, pro¬ 
vided that the axial forces on the cut section have lines of action which pass 
through the apex. 
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COMBINED SHEAR AND TORSION 

18*1. Symmetrical Members. A cross section loaded as indicated in 
Fig. 18*1 will be subjected to combined transverse shear and torsion (in 
addition to any bending moment which might be acting at that point). 
The transverse shear stresses due to the force P are determined by the 
methods outlined in Chapt. 17. The torsional moment is equal to Px, 
and the resulting torsional shear stresses are found by the methods 
outlined in Chapt. 12. The net shear stress at any point around the 
cross section will then be found by the algebraic addition of the shear 
stresses caused by the two loading conditions. The maximum shear stress 
will occur on the side nearest the applied 
force. 

By using the thin-walled shell theory, 
the maximum shear stress will be found 
for the conditions shown in Fig. 18*1, 
under the following assumptions. 

P = 1000 lb 

x = 40 in. 

r = 10 in. 

t = 0.050 in. 

A — irr2 = 314 sq in. 

Fig. 18-1. Section through tube 

under combined shear and tor¬ 
sion. 

The shear stress due to torsion will be found from Eq. 12-3. 

M _ 1000 X 40 

2At ~ 
Jet = = 1270 psi 

2 X 314 X 0.05 

The maximum transverse shear stress is determined from Eq. 17*4, 
or from Fig. 17 11: 

2S 2 X 1000- 

~ A,” 2 rrt 

1000 
= 637 psi 

T X 10 X 0.05 

■ 1270 + 637 - 1907 psi 
291 
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On the opposite side the stress would be 

f9 - 1270 - 637 - 633 psi 

On the top and bottom of the shell the stress due to direct shear would 
be zero, hence the total stress would be that due to torsion alone. 

The stress at any intermediate point would be found by using the 
general formula for transverse shear stress (Eq. 17*4). 

A solid member is treated in the same manner, except that the appro¬ 
priate formulas must be used. Algebraic addition of the shear stresses is 

9000 lb 

4 X 

8 

Fig. 18-2. Combined shear and torsion of solid bar. 

not always correct, but the error involved will usually be on the safe 
side; i.e., computed stresses will tend to be too high. 

For example, Fig. 18 • 2 shows a load of 1000 lb, acting 8 in. off the 
centerline of a two-by-four. The transverse shear stress will be greatest 
across the centerline X-X, and will be found from Eq. 17-5. 

_ 3 _ 3 1000 
•'** 2bh 2 2X4 

188 psi 

The torsional shear stress will be found from Table 12-1 (page 192). 

kM 4.07 X 1000 X 8 

U " ab2 ~ 4 X 22 

/a max - 188 + 2030 

2030 psi 

2218 psi 

This direct addition of the maximum shear stresses is correct, as they 
act at the same point and in the same direction. 

Note that these processes take care of the shear stresses only and 
would therefore give the complete answer only when the cross section 
has no axial bending stresses acting on it. If appreciable bending stresses 
exist, the maximum shear stresses may sometimes be greater than those 
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found by considering only direct shear and torsion. Methods of com¬ 
bining axial and shear stresses are covered in Chapt. 20. 

18*2. The Unsymmetrical Shell. In dealing with the symmetrical 
cross section, it was obvious that the loading condition should be con¬ 
verted into a direct shear load acting in the plane of symmetry and a 
torsional moment about the axis of the member. The true reason for 
the use of the plane of symmetry may not be immediately apparent, 
however. In a symmetrical cross section this plane represents an axis 
along which a transverse shear force may be applied without inducing 

Wet Unit 

Flange 

Fiq. 18-3. Unsymmetrical closed section (idealized). 

a torsional moment. (Compare use of principal axes in unsymmetrical 
bending.) 

For an unsymmetrical cross section the location of such an axis cannot 
be determined by inspection alone. Methods of determining it for 
the single curved shear web are given in Chapt. 11, in which it was 
assumed that the beam was incapable of resisting torsion; hence the 
transverse shear force had to be applied at the so-called shear center. 

A closed unsymmetrical section is capable of resisting both transverse 
shear and torsion. Such a section is shown in Fig. 18 • 3, which represents 
a D-tube construction often used in airplanes. The section is assumed 
to be made up of flange elements which carry only axial stresses, and web 
elements which resist only shear flow. (This condition is approached in 
thin sheet-metal structures stiffened by individual stringers. The as¬ 
sumptions may also be used for other types of structures in which the 
material is more evenly distributed.) It might appear that the solution 
could be obtained directly from Eq. 17 *3 (q — SQ/I) by evaluating the 
static moment Q. Reference to Chapt. 17 will show, however, that Q 
is computed by starting with a point of zero shear flow (such as the 
outer edge of a beam). Since the location of this point cannot be pre¬ 
dicted for an unsymmetrical cross section, it is not possible to use 
Eq. 17*3 directly. 
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This problem may be solved in a number of ways, but all are based on 
the fundamental shear flow Eq. 17 • 2 (repeated below): 

, &Pn 
qn = gn_i + z 

Assuming that the analysis of the bending stresses in the flange units 
has been completed for two adjacent sections, the values for the flange 
increments AP are readily obtained. 

It is now apparent that the shear flow in all the webs could be evalu¬ 
ated from Eq. 17-2, if the shear flow in any one web were known. 
The problem then resolves itself into one of finding the shear flow in 
any one web unit for the loading conditions imposed. 

18*3. Cutting the Web. One method of attack is to make an arbi¬ 
trary assumption that the shear flow in a particular web is zero, thereby 
hypothetically converting the closed section into an open section, i.e., 
cutting the web in question. The shear flow in all the other webs may 
then be evaluated from Eq. 17*2. The moment of these shear flows 
about a suitable reference point (such as the c.g.) can then be obtained 
by applying the principles of Sec. 11*2. If the shear flows in the webs 
have been taken as the internal resisting forces at the cut section, their 
total moment may be algebraically added to that of the external forces 
at the same section, acting about the same reference point. The net 

moment so obtained represents the torsion which must be resisted by 
the closed section, giving a constant shear flow in all the webs equal to 
M/2A (see Eq. 12-2). This value is also the unknown shear flow in the 
cut web. The values for the other webs are obtained by algebraic addi¬ 
tion of this torsional shear flow to the values previously obtained for the 
cut section. 

The process involved may be visualized by considering the shell to be 
composed of two separate structures, as indicated in Fig, 18 • 4. The 
cut shell (6) can resist direct shear at the shear center only (indicated 
by dotted arrow, S') whereas the closed shell resists torsion only. The 
value of M would be equal to Sd. It is unnecessary, however, to deter- 
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mine the location of the shear center, as the moment of the shear flow 
may be used directly, as previously described. 

18*4. Direct Method* Although the method of cutting the shell is 
useful in clarifying the physical action which takes place, it is not essen¬ 
tial in solving the problem. Instead of assuming the shear flow in a given 
web unit to be zero it can be assigned a symbol, the value of which is 
unknown. The shear flow in each web will then consist of this unknown 
constant plus another value determined 
by the axial load increments in the 
flanges. The moment of the shear 
flows in all flanges may then be equated 
to the external torsional moment in 
order to find the unknown shear flow. 

The general procedure will be shown 
for Fig. 18 • 5. Instead of equating the 
resisting shear flow to the external 
torsional moment it will be found more 
convenient (in stress analysis work) 
to determine the equivalent shear flow. 
This will give the loads acting on the 
cross section. For this reason Fig. 
18*5 has been shown in two parts: 
(a) shows the external loading condi¬ 
tion at the cut section, and (5) shows 
the assumed equivalent shear flow. A 
positive moment convention is estab¬ 
lished as shown in Fig. 18 ■ 5a. 

Flange and web units are assigned suitable numbers. (It is convenient 
to assign the same number to the flange and to the web which follows it 
in the positive moment direction.) 

If q0 is now taken as the unknown shear flow, the values for other 

webs will be as follows. 

flow. 

Qo = Qo 

qt = % + 
APi 

, AP2 , a Pi A P2 

®_9‘ + —_S° + T + T 

?3 “ 52 + 
AP3 , A Pi A P2 AP3 
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It can be seen that the shear flow in any web is composed of two 
parts, one of which is go, the unknown shear flow in web No. 0. The 
other part represents the summation of differential flange forces (per 
unit length) up to the flange in question. For convenience this summa- 
tion will be designated by the symbol H and will be called the shear 
flow increment.* It can be expressed by the equation 

Hn = 2 (Api + A P2+ ■■■ + A Pn) [18-1] 

where Hn represents the shear flow increment for web n. 
L is the length between cross sections. 

AP is the change in flange force between sections. 

The shear flow at any point can now be expressed by 

qn - qo + Hn [18*2] 

The shear flow increment H is a quantity which replaces and is analo¬ 
gous to the static moment Q. It is readily computed by progressive 
summation of the differential flange forces. Q may be derived from the 
equation for H by letting q0 = 0 (at free edge) and assuming that the 
axial stress due to bending equals the distance from the bending axis. 

The torsional moment of the shear flow in any web (about the refer¬ 
ence point) is given by the following equation (from Eq. 12-1). 

Mn — 2qnAn 

- 2(q0 + Hn)An [18-3] 

where An is the segment of enclosed area corresponding to web n (shaded 
areas in Fig. 18 *56). 

The values for several webs are written below. 

AM0 = 2 q0A0 

AMi = 2q\A\ = 2q$Ai -f- 2H\A\ 

AM2 ==* 2^2-^-2 = 2gro-d.2 “|“ 2H2A2 

AM3 = 253A3 = 2^3 + 2//3A3, etc. 
Adding 

SAM = 2S qnAn = 2g,0SAn + 2 2HnAn 

The term SAn obviously represents the entire enclosed area of the 
cross section. Hence the quantity 2g02An represents the moment of 
go acting as a constant shear flow around the section. 

* No standard term is yet in common use for this quantity. The symbol H has no 
special significance; it was chosen largely because most of the other letters had been 
used for other purposes. 



DIRECT METHOD 297 

An equation can now be written for the moment of the shear flow, 
as follows. 

Ma = 2 (qoA + 2 HnAn) [18-4] 

in which M8 = total moment of shear flow in web elements. 
A = total enclosed area — 2An. 

Hn = shear flow increment for a given web (Eq. 18-1). 
An = segment of enclosed area corresponding to web n. 

In this equation all the terms on the right-hand side can be evaluated 
except the term q0. (It is assumed that the bending stresses and flange 
forces have already been determined.) In order to find q0 the moment 
MB is equated to the moment of the external forces and moments acting 
at the section in question. (Obviously the moments must be taken about 
the same point.) If Mt represents the external torsional moment, 

Mt = M8 = 2 (q0A + 2HnAn) 
from which 

qo = j (f " [18'5] 

The shear flow in any given web is then found from Eq. 18-2 by add¬ 
ing (algebraically) the value of qo to the value of Hn already determined 
for that web. Equation 18 -2 is repeated below, to emphasize its im¬ 
portance as the companion formula to Eq. 18 • 5. 

Qn = 00 + Hn 

In Fig. 18*5, Mt would be equal to Sd. More generally the external 
forces would consist of two components and a torsional moment, as 
indicated in Fig. 18-6 where the value of Mt would be given by 

Mt - + PzZ + My [18*6] 
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It should be noted that the reference point selected does not have to be 
the c.g. of the cross section. However, this point will usually have been 
found in connection with the determination of bending stresses, and the 
calculations are simplified by using it for shear flow determination. 

18*5. Sign Conventions. It is necessary to establish the proper rela¬ 
tionship of signs between the axial load increments and shear flow in the 
webs. Figure 18*7 indicates how this can be done, using the customary 
conventions for axial forces. A downward-acting external (shear) force 

is assumed, which would cause 
tension in the top flange. The 
flange load increments are shown 
in Fig. 18*7, acting on the web 
unit. The direction of q required 
to maintain moment equilibrium 
of the flange unit is also shown. 
If this direction of the shear flow 
were in the direction assumed to 
be positive for torsional moment 
it would, of course, be given a 
positive sign. 

Equation 18*1 shows that in 
determining q for a given web 
unit the value of AP used is 
that for the flange just preceding 
the web. Hence, if the positive 
direction of progression were 
downward, in Fig. 18*7 the top 

(tension) flange would be used. Since this flange increment has a 
positive value, it is satisfactory to permit the sign of the flange load to 
indicate the sign of the shear flow. If the positive direction of pro¬ 
gression around the shell happened to be upward, the lower flange 
would be used, giving a negative value for g. This evidently agrees 
with the conventions, as the actual downward-acting direction of q is 
negative with respect to the torsion conventions. 

It may be concluded without further proof that the use of the axial 
stress conventions (positive for tension, negative for compression) gives 
the correct signs for the increments of shear flow. It is important to 
remember, however, that the equivalent loading on the cross section, 
not the reaction from the cross section, is being considered. 

18*6. Constant vs. Variable Cross Section. For beams of constant 
cross section it is not necessary to compute the bending stresses at two 
adjacent sections. The change in bending moment per unit length is 

Fig. 18*7. Positive conventions. 
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equal to the shear; hence if a unit span wise length is chosen, the change 
in axial flange stresses over this length may be found by substituting 
the shear for the moment in the flexure formula (J = My/1). The 
values so obtained must be multiplied by the flange areas to obtain the 
change in axial force. Thus, for any given flange, 

Afx = 
Syi 

I 

APi = AfiAi = 
SAm 

I 

If this quantity is evaluated for each flange unit, and the results are 
summed up from some arbitrary starting point, we obtain an alternative 
equation for the shear flow increment 

H = SAP = 
£2Ay 

I 
SQ 

I 
[18-7] 

This equation is identical with Eq. 17-3 for the shear flow in a sym¬ 
metrical section. It will not give the complete answer for the unsym- 
metrical section, however, as it docs not eliminate the problem of 
determining the point of zero shear flow or, conversely, the shear flow at 
some specific point. This requires the computation of the moment of 
the shear flow around the cross section, as previously described. It may 
be found convenient, however, to use the static moment Q and the trans¬ 
verse shear S in place of the unit method, which involves the computa¬ 
tion of axial forces in all the flanges. 

It should be clearly understood that the shear flow formula (SQ/I) 
is correct only when the beam has a uniform cross section. It may be 
used without appreciable error for beams having a gradual variation in 
cross section. If the beam varies only in depth, a correction may be made 
to account for the induced shear due to axial forces (see Sec. 17-6). The 
use of the unit method makes such a correction unnecessary, as the effects 
of variable depth are taken care of in the computation of the bending 
stresses. (See Ref. 27 for further discussion of the unit method as 
applied to aircraft structures.) 

18*7. Abrupt Changes of Cross Section. If the distribution of flange 
material changes considerably between two adjacent cross sections there 
will be correspondingly large variations in axial loads in the flanges. 
These variations in axial load will cause high shear flows in the webs, if 
the unit method is employed, but will not affect the result if the shear 
flow formula (SQ/I) is used. The length of the unit which is chosen 
(distance between adjacent cross sections) will have a large effect on 
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the computed shear flow. This is indicated by Fig. 18*8 which shows 
a flange having an abrupt change of cross section. As computed by the 
flexure formula the axial forces at sections A and B will be quite differ¬ 
ent, i.e., AP will be large. If the unit length chosen is small (as indi¬ 
cated by L\) the shear flow increment AP/L will be very high. If a 
larger unit length (L2) is used the shear flow will appear to be much 
lower. 

The true conditions are quite complex, as the axial force in the flange 
will not actually change as abruptly as the cross-sectional area. In 
fact, the high local shear flow produced at such a point will tend to 

Fig. 18*8. Effect of abrupt change in flange area. 

distort the cross section in a manner which will cause a more gradual 
variation in axial force and hence a lower shear flow. The exact solu¬ 
tion is beyond the scope of this text, but several empirical rules may be 
used as a guide. 

The first rule is that abrupt changes of cross section should be avoided 
in design} with the following exception. If the entire cross section is 
changed proportionately there will be no abrupt change in axial force, 
although the stress will vary. This condition is often present at joints. 
(The practice of staggering sheets of different thickness in a shell struc¬ 
ture is therefore questionable, from this point of view.) 

The second point to observe is that the unit length chosen should not 
be too small. No specific rules can be given on this, but in general it is 
unnecessary to use cross sections any closer than those usually selected 
for the computation of bending stresses. As the size of the structure 
increases, the unit length may be increased accordingly. 

Finally, in extreme cases which cannot be avoided (such as cut-outs) 
some method of tapering the effective flange areas may be employed in 
the analysis. For example, a rough rule sometimes used involves the 
assumption that the effectiveness of any flange unit drops off linearly 
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as it approaches a cut-out or discontinuity. This is illustrated in Fig. 
18-9. For sheet-metal construction such as used in aircraft an aver¬ 
age slope of b/a between 3 and 4 has been found to give reasonable 
results.4* (The distance a is measured to the stringer involved.) 

YS////////////////////Z, 1- Y////ZZZZZ/ZZZ, 

'//////////////////////, f Y////////////Z, 

'//////////////////////. W, VZ///////z\ 

Y///ZZ/ZZZ//ZZ///Z//ZZZ, WZZVZZZZZ/Z/ 

Effective 

LJjTrr^ 
«—b-* 

Fig. 18-9. Approximation of flange load variation at cutout. 

18-8. Shear Center (Multi-Flange Beam). In Sec. 11-3 it was shown 
that the resultant of a constant shear flow in a curved web is located 
outside of the area enclosed by the web and a line joining the two flange 
units (see Fig. 11*8). The shear center of an open section having a 
variable shear flow may be found from Eq. 18*4, which gives the mo¬ 
ment of the shear flow. In this 
case the summation is started from 
a free edge and the value of q0 is 
therefore zero, giving the equation 

Ma - 22HnAn [18‘8] 

or, for a uniform (non-tapered) sec¬ 
tion, the equation 

M, = 2j?QnAn [18-9] 

Since the shear center is a point 
at which a shear (transverse) force 
may be applied without inducing torsion, its location must be such that 
Ms in Eq. 18*8 or 18-9 equals zero. 

The general type of loading is given by Eq. 18*6 and Fig. 18*6. 
This figure is reproduced in Fig. 18*10, as an open section. The shear 
center will be located by values of x and l such that the moment of 

Fig. 18*10. Open section with variable 
shear flow. 
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the external forces is exactly equal to the moment of the shear flows 
which they produce in the webs. 

The location of x and z must be determined separately for two per¬ 
pendicular axes (usually only one value is required). Considering only 
x, for example, the value to be used in Eq. 18-6 would be PZ} and the 
moment of this force about the reference point is Pzx. Substituting 
these quantities in Eq. 18-9 gives 

X-^QnAn [18-10] 

This equation represents the general method of determining the shear 
center (or, more accurately, a line through the shear center) for any 

td 
I --• 

(a) Concentrated 

flange area 

Fig 

M 

l 

(b) Flange area evenly 
distributed over legs 

of channel 

. 18-11. 

t j 

p 
X=2(l+ 6b) 

(c) Area uniformly distributed 
over channel (constant 

thickness) 

Shear centers of channels. 

oi>en section of uniform cross section. The term QnAn represents one- 
half the moment of the shear flow in any web; An is determined as 
shown in Fig. 18-5. 

Simple cross sections may be solved mathematically, by expres ing 
the shear flow’ as a function of certain dimensions and integrating to 

find the moment of the shear flow’.* 
The results obtained for several sec¬ 
tions are shown in Fig. 18*11. 

18*9. Significance of Shear Center. 
Although it is usually unnecessary to 
use the shear center directly in stress 
analysis work, the conception is very 
useful in design. For instance, if it is 
desired to apply a transverse load to a 
channel, the load should be introduced 
outside of the channel, at the shear 

center, as indicated in Fig. 18 • 12. Applying the load along the vertical 
edge or through the c.g. will induce torsional stresses which are unde- 

* Sibert * gives a semi-graphical method for computing the moment of a variable * 
shear flow. 

/ ( 
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\J 
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PROBLEMS 

sirable. At first sight this may seem irrational, but the principle is in 
actual use (for instance in automobile frames). 

Another example, from aircraft work, will indicate the importance 
of the principle. Assume that a fuselage is composed of two vertical 
flange-type beams, without horizontal shear webs to complete the 
torsion box (Fig. 18 • 13). Torsion must therefore be resisted by a couple 
composed of opposite shear loads in the two beams. By visualizing the 

Fig. 18-13. Fuselage construction. 

locations of the shear centers, it can be seen that the use of curved shear 
webs gives an effective moment arm much greater than that obtained 
by using vertical webs and therefore provides greater torsional resistance. 

PROBLEMS 

18*1. Assign to Fig. 18*1 any desired dimensions and loading. Find the 
maximum and minimum values of shear flow and shear stress (use thin-wall 

formulas). 
18*2. In Fig. 18 »2 change the width of the beam to 1 in. and find the allow¬ 

able load, applied as shown, for a shear stress of 750 psi. 
18*3. Draw a cross section similar to Fig. 18*6 and assign values to flange 

areas and dimensions. Assume that the shell is not tapered. Find the shear 
flow in each web unit for the following loading condition: 

Pz - +10,000 lb 

Pz = -2000 lb 

My - +20,000 in.-lb 



304 COMBINED SHEAR AND TORSION 

18*4. Using the cross section of Problem 18*3, assume that the rear (vertical) 
web is removed. At what point must a vertical load be applied in order to be 
resisted by the open section? 

18*6. Draw a cross section of a wing such as shown in Fig. 14*8 and assign 
values to flange areas and dimensions. Assume that this represents a cross 
section of a tapered wing and draw another cross section representing a section 
20 in. “inboard.” This section is to be made about 10 per cent deeper, using 
same flange areas. Assume that a bending moment Mx = 800,000 in.-lb and an 
upward shear load of 8000 lb act at the c.g. of the smaller section. Find (by 
tabular methods): 

(a) Axial stresses and forces in each flange unit, for each section. 
(b) Shear flow in each web unit, between cross sections. 

(Check approximately by comparing shear flow in front and rear webs with 
that obtained by assuming shear to be equally divided between them.) 

18*6. Draw a cross section such as shown in Fig. 18* 11c, using any desired 
dimensions. Find the shear center and sketcli a fitting for proper application 
of the shear load. 

18*7. Derive the formula given for the shear center of a channel of constant 
thickness, Fig. 18-11c. Note. The derivation may be simplified by assuming 

that the channel thickness is unity and 
by working with the median lines of the 
cross section. The sketch indicates the 
nature of the shear flow. 

Procedure: 

(a) Express qi in terms of S, a, 
and bf using Eq. 17*3. 

(ib) Write an expression for the 
moment of the shear flow 
about a point along the 
vertical web. 

(c) Divide this moment by the 
shear (S) to find x. 

18*8. In Sec. 13*4 it was shown how 
the effectiveness of a rectangular web, 
in carrying axial stresses in bending, 
could be expressed as fictitious flange 
areas. Prove this relationship by find¬ 
ing the areas of two flanges, separated 
by a distance A, such that their bend¬ 
ing resistance equals that of a rectangu- 
Assume that flanges have same axial 

stress as outer fibers of web. Express flange areas in terms of web area.) 

Problem 18*7. 

lar cross section of depth A. (Note. 



CHAPTER 19 

COMBINED BENDING AND AXIAL LOADING 

19*1. Eccentric Loading. The determination of the net stress for 
combined bending and axial loading is a simple matter of algebraic 
addition. It is necessary only to be sure that the loading condition has 
been resolved into an equivalent axial fo^ce acti.ig through the centroid 
of the cross section and a bending moment acting about an axis through 
the centroid. 

Thus in Fig. 19 • 1 it is necessary to transfer the force P from its point 
of application to the axis through the centroid of the beam. The corre- 

T 

M=Pd 

Fig. 19 1. Eccentric axial loading. 

sponding bending moment Pd must then be used to determine the bend¬ 
ing stresses in the beam. 

19-2. Net Stresses. Figure 19*2 shows the stresses due to the bend¬ 
ing and axial loads acting separately and in combination. The equation 
for net stress for bending about one axis is 

Combined bending and 
axial loading 

[19-1] 

If there is bending about two principal axes (X and F) the equation 

becomes 

General case 
_ P Mxy MyX 

~ A± Ix ± ly 
[19-2] 

305 
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For unsymmetrical bending the above equation may also be used by 
substituting the effective bending moments as derived in Sec. 14*3. 

For composite and carved beams the properties of the transformed 
section should be used, and the resulting stresses must be multiplied by 

Fig. 19-2. Net stresses in eccentric loading. 

the effectiveness fadory as described in Sec. 15*2. Note particularly that 
this applies to axial as well as to bending stresses. 

19*3. Axis of Zero Stress. In combined bending and axial loading 
the axis through the centroid of the cross section, i.e., the neutral axis 
for pure bending, is no longer the axis of zero axial stress. Figure 19*2 

shows that this point has moved 
toward the edge of the member. 
If the axial loading predominates 
there may be no axis o? zero 
stress, as indicated in Fig. 19*3. 
Hence the neutral axis (or plane) 
should not be thought of generally 

as the axis (or plane) of zero stress, but should be defined as in Sec. 13*8, 
for pure bending. 

19*4. Reversal of Stress. Figures 19*2 and 19*3 illustrate an axial 
force applied eccentrically or off center with respect to the axis"through 
the centroid. It is important to note that if the eccentricity is large 
enough it will cause an axial stress of opposite sign, as shown in Fig. 

30 
Fig. 19*3. Variable axial stress. 



CURVED MEMBERS 

19*2, where an applied tension force k_b_* 
caused a compression stress in part of the A LAJ ± 
member. _|_^ 

This phenomenon becomes of some im- f ~ 
portance in members which are loaded in ~ 
compression and are incapable of resisting _| 
tension stress. (A column made up of Akj t 
brick is a typical example.) It is always--y a 
possible to compute the maximum stresses \ /__1 
for a specific problem as a check. It is J 
also possible to solve Eq. 19*2 to deter- T 
mine the area on the cross section within _j v 
which the axial compression load may be 
applied without causing a tension stress. 
This area is called the kern. For a rec- a R * 16 *em’ 
tangular section this area is defined by the third points on the principal 
axes, as shown in Fig. 19*4. The shape and size of the kern may be 
derived for any cross section. 

19*5. Curved Members. In Sec. 9 • 1 it was shown that initial curva¬ 
ture of a member could be neglected in truss analysis, by replacing the 

. member by a hypothetical straight 
^ — j ^ j. one (phantom member) through the 

* ^ T==^J two end points. If the axial force 
d P is found by this method, it may 

Fig. 19-5. Curved member under axial then be applied as shown in Fig. 

load* 19 • 5. The conditions at any section 
of the beam are determined by transferring the axial force to the centroid 
and applying the resulting eccentric bending moment (Pd in Fig. 19*5). 

Fig. 19 *4. The kern. 

M = Pd 

Fig. 19*6. General case of curved member. 
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If the axis of the member is not parallel with that of the force, the force 
will have to be further resolved into two components, one along the axis 
of the beam and the other normal to it, as shown in Fig. 19*6. See also 
Sec. 2*21 for method of rotating the forces to the proper angle. The 
axial and shear stresses are then found by methods already described. 

19-6. Joint Eccentricities. Since a member usually begins to fail 
when its allowable stress is exceeded at any point on its cross section, for 
maximum load-carrying capacity the stress should be uniform, if pos¬ 
sible. In axially loaded members (as in trusses) it is important that the 

Improper Alignment V/ ' 

Fia. 19*7. Location of fittings for axial Fig. 19*8. Proper location of tubes 

loading. in welded construction. 

method of attachment be designed so that the resultant of the axial load 
acts through, or very near, the centroid of the cross section. This is ac¬ 
complished by careful design of the fittings, or by proper location of the 
centerlines of the members in a welded assembly. 

Figure 19*7 shows the right and wrong ways to design an efficient end 
fitting for a tension member. The eccentric fitting obviously causes 
additional bending stresses which reduce the efficiency of the member. 

Figure 19*8 shows the proper way to join members of a truss. Note 
that the centerlines of all members intersect at a common point. 

Eccentric fittings cannot always be avoided. The member in question 
may occasionally have an excess of strength which would take care of 
the additional bending stresses. The strength calculations should then 
include the effects of the eccentric loading. In general, however, eccen¬ 
tricities of this type should be avoided, particularly for compression 
members, as will be explained later. 

19*7. Induced Bending. Since bending causes a lateral deflection of 
the member it will cause a variation in the eccentricity, as shown in Fig. 
19*9. In tension the eccentricity will tend to decrease, thereby decreas¬ 
ing the bending moment and causing a more nearly uniform stress dis- 
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might be repeated ad infinitum, but either of two things would be found 
to happen: 

а. The increase in secondary bending moment would become smaller 
and smaller with each succeeding operation, finally becoming negligible. 

б. The increase in secondary bending moment would become larger 
and larger, finally causing failure, or excessive deflection. 

_L Deflection 
—t- due to Mo 
yT 

iA0 Total Bending 
JL Moment 

,_ _ - — __L 
Secondary Bending 

Moment 

Fig. 19 *10. Beam column. 

Case (a) is called stable, as the conditions within the beam become 
stabilized hi some definite value of deflection. Case (b) is called unstable, 
indicating that it is impossible to carry the loading which was assumed 
to be applied. 

It is of course possible, even in the stable case, to reach the maximum 
allowable stresses in the beam before stability of deflections is reached. 
Hence calculations for secondary bending must usually be made for all 
beam-columns. It can be seen that the yield stress represents a sort of 
upper limit for allowable compression stresses in such cases, as any 
yielding represents a decrease in E, which in turn would cause further 
deflections, higher stresses, lower E, and so on until instability or failure 
occurs. 

19*9. Columns.* The ideal column may be regarded as a hypothetical 
case of the eccentrically loaded compression member in which the ec¬ 
centricity is zero. Actually it is impossible to attain zero eccentricity 
in practical structures, although it may be closely approached under 
laboratory conditions. 

» 
* The subjects of instability and failure of materials are beyond the scope*of this 

volume, but an elementary explanation of columns is presented to emphasize the 
interrelation between buckling and bending and to serve as an introduction to column 
theory. 
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A more realistic conception of a column is that of a compression 
member for which the eccentricity is practically, but not quite, zero. 
This agrees more nearly with actual conditions and gives a better start¬ 
ing point for the column theory. It has been stated (Sec. 19-8) that 
under certain conditions the secondary deflections will be unstable in 
nature, i.e., they will continue to become larger automatically until the 
column fails or bends excessively. 

If an unstable condition of this type exists, it will require only an 
infinitestimal eccentricity to start the process, after which the column 
will proceed to fail through instability. The theory of columns, and 
buckling in general, is based on the determination of the conditions 
under which this will happen. 

19*10. Column Theory. Although the exact theory for columns re¬ 
quires more powerful mathematical methods than those used in this 
text, it is possible to derive a 1 airly close approximation by utilizing the 
beam theory already developed. This will aid in understanding the 
physical significance of the column formula. 

Fig. 19-11. Deflected column. 

In Fig. 19*11 assume that the column has a very small lateral deflec¬ 
tion, the maximum value of which is dm. The bending moment will be 
equal to the end load P, times the eccentricity d. If the shape of the 
moment curve were known, it would be possible to integrate it and 
determine the maximum deflection in terms of the maximum moment. 
If this shape is not known to start with, an assumption of some sort 
must be made. (The theoretical curve is, of course, obtained from the 
exact theory and is that of a sine wave.) 
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The moment curve for a uniform lateral load has a shape something 
like that of a deflected column. It might therefore be used as a first 
approximation. In terms of Mmax, the maximum deflection for such 
loading will be found (from Appendix 3-6) to be equal to 

, _ MmL2 

m 9.6E7 
[193] 

If the maximum bending moment Pdm is now substituted for Mm the 
solution gives 

P = 
9.6£7 

L2 
[19-4] 

The value of end load thus found is such that the column will theo¬ 
retically stay in any deflected position in which it is placed, i.e., it will 
have no bending stiffness whatever. 

The deflected position assumed in deriving the above equation is, of 
course, not exactly correct. The true answer was found by Euler, who 
derived the basic column equation 

Euler column equation [19-5] 

Since the value of w2 is approximately 9.86, it will be seen that the first 
approximation gave a result less than 3 per cent under the exact value. 
The mathematical difficulties of solving this problem are evidently 
centered around the determination of the shape of the deflection curve. 

Equation 19-5 gives the critical load for a straight member. At any 
load below this value the column will return to its initial position after a 
slight displacement. At any load above this value the slightest displace¬ 
ment will cause a continually increasing deflection, indicating instability. 
Hence the critical load P is the maximum load that can be withstood in 
compression, regardless of the strength of the material. The only 
material property that affects the load is the modulus of elasticity E 
(see Sec. 19-13 for plastic range). 

19-11. Column Strength vs. Bending Stiffness. In Sec. 16*12 it was 
shown that the resistance to deflection under the action of a bending 
moment is proportional to EI/L2. Since this term is the basis for the 
Euler equation, it is evident that the buckling load for a column is 
directly proportional to its lateral stiffness. It must be kept in mind 
that instability failures are not really stress failures, but simply indicate 
that the effective lateral stiffness disappears. When that happens, the 
column shortens by bending, rather than by direct compression. 
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This principle can actually be utilized in experimental work to predict 
the end load at which instability will occur. In Fig. 19-12 the lateral 
bending stiffness is determined by applying a side load P, and measur¬ 
ing the resulting lateral deflection d. The resistance to lateral deflection 
is given by the term P,/d. If this operation is conducted at various 
values of end load Pc, it becomes possible to plot a curve such as shown 
in Fig. 19-126. This curve will reach a value of zero at the end load 
which causes buckling and may be extrapolated as indicated by the dotted 

Fig. 19-12. Experimental method for predicting critical load. 

line to predict the buckling load. (Actually the extrapolation may not 
be quite straight, as shown.) This procedure is a variation of South¬ 
well's method, in which no side load is applied.33 

19-12. Column Stress. It is sometimes desirable to express the 
critical condition for a column in terms of stress instead of force. This 
is done by dividing the Euler force by the cross-sectional area, giving 

ir2EI 
AL2 

[19 * 6] 

Since I and A are both functions of the size and shape of the cross 
section, they can be combined into one term, I/A. This term measures 
the bending resistance per unit length, per unit area. It is more com¬ 
monly denoted by its equivalent p2, where p (rho) is the radius of gyra¬ 
tion of the cross section (sometimes denoted by k). It is found from the 

equation 

Radius of gyration [19-7] 
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Substituting this value in the Euler equation and combining it with 
L, the equation becomes 

Euler stress equation [19-8] 

The term L/p is called the slenderness ratio. Equation 19*8 now 
contains only two variables, E and L/p. Hence a column curve can be 

P 

Fig. 19-13. Euler column curves. 

constructed for all columns of a given material. Such curves are shown 
in Fig. 19 • 13, for steel, aluminum alloy, and magnesium alloy. 

19*13. Short Columns. Euler’s original equation was based on a 
constant value of E and was applicable only in the elastic range. In 
Chapt. 6 it was shown that the local value of E, given by the tangent 
modulus, drops off as the stress exceeds the proportional limit. It has 
been found84 that a close approximation to actual conditions is obtained 
by substituting the tangent modulus in the Euler equation.* 

* The exact solution of this problem as developed by von K4rm6n ** and others 
gives slightly different values based on the use of a double modulus. For practical 
work the direct use of the tangent modulus is satisfactory. 
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The equation may then be written 

General column equation 
v*Et 

(Vp)2 
[19-9] 

The curve of column stress may be constructed for any given material 
by assuming different values of /, determining the tangent modulus 
Ety and solving Eq. 19 *9 for L/p, as shown in Fig. 19 * 14. 

Before the development of the tangent modulus theory it was neces¬ 
sary to represent the short-column range by empirical formulas. Many 
of these are in common use and are more convenient than the basic equa¬ 
tion. The type of formula used depends on the way Et varies for the 
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Fig. 19*15. Various short column curves. 

material in question, i.e., on the shape of the stress-strain diagram. 
Figure 19*15 shows three types of short-column curves, together with 

the type of stress-strain diagram they 
represent. 

Curve (a) is a straight cut-off, which 
would apply if the stress-strain diagram 
had a constant value of stress in plastic 
range, or if an artificial reduction of E 
were caused by local buckling. Curve 
(b) is a parabolic type of curve, com¬ 
monly used for steel. Curve (c) shows 
a straight-line formula which applies 
quite well to structural aluminum 
alloys. 

19*14. End Constraint. The column 
formulas discussed up to this point 
are for pin ends (zero constraining 
moment). Either or both ends may, 
however, be fixed or may have an inter¬ 
mediate amount of constraint. The 
theory of columns shows that complete 
end fixity produces points of zero bend¬ 
ing (points of inflection) at one-quarter 

Fig. 19*16. Effects of end fixity of the length from the ends, as indicated 
(complete fixity shown, c - 4). in Fig. 19*16. This means that the 
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middle half of the column behaves as a pin-ended column having a length 
equal to L/2. For a lesser degree of end fixity the effective column length 
will lie somewhere between L/2 and L 

There are two alternative ways of taking care of this in the column 
formula. The most common is to modify the pin-ended column values 

Fig 19*17 Failure of fuselage test specimen Note buckling of stringers acting 

as columns between frames 

by a fixity coefficient c, which accounts for the effects of end constraint. 
For complete fixity Eq. 19*9 would become 

r2Et 4tr2Et 

f ~ (\L/Pf ~ (JL/p)2 
[19-10] 

The factor 4 is here considered to be the coefficient of fixity Its value 
can obviously vary between 1 0 and 4 Denoting the coefficient by c 

generalizes the formulas. 

[19-11] 

[19-12] 

General column formulas 
(coefficient type) 
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The other method is to use an effective length, but the term c will then 
not be used in the equation. Denoting effective length by Le, the gen¬ 
eral equations become 

General column formulas 
(effective length) 

[19-13] 

[19-14] 

It can be seen that the relationship between the fixity coefficient and 
the effective length is given by 

or [19-15] 

PROBLEMS 

19-1. A solid round bar, 2 in. in diameter, is loaded by an axial tension force 
applied 3 in. from its center. Assume any value for the force (between 10,000 
and 20,000 lb) and find the maximum compression and tension stresses in the bar 
(neglect possible secondary effects). Draw a sketch indicating the stress dis¬ 
tribution across the section and locate the point of zero stress. 

19-2. Using Eq. 19-1, find the location of the kern for a solid round cross sec¬ 
tion. 

19-3. Work out Problem 19 • 2 for a round thin-walled tube. (Use mean radius 
and neglect effect of wall thickness.) 

19*4. The split ring illustrated has a solid circular cross section 3 in. in 
diameter. 

Problem 19*4. 

(а) Find the loading conditions on cross sections marked X. 
(б) Find the maximum axial and shear stresses at each section (neglect 

curved beam effect). 
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19 • 5. A column 10 ft long, pinned at each end, must carry a load of 500 lb. 
Find the moment of inertia required for; 

(а) Wood (E = 1,200,000 psi). 
(б) Steel (E « 29,000,000 psi). 
(c) Aluminum alloy (E - 10,000,000 psi). 

19*6. Find the diameters and cross-sectional areas required for the three 
cases of problem 19*5, assuming, for each case 

(a) Solid round bar. 
(<b) Thin-walled tube, having a D/t value of 30. (Find mean diameter 

and thickness.) 

19*7. In Problem 19 * 6 determine the avial stress and note whether the 
long-column (unmodified Euler) formula will apply. Check results by using 
column stress formula to compute critical load. (Requires computation of radius 
of gyration.) 

19 »8. Draw (on graph paper) an arbitrary stress-strain diagram, to some 
suitable scale. Find the complete column curve as shown in Fig. 19* 14. 

19-9. Work out Problem 19*5, assuming that a fixity coefficient of 3.0 is 
developed at each end. 
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COMBINED STRESSES 

20*1. Division of Subject. The important subject of combined 
stresses may be divided into two parts: 

a. Determination of the internal stress conditions under combined 
loading. 

b. Failure of materials under combined loading. 

Part (a) may be classified under the heading of internal loads, and will 
be taken up briefly in this chapter. Part (b) may be classified as allow- 
able loads and will therefore be omitted from this volume. 

20-2. Addition of Stresses. In Chapt. 2 the addition of forces by 
graphical and analytical methods was taken up. In dealing with stresses 
it is essential to remember that cross-sectional area is also involved. If 
stresses were to be added as if they were forces, the results would be in 
error except where the stresses act along the same axis. 

The basic principle involved is simple. Convert stresses into forces 
before addition. As an obvious corollary, the resultant force so obtained 
must be converted back into stress. These conversions involve multi¬ 
plying or dividing by the proper cross-sectional area. Analytical 
methods and equations are usually employed, but in order to clarify 
the process a general case will be worked out by vector methods, using 
the principles developed in Chapt. 2. 

20*3. Vector Method. Consider any two uniform axial stress fields 
acting in the same plane at an angle 6 (Fig. 20*1). The intensity of 
stress may be indicated by vectors, as shown, provided that the lines of 
the network are equally spaced. If it is further assumed that the 
stressed sheet or plate has a uniform thickness of unity (1 in., for in¬ 
stance) and that the lines of the network are spaced a unit distance 
apart, the forces represented by the vectors will be exactly equal to the 
stress intensity (since each vector acts on a unit cross-sectional area). 

It will be assumed that these two stress fields act simultaneously, 
even though they might be caused by two different types of loading. 
Since the stresses are now represented by force vectors, the latter may 
be added vectorially. An element (shaded area in Fig. 20*1) may be 
isolated as a free body, as shown in Fig. 20-2a. It can then be split in 

320 
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two ways, as indicated in (b) and (c). Forces and P2 may be added 
vectorially to obtain the reaction PR. This force must be resolved into 
two components, P,y and Ps, which are the normal and shear forces 
acting on the cut section. Finally these forces must be divided by the 

Fig. 20-1. Addition of stress fields. 

area of the cut section, which is equal to the length of the cut side of the 
element. 

It should be noted that the forces Pi and P2 may also be resolved into 
normal and shear components on the sides of the elements. This indi- 

Fia. 20*2. Conditions for an element under combined stress. 

cates that the effect of the first stress field on the second is to add a shear 
stress and a normal stress at right angles to the direction of the second 

stress field. 
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Two other conclusions may be drawn from this simple case. 

a. It is obvious, from Fig. 20 • 2, that the length of the cut side does 
not remain unity, thus demonstrating that vector addition alone is not 
correct. 

b. In general the resultant stress on a given cross section will be com¬ 
posed of a normal stress and a shear stress. 

20*4. Stresses on Any Cross Section. The element selected in Fig. 
20-2 permitted the calculation of the stresses along two lines only (the 
diagonals of the element). The stress condition along any line may be 
obtained by using an element of which one side is normal to the line, 
while the other two sides arc parallel to the lines of axial stress. This is 

illustrated in Fig. 20-3 in which the element is drawn so that side c is of 
unit length and is normal to the line Y~Y, along which the resultant 
stress condition is to be determined. Note that the sides a and b are no 
longer of unit length. Before adding the stresses vectorially they must 
therefore be multiplied by the projected area (length) of the respective 
sides. 
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Although this method is not generally used in determining combined 
stresses, an example will be worked out to demonstrate the principles 
involved. 

Assume that uniform axial stress fields of 5000 and 10,000 psi, re¬ 
spectively, are superimposed at an angle of 30° as shown in Fig. 20-4, 
and that it is desired to know the stress condition at point O with 
respect to a section X-X (which may be drawn at any angle). A unit 
length, AB, is measured off along X-X, with its center at point O. 

Lines are then drawn through points A and B, parallel respectively to 
the lines of action of stresses fx and/2. This establishes point C and the 

triangular element ABC. 
The projected lengths of BC and AC normal to the streas fields acting 

on them are found to be 0.78 and 0.95. The forces acting on these sides 

of the triangle are, therefore, 

Px = 5000 X 0.78 = 3900 lb 

P2 = 10,000 X 0.95 * 9500 lb 

These are drawn to scale on Fig. 20-4. Their lines of action will pass 
through the midpoints of the sides of the element and will intersect at 
point O (this follows from the construction). The resultant force at 
point 0 may then be determined by vector addition of the two forces 
and is found to be equal to 13,500 lb. For equilibrium, the reaction 
must be in a direction opposite to the resultant force so Pr is drawn as 

shown. 
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Since Pr does not act normal to the side AB it must be resolved into 
two components Pn and Ps, normal to and parallel with this side. 
These values are found from the vector diagram to be equal to 12,800 
and 5000 lb, respectively. Since the side AB has a length of unity, these 
values also represent the normal and shear stresses, i.e., 

fn * 12,800 psi 

fs = 5000 psi 

20*6. Analytical Methods (Pure Tension). Although it is possible 
to combine axial stresses vectorially by the method just described, it is 

K ha 
(a) (b) CcJ 

Fig. 20-5. Simple tension. 

usually more convenient to use analytical methods. Such methods 
become rather cumbersome for the general case, and it is therefore best 
to consider first the simpler conditions of stress. Simple axial loading 
(tension or compression) is, of course, the most elementary condition. 

Figure 20*5 shows the effects of cutting an axially loaded member at 
different angles. (The member shown may be assumed to have unit 
thickness and to have no axial stresses normal to the plane of the paper.) 
Figure 20*5a shows the usual cutting plane, through the minimum cross 
section. This plane, of course, represents the plane of maximum stress 
for a member of uniform cross section. The axial stress obtained in this 
manner will be represented by the symbol fa. (Actually it will be either 
tension, /*, or compression, /c.) 

Figure 20-56 shows the conditions existing along a different cutting 
plane located with respect to the normal plane by the angle 0. "Note 
from (6) that $ also measures the angle between the line of action of the 
applied tension and the new line of action along which the normal stress 
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is to be found. Following the basic rule that forces (not stresses) must 
be used in vectorial addition or resolution, the total axial force P is 
resolved into two components as follows: 

Pn, a component normal to the cutting plane. 
P8, a component along (or parallel with) the cutting plane. 
These two components are called the normal and shear components, 

respectively. The corresponding normal and shear stresses, fn and /„ 
are indicated in (c). Their values may be obtained by dividing the forces 
by the cross-sectional area. But the area along vhe cutting plane is 
obviously greater than the area used in calculating the tension stress 
(Fig. 20.5a). If A represents the minimum area, the area cut by a 
plane at an angle 6 will be given by 

Ao 
cos 0 

[20-1] 

The values of the normal and shear components are (from Fig. 20-56) 

Pn = Pa cos 6 

P, = Pa sin 6 

By dividing each of these forces by the area A over which they are 
distributed, 

Pn _ Pa cos2 d 

Ag A 

_ P, _ Pa sin 6 cos 0 

** ~Ag~ A 

These equations may be expressed in terms of the axial stress fa 
(ft or fe), which is equal to Pa/A. 

Components of /« — fa cos2 0 [20 -2o] 

axial stress /, = fa sin dcosd [20-26] 

These are the basic equations for the components of axial stress. 
Equations 20-2 may be divided by fa, giving the ratio between the 

stresses on the diagonal plane and the maximum tension stress. 

/n 

fa 
COS® 0 

f. 
= sin 0 cos 6 

[20*3o] 

[20-36] 
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These ratios are plotted in Fig. 20 • 6 against the angle 6. It can be seen 
that the shear stress roaches its maximum value at an angle of 45° and 

0 
Fig. 20-6. Variation of normal and shear stress. 

Normal Stnss 

Fig. 20 • 7. Polar diagrams for simple tension. 

that this value equals one-half the maximum tension stress. At 45° the 
normal stress also equals half the maximum tension stress. These two 
simple, relationships are of considerable importance, particularly in deal- 
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ing with the behavior of materials under stress. They may be sum¬ 
marized briefly as follows. 

In simple tension: 

а. The maximum tension stress occurs on a plane at right angles to 
the direction of stress. 

б. The maximum shear stress occurs on a plane at 45° to the direction 
of stress and is equal to half the maximum tension stress. 

c. The normal stress on the 45° plane is also equ/d to half the maxi¬ 
mum tension stress. 

The above relationships hold also for simple compression stress. 
The relationships shown by Fig. 20 • 6 may also be plotted on a polar 

diagram, as in Fig. 20-7. In this figure the intensity of stress (in terms 
of the maximum tension stress) is given by the length of a vector. The 
direction of the stress is given by the direction of the vector. It should 
be realized that in simple tension all the stresses shown in Fig. 20*7 
exist at every point. 

20*6. Mohr’s Circle. Equations 20-3 can be expressed graphically 
by a simple construction known as Mohr’s circle. From trigonometry 
it is known that the following relationships are true. 

2 1 + cos 20 11 
cos2 0 =---= - + - cos 20 

2 2 2 

sin 20 
sin 0 cos 0 = —— 

Equations 20*3 may therefore be written 

ja = \ + \cw2e [»•**] 

~ J sin 2d [20-46] 
fa 2 

In Fig. 20-8 these values are plotted normal to each other. Equation 
20 -4a is satisfied by laying off a value of Y% and drawing a line at an 
angle 26, the length of this line being held constant at a value of Y- 
This construction also satisfies Eq. 20-46. Now if the angle 0 is varied, 
point A will describe a circle, giving the diagram shown in Fig. 20-9. 
This is a non-dimensional form of Mohr’s circle, as ratios are used 
instead of actual stresses. 
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SIGN OF SHEAR STRESS 

If all values are multiplied by fa the usual form of Mohr’s circle is 
obtained as shown in Fig. 20*10. This simple diagram shows clearly 

the relationships between shear, normal, and 
maximum tension stress. For compression the 
value of fa will be negative, when Eqs. 20 *2 
would be written 

fn= - if a ~ if a COS 28 [20-5o] 

/» = — if a sin 29 [20-56] 

The corresponding Mohr’s circle is shown in 
Fig. 20*11. Note that the starting point 
(0 = 0) is now at the point fn = —/a. The 
positive direction of rotation is maintained in 
measuring 0. The sign of the shear stress at 
45° is negative, i.e., in a direction opposite to 
that for pure tension. 

20-7. Sign of Shear Stress. In using 
analytical methods it is desirable to have a 
consistent system of conventions, particularly 
for shear stresses. The equations developed so 
far are based on the conditions in Fig. 20*5, 
which, since the shear stress was assumed to 
be positive, can be used as a basis. In order 
to avoid confusion, two cuts will be made, 
isolating an element or strip, as shown in 
Fig. 20*12. The shear stress will be con- 

1, 
Fig. 20*12. Positive shear 

stress for Mohr’s circle. 
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sidercd as positive if it tends to rotate the element in a positive direction 
(shown here as clockwise). 

The sign of the normal stress on the element will be governed by the 
conventions for axial stress, i.e., positive for tension, negative for com¬ 
pression. 

20-8. Axial Stresses at Right Angles. The general method of Sec. 
20-3 will now be converted into analytical form for stresses at right 
angles. Following the procedure suggested, an element will be selected 

f? 
t.A.t 

Fig. 20*13. Analytical addition of axial stresses at right angles. 

so that the side along the desired cutting plane has a length of unity as 
in Fig. 20 • 13a. The other two sides will then have values of sin 6 and 
cos 0, respectively. The corresponding forces are indicated in Fig. 
20-13b. The normal and shear components of the resultant are shown 
separately in (c). 

From these figures it can be seen that 

Pl = fi cos 0 

p2 = /2 cos 0 

Pn 1 = Pl cos 0 = Si cos2 6 

Pn2 = jP2 sin 6 — f2 sin2 6 

P. 1 — Pi sin 6 = fi sin 6 cos 0 

P.2 = — P2 cos 6 as —f2 sin 0 cos 0 
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Since the area over which these forces act is unity, they represent 
stresses directly, and since the stress components along the same line 
may be added directly, 

Combined axial stresses fn — fi cos2 6 + /2 sin2 d 

at right angles /, = (f, - /2) sin 6 cos 9 L ' 

It must be remembered that in deriving these equations the stresses 
fi and/2 were assumed to be pure axial stresses at nght angles; that is, 
no shear stresses were acting along the lines of axial stress. In the 

equation for shear stress the term sin 0 cos 0 reaches a maximum value 
of V<i (see Fig. 20*6); hence the maximum shear stress is given by the 
equation 

/am ax= Kfl “ /*) [20‘7] 

If /i and/2 are equal and of the same sign (for example, both tension) 
the shear stress at any angle will obviously be zero. This is the only 
stress condition in which zero shear stress on all cutting planes will 
result. There will still be shear stresses on third-dimensional planes, 
however. To eliminate these it would be necessary to have uniform 
tension (or compression) in all three directions. 

In constructing Mohr’s circle the values of /i and /2 are laid off 
along the same line, as the value of 20 becomes 180° when the forces are 
acting at 90°. Figure 20*14 is typical. The circle is located by the 
values of/i and /2. 

From Fig. 20*14 it can be seen that if ft were to approach/2 in value, 
the circle would become smaller, finally becoming, a point when the 
tension stresses at 90° are equal. This, of course, agrees with the prev¬ 
ious statement that the shear stress is zero on all planes in such cases. 
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Figure 20-15 shows polar diagrams for the normal and shear stresses 
under a condition of tension in two normal directions, one of the tension 
stresses having one-half the magnitude of the other. Compare Fig. 

Normal Stress 

Fig. 20-15. Polar diagram for combined axial stress. 

20-7, for simple tension, and note that the shear stresses are reduced by 
the presence of the second tension field. 

For equal tension fields at right angles the polar diagram for normal 
stresses will become a circle and the shear diagram will vanish entirely. 

Fig. 20 • 16. Mohr’s circle for pure shear. 

Mohr’s circle for equal tension and compression stresses at 90° is shown 
in Fig. 20-16. As described in Chapt. 10 this is a condition of pure"shear, 
in which the maximum tension, compression, and shear stresses are all 
equal. 
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20*9. Principal Stresses, In adding axial stresses acting at right 
angles it was assumed that no shear stresses existed along the directions 
of the axial stresses. -Prom Figs. 20-14 and 20-15 it can be seen that 
the two axial stress fields represent the maximum and minimum values 
of normal (axial) stress. These values occur along the line of zero shear 
stress. This leads to the important principle that in any combined stress 
condition there will be two mutually perpendicular principal directions 
along which the normal stresses are respectively a maximum and a mini¬ 
mum and for which the shear stresses are zero. The normal stresses 
along these directions are called the principal stresses. The term prin¬ 

cipal planes is also used to denote the planes of maximum and minimum 
stress. 

It follows that Eqs. 20-6 and the construction of Mohr’s circle, as 
described up to this point, hold only when the axial stresses are principal 
stresses and when the axis from which 6 is measured is one of the principal 

axes. 
20*10. Combined Axial and Shear Stresses. It is common, in stress 

analysis work, to find combinations of axial and shear stresses for which 

Fig. 20-17. Combined axial and shear stresses. 

the resultant maximum normal and shear stresses must be obtained. 
(Combined axial loading and torsion is an example.) Combined tension 
and shear are shown in Fig. 20-17. Mohr’s circle is found by locating 
points 1 and 2 corresponding to sides 1 and 2 of the element. Note that 
the shear stress on side 2 is always equal and opposite to that on side 1. 
Points 1 and 2 give the stress condition for the other two sides also. 
Since sides 1 and 2 are 90° apart, 26 = 180° and points 1 and 2 therefore 
lie on a diameter of the circle. This diameter is found by connecting 

the points with a straight line and the circle is drawn as shown in Fig. 
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20* 18a. From Fig. 20-186 it can be seen that the radius of the circle is 
equal to 

+ CU)2 

Fia. 20*18. Construction of Mohr’s circle, combined axial and shear stresses. 

This value therefore represents the maximum shear stress. Also, 

fn max = \ft + T 

‘ 2+/*' 

= * + 
2 

The equations for maximum normal and shear stresses may therefore 
be written 

Mflyimnm and minimum 
stresses in combined 
tension and shear 

in max-mi n 

[20-8a] 

1 
<

 
-H [20-86] 
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The use of the db sign in Eq. 20*8 indicates 
that the maximum stress will be obtained by 
using whichever sign gives the higher result. 

Figure 20*186 shows that 

tan 26 = - A = - ~ 
lit it 

[20-9] P 
From this equation the location of a prin- II_IF 

cipal plane may be found. A convenient rule 
to use in this connection is that the principal 
plane may be located by rotating a side of the H H ,f 
element through the angle 0. The direction 
of rotation is found from Mohr’s circle as Fiu. 20* 19. Determination 

that through which the point (representing of principal axis, 

the side in question) must be rotated to 
bring it back to the normal stress axis. Figure 20*19 shows how this 
would be done for a case such as previously described. Figure 20* 18a 

shows that point 1 must be moved in a 
clockwise direction to reach the axis of 
normal stress. Therefore, side 1 in 
Fig. 20-19 must be rotated through the 
angle 0, in the same direction. The 
value of 0 may be measured from the 
figure (which, of course, gives 20) or 
may be calculated from Eq. 20*9. 

Fig. 20*20. General case of plane 
stress. 

Since positive values of 0 were estab¬ 
lished as counterclockwise, Eq. 20*9 
must have a negative sign. 

The methods and equations devel¬ 
oped for combined tension and shear 
are, of course, applicable in combined 
compression and shear. 

20*11. General Case (Plane Stress). 
It will be assumed that known axial 
stresses act at right angles and, in addi¬ 
tion, a shear stress acts on the planes 
normal to the axial stress lines. Such 
a condition is shown in Fig. 20* 20a. 
The procedure in constructing Mohr's 
circle and finding the maximum normal 
and shearing stresses is essentially the 
same as for combined simple tension 
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and shear. Points 1 and 2 are located as shown in Fig. 20*206 and the 
diameter of the circle is thus determined. Note that since J2 is shown 
as tension it is laid off in the same direction as f\. 

From the construction of Fig. 20* 20c the following equations may be 
derived. 

ft max — yj( ■■"■) + (/.) [20-10o] 
General plane 

stress 
f . =/i +h f 
Jn max-min 2 ^Ja max [20-106] 

Figure 20*206 shows that 

tan 26 = —=--- ---— 
i(/i -h) h -h 

[20-11] 

(Compare with Eq. 20*9) 

20*12. Examples of Combined Stresses (Joints). A simple applica¬ 
tion of the foregoing principles is found in the scarf joint, commonly used 

Joint 

fn=500 pii fs=500 pti 

f„ = 250 pii fs = 433 psi 

fn=67psi f s=250pti 

Fig. 20*21. Scarf joints. 

in joining wood members and in welding. Figure 20*21 shows joints 
made at different angles. Figure 20 • 21a represents a butt joint in which 
the joint is subjected to the maximum tension stress (taken as 1000 psi 
for illustration). Figure 20*216 shows a 45° joint and indicates that the 
normal stress across the joint (tending to pull it apart) has been reduced 
to half the value for (a). A shear stress has been introduced, however, 
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Scarf Wald 

Fish-Mouth Weld 

Fia. 20-22. Welds in tubing. 

Outside Flash 
Ground Off^ 

(b) Section through weld 

Fig. 20 • 23. Butt-flash weld. 

equal to the normal stress. In (c) and (d) both the 
normal and shear stresses have been further reduced 
by using a flatter angle for the scarf. 

If the joining material (such as glue or solder) is 
weaker than the basic material being joined, it is 
possible to obtain efficient joints by utilizing the scarf 
principle. In welded joints the same idea is usually 
applied, as the material in or near the weld may be 
weaker than the base material. Figure 20*22 shows 
typical welds used for aircraft tubing. 

Electric butt-flash welds will develop the full 
strength of the part if properly made; hence scarfing 
is not used in such cases. Figure 20*23 shows a 
typical butt-flash weld, including an enlarged view of 
a section through the joint. 

Bolts may be subjected to combined tension and 
shear as shown in Fig. 20*24. Equations 20*8 may 
be used to calculate the maximum normal and shear 
stresses, assuming a uniform stress distribution over 
the cross section. The breaking strength of a bolt 
under such conditions may be roughly predicted by 
fuming that failure will occur when either the 
mftyinrmm normal or shear stress reaches its breaking 

P 

Fig. 20*24. Com¬ 
bined tension and 

shear on bolt. 
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value for simple tension or shear, respectively. This is slightly on the 
unsafe side, however, due to interaction effects. (Some notes on allowable 
combined stresses will be found at the end of this chapter.) 

20*13. Combined Tension and Torsion. For members subjected to 
combined tension and torsion the maximum normal and shear stresses 
may be computed from Eqs. 20 • 8, as the directions of the applied stresses 

(c) 

Fig. 20 • 25. Combined axial load and torsion. 

are at right angles. Figure 20-25 shows such a loading condition. 

Assume that the values are as follows. 

From Eqs. 20*8, 

ft = 20,000 psi 

f8 = 10,000 psi 

=J( sassy + wow 

fn i 

= 14,160 psi 

20,000 
+ 14,160 

— 24,160 psi 
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From Eqs. 20-9, 

tan 2d 
2 X 10,000 

20,000 
1.0 

2d = 45° 

d = 22.5° 

These conditions are indicated in Fig. 20-256. The general direction 

of the maximum normal stress can be predicted by noting the direction 

of the diagonal tension stress corresponding to the applied shear stress, 
as shown in (c), instead of using the sign conventions previously de¬ 

scribed. Obviously the maximum tension stress will occur on the side 

where the two tension stresses combine. 
20*14. Combined Compression and Torsion. The maximum normal 

stress under this condition will be a compression stress. In thin-walled 

structures it is this stress which tends to cause buckling. It is therefore 

useful to have a means of calculating the maximum compression stress 

and the angle at which it acts. The methods used for combined tension 
and torsion may be employed. Since in a flat panel the sheet will tend 

to buckle or wrinkle along lines normal to the direction of maximum 

compression stress, the lines of wrinkling will tend to coincide with the 

minimum principal stress lines, which are always perpendicular to those 
for maximum normal stress. (This phenomenon often creates the 

erroneous impression that wrinkling is caused by the diagonal tension 

field.) 
20*15. Combined Bending and Shear. The formulas for simple 

bending, torsion, and transverse shear permit the separate calculation 

of the axial and shear stresses at any point on a cross section. Hence it is 

possible to find the maximum normal and shear stresses by combining 

the independent values in accordance with Eqs. 20-8. If hoop tension 

were also present, due to internal pressure, Eqs. 20*10 would be em¬ 

ployed. 
A beam of rectangular cross section has a variable distribution of 

both axial and shear stress (see Chapts. 13 and 17). Therefore the value 

and direction of the principal stresses will change acrqss the depth of the 

beam. Since the shear stress is zero at the outer edges the axial stress 

will be unaffected at this point. Likewise, the shear stress at the neutral 
avia will be unaffected by the bending stresses, which are zero in the 

neutral plane. 
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Figure 20-26 shows the variation of the maximum normal stresses 
over a cross section of a rectangular beam subjected to combined shear 
and bending. Note that the maximum axial stress still occurs at the 
outer fibers. 

Fig. 20 • 26. Normal stresses in rectangular beam under combined shear and bending. 

Figure 20-27, representing an I-beam, shows that the high shear 
stresses near the flange cause local normal stresses which exceed those 
computed for bending alone. Hence it is necessary to check the maxi¬ 
mum normal stresses by using Eqs. 20-8. The most critical region will 
be near the juncture of flange and web. 

20-16. Interaction Curves. Although it is not intended to cover, in 
this volume, the failure of materials under combined stresses, a brief 
description of the interaction curve method will serve as an introduction 
to this important subject. (The method was originally described* in 
Ref. 36 as the stress-ratio method, but the term interaction curve ap¬ 
pears to be more appropriate.) 

The basic principle is that the strength under one loading condition 
is affected by the presence of another superimposed loading condition. 
This principle is made more general by dealing with ratiost instead of 
actual loads or stresses. For instance, assume that a tube is subjected 
to a bending moment equal to half the ultimate bending moment for the 
tube. It is then possible to determine, by tests or other means, how 
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much torsion can be applied before failure occurs. This applied torsion 
can be expressed as a fraction of the ultimate moment for simple torsion. 
The ratio involved is, therefore, 

^_Applied load or stress_ 

Ultimate load or stress for simple loading 

In terms of stress, the two values for combined bending and torsion 
would be 

Rb = ~ [20-12a] 
r b 

R» = jr [20-126] 
r s 

where Rb is the stress-ratio for bending. 
R8 is the stress-ratio for torsion. 
fb is the applied bending stress. 
Fb is the allowable bending stress for simple bending (modulus 

of rupture). 
f8 and F8 correspond for torsion. 

If a number of tests are made at different values of Ri„ corresponding 
values of R8 at failure will be obtained. These values may then be 
plotted against each other to give the interaction curve, as indicated in 
Fig. 20-28.37 The area under this curve represents safe combinations of 
loading; the curve itself represents these combinations which will produce 
failure. The margin of safety for a given loading condition is indicated 
by the location of the point A, representing the condition with reference 
to the interaction curve. (If both loadings increase simultaneously this 
measurement should be made along a diagonal line through the origin, 
as shown.) 

This simple example almost completely explains the method. Further 
developments are concerned with the shape of the interaction curve, 
methods of expressing it mathematically, and equations for the margin 
of safety. One of the advantages of the method is that almost any 
theory of failure under combined loading can be expressed in the form 
of an interaction curve, usually with a considerable gain in simplicity. 

Another feature is that the interaction curve makes full use of the large 
amount of data available on failure under simple loading conditions, as 
the end points of the curve are established by these conditions. (Some 
theories of failure cannot be made to check the simple conditions as 
special cases.) As a result of this, the interaction curve is always quite 
accurate when one loading condition predominates, even though few 
data may be available on combined conditions. 
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Fig. 20 • 29. Mathematical interaction curves. 

20-17. Equations for Interaction Curves. The most convenient form 
for the equation of the interaction curve is 

Ria + R»h = 1.0 [20-13] 
where 1 and 2 represent two simple types of loading, a and b are ex¬ 
ponents which govern the shape of the curve. 
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Various curves ere shown in Fig. 20-29. When a and b each equal 
1.0, the curve is a straight line. When a and b each equal 2.0, the curve 
becomes circular. Other combinations give parabolas of various de¬ 
grees. As a and b become larger, the interaction curve approaches the 
two limiting lines J?i = 1 and R2 = 1, indicating complete lack of inter¬ 
action between the loading conditions. When a and b are less then 1.0, 
the curve approaches the other limits Ri = 0 and R2 = 0, indicating a 
high degree of interaction (usually involving secondary effects, as in 
combined compression and bending). 

20-18. Specific Cases. A few special illustrations will show the 
application to actual conditions. Figure 20*28 gave a curve for com¬ 
bined bending and torsion of tubing (see Figs. 15*6 and 12*14 for the 
strength in simple loading). 

Figure 20*30 shows a series of curves for steel bolts in combined 
tension and transverse shear. Note that these curves are given in terms 
of actual load, instead of stress. Such curves are convenient for routine 
calculations. The loading condition imposed is illustrated by Fig. 
20-24. 

Figure 20-31 shows a chart for the strength of tubing under combined 
axial compression and bending.38 In this set of curves the effect of 
secondary bending (Sec. 19 • 8) was not included in calculating the value 

of fb, hence the curves show a tendency to be concave downward as a 
result of secondary effects. (The bending moment was produced by 
transverse loading at the third points.) The factor B is a non-dimen¬ 
sional form of L/p, obtained by dividing the actual L/p by a standard 
value, (L/p)o, which is the value at which the Euler curve intersects 
the column yield stress. (Roughly equal to the yield stress in tension.)16 

In Fig. 20*31 the interaction curves do not all go through 1.0 for zero 
value of J?&. This is because the allowable compression stress was taken 
as the column yield stress, instead of the actual column stress obtained 
from the column formula (Eq. 19 • 12). If Fc were taken as the buckling 
stress for the column and if secondary bending were included in com- 
putingfb, the family of curves would tend to converge to a single straight 
line curve, given by the equation 

§-+^ = 1.0 [20-14] 
V c * b 

where fe « applied compression stress = P/A. 
fi/ ** maximum bending stress, including secondary effects. 

Fe buckling stress for the column. 
Ft, « modulus of rupture in simple bending. 
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Fig 20 30 Interaction curves for steel bolts loaded in shear and tension. 
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Fig. 20*31. Combined axial compression and bending of steel tubes (from Ref. 38). 

20-19. Interaction Surfaces. Equation 20*13 may be expanded to 
include a third loading condition, giving the equation of a surface. 

Rta + R2b + Rzc = 1.0 [20-15] 

For the case of combined bending, compression, and torsion the fol¬ 
lowing equation may be used. 

R, + Rb' + R.2 - 1.0 [20-16] 

where Rc = — as in Eq. 20-14 
r c 

Rb' = {f as in Eq. 20-14 

f8 _ Applied torsion stress 

9 F9 Allowable torsion stress 

Further discussion of this subject is beyond the scope of this volume. 
As noted in Ref. 2, the possibilities of the method have not been studied 
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exhaustively. Recent developments indicate that it majr be extended 
to include theories of failure of materials, as well as the failure of struc¬ 
tural parts. 

Reference 45 contains valuable information on the failure of materials 
under combined stresses. 

PROBLEMS 

20*1. A 24-in. diameter bolt is carrying an axial load of 15,000 lb. Find the 

normal and shear stresses on planes which make the following angles with the 

transverse plane: 10°, 25°, 35°, 50°, 05°. Plot these stresses against angle. 
(Use formulas to work this problem.) 

20-2. Assume that a certain structural material has an allowable shear stress 
of 20,000 psi but that its ultimate tension stress is unknown. What is the 
maximum ultimate tension stress that can possibly be expected? 

20-3. In a sheetmetal forming operation the sheet is subjected to a maximum 
tension stress of 20,000 psi in one direction and a compression stress of 10,000 psi 

at right angles. What is the maximum shear stress thus produced? (Calculate 
by formula and check by Mohr’s circle.) 

20-4. A 24-iu. diameter bolt is subjected to a direct tension load of 9000 lb. 

At the same time it is loaded by a transverse shear force of 3000 lb. Assuming 
a uniform shear stress distribution, find the maximum normal and shear stresses. 
Check by means of Mohr’s circle. 

20«5. A thin-walled shell is subjected to combined bending and torsion. The 

maximum axial stress due to bending alone is 20,000 psi and the shear stress due 
to torsion alone is 5000 psi. What are the maximum normal and shear stresses? 
What is the maximum shear stress at a point halfway from the neutral axis to 
the outside of the shell? (Measured normal to N.A.) 

20*6. In Problem 20*5 assume that a transverse shear force is added, such 
that the average shear stress due to transverse force alone is 3000 psi. What are 
the maximum normal and shear stresses at the neutral axis? 

20*7. Draw, on a single chart, a series of Mohr’s circles representing a constant 
tension stress of 10,000 psi along one principal axis and a series of stresses applied 
along the other axis, as follows. 

Tension (psi) Compression (psi) 

0 0 
2,000 - 2,000 
4,000 -4,000 
6,000 -6,000 
8,000 - 8,000 

10,000 -10,000 

Calculate the maximum shear stress for each condition and check on the chart. 
20 • 8. Draw a polar diagram of normal stress for the case in which the tension 

stress along one principal axis is one-third that along the other axis. 



PROBLEMS 347 

20*9. Select any material from Appendix 2 and draw, on the same chart, 
interaction curves for combined tension and shear loading, for the following 
assumptions: 

(a) Failure occurs when maximum normal stress equals ultimate 
tension stress. 

(b) Failure occurs when maximum shear stress equals ultimate shear 
stress. 

(c) Failure occurs in accordance with Eq. 20*13, using a value of 2.0 
for exponents a and b. 

• 

Note. Plot applied tension stress vertically and applied shear stress horizontally. 
Do not use ratios. Curves will show that Eq. 20*13 gives correct results for both 
simple loading conditions.) 

20*10. In Fig. 20 • 24 assign values to the bi It diameter and to the angle of the 
test jig (latter to be between 31° and 39°). Find the normal and shear stresses 
with respect to the plane of sliding, for a load of 10,000 lb. 



CHAPTER 21 

JOINTS * 

21*1. General. The design of joints is one of the most important 
structural problems, as the majority of failures occur at such points. In 
aircraft work many joints and fittings must be employed, not only to 
facilitate production, but also to provide changes of sheet thickness for 
greater weight economy. The importance of joint design has long 
been realized in the other branches of structural engineering. 

The primary objective in joint design is to utilize as fully as possible 
the basic strength of the parts being joined. The degree to which this 
is attained is often referred to in terms of joint efficiency. Thus a joint 
which is 90 per cent efficient will develop 90 per cent of the strength of 
the (weaker) member which it joins. Efficiencies of 100 per cent may 
sometimes be attained by careful design. Joints in sheet metal can¬ 
not be made 100 per cent efficient by any of the conventional methods. 
A detailed study of joint strength would require an intimate knowledge 
of stress concentration effects and theories of failures; hence the follow¬ 
ing notes will be confined largely to the simpler aspects of the problem. 

21-2. Types of Joint Failure. The common types of joint failure are 
shown in Fig. 21-1. Methods of calculating the strength for shear, 
hearing, and tension are covered by material already presented, as sum¬ 
marized below. The equations give the allowable loads. 

Shear. 
Load per rivet or bolt = A8F8 [21*1] 

where A8 = cross-sectional area of bolt. 
F9 = allowable shear stress of bolt material (Sec. 6*15). 

Bearing. 
Load per rivet or bolt = A&F& [21 *2] 

where A& = projected area of thinner sheet = Dt. 
Ft = allowable bearing stress for sheet or bolt (use lower) (Sec. 

6*14). 

* A complete discussion of this important subject is beyond the scope of this 
volume; this brief chapter has been included only to show the basic principles 
involved. 

348 
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greater edge distances (2}4 to 3 times rivet diameter). As noted in 
Fig. 21 -2c, edge distance is measured to the center of the rivet, not to 
the edge of the hole. 

21-3. Multiple Thickness Joints. In Fig. 21*3, (6) and (c) show 
common types of joints in which one rivet or bolt serves for several 
sheets or lugs. The total shear strength of the bolt is thereby increased 

(a) Single shear (b) Doable shear 
* 

(c) Multiple shear 
(finger type) 

Fig 21*3. Types of joints. 

by the number of different cross sections that must be cut when the bolt 
fails. Thus in Fig. 21*36 the shear strength of the rivet is doubled. In 
21*3c the bolt would have to shear off on six planes, unless the fitting 
failed in some other manner; therefore Eq. 21*1 would be multiplied 
by 6. This type of fitting permits the use of small diameter bolts. 

In the multiple thickness type of joint it is generally satisfactory to 
compute the bearing and tear-out strengths as the sum of the strengths 
of each sheet (in one direction of loading, of course). If any one sheet 
should be considerably weaker than the others, however, it would be safer 
to divide the load in proportion to the cross-sectional area of the sheets 
and then to treat each one separately. Eccentric joints must be treated 
in a different manner. 

21*4. Continuous Joints. In sheetmetal structures continuous joints 
are common, as indicated in Fig. 21*4. The analysis may be made by 

(a) Single row (b) Chain riveting (c) Staggered rivets 

Fig. 21 • 4. Continuous joints. 

considering a strip having a width equal to the rivet pitch p. Alterna¬ 
tively, an arbitrary width may be assumed (such as 1 in.) and the 
strength per inch of joint determined. (This may involve a fractional 
number of rivets per inch.) 
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Figure 21* 4c shows a staggered type of rivet pattern, often used when 
seam tightness is a primary consideration. In this type of joint the rows 
of rivets should be far enough apart to eliminate failure of the sheet 
along a diagonal line between rivets. In general, the distance between 
rows (b in Fig. 21 Ac) should be at least twice the rivet diameter. Even 
then the stagger will have an adverse effect on the flow of stress, causing 
some reduction in joint efficiency. (Because of this, the chain t}'pe of 
riveting in Fig. 21*45 appears to be more efficient than the staggered 
type, particularly for materials with relatively low elongation.) 

21*5. Joint Efficiency. If the minimum strength for a strip through a 
joint is found (as shown in Fig. 21 • 1), thr efficiency may easily be com¬ 
puted by calculating the strength of a srnp of the same width (using 
the thickness of the thinner sheet). If the failure should be by tension 
between rivets the efficiency v ould be given by 

Efficiency (tension) = K —-— [21*5] 
V 

where p = the pitch. 
D = the rivet diameter. 
K = a stress-concentration factor, usually assumed to be 1.0, but 

which sometimes may be lower (0.9 is approximately cor¬ 
rect for aluminum alloy.) 

The general idea in designing for high efficiency is to increase the cross- 
sectional area over the region in which it must be reduced by bolt or 

(a) IncreasQ (b) Increase (c) Additional 
in width in thickness plates 

Fig. 21*5. Methods of improving joint efficiency. 

rivet holes. This is possible ip single joints or fittings, as indicated in 

Fig. 21*5. 
Cover plates or doublers are frequently used in sheetmetal work, as 

shown in Fig. 21*6, which illustrates a flush type of joint (often required 
in aircraft). The doubler is used to provide greater strength in tear- 
out, bearing, and tension. The rivets attaching the doubler should be 
relatively small and not too closely spaced in order to avoid reducing the 
strength of the base sheet. The doubler may be scalloped to save weight 
as shown in Fig. 21*6. This type of joint is obviously eccentric and 
cannot be made as efficient as a symmetrical joint such as shown in 

Fig. 21-7. 



JOINTS 

IOO) 

Fig. 21-G. Flush type of joint. 

Outside surface 

Fig. 21*7. Joint with reinforcing doubler. 
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21*6. Rivet Groups (Concentric),* If several rivets are used in a 
group it is necessary to determine the distribution of load between them. 
This distribution will depend on the deflection characteristics of the 
members and the rivets. For a long row of rivets, such as shown in Fig. 
21 • 9a, it is customary to assume that the load is divided equally between 
rivets. Actually the load tends to be greater for the two end rivets, but 
a small amount of yielding will offset this. To obtain a more even dis¬ 
tribution of load between rivets the joint could be made as in Fig. 21*96. 
The principle involved here is that the cross-sectional area of the sheet 
should be reduced roughly in proportion to the rate at which the load 
is taken out of it. This results in more uniform stresses and avoids 

« a a g .i 
M (b) 

Fig. 21*9. Rivet rows. 

large differences in the stress in adjacent sheets. Such stress differences 
cause different amounts of strain; these high relative strains are resisted 
by the adjacent rivets and produce high loads in them. (Figure 21.96 
would be impractical for most sheetmetal joints, but may be used for 

fittings.) 
In the foregoing discussion it was assumed that the load passes 

through the centroid of the rivet group, giving a symmetrical loading. 
If it is further assumed that each rivet resists deformation in proportion 
to its minimum strength (in shear or bearing), it is satisfactory to add 
the strength of all the rivets, even if they are not of the same size. (This 
assumption may not be valid if large stress differences between the 
joined parts cause one or more rivets to be greatly overloaded.) 

21*7. Eccentric Rivet Groups. Fittings and joints must frequently 
transmit turning moments. Any eccentric loading may be resolved into 
an axial load and a turning moment, as shown in Fig. 21 * 10. The prob¬ 
lem is to find the center of resistance for the rivet group. This center 
may be defined as the point about which the two joined parts could be 
rotated (relatively to each other) without inducing an axial resultant 
force, i.e., the resistance must be a couple, or its equivalent. The prob¬ 
lem is therefore similar to that of torsion or bending; in fact, the same 
basic methods may be applied by considering each rivet to represent a 

* The following discussion also applies to bolts, pins, etc. 
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resisting element, just as elements of cross-sectional area were assumed 
to resist bending or torsion. 

To simplify the problem it is customary to assume that the resistance 
to deformation is proportional to the cross-sectional area of the rivet, 
or to its diameter, or to its minimum strength in shear or bearing. None 
of these assumptions is strictly true, but the last one probably gives the 
best all-round results. Usually, however, failure will occur by shearing 
a rivet, so it is common to use cross-sectional areas in computing the 
resistance. (If all the rivets are the same size the use of diameters or 
areas will give identical results ) 

Fie 21 * 10. Eccentric rivet group. 

Figure 21 • 10a shows a rivet group under eccentric loading. The rivets 
(or bolts) are assumed to be of the same size. The centroid of the group 
can be located by inspection, because of symmetry. The eccentric mo¬ 
ment obviously equals Pd. The axial load is equally divided between 
rivets, as shown in (6). In (c) are shown the individual rivet loads 
resisting the turning moment. These will act normal to a radius line 
joining the rivet and the centroid. The moment resisted by each rivet 
is equal to the rivet load Pm times its moment arm. In this particular 
case the loads and moment arms (r) are the same for all rivets; hence 
the value of Pm may be found from the equation 

4Prnr = M = Pd 

The resultant load from each rivet is found by vector addition, as 
shown in (d). Note that in this example the rivet nearest the applied 
force carries the largest load, while the load on one rivet reverses in 
direction. 

In the more general case the center of resistance must be found as 
for a cross-sectional area (Sec. 7*6). If it is assumed that the resistance 
to deformation is equal to the cross-sectional area of the rivet the cen¬ 
ter of resistance will be located at the centroid of the rivet areas. This 
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is found by the usual method of multiplying each area by its distance 
from a base line, adding these products, and dividing by the total area. 
The distance, do, in Fig. 21*11 would be found from the equation 

A \Xi + A2x2 + • • • + A7x7 2Ax r_ 

*-Al + A,+... + A, ’ll 

(If the pattern is unsymmetrieal about both axes another computation 
must be made for the Y- Y axis.) 

Fig. 21-11. Calculation of rivet loads. 

The direct load resisted by each rivet will be given by 

_ A i _ 

Pdl = 2AP 

Pd2 = ~ P, ctC. 

[21-7] 

For rotation about the c.g. the deformation of each rivet is pro¬ 
portional to its distance (r) from the c.g. Hence the moment resisted by 
each rivet will be 

Air,2 
Mi 

Ma = 

2dr* 

d2r22 

2 Ar2' 

Pr0 

[21-8] 

Pr0, etc. 

where r is the radius from rivet center to c.g. 

The loads due to moment will therefore be 

Pm\ — 
Mi diri 

n 2dr2' 

Ma _ A2r2 

r2 ~ 2dr2' 

The final loads are found by vector addition of Pd and P„. 

Pm 2 = 

Pro 

Pro, etc. 

[21-9] 
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If all the rivets are of the same size, i.e., if they have the same resist- 
ance to deformation, the area terms cancel out in Eq. 21*6, giving a 
simpler equation 

do 
^ 1 + *2 + * * ‘ + X7 2* 

n 
[21 * 10] 

where n = number of rivets. 

The loads are then given by 

(for each rivet) [21-11] 

Pro (etc.) [21 • 12] 

21*8. Location of Centroid (Graphical Method). A convenient method 
of locating the centroid of a rivet group is shown in Fig. 21-12. If 
all the rivets (or bolts) are of the same size, it is possible to find the 
centroid progressively by adding one rivet at a time. First, any two 
rivets are joined by a line and this is bisected to determine the centroid 

Fig. 21-12. Graphical location of centroid of rivet group. 

of these rivets. This centroid is now connected to a third rivet and 
a point is located one-third of the distance from the centroid. This point 
is now connected with a fourth rivet and a point located one-fourth of the 
distance along the line, and so on until all the rivets have been included. 

This method is useful in preliminary work and in checking, particularly 
if the rivet pattern is irregular. Relatively accurate results may be 
obtained by estimating the divisions of the lines by eye. The methods 
could, of course, be extended to cases in which all the rivets are not of 
the same size, by taking into account the relative areas (or diameters, 
or strengths). 
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PROBLEMS 

21*1. Draw a sketch of a single row lap joint between two aluminum-alloy 
sheets, 0.040 in. thick, using in. diameter rivets and assigning any desired 
spacing and edge distance. Use the following data: 

Ultimate tension stress for sheet = 60,000 psi 
Ultimate shear stress for sheet = 40,000 psi 
Ultimate bearing stress for sheet and rivets = 90,000 psi 
Ultimate shear stress for rivets = 3,>,000 psi 

Allow 10 per cent for stress concentration between rivet holes. 

(а) Find strength per inch for the four possible types of failure. 
(б) Calculate joint efficiency. 

21-2. Assign any desired dimensions to the lug shown in Fig. 21-26 and cal¬ 
culate its minimum strength in tension, bearing, and tear-out. Use any material 
listed in Appendix 2. 

21 -3. Design a lug for a %-in. diameter bolt which will just develop the shear 
strength of the bolt. Assume bolt to be heat-treated alloy steel and lug to be 
aluminum alloy. Use properties given in Appendix 2. Lug to have shape of 
Fig. 21-26. 

21-4. Assign arbitrary dimensions to the fitting shown in Fig. 21-10 and 
assume that P = 1000 lb. Find the direction and magnitude of the load on each 
rivet. 

21*6. Modify the fitting of Problem 21-4 by adding another bolt at the cen¬ 
troid of the group. Find load on each rivet. What percentage reduction 
resulted, for most highly loaded bolt? 

21*6. Draw a fitting such as shown in Fig. 21 • 11 and assign values to dimen¬ 
sions. Assume that bolts 1, 2, 6, and 7 are J^-in. diameter and bolts 3, 4, and 5 
are JKe in. diameter. Load P = 50,000 lb, acting at 30° from vertical. Find the 
load on each bolt (based on relative areas). 

21*7. Work out Problem 21-6 using bolt diameters as basis instead of bolt 
areas. 

21*8. Check centroid location in Problems 21-6 and 21-7 by method of 
Fig. 21 • 12, modifying it to account for difference in bolt sizes. 
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TABLE 11 

A * area 
lx - moment of inertia about principal axis X-X 
ly = moment of inertia about principal axis Y-Y 
lx = moment of inertia about any axis N-N 
Qn — static moment about axis N-N 

p ~ radius of gyration = 

Z
 

X
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APPENDIX 1 

TABLE 1-3 

Properties of Round Bar 

This table gives the most commonly used section properties of round bar. O.D. 
refers to outside diameter, Z is section modulus. As is equivalent shear area (divide 

transverse shear load by A, to obtain maximum shear stress at neutral axis). 

O.D. A p 7 Z A, 

i .01227 .03125 .000012 .000192 .00920 
i .04909 .06250 .000192 .001534 .03682 
i .1104 .09375 .000971 .006177 .08280 
i .1963 .1250 .003068 .01227 .1472 
$ 8 .3068 .1562 .007490 .02397 .2301 
1 .4418 .1875 .01553 .04142 .3314 

l .6013 .2188 .02877 .06577 .4510 
1 .7854 .2500 .04909 .09817 .5891 
U 1.227 .3125 .1198 .1917 .9203 
H 1.767 .3750 .2485 .3313 1.3253 

11 2.405 .4375 .4604 .5262 1.8038 
2 3.142 .5000 .7854 .7854 2.3565 
21 3.976 .5625 1.258 1.118 2.982 
21 4.909 .6250 1.917 1.534 3.6818 
21 5.940 .6875 2.807 2.042 4.4550 
3 7.069 .7500 3.976 2.651 5.3018 
31 9.621 .8750 7.366 4.209 7.2158 
4 12.57 1.000 12.57 6.283 9.4275 
41 15.90 1.125 20.13 8.946 11.9250 
5 19.63 1.250 30.68 12.27 14.7225 
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TABLE 1-7 

Areas and Centroids of Rounded and Filleted Corners 

371 

Deoi- Fractions of inch y 
p 1=0.0075 

_!\J_ 

.078 

.094 

.109 

.125 1 

1.000 8 

Area u Area X 

.00019 .00663 .00005 .00349 

.00077 .01326 .00021 .00698 

.00173 .01989 .00047 .01047 

.00307 .02663 .00084 .01396 

.00479 .03316 .00131 .01745 

.oorno .03979 .00189 .02094 

.00940 .04642 .00257 .02443 

.01227 .05305 .00335 .02793 

.01553 .05969 .00424 .03149 

.01918 .06631 .00524 .03491 

.02320 .07295 .00634 .03840 

.02701 .07958 .00754 .04189 

.03241 .08621 .00885 .04538 

.03758 .09284 .01027 .04887 

.04314 .09947 .01179 .05236 

.04909 .10610 .01341 .05585 

.05542 .11274 .01514 .05934 

.06213 .11937 .01698 .06283 

.06922 .12600 .01891 .06632 

.07670 .13263 .02096 .06981 

.08456 .13926 .02310 .07330 

.09281 .14589 .02536 .07679 

.10143 .15252 .02772 .08028 

.11045 .15915 .03018 .08378 

.11984 .16579 .03275 .08727 

.12962 .17242 .03542 .09076 

.13978 .17905 .03819 .09425 

.15033 .18568 .04108 .09774 

.16126 .19231 .04406 .10123 

.17257 .19894 .04715 .10472 

.18427 .20558 .05035 .10821 

.19635 .21220 .05365 .11170 

.24850 .23870 .06790 .12565 

.30680 .26530 .08383 .13961 

.37120 .29180 .10143 .15357 

.44180 .31830 .12071 .16753 

.51850 .34480 .14167 | .18149 

.60130 .37140 .16430 .19545 

.69030 .39790 .18862 .20940 

.78540 .42440 .21460 .22340 
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TABLE 2*1 

Material Properties 1—Metals 

Low-Carbon 
Steel 

Alloy Steel 
(Aircraft 
Type) 

Alloy 
Steel Heat 
Treated to 
150,000 psi 

U.T.S.3 

Aluminum 
Alloy 
(High- 

Strength 
Sheet) 

Magnesium 
Alloy 
(High- 

Strength 
Sheet) 

Modulus of elasticity, psi 28,000,000 29,000,000 29,000,000 10,000,000 6,500,000 
Ultimate tension stress, psi 55,000 90,000 150,000 68,000 40,000 
Tension yield stress,2 psi 36,000 70,000 135,000 50,000 32,000 
Ultimate shear stress, psi 35,000 55,000 90,000 42,000 20,000 
Ultimate bearing stress, 3 psi 90,000 140,000 190,000 98,000 60,000 

Endurance limit, 4 psi 25,000 45,000 78,000 18,000 12,000 

Specific weight, lb/cu in. 0.2833 0.2833 0.2833 0.100 0.065 

1 These values are representative of several classes of materials, but do not necessarily agree exactly 
with government specifications which are subject to change. In actual design work the proper work¬ 
ing stresses should be obtained for the particular material being used. Stresses listed here are mini¬ 
mum values likely to be obtained for the type of material noted, but have not been further reduced 
to provide any additional factor of safety. 

2 Stress at 0.002 permanent set. 
3 Nominal value, based on smull deformation of hole or pin. 
4 For complete stress reversal. Based on bending tests of 300,000,000 cycles or more. 
6 Typical heat treatment for high-strength Bteel parts. Lower and higher values also used. 

TABLE 2 2 

Material Properties 1—Wood 

Hardwoods (White Softwoods Softwoods 
Ash, Beech, Birch, (Pine, (Spruce, 
Hickory, Maple, Cypress, Hemlock, 

Oak) Fir) Cedar) 

Modulus of elasticity, psi 1,600,000 1,600,000 1,200,000 
Modulus of rupture (bending), psi 
Ultimate shear stress, psi (parallel 

16,000 11,000 9,000 

to grain) 1,400 800 700 
Ultimate compression stress, psi 

(parallel to grain) 
Ultimate compression stress, psi 

7,000 6,000 5,000 

(perpendicular to grain) 1,800 1,100 900 
Specific weight, lb/cu in. 0.026 0.019 0.015 

1 Mechanical properties of woods vary widely and are affected by moisture content, 
duration of loading, and other factors. The values listed are representative of several 
types of wood and may be used for approximate calculations. More complete data 
may be found in engineering handbooks and structural texts, for instance, Modem 
Timber Design, by Howard J. Hansen (Wiley, 1943). 
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Non-Dimensional Beam Curves 

The following tables contain useful information on different types of beams 
under various loading conditions. The data have been converted into non- 
dimensional form by using unit values for distances and loadings. To convert 
back into dimensional form the values given in the curves or table should be 
multiplied by certain quantities, indicated in the group of equations at the top 
of each table. The center group of equations simply indicates the basic form 
of the non-dimensional curves. 

In working with a beam of a certain span it will be found convenient to divide 
this length into 10 equal divisions and to use the values given in the lower right- 
hand table. 

The particular conventions shown have l>een adopted in order to obtain con¬ 
sistency in the equations and charts. 

For example, if it is desired to find the deflection of a 20-ft beam at a distance 
8 ft from the left end the value of xo would be x/L - 8/20 = 0.40. For a simply 
supported beam with uniform loading Table 3-6 would be used. The value yo 
would be found, from the lower graph or table, to be equal to 0.0125. This 
would be substituted in the equation for y, in the upper right-hand set of equa¬ 
tions, together with the known values of loading (w), length (240 in.), modulus 
of elasticity (E), and moment of inertia (/). 
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TABLE 3-2 

Beam Cukves 

(N on-dimensional) 

Cantilever Beam—Concentrated Load 

*o 

El El M0 ©0 y0 
[A -1.0 1.0 0 0 

eh ■ m VTM irwni 
ES3 ■ 0.8 Dm rcrcra 
ESI ESI Firm py«?r»H 
PH 0.6 EEEEI 
EB 0.5 0.375 

ED 0.4 0.420 0.7440| 

E3 ram 0EO 
EH MEM ECU 
EQ ■ m 0.1 ran eezeo 
ffl zl* o f-lfl'M beeeh 
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TABLE 3-3 

Beam Curves 

(Non-dimensional) 

Cantilever Beam—Uniform Running Load 

W=7 lb /in. 

-x<r 
-i0=j.°- 

x0 

B wm M0 e0 Yo 

[E -1.0 eezii 0 0 

EH cm SEES 
TO -0.8 txm nfiTTFl nrTTn 

TO ESI EE3 M'ftH 
Ml D23 Em FTfFEI 2EED 
m m 0.125 'ffH 

Bza nrrra Film EESS 
VkA EEXl MffH BKKEfl 
r»y i ESEM fl-VM Firm r>THD 

m bh E5EE 
DO 0 0022 2523 



APPENDIX 3 

TABLE 3-4 

Beam Curves 

(Non-dimensional) 

Cantilever Beam—Uniformly Decreasing Load 

+w +S +M +v 

Conventions 

x = x0L 
n wL 
Ri = ~ T 

wL2 
ML=f 

S=S0wL 

M=M0wL2 

e=e07r 

y=Yow 

unman 
ra main ■■■ 

iimn 

Sn=”T + *0 5T 

M = -L- /VI(T 6 2 ' 2 6 

« — fP—fp . fo__lo 
W0~ 6 4 T 6 24 

.2 3 
y — fo, 
7o— 72 12^24 120 

m 

ESlSES^EHEEBS^^j 

CHHiESCJEEaCEDaCESI 
CaSESEQK]K]Em 
EEBHESCZESaEilSilEEISl 
msmmMmnmm 
TOmrrorxTTnnrTmPirnTi 
manS3EEIDCE3SEEE3 
mmr^PT7T7it.)r-?fanr:>T-7i 
nnM*rarT'?mr»'Hfi 



APPENDIX 3 



APPENDIX 3 379 

TABLE 3*6 

Beam Curves 

(N on-dimensional) 

Simple Beam—Uniform Running Load 

[jfs ra Mo ©0. y<> 

E -0.5 0 0.0416 0 

EU BED 0.0394 iraPRHi 

EB bbeeb 0.0330 

EB H23 heseb 0.0236 M-1kM 
EES B3f>lTTl 0.0124 nwn 

0.5 o -0.125 o 1 EBE3 
EE HU jjjrjjjjTj enron 
09 BEH -0.0236 

(23 B-B'TI ESH3 
GE KS3 -0.045 fWT-H'l 
EE] my 0 Biinnn 0| 
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0.025 

e0 
0.005 

0 

— 0.025 

TABLE 3-7 

Beam Curves 

(Non-dimensional) 

Simple Beam—Uniformly Decreasing Load 

Wq- 1 to/ in. wo y j- 
"7T a o *0= 

■w +S +M +y 

t piCcS) t 
Conventions 

x=x0L 

R-—— »<i~ 3 
wL 

S=S0wt 

M=M0wL2 

wl3 
O=0oTf 
_ wH 

y y0 £/ 

, 2 
C_1 , v *0 
5o~ y + x0 —— 

2 3 
ii   xo , x0 x0 
Mo-3 t ~2—"gT 
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APPENDIX 3 

TABLE 3-8 

Beam Curves 

(N on-dimensional) 

Fixed-End Beam—Concentrated Load at Mid-Point 
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ANSWERS TO PROBLEMS 

CHAPTER B 

UP,- 2266 lb, Pv - 1056 lb. 
2-2. Px - 6428 lb, P, = 7660 lb. 
8.4. Pr = 9785 lb. 
2-5. R = 125 lb, ? = 1.2 from 75-lb load. 
2-6. Pr = 18,300 lb, 7.87 in. to right of A, 43° 17' from X-X axis. 
2-7. Pi = +600 lb, P„ = +1970 lb, P, -= -3180 lb. 
2-10. 50%. 
2-13. Sto = 630 lb, St& = 130 lb. - 230 lb, Sn = 35.7 lb. 
2-15. P, = +23,890 lb, Mx = 4^5,000 in.-lb, P„ = -5940 lb. 
2-16. 1131 lb. 
2*17. 849 lb vertical. 100 lb lateral. 
2- 18. P, - 10,195 lb, Pi = 234 lb. 

CHAPTER S 

3- 1. Axial load at A = 1378 lb. 
3-2. Pi - 0, P„ = -12,500 lb, P, = +21,650 lb; M, « 246,500 in.-lb, My 

86,600 in.-lb, Mz = 50,000 in.-lb. 
3-3. At A, T = 2516 in.-lb, M - 10,000 in.-lb. At B, T - 3752 in.-lb, M 

10,000 in.-lb. At C P = 3360 in.-lb, Af = 10,000 in.-lb. 
8-4. Point A: P = 0, S = +1000 lb, M = 0. 

Point B: P = 707 lb, S = 707 lb, M = 14,140 in.-lb. 
Point C; P = 1000 lb, S = 0, M = 20,000 in.-lb. 
Point D: P = 707 lb, S = -707 lb, M = 14,140 in.-lb. 
Point E: P = 0, S = 1000, Af = 0. 

3-5. Point A: P = 1000 lb, S = 0, JW = 0. 
Point B: P - 707 lb, S = -707 lb, M = -5860 rn.-lb. 
Point C; P = 0, S = -1000 lb, M = -20,000 lb. 
Point D: P = -707 lb, S = -707 lb, M = -34,140 in.-lb. 
Point E: P = -1000, S = 0, M = -40,000 in.-lb. 

8-6. Point A: P = 900 lb, S - 500 lb, M = 0. 
Point B: P = 990 lb, S - -283 lb, M - +1790 in.-lb. 
Point C: P = 500 lb, S = -900 lb, M = -8000 in.-lb. 
Point D; P - -283 lb, S - -990 lb, M « -23,630 in.-lb. 
Point E: P - -900 lb, S » -500 lb, Af «= -36,000 in.-lb. 

8*7. Point A: M *» 0, T - 0. 
Point B; M = 14,140 in.-lb, P •= 5860 in.-lb. 
Point C: M = 20,000 in.-lb, T — 20,000 in.-lb. 
Point D: M = 14,140 in.-lb, P == 34,140 in.-lb. 
Point E: M — 0, T *= 40,000 in.-lb. 

313. Mc = 0.645Af, Afs - 0.430M. 
8*14. Me m 1.290M, Mb « 1.376M. 

383 



384 ANSWERS TO PROBLEMS 

CHAPTER 4 

4-1. Shear - -148.4 lb, M = +539 in.-lb. 
4*2. Nose wheel = 13,750 lb; main wheel = 15,000 lb per wheel. 
4*3. A = 94o lb aft, B = 1215 lb forward. 
4-4. Sb - —55.7 lb, MB = -427.1 lb. 
4-5. T = 1900 in. lb. 

CHAPTER 5 

5*1. (a) Members OD, DB, Z)P, PB are determinate; others indeterminate. 
(b) No. (c) Yes. 

6-2. (a) Yes. (6) Yes. (c) No. 
6*3. (a) Determinate; one-half. (5) Determinate; zero, (r) Determinate; three- 

fourths. (d) Mechanism; load cannot be carried. 

CHAPTER 6 

6-1. 0.0417 in. 6-4. s - 6.92 in. 
6*2. Aluminum alloy. 6*13. 7200 psi tension. 
6*3. (a) 20.033 in. (6) 47,075 psi. 

CHAPTER 7 

7-1. (a) Yes. (6) No. 
7*2. Diameter = 0.521 in. 
7-3. (a) x = 1.970, y = 1.095. (b) Steel, (c) 299,000 lb. 
7-4. (a) 12,000 psi. (6) 6000 psi. 
7-8. (o) 1922 psi. (6) 4700 psi. 
7-9. 382 lb/ft. 
7-10. 56,4001b. 

CHAPTER 8 

8-2. 58.9%. 

CHAPTER 10 

10-1. AL = 0.0184 in. 
10-3. (a) =0.000866 in. (5) =0.000613 in. 
10*4. t = 0.0303 in. (min). 
10-5, (a) 0.3150 degrees. (b) 0.264 in. 
10*6. = 0.004 radians. (a)/* = 44,000 psi. (b) f8 = 10,000 psi. 
10-9. q = 480 lb/in., / = 0.040 (min). 
10*10. Same. Truss twice as heavy as web. 

11*1. /, = 10,000 psi. 
11*3. /, = 5000 psi. 
11*5. q = 34.5 lb/in. 

CHAPTER 11 

11*8. 8 = 0, M - 2wR?q, 

11*9. (o) irr/2. (6) 2a. (c) a. (d) + 
2 

CHAPTER 12 

12*2. (a) Same, (b) Weight of square tube = y/2 times weight of round tube. 
12*4. q — 104, t = 0.0208 (min). 12*6. 1.05 degrees. 
12*5. 151,000 in.-lb. 12*7. 6.61 degrees. 
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12*8. (a) For 0.020, fa - 9950 psi; For 0.040, /, « 4975 psi; For 0.080, /« * 
2488 psi. (6) 0.0450 in. 

12*9. (a) Low-carbon steel, 1.427 in.; alloy steel (normalized), 1.2$7 in.; alloy 
steel (H.T. 150,000), 1.043 in.; aluminum alloy, 1.342 in.; magnesium alloy, 1.720 in. 

12*12. f8 = 22,200 psi. (a) 41 degrees. (6) 119 degrees, (c) 183 degrees. 
12*13. Low-carbon steel, 12,900 in.-lb; alloy steel, 21,100 in.-lb; H.T. steel, 

35,150 in.-lb; aluminum alloy, 15,940 in.-lb; magnesium alloy, 9380 in.-lb. 
12*14. 1% X 0.035 tube. 

CHAPTER IS 

13*1. 3000 lb each. 
13*2. (a) .1034. (b) .329. 
13*3. (a) .931 in. (b) 0.987 degree. 
13*4. Tension area 0.1042 in.2. Compression area 0.1607 in.2. 
13*5. (a) 1800 lb each. (5) 0.0397 tension area; 0.0675 compression area. 
13*11. fb = ±86,920 psi. A = 0.4999; / - 0.2300; Z = 0.2301. 

CHAPTER U 

14*2. 0 psi, ±1610 psi. 

CHAPTER 1~> 

16*1. (a) Mx = 719,000 in.-lb, Mv « 93,300 in.-lb. (6) lx = 105.3 in.4, Iv = 
7.59 in.4, A - 8.30 in.2. 

15*2. (a) fb = 90,900 psi. (6) fb = 30,400 psi. 
15*3. 98,300 in.-lb. 
15*4. (a) Mx m 1,296,000 in.-lb, My = 108,000 in.-lb. (6) Ix = 183.2 in.4, 

Iy - 12.15 in.4, A « 16.67 in.2. 
15*6. (a) fb - 50,600 psi. (6) fb = 18,000 psi. 
16*6. With rods, A = 386.5 in.2, y = 14.10 in., Ix = 31,200 in.4. Without rods, 

A - 360 in.2, y = 15 in., /* = 27,000 in.4. 
15*7. M = 812,500 in.-lb,/,. = 392.5 psi. 
15*9. (a) 5% under, (b) 5% under, (c) 8% over, (dj 19% over, (e) 9% over. 
15*11. 667 lb compression. 
15*12. 

9 P 

5 3,485 
10 6,975 
15 10,440 
20 13,900 

CHAPTER 16 

16*1. (a) .001042. (b) .000359. (c) .000632. 
16*2. (a) 1.42 in. (b) 1250 in.-lb. 
16*3. 181 in. 
16*4. (a) 48.3. (6) 0.517%. 
16*5. 1800 in. 
16*7. 3.82 degrees. 
16*9. 0.2292 deg/in., 0.80 in. 
16*10. (a) 765 in. (6) 1.046 in. 
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16*11. Steel beam is 1.45 times as stiff. 
16*12. 2/Alum ~ 1.008ysteel* ^Alum ~ l*2O70gteel* 
16*13. (a)'y - 16.0 in., P - 356 lb. (b) y - 32.0 in., P - 178 lb. 
16*14. (a) y - 4.00 in., P * 1422 lb. (6) 2/ - 8.00 in., P - 711 lb. 
16*15. 6.84 in. 16*17. (a) 74. (5) 123.2. (c) 24.6. 
16*16. 58.9 ft. 16*18. 0.309 in. 

CHAPTER 17 

17*4. 12,720 psi. 
17*6. (a) 62.5 psi. (5) 62.5 psi. (c) 55.6 psi. 
17*6. 0.120 in. 
17*9. q = 31.8 lb/in. at loaded end, q = 14,1 lb/in. at mid-Bection, q = 7.9 lb/in. 

at supported end. 

CHAPTER 18 

18*2. 1031b. 

CHAPTER 19 

19*2. Circle of radius — R/4. 19*3. Circle of radius - P/2. 

19*4. 6 Axial Shear omen* Jn /. 
45° -.707P .707P 2.64P -1.093P .1333P 
90° 0 P 9.00P 3.392P .1887P 

135° .707P .707P 15.36P 5.89 P .1333P 
180° P 0 18P 6.93P 0 

19*5. (a) 0.608 in.4. (b) 0.0252 in.4, (c) 0.073 in.4. 
19*6. (a) 1.88 in., 2.77 in.2; 0.847 in., 0.563 in.2; 1.104 in., 0.958 in.2. (6) 2.614 in., 

0.087 in.; 1.178 in., 0.0393 in.; 1.538 in., 0.0512 in. 
19*7 (a) / - 180 psi, long column; / = 880 psi, long column; / = 522 psi, long 

column. (5) / = 698 psi, long column; / = 3440 psi, long column; / — 2020, psi 
long column. 

19*9. (a) 0.2026 in.4) 
(b) 0.0084 in.41 (One-third values of Prob. 19.5.) 
(c) 0.0243 in.4 J 

CHAPTER 20 

Angle Normal stress Shear stress 

10“ 32,900 5,810 
25“ 27,850 13,000 
35“ 22,750 15,960 
50° 14,020 16,750 
65° 6,060 13,000 

20*2* Ft * 40,000 psi. 
20*3. /. ® 15,000 psi. 
20*4* /» ** 22,430psi,/* - 12,250 psi. 
20*5. /» ** 21,180 psi, /* * 11,180 psi, /* 
20-6* A * 11,000 psi,/* » 11,000 psi, 



INDEX 

Aluminum alloy, properties of, 372 
stress-strain diagram for, 94 

Analogy, hydraulic, 55 

membrane, 190 

Analysis, graphical, 136, 137, 148 
Angle, of resultant force, 16 

of twist, 184 

Area, centroid of, 117 

effective, 119, 232 
first moment of, 117 
reduction of, 99 

second moment of, 206 
transformed, 240 

Assumptions, 62 
in bending theory, 203 

in tension theory, 113 

in torsion theory, 186 
overlapping, 81, 82 

simplifying, 86 
Axes, principal, 217, 333 

reference, 5 
rotation of, 35 

Axis, load, 27 

neutral, 207, 208, 225 
of rotation, 20 

of zero stress, 225, 306 
structural, 47 

Bars, non-circular, 189 
rectangular, torsion in, 192 

unsymmetrical bending of, 226 

torsion in, 186 
Beam-columns, 309 
Beams, 199 

box, analysis of, 227 

cantilever, 45 
composite, 233 

curved, 238, 307 

correction factors for, 241 

radial loads in, 242 
transformed section for, 240 

fixed-end, 268 

lion-connected, 283 

Beams, non-dimensional curves for, 267 
reinforced concrete, 233 
shear stress in. 280 

simple, 264 

solid, 211, 278 
tapered, 284, 288 
web type, 131 

Bearing stress, 102 

Bond radius, minimum, 254 
Bending, 46, 199 

general method of analysis, 'I'll 
induced, 308 
local conditions in, 245 
non-dimensional curves for, 267 
plastic, 235 

secondary, 309 

theory of, 203 
unsymmetrical, 217, 222 

unsymmetrical factors for, 224 

Bending and axial loading, combined, 305 
Bending and shear, combined, 274, 339 
Bending and torsion, combined, 342 

Bending deflections, 251, 270 

Bending moment, effective, 221, 224 
Bending moment diagram, 47 
Bending, shear, and torsion, combined, 

48 
Bending stress, allowable, 236 
Bolts, loaded in shear and tension, 337, 

344 

Bow’s notation, 14, 75, 141 
Bridge, suspension, 114, 116 
Buckling, 102, 157, 234 

Cable, 111, 114, 115 
Cantilever beams, 54 
Catenary, 114 

Center, of curvature, 251, 252 

of gravity, 119 

of resistance, 119 
shear, 301 

Centroid, of area, 117, 118, 208 
of rivet group, 356 

387 



388 INDEX 

Channels, shear centers of, 302 
Checking, methods of, 68, 74, 139, 142 

Classification of forces, 41 

Coefficient of expansion, 105 
Coefficient of fixity, 317 
Cold working, effect of, 108 

Columns, 310 

end fixity effect, 317 
equation for stress, 310 

Euler equation for, 312 

short, 314 
Components, 6, 40 
Compression, 41 

combined with bending, 309, 343 

combined with torsion, 339 
stress, 100 

Concentration, stress, 121 

Constraint, 83, 105, 185 
edge, 105 

end, 316 
Contraction, lateral, 100 

Conventions, 5, 25, 69 

for airplane analysis, 227 
for axial loads, 41 
for bending, 46 

for shear, 42 

space type, 42 
Cosines, direction, 9 

Couples, 12, 20, 73 

Creep, 104 
Cross, Hardy, 240 

Cross section, 
abrupt changes of, 300, 301 

method of cutting, 229 

transformed, 232, 239 
Curvature, abrupt, 244 

computation of, 260 

effects of, 307 
radius of, 124, 251, 252, 254, 256 

Curves, interaction, 340, 342 

Cut-outs, 246, 301 

D-tube, 293 

Deflection, bending, 251, 256 
conventions for, 266 
in pure shear, 154, 160 
maximum, 265 

measurement of, 263 
of beams (tables), 373 

of cantilever beam, 263 

Deflection, of shear frame, 152 
of simple beam, 265 

torsional, 182 

Deformation, permanent, 97, 98 
Diagrams, bending moment, 373 

shear, 373 

stress-strain, 94 

Direction cosines, 17, 138 
Discontinuity, effects of, 300, 301 

Eccentricity, joint, 308 
Effectiveness factor, 232, 240 

Efficiency, in bending, 213 
in torsion, 183, 192 

of joints, 351 
Elastic curve, equation of, 260 

Elastic limit, 97 

Elasticity, modulus of, 95, 96, 108 

Elongation, 93, 98 

End fixity, 316 
Endurance limit, 100 

in shear, 196 

Equilibrium, 10 
equations of, 56, 58 

static, 54, 56 
Euler equation, 312, 314 

Factor, effectiveness, 119, 232 

of safety, 4 

stress-concentration, 121 
unsymmetrical, 224 

Failure, in compression, 101 

in torsion, 195 

under combined loading, 340 

Fatigue, 100 
Fittings, 308 

Flanges, forces in, 201 
Flexure, see Bending 

Flexure formula, 204, 205 
limitations of, 230 

Flow, shear, 159 
Formula, hoop tension, 113 

transfer, 210 

Force polygon, 10, 113 
Forces, addition of, 9, 15 

axial, 41 
classification of, 40 
concurrent, 11 
designation of, 5 

effect on structure, 21, 40 
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Forces, non-concurrent, 11, 23 

non-parallel, 69 

radial, 243, 244 

shear, 41 

transmission of, 49, 54, 125 

transverse, 40, 41, 42, 125 

Frame, 152, 166, 200 

Frameworks, space, 143 

Frequency distribution, of material prop¬ 

erty , 107 

Gage length, 97 

definition of, 94 

Geodetic construction, 194 

Girder, plate, 131 

web type, 131 

Gravity, center of, 119; see also Ce itroid 

Holes, effect of, 121, 246 

lightening, 131 

Hooke’s law, 95 

Hoop tension, 112 

I-beam, 212 

combined stresses in, 340 

Impact conditions, 100 

Inertia, moment of, 206 

Inflection, point of, 270 

Instability, 310 

Integration, 33, 71, 211 

Interaction curves, 340, 342 

Joints, 85, 134, 336 

analysis of, 136, 140 

continuous, 350 

eccentricities in, 308 

efficiency of, 351 

failure of, 348 

welded, 308, 337 

Kern, 307 

Knee braces, 243 

Landing gear, analysis of, 144 

Leminiscate, 155 

Limit, elastic, 97 

endurance, 100 

proportional, 97, 196 

Line, neutral, 207 

Load axis, 27, 46 

Load, running, 31, 71 

Load-deflection curves, 119 

Loading, combined, bending and axial, 

305, 343 

bending and torsion, 342 

bending and transverse force, 46 
274, 339 

bending, shear, and torsion, 48 

compression and torsion, 339 

intei action method, 340 

shear and t< rsion, 291 

tension and shear, 344 

t• union and torsion, 338 

distributed, 31 

("‘centric, 30o 

Loads, concentrated, 31, 120 

crashing, 244 

design, 4 

distributed, 71, 74 

external, 1 

Location, of resultant force, 11, 26 

Materials, in combination, 118 

properties of, 91 

Mechanisms, 22, 84 

Members, curved, 135 

phantom, 135 

superfluous, 141 

Membrane analogy, 190 

Metals, properties of, 372 

Modulus, section, 213 

Modulus of elasticity, 95, 108 

secant, 99 

tangent, 99 

Modulus of rigidity, 104, 161, 162 

Modulus of rupture, 236 

of tubes in torsion, 195 

Mohr’s circle, 327 

Moment, bending, 46 

definition of, 18 

diagrams, 373 

of area, first, 208 

second, 206 

of inertia, 206, 208, 220 

polar, 188 

transfer formula, 210 

of shear flow, 173 

static, 208, 210, 279 

turning, 45 

Moments, 18, 19 



390 INDEX 

Moments, addition of, 20 
classification of, 40 

effect on structure, 40 

Nddai, 193 
Newton's laws of motion, 56, 62 

Photoelasticity, 122 

Pin (joints), 85 
Plane, neutral, 207 

of maximum stress, 229 

of rotation, 20 
principal, 335 

Plastic (or inelastic), 95 

bending, 235 

torsion, 193 
Plates, flat, in shear, 156 

under normal pressure, 87 

Poisson's ratio, 100, 105 
Polygon, force, 114 

Pressure, 31, 33 
Product of inertia, 218, 219 

Properties, physical, 91, 373 

Quereau, 242 

Radius, effective (in torsion), 184 

minimum bend, 254 
of curvature, 124, 251, 252, 254, 256 

of gyration, 313 
Ratio, Poisson's, 100 

stress, 340 
Reactions, 23, 54, 64, 65, 66, 67 

assumed, 73 

definition of, 55 
determination of, 60 
for airplane wing, 72 
for distributed loads, 71 

graphical methods of determining, 75, 
76 

Reduction of area, 99 
Redundancies, 87 

Resistance to deformation, 96 
Resultant, 6, 23 

graphical determination of, 11 

of multiple forces, 14 

of parallel forces, 12 

Rigidity, bending, 255, 256 
flexural, 261 

modulus of, 104,161 
torsional, 183 

Rivet groups, 353 
Rotation of axes, 35 
Rupture, modulus of, 236 

Safety, factor of, 4 
margin of, 4 

Saint-Venant’s principle, 120, 246 

Sand heap, analogy, 193-4 

Section modulus, 213 
Sections, composite, 233 

method of cutting, 229 

transformed, 119, 232 

Set, permanent, 98 
Shear, center of, 175, 301 

definition of, 41 

induced, 287 
in tapered beams, 285, 288 
location of resultant, 174 

modulus of rigidity, 161 

pure, 158 
Shear and bending, combined, 274 

Shear and torsion, combined, 291 

Shear flow, 159 

computation of, 295 
conventions for, 298 

in bending, 276, 277 

increment, 296 

in curved webs, 171 
in solid beam, 279 

moment of, 173,174 
resultant of, 171 

Shear lag, 247 

Shear strain, 161 

Shear stress, 103 

in beams, 282 
in rectangular beam, 281 

in solid beam, 280 

in torsion, 181, 188, 192 
maximum, 331, 334 

ultimate, 103 
Shear web, see Web 

Shell, 180 

in torsion, 180 
non-circular, 184 

shear flow in, 294 

shear stress in, ,181 

tapered, 288 
torsion equation for, 180 

torsional deflection of, 183 

Short column curve, 315 



Slope, of beam, 256, 258 

Southwell, 313 

Space diagram, 10 

Space frameworks, 143 

Specifications, for materials, 107 

Sphere, under pressure, 116 

Spring, 283 

Stability, 82, 111, see also Columns 

Stiffeners, 131 

Stiffness, 95 

Stiffness factor (bending), 262 

Stiffness-weight factor (torsion), 183 

Strain, 93 

in bending, 204 

in metal forming, 253 

in pure shear, 160, 161 

in torsion, 182 

Strength of materials, 108, 372 

Strength-weight factor, 182 

Stress, allowable, 4 

axial, 91 

bearing, 102 

bending, 205 

column, 313 

components of, 325 

compression, 100 

concentration, 121 

definition of, 91 

local, 120 

normal, 326, 327 

maximum, 334 

shear, 103, 157, 159 

tension, 91 

torsion, 181, 188, 192 

ultimate, 92 

unsymmetrical bending, 225 

yield, 97 

Stresses, addition of, 320 

axial, .in torsion, 194 

combined, 320 

axial and shear, 333 

axial at right angles, 330 

graphical method, 320 

Mohr’s circle for, 327 

diagonal, 176 

principal, 333 

Stress-ratio method, 340 

Stress-strain diagram, 3, 93, 94 

for shear, 104 

for successive loadings, 98 

391 

Stress-strain diagram, for various mate¬ 
rials, 95 

tension-compression, 101 

String polygon, 13, 75, 114 

Strings, 13, 114, 115 

Structures, 3, 22 

redundant, 81 

statically determinate, 71 

statically indeterminate, 81 
Summation, 24, 34, 71 

of forces and moments, 28, 30 

progressive, 27, 46 

Superposition, 74 

Suspension bridge, 129 

Systems of force designation, 43 

Tear-out, 349 

Temperature, effects of, 104, 106 

Tension, 41 

stress, maximum, 327 

Tension and torsion, combined, 338 

Tension-field (web), 163, 164 

Tension members, 84 

curved, 112 

straight, 111 

Ties (tie-rod), 111 

Torque, 45 

Torsion, 45 

in shells, 180 

in solid bars, 186, 188, 192 

in tubes, 189 

membrane analogy for, 190 

modulus of rupture, 195 

plastic, 193 

rigidity, 183, 192 

sand heap analogy for, 193 

Torsion and bending, combined, 342 

Torsion and compression, combined, 339 

Torsion and shear, combined, 291 

Torsion and tension, combined, 338 

Trapezoids, use of, 32 

Tripod, 82 

analysis of, 144, 146, 148 

Trusses, analysis of, 134, 140, 143 

deflection of, 201 

development of, 127 

elements of, 134 

graphical analysis of, 141,142 

pin-jointed, 87 

types of, 127,129,130 

INDEX 
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Tubes, bending modulus of rupture for, 

237 
section properties of, 362 

strength for combined compression and 
bending, 345 

stresses in torsion, 181, 189 
torsional modulus of rupture for, 195 

Unit method, 299 

Vector diagram, 13 
Vectors, 5 

Warping of cross section, 185, 192 

Web, 131, 156 
beaded, 131 
corrugated, 172 
curved, 175 

shear, 131 , 

shear-resistant, 132, 156 
tension-field, 157, 163 

Web material in bending, correction for, 
202 

Width, effective, 234 

Wilson, 242 

Wrinkling, 157 

Yield stress, 97, 108 
Young's modulus, 96 








