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PREFACE TO THE FIFTH EDITION 

The course of instruction in Roofs and Bridges presented 
in this text-book consists of four parts. Part 1 deals with the 
computation of stresses in roof trusses and in all the common 
styles of simple bridge trusses. Part II treats of the determina¬ 
tion of stresses by graphic methods. Part III presents the 
methods for the design of steel bridges, including proportioning of 
details and preparation of general drawings. Part IV discusses 
continuous, cantilever, movable, suspension, and arched bridges. 

In the following pages the second part of this course is pre¬ 
sented. The authors regard it as essential that students should 
completely work out a few typical cases like those here given in 
the four full-page plates; they also consider it as important that 
students should solve many practical problems like those given 
at the ends of most of the articles. In this volume, as in Part I, 
the minimum as well as the maximum stresses are determined for 
each case, and all varieties of loading are treated, thus training 
students to use all kinds of specifications. 

For this edition the entire book has been rewritten. Obsolete 
examples and illustrations have been replaced by others in accord¬ 
ance with present-day practice. Influence lines have been intro¬ 
duced earlier. An article on the transverse bent and another 
on the viaduct tower have been added. Highway trusses have 
been treated separately and before railway trusses because of 
their more simple uniform loading. 

Chapter VIII, upon influence lines for stresses in simple bridge 
trusses, employs a method which is perfectly general and may be 
applied as readily to a truss which is irregular in form or propor¬ 
tion as to any other. The method is graphic throughout, and 
hence it is not necessary to employ the equations of influence 
lines as in other methods. In modern practice the use of influence 
lines is restricted chiefly to trusses with inclined chords and with 
subdivided panels, and hence only four types of trusses are used 
in the illustrative examples. This method of treatment is especi¬ 
ally adapted to finding the loading and stresses in trusses of a 
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new, or unfamiliar, type like the K truss which has not yet come 

into common use in this country, but the use of which is increasing. 

One article is devoted especially to that purpose. 

It is believed that Chapter IX, on deflection influence lines, 

contains valuable methods of determining the deflection of 

beams. The giaphic methods an? completely illustrated by 

examples. Especial attention has been paid to the units of 

measure employed in making the diagrams so as to be in full 

accord with the fundamental principles of constructing equilibrium 

polygons. 

Grateful acknowledgments for photographs and other material 

are due to Joseph J. Yates, Clarenc< W. Hudson, Win. K. Greene, 

0. F. Dalstrom, and the Iowa Highway Commission. 

January, 1932 
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Part II 

GRAPHIC STATICS 

CHAPTER I 

PRINCIPLES AND METHODS 

Art. 1. Introduction 

Statics is the science which deals with forces in equilibrium. 
Graphic Statics is the solution of statical problems by means of 
geometric constmctions. Numerous problems arise in the design 
of roofs and bridges which can be more conveniently solved by 
graphic constructions than by algebraic analysis. Other problems 
lend themselves to algebraic solutions and this method should be 
used. The main advantage of graphical solutions is that they can 
usually be made with a considerable saving of time. Often they 
also have the added advantage of being more clearly and more 
easily understood. 

A Horce’ is called by such various names as load, weight, 
pressure, or reaction, but can most easily be visualized as a push 
or a pull acting upon a body. A force is determined when its 
magnitude, direction, and line of action are known. These are 
represented graphically by the length, direction, and position of a 
straight line. Forces are usually given in pounds or kips (a kip 
equals 1000 lb.), whereas the lengths of lines are measured in inches. 
For convenience, an engineer's scale having the inch divided into 
10, 20, 30, 40, 60 or 60 parts is used for measuring lengths of lines. 
For example, using a scale of 3000 lb. to 1 in., a force of 5460 lb. 
would be represented by a line 1.82 in. long. Using the scale 
having 30 divisions to the inch, this can be read directly as 54.6 
divisions. 

The direction of a force is usually determined by the angle it 
makes with the horizontal or vertical. This angle may be measured 
with a protractor but more accuracy can be obtained by using the 
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tangent method. For example, a force makes an angle of 35"^ 20' 
with the horizontal. The natural tangent of this angle is 0.709. 
Lay off 1000 units horizontally to the largest convenient scale, 
say 200 units to 1 in. From the ends of this line lay off 
709 units vertically. The accuracy of graphic solutions depends 
upon the accuracy with which angles and lines are measured, so 
that any simple aids such as this are well worth while. 

Art. 2. The Force Triangle 

The resultant of two or more forces is a single force which pro¬ 
duces the same effect as the forces themselves, and may therefore 
replace them. Let two forces Pi and P2 (Fig. 2a) which act in 
the same plane through the point m be represented in magnitude 
and position by the lines mn and mp and in direction by the arrows. 
Let the parallelogram be completed by drawing a line through n 
parallel to P2, and a line through p parallel to Pi and then let m 

Fig. 2a. Fig. 26. 

be joined with their point of intersection. This line, designated 
by R, represents the resultant of the two given forces. 

It will readily be seen that it is not necessary to construct the 
entire parallelogram, since the triangles on the opposite sides of 
the diagonal are equal. The triangle above the diagonal can be 
constructed by drawing a line through n parallel to P2, laying off 
upon it the value of P2 and then joining its end to m; similarly, 
the lower triangle can be independently drawn. Either of these 
triangles is called the Torce triangle.' 

If the lines of action of the given forces form a part of a diagram 
upon which it is not desirable to construct the force triangle, any 
suitable point a may be selected and ab drawn parallel and equal 
to Pi; then be is drawn through b parallel and equal to P2. The 
line joining a and c represents the magnitude of the resultant B 
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and is measured by the same scale as that used in laying off ab 
and be. The direction in which the resultant acts is indicated by 
the arrow upon oc, and this is seen to be opposed to the directions 
of those upon ab and be in following around the triangle. Finally, 
the line of action of the resultant R must pass through m, the 
point of intersection of the given forces Pi and P2. Hence the 
resultant R is found in magnitude, direction, and line of action by 
drawing a line through m equal and parallel to ac. 

The combining of two or more forces into a single force is known 
as the 'composition of forces.^ Conversely, the resolving of a 
single force into two or more forces (components) is known as the 
'resolution of forces,^ This may also be effected by the force 
triangle. For instance, let R in Fig. 2a be the given force, and let 
it be required to find its components in the directions of mn and 
mp. Let ac be drawn equal and parallel to P, and through its 
extremities let ah and cb be drawn parallel to the given directions; 
these lines intersect at 6, and when they are measured by the scale 
the magnitude of the components Pi and P2 will be known. Lastly, 
through m, the point of application of P, let Pi and P2 be laid off 
in the given directions, equal to ab and be, and the lines of action 
of the components are determined. 

''Several forces are said to be in equilibrium when no tendency 
to motion is produced in the body upon which they act. In 
Fig. 2a suppose a force p-i, equal and opposite to P, to be applied 
at m; then this force together with Pi and P2 will be in equilibrium, 
for the last two may be replaced by their resultant P, which by 
the conditions specified holds P3 in equilibrium. The correspond¬ 
ing force triangle will be a6c with the direction of ac reversed, so 
that all forces around the triangle have the same direction; hence,? 
when three forces are in equilibrium, they form a closed fo^e 
triangle. 

^hen three forces whose lines of action lie in a plane and 
intersect at one point are in equilibrium, any one may be deter¬ 
mined when two are given. In Fig. 2b let Pi and P2 be given, to 
find P3. Let ab be laid off equal and parallel to Pi, and from b 
let be be drawn equal and parallel to P2; then ca, the closing side 
of the triangle, represents P3 in magnitude and direction. As its 
line of action must also pass through m, the force P3 is drawn equal 
and parallel to ca, and in the same direction, thus completing the 
solution. 
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Should only one force be given, together with the lines of action 
of the other two, their magnitudes and directions may be found. 
In Fig. 26, let Pi and the lines of action of P2 and P3 be given. 
Draw ah equal and parallel to Pi and through its extremities draw 
lines parallel to P2 ajri Pa; these lines intersect at c, and the length 
of be gives the magnitude of P2, its direction being from 6 to c, in 
the same direction around the force triangle as ah. P3 is repre¬ 
sented by ca in the same manner. 

The force triangle is the foundation of the science of graphic 
statics. By it all problems relating to the composition and resolu¬ 
tion of forces can be solved, when the forces are but three in 
number and act in the same plane upon a common point. 

Problem 2(i.—Two forces of 25 lb. and 40 lb. make an angle of 68° with 

each other. Find the magnitude of their resultant and the angle it makes 

with each force. 
Problem 26.-—A vertical force of 2600 lb. acts upon a roof having a slope 

of 25°. Find the components of the force parallel and normal to the roof. 

Art. 3. The Force Polygon 

When it is required to find the resultant of a number of forces 
acting in the same plane and having a common point of applica¬ 

tion, the resultant of two 
of the forces may be 
found by the use of the 
force triangle as in Art. 2, 
a third force may be com¬ 
bined with this resultant to 
obtain a second resultant,, 

and this operation continued until all the forces are combined."' 
In Fig. 3a, the forces Pi, P2, P3, and P4 act through the common 
point m. The force triangle abc is laid out combining Pi and 
P2 into the resultant R\; the force triangle acd is next laid out 
combining Ri and P3 into the resultant P2; finally, the force 
triangle ode is laid out combining R2 and P4 into the resultant 
R. Since all the forces have been combined, R is the resultant 
of the forces Pi, P2, P3, and P4; its magnitude and direction are 
given by ae and its line of action is through m. 

It will readily be seen that it is not necessary to construct the 
resultants Pi and R2 in order to obtain the final resultant R, and 
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they are generally omitted. The polygon ahcde is known as the 
Torce polygon^; the resultant R forms its closing side and each 
of the other sides represents one of the given forces, ^"hc direc¬ 
tion of the resultant is opposed to the direction of all the given 
forces in following around the sides of the polygon; thus the arrow 
on ae has the reverse direction of the other arrows. 

The force polygon may therefore be constructed as follows: 

‘^Draw in succession lines parallel and equal to the given 
forces, each line beginning where the preceding one ends, 
and extending in the same direction as the force it repre¬ 
sents. The line joining the initial to the final point repre¬ 
sents the resultant in direction and magnitude. 

To produce equilibrium in Fig. 3a, suppose a force P5, equal 
and opposite to ft, io be applied at m. This added force in the 
force polygon is equal to ea with its former direction reversed, so 

Fig. Zb, 

the distance from the initial to the final point in the construction 
of the polygon becomes zero, 'feence, if a number of forces lying 
in the same plane and having a common point of application are 
in equilibrium, they will form a closed force polygon, and in pass¬ 
ing around it all the forces will have the same direction. 

It makes no difference in what order the forces in the force 
polygon are arranged. In Fig. 3a, the sides of the force polygon 
were drawn in the order Pi, P2, P3, P4, ft; but the same value 
of ft, both in intensity and direction, will be obtained if they are 
drawn in any other order, as for example, P3, Pi, P4, P2, ft. In 
Fig. 36, the four forces meeting at m are in equilibrium. Taking 
them in the order Pi, P2, P3, P4 the force polygon abed is drawn; 
in the order Pi, P3, P4, P2 the force polygon a'V&d* results; and 
in the order P4, P2, P3, Pi the force polygon a^'V'e^'d*' is found, 
each of which graphically represents the given forces. In the 



6 PRINCIPLES AND METHODS [Chap. I 

last case it is seen that two of the lines cross each other; this is 
a frequent occurrence in practical problems. 

The force triangle (Art. 2) is but a particular case of the force 
polygon, namely, when the forces are but three in number. 
Hence, the ^/ord polygon is often used in a general sense as includ¬ 
ing that of the triangle. 

Problem 3a.—Draw a force polygon for five forces in equilibrium, and 
prove that any diagonal of the polygon is the resultant of the forces on one 

side and holds in equilibrium those on the other side. 

Problem 3h.—Three forces of 120 lb., 175 lb., and 50 lb. make angles of 

35°, 87°, and 238° with each other. Draw three different force polygons 

and determine from each the value of the resultant and the angle it makes 
with the 120-lb. force. 

Art. 4. The Resultant of Nonconcurrent Forces 

Article 3 deals entirely with forces that all intersect at a com¬ 
mon point, or ‘concurrent forces.^ In Fig. 4a, a body is acted 

upon by four forces Pi, P2, P3, and P4 which do not intersect at 
a common point, or ‘nonconcurrent forces.^ It is desired to find 
the magnitude, direction, and line of action of the resultant. Pi 
and P2 may be combined into the resultant Ri by drawing the 
force triangle abc, and its line of action must be through m, the 
intersection of Pi and P2; next Pi and P3 may be combined into 
the resultant R2, by drawing the force triangle ocd, and its line of 
action must be through n; finally, R2 and P4 may be combined 
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into the final resultant R, by drawing the force triangle ade, and 
its line of action must be through p. By extending the line of 
action of 72, the point of application on the body is found to be 
at 0, The magnitude and direction of the resultant were obtained 
from the force polygon as in Art. 3, but to find its line of action it 
was necessary to construct the intermediate resultants Ri and R2- 

When the forces acting upon a body are parallel or so nearly 
parallel that they do not intersect within the limits of the drawing, 
the line of action of the resultant cannot be determined as 
described above. In Fig. 46, a body is acted upon by four nearly 
parallel forces. The system of marking the spaces between the 
forces instead of marking the forces themselves is used in Fig. 46 

and will be used in all subsequent figures except the very simplest. 
A force is designated in the space diagram by the upper-case 
letters on both sides of it, as AB, BC, etc., and in the force polygon 
by the lower-case letters at both ends, as a6, be, etc. The magni¬ 
tude and direction of the resultant may be determined from the 
force polygon as before and is equal to ae. Resolve the force AB 
into two components (Art. 2) by taking any point o and drawing 
the force triangle oab. AB may be replaced by its components 
oa and ob drawn from any point m on its line of action. The 
forces ob and BC may be combined into the resultant oc, acting 
through n, their point of intersection, by drawing the force tri¬ 
angle obc; next oc and CD may be combined into the resultant 
od, acting through p, by drawing the force triangle oed; finally, 
od and DE are combined into the resultant oe, acting through r, 
by constructing the force triangle ode. All four forces have been 
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combined into the two forces oa and oe. Their resultant, and 
hence the resultant of all the forces, must act through their inter¬ 
section at 6*. 

If in Fig. 46 then' be applied through the point « a force equal 
and parallel to the resultant AE, but opposite in direction, the 
forces AB, BCj CD, DE, and EA are in equilibrium and the force 
polygon closes. The polygonal frame mnprs thus holds the given 
forces in equilibrium by the stresses of tension or compression 
acting in its members, in this case tension in ms and rs and com¬ 
pression in mn, np, and pt\ The lines of this frame are hence 

called an ^equilibrium polygon.^ 
If the equilibrium polygon be 
regarded as a structural frame 
supporting the external forces, 
the stresses in the members cut 
by any section hold in equi¬ 
librium the external forces on 
either side of the section. 

The point o in the force 
polygon is called the ^pole,^ 
and the lines oa, oh, etc., are 
called ^ rays. ^ Since the position 
of the pole may be selected at 
pleasure it follows that for any 

|<..J given system of forces an in- 

Pjo 4c. definite number of equilibrium 
polygons can be constructed. 

It should be noted that in the equilibrium polygon the oa ray is 
always drawn across the A space; the oh ray across the B space; etc. 

Problem 4a.—Two parallel forces of 650 lb. and 370 lb. are 10 ft. apart 

and act in opposite directions. Find, by the force and equilibrium polygons, 
the magnitude and line of action of their resultant. 

Problem 46.—Figure 4c shows the cross-section of a concrete canti¬ 

lever retaining wall. The concrete weighs 150 lb. per cu. ft. and the earth 

fill 100 lb. per cu. ft. Consider the concrete and fill divided as shown by the 

broken lines and find the weight of each section for a wall 1 ft. long. The 

7000-lb. force shown is the total pressure of the earth fill on a section of wall 

1 ft. long. Find the resultant of all the forces acting on the wall and the 

point at which it passes through the base: (1) By using only force triangles; 

(2) by using only the force and equilibrium polygons; (3) by finding the 

resultant of all vertical forces and combining it with the inclined force. 
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Art. 5. Conditionb of Equilibrium 

When several forces lie in the same plane the necessary and 
sufficient conditions of static equilibrium are that, there shall be 
no tendency to motion, either f)f translation or rotation. Analyti- , 
cally this is expressed by saying that the algebraic sum of the ^ 
components, both horizontal and vertical, of the forces must be 
zero, and that the algebraic sum of the moments of the forces 
must also be zero; or as commonly expressed, 2// = 0, 2F = 0, ^ 
and 2Af = 0. 

When the given forces have a common point of application 
(concurrent forces), the graphic condition for equilibrium is that 
the force polygon must close, for, if it does not close, the line 
joining the initial witii the final point represents the resultant 
of the given forces (Art. 3), and this n^sultant will cause motion; 
and if it does close there exists no rcisultant. Therefore, if the 
given forces which meet at a common point are in equilibrium, the 
force polygon must close; and conversely, if the force polygon 
closes, the given forces must be in equilibrium. 

When several forces lying in the same plane have different 
points of application, so that their lines of action do not intersect 
in the same point (nonconcurrent forces), and arc in equilibrium, 
the force polygon must close, since no resultant can exist. How- 
ev(^r, if the force polygon does close, it is not necessarily true that 
the forces are in equilibrium. For example, let a body be acted 
upon by three equal forces as shown in Fig. 5a, AB^ and BC mak¬ 
ing an angle of 30° with the horizontal and CA being vertical. It 
is plain that equilibrium is here impossible, and yet the force 
polygon abc closes. The resultant of AB and BC would be a 
vertical force equal to CA acting downward midway between 
them. This resultant and CA form a couple so that equilibrium 
can be maii^ined only by another couple acting in the opposite 
direction. 'Tt is because the resultant of the forces of a couple is 
zero that the force polygon closes in this case; and it will be 
found that, in all cases of non-equilibrium where the force polygon 
closes, a couple is necessary to maintain equilibrium. 

The three forces in Fig. 56 are equal in magnitude and make 
an angle of 120° with each other. The force polygon abc closes, 
but the forces are not in equilibrium because their lines of action 
do not intersect in the same point. Select a pole at any point o 
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and draw the rays oa, ob, and oc. Now, from any point on the 
line of action of AH, draw the rays oa and oh parallel to their 
direction in the force diagram; from the point where oa intersc^cts 
the line of action of CA, draw the ray oc parallel to its direction in 
the force diagraui. The rays oh and oc intcTsect at r, which is not 
on the line of action of BC, hence the three given forces cannot be 
held in equilibrium by the equilibrium polygon. In this case it is 

said that the equilibrium polygon docs not close. If, however, 
the force BC be moved parallel to itself until its line of action 
passes through r, the equilibrium polygon closes and the forces 
will be in equilibrium. '^Therefore, if the given forces which do not 
meet at a common point are in equilibrium, both the force polygon 
and the equilibrium polygon must close. 

From the foregoing examples it can be seen that the closing 

of the force polygon is the graphic equivalent of 2/7 = 0 and 
2F = 0, and that the closing of the equilibrium polygon is the 
graphic equivalent of 2M = 0. In general, three unknowns 
may therefore be determined from the two polygons; two from 
the force polygon and one from the equilibrium polygon. A single 
force may have three unknowns (Art. 1), magnitude, direction, 
and line of action, as for example, the resultant of the given forces 
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in Figs. 4a and 4f>. In Figs. 2a and 3a the line of action of the 
resultant was known so that there were only two unknowns, both 
of which could be determined from tlie force polygon alone. The 
three unknowns may not all btdong to the sam(^ force. For exam¬ 
ple, th(5 line of action of one force and the direction and line of 
action of a second may be known; from the force and equilibrium 
polygons the magnitude and direction of the first and the mag¬ 
nitude of the second can be determined. 

Problem 5a.—A beam 10 ft. long carries a vertical load of 600 11). 4 ft. 

from the left end and one of 400 lb. 2 ft. from the right end. Is the beam 

in equilibrium if vortical forces of 400 lb. at the left end and 600 lb. at the 

right end are acting upward? 

Aut. 6. Reactions of Beams 

The beam in Fig. 6a is acted upon by the three vertical forces 
ABj BCj and CD, and it is desired to determine the forces, or 

reactions, DE and EA applied at the ends of the beam to hold it 
in equilibrium. Since the applied loads are vertical, both reac¬ 
tions will be vertical. Therefore the direction and line of action 
of each reaction is known and there will be only two unknowns, 
the magnitude of each. Lay ofif the given forces in the force 
polygon abed. These forces represent the loads on the beam, so 
that their force polygon is called a Toad line.^ Since the force 
polygon must close and the reactions are vertical, the line da 
represents the sum of the reactions, and the point e must lie at 
some place on that line. Select any pole o and draw the rays 
oa, obf oCy and od. Starting with any point on the line of action 
of ABf construct the sides oa, o6, oc, and od of the equilibrium 
polygon. Since the equilibrium polygon must close, the side oo. 
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or ^closing line/ can be drawn from the point where oa intersects 
EA to the point where od inters(icts 1)E. The point e can now be 
located in the force polygon l)y drawing a ray from o parallel to 
the closing Urn). Th(^ magnitudes of th(‘. reactions DE and EA 
are represented by de and ca, respectively. 

In Fig. 66 an overhanging })eam is acted upon by two vertical 
forces AB and BC and an inclined force CD; it is desired to deter¬ 
mine the reactions DE and EA acting through the points m and n. 
The reaction at m is on rollers so that its din^ction must be vertical. 
The unknowns are three in number; the magnitude and direction 
of the reaction at n and the inagnitud(^ of the reaction at m. Lay 
off the load line abed and draw the rays oa, ohj oc, and od to any 

pole 0, The equilibrium polygon can now be constructed. The 
ray oa must be drawn from AB to EA, '^ince the direction of 
EA is not known, n is the only known point on its line of action, 
and the equilibrium polygon must be started there. The equi¬ 
librium polygon can be completed as before. The point e in the 
force polygon can be located by drawing the ray oe parallel to the 
closing line until it inters(^cts a vertical line through d. The mag¬ 
nitude of DE is represented by de, and the magnitude and direction 
of EA by ea. 

If the reaction DE in Fig. 66 had not been on rollers its direc¬ 
tion would also have been unknown, making a total of four 
unknowns. This is one more than can be determined, so that in 
order to solve the problem it is necessary to make some assump¬ 
tion as to the distribution of the horizontal components between 
the reactions. An assumption frequently made is that the reac¬ 
tions are parallel; da (Fig. 6c) then represents the sum and 
direction of the two reactions. The point e must lie at some point 
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on the line da and also on the ray through o parallel to the closing 
line. The magnitude and direction of the rcactions DE and EA 
are represented by de and ea, respectively. 

It will readily be seen by taking momcmts about either reaction 
that the vertical component of the other reaction is independent 
of the magnitude of the horizontal component. Therefore, in 
Fig. 6c, the point dividing the reactions must fall on a horizontal 
line through e regardless of the division of the horizontal com¬ 
ponents between the reactions. Assuming the right reaction to 
be vertical, as in Yig. 66, the point falls at c'. Another assump¬ 
tion sometimes made is that the horizontal components of the 
rcactions are equal, in which case the point falls at c", and the 
reactions DE and EA arc represtmted in magnitude and direction 

by dc" and e"a, respectively. A solution for any other distribu¬ 
tion of the horizontal components can be made in a similar manner. 

A direct solution for the reactions for any given distribution 
of the horizontal components can be made in two ways. The 
first method is to pass the equilibrium polygon through the point 
of application of one reaction and resolve the other reaction into 
its vertical component and assumed horizontal component. A 
second method is to choose the pole in such a position that the 
equilibrium polygon will pass through the points of application of 
both reactions. The method for passing an equilibrium polygon 
through two given points will be explained in Art. 8. 

Problem 6a.—An overhanging beam 12 ft. long carries a vertical load 
of 4000 lb. 4 ft. from the left end and one of 3000 lb. at the right end. One 
reaction is at the left end and the other 2 ft. from the right end: (1) Determine 
the reactions for the beam carrying each load separately and add them together. 

(2) Determine the reactions for the beam carrying both loads at once. (3) De¬ 
termine the resultant of the two loads and find the reactions for it. 
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Art. 7, Graphical Determination of Moments 

The beam in Fig. 7a is in equilibrium under the five forces 
shown. The bending moment is desired at the point m. Lay 
out the force polygon dbede and with any pole o draw the rays aa, 
06, etc. The equilibrium polygon can now be drawn, ^^he two 
forces EA and AB are to the left of the point m, and from the 
force polygon their resultant is or R. This resultant will act 
through the intersection of the oh and oe rays of the equilibrium 
polygon at s. The resultant of the forces to the right of m would 
also act through s and be equal to R but opposite in direction. 

The bending moment at m is evidently equal to the resultant R 
multiplied by r, its nonnal distance from m, or 

iJf = ier 

Draw a line through m parallel to R and let the ordinate ny 
intercepted by the equilibrium polygon be called y. Also erect 
a perpendicular to R in the force polygon and let it be called //. 
The triangle mp is similar to the triangle obe since their sides are 
parallel and 

r :y :: H : Ry or Rr = Hy 

Therefore the bending moment of the external forces on the left 
of m (and also of those on the right) is 

M^Hy ^ 

The force H is the component of the stresses ob and oe perpendicu¬ 
lar to their resultant and should be measured by the same scale ^ 
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as the other forces in the force polygon. The following theorem 
can hence be stated: 

The bending moment of a system of forces in equilibrium,*^ 
about any point, is equal to the intercept y in the equilib¬ 
rium polygon on a line through the point parallel to the 
resultant of the forces on either side of the point, multi¬ 
plied by the perpendicular distance H from the resultant 
to the pole in the force polygon., 

When all the forces are parallel y becomes the ordinate of 
the equilibrium through the point parallel to the forces, and H 
becomes the perpendicular distance of the pole from the load 
line and is the same for all points. 

Problem 7a.'-The beam in Fig. 6a is 16 ft. long. The loads are AB - 
1200 lb., BC = 800 lb., and CD = 1200 lb. applied at 3, 7, and 11 ft., respec¬ 

tively, from the left end. Determine the bending moment at each load. 

Choose a different pole and again determine the bending moments. 

Art. 8. Equilibrium Polygon through Two or Three Points 

In Art. 6 one case was noted where it was desirable to draw an 
equilibrium polygon through two given points. Numerous other 

cases arise so that two solutions of this problem will now be 
described. 

It is desired to construct an equilibrium polygon passing 
through the points m and n in Fig. 8a. Lay out the load line 
abede and with any pole o' construct an equilibrium polygon 
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locating the resultant of the given forces. The resultant will 
have the same location regardless of where the pole is chosen 
or where the equilibrium polygon is drawn. The outside rays must 
intersect on the resultant. Therefore, if any point p on the line 
of action of the resultant is chos(‘n and the lines mp and np drawn, 
these lines may be taken as the sides oa and oe of an equilibrium 
polygon that will pass through m and n. The location of the 
pole 0 will be at the intersection of the rays oa and oe in the force 
diagram drawn parallel to their position in t he equilibrium polygon. 
The other sides of the ecjuilibrium polygon can now be completed. 
Since p was taken at any point on the line of action of the resultant, 
an indefinite number of equilibrium polygons can be constructed 

a 

that will pass through the two given points. In case it is desired 
to have the equilibrium polygon pass through a point between 
some of the given forces, only the forces between the points 
should be considered in locating a pole. 

Another method of passing an equilibrium polygon through 
two points is shown in Fig. 86. The given forces are assumed to 
be acting on a beam supported at the given points m and n by 
reactions parallel to the resultant. These reactions are deter¬ 
mined as described in Art. 6 by constructing the force polygon 
and rays from any pole o', then constructing the equilibrium 
polygon and locating point / by drawing a ray from o' parallel to 
the closing line. Obviously the value of the reactions and the 
location of / are not dependent upon the pole location so that any 
closing line must strike the point / in the force polygon. For an 
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equilibrium polygon to pass through m and n the closing line 
must be the line mn. Therefore, if a pole is chosen at any point o, 
on a line through / parallel to mn, the equilibrium polygon will 
pass through m and n. 

Passing an equilibrium polygon through three given points is 
just an extension of the two-point problem. In Fig. 8c the three 
given points are m, n, and y. Consider first only the points m 
and n and the forces between them. If a pole is chosen at any 
place on the line through j parallel to mn the equilibrium polygon 
will pass through m and n. Similarly, considering only the points 
n and y and the forces between them, if a pole is chosen at any 
place on the line through h parallel to ny the equilibrium polygon 

will pass through n and y. Therefore, for the equilibrium polygon 
to pass through all three points, the pole must be at o, the inter¬ 
section of the two lines. In this case there is only one possible 
location of t he pole. 

Problem 8a.—A footbridge is carried by suspension cables. The dis¬ 
tance between tower supports is 266 ft., and the sag of the cable is 30 ft. The 
walkway is level and supported from the suspension cables by 18 hangers 
spaced 14 ft. apart. The load on each hanger is 12 kips, and the center 
hangers are 4 ft. long. Determine the shape of the cables, the length of the 
hangers, and the maximum tension in the cables. (Since the bridge is sym¬ 
metrical, the cables will be horizontal at the center and only half of the bridge 
need be considered.) 

Problem 8h.—Determine the shape of the cables for the bridge in Problem 
8a if one end of the bridge is 12 ft. higher than the other end. 



18 PRINCIPLES AND METHODS [Chap. I 

Art. 9. Simple Beams under Concentrated Loads 

By applying the principles of the preceding articles the vertical 
shears and the bending moments may be found for all sections of 
a beam having only two supports and subject to any number of 
concentrated loads. For example, consider a simple beam 20 ft. 
long, carrying five loads whose positions and weights in pounds are 
shown in Fig. 9a. The reactions of the supports are found by 
laying off the load line a/, taking the loads in order from left 
to right, ABy BC, CD, etc.; selecting a pole o and drawing the rays 

675 

from 0] and constructing the equilibrium polygon, starting from 
any point since the directions of both reactions are known to be 
vertical. The point g is located on the load line by drawing a ray 
from 0 parallel to the closing line of the equilibrium polygon. The 
right reaction is then represented by fg and the left reaction by 
ga. Using the same scale as for the loads, each reaction is found 
to be 1000 lb. 

Between the left support and the first load the vertical shear 
equals the reaction GA; between the first and second loads the 
shear is reduced by the amount of the load AB and therefore 
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equals bg on'the load line; between the second and third loads it 
is GA-AB-Ac == eg; and so on. At the fourth load the shear 
changes from positive to negative and at the right support the 
value is the reaction FG. The diagram in Fig. 9a gives the shear 
for every point on the beam and is known as the ^shear diagram.* 
Its construction is apparent, each step being one of the loads 
laid off in the direction of its action. ^9Ffle shear at any point is 
considered positive if the resultant of the forces to the left of the 
point has an upward direction. 'Hf^sitive shears are plotted above 
the base line and negative shears below. 

'^'he bending moment at any point in the beam equals the 
vertical ordinate of the equihbrium polygon multiplied by the 
pole distance.’*/ Since the pole distance is constant for parallel 
loads, the equilibrium polygon shows the bending moment at any 
point in the beam if the proper scale is used and can therefore 
be used as the ^ moment diagram.'^ '^he maximum moment occurs 
under the load DEj which is also the point where the shear passes 
through zero, 'therefore the important relation is obtained that 
the maximum bending moment occurs at the section where the 
vertical shear passes through zero!f A positive bemding moment 
is considered as one which produces tension in the bottom fibers 
of the beam and is plotted above the base line. If the pole is 
chosen to the left of the load line, the positive moments will fall 
above the closing line and negative moments below.'' 

In making the actual construction of Fig. 9a the linear scale 
used in laying off the beam and the positions of the loads was 
6 ft. to an inch, and the force scale used in the force polygon was 
800 lb. to an inch. The pole distance was taken as 1000 lb., 
hence, the moment scale was 5000 ft.-lb. to an inch. Any ordinate 
in the shear diagram, measured by the force scale, gives the ver¬ 
tical shear in pounds; thus, between the second and third loads 
the shear is +300 lb. and between the fourth and fifth loads it is 
—625 lb. Any ordinate in the moment diagram, measured by 
the moment scale, gives the bending moment in foot-pounds; 
thus, the maximum bending moment is +5500 ft.-lb. Figure 9a, 
however, as here printed, has been considerably reduced from the 
original construction. 

Problem 9a.—Construct the shear and moment diagrams for the beam 
in Problem 7a. 
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Art. 10. Simple Beams under Uniform Loads 

The correct reactions for a beam carrying a uniform load may 
be obtained by consiciering the entire load as concentrated at its 
center. This will not give the correct values for the bending 
moment, as will be shown later, but an approximate solution may 
be obtained by dividing the uniform load into a number of con¬ 
centrated loads. This usually requires more work than an exact 
algebraic solution and for that reason uniform loads are generally 
treated analytically. 

Let the simple beam in Fig. 10a whose span is Z be uniformly 
loaded with the weight w per linear unit; then each reaction is 

The load may be repnv 

sented graphically by 
the shaded rectangle on 
the beam whose base is 
I and altitude w. 

For any section at a 
distance x from the left 
support the vertical shear 
is F = \wl — wx = 
w{\l — x); if F be an 
ordinate corresponding 
to an abscissa x this is 
the equation of a straight 

line. Thus when x = 0, F = Iwl; when x = JZ, F = 0; and 
when X = I, V = — Iwl. The shear diagram is constructed by 
laying off gi equal to the span, making gf and ik equal to ^wl and 
joining/and k. 

The bending moment in a section distant x from the left sup¬ 
port is Af = Iwlx — Iwx^ = ^w(Lx — a:^). This is the equation 
of a parabola; for a; = 0 and x = Z the value of M is 0; for x = |Z, 
M reaches its maximum value of The moment diagram 
may be constructed by laying off mn equal to the span, drawing 
qr at the middle equal to the maximum moment, and then con¬ 
structing the parabola mrn. To do this the lines ms and ns are 
drawn, rs being made equal to qr; these are divided into the same 
number of equal parts and the points of division joined as shown, 
thus determining tangents to the parabola. 

If the entire load on the beam were concentrated at the middle, 

equal to half of the total load or Iwl. 
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ab would be the load line, and bh and ha the two reactions. Now 
let o be a pole having the pole distance H, and let the cquiUbrium 
polygon man be constructed. Then from the similar triangles 

oah and msq, .. 

Hence if H be equal to unity on the scale of force, the ordinate qs 
has the value of \wl^, and since qr is Iwl^ the maximum moment 
for a single concentrated load at the middle is twice as great as 
that due to the same load when uniformly distributed. 

Art. 11. Overhanging Beams 

Let a beam be taken with one overhanging end and carrying 
a number of concentrated loads as shown in Fig. 11a. The loads 

50 

Fig. 11a. 

are given in pounds and the distances in feet. If on the load line 
the loads be laid off successively in the order in which they are 
on the beam, and the equilibrium polygon be constructed, the ray 
og drawn parallel to the closing line will determine the reactions/g 
and ga. The sides of the equilibrium polygon are found to cross 
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each other at n, and the ordinates to the right of this point lie on 
the opposite side of the closing line from those on the left. The 
ordinates on the left being regarded as positive, those on the right 
are negative, and they give the bending moments for all sections in 
the beam. The point where the bending moment is zero is called 
the 'inflection point'^'f on the left of this point the lower fibers 
are in tension whereas on the right the upper fibers are in tension. 

In order to construct a moment diagram having a horizontal 
base line, the vertical ordinates of the equilibrium polygon may be 
measured and laid off from the base line of the new moment dia¬ 
gram. The method of constructing the shear diagram will be 
understood without further explanation than that given in Art. 9. 

It is seen that the shear passes 
through zero at two points, one 
where th(^ maximum positive 
moment occurs, and the other 
at the right support where the 
negative moment is a maximum. 

The linear scale ust>d in the 
actual construction of Fig. 11a 
was 4 ft. to an inch, and the 
force scale was 60 lb. to an inch; 
the pole distance being 100 lb., 
the moment scale was 400 ft.-lb. 
to an inch. In the figure as 
printed the scales have been 

considerably reduced. By measurement it is found that the 
maximum shear is 60 lb., the maximum positive moment 120 ft.-lb., 
and the maximum negative moment 140 ft.-lb. 

For the case of a uniform load a shear diagram and moment 
diagram may be constructed by computing the maximum ordinates 
and then drawing the straight lines for the shear diagram and the 
parabolas for the moment diagram. Thus, let Fig. 116 represent 
a beam 28 ft. long with overhanging ends of 4 ft. and 6 ft., and 
loaded with a uniform load of 40 lb. per linear ft. The left reaction 
is found by computation to be 497,8 lb. and the right reaction to be 
622.2 lb.; these might also be obtained graphically by the equi¬ 
librium polygon, regarding the load on the entire beam as concen¬ 
trated at its center. The shear diagram can next be drawn by 
starting at either end. The shear is found to pass through zero 
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at each support and at a point 8.45 ft. from the left support. The 
moments for these points of zero shear are found by computation 
to be —320 ft.-lb. at the left support; —720 ft.-lb. at the right 
support; and +1106 ft.-lb. near the center of the beam. These 
maximum moments being laid off by scale, the curves can be con¬ 
structed by the method given in Art. 10, it being known that the 
end parabolas have their vertices at the ends of the beam, and that 
the middle parabola has its vertex at the point of zero shear. 
The inflection points are equally distant from the point of maxi¬ 
mum positive moment, this distance being 7.45 ft. in Fig. 116. 
The diagiams thus furnish full information regarding the distri¬ 
bution of the shears and moments in the beam. 

Problem 11a.—An overhanging beam 18 ft. long has its left support 
3 ft. from the left end and its right support 4 ft. from the right end. It 
carries concentrated loads of 600 lb. at each end and a uniform load of 200 lb. 
per linear foot between supports. Construct the shear and moment diagrams. 

Art. 12. Center of Gravity of Cross-Sections 

In problems relating to the strength of beams it is necessary 
to find the position of the neutral axis. The neutral axis passes 

through the center of gravity of the cross-section, and in finding 
the position of the center of gravity the equilibrium polygon may 
be employed,'tlie forces being laid out to represent areas. For 
example, let the cross-section of the rail shown in Fig. 12a be 
taken. As this cross-section has an axis of symmetry XY the 
center of gravity must lie at some place on this axis. The area is 
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divided into simple geometrical figures or narrow strips by lines 
perpendicular to the axis, and at the centers of gravity of these 
parts forces proportional to their areas are applied. The force 
and equilibrium polygons are constructed in the usual manner. 
The extreme sides of the equilibrium polygon parallel to oa and of 
are produced until they intersect at n, giving the position of the 
resultant of the forces. The center of gravity must lie on the 
resultant and also on the axis XF, therefore it must lie at N, their 
intersection. best intersection of the closing rays is obtained 
by taking the pole o near the center of the load line and at such a 
distance out that the outside rays are nearly at right angles to 
each other. If the surface is very irregular in outline it should 
be divided into strips so narrow that the area of each one is equal 
to the product of its mean length by its width without appreciable 
error. If there is no axis of symmetry, the process described 
above must be repeated for another direction, preferably at right 
angles to the first, and the center of gravity will lie at the inter¬ 
section of the two resultants found. 

Problem 12a.—Determine the center of gravity of a 12-in. channel 

weighing 20.7 lb. per lin. ft. Get dimensions from a manufacturer’s handbook. 

Art. 13. Moment of Inertia of Cross-Sections 

For beams under flexure the bending moment M for any sec- 
SI 

tion equals the resisting moment — with reference to the neutral 
c 

axis in that section in which S is the unit stress in the most remote 
fiber distant c from the axis and I is the moment of inertia of the 
cross-section with reference to the same axis. 

In Art. 12 the method is given for finding the center of gravity 
through which the neutral axis passes. A method will now be 
derived for determining the moment of inertia I from the same 
construction. 

Let it be required to find the I of the T-shaped section shown in 
Fig. 13a. The cross-section A is 4.50 sq. in., and by the force 
and equilibrium polygons the neutral axis through N is found to 
be 1.52 in. from the base of the T. The pole distance oh was 
taken equal to ^A. The side of the equilibrium polygon of was 
produced until it intersected the neutral axis at t The triangles 
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Fig. 13a. 

qtu and ofe are similar, as their sides are mutually parallel. Lot 
y be the distance from q to the neutral axis; then 

tu : y :: ef : oh 

But ef equals the area EF laid ofif to scale, and the pole distance 
oh was made equal to ; hence 

tu-^A = EFy 

Multiplying this equation by ?/, and remembering that ^tu^y is 
the area of the triangle qtUy gives, 

EF-y^ 
area qtu = —-— 

The other triangles composing the area of the equilibrium polygon 
may be expressed in a similar manner. If each division of the 
cross-section were of differential width dy and area dA, the area 

of its triangle in the equilibrium polygon would be 
dA-y^ 

A 
But 

dA-y^ is also the moment of inertia of the differential area dA 
about the parallel axis distant y, hence the area A' of the entire 
equilibrium polygon is 
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in which case the broken line o6, oc, . . . , 0/ is a curve which is 
tangent to the sides oa and og at the extreme limits of the given 
cross-section. This curve may be drawn and the area A' deter¬ 
mined either by dividing it into strips or by a planimeter. 

By performing the above operations on a three-quarter size 
drawing of the T-section shown in Fig. 13a, the area A' was 
found by dividing it into strips to be 2.42 sq. in., hence the moment 
of inertia is 

/ = 4.50 X 2.42 = 10.9 in.^ 

This agrees very well with the value of 10.8 in.^ given in the man¬ 
ufacturer's handbook. 

Problem 13a.—Determine the moment of inertia of the Am. Soc. C. E. 
rail section, 90 lb. per linear yd., about the axis through the center of gravity 
and normal to the web. The area and dimensions of this section may be 
found in a manufacturer’s handbook. 



CHAPTER II 

ROOF TRUSSES 

Akt. 14. Definitions and Principles 

A ROOF truss is a structure composed of separate members 
generally so arranged that they are subject only to tensile or 
compressive stresses. It lies in a vertical plane and is usually 
supported at its ends by columns or by the side walls of the build¬ 
ing. 'Tor stability the elementary figures composing a truss 
must be triangles, since a triangle is the only polygon which can¬ 
not change its shape without altering the length of its sides. 

The points where the center of gravity lines of adjacent mem¬ 
bers meet are called ‘joints’ or ‘panel points.’ All joints of the 
truss are assumed to be perfectly flexible, and the external 
forces, consisting of loads and reactions to be applied only at the 
joints. 

The ‘span’ of a truss is the distance between end joints or the 
centers of the supports, and the ‘rise’ is the distance from the 
highest joint, or peak, to the line on which the span is measured. 
The ‘pitch’ is the ratio of the rise to the span. The ‘upper chord,’ 
or ‘top chord,’ consists of the upper line of members extending 
from one end of the truss to the other. The lower line of mem¬ 
bers is known as the ‘lower chord,’ or ‘bottom chord.’ The inte¬ 
rior members connecting the joints of the upper chord with those 
of the lower chord are known as ‘web members,’ and may be either 
vertical, diagonal, or radial. 'Any member which takes compres¬ 
sion is called a ‘strut,’ and one that takes tension is called a ‘tie.^ 
The upper chord and some of the web members are subject to 
compression while the lower chord and the rest of the web mem¬ 

bers are in tension. 
The notation emplos^ed in this chapter for designating loads 

is the same as given in Art. 4, that is, placing a letter in each space 
27 
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instead of on each load. In addition, each space in the truss is 
given a letter so that each member is also designated by the let¬ 
ters between which it is situated. Thus, in Fig. 14a, AC and BC 
are the upper chord members and CD is the lower chord, while 

AB designates the load at the peak and 
BD and DA are the reactions. 

Thefundamental principlesof Graphic 
Statics as given in Chapter 1 apply to 
the determination of stresses in trusses 
under any given condition of load¬ 
ing. The reactions for a truss are 

found in the same manner as for a beam. The stress in each 
member at any joint is a force whose line of action is known to be 
through the joint with a direction parallel to the member, hence 
the only unknown is its magnitude. Since two unknowns can be 
determined from the force triangle, or force polygon, the stresses 
in all members at any joint having only two unknown stresses can 
be determined. For example, the strejsses in AC and CD can be 
found from a force triangle after the value of the reaction DA is 
known. 

Problem 14a.—The span of the simple triangular roof truss of Fig. 14a 

is 24 ft. and the pitch one-third. Find the stress in each member due to a 

load at the peak of 3000 lb. 

Art. 15. Dead and Snow Loads 

Four kinds of loads and various possible combinations thereof 
are to be considered in detennining the stresses in a truss: the 
weight of the truss itself, the weight of the roof covering, the snow, 
and the wind. The first two of these make up the 'd^d load’ of 
the roof. 

The weight of a truss depends upon its span and depth, the 
distance between adjacent trusses, the load to be carried, the 
material of which the truss is composed, the allowable unit stresses 
used in design, and various other elements of design. The actual 
weight cannot be ascertained until after a design has been com¬ 
pleted. Since the truss must be designed to carry its own weight 
it is necessary to assume a weight to use in calculating dead-load 
stresses. The best method of assuming a weight is by comparison 
with other trusses designed to fit similar conditions. Where other 
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trusses are not available for comparison an approximation can be 
made from the following formula for steel trusses: 

in which w is the weight of the truss in pounds per square foot of 
horizontal area covered, P is the capacity of the truss in pounds 
per square foot of horizontal projection, and L is the span of the 
truss in feet. The weight of wooden trusses having steel tension 
web members, in accordance with the usual practice, will be about 
three-fourths of that given by the above formula. For ordinary 
conditions the weight of the truss is seldom more than 15 per cent 
of the total load, so that a relatively large error in the assumed 
weight would cause a small error in the final stresses. For large 
spans or unusual conditions it may be necessary to revise the 
dead-load stresses after the actual weight of the truss has been 
found. 

The roof covering usually consists of a surface of tin, slate, 
tiles, corrugated steel, shingles, tar and gravel, or prepared roofing 
resting upon a Meek’ of wood, steel, concrete, or gypsum. The 
deck in turn is supported on ‘purlins’ or beams running longi¬ 
tudinally between the trusses and attached to them at the upper 
joints. In large roofs the deck is supported on ‘rafters’ running 
parallel to the upper chord, the rafters resting on the purlins. 
The actual weight of any roof covering can be determined only by 
computing the weight of the several elements of which it is com¬ 
posed. The roof covering is designed before the trusses are 
designed so that its actual weight is available for determining the 
dead load on the trusses. 

The approximate weight of a number of roofing materials is 
given below. All weights are in pounds per square foot of roof area. 

Coverings: 

Tin. 1 to 1| 
Corrugated steel. 1 to 2 
Wooden shingles. 2 to 3 
Slate shingles. 5 to 10 
Tiles. 8 to 25 
Tar and gravel. 5 to 10 
Prepared roofing. 1 to 2 
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Decks: 

1- in. wooden sheathing. 3 to 4 
2- in. concrete. 25 
Gypsum. 12 to 25 
Steel with insulation. 3 to 5 

Purlins: 

Wood. 1 to 3 
Structural steel. 2 to 4 
Steel joists. 1 to 2 

The snow load varies with the latitude, humidity of the cli¬ 
mate, and pitch of the roof, being about 30 lb. per horizontal 
sq. ft. in Northern New England and Canada, about 20 lb. in the 
latitude of New York City and Chicago, about 10 lb. in the lati¬ 
tude of Baltimore and Cincinnati, and rapidly diminishing south¬ 
ward. On roofs having an inclination to the horizontal of 60° 
or more this load may be neglected, as it might be expected that 
the snow would slide off. 

For the purpose of securing uniformity in the solution of 
examples and problems in this book, the following average values 
will be used, unless otherwise specified: 

For truss weight—compute from the above formula. 
For the roof covering—12 lb. per sq. ft. of roof surface. 
For the snow load—15 lb. per sq. ft. of horizontal area. 

The span of the wooden roof truss shown in Fig. 15a is 48 ft., 
the rise 10 ft., and the distance between trusses 12 ft. The 

length of each half of the top chord is y/24^ + 10^ = 26.00 ft. and 
is divided into three equal parts called * panels.' The weight of 
the roof covering, and of the snow which may be upon it, is brought 
by the purlins to the panel points of the upper chord. The 
weight of the truss itself is also generally regarded as concentrated 
at the panel points. At each joint of the upper chord there is 
hence a load called a * panel load,' and it may be a ^dead panel 
load' or a ‘snow panel load.' From the formula the truss weight 
is found to be 750 lb. The weight of the roof covering on the 
top chord is 2 X 26 X 12 X 12 = 7488 lb. The total dead load 
is 750 + 7488 = 8238 lb. and the dead panel loads JSC, CD, DD', 
D'C', and C'D' are each one-sixth of the total load or 1373 lb., 
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while the end loads AB and B'A' are each one-half as much, or 
686 lb. The weight of the snow supported by each truss is 
48 X 12 X 15 = 8640 lb. The intermediate snow panel loads are 
1440 lb., and the end loads 720 lb. 

If the panels are of unequal lengths, the load at any panel 
point is found by considering that the weights brought to it by 
the purlins are those upon the rectangular area extending in each 
direction half-way to the adjacent panel points. 

When a truss and the loads it carries are symmetrical the reac¬ 
tions of the supports are ecpial, each being one-half of the total 
load. For unsymmetrical conditions, the reactions are found in 
the same way as for a beam with concentrated loads. In the 

above example each dead-load reaction is 4119 lb. and each snow¬ 
load reaction is 4320 lb. The half-panel load acting at each sup¬ 
port is carried directly into the reaction, causing no stresses in the 
truss, and therefore may be omitted entirely from consideration 
in determining stresses. The net effective reaction is then one- 
half of the full panel loads, or for the snow load in the above 
problem is §(5 X 1440) = 3600 lb. 

Problem 15a.—A steel roof truss like Fig. 15a has a span of 60 ft., a rise 
of 15 ft., and distance between trusses of 18 ft. Find the panel loads and 
reactions due to the dead and snow loads. 

Art. 16. Stresses Due to Dead and Snow Loads 

Figure 16a shows the truss of Art. 15 with the dead loads and 
reactions determined there. The truss diagram composed of the 
center of gravity lines of the members, or ‘working lines,’ is care¬ 
fully drawn to as large a scale as convenient, each joint being 
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marked by a fine needle point and surrounded by a small circle to 
limit the lines drawn toward the point. 

The forces acting upon the truss are in equilibrium and hence 
form a closed force polygon (Art. 5). Since these forces are paral¬ 
lel the resulting polygon, or 'load line,' is a straight line. The 
load line is constructed by taking the panel loads in regular order 
from left to right, or in a clockwise direction about the truss, and 

laying them off in 
succession on the 
vertical line aa', 
thus: ah is laid off 
equal to the load 
AB or 686 lb., be 
equal to the load 
BC or 1373 lb., and 
so on for the other 
loads and reactions. 
Greater accuracy 
can be obtained by 
laying off each point 
on the load line as 
the accumulated 
distance from a, as 
for example, ac 
equals AB + BC = 
2059 lb., ad equals 
ac-f CZ) = 34321b., 
and so on. 

Each joint of the 
truss is in equilib¬ 
rium under the ac¬ 

tion of the external forces applied at the joint and the stresses in the 
truss members. Therefore all the forces acting on each joint must 
form a closed force polygon. Beginning with the joint at the left 
reaction, the known external forces are the reaction EA and the 
half-panel load AB. These are held in equilibrium by the 
unknown stresses in the members BF and FE. These stresses 
must act parallel to the members and through the joint so that the 
only unknown of each is its magnitude. The total unknowns 
being only two in number they can be determined from the force 
polygon (Art. 5). The polygon for the joint is constructed by 

1373 
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first laying off the known forces ea and ah equal to EA and AB, 
respectively, and tlu^n through h drawing a line parallel to BF 
and through e drawing a line parallel to EF, The intersection 
of these lines locates the point /, and the lengths hf and e/, meas¬ 
ured by the same scale used on the load line, give the stresses in 
the members. The character of the stresses is found by following" 
around the polygon starting with the known forces, that is, from 
e to a, a to h, h to /, and / to c. Transferring these to the joint 
considered, the stress in BF acts toward the joint and is therefore 
compression, whereas that in FE acts away from the joint and is 
tension. 

The first joint on the top chord is considered next as it has only 
two unknown stresses, CG and GF. The force polygon fhcg is 
constructed and the magnitude and character of the unknown 
stresses determined as before. The force polygons for the remain¬ 
ing joints are constructed in the same manner, proceeding each 
time to a joint having only two unknown stresses. All these 
force polygons taken together form the ‘stress diagram.^ The 
closing of the force polygon for the last joint gives a check on the 
force polygons for all other joints, and for that reason the entire 
stress diagram should always be drawn, though only half of it is 
necessary for a symmetrical truss. An additional check should 
be made by computing analytically the stress in one member 
conveniently located, as for example, IE. This not only checks 
the accuracy of the graphical work but also guards against meas¬ 
uring the stresses with a scale different from that used in laying 
off the load line. 

The method given above for finding the character of the stresses 
requires passing around the perimeter of every force polygon 
contained in the stress diagram, unless the truss and its loadings 
are symmetrical, in which case only half of the polygons are so 
used. The line representing the stress in each member must in 
all cases be traced twice, as it forms a side of two polygons. If 
no external forces act at a joint the direction of passing around the 
corresponding force polygon must be obtained from the character 
of the stress in one of its connected members already found. Thus, 
for the left joint on the bottom chord the stress in EF is known 
to be tension and therefore acts away from the joint, that is, 
toward the left. The force polygon must therefore be followed 
around in the direction efghie. 

In finding the character of the stresses above it will be noticed 
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that a clockwise direction, as indicated by the circular arrow, was 
followed around all polygons. This will always be the case if the 
load line is laid off by taking all external forces in a clockwise 
order around the truss, and it makes it possible to determine the 
character of the stress in any member without reference to that 
in any other member. For example, consider the member BF. 
Passing clockwise around the joint at the left reaction the member 
is read BF and the corresponding stress in the stress diagram is 
read from b to/, which, transferred to the joint, acts toward it and 
is therefore compression. Passing clockwise around the adjacent 
top chord joint this same member is read FB and the stress f to b 
again acts toward the joint considered so that it makes no differ¬ 
ence which joint is considered. 

It is evident that any truss, whatever the arrangement of web 
members may be, supported as in Fig. 16a will have its top chord 
in compression and its bottom chord in tension so that it usually 
remains to find only the character of the stresses in the web mem¬ 
bers. In this case they may all be found in one-half of the truss 
by considering only one of the lower chord joints. Since the 
truss is symmetrical the stress in the corresponding members in 
the other half will be the same kind. 

As soon as a stress is measured on the stress diagram it should 
be recorded on the corresponding member in the truss diagram 
together with its character. For convenience a tension stress is 
denoted by a plus sign and a compression stress by a minus sign. 
These signs can be fixed in mind by remembering that a plus 
stress (tension) tends to increase the length of a member whereas 
a minus stress (compression) tends to decrease its length. 

All lines of the stress diagram should be drawn with a hard, 
well-sharpened pencil pressed lightly on the paper so as to produce 
a fine, distinct line. As soon as an intersection is obtained it 
should be marked with a needle point, enclosed with a small 
circle, and designated by the proper letter; other lines drawn to 
or from that point should not pass within the circumference of 
this circle. The triangle and straight-edge used in drawing par¬ 
allel lines should be so arranged as to require the triangle to be 
moved the shortest possible distance. A drafting machine or 
T-square should not be used for graphic constructions, as they 
cannot be depended upon to move absolutely parallel at all times. 
Special care should be taken to hold the pencil at the same inclina* 
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tion from the beginning to the end of each line, or the line will not 
be strictly parallel to the edge of the triangle. 

The snow-load stress diagram is constructed in exactly the 
same way as that for the dead load. Since the distribution of the 
snow load is the same as for the dead load, the two stress diagrams 
will be similar. The snow-load stresses may therefore be ob¬ 
tained by multiplying the dead-load stresses by the ratio of their 
panel loads; in this case = 1.048. 

The following table gives the dead- and snow-load stresses in 
all members of the truss as scaled from the stress diagrams: 

Member Dead Load Snow Load 

BF - B'F' -8950 -931K) 
CO - C'G' -74(X) -7750 

DH = D'lr -7920 -8290 
EF - E'F' +8250 +8650 

El +4960 +5200 
FG - F'G" -1620 -1700 
GH - 07/' -1620 -1700 
HI = iri +3300 +3460 

When but a slight difference is found between the lengths of any 
pair of symmetrical lines in the stress diagram the average of the 
two should be used; if the discrepancy is large the entire stress 
diagram should be redrawn. 

Problem 16a.—The steel truss shown in Fig. 166 has a span of 80 ft., 
a pitch of one-fifth, and a distance between trusses of 19 ft. Find the dead- 

and snow-load stresses. Prove that the stresses in the three members cut 
by a vertical plane through DI hold the external forces on either side of the 
plane in equilibrium. 
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Art. 17. Wind Loads 

The wind usually acts horizontally or nearly so. Experi¬ 
ments have shown that the pressure produced by the wind varies 
approximately as the square of its velocity. A hurricane at 100 
miles per hour exerts a pressure of probably 40 lb. per sq. ft. of 
surface normal to its direction; a pressure of 30 lb. per sq. ft. cor¬ 
responds to a velocity of about 85 miles per hour; 20 lb. per sq. ft. 
to about 70 miles per hour; and 10 lb. per nq. ft. to about 50 miles 
per hour. Most building codes in the United States specify a 
wind pressure of 20 to 30 lb. per sq. ft. horizontally. Unless other¬ 
wise noted, a pressure of 30 lb. per sq. ft. will be used in problems 
in this book. 

The pressure produced by the wind on a roof depends on the 
direction and velocity of the wind, the inclination and shape of 
the roof, and the height of the building. Only the component of 
the pressure normal io the roof produces stresses in the truss. 
Several empirical formulas have been derived from experiments 
for determining this component. The formula most generally used 
was developed by Duchemin. It is 

2sina 

" 1 + sin2 a 

where P is the pressure in pounds per square foot on a surface 
normal to the direction of the wind, Pn is the component of the 
pressure normal to the roof, and a is the angle that the roof sur¬ 
face makes with the horizontal. The table below shows the 
normal pressure as given by Duchemin's formula for a horizontal 
wind pressure of 30 lb. per sq. ft.: 

Inclin. Nor. Press. Inclin. Nor. Press. Inclin. Nor. Press. 

5^ 6.2 25° 21.5 46° 28.3 
10° 10.1 30° 24.0 50° 29.0 
15° 14.6 35° 25.9 55° 29.4 
20° 18.4 40° 27.3 60° 29.7 

For inclinations exceeding 60® the normal pressure is equal to the 
horizontal pressure. For horizontal pressures other than 30 lb. 
per sq. ft. the normal pressure will change in the same ratio. 

The wind panel loads will be determined for the truss shown in 
Fig. 17a. The inclination of AB is found to be 50® 40', and that 
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of BCj 16® 40'. From the above table the normal wind pressures 
are respectively 29.0 and 15.9 lb. per sq. ft. For the trusses 12 ft. 

apart the total normal wind pressure on AB is + 11.7^ 
X12 X 29.0 = 5266 lb., one-half of w^hich is applied at A and 
one-half at B^ as shown. In the same way the wind upon BC 
produces normal panel loads of 1433 lb. at B and C. The two- 

panel loads at B are combined by a force triangle, the resultant 
being 3910 lb. 

Problem 17a.—The trusses shown in Fig. 176 are 20 ft. apart. Deter¬ 
mine the wind panel loads for the wind from the right. 

Art. 18. A Truss with Fixed Ends 

Roof trusses of short span, especially wooden trusses, generally 
have both ends firmly ^fixed' to the supporting walls. Both reac¬ 
tions caused by the wind pressure are therefore inclined, and their 
horizontal components tend to overturn the walls of the building. 
Since the magnitude and direction of each reaction is unknown 
there is a total of four unknowns. As explained in Art. 6, this is 
one more than can be determined, so that it is necessary to make 
some assumption as to th^istribution of the horizontal component 
between the reactions. 'The most common assumption is that the 
reactions are parallel. Another assumption sometimes made is 
that the horizontal components of the two reactions are equal. 
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With either assumption the reactions can be determined as 
explained for beams. 

The truss in Fig. 18a has both ends fixed, the span is 40 ft., the 
rise of the top chord 10 ft., the rise of the bottom chord 2 ft., the 
distance center to center of trusses 12 ft., and the reactions are 
assumed parallel. Each half of the top chord is found to be 22.36 ft. 
long and its inclination is 26° 34'. The normal wind pressure is 
therefore 22.4 lb. per sq. ft. of roof surface. The total wind load 
on each truss is 22.36 X 12 X 22.4 = 6010 lb. = 6.00 kips. The 

panel load BC is 3.00 kips and the panel loads AB and CD are 
1.^ kips each. 
W The reactions are found by means of the equilibrium polygon. 
It will be noticed that for wind loads the load line is inclined. 
Since the reactions are assumed parallel, the point Z must fall on 
the resultant or in this case on the load line itself. The results 
are 4.12 kips for the left reaction and 1.88 kips for the right reac¬ 
tion. These will now be checked analytically. The perpendicu¬ 
lar distance from the right support to the left reaction measures 
36.8 ft. Taking moments about the right support, 

LA X 35.8 -- 1.50 X 35.8 - 3.00 X 24.6 - 1.60 X 13.4 « 0, 
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whence LA = 4.12 kips. By taking moments about the left 

reaction in a similar manner, the reaction DL is found to be 1.88 

kips. Afibther check on the reactions is obtained by the closing 

of the stress diagram. The same result is obtained,, both graphi¬ 

cally and anal3dically, by replacing the wind panel loads by their 

resultant, 6.00 kips, applied at the middle of the left half of the 

top chord. 

The stress diagram is drawn on the same load line used in 

finding the reactions. The procedure is the same as for vertical 

loads. Since the points h and k coincide, the line hk is of zero 

Member 
Stresses in Kips 

Wind from Left Wind from Right 

BE -8.79 -5.23 
CF -8.79 -5.23 
DII -5.23 -8.79 
DK -5.23 -8.79 
EL +9.15 +3.90 
GL +3.15 +3.15 
KL +3.90 +9.15 
EF -3.00 0 
FG +6.21 +0.98 
GIF +0.98 +6.21 
HK 0 -3.00 

length, and the stress in HK is zero when the wind blows from the 

left. With scales of 3 ft. to an inch and 1 kip to an inch the 

results given in the table were obtained. The stress diagram for 

the wind loads applied on the right side of the truss is the same 

as that in Fig. 18a revolved about a vertical axis, therefore only 

one stress diagram is required. Accordingly the stress in any mem¬ 

ber in the truss for the wind from the right is the same as the stress 

in the corresponding member in the other half of the truss for the 

wind from the left. 

Problem 18a.—Find the reactions and stresses for the truss in Fig. 18a 
assuming the horizontal components of the reactions equal. 
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Art. t^. A Truss with One End Free 

Temperature changes cause expansion and contraction of roof 
trusses which, if both ends are fixed, give rise to certain stresses 
in the trusses and supporting walls. The coefficient of expansion 
of steel is about twice that of wood, so that for long-span steel 
trusses it is necessary to relieve these temperature stresses. This 
is usually accomplished by fastening only one end of the truss to 
the wall, the other being merely supported, or ‘free,’ so that it 
may move horizontally in th(^ direction of the length of the truss. 
The free end may rest on a smooth steel plate upon which it slides 
but this is not a very satisfactory arrangement, as the friction 
between the truss and the plate must be overcome and this may 
be large for heavy trusses, especially if the plate becomes rusty. 
A better method is to support the free end on a rocker or on rollers 
so that friction is reduced to a minimum. 

If no friction exists at the free end, the reaction there is vertical 
for the wind from either side. Therefore, in determining stresses 
due to wind it is necessary to construct two stress diagrams, one 
for the wind blowing on the fixed side and the other for the wind 
load on the free side. 

The truss in Fig. 19a has a span of 76 ft. a rise of top chord of 
19 ft., a rise of bottom chord of 4 ft., and a distance between 
trusses of 15 ft. The web members consist of verticals and 
diagonals as shown, the top chord being divided into eight 
equal parts. The inclination of the top chord is the same as 
that in the last article, hence the normal wind pressure is 
22.4 lb. per sq. ft. of roof surface. The wind panel loads BC, 
CD, and DE are each 1 X 42.48 X 15 X 22.4 = 3568 lb. = 3.60 
kips. The panel loads AB and EF are each one-half as much, or 
1.80 kips. 

The reactions are found graphically by means of the equilib¬ 
rium polygon to be FU = 4.02 kips and UA = 10.95 kips. ^ 
was necessary to start the equilibrium polyon at the left support 
as this is the only known point on the line of action of the left 
reaction. Since the right reaction is vertical it can easily be 
checked analytically. Taking moments about the left support 
and considering the resultant of the wind loads, 14.40 X 21.24 
—F{7 X 76 = 0, whence FU = 4.02 kips. A graphical check is 
also easily obtained by extending the two reactions and the 
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resultant of the wind loads to see that they intersect at the com¬ 
mon point, y. 

The stress diagram is constructed in the usual manner, starting 
at the left support and using the same load line laid off for finding 
the reactions. It will be noticed that the points n, p, g, r, 6*, and t 

all coincide so that the stress in all web members to the right of 
the center is zero. This may also be shown by beginning the 
stress diagram at the right support where the reaction FU is held 
in equilibrium by the stresses in UT and TF. The force triangle 
fut represents this relation, ut being the stress in UT and tf the 
stress in TF, Passing to the next joint on the upper chord it is 
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required to draw a force triangle having two sides parallel to the 
straight upper chord and the third parallel to TS. This causes 
the two sides to coincide and the third side to disappear, hence the 
stress in SF equals that in FT and the stress in TS is zero. The 
same condition occurs at each joint on the upper and lower chords 
to the right of the center of the truss. 

If the stress diagram is accurately drawn, the point I marks 

the intersection of ch, ug, klj and Im. Also the points gr, hy k, and 
m will lie on a straight line and be equidistant. 

When the wind blows upon the free side of the roof, as in 
Fig. 19&, the panel loads are the same as before. The reactions 
are determined graphically by means of the equilibrium polygon 
to be FU = 8.85 kips and UA = 7.60 kips. The right reaction 
was checked analytically and found to be 8.86 kips. A ^aphical 
check of the reactions is also obtained by extending the two reac¬ 
tions and the resultant of the wind loads to their common inter¬ 
section at y. The stress diagram was drawn as usual. It will be 
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noted again that all the web members to the left of the center of 
the truss carry no stress. The stress in the top chord of the entire 
loft half of the truss is represented by am and that in the bottom 
chord of the k^ft half of the truss by um. 

The actual construction of the diagrams for this example was 
made to scales of 6 ft. to an inch and 4 kips to an inch. The 
stresses are shown on the skeleton truss diagrams in Fig. 19c for 

convenient comparison. The greatest stresses are produced in the 
chords and in the center vertical when the wind blows on the 
fixed side. The stresses in the web on the vrindward side, except 
the center vertical, are the same for the wind blowing from either 
side, while the stresses in the web members on the leeward side 
are all zero. An analytical check gives the stress in FA, for the 
wind blowing from the left, of 11.40 kips, and the stress in AM, for 
the wind blowing from the right, of 9.48 kips. 

Problem 19a.—Determine the wind stresses for the truss in this article 

assuming both ends of the truss fixed and each reaction taking half of the 

horizontal component of the wind. Compare these stresses with the stresses 

shown in Fig. 19c. 

Art. 20. Abbreviated Methods for Wind Stresses 

It was shown in Art. 19 that the wind stresses in the web mem¬ 
bers of the leeward half of a triangular truss are always zero. 
The upper truss in Fig. 20a represents the same truss as Fig. 19a 
with the leeward web members omitted. The lower truss in 
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Fig. 20a differs from the upper one merely in having the rollers 
transferred to the left support. It corresponds to the truss in 
Fig. 196 turned end for end. Th(i bottom diagram in Fig. 20a is 
a combination of the stress diagrams of Figs. 19a and 196, the full 
lines being for the free end on the right and the broken lines for 
the free end on the left. 

Since the magnitude of the vertical components of the reactions 
is independent of the horizontal components (Art. 6), the line 
joining u and v! is horizontal. Draw v!x parallel to bg meeting 
itg at X, and u'y parallel to fn meeting un at y. Since lig and un 
make equal angles with the horizontal line aw', u'y is equal to u'x 
and xy is vertical. The stresses in the top chord are changed 
when the rollers are transferred from the right support to the left 
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support by the amount kk^ == mm' = rm' = n!x = 
those in the bottom chord are changed by ux = vy and that in 
MN by xyj while th(^ remaining stresses are unaltered. 

Applying the scale of forces, u'x and u'y are each found to be 
1.9 kips; ux and mjy 8.2 kips; and xy, 1.7 kips. In the following 
table the first line contains the stresses as obtained from Fig. 19a, 
and after subtracting the changes of stress found above the same 
results are obtained as from Fig. 196: 

Stresses for Wind on the Left 

Truss Members. BG cn DK EM FN UG UJ UL UN MN 

Rollers on right. 

C
M

 18.3 14.4 10.5 11.4 25.6 20.5 15.4 10.2 8.1 

Change in stress. 1.9 1.9 1.9 1.9 1.9 8.2 8.2 8.2 8.2 1.7 

Rollers on left. . 20.3 16.4 12.5 8.6 9.5 17.4 12.3 7.2 2.0 6.4 

Truss Members. BG' (7/' DK' EM' 
1 

FN' UG' UJ' UL' UN' M'N' 

When the lower chord is horizontal, ?// r, u'y, and xy each equal 
zero, so that the stresses in the upper chord and in all the web 
members are the same for the wind blowing on either the fixed side 
or the free side of the truss. The lower chord change, ux = uy, 
becomes equal to au', the horizontal component of the wind loads. 

For any other type of truss the changes of stress are easily 
obtained in a similar manner. When the middle panel of the 
bottom chord is horizontal, as in the example given on Plate I, 
the form of the auxiliary polygon u'xzy is somewhat different from 
the preceding one. The change of stress in the horizontal part 
of the bottom chord is measured by fe. The following values were 
obtained from the original diagram which was made to a scale of 
4 kips to an inch: u'x = u^y =1.7 kips, fcx = A:?/ = 8.1 kips, 
kz = 7.9 kips, and xz — yz = 0.7 kip. 

Problem 20a.—Prepare a table of wind stresses similar to the above for 
the example given in Plate I. 

Problem 206.—Find the wind stresses for a steel roof truss like that in 
Fig. 19a, except that the bottom chord is horizontal, having a span of 65 ft., 
a rise of 14 ft., and trusses spaced 18 ft. apart. 
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-Art. 21. Ambiguous Cases 

When, in the determination of stresses in the Fink truss shown 
in Fig. 21a, the joint at the middle of the left half of the top chord 
is reached, the load BC and the stresses in BG and GH are known, 
leaving three unknowns, namely, the stresses in CL, LK, and KH, 
Since the resultant of the known forces cannot be resolved into 

more than two given directions some other procedure becomes 
necessary. 

’'If the loads AB and CD are equal, as in this example, the sym¬ 
metrical relation of GH and LK causes them to have equal stresses, 
and therefore fg and Im are equal and lie in the same straight line. 

/The polygon hghclkh is then readily completed, and tlie stresses in 
the remainder of the truss found without difficulty. If the loads 
AB and CD are unequal, the panels on the upper chord remaining 
equal, the polygon hghclkh may be drawn by noting that the point 
k must lie midway between the parallel lines cl and dm. This 
follows from the fact that LM is normal to the upper chord and 
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that KL and MN are of equal length and make equal angles wit h 
LM as well as with the upper chord. The triangle Ikm is hence 
isosceles. 

If CL and DM are of unequal lengths then both of the above 
methods fail. A general solution of this problem can be made 
by temporarily changing the webbing of the truss. The stress in 
NE would be determined analytically by taking moments about 
the peak, and it will readily be seen that its value is independent 
of the arrangement of the web members. If the web members KL 
and LM are removed and the diagonal K"M substituted, as shown 

in Fig. 21a, it becomes 
possible to proceed with 
the stress diagram. First 
the polygon hghc¥'h can 
be completed, then the 
polygon k"cdm¥', and 
finally the polygon 
ekk^rnm giving the cor¬ 
rect value of nCy as ex¬ 
plained above. The 
original webbing may 
now be restored and the 
polygon nehkn completed 

Fig. 21c. 

since only the two stresses, HK and KN, remain unknown. The 
remainder of the stress diagram can be constructed without 
difficulty. 

Other trusses of this general type, as for example the Fan truss, 
Fig. 21c, or the Compound Fink truss, may require two or more 
temporary members, but the procedure will be the same. 

In the truss whose outline is given in Fig. 216 it is not possible 
to start the stress diagram in the usual manner, by considering the 
forces acting at the left support, since the known reaction and half¬ 
panel load are held in equilibrium by three unknown stresses. 
The load CC' at the peak is supported by only two members so 
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that the stress diagram may be started there by constructing the 
force triangle ecc'e. Next the joints on each side of the peak may 
be considered and the polygons bcedb and ec'b'd'e constructed. 
Passing to the joint below the peak the polygon ded'fd is drawn. 
At the left support the stress in FG is the only remaining unknown. 
As equilibrium exists at this joint the polygon must be closed by 
the line/g, which is also parallel to FG, This completes the stress 
diagram. By following around the polygons all the stresses are 
found to be compression except which is tension. 

Problem 21a.—The steel fan truss shown in Fig. 21c has a span of 60 ft., 
a rise of 14 ft., and a distance between trusses of 19 ft. Determine the max¬ 
imum and minimum stresses. 

Art. 22. Complete Stresses for a Triangular Truss 

On Plate I are given the dimensions of a steel roof truss together 
with the specified loads. The web struts are normal to the top 
chord as shown on the skeleton outline of the truss. All the 
stress diagrams required to determine the stresses due to dead, 
snow, and wind loads are shown and are constructed in the manner 
explained in the preceding articles of this chapter. The stresses 
as measured by scale (4 kips to an inch on the original) are arranged 
in tabular form. 

The preliminary computations give the following results: 

Length of half top chord. 41.15 ft. 
Weight of truss. 3.60 kips 
Weight of roof covering. 20.40 kips 
Total dead load.  24.00 kips 
Dead panel load. 3.00 kips 
Dead-load reaction. 12.00 kips 
Snow panel load. 2.28 kips 
Ratio of snow load to dead load. 0.76 
Inclination of roof surface. 25° 57' 
Normal wind pressure per square foot of 
roof. 22.01b. 

Total wind load. 14.96 kips 
Wind panel load. 3.74 kips 

The reactions for the wind load are obtained graphically as 
explained in Art. 6. Assuming both ends of the truss to be fixed 
and the reactions to be parallel, the reactions due to wind from 
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Art 22 Plate I 
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the left are au and ua in tlie stress diagram marked ‘wind on 
fixed side.’ The pole is at o and the equilibrium polygon is rdj 
the wind panel loads being considered concentrated at the center 
of the left half of the top chord. But since the right end of the 
truss rests on rollers the n^action AK of the right support must be 
vertical and is rc^presented by ak, or the vertical component of au. 
The closing side ka of the force polygon represents the reaction of 
the left support. Applying the scale the value of ak is found to 
be 4.15 kips, which is also the value of the vertical component of 
the left reaction when the wind blows on the right side. The value 
of ka is found to be 11.35 kips. 

Most specifications allow a higher unit stress in the design of 
truss members when the wind-load stresses are combined with th(i 
dead- and snow-load stresses than for the d(^ad- and snow-load 
stresses without the wind stresses. For this reason it is necessary 
to compute two maximum stresses for each member, one consider¬ 
ing the wind load and one without. As the wind can blow on only 
one side of the roof at a time, only one of the wind stresses is com¬ 
bined with the vertical loads. The snow load always produces 
stresses of the same character as the dead load and hence is used 
only in obtaining the maximums. In the example of Plate I the 
wind load also produces stresses of the same character as the dead 
load. This is not always the case, and when the stresses are of 
different character the minimum stress is obtained by subtracting 
one from the other. 

The stresses in the table on Plate I are given in kips. It will 
be noticed that the maximum chord stresses are greater on the 
fixed side than on the free side, whereas the maximum stresses in 
the web members are the same on both sides of the truss. 

Problem 22a.—A steel truss of the type shown in Fig. 21a has a span 
of 60 ft., rise of peak 16 ft., and rise of bottom cht)rd 2 ft. The trusses are 
20 ft. apart and their right ends rest on rollers. Find the maximum and 
minimum stresses in all members. 

Art. 23. Unsymmetrical Loads and Trusses 

Figure 23a shows the same truss as Fig. 18a with a load applied 
on the bottom chord. This load might be caused by machinery 
attached to the truss or by a balcony being suspended from it. 
Such unsymmetrical loads are frequently encountered, but they 
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present no unusual difficulties. The reactions, of course, are un¬ 
equal, but they may 
readily be determined 
either graphically or 
analytically. Care 
should be exercised in 
laying out the load lin(^ 
so that the clockwise 
order of the forces is 
maintained. In Fig. 
23a the load AB is 
laid off first. TIk^ 
next force encountered 
in passing clockwise 
around the truss is the 
left reaction BC, mid 
finally the right reaction CA. The stress diagram is constructed 

Fig. 236. 

in the usual manner. The load AB produces no stress in DE 
and GHf while it causes stresses in the other members of the same 
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character as those due to the dead, snow, and wind loads, and 
hence their maximum stresses arc increased. In certain cases 
such suspended loads may change some of the maximum stresses 
due to other loads from compression to tension or from tension to 
compression. 

When a ceiling is attached to the lower chord of a truss it 
becomes a part of the dead load and needs no separate stress dia¬ 
gram. In constructing the load line the top chord loads are first 
laid off downward in a clockwise order, or from left to right; next 
the right reaction is laid off upward; then the lower chord loads 
are laid off downward, from right to left; and finally the left reac¬ 
tion is laid upward, closing the polygon. It will be noticed that 
portions of the load line overlap. 

Another unsymmetrical condition frequently encountered is 
presented in Fig. 236. Here an 
unsymmetrical truss is shown 
under the action of its dead 
load. 

4 Kips The stress diagram for an 
unsymmetrical tniss or loading 
is necessarily unsymmetrical 
and hence has fewer checks 
upon its construction. The 

main check lies in the closing of the stress diagram after working 
from each reaction toward the peak. An analytical check should 
be made of the stress in at least one member. The labor required 
to determine the stresses analytically in a truss under unsym¬ 
metrical conditions is materially greater than for symmetrical 
conditions, whereas with the graphic method there is little or no 
difference. 

-3 Panels @10' •• 

Fia. 23c. 

Problem 23a.—Let the load .45 in Fig. 23a be 6 kips, and the dimensions 

of the truss the same as given in Art. 18. Find the stresses in all members. 

Problem 236.—Find the reactions and stresses for the cantilever truss 

shown in Fig. 23c. 

Art. 24. The Transverse Bent 

Roof trusses are frequently supported on columns. A truss 
and the columns supporting it form a frame, called a ^transverse 
bent,’ which must act as a unit in resisting lateral loads. Where 
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the truss is of triangular form it is necessary to add members, 
known as ^kneebraces,’ between the truss and columns (Fig. 24a). 

The transverse bent is an indeterminate structure as it is really 
a two-hinged arch if the columns are free to rotate at their bases, 
or a fixed arch if the column bases are fixed. However, approxi¬ 
mate solutions are generally used to detennine the stresses due 
to both vertical and lateral loads and have been found satisfac¬ 
tory. For vertical loads the columns and kneebraces are disre¬ 
garded and the truss treated as though it rested on solid supports. 

For lateral loads it is necessary to assume a point of contra- 
flexure (point of zero moment) in the columns and a distribution 
of the horizontal reactions b(‘tween them. The location of the 
point of contra-flexure depends upon the connections of the column 
to the truss and kneebrace and to the footing. If both ends of the 
column were rigidly fixed it would lie about mid-way between the 
base and the kneebrace connection. The lower the point of con¬ 
tra-flexure is taken, the greater are the stresses in both truss and 
columns. A conservative practice is to assume the point of contra- 
flexure to lie above the base one-third of the distance to the knee¬ 
brace connection. The proportion of the total shear, or the 
horizontal component of the reaction taken by each column, 
depends upon its relative rigidity. Where both columns are the 
same size and length it is reasonable to assume that they will 
carry equal shears. 

The transverse bent in Fig. 24a consists of a triangular roof 
truss of 36-ft. span and 9-ft. rise supported on columns 20 ft. high. 
The kneebrace connections are 5 ft. from the top of the columns, 
and the points of contra-flexure are assumed to be 5 ft. above the 
base. The bents are 20 ft. apart. The wind pressure is assumed 
as 30 lb. per sq. ft. horizontally, and the component normal to 
the roof is found to be 22.4 lb. per sq. ft. by the formula of Art. 17. 
The wind panel loads on the truss are 6.7 X 20 X 22.4 = 3.0 
kips. The horizontal wind load at the top of the column is J X 5 
X20 X 30 = 1.5 kips; that at the kneebrace is ^ X 20 X 20X 
30 = 6.0 kips; and that at the base of the column is | X 15 X 20 
X30 = 4.5 kips. The last load causes no stresses in the bent 
and is therefore not shown in Fig. 24a. 

The reactions are most readily found algebraically but may also 
be found graphically as follows: Since the horizontal components 
of the two reactions are assumed to be equal the point h must lie 
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on a vertical line through h/'j which is at the mid-point of the 
resultant ag. The vertical components are the same as though 
both reactions were parallel to the resultant (Art. 6). These 
reactions, ah' and Ii'Qj are easily found by means of the small 
equilibrium polygon shown in Fig. 24a, oh' being drawn parallel to 
the closing line oh. The point h must also lie on a horizontal line 
through h' and hence is at the intersection of this line with the 

vertical through h". A check on the reactions is for them to 
intersect on the line of action of the resultant. 

Before the stress diagram can be constructed it is necessary 
either to resolve the horizontal component of each reaction into 
two horizontal components, one applied at the bottom of the knee- 
brace and the other at the top of the column, or to add some auxil¬ 
iary members to complete a truss system. The latter method is 
easier and, as it does not change the stresses in the members of the 
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truss, will be used. The auxiliary members are shown in Fig. 24a 
in broken lines. The stresses are given in the table. The 

Member Wind from Left Wind from Right 

1)L -21.6 +17.7 

EN - 8.8 + 1.6 

FQ - 3.0 - 3.7 

LK + 5.6 - 4.4 

MU -t“16.9 -21.6 

PH -f 4.1 - 7.3 

LM + 9.5 -14.4 

MN -14.3 + 16.1 

NP -f 6.4 - 7.2 

PQ - 9.2 + 6.8 

QQ' + 1.7 + 1.7 

KJI +14.8 -22.5 

stresses for the wind from the right are also scaled from Fig. 24a 
since they are the same as the stresses in the right half of the truss 
with the wind from the left. It will be observed that the charac- 
ter of the stresses in several members is opposite to that for the 

vertical loads. 
The maximum moment in each column occurs at the kneebrace 

connection and is equal to the horizontal component of the reac¬ 
tion times the distance to the point of contra-flexure = 5.8 X 10 
= 58.0 ft.-kips. 

Problem 24a.—Determine the stresses in the transverse bent of this 

article assuming the columns hinged at their bases. 



CHAPTER III 

HIGHWAY BRIDGE TRUSSES 

Art. 25. Introduction 

Bridge trusses differ from roof trusses only in general form 
and type of loads carried. Practically all simple bridges may bo 
classified into three types, namely: deck, through, and pony truss 
bridges. A Meek’ bridge carries the roadway above the trusses 
and hence can be used only where there is ample clearance below 
the roadway. This type has the advantage of being economical, 
and it produces a rigid construction. A bridge that carries the 
roadway between the trusses and near the bottom chords is known 
as a through’ truss bridges Through bridges which are not deep 
enough to allow bracing over the roadway are called ‘ pony ’ truss 
bridges. Usually spans of less than 100 ft. are of the pony type 
whereas spans of 100 ft. or more are of the through type. 

Fia. 25^7. Fig. 26b. 

The roadway of a modern highway bridge is usually made of 
reinforced concrete. The roadway is supported on ‘stringers’ 
running lengthwise of the bridge. The stringers are supported 
on ‘floor-beams’ running crosswise of the bridge and the floor- 
beams in turn are supported by the trusses. 'The stringers and 
floor-beams are usually of I-beam section and together constitute 
the ‘floor system.’ The bracing in the plane of the bottom chords 
of the trusses is known as the ‘ bottom lateral system ’; that in the 
plane of the top chords is known as the ‘top lateral system.’ Brac¬ 
ing in a vertical plane between trusses is called ‘cross bracing.’ 

Numerous types of trusses are used for bridges but only a few 
of the most common will be mentioned here. Other more com- 

56 
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plex types are shown in Chapter VI. The Howe truss, a type 
much used for wooden bridges, is shown in Fig. 25a. The Pratt 
truss is formed by reversing the inclination of the interior diag¬ 
onals of the Howe truss. A Pratt truss with a curved upper 
chord. Fig. 256, is known as a Parker truss. The Pratt and 
Parker trusses are popular for through trusses with spans up to 
about 200 ft. The Warren truss illustrated in Fig. 25c is much 
used for pony trusses and other relatively short spans. A type 

having increasing use for longer spans is the K-truss, Fig. 25d. 
By breaking the length of the diagonals their inclinations are kept 
at a more economic angle for deep trusses. 

Art. 26. ]3kad Loads 

The dead load of a bridge consists of the weight of the trusses, 
bracing, floor system, floor, wearing surface, and any other perma¬ 
nent load that may be placed upon it. ''l^his weight depends upon 
the span, width, type of bridge and trusses, depth of trusses, type 
of floor and wearing surface, live load, unit stresses used in design, 
and various other details of design. The most variable factor of 
the dead load is the weight of the floor. A concrete floor with a 
wearing surface may weigh as much as 125 lb. per sq. ft. and ac¬ 
count for 75 per cent or more of the total dead load whereas 
a timber floor may weigh as little as 15 lb. per sq. ft. 

In modern highway bridges up to 200 ft. in span with rein- 
forced-concrete floors, the trusses, floor system, and bracing make 
up only 15 to 30 per cent of the dead load. The balance of the 
dead load consists mainly of the floor and wearing surface, both of 
which are completely designed before the dead-load stresses in the 
trusses are determined. It is therefore necessary to assume a 
weight for only the trusses, floor system, and bracing. The best 
method of assuming this weight is by comparison with other 
bridges designed for similar conditions. Where a comparison of 
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this kind is not feasible an approximate value can be obtained 
from the following formulas: 

For pony trusses, w = 140 + 12& + 0.26L — 0.4L, 

For through trusses, w = 200 + 126 + 0.26L — 0.4L, 

in which w is the weight of two trusses, floor system, and bracing 
in pounds per linear foot, b is the width of the roadway in feet 
(including sidwalks, if any), and L is the span in feet. The values 
given by the formulas should be sufficiently accurate for design 
purposes since a relatively large error would cause only a small 
error in the total dead load. However, the actual weight should 
be checked against the estimated weight after the design of the 
bridge has been completed and the dead-load stresses revised if 
necessary. 

Art. 27. Dead-Load Stresses 

Figure 27a represents a 200-ft. span bridge with a 20-ft. road¬ 
way as designed by the Iowa Highway Commission. A photo¬ 
graph of two of these spans is shown in Fig. Ilia. The floor of the 
bridge consists of an 8-in. reinforced-concrete slab, 1 in. of which 
was considered as wearing surface. In addition 38 lb. per sq. ft. 
was allowed for future wearing surface. 

The floor system as designed was found to average 480 lb. per 
hnear ft. of bridge. By comparison with similar designs, the 
trusses and bracing were estimated to weigh 880 lb. per linear ft. 
of bridge. The total dead load was: 

Wearing surface. 760 
Floor and curbs. 2280 
Floor system. 480 
Trusses and bracing. 880 

Total per foot of bridge. 4400 lb. 

The dead panel loads for each truss were J X 4400 X 25 = 55 000 
lb. = 55 kips. The dead load computed from the completed 
design was 4360 lb. per ft. so that no revision of the dead-load 
stresses was necessary. 

The dead-load stress diagram was drawn as explained in 
Chapter II, passing around the truss in a clockwise direction. 
The original stress diagram was drawn to a scale of 30 kips to 
an inch, and the stresses, in kips, as scaled from it are shown on 
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the right half of the truss in Fig. 27a. A check on the web dead¬ 
load stresses will be obtained when the live-load stresses are deter¬ 
mined in Art. 30. 

In the above example the entire dead load was considered 
concentrated on the lower chord. An analysis of the dead load 

Fig. 27a. 

shows that the trusses and bracing account for 20 per cent of the 
total. If half of this amount, or 10 per cent, amounting to 5.5 
kips in this case, were applied at the top chord a more accurate 
determination of stresses would be obtained. It will readily be 
seen that the only stresses affected would be those in the verticals, 
each being changed by —5.5 kips. 
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As a further illustration let a through Pratt truss bridge bo 
taken having seven panels of 18 ft. each, a span of 126 ft., and a 
height of 20 ft.. (Fig. 27b). The roadway is 20 ft. wide and con¬ 
sists of a 7-in. conc'rete slab with an 8-in. curb on each side extend¬ 
ing 8 in. above the floor slab. Allowance is also made for a wearing 

t> CD c B' 

surface weighing 25 lb. per sq. ft. By the formula in Art. 26, the 
weight of the steel is found to be 894 lb. per ft. of bridge. The 
dead load is therefore: 

Wearing surface 25 X 20 = 500 
Floor 0.583 X 20 X 150 = 1750 
Curbs 2 X 0.667 X 1.250 X 150 = 250 
Trusses, floor system, and bracing = 894 

Total per foot of bridge = 3394 lb. 
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The total dead panel loads are | X 3400 X 18 = 30 600 lb. = 30.6 
kips. If about 10 per cent of the total dead panel loads are applied 
at the upper panel points, the upper panel loads become 3.1 kips 
each, and the lower panel loads 27.5 kips each. 

The load line is constructed by taking the loads and reactions in 
a regular order clockwise around the truss, starting with the load 
AB. The force polygon is therefore ahcdc/b'a'fg'h'ihgfa. The 
stresses are shown on the right half of the truss. 

An examination of Fig. 27b shows that the vertical component 
of aj is afy the reaction; the vertical component of Id = af — ah 
--fg; Im = af — ab — fg gh; and so on. Therefore the fol¬ 
lowing principle is established: 

For trusses with horizontal chords the vertical component of 
the stress in any web member equals the reaction minus all 
loads on the left; that is, equals the vertical shear for that 
member. 

The only exception to this is the stress in the end vertical JKj 
which is equal to the lower panel load FG. . The above principle- 
may also be derived from the relation existing between the stresses 
in any section of a truss and the external forces on either side of 
that section. 

The diagram also shows that the difference between the mag¬ 
nitudes of the stresses in any two chord members equals the sum 
of the horizontal components of the stresses in the web members 
situated between them. For instance, the difference bet ween oi 
and hm is the horizontal component of m/?., which also equals the 
difference between cn and hm or between oi and bL The hori¬ 
zontal component of any diagonal is called a ^chord increment' 
and forms the base of a right triangle whose height is the vertical 
shear in that diagonal. 

Figure 27c shows one of the trusses of the Hill-to-Hill highway 
bridge at Bethlehem, Pa. (see Fig. III6) and its dead-load stress 
diagram. It has a span of 171 ft., and its depth at the various 
panel points is shown on the diagram. The upper dead panel 
loads are 25 kips each and the lower ones 214 kips each. The 
bridge is wide and has a concrete floor with granite block paving 
which accounts for the large dead panel loads. In constructing 
the stress diagram it is found that there are four members at both 
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the upper and lower panel points at the right end of the first 
panel. This can be overcome by calculating the stress in the 
lower chord at the center, which also equals that in every panel 

Fig. 27c. 

except the end ones, and laying it off on the stress diagram. The 
remainder of the diagram is simple. This case is similar to that 
of the Fink truss described and illustrated in Art, 21 and may be 
i?plv0d in a similar mamier by temporarily changing the left 
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half of the truss into a Parker truss or some other simple web 
system. 

Problem 27a.—Determine the dead-load stresses in the Hill-to-Hill 
bridge, shown in Fig. 27c, by the entirely graphical method suggested in the 
last paragraph. 

Art. 28. Live Loads 

The live load on a highway bridge consists of automobiles, 
motor trucks, wagons, and pedestrians. The density and char¬ 
acter of the traffic depend upon the location of the bridge and the 
width of the roadway. The motor trucks produce the maximum 
stresses, especially for short spans. For longer spans there is less 
probability of the entire roadway being loaded at one time so 
that a uniform ]f>ad is usually specified, diminishing with an in¬ 
crease in the length of roadway loaded. Highway-bridge live 
loads have become fairly well standardized, and those specified by 
the Iowa Highway Commission are given below. 

Bridges are classified on the basis of location and traffic as 
follows: 

Class A—bridges on primary and important county roads. 
Class B—permanent bridges on unimportant county and 

township roads. 
Class C—temporary bridges on township roads. 
Class D—bridges carrying a traffic of exceptionally heavy 

load units. 

All bridges, except class C, are designed to carry concrete floors. 
The live load for each class is specified as a uniform load as given 
by Fig. 28a or the following typical trucks (Fig. 286), whichever 
gives the greater stress: class A, two 15-ton trucks; classes B and 
C, one 15-ton truck; and class D, two 20-ton trucks. Where two 
trucks are used they are to be placed side by side and headed in 
the same direction. 

The stress produced by a moving load is greater than that pro¬ 
duced by the same load when stationary. This increase in stress 
is called 'impact' and is due to the roughness of the floor and to 
the rapid application of the moving load. No rational formula 
for impact exists, but most empirical formulas take into considera¬ 
tion the loaded length since a short length can be loaded more 
rapidly than a long length and also because the impact effect 
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is greater close to the load. The Iowa Highway Commission 
specifies an impact stress equal to 33 5 per cent of the live-load 
stress for I-beam spans and the floor systems of trusses and girders; 

Loaded Length in Feet 

Fig. 28a. 

and 66| per cent for floor-beam hangers. For main members of 
trusses and through girders the impact stress is given by the for¬ 
mula 
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in which I is the impact stress, L is the loaded length in feet pro¬ 
ducing the maximum live-load stress in the member, and S is the 
computed maximum live-load stress. 
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The above specifications, except those for impact, agree very 
closely with those adopted by the American Society of Civil Engi¬ 
neers and the American Association of State Highway Officials. 

'The snow load on a highway bridge may amount to as much as 
20 lb. per sq. ft. but is usually neglected as it is not probable that 
a full live load would come on the bridge while a heavy fall of 
snow rests upon it. If the snow-load stresses arc required a sepa¬ 
rate stress diagram is not necessary since the snow load is uniform 
and the stresses caused by it arc proportional to those caused by 
the dead load, if the latter be taken only on the chord supporting 
the floor, or to thos(‘ caused by a full live load. 

Problem 28a.—Construct a graph showing th(^ relation of the percentage 

of impact to <he loader! length as given by the impact formula. Use values 

of L up to 300 ft. 

Art. 29. Live-Load Stresses in a Warren Truss 

As every load placed upon a bridge truss produces compression 
in the upper chord and tension in the lowc^r chord, the greatest 
chord stresses produced by a live load occur when every panel 
point of the chord supporting the floor-beams is loadtid. The 
chord stresses due to a uniform live load arc lumce obtained from 

Fig, 29a. 

a diagram exactly similar to that for a dead load applied only 
upon one chord. Hence the stress in any chord member, due to 
a uniform live load, bears the same ratio to the dead-load stress as 
that of the corresponding panel loads, and accordingly either 
stress may be derived from the other by using this constant ratio. 

In order to investigate the effect of live load on the web mem¬ 
bers, let a deck Warren truss of seven panels be taken, the panel 
lengths being 18 ft., the span 126 ft., the depth 12 ft., and the 
roadway 20 ft. wide. From Fig. 28a, the uniform live load for a 
class A bridge of 126-ft. span is 85 lb. per sq. ft. The live panel 
load per truss is then 85 X 10 X 18 = 15.3 kips. As stated in the 
specifications of Art. 28, the uniform live load depends upon the 
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loaded length and not upon the span of the tniss. A method of 
varying the panel load with the loaded length will be given in 
Art. 34, but in this article the panel loads will be kept constant. 
Constant panel loads have frequently been used in the past but 
their use is gradually being discontinued. 

Placing a panel load at panel point 1 in Fig. 29a, the stresses 
due to this single load are obtained by drawing the stress diagram, 
Fig. 296, in the usual manner. The reaction a'k is one-seventh 
of Ihe panel load. The stresses in the web members are found to 
be alternately compression and kmsion each way from the load, 
and on either sidci the stresses are the same in magnitude from the 

load to the support, 
their vertical compo¬ 
nents being equal to 
the reaction on that 
side. 

For a panel load 
at panel point 2 the 
reaction of the right 
support will be twice 
as great as for the 
load at 1, and hence 
the stress in all web 
members on the right 
of panel point 2 will 
be twice as large; for 
a load at panel point 

3 the stresses on its right will be three times as great as for the 
load at 1, and so on. Again, a load at panel point 6 will produce 
the same stresses on its left as the load at 1 caused on its right, 
and a load at 3 will produce stresses in the web members on its 
left equal to four times those due to the load at 6. The stress 
in each web member due to a single live panel load at any panel 
point may therefore be obtained by taking a simple multiple of 
the stress for that member as given by Fig. 296. 

In the following table the first and sixth lines are thus filled 
out directly with the results scaled from the stress diagram (which 
was originally drawn to a scale of 5 kips to an inch), and the other 
lines by taking multiples of these as indicated above. The stresses 
in each column are then combined so as to give the maximum and 
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minimum stresses and those due to a live panel load at all panel 
points. 

Web Members KB DC CD DE EF FG GH 

Live panel load at: 

1. -f-lfi.38 -16.38 - 2.73 + 2.73 - 2.73 + 2.73 - 2.73 
2. -i 13.60 -13.65 + 13.65 -13.65 - 5.46 + 5.46 - 5.46 
3. + 10.92 - 10.92 + 10.92 -10.92 + 10.92 -10.92 - 8.19 
4. + 8.10 ~ 8.19 + 8.19 - 8.19 + 8.10 - 8.19 f 8.19 
5. + 0.46 - Ti 46 + 5.46 - 5.46 + 5.46 - 5.46 -1- 5.46 
6. + 2.73 - 2 73 + 2.73; - 2.73 + 2.73 - 2 73 + 2.73 

Max. live-luad stresses + .i7.33 - 57.33 -i 40.95 -40.95 + 27.30j -27.30 + 16.35 
Min. live-load stresses 0 0 - 2.73 + 2.73 - 8.10 + 8.19 -16.35 
Total live-load stresses 

1 
fr.7.33 -57.33 1 + 38.22 -38.22 + 19.11 

1 
-19.11 0 

It is found that for any given diagonal all the loads on one side 
of it cause one kind of stress, whereas those on the other side 
cause the oppowsite stress. The maximum stress is hence produced 
in a web member when the live load covers the larger segment of 
the span, and the minimum stress when the smaller segment is 
loaded. 

In the construction of stress diagrams for a truss with horizon¬ 
tal chords and equal panels it is not necessary to draw the skeleton 
outline of the truss to a large scale. If in this example ax be laid 
off by the linear scale equal to some convenient multiple of the 
half panel length and ay equal to the same multiple of the depth 
of the truss, xy will give the direction of half the web members, 
and in transferring this direction the triangle will require very little 
shifting along a straight-edge, thus promoting accuracy. The 
line ay should be longer than ak. Completing the rectangle 
xayz, the direction of the remaining web members will be given 

by az. 
The results in the line Hotal live-load stresses' in the table 

should be the same as those derived from a stress diagram made 
for a live panel load at every panel point, and may thus be 
checked. As such a diagram is required for the chord stresses it 
will also be used for this purpose. 

Problem 29a.—Determine the maximum and minimum live-load chord 
stresses for the above example by the same method used for the web members. 
Check all total live-load stresses by constructing a stress diagram for a panel 
load at every panel point. 
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Art. 30. Live-Load Stresses in a Parker Truss 

The 200-ft. Parker truss of Art. 27 will be used to illustrate 
the application to broken-chord trusses of the method given in 
Art. 29 for determining live-load web stresses. The chord stresses 
are of the same character for every load placed upon the bridge 

Fig. 30a. 

SO that the greatest live-load stresses occur with a panel load at 
every lower panel point. The stress diagram is therefore exactly 
similar to the dead-load stress diagram of Art. 27, and the stresses 
are proportional to their corresponding panel loads. 

From Fig. 28a the uniform live load for a class A bridge of 
200-ft. span is 70 lb. per sq. ft. The live panel load is 70 X 10 
X25 = 17.6 kips per truss. In Fig. 30a, a panel load is placed 
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£it panel point 1 and the stress diagram for this single load is 
drawn. The diagonals of this truss are too long to be designed 
economically to resist compression, therefore, an additional diag¬ 
onal, sloping in th(^ opposite direction and known as a ‘ counter,' 
is placed in (^ach of the two center paruds. Th(i counters are rep¬ 
resented in Fig. 30a by th(5 broken lines. Only the left counter is 
stressed for the position of the load shown. The change in the 
stress diagram to accommodate the diagonal GH being replaced 
by its counter is shown by the broken lines. The other diagonals 
are also subject to compression from the live load, but this is more 
than offset by the tension caused by the dead load. It is found 
that the stresses in th(; adjacent verticals are changed when the 
counters an' acting. Th('. chord stresses in the same panel as the 
counter are also changed but nex^d not he, considered since the 
maximum chord stresses occur only under full live load. 

The right reaction a'k is one-eighth of the panel load (Fig. 30a). 
For a load at panel point 2 the right reaction will be two-eighths, 
hence the stresses in all web members to the right of panel point 2 
will be twice as larger; similarly, for a load at panel point 3, the 
stresses on its right will be three times as great as for the load at 1, 
and so on. 

The following table is filled out as explained in Art. 29, the 
first and seventh lines being scaled directly from the original 
drawing of Fig. 3()a and the other lines taken as multiples of these. 
A column headed G"H" is included for the counter. 

Web Members BC (1) DE EF FU GH a'V/" ////' 

Live panel load at; 
(+ 3.04) (- 2.64) (0) (0) 

1. + 17,50 7.50 + 5.35 - 3.72 + 0.81 0 + 2.64 - 2.19 
(+ 6.08) (- 5.28) (0) (0) 

2. 0 + 9.48 + 10.70 - 7.44 + 1.62 0 + 5.28 - 4.38 
(+ 9.12) (- 7.92) (0) (0) 

3. 0 + 7.90 - 5.65 + 10.55 + 2.43 0 + 7.92 - 6.57 

4. 0 + 6.32 - 4..52 + 8.44 - 6.80 4 10.56 0 0 
5. 0 + 4.74 - 3.39 + 6.33 - 5.10 + 7.02 0 0 
6. 0 + 3.16 - 2,26 + 4.22 ~ 3.40 + 5.28 0 0 
7. 0 + 1.58 ~ 1.13 + 2.11 - 1.70 + 2.64 0 0 

(0) (0) 
Max. live-load stresses + 17.50 +33.18 -16.95 + 31.65 -17.00 +26.40 +15.84 -13.14 

( + 18.24) (-15.84) 

Min. live-load stresses 0 - 7.50 + 16.05 -11.16 + 4.86 0 0 0 

Total live-load stresses + 17.50 + 25.68 - 0.90 +20,49 + 1.24 + 10.56 0 0 
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The stresses in parenthesis are those that would be produced if the 
counter G"//" were not acting and must be used in finding the 
total live-load stresses. 

It is found that the only panel load causing stress in the end 
vertical BC is the load at 1. It is also found that the center ver¬ 
tical HIV is stressed only when one of the counters is stressed. 
The rest of the web members follow th(i same general laws deter¬ 
mined for parallel chord trusses, except that stresses caused by a 
single load are not equal in magnitude owing to the inclination 
of the top chord members and the difference in inclination of the 
web members. A check on the total live-load stresses can be 
made by multiplying the corresponding stresses of Fig. 27a by 
the ratio of their panel loads. 

Problem SOa.—Check the total live-load stresses in the above table from 

the dead-load stresses by the method explained. 

Art. 31. Stresses in a Bowstring Truss 

Bowstring trusses of the forms shown in Figs. 31a, 6, c, and d 
have frequently been used for highway bridges in the past but 
their use has been practically discontinued. However, there are 
still many of these old structures in use which must be investi¬ 
gated from time to time in order to determine their ability to carry 
new types of floors or modem live loads. Also, the bowstring 
type is now much used for roof trusses. 

The panel points of the broken chord lie either upon an arc 
of a circle or upon a parabola. When the web members are 
arranged as in Figs. 31a and d, the diagonals take only tension 
while the verticals take either tension or compression. In the 
truss in Fig. 31c, all the web members are designed to sustain 
either kind of stress. The same is true of the truss given in 
Fig. 316 with the exception of the middle and end verticals, which 
are subject to tension only. The form of truss shown in Fig. 31d 
is known as the denticular ^ truss. The broken lines show the 
roadway and its connection to the tmsses, the vertical end pieces 
being heavy posts and the others tension members. 

As an example, let a truss like Fig. 31a be taken whose upper 
panel points lie in the arc of a circle. The tmss has eight panels 
of 14 ft. each on the bottom chord, with a depth at the center of 
16 ft. The depths of the truss at the first, second, and third 
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panel points are 7.32, 12.23, and 15.07 ft., respectively. The 
bridge has a concrete roadway 22 ft. wide and two sidewalks each 
5 ft. wide. 

The weight of sti^el in the bridge is found by the formula of 
Art. 26 to be 1200 lb. per linear ft. to which must be added 2500 lb. 
per linear ft. for the weight of the floor and sidewalks. The dead 
panel loads are therefore, | X 14 X 3700 = 25 900 lb., or 26 
kips, all of which are applied on the lower chord. From Fig. 

7 /\[ 
Fig. 31a. 

Fig. 315. 

Fig. 31c. 

Fig. 31cif. 

28a, the class A unifonn live load for the roadway is 88 lb. per 
sq. ft. and that for the sidewalks is 60 lb. per sq. ft. The live 
panel loads are J(88 X 22 + 60 X 10)14 == 17 750 lb., or 18 kips. 
The impact stresses are found from the formula of Art. 28 and 
amount to 24.0 per cent of the live-load stresses when the full 
length of the bridge is loaded. 

The truss diagram shown in Fig. Sle contains only the main 
diagonals in the left haK and only the counters in the right. The 
stress diagram obtained for the dead load is shown in the lower 
part of Fig. Sle, that for a live panel load at panel point 1 is shown 
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in Fig. 31/, and that for a liv(^ panel load at panel point 7 in 
Fig. 31^. As a check on the construction of the dead-load diagram 
it is observed that be and h'r/ are in the same vertical line. The 
same is true of de and d'e/ and of fg and fg\ In general, the 
lines representing stresvs(\s in verticals equally distant from th(^ cen¬ 
ter of the truss lie in the same vertical line. In Fig. 31/ the line 

de is the same distance from the load line as in Fig. 31gr, also 
d'e' in Fig. 31/ and de in Fig. 31gf are similarly situated. The same 
relation exists between the lines representing the stress in any 
two verticals occupying symmetrical positions in the truss. Again, 
if in Fig. 31^, /'gf' be produced to meet ae' and the intersection be 
called g"y then /'gf" will be equal to fg in Fig. 31/, and d'g" will be 
equal to ef in Fig. 31/. 
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In Fig. 31e, /i/i" represents the stress in the vertical HH' 
when the main diagonal is inserted on its right side instead of the 
counter shown, the point /i" being the intersection of the lines og' 

and hh\ Since the maximum chord stresses occur under full live 
load, only the stresses in the web members are scaled from Figs. 
31/ and g. The live-load stresses in the chord members are found 
by proportion from the dead-load stresses, the ratio being 18 to 

26. The full live-load stresses for the web members may also be 
checked by proportion from the dead-load stresses. 

The results expressed in kips are given in the following tables, 
and the maximum and minimum stresses, including impact, are 
obtained. The effect of lateral loads has been omitted. 
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Upper Chord Lower Chord 

AB AD AF All BJ^CK EL GM 

Dead load.... 
Live load. 

--196.0 
-135.8 
- 32.6 

-189.1 
-131.0 
- 31.4 

-185.0 
-128.0 
- 30.7 

-182.3 
-126.2 
- 30.3 

+174.0 
+120.5 
+ 28.9 

+178.8 
+ 123.8 
+ 29.7 

+ 181.2 
+ 125.7 
+ 30.2 Impaet. 

Maximum. 
Minimum. 

-364.4 
-106.0 

-351.5 
-189.1 

-343.7 
-185.0 

-3.38.8 
-182.3 

+323.4 
+174.0 

+332.3 
+ 178.8 

+ 337.1 
+ 181.2 

Main Diagonals Counters 

CD EF an G'lr E'F' C'D' 

Live panel load at: 
1. -16.6 - 6.6 - 3 8 - 2.5 - 1.7 - 1.1 
2. + 5.8 -13.3 - 7.6 - 4.9 - 3.4 - 2.2 
3. + 4.8 + 7.5 -11.4 - 7.4 - 5.1 - 3.3 
4. + 3.9 + 6.0 + 9.4 - 9.8 - 6.8 - 4.4 
5. + 2.9 + 4.5 + 7.1 + 11.9 - 8.5 - 5.5 
6. + 2.0 + 3.0 + 4.7 + 7.9 + 14.8 - 6.6 
7. + 1.0 + 1.5 + 2.4 + 3.9 + 7.4 + 19.4 

+Total. +20.4 +22.5 +23.6 +23.7 +22.2 + 19.4 
—Total. -16.6 -19.9 -22.8 -24.6 -25.5 -23.1 

Uniform live load.... + 3.8 + 2.6 + 0.8 - 0.9 - 3.3 - 3.7 
Impact load. + 5.3 + 6.1 + 6.7 + 7.1 + 7.1 + 6.6 
Dead load. + 6.0 + 3.4 + 1.0 - 1.0 - 3.7 - 6.7 

Maximum. +31.7 +32.0 +31.3 +29.8 +25.6 + 19.3 
Minimum. 0 0 0 0 0 0 

The impact stresses in web members were calculated for a 
loaded length extending one-half panel past the last panel load. 
For example, the maximum tension occurs in the diagonal GH 
with panel points 4 to 7 inclusive loaded. The load length is 
therefore four and one-half panels, or 63 ft. No difficulty is 
encountered in finding the maximum and minimum stresses in the 
chords, diagonals, and counters as they carry only one kind of 
stress. The verticals carry both tension and compression stresses 
and care must be exercised in combining the live- and dead-load 
stresses to see that they can occur simultaneously. 
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Verticals 

BC DE FG Hir F'G' D'E' B'C' 

Live panel load at: 
1. + 18.0 + 7.7 + 4.4 + 2.8 + 1.8 + 1.2 + 0.7 
2. 0 + 15.4 + 8.7 + 5.6 + 3.6 + 2.4 + 1.5 
3. 0 - 2.1 + 13.0 + 8.4 + 5.5 + 3.6 + 2.2 
4. 0 - 1.7 - 4.0 + 11.2 + 7.3 + 4.8 + 2.9 
5. 0 - 1.3 - 3.0 - 5.3 + 9.2 + 6.0 + 3.6 
6. 0 - 0.8 - 2.0 - 3.5 - 6.0 + 7.2 + 4.4 
7. 0 - 0.4 - 1.0 - 1.8 - 3.0 - 5.4 + 5.1 

*4" Total... + 18.0 +23.1 +26.1 +28.0 +27.4 +25.2 +20.4 
—Total. 0 - 6.3 -10.0 -10.6 - 9.0 - 5.4 0 

Uniform live load. + 18.0 +16.8 +16.1 
(+16.8) 
+17.4 +18.4 +19.8 +20.4 

-flmpact load. + 5.1 + 4.9 + 3.9 
(+ 4.0) 
+ 8.0 + 2.1 + 2.4 + 3.9 

— Impact load. 0 - 1.7 - 2.9 - 3.2 - 2.9 - 1.8 0 

Dead load. +26.0 +23.6 +23.7 
(+24.3) 
+25.2 +26.9 +28.8 +30.8 

Maximum. +49.1 +46.5 +43.7 +45.1 +36.5 +39.0 +47.8 
Minimum. + 26.0 + 15.6 + 10.8 + 11.4 + 16.0 +21.6 +30.8 

The table shows a maximum live-load stress in the vertical 
BC of +18.0 kips with a load at panel point 1. Actually this 
stress cannot occur under this loading since the adjacent diagonal 
CD would then be subject to compression, which it cannot carry, 
and the counter would be brought into action. However, under 
a uniform live load the diagonal CD would be in tension and the 
stress could occur. It can be seen from the table that tension 
would still exist in CD if the live loads were removed from panel 
points 5, 6, and 7. The loaded length for calculating the impact 
stress is then four and one-half panels. 

The maximum live-load stress of 23.1 kips tension for the 
vertical DE in the line marked ^+totar when combined with 
that due to the impact and dead loads cannot actually occur 
because the adjacent diagonals, CD and EF^ are not brought into 
action simultaneously. The greatest tension in DE will therefore 
occur under full live load, unless one or more of the live panel 
loads on the right may be removed without causing either CD 
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or EF to cease acting. From the table it is seen that the live load 
may be removed from panel points 6 and 7, and the corresponding 
live-load stress will be +16,8 ~ ( — 0.4 — 0.8) =+ 18.0 kips. 
The loaded length is five and one-half panels, and the impact 
stress 27.1 per cent of 18.0 = + 4.9 kips. The maximum stress is 
therefore +23.6 + 18.0 + 4.9 =+ 46.5 kips. 

The greatest live-load compression in the vertical DE is shown 
by the table to be due to the panel loads 3 to 7 inclusive. This is 
a real stress because the adjacent diagonals CD and EF are then 
acting, both of them receiving almost their maximum stress. The 
loaded length for calculating the impact stress is again five and 
one-half panels. The minimum combined stress is then +23.6 
-6.3 - 1.7 =+ 15.6 kips. 

In a similar manner the values of +39.0 and +21.6 kips are 
obtained for jyE\ and these are its ma.ximum and minimum 
stresses under the condition that the adjacent counters C'T)' and 
E'F' are both acting. On account of the symmetry of the truss 
the maximum and minimum stresses in DE have the same values 
provided the counters are acting in each adjacent panel. 

Two more conditions for DE require attention. The first is 
that when the main diagonal acts on its right and the counter 
on its left. The table indicates that this condition cannot exist 
under any combination of the given loads. 

The second condition occurs when the main diagonal acts on 
the left of DE and the counter on its right. This one is possible 
and requires an additional tabulation. The live load at panel 
point 1 produces a tension in DE of 2.28 kips, and that at panel 
point 7 of 0.77 kip. The former value is obtained from Fig. 31/ 
by measuring the distance from d to the point where the vertical 
de meets af produced; the latter is obtained from Fig. 31gr by 
measuring the distance from d to the intersection of af with the 
vertical de produced. In the same way, Fig. 31^ gives the cor¬ 
responding dead-load stress of +26.2 kips. From the stresses due 
to the live panel loads at 1 and 7 those produced by the loads at 
panel points 2 to 6 inclusive are found by the method used in the 
above tabulation to be +4.6, +3.8, +3.1, +2.3, and +1.5, when 
expressed to the nearest tenth of a kip. Since all these stresses 
are tension, it is clear that the maximum will be caused by the 
dead load combined with as many of the live panel loads as possi¬ 
ble without bringing the main diagonal on the right of DE into 
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action. The table for the diagonals indicates that this occurs 
when the live panel loads an^ placed at panel points 1 to 4 inclusive, 
and the resulting live-load, dead-load, and impact stress is 4-2.3 
4“ 4.6 -f 3.8 4~ 3.1 4- 26.2 4- 3.9 = + 43.9 kips. If a similar tabu¬ 
lation were made for D'E' when the counter acts on its left and the 
main diagonal on its right, the same result of 4*43.9 kips would 
be obtained. 

On comparing the maximum stresses in DE under the three 
conditions above described and investigated, the first value 
obtained is seem to b(j the^ greatest in magnitude, and hence the 
true maximum to be use^d for both J)E and the corresponding ver¬ 
tical D'E* in the other half of the truss. As the range of stress 
from this maximum of 4-46.5 to +15.6, the minimum in DE, is 
greater than to the minimum of +21.6 in D'A/', the true minimum 
stress to be used for both DE and D'E' is +15.6 kips. 

The stresses in EG when the main diagonal acts on its left and 
the counter on its right are found to be +1.4, +2.8, +4.2, +3.3, 
+2.5, +1.7, and +0.8 for the live pan(4 loads 1 to 7 inclusive 
and +24.4 for the dead load. The maximum stress occurs when 
the live load is at panel points 1 to 6 inclusive, combined with the 
dead-load and impact stresses, and is +44.4 kips. On comparing 
this stress with the values given in the tables for EG and E^G', the 
true maximum for both these verticals is seen to be +44.4 kips 
and the true minimum +10.8 kips. 

The maximum stress in the vertical HIE when the main diag¬ 
onal acts on its left and counter on its right occurs with live load 
at panel points 2 to 7 inclusive and is +43.6 kips, including dead¬ 
load and impact stresses. The minimum stress occurs with live 
panel loads at points 5, 6, and 7 and is +11.4 kips. The real max¬ 
imum for the vertical IIIE occurs under full live load with both 
adjacent main diagonals acting. The value of the dead-load 
stress shown in parenthesis in the table is represented in Fig. 31e 
by AA", as previously explained. The uniform live-load stress, 
also shown in parenthesis, is obtained by proportion from the 
dead-load stress. The combined dead-load, live-load, and. impact 
stresses amount to +45.1 kips. 

The true maximum and minimum stresses for the vertical 
5'C' are equal to those for the vertical BC, 

Problem 31a.—A deck bowstring truss has six panels each 15 ft. long, 
the depth at the first and fifth panel points being 7.5 ft., at the second and 
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fourth panel points 11.7 ft., and at the center 13 ft. The dead panel load is 
5.0 kips and the live panel load 12.5 kips. Find the maximum and minimum 
stresses due to these loads only. 

Art. 32. The Parabolic Bowstiung Truss 

When the panel points of the brokcm chord of a bowstring truss 
lie upon a parabola whose vortex is midway between the supports, 
the stress diagrams become simpler. Let a parabolic bowstring 
truss be taken with the same general dimensions and loads as 
given in the preceding article. In the diagram like Fig. 31c the 
broken lines bed . . . d'c'6' become a straight line, and the points 
c and dy e and c' and h', coincide. This shows that under 
a uniform load the stress in the horizontal chord is the same 
throughout, the diagonals are not strc'ssed at all, and each vertical 
carries only the panel load applied at its lower panel point. In 
the diagrams similar to 31/ and 31g, the points 6, d, /, A, g\ c', and 
c' lie upon a straight line which intersects the load line produced 
at a distance from j or/' equal to the smaller reaction, thus check¬ 
ing the construction. 

In the tabulated live-load stresses for the web members the 
sum of the total' and the ^ — total' will give zero for the diag¬ 
onals and +18.0 for the verticals, provided the work be done with 
the utmost precision. With diagrams like Figs. 31/ and 31g, 
made to a scale of 5 kips to an inch, the stresses obtained by tabu¬ 
lation for unifonn live load averaged 0.02 kip in magnitude for the 
diagonals, two being tension and thnx? compression, and those in 
the verticals varied on an average 0.04 kip from the true result, 
some being too large and others too small. 

The final results in kips are given in the following table: 

Chords 
Maximum 
Stresses 

Minimum 
Stresses 

Diagonals 
Maximum 

Stresses 
VerticaJs 

Minimum 
Stresses 

AB -378.2 -203.5 CD +22.3 BC +26.0 
AD -359.0 -193.0 EF +26.6 DE + 18.9 
AF -346.1 -186.1 GH +29.9 FG + 14.4 
AH -339.2 -182.5 G'W +31.2 HW +12.7 
BJ ' E'F' +30.7 FV' 1 +14.1 
CK +338.3 +182.0 C'D' +28.0 D'E' +18.5 
EL R'C' +26.0 
GM J I 
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The minimum stresses in all diagonals are zero, and the maximum 
stress in each vertical equals +26.0 + 18.0 + 4.3 = 48.3 kips, or 
the sum of the dead, live, and impact panel loads. 

The properties of the parabola are such as to provide a very 
simple and abridged construction for obtaining directly the maxi¬ 
mum and minimum stresses due to dead, live, and impact loads. 
The stress in the horizontal chord due to the dead load is equal to. 

91 X 56 - 78 X 28 

16 
182.0 kips 

Similarly that due to tlui live load is 126.0 kips and that due to 
impact is 30.3 kips. 

Now in Fig. 32a on the horizontal line ad, let ah be laid off to 

scale equal to 182.0 kips, he equal to 126.0 kips, cd equal to 30.3 
kips, and verticals erected at each point of division. As the depth 
of the truss is one-seventh of its span let hh' and cc! be made equal 
to one-seventh of 126.0 or 18.0 kips, and on the span h'c' let an 
outline diagram be drawn similar to the truss diagram. In the 
figure one half is drawn as a through truss and the other half as 
a deck truss. The maximum and minimum stresses in the chord 
members are shown in Fig. 32a and those in the web members in 
the table on page 80. 

By measuring the diagonals with the scale of force their 
maximum live-load stresses are obtained, to which must be added 
the proper percentage for impact stresses, depending on the 
loaded length. The dead-load stresses and the minimum live- 
load stresses in all diagonals are zero. The maximum and mini- 
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CD + 17.7 + 4.6 + 22.3 liC +26.0 0 +26.0 liC -44.0 -6.1 -50.1 
EF +20.9 + 5.7 + 26.6 DE + 20.4 -1.5 + 18.9 DE -49.6 -7.5 -57.1 
GII +23.3 + 6.6 + 29.9 FG + 17.0 -2.6 + 14.4 FG -53.0 -S. 1 -61.1 
G'lr +24,0 + 7.2 + 31.2 Hir + 15.8 -3.1 + 12.7 ini' -54.2 -7.8 -62.0 
E'F' +23..3 + 7.4 + 30.7 F'G' + 17.0 -2.9 + 14.1 F'G' -53.0 — 7.3 -60.3 
C'D' +20.9 + 7.1 + 28.0 D'E' +20.4 -1.9 + 18. .5 D'E' -49.6 -6.1 -55.7 

B'C' +26.0 0 + 26.0 irc' -41.0 -4.4 -48.4 

mum stresses in all verticals and diagonals occur under the same 
positions of the live panel loads as in Art. 31, so that the loaded 
length corresponding to cacli stress can be obtained from the 
tables of that articl(\ 

On the through truss draw the horizontal base line 26.0 kips 
(the value of the dead panel load) above the first panel point on 
the upper chord. By measuring Ihe verticals extending from this 
base line to each panel point on the upper chord, upward being 
compression and downward tension, the minimum stresses due 
to dead and live loads in the verticals are found. The difference 
between the minimum stress in any vertical and the dead panel 
load is the minimum live-load stress on which the impact stress is 
based. The maximum stresses in all verticals occur under full 
live load and are equal to the sum of the dead, live, and impact 
panel loads. 

On the deck truss let a similar base line be drawn 44.0 kips 
(the sum of the dead and live panel loads) above the first panel 
point from the support on the lower chord, and the verticals 
measured from the panel points to the base line; thus are found 
the maximum stresses in the verticals due to the dead and live 
loads, all of them being compression. The impact stresses are 
based on the live-load stresses which are again the difference 
between the maximum dead- and live-load stresses and the dead 
panel load. The minimum stresses in all verticals are —26.0 kips, 
the dead panel load. It will be observed that the differences 
between the minimum dead- and hve-load stresses in the verticals 
of the through truss and the maximum dead- and live-load stresses 
in the same members of the deck truss equal twice the dead panel 
load plus the live panel load in all cases. 
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Let the chord members \yc prolonged until they meet the 
verticals through a and d, J']ach of these lines is divided into 
three parts by the four verticals, these parts giving the stresses 
due to dead, live, and impact loads, respectively. For example, 
the (lead-load strciss in the horizontal chord is represented by aJ), 
the live-load stress by he, and the impact stress by cd. The 
maximum stress in the same nmmber is hence ad, or 338.3 kips, 
and the minimum stress is ah, or 182.0 kips. The maximum and 
minimum chord stresses shown in Fig. 32a are for the through 
truss. Those for the deck truss are equal in magnitude but 
opposite in character. 

Problkm 32^/.- -a deck [)aral)()lic bevrstring truss of 10 panels has a span 

of 120 ft. and a dej)th of 15 ft. at the center. Find the maximum and mini¬ 

mum stresses, including impact, for a dead panel load of 4.0 kips and a live 

panel load of 9.0 kips. 

Art. 33. Infijjence Lines 

An influence line is a line which shows the variation at a given 
point in a structure of a reaction, vertical shear, bending moment, 
stress, deflection, or any other function, when a single concentrated 
load moves across the span of the 
structure. The variation of the reac¬ 
tion of one of the supports of a beam 
or bridge, as a single load P crosses 
from one end to the other, may be 
exhibited by a line called ^a reaction 
influence line.’ To draw it,, the values Fig. 33r/. 

of the reaction for several positions 
of the load P are laid off as ordinates at these positions, and the 
line joining their tops is the desired influence line. For example, 
let it be required to draw the influence line for the right reaction 
of the simple beam shown in Fig. 33a. If z is the distance of 
P from the left support and I is the span, the right reaction 
R2 = Pz/ly and the value of this is P when the load is at the 
right support, \P when the load is at the middle of the span, 
and zero when the load is at the left support. The line joining 
the tops of the ordinates is a straight line as shown in the figure, 
each ordinate giving the value of the reaction R2 for a load P 
directly above it. 
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An influence diagram is usually constructed for a unit load of 
1 lb. or 1 kip. For a concentrated load the value of the function 
under consideration is obtained by multiplying the load by the 
value of the ordinate. If the structure is loaded with a uniform 
load the value of the function is obtained by multiplying the load 
per foot by the area of the influence diagram for the loaded portion. 
If Fig. 33a is constructed for a unit load, the ordinate at the 
right support is unity. The area of the influence diagram is then 

and the right reaction for a load of w per foot over the entire 
length is It? X = ^wL 

The variation of the vertical shear at any given section of a 
beam or bridge, as a single load P crosses from one end to the 
other, may be exhibited by a line called ^the shear influence line.' 
To draw it the values of the vertical shear for several positions 
of the load are laid off as ordinates at those positions. For 

Fia. 336. Fig. 33c. 

example, the vertical shear at the section K of the simple beam 
in Fig. 336 due to a load P at the distance kl from the left support 
is +P(1 — fc) when the load is on KB, and —Pfc when the load 
is on AK. Hence, when P is at A or H the ordinate is zero, when 
P is passing K the ordinates are +P{1 — k\) and —Pfci, the 
distance AK being kil. These lines clearly show how loads should 
be placed in order to give respectively the greatest positive and 
negative shears at the given section K. 

The variation of the bending moment at a given section may 
also be represented by a line called H.he moment influence line.' 
Thus, for the section K at the distance kil from A, in the simple 
beam of Fig. 33c, the moment due to a load P at a distance kl 
from A is +PfciZ(l — k) for a load on the right of X, and 
+Pkl{l — kl) for a load on the left of K, Since the bending 
moment at the given section varies as the first power of kl in both 
cases, the influence diagram consists of two straight lines, and 
these are readily drawn after erecting an ordinate at the given 
section to represent the moment Pkil{l — fci) due to a load at 
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that point. This diagram shows that the maximum bending 
moment at any section of a simple beam occurs when the span 
is fully loaded, and when the heavy loads arc near the section. 

It is very important to distinguish clearly the difference 
between a ^bending moment diagram^ and a ^moment influence 
diagram.’ In the former, the load or loads are fixed in position 
and each ordinate represents the bending moment in a section 
of the beam having the same location as the ordinate. In the 
latter, the given section has a fixed location and each ordinate 
represents the bending moment in that section of the beam when 
a single concentrated load occupies the same position as the 
ordinate. Stated in another way, in the former, the diagram 
gives the bending moments in the different sections of the beam, 
for loading in one position; in the latter, the diagram gives the 
bending moment in only one section of the beam for the different 
positions of a single moving load. 

Problem 33a.—An overhanging beam 24 ft. long has one support at the 
left end and the other 6 ft. from the right end. Construct the influence lines 
for both reactions and for the shear and moment at a point 8 ft. from the 
left support. 

Art. 34. Live-Load Stresses by Method of Influence Lines 

From Art. 30 it was found that a load at panid point 2 causes 
compression in the diagonal EF whereas a load at 3 causes tension. 
Also, a load at panel point 1 causes half as much compression as 
one at 2 and likewise the tension caused by loads to the right of 
panel point 3 decreases with a straight line variation to zero at the 
support. The influence diagram (Fig. 34a) for the stress in EF 
then consists of the straight line mr to the left of 2 and the straight 
line sn to the right of 3. A load applied between panel points is 
carried to the adjacent panel points by the floor system. Since 
the stress in EF changes from compression for a load at panel 
point 2 to tension for a load at 3, there must be some point between 
2 and 3 at which a load can be applied that will produce no stress 
in EF, This point will evidently be located so that the reaction 
of the floor system at 3 times the ordinate to the influence line at 
that point is numerically equal to the reaction at 2 times the 
ordinate at that point. This location will be where the line con¬ 
necting r and s intersects the axis mn. The complete influence 
diagram is therefore mrsn. 
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the axis mn is shown with broken lines. Likewise, the influence 
diagram for the counter G"//" (broken line in truss diagram) is 
drawn ignoring the diagonal G7/'. The ordinates to the influence 
diagrams were obtained by proportion from the table of Art. 30. 

The construction of the influence diagrams for the verticals is 
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similar to that for tho diagonals. It is found that only the load 
applied at panel point 1 causes stresses in the vertical BC. 

The maximum and minimum stresses in the web members, 
given in th(i table of Fig. 84a, an^ found by multiplying the corre¬ 
sponding areas of the infimmce diagrams by the uniform load 
per foot as given by Fig. 28a for class A loading. Each truss car¬ 
ries 10 ft. of roadway. The effect of the two 15-ton trucks on the 
stress in the vertical BC must also be investigated. In this case 
it is found to be 31.0 kips, which is slightly less than that caused 
by the uniform load. 

The combined dead-load, live-load, and impact stresses are 
given in the following table. The maximum live-load stresses in 
the chords occur under full live load and are found by proportion 
from the dead-load stn^sscs. The impact stresses are found by the 
formula of Art. 28 for all members except BC^ which is classed as a 
floor-beam hanger and must therefore be given an impact stress of 
66| per cent of the live-load stress. Where the live-load stress 
in a member is of different character from the dead-load stress 
only two-thirds of th(^ latter is combined with the live-load and 
impact stresses. 

Mem- D.-L. 
L.-L. Stress Impact Stress Combined Stress 

her Stress Max. Min. Max. Min. Max. Min. 

AB -267.4 -85.0 0 -15.9 0 -368.3 -267.4 
AD -254.0 -80.7 0 -15.1 0 -349.8 -254.0 
AF -280.5 -89.2 0 -16.7 0 -386.4 -280.5 
AH -297.3 -94.5 0 -17.7 0 -409.5 -297.3 
BK + 185.1 +58.9 0 + 11.0 0 +255.0 +185.1 
CK + 185.1 +58.9 0 + 11.0 0 +255.0 +185.1 
EK +240.8 +76.6 0 +14.4 0 +331.8 +240.8 
GK +278.3 +88.5 0 + 16.6 0 +383.4 + 278.3 
BC + 55.0 +32.5 0 +21.7 0 + 109.2 + 55.0 
CD + 81.0 +34.2 -10.0 + 7.1 -3.2 + 122.3 + 40.8 
DE - 3.0 +23.8 -17.9 + 6.7 -4.0 i + 28.5 - 24.9 
EF + 64.0 +34.5 -15.5 + 7.6 -4.5 + 106.1 + 22.7 
FG + 4.0 

(0) 
-18.9 + 6.8 - 4.6 +1.8 - 20.8 + 12.6 

GH + 33.0 
(- 33.0) 

+30.0 0 + 7.2 0 + 70.2 0 

G"H" 0 +19.8 0 + 5.2 0 + 3.0 0 
HH' 0 -16.5 0 - 4.3 0 - 20.8 0 
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As a moans of comparinj^ the results obtained by the method 
of a single panel load at each panel point, used in Art/. 30, with 
those obtained by influence lines, the following table of live-load 
stresses is prei)ared, using a uniform load of 70 lb. per sq. ft. for all 
loaded lengths. 

Wob MenibtTH hr (1) J)K EF FG GI! (?"//" ////' 

Influence liaea, iiiaxiniuin. + 17..'. +:^i .0 -15.1 + 29.4 -15.0 + 24.2 + 13.6 -11.3 

Influence lines, minimum. 0 - 5 1 + 14.2 - B,0| + 4.7 0 0 0 

Panel loads, maximum. + 17.5 + ;w.2 -17.0 + 31.7 -17.0 + 20.41 + 15.8 -13.1 

Panel loads, minimum. 0 - 7^ 1 -11.2l + 4.9 0 1 0 0 
mm iL ■■ HHHBBji 

It is found that in all cases, except for the vertical BC, the 
method of influence lines gives smaller stresses than the method of 
panel loads. This is due to the fact that it is not possible to 
have a full panel load at one panel point without having some load 
at the adjacent panel point. For example, consider the diagonal 
EF in Fig. 34a. The influence diagram shows that the maximum 
compression occurs when the live load covers 60.4 ft. at the left 
end of the bridge. This load corresponds to a full panel load at 
1 but only about (ught-tenths of a panel load at 2. In addition 
there is about one-tenth of a panel load at 3 causing tension, 
which further dc^creases the compre^ssion in EF below what would 
be obtained for full panel loads at panel points 1 and 2 only. The 
errors of the panel-load method are on the side of safety, but the 
method is not readily adaptable to varying the live load with the 
loaded length. 

Problem 34a.—Detemune the live-load web stresses for the truss of 
Fig. 29a b}" means of influence lines and compare them with those obtained 
by the panel-load method. 

Art. 35. Lateral Loads and Stresses 

The lateral forces to be considered in the design of a highway 
bridge are wind and lateral vibrations. Centrifugal forces must 
also be considered on rare occasions. The specification of the 
Iowa Highway Commission is representative of present-day prac¬ 
tice. It provides that, “The force due to wind and lateral vibrations 
shall consist of a horizontal moving load equal to 30 lb. per sq. ft. 
on the side area of any exposed floor construction, the side area 
of all railings, and 1§ times the side area of one truss, girder, or 
arch. In addition to the foregoing, a moving load of 150 lb. per 
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linear ft. shall be considered as acting in the plane of the loaded 
chord on highway bridges and 300 lb. per linear ft. upon bridges 
for combined highway and electric railway service. However, in 
the case of structures having a reinforced-concrete floor slab 
effectively anchored to the supporting structure, this additional 
chord load need not V)e considered.’^ 

The lateral systems are generally of the Pratt type, the chords 
of the trusses acting as chords of the lateral system. In the 
loaded chord the floor-b(^ams act as posts. The diagonals are 
usually^t^j^.Jong to be designed economically to resist compression 
so that all panels have counter diagonals. Since the wind may 
blow from either side of the bridges, the two diagonals in each panel 
are designed for the same maximum stress. The top chord loads 
arc carried to the end posts by the top lateral system whence they 
are carried to the bearings by the portal bracing in the plane of the 
end posts. 

The allowable unit stresses are usually increased 25 per cent 
when lateral strcss(\s are combined with dead-load, live-load, and 
impact stresses. The lateral strcss(^s in chords and floor-beams 
never equal 25 per cent of the stressc^s due to vertical loads so that 
the only stresses required in the lateral systems are those in the 
diagonals and in the struts of the unloaded chord. 

As an example, let the 200-ft. Parker truss of Art. 27 be taken. 
The side area of the top chord and half of the web is found to aver¬ 
age 2.9 sq. ft. per linear ft. of bridge. The top chord lateral load 
is therefore 2.9 X X 30 = 130 lb. per ft. and the panel loads 
3.3 kips. The average side area of the bottom chord and half of 
the web members is 2.6 sq. ft. and that of the floor construction 
and railing 3.3 sq. ft. per ft. of bridge. The bottom chord lateral 
load is therefore (2.6 X + 3.3) X 30 = 215 lb. per ft. and the 
panel loads 5.4 kips. If the floor were not of reinforced concrete, 
an additional lateral force of 150 lb. per ft. would be applied at 
the lower chord. 

Figure 35a represents the top lateral system with a panel load 
at panel point 6. The load is considered as moving from right 
to left. For the conditions as shown, the diagonals in the left 
half of the truss are main members and those in the right half are 
counters. With the wind on the other side of the bridge and 
moving from left to right these conditions are reversed, the main 
diagonals being on the right. For other conditions of loading the 
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other set of diagonals in either half of the truss may become the 
main diagonals. Therefore, thc‘ only stresses required in the lat¬ 
eral system are the maximum tension stresses in the main diagonals 
and the rnaxiimim compression stresses in the struts. 

Owing to the slope of some of the top chord members, the stresses 
in the corresponding top lateral diagonals must be corrected by 
dividing the tabulated values by the cosine of their angle of slope. 

The bottom chord lateral system is shown in Fig. 366 together 
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Fia. 356. 

with the stress diagram for a panel load applied at panel point 7. 
Only the stresses in the diagonals are tabulated since the floor- 
beams act as struts and their stresses are not required. 

Member BC DE EG HI 

Panel load at: 
1. + 7.00 
2. 4- 6.00 -i- 6.00 
3. + 6.00 4- 6.00 4- 5.00 
4. + 4.00 4- 4.00 4- 4.00 4- 4.00 
5. + 3.00 + 3.00 + 3.00 4- 3.00 
6. 4- 2.00 4- 2.00 + 2.00 4- 2.00 
7. 4- 1.00 + 1.00 4- 1.00 4- 1.00 

i 
Maximum stress.. 4-28.00 4-21.00 4-15.00 4-10.00 



90 HIGHWAY BRIDGE TRUSSES [Chap. Ill 

In Fig. 356, ar is laid off equal to a panel length and as equal to 
the distance center to center of trusses with as large a scale as 
convenient. The line rs therefore gives the slope of the diagonals 
much more accurately than the small diagram of the lateral sys¬ 

tem. Since ak is 
(iqual to one-eighth 
of the panel load aa', 
the short diagonals 
of the stress dia¬ 
grams are each equal 

to one-eighth of the diagonal ua' and the verticals are each equal 
to ak. All the stresses required may therefore be found by laying 
out the triangles ars and aua'. 

Fig. 35r. 

PiiOBLEM 35«.— Figure 35r represents a A"-systcm of top lateral bracing. 

The trusses have eight panels of 20 ft. each and are 32 ft. apart. Determine 

the maximum and minimum stresses due to a lateral load of 125 lb. per linear ft. 

of bridge. 

Aut. 36. Application of the Equilibrium Polygon 

In the preceding articles of this chapter the method of the 
force polygon has been employed exclusively. To illustrate the 
application of the equilibrium polygon in the determination of 
stresses let a through Pratt truss be taken having eight panels, a 
span of 176 ft., a depth of 26 ft., and a 20-ft. roadway. It is 
required first to find the chord stresses and then the web stresses 
due to the dead load. 

From the formula of Art. 26 the weight of the steel in the 
bridge is 1075 lb. per ft. The weight of the concrete roadway and 
curbs is 2000 lb. per ft., making a total dead load of 3075 lb. per ft. 
of bridge. The dead panel loads are | X 3075 X 22 = 33.8 kips. 
Let the truss diagram be drawn to a scale of 30 ft. to an inch, 
and the panel loads laid off successively on the load line fj in 
Fig. 36a to a scale of 100 kips to an inch (considerably reduced 
as here printed). The effective reactions are ja and aj', the 
load line being bisected at a. Let the pole o be taken on a hori¬ 
zontal line through a, the pole distance H being made equal to 
104 kips, and the equilibrium polygon constructed (Art. 4). 
The ordinates at the vertices of this polygon when measured by 
the linear scale and multiplied by // give the bending moments 
in foot-kips at the corresponding sections of the truss (Art. 7). 
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The chord stresses arc obtained by dividing theses moinonts by 
26 ft., the depth of the truss. For instance, the ordinate nn' 
measures 42.9 ft., whence the stress in AD and EL is 

42.9 X 104 

26 
171.6 kips 

A ^ 

The chord stresses may therefore be directly obtained by measur¬ 
ing the ordinates with a scale of 30 X = 120 kips to an inch, 
the results being marked on the diagram. 

If the pole distance could have been laid off equal to 26 kips, 
the ordinates would have been measured by a force scale equal 
to the linear scale, or 30 kips to an inch, to obtain the chord stresses. 
Again, if be laid off by a linear scale equal to double the depth 
of the truss, then the ordinates are to be measured by double the 
scale of force, or 200 kips to an inch. 

As the vertices of the equilibrium polygon lie upon a parabola 
whose vertex is at r, the ordinates may be obtained without 
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drawing the equilibrium polygon. The chord stress at the center 
of a uniformly loaded truss (having an even number of panels) is 

in which W includes the half-panel load at each support. Let 
the middle ordinate rs be made equal to 

8 X 33.8 X 176 

8 X 26 
228.8 kips 

and let tu be made equal to rs and divided into the same number 
of parts as ur, in this case four. Drawing radial lines from r 
to these points of division their intersections with the correspond¬ 
ing verticals give the required points. 

For a truss with an odd number of panels tu should be divided 
into as many parts as there are panels in the entire truss, only the 
alternate points of division from t to u being used. The ordinate 
at the vertex of the parabola is given by the above formula, but 
since the vertex lies at the center of a panel the ordinate is larger 
than the chord stress in that panel. For a uniform live load the 
same method may be employed as that here given, or the dead 
and live loads may be combined in one diagram. 

The shear diagram for dead load is shown below the moment 
diagram in Fig. 36a, the ordinates representing the vertical shear 
being limited by the line forming a series of steps from v to w. 
If the load were not concentrated at the panel points, but uniform 
throughout, the ordinates for shear would be measured to the 
straight line yz, which intersects the former at the center of each 
panel. The straight inclined line is the more convenient to use. 
The lines a6, cd, ef, and gh are the stresses in the diagonals, and 
de and fg in two of the verticals. To avoid confusing the diagram, 
cdy ef, and gh are turned toward the left, but have the same inclina¬ 
tion as the diagonals of the truss. The stress in BC is one panel 
load and that in HH' is zero. If part of the dead panel load be 
taken on the upper chord, a compression of that amount is to 
be added to each of the above stresses in the verticals. 

In order to determine the maximum live-load shear in any 
panel another shear diagram is necessary. On the horizontal 
axis ilG in Fig. 366 let the position of the panel loads be marked, 
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and their magnitude laid off on the load line ag. Let the pole o 
be placed in a horizontal line through the beginning of the load 
line, the pole distance H being made equal to the span of the truss 
by the linear scale, and the equilibrium polygon A'B'C^ 
constructed. Now let the span be so placed that its right support 
comes at F, then every panel point from 3 to 7 inclusive is loaded. 
This position of the load gives the maximum live-load shear in 
EF and DE of Fig. 36a. The ordinate F'F" is equal to the 
reaction of the left support and hence equals the vertical shear in 
the members named, for the ordinate being contained between 
the sixth side of the ecjuilibrium polygon and the first side pro- 

// o 

duced measures the sum of the moments of all the loads between 
them with reference to the section through F' (Art. 7). Calling 
the value of the ordinate ij, the sum of these moments equals 
y X //. But the section at F' is at the right support of the truss, 
and hence the sum of the moments also equals the moment of the 
left reaction with reference to this support. Therefore 

y XII ^ R XI 

and since II was made equal to I, 

y = R 

This may also be proved by drawing through the pole a parallel 
to the closing line F'l of the equilibrium polygon forming a 
triangle which is equal to the triangle /FT" since one side H 
is equal to its parallel /F" and all the sides of both triangles are 
mutually parallel. F'F" is hence equal to its parallel R. 

The ordinates taken in succession from /T' to A' measured by 
the scale of force give the maximum live-load shears in each 
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panel of the truss from left to right. The stresses in the diagonals 

from these shears are obtained in the manner indicated in Fig. 36a. 

The results from this method are found to be the same as those 

given by the method of panel loads in Art. 29. 

For trusses with inclined chords the moment diagram gives 

only the horizontal component of any chord stress, the ordinate 

being measured in a section passing through the center of moments 

of the chord member. The shear diagram is not applicable in 

such cases except for the purpose of finding the reaction from 

which the stress in the required web member may be found by 

the method of the force polygon. 

It will be observed by the student that the method of the 

equilibrium polygon does not indicate the charact er of the stresses 

as in the method of the force polygon. Whether a member is in 

tension or compression has to be determined by cutting it by a 

plane, noting its direction and the sign of the shear, as was done 

in the analytic method in Part I. 

Problem 36a.—Find the maximum and minimum stresses in the truss 
of Art. 29 due to the dead and Jive loads. Assume the weight of the roadway 
to be 1800 lb. per ft. of bridge and the weight of the trusses from the formula 
of Art. 26. 



CHAPTER IV 

RAILWAY GIRDERS AND TRUSSES 

Art. 37. Dead Loads 

Railway bridges an? of the sanw^ geiKTal typos as the highway 
bridges described in Art. 25 with the exception that pony trusses 
are used very seldom. Bridges of 100-ft. span, or less, are prac¬ 
tically always of the plate girder type, and numerous plate girder 
bridges have been constructed with spans longer than 100 ft. 
(see Art. 41 and Fig. TVb), A few long-span bridges of the 
Warren type with broken upper chords and subverticals at each 
panel point have been built recently (see Fig. Via). 

Plate girder bridges of the deck type have the ties supported 
directly on the girders so that no floor system is required. Con¬ 
sequently, they are more economical than the through plate girder 
and are used wherever clearances permit. 

A railway bridge is composed of the floor system, lateral brac¬ 
ing, and trusses or girders together with the pieces that unite 
and stiffen them. The weight of steel in a bridge depends upon 
the span, number of tracks, type of bridge, type of floor, live load, 
and unit stresses adopted in design, and varies considerably with 
individual cases. The best method of estimating the weight of 
steel in a bridge is by comparison with similar designs, the actual 
weights of which are known. Where such designs are not avail¬ 
able, an approximate value for single-track bridges, designed for 
Cooper^s EGO loading (Art. 38), with an ordinary wooden tie deck 
laid directly on the floor system can be obtained from the following 
formulas: 

w = 14L + 150|tfor deck plate girders, 

w = 12L + 1000, for through plate girders, 

w = 12L + 500, for trusses, 

in which w is the total weight of steel in pounds per linear foot of 
bridge and L is the span of the bridge in feet. 



96 RAILWAY GIRDERS AND TRUSSES [Chap. IV 

The above formulas give only the weight of steel in the bridge. 
To this must be added the weight of the floor to obtain the entire 
dead load for which the bridge must be designed. The approxi¬ 
mate weight of a wooden tie floor, including rails and guard rails, 
is 400 to 450 lb. per linear ft. of bridge. The weight of a concrete 
floor or ballasted floor varies considerably but will be several 
times as heavy as a wooden tic floor. In any event, the floor is 
designed first so that its w(aght can be computed accurately and 
used in determining the dead load on the bridge. 

An E50 loading reduces the weight of steed about 10 per cent 
from that given by the formulas. The weight of a double-track 
bridge depends upon the construction but is increasejd about 80 
per cent where two or three girders or trusses are used. 

Art. 38. Live Loads 

In the last chapter it was found that the maximum stresse^s 
in the members of a highway tmss were usually produced by the 
specified uniform load rather than by the concentrated loads. 
Owing to the number and magnitude of the concentrations of rail¬ 
road locomotives, it is more difficult to treat them as a uniform 
load although it is sometimes done. The live load for railroad 
bridges is usually specified as one or two typical locomotives fol¬ 
lowed by a uniform train load of a given weight per linear foot of 
track. The locomotive axle loads constitute a system of con¬ 
centrated loads whose relation to each other and to the uniform 
load following them remain unchanged while passing over the 
bridge. 

A few railroads design their bridges to carry actual locomo¬ 
tives in use on their roads. Locomotives used by the different 
railroads vary considerably and are also subject to change from 
time to time. In order to have a standard of comparison, typical 
loadings have been devised and adopted by the American Railway 
Engineering Association and most of the railroads. Figure 38a 
represents two typical locomotives followed by a uniform train 
load according to Cooper's standard loading, class EGO. The 
numbers above the wheels show the axle loadings in kips and the 
numbers between them show their distances apart in feet. Other 
classes of Cooper's series have the same spacing of axles, while the 
loads on the corresponding axles and the uniform load are directly 
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proportional to their class nurnlwrs. Alternate loads on two axles, 
7 ft. apart, are also specified for each class, the load on each 
axle being 75 kips for class E60 loading. At the time Cooper’s 
standard loading was pn^senti^d (1894), the heaviest locomotives 
in use were closely represcmted by class E4(). At the present 
time the American Railway Engineering Association specifies 
class EGO for main lines and class E50 for branch lines. 

Types of locomotivi^s now in use vary somewhat in wheel 
groupings and weight distribution from the consolidation locomo¬ 
tives in Cooper’s standard. Moreover, the uniform train load 
has not increased as fast as locomotive loadings. To care for 
these discrepancies bridge specifications frequently vary the load¬ 
ing classification with the span, for example, specifying E70 or 
E75 for short spans and EGO for long spans. Another method 
sometimes employed is to give the locomotives a different classi- 
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fication from that of the train load. For example, a class E70 
locomotive might be followed by a class EGO train load. The 
Suisun Bay Bridge (see Fig. Via) recently built by the Southern 
Pacific Railroad was designed for two locomotives equivalent to 
Cooper’s class E90, followed, preceded, or both, by a uniform train 
load of 7500 lb. per linear ft. 

The variations of the Cooper loadings outlined above give sat¬ 
isfactory results but are nevertheless makeshift. For that reason 
attempts have been made to establish new typical loadings that 
would more nearly conform to actual conditions, but they have 
not been generally adopted, owing mainly to the wide use of the 
Cooper standard and to the inconvenience of changing to a new 
standard. Not only each bridge capacity is evaluated in terms 
of this series, but also each locomotive in use on the railroad. 
Also, loads are changing so favst that in a short time any new load¬ 
ing might be nearly as approximate as the Cooper loadings. 
Locomotive loadings have increased faster than train loadings. 
Tender-axle loadings have increased faster than driver-axle load¬ 
ings until at the present time locomotives are being built with 
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about as much weight on each tender axle as on each driver 
axle (see Fig. IVa). Cooper’s loadings may be replaced for design 
purposes, but they will n^main the standard of comparison for 
som(^ time. 

An ‘equivalent uniform load’ is sometimes used in place of the 
standard locomotives and train loads described above. An 
equivalent uniform load is one that will produce the same stress at 
the section considered as the given concentrated loads. This 
load necessarily varies with the span and for different sections of 
the sam(^ span and is not th(^ same for moment as for shear. 
Therefore^, for this method to be of value, it is necessary to have 
tables or diagrams giving the equivalent uniform loads for various 
conditions. Where this method is used, the stresses in a truss 
may be determined as in Chapter III. 

Still another method of calculating stresses due to locomotive 
loadings is to determine first the stresses produced by the uniforai 
train load and then superimpose an additional or ‘excess load’ 
consisting of a uniform load, or one or more concentrated loads. 
The excess load represents the difference betweim the locomotive 
load and the uniform train load, and the stresses due to it are 
added to those produced by the uniform load. 

Numerous formulas have been devised for determining the 
stresses due to impact, but only two will be considered here. The 
first one is included in the 1920 specifications of the American 
Railway Engineering Association. It is 

/ = 
300 

300 + 
100 

where / is the impact stress; S is the live-load stress and L is the 
loaded length in feet which produces the maximum live-load 
stress. The second formula is given in the 1923 specifications of 
the American Society of Civil Engineers and is 

^ 2000 - L 

“■ "^1600 + lOL 

Both formulas give results practically equal for spans of 50 ft. 
to 100 ft., but the latter gives somewhat larger values for longer 
or shorter spans. 
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Art. 39. Moments Due to Wheel Loads 

The live load on deck girder bridges and on through girder 
bridges with solid floors may be applied at any point along their 
length whereas that on girders and trusses with floor-beams can 
be applied only at the floor-beams. Girders of the former type 
will be considered first. 

Figure 39a is the moment influence diagram for any point C 
on the girder AB. This diagi’am is easily constructed by making 
the ordinates a' and V equal numerically to the segments a and by 
respectively, but not necessarily to the same scale. The ordinates 
to the influence diagram must be measured with the same scale 

used in laying out a' and V, and will be in foot-pounds if a and h 
are in feet and the unit load is 1 lb., and in foot-kips if the unit 
load is 1 kip. 

The moment produced at C by a concentrated load at any 
point on the girder is equal to the product of the load and the 
ordinate to the influence line at that point (Art. 33). The moment 
produced by a train loading is equal to the numerical sum (since 
all ordinates have the same sign) of the products of the individual 
concentrated loads and their ordinates, plus the product of the 
area of that portion of the influence diagram covered by the 
uniform load and its weight per linear foot. The influence dia¬ 
grams should be drawn to a large scale so that the ordinates can 
be scaled with precision. Some arithmetical labor can be saved 
by adding together all the ordinates for loads of the same magni- 
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tude before multiplying by the loads. This addition may be 
performed graphically. Cooper’s loading has wheel loads of only 
three different magnitudes so that not more than three multiplica¬ 
tions are necessary to detennine the moment (or shear) at any 
section due to these loads. Where the uniform load is also on the 
structure another multiplication will be required. 

The maximum moment at section C will occur when the train 
load is in such a position that the sum of the products of the 
individual loads and llieir ordinates is a maximum. First con¬ 
sider wheel 1 at the section. As the loads are moved to the left 
the ordinate for wheel 1 decreases while the ordinates for all 
other loads on the girder arc increasing and the total moment at 
the section is probably increasing. As soon as wheel 2 passers 
the section its ordinate also decreases, and the difference between 
the rate of increase in moment due to the loads on the right of the 
section and the rate of decrease due to the loads on the left of the 
section becomes smaller. Each load that- passes the sciction 
increases the rate of decrease, and it soon becomes larger than 
the rate of increase. The maximum moment at- the section will 
therefore occur with that wheel at the section which causes the 
rate of decrease to become larger than the rate of increase. This 
wheel is generally one of the heaviest wheels and may be on 
either locomotive. The position giving the maximum moment 
usually occurs with nearly the entire length of the girder loaded 
and with a little experience can readily be located by trial. 

The criterion for the position of the wheel loads which pro¬ 
duces the maximum moment at any section of a girder support¬ 
ing the load directly is 

V 
P' ^-W 

V 

in which W is the whole load on the girder, P' is the part- of the 
load to the left of the section, V the distance from the section 
to the left support, and I the span. This is the same formula 
deduced in Part I which applies to vertical sections through the 
panel points of trusses with vertical posts, and to the panel points 
of the loaded chord of those with inclined web members. In 
plate girders with floor systems the criterion applies only to the 
sections at the floor-beams. 

To apply this criterion graphically, construct an equilibrium 
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polygon ABC'D' and a load line A BCD, composed of a series of 
steps, as shown in Fig. 396. The rise of any step in the load line 
indicates the magnitude and position of the corresponding wheel 
load. Any ordinate to the load line gives the sum of all the loads 
on its left, and its value can be scaled off directly. The first side 
AB of the equilibrium polygon is horizontal and coincides with 
the axis AX. The total ordinate at any point represents the sum 
of the moments of all the wheels on the left of the point with 

reference to the point as a center. If the side of the polygon 
directly in front of the second locomotive be produced to C", 
the portion of the ordinate above this point represents the moment 
of the entire second locomotive about the head of the train; 
the portion below represents the monumt of the first locomotive 
about the same point, the values of these moments being read 
directly from the diagram (Art. 7). 

Since the diagram may be used for a number of problems it 
should be constructed with ink on heavy paper. The scales 
adopted should be as large as possible without making the drawing 
too unwieldy. The diagram is usually constructed for one rail 
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only so that the whc^el loads are each half of the axle loads shown 
in Fig. 38a. A convenient-sized drawing for office use is obtained 
by constructing an I']60 diagram with a linear scale of 10 ft. 
to an inch, a force scale of 50 kips to an inch, and a pole distance 
of 300 kips. Th(‘ scale of moments is therefore 10 X 300 = 
3000 ft.-kips to an inch. 

On a sheet of tracing paper let the span ah of the girder be laid 
out to exactly the same linear scale as the above diagram, and let 
the half span be divided into the required number of equal parts 
and indefinite ordinates erected at these points. Figure 39c shows 

the completed diagram 
for a span of 80 ft. 
placed in position on 
the load line. It is very 
important that, when 
the base lines of the 
two diagrams coincide, 
their ordinates shall be 
truly parallel. 

The live load used in 
this example is Cooper’s 
E60. The sections are 5 
ft. apart, and the 20-ft. 
section is made to coin- 

If this be the proper position for the maximum 
y 

moment in the 20-ft. section, the equation P' = -W must be 
L 

30’ 40' 

Fig. 39r. 

cide with wheel 4. 

satisfied. Remembering that the horizontal axis on the left of a 
is to be considered as a part of the load line, connect by a straight 
line the points a and d where the ordinates at the supports intersect 
the load line. Now the ordinate bd equals W, ah equals I, ae 

y 
equals Z', and hence -W is represented by the ordinate ei. If 

t 

wheel 4 is just on the right of the section the ordinate eh repre¬ 
sents P'; if just on the left the ordinate ek is the load P'; and 
when it is at the section the load P' may be regarded as having any 
value between these limits. The condition is therefore satisfied 
and this position will probably give the maximum moment at the 
20-ft. section. Another wheel (or wheels) may also satisfy the 
criterion, and if so the maximum moment must be found by 
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trial. All the possibles positions for all the sections can be deter¬ 
mined in a few minutes by using a fine silk thread, shifting the 
tracing paper in each case so as to bring a wheel over the section, 
stretching the thread as indicated above and noting whether it 
intersects that wheel on the load line. The graphical method of 
determining position by means of a load line was first published 
by Ward Baldwin in Engineering News, Vol. XXII, pp. 295 and 
345. See also letter of Dec. 11, 1889, on p. 615. 

The value of the maximum bending moment at the 20-ft. 
section may now be obtained by drawing the closing line ac 
(Fig. 39c) and measuring the ordinate fg. Where the Icjft end a 
of the closing line is on the axis ab, greater precision can be obtained 
by reading the ordinate be, multiplying it by the ratio of V to I 
(in this cas(3 one-fourth), and subtracting the ordinate ef, which is 
known and usually recorded on the diagram. In plate girders, 
however, a is frequently not on the axis. It is therefore better 
to make the scale large enough to insure the requisite precision 
when the ordinates are read off directly. 

For the above girder the probable positions for maximum 
moment at the various sections are shown in the following table. 
Other positions satisfy the criterion for several of the sections 
but can be eliminated by inspection. 

Section Wheel at Section Section Wheel at Section 

5' 2-3 25' 4-12-13 
10' 2-3-4 30' 12-13 
15' 3-4 35' 12-13 
20' 4-12 40' 5-6-12-13 

Where more than one position satisfies the criterion, the use 
of the dividers will show which produces the largest moment, and 
its value alone need be carefully read and recorded. 

In order to enable a larger vertical scale to be used, the equilib¬ 
rium polygon may be constructed as shown in Fig. 39d, with the 
side of the equilibrium polygon directly in front of the pilot wheel 
of the second locomotive horizontal. If the linear and force scales 
are taken the same as recommended for Fig. 395 and the pole 
distance one-half as great, or 150 kips, the moment scale will be 
twice as large, or 10 X 150 = 1500 ft.-kips to an inch. By 
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reference to the table of positions on p. 103 it is seen that most of 

/ 2 3 4 S 6 7 8 9 tO /t t2 13 t4 15 16 H 18 

Fig. 39d 

the ordinates to be measured lie in the left half of the diagram so 
that acute intersections of the 
ordinates with the polygon are 
avoided. If this diagram were 
not also to be used for obtain¬ 
ing shears, a further improve¬ 
ment could be made by inclining 
the axis downwards toward the 
right, thus bringing the closing 
lines still more nearly horizontal. 

Referring again to Fig. 39c 
in order to call attention to the 
relation between the analytic 
and graphic methods, it should 
be observed that, if no load is 
off the girder at the left, the 
ordinate egf is the moment of 
the left reaction and ej is the 

moment of the loads on the left of the section, the center of 
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moments being at some point in the section. The difference 
between these momcmts, or /gf, is the moment at the section. 
If, however, soiru^ loads have passed beyond the left support, 
then the corresponding point e will lie on that side of the equi¬ 
librium polygon produced which is intersected by the vertical at 
the left support. 

If a plate girder has floor-beams and stringers, its bending 
moment diagram for the live load will be bounded by irregular 
curves between the moiiumt ordinates at the floor-beams, or panel 
points. These curves may be cither concaves or convex but for all 
practical purposes may be replaced by straight lines, as in the 
upper diagram of Fig. 39^. An accurate representation of the 
(lead-load moment diagram consists of two parts, one due to the 
weight of the floor system, which is concentrated at the panel 
points and which is plotted above the axis in the lower diagram 
of Fig. 39e; the other due to the uniformly distributed weight of the 
girder itself, and is plotted b(dow the axis. 

Problem 39r/.—Construct an equilil)rium polygon and load line, like 

Fig. 396, for Cooper’s ki60 loading and check the positions given in the table. 

Find the maximum moment at each se(;tion. 

Art. 40. Shears Due to Wheel Loads 

Figure 40a represents the influence diagram for the left reac¬ 
tion, and also the shear at the left end, of the girder AB. The 
ordinate for each load on the girder increases as the loads are 

Fig. 40a. 

moved to the left, therefore, the reaction and shear also increase 
until one load is moved ofl[ the girder. The shear then drops 
suddenly, but increases again as the remaining loads, and any 
aciditional loads brought onto the right end of the girder, are 
moved to the left. With practice, the position giving the maxi¬ 
mum value can readily be found by trial. 

The shear influence diagram for an intermediate point C on 
the girder AB is shown in Fig. 406. The ordinates to the left 
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of the point are negative and those to the right are positive. The 
shear due to any group of loads is the algebraic summation of the 
products of the individual loads and their ordinates. The individ¬ 
ual ordinates and the total shear at the section increase as the 
loads are brought onto the girder from the right and moved to the 
left, until the first wheel reaches the section. As the first wheel is 
moved across the section its ordinate suddenly changes from 
positive to negative, the algebraic value of th(^ change being unity. 
The shear at the section is therefore decreased by the magnitude 
of the first wheel load. As the loads are again moved to the 
left, the positive ordinates increase and the negative ordinates 
decrease, both of which increase the total sh(iar at the section. 
The maximum shear at any section will therefore occur with a 
wheel at the section. 

Fig. 406. 

The position of the wheel loads that produces the maximum 
shear at any section will usually be with the heaviest loads just 
to one side of the section. For most sections the maximum shear 
due to Cooper's loading (Fig. 38a) will occur with the second 
wheel at the section, but for sections near the right end the maxi¬ 
mum shear may occur with the first wheel at the section. For 
short spans the maximum shear is caused by the special loading 
shown at the right in Fig. 38a. 

The position of the loads which produces the maximum shear 
at any section may be determined graphically by means of the 
equilibrium polygon. It was shown above that the maximum 
shear occurs when one of the wheels near the head of the locomo¬ 
tive is at the section. Let Mi be the moment of all the loads on 
the girder about the right support when wheel 1 is at the section 
and M2 when wheel 2 is at the section. The corresponding values 
of the vertical shear are 
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Pi being the load on wheel 1. As the load is directly supported by 
the girders there will be some section where the shear due to both 
positions is equal. Equating these values and transposing, 

M2 - Mi= Pil 

In Fig. 40r let cd be the moment M2 and ah the moment Afi. 
The distance ac, between these moment ordinatos is equal to the 
distance between wheels 1 and 2. If Fi == F2, de = cd -- ah 
= M2 — Ml — P\l, The position of the section where Fi = F2 

may then be found as follows: Place the girder diagram (con¬ 
structed on the tracing paper as described in Art. 39) on the 
locomotive diagram (Fig, 396) with its left support at wheel 1, 
and mark on its section or ordinate at the right support the distance 
de to the line Bh, which is the side of the equilibrium polygon on 

the right of wheel 1 produced. This ordinate is P\l (Art. 7). 
Move the girder diagram to the left until the section at the right 
support is at wheel 2, and mark the position of wheel 1. The 
two points marked are shown in Fig. 40c at d and 6, respectively. 
Now move the tracing with the point d remaining on the equilib¬ 
rium polygon and with its axis horizontal until a position is found 
where 6 is also on the polygon. Mark the position of wheel 2 at /. 
It is easily remembered what wheel is to be marked by noticing 
that the right-hand ordinate cd is ilf2, which by the notation is the 
moment at the support when wheel 2 is at the section. At every 
point, therefore, between / and the right support the greatest 
shear will be produced when wheel 1 is at the section, and for all 
sections between / and the left support when wheel 2 is at the 
section. 

In the girder under consideration the shears under the first two 
wheels are equal at a section about 50 ft. from the left support. 
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Plate girders are not used for spans at which wheel 3 will cause a 
greater shear than wheel 2. 

The load is now placed in position for the different sections 
successively, and the corresponding moments at the right support 
read off. When these are divided by the span the left reactions 
are obtained, and from the reactions the shears are found by sub¬ 
tracting P\ in the case of those sections for whose position P\ lies 
between the section and the left support. For the section at 
15 ft. the moment at the right support is 11 200 ft.-kips. This 
gives a reaction of 11 200 ^ 80 = 140.0 kips, and a shear of 140.0 
—15.0 = 125.0 kips. For the section 0 wheel 1 is off the girder, 

and hence the ordinate below the line Bh in Fig. 396 must be 
deducted from the moment at the right support. The shear at 0 is 
found to be (16 200 — 1300) -c- 80 = 186.3 kips. The values of 
the shears from sections 0 to 40 ft. inclusive are 186.3, 165.5, 144.7, 
125.0, 107.3, 91.8, 77.6, 63.8, and 50.5, all expressed in kips. For 
the 20-, 25-, and 30-ft. sections, slightly greater shears are produced 
by a single locomotive followed by a train load than by the load 
with two locomotives, their values being 108.0, 92.4, and 77.7 
kips, respectively. 

Usually only the shears in one-half of the girder are required, 
but in order to show the variation of shear across the entire girder 
as well as the minimum values, the shear diagram due to dead 
and live load is shown in Fig. 40d. The greatest live-load shears 
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(all positive) are laid off above the axis and the dead-load positive 
shears below the axis, so that the diagram combines their values. 
The point of zero shear is at 53.0 ft. or at 13 ft. from the middle 
of the girder. The shear may therefore change sign at all points 
within this distance on (^ach side of the middle. If the live load 
were uniformly distributed, the shear curve would be a parabola, 
with its vertex at the right end of the girder. 

Where the locomotive loading has two pairs of pilot wheels it is 
possibles that for some spans the section where V2 = V3 may be on 
the right of that where ~ T2, in which event it is necessary to 
find where Vi = 1*;^. No position for maximum shear then re¬ 
quires wheel 2 to be at any section. 

If the girder is divided into panels by floor-beams the criterion 
for position for maximum shear is the same as for trusses with 
parallel chords. The necessary formula was deduced in Part I, 
but its graphical application will be deferred to Art. 43. The live- 
load shear diagram would be transfonned into a series of steps 
like that in Fig. 36a, and the dead-load shear diagram would con¬ 
sist of two parts, one for the floor system which is concentrated at 
the panel points, and the other for the weight of the girder itself, 
which is uniformly distributed. 

Problkm 40«.—Find where Vi = V2 for a plate girder of 100-ft. span, 

using the loading shown in Fig. 38a. Divide the girder into 10-ft. sections 

and find the maximum shear at each section. 

Art. 41. Analysis of a Plate Girder 

Plato II shows the analysis of a plate girder used by the Cen¬ 
tral Railroad Company of New Jersey in the approach spans of a 
bridge across Newark Bay. The structure was completed in 1926 
and carries four tracks, each supported by two girders. There are 
36 spans requiring a total of 288 girders, all exactly alike. The 
girders have an over all length of 124 ft. 6 in. and a span of 122 ft. 0 
in. center to center of bearings. The distance center to center 
of piers is 125 ft. 0 in. The weight of steel in a ccmplete span for 
one track is 232 025 lb., or 1865 lb. per linear ft. 

In the example of Arts. 39 and 40 the shears and moments 
were found by means of the equilibrium polygon, but in this article 
influence diagrams will be used. The construction of the influence 
diagrams and the methods of finding the positions for maximum 
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shear and moment were explained in the last two articles. The 
influence diagrams should be made to a large scale on tracing paper 
so that they can be placed in the desired positions over the locomo¬ 
tive loading and the ordinates read off directly. 

As an example of the calculations involved the maximum end 
shear is computed below. Wheel 2 is at the left end of the girder 
which places 21 ft. of uniform load on the right end of the girder. 

Kips 

Pilot, 15.0(0.606) = 9.1 
Drivers, 30.0(1.000 + 0.959 + 0.918 + 0.877 

+ 0.541 + 0.500 + 0.459 + 0.418) = 170.2 
Tender, 19.5(0.803 + 0.762 + 0.713 + 0.672 

+ 0.344 + 0.303 + 0.254 + 0.213) = 79.3 
Uniform load, 3.0 X i X 21 X 0.172 = 5.4 

Total end shear = 264.0 

Where all wheels in each group of equal loads are on the same 
segment of the influence diagram some labor can be saved by using 
the average ordinate for each group and multiplying it by the load 
on the entire group. If this method had been used in the above 
example, only two ordinates would have been required for the 
drive wheels and two for the tender wheels. 

The absolute maximum moment does not occur at the center 
of the span but for relatively long spans the moment at the center 
may be used. In this example the difference amounts to only 
19 ft.-kips, or 0.3 per cent. For short spans the center of gravity 
of the loads producing the maximum moment at the center should 
be found and the loads moved so that the center of the span is mid¬ 
way between the center of gravity and the load previously at the 
center of the span. 

Problem 41a.—Draw the shear and moment influence diagrams for the 

80-ft. girder of Arts. 39 and 40. 

Art. 42. Simultaneous Moments 

In designing the riveting of the flanges to the web of a plate 
girder it is necessary to have the horizontal shear between them 
or the increments of flange stress between the sections for which 
the bending moments and vertical shears were found. If the 
sections are a distance dx apart, the difference of bending moments 
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dM is a maximum when the load is so placed as to cause the 
vertical shear to be a maximum, since from mechanics dM = Vdx, 
When the distance between the sections is greater than dx the 
difference of bending moments is a maximum wh(m the loads are 

^—I so placed that the vc'.rtical 
i shear is a maximum in the 

^ J I section nearer th(> middle of 
span, and this holds true 

j4y/ 1 I i j 1 for uniform loads until the 

^ i i ! i i • sections are separated a dis- 
y/j I I i j i i tance somewhat less than 

j ! i ' I I ' sec- 
/'i \ \ \ \ \ \ \ tions arc not taken farther 

/ i i 1 I j ! I 1 apart than the depth of the 
^-1-^-1-1-1-1 girder, which even in short 

j i I j I spans is generally less than 
i ' I i oncKiighth of the span, the 

I 1 exact value of the limiting 
—' distance refcjrred to ni^ed not 

Fig. 42a. determined. 

The following table contains the simultaneous bending moments 
in each pair of adjacent sections of the girder used in Arts. 39 and 40 
when the live load is so placed as to produce the maximum shear 
in the section nearer the middle of the girder. The moments are 
expressed in foot-kips. The differences in this table are to be 

Distance of Load in Position for Maximum Shear at Section Distance of 

Section from 

Support 5' 10' 15' 20' 25' 30' 35' 40' 

Section from 

Support 

0' 0 2090 20' 

5' 830 755 2550 2270 25' 
10' 1480 1355 2655 2320 30' 

15' 1980 1795 2640 2250 35' 
20' 2330 2500 40' 

Difference 830 725 625 535 460 385 320 250 Difference 

increased for impact and added to the corresponding differences 
in the dead-load bending moments. The moments themselves are 
laid off as ordinates in Fig. 42a, those of each pair being joined by 
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ii right line. The upper curve gives the maximum live-load bending 
moments. Those due to dead load are laid off below the axis. 

Problem 42a.—Find the simultaneous moments in the sections of the 

plate girder used in Art. 41 (see Plate II). 

Art. 43. Shears in Trusses 

In Part I the criU'rion for the position of the live load produc¬ 
ing the greatest vertical shear in any section of a truss was found 

to be P" = —W, in which W is the whole load on the truss, P" 
7n 

the wheel loads (one or more) on the panel cut by the section, and 
7)1 the number of panels in the truss. This equation may be 
transformed into W = r)iP'\ When the truss diagram is placed 
on the load line (Fig. 
39h) the value of W 
can be read off at once 
on the ordinate at the 
right support for any 
giv('n position of the 
truss with respect to Fig. 43a. 
the loads. If wheel 2 
be placed just on the right of a panel point W must be equal to 
mi^, and if just to the left of the same panel point then W must 
be m(Pi + P2). The condition will therefore be satisfied if wheel 2 
is at the panel point, and the value of W is found to lie between the 
values of mPi and m(Pj + P2), and similarly for any other wheel. 

Figure 43a shows a single track Pratt truss having seven panels 
of 20 ft. each and a depth of 24 ft. The live load is Cooper^s 
IC60. In this example, m = 7, Pi = 15 kips. Pi + P2 = 45 kips, 
and Pi + P2 + P3 = 75 kips. The following table is then 
arranged like that shown in Part I for the corresponding analytic 
method: 

No. of Wheel at 
Values of P^^, 

Corresponding 

Right End of Kips 
Values of mP", 

Panel Kips 

1 0-15 0-105 

2 15-45 105-315 

3 45-75 315-525 
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A truss diagram is constructed on tracing paper to the same 
linear scale as the moment diagram and load line, but with the 
verticals extended as high as the load line. The values of mP" 
from the table above are marked off on the vertical through the 
right end of the truss. To find the position for maximum shear in 
Cc and Cd due to this load, shift the truss diagram on that of the 
load line until wheel 3 is at d. If this is the correct position the 
load on the truss must be between 315 and 525 kips and the load 
line must cross the vert/ical through the right end of the truss 
between m(Pi + P2) and m(Pi + P2 + Ps). This is found to 
be the case, its value being 367.5 kips. For the greatest positive 
shear in Fg (which equals the greatest negative shear in Be) 
wheel 2 is placed at g. The load W is then 135 kips, which meets 
the condition. Where the value of TF falls at or near one of the 
limits mP" the adjacent whe^el should also be tried at the section. 
The positions are all recorded in the following table: 

Panel 

Wheel at 

Right 

End of 

Panel 

Moment 

about 

Right 

Support 

Moment 

about 

Right End 

of Panel 

Shear St ress Web 

Member 

ab 3 35 630 345 237.3 -309.0 nB 
be 3 26 280 345 170.5 +222.0 Be 
cd 3 18 060 345 in .8 -111.8 Cc 

+ 145.6 Cd 
de 2 9 800 120 64.0 - 64.0 Dd 

+ 83.4 De 

ef 2 5 240 120 31,4 - 40.9 eF 

fg 2 1 920 120 7.7 - 10.0 fG 

In practice it is preferable to obtain all the positions before reading 
off any moments from the equilibrium polygon, that is, to deal 
with only the load line at first and with the equilibrium polygon 
afterwards. 

The moments in the third column of the table may now be 
read directly from the diagram. Those in the next column were 
computed and marked on the diagram when it was constructed. 
They are all expressed in foot-kips. Since the span is 140 ft. and 
the panel length is 20 ft., the shear in Cc and Cd is (18 060 140) 
— (345 20) = 111.8 kips. As it is not necessary to know the 
reaction separately, and as frequently the panel length is not such 
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a simple number as the above, it is better to multiply the moments 
in the fourth column by the number of panels in the truss, sub¬ 
tract the products from the moments in the third column, and 
divide the remainder by the span. Thus the shear in Cc and Cd 
is (18 060 — 7 X 345) 140 = 111.8 kips. The stresses are ob¬ 
tained from the shears either graphically or analytically, as may 
be more expeditious. 

The method described above is the exact graphic equivalent of 
the analytic method given in Part I, and the student should make 
a careful comparison between them. The criterion for position 
used in this article applies to all trusses with horizontal chords 
and single systems of webbing, like the Howe and the Warren as 
well as the Pratt truss. When one or both of the chords are 
inclined, the maximum shear does not give the maximum web 
stresses, since the chord takes some of the shear. The method of 
finding the position of the live load for trusses with inclined chord 
members will be given in Chapter V. 

Problkm 43a.—The Pratt trusses of a single-track through railroad 

bridge have nine panels of 21 ft. 4 in. each and a depth of 28 ft. 0 in. Find 

the shears and stresses in all web members except the hangers due to 
Cooper^s E60 loading. 

Art. 44. Floor-beam Reactions 

In order to find the maximum stress in the hanger Bb (Fig. 
43a), which is equal to the floor-beam reaction at 6, it is necessary 
to deduce additional formulas. Let 74 be the stringer reaction 
at a, and Ri, the sum of adjacent stringer reactions, or the floor- 
beam reaction, at b. Let P be the whole load on the two stringers 
of equal spans ab and be of length p, and g the distance of the 
center of gravity from c; let P' be the load on ab, and g' the dis¬ 
tance of its center of gravity from b. Since the sum of the mo¬ 
ments of loads and reactions about b is zero, 

Ra'p — P'g' = 0, or RaP = P'^' 

Taking moments about c, 

Ra2p + Rbp — Pg = 0 

Substituting and reducing, 

Pg ^ 2PV 
JiCb — 

p 
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If the loads be moved a distance dx to the left both g and g' will 
receive an increment dx, and Rb an increment 

Pdx - 2P'dx 
dUh = - 

V 

Placing the derivative equal to zero gives 

P = 2P' 

That is, when the live load in both panels is douV)lo that in the 
panel ah the resulting value of Rh is a maximum. This is the same 
condition as for finding the maximum bending moiiumt in the 
middle of a girder whose span is ac. 

The use of the load line gives the position very quickly, and the 
moments Pg and P^g' can be read off directly on the moment dia¬ 
gram. If Me be the moment ordinate at c, and Mb that at. h, 
the value of Rb may be more conveniently expressed and remem¬ 
bered as 

Mr - 2Mb 
Kb =- 

V 

In the case of bridges where the two panels at the end, pi and 
P2, are not equal, the value of Rb deduced in a similar manner is 

Rb 
PlMr - (pi + P2)Mb 

vm 

the criterion for loading being that which produces the maximum 
moment at 6 in a girder whose span is ac, pi being the span of 
stringer ah, and p2 the length he. 

In applying this condition for loading, one of the heaviest 
loads should be placed at h and as large a load brought on the 
two panels from a to c as possible. When wheel 4, in the example 
used in the previous article, is placed at h and the thread is 
stretched to unite the intersections of the ordinates at a and c 
with the load line, it crosses the step representing wheel 4 and hence 
satisfies the condition. The moment at c is 3405, and that at h 
is 720 ft.-kips, whence Bh = (3405 — 2 X 720) 4- 20 = 98.2 kips. 
When wheel 13 is at h the condition is also satisfied, and the stress 
is found to be the same as for the other position since they are 
corresponding positions on the two locomotives. 

Problem 44a.—Find the stress in the hangers in Problem 43a, using the 

method of this article. Also find the stress by use of an influence diagram. 



Art. 45] MOMENTS IN TRUSSES 117 

Art. 45. Moments in Trusses 

The condition of loading for maximum moment in a truss is 
expressed by a fonnula deduced in Part I, which, in slightly modi¬ 
fied form, was given in Art. 39 and its application to a girder fully 
explained. As there stated, it applies only to the bending mo¬ 
ments in vertical sections through the panel points of the loaded 
chords of trusses. The positions are recorded in the following 
tabic? for the required sections of the left half of the truss used in 
Art. 43: 

Section 

Wheel 

at 

Section 

Moment 

at Right 

Support 

Moment 

at 

Section 

Bending 

Moment 
Stress 

Chord 

Members 

Bb 3 35 640 350 4740 197.5 ah = he 

Cc 5 30 800 1 250 7550 

6 35 140 2 460 7580 315.8 BC = cd 

Dd 9 33 190 5 240 8980 374.2 II 
10 37 150 6 950 8970 

11 39 130 7 810 8960 

Ec 12 33 670 10 060 9180 382.5 DE = EF 

For a truss having panels of equal length, as in this example, 
time may be saved as well as increased precision secured by not 
drawing the closing lines and reading the bending moments directly, 
but by reading the moments at the right support and at the given 
section. The latter, being at a wheel, has its value marked on 
the diagram, and is hence quickly obtained. The moment of any 
wheels off the left end of the span must be subtracted from both 
of the above moments. 

The computation for the bending moment is very simple for 
trusses with equal panels, as it is not necessary to obtain the value 
of the r^lmon separately. For wheel 6 at c the bending moment 
in the lotion Cc is 

I(35 140) - 2460 = 7580 ft.-kips 

and when divided by the depth of the truss the chord stress is 
7580 24 = 315.8 kips. 
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Since there is no dead-load shear in the middle panel, it is 
necessary to find which one of the difigonals is acting for each of 
the positions for sections Dd and Ee, The shear equals the left 
reaction of the truss minus tlu^ loads from a to d, minus the reac¬ 
tion at d of the stiinger de. By producing the side of the equi¬ 
librium polygon immediately on the left of d, when wheel 9 is at 
dy and reading the moment intercepted above this line at e, the 
moment of the stringer reaction at d about e as a center is obtained. 
Its value is found to be 690 ft.-kips. The shear is therefore 

33 190 - 7 X 690 

~ 140 
193.5 =+9.1 kips 

As the diagonals can take only tension, this shear calls De into 
action, and hence the bending moment for the section Dd gives the 
chord stress in CD and d,e. 

Similarly, for wheel 12 at e the shear in the middle panel is 

33 670 - 7 X 345 

'•140 
- 213 = + 10.3 kips 

Since this also stresses the diagonal De, the moment for the section 
Ee gives the chord stress in DE and EF. 

The sign of the shear without its magnitude may be more 
quickly determined for each of these positions by drawing the 
closing line of the equilibrimn polygon and with the aid of the 
dividers finding whether the bending moment at d is greater or 
less than the simultaneous moment at e. In the former case the 
shear is negative and in the later positive (see Art. 9). 

If the live loading for the greatest moments at the sections 
Dd and Ee, respectively, had caused shears of unlike signs in the 
middle panel, the required stress in one of the chords of that 
panel would not have been given by either loading. In such a 
case it becomes necessary to shift the load to some intermediate 
position for which the bending moment ordinates at both ends of 
the middle panel are equal, and the shear is therefore zero. The 
required stress may then be obtained from the moment at either 
section. However, the stresses in both chords of the middle panel 
are nearly equal and in practice are generally assumed to be equal. 

Problem 45a.—Find the greatest live-load stresses in the chords of 

Problem 43a. 
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Art. 46. Analysis of a Parallel-chord Truss 

Plate 111 shows th(^ complete analysis of a subdivided Warren 
truss bridge under vertical loads. The dead load was calculated 
from the formula of Art. 37 and the stress diagram constructed 
for the entire dead panel loads applied on the lower chord. In 
the tal)le of stresses one-third of the dead load was considered at 
the upper panel points, thus changing the stress in each vertical 
by —8.0 kips. 

The live-load stresses were obtained by the methods of Arts. 43, 
44, and 45, although influence lines could have been used with 
equal facility. The length used in the impact formula should be 
the actual length loaded to produce the maximum live-load stress. 
For example, the maximum live-load stress in the diagonal EF 
occurs with wheel 3 at panel point 3, and the loaded length is 
therefore 103 ft. The maximum stresses in the end post AB 
and in all the chord members occurs with the live load covering 
nearly all the bridge so that in practice it is customary to consider 
the entire span loaded when figuring impact. It should be noted 
that, for the floor-beam hangers, BC and FGy only the loads on 
the panels adjacent to the hangers produce stresses in them. 
The lengtii to be used in the impact fonnula is therefore two 
panels, or in this case 36 ft. 

Problem 46tt.—Determine the live-load stresses in the trusses of Plate 111 

by the use of influence lines. 

Art. 47. Lateral Loads and Stresses 

The lateral forces acting on a railway bridge are wind on the 
structure itself, wind on the train, side sway of the locomotive 
and train, and lateral vibration of the bridge. Centrifugal force 
must also be considered if the bridge is on a curve. 

None of the lateral forces can be accurately determined, con¬ 
sequently a rather wide variation in specified loads has resulted. 
The 1920 specification of the American Railway Engineering 
Association is most used at the present time. It provides that, 

^^The wind force on the structure shall be a moving load of 
30 lb. per sq. ft. on H times its vertical projection on a plane 
parallel with its axis, but not less than 200 lb. per linear ft. at the 
loaded chord or flange, and 150 lb. per linear ft. at the unloaded 
chord or flange. 
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ArA 46 Plate HL 

SUBDIVIDED WARREN TRUSS UNDER LOCOMOTIVE LOADING 

De.SIGN DATA 

^ingle-lrock through bridge. 
Sport M4fh Depth 24-kt. 8 poneJs. 
Weight of .steel - 2 2 2S^ft. 
Weight of deck » 4So 

Totoi dead load» zeis^/ft. 

Dead pone! loads - 24 kips. 
Live /ooc/ - Coopers E 6o 

Impact »(LrL, Stress) ^ij j 

FLOOR-BEAM REACTION 

Wheel 3 at f/oor-beom 
Mf. - 23 25 ft-kips 

a 345 ft. -kips 

* 90.5 kips 

Wheel 4 at fhor-beorn 
a 3080 ft-kips. 

Af^ 72 0 ft.-kips. 

STRESSES /V INEB M£MPER3 

Romm 
ArPrsAT 

svppom 

khMtPT 

Fiointm 

Of PewL 
SHtAP 3TPES3 

36680 346 249.4 311.8 

29860 345 183.3 235.4 

22010 345 \/33.7 167./ 

13440 120 86.6 103.3 

3320 120 S/./ 63.9 

4470 120 24.4 30.5 

/6SO 120 1 4.Q 
720 o i 6.0 6.3 

DtL STRESS DIAGRAM 

STRESSES IN CROROS 

ivf/sei MoMtnr Moment 
W AT ATIfteMT AT S\ 

JiCnON SUPPOFT SECTtON 

3 38630 345 4490 187.1 

6 34650 1245 7418 3o9./ 

8 35640 4280 9085 378.S 
// 37150 3770 9605 408.5 

I 
I 

TABLE OF COMBINED STRESSES 

Dead load -108.0 -144.0 \h 63.0 -1135.0 -/05.0 * 750 - 45.0 * tS.Q * 16.0 

Live load- mo a. -309.0 -408.5 f187.1 *376.5 -311.8 *235.4-/6 7.1 *106.3 * 91.0 

Live load- min. 0 0 O 0 O - 6.3 *30.6 - 63.9 0 

Impact - max. -/82.7 -241.6 \tl/O.6\*223.0\ -164.4 *158.4 -123.4 * 39.3 -* 62.2 
Impact~ min. 0 e> 0 0 0 - 6.1 * 28.6 - 66.6 0 

Monimum 

Mlnimurn 

-59 9.7 

-108.0 

-794.1 

-144.0 

*360.7 

* 63.0 

*737.3 

*135.0 

-601.2 *4688-335.5 

-105.0 ^62.6 * 14.1 

*2/2.6 

-/oS.S 

*194.2 

* /6.0 

- S.O 

-&.0 
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'^The wind force on the train shall be a moving load of 300 lb. 
per linear ft. on one track, applied 8 ft. above the base of rail. 

‘^The lateral force to provide for the effect of the sway of the 

engines and train in addition to the wind loads spticified above, 
shall be a moving load equal to 5 per cent of the specified live 

load on one track, but not more than 400 lb. per linear ft. applied 

at the base of rail.” 

The wind load on the train being applied above the rail does 
not affect the stresses in the laterals otherwise than as though 

it were applied at the rail, but it does produce vertical reactions 

at the ends of the floor-beams which must be carried by the 

trusses. For EGO locomotives 5 per cent of the average load is 
slightly greater than the maximum spc^cified load so that the 

force to provide for the effect of sway may be taken as a uniform 

moving load of 400 lb. p('r linear ft. All the above loads are 

uniform moving loads which may be combined and the stresses 

in laterals found as explained for highway bridges in Art. 35. 

The stresses in trusses, the floor, and lateral systems of a 

bridge due to the curvature of the track are treated in a paper by 
Wakd Baldwin in Transactions of the American Society of Civil 

Engineers, Vol. XXV, p. 459, Nov., 1891, entitled Stresses in 

Railway Bridges on Curves.” The paper contains a practical 
example in which the stresses arc computed. 

Problem 47a.—The trusses of PJate III are 17 ft. apart, and the bottom 

chord lateral bracing is of the tyj)e shown in Fig. 35b. Find the stresses in 

the bottom chord laterals due to the lateral loads specified in this article. 



CHAPTER V 

RAILWAY TRUSSES WITH BROKEN CHORDS 

Art. 48. Points of Division in Panels 

For the truss in Fig. 48a the position of locomotive wheel 
loads, or any other class of live load, which produces the greatest 
stress in any chord member is found by the same criterion as if 
the chords were both horizontal. The same statement would be 
true if both chords were broken or curved. On the other hand. 

the stress in any web member for the position of the live load 
which causes the maximum shear in the section is not the greatest 
in this case, because the inclination of any chord member cut by 
the section causes it to take some of the shear. It will be neces¬ 
sary, therefore, to find the condition of loading which is required 
by the web members of trusses with inclined chords. 

The section shown in Fig. 48a cuts the upper chord member 
U, the diagonal D, and the lower chord member L. By the method 
of moments the center of moments for D is at the intersection of 
U and L, some distance beyond the figure on the left. If a single 
concentrated load Pi be placed at c or at any point on the left of c, 
it will cause compression in the diagonal Z). This is readily seen 
to be the case, since the stress in D (which is directed away from the 
section, and hence downward) holds in equilibrium the forces on 
the left of the section, and therefore their resultant. The resultant 
of Pi and the reaction at a is a downward force at the right support 

122 
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hj and hence its moment is positive. If a single load P2 be placed 
at. d or at any point on the right of d, it will then cause tension in 
the diagonal, for the stress in D holds in equilibrium only the 
upward react ion at a whose moment is negative. 

When a load P is plactnl between c and d, the floor system of the 
bridge transfers a portion Pi to the panel point c of the truss and 
the remaining port ion P2 to the panel point d, that is, the load P 
is replaced on the truss by its components Pi and P2. As one of 
these causes compression in 1) and the other tension, there must be 
some position of the load P for which the resulting stress in D 
is zero. 

Let U be jiroduced to meet the verticals through a and 6, let 
these points of intersection be joined with c and d, and the lines 
produced until they meet.. Let P be placed directly over this 
latter intersection. On the right of the figure is shown a force 
polygon, in which eh is laid off by scale equal to P, and the rays 
drawn parallel to the corresponding strings on the space diagram. 
The strings oe, o/i, and og fonn an equilibrium polygon, and hence 
eg equals the reaction at a and gh the reaction at 6. Portions of 
the sides oe and oh and the line cd, or of, form another equilibrium 
polygon, and therefore ef represents Pi and fh represents P2. Con¬ 
sequently oe, of, oh, and og form an equilibrium polygon for the 
loads Pi, P2, and the reactions at a and b, respectively. The line 
of action of the resultant of Pi and the reaction at a must pass 
through the intersection of of and og (Art. 7), which by construc¬ 
tion coincides with the center of moments. The moment of the 
resultant is therefore zero, whence it follows that the stress in D 
is also zero. 

The position of a concentrated load P causing no stress in any 
web member can therefore be found by the following rule: 

Pass a section cutting the web member and a member of each 
of the chords. Produce the unloaded chord member to an 
intersection with the verticals through the supports. Join 
these points with the panel points at the end of the loaded 
chord member. The intersection of these lines gives the 
required position. 

From the manner in which the above investigation was made 
it is clear that this rule applies to a truss in which both chords are 
curved, and for webbing whose posts are not vertical. The rule 
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is therefore stated in its general form and applies to deck as well 
as to through bridges. 

The manner in which the section must be cut to obtain the 
stresses in the posts depends upon which diagonals are acting in 
the adjacent counter-braced panels (see Art. 31, and also Part 1). 
The position of P which produces no stress in the vertical on the 
left of D in Fig. 48a when both the adjacent main diagonals are 
acting is somewhat nearer to panel point d. 

The results of this investigation also show that if the live load 
consists of panel loads, all the panel points on the right of P are to 
be loaded for the greatest tension in D, as was found in Art. 29. 
If one excess load is employed it must be placed at d. For the 
greatest compression in D t he load is similarly placed at. c, and the 
panel points on the left . This loading, it will be observed, does 
not differ from the corresponding one for horizontal chords. 

If the live load is uniformly distributed it must extend from the 
right support to the position of P for the greatest tension in D, 
and from the left support to the position of P for the greatest 
compression. When the construction shown in Fig. 48a is applied 
to trusses with horizontal chords it gives the position for true 
maximum live-load shear which was determined by the analytic 
method in Part I. The position of locomotive wheel loads which 
produces the greatest stress in D will be found in the next article. 

Pkoblp:m 48r/.—Find th(‘ position of P for all the diagonals and the 

second, third, and fourth verticals of the bowstring truss in Fig. 31e. 

Art. 49. Position of Wheel Loads 

In Fig. 49a the position of P (in Fig. 48a) which causes a stress 
of zero in the diagonal is indicated by the vertical line marked z. 
Let the stress in the diagonal, lower chord, and upper chord, cut 
by a section through the panel cd be denoted by S, Si, and S2, 
respectively, and the depths of the truss at c and d by hi and /12. 
Let the total weight of the wheels (one or more) on the panel cd 
be P'", and the distance of its center of gravity from d be gp'", W 
being the weight of the entire live load on the truss, and g the dis¬ 
tance of its center of gravity from the right support. Let the 
bending moments at the upper and lower extremities of D be ilfi 
and M2, respectively. The remaining terms employed in the dis¬ 
cussion are shown in the figure. 
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Let the segment of the truss on the left of the section cutting 
S2, Sy and Sly be considered. Resolving horizontally, 

S2 cos cv + S' sin ^ + Si = 0 

The lever arm of S2 makes t he same angle a with the vertical h2 as 
S2 makes with the horizontal. Taking moments about d, 

M2 + S2h2 cos a = 0, whence S2 cos a — — M2 ^2 

and taking moments about the panel point at the upper end of Z), 

Ml — Sihi = 0, whence Si = Mi -f- hi 

After substituting these values above, there follows, 

+ + = or = ^ 
h2 hi h2 

Ml 

hi 

The last equation is an important one, and indicates that the 
horizontal component of the stress in any web member equals the 
difference of the quotients obtained by dividing the simultaneous 
bending moments at the extremities of the member by the corre¬ 
sponding depths of the truss at those points. 

The values of the bending moments are, 

Ml = and M2 = - h) - P'" g'" 

From similar triangles, 

hi : z = h : I hf and h2 i z = I2 i h 

hi 
l\Z 

I - h' 

whence 

and /i2 = “ 
h 
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Substituting these values of ilfi, ikf2, Ai, and A2, and reducing, and 
finally replacing (h — h) by Z'", 

S = 
Wgr - 

I2Z sin S 

If the load advance a distance dx^ both g and </"' receive an 
increment of da*, and the stress S receives an increment of 

dS = 
(WV" - P"%)dx 

hz sin 6 

Placing the derivative equal to zero gives the condition which 
makes S a maximum, which is TFZ'" — = 0, or, when put 
into more convenient form for use, 

WT" pfff _ 
h 

This formula is very convenient to use graphically, and as it is 
similar in form to that for maximum moment (Art. 39) it is to be 
treated in like manner. Referring 
to Fig. 496, which illustrates the 
truss diagram (drawn on tracing 
paper) placed in position on the 
live-load moment diagram, hg repre¬ 
sents the total load TT, oh the dis¬ 
tance h, and od the distance Z'". \/ 
The ordinate di is therefore equal 
to TFZ'" 4- Z3, and this must equal 

_^ \-7 i 
k X 

j 

[a 
Fig. 496. 

P'" if the position is correct. When the load is so placed that a 
wheel is just on the right of the panel point d, the load P'" is 
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represented by dhy and if just to the left of it by dk\ hence if i lies 
between h and k, or, in other words, if a thread stretched from o 
to g cuts the load placed at the panel point, the criterion for posi¬ 
tion is satisfied. A wheel must always be placed at the panel 
point, and although usually the first wheel is at the right of o, it 
may sometimes happen that the condition is met when the first 
wheel is a little to the left of o. After the right position is found 
the moment ordinates bf and de are read off as usual. 

Problem 49a.—A double-track tlirough railroad bridge has trusses of the 

type illustrated in Fig. 495. There are twelve panels each 30 ft. long. The 

depths at panel points i to 6 inclusive are 29 ft. 0 in., 41 ft. 0 in., 49 ft. 5 in., 

53 ft. 4 in., 58 ft. 10 in., and 60 ft. 0 in., respectively. The four center panels 

have counter diagcuials. Find the position of Cooper’s EGO loading which 

shall produce the greatest stresses in the main and counter diagonals. Also 

compare these positions with what they would be if the truss had parallel 

chords. 

Art. 50. Resolution of the Shear 

In Fig. 496 in the preceding article the stresses 82^ 8, and ^"1 

hold in eciuilibrium the external forces on the left of the section 

cutting these members. These external forces consist of an 
upward reaction at a and a downward force at c equal to the 
left reaction of the stringer in the panel cd. The resultant R 
of these two forces is an upward force whose line of action is a 
little to the left of the support a. Its position may be readily 
determined, if desired, by drawing the closing line af and the 
chord ce of the equilibrium polygon and producing them to their 
intersection. 

Referring now to Fig. 50a, let the resultant R be replaced by 
two forces P2 and P3, the former acting downward at panel 
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point d and the latter acting upward at e. The points d and e 
are at the extremities of the diagonal cut by the section. Taking 
moments about e, and remembering that the bending moment at 
e is il/2, 

Rr2 = P2V') P2 
Pr2 M 2 

v' v' 

Similarly taking moments about d, 

Rr\i = P37/, and P3 

Taking vertical components, 

R = p., - 7^2 
P' 

Rr^ ^ M\^ 

v' v' 

M2 

Since R is equal to the vertical shear in the section, the last 
member of the preceding equation affords a useful method of 
obtaining the vertical shear when the simultaneous moments are 
known. 

In Fig. 50b the force triangle hfi gives the magnitude and 
direction of a force acting in the diagonal which is in equilibrium 
with P3 and S2j while the superimposed force triangle fgk gives 
the magnitude and direction of a force acting in the same diagonal 
which is in equilibrium with P2 and aSj . The polygon hfgkih must 
therefore express the relation of equilibrium between P3, P2, 
S, and S2, or the polygon hgkih that between P, Si, S, and S2. 
Following around the triangle in the direction of the known force 
R as indicated by the arrows, and transferring these directions 
to the truss diagram in Fig. 50a, Si and S are found to be tension 
and S2 compression. It will be observed that the forces in the 
polygon hgki follow each other in the same order as they are 
found when passing counterclockwise around the segment of the 
truss. Figure 50c shows the same construction when the forces 
are laid off in the reverse order. As will be illustrated later by an 
example, it is sometimes preferable to use the one and sometimes 
the other order. 

It is evident on inspection that the most convenient and 
economical construction of the force polygon in Fig. 50b (or in 
Fig. 50c) would be to draw it directly on a large-scale truss diagram. 
In Fig. 50d one such force polygon is drawn in the third panel. 
The notation shown is well adapted to promote rapid construction 
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and freedom from confusing the stresses. The panels are num¬ 
bered from left to right, and the corresponding numbers are 
placed at the panel points on their right. The upper chord mem¬ 
bers are denoted by I/, the diagonals by D, and the lower chord 
members by L, the subscripts Ixung those of the panels containing 
them. The verticals V necessarily have the subscripts of the 
panel points. The forces Mz^V and p, equal respec¬ 
tively to the forces P2 and P3 in Fig. 50a, are laid off as indicated, 
and the sides of the force polygon drawn parallel respectively to 
the truss members whose names are placed by their sides. The 
panel length p in tiiis case is equal to the horizontal projection p' 
of the diagonal. 

• In order to obtain the stress in the vertical F2, for example, 
the values of M2 < p and Mz -- V are found for the proper posi¬ 

tion of the live load (which may not be the same as for As) and a 
force polygon drawn as in Fig. 50d. This gives Uz and A^ for 
that position of the load, and on constructing the force polygon 
for the upper panel point 2 the stress in F2 is determined. The 
latter polygon may be drawn directly on the former so as to avoid 
redrawing the sides Uz and A3. To avoid confusion it is omitted 
in the figure. 

This method may also be applied with advantage to determine 
the stresses in the chords when the moments have been found 
after placing the live load in its proper position. In this case it 
will be desirable to place the force polygon on the other side of the 
diagonal, the values of ikf p being laid off upward from the 
lower panel points. This will give a polygon like that in Fig. 50c. 

Problem 50a.—Find the maximum live-load stress in the counter tie of 

the fourth panel, and the minimum live-load stress in the second vertical, of 

the truss in Problem 49a. 
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Art. 51. Example—Maximum Chord Stresses 

Let the truss in Fig. 50rf and on Plate TV be that of a single- 
track through railroad bridge, having seven panels each 27 ft. 
long, and depths at the panel points 1, 2, and 3, of 29, 35, and 
38 ft., respectively. Let the live load consist of Cooper’s class 
E60 (Art. 38). The dead load is estimated from the formula of 
Art. 37 to be 1600 lb. per linear ft. per truss, of which 400 lb. 
is assumed to be applied on the upper chord. This makes the 
panel loads on the lower chord 32.4 kips and on the upper chord 
10.8 kips. Since the dead-load stresses in all the members of the 
truss except the verticals are the same whether the dead load is 
all applied on the lower chord or divided between the chords, 
and the stresses in the verticals differ by the amount of the upper 
panel loads (Art. 27), the stresses will be obtained for only lower 
panel loads of 43.2 kips, and the maximum and minimum stresses 
in the verticals afterward corrected by adding to each a compres¬ 
sion of 10.8 kips. 

In constructing the load line and equilibrium polygon for the 
live load, it was found convenient to use the weights on one rail 
only, as in Art. 39. Scales were also adopted as specified for 
Fig. 395. This diagram may be used for a double-track bridge 
by expressing the stresses obtained in tons instead of in kips. 

The dead-load stress diagram for panel loads of 43.2 kips is 
shown in Plate IV, and the stresses are marked on the diagram. 
The character of each web stress is also indicated as referred to 
the small truss diagram. The computation of the bending 
moments at the panel points may be arranged as follows, when the 
panels are all equal: The product of the panel load and the panel 
length is 43.2 X 27 = 1166.4. The half products of the number 
of panels in each segment into which the panel points respectively 
divide the truss are X 6) = 3, i(2 X 5) = 5, -2(3 X 4) = 6; 
and the bending moments are 

and 
Ml = 3 X 1166.4 = 3499, M2 = 5 X 1166.4 = 5832, 

Ms = 6 X 1166.4 = 6998 ft.-kips. 

Since p = 27 ft. the corresponding values of M p are: 

— = 129.6, — = 216.0, and — 
P P P 

259.2 kips. 
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Chap, V Plate W 

PARKER TRUSS UNDER LOCOMOTIVE LOADING 

DrL. 3r/?BS3 D/AGf?AM 

l.rL. CHORD STRESSES 

L-L. Web Stresses 
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These values may be used on a large truss diagram like those in 
Plate IV for checking the dead-load stresses, or the dead-load 
stress diagram may be omitted entirely. The following table 
shows the position of the live load obtained by means of the load 
line. The moments in the third column were read from the 
moment diagram; those in the fourth column were copied from 
the same diagram; and the quantities in the fifth and sixth col¬ 
umns were computed from those in the preceding columns. The 
moments are expressed in foot-kips. 

Center 

of 

Moments 

Wheel 
at 

Section 

Moment 

at Right 

Support 

Moment 

at 

Section 

Bending 

Moment 

{M) 

M 

V 
Remarks 

1 4 62 360 720 8 188 303.3 

2 8 61 090 4 280 13 173 487.9 

3 12 60 450 10 060 15 849 587.0 Da acts 

4 14 50 180 13 090 15 583 577.1 D'A acts 
15 55 510 16 220 15 500 574.1 Da acts 

It is necessary to know which diagonal acts in the middle 
panel for the last three positions in order to determine the center 
of moments for the chords of that panel. As explained in Art. 45, 
the vertical shears are found as follows: 

(60 450 -- 7 X 2190) 189 - 258 = - 19.3 kips; 
(50 180 - 7 X 1240) 189 - 213 =+ 6.6 kips; 
(55 510 - 7 X 1980) ^ 189 - 228 = - 7.6 kips. 

These results enable the remarks to be inserted in the last column 
of the table. 

The values of Af p are now laid off on the truss diagram in 
Plate IV, as there indicated, and the force polygons completed as 
explained in the preceding article. The scales of the original 
drawing were 6 ft. and 120 kips per in., respectively. The values 
of the stresses are marked on the polygons. The special attention 
of the student is called to the fact that since f/3 has its center of 
moments at the lower panel point 3, the side of the polygon ad 
parallel to U3 must be drawn through d, the extremity of Mz -5- p 
laid off on the vertical ordinate passing through the center of 
moments. Similarly, as L3 has its center of moments at the 
upper panel point 2, the side he must be drawn parallel to L2 

through c', which lies on the vertical through its center of mo¬ 
ments. Strict attention to this statement is especially required 
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when the upper panel points are not directly above the lower ones, 
in which case the panel points should be numbered in regular 
order from left to right, no matter on which chord they lie. Each 
chord should then have the same subscript as its center of moments. 

The side ah of the polygon abed is not the stress in the diagonal 
Da, because the moments used at 2 and 3 in its construction are 
not simultaneous. 

If it be desired to find by this method w^hether D4 or D'4 acts 
when the moment is a maximum at pan(^l point 3, it can be done 
by finding the simultaneous /alue of p. It is found to be 
567.6 kips. If D4 be assumed to act, the side L4 will lie below r/4. 
It is shown as a broken line. By referring again to Fig. 50a, the 
direction around the polygon is toward the right of Li, upward on 
D4, and toward the left on Upward on D4 means also toward 
the right, or away from the section, and therefore tension, which 
proves the assumption to be correct. Again since (M3 p) 
’-{M2 p) = Rj which ecjuals the vertical shear in the section 
indicated in Fig. 50a, the vertical shear in the middle panel is 
567.6 — 587.0 =— 19.4, the difference of 0.1 from the value 
given above being due to the neglect of decimals. Usually the 
value of the vertical shear is not desired, but simply its sign, in 
which case it may be known as soon as it is seen whether M4 is 
greater or less than the simultaneous value of M3 (see also Art. 9). 

As the end post receives its maximum stress under the same 
position of the live load as L\, its stress may be found in connec¬ 
tion with the chords. Indeed, it may be regarded as an upper 
chord member, the polygon of forces becoming a straight line, as 
shown on the drawing (Plate IV). 

The following table gives the maximum stresses in the end 
post and the chords due to dead load, live load, and impact, 
expressed in kips. All impact percentages are calculated for the 
entire span loaded. The minimum stresses in all cases equal the 
dead-load stresses. 

Chord Members U, u, Li — L2 Li 

Dead load. 

Live load. 

Impact. 

-177.1 

-414.2 

-189.1 

-170.6 

-385.3 

-175.9 

-185.0 

-419.1 

-191.3 

-184.1 

-417.1 
-190.4 

+ 120.7 

+282.3 

+128.9 

+ 166.6 

+376.4 

+171.8 

+184.1 

+408.0 

+186.3 

Maximum. -780.4 -731.8 -795.4 -791.6 
1 
+531.9 +714.8 +778.4 
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Problem 51a.—A truss of the same type as that in the example given in 

this article has nine panels, each 24 ft. 9 in. long. The depths at its panel 

points 1, 2, 3, and 4 are 27, 36, 41, and 43 ft., respectively. Assume a dead 

load from the formula of Art. 37. Hie live load and imjiatd are as specified 

on Plate IV. Find the maximum and minimum stresses in the chords and 

end post due to these loads. 

Art. 52. Example—Maximum Stresses in Diagonals 

The first step in finding the live-load web stresses is to find the 
point of division in each panel where a concentrated load will 
produce no stress in the diagonal (see Art. 48). In practice only 
that portion of each triangle lying below cd in Fig. 48a need be 
drawn after the vertices on the ordinates at a and 6 are marked 
off. These points are shown in Plate IV. In case more than one 
point is shown in a panel the left-hand one belongs to the diagonal. 
The data in the following table are obtained in the same manner 
as for the chords after the positions are determined. That relating 
to the first panel is inserted here, although it was also included in 
the table in the preceding article, the end post being treated as a 
chord member. The moments are expressed in foot-kips. The 
panels are indicated by the panel points in this table as a guide 
to the subscripts which properly belong to the corresponding 
values of M. 

Panel 

Wheel 

at 

Right 

End of 

Panel 

Moment 

at Right 

Support 

Moment 

at Right 

End of 

Panel 

Bending 

Moment 

{M) at 

Left 

End of 

Panel 

Bending 

Moment 

(M) at 

Right 

End of 

Panel 

Left — 
V 

... ^ i light — 
V 

0-1 4 62 360 720 0 8 188 0 303.3 
1-2 3 43 450 345 6207 12 069 229.9 447.0 
2-3 3 29 880 345 8537 12 461 316.2 461.5 
3-4 3 18 450 345 7907 10 198 292.9 377.7 
4-5 2 j 8 320 120 4754 5 823 176.1 215.7 
5-6 3 3 750 345 2679 2 869 99.2 106.3 

2 2 920 120 2086 2 383 77.3 88.3 

Attention is again called to the fact that the vertical shear in 
any panel may be found by taking the difference between the 
corresponding quantities in the last two columns. 

In testing for position in panel 5~6 it was noticed that the 
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thread just touched the edge of the step when wheel 3 was placed 
at panel point 6. This position places wheel 1 a little to the left 
of the point of division, but. the condition of loading is satisfied. 
If the chortls were parallel the positions would be 4, 3, 3, 3, 2, and 2 
in the successivti panels, no panel having two positions of the 
live load. 

The values of M -f- p are next laid off on the verticals through 
the panel points in Plate IV". Both values belonging to each panel 
are marked inside of the panel to guard against confusion. This 
danger is not great, however, as it will be noticed that at each 
vertical the ordinal e referring to the panel on the right is consid¬ 
erably less than that for the panel on the left. After completing 
the force polygons the stresses in the diagonals are scaled off and 
marked on the diagram. As the portion of the truss on the left 
of the section through any diagonal is considered, and the lower 
chord is always in tension, the direction of passing around the 
polygon is toward the right on L and toward the left on t/, and 
therefore if the direction along D is toward the right it indicates 
tension. This is seen to be the case for all the polygons on the 
plate, except, those in panel 5-6. 

In th(i sixth panel two polygons arci drawn, the right one for 
wheel 3 at pan(4 point 6, and the left one for wheel 2 at 6. The 
latter is placed at the bottom of the truss to avoid interference. 
This position is not convenient for diagonals, as will be shown in 
the next article. 

The maximum and minimum stresses, expressed in kips, are 
given in the following table, the end post being omitted as its 
stresses were given in the preceding article: 

Diagonals Ih Ds /><(=/>'.) 

Dead load. -i- 67.5 + 28.7 0 - 30.2 
Live load—maximum. + 192.0 + 137.6 +104.1 + 71.5 
Live load—minimum. - 33.2 0 0 0 
Impact—maximum. +111.0 + 92.4 + 80.5 + 62.1 

Impact—minimum. - 31.9 0 0 0 

Maximum. +370.5 +258.7 + 184.6 + 103.4 
Minimum. + 2.4 0 0 0 

Problem 52a.—Find the maximum and minimum stresses in the diagonals 
in Problem 51o. 
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Art. 53. ICxample—Maximum Stresses in Verticals 

The position for the maximum stress in Fi is either wheel 4, 
wheel 12, or wh^^^el 13 at panel point 1 (Art. 44). When wheel 13 
is at 1, the same wheels of the second locomotive are placed on the 
first two pan('ls and in th(' same position as those of the first 
locomotive when wheel 4 is at panel point 1, together with one 
additional wheel; hence it is not necessary to find the strejss due to 
the latter position. The greatest stress occurs when wheel 13 
is at 1, and equals 

[5700 — (2 X 1227)J ^ 27 = 120.2 kips tension. 

If it is desired to employ a similar method for Vi as that 
prescribed in the preceding article, let the first two panels be 
regarded as a separate truss, and the load placed in proper position 
for maximum moment at panel point 1. The bending moments 
are then Mo = 0, Mi = l{57i)0) - 1227 = 1623, and M2 = 0, 
Ml p — 1623 -f- 27 = 60.1. The vertical shear in each panel 
(disregarding signs) is therefore 60.1, and the floor-beam reaction, 
or the stress in Fi, equals their sum, or 60.1 + 60.1 = 120.2 kips. 

The respective points of division in the third, fourth, and fifth 
panels, where a concentrated load produces no stress in the 
vertical at the left of the panel, arc the right-hand ones shown in 
Plate IV. The position and other necessary data given in the 
following table are found in exactly the same way as for the 
diagonals: 

Panel 

Wheel 

at 

Right 

End of 

Panel 

Moment 

at Right 

Support 

Moment 

at Right 

End of 

Panel 

Bending 

Moment 

(M) at 

Left 

End of 

Panel 

Bending 

Moment 

(M) at 

Right 

End of 

Panel 

Left — 
P 

Right — 
P 

2-3 2 27 610 120 7889 11 713 292.2 433.8 
3-4 2 16 590 120 7110 9 360 263.3 346.7 

4-5 2 8 320 120 4754 5 823 176.1 215.7 

If the greatest live-load stress in F2 were due to the same 
position of the load as for D3, it would only remain to draw (on 
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the diagram in the third panel of the truss in Plate IV) the line 

marked U2 parallel to that immiber of the truss in order to complete 

the force polygon for the upper panel point 2. The magnitude 

and character of the simultaneous stress in V2 is marked on the 

diagram. If a forces polygon like that one be drawn for the 

values of M -f- p in the first line of the above table, the stress in 

V2 is found to —91.5 kips. The construction is omitted on the 

plate to avoid confusion, as it would partly cover the diagram 

already drawn. In the same way the greatest live-load stress in 

F3 is found to be —62.6 kips. As the stress in Vi (—39.6) is 

less than that in Fa, and since Fa and F4 are symriK^trically 

located in the tniss, the compression to b(i used for V.\ is the same 

as for Fa and will occur when the live load comes on the bridge 

from the left. The compression in the verticals is usually not 

required on the right of the middle of th(' truss. 

It will be noticed that all values of M -f- p are laid off down¬ 

ward, except for the one polygon in the sixth panel. The reason 

that this is desirable is that the side of the polygon giving the 

stress in any vertical lies on that vertical. For example, if the 

values of M -r p were laid off upward in the third panel, the side 

of the polygon giving the stmss in F2 would lie on the vertical 

Fa instead of on the vertical V2 as now drawn. 

The maximum stresses in kips are given in the following table, 

the correction being applied on account of having taken the dead 

panel loads as explained in Art. 51. Attention is again called to 

the fact that the impact stress in Fi is calculated as though it 

w('Te a member of a tmss only two panels in length. 

Verticals 1 V, V, Fa 

Dead load. + 43.2 - 6.2 + 20.5 
Correction for division of dead panel loads.. - 10.8 - 10.8 - 10.8 
Live load. + 120.2 - 91.5 - 62.6 
Impact. +109.9 - 63.1 - 49.6 

Maximum. +262.5 -171.6 -102.5 

Problem 53a.—Find the maximum stresses in the verticals in Problem 51a. 
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Art. 54. Example—Minimum Stresses in Verticals 

In Art. 31, as well as in other places, attention has been called 

to the fact that the stresses in the verticals of a truss with counter- 

braced panels depends upon the diagonals which are acting 

simultaneously in the adjacent panels. The influence of the 

diagonals affects not only the magnitude and character of the 

stress for any given position of the live load, but also the rate 

of change in the stress as the live load passes across the bridge. 

In order to determine what position of the live load will produce 

the minimum stresses in the verticals of the truss employed in the 

three preceding articles, let the complete cycle of changes in the 

stress in F5 (Fig. 54a) be traced as the locomotives and train 

pass across the bridge from right to left. 

When wheel 1 is at the right support, the stress in F5 is simply 

that due to the dead load. As the live load advances, the com¬ 

bined dead- and live-load stress in Fr, gradually diminishes at an 

increasing rate, until a position is reached when the stresses in 

both diagonals Ds and are zero. Meanwhile the stress in the 

vertical F5 has passed through zero from compression into tension. 

The tension increases at a reduced uniform rate until the stresses 

in Dq and D'o are both zero. If this is not possible, then the 

tension increases until Do becomes a minimum. As the load 

advances, the tension in F5 at first diminishes and afterwards 

increases until the stresses in Do and D'o again become zero (if 

possible). During this interval the stress in F5 has passed through 

zero twice, so that it is again tension, but larger in magnitude than 

before. The rates of change at the beginning and end of the 

period are also more rapid than in either the preceding or the 

succeeding one. The tension now increases at a reduced uniform 

rate until the stresses in both Do and D'o are again zero. As the 
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load advances until it covers the entire oridgc, the stress in Fs 
diminishes and passes through zero the fourth time and into 
compression. The rate of decrease was itself a decreasing one, 
being greater at the beginning of this period and nearly if not 
quite zero at the end. It will now be very slightly reduced until 
the head of the train arrives at the left support, when it will 
remain constant until the rear of the train begins to pass over the 
bridge. As the train continues to pass off the bridge the com¬ 
pression in F5 increases at a variable rate until it reaches the 
maximum value, and then gradually diminishes again to the value 
of the dead-load stress. The absolute maximum compression in 
Fs was not reaclu^d in this passage of the live load, but will occur 
when it crosses the bridge from left to right. 

During this cycle there were several periods during which the 
diagonals whose upper extremities are at panel point 5 were not 
acting, and when the stress in 1^5 was therefore to be obtained 
by drawing the force polygon for that upper panel point. It is 
evident then that the tension in F5 is the greatest when the 
compression in C/5 and C/o is the largest possible without calling 
Z)5 into action. As the maximum stresses in C/r> and C/o occur 
when the entire bridge is covered with the live load, the required 
position may be obtained from this one by moving the train back¬ 
wards until the main diagonal in the panel which is adjacent to 
the vertical, and on the side toward the middle of the bridge, shall 
just cease to act. For deck bridges this statement would, of 
course, need modification. In the present example, D'o does not 
act under any position of the live load and is therefore omitted, 
but the statement in the preceding paragraph was so framed as to 
apply also to F4 by making the corresponding changes in the sub¬ 
scripts of D and D\ 

The required position for the greatest tension in F5, or its 
minimum stress, was found by trial to be that when wheel 1 is 
3| ft. to the left of panel point 4. The moment at the right sup¬ 
port is 15 000, and those at panel points 4 and 5 are 52 and 2257 
ft.-kips, respectively. The live-load bending moments at these 
points are therefore 8522 and 8460. Adding those due to dead 
load (Art. 51), M4 == 15 520, and M5 == 14 292. When divided 
by the panel length of 27 ft., the quotients are 574.8 and 529.3 
kips. When these are laid off on Plate IV the resulting force 
polygon is reduced to two straight lines, indicating that there is no 



140 RAILWAY TRUSSES WITH BROKEN CHORDS [Chap. V 

stress in Dr,. The corresponding polygon for D'r, is drawn in 
broken lines. On drawing a parallel to as shown, and thus 
completing the force pol^^gon for the upper panel point 5, the 
stress in Vr, may be measured by scale. The direction of passing 
around the polygon is evident, since U5 and Do are both known 
to be in compression. The combined stress in is +45.3 kips. 
If M4 is divided by 38 ft. and A/5 by 35 ft., the quotients are both 
408.4 kips, which being the horizontal components of Ur, and f/o 
shows also that there is no stress in the diagonals and checks the 
graphic construction. 

After some experience this position can be found with but few 
trials, and will not require much time if all the operations are 
performed by graphics. In Fig. 545 let the depths of the truss at 
panel points 4 and 5 (38 and 35 ft ., respectively) be laid off on one 

side of an angle, and some 
convenient number, as 50, on 
the other side to the same 
scale. Join a and b with /. 
With the same scale which was 
used in drawing the equilibrium 
polygon for the wheel loads, 
lay off the bending moments 
A/4 and A/5 due to the dead 

load. Now assume a position of the live load, draw the closing 
line of the equilibrium polygon, and with the dividers transfer the 
bending moments due to the live load and lay them off above the 
others. If the position is correct, the lines ce and de, parallel 
respectively to a/ and 5/, will intcirsect each other on the line of. 
If the head of the locomotive is too far to the left, they will inter¬ 
sect below the line. If oe be measured by the scale of moments 
and divided by 50 ft. (assumed as above), the quotient will be the 
horizontal component of the stresses in Un and f/o. 

If portions of two trains cover certain panels at each end of 
the bridge, a stress will be caused in F5 which is a little larger than 
the value given above, and which can be found as follows: Let 
the required positions of two trains approaching each other be 
that illustrated in Fig. 54c. The diagonals in the fifth panel are 
omitted, since there must be no stress in the diagonals of that 
panel for a maximum tension in V5, as proved in the preceding 
portion of this article. Let Po be the resultant of the loads trans- 
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ferred to the truss at panel points 5 and 6 by the floor system, 
together with the dead panel loads at these points, and g its dis¬ 
tance from the right support. Let c be the iiiters(^ction of the 
chord members f/5 and L5, and d the intersection of lu\ and L5. 
If a section be passed through f/r» and Ld, the st resses in those 
members hold in equilibrium the forces Po and the reaction P, 
and therefore their resultant. The resultant of the stresses in 
U5 and Lr, passes through c; and therefore the resultant R of Po 
and B must be equal and opposite to it and applied at the same 
point. The value of R is readily found by taking moments about 
7, whence R = P^g r. 

If a section now be passed cutting t/o, Lr>, and Lr„ Ihe stresses 
in these members hold in equilibrium the same forces Po and B 
as the stresses in Ur^ and L5, since the dead load at the upp(;r 

panel 5 is zero in this case. Substituting R for Po and P, denoting 
the stress in Fr> by N, and taking moments about dj there results 
—Pr' + Sk = 0, whence S — Rr' -i- k — Pog?'^ kr. But fc, r, 
and r' are constant; therefore the position of the live load to give 
the maximum tension in V5 must be such as t o render Pog a maxi¬ 
mum. This shows that ihe stress in Kr, is ind(‘p(‘ndent of the dis¬ 
tribution of the train load on the left, and it may therefore consist 
of the rear portion of a preceding train. 

Referring now to Fig. 54d, which shows the truss diagram in 
position on the load line and moment, diagram, the ordinate, bf is 
the moment at the right support of the truss due to the locomo¬ 
tives of the right-hand train. If the chord 4i be produced to e, 
be will represent the moment of the live pamd load at 4 about b as 
a center. The ordinate ef will therefore represent Pog, less the 
moment due to the dead panel loads at 5 and 6. As this last 
moment is constant, ef must be made a maximum. It is also 
evident that heavy loads should be placed at 5, and usually the 
head of the locomotive will not pass beyond the panel. The pos¬ 
sible positions are therefore quite limited, and on applying the 
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test it is found that when wheel 3 is at panel point 5, ef = 9544 
— (3 X 345) = 8509. In this equation 9544 equals hf as read 
from the diagram, and 345 ecjuals the ordinate bi. Similarly, for 
wheel 4 at 5, </ = 10 924 - (3 X 720) = 8764, and for wheel 5 
at 5, ef = 12 454 — (3 X 1245) = 8719. In the required posi¬ 
tion, therefore, wheel 4 must be placed at panel point 5. 

Assuming that the train on the left is also in its right position, 
the closing line of the equilibrium polygon is hf) if the train is 

ofif the bridge the closing line is af. The equilibrium polygon for 
the truss is shown in Fig. 54e, the ordinates at the panel points 
being the same as in Fig. 54(i, and all the sides straight lines. By 
adding the moments due to dead load below those due to live load 
the polygon becomes hmnofh. By Art. 7 the intersection of the 
sides no and hf produced (Fig. 54e) is on the line of action of the 
resultant R of the forces on the right of the section, and therefore 
this intersection lies in the same vertical as the intersection of Us 
and Ls. The position of R was shown in Fig. 54c. Let the inter¬ 
cept bg at the right support, between chords Us and Ls produced 
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(Fig. 54cif), be denoted by 2', and that in the same vertical between 
hf and no produced (Fig. 54e) by y'j and the depths of the truss at 
4 and 5 by /14 and h^. There follows, MU : = MU ^ y' :z\ 
whence 

MU _ y' 

hr, Z' 

If the stress in lU be denoted S', and the angle between U5 and 
a horizontal by a, and the length of U5 by h, p being the panel 
length, 

S' 
_MU_ 
hh cos a 

and V 
cos a 

h 

Substituting, 

S' = 
v' 

z' cos a 

py' ^ h 

pz' cos a z' ‘ p 

An inspection of Fig. 54e shows that in order to determine y' 
it is not necessary to know M'a. and ilf'5, and therefore not neces¬ 
sary to consider either the weight or the position of the train on 
the left. When the train is not on the bridge the closing line is 
a/, and therefore the corresponding bending moments Ma and Afs 
will also determine y\ Remembering that the moment hf (Fig. 
54d) for wheel 4 at panel point 5 was found to be 10 924, that the 
moment bi is 720, and that the bending moments at 4 and 5 for 
dead load are 6998 and 5832 ft.-kips. respectively, 

M4 = f X 10 924 + 6998 - 13 240 ft.-kips 
and 

A/5 = I X 10 924 - 720 + 5832 = 12 915 ft.-kips 

As il/4 and A/5 are respectively 3 and 2 panel lengths from the 
right support, 

y[ ^ (3 X 12 915) ~ (2 X 13 240) 

p 27 
454.3 kips 

The stress in (/s can now be found by graphics in the following 
manner: On Plate IV draw the line 7g' parallel to U5 intersecting 
the vertical F5 at join g' with upper panel point 4; lay off 
y^ p ^ 454.3 on 75 as indicated, and draw ij parallel to gf'4. 



144 RAILWAY TRUSSES WITH BROKEN CHORDS [Chap. V 

The line jS represents the stress in t/5. The force polygon for 
the upper panel point 5 can next be obtained by drawing jA: parallel 
to f/o. On measuring bk by scale the stress in F5 is found to be 
+47.0 kips. 

This result may l:)e checked as follows: Let a stress diagram 
be drawn giving th(^ stress in D's (Fig. 54a) when the reaction at 
the right support is 1.0. It is found to be 1.017. By the method 
described in the preceding article, let the stress in D'^ be found 
for the above values of il/4 and A/5. Its value is + 35.6 kips. 
To reduce this stress to zero the reaction at h (Fig. 54r/) must be 
increased by 35.6 1.017 = 35.0 kips. This requires a moment 
at the left support a of 35.0 X 189 = 6615 ft.-kips. If this is to 
be produced by a train approaching from the left, its wheel 1 

must be about half a foot on the right of panel point 2, as shown in 
Fig. 54d. If, however, it produced by the rear end of a pre¬ 
ceding train, the train must cover a distance of 66 J- ft. from the 
left support. The bending moment A/'4 = 13 240 + f X 6615 
= 16 075 ft.-kips, and A/'5 = 12 915 + f X 6615 = 14 805 ft.- 
kips. If these values ar(i respectively divided by the depths 
A4 = 38 and As = 35 ft., each quotient gives the same horizontal 
component of 423.0 kips for t/5 and Ug (see Plate IV). 

The stresses in the diagonals in the center panel become zero 
the second time when the live load covers the entire bridge, and 
therefore the greatest tension in F4 or in F3 occurs when r/4 has 
its maximum stress. By laying off A/3 ~ p = 259.2, which is 
due to the dead load, above d, and constructing the triangle fgej 
the stress in F3 is found to be +66.9 kips. If it were attempted 
to apply the method outlined above, y' p would be 907.4, which 
would give a stress in J74 greater than that under full load, which 
is not possible; and if the position of the train approaching from 
the left, which reduces the stress in D4 and DU to zero, were 
determined, it would be found to conflict with that of the other 
train. The maximum tension occurs under full load only for the 
vertical adjacent to a center panel, or for the middle vertical of a 
truss with an even number of panels. 

The minimum stress in Fi occurs under dead load only. The 
accompanying table gives the final minimum stresses after apply¬ 
ing the correction on account of dividing the dead panel loads. 
The stresses due to dead and live loads have been separated so that 
the impact stress could be computed. 
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Verticals Fi = Fr. F;. - F^ 

Dead load.' +43.2 + 1H.4 +20.5 

Correction for division of dead panel loads. -10.8 -10.8 -10.8 

Live load. 0 1 +28.0 1 +40.4 

Impact.1 0 +24.4 I +25.0 

Minimum stress. +32.4 j +00.6 +81.1 

If the numb('r of panels in the truss were nine or more, the 
second vertical from the right support would be adjaccmt to two 
panels requiring no counter bracing. In such cases the minimum 
stress in the vertical is obtained in exactly the same way as the 
maximum, except that the load covers only the smaller segment 
of the span. 

It is apparent that to secure precise results the methods out¬ 
lined in the example of the four preceding articles, and illustrated 
in Plate IV, must be drawn to a large scale. Results which shall 
answer all the purposes of design, however, may be readily secured 
with reasonable care on drawings which are not unwieldy in size. 

Problem 54o.—Find the minimum stresses in the verticals in Problem 51a. 



CHAPTER VI 

MISCELLANEOUS STRUCTURES 

Art. 55. Trusses without Verticals 

When the center of moments for any chord member of a truss 
is not in the same vertical as a floor-beam, the method of deter¬ 
mining the position of the locomotive wheel loads and the corre¬ 
sponding maximum moment described in Art. 45 does not apply. 
In Part I the required criterion for position, 

P' + = \w 
V I 

was deduced, in which Q is the load in the panel cut by the vortical 
through the center of moments, P' the load on the left of this panel, 
W the whole load on the truss, q the horizontal distance from the 
center of moments to the loft end of the panel containing Q, p the 
panel length, V the distance of the center of moments from the 
left support, and I the span of the truss. 

In order to satisfy this criterion a wheel has in most cases to be 
placed at the left end of the panel containing the aggregate load Q, 
although it will often be satisfied when a wheel is placed at the 
right end of this panel. 

A truss of this type, now encountered only in the investigation 
of existing structures, is the Pegram truss. It has a broken 
upper chord, and posts whose angles with the vertical increase 
from the middle of the truss to its ends. The horizontal projection 
of the upper chord is about one and one-half panel lengths shorter 
than the lower chord, but both chords are divided into the same 
number of panels. The panel points of the upper chord lie upon 
the arc of a circle. The form, proportion, and relative economy of 
this type of truss are discussed by the inventor in Engineering 
News, Vol. XVIII, pp. 414 and 432, Dec. 10 and 17,1887. 

146 
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Figure 55a shows the left end of a Pegram truss in position on 
the load line and moment diagram of the wheel loads for the 
maximum moment at the panel point 3. The line au produced 
passes through the point where the vertical at the right support 
cuts the load line. Wheel 4 is at the floor-beam at panel point 2. 
The ordinate 4r represents the load P' + Q. If wheel 4 be just 
to the right of the floor-b(^am the ordinate 2^ or the equal ordinate 

mj represents P\ and md rc^presents P' + -Q. If, however, 
P 

wheel 4 be just on the left of the floor-beam, the ordinate 2h equals 

P' and mf equals P' + ^Q. The ordinate me equals , W, and the 
P I 

position is therefore correct when wheel 4 is at the floor-beam and 
the point e falls between the points d and / where the lines ri and 
rhj respectively, cut the vertical through the center of moments 3. 
The point r is at the intersection of the load line with the vertical 
through panel point 4. 

With the load in this position the equilibrium polygon for the 
truss is composed of the straight sides afc, ko, oSy sty etc., and the 
closing line av. The bending moment is therefore given by the 
ordinate eg. In a similar manner the positions of the live load and 
the corresponding moments are obtained for all the panel points 
of the upper chord of the given truss. 

The positions of the live load and the bending moments for the 
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sections through the panel points of the lower chord are deter¬ 
mined in the manner described in Art. 45. For those points the 
second term of the left-hand side of the above criterion for position 
becomes zero. 

Art. 56. The Pennsylvania Truss 

This type of truss is illustrated in the skeleton diagram of 
Fig. 56a. It is derived from the Pratt truss with a curved upper 
chord by subdividing its panels by means of subverticals and short 
diagonals. The vertical broken line's indicate struts which sup¬ 
port the upper chord members at their middle points, and the 
corresponding horizontal lines serve to give lateral support, in the 
plane of the truss to the long vertical posts. These are not real 

truss members, and are omitted in the diagrams employed in 
finding the stresses in the truss. In this case th(5 counter diagonal 
eG does not coincide with the short diagonal FG, although in a 
number of trusses which have been erected the panel eEGg is 
counter-braced by connecting the points e and F with a tie. 

The stress in ef due to locomotive wheel loads is found in the 
same manner as for the Pratt truss, the center of moments being at 
E, The stress in fg equals that in ef, as may be seen from the 
force polygon for the panel point /. 

By the method employed in Part I, a criterion for the position 
of the live load may be obtained which will give the stress in EG, 
and which indicates that the wheel loads from a to e, plus twice 
those from e to f, shall equal WV -5- Z, TF being the whole load on 
the truss, I the span, and V the distance from the left support to 
the center of moments g. To satisfy this criterion a wheel load 
must usually be placed at /, although sometimes it may be satis¬ 
fied when a wheel is at e. In view of the examples given in 
Chapter V and in the preceding article, the student should have 
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no difficulty in making the graphic construction required by this 
criterion. 

As the section cutting EG and only two other iiH^inhers must 
pass on the left of /, the bending moment for EG must eqxitd the 
moment of the left reaction of the truss, minus the moments of the 
loads transmitted by the floor system to the truss at the panel 
points a to e inclusive; or, in other words, the required bending 
moment exceeds that at the vertical section through g by the 
moment of the panel load at /. In the graphic determination, 
if the line joining the points where the verticals through e and / 
meet the momcmt curv^e of the live-load diagram, be produced to 
the vertical at </, and the ordinate from this point of intersection 
to the closing line be read off, the required moment will be obtained. 

For the main diagonal EFy the position is found by the method 
given in Arts. 48 and 49, auxiliary lines oe and oh of Fig. 48a being 
drawn in this case through the points e and / in I'ig. 56a. The 
force polygon is then constructed as in Art. 50 by using the mo¬ 
ments at E and gr, the points where the diagonal EF meets the 
upper and lower chords, respectively. 

The maximum stress in Ee occurs also when the head of the 
locomotive is in the panel efy and hence there will be no simulta¬ 
neous live-load stress in DE. The sc'.ction through Ee must there¬ 
fore cut CE and ef, and in finding the point of division in ef the 
chord member CE must be produced as in Fig. 48a. If in any 
case the position for Ee should be the same as for EF, the stress in 
the former may be obtained from the force polygon already con¬ 
structed for the latter by completing the polygon for the stresses 
meeting at the panel point E, If not, then a new force polygon 
for the simultaneous stress in EF must, be drawn. 

The panel load at f is suspended from F by the subvertical Ff, 
while the members EG, EF, and FG form a secondary truss which 
serves to transfer this panel load to the panel points E and (?. 
As the panels are equal, one-half of the load at / is transferred to 
E and G, respectively. Since the posts Ee and Gg are both ver¬ 
tical, the stress in Fg is exactly the same as if the wheel loads in 
the panels ef and fg were transferred to the panel points e and g 
by a stringer whose span is eg. The stress in Fg is therefore found 
by the method given in Chapter V, after considering the members 
Ff and FG removed. The greatest stress in the counter eG (or Gi) 
is obtained in a similar manner to that in Fg. 
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The preceding statement also shows that the maximum stresses 
in Ff and FG occur when the floor-beam reaction is a maximum. 
This usually requires the second or third locomotive driver to be 
placed at the floor-beam. If the panels are long, the reaction will 
be greater under the corresponding position of the second locomo¬ 
tive, for one or two of the tender wheels of the first locomotive 
may then be brought on the panel at the left. The tension in 
FG equals one-half of the floor-beam reaction multiplied by the 
secant of the angle which FG makes with the vertical. 

The stress in the vertical Cc depends not only upon the floor- 
beam reaction at c, but also upon that at 6, one-half of the latter 
being transferred to c by the secondary truss abcB. By employing 
the same method as in Art. 44, the following formula may be 
deduced for the stress in Cc due to the locomotive loads: 

^ M, - iMr 
^ — ) 

V 

in which Md is the moment of all the loads on the first three panels 
about d as a center; Mr the moment of the loads on the first two 
panels about c as a center; and p the panel length of the three 
equal panels a6, 6c, and cd. The values of Me and Md can be read 
off directly from the live-load moment diagram. The correspond¬ 
ing position of the load requires the wheel loads in the first two 
panels to be equal to two-thirds of the load on the three panels. 
It will be observed that this is the same position as that for the 
maximum moment at c of a beam or truss whose span is ad. As 
the live-load diagrams are always constructed with the head of the 
locomotives toward the left, the maximum stress should also be 
found in Kk and compared with that in Cc, the larger value being 
used for both members. The tension in Bb equals the floor-beam 
reaction at 6. 

If instead of the short tie FG a short strut eF be inserted, the 
auxiliary truss will then be efgF, which will transfer the panel load 
at / to the points e and g. The moment of the stress in fg about 
the center E will then be the bending moment in the vertical sec¬ 
tion through E plus the moment of the panel load at /. The cor¬ 
responding criterion for position will require the wheel loads from 
a io f minus the wheels from / to gr to equal WV -f- Z, in which 
IT, Z, and V have the same significance as before, whence V equals 
the horizontal distance from the left support to E, which is the 
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center of moments. The stress in EG is the same as if the second¬ 
ary truss were omittc'il, and th(i stringer extended from e to g. 
The methods described above for finding the stresses in EF and 
Fg will now have to b(^ exchanged. 

A combined railway and highway bridge at, Vicksburg, Miss., 
in which three spans of this type are used, is shown in skeleton 
diagram in Engineering News-Record, Vol. 105, p. 182, July 31, 
1930, together with three highway bridges employing spans of the 
same type. 

The construction of the stress diagram for the dead load offers 
no diflSculty in either case, and will therefore not be illustrated. 

The form of this truss as shown in Fig. 56a is sometimes modi¬ 
fied by reducing the two panels at each end to one, thereby omit¬ 
ting the subvert icals at h and /. Another modification was 
adopted in a railway bridge across the Ohio River at Louisville, 
Ky., whereby the panel point B was raised so as to bring it into 
the curve of the upper chord. See Engineering News-Record, 
Vol. 103, pp. 358-362, Sept. 5, 1929. This bridge is also of inter¬ 
est because of its unusual bottom lateral bracing. 

Problem 56a. The truss in Fig. 56a has a span of 283 ft., the depths 

at C, E, and G being -42, 47, and 48^ ft., rospeetiveJy. Find the stresses in 

all the members of the truss due to Cooper’s E60 loading, the bridge having 

a single track. 

Akt. 57. The Baltimore Truss 

The Baltimore truss is a special case of the Pennsylvania truss 
when the upper chord is horizontal. Such a truss with a web 
system similar to that shown in Fig. 56a is illustrated in the 
Engineering News-Record, Vol. 101, pp. 583-586, Oct. 18, 1928. 
Another Baltimore truss in which short strut diagonals are used 
in place of the short ties is shown in Engineering News-Record^ 
Vol 101, p. 310, Aug. 30,1928. 

The chord stresses for both the Baltimore and Pennsylvania 
trusses are found in exactly the same manner. The method used 
for the web stresses of the Pennsylvania truss also applies to the 
Baltimore truss, but for most of the web members it is preferable 
to make the comparison with the methods employed for the Pratt 
truss. 

If the uppfer chord in Fig. 56a were horizontal the stresses in 
EF and in Ee would be the same as if the truss were of the Pratt 
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type with fourteen panels, the load on th(^ truss being fourteen 
times the load in tlu^ i)aiK‘l rf. For the strc'ss in Fg the load on the 
truss must equal sev(ui times tlu^ load in the panel, and the stress 
would be the sanu' as if the truss W(‘re of th(' Pratt type with only 
seven panels. The stresses in Ff and Bh are v.qxiLil to those in 
the hangers of a Pratt truss having the same panel lengths; those 
in Cc and FG an^ the same as for the Pennsylvaniti truss. 

Problem 57a.—A single-track Baltimore truss through bridge has the 

same span, number of i)anels, and live load as the truss in Problem 5Ga, its 

depth being 47 ft. 2 in., the counters Oc and Gi are omitted, however, and the 

diagonals Fg and Jg are d(‘signed to carry compression as well as tension. 

Find the live-load stresses in all the members. 

AjiT. 58. IJNSVMMETIilOAL TrTTSSES 

Figures 58a represents the side elevation of the two unsym- 
metrical Pratt trusses of a through railroad bridge, together with 

the plans of the upper and lower lateral systems. The floor- 
beams are perpendicular to the center line of the bridge, and they 
are placed at equal distances apart from each other, and from the 
points mid-way between the bearings of the end stringers. The 
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end posts are inclined so that their horizontal projections are 
equal to the distance Ixitween the floor-beams, and this necessi¬ 
tates shortening the end pan(d of the upper chord at one end of 
the truss, and kaigthening that at the other end by an amount 
equal to one-half the longitudinal component of the skew. The 
end panels of both chords are therefore (iqual at the same end of 
each truss, and the liangers are inclined. Trusses of skc^w spans 
have been built whose (md posts are not equally inclined, but this 
complicates the portal bracuig and is Ycry unusual. 

As the two trusses arc ecjual, but have their ends reversed, it is 
necessary to find the stresses in all the members of om) truss for all 
the loads. Since tlie load lim^ and equilibrium polygon for the 
locomotive wheel loads an^ usually arrangc^d for the load advancing 
from the right, th(.‘ live-load stresses are found in all the members 
of the left half of each truss, except the counters whose stresses are 
found in the right half. 

The dead-load stresses in the trusses are as readily determined 
by the graphic method as for symmetrical trusses, whereas in the 
analytic method the numerical work of computation is materially 
increased. 

The stresses in the lateral systems due to the lateral loads on 
the trusses are found in a manner similar to tiiat used in Art. 35, 
but extended to all the members of (\ach system. The relation 
between the values in the different lines of the table are, however, 
not as simple as for trusses whose panels are all equal. For 
instance, if the nearer truss ai is on the windward side, the diag¬ 
onals of the lower system brought into action are ah'hc'cd'de'e . . . 
hh'iy and a lateral panel load at g will cause stresses in members on 
its left equal to those due to a panel load at h multiplied by the 
ratio of gi hi. 

Another method, which is preferable in most cases, is to draw 
a diagram giving the stresses in all members for a reaction of 1.0 
at the left support a, and then to multiply the stress in each diag¬ 
onal by the corresponding reaction produced by the panel loads 
which make its strciss a maximum. The reactions are most 
quickly determined by means of an equilibrium polygon whose 
closing line will shift as one panel load after another is taken away 
from the full load for which it is at first constructed. 

The position of the wheel loads is obtained in the same way as 
for symmetrical trusses, it being assumed, however, that the loads 
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are distributed along the center line oo' of the track as shown in 
Fig. 58a, and that the trusses have their supports at o and o'. 
Although this method is approximate, it generally gives the cor¬ 
rect position. In case a very slight shifting of the loads would 
dissatisfy the criterion, it may be well also to find the stress when 
the next wheel is placed at the corresponding panel point and 
compare the results. 

In the bridge represented in Fig. 58a let the span be 146 
ft., be - cd = de = ef = fg = gh = 18 ft. 3 in., ab BC = 13 
ft. 7| in., hi = GII = 22 ft. 101 in., the width 16 ft. between cen¬ 

ters of trusses, and the depth 24 ft. For the greatest stress in the 
chord members ab and be due to Cooper's E60 loading (Art. 38) 
the required position is that with wheel 3 at panel point b. Fig. 
585 shows the left portion of the truss diagram placed in this 
position on the load line and moment diagram of the live load. 
The intersection of the line ov with the vertical through the center 
of moments B is seen to lie between the points where mw and nw 
cross the same vertical. As the floor system distributes the load 
to the panel points of the truss the lower side^ of the equilibrium 
polygon for the truss under this position of the load are the right 
lines, or chords, op, pr, rs, etc., the points o, p, r, and s being on 
the live-load polygon. The point o is the regular panel length 
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of 18 ft. 3 in. on the left of b. The closing line of the polygon 
must (md on a vertical through the left support of the truss at a, 
and therefore at the intersection k of the vertical ka with the line 
op. In a similar manner the right end of the closing line (not 
shown in Fig. 585) is located at the intersection of the chord or 
side of the equilibrium polygon whose extremities lie on the ver¬ 
ticals through h and o' (s(^o Fig. 58a) with the vertical through 
The bending moment in the section through B is measured by the 
full line ordinate with arrow’s at its extremities (Fig. 586). This 
moment divided by the df^pth of the truss gives the stress in be. 
As the stresses in ah and oB, however, hold in equilibrium only the 
reaction at a, th(^ moment of the stress in ab about B is equal to 
the moment of the rciaction, and hence is measured by the ordinate 
when produced to its intersection with the side op (or kp) 
produced. 

The stress in the end post aB is preferably obtained by dividing 
the stress in ab by the sine of the angle which aB makes with the 
vertical. For the remaining web meml)ers, except the hangers, 
the only modification required of the method described in Art. 43 
for truss(^s with equal panels is that the moment at the right sup¬ 
port must be read to the point corresponding to that described in 
the preceding paragraph as the right end of the closing line of the 
equilibrium polygon for the truss. 

The floor-beam reaction is the same as if the panel ab of the 
truss were equal to 6c, for the deduction of the formula in Art. 44 
indicates that the panel lengths introduced are really the spans of 
the corresponding stringers, and although usually they are equal to 
the panel lengths of the truss, this is not always the case. The 
tension in Bb equals the product of the floor-beam reaction by the 
secant of the angle which Bb makes with the vertical. 

Figure 586 also shows the left-hand portion of the diagram of 
the truss a'B^H'i' superimposed upon the other. The closing 
line is k'uy k^ being at the intersection of po produced with the 
vertical a'A'. The moment of the chord stress in a'6' (6' coincides 
with 6) is measured by the ordinate below B' and is indicated by 
arrows at its extremities. By producing this ordinate to on the 
chord rp produced, it gives the moment of the stress in 6'c'. 

It will be observed that the same position of the live load was 
used for the end chord members of both trusses. If the point o 
had been moved to a' the criterion would not haVe been satisfied 
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by placing wheel 3 at 5, but only by putting wheel 4 at b. The 
moment for the latter position, however, is less than that for the 
fonner. 

Problem 5Si7.—Find Iho maximum and minimum stresses in the aljovc 

example due to the given Jive load and a dead load of 1350 lb. per linear 

ft. per truss, one-fourth to be taken on the upper chord. 

Art. 59. Multiple Web Systems 

For trusses having more than one system of webbing an ap¬ 
proximate stress analysis is made by assuming that each system is 

E F G H I affected only by the loads it 
/V A carries. 

In the double int ersection 
Warren truss in Fig. 59a, the 
loads P], 7^2, and Pa are car¬ 
ried by tli(Tull line diagonals, 

and the loads Qi, Q2, Q3, and Q4 by the diagonals drawn in broken 
lines. The truss is therefore regarded as compos('d of two separate 
trusses having common chords. The stresses in each system may 
then be determined and the results combined. In this case, however, 
either the dead-load stresses in all the members or the live-load 

Qz ^2 Q.Z 
Fig. 59a. 

stresses in the chords may be found by means of one diagram. 
The reaction at the left support is in equilibrium with the stresses 
in Aa, Pa, and a5, but the compression in Aa is known, since it 
equals the reaction due only to the loads Q, thus leaving but two 
unknown stresses. The stress diagram may therefore be readily 
constructed. The maximum live-load stresses in the diagonals 
are obtained by considering each system separately. 

For the Whipple truss in Fig. 596 (which is a double intersec¬ 
tion truss of the Pratt type) both dead- and live-load stresses must 
be found for each system, the division into systems, however. 
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being somewhat different for the required stressevS in the chords 
and web members. For the chord stresses the division may be 
made into the two symmetrical systems shown in Fig. 59r*, pro¬ 
vided the live load is unifomi throughout. If the live load is not 
uniform, or if it- consists of excciss loads combined with a uniform 
train load, the division may be made similar to that shown in 
Fig. 59r/, care being taken to insert those diagonals near the middle 
which arc in tension under combined dead and live loads. If the 
stresses are obtained only for the left half of the truss, the excess 
loads may require an additional diagonal to slope downward 
toward the left in the low(?r diagram of Fig. 59d. It is clear that 
only those dead- and live-load stresses in any chord member may 
be added together, wliich were obtained under the same conditions; 

that is, with the same diagonal of the given panel acting in each 
case. 

When the division is made into systems, or component trusses, 
which are unsymmetrical, there is some ambiguity in the stresses 
owing to the fact that the hangers are attached to the panel points 
B and K wliich are common to both systems. As reasonable an 
assumption as any is to regard the panel loads at h and k as equally 
divided between the t-wo systems. The same stresses will, how¬ 
ever, be obtained if both hangers be considered as a part of only 
one and the same system, and this arrangement is also more con¬ 
venient in finding the stresses. 

If these two methods of division be compared for a uniform 
load throughout, the greatest difference in chord stresses is 
found to be not quite 4 per cent, most of them being much less. 
The difference may be reduced one«half by considering the hanger 
Bh as belonging only to that component truss which contains the 
adjacent diagonal jBc, and the hanger Kk as being a part of the 
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system containing the diagonal Kj. This arrangement reduces 
the shear at the middle io the minimum value possible in each 
case, and requires the construction of only one stress diagram for 
the chord members, since one system equals the other with its 
ends reversed. 

For the stresses in the web members the systems arc divided 
as in Fig. 59e, all the diagonals sloping one way except those near 
the right end, where it is certain that no counters are needed. 
Only the loads supported by one of the systems are considered in 
finding the stresses due to both dead and live loads in any web 
member of that system. The method employed is that of Art. 
29, the labor being materially lessened by noticing the general 

statements made in that article 
in regard to the maximum and 
minimum stresses in web mem¬ 
bers. On account of the am¬ 
biguity in stresses the panel 
loads at h and k may be placed 
on either system, so as to pro¬ 
duce the maximum and mini¬ 
mum stresses in any given web 
member. 

When one excess load is used in connection with uniform panel 
live loads, it must be placed on that system which gives the 
greatest chord stresses; and for two excess loads the first may be 
on one system and the second on the other, depending upon their 
distance apart and the panel length. For maximum stresses in 
the web members the excess loads are always placed at the head 
of the train. 

If concentrated wheel loads are to be employed it will be best 
always to place the first driver at the panel point. Each system 
is regarded as acting independently, and as being strained only by 
the loads transferred to it by the stringers and floor-beams. As 
part of the weight of the pilot wheel is carried by the stringers to 
the other system, that part is disregarded in obtaining the stresses 
in the web members. For the chord stresses the locomotives are so 
placed as to produce the greatest moment at the middle of the 
truss, and the loads transferred to each system are used only in 
determining the chord stresses for that system. For all the above 
types of loading, influence lines may be used to good advantage 
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but they are especially valuable in obtaining an exact solution 
for excess loads and locomotive loads. 

Problem 59a.—A double system deck Warren truss of 120-ft. span 

has ten panels and is 12 ft. deej). The dead load per linear foot per truss 

is 1200 lb. Find the maximum and minimum stresses in all members due 

to a uniform live load of 3000 lb. per linear ft per truss. 

Art. 60. Wind Stresses in a Viaduct Tower 

Figure 60a represents one l>ent of a viaduct tower. Each 
tower is composed of Uvo such bents spaced 30 ft. apart and braced 

together longitudinally. The distance between towers is 60 ft. so 
that each bent carries J(30 + 60) = 45 ft. The tower is 60 ft. 
high and supports deck plate girder spans 7 ft. deep. 

A common specification requires viaducts to be designed for a 
wind load of 50 lb. per sq. ft. on one and one-half times the vertical 
projection of the structure unloaded, or 30 lb. per sq. ft. on the 
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same surface plus 400 lb. per linear ft. of structure applied 7 ft. 
above the rail for assumed wind force on train when the structure 
is loaded with empty cars (on the leeward track, if double track) 
assumed to weigh 1200 lb. per linear ft., whichever gives the larger 
stress. 

Figure 60a gives the loads and stresses for the fiivst condition 
of loading. Assuming the depth of ties and guard rail to be 1| ft. 
and the width of columns to be ll ft., the loads are: 

AB = 1.5 X 50 X 1.5 X 9 1.0 kip 

BC = 1.5 X 50 X 1.5 X 17 1.9 kips 

CD = 1.5 X 50 X 1.5 X 15 1.7 kips 

DE = 1.5 X 50 X 1.5 X 13 1.5 kips 

EF = 1.5 X 50(3.5 X 45 + 1.5 X 6) = 12.3 kips 

FG = 1.5 X 50 X 5 X 45 16.7 kips. 

The cross-bracing of the deck girder span is considered as part of 
the bent in order to transfer the load FG to the bent. For the 
other condition of loading two auxiliary members are iK'cessary 
to transfer the wind load on the train to the Ixmt. 

It is necessary to make some assumption as to the division of 
the horizontal loads between the two reactions. A reasonable 
assumption and the one usc'd in Fig. 60a is that the horizontal 
components of the two reactions are ecjual. It will be noticed 
that the stress diagram must be drawn by starting at the top of 
the bent and it therefore is not necessary to determine the reactions 
first. In fact, the reactions can be determined from the stress 
diagram. 

Problem 60a.—Determine the stresses in the bent of Fig. 60a for the 

second condition of loading given above. 

Problem 606.—Determine the stresses in the bent of Fig. 60a for the 

loads shown, assuming the left reaction to be vertical. Compare these 

stresses with those shown in the figure. 

Art. 61. A Ferris Wheel with Tensile Spokes 

The skeleton diagram of a small Ferris wheel with eight apexes 
and supported at the hub is given in Fig. 61a. The broken cir¬ 
cular line indicates the rack where the power is applied to rotate 
the wheel. The spokes are designed to take only tension, and 
equal loads are applied at all the apexes. The crown of the 
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wheel tends to sa^ under the influence of the load at apex 1; but 
as this would produce compression in the spoke IB it will not 
act, and therefore the load is supported by thc^ segments AI and 
AB of the rim. These stresses are obtained by constructing the 
force polygon for apex 1 as shown in th(i stress diagram at the 
right. The force polygons for the remaining apexes may now be 

constructed in regular order. The long vertical ih is the reaction 
of the support, and the diagram shows that it is in equilibrium 
with the stresses in all the spokes, which truly expresses the rela¬ 
tion of the forces at the hub. In this article the resistance due to 
friction in the bearings is not taken into account. 

An examination of this diagram shows that under uniform load 
the stresses in the spokes and in the segments of the rim gradually 
increase from the top to the bottom of the wheel, those in the rim 
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being compression throughout. When a segment of the rim is in 
a horizontal position at the top of the wheel its stress is — l.OP, P 
being the apex load. The stress diagram for this position is not 
given. As it revolves its stress gradually increases to the maximum 
value of — 3.92P when the segment reaches the position of AE] 
the stress now remains unchanged until the position of AF is 
reached, and then gradually diminishes until the segment is again 
horizontal at the top. If the wheel had sixteen spokes the com¬ 
pression in any segment of the rim would vary between the limits 
2.414P and 7.689P. 

The stress in any spoke remains zero during the interval 
between its two upper positions which make an angle with the 
vertical equal to one-half the angle betwenm the spokes, and then 
gradually increases until it reaches its maximum value of -(-4P, 
when the spoke is below the hub in a vertical position. It is inter¬ 
esting to observe that the maximum stress in any spoke is inde¬ 
pendent of the numbcir of spokes when that number is not less 
than four. The construction of th(i diagram also indicates that 
the stresses in both rim and spokes are independent of the size 
of the wheel, except so far as the apt^x loads may depend upon it. 

Figure 616 gives the wheel and stress diagrams for the case 
when only three of the obs(^rvation cars are occupied. The hori¬ 
zontal reaction applied on the circular rack which is used to 
rotate the wheel is found by equating to zero the sum of the 
moments of all the external forces with reference to the center of 
rotation of the wheel. In the stress diagram the points i and h 
which coincide indicate no stress in the vertical spoke /P, while 
the inclined line ih is the reaction IB of the supports, for, since the 
spoke has no stress, the letter I really applies to the entire space 
on the left of the inclined arrow designating the reaction. It 
will be noticed that most of the stresses on the loaded side are 
considerably greater than those on the other side. 

The Ferris wheel at the World’s Columbian Exposition in 1893 
was 250 ft. in diameter and had thirty-six spokes. An article on 
this subject applying the graphic method to water wheels of a 
given type as well as to other structures, and including a descrip¬ 
tion of the main features of a wheel of the same magnitude as 
that at the Exposition, but designed so that its stresses should be 
statically determinate, may be found in Zeitschrift fur BauweseUf 
Vol. XLIV, p. 586 (1894). 



Art. 62] HORIZONTAL SHEAR IN A BEAM 163 

Bicycle wheels are usually constructed with spokes of very 
light steel rods and stiff rims of metal or wood. The number of 
spokes is generally thirty-two. The load on a bicycle wheel is 
applied at the hub, and there is an equal reaction at the point 
where the wheel rests upon the ground. The stresses in the rim 
and spokes may be found in a manner similar to that used for the 
Ferris wheel since the reaction tends to produce compression in the 
spoke attached to the rim at that point, but as it can take only 
tension it will not act, and hence may be considered as removed 
for the time being. The stress diagram is then readily constructed. 

When the wheel rests on the ground at a point between the 
spokes the rim acts as a beam to transfer the reaction to the 
adjacent apexes or panel points of the wheel truss. The direct 
stresses in the wheel mernlx^rs may then be found by replacing the 
reaction by its two components, and considering the spokes at 
those panel points temporarily removed. 

Problem 61a.—Determine the stresses in all members of a Ferris wheel 

with eight tensile spokes for a load of P at each apex, when one of the spokes 

is vertical, and also when one of the rim segments is horizontal. 

Problem 616. -Find the stresses in a bicycle wheel having thirty-two 

spokes under a load of 150 lb. when the reaction is applied at a spoke, and 

also when it is applied mid-way between spokes. 

Art. 62. Horizontal Shear in a Beam 

Let it be required to construct a diagram showing the distri¬ 
bution of horizontal shear in a beam. This may be conveniently 
illustrated by an example such as occurs in the design of a deep¬ 
ened beam. A deepened beam consists of two timbers of rectan¬ 
gular cross-section placed one above the other and united by keys 
or brace blocks so as to make the timbers act as a single stick. 
By this means the combined strength of the timbers is double 
that secured when they act separately. 

Let the loads to be supported, exclusive of the weight of the 
beam, consist of three concentrated loads of 4000, 8000, and 
6000 lb., respectively, and a uniformly distributed load of 2000 
lb. per linear ft., extending over a portion of the span as indicated 
in Fig. 62a. A single bending moment diagram for both concen¬ 
trated and uniform loads may be constructed by treating sepa¬ 
rately the portions of the uniform load which lie between the 



Fig. 62a. 
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concontrated loads. Thc^ loads are taken in succession from left 
to rijjiht and laid off on th(^ load line (not shown). The left reac¬ 
tion A is found by computation to be 22 900 lb., and by laying 
this off on the load lino th(i closing line of the equilibrium polygon 
may be mad(^ horizontal, if so desired, by taking the pole directly 
opposite the point of division of the reactions (see Arts. 9 and 11). 
The (‘quilibrium polygon acefgiba is first drawn by regarding the 
portions of the uniform load as concentrated at their centers of 
gravity. The final form is then obtained from this by construct¬ 
ing a parabola (Art. JO), tangent to the right lines ce and ef at the 
points d and /, respectively, these points being directly below the 
extremities of the 4-ft. portion, and a second parabola tangent to 
fg and gi at the points / and L 

The vertical shear diagram a'k . . . Im , . . nb' m drawn next. 
The shear passes through zero where bn crosses a'6', and on meas¬ 
uring th(^ moment ordinate directly above this it is found to be 
126 400 ft.-lb. If b he the bniadth and d the depth of the rectan¬ 
gular section of the beam, and 875 lb. per sq. in. the working unit 
stress in the outer fibers, 

bd^ = (126 400 X 12 X 6) ^ 875 = 10 400 in.*^ 

If b be assumed as about Id, the beam will require two timbers 
14 by 14 in. in section. 

The weight of these timbers for a length equal to the span, 
at 3 lb. per ft. board measure, equals 1960, or say 2000 lb. The 
bending moment at the middle of the span due to this weight is 
5000 ft.-lb. The corrcisponding moment diagram is drawn as 
explained in Art. 10 by making the parabola arb tangent to as and 
sby the ordinate at s being 2 X 5000 = 10 000 ft.-lb. The shear 
diagram a'pqV for the weight of the beam is added to the other 
by laying off the reactions in the opposite direction from the axis 
a'6'. The shear due to all the loads passes through zero at o 
where Im crosses pq, which is a little to the right of the point 
found before, and is 8.52 ft. from the left support. The maximum 
moment directly above this point is now measured, and its value 
of 131 300 ft.-lb. obtained. As the resisting moment of the beam 
slightly exceeds this amount no correction is necessary. 

If Sh is the unit horizontal shear, and V the total vertical shear 
in any section of the beam, b and d the breadth and depth of the 
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rectangular cross-section, the following relation is given by 
rn(^chanics (Mechanics of Materials). 

In order to obtain the horizontal sh(iar for a distance dx along the 
bc^ain, Sh must be multiplied by hdxy giving 

Sfibdx 
2d 

•Vdx 

If the total horizontal shear be required between any two sections 
of the beam, it is necessary to integrate this expression between 
the given limits of x. F is a function of x, and the integral of 
Vdx is the area of the vertical shear diagram between the given 
sections. 

The total horizontal shear between a' (the left support) and 

0 is since / Vdx — ^dM = M. Substituting the 

values found above, the total horizontal shear for either the por¬ 
tion a'o or oV equals (3 X 131 300 X 12) -f- (2 X 28) = 84 420 lb. 
If four keys or brace blocks of equal strength are to be employed 
to resist this shear, each block must be designed to take a pressure 
of 21 105 lb. In order to determine their location, it is necessary 
to divide the vertical shear diagram on each side of the zero shear 
into four equal parts. This is most readily done by dividing it 
into narrow strips, say a foot wide by scale, finding the area of 
each one, and beginning at the point o, adding each area to the 
sum of the preceding ones. The total area should equal the maxi¬ 
mum moment. These areas are laid off as ordinates on the axis 
a"o' in such a way that the length of the ordinate at any section 
of the beam represents the area of the vertical shear diagram from 
that section to the point of zero shear. By dividing the last 
ordinate a"t into four equal parts and drawing parallels to a"o' 
through these points as indicated by broken lines, their intersec¬ 
tion with the curve passing through the extremities of the ordi¬ 
nates gives the positions required. 

The corresponding diagram for the right-hand portion is 
drawn above the axis o"6". All the positions of the brace blocks 
are marked on the bottom line of Fig. 62a. Numbers 1, 2, and 3 
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are respectively 4 ft. 9 in., 2 ft. 11 in., and 1 ft. in. from 4, 
which is at the left support; while numbc^rs 1', 2', and 3' are 

5 ft. IO2 in., 3 ft. 5 in., and 1 ft. TJ in. from 4' at the right support. 

It will be observed that in the middle portion of the beam no brace 

blocks are required in this case for almost one-half of the span. 

When moving loads are substituted for stationary loads the 

length of the middle space is materially reduced, for in that case 

the maximum horizontal shear in any section does not occur when 

the load covers the entire beam except for the sections at the 

supports. 

If the cross-section of the Ixiam is not uniform, it is necessary 

to construct the diagram so that the ordinates shall represent the 

corresponding sums of the horizontal shears directly. By using 

the general form of the equation the distribution of the horizontal 

shear in a beam of any cross-section may be similarly shown by a 

diagram. 

Problem 62tt.—Two deepened beams having an effective span of 22 ft. 
carry a single-track railway across a culvert. The weight of the track is to 
be assumed at 450 lb. per linear ft., and the live load at 5000 lb. per linear ft. 
The beams are to be of timber weighing 45 lb. per cu. ft., and with an allowable 
unit stress in the outer fibers of 1500 lb. per sq. in. Find the positions of the 
brace blocks or keys, provided eight are used in each beam. 



CHAPTER Vn 

ELASTIC DEFORMATION OF TRUSSES 

Art. 63. The Displacement Diagram 

The change in length X of any nnaiiher of a truss which is 
subject to given loads and reactions may computed by the w(dl- 
known formula (Mechanics of Mat(u*ials) 

in which I is the length of the given member, A the area of its 
cross-section, E the modulus of elasticity of the material of which 

i'X/ 
V\ 

it is compos(‘d, and P the 
total stress in the mern- 

\\ X, ber. In case stresses 
\ \ V due to temperature are 

to be tak(m into account 

■ the above value of X 

Fig. 63a. Fig. 636. 
must be combined with 
the quantity in which 

c is the coefficient of linear expansion for a change of one degree. 
and t the rise or fall of temperature expressed in degrees. 

As a truss is composed of triangles, the method of finding the 
displacement of its panel points due to any given loads may be 
illustrated by showing how to determine the displacement of one 
panel point when two others with which it is connected by truss 
members are known. Let the panel point c in Fig. 63a be con¬ 
nected with a and h by members whose lengths are h and fc, respec¬ 
tively. Let the stress in ac be a compression which produces a 
shortening of Xi in its length, while the stress in he is tension and 
X2 is the corresponding elongation. The known magnitudes and 
directions of the displacements of a and h are represented by the 
lines oa' and 66'. 

Let a'ci be drawn parallel and equal to ac. Since the stress in 
ac is compression, Xi must be laid off from ci towards the point a', 

168 
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which for the moment is regarded as fixed. This shortening, indi¬ 
cated by a heavy full line, is very much exaggerated in the figures, 
for if it were laid off to the same scale as a'ci it would not be visible. 
With a' as a C(mt(^r and the reduced length h ~ Xi as a radius let 
an arc be described. The panel point c must lie somewhere on 
this arc. Because^ th(^ elastic deformations of the truss members 
ar(^, however, very small, the tangent to the arc may be substituted 
for the arc itself. A perpendicular to a'ci is therefon^ drawn at 
the end of the lino marked Xj. Similarly, 6V2 is drawn parallel 
to he, and its length increased by its elongation X2 and a perpen¬ 
dicular erected at its extremity. The point c/ is therefore at the 
intersection of these two perpendiculars, and the line cc' (not 
drawn) n^presents the displacement of c in magnitude and direction. 

In view of tli(^ exceedingly small values of X as compared with 
I it is desirable to exclude from the diagram that portion which 
contains th(i lines represemting the lengths of the members them¬ 
selves. This can readily be done, as it is seen that the lines cri 
and CC2 repnjsenting the displacement of a and 6, the lines Xi and 
X2, and the perpendiculars at the extremities of Xi and X2 form a 
closed polygon. In Fig. 636 it is drawn separately to three times 
the scale of that in Fig. 63a, the pole 0 in the former replacing the 
point c in the latter. The displacement of the panel points a, 
6, and c all radiate from the pole O. 

Such a diagram is called a displacement diagram. In its con¬ 
struction especial care must be exercised in observing the direc¬ 
tions in which the values of X are to be laid off, constantly referring 
to the paned points of the truss diagram, which for the time being 
are considered as fixed. The lengths of the perpendiculars whose 
intersections locate tlu^ successive panel points need not be meas¬ 
ured. 

Problem 63^/.—A weight of 15 kips is suspended from a ceiling at points 
10 ft. apart l)y means of two steel bars, one being 1 in. square and 9 ft. long, 
and the other I in. square and 10 ft. long. Find the displacement of the 
point where the weight is attached to the bars. 

Art. 64. Deformation op a Truss 

It is required to find the displacements of the panel points of a 
wooden king-post truss whose span is 16 ft. and depth 8 ft., which 
carries a load of 12 000 lb. at panel point b (Fig. 64a). The data 
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required for the construction of the displacement diagram are given 
in the following table. In computing X the value of E was assumed 
as 1 500 000 lb. per sq. in. For the sake of illustration let the 

Member Stress, 
Lb. 

Length, 
In. 

Area, 
Sq. In. 

X, 
In. 

Member, 
No. 

ah = he 4- 6 000 96.0 36 4-0.0107 1 and 5 
aB — Be - 8 490 135.7 64 1 -0.0120 2 and 4 

Bh 4-12 000 96.0 36 4-0.0213 3 

point a be fixed, and the point c be regarded as perfectly free to 
move horizontally, although in practice such a short span is fixed 
at both supports, since the horizontal movement of c due to the 
loads is too small to require a movable support. 

The displacement diagram may be constructed by beginning 
at any panel point and regarding as fixed its own position as well 
as the direction of one member attached to it. Let the point a 
(which is actually fixed) and the direction of ah be so regarded. 
In Fig. 64c the point a' will therefore coincide with the pole 0, 
and Xi will be laid off toward the right, that is, in the direction of 
a toward h on the truss diagram. For convenience the values of X 
are marked on the truss diagram, and when they are laid off in 
Fig. 64c they are marked by the same numbers as the corre¬ 
sponding members in Fig. 64a. After V is thus determined the 
displacement of B is next found by regarding a and h in the tri¬ 
angle aBb as fixed. The elongation X3 is laid off upward from 6', 
and the shortening X2 downward from a', the intersection of the 
perpendiculars giving 5'. In the same way c' is located. The 
lines OB' and Oc' are the displacements of B and c. 

In order to show the deformed truss under the conditions 
assumed (that a and the direction of ah are fixed), the displace¬ 
ments are laid off on Fig. 64a to one-tenth of the scale employed 
in Fig. 64c, and the corresponding points joined by broken lines. 
The student will observe that the deformation shown is greatly 
exaggerated, and hence the members seem to have unduly altered 
their lengths. 

The primary conditions of the problem, however, require that 
c shall move only in a horizontal line, and therefore the entire 
truss must be revolved about a as a center until ci falls into the 
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horizontal through c. As the arc thus described is very small 
compared with the radius aci which in turn differs but very little 
from acj a perpendicular to ac from ci may be substituted for the 
arc without appreciable error. 

In Fig. 64d, to which were transferred the displacements 06', 
0B\ and Oc' without the construction lines, the corresponding 
path of rotation of c is represented by c'c'", which is drawn per¬ 
pendicular to ac in Fig. 64a, and continued until it meets the line 

Oc'", which is drawn parallel to the direction in which the panel 
point c is free to move. In this example that direction is hori¬ 
zontal, and happens to coincide with the line ac, but the statement 
here given is so framed as to apply equally to inclined lines of 
motion of panel points supported by expansion rollers or rockers. 
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When the successive displacements Oc! and rV'" are combint^d, the 
resultant displacement is Oe'". The displacement of B due to the 
rotation of the truss is which is perpendicular to aB (in 
Fig. 64a), and whose length is proportional to its distance from 
the center a. That is, B'B^^' : c'c*"' = aB : ar, from which the 
length of B'B'" may be conveniently found by similar triangles. 
Similarly, as ah equals one-half of ac, h'V" equals one-half of 
c'c'". The msultant displacements are then represented in direc¬ 
tion and magnitude by O^'", 06'", and Oc'", and as a is th(^ centcir 
of rotation, a'" coincides with a', and Oa'" is zero. 

In Fig. 646 the final position of the deformed truss is shown in 
broken lines, the resultant displacements BBoj 662, and cc2 being 
laid off parallel to and equal to one-tenth of the lengths of O/T", 
Ob"\ and Oc'" in Fig. 64d. If the deformation were not exaggerated 
the truss diagram aB2Cih2 in Fig. 646 would be equal to aBicih\ 

in Fig. 64a in both form and dimensions. 
For the purpose of simplifying the construction let the three 

parallelograms in Fig. 64d be completed, and the points a", 7^", c", 
and 6" joined by lines as indicated. The lines 77"a", 6"tt", and 
c"a" (parallel and equal to B'B"\ 6'6'", and c'c'") repn^sent the 
displacement of panel points 77, 6, and c due to rotation about a, 
and are respectively perpendicular and proportional to aB, ah, 

and ac of the truss diagram, and therefore it follows that the dia¬ 
gram a'^B^'c^'h" is similar to aBcb, and all their lines are mutually 
perpendicular. This important fact furnishes a means of deter¬ 
mining the final displacemtmts on Fig. 64c in a very simple manner 
as follows; Through c' draw c'c" parallel to the constrained line of 
motion of the panel point c, and draw a"c" perpendicular to ac in 
Fig. 64a, and intersecting c'c" at c". The line c"a" represents the 
arc of rotation of ci. On a"c" draw a diagram similar to the 
truss diagram. The required displacements are then given by the 
directions and distances of the points B', 6', and c' from B", 6", 
and c", respectively. It is thus seen that the points Z?", 6", and 
c" in Fig. 64c correspond to what may be regarded as successive 
positions of the shifted pole 0 in Fig. 64d, which conception aids 
the memory in reading the directions correctly. 

It is very desirable in practice to reduce the displacement 
diagrams to their most compact form. It will both diminish the 
errors due to slight inaccuracies in the directions of the intersecting 
perpendiculars as well as allow increased precision by the use of a 
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larger scale. This result may be secured by beginning the con¬ 
struction with the line which suffers the minimum change in direc¬ 
tion under the influence of the given loads. In simple trusses 
some line may be found at the middle which does not change its 
direction at all, provided the truss and the loading are both sym¬ 
metrical with references to a vertical section at the middle, or which 
changes but littks in unsymmetrical trusses. For a bridge truss 
with an even number of panels, the middle vertical is such a mem¬ 
ber, or the chords of tins mieklle panel when the number of panels 
is odd. As an ilhistralion of the effect thus produced, the dis¬ 
placement diagram fur the above truss when the direction of th(s 
middle vertical and the position of either of its extremities is 
assum(»d to bes fixed, is given in Fig. 64c to the same scale as that 
in Fig. 64r. Since a perpendicular to ac through a! meets a hori¬ 
zontal through c' at a', the diagram is thereby reduced 
to zero. If the scales were doubled, the vertical dimension of this 
diagram would not be quite eciual to that of the one previously 
drawn. With a largcn- number of panels the difference is still 
greater. In this case the diagram makes a direct comparison 
l)etween the displacements of all the panel points. 

On applying the scale and protractor to the original drawing 
the displacements of B and h were found to be 0.0296 and 0.0501 in., 
their directions being inclined 21 and 12to the vertical. The 
angles were read only to the nearest quarter degree. As the lower 
chord is horizontal, the displacement of c is the sum of the elonga¬ 
tions Xi and X5, which equals 0.0214 in. 

In computing the change in length of a tension member it is 
customary to use the gross cross-sectional area, although the area 
is reduced for part of the length by rivet holes in riveted shapes or 
by mortices or other cuts in timber. Gusset plates and other 
connecting details increase the areas of the members where they 
occur and tend to compensate for the use of the gross sections of 
tension members. 

Problem 64a.—The members of the highway truss shown in Fig. 27a 
have the following cross-sectional areas in square inches: AB — 45.90, 
AD = 37.30, AF = 40.90, AH = 43.40, BJ = CK - 17.58, EL = 23.27, 
CfM = 27.64, BC = 11.72, DE ^ FG ^ HH' = 8.94, CD = 18.00, EF == 
15.88, and GH = 11.44. Use a value of ^ = 29 000 000 lb. per sq. in. Find 
the displacement of all the panel points of the truss due to the dead load: 
(1) by starting at the center of the truss, and (2) by starting at one end. 
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Art. 65. Deflection and Camber of a Truss 

While the displacement diagram gives the actual displacement 
of the panel points in the plane of the truss, their vertical compo¬ 
nents only are generally required. When bridge trusses are 
erected they are ^cambered ’ so that under their maximum load none 
of the panel points of the loaded chord will fall below a horizontal 
line joining the panel points at the supports. For highway 
trusses the camber is frequently increased so that under dead load 
the roadway will lie on a vertical curve which is tangent to the 
roadways of the approaches. 

For long trusses this camber is secured by shortening the ten¬ 
sion members by an amount equal to (or proportional to) the 
elastic elongation due to the sum of the live- and dead-load stresses, 
when the live load is so placed as to produce the maximum moment 
at the middle of the truss, plus an allowance for clearance in the 
case of pin-connected joints. The compression members are 
lengthened in a similar way. The maximum live-load stresses 
must not be employed throughout because they are not simultane¬ 
ous stresses. For shorter spans the camber is usually obtained by 
increasing the length of the top chord members. This requires 
a corresponding increase in the length of the diagonals, but the 
verticals and bottom chord members are not changed. A com¬ 
mon figure used for railway trusses is to increase the top chord 
i in. for each 10 ft. of length. For highway trusses where a per¬ 
manent camber is desired the elongation will have to be greater. 
The elongation may be computed from the following approximate 
formula, the panel points of each chord being assumed to lie on 
arcs of concentric circles, 

F?' = 
SCD 

SN 

in which F' is the panel increase in inches; C is the desired camber 
in inches; D is the depth of the truss in feet; S is the span of the 
truss in feet; and N is the number of panels. 

A displacement diagram may be drawn for these changes of 
length of the members to determine the elevation of each panel 
point, or ‘blocking diagram,^ when the truss is erected on false¬ 
work. If to these changes of length there be added the values 
of X caused by the dead load only, due regard being paid to their 



Art. 66] TRUSS DEFLECTION 175 

respective signs, and the corresponding displacement diagram 
drawn, the vertical components of the displacements will give the 
elevation of the several panel points when the bridge supports 
only the dead load, and th(‘ir values may be used for comparison 
with the observed elevations after the false-work has been removed. 
Roof trusses supporting horizontal ceilings arc cambered in a simi¬ 
lar manner. 

In the example used in the preceding article, the deflection of b 

is found to be 0.0489 and of B is 0.0270 in. The diagram shows 
that when two panel points arc directly above each other their 
deflections should differ by the change in length of the member 
connecting them. This may serve as a useful test of the accuracy 
of the drawing. 

Problem 65a.—The truss in Fig. 27a was cam})ered by increasing the 

length of each toj) chord incanber in., and the Ic'iigth of the end post and 

diagonals A in. each. Construct a displacement diagram and determine 

the blocking diagram for erecting the truss on false-work. 

Art. 66. Truss Deflection under Locomotive Wheel 

Loads 

The most convenient way to find the stresses in the truss mem¬ 
bers whether the chords are both horizontal, or either one or both 
of them broken, is the following: Let the position of the live load 
be found which produces the maximum moment at the panel point 
at, or nearest to, the middle of the truss (Art. 45 or 51), and with 
the truss diagram in this position on the equilibrium polygon let 
the closing line be drawn as well as the chords of the polygon whose 
horizontal projections equal the successive panel lengths in mag¬ 
nitude and position. The extremities of these chords connect the 
points two and two where the verticals of the truss diagram inter¬ 
sect the equilibrium polygon. By drawing rays parallel to these 
chords through the pole they will cut off on the vertical load line 
the panel loads for this position of the wheel loads, and a ray 
parallel to the closing line will divide the reactions. The stress 
diagram, which is similar to that for dead load, may now be com¬ 
pleted in the usual manner. 

The following table gives the required data for determining the 
deflection of the double-track through bridge No. 77 of the second 



176 ELASTIC DEFORMATION OF TRUSSES [Chap. VII 

division of the Baltimore and Ohio Railroad, due to the specified 
live load of two B. & O. typical consolidation locomotives and train. 

Member 
Lenp^t h Area Member 

Kips In. S(}. In. In. No. 

ah = he +2S7.0 321.0 30.00 40.0882 11,8 
cd +300 0 321.0 40.00 40.0800 4 

de -f35().() 321.0 40.00 40.0850 14 

</ = fg -1 26t).r) 321.0 30. (Kt 40.0819 18,21 

HC -309.0 329.0 05.12 -0.0717 0 
CD = DE -414.0 321 .0 71 52 -0.0715 2, 12 

EF - 305.0 329.0 05.12 -0.0709 10 
oB -413.0 404.7 70.44 -0.0900 10 

Bh 4140.0 330.0 17.52 40.1033 9 
Be 4100.0 404.7 23.50 40.0804 7 

Cc + 12.5 408.0 30.00 40.0004 5 
Cd 4 87.5 519.1 34.00 40.0514 3 
Dd 0 408.0 20.00 0 1 
dE 4 94.5 519 1 34.00 40.0555 13 
Ee 4 5.0 408.0 30.00 40.0024 15 
eF 4130.0 404.7 23.50 40.0980 17 

FJ 4100.0 330.0 17.52 40.0782 19 

Fg -380.5 404.7 70.44 -0.0903 20 

The form of truss is shown in Fi^. 66a. The lower chord 
consists of eye-bars of medium open-hearth steel, whereas the 
upper chord and web mcanlxTs are built up of shapes of soft steel. 
There are no counters. The stresses were found in the manner 
descrilx^d above, the stress diagram being drawn to a scale of 
50 kips to the inch. The value of the modulus of elasticity was 
assumed as 26 000 000 for soft and 29 000 000 lb. per sq. in. for 
the medium steel. 

The displacement diagram, shown in reduced size in Fig. 665 
was constructed by assuming the position of d and the direction of 
dD as fixed. It is the best one that can be drawn since dD changes 
its direction actually less than any other member, and requires 
very little rotation of the truss. The truss members are numbered 
in the order in which their values of X were used in constructing 
the diagram. As the left end of the truss is fixed and the right 
end rests on expansion rollers, a" coincides with a', and g" lies in 
a horizontal through gr' directly above a'. The distance is 
too small a span to permit a diagram similar to the truss diagram 
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to be drawn without confusion of points. As, however, only the 
defl(^ctions are d(\sired, the iK'cessity for this diagram may be 
obviated by the following construction of a deflection polygon. 

Jx^t tt] b(^ obtaiiK^d })y proj(^cting a' across on the vertical 
through o, and similarly for f/j. Th(^ intersection of the line 
joining a\ and gi with any v('rtical, as for example that through r, 
gives a point ^2 whose' height is the sanu^ as c" would havei been if 
the diagram a" . . . had been drawn. By projecting h'c'd'e' 

and/' on the corresponding verticals and joining them as indicated, 
a polygon will be obtained whose ordinates at the panel points 
represent the corresponding deflections of the i)anel points of the 
lower chord. The values of the deflections in inches are marked 
on the diagram. The scale of the original displacement diagram 
was 0.060 in. to an inch. A deflection polygon for the panel points 
of the upper chord might also be drawn, if desired; but as these 
points are united to the lower chord by verticals, their deflections 
may be obtained by subtracting the elongations of the verticals 
from the corresponding deflections marked on the diagram. 

Problem 66a.—What change in the deflection of the truss used in this 

article would result by constructing all members of structural grade steel 
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having a modulus of elasticity of 29 000 0(X) lb. per sq. in. and substituting 

built-up shapes for the eye-bur members of the lower chord having areas 

of 39.28 sq. in. for 6c, c/, and /^, and 49.86 sq. in. for cd and dc? 

Art. 67. Special Construction for Center Panel 

When a simple truss has a center panel and the loading is sym¬ 
metrical both of the diagonals in that panel have no stress and 
hence no linear deformation. If eithor one of the diagonals is 
omitted the resulting deflection polygon is not quite symmetrical. 
If the other diagonal is omitted the deflections of corresponding 
panel points are interchang(id and hence the true deflection of each 
panel point is the mean of these two values. The necessity of 
constructing a displacement diagram for more than half of the 

truss may be avoided by means of the following expedient: Let 
an imaginary vertical be inserted in the middle of the center panel, 
with a shortening equal to that of the vertical on each side of the 
panel. The vertical will not change its direction when the truss 
deflects under symmetrical loading. Hence the displacement dia¬ 
gram is drawn by taking the direction of this vertical as fixed. 
If the diagram were drawn for the entire truss it would be S3an- 
metrical and the perpendicular truss diagram (which represents the 
rotation of the given truss, if required) would be reduced to a 
point as in Fig. 64e. Hence the displacement diagram for only 
one-half of the truss is required. 

In Fig. 67a the imaginary vertical Mm joins the middle points 
of the upper and lower chord members of the center panel. Tak¬ 
ing m and the direction of Mm as fixed, the point m' in Fig. 676 
is located in any convenient position. From m' the deformation 
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of Mm (equal to that of Ff) is laid off parallel to Mm. It is laid 

off downward since M moves downward toward the fixed end m, 

when the member is shortened. 

Moreover, since FG does not change its direction when the 

truss deflects, the point F' may be located directly by laying off 

toward the right from M and parallel to FM (or FG) one-half of 

the deformation of the chord FG. Since M' was located before 

F', M is regarded now as fixed; as the member is shortened, F 

moves toward the right, and hence the change of kmgth is laid 

off toward the right from M\ For the same reason m'J' is drawn 

parallel to fm (or fg) and equal to one-half of the elongation of fg. 

It is laid off toward the left as / moves toward the left from the 

fixed end m when the chord elongates. The rest of the construc¬ 

tion is the same as was fully explained in Art. 64, only a small 

portion of which is shown in Fig. 676. 

Problem 67fl.—IleferrinR io Fig. 22b, which meini)er must l)e taken as 
fixed in direction in order to secure a symmetrical displacement diagram? 
Must the entire diagram be constructed? 



CHAPTER VIII 

INFLUENCE LINES FOR STRESSES 

Art. 68. Influknce Lines from a Deflection Diagram 

In Art. 33 infliioiice lines wen^ constructed for various func¬ 
tions by findinjj; the value' of the function at oik^ or more positions 
of a load P, laying th(aii off as ordinate's, and joining theur tops. 
Another me^thoel of construeating a stress influence' line is by nutans 
of a deflection diagram for the truss due to a unit changes in length 
of the given mernbe'r. Rc'ferring to the truss in Fig. 68a le^t a 
load P be applied at panel point e, and let A be the deflection of 

the truss at the same point. The load P causes stresses and hence 
changeis of length in nearly all the members of the truss. The 
change in length of each member contributes a certain increment 
towards the total deflection A. For example, let the member Be 
be taken. Let S be its stress due to the load P, let X be its cor¬ 
responding change in length or its linear deformation, and let 6 
be the increment of deflection at e due to the change in length of 
Be only. By equating the external and internal work (see Part I) 
there is obtained the equation 

\Pb = ^SX, or Pb = aSX 

Now if P be made equal to a unit load, and X be made equal to a 
linear unit, the equation becomes 

la = IS 
180 
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which shows that the numerical magnitude of the deflection equals 
that of the stress N, provided each is express(id in the proper units. 
Th(? same relation (‘xists for any position of thc^ load. It follows, 
therefore, that the deflection diagram of the truss due to a unit 
change in length of the given memljer is id(mtical with the influence 
diagram for the stress in the member. 

To construct the defli^ction diagram which is to be used as a 
stress influence diagram the given truss member is assumed to 
have a unit linear contraction, while all the other members remain 
unchanged in length. The memb(T is assumed to be shortencnl 
instead of lengtheiUMl in order that positive ordinat(^s, that is, those 
which are measured upward from th(^ closing line or axis, may 
denote tension, while negative ordinates, or thos(^ measured down¬ 
ward from the closing line, may denote compression. 

The deflections of the panel points of th(^ truss are found by 
means of a displacement diagram as explained in Arts. 63, 64, and 
65. The displac(aH(‘nt diagram may be constructed by considering 
both the position of any joint of the truss and the direction of any 
member attaclu'd to it as temporarily fixed. In order to make 
th(^ diagram as simple as possible for members in the left half of 
the truss, it is best to commence at a joint at the right end of the 
panel in which the member is situated, and to regard the position 
of this joint and the direction of a vertical memlx^r attached to it 
as fixed. For members in the right half of the truss it is best to 
begin at a joint at the k^ft end of the panel containing the member. 

As explained in Art. 64, the final displacement of each joint of 
a truss is the resultant of two component displacements. The 
first of these is due to changes in the lengths of the truss members 
under an assumed condition that the position of a certain joint 
and the direction of a member attached to it are both fixed. Since 
this assumed condition often does not agree with th(^ actual limita¬ 
tions of the movements of certain truss joints it becomes neces¬ 
sary to rotate the truss about a certain joint to make it conform 
to these limitations. The second component displacement of 
ea(ih joint is derived from this rotation of the truss. The graphic 
methods for determining these two sets of displacements were 
introduced, respectively, by Williot and Mohr, and hence the 
combined displacement diagram is often called a Williot-Mohr 
diagram. 

The method of constructing stress influence lines by means of 
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displacement diagrams as descrilx‘d in this article is absolutely 
general, applying to any bridges truss with constant or variable 
depth, and with any kind of web system. By its use the neces¬ 
sity of rememl)ering many different rules for constructing influence 
lines for different chord or w(^b members is, therefore, avoided. 
Stn'ss influence lines may accordingly be drawn without previ¬ 
ously requiring an analysis of stress relations in various members 
of a truss, thus making this method especially useful in determin¬ 
ing th(i variations of stressc^s in the members of new or uncommon 
types of trusses. 

The general method of developing the subject of influence lines 
from the viewpoint of their identity with deflection diagrams, and 
some applications of this principle were first published in an article, 
“ Influence Lines as Deflection Diagrams,’^ by D. B. Steinman, 
in Engineering Record^ Vol. 74, p. 648, Nov. 25, 1916. 

PuoBLKM 68a.—Constthe influeiic(» diagram for the chord member 

ah in P"ig. 646. 

Aut. 69. Influence Lines Fon a Parkeu Truss 

In Fig, 69a are shown influence lines for the stresses in an 
upper chord member, lower chord member, main diagonal, counter 
diagonal, and a vertical in a Parker truss, as well as for a vertical 
under a special condition imposed upon an adjacent diagonal. 
The Parker truss is the same one used as an example in Chapter V, 
its diagonals taking only tension. Its dimensions and loading are 
given in Art. 51. 

The displacement diagram shown at the left of the stress influ¬ 
ence line for cd is constructed by the method given in Art. 64 as 
follows: The member cd is assumed to be shortened a linear unit 
or 1 in., while the lengths of all the other members remain un¬ 
changed. The position of the panel point d and the direction of 
the vertical dD are assumed to be fixed. Since there is no defor¬ 
mation in dD the point D' on the displacement diagram will coin¬ 
cide with the point d', which was first located at any convenient 
position on the drawing paper. From D' the deformation in the 
member DC is laid off equal to zero and a line drawn at its extrem¬ 
ity (also 2)') in a direction perpendicular to the member DC \ while 
from d' the deformation of the member dC is laid off equal to zero 
and a line drawn at its extremity (also d') in a direction perpen- 
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Fw. 69a. 
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dicular to dC\ the intcTsection of those two perpendiculars gives 
the location of the point C'. In tliis particular case, since Z)' 
coincides with d', the point C' also coincides with both. For the 
same reason E\ c', F', (V, g\ and h' coincide with d'. 

To locate c', the deformation of Cc and of cd must be laid off 
in the proper directions, perpendiculars erected at their extremities 
and their intersections found. The zero deformation of Cc is laid 
off from C', and at its extremities (also C') a line is drawn perpen¬ 
dicular to the member Cc. Since the member cd is shortened, its 
left end c will move toward the right when its right end d is held 
in position, hence the deformation X = 1 in. is laid off by scale to 
the right from d' in the displacement diagram and parallel to the 
truss member cd, and at its extremity a line is drawn perpendicular 
to it. The point c' is located at the intersection of both perpen¬ 
diculars. At C' the zero deformation of BC is laid off and at its 
extremity a perpendicular to BC is drawn; from c' the zero defor¬ 
mation of Be is laid off and a perpendicular to Be is drawn; their 
intersection gives the point B\ In a similar manner the points 
6' and a' are located. It must b(^ remembered that each perpen¬ 
dicular referred to above represents an arc of rotation for one end 
of a truss member about the other end whose corresponding point 
in the displacement diagram has been previously located (see 
Art. 63). 

The deflection diagram may be drawn next by projecting the 
points a', c', . . . A' horizontally across to the corresponding 
verticals drawn through the panel points a, 6, c, . . . A, of the 
truss, and joining these points as shown. The line aiAi forms the 
closing line or axis of the diagram. This closing line takes the 
place of the auxiliary truss diagram whose members are respectively 
perpendicular to those of the given truss, when only vertical deflec¬ 
tions are required. If the value of any deflection is desired the 
ordinate must be measured by the same scale as that used in 
laying off the shortening of the member cd. The ordinate below 
c measures 1.102 in. According to the relation developed in the 
preceding article the deflection diagram is also the influence 
diagram for the stress in cd. If a load of 1 kip is applied at c 
the stress in cd is therefore 1.102 kips. 

If there are several panels to the left of the one containing the 
member for which an influence line is to be constructed, a short 
cut may be employed to avoid locating all the corresponding points 
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on the displacement diagram. For example, in the displacement 
diagram for the shortening of cd, after the points C' and c' are 
located, the point a' may be located next by considering the 
panel point a to be connected directly to C and c by two members 
aC and ac. These members have zero deformations since the 
members replaced by them had no changes in length. Hence 
C/a' is drawn perpendicular to Ca and r'a' perpendicular to m, 
thus locating a' by their intersection. If preferred, this method 
may be used to check the location of a' when determined by the 
method previously described. 

In a similar mann<‘r, the influence lines for the members CD, 
Cdy cD, and Cc are constructed. In the diagram for Cd the posi¬ 
tion of the point of division o is located where the line cidi crosses 
the closing line aih\. The diagram also shows that any load on the 
left of the point of division causes compression provided there is 
no counter in the panel and Cd is designed to take both compression 
and tension. Similarly the diagram for Cc shows that any load on 
the left of its point of division causes tension in the member 
provided the main diagonal Cd is acting, since the displacement 
diagram was constructed for this condition. 

The greatest stress in Cc occurs when the live load covers the 
portion of the span on the right of the point of division. For this 
loading the diagonal Cd is acting. All points of division should 
be checked by the method given in Art. 48. 

The sixth influence diagram in Fig. 69a was drawn for the cor¬ 
responding vertical Ff in the right half of the truss when the coun¬ 
ter diagonal Ef is assumed to act. The displacement diagram was 
drawn by assuming the position of / and the direction of Ff to be 
fixed. It would have been a little simpler in form if e and the 
direction of eE had been assumed as fixed. The line aif\ would 
then be horizontal. The influence diagram shows that any load 
on the span causes tension in Ff under the condition assumed for 
its construction; that is, provided the diagonal Ef is acting, or 
when Fe is not acting. The influence line for Ef is placed directly 
belbw that for Ff. 

If in any given case it is desired to secure a higher degree of 
precision than can be obtained from the measured ordinates of an 
influence line constructed by means of a displacement diagram, the 
stresses represented by the maximum positive and negative ordi¬ 
nates may be computed by the anal3rtic method. For example, 
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let it be required to find the value of the ordinate at fi for the 
vertical Ff, Referring to the dead-load stress diagram on 
Plate IV, as well as to the live-load stress triangle at the upper 
chord U5, it 'will be seen that the most convenient method of com¬ 
puting the stress in the vortical when the counter acts on its left 
and the main diagonal on its right, is to find the ratio of its stress 
to the horizontal components of the stresses in the adjacent upper 
chords. This ratio is one-ninth, as may be seen by referring to 
Art. 51, in which the lengths of the lower chords and verticals are 
given. If a line be drawn through E parallel to FG it will intersect 
Ff at a distance of 3 ft. below F, which is one-ninth of the panel 
length of 27 ft. For a load of 1 kip at / the left reaction is y kip. 
Taking the moment of the reaction about / and dividing by the 
length of Ff the horizontal component of the stress in EF or FG 
is found to be kips. The stress in Ff is therefore one-ninth 
of this or == 6.1225 kip. 

Problem 69a,—Construct the influence diagram for the hanger Bh in 

Fig. 69a. 

Art. 70. Stresses in a Parker Truss 

The value of any ordinate of a stress influence diagram for a 
given truss member when measured by the proper scale of loading 
gives the magnitude of the stress when a load of 1 kip or of 1 lb. 
occupies the corresponding position. If the specified live load on 
the truss consists of equal panel loads, it is only necessary to meas¬ 
ure all the ordinates below the loaded panel points, and to multiply 
their sum by the value of a panel load. 

For example, let the dead-load stress in cd be found from the 
influence line in Fig. 69a. The ordinate at Ci measures 1.102 kips. 
The sum of all the ordinates below the panel points is 3.5 X 1.102 
=3.857 kips, and since the dead panel load is 43.2 kips the stress 
equals 43.2 X 3.857 = + 166.6 kips. This agrees with the value 
given on Plate IV. 

However, if the panel loads are unequal then the magnitude of 
each ordinate must be multiplied by the corresponding panel 
load, and the sum of these products obtained. Due regard must 
be paid to whether the ordinates are positive or negative. 

When locomotive axle loads are specified it is not necessary 
to determine the panel loads for any given position of the live 
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load, since the same result will be obtained by measuring the 
ordinate at the position of each axle load, multiplying its magni¬ 
tude by the corresponding axle load and adding the products. 
Since locomotive axle loads are usually divided into several groups 
of equal loads, the number of products may be reduced by adding 
the values of the ordinates for each group of loads and multiplying 
the sum by the value of one of the axle loads in that group (see 
Arts. 33 and 41). 

If a uniform train load covers a part of the span the corre¬ 
sponding stress is found by computing the partial area of the 
influence diagram for the given member, and multiplying this 
by the load per linear foot, as illustrated in Art. 41. 

The form of the influence diagram shows how to determine the 
position of axle loads graphically by stretching a thread when a 
tracing of the truss diagram is shifted over a stepped load line 
as illustrated in Fig. 495 for the diagonal Cd, The position of 
the thread is shown by the broken line ogr, and it cuts the stepped 
load line at the point i. Referring now to the influence line 
in Fig. 69a, the points o, i, and g in Fig. 496 correspond in position 
to the points o, di, and h\. The influence line for cd shows that 
the load must cover the entire span, an axle load must be above 
the panel point c, and the thread which joins the two points of the 
stepped load line which are on the verticals through the end 
supports must cut the step above c, as illustrated in Fig. 39c. 
The points a, i, and d in that figure correspond to ai, ci, and hi 
on the influence line. Whenever the influence line on one side 
of the closing line or axis forms a triangle the position of the axle 
loads may be similarly determined by stretching a thread. 

Let it be required to find the largest tension in Ff which will 
be the minimum stress in Cc as well as in that of Ff. For a load 
of 1 kip at / the tension in Ff is 0.1225 kip (see Art. 69), which 
equals the measured value of the ordinate at fi. The sum of all 
the ordinates under the panel points is 3.5 times the ordinate at 
fi, ^d hence the dead-load stress is 3.5 X 0.1225 X 43.2 =+ 18.5 
kips, the panel loads being 43.2 kips. On Plate IV the value of 
this stress is given as +18.4 kips. Since 10.8 kips of the total 
dead panel load is applied at the upper panel point, this stress 
must be corrected, making it +18.5 — 10.8 =+ 7.7 kips. 

The influence line for Ff shows that its greatest tension would 
occur when the live load covers the entire span, provided the 
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counter Ef were acting, since this condition was assumed in 
constructing its influence line. As Ef, however, cannot take 
compression, the greatest tension in Ff will occur when the live 
load comes on from the right and extends just far enough to 
reduce the total stress in Ef (and also eF) to zero. By the method 
employed in Chapter V the required position was found to be 
that which placed axle 1 at a distance of S] ft. to the left of panel 
point e, as stated in the fourth paragraph of Art. 54. For this 
position the stress in FJf is found as follows, by means of its in¬ 
fluence line in Fig. 69a. The ordinates at ei and /i are 0.5808 
and 0.5007 kip, respectively. The sums of the positive ordinates 
under the pilot, drivc^r, and tender axles, respectively, are 0.264, 
0.682, and 1.650 kips, and the stress due to these loads is 
15 X 0.264 + 30 X 0.682 + 19.5 X 1.650 = + 56.6 kips. The 
negative ordinates under the pilot and driver axles are 0.562 and 
0.601 kip, and the stress is 15 X 0.562 + 30 X 0.601 == — 26.5 
kips. The total live-load stress is +56.6 ~ 26.5 =+ 30.1 kips. 
The dead-load stress obtained by the influence line is 
(—1.452 + 0.751) 43.2 =— 30.3 kips. The combined live- and 
dead-load stress is therefore +30.1 — 30.3 = — 0.2 kip, showing 
that the stress in the counter is reduced practically to zero. This 
position of the loads makes the stress in the vertical Ff equal to 
15 X 0.160 + 30 X 0.554 + 19.5 X 0.404 = + 26.9 kips. Adding 
the dead-load stress the total stress is +26.9 + 7.7 = + 34.6 kips. 
This checks within 0.1 kip the combined stress of +45.3 kips, 
given in the fourth paragraph of Art. 54, before the correction of 
— 10.8 kips was applied on account of the division of the dead 
panel load between the upper and lower panel points. A value 
of +36.2 kips was obtained in the latter part of Art. 54 for a 
different loading. 

If the assumed position of the live load does not reduce the 
stress in Ef to zero, the correct position may be found by trial. 
For example, let the axle loads be moved ^ ft. to the right. The 
live-load stress in Ef becomes +56.8 — 25.3 = + 31.5 kips and 
the sum of the live- and dead-load stresses is +31.5 — 30.3 = + 1.2 
kips. Therefore, the loads should have been moved only about 
0.1 ft. 

An approximate value of the minimum stress in Ff may be 
obtained as follows: Let a stress polygon be constructed for the 
member meeting at the joint F for an assumed live-load compres- 
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sion in eF equal in magnitude to its dead-load stress of +28.7 kips. 
This polygon gives a stress Ff of +49.0 kips. The dead-load 
stress in Ff when eF acts and the proper correction is made for a 
part of the panel load being applied at the upp(T panel point is 
— 6.2 — 10.8 =— 17.0 kips. The combined stress is +49.0 — 
17.0 = + 32.0 kips, which is 4.2 kips less than the correct mini¬ 
mum, without impact, given in the table in Art. 54. 

Problem 70a.—By means of i(s influence line check the greatest tension 

in Ff for the positicui of the live load illustrated in Fig. 54d, as well as the 

corresponding minimum stress. 

Art. 71. Influence Lines for Baltimore Truss 

Figure 71a shows the stress influence lines for most of the 
members in the subdivided panel from e to and the displacement 
diagrams by means of which they are constructed. It will be 
observed that the influence diagrams for EG^ EF, and Ee are 
exactly the same as if the panels were not subdivided, or like 
those of a Pratt truss with seven panels. That for Fg has the 
same form as if the truss were a Pratt truss with fourteen panels. 
The influence line for eF has the same form as if the secondary 
truss eFg were acting independently. The influence line for the 
short hanger Ff has the same form as that for eF except that the 
vertical ordinate at f\ measures 1 kip by the scale. 

In constructing the displacement diagrams, the point g and 
the direction of Gg are assumed to be fixed as recommended in 
Art. 68. Since their general construction was explained in Art. 69, 
only those features are given special attention in this article 
which depend upon the effect of subdivided panels. After locating 
the points g* and G', the points FJ and e', representing panel 
points of a large or primary panel of the truss, are to be located 
before F' and /' which represent panel points of the secondary 
truss. In the displacement diagram for EF it will be noted that, 
since there is no deformation in Fg, the deformation in Eg is also 
X = — 1 in., and hence E* is located as readily by laying off 
deformations from g* and G' and drawing perpendiculars at their 
extremities as though the intermediate panel point F did not 
exist. As indicated in Fig. 71a it is not necessary to locate the 
points V and d' for the secondary trusses on the left of the panel 
containing the member whose linear deformation of 1 in. is laid off. 
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The influence diagram for eg shows the effect of subdividing 
the panel eg. If the line is produced toward the left it inter¬ 
sects the line aifi at ci, directly below the panel point e. Accord¬ 
ingly, the diagram may be regarded as a combination of the two 
triangles aiCiOi and eifigi. The former is the influence line for the 
chord member eg when the panel eg is not subdivided, while the 
latter is the influence line for eg as a member of the secondary 
truss eFgj thus indicating that the stresses for these two conditions 
may be obtained separately and added together, if desired. When 
locomotive axle loads are employed the same position of the loads 
must be used in both causes. A criterion for the correct position 
of the loads may l>e found by deducing a formula in a similar 
manner to that employed in Part I. In this case it is desirable 
to use separate resultants for the loads from a to e, e to /, and 
/ to g. The criterion is as follows: 

The load from a to / minus the load from f to g must equal 
Wr -r* Ij in which W is the entire load on the truss, V the distance 
from the left reaction to the center of moments, and I the span of 
the truss. For the analytic computations of the stress, the section 
would be passed vertically between / and g, hence the left-hand 
member of this equation may be expressed in more general terms 
as the load in the panels on the left of the section minus the load 
in the panel cut by the section. 

To satisfy this criterion the load must practically cover the 
entire span, an axle load being placed at /. It is also desirable to 
bring the heavier loads as near to / as possible while the preceding 
condition remains fulfilled. The graphic method of applying this 
criterion is as follows: Place the tracing containing the truss dia¬ 
gram over the sheet containing the stepped load line. Let 02 be 
the intersection of the vertical at the left support a with the load 
line, and 02 the corresponding point over the right support 0. Let 
g2 be the intersection of the vertical at g with the load line, and 63 

the point where the vertical at e intersects a thread stretched from 
02 to 02- Next stretch the thread from g2 through the top of the 
step in the load line above / and mark the point where it crosses 
the vertical at e] mark a second point after passing the thread 
similarly through the bottom of the step. If 63 lies between the 
last two points the criterion is satisfied. 

To construct the influence diagram for a counter diagonal FG) 
or for eF when the counter FG is acting, and the main diagonal EF 
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is not acting; or for Gg when either FG or GH, or both, are acting; 
it is desirable to re-draw a portion of the truss diagram in accord¬ 
ance with the proper conditions, and then construct the displace¬ 
ment diagram to correspond with it. To attempt to do so with¬ 
out re-drawing the truss diagram involves too large a risk of errors 
in construction. 

If the Baltimore truss in Fig. 71a had sub-diagonal ties instead 
of struts it would change the form of several influence diagrams. 
The effect of this change is illustrated in the next article, which 
gives the stn^ss influence diagrams for a Pennsylvania truss. 

Problem 71«.—Draw the displacement diagram and influence line for 

the stress in the hanger Cc. 

Art. 72. Influence Lines for Pennsylvania Truss 

The influence diagrams shown in Fig. 72a are constructed for 
most of the members in one panel of a Pennsylvania truss corro 
sponding to those of a Baltimore truss as illustrated in the preced¬ 
ing article. In this case, however, the sub-diagonals act as ties. 
The differences in the forms of the displacement diagrams are due 
both to the curved upper chord, and the kind of stress for which 
the sub-diagonals are designed. The influence line for the lower 
chord eg has the simple triangular form which is the same as if the 
truss panels were not subdivided. That for the upper chord mem¬ 
ber EG forms a combination of the two triangles a\gip\ and cj/igfi, 
since the secondary truss carries the panel load at / to the panel 
points E and G. 

The criterion for loading for the greatest live-load stress in EG 
is indicated by the following formula: 

The load from a to e plus twice the load from e to f equals 
WV -7- Z. The left-hand member of the equation may be expressed 
in more general terms as the load in the panels on the left of the 
section plus twice the load in the panel cut by the section. In 
this case the vertical section is passed between e and / and the 
center of moments is at g. To satisfy the criterion an axle load 
must be placed at /. Using a notation similar to that employed 
in the preceding article the graphic method of applying this.cri¬ 
terion is as follows: Let a2, C2, and p2 be the respective points of 
intersection with the stepped load line of the verticals from a, e, 
and p. Let be the point where the vertical at g intersects a 
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thread stretched from a2 to p2. Next stretch the thread from ez 
through the top of the load line step above / and mark its inter¬ 
section with the vertical at g; mark a second point after changing 

Fig. 72a. 

the thread from €2 through the bottom of the step. If gs falls 
between the last two points the criterion is satisfied. 

In finding the stress in GI located in the middle panel of the 
truss it is impossible to tell in advance whether the counter diag- 
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gonal Hg or Hi is acting. Assuming Hi to act the load is placed 
in position to satisfy the criterion given in the preceding paragraph. 
If it then be found that Hg acts for this position of the loads, the 
loading must be tested by the criterion given in the preceding 
article (for eg of the Baltimore truss in which the section is also 
passed through the panel fg)y and another determination made as 
to whether Hg still acts or not. 

Referring to the influence lines for the diagonals EF, Fg^ and 
the vertical Ee^ it will be observed that the horizontal projection 
of the middle influence line occupies one, two, and one panels, 
respectively, whereas for the Baltimore truss in which sub-struts 
were used, it occupies two, one, and two panels, respectively, or 
just the reverse arrangement. 

Problem 72a.—Construct the displacement diagram and influence line 

for Ee when the counter Ve on its right is acting, and check the three larger 

ordinates by computation. 

Art. 73. Influence Lines for the K Truss 

The skeleton diagram of the K truss in Fig. 73a represents the 
trusses in the bridge of the Atchison, TopK^ka, and Santa Fe Rail¬ 
way over the Arkansas River at Pueblo, Colo. It is the first simple 
truss span constructed in this country having the K form of web 
system, and was erected in 1915. A brief description of it was 
published in Engineering News, Vol. 76, p. 104, July 20, 1916. 
A half-tone illustration is given in Fig. Villa. K trusses were 
used in two bridges by the Pittsburgh and West Virginia Railway, 
for which a considerable saving in cost was obtained over what 
would have been required for Warren or Baltimore type trusses. 
Illustrations and a brief description were published in Engineering 
News-Record, Vol. 106, p. 553, April 2, 1931. 

The displacement diagrams are constructed in the same man¬ 
ner as those in the preceding articles of this chapter. The direc¬ 
tion of the vertical at the right end of the panel which contains the 
member and one of the extremities of that vertical are assiuned to 
be fixed. For any of the vertical members it is necessary to 
extend the usual construction from panel point to panel point for 
a full panel to the left of the member before the end panel point 
can be located directly by means of an imaginary diagonal. 
For example, in the displacement diagram for F2/, the position of 
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g and the direction of gG are assumed as fixed; then the points gf', 
G\ F'2, F\ £"2, e'y and E' are located successively; and finally 
a' is located by inserting an imaginary diagonal Ea, E'a' being 
perpendicular to Ea^ and e'a' perpendicular to ea. 

The influence lines for ef and EF show the characteristic tri¬ 
angular form for all the chord members, and in this respect are like 
those of the Parker truss in Fig. 69a. The diagrams show that 
the centers of moments for both chords in the same panel lie in the 
same vertical. Since the upper chord member FG is horizontal, 
the magnitude of its stress for any loading is the same as that of 
the lower chord member fg in the same panel. 

The influence lines for C2d and C2D give the typical form for 
all the diagonals except those in the first two panels, which have 
influence lines like the corresponding diagonals in the Baltimore 
truss. The influence diagrams for C2d and C2D have exactly the 
same ordinates, since the inclinations of these members are equal. 
Their stresses, however, are opposite in character. Their points 
of division 0 may be checked in the same manner as those of the 
diagonals in the Parker truss. The truss was designed so that the 
two diagonals in each panel have the same slope. Since the 
horizontal components of the diagonals in each panel must be 
equal, it is preferable to incline them equally and thus make the 
magnitudes of their stresses equal for any kind of loading. 

The influence diagrams for D2D and E2E are similar in form 
to that shown for F2F, the upper part of a vertical. It will be 
observed that its point of division is in the panel on its left instead 
of on the right as in the Parker truss. This is due to the fact 
that both the diagonals adjacent to F2F slope downward to the 
left. 

The most interesting influence diagrams for this truss are those 
for the lower parts of the verticals, and hence all of them are given 
in Fig. 73a, viz.: C2C, D2d, E2e, and F2/. In all these except 
C2C, which is directly below the hip C of the truss, there is a break 
in the influence line on the left of the corresponding member similar 
to one of the lines for eg in Fig. 71a, and for EG in Fig. 72a. The 
dotted lines sloping downward to the right are drawn to show an 
interesting fact that the middle ordinate in the triangles bicidi, 
cidieiy dieifi, and eifigi are all equal and measure 0.76 kip. This 
indicates that the lower verticals are influenced by a subsidiary 
truss action, like the chords in Figs. 71a and 72a referred to above. 
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An examination of the displacement diagrams shows that the 

elevation of the left vertex of each triangle is mid-way between 

those of the other two vertices. This is due to the fact that both 

diagonals in the same panel have the same slope. The points of 

division for D2d, J?2C, and F2S are located about the same distance 

from one end in the corresponding panels. It will be noticed that 

these points of division occur in the panel on the right of the 

respective members, since the adjacent diagonals slope downward 

to the right. A criterion for loading for the greatest tension in 

these members could be readily deduced, but since the maximum 

ordinate is so clos(3 to the point of division it will be unnecessary. 

As this distance is about 14.4 ft., axle 3 of the Cooper loading should 

be placed at the panel point indicated by the maximum ordinate, 

the live load coming on from the left, thus bringing the pilot axle 

about 1.4 ft. from the point of division. It will also be noticed 

that the hangc^r C2C receives no stress from any load transmitted to 
the truss at all panel points on the right of d. 

The influence diagram for Gg shows that its stress is due only 

to loads in the adjacent panel on each side of it. The maximum 

ordinate measures 0.5 kip. This indicates that the panel load at g 

is equally divided among the four diagonals in the two adjacent 

panels. The ordinate at gi in the influence line for F2g measures 

a value equal to 0.25 kip multiplied by the secant of the angle 

which F2g makes with the vertical. This angle is 45®. 

It may be added that the verticals in a K truss, though having 

to resist some compression, are primarily tension members. The 

upper diagonal on the left of a vertical corresponds to the compres¬ 

sion diagonal of a Howe truss, whereas the lower diagonal corre¬ 

sponds to the tension diagonal of a Pratt truss; hence the vertical 

combines the functions of verticals in the web systems of both 

Howe and Pratt trusses. 

Problem 73a.—Construct displacement diagrams and influence lines for 
the stresses in C2C and BC of the truss in Fig. 73a. 



CHAPTER IX 

DEFLECTION INFLUENCE LINES 

Art. 74. Deflections of Beams 

The methods of graphic statics are well adapted to obtain the 
deflection of any beam or girder, with cross-sections having either 
constant or variable moments of inertia, and with any kind of 
loading, whether concentrated, distributed, or both combined. 

The fundamental equation in mechanics for the vertical deflec¬ 
tion of a horizontal beam at any given point (see Mechanics of 
Materials) is 

/=J MAVhx ^ El (1) 

in which M is the bending moment in any section of the beam 
due to the given loads, M' the bending moment due to an assumed 
load unity placed at the given point, 6a: a differential horizontal dis¬ 
tance, E the modulus of elasticity, and I the moment of inertia 
of any cross-section. 

Sometimes it is required to find the deflection of a beam at 
different points due to any given loading in a fixed position. In 
this case the bending moment diagram is first drawn and by 
treating it in turn as a loading diagram and drawing another 
equilibrium polygon to conform to certain conditions, this becomes 
a deflection diagram. The methods for doing this will be described 
and illustrated in subsequent articles. 

At other times it is required to find the deflections at one point 
of a beam under different sets of loads, or under a set of moving 
loads. In this case it is necessary to construct a deflection influ¬ 
ence line for the given point. The theoretical relations upon which 
the construction of deflection influence lines depend will now be 
presented. 

Figure 74a shows a cantilever beam with a load P at 5 and an 
assumed load of unity at a. The deflection of the beam at a, due 
to the load P only, can be found by means of equation (1) of this 

198 
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article. For the sake of distinction let subscripts be added to 
M and M' caused by P and unity, respectively, thus: Mi and M\, 
Now let the loads P and unity exchange positions as in Fig. 746, 
the corresponding bending moments kiing designated M2 and M'2. 
Since the bending moment in any section due to a load in either 
position is proportional to the magnitude of the load, M2 = PM'i, 
and Af'2 = ilfi 7^; hence also M2M'2 = MiM\. For the same 
beam, equation (1) shows that the only variable is the quantity 

Therefore the deflection at a due to P located at h is 

exactly the sanu^ ns the deflection at h due to P located at a. 
The same relation holds wherever h is located on the span. 

Furthermore, if a graphic method 
is adopted the deflections of all points 
in the span are obtained by the same 
diagram whose construction is required 
to find that of any one point only. If 
the load at the end is made unity as in 
Fig. 74c, and the deflection diagram 
constructed by one of the methods 
given in the following articles, the dia¬ 
gram becomes a deflection influence 
line for a point at the end of the beam. To obtain the deflection 
at that point due to a concentrated load in any position, it is only 
necessary to measure the deflection ordinate at that position and 
to multiply its value by the magnitude of the given load. 

The methods referred to require special care with respect to 
the units in which different terms are to be expressed. The unit 
in which the deflection / is given by equation (1) when the units 
for all other terms are known may be found conveniently by 
cancellation. Let M be expressed in inch-pounds, M' in inches 
since the assumed load is an abstract unity, E in pounds per square 
inch or pounds divided by square inch, and I in inches'*. The 
following equation may then be written: 

[/ 
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Fig. 74. 

in.-lb. X in. X in. in.-lb. X in. X in. X in.^ 

Tib. in.2) in.^ "" lb. X in.^ 

If one of the distances involved were expressed in feet it would 
change the result to feet. The same method may be employed in 
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other combinations of terms to see whether all the terms have 
b(ien expressed in the propter units to give the result required. 

It is to be remembered that equation (1) in this article gives 
the deflection due only to the bending moments in a bt^am and 
hence is in some degree approximate, although usually it fully 
satisfies the requirements of practice. If very precise values of 
deflections are required in any case, it is necessary to determine 
also the deflection due to shear (see Mechanics of Materials). 

Aht. 75. Deflkction of a Cantilever Girder 

For (example, let it be required to find the deflection at the 
end of a railroad turntable du(i to Cooper^s E50 loading (see Art. 
38). When a locomotive is balanced on the turntable preparatory 
to turning it, as illustrated in Fig. IVa, each one of the pair of 
plate girders becomes a double cantilever, and each half of a 
girder is a cantilever with its ncmtral axis fixed in a horizontal 
direction over the middle support. Figure 75a gives an elevation 
of one of these cantilevers on which the positions of the tender 
axle loads arc indicated. The stiffeners of the plate girder arc 
omitted on this diagrammatic representation. Figure 756 is a 
diagram in which the ordinates represimt the corresponding values 
of /, the moment of inertia of the cross-sections of the girder. 
The values of / are computed from the cross-section areas, and 
it is assumed that I does not change abruptly at the end of a cover 
plate but increases gradually to its full value in a distance of 

about 2 ft. 
In a cantilever in which the horizontal distances x are measured 

from the free end Af' = — x in equation (1) of the preceding 
article, and if the span of the beam be divided into lengths Ax 
so as to apply graphic methods, the deflection may be determined 
with sufficient precision by equation (1) after making these 
substitutions, giving / = I'Mx* Ax EL This may be changed 
into the form 

This summation can be most conveniently made by constructing 
an equilibrium polygon or bending moment diagram by treating 
the values of M J as loads. In order to draw the deflection 
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influence line for this cantilever girder it is n(^c(‘ssary to place a 
load of 1 kip at its free cmd, vsince it is desired to find the deflection 

at that point, and then to construct the deflection polygon for 
that load, the girder being assumed as fixed at the support. 

Figure 75c shows the bending moment diagram for this load 
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of 1 kip at the end of the girder. The span of thcj girder is dividend 
into ten equal divisions of 3.5 ft. = 42 in. each. The diagrams 
for I and M are both divided by vertical lines spaced the same 
distance apart. The average values of M, 7, and il7 7 for each 
division are given in the following table: 

Division, 
No. 

M, 
In.-lb. 

7, 
In.^ 

M ^ h 
Lb. in.3 

1 21 000 7 000 3.0 
2 63 000 13 200 4.8 
3 105 000 19 800 5.3 
4 147 (X)0 24 200 6.1 
5 189 000 28 000 6.7 
6 231 000 31 600 7.3 
7 273 000 34 800 7.8 
8 315 000 45 600 6.9 
9 357 000 56 000 6.4 

10 398 000 58 500 6.8 

Since M • Ax represents the area of one division of the moment 
diagram, the loads M -i- I are to be applied at the centers of 
gravity of the division areas, if desired, the loads may be taken 
as M-Ax -h I instead of 717 7, but this involves ten times as 
many multiplications by Ax. 

The next step is to find the proper value of the pole distance 
77, remembering that the fundamental theory of the equilibrium 
polygon requires H to be laid off with the same scale as the loads, 
and hence H must be expressed in the same units. The same 
theory also gives 2)(il7x -h 7) = Hzy in which z is the ordinate of 
the equilibrium polygon (which in this case becomes a deflection 
polygon) at the limit to which the summation is made. Since the 
value of any deflection / is very small it is desirable that the ordi¬ 
nates z shall give the deflection as magnified n times, so as to be 
measured with greater precision; that is, z= nf. Making these 
substitutions in equation (2) there is obtained / = (Ax E)Hnf 
whence 

H = E (Ax‘n) 

The value of is 29 000 000 lb. per sq. in., and Ax = 42 in.; 
hence the numerical value of the pole distance is 

= 29 000 000 -5- (42n) = 690 500 n 
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expressed in pounds divided by inches^, which agrees with the 
units in which the values of M 4- / arc expressed in the table. 

As H has to be laid off with the same scale as the load line which 

has a total value of 61.1 lb. per in.*^ it is found that a convenient 
value for n is 5000, thus making 11 = 138.1 lb. per in.^ In Fig. 75d 
the loads are laid off in regular order and the pole is taken opposite 

the extremity of load 10 in order that the axis of the deflection 
polygon may be horizontal. The equilibrium polygon Fig. 75e 
is drawn in the usual manner, remernlxiring that any side which 
lies between the linos of action of two forces must l)e parallel to 
the ray wliose extremity lies between the same two forces in the 

force polygon. 
Since the ordinate of an equilibrium polygon must be measured 

by the same scale i)i distances which is used to locate the positions 
of the forces on the team, the deflection ordinate z at the left 

end is found to be 8.54 ft. = 102.5 in., and hence the deflection 
/ = 102.5 5000 = 0.0205 in., for a load of 1 kip applied at the 

end. As the deflection diagram is also a deflection influence line, 

the ordinates under each axle load are measured by the linear 
scale and found to be 4.33, 2.72, 1.33, and 0.50 ft., respectively, 
their sum being 8.88 ft. l"he end deflection therefore for these 

four axle loads of 16.25 kips each is 8.88 X 12 X 16.25 -r- 5000 = 
0.3463 in. This value is practically the same as 0.3459 in., which 
was obtained by analytic computation, the lengths of division 

being 2 ft. except at each end of the span where they were a little 
longer. 

If it be desired to make the divisions of the span unequal in 

order to conform somewhat to the variations of the moment of 
inertia, then the areas of the bending moment divisions must be 
obtained and the loads to be used for the deflection diagram are 

M-^x /. The deflection influence line is really a curve which 
is tangent to the deflection polygon at the points of division. 

However, where the divisions are as short as in this example, 

it is not necessary to draw the curve, since it coincides so closely 

with the polygon. 

Problem 76a.—Determine the deflection of the extremity of the other 
half of the turntable girder referred to in this article, due to the axle loads 
which it supports. 
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Art. 76. Alternative Method 

In Fig. 76?> the diagram showing the variation of the moment 
of inertia is reproduced from Fig. 756 and a series of similar isosceles 
triangles is drawn so as to divide the span of the cantilever girder 
into lengths Ax which have a constant ratio to their respective 
average values of 7. The relation follows from the constant ratio 
of the base to the altitudci of (^ach triangle. Hence the formula in 
the preceding article may be changc^d to 

(Ax ^ El)^Mx 

The summation of Mx is again made most conveniently by con¬ 
structing an equilibrium polygon or moment diagram in which the 
bending moment M is treated as a load. 

The bending moment diagram due to the assumed load of 1 kip 
at the end is shown in Fig. 76c. Each value of M is the average 
value for its division and when treated as a load for the construc¬ 
tion of another equilibrium polj^gon is applied at the center of 
gravity of its corresponding area. These middle ordinates may 
be transferred with the dividers to the load line without measuring 
their values by scale. 

Befonj constructing this equilibrium polygon and its tangent 
curve which represents the deflection curve of the beam, it is neces¬ 
sary to determine the proper value of the pole distance 77 in Fig. 
76d, Since 2Mx = Hz in which z is any ordinate at the limit for 
which the summation is made, and z = n/, as in the preceding 
article, there is obtained by substitution in the preceding equation 
/ = (Ax -7- EI)Hz = (Ax 4- EI)Hnfj and hence 

H ^ El (n-Ax) 

Since E = 29 000 000 Ib. per sq. in., 7 in the largest division is 
53 000 in. S and the length of that division is Ax = 11.8 ft. == 141.6 
in., 

„ 29000000X53 000 10855000000. 904600^^ 
77 =-—-=-m.-lb. =-ft.-kips 

nl41.6 n n 

As H has to be laid off to the same scale as the load line, it is found 
that a convenient value for n is 5000, making H = 180.9 ft.-kips. 
With this value of 77, the force polygon Fig. 76d is drawn, and the 
equilibrium polygon Fig. 76c constructed. The end ordinate 
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measured by the linear scale used in laying off the length of the 
beam is 8.46 ft. = 101.5 in. The deflection is therefore 101.5 
-^5000 = 0.0203 in. The ordinates below the axle loads measure 
4.30, 2.74, 1.34, and 0.52 ft., or a sum of 8.90 ft. = 106.8 in.; 

hence the deflection at the end due to these loads is 106.8 X 16.25 

-7-5000 = 0.3471 in. 
As the deflection polygon in this case has such long sides it is 

necessary to draw a smooth curve tangent to the sides respectively 
at the points of division, before the ordinates under the axle loads 
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are measured. Only a part of this curve is shown in Fig. 76e on 
account of the reduced size. 

In Art. 75 the bending moments M were divided by the respec¬ 
tive moments of inertia /, before being laid off on the load line. 
In this article the span is divided into unequal divisions Ax so as 
to make the ratio of Ax -ir I constant. There remains a third 
method of procedure in which the pole distance H is changed in 
direct proportion to the average value of I for each division. 

In case it is desired to find the deflections for one or more 
loads, which are fixed in position at a number of different points 
on the span, then the simplest procedure is to draw first the bend¬ 
ing moment diagram for the given loading, and afterward to con- 
stnict the deflection diagram by either of the three methods 
referred to in the preceding paragraph. The magnitude of any 
ordinate will give the total deflection at the location of that 
ordinate. By using the bending moment diagram for the four 
axle loads in the example considered in this article, and adopting 
the third method of drawing the deflection polygon, the deflection 
at the end of the girder was found to b(^ 0.343 in., and under the 
axle loads 0.210, 0.146, 0.078, and 0.032 in., respectively. In 
this case the moment diagram was divided into only five divisions 
of unequal length. 

Usually the method described and illustrated in Art. 75 is the 
most advantageous, since the average values of I are more readily 
obtained than in the other methods. Where the values of I 
change more or less abruptly it requires a number of trials to 
divide the span so as to make Ax I constant, and to make I 
really the average value for its division. Under some conditions, 
however, this method may be preferable. 

When the moment of inertia is constant the construction is 
simplified still further, since I is eliminated from the summation. 
For some cases of special loading the analytic method may then 
be more advantageous than the graphic method. 

Problem 76a.—Check the value of the deflection obtained in Problem 75a 
by the method explained in this article. 

Art. 77. Deflection of a Simple Beam 

The same reciprocal relation which was shown in Art. 74 to 
exist between the deflections and loads at any two points on a can¬ 
tilever beam apply likewise to any other type of beam. Hence 
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the simplest graphic determination of the deflection of a simple 
beam at any given point under any loading consists in the con¬ 
struction of a deflection polygon for a unit load placed at the 
given point. This polygon is also the deflection influence line by 
means of which the deflection may be readily obtained for any 
other loading. 

, In Fig. 77a a simple beam is shown with a load of 1 kip applied 
at six-tenths of its span from the left end. The reactions are 
therefore 0.4 and 0.6 kip, respectively. Let the tangent of the 
neutral axis of the beam at a point under the load be assumed as 
fixed in a horizontal direction. The two parts of the beam may 
then be regarded as cantilever beams with upward loads of 0.4 
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and 0.6 kip applied at their respective ends. The deflection poly¬ 
gons for both cantilevers are drawn according to the method given 
in Art. 75. Since the bending moments are positive the deflec¬ 
tions of the ends are upward from the fixed tangent or axis, as 
indicated in the lower diagram of Fig. 77a. But according to 
the actual condition of the beam the supports are fixed in ek^va- 
tion, making the deflection of the beam at those points equal to 
zero; hence the required vertical deflection at any point must be 
measured from the closing line ai5i as an axis. 

The entire deflection polygon with its closing line is found to 
be identical with an equilibrium polygon constructed by treating 
the entire bending moment diagram for the simple beam as a 
load diagram. It was assumed that the tangent to the neutral 
axis of the beam under the load was fixed in a horizontal direction. 
The assumed direction is really immaterial, since the magnitudes 
of the vertical ordinates in an equilibrium polygon are independent 
of the position of the pole in the force polygon, provided the pole 
distance II remains the same (see Art. 7). If the axis a}bi be 
made horizontal and the same end ordinates laid off as before the 
true inclination of the tangent at ci will be obtained. 

Let the beam represented in Fig. 77a be a 30-in. Bethlehem 
I-beam weighing 122.0 lb. per linear ft., and having a moment 
inertia of cross-section of 5235.7 in.^ It is required to find its 
deflection for a span of 20 ft., under a uniform load of 9.3 kips per 
linear ft., at a section 12 ft. distant from the left support. The 
load includes the weight of the beam itself. 

The span is divided into ten equal parts, making each division 
2 ft. long. A load of 1 kip is placed at the point whose deflection 
is to be determined and the bending moment diagram constructed. 
The maximum ordinate c'c" equals 1 X 12 X 8 h- 20 = 4.8 ft.- 
kips. The value of the middle ordinate of each division of the 
bending moment diagram is given on the drawing expressed in 
foot-kips. The average or middle ordinate in each division is 
to be treated as a load applied at the center of gravity of the 
division in constructing the deflection polygon. The sum of those 
on the left of c" is 14.4 ft.-kips, and of those on the right 9.6 
ft.-kips. 

In order to make the direction of the deflection polygon hori¬ 
zontal at Cl or under the load of 1 kip, the pole is located in a 
horizontal ray through the extremity of load 6 on the load line. 
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Since H = El -i- (n-Ax), its numerical magnitude is 

„ 29 000 000 X 5235.7 6 326 500 000 „ 527 200, . 
H =-—-=-in.-lb. =-ft.-kips 

In order to secure a deflection polygon of good proportions it is 
found convenient to take n = 30 000, making H = 17.57 ft.-kips. 
Upon constructing the deflection polygon and measuring the 
ordinates at ai and b\ by the linear scale it is found that the left 
end of the beam deflects upward 6.65 n ft. and the right end 
2.94 -V- n ft. from the tangent to the neutral axis at c. Upon 
drawing the closing line aibi and measuring the ordinates at the 
ends of the divisions, their values are found to be 0, 1.29, 2.49, 3.47, 
4.17, 4.51, 4.40,3.78, 2.76,1.43, and 0 ft., respectively. 

Since the load is uniformly distributed it is necessary to find 
the area of the deflection influence diagram or the sum of the 
average ordinates in divisions of 1 ft. each. By means of Simpson’s 
rule the area is found to be 57.04 sq. ft., or the sum of the ordinates 
is 57.04 ft. for the 1-ft. divisions. The deflection for a load of 
9.3 kips per linear ft. is therefore 

/ = 57.04 X 9.3 -5- 30 000 = 0.01768 ft. = 0.2122 in. 

By means of the equation of the elastic line for this case in which 
X = OM (see Mechanics of Materials), the deflection is computed 
to be 0.2100 in., which differs from the value obtained graphically 
by a little over 1 per cent. This difference could have been 
reduced by using larger scales. The scales employed on the 
original diagram for Fig. 77a are 3 ft. to 1 in. and 5 kips to 1 in. 
The maximum deflection of this beam at the center of the span 
computed by means of the ordinary formula is 0.220 in. 

Problem 77a.—A simple beam having a span of 20 ft. consists of a 20-in. 
I-beam weighing 65.4 lb. per ft., and having a moment of inertia of 1169.5 in.^ 
The load varies uniformly from zero at one end of the span to 11 kips per ft. 
at the other end. Find the deflection at intervals of 2 ft. throughout the span 
by means of a deflection polygon. 

Art. 78. Deflection of a Crane Girder 

The simple beam in Fig. 78a represents one of a pair of box 
girders in a traveling crane similar to that illustrated in Fig. IXa. 
It has two web plates f in. thick. The upper cover plate is 20 
by J in., and the lower one 20 by f in. The two upper flange 
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angles are 5 by 3 by J in., and the lower ones 5 by 3 by | in., 
their longer legs being vertical. The short flange angles at each 
end are 3^ by 2| by ] in., and 48f in. long. Some of the dimen¬ 
sions of the girder are given on the diagram. Stiffeners and 

Fia. 78a. 

minor details are omitted. The lower flange has a parabolic 
curve. The depth back to back of flange angles is 7| in. above 
the supporting girders, 26| in. at the end of the curved bottom 
flange, and 48J in. at the center of the span. The moments of 
inertia at these sections are 250, 6760, and 21 630 in.^ The dis- 
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tance between the second and third of these sections was divided 
into five equal parts, and the moments of inertia computed at 
the ends of divisions, giving the values 9970, 14 460, 18 340, 
and 20 760 in.*^ The deflection of the girder at the center of the 
span is to be found due to a load of 30 kips on each girder. 

On account of the abrupt change of section next to the support¬ 
ing girders the span is not divided into equal parts throughout. 
All divisions except one at each end arci 4.5 ft. long, the end 
divisions being 1.25 ft. in length. The values of the middle 
ordinates in the divisions of the bending moment diagram due to a 
load of 1 kip at the center of the span are given in the following 
table. The table also contains the average values of the moments 
of inertia for the respective divisions and the corresponding values 
of M 7. 

M, 
In.-lb. 

I, 
In.< 

M ^ 7, 
Lb. -r- in.® 

Loads, 
No. 

3 760 810 4.63 1, 12 
21 000 7 960 2.64 2, 11 
48 000 12 320 3.90 3, 10 
75 000 16 460 4.56 4, 9 

102 000 19 700 5.18 5, 8 
129 (K)0 21 360 6.04 6, 7 

Since the end divisions are only 15 in. long instead of 
54 in., the first M 7 = 4.63 lb. in.*^ must be multiplied by 
15 54, giving 1.29 lb. -r- in.^, before it is laid off on the load 
line in constructing the deflection influence line. The magnitude 
of the pole distance is 

fi - 29 000 000 _ 537 060 lb. 

54n n in.^ 

Since the total load line measures 47.22 units, a convenient value 
to assume for n is 10 000, making H == 53.71 units. The deflection 
polygon is constructed in the same manner as described previously. 
The electric hoist and its live load of 60 kips are carried by a four- 
wheeled trolley which is supported by the rails on top of the pair 
of crane girders. The two axles of the trolley are spaced 4 ft. 
apart, hence it is necessary to measure two ordinates with this 
spacing on the deflection influence line. If both ordinates ars 
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2 ft. from the center of the span they measure 5.96 ft., whereas if 
one is 1 ft. from the center and the other 3 ft. on the other side of 
the center they measure 6.01 and 5.89 ft. The larger sum is 
11.92 ft., and therefore the deflection at the center due to a load 
of 15 kips on each trolley wheel is 

/ = 11.92 X 12 X 15 ^ 10 000 = 0.215 in. 

In this formula the load is introduced as 15, since 15 kips is 15 
times as large as the load of 1 kip which was placed at the point 
whose deflection was to be found. 

To find the total deflection of the crane girder it is necessary 
to consider the weight of the trolley and the electric hoist as well 
as the distributed weight of the girder itself, the squaring shaft, 
the bridge walk and brackets which carry it. 

Problem 78a.—Find the greatest deflection of the above girder at the 
quarter point of the span due to the same load. 

Art. 79. Deflection Influence Lines for Trusses 

In Chapter VII a method was given for finding the deflection 
of the different panel points of a truss under a load which is fixed 
in position. As stated there, this method is used in determining 
the elevation of the blocking required for the erection of bridge 
trusses, in which case the change of length for each truss member 
is computed for the sum of its stresses due to both dead load 
and full live load. The position of the live load is that which 
causes the greatest bending moment at the center of the span. 
It is also used in finding the deflection of different panel points 
due to a given live load when a truss bridge is being tested by 
observing the actual deflections under that live load in a specified 
position, in order to compare the results with the theoretic values 
previously found. 

If, on the other hand, it is desired to find the deflection of any 
given panel point under different loads, or under a moving live 
load, it is necessary to construct a deflection polygon for a load 
of 1 kip placed at that point. This polygon is also a deflection 
influence line for the given panel point, on account of the reciprocal 
relation between loads and deflections, as shown for beams in 
Art. 74. The same relation between the bending moments M and 
Af' indicated in that article exists likewise between the stresses 
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S and T, since the formula for the deflection of a truss involves 

the product ST (see Roofs and Bridges, Part I) just as the formula 

for the deflection of a beam includes the product MM'. 
The most convenient method for finding the stresses in the 

truss members due to a load of 1 kip at the given panel point is to 

construct an ordinary stress diagram, unless the chords are both 

horizontal, in which case the anal3d;ic method furnishes the quickest 

solution. After the values of the changes in length X due to these 

stresses are known, the displacement diagram is constructed and 

afterwards the deflection diagram, or deflection influence line, as 

described and illustrated in Arts. 66 and 69. 

Probckm 79a.—Construct the deflection influence line for panel point c 

of the truss in Fig. 66a. 
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Fig. IXa.—Electric Traveling Crane in the Hydraulic and Steam Laboratory 
of the Maasachusetts Institute of Technology, 1916. 
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stresses, 73, 78, 85, 130 

Chords, 27 

Circular arrow, 34 

Closing line, 12 

Composition of forces, 3, 4, 6 

Concentrated loads, 18 

Concurrent forces, 6 

Cooper’s standard loading, 96 

Counters, 69, 71, 73, 75, 148, 158, 

186, 191 

Crtine, traveling, 223 

Cross bracing, 56, 160 

Cycle of stresses, 138 

Dead loads, 28, 57, 95 

Dead load stresses, 31» 58, 119, 130 
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Deck trusses, 56 

Deepened beam, 163 

Deflection diagram, 181, 184 

influence lines, 198-213 

of a beam, 206 

of a truss, 174, 175 

polygon, 177 

under locomotive loads, 175 

Deformation of trusses, 168, 169 

Diagonals, maximum stresses, 67, 

69, 74, 78, 84, 134 

minimum stresses, 67, 69, 84, 138 

Displacement diagram, 169, 176, 178 

Double intersection trusses, 156 

Duchemin's formula, 36 

Elastic deformation of trusses, 168- 

179 

Electric railway bridges, 87 

Ends of trusses, 37, 40 
Equilibrium, 3 

at each joint, 32 

between external forces, 32 

conditions of, 9 

forces in, 3, 5, 8 

polygon, 8, 90, 100, 103, 123, 130, 

142, 147, 155 

through two points, 13, 15 

through three points, 17 

Equivalent uniform load, 98 

Excess loads, 98 

External forces, 32 

Fan truss, 47 

Ferris wheel, 160 

Fink truss, 46, 215 

Floor-beam, 56, 105 

hangers, 64, 85, 115, 157, 197 

reactions, 115, 150, 155 

Floor system, 56, 64 
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Force polygon, 4, 32 

representation of, 1 

triangle, 2 

Forces, composition of, 2, 4 

in equilibrium, 3, 5 

resolution of, 3, V 

resultant of, 2, 4, 6 

Girders, 95, 109, 111, 198, 200, 204, 

209 
Graphic method, advantages, 1, 153 

statics defined, 1 

Highway bridge trusses, 56-94 

Hill-to-Hill bridge, 61, 217 

Horiisontal shear, 111, 163 

Howe truss, 56, 115 

Impact, 63, 98 

Inflection point, 22, 53 

Influence lines for deflections, 198, 

200, 204, 206, 209, 212 

for moments, 82, 99 

for shears, 82, 84, 105, 110 

for stresses, 81, 83, 99, 105, 109, 

180-197 

comparison with panel load 

method, 86 

Joints, 27 

equilibrium at, 32 

K truss, % 90, 194, 222 

Keys, 163 

Kingpost truss, 169, 215 
Kneebraces, 53 

Lateral bracing, 56, 87, 119, 151, 152, 

159 ^ 

loads, 86, 119, 159 

Lenticular truss, 70 

Live loads, 63, 96 

Live load stresses in Parker truss, 68, 

83 

in plate girder, 109 

in Warren truss, 65, 119, 18C 

Load line, 11, 32, 101 

Loads on bridge trusses, 57, 95 

roof trusses, 28 

Locomotive loads, 96 

Maximum chord stresses, 73, 78, 85, 
130 

moment, 19, 20, 22, 111, 117 

shears, 92, 105, 109 

stresses, 48, 67, 69, 74, 78, 84 

in diagonals, 134 

in verticals, 136 

Methods, 1-26, 43 

Minimum stresses, 48, 67, 69, 74, 78, 

84 

in verticals, 138 

Miscellaneous structures, 146-167 

Moment diagram, 18, 20, 21, 83, 90, 

105, 111, 163 

wheel loads, 101, 104 

influence diagram, 83 

influence lines, 82, 99 

of inertia, 24 

sign of, 19 

Moments, graphical determination 

of, 14 

in beams, 18, 20, 21 

in plate girder, 109 

in trusses, 90, 117, 130, 147 

simultaneous. 111 

Newark Bay bridge, 109 

Nonconcurrent forces, 6 

Normal wind pressure, 36 

Notation, 7, 27, 128 

Overhanging beams, 12, 21 

Panel, 30 

loads, 30, 36, 58, 65, 68, 71 

effect of divided, 59 

point, 27 

Parabola, construction of, 20 

Parabolic bowstring truss, 78 

Parker truss, 56, 58, 68, 130, 182, 216 

Pegram truss, 146 

Pennsylvania truss, 148, 192 

Pitch of roof, 27 
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Plate girder, analysis, 109 

Points of division in panels, 122 

Pole, 8 

distance, 19, 24, 90, 93, 102, 103, 

203, 204, 209 

Pony truss, 56 

Position of wheel loads, 124 

for maximum floor-beam reactions, 

115, 150 

for maximum moments in plate 

girders, 99 

for maximum moments in trusses, 

90, 117, 130, 147 

for maximum shears in plate 

girders, 107 

for maximum shears in trusses, 113 

for maximum web stresses in 

trusses, 113, 115, 124, 139, 

149, 151, 153, 158 

Posts, 123, 133, 146 

Pratt truss, 56, 87, 115, 216 

dead-load stresses, 60, 90 

live-load stresses, 92 

Principles, 1-26, 27 

Purlins, 29 

Rafters, 29 

Railway girders and trusses, 95-121 

trusses with broken chords, 122-147 

Rays, 8 

Reactions, det/ermination of, 37, 40, 

50, 53, 153 

effective, 31 

floor-beam, 115, 150 

of beams, 11 

Representation of forces, 1 

Resolution of forces, 3, 7 

of the shear, 127 

Resultant of forces, 2, 4, 6, 127, 141, 
142 

Rise of truss, 27 

Roof trusses, 27-55 

covering, 29 

deck, 30 

Shear diagram, 19,20, 21, 22, 91,108, 

no, 164 

Shear diagram, division of area, 166 

influence lines, 82, 84, 105, 110 

sign of, 19 

Shears in plate girders, 109 
in trusses, 92, 113 

Simple beams, 18, 20 

Simultaneous moments. 111 

Snow loads, 30, 65 

load stresses, 35 
Span, 27 

Statics, 1 

Steinman, D. B., 182 

Stress diagram, construction of, 32, 

38, 41, 42, 44, 46, 47, 49, 51, 

54, 58, 60, 62, 66, 68, 73, 88, 

120, 131, 159, 161 
defined, 33 

influence lines, 81, 84,181,183,190, 

195 

Stresses, determination of, 32 

due to track curvature, 121 

Stringers, 56, 105 

Strut, 27 

Sub verticals, 148 

Suisun Bay bridge, 97, 221 

Tabulation of web stresses, 67, 69, 74, 

88 
Through trusses, 56 

Tie, 27 

Train loads, 96 

Transverse bent, 52 

Triangular roof truss, 48, 52 

Truss, defined, 27 

deflection, 170, 174, 175, 212 

with fixed ends, 37 

with one end free, 40 

Trusses with broken chords, 58, 61, 
122 

Turntable, 200, 218 

Typical locomotive, 97 

truck, 63 

Uniform loads, 63, 98 

Unsymmetrical loads, 50 

trusses, 51, 152 
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Vertical shear, 18, 20, 22, 61, 93,106, 

109, 113, 118, 128 

sign of, 19, 118, 132, 134 

Verticals, maximum stresses, 69, 75, 

84, 136 

minimum stresses, 69, 75, 84, 138 

relation of stresses to diagonals, 69, 

75-77, 124, 138 

Viaduct tower, 159 

Warren truss, 57, 65, 115 

double system, 156 

Web members, 27 

Weight of highway bridges, 67 

of railway bridges, 95 

of roof materials, 29 

of roof trusses, 28 

Wheel loads, locomotive, 96,124, 175 

{SeCj also. Position of wheel loads.) 

Whipple truss, 156 

Williot-Mohr diagram, 181 

Wind loads, 36, 86, 119, 159 

stresses, 39, 41, 45, 49, 54, 87, 159 

Working lines, 31 
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