
BIRLA CENTRAL LIBRARY

PI!,.AN I

[ Rajasthan ]

Cla,ss No. 3 /

Book Nu. S^l ^
#

Accession No- 375^5/ I







ENGINEERING MECHANICS





Engineering
Mechanics^

FRANK L. BROWN
Professor of Applied Mechanics

University of Kansas

Second Edition

NEW YORK
JOHN WILEY & SONS, INC.
LONDON; CHAPMAN & HALL, LnorsD



OOFTBiaHT. 1031, 1042

BT

FRANK L. BROWN

AU Rights Reserved

This book or any part thereof mast not

he reproduced in any form wilhoai

the written permission of the publisher.

SECOND EDITION

Fourth Printingf
March, 19fJ

PBINTBD IN TRB tTNlTED STATM0 OF AWBRIOA



PREFACE TO SECOND EDITION

The general arrangement of subject matter in the second edition is

substantially the same as that employed in the first edition. Changes

made in the textual material pertain largely to details in the maimer
of presentation. Chief among these is the greater emphasis that has

been placed on methods of solution in which reference is made to rela-

tionships set forth verbally, as principles, rather than symbolically, as

formulas.

A large percentage of the problems of the first edition have been

replaced by new ones, and the total number, both of illustrative ex-

amples and of practice problems, has been increased. Answers to

approximately one-half the problems have been furnished. The cuts

are entirely new, and the book has been completely reset. A few of the

more advanced topics not widely used in undergraduate classes have

been omitted.

As in the first edition, the author has endeavored to provide a full

explanation of each essential point, with the purpose of relieving the

instructor from the necessity of consuming a large portion of each

class period in a general discussion of the fundamental principles of

the subject.

Frank L. Brown
Lawbencb, Kansas
January 7, 194B





PREFACE TO FIRST EDITION

This book is designed primarily as a textbook on mechanics for

students of engineering. For this reason, and because of a desire to

provide a book that could be very nearly, or perhaps fully, covered in

the usual undergraduate course, the author has omitted the treatment

of many of the applications usually included in such textbooks. A few

of the more instructive applications have been retained, together with

all the fundamental principles that are of importance to the engineer in

the ordinary course of events.

The book also represents an effort to lift from the shoulders of the

instructor a portion of the burden of explanation and amplification.

A large number of illustrative problems and practice problems

have been included. Many of the problems are of a practical nature;

others are purely imaginative. The author believes that the latter

type is often more instructive. An effort has been made to state each

problem fully, so as to leave no doubt as to the conditions. The prob-

lems are aU appended to the articles with which they are most closely

associated. Answers are given in nearly all cases.

Statics is treated first, in Part I. The topics of statics whose study

requires a knowledge of the calculus are placed at the end of Part I.

In Part II, Kinematics and Kinetics alternate, as the various types

of motion are discussed.

The formulas of kinetics have been developed from a statement

of laws of motion that does not include the term, mass. Naturally,

W
the quantity — appears in the kinetic formulas in lieu of M. In Art.

9

120 the author has attempted to explain mass, and has given his reasons

for not utilizing it in the remainder of the book.

Every instructor learns that beginners in the subject are wont to

make certain typical errors. The author has made an effort to warn

the student with regard to some of the more common types of errors.

Coherence, and rigor in analysis, have been the aim throughout the

book.

F. L. B.

Lawbencb, Kansas
Aufyust, 19S0
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PART I. STATICS

CHAPTER I

GENERAL PRINCIPLES

1. Mechanics in Engineering. Mechanics deals primarily with force

and motion. Engineers are vitally interested in these phenomena.

Safety, utility, and economy in the design of stnictures and machines

are attained only through careful study of the forces involved and of

the motions to be expected.

The more specialized subjects, such as strength of materials, hy-

draulics, structural design, and machine design, serve to link up the

principles of mechanics with the physical propertie^s of the substances

utilized in engineering works, developing out of the combination an

array of methods and formulas constituting a large apd important part

of modem engineering science.

2. Force. Under certain conditions bodies at rest can be set in mo-

tion. Also, bodies in a state of motion of one description can be caused

to assume a motion of a different description, or can be brought to rest.

All such phenomena will be referred to in this book as changes of motion,

A change of motion of a given body can always be traced to the in-

fluence of one or more other bodies, and is often accompanied by a

change of motion of the latter. The obvious conclusion is that changes

of motion are caused by an interaciiony or mutual action, between bodies.

For the sake of clearness this interaction between two bodies is usually

thought of as consisting of two actions. Each of these actions is called

a force. Thus, if body A pushes against body B, it is stated that A
exerts a force on B. Experience teaches that B inevitably and simul-

taneously reacts by pushing against A, and so it Ls also stated that B
exerts a force on A. Similar statements are made when the inter-

action is in the nature of a pull.

The foregoing statements should not be interpreted as meaning that

force always' results in change of motion. Two or more forces often

act on a given body in such a manner as to balance, or neutralize, one

another, in which case their combined effect on the body, so far as its

state of motion as a whole is concerned, is nil. Change of motion is,

however, the typical effect of force, and will always occur when the

forces acting on a given body are in an unbalanced condition.

1



2 GENEIUL PRINCIPLES

PROBLEM

1. A rifle bullet embeds itself in a block of wood lying on a horizontal surface.

The block moves forward. What is the cause of the change of motion of the block?

Of the change of motion of the bullet?

3. Force by Contact. With certain exceptions, bodies cannot exert

forces on one another unless they are in contact. Electric and mag-
netic attractions and repulsions, and gravitational forces, are the

principal exceptions. Problems involving electric and magnetic forces

will not be dealt wdth in this book. In ordinary engineering problems

the only case of gravitational attraction great enough to require con-

sideration is that which exists betw een the earth and a body on or near

the earth^s surface. Therefore, with the exception of the earth ^s pull,

it will be assumed that no force of importance exists between bodies

which are not in contact.

Bodies in contact do not always exert forces on one another, but the

existence of such forces n ust be assumed unless the conditions of the

problem clearly show^ it to be impossible.

PROBLEMS

2. A wheel rests on a horizontal floor and is in contact with a low step. A hori-

zontal force is applied at the renter of the wheel and is gradually increased until it

causes the wheel to roll over the edge of the step. Make a sketch of the wheel and

step, and by means of vectors show the forces acting on the wheel at the instant when

motion imj^ends. In what manner could the sketch be altered to represent con-

ditions at an earlier instant ? Values need not be calculated.

3. A cubical block rests on a horizontal surface. A horizontal force is applied

to the block at one of the upper edges. If this force is gradually increased, and if

the friction on the bottom of the Hock prevents sliding, the block will eventually tip.

Sketch the block, and show the forces acting on it at the instant when tipping

impends. Values need not be calculated.

4. The water in a reservoir exerts a pressure on the dam. The dam exerts a

simultaneous pressure on the body of water. Forces such as that exerted by the

water are sometimes called active forces, and forces resembling that exerted by the

dam are called passive forces. Explain these terms.

4. External and Internal Forces. An external force is a force exerted

on a body by another, or different, body. An internal force is a force

exerted on one part of a body by another part of the same body. In

mechanics a body is any definite portion of matter.

The majority of the principles of mechanics, so far as they refer to

forces, refer to external forces only. For this reason, when informatiim

is desired regarding a force, it is necessary to select a body on which

the desired force acts externally. This often renders it necessary to
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establish bodies having imaginary boundaries, and it accounts for the

broad definition of a body stated above.

Whether the boundaries of the body under consideration at any time

are real or imaginary, it is highly important that they be definite, and

that they be clearly fixed in the mind of the student before he attempts

any calculations with reference to the body.

PROBLEMS

5. In the operation of an automobile many forces are brought into action. Con-

sidering the entire car and its passengers as “ the body,’’ state whether each of the

following forces is external or internal: the pressure of the gas on one of the pistons;

the pressure of the air against the moving car; the weight of the car; the pressure of

the operator’s foot against the brake pedal; the force exerted on one of the tires,

by the roadway; the pull of the tow rope when the car is being hauled in ”; the

pressure of the differential pinion against the ring gear; the pull of the drag link on

the steering knuckle.

6. Under what circumstances would the gravitational force exerted on the earth

^
by the moon be considered an external force? When would it be considered internal?

7. Under what circumstances would the gravitational forces exerted by the sun

and the planets on one another be classified as internal forces?

6. The Occurrence of Forces in Pairs* In Art. 2 it was explained

that forces always occur in pairs; that if body A exerts a force on

body B, body B simultaneously exerts a force on A. To this statement

may be added the important fact that the two forces thus produced are

equal in magnitude and have the same line of action, but act in op-

posite directions along that line. All the foregoing facts are compre-

hended in Newton^s third law of motion (Art. 119).

Two forces that are equal, coUinear, and opposite are said to be

balanced- When a definite body is under consideration the internal

forces constitute a balanced system, since they are forces between

parts of the body and therefore include nothing but complete pairs of

balanced forces as described above.

The external forces aeting on a given body do not necessarily con-

stitute a balanced system. Each external force is a member of one of

the balanced pairs referred to in Newton’s third law, but the other

member of the pair does not act on the given body; it is a force exerted

by the given body on some other body. Therefore, the system of

external forces acting on a given body may be, and often is, unbalanced.

PROBLEMS

8 * A bat strikes a pitched ball. The motion of the ball is abruptly changed, and
yet the two forces acting between the bat and the ball are balanced forces. Explain,

8 . The forces within the cylinders of a locomotive when steam is admitted are

balanced forces, since they are internal with respect to the locomotive, and yet if

these forces become sufficiently large the train starts. Explain.
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10 . Explain, in the language of mechanics, why a man cannot lift himself over

a fence by his boot straps.”

11 . Make a sketch of a body resting on the surface of the earth. Represent by
vectors the two forces exerted on the body by the earth. Call these forces ‘‘ actions,”

and number them 1 and 2. Now show the reaction which, according to Newton’s
third law, will accompany each of the two actions- Give each reaction the same
number as the action with w^hich it belongs. Which pair ceases to act if the body
is thrown into the air?

6. Characteristics of a Force. A force is completely identified only

when certain distinguishing features, called characteristics, have been

ascertained. The characteristics of a force are rnagnihidej line of action

y

and sense.

The magnitude of a force is its size, or amount. The line of action

is the line along which the force exerts its effect. The sense of a force

is the direction in which it acts along the line of action. The point of

application of a fon^e is the particular point on the line of action at

which the force may be considered to be appli(^d to the body.

It follows from the foregoing definitions that force is a vector quantity.

7. Units of Force
;
Weight. In the English system the fundamental

unit of force used by engineers is called the pound. The pound is the

force with which the earth pulls on a certain piece of platinum, when
the latter is placed at sea level, at 45® north latitude. This original

platinum standard is in the possession of the British government.

The gravitational pull exerted by the earth on a body Is called the

weight of that body. Since gravitational force depends on the distance

between the two bodias, the weight of a body varies slightly when the

elevation is changed. Furthermore, siuce the earth is not quite spher-

ical, a change in latitude has a slight effect on the weight of a body.

Nevertheless, if a body is weighed on a platform scale, or on any

other type of scale operating through a system of levers, the reading

obtained is the same regardless of the locality in which the weighing

is done. The reason for the apparent contradiction is that the earth-

pull on the standard weights used in connec;tion with the scale and the

earth-pull on the body being weighed vary in the same ratio when the

position relative to the earth is changed. »

Since the weights used with a scale of the lever type are derived from

the standard platinum unit, this form of apparatus does not give the

true local weight of a body. The reading obtained is merely the weight

that the body would have at the standard locality. This is called the

standard weight of the body.

A spring balance, if it- were suflSciently sensitive and had been care-

fully calibrated with standard weights at the standard locality, would

give the true local weight of a body.
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Because of the methods used by engineers in obtaining the weights

of bodies it is usually the standard weight, and not the true local weight,

that is actually introduced into the calculations. In any event, the

possible variations in the weight of a body caused by changes in ele-

vation or in latitude are so small that they may be entirely disregarded in

the average engineering problem.

Units, As was stated, the fundamental unit of force in the English

system is the pound. The ton, the ounce, and other multiples and

submultiples of the pound are sometimes used. The poundal, a unit of

force based on acceleration and used principally by physicists, is of

little interest in engineering practice.

8. Effects of Force; Rigid and Non-Rigid Bodies. Forces always

cause more or less change in the dimensions of bodies. This occurs

whether or not there is any change in the motion of the body as a whole.

The effect of forces in deforming a body is called the deformation effect.

The effect of forces in changing the motion of a body is called the motion

effect.

A perfectly rigid body would be one that could not be deformed. No
such body really exists, but some bodies are relatively so rigid that in

many problems their deformations may be disregarded.

Engineering mechanics usually concerns itself with motion effect

only. This kind of effect will be meant whenever the word effect is

used without qualification. The study of deformation effect belongs

properly to the subject of strength of materials.

Even when the information desired by the engineer necessitates the

consideration of the deformations suffered by a body, a knowledge of

the mechanics of rigid bodies is prerequisite. Some of the principles

and formulas of mechanics apply with equal rigor to rigid and to non-

rigid bodies.

PROBLEM

12. Give your opinion as. to whether motion effect or deformation effect is more
in evidence in each of the following: the force exerted by a pneumatic riveter on a

heated rivet; the force exerted by a bat on a pitched ball; the force exerted by a wall

on a snowball thrown against it; the pull of the earth on a boulder falling from an

overlaanging cliff.

9. Equivalence of Force Systems. Any selection of forces dealt with

or referred to as a group is called a force system. The system need not

include all the forces involved in any particular problem, or even in a

single step of the problem.

Two or more systems which would have the same motion effect on a
given rigid body are called equivalent systems. The possible number
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of equivalent systems is unlimited. Equivalent systems would not

necessarily have the same motion effect on a non-rigid body, nor would

they necessarily have the same deformation effect on such a body.

10, Classification of Force Systems. In this book force systems

will be classified as follows: (1) the collinear system, (2) the coplanar

concurrent system, (3) the coplanar parallel system, (4) the general

coplanar system, (5) the non-coplanar concurrent system, (6) the non-

coplanar parallel system, (7) the general non-coplanar system.

A coplanar system is one in which the lines of action of all the forces

lie in the same plane. A concurrent system is one in which all the lines

of action intersect at a common point. A collinear system is one in

which all the forces have the same line of action. A parallel system is

one in which all the lines of action are parallel. In collinear systems

and in parallel systems the senses of the forces do not necessarily agree.

The general principles of mechanics apply to all force systems.

There are various special principles, however, which pertain only to

certain systems. It is for this reason, and also for the sake of greater

ease of study, that the foregoing classification has been adopted.

11 . Resultants and Components. The resultant of a given force

system is the simplest equivalent system. It follows that all equivalent

systems have the same resultant.

As defined in Art. 9, equivalent systems are systems that would have

the same motion effect on a given rigid body. This statement should be

interpreted to mean that if any or all of the forces acting on a rigid

body were replaced by their resultant, or by any other equivalent sys-

tem, the subsequent state of motion of the body would not be altered

by such replacement.

A balanced force system is one which would have no motion effect on a

rigid body. All balanced systems are equivalent, their common lack

of effect being thought of as a special case of motion effect. The re-

sultant of a balanced system is nil; in other words, a balanced system

has no resultarlt.

The process of finding a simpler equivalent system is called compo-

sition. The process of finding a more complex equivalent system, or

any equivalent system having a larger number of forces, is called

resolution.

The forces of a system that has a resultant are called components of

that resultant. Composition begins with a system of forces and usually

is continued xmtil the resultant is found; resolution usually begina

with a resultant and consists in the finding of some equivalent system
of forces called the components.

The reversed resultant of a system of forces is called the eqailibrmd

of that system.
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PROBLEMS

18 . An unbalanced force system acts on a body, producing a certain motion effect.

What motion effect would have resulted if the entire system had been removed
and the resultant had been applied? What would have occurred if the resultant

had been applied without the removal of the original forces?

14 . In Prob. 13, what would have occuned if the original forces had been removed
and their equilibrant had been applied to the body? What would have occurred if

the equilibrant had been applied without the removal of the original forces?

16 . What name could be given to any one of the forces of a balanced system, in

view of the relationship of that force to the remaining forces of the system?

12. The Principle of Transmissibility. Two forces whose magnitudes

are eqned, and which have the same line of action and sense, are equivalent,

regardless of where their actual points of application are situated.

The foregoing principle shows that a vector representing a force

acting on a rigid body can be shifted along the line of action, in either

direction, without change of effect, provided that the magnitude and

sense of the force are not changed and that the line of action is not

disturbed. The shifting of force vectors in this manner is often of con-

venience in mechanics.

There is no satisfactory mathematical proof of the principle of trans-

missibility, but its validity has been amply demonstrated by observation

and experiment.

13. Accuracy of Calculations. Many of the calculations in engi-

neering problems involve quantities that are the result of physical

measurements. The accuracy of such measurements is always limited.

The degree of accuracy attainable in the result of any calculation is

limited by the least accurate of the data used in the calculation.

For example, let it be supposed that it is desired to ascertain the

tensile strength of a certain round bar of structural steel. An actual

test in the laboratory would constitute the most accurate method of

obtaining the desired information. If this is impossible, the strength

can be calculated from the following formula: P = 7r/>^*S/4; in which

P is the total tensile strength of the bar in pounds, D is the diameter

of the bar in inches, and S is the ultimate tensile strength of the mate-

rial in pounds per square inch.

The diameter can be measured, but the value of S must be assumed.

An examination of the laboratory reports of several students, on actual

tests of structural steel, showed values of S ranging from 60,800 to

63,600 lb per sq in. This constitutes a variation of 2.7 in the second

significant figure, or 27 in the third significant figure. Comparable

variationB might be expected in any series of routine laboratory tests

of structural steel. For this reason, average values of S for materials

of tiiifiT*'nature are seldom stated to more than two significant figures.
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For example, a certain book states that the ultimate tensile strength

of structural steel is 63,000 lb per sq in. A cipher is used for the

third figure because of its convenience, and because it is as likely to

be correct for any given specimen of that material as is any other number.

The diameter of a bar is usually measured at several points. Accu-

rate measurement would probably show a percentage variation in diam-

eter considerably less than the percentage variation in values of S
obtained from a series of tests. Furthermore, the instrument used for

the measurement of the diameters probably would be somewhat more
precise than the testing apparatus. These facts show that S is un-

doubtedly the factor which limits the accuracy obtainable in the calcu-

lated result. It would be unnecessary and undesirable, therefore, to

use more than two or, at the most; three significant figures in measuring

the diameter and in calculatbig its average value.

Let it be supposed that the value finally adopted as the average

diameter of this particular bar is 0.998 in. It will be consistent, then,

to use for tt the value 3.14. In each step of the calculation all significant

figures beyond the third may be dropped. The calculation could be

made as follows: P = 3.14 X (0.998)2 X 63,000/4 = 49,500 lb.

It is impossible to state a general rule govemmg the number of

significant figures that should be retained in actual engineering calcu-

lations. The decision in each case is one that requires good judgment

and an understanding of all the factors involved. It may be stated,

however, that calculations carried out to three significant figures are

suiSiciently accurate in the majority of the problems of engineering in

which mechanics is used. This is about the average accuracy attainable

with the ordinary 10-in. slide rule.

In general, intermediate results and final answers in the problems

of this book will be calculated or given to the nearest third significant

figure. Because of the many possible methods of arranging and making

calculaljons, two persons working independently on the same problem,

and attempting to use the same degree of accuracy, often find a slight

disagreement in the last significant figure retained. Therefore, so far

as the importance of the final result is concerned, the student need feel

no anxiety if his answers and those given differ slightly in the third

significant figure.

14. Smooth Surfaces. Friction is present whenever two bodies

slide, or tend to slide, each on the other. In many engineering prob-

lems the frictional forces are relatively small and can be disregarded

without serious effect on- the results. In others, however, the frictional

forces are relatively large and must be included in the solution if accu-

rate results are desired.
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In this book friction will be disregarded in a somewhat greater per-

centage of cases than would be justified in good engineering practice.

Many of the problems have for their primary purpose the illustration

of methods and principles to which the inclusion of frictional forces is

not essential.

The intentions of the author regarding the omission of frictional

forces will be revealed in various ways. In some cases it is stated that

one, or both, of the bodies in contact is “ smooth.'' This means that

perfect smoothness is to be assumed, and that friction does not exist

between the two bodies. The significant conclusion from such an
assumption is that the pressure between the bodies is at right angles to the

common tangent plane at the point of contact.

Rollers placed between two bodies are usually considered to produce

the effect of smooth surfaces. In this case the inaccuracy involved in

the assumption depends on the amount of rolling resistance present.

A stationary body supported by wheels or casters may be treated as

though it were resting on a smooth surface, if the rolling resistance and

axle friction are relatively small.

Pulleys are sometimes referred to as being smooth. This means that

friction on the axle of the pulley is to be disregarded. The tension in a

light, flexible rope or cable on a smooth pulley may be assumed to be

the same at all points of contact, if equilibrium exists.

Rolling resistance also will be disregarded m the majority of the

problems in this book.

16, Vector Quantities- Many of the quantities used in mechanics

are vector quantities. This means that in addition to magnitude they

have inclination and sense and, in some cases, Ime of action. Force,

velocity, acceleration, impulse, and momentum are examples of vector

quantities occurring in mechanics.

The methods of dealing with vectors are essentially the same, re-

gardless of the particular use to which the vector is being put. In

this book, the methods for the handling of vector quantities will be

developed in the next few chapters, but these methods will be developed

in connection with a particular vector quantity (force) rather than with

vectors in general. The student should understand, however, that the

methods of composition, resolution, calculation of moments, etc., by
means of which forces are manipulated, also apply in large measure to

velocities, accelerations, and all other vector quantities.

16- The Measurement of Angles of Inclination. When a vector

quantity is shown on a drawing, the inclination of its line of action

should be indicated in the simplest manner f^ossible. For example, in

Fig, 1 the inclination of the force P is clearly shown by the angle of 30®
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between the line of action and the a:-axis. The sense of the force is

revealed by the arrowhead.

It is desirable, however, to establish a system of indicating the in-

clination and sense of a vector quantity without the use of a drawing.

In such cases the angle of inclination will be measured from the positive

end of the reference axis to that end

of the line of action toward which the

vector points. Thus, the angle of in-

clination of the force in Fig. 1, with the

a:-axis, would be measured from the

positive end of that axis to the end,

A, of the line of action, and would be

210°.

If all the vectors in a given problem

are coplanar it will be understood that the angles of inclination are meas-

ured counterclockwise,^' starting from the axis of reference. In such

cases angles of inclination may have values from 0° up to, but not in-

cluding, 360°.

If the vectors are non-coplanar the term counterclockwise '' will

not be used in this connection. Instead, angles pf inclination will be

measured by the shorter of the two possible routes. Thus, if the force

in Fig. 1 were one of the forces of a non-coplanar system the angle of

inclination with the x-axis would be considered to be 150°, instead of

210°. In this case it would also be necessary to give the angle with

the 2/-axis (120°) and with the z-axLs (90°) in order to establish definitely

the inclination and sense of the force.



CHAPTER II

RESULTANTS OF COPLANAR FORCE SYSTEMS

17. Resultant of Two Concurrent Forces; The Parallelogram Law.

If vectors representing any two concurrent forces are drawn to scale ai the

point of concurrence, in such a manner that their senses agree with respect

to that point, and if lines are added to form a parallelogram, that diagonal

of the parallelogram which touches the point of concurrence mil represent

the resultant of the two forces. The sense of the resultant will agree with

the senses of the two componentforces, with respect to the point of concurrence.

The foregoing statement is called the parallelogram law. It is a
fundamental principle upon which much of the science of mechanics is

based. No satisfactory mathematical proof can be offered, but the

validity of the law can easily be verified by observation and experiment.

This law applies to all vector quantities. The resultant of vector quan-

tities is often called the vector sum of those

quantities.

In Fig. 2 let P and Q represent two of the

forces acting on one of the arms of a double-

block brake. The point of concurrence of P
and Q is at C. Vectors P' and Q', counter-

parts of P and Q, are plotted at C. Their

senses are in agreement, since both are directed

away from the point of concurrence. Two
lines are added, to form a parallelogram,

and the diagonal through C is drawn. This diagonal, R, represents the

resultant of P and Q. The sense of 22 is also away from the point of

concurrence.

Great care must always be exercised to ensure the necessary agree-

ment in the senses of the two vectors and their resultant, with respect

to the point of concurrence. It is also highly important to remember

that the line of action of the resultant passes through the point of con-

currence of the two forces.

In the application of the parallelogram law either a graphic or an

algebraic solution may be utilized. In the graphic solution the vectors

are plotted accurately, to scale, and the desired results are taken from

the drawing, by measurement. In order to avoid complexity in the

11
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original drawing the parallelogram is sometimes constructed in a sepa-

rate figure. The resultant is finally shown on the original drawing, in

its correct position.

In the algebraic solution a freehand sketch is sufficient, and the

desired results are calculated by mathematical analysis.

The parallelogram law may be used, naturally, to resolve a given

force into two concurrent components. It should be carefully observed

that the point of concurrence for the two components must he on the

line of action of the given force, although it may be placed anywhere

on that line. This point Is often called the point of resolution.

The Triangle Law. In the application of the parallelogram law it

is not necessary to draw the entire parallelogram. Instead, the triangle

constituting one of the halves of the parallelogram may be drawn, and

the other half may be omitted. The relations thus existing, when only

the triangle is utilized, are sometimes referred to as the triangle law.

Illustrative Problems

16 . Find the resultant of the following concurrent forces: 40 lb, Ox = 160^^;

85 lb, Bx = 225^

Graphic Solution. Plot the two forces to scale, as in Fig. 3, and complete

the parallelogram. Make certain that

the plotting is done in such a manner
that the senses of the two vectors

agree with respect to the point of con-

currence, as specified in the statement

of the parallelogram law. Draw the

diagonal, from the point of concur-

rence, and indicate its sense in agree-

ment with the senses of the two
component forces. This vector, 22,

represents the resultant.

Obtain the magnitude and angle of

inclination of R from the figure, by
measurement.

Algebraic Solution. Make a sketch similar to Fig. 3. A neat, freehand

sketch is sufficient.

,
From the figure: ZAOB = 225® — 160® = 65®. From the geometry of the

piMrallelogram: ZOAC = ^(360® - 2 X 65®) = 115®. Also, AC « 025 « 40

lb. In the triangle AOC, the side AC, the side AO, and the included angle

OAC are now known. From trigonometry, by the law of cosines,

R » V'(40)* + (85)* - 2 X 40 X 86 X cos 115“

= V16OO + 7225 - 6800(

-

0 .423) = 108 lb

y
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From trigonometry, by the law of sines,

sin AOC _ AC
sin OAC OC

sin AOC
0.906 X 40

108
0.336 ZAOC = 19° 40'

From the figure,

6^ - (225° - 180°) - ZAOC = 45° - 19° 40' - 25° 20'

The resultant of the two given forces is, then, as follows: R = 108 lb, Ox =
25° 20', its line of action passing through the point of concurrence, 0, as

shown in the figure.

If it were desired to indicate the inclina-

tion of R without reference to the figure

the angle Ox would be given the value 205°

20', in accordance with the convention

adopted for such cases in Art. 16.

17

.

Given a force of 4.25 tons, Ox ~
70°; resolve into two concurrent compo-

nents, at 0, making angles of 120° and 345°

with the x-axis.

Graphic Solution. Plot the given force

to scale, as in Fig. 4. Construct a paral-

lelogram having the given force for its

diagonal, by drawing lines through each

extremity of the vector, at angles with the

a:-axis equal to those specified for the two components. The sides OA and
OB represent the two required components. The components are directed

away from 0, since the given force is so directed. Obtain their magnitudes

from the drawing, by scaling.

Algebraic Solution. Make a sketch similar to Fig. 4. From the figure:

ZAOC = 120° - 70° = 50°; ZOCA = ZBOC = 70° + (360° - 345°) «= 85°;

Z CAO *= 180° — (50° + 85°) = 45°. In the triangle OCA one side and all

the angles are now known. From trigonometry, by the law of sines.

Y

AC ^ sin AOC
OC sin CAO

^ 4.25 X 0.766

0.707
4.60 tons

The required component, J50, is equal to AC. Also,

W ^ sin OCA ^ 4.25 X 0.996

OC sin CAO 0.707
5.99 tons

PROBLEMS

18 . Find the resultant of the following forces: 75 lb, acting from the origio

toward the point (—3, -|-4); 68 lb, acting from the origin toward the point

(-8, -15). Am. R^77 lb; dx « 180°.

19 . Find the resultant of the following forces, concurrent at the origin: 400 lb,

dx - 27°; 220 lb, Ox * 168°.
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20. A force of 6.3 tons acts toward the right, parallel to the a:-axis, through the

point (~6, -f10); a force of 2.5 tons acts downward through the points (—6, -f 10)

and (
— 13.6, 0). Calculate the resultant of the two forces, and locate the point at

which its line of action intersects the x-axis. Ans. 6.2 tons; $x *= 337° 20^;

18 units to the right of 0.

21. Find the equilibrant of the following concurrent forces: 1.2 tons, 0x “ 170°;

2.8 tons, Bx = 195°.

22. Given a force of 75 lb, Bx = 315°; resolve into concurrent components,

inclined at angles of 20° and 245° to the x-axis. Arts. 99.7 lb; 96. 1 lb.

23. A force of 400 lb acts through O, at 215° with the x-axis. It is resolved, at 0,

into two concurrent components. One component is 160 lb, Bx = 160°. Find

the other component.

24. Find the resultant of the following coplanar concurrent forces: 80 lb, Bx —
160°; 80 lb, Bx = 280°; 60 lb, Bx = 310°. First find the resultant of two of the

forces; then compound this resultant with the third force.

18. Resultant of Two Concurrent Forces at Right Angles to Each

O&er. This constitutes a highly important special case in the applica-

tion of the parallelogram law. The two concurrent forces to be com-

pounded are at right angles to each other, and the parallelogram is a

rectangle. The majority of problems in the algebraic composition of

force ^sterns are solved wholly
,
or in party by the use of this special case.

Graphic Solution. In the graphic solution an accurate drawing is

made, to scale, of the parallelogram of forces, and the desired results

are obtained from the drawing, by measurement. If preferred, the

triangle law (Art, 17) may be used. The parallelogram of forces is a

rectangle, and the triangle of forces is a right triangle, in this special

case.

Algebraic Solution. In the algebraic solution a neat, freehand sketch

showing the vectors in their correct relationship is usually sufficient.

The desired quantities are then calculated by mathematical methods.

Illustrative Problem

J25. Find the resultant of the forces P and Q, acting on the bell crank in

Fig. 5. Their magnitudes are 42 lb and 70 lb, respectively.

Graphic Solution. Produce the lines of action of P and Q to their point of

concurrence, C. Plot the forces to scale, at C, in the manner indicated.

Complete the rectangle, and draw the diagonal, E, through C. Obtain the

magnitude and inclination of Ry by measurement.

Algebraic Solution 1. From Fig. 5,

0 « arc tan ^ = arc tan— «= arc tan 1.67 *= 69® 05'
P 42

cos 6 0.514
81.7 lb
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The line of action of R passes through the point

of concurrence, C, as shown in the figure.

Algebraic Solution 2. From Fig. 5,

R = Vp2 + g* = \/(42)=“ + (70)’*

= = 81.6 lb

o . Q 70
d « arc tan — = arc tan --

P 42

= arc tan 1.67 = 59® 05'

PROBLEMS

26. Find the resultant of the following con-

current forces: 35 lb, Ox = 90°; 84 lb, Ox - 180°.

Ana. 91 lb; Ox - 157° 20'.

27. Find the resultant of the following concur-

rent forces: 4.20 tons, Bx - 192°; 3.15 tons, Bx -
282°.

28. A body weighing 00 lb is suspended from a 4

single wire attached to an overhead support. A '

horizontal force of 25 Ib, toward the left, is applied ^

to the body, thus deflecting the wire from its vertical position. Find the resultant

of this force and the weight of the body. What relation would exist between

this resultant and the pull of the wire on the body? A ns. 65 lb, Bx - 247° 25'.

29. Figure 6 represents a cross section of a masonry dam of the gravity type.

P represents the total water pressure on a section of the dam having a width of 1 ft

at right angles to the plane of the figure. W represents the weight of this section.

P == 18,000 lb, and W = 34,800 lb. Find the resultant of the two forces, and locate

the point at which its line of action intersects the base, A By of the dam. Ordi-

narily this point should fall within the middle third of the length AB. Is such the

case in this problem?

30.

Figure 7 represents a body resting on an inclined plane. The forces acting

on the body are as follows: W 310 lb, P * 420 lb, F = 150 lb, N =« 500 lb. Find

the resultant of W and P. Am. 522 lb, $x - 32.3° 35'.
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31 . Find the resultant of F and N, in Prob. 30, Fig. 7. Compare this resultant

with that of W and P in Prob. 30. What is the significance of this comparison?

32 . Prove that the following coplanar concurrent system is in equilibrium:

35 lb, = 20° 10'; 21 lb, 6^ = 147°; 28 lb, 0^ == 237°.

33 . Find the resultant of the following coplanar concurrent system; 45 lb,

6x ~ 0°; 60 lb, Ox = 00°; 180 lb, acting from the point of concurrence (0, 0) through

the point (—4, -j-3). Ans. 195 lb, Ox — 120° 30'.

34 . A certain force system consists of the following: 24 tons, Ox
~ 0°; 10 tons,

Ox - 90°. Another system consists of: 16.5 tons. Ox
~ 0°; 12.5 tons, acting from

(0, 0) through (-f-3, +4). All the forces are coplanar, and are concurrent at

(0, 0). Prove that the two systems are equivalent.

19. Resolution of a Force into Two Concurrent Components at Right

Angles to Each Other. This is another important special case of the

application of the parallelogram lajv. The process is the reverse of

that discussed in Art. 18.

A rectangle is constructed, in such a manner that the given force

forms one of its diagonals. The position of the rectangle is governed

by the requirements of the two components. Careful attention should

be paid to the fact that the given force and its two components must

be concurrent.

Component of a Force along a Line. When a force has been resolved

into two rectangular components, one of which is parallel to a given

line, the latter is referred to as the component of the force along ” the

given line. This terminology

is abbreviated, however, when-

ever possible. For example,

the component of a force along

a vertical line is referred to as

the vertical component^ along

the a:-axis as the x-componenty

etc.

Figure 8 represents a force,

F, which has been resolved into

rectangular components in three

different ways. At A it has

been resolved into its x- and ^/-components. It has also been resolved

at A into components along, and at right angles to, the line AC. At
B it has been resolved into components along, and at right angles to,

the line CO.

The component of a force along any line is eqttal to the product of the

magnitude of the force and the cosine of the angle that the force makes with

the line.

The correctness of the foregoing statement is obvious from an exam-

ination of Fig. 8.
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Illustrative Problem

36. In Fig. 9, P = 1200 lb and Q = 2290 lb. Resolve P, at the point P,

into components along, and at right angles to, the line AB, Resolve Q into

its X- and ^/-components, at A.

Graphic SokUion. Plot the given forces to scale and complete the rectangles

in conformity with the requirements of the problem. Obtain the magnitudes

of the desired components by scaling.

Algebraic Solution. Make a sketch similar to Fig. 9. From the figure,

Pi = P cos 55® = 1200 X 0.574 = 689 lb

Pz = P cos 35® = 1200 X 0.819 = 983 lb

Qx = e cos 29® 33' = 2290 X 0.870 - 1990 lb

Qy = Q cos 60® 27' = 2290 X 0.493 = 1130 lb

In the calculation of Pz, sin 55® instead of cos 35® could have been used, and

sin 29® 33' instead of cos 60® 27' in the calculation of Qy.

It should be noticed that in each of the resolutions performed above the

two components have been shown correctly on the figure in conformity with

the rule that they must be concurrent with the given force at the point of

resolution. ^

PROBLEMS

86. Resolve the following force into its and ^-components, at the origin:

119 lb, Bs “ 15r 57'. Am. -105 lb; -f65.9 lb.

87. A force of 8 tons acts from the origin through the point (—3, —4). Resolve

it into its and y-components, at the origin.

80. Given: P * 283 lb, Bx == 125®; calculate the component of P along a line

at 72® with the aj-axis. Ans. 170 lb.

89. A force of 650 lb acts from the point (—24, -17) through the point

(—12, —12). Resolve it into its x- and ^-components at the point (
— 12, —12);

at the point where it intersects the |^axi8; at the point where it intersects the a^axis.
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40 . Figure 10 represents a body resting on an inclined plane. The forces acting

on the body are as follows: W = 520 lb, P *= 260 lb, F * 40 lb, -Y =« 580 lb.

Resolve W into rectangular components, one of which is parallel to the incline.

Atw. 2001b; 4801b.

41 . The force P in Prob. 40, Fig. 10, is horizontal. Resolve it into components
parallel to, and at right angles to, the incline.

42 . The body in Prob. 40, Fig. 10, is supposed to be in equilibrium. If so, the

components of the forces acting on the body, along any chosen line, will balance.

Ascertain whether this is true of components along the incline.

Y

43 . Calculate the algebraic sum of the horizontal components of the forces

acting on the body in Prob. 40, Fig. 10. Also calculate the algebraic sum of the

vertical componenta What is the significance of the results?

44 . Given: 80 lb, Ox = 155°; 50 lb, 0x = 195°. Resolve each force into its a> and
^components, at the origin. Calculate the algebraic sum of the ^-components.

This will be the x-component of the resultant. Obtain the ?/-component in a sim-

ilar manner. Find the resultant. As a check, find the resultant by applying the

parallelogram law directly to the two original forces. Am. 123 lb, 6x « 170° lO'.

46 . Prove that the system of forces shown in Fig. 11 is in equilibrium.

46 . Prove, by means of the parallelogram law, that a force can be resolved into

two parallel components.

20. The Use of the Algebraic Sum in Mechanics. Algebraic summa-
tions are utilized extensively in the solution of problems in mechanics.

For example, it is frequently desirable to write the algebraic sum of

the components of the forces of a system along some established line, or

axis. This is done by giving each component an algebraic sign in

accordance with a previously adopted convention. All components

having one sense are given plus signs, and those of the opposite sense

are given minus signs. In any given problem this algebraic sum is
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known to equal a certain quantity, rendering it possible to form an

equation containing one or more of the unknown quantities. Algebraic

summations are utilized in a similar manner in connection with veloc-

ities, accelerations and other vector quantities, and in connection with

moments.

The student should avoid using the algebraic sum in merely mechan-

ical fashion. He should be aware of the significance of the process.

For example, he should notice that the algebraic sum of the components of

a system of forces along an axis represents the amount by which the total

force in one direction exceeds the total force in the opposite direction or,

in other words, that it represents the amount of unbalanced force along

the given axis.

In this book the Greek letter 2 will be ased to represent the phrase,

the algebraic sum of/^

21. Conventions for Signs. In this book, vectors or components

directed toward the right along the x-axis will be considered positive.

Along the y-axis, upward will be taken as positive. Vectors along the

z-axis will be considered positive if directed toward the reader. Mo-
ments, angular velocities, etc., will be coasidered positive if counter-

clockwise.

22. Interpretation of Signs of Results. If the plus sign is obtained

when an unknown quantity is solved for, it may be concluded that the

quantity was given the correct sign in the original equations. If the

minus sign is obtained the conclusion Is that the quantity was given

the wrong sign. In the problems of mechanics the signs of the un-

known quantities are often unknown, as well as the magnitudes. In

order that complete equations may be formed it is necessary to assume

the senses of the unknowns. The signs obtained with the results will

then show whether the assumptions were correct. A negative sign

means that the sense of the accompanying quantity was assumed in-

correctly. The numerical value, however, is usually correct, provided

that no other errors were made.

It is important, of course, to indi-

cate all results finally in such a man-
ner that no confusion can arise con-

cerning them. Further details in

the matter of algebraic signs will be

brought out in the illustrative prob-

lems.

23. Resultant of the CoUinear System. The composition of two

collinear forces may be thought of as a limiting case in the application

of the parallelogram law. Let P and Q, in Fig. 12, represent any two

B
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concurrent forces, with their resultant, R. Let the angle 6 be de-

creased, the magnitudes of P and Q remaining constant. The point B
will approach the position R will approach AB\ and its sense will

agree with that of the larger force, P.

Thus it is seen that in the limiting position, when the two forces are

collinear, the resultant is equal to their algebraic sum. With this

result as a basis it can easily be shown that the resultant of any collinear

system is equal to the algebraic sum of all the forces^ and that its line of

action coincides with that of the system.

If the algebraic smn of the forces Is zero, the system has no resultant

and is, therefore, in equilibrium.

24. Resultant of the Coplanar Concurrent System; Graphic Solu-

tion. A space diagram is a scale drawing in which the lines of action of

the forces of a system are sho^vn in their connect space relationship.

A force diagram^ or force polygon^ Is a scale drawing in which each

force is correctly represented in magnitude, inclination, and sense, but

in which no attempt is made to preserve the true linear spacing of the

lines of action. Consequently, a force diagram reveals the magnitude,

inclination, and sense of the resultant, but ordinarily does not give the

correct position of the line of action.

Let Fig. 13 represent the space diagram for any coplanar concurrent

system of forces. Each force has been designated by two lower-case

letters.

Solution by Means of Parallelograms. Draw the space diagram for

the system, Fig. 14. Compound ah and be by means of the parallelo-

gram law. Their resultant is Ri. Compound Ri with the third force

of the system, cd. Their resultant is which is also the resultant of

abj be, and cd. Compound R2 with the remaining force, de. Their

resultant is R, which is also the resultant of the original system.

Notice that the line of action of the resultant of a coplanar concurrent

system necessarily passes through the point of concurrence.

Solution by Means of the Force Polygon. An examination of Fig. 14

reveals the fact that several unnecessary lines were drawn. The draw-

ing of the four lines AB, BC, CD, and DE, and of the resultant AE,
would have been sufficient. The polygon ABODE, formed by these

vectors, is the force polygon for the system. It is shown alone, in

Fig. 15.

In the actual solution of a problem the space diagram is drawn, and

the force polygon is then constructed near, but usually not on, the

former. The inclinations of the vectors in the force polygon are ob-

tained by taking parallels from the space diagram.

The vectors in the force polygon are designated by upper-case letters
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corresponding to the lower-case letters used on the space diagram.

These upper-case letters are placed at the extremities of the vectors,

and are arranged so that their alphabetical sequence agrees with the

sense of the force. For example, the sense of CD in Fig. 15 is from

C toward D.

Fig. 13 Fig. 14

The order in which the forces are

lettered in the space diagram is im-

material, but the vectors in the force ^

polygon must be confluent. In other

words, all the vectors must lead toward

the terminus of the polygon. It should

be observed, also, that the resultant

acts from the initial point of the poly-

gon toward the terminal point. After

the magnitude, inclination, and sense

of the resultant have been ascertained D

from the force polygon, the resultant Fig. 15

can be shown on the space diagram in

its correct position, passing through the point of concurrence.

Solution by means of the force polygon is to be preferred when the

system contains more than two forces.

Figure 14 shows that the resultant of a coplanar concurrent system,

if a resultant exists, is a single force. It follows that, if the force poly-

gon closes, the system has no resultant and is in equilibrium.
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Illustrative Problem

47. Find the resultant of the five coplanar concurrent forces shown in

Fig. 16.

Solution. Draw the space diagram carefully to some convenient scale, as

in Fig. 16. Plot the vectors in a separate force polygon, as in Fig. 17, using

a convenient scale for the magnitudes and obtaining the inclinations by

Fig. 16 Fig. 17

taking parallels from the space diagram. In Fig. 16 the forces have been

lettered in a counterclockwise sequence, starting with the 704b force. The
vectors in the force polygon should be plotted in alphabetical sequence, as

designated on the space diagram.

The order in which the forces are originally lettered on the space diagram

is of importance only when it affects accuracy in drawing, or makes it possible

to keep the force polygon within the compass of the paper.

The resultant is represented in magnitude, inclination, and sense by the

vector AF, in Fig. 17, the sense being from A toward F. It has been shown

finally in its true position on the space diagram, acting through the point of

concurrence.

The results, obtained by measurement from Fig. 17, are as follows: R «
125 lb, « 286® 40'.

PROBLEMS

48 . The following system is.concurrent at the origin, and the fco’ces act outward

through the points indicated: 3.40 tons, (—15, +8); 5.20 tons, (—5, —12); 6.25

tons, (H-4, —3). Find the resultant.
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49 . Solve Prob. 47, handling the forces in a different order from that followed in

the author^s solution.

50 . What relation would a vector drawn from the terminal point to and toward

the initial point of the force polygon bear to the system?

51 . The following coplanar system is concurrent at the origin: 160 lb, 6x ~ 50*";

120 lb, dx = 315°; 801b, Ox = 255°; 135 lb, 0x = 180°. Find the resultant. Handle •

the forces in the order in which they are given above. Make a check solution,

handling them in a different order.

52 . The following system is concurrent at the origin, and the forces act outward

through the points indicated: 850 lb, (4-8, +15); 160 lb, (
— 10,0); 300 lb,

(—8, —6); 570 lb, (0, —12). Prove, by plotting the force polygon, that the

system is in equilibrium.

26. Resultant of the Coplanar Concurrent System; Algebraic Solu-

tion. The Principle of Components. The algebraic sum of the compo-

nents of the forces of a coplanar con-

current system, along any axis in the

plane of the forces, is equal to the com-

ponent of the resultant along that axis.

Proof. Let Fig. 13, Art. 24, repre-

sent any coplanar concurrent force

system. In Fig. 18, ABODE is the

force polygon for the system, and R
represents the resultant, in magnitude,

inclination, and sense. Draw any

axis, such as x-x, in the plane of

the forces. The vectors at the top

and bottom of the figure, drawn

parallel to x-x, represent the a:-com-

ponents of the forces and of their

resultant.

From the figure it is obvious

that Rx is numerically equal to the

difference between the sum of the positive x-components of the forces

and the sum of the negative a;-components, and that its sense agrees

with that of the larger suni. In other words, Rx is equal to the alge-

braic sum of the x-components of all the forces of the system. It is

also obvious that a similar result would be obtained with any other

axis in the plane of the system. Therefore, the principle of components,

as stated above, is valid.

It was proved in Art. 24 that the line of action of the resultant of a

coplanar concurrent system passes thiough the point of concurrence.

Since the resultant of a coplanar concurrent system is a single force,

it follows from the principle of components that, if the component
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sums of the forces are zero along two non-parallel axes in the plane of

the system, there is no resultant and the system is in equilibriiun.

Application. In the algebraic solution of a problem two rectangular

axes are established in some convenient manner, in the plane of the sys-

tem. The component of the resultant along each of these axes is found,

from the principle of components, by calculating the algebraic sum of

the components of the forces along that axis.

The resultant is then found from its two components by means of the

special case of the parallelogram law discussed in Art. 18. The magni-

tude and angle of inclination of the resultant are calculated, and finally

the resultant is shown on the sketch in its correct position, passing

through the point of concurrence.

Neat, freehand sketches are usually satisfactory in connection with

algebraic solutions.

Illustrative Problems

63. Find the resultant of the system shown in Fig. 19.

Solution. The student should learn to give each component its correct

algebraic sign by means of a careful inspection of the inclination and sense

of the force itself, as shown in the sketch. By the principle of components:

Y Rx = +60 cos 45® — 70 cos 30®

- 90 - 120 cos 70®

= +42.4 - 60.6 - 90 - 41.0

= -149.21b

Ry = +60 cos 45® + 100 + 70 cos 60®

- 120 cos 20®

= +42.4 + 100 +^35.0 - 113

= +64.4 lb

Y

R,= 149.2 lb. jO
X

Fia. 20

Rx and Ry were tacitly assumed to be positive in the foregoing calculations.

The minus sign was finally obtained for Rx and the plus sign for Ry, This

shows that Rx was assumed incorrectly and that Ry was assumed correctly.

Therefore, Rx is toward the left, and Ry is upward
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Rx and Ry^ and the resultant, J?, are shown in their correct relationship in

Fig. 20. The angle Bx will now be calculated. From Fig. 20,

tan Bx
Rx

Finally, from Fig. 20,

sm = —
R

64.4

149.2
= 0.432 Bx « 23® 20'

Ry ^ 64.4

sin Bx

~
0.396

163 lb

The line of action of the resultant passes through the point of concurrence,

as was shown in Art. 24.

, 54. Find the resultant of the system shown in Fig. 21.

Solution. In Fig. 21 the slope of the line of action of each force is indi-

cated, instead of the angle of inclination. The components of the forces can

be calculated without the use of trig-

onometric tables, if preferred.

From Fig. 21, by the principle of

components,

B., = -91 X ifs) - 204 X (If)

+ 150 X (I)

= -35.0 - 180 + 90.0

= -1251b

By = +132 + 91 X (H)
- 204 X (T?r) - 150 X (|)

= +132 + 84.0 - 96.0 - 120

= 0

V

In this problem, therefore, since the resultant has no y-component, it is

identical with its a;-component. The resultant is, then, a force of 125 lb,

toward the left, coinciding with the x-axis.

PROBLEMS

66.

Solve Prob. 48 by the algebraic method. Ans. 6.95 tons; Ox - 270°.

66. Solve Prob. 61 by the algebraic method:

67. Prove algebraically that the system of forces in Prob. 52 is in equilibrium.

68. Figure 22 represents a board subjected to two concurrent force systems.

Make an exact comparison of the effects that these systems would have on the state

of motion of the board, if applied to it at different times.

59. Solve Prob. 47 by the algebraic method. Am. 125 lb, Bx == 286° 55'.

60 . Figure 23 represents a body, R, weighing 860 lb, suspended by means of a

system of wires, all of which lie in the same vertical plane. The four forces acting

on the connection, at A, are in equilibrium; therefore the resultant of the pulls

exerted by the three inclined wires balances the weight of the suspended body, B.

Using this fact as a basis, calculate the unknown pulls, P and Q.
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61 . Figure 24 represents a body weighing 322 lb, being drawn along a horizontal

plane by a constant force, F, acting as shown. The vector Q represents the force

exerted on the body by the supporting plane. From the kinetics of a translating

body it is known that the result-

ant, Rj of the three forces acts as

shown, and that it is equal to

{W/g)a. Assuming that F = 25

lb, calculate the magnitudes of

P and Q.

Ans, 96.11b; 2801b.

62 . In Fig. 25, find the result-

ant of the JJ.4-ton, 5.1-ton, and

80 ib. B

A 80 lb.
4'

Fig. 22 Fig. 23

8.0-ton forces. Also find the result-

ant of the 3.9-ton, 6.7-ton, and 4.5-

ton forces. From the two resultants

thus found, find the resultant of the

entire system.

63 . Figure 26 represents a board

subjected to three coplanar forces

concurrent at 0. It is desired to

replace these three forces by two

forces whose lines of action will

12
*’

Fig. 24 Fig, 25



MOMENT OF A FORCE ABOUT A LINE; SPECIAL CASE 27

coincide with OA and OB, without altering the state of motion of the body. Find
the magnitudes and senses of the two forces needed. Am. 26.5 lb, A to 0; 25.5 lb,

Oto B.

64 . The system of forces in Fig. 25 has no re-

sultant. With this fact in mind, ascertain by
inspection what the resultant of the system would ^

be if the 8-ton force were doubled. What would

the resultant be if the 8-ton force were reversed

in sense? If it were omitted altogether?

3

26. Moment of a Force about a Line;

Special Case. The line about which a mo-
ment is taken is called the axis of moments.

The discussion in the present article will be

confined to the case in which the axis of moments is at right angl^ to

some plane containing the line of action of the force. In this case the

moment of a force about the axis is equal to the product of the magni-

tude of the force and the perpendicular distance between the axis and

the line of action of the force. This distance is called the moment-arm

or, in some cases, the lever-arm.

The tenn torque is used more or less interchangeably with “ mo-
ment,” although the former is more likely to be used in connection

with the moments of the couples exerted between the rotating parts of

machines.

Moment of a Force about a Point. In the employment of moments in

connection with coplanar forces the axis of moments is usually placed

at right angles to the plane of the forces. The point at which the

axis intersects the plane of the forces is called the center of moments.

In such cases the necessary moment-arms can be measured from the

center of moments, and the axis of moments need not be shown on the

sketch. Under such conditions a moment is usually referred to as a

“moment about a point,” the center of moments. It is important,

however, to remember that moments are really associated with axes.

Sign of a Moment. A moment is usually given an algebraic sign. In

this book counterclockwise moments will be considered positive, and

clockwise moments negative.

In calculating a moment it is advisable to write the product of the

force and the arm without regard to signs, and then to give the product

its correct sign solely from the consideration of whether the tendency

is to cause rotation about the axis of moments in a clockwise or counter-

clockwise direction. It is not advisable to attempt to ascertain the

sign of a moment by giving separate signs to the force and to the arm.

In Fig. 27, let it be understood that axes OX and OF are in the plane

of the paper, and that OZ is at right angles to that plane. The force,

Fig. 26
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P, is in the plane of the paper. The moment-arm of P with respect to

the axis OZ is the line OA. Let the length of the arm be represented

by a. The moment of P about OZ, and also about the point 0, is: Af, =

Mo = -P X a.

Physical Significance of a Moment
The moment of a force is a measure

of the tendency of the force to

cause rotation about the axis of

moments. For example, consider

a wheel mounted on a shaft. If

several forces are applied success-

ively, and if there are no forces

resisting rotation, each force will

X give the wheel a definite angular

acceleration. These angular accel-

erations will be proportional to the

Fig. 27 moments of the forces about the

axis of the shaft.

It is learned in kinetics that the net rotational tendency produced

by a number of forces applied simultaneously to a given body is pro-

portional, in general, to the algebraic sum of the respective moments

about the given axis.

Units. The unit of moment is compound, and has no name peculiar

to itself. ' It is stated by naming the miit of distance and the unit of

force employed. The foot-pound, foot-ton, inch-pound, inch-ton, and

kilogram-centimeter are some of the units commonly used.

Illustrative Problem

66. In Fig. 28, calculate the moment of the 3200-lb force about the point

A
\
about C; about R.

Solution. The moment-arm of the given force with respect to A as a center

of moments is the distance AD — 8.94 ft. The moment is clockwise, or

negative.

Ma - -3200 X 8.94 = -28,600 ft-lb

The arm with respect to C is the distance CD = 8.94 ft. The moment is

counterclockwise, or positive.

Me « +3200 X 8.94 « +28,600 ft-lb

The arm with respect to B is the distance BG, which must be calculated.

From the figure,

g
B = arc tan arc tan 0.5 — 26“ 35'

24-8
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AT) g 94
In the right triangle ADF, AF = ~ — « 10.0 ft. From the figure,

cos Q 0.894

FR « AB - AF - 24 - 10 = 14 ft. Also, Z FBG * g « 26*^ 35'. In the

right triangle BFG, BG = FB cos FBG = FB cos /? = 14 X 0.894 = 12.5

ft. The moment of the force about B is counterclockwise, and is as follows

:

Mb = +3200 X 12.5 = +40,000 ft-lb

PROBLEMS

66. In Fig. 27, the angle of inclination of the force P, with the z-axis, is 340® 20',

and the magnitude is 260 lb. The distance OB is 18 in. Calculate the moment of

P about the 2-axis. Am. —4410 in-lb.

67. A pulley 3 ft in diameter is mounted on a shaft. A belt encircles three-

fifths of the circumference of the pulley. The tension in the belt on one side is

360 lb, and on the other side is 12 lb. Calculate the combined torque affecting the

rotation of the pulley.

68. In Prob. 29, calculate the algebraic sum of the moments of P and W, about

A. Find the resultant of P and W, and calculate its moment about A. Compare
the two results. Am. +327,000 ft-lb; +327,000 ft-lb.

69. In Fig. 28, calculate the moment of the upper 1600-lb force about A; about

B; about C. Am. -28,600 ft-lb; +5700 ft-lb; 0.

70. In Fig. 28, calculate the moment of the lower 1600-lb force about A
;
about

B; about C. An«. 0. +34,300 ft-lb; +28,600 ft-lb.

71. In Fig, 28, find the resultant of the three parallel forces, by inspection. Cal-

culate the moment of this resultant about B. In Probs. 65, 69, and 70, the moments
of these three forces about B were calculated separately. Calculate the moment-
sum, and compare with the result of the present problem.

72. In Fig. 22, calculate the moment of each of the forces acting at A, about the

point B. Calculate the combined turning effect of the three forces, about B.

78. In Fig. 22, calculate the moment of each of the forces acting at B, about the

point A. Calculate the combined turning effect of the three forces, about A.

Am. +240 ft-lb; -160 ft-lb; -80 ft-lb; 0
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74. Let it be imagined that the board shown in Fig. 26 is attached to a shaft

which passes through A and is at right angles to the plane of the figure. The three

forces shown in the figure would tend to rotate the board. It is desired to apply a

force along the line OB to. counteract this rotative effect. Ascertain the necessary

magnitude and sense of such a force. Could a force applied along OA accomplish

the same purpose?

Fig. 29

27. The Principle of Moments for Two Concurrent Forces; Vari-

gnon’s Theorem. The algebraic sum of the moments of two concurrent

forceSj about any point in the plane of the

forceSy is equal to the moment of the res^ultani

about that point

Proof. In Fig- 29, let P and Q represent

any two concurrent forces, and let R repre-

sent their resultant. Let A be used as the

center of moments, representing any point

in the plane of the forces.

Draw X- and t/-axes, placing the origin at

the point of concurrence of the forces, with

the y-axLs passing through A.

The distance a is the moment-arm of P
with respect to Ay and Pa, is the x-compo-

nent of P. Let the moments of P, Q, and P, about A, be represented

by Mpy Mq, and Mr. By definition,

Mp^PXa [ 1 ]

P OA Px(jOA)
From the figure, by similar triangles, — = —

;
therefore, P = — •

Px O' o

Substituting this value of P in Eq. 1,

Mp = PxXOA
Since P is any force passing through 0, it follows that

and that
Mq = Q,XOA^

Mr — Rx X OA
From [2] and [3],

Mp + Mq Px XOA + Qx XOA = (Px + Qx) XOl [5]

By the principle of components, Art. 26, Px + 0» =“ Rx- Substi-

tutii^ in [5],

[2]

[31

[4]

Mp -f" Mq = Rx X OA

From [4], Rx X SJ = Mr; therefore,

Mp A" Mq == Mr
which verifies the principle of moments as stated above.

[61

m
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The principle of moments for two concurrent forces is called Fan-

gnon*8 theorem.

As will be seen, this principle not only can be used directly to good

advantage in the solution of many problems, but also can be amplified

to include all force systems, and can

be used in the development of much
of the theory of mechanics.

Illustrative Problems

76. The force P in Fig. 30 has a mag-
nitude of 13.6 tons. By means of the

principle of moments, calculate the moment
of P about 0, by resolving the force into

its X- and ^-components at A
;
by resolving

at B; by resolving at C.

Solution. From the figure, AC — V

(

75)2 ^ -= g5 cos^ = If =

;
sin ^ = ff = 1^; P* == P cos ^ 13.6 X = 12.0 tons; Py = P sin 6

= 13.6 X A == fiA tons.

Resolving at A,

Mo * “P* X 40 + Py X 30 = -12 X 40 -f- 6.4 X 30 = -288 ft-tons

Resolving at B,

Mo = -P, X 24 + Py X 0 = -12 X 24 = -288 ft-tons

Resolving at C,

Mo = P, X 0 - Py X 45 = -6.4 X 45 = -288 ft-tons

Thus it is seen that the principle of moments provides a convenient alter-

native method of calculating the moment of a force about a point. In many
problems the force is resolved into components for purposes other than that

of moment calculation. The components are, therefore, already available,

and frequently their moment-arms can be taken directly from the figure.

In poany cases the calculations are further simplified by so choosing the point

of resolution that the moment of one of the components is equal to zero, as

was done at B and C in the foregoing example.

76. A force of 480 lb makes an angle of 330® with the x-axis. It is known
that the moment of the force about the origin is equal to —1380 ft-lb, but the

location of its line of action is unknown. Locate the line of action, by finding

the point at which it intersects the x-axis.

Solution. The sense of the force is downward and toward the right. The
moment about 0 is negative, or clockwise. It follows from these facts that

1

C 45' 30'

1

p.

Fia.
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the point at which the line of action intersects the u;-axis will lie to the right

of 0.

Let R, in Fig. 31, represent the given force. Ti'he desired distance is xr.

Resolve R into its x- and y-components, at A .

By the principle of moments, the moment of

R about 0 is equal to the moment-sura of Rx and

Ry about that point. The moment of Rx is zero;

therefore the value of Rx is not needed. Ry ==

R sin 30° = 4S0 X 0.5 = 240 lb. By the principle

of moments,

-1380 = X 0 - RyXR -1380 - -240 xr

Xr ~ 5.75 ft

PROBLEMS

77 . In Prob. 25, Fig. 5, calculate the moment of

the resultant R, about A, by the use of the principle

of moments in connection with the components P and Q. What does the result

reveal regarding the line of action of R?
78 . In Prob. 35, Fig. 9, calculate the moment of P about A, using the principle

of moments. Check by calculating the moment directly, without using the principle

of moments. A ns. — 9830 ft-lb.

^9. In Fig. 28, calculate the moment of the 3200-lb force, about R, resolving it

into components at D and utilizing the principle of moments.

80 . In Prob. 29, Fig. 6, locate the point

at which the line of action of the resultant

intersects the base of the dam, without

using the resultant itself in any manner.

81 . In Prob. 76, locate the point at

which R intersects the 2/-axis, using the mo-

ment of R about 0, as given, and the
3'

principle of moments.
“

“jp 3'
j

3' ^ 6'

82 . In Fig. 32, calculate the moment of

the resultant of the two forces, about 0,

without calculating the resultant itself.

Ans. -+-144 ft-lb.

83 . In Fig. 32, locate the point at which

the resultant of the two forces intersects the y-axis, without finding the line of action

df the resultant itself.

84 . In Fig. 32, prove that the line of action of the resultant of the two forces

passes through the point (4-5', -2'), without finding the resultant itself dr the

inclination of its line of action.

83 . Prove the principle of moments for the case in which the center of moments,

A, lies in the space between the lines of action of the two components, instead of in

the position assigned to it in Fig. 29.

28. Couples; The Moment of a Couple. Two forces that are egual

in magnitude^ parallel^ bui opposite in sense, constittde a couple.

Y
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The algebraic sum of cue moments of the two forces of a couple about

any point in the plane of the forces is referred to, for the sake of brevity,

.s the moment of the couple.

The perpendicular distance between the lines of action of the two

iorces is called the arm of the couple.

Special Method of Calculating the Moment

of a Couple. The moment of a couple is the

same about all points in the plane of the couple^

and is equal to the magnitude of either of the

forces multiplied by the arm of the couple.

Proof. Let the two forces in Fig. 33 repre-

sent any couple. Let the magnitude of each

force be represented by P, and the arm of the

couple by a, Lcit A represent any point in

the plane of the couple. Let C represent the moment of the couple.

By definition,

C = PXd-P(a + d)=PXd-PXa-PXd = -PXa

which proves the principle stated above.

The foregoing special method of calculating the moment of a couple

lessens the labor necessary in finding the moment-sum of a system of

forces consisting wholly, or in part, of couples.

Sign of the Moment of a Couple. In calculating the moment of a

couple by the special method, the sign of the moment is ascertained by

inspection. If the rotational tendency of the couple is counterclockwise

the sign of the moment is positive; if clockwise, the moment is negative.

An inspection of the couple in Fig. 33 shows that the rotational tend-

ency is clockwise; the moment, therefore, is negative. This agrees

with the sign obtained in the foregoing proof, in which the moments of

the two forces were calculated separately.

It is learned in kinetics that the natural tendency of a couple is to

cause a body to rotate about an axis through its center of gravity, at

right angles to the plane of the couple.

Illustrative Problem

86. Calculate the moment-sum of the forces in Fig. 34, about any point

in the plane of the system.

Solution. The system is composed entirely of couples; therefore its

moment-sum is the same for all points in its plane, and no particular center

of moments need be specified if the problem is solved by the special method.

Let Cl, Cg, and C« represent the moments of the three couples, numbered
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in the order of the magnitudes of the forces. Let ai, a 2 ,
and as represent the

arms of the couples.

From the figure, ai ~ 5 -f 3 = 11 ft; a2 == 2 + 4 = 6 ft; as =*

Y
BC = 3 cos = 3 X i = 2.4 ft. By in-

j
spection, Ci is clockwise, or negative; Cg

and Cs are counterclockwise, or positive.

Cl = -*150 X ai = -150 X 11

= -1650ft-lb

C. - +200 X a2 = +200 X 6

== +1200ft-ll)

Cs - +250 X aa - +250 X 2.4

” +600 ft-lb

SM * SC = -1650 + 1200 + 600

- +150 ft-lb

Even in a case in which the system is

not composed entirely of couples, the mo-

ment-sum of such forces as are members of couples can be conveniently calcu-

lated by the foregoing method.

PROBLEMS

87 . Calculate the moment of each of the couples shown in Fig. 70, Art. 35.

Ans, -1300ft^lb; +1500 ft-lb; -1440 ft-lb.

88. In Fig. 34, calculate separately the moment of each of the six forces, about

Of and then calculate the algebraic sum. Compare with the solution given in Prob.

86. Select a different center of moments and solve again.

89. In Fig. 6 two forces, P *= 18,000 lb and W =* 34,800 lb, are shown, acting on

a dam. These forces are balanced by a frictional component, F, acting toward the

right along AB, and a vertical, upward pressure, N, Since the dam is in equilibrium,

F ^ P and N ~ W. Thus, the entire system consists of two couples. The mo-
ments of the two couples also must balance; otherwise the dam would overturn.

From these obvious facts calculate the distance from A to the line of action of N,

Ans. 9.39 ft.

90 . Explain why a system of forces composed entirely of couples has no tendency

to cause a body, as a whole, to move definitely in any direction.

91 . It was proved that the moment of the couple in Fig. 33, about the point A,

is —P X a. Show that the same result is obtained, both in sign and in amount,

when the center of moments is placed in the space between the lines of action of the

two forces. Also, place the center of moments in the space to the right of the couple,

and prove,

92 . Can a single force be equivalent to a couple? Explain. Can a coplanar

concxirrent force system have the same effect on the motion of a body as a couple,

or system of couples? Explain.

98 . In the simplification of some force systems it is found that only a couple

remains. What is the relation of such a couple to the original system?
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29, Equivalence of Couples in the Same Plane. Any two couples in

the same plane are equivalent if their moments are equal.

It is understood that “ equal ” moments signifies agreement in sign

as well as in magnitude.

Proof. Let the couples P P and QQ in Fig. 35 represent any two
coplanar couples having equal moments. Therefore, —Pa= —^6, or

Pa = Qb.

Fig. lib

Prolong the line of action of one force of each couple to the point of

intersection, A. Prolong the other two lines of action to their inter-

section, B. At A, resolve P into a component Pi along the line AB, and

a component P2 collinear with Q, as shown in the figure. At jB, resolve

the other force P into a component P3 along the line AB, and a com-

ponent P4 collinear with the remaining force Q.

The two parallelograms have equal diagonals, and the corresponding

sides are parallel; therefore they are equal in all respects. It follows

that Pi = P3, and that P2 = P^- Pi and P3 are therefore collinear,

equal, and opposite; their combined effect is nil, and they may be dis-

regarded. P2 and P4 are parallel, equal, and opposite, but are not col-

linear. They constitute a couple, which is obviously equivalent to the

original couple PP, and whose moment is --P^b.

Applying the principle of moments, Art. 27, to the forces Pi and P2,

and to their resultant, P, using B as the center of moments: — Pi X 0
— P2 Xb - —P X a] therefore, P26 == Pa, By the original assump-

tion, Pa = Qb. Therefore, P26 = Q5, and P2 == Q,
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The foregoing results, together with the principle of transmissibility,

Art. 12, prove that couples P2 P4 and Q Q are equivalent. And since

couples PP and QQ are both equivalent to couple P2P4 they are

"«eiqmivalent to each other.

In the special case in which all the forces of the two given couples

are parallel, the foregoing principle shows that each of the two couples

is equivalent to a third couple whose forces are inclined to those of the

given couples. Since each given couple is equivalent to this third

couple, the two given couples are equivalent to each other.

PROBLEMS

94. Each force of a certain couple has a magnitude of 0.32 ton, and the arm of

the couple is 5 ft. The moment is positive. It is desired to replace this couple

with a new couple having an arm of 8 in., without changing the effect. Describe

the new couple.

96. A certain shaft is subjected to a twisting moment, or torque, of 900 in-lb.

A handwheel 15 in. in diameter is keyed to the shaft. A couple is applied to the rim

of the handwheel, with its forces tangent to the wheel. Calculate the necessary

magnitude of each force, to produce an effect

equivalent to the given torque. A /is. 60 lb.

30. Equivalence of Couples in Paral-

lel Planes. Any two couples in parallel

planes are equivalent ij their moments are

equal.

It should be understood that the

moments of two couples are not equal

unless the direction of rotational effect

is the same.

Proof, Figure 36 represents six

forces, equal in magnitude and paral-

lel, but not agreeing in sense, and not coplanar. Pi and P2 con-

stitute a couple. P3 and P4 constitute a couple which is the counterpart

of couple P1P2, but which is in a parallel plane. P5 and Pe are col-

linear, equal, and opposite, and lie midway between Pi and P4, and
also midway between P2 and P3.

The forces Pi, P2, Ps, and Pq may be thought of as a system con-

sisting of two couples; namely, P1P5 and P2P6* The forces Pit Pit

Pn, and Pe may be thought of as a system consisting of two couples;

namely, P^Pa and PaPe.
The couple PiPs is equivalent to the couple Pi Pa, since the two

couples are coplanar and have equal moments (Art. 29). The couple

Ps Pe is equivalent to the couple PsPe, for similar reasons. There-

Fig. 36
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fore, the system Pi, P2 , Pb, Pb is equivalent to the system P3, P4, Pg, Pg.

The two forces, Pg and Pg, appearing in each of the foregoing systems,

are balanced, and contribute nothing to the effect of either system.
These forces may be ignored, from which it follows that

couple Pi P2 is equivalent to couple P3 P4

This proves that two like couples in parallel planes are equivalent.

By Art. 29, either of these couples is equivalent to any other couple in

its own plane, having an equal moment.

PROBLEMS

96. A couple, each force of which is 200 lb, and whose arm is 18 in., is applied to

one end of a shaft. Find the arm of a couple having 120-lb forces, applied in a

parallel plane at the other end of the shaft, and having the same effect as that of the

first couple. Am. 30 in,

97. A certain shaft has a 15-in. handwheel at one end, and a 20-in. handwheel

at the other end. Two 40-Ib. forces are applied tangentially to the rim of the smaller

wheel, forming a couple. Find the magnitudes of the forces of a couple applied in a

similar manner to the larger wheel, and having the same effect as that of the first

couple.

98. Under what circumstances would it be possible for the resultant of a coplanar

force system to lie in ^ plane different from that containing the system? Explain.

31. Summary of Permissible Operations with a Couple. The princi-

ples of Arts. 29 and 30 show that any of the following changes can be

made in a given couple without changing its effect, provided that the

moment of the couple is not altered, either in magnitude or in sign:

(a) The couple can he rotated through any angle in its own plane.
|

(b) It can be shifted to any other position in its own plane.
)

(c) It can be shifted to any parallel plane.
j

(d) The forces can be changed to any desired value^ if the arm of thej

couple is changed in inverse proportion. f

(e) The arm can be changed to any desired value., if the forces are changedl

in inverse proportion. i

It has been shown, and will be further shown in subsequent articles,

that couples have various properties peculiar to themselves. The con-

ception of the couple is not indispensable in mechanics, but the knowl-

edge of these properties makes it possible to simplify many of the

discussions and problems in which couples are involved. As a result of

such facts the term couple '' is of common occurrence in engineering.

32. Resultant of the Coplanar Parallel System; Graphic Solution.

Let Fig. 37 represent any coplanar parallel force system. It is the space

diagram, and has been drawn to scale. The four forces have been

designated as ah, be, cd, and de.



38 RESULTANTS OF COPLANAR FORCE SYSTEMS

Let the force ah be resolved into two concurrent components at any

convenient point on its line of action, such as point 1. Figure 39 is

the force diagram for the resolution, and for the sake of clearness the

Frci. 37 F'ig. 38

6

Fig. 39 Fig. 40

C

0

Fig. 41

A

Fig. 42 Fig. 43

entire parallelogram has been drawn, although the lines AN and BN
are not necessary, and are omitted in the actual solution of a problem.

In Fig. 39 the force has been designated by upper-case letters placed

at the extremities of the vector. A has been placed at the lower end

and B at the upper end. This is done so that the alphabetical sequence

of the letters indicates the sense of the force, which in the present case

is upward. The letter 0 has been placed at the outer vertex of the
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force triangle. The lettering for the two components should be read

AO and 05/^ A and B remaining in alphabetical order. The
sequence in which the letters are read thus indicates the senses of the

components also.

AO and OB are now drawn on the space diagram as ao and oh^ acting

through point 1, the chosen point of resolution. It is not necessary

to show the magnitudes of the components to scale on the space dia-

gram. The magnitude of any force or component can be obtained from

the force diagram. In the actual solution of a problem even the arrow-

heads showing senses are necessary only on the original forces in the

space diagram, and arc^ used more liberally in the present discussion to

promote clearness of explanation.

Next, the second force, 6c, is also resolved into two concurrent com-

ponents, as shown in Fig. 40. In the resolution of ab the point 0 was

chosen arbitrarily, but in the resolution of he the point 0 is so placed

that the component BO will be equal and parallel to the component

OB of the first force, ab. It should be noticed, however, that BO and

OB are opposite in sense.

The point 2, in Fig. 37, is the point of resolution for 6c, and instead

of being chosen arbitrarily it must be placed where the component ob,

of the first force, intersects the line of action of 6c. The purpose of

this plan is to render the components ob and bo collinear on the space

diagram, and since they are also equal in magnitude and opposite in

sense they will balance, and will be of no effect in determining the final

resultant.

The general scheme of analysis now can be understood. The re-

maining forces of the system are resolved in order, in accordance with

the plan, one component of each force balancing one component of the

preceding force. When the resolution is completed the entire original

system can be considered to have been replaced by an equivalent system

of components, all of which may be disregarded except one unbalanced

component, ao, of the first force, and one unbalanced component, oc,

of the last force. These two components are all that remain of the

original system, and, since no step has been taken that would change

the effect, they are equivalent to the original system.

The Case in Which the Resullant is a Single Force. In this case the

two unbalanced components, ao and oe, will be concurrent, as in Fig. 37.

Point 5 is their point of concurrence. Figure 43 shows ao and oe and

their resultant, AE^ which is also the resultant of the original system.

AE is finally shown on the space diagram, Fig. 37, as R, and acts through

point 6, the point of concurrence of its two components.

An examination of Figs. 39-43 shows that if a common scale is used
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the five force diagrams can be combined in such a manner that all

points designated by the same letter will coincide, and an unnecessary

duplication of lines will be avoided. A single diagram, Fig. 38, is

drawn, and serves the purpose of the five separate diagrams.

In Fig. 38, ABODE is the force polygon. The general principles of

its construction are precisely the same as in the coplanar concurrent

system in Fig. 15, Art. 24. For a parallel system the force polygon

obviously is a straight line.

The point 0 in Fig. 38 is called the pole, and the components OA,
OB, 00, OD, and OE are called rays. The polygon 1, 2, 3, 4, 6, in Fig.

37, is called a funicular polygon, or an equilibrium polygon. The lines

1, 2; 2, 3; 3, 4; etc., in the funicular polygon are called strings.

The Oase in Which the Resultant is a Oouple, In this case the force

polygon closes. If such had been the situation in the foregoing dis-

cussion the final point E in Fig. 38 would have coincided with the starting

point A, The construction would have been carried out in the same

manner, but the rays AO and OE would have been coincident, and the

corresponding components ao and oe, in Fig. 37, would have been parallel

instead of concurrent. They would thus have constituted a couple.

Since aU couples in the same plane or in parallel planes are equivalent

if their moments are equal, it is necessary, in describing such a resultant,

merely to state that it is a couple in the plane of the system or in any

plane parallel thereto, and to give its moment, accompanied by the

correct sign.

The Oase in Which There is no Resultant. If the force polygon closes,

and if the components ao and oe are found to be collinear, then all

the components balance, and the system has no resultant.

Illustrative Problems

99. Find the resultant of the coplanar parallel system shown in Fig. 44.

SoliUion. Draw the space diagram to some convenient scale, as in Fig. 44.

Plot the force diagram, ABCDEF, as in Fig. 45. The diagram begins at A
and ends at F; therefore AF represents the resultant, in magnitude, inclina-

tion, and sease. The magnitude is found, by scaling, to be 100 lb. Obviously

the resultant is parallel to the forces of the system. The sense is from A
toward F, or upward.

Choose a pole, 0, and draw the rays, AO, BO, etc. Take parallels from

the rays and construct the funicular polygon, ao, bo, co, etc. The components

ao and of are the only ones that are not neutralized. They intersect at G;

therefore the resultant passes through that point.

Finally, show the resultant in its correct position, acting through (? In

the present case the distance from the line of action of R to the line of action
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of a6 is found, by scaling, to be 3.6 ft. The exact value, calculated by the

algebraic method, is 3.6 ft.

100. Find the resultant of the coplanar parallel system shown in Fig. 46.

Solution. Draw the space diagram to a suitable scale, as in Fig. 46. Plot

the force diagram, ABCDEF^ as in Fig. 47. In the present problem the

force diagram closes, the final point F coinciding with the starting point A.

This means that the resultant, if one exists, is a couple.

Choose a pole, draw the rays, and construct the funicular polygon, following

the same procedure as in the case in which the resultant is a single force.

The unbalanced components, ao and o/, Fig. 46, are found to be parallel, of

course, since they are drawn parallel to the same ray, AO (or OF). In the

present problem ao and of do not coincide, on the space diagram; therefore

they constitute a couple, which is the resultant of the system. The arm of

the couple is found, by scaling, to be 3,25 ft.

The magnitude of each of the forces of the resultant couple is represented
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by the ray AO, in Fig. 47, and is found, by scaling, to be 8.0 tons. Therefore,

the moment of the resultant couple is equal to 8 X 3.25 == 26.0 ft-tons.

The senses of AO and OF, in Fig. 47, and the relative positions of their lines

of action, ao and o/, in Fig. 46, show that the moment of the resultant couple

is counterclockvdse, or positive.

In some problems of the type in which the force polygon closes, the com-

ponents ao and o/ would actually coincide on the space diagram. They would

then be collinear, as well as eciual and opposite, and would balance. In

such a case the system has no resultant and is, therefore, in equilibrium.

PROBLEMS

101 . Find the resultant of the system shown in Fig. 48, by the graphic method.

102 . In Fig. 48, change the magnitude of the 30-lb force to 150 lb, and then find

the resultant of the system. Make a second solution, placing the pole in a different

position relative to the force polygon.

451b. 901b. 751b.

- 10
'-

45 ID. 1201b. 301b.

- 12 -

Fig, 48

103 . In Fig. 48, insert an additional parallel force of 120 lb, acting upward, at a

point 5.5 ft to the right of the 75-lb force. Find the resultant of the six forces.

104 . Find the resultant of the system shown in Fig. 49, by the graphic method.

105 . A certain system of coplanar, vertical forces consists of the following (from

left to right): —201b; —501b; -f-90 lb; -h401b; —601b. The distances to their

lines of action, measured from the 20-lb force, are: 6 ft; 10 ft; 15 ft; 20 ft. Prove

that the system is in equilibrium, by constructing the force polygon and the funicular

polygon.

33. Resultant of the Coplanar Parallel System; Algebraic Solution.

The Principle of Components. The algebraic sum of the forces of a co-

planar parallel system is equal to the resultant of the system if the resultant

is a single force, and is equal to zero if the resultant is a couple.

Proof. Figure 37, Art. 32, represents any coplanar parallel system

whose resultant is a single force. In Fig. 38 the forces have been

plotted consecutively and lettered in accordance with their senses. It

was shown in Art. 32 that AE, Fig. 38, represents the resultant, in mag-

nitude and sense. A study of the relationship of the four vectors, AS,

BCj CD, and DE, and their resultant, AE, readily leads to the con-

clusion that the resultant is equal to the algebraic sum of the forces.
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In the case in which the resultant is a couple, the force polygon closes,

as was explained in Art. 32. It is clear that the force polygon will

close only when the sum of the positive forces is numerically equal to

the sum of the negative forces or, in other words, only when the alge-

braic sum of all the forces is equal to zero.

It could be shown that the principle of components applies in its

more general form, as in Art. 25, but the special form stated above is

simpler and is adequate for all purposes.

The Principle of Moments, The algebraic sum of the moments of the

forces of a coplanar parallel system, about any point in the plane of the

forces, is equal to the moment of the resultant about that point.

Proof. The principle will be proved first for the case in which the

resultant is a single force. Let any point in Fig. 37, Art. 32, be chosen

as a center of moments. Applying the special form of the principle of

moments, as proved in Art. 27, it can be seen that

the moment of ab = the moment-sum of its components ao and ob

be = bo and oc

cd = CO and od

de = ‘‘ “ do and oo

Equating the sum of the left-hand members of these eq\iations to the

sum of the right-hand members, it follows that

the moment-sum of the original forces =
the moment-sum of all the components

But the components ob and bo are collinear, equal, and opposite, and

their moment-sum is equal to zero. The same is true of oc and co, and

of od and do. Therefore,

the moment-sum of all the components = the moment-sum of ao and oe

And so

the moment-sum of the original forces = the moment-sum of ao and oe

Again by Art. 27,
*

the moment-sum of ao and oe = the moment of their resultant, ae

And finally,

the moment-sum of the original forces = the moment of their resultant

When the resultant is a couple the phrase “ moment of the resultant

about that point ” is interpreted as meaning the moment-sum of the two

forces of the resultant couple or, simply, the moment of the couple as
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defined in Art. 28. Formal proof would closely resemble the proof

given above for the case in which the resultant is a single force.

Application. The first step in the actual solution of a problem is the

calculation of the algebraic sum of the forces of the system. If this

sum is not equal to zero the resultant is a single force, parallel to the

forces of the system. The magnitude of the resultant is equal to the

magnitude of this sum, and the sense of the resultant is shown by the

sign obtained.

The principle of moments Is then used to locate the line of action of

the resultant. Any convenient center of moments Ls selected, and the

moment-sum of the forces is calculated. The moment of the resultant

about the chosen center is equal to this moment-sum. The magnitude

and sense of the resultant are already known. An equation can then

be formed in which the moment-arm of the resultant will be the only

unknown quantity. The mornent-ann servers to locate the line of action

of the resultant, since it is the distance to that line of action from a

known point, the center of moments.

Care must be exercised to avoid placing the resultant on the WTong

side of the center of moments. The sense of the resultant Is known,

also the sign of its moment. The matter can be decided on the basis of

these facts alone.

If the algebraic sum of the forces of the system is found to be equal

to zero, the resultant, if one exists, is a couple. A convenient center

of moments is then chosen, and the moment-sum of the forces is calcu-

lated. This sum is equal to the moment of the resultant couple. It

is usually considered a sufficient solution to state the moment, mention-

ing the fact that the resultant can be any couple having such a moment,
situated in the plane of the system or in any plane parallel thereto.

If both the algebraic sum of the forces and their moment-sum are

found to be zero the system will have no resultant.

Illustrative Problems

106. Find the resultant of the five coplanar parallel forces in Fig. 49.

SoliUion. Calculate the algebraic sum of the five forces.

R = -440 - 250 + 340 - 200 + 150 = -400 lb

The resultant is now known to be a single force of 400 lb, parallel to the

forces of the system, and acting downward. The location of its line of action

is as yet unknown.

Calculate the moment-sum of the forces, using the point A as the center of

moments.

IMa « -250 X 4 + 340 X 10 - 200 X 13 + 150 X 18

« -1000 + 3400 - 2600 + 2700 » +2500 ft-lb
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By the principle of moments, the foregoing value is also the moment of

the resultant about A. The magnitude of the resultant is 400 lb. Its mo-
ment about A is +2500 ft-lb. Therefore, the distance of its line of action

from A is equal to 2500/400 = 6.25 ft.

There remains only the decision as to whether the resultant lies to the

right or to the left of A, The resultant acts downward and has a positive,

or counterclockwise, moment about A. These two circumstances, con-

sidered together, clearly show that the resultant lies to the left of A .

Finally, show the resultant on the sketch, in its correct position, as in

Fig. 49.

107.

Alter the system of forces in Fig. 49 by reversing the 2(X)-lb force in

sense. Find the resultant.

Solution. Calculate the algebraic sum of the five forces.

E = -440 - 250 + 340 + 200 + 150 -0

The foregoing result does not necessarily mean that the system has no re-

sultant, but it does mean that the resultant, if one exists, is a couple.

Calculate the moment-sum of the forces, using any convenient point, such

as A, as the center of moments.

1:Ma - -250 X 4 + 340 X 10 + 200 X 13 + 150 X 18

= - KXK) + 3400 + 2600 + 2700 = +7700 ft-lb

Since the moment-sum is not equal to zero, the resultant is a couple. By
the principle of moments, the moment-sum obtained above is also the moment
of the resultant couple.

Summarizing, the resultant of the given S3^stem is any couple in the plane

of the system, or in any plane parallel thereto, having a counterclockwise

moment of 7700 ft-lb.

PROBLEMS

108.

Find the resultant of the six forces shown in Fig. 50. Am. —30 lb; 4 ft

to the left of the 50-lb force.

109.

In Fig. 50, increase the magnitude of the 40-lb force to 70 lb, and find the

resultant of the altered system.
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110 . In Fig. 50, increase the magnitude of the 5-lb force to 34 lb, leaving the

other forces as they are shown, and find the resultant of the system. Ans. —1 lb;

816 ft to the left of the 50-lb force.

111. In engineering problems it is often desired to calculate the moment-sum of

the forces of a system about an axis, or point. In some cases it is easier to find the

resultant of the forces and calculate its moment than it is to calculate the moments

of the forces individually. Calculate the moment-sum of the five dead loads in

Fig. 169, Art. 67, about the point A, by this method. Check the result by calcu-

lating the moments of the forces separately.

112 . In Fig. 46, transfer the line of action of the force, dc, to a position 9 ft to

the right of the force, ef. Let the other forces remain as they are. Find the

resultant.

113 . Solve Prob. 99, Art. 32, by the algebraic method. A?^s. +100 lb; 3.5 ft

to the left of the 80-lb force.

114

.

Solve Prob. 100, Art. 32, by the algebraic

method.

116 . Solve Prob. 101, Art, 32, by the algebraic

method. A/is. —120 lb; 21.5 ft to the right of

the 45-lb fon^e.

116 . Calculations for locating the center of grav-

ity are similar to those for locating the line of action

of the resultant of a system of parallel forces. Lo-

cate the center of gravity of the shaded area in Fig.

51, by the following process:

Calculate the area of a full square, 36 X 36 in.

Represent this area by a vector, downward in sense,

parallel to the y-axis and passing tlu'ough the center

of the square. In a similar manner establish upward

vectors to represent the areas of the miasing parts, namely, the rectangle and the

circle. Locate the resultant of the three parallel vectors. Now rotate the vec-

tors until they are parallel to the a:-axis, and again locate the resultant. The cen-

ter of gravity of the shaded area will be at the intersection of the two resultants.

Give its coordinates, Ans. (+23.0, +17.1).

V

Fig. 52

117 . Figure 52 represents Cooperis conventional system of loads, often used in

the design of railway bridges. It represents two consolidation locomotives, followed

by a uniform train loading. In the present problem the loads marked A are 30,000

lb each; loads B are 60,000 lb each; loads C are 39,000 lb each. The train load is

6000 lb per linear foot of track. Find the resultant of the loads caused by the two
locomotives and the first 41 ft of the train. Ans. —649 tons; 68.9 ft to the right

of the foremost wheel.
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118 . The resultant of two parallel forces which have the same sense lies between
them, and is so situated that the distances from its line of action to the lines of

action of the two forces are inversely proportional to the magnitudes of the forces.

Make a general algebraic proof of this statement.

119 . The resultant of two parallel forces which are opposite in sense lies in such

a position that the larger force is between the resultant and the smaller force, and
that the distances from the line of action of the resultant to the lines of action of the

two forces are invei*Bcly proportional to the magnitudes of the forces. Make a

general algebraic proof of this statement.

34. Resultant of the General Coplanar System; Graphic Solution.

Any coplanar system in which not all the forces are concurrent, or in

which not all arc parallel, may be classified as a general coplanar system.

The process of finding the resultant of a general coplanar system by
the graphic method is essentially the same as for the coplanar parallel

system (Art. 32), and the full details of the solution will not be repeated

here. The chief differences is in the general appearance of the various

diagrams. For example, the force polygon for the general coplanar

system is not a straight line, but more nearly resembles that of the

coplanar concurrent system as shown in Figs. 15 and 17.

Fig. 53 Fkj. 54

The Case in Which the Resultant is a Single Force. Figures 53 and 54

represent such a case. The magnitude, inclination, and sense of the

resultant are ascertained by means of the force polygon, ABODE
y
in

Fig. 54. The resultant is represented hy AE, A pole, 0, is selected,

rays are drawn, and the funicular polygon 1, 2, 3, 4, 5 is constructed.

The line of action of the resultant passes through the point 5, at the

intersection of the two unbalanced comjwnents ao and oe.

The Case in Which the Resultant is a Couple, In this case the force

polygon is constructed in the usual manner, but is found to close. The
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funicular polygon is then constructed. The two unbalanced components

are parallel. The perpendicular distance between their lines of action

is the arm of the resultant couple, and that ray in the force diagram

which runs to the closing point of the force polygon represents the

magnitude of each of the forces of the couple. The moment of the re-

sultant couple is calculated from these values.

The Case in Which There is No Resultant. If both the force polygon

and the funicular polygon close, the system has no resultant, and is in

equilibrium.

120. In Fig. 55, ah = 7.5 tons, he = 6.0 tons, cd — 9.0 tons, and de = 4.5

tons. Find the resultant of the system, by the graphic method.

Solution. Draw the space diagram to some convenient scale, as in Fig. 55.

Plot the force polygon, ABODE, as in Fig. 56, to a suitable scale. AE repre-

sents the resultant, in magnitude, inclination, and sense. The magnitude

is found, by scaling, to be 9.52 tons. The angle of inclination vtith the

x-axis is found, by the tangent method, to be 19° 40'. The sense is from A
toward E.

Choose a pole, 0, and draw the rays, ao, bo, co, etc. The components ao

and oe are the only ones that are not neutralized. They intersect at 0;
therefore the resultant passes through that point.

Finally, show the resultant in its correct position on the space diagram,

acting through G. In the present case the line of action of the resultant inter-

sects the y-axis at a point found, by scaling, to be 3.54 ft below the origin, O'.

121. In Fig. 57, ah - 30 lb, be = 75 lb, cd - 85 lb, and de == 130 lb.

Find the resultant of the system, by the graphic method.

Solution. Draw the space diagram to some convenient scale, as in Fig. 57.

Plot the force polygon, ABODE, to a suitable scale, as in Fig. 68. In the



GENERAL COPLANAR SYSTEM; GRAPHIC SOLUTION 49

present case it is found that the force polygon closes, point E coinciding

with point A, Tliis sh^ft^s that the resultant, if one exists, is a couple.

Choose a pole, 0, draw the rays, AO, BO, etc., and by taking parallels

therefrom construct the funicular polygon, just as in the case in which the

resultant is a single force. In the present case, however, the two unbalanced
components, ao and oe, are parallel, since both are drawn parallel to the ray

Fio. 57 Fig. 58

OA. On the space diagram it is found that ao and oe do not coincide; there-

fore they constitute a resultant couple. The perpendicular distance between

them is the arm of the resultant couple, and is found, by scaling, to be 0.78 ft.

Each force of the couple is equal to AO, in Fig. 58, and is equal to 95.3 lb.

The moment of the resultant couple is equal to 95.3 X 0.78 = 74.3 ft-lb.

The senses of ao and oe, and their position in Fig. 57, show that the couple is

counterclockwise. If the hnes of action of ao and oe had coincided the sys-

tem would have had no resultant.

The results are summarized by stating that the resultant of the system is

any couple, in the plane of the system or in any plane parallel thereto, having

a counterclockwise moment of 74.3 ft-lb.

PROBLEMS

122 . Find the resultant of the five coplanar forces shown in Fig. 59, by the graphic

method.

123 . Find the resultant of the following coplanar force system: 150 lb ( ~5', 0),

+5'); 5001b (+3',0), (0, -4'); 6501b (+12', 0), (0, +5'); 9001b (0, +2'),

(q-5'^ +2'). The values in parentheses after each force are coordinates of points

on its line of action. The sense is from the first point toward the second.

124 . Find the resultant of the following coplanar force system: 1 ton (0, +4'),

(
— 3^,0); 1.1 tons (— 5', 0), (—5', +5'); 1.3 tons (0, +5'), (+5', +5'); 1.3 tons
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(-5', 0), (0, —12'); L5 tons (+4', 0), (0, The values in parentheses after

each force are coordinates of points on its line of action. ’^he sense is from the first

point toward the second.

126 . Find the resultant of the system shown in Fig. 60, Art. 35, by the graphic

method.

126 . Find the resultant of the system shown in Fig. 64, Art. 35, by the graphic

method.

36. Resultant of the General Coplanar System; Algebraic Method.

The Principle of Components. The algebraic sum of the components of

the forces of the general coplanar system^ along any axis in the plane of the

forces^ is eqnal to the component of the resultant along that axis.

Proof. The proof of the principle of components in Art, 25, applied

therein to the coplanar concurrent system, may be considered sufficient

for the present case. The force diagram for the general coplanar sys-

tem is constructed in the same manner as that for the coplanar con-

current system, and the reasoning based on the one is applicable to the

other.

In the case in which the resultant is a couple the force polygon closes,

and the component-sum of the forces along any axis is equal to zero.

In such a case it is understood that the phrase component of the

resultant along that axis means the component-sum of the two forces

of the resultant couple, and since this sum is equal to zero the principle

is valid.

The Principle of Moments. The algebraic sum of the moments of the

forces of the general coplanar system^ about any point in the plane of the

forces, is equal to the moment of the resultant about that point.

Proof. This principle was proved in Art. 33, with reference to Fig,

37, for the case of the coplanar parallel system. That proof can be
applied without essential change to the general coplanar system as rep-

resented in Fig. 53, and will not be repeated here.

Application. In the case in which the resultant is a single force, its

magnitude, inclination, and sense are ascertained by means of the
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principle of components, exactly as in the case of the coplanar con-

current system.

It is known that the resultant of a concurrent system passes through

the point of concurrence, but the position of the resultant of the general

coplanar system must be found by calculation. This is done by means
of the principle of moments. A convenient point is chosen as a center

of moments, and the moment-sum of the forces is calculated. This

gives the moment of the resultant about the chosen center. The
resultant is then placed in such a position as to give it the required

moment about that point.

The rather common error of placing the resultant on the wrong side

of the center of moments can be most surely avoided by following the

suggestions in Art. 33 for the avoidance of a similar error.

If the component-smns of the forces along two non-parallel axes are

found to be zero, the resultant, if one exists, is a couple. The principle

of moments is then used to find the moment of the resultant couple.

If the moment-sum is also zero the system has no resultant and is in

equilibrium.

Illustrative Problems

127. Find the resultant of the coplanar system shown in Fig. 60, by the

algebraic method.

Solution, By the principle of components,

jK, = +100 cos 45° - 160 cos 34° - 220 cos 67° 30'

= +70.7 - 133 - 84.3 = -146.6 lb

Ry ^- 100 cos 45° + 160 cos 56° - 220 cos 22° 30' + 300

- -70.7 + 89.4 - 203 + 300 = +115.7 lb

Figure 61 shows Rjj, and R in their correct relationship under the parallelo-

gram law. From Fig. 61,

Ox = arc tan ” = arc tan = arc tan 0.789 = 38° 15'

Rx 146.6

Rx ^ H6.6

cos dx 0.785
187 lb

The magnitude, inclination, and sense of the resultant are now known,

but the position of its line of action relative to the forces of the system must

be found.

Calculate the moment-sum of the forces about any convenient point, such

as 0, in Fig. 60. In so doing, it is convenient to resolve each force into its

X- and ^/-components at the point where its line of action intersects the .r-axis.
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The moment of each a:-component about 0 is then equal to zero, leaving only

the moments of the y-components to be calculated. The magnitudes of the

components were calculated above.

Zilfo = +70.7 X 14 + 89.4 X 12 ~ 300 X 9

= +990 + 1070 - 2700 - -640ft-lb

Fig. 60

By the principle of moments, the

foregoing value is also the moment
of the resultant about 0, Now
calculate a, the arm of the result-

ant with respect to 0, disregarding

signs.

R,= 146.6 lb.

Fio. 61

It is now known that the perpendicular distance from 0 to the line of action

of R is 3.42 ft. The foregoing cahmlation, however, does not show whether

R intersects the a:-axis to the right or to the left of 0. The sense of R is

upward and toward the left (Fig. 61). The moment of R about 0 is negative,

or clockwise. These two facts, considered together, clearly show that R
intersects the j-axis to the left of 0.

Figure 62 shows R in its correct position, as revealed by the foregoing

calculations.

Alternative Method of Locating R. In certain cases it is more satisfactory

to show the position of the line of action of R by locating the point at which

it intersects one of the coordinate axes. Figure 63 show.s R^y Ryy and Ry

the point of resolution having been placed at the intersection of the line of

action of R with the a;-axis. This renders the moment of Rx about 0 equal

to zero. Since the moment of R is equal to the moment-sum of Rx and Ryy

in the present case it is equal to the moment of Ry alone. Therefore,

2Mo = RyXR = 5.53 ft
Ry 115.7

The fact that R intersects the j-axis at a point to the left of 0 is ascertained

by a process of reasoning similar to that employed in the first method. The
point at which R intersects the y-axis could be located, if preferred, by
dividing ZAfo by Rxy instead of by Ry,



GENERAL COPLANAR SYSTEM; ALGEBRAIC METHOD 53

Fig. 62 Fig. 63

128. Find the resultant of the coplanar system shown in Fig. 64.

Solution. By the principle of components,

4 6 15= -3 X - + 5.2 X — + 6.8 X — - 8.4
5 6.5 17

= -2.4 + 4.8 + 6.0 - 8.4 = 0
o 2 5 8

2^ = -3 X 7 - 5.2 X — - 6.8 X 7- + 7.0
6 6.5 17

« -1.8 - 2.0 - 3.2 + 7.0 = 0

Y

Fig. 64

It is thus learned that Ex = 0 and 7?^ = 0. This means that the resultant,

if one exists, is a couple.

Now calculate the moment-sum of the forces about any convenient point,

such as 0. For this purpose resolve the three inclined forces into their

X- and |/-component8, at the points A, B, and C.

XMo * (+2.4 X 3 - 1.8 X 5) + 4.8 X 2.5 - 6.0 X 5 + 7.0 X 7 - 8.4 X 6

« 4. 7^2 - 9.0 + 12.0 - 30.0 + 49.0 - 50.4

« —21.2 ft-tons



54 RJESULTANTS OF COPLANAR FORCE SYSTEMS

It is now known that the resultant is a couple. By the principle of moments,

the moment of the resultant couple is equal to —21.2 ft-tons. If 2Mo had

been found to be zero, there would have been no resultant.

The results may be summarized by stating that the resultant of the system

is any couple, in the plane of the system or in any plane parallel thereto,

having a clockwise moment of 21.2 ft-tons.

PROBLEMS

129.

Figure 65 represents a cross section of a (common type of reinforced-concrete

retaining wall. Calculations relative to the strength and stability of retaining

walls are usually made with reference to a unit section, or slice, of the wall, having

a dimension of 1 ft in the direction of the length of the wall. In Fig. 65, Wi repre-

sents the weight of such a unit section,

and Wz represents the weight of the prism

of earth, CDEFy resting directly on the sec-

tion. The force of 17,300 lb is the pressure

(+ 20 '.0 )

250

lb.

of the remainder of the earth filling against the plane EC. W\ - 5000 lb, and

Wz — 10,600 lb. Find the resultant of these three forces, and locate the point

where its line of action intersects the base, ABj of the wall. Am, 28,500 lb;

- 238^" 20'; 6.62 ft to the left of B.

130 . As a rule, a retaining wall should be designed in such a maimer that the

resultant of such forces as are shown in Fig, 65 will strike within the middle third of

the base, AB. Is such the case in Prob. 129? What would be likely to occur if the

resultant should strike to the left of A ?

131 . Find the resultant of the system of forces shown in Fig. 66. Ans. 1000 lb;

« 90®; xr = -3 ft.

132 . Solve Prob. 121, Art. 34, by the algebraic method.

133 . Find the resultant, of the system of forces shown in Fig. 67.

134 . The system of forces shown in Fig. 67 has no resultant, and is in equilibrium.

Prove this by finding the resultant of the 20-lb, 50-lb, and 80-lb forces, and com-
paring it with the 130-lb force.

'

135 . Solve Prob. 120, Art. 34, by the algebraic method. Am. 9.49 tons;

* 199° 25'; VB = -3.55 ft.
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186 . Solve Prob. 123, Art. 34, by the algebraic method.

137 . Solve Prob. 124, Art. 34, by the algebraic method.

138 . The car shown in Fig. 68 is being pulled along a horizontal track by a 40-Ib

force, applied as shown. The total weight of the car is 400 lb, and the center of

gravity is at G. There is a total resistance of 20 lb, along the track. The other

4001b;

Y

external forces acting on the ear are Ni and JV 2 . The motion of the car is rectilinear

translation. In kinetics it is learned that under such circumstances the resultant

of all the external forces is a single force, parallel to the acceleration and passing

through the center of gravity of the body. In the present case this means that the

resultant is horizontal and toward the right, and passes through G. Calculate Ni
andATa. Am. -f-2201b; 4-180 lb.

139 * Solve Prob. 122, Art. 34, by the algebraic method.

140 . Figure 69 represents a transverse bent of a steel mill building. Eight

coplanar wind loads are shown. The inclined loads are spaced uniformly. Find

the resultant of all the loads, and locate the point at which it intersects the line AB.
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The problem can be simplified by first finding the resultant of the five inclined loads

by inspection. Ans. 14,900 lb; 6x = 324°; 34.2 ft to the right of A.

141. In Prob. 140, the reactions exerted on the transverse bent by its supports

at A and calculated by a method often used, are: at A, 6010 lb to the left, 2990

lb upward; at B, 6010 lb to the left, 5730 lb upward. P'ind the resultant of these

reactions, and compare it with the resultant of the wind loads in Prob. 140. What
is the significance of the comparison?

142. Find the resultant of the system of forces shown in P^ig. 70. It may be

seen that the system consists entirely of couples.

In Art. 36 a special method for the solution of

such cases is presented. P^or the purjwse of

comparison, however, this problem should be

solved by the method of the present article.

C'ompare with Prob. 143.

36. Resultant of a System of Coplanar

Couples; Special Method. The resultant

of a system of coplanar couples is a couple,

situated in the plane of the system or in

any parallel plane; and the moment of the

resultant couple is equal to the algebraic

sum of the moments of the couples comprising the system.

Proof. It is possible to compound a system of couples by the more

general methods followed in Arts. 33 and 35. Such a procedure would

naturally be followed if the student did not notice that he was dealing

with a system of couples. The use of the special principle stated above

results, however, in an appreciable saving of time. Even when the

system does not consist entirely of couples the principle sometimes can

be applied to advantage in connection with the couples themselves.

The validity of the principle follows, almost without further com-

ment, from the principles established in Arts. 33 and 35, and formal

proof will not be given.

If the algebraic sum of the moments of the couples is equal to zero,

the system has no resultant and is in equilibrium.

Illustrative Problem

143. Find the resultant of the sj^stem of couples in Prob. 142, Fig. 70, by
the method of the present article.

Solution. Let the three couples be numbered 1, 2, and 3, in the order of

the magnitudes of their forces. Let ai, and as represent the arms of the

couples, and let Ci, C2 ,
and C3 represent the moments.

ai = 6 + 8 + 12 = 26£t Ci = -50 X 26 = -1300ft-lb

ai « IQ ft C2 = +150 X 10 = +1500 ft-lb

aa « 9 X i « 7.2ft C3 = -200 X 7.2 « ~1440ft-lb

2C = -1300 + 1500 - 1440 « -1240 ft-lb

Y
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Summarizing, the resultant of the system is any couple, in the plane of

the system or in any plane parallel thereto, having a clockwise moment of

1240 ft-lb.

PROBLEMS

144. Find the resultant of the system of couples shown in Fig. 71. Ans. 4-320

in-Ib.

145. It is desired to find a specific resultant couple for the system shown in Fig. 71.

It is required that one of its forces coincide with the 2/-axis, that it be upward, and
that its magnitude be 80 lb. Find the other force.

8
"

Fig. 73 Fig. 74

146. Find the resultant of the system of couples shown in Fig. 72.

147. Figure 73 represents a beam supported by rollers at A and B (see Art. 14).

Three coplanar couples are applied to the beam as shown. Will the beam move?
Calculate the forces exerted on the beam by its supports. Solve by first finding the

resultant of the three given couples. Disregard the weight of the beam.

148. Figure 74 shows a couple having 310-lb forces and a 16-in. arm. It is

desired to replace the given couple by an equivalent system of six forces having

senses and lines of action as shown, and having equal magnitudes. Calculate the

common magnitude of the six forces. Am. 400 lb.
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37. Resultant of a Coplanar Couple and Single Force; Special

.Method. The resultant of a coplanar syste7n consisting of a couple and a

single force. is a single force equal to, parallel to, and agreeing in sense

with, the original single force. The line of action of the resultant is in the

plane of the system and is so situated that the moment of the resultant about

any point on the line of action of the original single force is equal to the

moment of the couple.

Proof. A S3^steni consisting of a couple and a single force in the

same plane could be classified as a general coplanar system, or possibly

a coplanar parallel system. The principle of components and the

principle of moments are valid in either case. The theorem stated at

the beginning of the article can be verified with the aid of these two

principles. Formal proof will be loft as an exercise for the student.

The use of the foregoing theorem results in a saving of time in the

solution of certain problems.

Illustrative Problems

149. Find the resultant of the couple and single force shown in Fig. 75.

Solution. By the principle stated at the beginning of the article, the

resultant is a single force equal and parallel to the original single force, and

agreeing with it in sense. Therefore,

in the present case, R ~ 6.4 tons, and

dr = 315°.

Calculate the moment of the given

couple, as follows:

a = 10 X sin 75° = 10 X 0.966 - 9.66 ft

C = +5 X 9.66 - +48.3 ft+ons

The line of action of R is so situated that

the moment of R about any point on the

line of action of the original 6.4-ton force

is equal to +48.3 ft-tons. Therefore, the

distance between the two lines of action

is 48.3/6.4 = 7.55 ft. Also, since the moment is counterclockwise, R lies

below the original force. R has been shown in Fig. 75, in its correct position.

160. Reverse the couple in Prob. 149, Fig. 75, leaving the single force

unchanged. Find the resultant of the altered system.

Solution. The only difference between the results in the present problem

and those of Prob. 149 is that the resultant will lie above, instead of below,

the original single force, since it must now have a negative moment about

any point in the line of action of that force.

Y
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PROBLEMS

161 . Find the resultant of the system shown in Fig, 76. Am. 600 lb; $x -
216° 50'; 7.2 in. from the original force, and below.

162 . Solve Prob. 151 by the following method: Replace the given couple with

an equivalent couple having 600-lb forces. Place the

new couple in the plane of the forces, in such a position

that one of its forces will neutralize the original single

force.

163 . Find the resultant of the system in Fig. 70, Art. 35, g §
in the following manner: C.'ompound the upper 50-lb force ^ ^
and the two 200-lb forces, by the method of the present

article; then comjmund the other three forces by the same

method. Find the moment of the resultant couple.

164 . In Fig. 71, Art. 36, insert an additional single force of 40 lb, coinciding with

the x-axis and acting toward the left. Find the resultant of the entire system, first

compounding the three couples by the method of Art. 36, and then compounding
this resultant couple with the 40-lb single force by the method of the present article.

Am. 40 1b; dx ~ 180°; 8 in. above the x-axis.

166 . The three couples in Fig. 72, Art. 36, are in equilibrium. Prove this state-

ment by compounding the upper 1.2-ton force with the two 4-ton forces, and the

lower 1.2-ton force with the two 2.5-ton force.s. If the system is in equilibrium the

two single-force resultants thus obtained will balance.

38. Resolution of a Force into a Force and Couple. A given force can

be resolved into a component force and couple. The component force must

be equal and parallel to the original force
^
and m ust agree with it in sense

^

but the point of application can he chosen anywhere in space. The couple

is any couple in the plane of the original force and the component force,

having a moment equal to the moment of the original force about any point

in the line of action of the component force.

Proof. The relations involved in the foregoing principle are essen-

tially the sarne as in the case discussed in Art. 37, and their validity

may be considered as having been established.

Y InLUSTRATIVE PROBLEM

166. Resolve the 600-lb force shown in Fig. 77

into a single force acting through 0, and a couple.

Solution. Calculate the moment of the given

force about the chosen point, 0.

Mo = H-6(X) sin 30° X 8 = +300 X 8

* +2400ft-lb

The results are as follows: a single force of 600 lb,

acting through 0, Bx = 150°; and any couple in the plane of the figure, or

in any parallel plane, having a counterclockwise moment of 2400 ft-lb.
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PROBLEMS

167 . As was stated in Art. 9, equivalent systems of forces would not necessarily

have the same deformation effect on a body. In some cases, however, they would

have the same effect. Figure 78 i*epresents a short column supporting a vertical

load, IF, applied eccentrically at a distance, e, from the

axis of the column. It is learned in strength of materials

that, if W is resolved into a single force applied at 0, on

the axis, and a couple applied near the end of the col-

umn, as shown, the deformation effect and the resulting

stresses in the column are not iiltered. Let W ~ 1200

lb, and let e — 4.5 in. Let the arm, a, of the coiiple be 2.7

in. Calculate the component force at 0, and the forces of

the couple.

168 . A force of 8400 lb is applied to a crank keyed to

the end of a shaft. The distance from the center of the

shaft to the center of the crankpin is 10.5 in. The force

is tangent to the circle in which the center of the crankpin

moves. The stresses in the shaft would not be alterecl if

the force were re^solved into a single force at the center of

the shaft, and a couple, both l5dng in a plane at right

angles to the shaft and containing the original force.

Find the component force, and couple. Am. 8400 lb; 138,000 in-lb.

159 . Resolve each of the forces in Fig. 32, Art. 27, into a force acting through 0,

and a couple.

160 . Find the resultant of the coplanar system shown in Fig. 60, Art. 35, by the

following method: Resolve each of the given forces into a force through 0, and a

couple. Find the resultant of the concurrent system thus established at O, by the

method of Art. 25. Find the resultant of the three couples by the method of Art. 36.

Compound the resultant single force and the resultant couple by the method of

Art. 37.

The foregoing method is sometimes suggested as the standard method of com-

pounding coplanar force systems. It differs only slightly from the method of Art. 35.

Ans. 1000 lb; 0x == 90*^; = -3 ft.

161 . Find the resultant of the system shown in Fig. 67, Ai-t. 35, by the method
described in Prob. 160.

Fig. 78



CHAPTER III

RESULTANTS OF NON-COPLANAR FORCE SYSTEMS

39. Resultant of Three Non-Coplanar Concurrent Forces at Right

Angles to One Another. If vectors representing three non-coplanar
^
con-

current and mutually perpendicular forces are constructed to scale at the

point of concurrence, in such a manner that their senses agree with respect

to that point, and if lines are added to form a parallelepiped, that diagonal

of the parallelepiped which touches the point of concurrence will represent

the resultant of the three forces. The sense of the resultant will agree with

the senses of the three component forcxs with respect to the point of con-

currence.

Fig. 79

Y

1

A 1

X / 1 \

j

^

'A
Fig. 80

Proof. In Fig. 79, let Rxj Ry, and Rz represent any three concurrent

forces at right angles to one another. R^ and Ry are in the plane of the

%ure, but Rz is at right angles to that plane.

By the parallelogram law, Art. 17, R' is the resultant of Ry and Rg.

Again by the parallelogram law, R is the resultant of iZ' and Rx- There-

fore, R is also the resultant of Rxj Ryy and Rg.

A careful study of Fig. 79 shows that by the addition of six lines a

parallelepiped can be constructed in which all the relations will be as

stated in the foregoing theorem. The completed construction is shown

in Fig. 80.

The theorem could be generalized to include any three non-coplanar

concurrent forces, whether they were mutually perpendicular or not
61
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However, the theorem is generally used in the special form in which it

was stated above.

Formulas. Let 6x, Oy, and represent the angles between the given

forces and their resultant. From Fig. 80,

R = V/jf Ki + ie, [8]

cos e. = ~ [9]

cos ~ [10]R

cos ^ [11]

Signs of Components in Non-Coplanar Problems. Three coordinate

axes will be used frequently in subsequent problems and discussions.

In general the x- and ^/-axes will be placed in the plane of the paper;

consequently the 2-axis will be at right angles to that plane. The
right-hand end of the x-axis, and the upper end of the ly-axis, will be

considered positive. The jKisitive end of the 2-axis will be the end

toward the reader. Angles of inclination will be stated in accordance

with the conventions established in Art. 16.

PROBLEMS

162 . The lines of action of the following forces coincide with the x-, ?/-, and
2>axes, resp)ectively. Their senses are indicated by signs, -f-30 lb, +60 lb, +60 lb.

Find the resultant. Arts. 90 lb; 6x = 70° 3o'; 0y — 48° 10^; 0^ = 48° lO'.

163 . Given; Rx = +120 lb, Ry — —90 lb, Rg - +360 lb; find the resultant.

164 . Given: Rx = —2.4 tons, Ry = +7.5 tons, Rg - —3.2 tons; find the

resultant. Ans. 8.50 tons; dx = 106° 25'; By = 28° 05'; 0g = 112° 05'.

165 . The following forces coincide with the x-axis: +280 lb, —85 lb, —195 lb;

the following coincides with the y-axis: —300 lb; the following coincides with the

2*axis: —160 lb. Find the resultant. Atis. 340 lb; 6x = 90°; By — 151° 55';

Bx « 118 05'.

166 . Given: two x*components as follows: +45 lb, —85 1b; two ?y-components

as follows: +25 lb, —100 lb; two ^-components as follows: —70 lb, —134 lb.

Find the resultant of the system.

40. Resolution of a Force into Three Concurrent Components at

Right Angies to One Another. In this case R is given^ and Rxy Ry^ and

Rg are to be found. The relations between R and its components are the

same as those established in Art. 39.

In Art. 19 the following statement appears: “ The component of a

force along any line is equal to the product of the magnitude of the force

^nd the ppsine of the angle that the force makes with the given line/'
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The case under discussion in Art. 19 was that in which the force is

to be resolved into two rectangular components. Formulas 9, 10, and

1
1 ,

Art. 39, show that the same principle applies when the force is to

be resolved into three rectangular components.

Close attention should be paid to the fact that the point of con-

currence of the three components must lie on the line of action of the

given force. This point is also called

the point of revsolution.

Formulas, Formulas 9, 10, and

11, Art. 39, may be used for the

present case. Formula 8 is valid,

also, and could be used as a conven-

ient check.

Illustrative Problem

167. A force of 180 lb acts through

the origin, and through the point

(—4, -1-5, -hG), its sense being toward

the latter point. Resoh^e the force, at

the origin, into its j-, y-, and 2-compo-

nents. Also resolve at the second

point.

Solution, Figure 81 shows the given force in its specified position. Com-
plete the parallelepiped, as shown in the figure.

AO
Triangle AOB is a right triangle; therefore, cos = • From the

OB
figure, AO = 4. By geometry, OB = V(4)^ + (5)^ + (6)^ = 8.77. There-

4 5
fore, cos = 0.456. Similarly, cos By - = 0.670, and cos By =

0.77 8.77

= 0.684. And so,
8.77

R COS Rx = 180 X 0.456 = 82.1 lb

= /? cos By Ry == ISO X 0.570 - 103 lb

Rs R cos B, R, = 180 X 0.684 = 123 lb

To complete the solution it is necessary to show the three components

on the figure, acting through the chosen point of resolution. This has been

done in Fig. 81, for the two points of resolution specified in the problem.

A distinctive feature of the foregoing solution is the fact that cos cos

and cos Bg were calculated directly from the figure, and that the angles them-

selves were not calculated. This is the logical method in problems in which

the position of a force is shown by means of coordinates, or linear dimensions,

rather than by means of angles, and in which the values of the angles are not

required for any other purpose.

Y

Fig. 81
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PROBLEMS

168 . A force of 136 lb acts from the origin through the point (*f9, -f 12, -h8).

Resolve the force, at the origin, into its x-, and 2-eomponents. Also revive at

the second point. Arts. -f72 1b; +96 lb; +64 lb.

169 . A force of 13 tons acts from the origin tlirough the point (~7, —24, +60).

Resolve the force, at the origin, into its x-, and 2-components. Also resolve at

the second point.

170 . A force of 70 lb has the following angles of inclination: dx
- 54° 20' and

Oy = 132° 40'. It is also known that the 2-component is negative. Calculate the

X-, ?/-, and 2-components, and dz- An^. +40.8 lb; —47.5 lb; —31.3 lb; 116° 35'.

171 . A force of 300 lb has the following angles of inclination: dx — 123° 16';

By — 105° 42'; Oz = 37° 42'. Resolve the force into its x-, y-, and 2-components,

at the origin. Check by recomposition of the three components (Art. 39).

172 . Prove that the 130-lb force in Fig. 82 would have the same effect on a body as

the other four forces combined.

Y

41. Resxiltant of the Non-Coplanar Concurrent System. The Princi-

ple of Components. The algebraic sum of the components of the forces of a

non-coplanar concurreni system, along any axis, is equal to the component

of the resultant along that axis.

Proof and Application. In the solution of a problem a convenient

set of three rectangular axes is selected, having its origin at the point of

concurrence of the forces. Each force is then resolved, at the origin,

into its X-, y-, and ^-components. This transforms the original system

into three coUinear systems, each of which coincides with one of the

axes.

The algebraic sum of the a:-components is then calculated. This gives

their resultant, a single force along the x-axis. The y- and 2r-components

are treated similarly. The system now has been reduced to a single

force coinciding with each of the axes. The three forces are then

compounded by the method of Art. 39. Their resultant is obviously the

resultant of the original system.

The resultant, if one exists, is necessarily a single force. If each of

the three component-sums is found to be equal to zero there is no re-

sultant, and the system is in equilibrium.
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Illustrative Problem

173. Find the resultant of the four non-coplanar concurrent forces shown

in Fig. 83.

Solution. Resolve each force into its a;-, i/-, and ^-components, at 0.

Calculate the cosines of the various angles of inclination, from the figure,

by the method used in Prob. 167
,
Art. 40.

For the 340-lb force: OA = V(6)^ + (4)^ + (3)^ = ^61= 7.81; cos 0* =

— cos ;
cos =— • For the 550-lb force: OB = V(4^f -b (3)*

7.81

_ 7.81 7.81

= V'25 = 5; cos 6x = cos 0, = f.

By the principle of components,

Rx = -340 X 4- 550 X ^
= -261 -f 440 = -H79 lb

7.81 o

Ry = -340 X - 80 = -174 - 80 = -254 lb
7.81

R. = -340 X -^ + 550 X - - 360 = -131 + 330 - 360 =• -161 lb
7.81 5

By Art. 39,

R = V(179)“ + (254)!* + (161)* = 350 lb

R 179
6x arc cos —

-

= arc cos— == arc cos 0.511 — 59® 15^

R 350

R 254
* arc cos— =* arc cos = arc cos 0.726 « 43® 25'

^ jK 350

0M arc cos — *» arc cos = arc cos 0.460 =« 62® 35'•no CLfl
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Figure 84 shows the resultant and its three components in their correct

positions. The angles calculated above are the acute angles between the

resultant and the axes, as indicated in the figure.

PROBLEMS

174 . The following forces are concurrent at the origin, and act toward and
through the points indicated: 45 lb (0, -10, 0); 65 lb (0, -12, -5); 90 lb (+4,

-f4, -f2); 175 lb (0, 0, +10). Find the resultant, Ans. 195 lb; $x « 72® 05',

0^ « 103*' 20', e, - 22^ 40'.

176

.

The following forces are concurrent at the origin, and act toward and

through the points indicated : 7801b (+4, —12, —3); 8501b (—8,0, +15); 1601b

(+10, 0, 0); 570 lb (0, 0, -10). Find the resultant.

176 . Find the resultant of the following concurrent system: 1 ton, S* » 180®,

By = 90®, Bg = 90®; 2 tons, Bx = 90®, B^, - 180®, Bg = 90®; 5 tons, Bx = 144®, By »
70® 22', Bg = 61® 11'; 6 tons, Bx = 90®, By = 60®, Bg = 150®.

177 . The following statement, referring to the non-coplanar concurrent system,

appears above: “ The resultant, if one exists, is necessarily a single force. Prove

that this statement is correct.

178 . The following forces are concurrent at the origin, and act toward and
through the points indicated: 80 lb (0, 0, +10); 88 lb (0, 0, —10); 89 lb (0, +10,

0); 120 lb (-8, -4, -8); 175 lb (0, -7, +24). Find the resultant. Ana. 113

lb; Bx « 135®, By = 90®, Bg = 45®.

179 . Figure 85 represents a vertical tower, 60 ft high, resting on level grouzid

and subjected to pulls from three cables, as shown. It is desired to brace the tower

by means of a guy 90 ft long, to be attached to the top of the tower and anchored

at the ground. The guy is to be drawn up to a tension such that the resultant pull

of the entire system will be vertical. Calculate the necessary tension in the guy,

and find the x- and ^-coordinates of its point of anchorage.

42. Moment of a Force about a Line; General Case. By "general

case " is meant that in which the force does not lie in a plane at right

angles to the line.
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Th:> moment of a force about a line is the moment of that component
which lies in a plane at right angles to the line^ provided that the force has
been so resolved that the other component is parallel to the line. The line

about which the moment is taken is called the axis of moments.

It follows from the foregoing definition that the moment of a force

about a line parallel to the force is equal to zero. It is also obvious
that the moment of a force about a line that intersects the line of action

of the force is equal to zero.

For example, let P, in Fig. 86, represent the force, and let AB rep-

resent any line that is not at right angles to a plane containing P, P
has been resolved, at C, into a component, Pi, parallel bo AB, and a
component, P', in a plane perpendicular to AB. The line BD Ls the

moment-arm of P' with respect to AB.

By the definition, the moment of P about the line AB is the moment
of P' about that line and is equal, therefore, to —P' X BD, The

negative sign Is used because the moment appears clockwise from the

point of observation.

In Fig. 87 the same force, P, has been shown, but has been resolved

at C into three rectangular components, instead of two. Pi is the same

as in Fig. 86, and P2 and P3 are in a plane perpendicular to AB. P2

and P3 are rectangular components of P' (Fig. 86).

By the principle of moments, Art. 27
,
the moment of P' is equal to

the moment-sum of P2 and P3. Therefore, the moment of P about AB
is equal to —P2 X UE — P3 X EB,

If preferred, then, the given force may be resolved into three rectangu-

lar components, instead of two. One of the components must be parallel

to the axis of moments, and the moment of the force is then found by

calculating the moment-sum of the other two components.

The Sign of a Moment. In this book, whenever a moment is calcu-

lated with respect to one of the coordinate axes, or with respect to a line

parallel thereto, the point of observation will be considered to be so
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situated that the line of sight is parallel to the axis of moments and
the observer faces in the negative direction. As in previous discussions,

Y

I

Solution. Resolve the force into

a moment appearmg counterclock-

wise will be given the positive sign.

The physical significance of a mo-
ment, and the units, were discussed

in Art. 20 and apply also to the pres-

ent case.

Illustrative Problems

180. Calculate the moment of the

2()0-lb force, in Fig. 88, about each of

the coordinate axes.

its X-, ?/-, and 2-components, at the point

A. AB = n/(5)- + (2)“ + (3)- = ViTs = fi.K).

Px = p COS 6x 200 X
0.16

= 211 lb

Py — P COS By

Pt — P COS Bz

Py = 260 X = 84.4 lb
* 6.16

P, = 260 X~ = 127 lb
6.16

Show the three components on the sketch, passing through the point of

resolution, A, as in Fig. 88. The moment of the 260-lb force about the

x-axis is equal to the moment-sum of Py and Pz about that axis. Only one

component, Px, has a moment about the y-axis. Px is also the only com-

ponent having a moment about the z-axLs. Therefore,

X 3 - P, X 3 = +84.4 X 3 - 127 X 3 - -128 ft-lb

My = +Px X 3 = +211 X 3 = +633 ft-lb

Mz « -Px X 3 = -211 X 3 - -633 ft-lb

The signs given to the moments calculated above are in accordance with

the conventions adopted. For example, the moment of P* about the y-axis

was given the positive sign since, to an observer looking in the negative

direction along that axis, the moment appears counterclockwise.

181 . Solve Prob. 180, resolving the given force at B (Mg. 88), instead of

at A.

Solution. The magnitudes and senses of the x-, y-, and «-component8 are

the same as in Prob. 180.

= -P, X 1 « -127 X 1 = -127 ft-lb

Afy * +P, X 5 - +127 X 6 « +635ft-lb

JIf, « -P, X 1 - Py X 5 = -211 X 1 - 84.4 X 5 » -633 ft-lb
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PROBLEMS

182. A force of 1200 lb passes through the points 0, 0) and (0, -fS', +4'),

its sense being toward the latter point. Ctilculate the moment of the force about

each of the coordinate axes. Check the results, using a new point of resolution.

Ana. 0; -3200ft-lb; +6400 ft-lb.

183 . Solve Prob. 180, resolving the given force into its components at a point

midway between A and B, instead of at A. Compare the solution with that of

Prob. 180, both as to results obtained and as to ease of solution.

184 . In Fig. 86, assume the following dimensions: = 10 ft, FC — 4 ft,

CG — 4 ft, BF = 8 ft. Assume P - 500 lb. Calculate the moment of P about

the line AP, first by resolving as in Fig. 86, and then by resolving as in Fig. 87.

Am. “2390 ft-lb.

1

Fig. 89

185 . Figure 89 represents a framework consisting of three members, AB, AC,

and AD, and subjected to a load of 36 tons, applied as shown. Calculate the mo-

ment of this load about each of the coordinate axes.

186 . Calculate the combined turning effect of the four forces in lYg. 83, Prob. 173,

about the line CD. Arts. —966 ft-lb.

187 . The framework sliown in Fig.

89 is in equilibrium; therefore the sys-

tem of external forces to which it is

subjected is a balanced system. This

system consists of four forces, as shown.

If the magnitudes assigned to them are

correct their moment-sum, about any

axis, will equal zero. Ascertain whether

this is the case, as regards the three co-

ordinate axes.

188 . Calculate the turning effect of

the couple shown in Fig. 90, about each

of the coordinate axes. Am. —27,000

ft-lb; -27,000 ft-lb; 0. Fig. 90

43. Representation of a Couple by Means of a Single Vector. Here^

tofore, in this book, when it was desired to depict a couple, vectors

were drawn representing the forces themselves. It is possible, how-
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ever, and sometimes more convenient, to represent an entire couple by

means of a single vector. This is done by letting the length of the

vector represent, to a suitable scale, the moment of the couple, and by

placing the vector at right angles to the plane of the couple. The

direction of the rotational tendency of the couple is shown by the sense

of the vector. This is accomplished by pointing the vector in the

direction in which a right-handed screw

i would advance if the couple were turning

the screw.

In Fig. 91, let the forces P, F represent

any couple, and let a represent its arm.

The moment of the couple is equal to

X —P X a. Any vector, such as C, whose

length to some chosen scale is equal to

P X a, which is at right angles to the

plane containing PP, and whose sense

Fig. 91 is toward the left, would correctly repre-

sent the couple.

A given vector does not represent one specific couple, to the exclusion

of all others
;

it represents any one of an unlimited number of equivalent

couples.

It should be noticed that when a given couple is in one of the coordi-

nate planes, or in a plane parallel thereto, its vector will be parallel to

one of the coordinate axes and can be given a sign in accordance with

the convention adopted for components of forces, in Art. 39. It should

also be noticed that the sign of the moment of the couple and the sign

of the vector will agree. Thus, the couple in Fig. 91 has a negative

moment, and its vector has the negative sense.

PROBLEMS

189 . One of the couples in Fig. 92 has 215-lb forces. Make a sketch showing

the coordinate axes, and place thereon a single vector, at O, representing this couple.

Find the magnitude of the vector. Draw a second vector, through A, representing

the same couple. Ans, — 1935 ft-lb.

190 . The vector Ci, in Fig. 92, is a couple vector. Make a sketch showing the

three coordinate axes. Draw a couple, represented by the vector Ci, having 3204b

forces, one of which is positive and coincides with the a>axis.

191 . One of the couples shown in Fig. 92 has 12-ton forces. Make a sketch

showing the three coordinate axes, and place thereon a single vector, at 0, repre-

senting this couple. Find the magnitude of the vector. Draw a second vector,

through A, representing the same couple. Arts. -f57.6 ft-tons.

192 . Draw a single vector through 0, in Fig. 92, representing the couple which

has 850-lb forces. Calculate the angle of inclination of this vector with each of the
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coordinate axes. Find the magnitude of the vector. Resolve the vector into its

X-, y-, and ^-components. Ans. Cx — 4-1520 ft-lb; Cy = 0; C, = —3040 ft-lb.

Y

193 . The vector C2,
in Fig. 92, is a couple vector. Make a sketch showing the

three coordinate axes. Draw a couple, represented by the vector C^y one of whose

forces coincides with the ;/-axis and is negative. Give the couple an arm of 5 ft.

194 . Calculate the moment-sum of the two 850-lb forces, in Fig. 92, about each

of the three coordinate axes. Compare these moment-sums with the components

of the couple vector, as found in Prob. 192.

44. Resultant of Three Couples in Planes at Right Angles to One
Another. The resultant of three couples in planes at right angles to one

another is a couple, and its vector is the resultant of the vectors of the three

given couples.

Proof. In Fig. 93, let PP, QQ, and SS represent any three couples

in perpendicular planes. For convenience the couples have been shown

in the three coordinate planes. Let Cx, Cy, and C*, shown for con-

venience at 0, repre>sent the vectors of couples PP, QQ, and SS, re-

spectively.

Replace PP by an equivalent couple, P'P', one of whose forces coin-

cides with the 21-axis, as shown. AB is the arm of P'P\ Replace QQ
by an equivalent couple, whose forces are equal to the forces of

couple P'P'. Place couple Q'Q' in such a position that one of its forces

also coincides with the 2J-axis, but is opposite in sense to the force P'

already placed there. AC is the arm of Q'Q\ Since the two forces P'

and Q' occupying the 2:-axis are equal and opposite, they balance, and

may be disregarded henceforth. This leaves two equal forces, P' and

Q', forming a couple in a diagonal plane, having the ami BC. This

couple is the resultant of the original couples PP and QQ. Let C' rep-

resent its vector.
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It will now be proved that the vector C' Is the resultant of the vectors

Cx and Cy. By definition.

C' = P' X BC [12]

From the figure.

W = Vab^ + Jc^ [13]

Substituting in [12],

C' = P'^AB^ + = V(P' X ABf + iP' X AC)^ [14]

But, P' X AB = Cx and P' X "AC = Cy. Therefore,

c' = Vc^ + Cl [15]

From the figure,

_ AB P' XAB Cx
[16]^ BC P' X BC C'

Equations 15 and 16 prove that the relationship of the couple vectors

Cs, Cy, and C' is that of the sides and diagonal of a rectangle, showing

that the parallelogram law applies, and that C' is the resultant of Cx

and Cy.

The foregoing proof is sufficient to show that the resultant of any

two couples in perpendicular planes is a couple, and that its vector is

the resultant of their vectors. The couple P'Q' and the remaining
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original couple, SSy are in perpendicular planes; it follows that their

resultant is a couple and that its vector is the resultant of vectors C'

and Cz. Since couple is the resultant of the original couples PP
and QQj and since vector C' is the resultant of vectors Cx and the

general principle stated at the beginning of the article may be con-

sidered proved.

Although not needed in the foregoing discussion, a specific resultant

couple, RRf has been shown in Fig. 93. It was constructed by replacing

original couple SS by an equivalent couple S'
S'

having vertical forces

passing through the points D and Ej and by compounding the forces of

couple P'Q' with the forces of S'S', at those points.

The vector, C, of the final resultant couple has also been shown in

the figure. The relationship of vectors Cx, Cy, Cz, and C is the same as

that of Rxy Ryy Rz, a,nd R in Fig. 80, Art. 39, and the algebraic formulas

for the present case differ from those of Art. 39 in notation, only.

Formulas.

c = + ct + a

cosQ^ = —

cos =
-pf

cos 0* = —

[17]

m]

[19]

[20]

Y

Illustrative Problem

196 . Find the resultant of the three couples shown in Fig. 94.

Sohtion. Let Cx, Cyy and C„ in Fig. 95, represent the vectors of the

three given couples, and let C represent the vector of the resultant couple.
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From Fig. 94,

C, = -400 X 4 = -1600 ft-lb

Cy = +300 X 6 = +1800 ft-lb

C, = -.500 X (3 X I) = -1200 ft-lb

c = VC? + C* + Cj C = V'(1600)= + (1800)“ + (1200)*

= 2690 ft-lb

C 1600
cos Ox ^ cos 6x = = 0.595 dx = 53° 30'

C 1800
cos By - cos By = = 0.669 By = 48° 00'

C 2690

C 1200
cos Bg - cos Bx = = 0.446 B, = 63° 30'

C 2690

Fig. 95

Figure 95 shows the position of C, the vector of the resultant couple. The
resultant of the three given couples is, then, any couple whose moment is

2690 ft-lb, lying in any plane at right angles to the vector C, and whose
rotational tendency agrees with that indicated,by the curved arrow shown in

Pig. 95.

The solution given above is sufficient for the problem as stated, since it is

not required that a specific resultant couple be found.
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PROBLEMS

196 . Three couples whose moments are: +27 in-tons, —36 in-tons, and —108
in-tons, lie in the xz-y and xy-planes, respectively. Find the vector of the re-

sultant couple. Am. 117 in-tons; Bx - 76® 40', By = 107® 55', == 157® 20'.

197 . Three couples, whose moments are: —800 ft-Ib, —1920 ft-lb, and +3900
ft-lb, lie in planes at right angles to the x-, y-, and z-axes, respectively. Find the

vector of the resultant couple.

198 . In Fig, 93, assume that couple PP has 40-lb forces and an 8-in. arm, that

couple QQ has 50-lb forces and a 6-in. arm, and that couple SS has 30-lb forces and a

10-in. arm. Find the vector of the resultant couple. Am. 531 in-lb; Bx = 52® 55',

By = 55® 35', Bx = 55® 35'.

199 . Find the resultant of the three couples shown in P’ig. 96.

200 . Find the resultant of the system shown in Fig. 97. Am. 180 ft-lb; $x =
109® 25', By = 131® 50', Bx = 48® lO'.

Fig. 96 Fig. 97

45. Resolution of a Couple into Three Component Couples in Per-

pendicular Planes. The vector of the given couple may he resolved into

three component vectors at right angles to the planes in which it is desired to

place the three componejit couples. The component vectors thus obtained

are the vectors of the desired component couples.

Proof. The procedure suggested above is merely the reverse of that

described in Art. 44, and the proof in that article is sufficient for both

cases.

Ordinarily the x-, i/-, and z-axes are used in resolving the vector of

the given couple, and the component couples are placed in the coordinate

planes. A component couple in the t/2-plane would be referred to as the

“ x-component couple, '' since its vector would be parallel to the x-axis.

First Method. If the problem is one in which the magnitude and in-

clination of the vector of the given couple are stated, or can be ascer-

tained readily, the vector can be resolved into components by the method

described for a force, in Art. 40.
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Second Method, In the majority of cases the couple itself, and not

its vector, is given, and it is usually difl&cult to make the computations

that would be necessar}^ in establishing the vector and in resolving it

into its components. In such cases the resolution can be performed by

means of the following principle:

The component^ along any axiSj of the vector of a given couple is equal

to the moment-sum of the forces of the couple about that axis, and the sign

of the component agrees with the sign of the moment-sum of the forces.

Proof. In Art. 44, Fig. 93, PP, QQ, and SS were used to represent

any three couples in perpendicular planes, and RR was shown to be the

resultant couple.

Let RR now be thought of as the given couple. Its vector is (7, Fig.

93. Couple PP is the x-component couple, and Cx is its vector. It

will now be proved that Cx is equal to the moment-sum of the two forces

of the given couple, RR, about the x-axis.

Figure 93 shows one of the forces of the couple RR resolved into com-

ponents S' and P' at the point D, and the other force resolved into the

components S' and Q' at the point E.

By the principle of moments, the moment-sum of the two forces RR
about the x-axis is equal to the moment-sum of their four components,

S', P'y s', and Q', about that axis. By inspection, the moments of three

of these components, S', S', and Q', are equal to zero. Therefore, the

moment-sum of R, R equal to the moment of P' alone. The moment
of P' is equal to P' X Ai?, which, in turn, is equal to the moment of

couple P'P' and to the moment of the z-component couple, PP. Cx is

the vector of couple PP.
Furthermore, the figure

shows that the sign of the

component vector Cx agrees

with the sign of the mo-
ment-sum of the forces of

the given couple, RR,
about the oj-axis.

Proofs involving the other

two component vectors, Cy
and Cz, would be similar to

that given above for Cx*

-X

Illustrative Problem

201. Resolve the couple

sho^ in Fig. 98 into its x-, y-, and ^-component couples.

Solution. The second method of resolution described in the present article

is preferable in this problem. Resolve the two forces of the given couple
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into their x-, y-, and g-components at the points A and B. From the figure,

'Sc = V(3)2 + (4)2 + (2)^ = = 5.39 ft. For both forces, cos

3 . 4 , „ 2
,
COS =

5.39 5.39
and cos St =

5.39

Px — P cos Sx

Py - P COS By

Pt — P COS St

P» = 100 X -4- = 55.7 lb
5.39

= 100 = 74.21b

P, = 100 X— = 37.1 lb
5.39

Now find the x-, ?/-, and ^-components of the vector of the given couple,

by calculating the moment-sum of the forces about each coordinate axis.

Cx = -Py X 3 -- P, X 4 + Pz X 4 = -74.2 X 3 = -223 ft-lb

Cy = -Px X 3 - P. X 2 = -55.7 X 3 - 37.1 X 2 = -241 ft-lb

Ct = +Pz X 4 - P^ X 4 - Pj, X 2 = -74.2 X 2 = -148 ft-lb

The vectors Cx, Cy^ and representing the three component couples, have

been shown in the figure, at 0.

Summarizing, the original couple is equivalent to any system of three

couples of the following nature: any couple in any plane perpendicular to

the x-axis, having a clockwise moment of 223 ft-lb; any couple in any plane

perpendicular to the ?/-axis, having a clockwise moment of 241 ft-lb; and any

couple in any plane perpendicular to the z-axis, having a clockwise moment
of 148 ft-lb.

Fio. 99

PROBLEMS

202. A force of 200 lb acts from O through D, in Fig. 99. A second force of

200 lb acts from A through B. Resolve the couple thus formed into its x-, y-, and

;iK5omponent couples. 0; +1920 ft-lb; —1440 ft-lb.

203. A force of 10 tons acts from E through D, in Fig. 99. A second force of

10 tons acts from F through B, Resolve the couple thus formed into its x-, y-, and
• component couples.
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204. A force of 750 lb acta from G through //, in Fig. 99. An equal, opposite,

and parallel force acts through A. Resolve the couple thus formed into its a>, y-,

and if-component couples. Ana. — lOOOft-lb; +0000 ft-lb; +2000 ft-lb.

206.

Resolve the couple shown in Fig. 90, Art. 42, into its x-, y-, and ^-component

couples.

206. A force of 39 tons acts from O through Ay in Fig. 99. An equal, opposite,

and parallel force acts through B. Resolve the couple thus formed into its x-, y-,

and jr-component couples. Ans. 0; +144 ft-tons; — 108 ft-tons.

207. A force of 6 tons acts from the point (0, 0, +4^) through the point (+8^, 0,

+8' ) . An equal, opposite, and parallel force acts through the point ( +8', + 5', +8' )

.

Resolve the couple thus formed into its x-, y-j and ^-component couples.

208. A force of 650 lb acts from A through O, in Fig. 99. An equal, opposite,

and parallel force acts through Q. It is desired to replace this couple by an equiva-

lent system of three couples, as follows: one whose forces lie on the lines AI and EBy

one whose forces lie on the lines AD and EJy and one whose forces lie on the lines

JO and GK. Find the magnitude and sense of each of the six forces.

46. Resultant of a System of Non-Coplanar Couples. In the solution

of this problem a set of three coordinate axes is selected, and each

couple of the given system is resolved into its x-, y-, and ^-component

couples, by one of the methods described in Art. 45.

The algebraic sum of the moments of all the x-component couples is

then calculated. This gives the moment of their resultant, which is a

couple in a plane at right angles to the a:-axis. The y-component

couples, and finally the 2-component couples, are treated in a similar

manner.

The three resultant couples thus obtained are the components of the

final resultant couple, which is then calculated by the method of Art. 44.

Y

Fig. 100

Illustrative Problem

209* Find the resultant of the three non-coplanar couples shown in Fig. 100.

Solution. Let Ci, C2 ,
and C3 represent the vectors of the given couples,

PiPi, and PsPs, respectively. The vectors need not be shown in the

figure. Calculate the x-, y-, and ^-components of the individual forces of
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the couples. By inspection, Pix = 0, Piy = 0, and Pu « Pi =» 60 lb.

Also, Pzx = 0.

P2v = P2 cos 62y

P 2Z = Pi cos $21

Pax = Pa cos Bzx

P^y = Pa cos dsy

Pit = Pa cos 6zg

Pjv = 80 X - = 64 lb
5

Pi. = 80 X - = 48 lb
5

Psx = 200 X -^ = 128 lb
4.69

I\ - 200 X— = 85.3 lb
4.69

Pa. = 200 X -^ = 128 lb
4.69

The force acting at 0 need not be resolved, since its moment about each

coordinate axis is zero. Resolve the other force Pi at A, and resolve the

forces Pa, Pa at B and D. Find the x-, y-, and a-components of the vector

of each couple, by the second method. Art. 45.

Cix = SMi* C,x

Cl, = S3/i,

Cu = 2Af,. Cu

Cix = SMi* Cix

Ci, *= Sil/i, Cl,

Cl. = Sil/a. Cix

Ca* = SMax Ca*

Cty — SAfa, Ca,

Ca. = SAfa. Ca.

+Pi X4-PiX4 = 0

+Pi X 6 = +50 X 6 = +300 ft-lb

0

0

-Pi. X 6 = -48 X 6 = -288 ft-lb

+Pi, X 6 = +64 X 6 = +384 ft-lb

+Pa. X 2 - Pa. X 2 - Pa„ X 3 = -85.3 X 3 =

-256 ft-lb

-Pa. X 6 + Pa. X 3 = - 128 X 6 + 128 X 3 =

-384 ft-lb

+P8x X 2 - Pa, X 6 - Pax X 2 = -85.3 X 6 -

-512 ft-lb

The components of the resultant couple are, then,

SC* = 0 + 0 - 256 - -256 ft-lb

SC, * +300 - 288 - 384 = -372 ft4b

SC. = 0 + 384 - 512 = -128 ft+b
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and the resultant couple is

C08 dt >=

c
cos 6:

cos By = COS

cos e, = COS 6;

C = v"(256)2 + (372)2 + (128)2

= 469ft-lb

(9* - 66° 55
'

By = 37° 30'

= 74° 10'

256

409
- 0.546

469*
0.793

= 0.273
4AQ

Figure 101 shows the component vectors, Cy, and and the resultant

vector, C. The resultant of the original system is any couple having a moment
of 469 ft-lb, lying in any plane at right angles to the vector C, and whose
rotational tendency agrees with that indicated by the curved arrow shown

S£>

in the figure.
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PROBLEMS

210 . Insert the following forces in Fig. 102: 180 lb, from A through B; 180 lb,

from D through C; 360 lb, from A through 0; 360 lb, from E through F; 140 lb,

from 0 through G; 140 lb, from H through /. Find the resultant. Am. 780 ft-lb;

« 107° 55', dy - 76° 40', 0^ = 22° 40'.

211 . Insert the following forces in Fig. 102: 6 tons, from G through /, and an

equal, opposite, and parallel force through 0; 5 tons, from A through /, and an

e.o.p, force through 0; 3 tons, from C through K, and an e.o.p. force through 0.

Find the resultant.

212 . Insert the following forces in Fig. 102: 1500 lb, from K through Ay and an

equal, opposite, and parallel force through G; 500 lb, from 0 through Ey and an
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e.o.p. force through D; KXK) lb, from G through L, and an e.o.p. force through K.
Find the resultant.

213 . Insert the following forces in Fig. 102: 24 tons, from D through F, and an
equal, opposite, and parallel force through C; 20 tons, from I through G, and an
e.o.p. force through O; 8 tons, from L through A, and an e.o.p. force through 0.

Find the resultant. Ans. +32 ft-tons; in any plane perpendicular to the ^'-axis.

214 . Insert the following forces in Fig. 99, Art. 45: 91 lb, from E through F,

and an equal, opposite, and j^arallel force through K) 50 lb, from J through and
an e.o.p. force through D] GO lb, from A through I, and an e.o.p. force through B)

80 lb, from A through D, and an e.o.p. force through F. Find the resultant.

216 . Find the resultant of the following system: 80 lb, upward, coinciding with

the i/-axis, and an equal, opposite, and parallel for(‘c through the point (0, 0, +3');

50 lb, from (0, +4', 0) through (+3', 0, 0), and an e.o.p. force through (+7', 0, 0);

65 lb, from (+4', +6', 0) through (0, +3', +12'), and an e.o.p. force though
(-5', +3', 0). Ans. 689 ft-lb; = 52*" 25', Oy = 14U 40', = 82° 55'.

47. Resultant of the Non-Coplanar Parallel System. Principle of

Components. The algebraic sum of the forces of a non-coplanar parallel

system is equal to the resultant of the system, if the resultant is a single

force; and is equal to zero, if the resultant is a couple.

Y

Proof. In Fig. 103, let Pi, P2 , Ps, and P^ represent any non-coplanar

parallel system. The s-axis has been placed parallel to the forces.

Let P' represent the resultant of Pi and ^2 - P' is coplanar with, and

parallel to, Pi and P2 ,
and Ls equal to their algebraic sum.

P' could now be compounded with P3, giving a second resultant, P'',

which would be not only the resultant of P' and P3, but also the re-

sultant of the three original forces, Pi, P2, and P3, and would be equal

to their algebraic sum.

If it were found that P" and the remaining original force, P4, were

equal, and opposite in sense, they would constitute a couple. The
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couple would be the rcKSultant of the original system. Then the alge-

braic sum of P" and P4 would be zero; therefore, the algebraic sum of

the forces of the original system would be zero.

If P" and P4 were not equal and opposite they could be further com-

pounded into a single force, which would be the resultant of the original

system. It would be equal to the algebraic sum of the forces of the

system and would V)e parallel to them.

Principle of Moments. The algebraic siim of the moments of the forces

of a non-coplanar parallel system, about any axis at right angles to the

forcos of the system^ is equal to the moment of the resultant about that axis.

Proof. In Fig. 103, the point B is on the a:-axis, and is also in the

plane containing Pi and P2. By Art. 33, the moment-sum of Pi and

P2, about B, is equal to the moment of their resultant, P\ about that

point. If this relation is written in the form of an equation, and is

multiplied through by the sine of angle OBA
,
it will be proved that the

moment-sum of Pi and P2 about the x-axis is equal to the moment of P'

about that axis. With this result as a basis the principle of moments
can be established for the entire system, by a process of reasoning

similar to that used above in connection with the principle of compo-

nents.

In the case in which the resultant is a couple, the phrase moment
of the resultant is interpreted as meaning the moment-sum of the

iorces of the resultant couple about the chosen axis.

The principle of moments could be generalized to include any axis,

but axes perpendicular to the forces are more convenient and can be

employed in the great majority of cases.

Application. First, the algebraic sum of the forces is calculated.

If this sum is not zero, the resultant is a single force, and its magnitude

and sense are shown by the result of the summation. Two coordinates

are necessary in showing the position of the line of action of the resultant.

These are calculated by means of the principle of moments.

If the summation of the forces is zero, the resultant, if one exists, is

a couple and lies in a plane parallel to the forces of the system. The
components of the vector of the resultant couple are found by calcu-

lating the moment-sums of the forces of the system about two axes at

right angles to the forces. The vector of the resultant couple can then

be found.

If the moment-sums about two non-parallel axes at right angles to

the forces are equal to zero the system has no resultant and is in equi

librium.
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Illustrative Problems

216 . Find the resultant of the four non-coplanar parallel forces shown in

Fig. 104. The forces are parallel to the g-axis and pierce the xy-plane at the

points shown.

Solution. First, calculate the algebraic sum of the forces.

R « +100 - 700 + 500 - 300 - -400 lb

Y

Fig. 104

It is now known that the resultant is a single force, of 400 lb, parallpl to the

forces of the system, and that it acts in the negative direction (away from

the reader). Calculate the moment-sum of the forces, about the y-axis.

SMy = -100X10- 700 X 8 + 500 X 4 + 300 X 6 = -2800 ft-lb

It is now known, by the principle of moments, that the resultant lies in such

a position that it has a negative (clockwise) moment of 2800 ft-lb about the

2
/-axis. Now calculate the moment-arm of the resultant, without regard to

This shows that the line of action of R is 7 ft from the 2/-axis.

Ascertain whether R lies to the right or to the left of the y-axis by the

following process; R acts away from the reader (Fig. 104), and has a clock-

wise moment about the y-axis. To fulfill these requirements it must lie to

the left of that axis.

Now calculate the moment-sum of the forces about the x-axis.

SMx « +100 X 8 - 500 X 7 + 300 X 2 = -2100 ft-lb

2100
3-E -3 —

-

R 400
SAf* = R X iys) vr
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Since the resultant acts away from the reader, and has a clockwise moment

about the a:-axis, its line of action must lie above that axis.

Summarizing, the resultant of the given system is a single force of 400 lb,

parallel to the 2:-axis, negative in sense, and piercing the xy-plane at the

point (--7', +5.25', 0).

217. Find the resultant of the four non-coplanar parallel forces shown in

Fig. 105. The forces are parallel to the 0-axis.

Solution. Calculate the algebraic sum of the forces.

R = +4.5 - 3.5 + 2.0 - 3.0 = 0

This shows that the resultant, if one exists, is a couple.

Calculate the moment-sum of the forces about the x-axis, and also about

the y-axis.

C* = +4.5 X 8 - 3.5 X 5 - 2.0 X 9 + 3.0 X 10 = +30.5 ft-tons

Cy = -4.5 X 8 - 3.5 X 8 + 2,0 X 7 = -50.0 ft-tons

Cx and Cy, the vectors of the x- and ^/-component couples, have been shown

at 0, in Fig. 105. Compound Cx and as follows:

C = Vd + d C = v (30.5)2 + (50)** = 68.6 ft-tons

C 30 5
COS Ox cosex-=~ = 0.520 Sx *= 58® 40'

C 58.6

Figure 105 shows Cx, Cy, and C in their correct relationship. Summarizing,

the resultant of the system is any couple having a moment of 58.6 ft-tons,

lying in any plane at right angles to the vector C, and whose rotational

tendency agrees with that indicated by the curved arrow, Fig. 105.
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PROBLEMS

218 . The following forces are parallel to the 2-axis and pierce the ajiz-plane at the

points indicated: -f200 lb (4-10', 4-8'); —300 lb (4-5', —8'); 4-400 lb (-10',

-3'); -500 lb (-7', 4-8'). Find the resultant. Am. -200 1b; (0,4-6').

219 . The following forces are parallel to the 2-axis and pierce the xy-plane at the

points indicated: —2 tons (4-12', 4-10'); 4-4 tons (-fO', —8'); 4-6 tons (—8',

—2'); —8 tons (
— O', 4-4'). Find the resultant.

220 . The following forces are parallel to the 2-axis and pierce the Xiy-plane at the

points indicated: +050 lb (+0', +6'); +800 lb (+3', -5'); -1000 lb (+6',

—8'); —9501b (
— 4', +2'). Find the resultant. Am, —5001b; (

— 8.2', —12').

221. The following forces are parallel to the 2-axis and pierce the xy-plane at the

points indicated: —10 tons (+0', +15'}; +12 tons (
— 5', +3'); —0 tons (—6',

—8'); +16 tons (+ 12', 0). Find the resultant.

222. The following forces arc parallel to the 2-axis and pierce the xy-plane at the

points indicated: -20001b (+ 16', +4'); +4000 Ib (0, -lO'); +6000 lb (-12', 0);

—80001b (
— 13', —6'). Find the result-

ant.

223 . The following forces are parallel

to the 2-axis and pierce the 2:?/-plane at

the points indicated: —100 lb (
— 7',

-7'); +300 lb (-5', +7'); +500 lb

(+6', -4'); -700 lb (+ 10', +4').

Find the resultant, A couple;

C = 5200 ft-lb; - 112° 40'; = 90°.

224 . The process of locating the center

of gravity of a body is similar to that of

locating the resultant of a system of par-

allel forces. Figure 106 represents a homo-

geneous body. Divide the body into rectangular prisms and calculate the volume

of each. Represent each volume by a vector parallel to the 2-axis, positive in sense,

passing through the center of gravity of the prism. The resultant of these vectors

will pass through the center of gravity of the entire body. Find the a?- and y-

coordinates of the center of gravity by locating the resultant. Then turn the

vectors until they are parallel to the a'-axis, and find the 2-coordinate by a similar

process. Am. (+6.8", +3.75", +8,3").

48. Resultant of the General Non-Coplanar System. This is the

general force system, free from all geometric restrictions. The method

of compounding this system, as it will be developed, is an adaptation of

methods previously used in this book.

Theory. In Fig. 107, let Pi represent one of the forces of any general

non-coplanar system. Let any convenient set of rectangular coordi-

nate axes be introduced.

Insert at 0 two forces, P[ and P[\ opposite to each other in sense,

parallel to Pj and equal to it in magnitude. Since P[ and Pi are in

themselves balanced, their insertion does not change the effect of the

system.

Careful attention should now be paid to two significant facts: namely,

Y

Fig. 106
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the fact that Pi and Pi are equal, opposite, and parallel, thus consti-

tuting a couple; and the fact that in addition to the couple there is a

single force, P(, which acts through 0, but which otherwise is an exact

duplicate of the original force, 7^i.

Now let it be imagined that the remaining forces of the original sys-

tem (not shown in the figure) are treated precisely as was Pi, the point

0 being utilized in each case. The original system is thereby trans-

formed into two elementary systems, namely, a system of non-coplanar

Fig. 107

couples, and a non-coplanar concurrent system of forces acting through

the point 0. The resultants of these two systems can then be found by

the methods developed in Arts. 41 and 46.

The resultant of a concurrent system is a single force, and the re-

sultant of a system of couples is a couple. Therefore, the process

described above will eventuate in a resultant single force through 0,

and a couple in space. Ordinarily, further composition would not be

possible, and a full description of the single-force resultant at 0, and

of the vector of the resultant couple, would be considered as completing

the solution.

Application, The actual steps in the solution of a problem follow

the foregoing theory, except that the various forces which are introduced

at 0 in the explanation of the theory need not be shown or dealt with

in an actual solution.

For example, in compounding the concurrent system at 0, the x-, y-,

and e-components of its forces are needed. Each force is the duplicate

of one of the original forces. Therefore, it is merely necessary to calcu-

late the components of the original forces, and the solution can proceed

without the necessity of showing the concurrent system on the figure.
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Also, in compounding the syst/em of couples, the components of the

vector of each couple are needed. In Art. 45 it is shovoi that the com-

ponent of a couple-vector, along any axis, is equal to the moment.-sum

of the forces of the couple about that axis. Each of the couples has

a force passing through 0, such as P'/y Fig. 107. The moment of this

force is zero, about each of the coordinate axes. Therefore, the mo-
ment-sum of the two forces of the couple is equal to the moment of the

one belonging to the original system. It follows that the components

of the couple-vectors can be found by calculating the moments of the

original forces, about the coordinate axes. The forces acting at 0
need not be shown.

Further Simplijimtion. If the following equation is satisfied, the

resultant single force at 0 is parallel to the plane of the resultant couple:

Rx X C:c + Ry X Cj, + Rz X C, = 0 [21]

in which Rxy Ryy and Rz are the components of the resultant single force

and Cxf Cyj and Cz are the components of the vector of the resultant

couple.

In such a case, the resultant couple can be stiifted into a parallel

plane containing the resultant single force, and the two can then be

compounded into a final resultant single force by the method of Art. 37.

Y

Illustrative Problem

226. Find the resultant of the four non-coplanar forces shown in Fig. 108.

Solution, Resolve each of the forces into its x-, i/-, and z-components.

From the figure, AC = V(12)^ + (3)^ + (4)^ = = 13 ft.

Piv^O Pu=-401b

Pste«+100X|» + 601b P2y=0 P2;,-+100xi-+80ib

Pjx « 0 Psy = ““ 105 lb Psz^O

Pi^^-iaoxii^'-l^oib P4y«-hl30xA*-f 301b P4, = -i-130X^ = +401b
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Resultant of the Concurrent Forces at 0. The point 0 will be chosen as the

point of concurrence for the system of single forces.

Kx = 0 + 60 + 0 - 120 = -60 lb

= 0 + 0 - 10.5 + 30 = -75 lb

R, = -40 + 80 + 0 + 40 = +80 lb

R = V^TW+~^i ft = V(60)- + (75)"= + (80)== = 125 lb

Rx 60
cos Ox = — cos 6x — = 0.480 = 61° 20'

R 125

A Pj/
cos Oy = cos By =

75
- 0.600 By = 53° 10'

^ R 125

Rz SO
cos ™ cosBz — - 0.640 b00uOII

<5b

R 125

Figure 109 shows Rx, Ry, Rgy and R in their correct positions with reference to

the coordinate axes.

Y

Resultant of the Non-Coplanar Couples. Calculate the components of the

vector of each couple by calculating the moments of the forces of the couples,

about the coordinate axes. Resolve P2 at B, and P4 at Ay for this purpose.

Cu = 0 Cl,, - +40 X 12 = +480 ft-lb Cu » 0

C2* = +B2* X 2 = +80 X 2 == +160 ft-lb

C2y = -P2, X 6 = -80 X 6 = -480 fUb

C2, « -P2* X 2 = -60 X 2 - -120 ft-lb

Cs* =* 0 Czy == 0 Cgf = 0
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Cix ~ X 2 — “1-40 X 2 = “p80 ft-lb

C4„
= -P4* X 12 40 X 12 = -480 ft-lb

Cu = +P4X X 2 + P4„ X 12 = +120 X 2 + 30 X 12 = +600 ft-lb

Now calculate C, the vector of the resultant couple.

Cx = 0 + ICO + 0 + 80 = +240 ft-lb

Cy = +480 - 480 + 0 - 480 = -480 ft-lb

C, = 0 - 120 + 0 + COO = +480 ft-lb

C = VcTfcf+ct C = V (240)2 + (480)2 + (480)^ = 720 fUb

C 240
cos ^ ^

C 480
cos dy = — COS = — = O.C67 By = 48“ 10'

C 720

* C 480
cos dz

- cos 6z - = 0.667 6^ = 48° 10'

Figure 110 shows Cx, Cy, Cx, and C i

vectors having been placed, for conven-

ience, at 0. Now substitute in Eq. 21,

to ascertain whether the resultant

force is parallel to the plane of the

resultant couple.

(-60) X (4-240) 4- (-75) X (-480)

4* (4-80) X (4-480) = 60,000

Equation 21 is not satisfied; there-

fore, the system cannot be simplified

further.

Summarizing, the resultant of the

given system consists of a single force

of 125 lb, acting through 0 in the man-

ner indicated in Fig. 109; and any

couple having a moment of 720 ft-lb,

lying in any plane at right angles to

the vector C shown in Fig. 110, and

having the rotational sense indicated

by the curved arrow.

their correct relative positions, the

Y

PROBLEMS

226 . Find the resultant of the following system: 600 lb, acting from the point

(4-10', 4-10', 0) through the point (4-10', 0. 0); 750 lb, from (0, 4-5', 0) through

(0, 4-2', 4-4'); 900 lb, from (4-8', 4-2', 4-4') through (0, 4-10', 0); 1500 lb, from
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(0, 0, 0) through (0, 0, +10'). Ans. 1950 lb, = 107° 56', 9„ =• 103° 20', «, =
22° 40'; no couple.

227. Find the resultant of the system shown in Fig. 111. Ans, 50 tons, $x ==

126^50', = 12^50'; 170 ft-tons, (9;^ - 58° 05', 0y«134°55',
* 118° 05'.

228. Find the resultant of the following system: 300 lb, acting from the point

(0, -|-12', 4" 15') through the point (0, -f 12', 0); 400 lb, from (+ 16', 0, 0) through

(0, +12', 0); 320 lb, from (0, -18', +15') through (+ 10', -18', +15'); 480 lb,

from (+16', 0,0) through (0,0,0); 500 lb, from (+16', +12', 0) through (0,0,

+15').

229. Find the resultant of the following system: 5 tons, acting from the point

(0, +4', 0) through the point (0, 0,
— i'); 6 tons, from (0, —5.5', 0) through

(0, -5.5', +10'); 12 tons, from (0, 0, 0)

through (+12', 0, 0); 13 tons, from

(+ 12', 0, 0) through (0, +4', -3').

230. Find the resultant of the fol-

lowing system; 275 lb, acting from the

point (0, 0, 0) through the point (+12',

0, 0); 300 lb, from (0, +12', 0) through

(0,0,0); 500 lb, from (0, +3', +8')

through (+6', +3', 0); 575 lb, from

Y

Fig. Ill Fig. 112

(+12', +12', 0) through (0, +12', 0); 8501b, from (0, +12', +8') through (+12',

+3', 0). Ant. 1250 lb, 9* “ 61° 20', 9, = 126° 50', 9, = 129° 60'; 7680 fUb,

9, = 108° 15', By = 20° 15', 9. = 99° OO'.

231. Find the resultant of the syTitem shown in Fig. 112.

2S2. Find the resultant of the following system: 120 lb, acting from the point

(+15', —9', 0) through the point (+15', —9', —lO'); 200 lb, from (0, —12', 0)

throu^ (+15', -12', 0); 160 lb, from (0, 0, +9') through (0, +12', 0); 250 lb,

from (0, +12', +9') through (+20', 0, 0). Ans, a single force of 500 lb, acting

from point (0, 0, +9') through point (+12', 0, 0).

49. The Principle of Moments for Two Concurrent Forces; General

Case. The algebraic sum of the moments of two concurrent forces^ ahoui

any axis, is equal to the moment of the resultant about that axis.

Proof. A special case of the foregoing principle, limited to a center

of moments lying in the plane of the two forces or to an axis of moments

at right angles to that plane, was discussed in Art. 27. It now be-
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comes desirable to extend the principle to include any axis of moments.

In Fig. 1 13, let F, Q, and R represent any two concurrent forces and

their resultant. The point of concurrence is at 0. Let the line BC
represent any axis of moments. Let the x^-plane be so placed as to

contain the line BC and the point

of concurrence, 0. Let the line OA
be drawn, at right angles to BC.

If P, Q, and R are resolved, at 0,

into their x-, y-, and 2-components,

all the X- and 2-components wnll in-

tersect BC and their moments about

that line will be zero. Consequently

the moments of P, Q, and R about

BC will be equal to the moments
of their ^-components alone. Since

the line OA is at right angles both Pio ^3
to the 2/-axis and to PC, its length

will be the moment-arm of the ^-component in each case. Therefore,

taking moments about PC,

MR^RyX {OA) Mp = Py X {OA) Mq ^QyX {OA) [22]

The foregoing equations may be written as follows:

R = p ^ MjL 0 [231
" (0^) '' {OA) {OA)

By the principle of componente, Art. 41,

Ry =^Py + Qy [24]

Substituting in Eq. 24 the values of Py, Py, and Qy given by Eq. 23,

Mr = Mp -|- Mq [25]

This proves the j)rinciple of moments in the general form, as set forth

at the beginning of the article.

60. General Nature of the Principles of Composition. The Principle

of Components. The algebraic sum of the components of any system^ along

any axis^ is equal to the component of the residtant alung that axis.

The Principle of Moments. The algebraic sum of the moments of the

forces of any system^ about any axis, is equal to the moment of the resultant

about that axis.

Proof. It was shown in Art. 48 that any force system can be re-

placed, without change of effect, by a system of concurrent forces and

a system of couples. An examination of Fig. 107, which shows the
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method used, leads to the conclusion that the component-sum of all the

forces of the two latter systems, along any axis, is equal to the com-

ponent-sum of the forces of the original system along that axis. A
similar conclusion ('an be reached with regard to the moment-sums.

Consequently, if the principle of components and the principle of

moments are valid for a non-cojdanar concurrent system and for a sys-

tem of non-coplanar couples, with reference to any axes, they are valid

for any system.

The principle of components was proved for a non-coplanar concurrent

system in Art. 41. It is also valid for a system of non-coplanar couples

because of the fact that the component-sum of the forces of a couple or

of any number of couples, along any axis, is equal to zero.

The principle of moments was proved for two concurrent forces, with

reference to any axis, in Art. 49. That })roof can readily be extended

to include any concurrent system by compounding the forces of the

system in pairs. That the principle of moments appli(is to a system of

non-coplanar couples should be clear from a study of the methods used

in resolving and in compounding such couples in Arts. 45 and 46.

Tlierefore, these two important principles are valid for any force

system, and the choice of axes is unlimited. The ability to make un-

restricted use of these principles is of value in .subseciuent discussions.



CHAPTER IV

EQUILIBRIUM OF COPLANAR FORCE SYSTEMS

61. Meaning and Physical Significance of Equilibrium. The situa-

tion that exists when a system of forces has no resultant is described by

stating that the system is in equilibrium. Such a system is also referred

to as a balanced system. When the entire system of external forces

acting on a body is in equilibrium, the body also is referred to as being in

equilibrium.

In the study of kinetics it is learned that, when the external forces

acting on a given body arc in equilibrium, one of the following situations

exists

:

(a) The center of gravity of the body moves in a straight line at

constant speed, and the angular velocity of the body is constant.

(b) The center of gravity of the body moves in a straight line at

constant speed, and the angular velocity of the body is zero.

(c) The center of gravity of the body is at rest, and the angular

velocity of the body is constant.

(d) The entire body is at rest.

Conditions (a), (6), and (c) are usually classified under kinetics. Con-

dition (d) is the status for the entire subject of statics.

The foregoing conditions are also correct when stated conversely,

as follows: Whenever the center of gravity of a body is at rest, or

moves in a straight line at constant speed, and the angular velocity

of the body is constant, or zero, the external forces acting on the body

are in equilibrium. In all other motions the external forces are un-

balanced.

62. The General Graphic Conditions for Equilibrium. If a coplanar

force system is in equilibrium the following conditions exist:

() The force 'polygon closes^ and

() The funicular polygon closes.

These two statements can be recognized as the principle of components

and the principle of moments, for the special case in which no resultant

exists, expressed in the language of graphics.

The two principles also are valid when stated conversely, if com-
93
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bined as follows: If both the force polygon and the funicular polygon

dosCf the system is in equilibrium.

53. The General Algebraic Conditions for Equilibrium. A force

system in equilibrium has no resultant; therefore the principle of com-

ponents and the principle of moments may be stated as follows:

The Principle of Components. When a system of forces is in equilib-

rium, the algebraic sum of the components of the forces, along any axis,

is equal to zero.

The Principle of Moments. When a system of forces is in equilibrium,

the algebraic sum of the moments of the forces, about any axis, is equal

to zero.

The two principles are also valid when stated conversely, if combined

as follows: If the algebraic sum of the. components of the forces, along any

axis, is equal to zero, and if the algebraic sum of the moments of the forces,

about any axis, is equal to zero, the system is in equilibrium.

64. General Features of Graphic Solutions. The solution of a prob-

lem in equilibriinn, by the graphic method, consists in plotting to scale

all the forces that are completely known, and then in finding the un-

known quantities by closing the polygon. If necessary, the funicular

polygon also is plotted and made to close, in order to supply addi-

tional information needed for the proper closing of the force poly-

gon.

The term equilibrium polygon ''
is appropriate for a clasod funicular

l>olygon.

66. General Features of Algebraic Solutions. The fact that the body

is in equilibrium is usually known in advance. Some of the external

forces will be completely known; the others will be partially or wholly

unknown. In problems of a practical nature a force is seldom wholly

unknown; usually the position of at least one point on its line of action

is known.

Magnitudes of forces, angles of inclination, and coordinates of points

on lines of action constitute the unknown quantities requiring for their

determination the use of the principles of statics. The sense of an

unknown force is determined by the sign obtained when the magnitude

is found, and does not of itself constitute an additional unknown
quantity.

The algebraic solution of a problem in the equilibrium of forces

consists in the formation and solution of equations based on the two

fundamental conditions stated in Art. 53. Sometimes, additional re-

lations obtained from the laws of friction, elasticity of materials, or

from other empirical sources are necessary to a complete solution.

The principle of components and the principle of moments are always
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valid, but at times certain special methods are of advantage. The more
important of these special methods will be pointed out in subsequent

discussions.

66. The Free-Body Diagram. In the solution of a problem each body
which is to be subjected to analysis should be represented in a separate

sketch. In order to preserve the simplicity of the sketch all other

bodies are omitted
;

onl}^ the forces exerted by them on the given body
are shown. Such a sketch is called afree-body diagram.

All the kno^vn characteristics of the external forces acting on the

given body must be shown correctly on the free-body diagram. All the

unknown characteristics are then assumed, and are shown definitely on

the sketch in conformity with the assumptions, even though consider-

able doubt may exist as to their correctneas. This procedure provides

a complete and definite figure on which to base the solution. As will

be seen, the results can be made to reveal the correctness or incorrect-

ness of the various assumptions.

Failure to draw a complete and definite sketch before the analysis is

attempted is a prolific source of error in the solution of the problems

of mechanics.

67. Limitations in the Matter of Equilibrium Equations. There is

a definite limit to the number of independent equations that can be

written for each type of force system, whether these equations are to be

used in finding the resultant of the system, or in finding the unknown
quantities in a problem involving a balanced S3"stem. Any equations

beyond this standard number would be dependent; in other words,

they would be mere repetitions of relations involved in the equations

already written.

The maximum numbers of independent equations that the principles

of statics can furnish in problems involving the various force systems

are as follows: the collinear system (1); the coplanar concurrent sys-

tem (2); the coplanar parallel system (2); the general coplanar sys-

tem (3); the non-coplanar concurrent system (3); the non-coplanar

parallel system (3); the general non-coplanar system (6).

With a proper selection of axes, any or all of these equations may be

of the moment-sum type. In some cases, however, they may not all be

of the component-sum type. The following list gives the maximum
numbers of equations of the component-sum type that can be of use in

the calculation of the unknown quantities: the collinear system (1);

the coplanar concurrent system (2); the coplanar parallel system (1);

the general coplanar system (2) ;
the non-coplanar concurrent system

(3); the non-coplanar parallel system (1); the general non-coplanar

system (3).



90 EQUILIBRIUM OF COPLANAR FORCE SYSTEMS

68. Selection of Axes. In general, axes of resolution for component-

sum equations and axes of moments for moment-sum equations should

be selected in such a manner as to yield the simplest possible solution.

With each force system, however, there are certain combinations of axes

that will not yield independent equations. It is possible to formulate

rules by which such contingencies can be avoided, but such rules are

difficult to memorize.

It may be stated that when the component-sum of the forces along a

chosen axis has been placed equal to zero it is simply an expression

of the fact that the resultant, if the system possessed one, could have

no component along that particular axis. Similarly, a moment-sum
equated to zero expresses the fact that the resultant has no moment
about the chosen axis. Al‘ter one equation has been vTitten, each

succeeding equation must express some essentially new fact that further

restricts the possibility of the existence of a rei>ultant, and must not

sunply expreas a relation that would follow from the eciuations already

written.

Fortunately, in the methods of solution that present themselves most

naturally to the mind, the danger of so choosing the axes that the re-

sulting equations will not be independent is comparatively small.

The ability to find the simplest solution is best cultivated by solving

each problem by several methods and comparing them, until the judg-

ment is developed to the point where one can feel confident of his

ability to choose an efficient solution by means of a rapid inspection of

the general features of the problem.

69. Statically Indeterminate Cases. Any quantity that cannot be

found without the use of principles beyond the scope of the subject of

statics is called a statically indeterminate quantity. The law's of

friction are usually included in the subject matter of statics, but laws

relating to elasticity are generally reserved for consideration in strength

of materials. Many quantities that are statically indeterminate can

be foimd with the assistance of the laws of elasticity. The principles

of statics are valid in any case in which the forces are in equilibrium, but

in a statically indeterminate case these principles alone are insufficient

for a complete solution. In any event it should be remembered that it

is futile to write equations of equilibrium in excess of the standard

number, except for the purpose of checking.

A few problems involving statically indeterminate cases will be given

in this book, but partial answers will be included in the statements of

the problems, making it possible to complete the solution by the prin-

ciples of statics.

Complete treatments of the important cases in engineering practice
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involving statically indeterminate quantities are found in many books

on higher structun^s.

60. Equilibrium of the Collinear System. The algebraic method of

solving a problem involving a collinear force system in equilibrium

consists in forming an equation by placing the algebraic sum of the forces

equal to zero, and then solving for the unknown quantity.

Such an eciuation is in fact an application of the principle of com-
ponents, in which the rcisolution of the forces is rendered unnecessary

by placing the axis parallel to the forces of the system. The use of

the principle of moments would not be advantageous in this case.

The graphic nK'thod would have little to recom-

mend it in connection with the collinear system.

Special Condition. Two forces, to he in equililh

rium, must he collinear, equal, and opposite in

sense,

PROBLEM

233. Figure 114 represents three blocks arranged in a

pile, in such a manner that the centers are on the same

vertical line. The weights of blocks A, and C are

100 lb, 80 ib, and 60 lb, respectively. A cord, attached to

C, passes over a frictionless pulley and supports a block D weighing 40 lb. Draw
a free-body diagram of each of the four blocks, showing the external forces acting

on each, and calculate the unknown magnitudes.

61. Two-Force Members. The parts of a structure or of a machine

are often referred to as memhers. A member that is found to be sub-

jected to only two external forces, when considered as a free body, is

called a two-force member. If the member is in eciuilibrium the two

external forces are necessarily collinear, equal, and opposite.

In actual fact a member is usually subjected to more than two external

forces. Even in such teases the methods of solution used by engineers

often render it p)ermissible to disregard all but two of the forces.

Figure 115 represents a simple pin-connected framework in equilib-

rium, consisting of two members, AB and CD. The framework sup-

ports a vertical load, P, and is itself supported at the points A and D.

Let it be assumed that the forces caused by the weights of the members
are negligible in comparison with those caused by the load P.

Since the weights of the membem are to be disregarded, AB is a three-

force member, subjected to external forces at A, B, and C; and CD is a

two-force member, subjected to external forces at C and D only.

Figure 116 is a free-body diagram of member CD. The two external

forces acting on CD are in equilibrium; therefore they are collinear,

equal, and opposite. If the connecting pins are on the center line of
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the member the two external forces will coincide with that lin(\ This

leads to the important conclusion that the force exerted on the frame-

work by the support D acts along the line CD. The inclination of this

force thus becomes a knowm quantity. It should be carefully observed,

however, that the force exerted on the framework at A cannot be

assumed to act along AB, since AB is not a two-force member.

The recognition of the fact that certain members are two-force,’^ or

that they may be so considered, alw'ays tends to simplify the solution

of a problem, and often renders determinate a problem which otherwise

would be indeterminate. It is necessary that the student be alert for

the existence of two-force members.

PROBLEM

234. Answer the following questions, proving your answer in each case: In Pig.

129, Prob. 250, is it permissible to assume that the force acting on the crane at A
is collinear with AB*f In Fig. 132, Prob. 253, what assumption is permissible re-

garding the force acting on the crane at C? Would such an assumption be permissi-

ble if the weight of the member CD were to be regarded? Is it permissible to assume

the inclination of the force acting at B7 In Fig. 159, the force supporting the truss

at B is represented as being collinear with BC, Is this permissible? In Fig. 160,

what assumption may be made regarding the inclination of the force at B7 In

Fig, 169, Prob. 297, what assumption may be made regarding the supporting force

at K7 In Fig. 176, what assumption may be made regarding the force at B7

62. Equilibrium of the Coplauar Concurrent System; Graphic Solu-

tion. In the solution of a problem all the forces that are completely

known are plotted, to scale, in a force polygon and then, with the

assistance of whatever information may be available concerning the re-

maining forces, the polygon is made to close.



EQUILIBRIUM OF THE COPLANAR CONCURRENT SYSTEM 99

Since a single force is the only kind of rcvsultant possible to a co-

planar concurrent system, and since the closing of the force polygon

eliminates that possibility, nothing more can be accomplished through

the principles of statics, and the use of the equilibrium polygon is

unnecessary.

Special Condition, If the total number of forces in a system is threCj

and the system is in equilibrium^ the forces are either coplanar parallel or

coplanar concurrent.

Proof. If the three forces were not coplanar, an axis of moments
could be iuserted in such a manner as to intersect two of them, but not

the third. The moment-sum of the three forces about such an axis

would not be zero
;
consequently the forces would not be in equilibrium.

If the three forces were coplanar, but were neither concurrent nor

parallel, their lines of action would intersect in at least two points,

and their moment-sum about any such point of intersection would not

be zero. This shows that equilibrium is impossible unless the three

forces are either parallel or concurrent.

The foregoing special condition for three forces in equilibrium can be

used to advantage in certain types of problems, especially in connection

with the graphic method of solution.

Illustbative Problem

236. Five wires are arranged in a vertical plane as shown in Fig. 117.

Wires ab and be pass over smooth pulleys and carry weights as indicated.

Wire cd carries its load directly. Wires de and ef are anchored. Each pulley

is 15 in. in diameter. Find the tensions in wires de and ef.

Solution. Draw a space diagram, similar to Fig. 117, to a convenient

scale. Plot the known forces, ab = 400 lb, be — 1000 lb, and cd = 300 lb, to

scale, in a force polygon, such as ABCD in Fig. 118.

The force polygon must close when the two unknown forces, DE and EF,
are inserted, since the system is in equilibrium. Therefore, draw a line

through D parallel to de, and a line through A parallel to ef. The missing

point, E, is necessarily at the intersection of these two lines.

By scaling, DE = 575 lb, and EF = 1130 lb. Their senses show that both

wires are under tension. Flexible wires, cables, cords, etc., cannot sustain

compression. If the results had indicated compression in one or both of the

wires the conclusion would have been that the system could not remain in the

position shown in Fig. 117.

PROBLEMS

236. A certain coplanar concurrent system in equilibrium is as follows: 3.4 tons,

dx =- 42® 60'; 2.7 tons, dx = 164® 20'; 1.1 tons, Sx « 321® OO'; 2.6 tons, 0^ • ?

? tons, 0x “ 192® OO'. Find the two unknown quantities.
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£

Fig. 117 Fig. 118

287. A certain coplanar concurrent system in equilibrium is as follows: 3.4 tons,

= 42^ 50'; 2.7 tons, Bx = 164" 20'; 1.1 tons, Br = 321" OO'; 2.8 tons, Bx = ?;

3.0 tons, Bx = ?. Find the unknown angles of inclination.

238. In Fig. 119, the beam A (7 is supported by a smooth pin at A, and by the

tie, BD. Find the forces acting on the beam at A and B, Solve as a concurrent

Fig. 119

system, by the special condition for three forces in equilibrium. Disregard the

weights of the members.

239. A certain coplanar concurrent system in equilibrium consists of five forces,

each of whidb acts from the origin through the point designated: 100 lb (—2, —8);

400Tb (-4, iHJ); 500 lb (+7, +3); Pi (+4, -4); P2 (-8, -3), Find Pi and P2 .

Ml Solve ^.rob. 252, Art. 63, by the graphic method. Utilize the hint given in

titat
,
problem
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63. Equilibrium of the Coplanar Concurrent System; Algebraic Solu-

tion. In the algebraic solution of a problem equations are written,

based on the principle of components or the principle of moments, or

both. The choice of principles and the choice of axes are governed by
the circumstances of each problem.

Special Condition, The special

condition for three forces in equilib-

rium was stated and proved in Art.

62. The use of this condition is

sometimes of advantage in an alge-

braic solution, when the number of

forces in the system is three, or

when the number can be reduced

quickly t/O three by composition.

The force polygon for three forces -X

in equilibrium obviously is a triangle.

A convenient solution often can be

performed by making a freehand

sketch of the force triangle, and

then by solving the triangle by the

methods of geometry or trigonom-

etry.

Illustrative Problems

241. Figure 120 represents a co-

planar concurrent system of five forces

in equilibrium. Find the two un-

known magnitudes, P and Q.

Solution. A quick inspection of the system does not reveal with certainty

the senses of the unknown forces. Assume them to be as shown in the figure.

The use of the principle of components. Art. 53, is preferable in this problem.

From the figure.

XFr = 0

XFy = 0

0+C> X ^ - 1000 X i - P 4- 1170 X 1%

+Q X i4 + 180 -h 1000 X I - 1170 X H = 0

The solution of these equations gives P = —1901b, and Q = -f 340 lb.

The minus sign accompanying P does not mean that P is actually negative,

or toward the left. It means that the sense of P was assumed incorrectly,

and consequently that P acts toward the right. This interpretation of the

signs of results was discussed in Art. 22.

In Fig. 120 a small circle has been drawn around the arrowhead of the vec-

tor representing P. This is to be interpreted as meaning that the sense of

the force was found to be opposite to that assumed and indicated by the
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vector. Such a convention will be used in any similar cases that may occur

in this book.

The fact that the positive sign was obtained with Q shows that Q was

cofMiUly assumed.

,^/242. Figure 121 represents a bar, AR, pin-connected to a wall at R, and

supported by rollers resting on a horizontal surface at A. A load of 500 lb is

applied at C as shown. Find the reactions exerted on the bar by the support-

ing pins at A and B, Disregard the weight of the bar.

Fig. 121 Fia. 122

Solution, Since the weight of the bar is to be disregarded, the total number
of external forces Ls three, and the special condition applies. The forces must
be either coplanar parallel or coplanar concurrent. Because of the rollers,

the force at A is vertical (Art. 14). Since the 500-lb load is not vertical,

the system cannot be parallel; therefore it must be concurrent.

Figure 122 is a free-body diagram of the bar. Pi and the 500-lb load in-

tersect at D; consequently D is the point of concurrence for the system. It

is now known that P2 passes through B and D, and that its inclination can

be ascertained from the geometry of the figure. Assume the senses of Pi and
P2 to be as shown in Fig. 122. From Fig. 122, CD = 6 tan 30° = 6 X 0.577 «
3.46 ft; also, ZBDC — arc tan 4/3.46 ~ arc tan 1.16 = 49° 15^.

Two simple equations now can be formed by the use of the principle of

moments, with the centers of moments at A and B,

SMa « 0 -(Pz cos 49° 15') X 10 + 500 X 6 « 0

SMb « 0 +(Pi sin 30°) X 10 - 500 X 4 » 0
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The solution of these equations gives: Pi == +400 lb, and P2 = +459 lb.

The positive sign was obtained in each case, showing that the sense of each

force was assumed correctly and is as shown in the figure.

243 . Solve Prob. 242 by the method in which the force triangle is sketched,

and solved by trigonometry.

Solution. The method specified is the one suggested in the present article

as an alternative method in problems involving three

concurrent forces in equilibrium.

Figure 123 represents the force triangle. Pi is known
to be vertical, because of the rollers. The angle be- p

tween the 500-lb load and Pi is 60°. The angle d is

equal to the angle BDC in Fig. 122. From Prob. 242,

/.BDC — 6 = 49° 15^. From Fig. 123, by geometry,

a = 180° (60° + d) = 70° 45^ By the law of sines, Fig. 123

from trigonometry,

Pi ^ 500

sin 49° 15' ”
sin 70° 45'

Pi = 401 lb

P2 _ 500

sin 60° ”
sin 70° 45'

P2 = 459 lb

These results are in essential agreement with those obtained in Prob. 242.

PROBLEMS

244. Figure 124 represents a body weighing 3000 lb, suspended by means of wires

from the points A and B. Calculate the tension in each wire. Am, AC =
2400 lb; BC = 18001b.

Fig. 124 Fio. 125

246. Figure 125 represents a homogeneous right circular cylinder weighing 300 lb,

resting in the notch between two inclined planes. Calculate the force exerted on the

cylinder by each plane. Assume the planes to be smooth.
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246

.

Figure 126 represents a portion of a plane roof truss. Calculate the un-

known stresses, Si and S2 . Disregard the weight of the body.

Fig. 126 Fig. 127

247. Figure 127 represents a homogeneous right circular cylinder 24 in. in diam-
eter, weighing 200 lb, resting on a horizontal floor, and in contact with a step 6 in.

high. A horizontal force, P, is applied to the top of the cylinder, and is gradually

increased. Calculate the magnitude of P at the instant when the cylinder is on the

verge of rising from the floor. Ans. 116 lb.

248. In Prob. 247, apply the force P at the center of the cylinder, instead of at

the top, and solve the problem.

Fig. 128 I-^g. 129

249.

Figure 128 represents a truss supported at A and J5, and subjected to a
load of 10 tons, applied as shown. The truss rests on rollers at A. Find the forces
exerted on the truss by its supports.

260. Figure 129 represents a wall crane canying a vertical load of 800 lb. Find
the tension in the cable CD, and the force exerted on the crane by its support at A
Ans. 9241b; 462 lb, = 0.

261 . Figure 130 represents a brake lever supported at A and subjected to a hori-
zontal force of 50 lb at the handle. Find the unknown force Q, and the support-
ing force at A,

262. Figure 131 represents a roof truss subjected to three wind loads acting at
right angles to the roof. Find the forces exerted on the truss by its supports. Rwrt



EiQUILIBRIUM OF THE COPLANAR CONCURRENT SYSTEM 105

find the resultant of the three wind loads by inspection; then solve by the use of

the special condition. Am. A — 3190 lb, Ox == 90^; B — 5020 lb, Ox — 149® 15^.

253. Find the forces exerted on the crane in Fig.

132, by its supports at B and C.

264. Figure 133 represents a cable, ABCD, sup-

porting two loads, Wi and W2 . Ascertain the ratio,

WilW^j necessary in maintaining the cable in the

position shown. If Wi = 2000 lb, calculate the ten-

sion in each portion of the cable.

255. Let Fig. 127 represent a homogeneous right circular cylinder whose weight

is W and whose radius is r. The cylinder rests on a horizontal floor and is in contact

Fia. 132 Fig. 133

with a step whose height is A. A horizontal force, P, is applied to the top of the

cylinder and is gi^dually increased. Derive a formula for the magnitude of P, in

terms of IF, r, and A, at the instant when the cylinder is on the verge of moving.

Solve Prob. 247 by the use of this formula. Am. P —
1/(2^ - 1); 1161b.

n

255. One of the methods of erecting towers for transmission lines is indicated in

Fig. 134. The tower is assembled in a horizontal position and raised into place by
means of a shear legs, OB, straddling the tower. The guy, BC, is drawn in by
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meajis of a block and tackle, and the shear and tower rotate about an axis through

0 at right angles to the plane of the paper. In the present case the distance AB
remains constant. The coordinates of the center of gravity of the tower are (+22',

+2.76'). The tower weighs 1600 lb. The shear legs does not touch the tower. Find

the tension in AJ5, and the reaction exerted on the tower at 0, at the instant when
the top of the tower just clears the ground. Am. 1100 lb; 995 lb, Bx = 42° 45'.

267. Using the data and results of Prob. 25G, find the tension in the guy i?C,

and the reaction exerted on the shears at 0. Disregard the weight of the shears.

64. Equilibrium of the Coplanar Parallel System; Graphic Solution.

The graphic method of finding the resultant of the coplanar parallel

system was described in Art. 32. The force polygon and the funicular

polygon are used for this purpose. If the system has no resultant, it

is clear that both these polygons will close. Consequently, in a problem

in which the system is known to be in equilibrium the two polygons are

plotted and are made to close. The desired information regarding the

unknown quantities can then be obtained from the polygons.

As has been stated, the funicular polygon for a balanced s^istera is

often called the equilibrium polygon.

In some problems the force polygon can be closed before the equilib-

rium polygon is begun, but in others the closing of the force polygon

must await certain information obtained through the closing of the

equilibrium polygon.

Special Condition. In Art. 62 it was shown that three forces, to be

in equilibrium, must be either coplanar parallel or coplanar concurrent.

If, in a problem involving three forces in equilibrium, two of the forces

are known to be parallel, it follows from the special condition that all

three are parallel.
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Illusthative Problem

258. Figure 135 represents a horizontal beam supporting three concen-

trated loads. The weight of the beam, which is 60 lb per lin ft, is also to be con-

sidered. The beam rests on supports at J and K. Find the reactions exerted

on the beam by its supports.

Solution. When a rigid beam simply rests on level supports and sustains

vertical loads only, the reactions at the supports are assumed to be vertical.

The weight of a beam is usually distributed uniformly, and in the calculation

of external forces the weight may be treated as a concentrated load applied

at the middle of the length.

4000 lb. 6000 ib. 12000 lb.

Letter the forces consecutively in a clockwise direction around the beam,

leaving the unknown forces to the last. Plot the known forces in a force

polygon, Fig. 136.
,,
T^his yields the polygon ABODE. The point F, which

will determine the values of the reactions, is as yet unknown.

Start the equilibrium polygon at the point 1, Fig. 135, which may be any
convenient point on the line of action of the unknown reaction, af. Draw the

string ao parallel to the ray AO, intersecting the load ah at point 2. Proceed

in like fashion until points 3, 4, 5, and 6 are located. One more string remains

to be drawn, and since th^plygon must c^e, this last string must be drawn

from point 6 to the starting point l.-'"'This string is called the closing line.

The missing ray in the force polygon will be parallel to this closing line. Draw
it so, through the pole 0. This locates the missing point F in the force poly-

gon. The vector EF represents, in magnitude and sense, the reaction «/, and
the vector FA represents the reaction fa. ^

The sequence of the letters in the

force polygon indicates the sense of the force. Therefore, reaction EF is up-

ward, and reaction FA is downward, ^he latter result shows that the beam
must be anchored to the left-hand support. By scaling, EF = 24,900 lb,

and FA « 1550 lb.
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PROBLEMS

259. Solve Prob. 264, Art. 65, by the graphic method.

260. Solve Prob. 265, Art. 65, by the graphic method.

261. A rigid beam, 12 ft long, rests on two level supports placed at the extreme

ends of the beam. The beam carries three concentrated loads, as follows: 500 lb,

240 lb, and 360 lb, placed at distances of 2 ft, 5 ft, and 9 ft, respectively, from the

left end of the beam. Find the reactions

exerted by the supports.

262

.

Given a balanced system of seven

vertical forces whose magnitudes, from

left to right, are as follows: -f-lOlb; Pi;

-20 lb; -40 lb; P2 ; -f-60 lb; -80 lb.

The distances to the lines of action, meas-

ured from the 10-lb force, are respectively:

2 ft; 4 ft; 8 ft; 9 ft; 11 ft; 13 ft. Find Pi and P2 .

263 . Figure 137 represents a beam with three supports. Beams having more

than two supports are of common occurrence in structures; they are called contin-

uous beams. The reactions cannot be calculated by the principles of statics alone,

since the forces constitute a coplanar parallel system having more than two unknown

quantities (Art. 57). In the present case the reaction at the extreme left-hand sup-

port was calculated by means of a formula from strength of materials, and Ls 992 lb,

upward. Find the reactions at the other two supports.

66. Equilibrium of the Coplanar Parallel System; Algebraic Solution*

The simplest solution of a problem is usually achieved by writing one

equilibrium equation based on the principle of components and one

based on the principle of moments, although moment-sum equations

can be used exclusively, if desired. The axis for a component-sum

equation is naturally taken parallel to the forces of the system. The
equation then expresses the fact that the algebraic sum of the forces

themselves is equal to zero.

Special Condition. The special condition for the equilibrium of a

coplanar parallel system was discussed in Art. 64.

Illustrative Problem
iOOOO ib. 12000 lb.

264. Figure 138 represents an over-

hanging beam, supported at two

points. The beam weighs 50 lb per lin

ft, and sustains two concentrated loads.

Calculate the reactions exerted , on the

beam by its supports, taking into

account the weight of the beam.

Solution, The total weight of the *2

beam is 1000 lb, and for the purposes Fig. 138

of the problem may be treated as 9

single, concentrated force, applied at the center of gravity, G, 2 ft to the

right of A. Assume both reactions. Pi andP2 ,
to be vertical and upward.

40001b.

Fig. 137



EQUILIBRIUM OP TCIE COPLANAR PARALLEL SYSTEM 109

By the principle of moments, with center of moments at R,

SMz, = 0 -Pi X 12 -h 10,000 X 20 + 12,000> 8 + 1000 X 10 = 0

Pi - 25,500 lb -

'

By the principle of components, using a vertical axis,

SP = 0 + 25,500 - 10,000 - 12,000 - lOCK) + Pg = 0

Pa == -2500 lb .

The minus sign accompanying Pa means that the sense of this force was as-

sumed incorrectly. Therefore, Pa acts downward, and the beam must be

anchored to the support in such a manner as to make this possible. As in

Prob. 241, draw a small circle around the arrowhead, to show that the assumed
sense was found to be incorrect.

PROBLEMS

266.

In Fig. 139, calculate the reactions exerted on the beam by its supports.

Disregard the weight of the beam. Am. +2510 lb; +1690 lb.

2000 lb. 1200 lb. 1000 lb.

'

'• I. 5' -f- 6' 4-(— 5'

20
'

Fio. 1,39

266. Solve Prob. 262, Art. 64, by the algebraic method.

267. The beam in Fig. 140 weighs 100 lb per hn ft and sustains two concentrated

loads as shown. Calculate the supporting forces.

Consider the weight of the beam. Ans. —16,300

lb; +39,500 lb.

268. Figure 141 represents a system of pulleys

in which a weight, W, is lifted by means of a

downward pull, P. Assume that the bearings of

the pulleys are frictionless, and that equilibrium

exists. It follows that the tension in any given

piece of the rope is the same at all points (Art. 14).

Calculate W in terms of P.

5000 ib. 16000 lb.
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269. Solve Prob. 258, Art. 64, by the algebraic method. —1570 lb;

-f24,900 lb.

270. The beam in Fig. 142 weighs 25 lb per lin ft. There is an additional uniform

load of 300 lb per lin ft over a portion of the length, as shown, and a single, concen-

trated load. Calculate the reactions exerted by the supports.

1600 lb.

Fig. 142

271

.

In the system of pulleys shown in Fig. 143, calculate P in terms of W.
Make assumptions similar to those in Prob. 268. Ans. W = 4P.

272.

f igure 144 represen rs a continuous beam
having four supports and overhanging the left-hand

support. Tliere is a uniform load of 400 lb per lin ft

over the entire beam. By strength of materials the

reactions at A and 1) were found to be 8700 lb and

^ 3300 lb, respectively, both upward. Calculate the other

f
j

two reactions. Ans. d-4500 Ib; +7500 Ib.

^ 273. In the system of beams and pulleys shown in

Fig. 145 a load of 1 ton is lifted by means of a down-
^^

, r

ward pull, /^ Each pulley is 1 ft in diameter. Calcu-

late P, and the reaction exerted on the beam at A.
P Make assumptions similar to those in Prob. 268.

1 ton

274. Figure 146 shows the

principle of the weighing system
of a certain materials-testing ma-
chine. P represents the force

applied to the specimen. W
represents the weight of the

poise. Wlien the poise is at 0
it just balances the dead weight,

with no load on the specimen.

Derive a formula for the ratio

P/W, in terms of the lengths of

the various lever arms. Am.
P/W « 2ABCD/abiCd + cD).Fig. 145
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276. A certain bridge span, supported at the ends, is 180 ft long. The locomo-
tives and train described in Prob. 117, Fig. 52, have stopped on the span with the
foremost wheel 10 ft from the forward end of the span. Calculate the reactions at

the two supports. The loads given in Prob. 117 rc^present axle loads; therefore, the
reactions obtained are the total reactions for the span, and not for any individual

truss or girder. Am. -f- 312 tons; -j-297 tons.

66. Equilibrium of the General Coplanar System; Graphic Solution.

In the graphic solution of a problem involving the general coplanar

system in equilibrium the unknown quantities are found by constructing

a force polygon and an equilibrium polygon, and by causing both to

close. In exceptional cases the force pob^gon can be closed before the

equilibrium polygon is begun, but usually the force polygon cannot be
closed until certain additional information is obtained through the

construction of the equilibrium polygon.

Special Conditions. If the total number of forces in the system is

three, the system must be cither concurrent or parallel (Art. 62), and
frequently can be handled more easily under one of these classifications.

If the total number of forces is four, it may be possible to save a

certain amount of time by utilizing the fact that the resultant of any
portion of the system must balance the resultant of the remaining por-

tion. This condition is true, of course, for any system in equilibrium.

Illustrative Problems

276. Figure 147 represents a Pratt roof truss, symmetrical in design. The
five loads shown are wind loads and are at right angles to the roof surface.

The loads are spaced at equal distances. The truss rests on rollers at J5, and
is fastened at A by means of a smooth pin. Find the reactions exerted on the

truss by its supports.
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Solution. Plot the known forces in a force polygon (Fig. 148), to a conven-

ient scale. This gives that portion of the polygon represented by ABCDEF.
It is desirable to select the forces in the order in which they are encountered

in passing around the diagram of the truss. The order used in Figs. 147 and

148 is that which results from passing around the truss in a clockwise direc-

tion. Next in order comes the reaction at B, designated as fg. Since it is

known that this reaction is vertical, it will be represented in the force polygon

by a vertical vector drawn through F. The magnitude of this vector is, as

yet, unknown; consequently, the position of the point G remains to be found.

Select a pole, 0, and draw the known rays. Nothing is known about the

remaining reaction ga, except that it must pass through the center of the pin,

at A. Since A is the only known point on the line of action of goy it must be

chosen as the point of resolution for that force. In other words, the equilib-

rium polygon must be started at A. Draw the string ao parallel to the ray

AOy the string bo parallel to the ray RO, etc. This process is continued until

the point 7, on the line of action of fg, is located. One more string remains

to be drawn, and, since the equilibrium polygon must close, it must be drawn
from 7 through A. This is the closing line of the equilibrium polygon. The
missing ray, GO, in the force polygon, must be parallel to this closing line.

Draw a line through 0 parallel to th^ closing line, and locate the intersection

of this ray with the vertical line previously drawn through F. This inter-

section is the missing point G. Since the force polygon also must close, the

vector GA represents the reaction ga, in magnitude, inclination, and sense.

The magnitudes of the two reactions, as found by scaling their lengths in

Fig. 148, are as follows: ga - 9300 lb, fg = 7450 lb. From the beginning
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it has been obvious that Jg is upward, and that ga is upward and to the right.

The sequence of the letters in the force polygon agrees with tliis observation.

277. Figure 149 represents a transverse bent in a steel-frame mill building.

The six loads shown arc wind loads, each one acting at 90° to the surface to

which it is applied. The bent is supported on pin-bearings at M and iV, but

no rollers are used. The reactions are statically indetenninate. The hori-

zontal components of the reactions are frequently assumed to be equal. This

brings the problem within the scope of statics. Find the horizontal and the

vertical components of the reactions.

Solution. Letter the forces in the clockwise direction around the structure,

starting with the first known force, the 3800-lb load. Leave the vertical

components of the reactions to be lettered last. Plot the portion, ABCDEFG,
of the force polygon, as in Fig. 150..^/ Draw a horizontal line through G, and

a vertical line through A. This locates /. Since GH and HI are to be as-

sumed equal, the point ft will be at the center of the line GI. The point /,

which divides the two vertical components of the reactions, remains to be

located.

.

Plot the equilibrium polygon, starting at point 1, on the line of action of ja,

and ending at point 9, on the line of action of ij. Since gh and hi are colUnear,

the ray OH, in Fig. 150, is not used.-

Draw the closing line jo, of the equilibrium polygon, through points 9 and 1.

The missing my, JO, must be parallel to this closing line. Draw it so, thus

locating the point J, and completing the solution.

The magnitudes of the components of the reactions, as obtained by scaling,

are as follows: gh = hi = 7250 lb; ij
~ 6370 lb; ja = 2500 lb.

PROBLEMS

278. Figure 151 represents a beam supported by a pin-connection at B and by

a roller at A. Three concentrated loads are applied as shown. Disregard the

weight of the beam, and find the reactions exerted on the beam by its supports.
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279.

Figure 162 represents an unsymmetrical roof truss. Three wind loads are

shown, acting at right angles to the roof surface. The truss is supported by a pin-

bearing at M, and by rollers at M, Find the reactions.

Y

I 4- 100 lb.

Fig. 154

280. Solve Prob. 279, with the rollers transferred to the left-hand support.

281. Figure 153 represents a bridge portal, supported by pin-beaiings at M and
Nj and subjected to a single concsentrated load, applied horizontally. There are no

rollers, and the reactions are statically indeterminate. Assume the horizontal com-

ponents of the reactions to be equal, as was done in Prob. 277. Find the horizcmtal

and vertical components of the reactions.

282. Figure 154 represents a coplanar force system in equilibrium. Four of the

forces are completely known, and are as shown. One force is completely unknown.
Find the unknown force.

67. EquiUbrium of the General Coplanar System; Algebraic Solu-

tion. The algebraic solution of a problem involving the general co-

planar force system in equilibrium is usually accomplished by the
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formation of equations based on the principle of components, or the

principle of moments, or both.

In the selection of the equations it should be observ^ed that a point

on the line of action of one or more of the unkno\\Ti forces is likely to

be advantageous for use as a center of moments. Also, a component-

sum taken along an axis at right angles to one or more of the unknown

forces may yield a comparatively simple equation.

Special Conditions. Special conditions for the general coplanar sys-

tem were discussed in Art. 06.

Illustrative Problems

In some of tlie problems of the

present article the number of exter-

nal forces acting on the given body

is three, and in any case the number

could be reduced to three by com-

position. Therefore, the special con-

dition for three forces in equilibrium,

Art. 62, could be utilized in any of

these problems. However, the prob-

lems of the present article are in-

tended to pro\dde practice in the

general methods of solution, and the special condition should not be used.

283 . Figure 155 represents a beam supported by a frictionless pin-bearing

at A and subjected to forces as indicated. Find the unknown forces.

Solution. Let the reaction at A be resolved into its horizontal and vertical

components. By the principle of moments,

XMa = 0 - (P cos 15°) X 3 -f (4.5 cos 30°) X 2 - 0 P - 2.69 tons

By the principle of components, using the result obtained above,

SP* = 0 — A* -f 2.69 X cos 45° = 0 Ax = 1.90 tons

SPy = 0 +Ay — 4.5 — 2.69 X cos 45° = 0 Ay = 6.40 tons

The positive sign was obtained in each case, showing that the senses of the

unknown forces were assumed correctly.

284. Figure 156 represents a Howe roof truss subjected to four wind loads

at right angles to the roof surface. The truss is supported by a pin-bearing

at By and by rollers resting on a horizontal surface at A . Find the reactions

at the supports.

Solution. This is a problem of the type in which time can be saved by
compounding some, or all, of the unknown forces. The four loads are parallel,

and are arranged symmetrically with respect to the point D. Their resultant

is, by inspection, a force of 10,200 lb, parallel to the loads and acting through

D. The resultant now may be used as a substitute for the four loads in any



116 EQUILIBRIUM OF COPLANAR FORCE SYSTEMS

calculation involving forces external to the truss. D is at the middle of the

line BC.

Because of the rollers the reaction at A may be assumed to be vertical.

Fio. 156

Resolve the reaction at B into components, as shown. From the figure: d =
10 19

arc tanM = arc tan 0.667 = 33° 40'. BD = = = 14.4 ft. By
cosfl 0.832

the principle of moments,

SAfB == 0 -Ay X 48 + 10,200 X 14.4 = 0 = 3060 lb

By the principle of components,

ZF:, = 0 “ 10,200 sin = 0 = 5650 lb

XFy = 0 +By A- Ay - 10,200 cos 6 = 0 = 5430 lb

The positive signs accompanying the results show that the unknown forces

were assumed correctly.

285 . Figure 157 represents a three-hinged arch of a type sometimes used to

support roofs. The three hinges, or pins, are at A, B, and C. They are

usually assumed to be smooth (Art. 14). The arch is subjected to four wind
loads. Find the reactions at the supports B and C.

Solution, Resolve the reaction at B into components B* and By. The re-

action at C passes also through A. This fact can be proved by means of

Fig. 158, which represents the right half of the arch as a free body. Only
two external forces act on this half; namely, the forces exerted by the pins at

A and C. Two forces, to be in equilibrium, must be collinear. Therefore,

force C must pass through C and A.

From the figure: A EDA = arc tanA = 26° 35'. A DBF = arc tanV «
71° 35'. Z ACF =« arc tan if »= 36° 50'. By the principle of moments,
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using B as the center of moments and resolving the loads into their x- and

^/-components,

SMb = 0 +(C sin 36° 50') X 48 - 12,000 X 19 (6800 sin 26° 35') X 18

-(6800 cos 26° 35') X 6 - (6800 sin 26° 35') X 24

-(6800 cos 26° 35') X 18 = 0

C = 17,400 lb

By the principle of components, using the result obtained above,

ZFx = 0 + 24,000 sin 71° 35' + 13,600 sin 26° 35'

-17,400 cos 36° 50' - 0

= 14,900 lb

SFy = 0 +By - 24,000 cos 71° 35' - 13,600 cos 26° 35'

4-17,400 sin 36° 50' = 0

By - 9300 lb

The results have the positive sign, showing that the sense was assumed cor-

rectly in each case.

286 . Figure 159 represents a Fink roof truss of the cantilever type, sub-

jected to five wind loads at right angles to the roof surface, and spaced equally.

The truss is supported by pin-connections at A and B. Find the reactions.

Solution. The weights of the members are not given and are, therefore, to

be disregarded. Consequently, BC is a two-force member (Art. 61), and the

reaction at B may be assumed to be collinear with the member. The result-

ant, Rf of the wind loads is 18,400 lb and acts through F. From the figure:

At) =« V (1 5)2 4" (36)^ » 39 ft; DF == ^AD == 19.5 ft." From the similar
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triangles, CDF and ADE: BF - ZZ5/SF, from which TJD = 21.1 ft.

Also, from the figure, EC = 36 — 21.1 = 14.9 ft; ZBCE = arc tan =

arc tan 0.671 = 33® 50'.

By the principle of moments, using A as the center and replacing the loads

by R,

IMa =0 +{B cos 33® 50') X 25 -- 18,400 X 10.5 - 0 B == 17,300 lb

By the principle of components, using the result obtained above,

SFx = 0 -A, + 17,300 cos 33® 50' - 18,400 X H = 0 A, ^ 7300 lb

By the principle of moments, wit h (7 as the center,

IMc = 0 -Ay X 14.9 4- 7300 X 15 - 0 Ay ^ 7350 lb

The positive signs of the results show that the senses of the unknown forces

were assumed correctly. >

287. The pin-connected framework shown in Fig. 160 sustains two concen-

trated loads as indicated. Find all the forces acting on each member.

Solution. Figure 161 shows the member AC as a free body. Let Ax and

Ay represent the components of the force exerted on AC by the support at A,

and let Cx and Cy represent the components of the force exerted on AC by

the member BC through the medium of the connecting pin. The correct

sense of Ax is uncertain; let it be assumed that the component acts toward

the left.

It should be observed that neither AC nor BC is a two-force member; there-

fore the resultant forces at its extremities may not be assumed to be oollinear

with the member. By the principle of moments, and the principle of com-

ponents,

ZMc « 0 +Ax X8H-A,,X6-4(X)X5»0
SFx » 0 -Ax - Cx + 400 X 0.8 » 0

ZFy - 0 +Ay - Cy - 400 X 0.6 » 0
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The three equations thus obtained contain four unknown quantities, and,

as matters stand, a solution is impossible. The two fundamental principles

used are valid for all axes; therefore it would be possible to write additional

equations by selecting new axes. Such additional equations would be en-

tirely correct, but they would be of no avail in the present difficulty, since

only three independent equations can be written, from the principles of

statics, for the general coplanar system (Art. 57).

Fig. 160 Fio. 161 Fig. 162

Therefore, let the three equations obtained above be held in abeyance, and

let member BC now be considered. Figure 162 represents member BC as a

free body. Cx and Cy are the components of the force exerted on BC by

member AC, and Bx and By are the components of the force exerted on BC
by the support at B,

Careful attention should be paid to the fact that components Cx and Cy

in Fig. 162 are not identical with components Cx and Cy in Fig. 161. For

example, the two designated as Cx are collinear, and are equal in magnitude,

but they are not the same force, and are directly opposite in sense. They

constitute an example of the fact that forces always occur in pairs, the two

forces of each pair being collinear, equal, and opposite (Art. 5). Ordinarily

when the sense of a force is unknown it may be assumed arbitrarily, and the

correctness or incorrectness of the assumption will be revealed by the sign

obtained when the magnitude is solved for. How^ever, it is necessary to

avoid assumptions that obviously violate the funds rnent^il laws of mechanics.

For this reason, C* and Cy in Fig. 162 must be taken as opposite in sense to

Cx and Cy in Fig. 161.



120 EQUILIBRIUM OF COPLANAR FORCE SYSTEMS

Now let three independent equations be written for member BC^ as follows:

- 0 ^By X6-- 400 X3 = 0

2F, *= 0 + Cx = 0

^Fy = 0 ^By -f Cy - 400 = 0

A total of six independent equations, containing six unknown quantities,

are now available. The solution of these equations gives: Ax ~ —80 lb;

Ay == +440 lb; Bx = +400 lb; By = +200 lb; Cx = +400 lb; Cy -
+200 lb.

The negative sign accompanying Ax shows that the sense of that com-

ponent was assumed incorrectly. All the other components were assumed

correctly.

PROBLEMS

288 . The beam shown in Fig. 163 is supported by a pin-connection at B and by

a roller at A. Find the reactions exerted on the beam by its supports. A ns. Ay =
+ 1700 lb; Ax = 0; Bx - +360 lb; By = -8201b.

289 . Solve Prob. 278, Art. 66, by the algebraic method.

290. Figure 164 represents a portion of a lever-and-toggle mechanism for exert-

ing heavy pressures. Find all the forces acting on the lever, AD. A ns. Ax -

-91.5 lb; Ay = -108 lb; C = 183 lb, 0x - 60^

291 . Solve Prob. 238, Art. 62, by the method of the present article. Represent

the force at A by its horizontal and vertical components.

292. Figure 165 represents a uniform, rectangular plate weighing 400 lb. The
plate is suspended, in the position indicated, by a pin-connection at R, and by cables

attached at A and D. The cables pass over smooth pulleys and are weighted as

shown. Calculate the weight, C, and the reaction exerteii on the plate by the sup-

port B. Ans. C = 200 lb; Bx = +100 Ib; By - +200 lb.

293 . Figure 166 represents an unsymmetrical roof truss subjected to three wind

loads. Panel lengths A D and CD are etpial. The truss is supported by a fixed pin-

bearing at A and by rollers at B. Calculate the reactions exerted by the supports.

294. Figure 167 represents, in side elevation, an apparatus that was used at the

University of Kansas to ascertain the pressure of sand against a vertical surface.

F and N are the frictional and normal components of the resultant pressure exerted

by the sand. The forces Pi, P2, and P3 were measured by means of platform

scales. The weight of the apparatus was eliminated from the computations by the

use of initial readings. In one of the tests the following data were obtained : Pi «
121.4 lb; P2 - 118.5 lb; P3 = 356.2 lb. Calculate P, N, and h. Ans. 239.9 lb;

356.21b; 23.04 in.

295. Solve Prob. 253, Art. 63, resolving the reaction at B into its horizontal and

vertical components, and using the general methods of the present article.

296. Figure 168 represents a Thdnard shutter dam. The resultant pressure of

the water on the dam is 4000 lb, as shown. Assuming smooth hinges at B and C,

and disregarding the weight of the structure, find the reactions at C and D. Ans.

Cx « -1690 lb; Cy = -1140 Ib; D = 30801b, $x = 135^

297. Figure 169 represents a cantilever truss sustaining five vertical loads. Find

the supporting forces at A and
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00 lb.

I

Bjr
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298. Figure 170 represents a ship’s davit for handling lifeboats. The ship has a

list of 15° from the vertical. I'ind the reactions at A and B, assuming that the

latter is at right angles to AB. Disregard the weight of the davit. Ans. =

3670 lb, right, X to AR; Ay ^ 2900 lb, up, along AB] B^ = 4450 lb, left, 1 to AB\

By = 0 .

299. Solve Prob. 298 for the case where the list of the ship is 15° to the left of

the vertical. Assume that the 3000-lb load remains vertical.

SOO. Figure 171 represents a curtain dam. The dam is hinged at A, and can be

raised and lowered by means of the chain CD. In the position shown the resultant

water pressure is 750 lb, at right angles to the face of the dam. Find the force sup-

porting the dam at A, and the tension in the chain. Disregard the weight of the

dam* Ans. «= 4-53.4 lb; Ay *= —11501b; C « 15601b.
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301. The truss shown in Fig. 172 is supported by a pin-connection at E and by

rollers at A. Find the reactions at the supports.

302. Figure 173 represents a spandrel-braced, three-hinged arch of a type often

used in bridges. The hinges are at A, R, and C, and are assumed to be smooth pins.

2000 lb. 2000 lb 2000 lb

9' F 9' G 9' H 9' Tl

Fig. 172

4 ^

Fig. 174 Fig. 175

The two loads shown are caused by a heavy truck. Find the reactions at the sup-

ports, caused by the two loads. Ans, A* = -f9.28 tons; Ay = -fO.lS tons; B *

10.1 tons, from B through C,
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303. Figure 174 represents a pin-connected framework consisting of two members,

AE and BD, supporting vertical loads as shown. Let Wi = Wi ~ 500 lb. Owing

to the symmetry of the structure and its loading, it is permissible to assume that the

force exerted by each member on the other at C is horizontal. Making this assump-

tion, find all the forces acting on each member. Now solve the problem again, with-

out making the foregoing assumption.

130 lb.

804. In Fig. 174 let W\ = 500 lb and — 300 lb. Find the forces acting on each

member. Is the assumption made in Prob. 303 permissible in the present case?

Ans. On AE: = +600 lb; Ay = +500 lb; Cx = -600 lb; Cy = -200 lb.

On BD: B^ = -600 lb; By = +300 lb; Cx - +600 lb; Cy - +200 lb.

306. In Fig. 174 let TTi = 500 lb. Change TF2 so that it is horizontal and toward

the right, and is equal to 300 lb. Find the forces acting on each member.

806. Figure 175 represents an unsymmetrical three-hinged arch, with hinges at

A, B, and C. Assume that the right-hand portion of the arch is supporting a uni-

formly distributed live load of 500 lb per horizontal linear foot, and that the left-

hand portion is not loaded. Assume that the hinges are frictionless pins. Find the

reactions at the supports, A and B. Ans. A = 13,000 lb, from A through C;

Bx « -12,1001b; By « +17,700 lb.

307. In Prob. 306, assume that the live load of 500 lb per lin ft covers the entire

span, and solve the problem.

308. Find all the forces acting on each member of the crane shown in Fig. 176.

309 . Figure 177 represents a pair of tongs used in connectipn with a crane, for

gripping and lifting heavy objects. The body being lifted weighs “300 lb. Find all

the forces acting on the member AC, Am, A* — —263 lb; Ay = —150 lb;

Bx = +363 lb; By =* 0; C - 180 lb, upward, along DC.

310. Figure 178 represents a pillar crane, sustaining a load of 4 tons. Find all

the forces acting on the mast A/>, and on the boom CE. Assume the tece at B to

be horizontal. Disregard the weight of the crane.
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311. Figure 179 represents a body which is being drawn along a horizontal plane

by a constant force of 650 lb, applied as indicated. The center of gravity is at (r,

and the weight, W, is 1500 lb. The remaining forces are Fi, Nu Ft, and Nty as

shown. The body has a horizontal acceleration, toward the right, of 3.22 ft per sec

per sec. Since the body is being accelerated the system of external forces is not in

Fig. 177

N, N,

Fig. 178 Fia. 179

equilibrium and the problem is not a static one. However, in kinetics it is learned

that in a motion of this particular type the equilibrant of the external forces is a

vector whose magnitude is {W/g)ay parallel to the acceleration but opposite to it in

sense, and passing through G, If the equilibrant is inserted in the figure the entire

system of vectors will balance.

Assuming these statements to be correct, and also assuming that Fi » \Ni and

Ft - \Nt. calculate Fi, Nx, Ft, and Ag. Am. ~ 102 lb; +306 lb; -268 lb; +805 lb.



CHAPTER V

PLANE TRUSSES

68. Axial Stress. The upper portion of Fig. 180 depicts a “ two-
force member ” (Art. 61). It Ls a straight bar, in equilibrium, subjected

to two external forces. Pi and P2, applied at points lying on the axis

of the member, at its extremities. Sometimes a member Ls subjected

to a concurrent system, instead of a single force, at one or both ends.

9

i

c

A B^ ^ --Z3 • t

Fig. 180

In that case Pi and P2 may be taken to represent the resultants of

such concurrent systems. Let the weight of the bar be disregarded.

For equilibrium, Pj and P2 must be collinear, equal, and opposite;

therefore. Pi = P2. Since the points of application of Pi and P2 are

on the axis of the bar, their lines of action coincide with that axis.

Under such circumstances the member is said to be in a condition of

axial stress.

Let CC represent an imaginary plane at right angles to the axis of

the bar and situated anywhere between the ends. For the purposes of

the discussion this plane divides the bar into two parts, A and B.

Part A exerts a force on Part B, and vice versa. In the lower portion

of Fig. 180 each of these parts is shown as a free body. Let P3 represent

the force exerted by Part B on Part A, and let P4 represent the force

exerted by A on B. Obviously, Pi = P2 == P3 = P4.

Either of the forces P3 or P4 is referred to as the total stress in the

member. For the sake of brevity the word “ total ” will be omitted

in this discussion. In engineering practice the term “stress,” when
used without qualification, is usually taken to mean force per unit

area, rather than total stress.

m



TRUSSES IN GENERAL 127

The particular situation represented in Fig. 180 is called tension, and

the stress is called tensile stress. P^ach force constitutes a pull. If all

the forces in the figure were reversed in sense the member would be in

compressive stress.

Strict attention should be paid to the fact that the assumption of

axial stress is justifiable only if the member is straight, and is subjected

to only two forces, the lines of action of which coincide with the axis

of the member; or is subjected to forces which, by composition, can

be reduced to two resultants whose lines of action coincide with the

axis of the member.

In this book the study of stresses will be confined to those which

are axial.

PROBLEMS

312. Is the bar in Fig. 116 in the condition of axial stress? Is the stress tensile

or compressive?

313. Wliich member of the framework in Fig. K12 is in the condition of axial

stress, if the weights of the members are disregarded? Is the stress tensile or com-

pressive? What would be the situation if the weights of the members w^ere included?

314. In Fig. 176 the 130-lb and 150-lb forces represent the weights of the members.

Is either member under axial stress? What would be the situation if the weights

of the members were disregarded?

316. In Fig. 177, which member or members are under axial stress, if the weights

of the members are disregarded? Answer a similar question for Fig. 178.

69. Trusses in General. A truss usually consists of straight pieces,

called members, connected in such a manner as to divide the area within

the perimeter of the truss into triangular spaces. If the longitudinal

axes of all the members lie in the same plane the truss is called a plane

truss. In pin-connected trusses the members are connected at each

joint by means of a cylindrical pin. In riveted trusses the members

are connected by means of gusset plates, to vhich they are firmly

riveted. Welded connections also have been used to a considerable

extent during recent years. Those joints which are situated on the

Iierimeter of a truss are called panel points. The loads and reactions

sustained by a truss are usually applied at the panel points.

Loads. Trusses are designed for all the permanent loads that they

will be called upon to carry, and for such combinations of intermittent

or varying loads as may reasonably be expected to occur. The perma-

nent loading is called the dead load. The weight of the truss itself is a

part of the dead load. The weight is usually estimated for the truss as

a whole, and distributed among the other permanent loads at the various

panel points. Other loads that may require consideration include the
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effects of snow, vehicles, tractors, human beings, and any other factors

whose action on the truss can be foreseen and estimated. Each member
is designed for the stress resulting from that combination of loading

which would most greatly endanger the member.

Stresses* After the loads have IxKm estimated the primary stresses

in the members are (calculated. The primary stress is the total stress

in a member, calculated under the assmnption that each member of the

truss is acted on by only two forces, or resultants, applied at the ex-

tremities of its longitudinal axis. In other words, primary stresses are

calculated by assummg a condition of axial stress in each member.

It is necessar^^, therefore, in the calculation of primary stresses, to

disregard the weight of the mdividual member, although, as has been

intimated, the effect of such weight on the truss as a whole is provided

for by including it with tlie dc'ad load.

Axial stress cannot exist throughout a mennber that is subjected to

bending. Ijoads ai)plied l)et\v(M'n joints, weiglits of individual members

not in a vertical positiem, failure of the joints to permit members to

adjust themselves to the deformation of the ti’uss, and the tendency of

compressive forces to cause bending in memlxus even when applied

axially constitute the prmci])al reasons why bending usually does occur.

Consequently, the ideal conditions assumcHl in the calculation of

primary stresses are never compk^hdy n^alized m practice. The ideal

conditions are more nearly attained in pin-connected trusses, as a rule,

than in rivetc^d or weldcxl trusses.

After the primary stresses have been calculated, any serious bending

in individual members caused by their weights or by other transverse

loads is provided for by means of calculations based on the principles

of strength of materials. Sometimes the bending is partially eliminated

by introducing certain eccentricities into the connection details at the

joints. The primary stresses play a part in all such calculations. In

relatively slender members under compression it is assumed that

Ixnding is inevitable, and various colunm formulas are used, in which

the primary stress is taken as the total load on the column.

Stresses arising from the failure of the joints to permit the ends of

members to adjust themselves to the deformation of the truss are called

secondary stresses. Their calculation is laborious, and is seldom made
except on large jobs. In the examples that follow only primary stresses

will be considered.

70. Primary Stresses; Algebraic Solution. The detailed method of

calculating primary stresses in plane trusses by algebraic analysis will

be shown by means of illustrative problems.
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Illustrative Problems

316 . Figure 181 represents a Howe roof truss. The lines represent the

axes of the various members. The loads are a combination of dead loads

and snow loads. The lines ADG and AJG are called the upper chord and

the lower chord, respectively. The panel lengths AB, BCy CD, etc., in the

No. 7

upper chord, are equal. The members BL, CK, DJ, etc., are vertical. It

follows that the panel lengths in the lower chord are equal. The entire

truss and its loads are symmetrical with respect to a vertical axis through D.

Assume a condition of axial stress throughout the truss, and calculate the

primary stresses in the members.

Solution. Certain data will be needed in the solution, as follows: BL =

i X 12 = 4 ft; CK = |- X 12 = 8 ft. Z.BAL = Z.BKL = arc tan f =
26° 35'. AABL^ Z KBL = Z BCK = Z CDJ = 90° - 26° 35' = 63° 25'.

ICBK = 180° - 2 X AABL = 180° - 126° 50' = 53° 10'. ACJK =
arc tan | - 45° 00'. Z KCJ = 90° - Z CJK = 90° - 45° - 45° 00'.

ZDCJ = 180° - A BCK - A KCJ = 180° - 63° 25' - 45° 00' = 71° 35'.

The complete solution will necessitate the consideration of several free

bodies, and it will be advantageous to number these bodies in the order in

which they are studied.

Body 1

Consider the entire truss, Fig. 181, as Body 1. The external forces acting

on the truss are the seven loads, and the reactions, Pi and P 2 ,
of the supports.

The reactions may be assumed to be vertical. Since the truss and its external

forces are symmetrical,

Pi = P2 == I X 24,000 = 12,000 lb

Since at present the body under consideration is the entire truss, the
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stresses in the members are internal forces. Internal forces cannot be calcu-

lated, as such; they must first l)e made external. This is accomplished by

selecting for consideration various segments or portions of the truss in such

a manner that the desired stresses will be external, instead of internal, forces.

The unknown stresses are then calculated by the principles of equilibrium.

Body 2

As Body 2 consider that portion of the truss enclosed within the line marked

No. 2,*^ in Fig. 181, Figure 182 shows this portion and the remainder of

the truss, separated slightly in order that the stresses may be clearly shown.

51 and S 2 are the forces exerted on Body 2 by the larger portion of the truss.

The reaction Pi and one 2000-Ib load also act on the body. While Body 1

was being considered, Si and S2 were internal; now they are external, since

they are exerted on Body 2 by a different body (Art. 4).

The forces S[ and S2 are exerted on the larger portion of the truss, by Body
2. St and S[ are equal in magnitude, opposite in sense, and collinear, as are

5 2 and >82. Either of the forces Si or S[ is the stress in member AB, while

either S 2 or S2 is the stress in AL. If the senses of Si and S 2 have been

assumed correctly, in Fig. 182, member AB is under compression and member
AL is under tension (Art. 68).

For greater clearness Body 2 has been shown to a larger scale, in Fig. 183.

From Fig. 183, by the principle of components,

XFy = 0 -Si sin 26*^ 35' - 2000 + 12,000 * 0

51 - 22,3001b, in AB

By the principle of moments, with the center at B,

XMb = 0 -fB2 X 4 + 2000 X 8 - 12,000 X 8 « 0

52 = 20,0001b, in AL
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The positive sign was obtained in each case, showing that the senses of Si

and S 2 were assumed correctly. Therefore, AB is under compressive stress,

and AL is under tensile vstress.

The student sometimes experiences difficulty in thinking of a portion of a

body as a body in itself. He must clearly understand that Body 2, for

example, is a definite body and is subject to all the laws of eciuilibrium, even

though a portion of its boundary surface is purely imaginary.

Fro. 183

S.

Si =20000 L S,

BodyNo.3

Fro. 184

Body 3

Care must be exercised to avoid the selection of a body involving too many
unknown forces. In a coplanar concurrent system the number of unknowns

must not exceed two. Figure 184 represents the part chosen as Body 3.

It is now known that S2 = 82 — 20,000 lb. Since S2 is now a known force,

its sense may not l>e assumed arbitrarily; it must be correct. Extreme care

should be exercised to avoid any error in this regard. The student should

remind himself that the stress in AL was found to be tensile, and that S2

must be represented as a pull, in accordance with that result.

A brief study of Fig. 184 shows that S3 S2 — 20,000 lb, and that S4 * 0.

Member LiC, then, is under a tensile stress of 20,000 lb, and BL is under

zero stress.

In the calculation of primary stresses some of the members of a truss are

occasionally found to be under zero stress. Frequently such members are

stressed when the truss sustains a loading different from that under con-

sideration at the moment. Also, such members often perform useful secondary

functions even when the primary stress analysis does not represent them as

sustaining stress under any type of loading.

Body 4

Figure 185 shows the part selected as Body 4. The stress in AB was

found to be a compressive stress of 22,300 lb; therefore, S[ « 22,300 lb and

acts as a push. One of the 4000-lb loads acts on Body 4; also the unknown
stresses S4 and /Sc. Let S^ and -Sc be assumed to be compressive. By the
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principle of components,

2F. « 0 Se cos 53° 10' - 4000 cos 63° 25' + 22,300 » 0

XFy « 0 +^6 sin 53° 10' - 4000 sin 63° 25' - 0

from which,

^5 = 17,800 lb, compressive stress in BC

Se = 4480 lb, compressive stress in BK

4000

Fia. 185 Fig. 186

Body 5

Figure 186 shows the body selected. S? has been assumed to be tensile,

and Ss compressive. By the principle of components, using horizontal and

vertical axes,

XFx * 0 -S8 + 4480 cos 26° 35' - 20,000 » 0

^8 = -16,000 lb

SFy = 0 +^7 - 4480 sin 26° 35' = 0

^7 = 2010 lb

The negative sign accompanying Ss shows that the sense of that stress was

assumed incorrectly. S7 was assumed correctly. Therefore, the stress in

JK is 16,000 lb, tensile; and in CK is 2010 lb, also tensile.

Body 6

Figure 187 shows the body. One of the 4000-lb loads acts on this body.

Placing the y-axis at right angles to the roof,

XFy » 0 +SiQ sin 71° 35' - (4000 + 2010) sin 63° 25' » 0

5io = +5650 lb, compressive stress, in CJ
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Placing the x-axis in a horizontal position, for greater convenience,

SF, » 0 -S# cos 26° 35' + 17,800 cos 26° 35' - 5650 cos 45° « 0

S9 = +13,300 lb, compressive stress, in CD

4000

Body No. S

Fig. 187

4000

Fia. 188 Fia. 189

Body 7

Figure 188 shows the body. From symmetry, Sn = » 13,300 lb,

compressive stress.

« 0 -Sn - 4000 + 2 X 13,300 X cos 63° 25' = 0

Sjj =t +7920 lb, tensile stress, in DJ

Because of the symmetry of the truss and of its loading it is not necessary

to calculate the stresses in the remaining members. The stress in any mem-
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her may be assumed to be equal to that in the corresponding member on the

opposite side of the truss. Nevertheless it will be instructive to consider

now a larger portion of the truss, as shown in Fig. 189.

Body 8

From Fig. 189, by the principle of moments,

SMc = 0 +SsXS- 12,000 X 16 + 2000 X 16 + 4000 X 8 = 0

IMj = 0 +(^S9 cos 26*= 35') X 12 - 12,000 X 24 + 2000 X 24

+ 4000 X 16 + 4000 X 8 = 0

XMa = 0 -h(^io sin 45*=) X 24 - 4000 X 16 - 4000 X 8 - 0

The solution of these equations gives: — 16,000 lb, tensile stress, in

JK; Si = 13,400 lb, compressive stress, in CD; and ^lo ~ 5660 lb, com-

pressive stress, in CJ.

These results check satisfactorily the stresses previously calculated in

JKf CDf and CJ. If the student will review the calculations of the stresses

in the other members of the truss he will discover that this check also verifies

all previous results except that for the stress in DJ. Let the student devise

a simple check for this case. The foregoing check obviously does not verify

the various geometrical calculations made in the beginning.

10000 lb.

Fic. 190

817* Figure 190 represents a Pratt bridge truss. The panel lengths are

equal. The truss sustains a vertical load of 10,000 lb at each joint in the

upper chord, and 24,000 lb at each joint in the lower chord. Find the re-

actions at the supports by inspyection, and then find the stress in member

DE by means of a single equilibrium equation. Find the stresses in DM and

MN in a similar manner, without using any stresses previously calculated.

Solution. The problem can be solved by considering as a free body that

portion of the truss shown in Fig. 191. ZMDN « arc tan « 36® 50'.

cos / MDN * 0.8. By symmetry, Q «= |(7 X 10,000 + 7 X 24,000)

« 119,000 lb.
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The external forces acting on the body in Fig. 191 are as follows: three

of the 10,000-lb loads, three of the 24,000-lb loads, Qi = 119,000 lb, and

the three unknown, stresses, Sij ^2, and Ss.

Assume Si to be compressive, and and

Sz to be tensile.

The problem requires that be found by

means of one equilibrium equation. An
equation must be selected, therefore, w^hich

will not contain S 2 or S3 . This can be ac-

complished by means of the principle of

moments, with the center of moments at M,
since S 2 and Sz pass through that point. 1190001b.

Replacing the six loads by their resultant, Fig. 191

which is equal to 102,000 lb,

2Mm = 0 -f,Si X 32 -h 102,000 X 48 - 119,000 X 96 = 0

>Si = -f 204,000 lb, compressive stress, in DE

5 2 cannot be found independently, and by means of a single equation, if

moments are used, because and S3 are parallel. However, if the principle

of components is used, with reference to a vertical axis, Si and Sz will not

appear in the equation.

XFy = 0 -S 2 cos 36° oO' - 102,000 + 119,000 = 0

5 2 = +21,250 lb, tensile stress, in DM

53 can be found, under the conditions laid down in the problem, by taking

moments about D.

XMd = 0 +*83 X 32 + 102,000 X 24 - 119,000 X 72 = 0

53 = +191,000 lb, tensile stress, in MN
Let the student check the foregoing results by considering the remainder

of the truss as a free body.

PROBLEMS

818. Find the amount and kind of stress in each member of the small Warren tniss

shown in Fig. 192.

319. Figure 193 represents a small fan truss. The panel lengths in the upper

chord are equal. Calculate the reactions at the supports. Find the amount and kind

of stress in member ///, by means of one equilibrium equation . A ns. 4500 lb (T).

320. Find the amount and kind of stress in each member of the unsymmetrical

roof truss in Prob. 293, Fig. 166. Members AD and DC are equal in length. Ans.

BF « 2000 lb (C); BG - 1600 lb (T); CF = 2000 lb (C); FE = 0; FO ^ 0;

CD = 1340 lb (C); CE = 1670 lb (T); DE - 2090 lb (C); AD « 750 lb (C);

AE « 2850 lb (T); EG * 1600 lb (T).

321. In the Howe roof truss shown in Fig. 194 the panel lengths in the upper

chord are equal, and members BH^ CG, and DF are vertical. Find the amount and
kind of stress in each member.
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322. Figure 195 represents a small Pratt roof truss. This type of truss is more

often seen in bridges, but is sometimes used for roofs when the span is not too long.

The panel lengths in the upper chord are equal, and members BG and DF are vertical.

Find the amount and kind of stress in each member. Arts. AB * 4870 lb (C);

800 lb. 800 lb.

2000 lb. I 2000 lb.

I Pi I

AO = 4060 lb (T); BC = 4870 lb (C); BG = 1800 lb (C); CG » 2250 lb (T);

FO « 2700 lb (T).

328 . Figure 196 represents a small Fink roof truss. The panel lengths in the

upper chord are equal, and the member BG is at right angles to the roof slope. Find

the amount and kind of stress in each member.

324 . Find the amount and kind of stress in members HI, HC, and DC, of the

cantilever truss in Fig. 197. Use only one equation in each case, and make each
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result indepeDdent of the others. Ans,

HI « 6750 lb (D; HC - 6250 lb (C);

DC = 3000 lb (C).

325. Find the amount and kind of

stress in each member of the truss in

Prob. 249, Fig. 128.

326. Find the amount and kind of

stress in members 67/, C//, and BC of the

truss in Prob. 301, Fig. 172. Solve by

dividing the truss into two parts and con-

sidering one part as a free body. Then

check the results by considering the other

part of the truss. Ans. GH == 8001b (C');

3120 lb (T); BC - 2600 Ib (T).

327. Find the amount and kind of stress

The truss is supported by rollers at B.

0 12' C

in each member of the truss in Fig. 198.

lel length AF ~ FB = ED.
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330

.

Figure 199 represents a Warren bridge truss. The panel lengths are equal.
1 here is a vertical load of 8 tons at each joint in the upper chord, and of 16 tons at
each joint in the lower chord. Find the amount and kind of stress in each member
Am. AB = 105 tons (C); AP = 63 tons (T); BP = 16 tons (T); OP = 63

tons (T); BO = 75 tons (T); BC = 108 tons (0);
tons (C); DO = 45 tons (C); NO = 135 tons (T);

CO = 8 tons (C); CD = 108
MN = 135 tons (T); DM =
DE = 144 tons (C); EM = S15 tons (7');

tons {€).

331. Figure 200 represents a type of frame-
work known as the scissors truss. Find the
amount and kind of stress in each member.

332. Find the amount and kind of stress in
each member of the structure shown in Fig. 201

.

333. Figure 202 represents a transverse
bent of a mill building. Calculate the reac-
tions exerted by the supports at A and B, as-
suming that their horizontal components are
equal. Then calculate the stress in the mem-
ber JKf using only one equilibrium equa-
tion. Ans. A:c = -4130 lb; Ay = +342 lb;

= -4130 lb; By = +6380 lb; 8050 lb (T).
334. In Fig. 202, the column AH is not a

two-force member and is not under axial stress.
Calculate all the forces acting on the column.
Make use of the answers to Prob. 333.

336. In Fig. 202, find the amount and kind
of stress in member EK, by means of one equi-
librium equation. Make use of the answers
^ 333. An3, 9250 lb (T).

38^ Find the amount and kind of stress in members AB and AG of the mineheadframe truss shown in Fig. 203, caused by the two tensile forces in the cable.

Fig. 203
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837. In the mine headframe truss of Prob. 336, Fig. 203, assume horizontal wind

loads at B and C of 3200 Ib, each, and one of 1600 lb at A, all acting toward the right.

Find the amount and kind of stress in each member, caused by the wind loads only.

Am. AG - 3400 lb (C); AB - 3000 lb (T); BG = 3200 lb (C); BC - 3000 lb

(T); CG = 3400 lb (D; FG = 6800 lb (C); CF - 4800 lb (C); CD = 6000 lb (T);

EF = 10,200 lb (C); DF = 4380 lb (T).

C 0 E F G H I

838. Figure 204 represents a Baltimore bridge truas. The truss sustains a vertical

load of 1600 lb at each joint in the upper chord, and a load of 3200 lb at each joint

in the lower chord. There is no load at B or at the corresponding point at the other

end of the truss. Find the amount and kind of stress in AR, AQ^ QP, BQ^ BP^ BC^
CP, CR, CD, DE, and PR.

339. In Prob. 338, Fig. 204, find the amount and kind of stress in members HI,
TJ, and KJ. Am. HI = 57,000 lb (C); TJ = 3000 lb (T); KJ = 55,200 lb (T).

71. Primary Stresses; Graphic Solution. The details of the graphic

method for calculating primary stresses in plane trusses will be shown
by means of an illustrative problem.

No. 6 800

Illustrative Problem

840. Find the stresses in the truss shown in Fig. 205, by the graphic

method.

Solution* Figure 205 will serve as the space diagram. . It is customary to

number or letter the spaces between the members, and around the exterior

of the truss.
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Take Body 1 as indicated by the dotted line, marked “ No. 1/' in Fig. 205.

The forces acting on Body 1 are the 4800-lb reaction, the 400-lb load, and

two unknown stresses. Each force is designated by the numbers appearing

in the spaces adjacent to it. These

numbers will be read, and the forces

will be plotted, in the sequence in which

they occur as the eye is made to pass

around Body 1 in a clockwise direction.

Figure 206 is the force polygon, or

stress diagram, for Body 1. In ac-

cordance with the plan of procedure

adopted, and in order that the two un-

known forceps may come last in order,

it is necessary to observe the following

sequence in plotting the forces: (8, 1), (1, 2), (2, 9), and (9, 8). The reaction

(8, 1) is, therefore, plotted first. The numbers 8 and 1 are placed at the

extremities of the vector, with the 1 at the upper end. It will be understood

that the sequence 8, 1 on the space diagram shall mean that the sense of the

vector in the stress diagram is from 8 towwd 1. This explains wdiy the 1

must be placed at the upper end of the vector, since the sense of the reaction

is upward.

The load (1,2) is then laid off downward from 1, and the point 2 is thereby

located. The unknown stress, (2, 9), is next in order. A line is drawn

through 2, with the correct slope, but with a length which is, as yet, in-

definite. One force, (9, 8), remains. Since the forces are in equilibrium

the diagram must close at the point 8. The force (9, 8) is horizontal, and so

a horizontal line is drawm through 8 until it intersects the inclined line

previously drawn through 2. The intersection of these lines is the point 9.

The forces (2, 9) and (9, 8) can now be scaled. Remembering the sequence

adopted for the numbers, 8, 1,2, 9, 8, and following that sequence along the

stress diagram, it is seen that (2, 9) acts downward and toward the left, or

toward the joint, and that (9, 8) acts toward the right, or away from the

joint. Therefore, (2, 9) is a push, and (9, 8) is a pull; in other words, (2, 9)

is compressive stress and (9, 8) is tensile stress. Arrowheads may be placed

on the space diagram in the manner shown, as a convenient record of the

kind of stress in each member.

It should be noticed that the sequence for the numbers is obtained from

the space diagram, and that the observance of that sequence in reading the

stress diagram does not necessarily cause the eye to move in a clockwise

direction around the diagram.

Figure 207 is the stress diagram for Body 2, constructed in accordance with

the same general scheme. It should be noticed that the force (9, 2) of the

present case is not identical with the force (2, 9) of Body 1. These two

forces are necessarily equal, but are opposite in sense. The force (9, 2) must
be plotted first in the present case, and it is correct to place point 2 at the

upper end of the vector. It is seen that the points 2 and 9 have the same

Fig; 206
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relative positions as in Fig. 206, but that the order in which they are read is

reversed.

The stress diagram for Body 3 is shown in Fig. 208, and the stress diagram
for Body 4 is shown in Fig. 209.

At this juncture it is discovered that a free body taken at any one of the

remaining joints of the truss would involve three unknown quantities. This

11 Body No.4

Fio. 209

obstacle can be surmounted as follows: in Fig. 210 is shown a truss having

the same general form as the truss in Fig. 205, but with twelve of the interior

members missing. The five 800-lb loads have been replaced by their re-

sultant, a 4000-lb force acting at D. At first it might seem that such changes

would so seriously alter the conditions as to be of no value, but upon exami-

nation it becomes apparent that the stresses (2, 9), (7, 16), (16, 17), (17, 8),

and (9, 8) in the new truss (Fig. 210) have the same values as those in the

corresponding members of the old truss (Fig. 205). For example, the stresses

(2, 9) and (7, 16) could be found by writing exactly the same algebraic

equations as those by which these stresses would be calculated in the old

truss (Fig. 205). Body 5 now may be taken from Fig. 210, as shown. Fig-
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ure 211 is the stress diagram for Body 5. The stress (16, 9) in the new truss

is not equal to any of the stresses in the old truss, and no use will be made
of it. The true stress, (7, 16), has been found, however, and this makes it

possible to construct the stress diagrams for Bodies 6, 7, 8, and 9, in their

Fia. 213 Flo. 214

/17

Fia. 215 Fio. 216

order. The diagram for Body 10 may be constmcted as a check. These

stress diagrams are shown in Figs. 212, 213, 214, 215, and 216, respectively.

In Fig. 216, the points 16, 13, and 17 should fall on a straight line.

It will be noticed that in the construction of the various stress diagrams

in the foregoing solution several lines have been duplicated. For example,

the line 2, 9 in Fig. 206 could have been made to serve for the first line in

Fig. 207. Such a scheme, if followed throughout the solution, results in a

compact stress diagram (Fig. 217) in which no unnecessary lines have been

drawn. This replaces the ten separate stress diagrams constructed for

illustrative purposes in the foregoing solution.
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In the construction of the compact stress diagram as shown in Fig. 217,

the entire truss was first taken as a free body, and the loads and reactions were

plotted in accordance with the clockwise sequence around the truss. This

sequence was used throughout the construction. If preferred, the counter-

clockwise sequence may be adopted. It is important, however, to follow one

plan consistently throughout the solution.

The graphic method is widely used by engineers for the calculation of

stresses in trusses, and may result in a considerable saving of time, especially

for complicated trusses. The compact stress diagram is the one actually

employed, of course, and should be used in the solution of the problems of

the present article.

PROBLEMS

841- Solve Prob. 318, Fig. 192, by the graphic method.

342. Solve Prob. 293, Fig. 166, by the graphic method.

343. Solve Prob. 321, Fig. 194, by the graphic method.

344. Solve Prob. 322, Fig. 195, by the graphic method.

345. Solve Prob. 323, Fig. 196, by the graphic method.

346. Solve Prob. 331, Fig. 200, by the graphic method.

347 . Solve Prob. 316, Fig. 181, by the graphic method.

348 . In the truss shown in Fig. 193, panel lengths AB, BC, DC^ etc., are equal,

and panel lengths A/, //f, and HG are equal. Find the amount and kind of stress

in each member, by the graphic method.

349 . Find the amount and kind of stress in each member of the truss in Prob. 317,

Fig. 190, by the graphic method.

360. Solve Prob. 330, Fig. 199, by the graphic method.

361. Solve Prob. 332, Fig. 201, by the graphic method.



CHAPTER VI

EQUILIBRIUM OF NON-COPLANAR FORCE SYSTEMS

72. Equilibrium of the Non-Coplanar Concurrent System. Methods
for the solution of problems involving non-coplanar force systems in

equilibrium do not differ fundamentally from those used in connection

with coplanar systems. When using the principle of moments with

non-coplanar forces it is of especial importance to remember that mo-
ments are taken about axes, and not about points. A judicious choice

of axes for the resolution of forces and for the calculation of moments
is, as always, necessarj’' to an efficient solution.

When a force is to be resolved into three rectangular components,

the method used in Prob. 167, Art. 40, for calculating the cosines of

the angles of inclination, is often superior.

V

Illustrative Problems

362. Figure 218 represents a framework consisting of two main members,

AB and AC, braced by a cable, or guy, AZ>, and sustaining an inclined load

of 9600 lb acting along the line AE. Disregarding the weights of the mem-
bers, find the amount and kind of stress in AB, AC, and AD.

SoltUion. ABf AC, and AD are two-force members; therefore the forces

exerted on them at the points of support, B, C, and D, are coUinear with

their respective members (Art. 61). The stress in each member is axial

(Art. 68), and is equal to the force at the support. Let the letters B, C, and
144
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D represent also the forces at the corresponding supports. Resolve the four

external forces into their components, as shown, assuming that AB and AC
are under compression and that AD is under tension.

The rc-component of the 9600-lb load = 9600 cos Z AEO 9600 X 18/30
- 5760 lb. The ^/-component = 9600 sin Z AEO = 9600 X 24/30 = 7680 lb.

By the principle of components,

SFx - 0 -f - 5760 = 0 - 5760 lb

By the principle of moments, using as the axis of moments a line through E
parallel to the 2;-axis, and calling it z\

0 X 18 4- Cy X 18 - Dj, X 50 - 0

Since the structure and its loading are symmetrical with respect to the xy-

plane, it may be assumed that By = Cy. From the figure,

By ^ BX U Cy^Cx M D.^DXU Dy^DxU
From these relationships, and from the values previously calculated,

B — C = 6500 lb, compressive stress, in AB and in AC

D = 7200 lb, tensile stress, in AD

It is suggested that the student check the foregoing results by calculating the

algebraic sum of the
2/-components.

Y
I

363. Figure 219 represents a bracket consisting of three members, AB,

AC, and AD. The points of support, B, C, and D, lie in the ?/«-plane. The

bracket sustains a vertical load of 1800 lb and a load of 2000 lb parallel to

the «-axis, as shown. Find the amount and kind of stress in each member.

Solution. AB, AC, and AD are two-force members (Art. 61). Therefore,

the forces B, C, and D, exerted on the bracket by its supports, are coUinear

with the axes of the members. The stress in each member is equal to the

force at the support.
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The bracket itself is symmetrical with respect to the xy-plane, but the

loading is not symmetrical; therefore it may not be assumed that B and C
are equal. Let each of the supporting forces be resolved into components

as shown in the figure. Let D be assumed tensile, and B and C compressive.

By the principle of components,

= 0 -VDy - 1800 = 0 Dy = 18001b

By the principle of moments, using FC as the axis of moments,

:LMfc = 0 X 10 - D;, X 5 - 20(X) X 12 = 0

Similarly, using EB as the axis of moments,

2:Meb = 0 -Cx X 10 -f- Dx X 5 - 2000 X 12 = 0

Also, from the figure,

Bx — B X Cx — C X Dx ~ D X Dy = D X ^
The solution of the foregoing equations gives: B = +3900 lb; (7 = —1300

lb; and D = +3000 lb. The minus sign accompanying C shows that the

sense was assumed incorrectly. Therefore, B is compressive, C is tensile,

and D is tensile.

Let the student check the results by ascertaining whether the a;-components

balance.

Y

364. In Fig. 220 three cables, AB, AC, and AD, are shown, joined at A,
and supporting a vertical load of 2080 lb. The upper ends of the cables are

anchored at the points B, C, and D, in the same horizontal plane. Calculate

the stress in each cable.-

Solution, Length of cable JS « ‘^(9)* + (12)^ + (8)^ » 17 ft; Aj5 «
V(9)* + (12)** = 15 ft; AD - V(4)* + (12)* + (3)* - 13 ft. Let the



EQUILIBRIUM OF THE NON-OOPLANAR CONCURRENT SYSTEM 147

stresses in the three cables be represented by the letters B, C, and D. Resolve

each stress, at the point of support, into its components parallel to the coor-

dinate axes.

By the principle of moments, using the line BC as the axis of moments,

XMbc - 0 -f X 13 - 2080 X 9 - 0 Dy = 1440 lb

By the principle of components,

2F, - 0 +R, ~ Dn - 0

From the figure,

B,=^BX^

Dx — D X ^
B^ = B X

Dv

IT

D X II

Cx = C X

Dz=^ DX^
The solution of the foregoing equations gives: B = +765 lb; (7 = +125

lb; D = +1560 II). The positive sign was obtained in each case, showing

that the senses of the unknown forces were assumed correctly and that the

cables are under tension. A flexible cable is not capable of sustaining any

considerable amount of compression.

Let the student check the results by means of an equilibrium equation

different from any used in the solution.

Y

Y

PROBLEMS

365, Figure 221 represents an A-frame, consisting of the members AB and AC,

and braced by a guy, A D. The frame sustains a load of 9 tons, parallel to the aj-axis.

Find the stress in each member, and in the guy. Am. B ^ C ^ 2.60 tons (C);

D « 10.2 tons (T).

350. Change the 9-ton load in Prob. 355 so that its line of action is inclined and

intersects the :r-axis at a point 18 ft to the left of O. Solve the problem, leaving all

other conditions unchanged.
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S67. Figure 222 represents a bracket consisting of three members, AB, AC, and

AO. It sustains a single, vertical load of 14 tons. The points of support, B, C,

and O, are in the ye-plane. Find the stress in each member. Am. BA « CA =*

^ 10.6 tons (7’); OA = 14.0 tons {€).

368* In Prob. 357 replace the 14-ton

load by a load of 10 tons parallel to the

ar-axis, positive in sense, and solve the

problem. Leave all the other data un-

changed.

369. Solve Piob. 357 after making

the following change : replace the mem-
ber AO by a member extending from A

.y
to a point on the y-axis 7.5 ft below the

origin. Call the new point D. Arts.

B C = 6 tons (T); J) = 10 tons (C).

360.

Figure 223 represents a type

of derrick known as a shear legs, or

AB and AC are the legs, and are braced by the guy, A D. The derrick sus-

tains a vertical load of 14.4 tons. Calculate the stress in each leg, and in the guy.

361. A uniform, circular plate, 10 ft in diameter and weighing 1800 lb, is to be

suspended in a horizontal position by means of three wires, each 13 ft long. The
upper ends of the wires are joined at a point, and the lower ends are attached to the

plate at points on its periphery 120° apart. Calculate the stresses in the wires.

Ans. 650 lb (T), in each.

362. Let the conditions in Pmb. 361 be altered so that the points at which the

wires are attached to the plate are sej^arated by angles of 60°, 150
',
and 150°, meas-

ured at the center of the plate. Let all other data remain unchanged, and solve the

problem,

363. A uniform, rectangular platform, 16 by 18 ft, weighing 24,000 lb, is to be

suspended in a horizontal j^osition by means of three cables. ITie lower ends of

two of the cables are attached to the

16 tons
platform at the comers terminating

one of the 16-ft sides. The third

cable is attached at the middle of the

other 16-ft side. The upper ends of

the cables are joined at a point 12 ft

vertically above the center of the

platform. Calculate the stress in

each cable. Ans. 8500 lb (T);

8500 lb (T); 15,0001b (T).

364.

InFig. 224, andAZ^
are the members of a tripod which

supports a vertical load of 16 tons.

Calculate the stress in each leg.

366. Figure 225 represents a triixxi

carrying a vertical load of 980 lb.

The stress in leg AR is known to be

630 lb, compression, and in AC it is 540 lb, compression. Find the stress in AD,
and the distances Xd and zd. Ans. D = 650 lb (C); xd - —24 ft; zj) ^ +6 ft.

366. Figure 226 represents the familiar stiff-leg derrick. Members AB and AC
are capable of sustaining either tension or compression. In the present problem the

Fig. 224
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angle OAZ> is 90®. Calculate the stress in AD by solving the coplanar concurrent

system acting at the point D; then calculate the stresses in the legs AB and AC, by
solving the non-coplanar concurrent system acting at A,

367. In Prob. 366, Fig. 226, the boom, OD, can be rotated about the vertical axis,

OA, In what position of the boom would the legs AB and AC sustain equal tensile

stresses? In what position would the stress in AD be equal to zero?

368. Solve Prob. 366 with the boom OD in tlie y^-plane. Ijet all the other data of

the problem remain unchanged. Ans. AD = 15 tons (T); AD = 22.5 tons (C);

AC - 22.5 tons (T).

73. Equilibrium of the Non-Coplanar Parallel System, In the solu-

tion of a problem involving the non-coplanar parallel system in equi-

libriimi, the principle of components is able to furnish only one inde-

pendent equation. This necessitates the use of the principle of moments

in obtaining the additional equations needed in the solution. A prob-

lem can be solved by the use of moment equations alone, if so desired.

Usually, however, the simplest

solution is attained by means

of one component equation with

reference to an axis parallel to

the forces, together with moment
equations referred to axes at right

angles to the forces.

Illustrative Problems

369. Figure 227 represents an

L-fihaped block of homogeneous

material weighing 150 lb per cu ft. The block is suspended, with its

larger faces horizontal, by means of three vertical wires, attached at the

points A, Bf and C. Calculate the stress in each wire.
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Solution. In this problem the only load is the weight of the block. For

convenience in dealing with the weight the block may be considered to be

divided into two rectangular prisms, as indicated in the figure. Let the

weights of the two portions be represented by Wi and IFz- Since the material

is homogeneous, Wi and W 2 may be considered to be applied at the centers

of the prisms.

From the figure: If i
= 6 X 2 X 1.5 X 150 == 2700 lb, and TF 2 = 6 X 4 X

1.5 X 150 == 54(X) lb. The principle of components yields one convenient

equation, as follows;

ZF = 0 +A+B + C- 2700 - 5400 = 0

By the principle of moments, using the lines BC and CD as axes,

SMbc = 0 +A X 6 - 2700 X 1 - 5400 X 3 = 0

SMcd = 0 -AX4-RX 10 + 2700 X 7 + 5400 X 2 - 0

The solution of these equations gives: A = +3150 lb, tension; B = +1710
lb, tension; C = +3240 lb, tension.

If two parallel axes had been used as axes of moments the equations would

not have been independent, and a complete solution for the three unknowns
would have been impossible.

370 . Figure 228 represents a horizontal shaft supported in bearings at A
and B. A wheel 2 ft in diameter is keyed to the shaft at C, A wire, de-

pending from the wheel in the manner indicated, sustains a body weighing

400 lb. A vertical force, P, applied at the end of a crank, prevents the shaft

from turning. Disregarding friction, calculate the forces exerted on the

shaft by its bearings. Disregard also the weight of the mechanism.

Solution. Since friction is to be disregarded, and since the loads are

vertical, it may be assumed that the reactions at the two bearings are vertical

or, in other words, that they have no x- or z-components. Assume that both

reactions are upward.



EQUILIBRIUM OF THE NON-COPLANAR PARALLEL SYSTEM 151

The following equilibrium equations provide a convenient solution

:

Sil/z =0 -bP X 2 - 400 X 1 = 0

SMx - 0 4-PX64-PX4~ 400 X2 = 0

- 0 -f^ + P -f P - 400 = O

The solution of these equations gives: A = 4-300 lb; P = —100 lb; P ==

4-200 lb. The minus sign accompanying B shows that the sense was assumed
incorrectly, and that the force acts downward.

PROBLEMS

371 . A steel plate of constant thicknes.s, weighing 360 lb, has the shape of a right

triangle whose legs are 3 ft and 6 ft. The plate is suspended with its triangular

faces horizontal, by means of three vertical wires, attached at the comers. Calculate

the stress in each wire. A ns. 120 lb (T), in each.

372 . Solve Prob. 370, Fig. 228, with the crank, D, in a ix)sition 180“ from that

shown in the figure.

Y

878 . Figure 229 represents a homogeneous slab weighing 150 lb per cu ft, suspended

with its larger faces horizontal, by means of three vertical wires attached at A, P,

and C. The slab is 2 ft tliick. Calculate the stress in each wire. A ns. A —

22,560 lb (T); P = 12,480 (T); C = 17,760 lb (T).

374. In Prob. 373, Fig. 229, calculate the maximum vertical load that could be

applied to the slab at the point D, without disturbing its equilibrium.

876 . Figure 230 represents a system of four parallel, non-coplanar forces in

equilibrium. Calculate the magnitude of the unknown force P, and the coordinates

xp and zp. Ans. P = —200 lb; xp =4-10 ft; zp —
-f5 ft.

876. A uniform, homogeneous, circular plate, 5 ft in diameter and weighing 1600

lb, is suspended in a horizontal position by means of three vertical wires, attached

at points on the periphery of the plate. The distance between two of the wires is

4 ft. The third wire is equidistant from the others. Calculate the stress in each

wire.

877. A uniform, homogeneous, square plate is to be suspended, with its square

faces horizontal, by means of three vertical wires, in such a manner that each wire

will sustain one-third of the weight. The wires are to be attached only at the edges

of the plate. Ascertain two methods by which the desired result can be accom*

pushed.
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378. A table liaving a uniform circular top is to be supported by three vertical

legs equidistant from the center of the table. The table top weighs 90 lb, and the

migiilar spacing of the legs is such that they sustain 25 lb, 25 lb, and 40 lb. Calculate

the angular spacing of the legs about the center of the table.

379 . Figure 231 represents an end elevation and the

foundation plan of a pier supported on twenty piles. The
weight, Wf of the pier is 300 tons. There is also a verti-

cal, eccentric load, P, of 240 tons. The eccentricity, e, is 3

ft. The load P lias no eccentricity in a direction at right

angles to the plane of the figure. The piles are 4 ft apart, in

both directions. Let the supporting reaction of each pile in

row A be represented by A, in i*ow B by P, etc. The prob-

Y

Fig. 231 Fig. 232

lem is to find the reaction exerted on the pier by each pile. Certain assumptions

must be made. Let it be assumed that all the piles in any one row exert etjual

reactions. I^t it be further assumed that P = ^(A -f C), and that C = ‘j- D).

Ans, A = 16.2 tons; B = 23.4 tons; C == 30.6 tons; D = 37.8 tons.

380. Figure 232 represents a unifonn, rectangular board suptK)rted by six vertical

wires attached to helical springs. The board sustains an eccentric load, P, in addi-

tion to its own weight, W. The six springs have the same elastic propertias, and when
not loaded are of equal length. The wires also are equal in length. When the board

alone is hung from the wires the springs are elongated equally, but when the eccentric

load, P, is applied the board assumes an inclined position, as shown.

The distance OE = ^OZ); also, AB === A'B' — BC «= B'C^, From symmetry,
it may be assumed that the tensions in the springs A and A' are equal. A similar

assumption may be made for springs B and P', and for C and C'. The tension in each

spring is proportional to its elongation.

Assuming that the board does not deform, and that the springs and wires are ver-

W P
tical at all times, prove that the tension in A = — H ;

6 24

W
,
7P

6 ^24
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74. Equilibrium of the General Non-Coplanar System. Because of

the great variety of conditions that may exist in connection with sys-

tems of this class, it is difficult to make helpful suggestions as to the

choice of equilibrium equations. The simplest method of solution for

one problem may not be at all desirable in another. Each problem

requires careful, individual consideration.

As always, the illustrative problems should be studied carefully.

Illustrative Problems

381. Figure 233 represents a vertical pole, AD, 40 ft in height, resting

in a socket at A and receiving additional support from the braces, BE and

CE. An inclined load of 25,000 lb is applied to the pole at D, its line of action

passing through the point F. Find the reactions exerted on the structure

at the points of support, A, B, and C. Disregard all weights.

SoliUion, Certain distances can be used in the solution, as follows:

BE = •\/(32)^ + (24)® = 40 ft CE = V(18)* + (24)== = 30 ft

W = V(24)2 + (40)2 ^ 50ft

Since BE and CE are two-force members (Art. 61), the forces exerted on

them at their supports are collinear with the members. Let these forces be

represented by B and C, and their components by Bx, Dy, Cy, and as shown

in the figure. Since the pole is not a two-force member, it is not permissible

to assume that the reaction at A is collinear with the pole. Let A*, Ay, and

A, represent the components of this reaction.

Resolve the 25,000-lb load into its components, at the point F, by the
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method used in Prob. 167, Art. 40, as follows: aj-component » 25,000 X
24/50 = 12,000 R); y-component = 25,000 X 40/50 = 20,000 lb; 2-compo-

nent » 25,000 X 18/50 - 9000 lb.

From the principles of equilibrium,

XFs = 0 - B* -f 12,000 - 0

ZFy = 0 +Ay - By - Cy- 20,000 - 0

SF, = 0 +A, - + 9000 = 0

DM, = 0 -Cy X 18 + 20,000 X 18 = 0

DM. = 0 ^By X 32 - 20,000 X 24 == 0

and from the figure,

B, - BXH By = BXtt Cy^^CxU C, = CXif
From the foregoing equations the following results are obtained: Ax -

+8000 lb; Ay = +55,000 lb; A. - +6000 lb; B = +25,000 lb; C =
+25,000 lb. The positive sign was obtained in each case, showing that the

senses of the unknown forces were assumed correctly. It is seen that mem-
bers BE and CE are in tension. The resultant force at A could be found, if

desired, but it will be considered that the foregoing results are sufficient.

Fig. 234

382* Figure 234 represents a stiff-leg derrick. The mast, AB, is verticjal,

and rests in a bearing at A. The mast is held in position by the braces, or

legs, BD and BE, which are capable of sustaining either tension or com-

pression. The points of support, A, B, and E, are in the same horizontal

plane, and DE is at right angles to AF. The boom, GC, and the mast can be

rotated about the vertical axis, AB. The boom also can be rotated in a

vertical plane. In this problem the end of the boom, C, is in the aj«-plane,

and its coordinates are as shown in the figure. A load of 6 tons is supported
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by the derrick at C, Find the forces exerted on the derrick by its supports

at A, Dj and E, Disregard the weights of the members.

Solution, In the figure the a:-axis is parallel to AF, and the 2-axis is parallel

to DE. Let the three reactions be represented by the letters A, Z), and E,

and let their components be distinguished by the appropriate subscripts.

Assume that BE is in tension and BD in compression. The components of

D and E as shown in the figure are consistent with these assumptions. For

the sake of simplicity only the components have been showm in the figure.

Since weights are to be disregarded, BD and BE are two-force members
(Art. 61). Ck)nseciuently, reactions D and E are collinear with their respective

members. The mast, AB, is not a two-force member; therefore the inclina-

tion of reaction A is unknown.

From the figure: distance BD — BE — V^(30)^ + (30)^ -f (15)^ == 45 ft.

By the principle of moments, with the fact in mind that reactions D and E
are collinear with BD and BE and pass through R,

= 0 -A, X 30 + 6 X 12 = 0 A, = -+-2.4 tons

2M, - 0 -f Ax X 30 - 6 X 16 = 0 A, = +3.2 tons

XMde == 0 +Aj, X 30 - 6(30 + 16) = 0 A^ = +9.2 tons

XMr' - 0 -Ey X 30 + Ay X 15 - 6(15 - 12) = 0 Ey = +4.0 tons

By the principle of components,

SFy = 0 A~Dy + Ay — Ey — 6 = 0 Dy = +0.8 tou

From the figure, using the method shown in Prob. 167, Art. 40,

Dy = D X It D = ^Dy = +1.2 tons

Ey = E X E = 4^Ey = +6.0 tons

All the foregoing results are accompanied by positive signs, showing

that the senses of the unknown forces \vere assumed correctly. It follows

that BD is in compression and that BE is in tension. The resultant force

at A could be calculated, but the foregoing results will be considered sufficient.

383 . Figure 235 represents a gate weighing 2000 lb, supported by a vertical

shaft, AB. The shaft is supported by bearings at A and R, the latter being

a collar bearing capable of providing horizontal support only. The bearings

have not been shown in the figure. A force of 270 lb is applied to the gate,

its line of action parallel to the 2-axis. A wire, DE, anchored at E, prevents

the gate from rotating. Calculate the stress in the wire, and the components

of the reactions at A and R. Disregard friction.

Solution, Tliis problem is of a general nature, requiring for its solution

six equilibrium equations. Assume the various components of the unknown

forces to act as shown. The force at D is collinear with the wire DE; there-

fore its components must be so assumed as to be consistent with that fact.

From the figure: distance DE = v^(12)‘‘* + (20)^ + (9)^ = 25 ft. By the
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principle of moments,

DM, = 0 -2). X 12 + 270 X 12 = 0 D, = 2701b

By the method of resolution described in Prob. 167, Art. 40,

D. = O X * /) = = Y X 270 = 7501b

= Dxii Ox = 750 X = 360 lb

D, = O X M O, = 750 X If “ 600 lb

Fio. 235

The solution can now be completed as follows:

SF, = 0 +Ay + Dy- 2000 = 0

Ay = 2000 - Dy = 2000 - 600 = 1400 lb

DM, - 0 -J5. X 10 -b O, X 8 - 270 X 2 = 0

B. = *(0. X 8 - 270 X 2) = *(270 X 8 - 270 X 2) - 1621b

2F, -0 -A. - B. -b Kx - 270 = 0

A. = -B, + Dx - 270 « -162 •+ 270 - 270 = -1621b
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SM, « 0 +B^ X 10 + Dx X 8 + Dy X 12 - 2000 X 6 = 0

- T^(-Z>x X 8 - Z)y X 12 + 2000 X 6)

Bx = iV(-360 X 8 - 600 X 12 + 2000 X 6) = 192 lb

2Fx = 0 - Rx - Dx - 0

= B^ + 192 + 360 = 552 lb

The minus sign accompanying Ag shows that the sense of that component

was assumed incorrectly. The circle enclosing the arrowhead has been

inserted to indicate that tlie true sense of Ag is opposite to that assumed.

The senses of all the other components were assumed correctly.

PROBLEMS

384. Figure 236 represents a pole, AE, 50 ft long, resting in a socket at A, and

further supported by the cables BD and CD. The pole sustains a vertical load of

3600 lb at its upixjr end. Calculate the stress in each cable, and the components of

the force acting on the pole at A. Disregard the weight of the pole. Am. BD =•

CD - 4330 lb (T); A^ - +8000 lb; Ay - +3600 lb; Ag = 0.

Y
I

Fia. 236 Fig. 237

886. Solve Prob. 384, Fig. 236, after inserting an additional load of 1000 lb,

parallel to the 2-axis, positive in sense, and applied to the pole at E. Let all the

other data of Prob. 384 remain unchanged.

386. Figure 237 represents a pole, AR, 24 ft long, supported in a socket at A,

and receiving further support from the cables CD and CE. The pole sustains a verti^

cal load of 6000 lb at its outer end. Calculate the stress in each cable, and the

components of the force acting on the pole at A. Disregard the weight of the pole.

Am. CD ^CE ^ 10,000 lb (T); A* = +9600 lb; Ay = -6000 lb; As =« 0.

387. In Prob. 386, Fig. 237, replace the cable CE by one extending from C to F,

and solve the problem. Let all the other data remain unchanged.

888. In Prob. 382, Fig. 234, move the boom until the point C is on the aj-axis,

20 ft to the right of R. Let all the other data remain unchanged, and solve the

problem. An«. BD *» BE «= 3 tons (T); A* « +4 tons; Ay » +10 tons;

As « 0.
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889. Figure 238 represents a pole, AD, supported in a socket at D, and supported

also by the braces AB and AC. The pole sustains two loads, applied at its center

point. The 2400-lb load is vertical, and the 1200-lb load is parallel to the at-cwris.

Find the etreas in each brace, and the components of the force acting on the pole

at D.

89i. If the 27i0-lb load in Prob. 383, Fig. 235, is increased sufficiently in magnitude,

the fifiinpon^t 0^ will reverse in sense and will act toward the right. Find aU the
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unknown forces acting on the gate at the instant of reversal, Ans. Ax = +429 lb;

Ay = +1290 lb; A* = +193 lb; Bx = 0; = 0; B, - -193 lb; DE - 893 lb

(T); load = -321 lb.

391. In Prob. 383, Fig. 235, replace the wire DE with one extending from D to a

point 20 ft vertically below E. Let all the other data of the problem remain un-

changed, and solve.

392. Figure 239 represents a vertical pole, AD, resting in a socket at A and receiv-

ing additional support from the guys BD and CD. The pole sustains an inclined

load of 5.2 tons, applied as shown. Calculate the stress in each guy, and the force

exerted on the pole at A. Disregard the weight of the pole. Am. BD ~ 4 tons

{T); CD - 1 ton (T); Ax = —2.4 tons; Ay = +5.6 tons; ^, == —0.6 ton.

393 . Figure 240 represents a horizontal shaft supported in bearings at A and B.

At one end is a drum, C, 2 ft in diameter, on which is wrapped a cable supporting a

load of 3600 lb. At the other end, D, is a crank 1.5 ft long, in a horizontal position.

Rotation of the shaft is prevented by a cable, FB, anchored at the point B, 6 ft

vertically above A. The sliaft is provided with collars at A, which render that

bearing capable of providing support along the axis of the shaft. The bearing at B
is not so provided. Calculate the tension in FB, and the components of the forces

exerted on the shaft by its bearings. Disregard friction and the weight of the shaft

and accessories. An^. Ax — —600 lb; Ay = —44001b; A, = +800 lb; Bx =* 0;

By = +5600 lb; B, = 0; BF = 2600 lb (F).

394 . In Prob. 393, Fig. 240, move the drum to a position halfway between A and

B. I.,et all the other data remain unchanged, and solve the problem.

396 . In Prob. 392, Fig. 239, move the point C to the position whose coordinates

are (+24^ 0, —30')- Let all the other data remain unchanged, and solve t)\e

problem.



CHAPTER VII

FRICTION

76. Friction in General. When one body exerts a pressure on an-

Dther body, the line of action of the force is frequently obli(iue to the

common tangent plane at the point of contact. Jn such a case the

pressure has one component lying in the common tangent plane, and one

at right angles thereto. The existence of this tangential component is

possible even when there is no connection or adhesion between the two
surfaces, and under such circumstances it is known as frictional force,

or simply friction. The normal com-

ponent is iLsually referred to as the

normal pressure.

Figure 241 represents a brake-

shoe pressing against a car wheel.

The point B is any point in the sur-

face of contact. The line tt shows

the position of the common tangent

plane, and the line nn is the com-

mon normal. The element of area

in the surface of contact, at B, is

represented by dA. The resultant

pressure of the shoo on the area dA
is represented by dR. The wheel is represented as rotating, or tending

to rotate, in a clockwise direction, in which case dR will be inclined to

tt and nn in the manner shown. The friction and the normal pressure

on the area dA are represented by dF and dN, respectively.

The existence of normal pressure does not necessitate the existence

of friction. Friction does not exist unless there are conditions causing,

or tending to cause, sliding between the two bodies. Friction opposes

sliding, or the tendency to slide. In the case of the brake-shoe on the

wheel, for example, there will be no friction unless the wheel is turning

under the shoe, or unless there is a tendency for it so to turn.

In many problems, one or both of the bodies are assumed to be

smooth. Under such an assumption friction does not exist, and the

resultant pr^ure at any point coincides with the nonnal. Surfaces

that are not to be assumed smooth are designated as roujgh surfaces.

160



LIMITING FRICTION; IMPENDING MOTION 161

This expression is not to be interpreted as necessarily meaning a high

degree of roughness, but simply as indicating that friction is to be taken

into consideration in the solution of the problem.

PROBLEMS

396. Assume that the wheel shown in Fig. 241 tends to rotate in the counter-

clockwise direction. Make separate sketches of the wheel and the shoe. Show in

each sketch the friction, normal pressure, and resultant pressure acting at the surface

of contact.

397. A body is i)laced on an inclined plane, and a horizontal force, tending to move
the body up the plane, is applied by means of a rope. Make a sketch showing all

the forces acting on the body. Assume that the body is about to move up the plane.

Numerical values need not be used.

76. Static Friction; Eanetic Friction. Friction between two bodies

that have no relative motion at the surface of contact is called static

friction. Both bodies may be at rest, one may be in motion, or both

may be in motion, but the friction at any point at which sliding is not in

progress is classified as static friction.

Friction between two bodies that have relative motion at the surface

of (.*ontact is called kinetic friction.

PROBLEM

398. A box is placed on the horizontal floor of a car. An acceleration is given to

the car, thus causing frictional force to come into existence between the box and the

car floor. If the acceleration is insufficient to cause the box to change its position

relative t/O the c^ar, is the friction static, or kinetic? What is the nature of the friction

if the box moves along the floor of the car?

An automobile driver api>lies the brakes, but not with sufficient force to lock the

wheels or to cause slipping between the tires and the roadway. What kind of friction

exists between the brake-shoes and the drums? Between the tires and the roadway?

Answer similar questions for the case in which the driver locks the wheels while the

car is in motion.

77. Limiting Friction; Impending Motion. Experiments have

shown that the amount of static friction which can exist between two

bodies has a definite maximum limit, and that this limit is fixed by two

factors: namely, the normal pressure and the degree of roughness at

the surface of contact. This maximum possible value of the static

friction for any given case is called the limiting friction.

A good illustration of limiting friction is found in the efforts of a

locomotive driver to start a train that is too heavy for the locomotive.

The normal pressure between the rails and the driving wheels is de-

tennined by the weight on those wheels, and cannot be altered by any

effort on the part of the driver. By dropping sand on the rails he can
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increase the degree of roughness, but only up to a certain point. When
he opens the throttle, steam enters the cylinders and presses against

the pistons, and static friction immediately develops between the rails

and the driving wheels. The frictional force exerted by the rails on

the driving wheels is forward, and tends to start the train. As the

steam pressure rises in the cylinders the static friction increases, but

if the train refuses to start the friction soon reaches the limiting value

corresponding to the fixed normal pressure. From this point any

further increase in the steam pressure causes the wheels to slip on the

rails. Sliding the wheels is of no avail, for friction usually decreases

somewhat as it passes from the static to the kinetic form.

The situation that exists when static friction has its limiting value is

referred to as impending motion. Impending motion is, more specifically,

impending relative motion, or impending slipping. When motion im-

pends, friction is in the static form, but is on the verge of changing to

the kinetic form.

78. Relation between Limiting Friction and Normal Pressure. It

was indicated in Art. 77 that the value of the limiting friction depends

only on the normal pressure and the roughness conditions at the surface

of contact. Experimental research has established the following

formula for use in problems in which the frictional force has its limiting

value:

dF = lidiV [26]

In the foregoing formula dF and dN represent the friction and the

normal pressure, respectively, on any element of area at which relative

motion is impending, and m represents a coefficient whose value depends

on the roughness conditions. This coefficient, /u, is called the coefficient

of static friction. Its value depends on the materials of which the con-

tact surfaces are composed, and on any special treatment that may have

been given to those surfaces. If the contact surfaces are dry, or nearly

so, the value of m is considered to be independent of the manner of

distribution of the normal pressure. It is also considered to be inde-

pendent of the intensity of the normal pressure at any particular point.

For well-lubricated surfaces, however, n is subject to considerable

variation, and greater care is necessary in the selection of its value.

Equation 26 is of a general nature and may be used in any case of

impending motion. Frequently, however, the conditions are such that

the following special form may be used:

F = (tiV [27]

in which F represents the total friction on the entire area of contact,

and N represents the total normal pressure on that area.
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The limiting friction for the locomotive discussed in Art. 77 could be
calculated by means of Eq. 27. The value of m commonly used for

locomotive wheels on steel rails is about 0.25. The use of sand would
increase this to about 0.3. The total weight carried by the driving
wheels, including the weight of the wheels themselvas, would be used
for N . The resulting value of F would represent the maximum static

friction that could exist between the rails and the driving wheels of the
locomotive. It would also represent the maximum pull that the loco-

motive could possibly exert in starting a train on level track.

The choice between Eqs. 26 and 27 in each case depends on various
matters having to do with the distribution of the forces over the con-
tact area and, in some cases, on the nature of the experiments by which
the values of n were originally obtained.

Y

Illustrative Problems

399. Figure 242 represents a body weighing 190 lb, resting on a horizontal

surface. The coefficient of static friction is 0.25. Calculate the magnitude
of the force P, if motion toward the left impends. Also calculate the fric-

tional force and the normal pressure at the instant of impending motion.

Solution. The student should carefully observe that the normal pressure,

Nf is not equal to the weight of the body, in this problem.

The principle of components may be used. Equation 27 applies, also,

since sliding is impending.

SFx « 0 -P X I + F = 0

IFy^O -t-P X I + A ~ 190 = 0

F « mA F = 0.25 X N

The solution of these equations gives: P = 501b; F = 401b; N ^ 160 lb.

400. Figure 243 represents a body A resting on a body P, which rests on a

horizontal plane. A horizontal wire, C, prevents A from moving. An
inclined force, P, is applied to P, and is gradually increased. A weighs

ISO lb and P weighs 300 lb. The coefficient of static friction is for all
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surfaces. Calculate the value of P, and the tension in the wire, for the

instant when motion of B impends.

Solution. Figure 244 represents A as a free body. C represents the ten-

sion in the wire, and Pi and represent, respectively, the frictional force

and the normal pressure exerted by P on A. The student should consider

carefully whether the sense assumed for Pi is in accordance with the con-

ditions. Since sliding of B is impending, Eq. 27 may be used. For body A,

SPx = 0 +Pi - C = 0

XFy = 0 -fiVi - 150 = 0

F fiN Pi - iNi

The solution of these equations gives: Ni = 150 lb; Pi = 50 lb; C = 50 lb.

Figure 245 represents P^as a free body. Pi and Ni represent the frictional

force and normal pressure exerted on P by A. The student should carefully

observe that these forces are opposite in sense, although equal in magnitude,

to the Pi and N\ exerted on A, by P, shown in Fig. 244. P 2 and N 2 represent

the frictional force and normal pressure exerted on P by the supporting

plane. Here, as always, the student must consider whether the sense of the

frictional force has been chosen in accordance with the conditions of the

problem. Utilizing results previously obtained,

2P* = 0 +iP - 50 ~ P 2 = 0

IFy = 0 +fP - 150 - 300 + Ar2 « 0

p « P2 = iN2

The solution of these equations gives: P = 200 lb; P2 » 110 lb; JV2 «=

330 lb.

It is suggested that the student check the answers by considering the two

bodies, A and P, together as a single free body.

401* Figure 246 represents a homogeneous, prismatic bar, AP, resting on

,a horizontal piano at A, and leaning against the edge of a wall at P. The
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coefficient of static friction for both surfaces of contact is 0.2. The bar

weighs 500 lb. A horizontal force, F, is gradually applied at C. Calculate

the magnitude of P at the instant when
motion of the bar impends. Find the

other forces acting on the bar at this

instant.

Solution. Show all the forces acting

on the bar. Bo sure that the senses

of the frictional and normal components

are assumed in a manner consistent with
P

the conditions of the problem. The lower

end of the bar is on the verge of moving

toward the right. Therefore, the fric-

tional force Fa acts toward the left, 7

since it will oppose the tendency of the

bar to move. Likewise, Fd acts down-

ward, as shown in the figure. The senses

of Na and Nd are obvious. Fig. 246

SMc = 0 -^Nd X 4 - Na X (4 cos 60®) - Fa X (4 cos 30°) - 500

X (2 cos 60®) = 0

SFy - 0 +Nd cos 60® - Fd cos 30® + Na - 500 = 0

Motion impends both at A and at D. Therefore, Eq. 27 may be utilized,

F = fiN Fa == 0.2Na Fd - 0.2Nz>

Substitute these expressions for Fa and Fd in the two equations written above,

and simplify.

-f4Nd - 2.69Na = 500

-b0.327Ni> + Na = 500

The solution of these equations gives: Na = 376 lb; Nd — 378 lb; Fa =
75.2 lb; Fd - 75.6 lb.

The value of P can now be obtained as follows:

2Fx = 0 +F - 75.2 - 75.6 cos 60® - 378 cos 30® = 0

P == 440 lb

PROBLEMS

402* A body whose weight is W rests on an inclined plane. The inclination of

the plane is gradually increased until the body begins to slide. Let d represent the

angle of inclination of the plane at the instant just before motion starts. Prove

that M tan

408. Reverse the force P in Prob. 399, Fig. 242, and solve, leaving the other data

unchanged.
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404* In Fig. 247, body A weighs 100 lb, and B weighs 200 lb. A is prevented from

moving by the horizontal cord, C, attached tg a wall. The coefficient of static fric-

tion for all surfaces of contact is 0.2. Calculate the value of P, assuming that B is

on the verge of moving toward the left. Calculate the tension in the cord. An$,

801b; 201b.

406.

Solve Prob. 404, with the cord C at an angle of 30° with the horizontal, and

sloping upward toward the right.

P
B

TfmTTTmTTr.mrrTTTTmnf/,

Fia. 247

130 tb.

406. In Fig. 248, A weighs 50 lb and B weighs 100 lb. The coefficient of static

friction for aU surfaces is 0.25. A is prevented from moving by the cord, C, parallel

to the incline. Assume that motion of B down the incline is impending. Calculate

(?, and the tension in the cord. Am. 26° 35^; 33.5 lb.

407. Figure 249 represents a homogeneous cylinder weighing 100 lb. It is to be

rolled, without slipping, over the edge, A, Calculate the minimum possible value

of the force P, and of the coefficient of static friction.

408. If the coefficient of friction in Prob. 407 is only 0.15, what kind of motion

will occur as the force P is increased? Calculate the frictional force and the normal

pressure at A, and also at P, at the instant of impending motion. Ans. Fa
12.9 lb; Na « 85.9 lb; Fb = 3.64 lb; Nb = 24.2 lb; P - 16.5 lb.

409. Figure 250 is an end view of a wedge arranged to slide in a V-shaped groove,

in a direction at right angles to the plane of the figure. What horizontal force, paral-

lel to the groove, would be necessary to cause motion to impend, if the coefficient of

static friction is 0.1? Assume that the frictional forces on either side of the wedge
are all at right angles to the plane of the figure. Am. 23.4 lb.
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410. In Fig. 251 the coefficient of static friction for the brake-shoe on the wheel is

0.3. Calculate the minimum value of the force, P, necessary to prevent the wheel

from turning, if the load, Wy is 250 lb. Disregard friction in the bearings. In what
manner does the curvature of the brake arm assist the action of this brake?

411. Theoretically, it would be possible so to locate the pin, A
,
in Fig. 251, Prob.

410, that the slightest touch at the handle

would lock the brake. Find this position

of the pin.

412.

In Fig. 252 is shown a homoge-
neous half-cylinder, to which is applied a

horizontal force, P, as indicated. If the

coefficient of static friction is 0.15, at what

Fig. 252

angle, e, will the cylinder stand when slipping impends? If the body weighs 50 lb,

what will be the value of P at the instant of impending motion? Ans. 33° 05^;

7.5 lb.

413.

A straight, prismatic and homogeneous bar rests on a horizontal floor at its

lower end, and against a vertical wall at its upper end. Derive a formula for the

minimum angle with the horizontal at which such a bar can stand without slipping,

the coefficient of static friction being the same for all surfaces. Ans. d * arc tan

(1 - m')/2m.

414. In Prob. 406, let the cord C be attached at a point higher on the wall, so

that it makes an angle of 30° with the incline. Calculate the value of 0, and the

tension in the cord.

415. Figure 253 represents a uniform bar, ABy 10 ft long and weighing 200 lb.

The lower end. A, rests on a horizontal surface, and is prevented from shifting by a
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frictionless ball-and-socket joint. The upper end, R, rests against a vertical wall.

The coefficient of static friction for the bar against the wall is 0.35. Calculate the

minimum possible value of the angle 6, if the bar is not to slide on the wall. Cal-

culate the components of the reaction exerted on

t the bar at A. Arts. 65"'; Ag « —121 lb; Ay ^

•f 182 lb; A, = 4-38.3 lb.

79. Angle of Static Friction; Angle of

Repose. The angle between the normal

and the line of action of the resultant pres-

sure on any element of area at which mo-
tion is impending is called the angle of static

friction.

Figure 254 represents a brake-shoe

pressing against a car wheel. Let it be

assiuned that clockwise robition of the

wheel is impending. The friction, then,

on an element of area at the point B has

its limiting value, dF, and the angle ABC is the angle of static fric-

tion. Let <l> represent the angle of static friction. From the figure,

J ^
ON C_

1

Fia. 254

In many cases, also,

tan </»
=
dN

tan <t>
”
F
N

[28J

[29]

Substituting in Eq. 28 the value of dF/dN from Eq. 26, of Art. 78, it

follows that

tan <{> == |ji [30]

Values of <t> are sometimes found in tables, but can at any time be

computed from values of m, by means of Eq. 30.

The introduction of the concept, angle of friction,’^ simply facilitates

the procedure in cases of impending motion in which it may seem more

desirable to deal with the resultant pressures and their angles of incli-

nation to the normal than with the frictional and normal components.

The use of the angle of friction is especially convenient in graphic

solutions, aJid in algebraic solutions in which the total number of forces

acting on the given body does not exceed three.

If the resultant pressure at any point makes an angle with the normal

less than the angle of static friction, motion is not impending at that

point.

The Angle of Repose. Figure 265 represents a body resting on a

plane which is inclined at such an angle that motion of the body down
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the plane is impending. The angle of inclination, jS, of the plane to the

horizontal under the foregoing conditions is called the angle of repose.

For equilibrium, R must be collinear with

W, The angle ABC between R and the nor-

mal is, therefore, equal to But since motion

is impending the angle ABC is also equal to 0.

Therefore, is equal to (p. The angle of repose

for solids is equal to the angle of static friction.

For granular materials, such as sand, the

angle of repose is the greatest angle with the

horizontal at which the material will stand

in a pile. It has been found that in such cases

there is a slight difference between the angle of

repose and the angle of static friction.

Tables of average values of the coefficient and the angle of static

friction are to be found in the various engineering handbooks. The
best value for use in any given problem is that value which was origi-

nally obtaiiKid under conditions most nearly like those of the problem.

The facts concerning friction are the result of the researches of many
experimenters, notable among whom were Morin and Coulomb. The
laws and formulas cannot be considered to be exact, but if their use is

accompanied by good judgment in the selection of coefficients they

can usually be made to yield satisfactory^ results. Where greater

accuracy is desired special experiments should be performed.

Illustrative Problems

416 . Figure 256 represents a body weighing 1000 lb, resting on a hori-

zontal plane. The angle of static friction is 14°. The force P, applied as

shown, is gradually increased until motion impends. Calculate the mag-

nitude of P at this instant. Also calculate the magnitude of the reaction, P,

exerted on the body by the supporting plane.

Solution. Before P is applied R will be vertical, and collinear with the

weight of the body. The magnitude of R will then be equal to the weight of

the body. After P is applied R vdll assume an inclination, as shown, and this

inclination will increase as P increases. The point of application of R will

move toward the left. R will eventually reach its maximum possible incli-

nation to the normal. At this point the angle of inclination of R to the

normal will reach a value equal to the angle of static friction, (p. If P is

further increased, motion will begin.

== 0 +P sin 14° — P cos 30° = 0

SPv = 0 +R cos 14° - P sin 30° - 1000 = 0

The solution of the foregoing equations gives

P « 337 lb P = 1210 lb
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The coordinate axes in the foregoing solution could have been selected in

such a manner that each equation would have contained only one unknown

quantity. However, such a procedure would have necessitated additional

geometrical calculations, and it is doubtful that much time would have

been saved.

Another method favored by some consists in making a sketch of the force

polygon for the three external forces acting on the body, and in solving the

polygon by the methods of trigonometry. Since the three forces P, W, and

Y

I WslOOOlh.

Fig. 257

R are in equilibrium, they will form a closed polygon, as shown in Fig. 257.

One side of this triangle is known, and the three angles are easily calculated

from the geometry of Fig. 256. The triangle is then solved by means of the

law of sines. If the triangle is plotted accurately to scale the method consti-

tutes a graphic solution of the problem. The results are scaled from the

diagram.

417 , Figure 258 represents a wedge, A, resting between two blocks, B
and C. These blocks rest on horizontal surfaces, D and E, A horizontal

force of 2000 lb is applied to each block, as shown. The angle of static

friction is 15° for all surfaces. The wedge is symmetrical with respect to a

vertical plane. Calculate the magnitude of the vertical force, F, assuming

that downward motion of the wedge is impending. Disregard the weights of

the wedge and the blocks.

Solution. Figure 259 is a free-body diagram of block B. The external

forces acting on B are the given 2000-lb force, the force R, exerted by the sup-

porting surface D, and the force Q, exerted by the wedge. Since sliding is

impending at both surfaces of contact, R and Q will be inclined to their

normals at angles of 15°. Great care must l)e exercised to incline them on

the proper side of the normal. It is known from the conditions of the prob-

lem that the block B is. on the point of moving toward the left. Therefore,

B must be inclined as in Fig. 259, in order that its frictional component may
resist the tendency of B to move. Since the wedge A is about to move down-
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ward, the frictional force that it exerts on B must be downward, and as a con-

sequence Q must be inclined as shown.

Figure 260 is the force polygon for the three external forces acting on B.

?

The three angles of the triangle are easily calculated from the geometry of

Fig. 259, and are as shown in Fig. 260, From Fig. 260, by the law of sines,

Q _ _ 2(X)0

sin 105° sin 45°
Q - 2000 X 0.966

0.707
2730 lb

P

Figure 261 is a free-body diagram of the wedge A. From symmetry, the

forces QQr exerted on the wedge by the blocks B and C, may be assumed

equal. The force Q acting on the left-hand face of the wedge is collinear

with, and equal to, the force Q that the wedge exerts on the block R. The

magnitude of this force was found to be 2730 lb, in the foregoing calculation.

The two forces are, however, opposite in sense. Figure 262 is the force

polygon for the three forces acting on the wedge. The triangle is equi-

lateral; therefore

P 2730 lb
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The equilibrium equations could have been written, and solved in the

usual manner, in the foregoing problem. The method used is a very con-

venient one, however, and is a favorite with many persons.

PROBLEMS

418

.

A body weighing 260 lb rests on a horizontal plane. The angle of static

friction for the surfaces of contact is 15'". A force is applied to the body, its line of

action having an inclination of 45° to the horizontal. The sense of the force is up-

ward. Calculate the magnitude of tliis force at the instant of impending motion.

Ans. 77.71b.

W

Fig. 263

419 . Calculate the minimum force that could cause motion to impend in Proh.

418, and the angle at which it would be necessary to apply it. 67.2 lb; up-

ward, at 15° to the horizontal.

420. Figure 263 represents an adjustable baseplate of a type often placed under the

bearing at one end of a shaft. The bearing can be raised by advancing either, or

both, of the capscrews, C and D. Assume a load, TF, of 500 lb, and an angle of static

friction of 11° at all points- Calculate the pressure that screw C must exert against

wedge A, in order to cause A to start toward the right. Assume that this force has

no vertical component.

421 . Calculate the magnitude of the force, P, in Fig. 264, necessary to start

motion. Assume an angle of static friction of 10° at all surfaces of contact. Ans.

165 lb.

422. Calculate the force P, in Fig. 265, that would cause motion of the wedge-

shaped block to impend. Block A is attached to a wall by means of a horizontal

cord, C. Calculate the tension in the cord. The angle of static friction is 8° at all

contact surfaces.

423. Figure 266 represents a cotter key, C, used to connect a bar, to & plate, A .

The bar passes loosely through a hole in the plate, and the key is inserted through a
slot in that portion of the bar projecting beyond the plate. The angle between the

upper face of the key and the horizontal is 12°. The angle of static friction for all

contact surfaces is 14°. Calculate the force, P, necessary to start the key inward.

Assume that the bar comes into contact with the plate at the left-hand side of the

hole, only. Ans. 1260 lb.

424. In Prob. 423, Fig. 266, calculate the force that would be required to start

the cotter key outward. Assume that the bar would come into contact with the

plate at the right-hand side of the hole, only.
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425 . The device shown in Fig. 267 consists of a stationary, vertical bar, or shaft,

passing through a hole in a horizontal arm, or hanger. The hole in the hanger is

slightly larger than the shaft. If the arm is held in a strictly horizontal position it

can be slid up or down at will. If it is permitted to tUt slightly downward it will

6001b.

1500 ib.

Fig. 266

come into contact with the shaft at the points A and B, thus giving rise to vertical

frictional forces tending to prevent the hanger from sliding downward. Prove that

a load TF, of any magnitude, can be hung on the arm without causing the arm to

slide downward, provided that the distance, a, is made equal to, or greater than,

h cot 0/2, in which 0 represents the angle of static friction.

80. Classificatioii of Problems Involving Static Friction. Problems

involving static friction may be classified in two groups. In problems

of the one group sliding Is impending, and this fact is known in advance,

either from a direct statement or by inference from the conditions of

the problem. In problems of this class Eqs. 26, 27, 28, 29, and 30 are

valid.

In problems of the other class it is not known in advance that sliding

is impending. Therefore, it cannot be assumed that the foregoing
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formulas apply. The important point to be held in mind is that these

formulas involve the limiting friction, which is the maximum friction

possible with a given normal pressure, and that the frictional force

in a problem may or may not have this maximum value, depending on

the conditions. In many problems the frictional forces can be found

only by means of the general principles of mechardcs, and the formulas

referred to above may be used solely

as a means of ascertaining whether

the amomit of friction demanded

by the conditions of the problem

really could exist.

Illustrative Problems

426 . Figure 208 represents a body

weighing 400 lb, resting on a 20° in-

clined plane. The coefficient of static

friction is 0.25. A horizontal force of

200 lb is applied to the body. Calculate

the friction and the normal pressure exerted on the body by the supporting

plane.

SoliUion, Select axes as shown.

XFy = 0 -fN - 400 cos 20° - 200 sin 20° = 0 N - 444 lb

There is nothing to indicate that motion of the body, either up or down
the incline, is impending. Therefore, the formula F - fiN may not be used

to calculate the value of the frictional force actually exerted on the body.

This force can be calculated by the following process:

SF, = 0 -F - 400 cos 70° -f 200 cos 20° = 0 F * 51.2 lb

This is the amount of friction that must actually exist if, under the con-

ditions, the body is to remain in equilibrium. The formula F = fxN may
be used only to test the conditions. If the value of 444 lb obtained above for

N, and the value of 0.25 given for the coefficient of friction, be substituted in

this formula, F will be equal to 1 1 1 lb. This is simply the maximum amount
of friction that could possibly exist between the two given surfaces, with the

given normal pressure. Since the amount of friction required for equilibrium

b only 51.2 lb, motion will not occur, and the results obtained are the cor-

rect ones.

427. Figure 269 represents a homogeneous, rectangular prism weighing

480 lb, resting oh a horizontal plane. An inclined force, F, is applied as indi-

cated. The coefficient of static friction is If the force P is gradually

increased, will the body slide, or tip? Calculate the value of P at the instant

of impending motion.
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Solution, Assume first that the body will tip. In such an event, at the

instant when tipping impends the frictional force and the normal pressure will

be concentrated at the forward edge of the bottom of the prism, as shown
in the figure. Since it is not known whether

sliding also impends, the formula F ~ nN may
not be used. From the conditions of equilibrium,

XMa = 0 ~(P X I) X 2 + 480 X 0.5 = 0

from which P = 150 lb. This is the value of P
which would be necessary to cause tipping to im-

pend, assuming that sliding would not occur first.

Now assume that the body will slide without

tipping. In this case, at the instant of impending

sliding, the formula F - fiN does apply, but the

point of application of N is unknown.

XF:r = 0 +1 P - F = 0

SF„ - 0 P + AT - 480 - 0

F ^ l,N F

The solution of these ecjuations gives: P = 160 lb. It is now known that

the body will tip, and that this will occur at the instant when P = 150 lb,

since this is the smaller of the two values.

PROBLEMS

428 . A body weighing 1200 lb rests on a horizontal plane. The coefficient of

static friction for the surfaces of contact is 0.2. A force of 200 lb is applied to the

body, at an angle of 22° 30^ with the horizontal, acting upward. Calculate the fric-

tional force and the normal pressure exerted on the body by the supporting plane.

Is motion impending? Ans. F = 185 1b; N — 11201b.

429 . A homogeneous cube weighing 1000 Ib is placed on a 30° inclined plane.

The coefficient of static friction is 0.3, A force, parallel to the incline and directed

up the slope, is applied to the upper edge of the block. This force is gradually in-

creased until motion begins. Will the block slide, or tip? Calculate the magnitude

of the applied force, and of the frictional force, for the instant of impending motion.

430 . Change the coefficient of friction in Prob. 429 to 0.15, and solve the problem.

Am, 6301b; 1301b.

431 . Assume that slipping and tipping of the block in Prob. 429 impend at the

same instant. What is the value of the coefficient of friction under these conditions?

432 . Figure 249, Art. 78, represents a cylinder weighing 80 lb, resting in a rec-

tangular groove. The coefficient of static friction is 0.4. If the force, F, is gradually

increased, will the cylinder finally slip and rotate in the groove, or will it’VoU out of

the groove? Calculate the magnitude of the frictional force at A
,
at the instant when

motion is impending. Ans. 21.4 lb.

433 . Figure 270 represents one of the rear wheels of an automobile that is being

held at rest on a 10 per cent grade by means of the brakes. The wheel is 2$ in. in

Fig. 269
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diameter, and the total load, W, carried by the wheel is 1000 lb. The forces, PP,

represent the couple exerted on the wheel by the bralce. Calculate the moment of

this couple, and the magnitude of the frictional

force, F, at the roadway.

434. If the coefficient of static friction for pneu-

matic tires on pavement is assumed to be equal to

0.6, on what maximum grade could the automobile

of Prob. 433 stand, provided that the brakes were

capable of holding the car? Calculate the moment
of the couple that the brake would exert on the

wheel under these conditions. Ans. 60% grade;

600 ft-Ib.

81. Kinetic Friction. The coefficient of

kinetic friction is the ratio of the kinetic

friction to the normal pressure.

Let dF represent the kinetic friction on an

elementary portion, cL4, of the surface of

contact between the two bodies. Let dN
represent the normal pressure on the area

dA, Let M represent the coefficient of kinetic friction. Experiments

have indicated that the relation between the foregoing quantities is as

follows:

dF^^dN [31]

Equation 31 may be used in any case of kinetic friction. In some

cases the following special form may be used:

F = jUV [32]

in which F represents the kinetic frictional force on the entire area of

contact, and N represents the total normal pressure on that area.

The angle of kinetic friction is the angle between the resultant pressure

and the normal at any point at which relative motion is in progress.

Let 4> represent the angle of kinetic friction.

tan <|) = |i [33]

The proof of Eq. 33 is similar to that of Eq. 30, in Art. 79. It is

seen that the formulas for kinetic friction are identical, in form, with

those for the case of limiting static friction . The formidas for kinetic

friction may be used, however
^
in any case in which kinetic friction existSy

while theformulas involving limiting staticfriction apply only to the particu-

lar situation in which relative motion impends.

The coefficient of kinetic friction is subject to greater variations than

the coefficient of static friction. Its value is affected by many factors

such as the relative velocity of the two surfaces, the duration of the
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rubbing, the intensity of the nomrml pressure, and the temperature.

It is also affected, of course, by the roughness of the surfaces and the

degree of lubrication. If accurate results are needed, these variations

must be considered. If only roughly approximate results are required,

an average value may be Used for the coefficient. This average value

is then treated as a constant in the calculations. Extensive discussions

of the coefficient of kinetic friction arc found in many of the handbooks

and textbooks of mechanical engineering.

PROBLEMS

436. In Prob. 399, Fig. 242, let the force P have a magnitude of 100 lb, and let the

coefficient of kinetic friction be 0.2. Acceleration will occur, and the horizontal com-
ponent of the forces acting on the body will be unbalanced. The vertical com-
ponents will be balanced. Calculat e the frictional force. A ns. 26 1b.

436 . A body weighing 180 Ih is placed on a horizontal plane. It is found that a

horizontal force of 18 lb, applied to the body, causes the body to move at a constant

speed in a straight line. It is known from the principles of kinetics that under these

conditions the external forces acting on the body are in equilibrium. Calculate the

coefficient of kinetic friction.

437 . A body weighing 1200 lb is plac^ed on a 20° inclined plane. The coefficient

of kinetic fri(d.ion is 0.15. A force is applied to the body, its line of action parallel

to the incline, and its sense being up the slope. If the body moves at constant speed,

what Is the magnitude of the applied force? Ans. 580 lb.

82. The Inclined Plane. The inclined plane is one of the oldest and

simplest mechanical devices. It is used primarily to raise or lower

hesivy bodies by means of comparatively small applied forces. Friction

plays an important part in determinmg the effectiveness of the device.

In the raising of a body by means of an inclined plane, friction is detri-

mental, but in the lowering of a body friction may be useful in helping

trO control the descent. Sometimes friction alone is depended upon

to hold the body at any desired point. Inclined tramways and chutes

of various kinds are familiar examples of the application of the principle

of the inclined plane to commercial use. Wedges and screws are adap-

tations of the inclined plane frec|uently found in machinery.

Algebraic formulas will be derived for the force required to start a

body up an inclined plane. Since kinetic friction is, in general, less than

static friction, the force that will start the body is ysually sufficient to

maintain motion.

General Formnla for Force to Start Body up Plane, Figure 271 repre-

sents a body of weight, IF, resting on a plane inclined to the horizontal

at any angle, jS. P is a force having a magnitude just sufficient to cause

motion to impend, up the plane. P makes any angle, d, with the plane,

as shown. R represents the force exerted on the body by the plane, and
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since motion up the plane is impending R has the position shown, making
an angle with the normal equal to the angle of static friction, <l>.

Figure 272 Ls the force polygon for the three external forces acting on
the body. In Fig. 271 it can be seen that the angle between R and
the vertical is equal to <f> + This is also the angle ACB in Fig. 272.

Figure 271 also shows that the angle between P and the vertical is equal

to 90° — (0 + /3). This is the angle ABC in Fig. 272. The remaining

angle, BACy of the force triangle is, then, equal to 180° — (0 + /3)

— [90° — (0 + 0)] == 90° — (0 — By the law of sines,

P W
sin (0 + /3) sin [90° — (0 — 0)]

P =
cos (0 — 6)

[34]

An examination of Eq. 34 shows, as would be supposed, that for any

fixed values of and 0 the value of P can be greatly changed by varying

the value of d. For example, if 0 is given the negative value,

— (90° — 0), cos (0 -- 6) becomes cos (0 + 90° — 0) = cos 90° = 0.

The corresponding value of P is infinity. For such a value of By then,

the body would not start at all, and for neighboring values of 6, P would

be very large. On the other hand, if 0 is given the positive value

(90° — P)y cos (0 — B) becomes cos (0 — 90° + /3) = sm (/S + <^»), and

Eq. 34 will then give P == IF. In such a case no advantage would

be gained from the use of the inclined plane. Somewhere between

these two extremes the value of P is a minimum.

Formvlafor Minimum Force to Start Body up Plane, An examination

of Eq. 34 shows that, for any fixed values of ^ and 0, P will be a mini-
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miun when cos (<#> — 0) is a maximum. The maximum possible value

of the cosine is unity, in which case (<^ — 0)m equal to zero. The formu-

las for the minimum value of P are, then, as follows:

= 0 [35]

P' = TTsin + [36]

In kinetics it is learned that if all points of a body arc moving in

straight lines at constant speed th(‘ forces acting on the body are in

equilibrium, 'l^'liercfore, the formulas of the present article apply to the

case m which the body moves uniformly up the plane, provided that the

angle of static friction is replaced by the angle of kinetic friction.

PROBLEMS

438 . Derive Eq. 34 by writing the equations of equilibrium, in heu of the method

used in the text. liefer to Fig. 271.

439. Figure 273 represents a body whose weight is W, resting on an inclined plane

that makes an angle of 0 with the horizontal. The case represented is one in which

the angle of static friction, <f>, is smaller than This means that the body will

slide down the incline of its own accord, unless prevented from doing so. I.iet the

force P, applied as shown, be just great enough to prevent the body from sliding

downward. Derive a formula for P, in terms of TF, 0, and 6. A^is. P ~ W sin

0? ~ 0)/cos (0 -h

440 . In Prob. 439, for any fixed set of values of W, /S, and 0, there is a value of 0

for which P will be a minimum. Ascertain this value of 0, and obtain a formula for

the minimum value of P. Use the results of Prob. 439. Ans. o' = —0; P^ =

W sin (/? — 0).

441 . A body weighing 260 lb rests on a 30° inclined plane. The coefficient of

static friction is 0.3. A force, P, is applied as shown in Fig. 273, in magnitude just

sufficient to prevent the body from sliding down the incline. The angle $ is 22° 30'.

Calculate the value of P. Also calculate the minimum value of P to accomplish

the same purpose. Ans. 77.2 lb; 59.8 lb.

442. Figure 274 shows a body whose weight is VF, resting on an inclined plane that

makes an angle /9 with the horizontal. The case represented is one in which the

an^e of static friction, 0, is equal to. or greater than, Let the force P, applied
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as shown, be of a magnitude just sufficient to cause motion to impend, down the

incline. Derive a formula for P, in terms of TF, </>, and 9. Ans. P = IF sin

03 — 0)/cos (0 “H 0).

443 . In Prob. 442, for any fixed set of values of IF, /?, and 0, there is a value of 6

for which P will be a minimum. Ascertain this value of and obtain a formula for

the minimum value of P. Use the answer obtained in Prob. 442. Ana. 0 ^
180° ^<t>] P ^ -IF sin 03 - 0).

444 . A body weighing 260 lb rests on a 10° inclined plane. The coefficient of

static friction is 0.5. A force, P, applied as in Fig. 274, has a magnitude just suffi-

cient to cause motion to impend, down the incline. The angle 0 is 173°. Calculate

the value of P. Calculate the minimum value of P that would accomplish the same
purpose. Ans. 78.7 lb; 74.1 lb.

446 . A body weighing 1000 lb rests on a horizontal surface. The coefficient of

static friction is 0.3. Calculate the minimum force that would cause motion to

impend. Solve as a special case of the inclined plane. A7is. 287 lb.

83. The Screw. The screw is used most frequently as a fastening

device, but in many fomis of machinery it is designed to play an active

part in the mechanism, transmitting force or power from one part of

the machine to another. The screw is an adaptation of the inclined

plane; it is, in effect, an inclined plane wrapped around a cylinder.

Fig. 275 Fig. 276

There is one general formula that can be used as a basis for special

formulas applying to particular machines. This formula gives the

moment, or torque, about the longitudinal axis of the screw, of the

forces acting on the threaded portion, at the instant of impending mo-
tion. This formula will be derived for the square-threaded screw.

This is the type of screw generally used where large forces are to be

transmitted.

Figure 275 represents a portion of a square-threaded screw. Q repre-

sents the resultant of all the longitudinal forces acting on the screw, other
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than those which act on the threads. The line tt is tangent to the thread.

The angle which is the angle of inclination of the thread, is called

the pitch angle. I^t dR represent the resultant pressure on an ele-

mentaiy portion of the surface of the thread. The exact position of the

point of application of dR depends on the distribution of pressure on the

thread, but it is usually assumed to be at a distance from the axis of the

screw equal to the mean radius of the thread. Let the mean radius of

the thread be represented by r.

Figure 276 is an end view, and shows the element of area, the mean
radius, and the horizontal component of dR,

Formida for the Case in Which Q Opposes the Motion, In tliis case

the impending rotation of the portion of the screw shown in Fig. 275

would be counterclockwise, if viewed from above. Obviously, dR
would be inclined in the manner shown in that figure. Let Mr repre-

sent the moment-sum of all the elementary forces, d/2, with respect to

the axis of the screw. From Fig. 275 it can be seen that the horizontal

component of dR is equal to dR sin (<^ + jS). The moment of dR about

the axis of the screw is equal to this component multiplied by r.

Mt = S[r dR sin {<t> + ff)] = r sin (<t> + /3)S dR [37]

It is understood that the summation indicated in Eq. 37 extends to

all parts of the screw thread that make contact with the thread of the

nut. Continuing, from Fig. 275,

= 0 2[d/e cos {<t> + |8)] - Q'= 0 1 dR —
- [38]

COS (0 + P)

Substituting in Eq. 37 the value of S dR obtained in Eq. 38, the

following formula for Mt is obtained:

Mt ^ Qr tan (0 + /3) [39]

Formida for the Case in Which Q Assists the Motion, In this case the

position of dR would be on the opposite side of the normal from that

shown in Fig. 275. The resulting formula for Mt is as follows:

Mt = Qr tan (0 — /3) [40]

The derivation of Eq. 40 is similar to that of Eq. 39. These equations

give that portion of the torque required to start the screw which can

be attributed to the resistance of the threads.

The formulas may also be used in the case of a screw that is actually

turning at constant speed, provided that the angle of kinetic friction is

used for 0.
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Illustrative Problem

446

.

Figure 277 represents a screw, A, passing through a nut, B, and oper-

ated by means of a handwheel, C. When the screw is advanced it pushes the

block, D, along the horizontal surface,

E. The block weighs r>fXX) lb. The
screw has square threads, and there

are 4 threads per inch. The diameter

at the root of the threads is 0.781 in.,

and at the top of the threads it is 1 in.

The coefficient of static friction for

the threads is 0.1, and for the block

on the supporting plane it is 0.25.

Calculate the torque that must be ap-

plied to the handwheel, in order to

cause motion to impend toward the

left. Disregard the friction between the end of the screw and the block.

Solution, The four forces shown in Fig. 277 are the external forces acting

on the block.

IFy = 0 N - 5000 = 0 N = 5000 lb

And, since motion is impending,

F ^ fxN F = 0.25 X 5000 = 1250 lb

SFx - 0 -Q + 1250 = 0 Q - 1250 lb

The longitudinal thrust, Q, exerted by the block on the screw is equal to the

force Q found above, although opposite in sense.

The mean radius, r, of the threads is equal to (0.781 + l)/4 = 0.445 in.

The angle of static friction, cj>, is equal to arc tan 0.1 = 5° 45'. The pitch

angle of the threads is calculated by dividing the rise of one thread by the

mean circumference of the thread. This quotient gives the tangent of the

pitch angle. Therefore, 3 = arc tan 0,25/ (2 7r0.445) == arc tan 0.0894 ^
5® 05'. By substitution in Eq. 39,

Mt = Qr tan ((j> + 3)

Mt = 1250 X 0.445 tan (5® 45' + 5° 05') = 1250 X 0.445 X 0.191 * 106 in-lb

PROBLEMS

447. A certain square-threaded screw has If threads per inch. The diameter at

the root of the thread is 2.5 in., and the outside diameter is 3 in. The axial load on

the screw is 20,000 lb, and the coefficient of friction is 0.1. Calculate the moment
required to cause the screw to advance in a direction opposite to that in which the

load is applied. Calculate the moment required to retract the screw. Assume that

no friction must be overcome except that of the nut. Am. 383 ft-lb; 77.4 ft-lb.

448. A certain machine for testing materials is equipped with two square-threaded

screws. Each screw has 2 threads per inch, and the mean radius of the threads is

W=5000 Ib
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1.27 in. Assume the coefficient of friction to be 0.15. The two screws are threaded

through the pulling head of the machine. They are prevented from moving longitu-

dinally, and as they rotate they cause the pulling head to rise or fall. Calculate the

total torque that must be exerted on the two screws, in applying a load of 100,000 lb

to a test specimen. Assume that the only friction to be overcome is that on the

threads. Calculate the torque required to remove the load.

449. Figure 278 represents a hand-power press, equipped with a square-threaded

screw having 2 threads per inch. The bar by means of which the screw is turned

has a length, h, of 18 in. The mean radius of the ^crew tliread is 1.14 in. The
coefficient of friction is 0.15. Calculate the axial force that the screw can be made to

exert, by means of the application of a tangential for(;e of 50 lb at the end of the bar.

Calculate the force that would be necessary at the end of the bar to remove this load.

Disregard the friction at the end of the screw. A ns. 3550 lb.

460. If the pitch angle of a screw is sufficiently large, and the angle of static fric-

tion is sufficiently small, the axial force Q will cause the screw to run backward, unless

prevented from so doing. Assume such conditions, and derive a formula for the

minimum torque, Afr, necessary to prevent the screw from turning under the influ-

ence of the force Q, Ans. Mr — Or tan (/3 — </>).

Y

84. The Screw Jack. The ordinary screw jack furnishes an illustra-

tion of the application of the screw to a useful mechanical device. In

most cases the body against which the head of the jack is placed does

not turn when the jack is operated. This means that friction at the

head of the jack must be overcome, in addition to the resistance at the

threads. The best form of jack is provided with a bearing surface at

the upper end of the screw, and with a cap that transmits the load to

f.bia bearing surface. The relative motion at the head of the screw is

thus confined to an adequate bearing surface.

Figure 279 represents a jack of the type described above. W repre-

sents the load on the jack, and if the weight of the cap is disregarded the
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normal pressure on the bearing surface will be equal to W. The limiting

friction between the cap and the screw will be equal to jllW. The
bearing surface is usually in the form of a hollow circle, and the friction

may be assumed to be concentrated at a distance from the axis of the

screw equal to the mean radius of the bearing surface. Let Tc represent

this mean radius. Let P represent the force required to start the screw,

assumed to be applied in a horizontal plane, and at right angles to the

lever at the j)oint B. Let b represent the moment-arm of P with respect

to the axis of the screw.

Formula for Force Required to Start the Screw Upward. From Fig. 279

- 0 Pb- fxWrc ~ Mr = 0 [41]

in which Mr has the same meaning as in Art. 83. Equation 39, Art. 83,

gives the correct value of M

t

for the present case. The weight of the

screw itself may be disregarded. Substituting in Eq. 41 the value of

Mt given by Eq. 39, replacing Q by IF, and solving for P, the follow-

ing formula is obtained:

W
P = — Wc + r tan (<^> + p)] [42]

b

Formula for Force Required to Start the Screw Downward. It would be

possible, of course, to give the screw threads a i)itch angle so great that

the screw would, of its own accord, run back when the load was removed.

In such a case, if it were desired to hold the load at any given point, it

would be necessary to retain a certain amount of forc'.e on the lever.

However, the pitch angle ordinarily used in jacks Is so small as to make
the jack self-locking. In this case the force P must be reversed when
the load is to be lowered. The formula for the required force is as

follows:

W
^ ^ +rtm {<t>

- p)] [43]

The derivation of Eq. 43 is similar to that of Eq. 42. In the present

case, however, the value oi Mt given by Eq. 40 is used.

PROBLEMS

451 : A certain screw jack has 4 threads per inch. The mean radius of the threads

is 0.445 in. The inner and outer diameters of the bearing surface under the cap are

0.75 and 1.5 in., respectively. A lever 15 in. long is used to turn the screw. Assum-
ing a coefficient of friction of 0.15 at all surfaces, calculate the necessary tangential

force at the end of the lever, to raise a load of 1000 lb with the jack. Calculate the

force necessary to lower this load. Am. 12.8 lb; 7.4 lb.
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452 . A certain screw jack has 3 threads per inch. The mean radius of the threads

is 0.648 in. The inner and outer diameters of the bearing surface under the cap are

1 in. and 2 in., respectively. A lever 24 in. long is used to turn the screw. Assuming
a coefficient of friction of 0.15 at all surfaces, calculate the load that can be raised by
the jack, when a tangential force of 40 lb is applied at the end of the lever. Cal-

culate the force necessary to lower this load.

86. Brake Bands. Band brakes arc used extensively in automo-
biles, hoisting engines, and in many other forms of machinery. The
ability to calculate the tensions in the band is an important matter in

the design of such brakes.

Band brakes are usually applied by hand, or foot, through the agency
of a lever, or system of levers. One situation of great importance in

the use of a brake is that which exists when, with a given force at the

lever, relative motion impends between the band and the drum. An
analysis based on such conditions shows the maximum holding torque

of which the brake is capable, with a given force at the lever.

The formula that will be derived gives the relation between the ten-

sions in the tight and loose portions of the band, in terms of the co-

efficient of static friction, and the total angle of contact between the

band and the drum.

Figure 280 represents the drum and a portion of the band. It will

be assumed that clockwdse rotation of the drum under the band is

impending. Let Pt and Pi, represent the tensions in the tight and loose

sides, respectively. The terms ‘‘ tight and “ loose are used rela-

tively, the former referring to that side of the band sustainmg the greater

tension. Figure 280 shows that Pt is pulling against both Pl and the

frictional force, which accounts for the fact that it is greater than Pi,.

Let the total angle of contact be represented by /3.

Figure 281 represents, to a larger scale, the elementary sector of the
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band, shown at point A in Fig. 280. The forces acting on the ele-

mentary portion are as shown, the tension at one end being represented

by P, and at the other end by P + dP* From the figure,

= 0 (P 4- dP) sin ^ + Psin J - diV = 0 [44]

The sine of an infinitesimal angle may be replaced by the angle itself,

if it is understood that the angle is expressed in radians. Equation 44

then becomes

Pd» -V - diV = 0 [45]
z

Eq. 45, is an infinitesimal of the second order.

Equation 45 then becomes

P - diV = 0 [46]

It is assumed that relative motion is impending between the brake

band and the dnun; therefore,

dP = /xdiV [47]

Eliminating dA^ between Eqs. 46 and 47, it follows that

P de - ~ = 0 [48]
M

dP dB .

The term
,
m

z

and may be dropped.

The moment-arm of P, and also of (P -f dP), with respect to the

center of the drum, may be taken equal to the radius of the drum,

without serious error.

SMc = 0 -Pr‘+ (P + dP)r - r dP = 0 dP = dP [49]

Substitute the foregoing value of dP in Eq. 48.

dP dP
PdB — /

~
===

I
fj^de loge Pt ~ loge Pl = [50]

loge^ ~ [51]
Pl

logio Pt - logio Pl == 0.434 [52]

Equation 52 can be solved with the assistance of a table of common
logarithms. It should be noted that must be expressed in radians,

and that if the band completely encircles the drum one or more times

the value 27r must be added to p for each full turn. The formulas may
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be used for ropes, belts, and flexible cables of any sort, on cylindrical

surfaces, provided that the thickness is small compared with the radius

of the drum. The formulas also apply when the drum Ls in motion and
the band is stationary, if the coefficient of kinetic friction is used.

The foregoing formulas are also used to a certain extent in the case

of a belt, where both belt and pulley are in motion, but if the motion is

rapid they cannot give accurate results, because of the fact that equilib-

rium along the radius of the drum does not exist, and Eq. 44 is, there-

fore, incorrect. Under such con-

ditions satisfactory results can be

obtained only by the use of more

general formulas that take into ac-

count the increase in the tension

caused by the rapid motion in the

(*ircular path.

Illustrative Problem

463 . Figure 282 represents a drum,

24 in. in diameter, partially encircled

by a brake band. The band is tight-

ened by means of the lever, AC, and

the vertical force, Q. Rotation of

the drum is impending in a counterclockwise direction. The coefficient of

static friction for the band on the drum is 0.25. Calculate the tensions in

the straight portions of the band, and the torque that they produce with

respect to the axis of the drum. Disregard the friction in the bearings of the

drum and lever.

Sohdion. Three of the forces acting on the lever are shown in Fig. 282.

The bearing reaction at A need not be shown. Considering the lever as a

free body, it is seen that

Rf) y 27
SMa = 0 +(Pt sin 63® 30')5 - 50 X 27 - 0 Pr = - 302 lb

0.895 X 5

Equation 52 may now be used to obtain the value of Pi. Logic Pt =
logic (302) = 2.48. The value of B in radians is equal to 250 X 2 ir/360 =
4.36 radians. From Eq. 52, by algebra,

Pi — antilog (log Pt — 0.434 jiB)

Pi = antilog (2.48 - 0.434 X 0.25 X 4.36) = antilog 2.01 = 102 lb

Disregarding the thickness of the brake band, the moment-sum of Pt and

Pi with respect to the shaft of the drum is as follows:

Mn » -12Pr + 12 Pl = -12 X 302 + 12 X 102 2400 in-lb « -200ft-lb
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This torque is a measure of the effectiveness of the brake, in preventing

counterclockwise rotation of the drum, when a force of 50 lb is used at the

handle.

PROBLEMS

464. A workman lowers a heavy casting into a pit by means of a rope wrapped

around an 8-in. round pole placed across the top of the pit. The coefficient of static

friction for the rope on the pole is 0.35. The rope makes one complete turn around

the pole. Calculate the greatest weight that the man can sustain by exerting a force

of 50 lb at his end of the rope. A ns. 450 lb.

466

.

Calculate the greatest weight that the man in Prob. 454 can sustain, if ho

takes two complete turns of the rope around the pole.

466 . A belt, running at slow speed, passes halfway around a 6-ft pulley. The
maximum permissible tension in the belt is 200 lb. The coefficient of static friction

for the belt on the pulley is 0.3. Calculate the maximum torque that the belt can

transmit to the pulley under these conditions. Ans. 366 ft-lb.

467 . Figure 283 represents a dynamometer of a simple type. A rope passes over a

pulley, A. One end of the rope is attached U) a spring balance, C, and from the other

end is suspended a weight. The radius of the pulley is 4 in., and the suspended

weight is 10 lb. The pulley is on the point of turning in a counterclockwise direction.

The coefficient of static friction for the rope on the pulley is 0.25. Calculate the

reading of the spring balance.

468 . Assume that the pulley in Fig. 283, Prob. 457, iS* on the point of turning in a

clockwise direction. The balance reads 17.5 lb. Calculate the suspended weight,

and the torque exerted on the rope by the pulley. Ans. 7.98 lb; 3.17 ft-lb.

469 . Figure 284 represents a band brake of a simple type. The brake lever is

pivoted at B. One end of the brake band is fastened to the pin at B, and the other

end is attached to the lever at C. The moment-arm of the tension at C, with respect

to Bf is 2 in. The arm AR is 24 in. The force Q is 25 lb, and the coefficient of fric-

tion for the brake band is 0.2. The band encircles 65 per cent of the circumference

of the pulley. The diameter of the pulley is 18 in . Calculate the maximum torque to

which the pulley can be subjected, in a counterclockwise direction, without causing

it to rotate.

460. Reverse the direction of the impending motion of the pulley in Prob. 469,

and solve. Ans, 284 ft-lb.
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461, Reverse the direction of the impending motion of the drum in Prob. 453,

and solve. Am. P (left side) = 897 lb; P (right side) =* 302 lb; Mu ^ 595 ft-lb.

86. Journal Bearings; Friction Circle. The ordinary form of

bearing in which a shaft or an axle rotates is calh^d a journal bearing.

The journal is that portion of the shaft or axle whicli lies within the

bearing. When a shaft is placed in a new, well-fitted journal bearing,

contact will occur over a considerable portion, if not all, of the surface

of the bearing. The friction depends on the tightness of the fit, and
the calculation of its amount is practically ^ipossible. After the

machine has been in operation for a time, however, the bearing will

become worn in, and the contact area will take the approximate form
of a very narrow rectangle, the longer sides of which will be parallel to

the axis of the shaft. Since the

width of this rectangle is small, the

contact may be assumed to be along

a single line.

Figure 285 is an exaggerated repre-

sentation of a journal in a bearing

that has been worn in. Let it be

assumed that clockwise rotation of

the journal in the bearing is impend-

ing. Let R represent the resultant

pressure of the bearing on the jour-

nal. R may be assumed to be con-

centrated at B, the center point in

the line of contact. Let r represent the radius of the journal. Since

clockwise rotation of the journal is impending, R will be inclined to

the normal in the manner shown by the figure. Obviously, R will be

tangent to a certain circle whose center is on the axis of the journal.

This circle is called the friction circle. Let the radius of the friction

circle be represented by rp. From the figure,

Ti? = r sin 0 [53]

If 0 is small, sin 0 may be replaced by tan if>j and

rjr = r tan <t) or r^ = rn [54]

If the impending rotation of the journal were counterclockwise the

pyosition of R would be on the opposite side of the normal from that

represented in Fig. 285. However, R would still be tangent to the

friction circle.

The friction circle is especially useful in graphic solutions, but also

in algebraic solutions it may facilitate the construction of the sketch.
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The friction circle may be applicable if the journal is rotating in its

bearing, provided that the angle, and coefiBcient, of kinetic friction are

used in its construction.

Illustrative Problem

462. Figure 286 represents a block, A, sliding in vertical guides, and a

second block, R, sliding in horizontal guides. A rod, AB, connects the two

blocks, by means of cylindrical pins at A and B. Each pin is 3 in. in diam-

eter. The coefficient of static friction for all rubbing surffices is 0.2. Block

A carries a load, W, of 10,000 lb. The angle 3 is 45°. Calculate the mag-

nitude of the force P at the instant when upward motion of block A impends.

Disregard the weights of the parts of the mechanism.

Solution, Figure 287 is a free-body diagram of the rod AB. The inner

circles at A and B represent the friction circles for the bearings, Qi and Q2

are the forces exerted on the rod by the pins. They are tangent to the fric-

tion circles. Furthermore, they are collinear, since the rod is in equilibrium

and they are the only external forces acting on it. It is possible to draw
four different lines tangent to the two friction circles, and great care must
be exercised in choosing the correct one for the common line of action of Qi
and ^2 - It can be seen that the impending rotation of pin A, relative to

the rod, is in a counterclockwise direction. Qi represents the pressure of the

pin against the inner surface of the hole in the rod. Its point of application

is at /. Its frictional component must act toward the right. Therefore, it
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is evident that Qi must be tangent to the friction circle at E, rather than at

a point on the opposite side of that circle. A similar process of reasoning

establishes the fact that Q 2 touches the upper side of its friction circle, as

shown in Fig. 287. By Eq. 54,

Tf — rpL = 1.5 X 0.2 == 0.3 in.

From the right triangle AEH,

T 0 3
d = arc sin = arc sin— = arc sin 0.01667 = 0° 57'

AH 18

The angle 0^ which is the angle of inclination of the line of action of Qi and

Q2 to the horizontal, can now be calculated.

^ = a - 5 »= 45*^ - 0° 57' = 44^^ 03'

Figure 288 is a free-body diagram for the block A. Four external forces

act on the block, as shown. The force Qi is collinear with, equal to, and' op-

posite to the force Qi shown in Fig. 287. From Fig. 288,

SFx - 0 +Nx - Qi cos ^ = 0 +Ni - 0.7187 Qi == 0

SFy = 0 -Fi + Qi^inO - W = 0 + 0.6953 Qi = 10,000

F = /zi\r Fi - uNi Fi - 0.2 Ni

The solution of the foregoing equations gives Qi = 18,130 lb. From Fig. 287,

Qi - 0i ^2 = 18,130 lb

Figure 289 is a free-body diagram for the block B, Four external forces

act on the block* as shown. The force Q 2 is collinear with, equal to, and
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opposite to the force shown in Fig. 287. From Fig. 289,

=» 0 4-F 2 + Q 2 cos ^ ~ P = 0 +F 2 -f 18,130 X 0.7187 ~ P *= 0

SF^ = 0 +iV 2 - Qi sin <9-0 -f iVe ~ 18,130 X 0.6953 » 0

p = P 2 - hN2 Fz - 0.2 Nz

The solution of the foregoing equations gives P — 15,560 lb.

PROBLEMS

463 . Figure 290 represents a bell crank mounted on a shaft at 0. Rotation of the

crank is impending in a counterclockwise direction. The coefficient of friction for

the journal is 0.2, and the diameter of the journal is 2 in. Find the reaction exerted

on the journal by the bearing. Calculate the magnitude of the force P. Disregard

the weight of the crank. Ans. 461,4 lb, Ox =* 44° 20'; P - 322.4 lb.
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464. The pulley shown in Fig. 291 is 3 ft in diameter, and weighs 160 lb. It is

vSubjected to two tangential forces, as shown, and is on the point of rotating in a

clockwise direction. The journal is 4 in. in diameter, and the coefficient of friction

is 0.15. Calculate the force P. Find the reaction exert/cd on the journal by the

bearing. Take into account the weight of the pulley.

465 . Each link in the toggle mechanism shown in Fig, 292 is 18 in. long, measured

from center to center of pins. p]ach pin is 2 in. in diameter, and the coefficient of

friction is 0.2. The impending motion is such that pins A and C are on the point of

approaching each other. Calculate the magnitude of the force P, Ans, 1214 lb.

466 . In Prob. 465, calculate the magnitude of the force P that would be just

sufficient to prevent the pins B and D from approaching each other.

467 . Reverse all the forces in Prob. 465. Assume that the impending motion is

such that pins B and D are about to approach each other. Calculate the magnitude

of P. Ans, 1214 lb.

468 . In Prob. 462, Fig. 286, calculate the minimum magnitude of P necessary to

prevent block A from descending.

469. In Prob. 462, Fig. 286, change the angle to SO''. Let the other data of the

problem remain unchanged, and solve. Ans. 31,260 lb.



CHAPTER VIII

SUSPENDED CABLES

87* Fleidble and Inextensible Cables. Ropes, wires, and cables will

all be referred to as “ cables/' In the fundamental theory suspended

cables are usually assumed to be perfectly flexible and perfectly in-

extensible. These assumptions lead to a group of reasonably simple

formulas sufficiently accurate for many cases.

A perfectly flexible cable would be one that offered no resistance to

bending. No real cable could be perfectly flexible, but most of the

cables used by engineers offer comparatively little resistance to bending.

In a perfectly flexible cable tlie resultant stress on any cross section

would necessarily be a tensile stress, and its line of action would be

tangent to the curve of the cent(?r line of the cable.

A perfectly inextemible cable would be one whose length, measured

along its center line, could not be changed. Sometimes in practice

the results obtained under this assumption are modified i<o take into

account the lengthening and shortening of the cable caused by tempera-

ture variations, and stress, but in the discussions in this book the cable

will be assumed to be flexible and inextensible.

88. Loads Carried by Suspended Cables. Suspended cables must

necessarily carry their own weight, and are frequently designed to

support additional loads. The suspension bridge furnishes an im-

portant example of cables that carry applied loads much greater than

their own weights. Steel messenger cables are sometimes used to

support trolley wires. Electric transmission wires and other outdoor

cables are subjected to the pressure of the wind, and in the winters of

northern latitudes are called upon to sustain occasional ice loads of

considerable magnitude. In this book the discussion will be limited to

cables in vertical planes, carrying vertical loads.

The curve assumed by the center line of a suspended cable depends on

the manner in which the load is distributed. The load is usually dis-

tributed uniformly, either along the center line of the cable, or along the

horizontal. When the load is distributed uniformly along the center

line of the cable, the cable hangs in a curve called the catenary. When
the load is distributed uniformly along the horizontal, the resulting

curve is a parabola.

m
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89. The Parabolic Cable. As was indicated in Art. 88, the load is

assumed to be distributed uniformly along a horizontal line. Prac-

tically all cables used in engineering are of constant cross section.

Therefore, the weight of the cable itself is distributed unifonnly along

its own center line, rather than along the horizontal, and tends to cause

the cable to assume the catenary form. For this reason it is impossible

for any ordinary cable to conform exactly to the conditions assumed

above, but there aic many cases in which there is a horizontally uniform

load so much greater than the weight of the cable itself that the effect

of the latter is almost obscured. Furthermore, if the cable is drawn

up fairly taut there is only a slight difference between the results ob-

Y

Fio. 293 Fro. 294

tained from the catenary and the parabolic formulas. Under such

conditions the parabolic formulas are generally used, because of their

greater simplicity, even when the entire load is distributed uniformly

along the center line of the cable.

The discussion will be confined to the special case in which the two

points of support are at the same elevation, causing the cable to hang

symmetrically about the vertical center line. Figure 293 represents

such a cable. The distance b is called the span; h is called the sag;

w represents the load per unit of horizontal distance. The total load on

the cable is wb. The weight of the cable will be assumed to be distrib-

uted in the same manner as the applied load. It will be assumed that

the magnitude of wb includes the w^eight of the cable.

Figure 294 represents the right half of the cable as a free body. It

is in equilibrium under the two tensile forces, Pq and and the total

load, wb/2. Because of the manner in which the load is distributed,

the resultant load, wb/2j will bisect the half span. From the sjunmetry

of the entire cable it is obvious that 0 is the lowest point, and that Pq is

horizontal.
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Tension at the Lowest Point. From Fig. 294,

2M4 = 0 -Poh +^ j
= 0 Po

2 4

wb^

sl [55]

Equation of the Curve. Figure 295 represents a portion of the cable,

extending from 0 to any other point, B. The origin of coordinates has

been placed at 0. From Fig. 295,

Fia. 295

Tension at Any Point.

ZAffl = 0 —PoV + wx ^ = 0 [56]

Eliminating Po between Eqs. 55 and 56, it

follows that

wh^
y +

wx^

T = 0 x2 =
52

[57]

Equation 57 Ls the equation of a parabola

whose axis coincides with the 2/-axis of the

figure.

From Fig. 295,

SP, = 0 -Po + P* = 0 Px = Po [58]

Substituting in Eq. 58 the value of Po given by Eq. 55, it follows that

p - ^
* 8h

Again from Fig. 295,

[59]

SP„ = 0 —VXC + Py = 0

Also

Pj, — IIZC [60]

P = [61]

Substituting in Eq. 61 the values of P, and Py given by Eqs. 59 and

60, the following formula is obtained:

/ 2 2P = -a / 5 + ^ W
\64h^ \

1 [62]

By a similar process

p
tan^ = tantf =>

8h
5*

® [63]

Maximum Tension in the Cable. An examination of Eq. 62 shows

that for any given cable P is a maximum at the poipt where x is a
maximum. The maximum value of x is 5/2. The force Pa, in F4[.

294, is, therefore, the maximum tension in the cable.
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Substituting the value x = 6/2 in Eqs. 62 and 63,

formulas for the maximum tension are obtained:

the following

r. . .

2 Vl64=
+ ' 164]

tan Oa ^ —
b

[65]

Length of the Cable; Exact Formula. Let 1 represent the total length

of the cable, measured along its center line. From the calculus,

ds = \^dx^ + dy^ [66]

From Eq. 57, by differentiation.

6^ Sh
2 X dx = — dy dy = xdx

4 6 6^
[67]

Substituting in Eq. 66 the value of dy given by Eq. 67, it follows that

And, by .integration,

Equation 70 gives the length of a portion of the cable extending from

the lowest point to any other point. A formula for the total length

can be obtained by substituting in Eq. 70 the value x = 6/2, and

multiplying by 2. Thus,

Length of the Cable; Approximate Formula. Equation 71 is some-

what cumbersome, and a more convenient, approximate formula, satis-

factory for most practical cases, can be obtained in the following manner:

Rewrite Eq. 68, as follows:

[72]
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Expand the right-hand side of Eq. 72, by means of the binomial

theorem, until four terms of the series have been written.

ds
32 512 /i' 16

^
384 ^ \

X -f”
1

2

Xq I dx F731

Integrating Eq. 73 between the limits 0 and x^ substituting the value

X = h/2y and multiplying by 2, the following approximate formula for

the total length of the eable is obtained:

I - [74]

In this series the exponent of h/b increases by 2 in each succeeding

term. This ratio, h/b, is called the sag ratio. In most of the cases

occurring in engineering practice the value of the sag ratio is consider-

ably less than 1. For this reason the fourth term of Eq. 74 is usually

so small as to be negligible, and in many cases the third term can also

be disregarded, without serious error.

Illustrative Problems

470. A certain cable is suspended between two supports at the same ele-

vation and 500 ft apart. The load is 500 lb per horizontal foot, and includes

the weight of the cable. The sag of the cable is 30 ft. Calculate the total

length of the cable, and the maximum tension.

Solidion. The sag ratio — h/b = 30/500 == 0.06. Using the approximate

formula, Eq. 74, for the length of the cable,

> 1

8 32
« = 500

I
1 + -(0.06)2 _ (0.06)^

3 5

250
(0.06) ']

It is obvious that the last two terms in the foregoing equation are negligible.

Discarding these,

1 = 500 (1 + 0.0096) = 504.8 ft

Equations 64 and 65 give the maximum tension in the cable.

500 X 500
P4

e

_wb /

16
+ 1

2

4 X 30

'4
(500)2 + 1 = 536,000 lb

arc tan— = arc tan
b 500

16(30)2

= arc tan 0.24 = 13° 30'

471. A wire 310 ft in length is to be suspended from two supports at the

same elevation and 300 ft apart. Calculate the sag.
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Solution, Equation 74 contains all the necessary quantities for the solu-

tion of this problem. For the purpose of ascertaining the number of terms

that may be discarded from Eq. 74, the sag may be roughly estimated to be

in the neighborhood of 30 ft. This would correspond to a sag ratio of

30/3(X) == 0.1, making it obvious that the last two terms of the formula are

negligible. Discarding these,

I -

h = = 33.5 ft

PROBLEMS

472. A cable is to be hung between two points at the same elevation and 800 ft

apart. The cable is to be drawn up until the sag is 30 ft. The total load to be car-

ried, including the weight of the cable, is 90 lb per horizontal linear foot. Calculate

the maximum and minimum tensions in the cable. C^alculate the length of the cable,

using the approximate formula. A ns. 243,000 1b; 240,000 lb; 803 ft.

473 . A wire weighing 0.06 lb i)er lin ft is to be strung between poles 120 ft apart,

the points of support being at the same elevation. The maximum allowable tension

in the wire is 200 lb. If the weight of the wire is the only load to be carried, what is

the minimum sag that may be used?

474 . It is desired to hang a wire weighing 0.06 lb per lin ft in such a manner that

the sag will he 1 ft. The maximum allowable tension is 200 lb. Calculate the

maximum distance at. which the poles ma> be spaced. Calculate the angle of in-

clination of the tangent to the curve of the wire at the point of support. Ans.

163 ft; r24'.

476

.

A certain cable weighs 10 lb per lin ft, and the maximum tension to which

it can be safely subjected is 50 tons. It is suspended between two supports at the

same elevation and 500 ft apart. It is to be dra’wm up until the sag is 20 ft. Calcu-

late the load per horizontal foot that the cable can safely support, in excess of its

own weight.

476 . A cable 1000 ft in length is to be suspended from two supports at the same

elevation, in such a manner as to give it a sag of 40 ft. Calculate the necessary dis-

tance between supports. Arts. 995.7 ft.

477 . A cable 2005 ft in length is to be strung between two towers standing on

level ground. The towers are 80 ft high, and the points of support are 2000 ft apart.

Calculate the clearance between the ground and the lowest point of the cable.

478. A wire weighing 0.2 lb per lin ft is to be strung between two points of sup-

port at the same elevation and 600 ft apart. The wire Is to be drawn up until the

maximum tension reaches 360 lb. The new wire is required to have a vertical clear-

ance of 6 ft above an old line that intersects the plane of the new line at a point 200 it

from the center of the new span, and 30 ft above the ground. Calculate the necessary

height of the [Krints of support of the new span, assuming level ground. Ans.

50,5 ft.

479. A certain span in a pole line has a width of 1000 ft and a sag of 50 ft. The

adjacent span is 400 ft, and the sag is 20 ft. The supports are all at the same eleva-
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tion, and the wire weighs 0.64 lb per lin ft. Find the magnitude and inclination of

the resultant pull of the wire on the intermediate tower.

480. A cable weighing 3.1 lb per lin ft is strung between two poles resting on level

ground, each pole being 40 ft higii. The span is 300 ft, and the cable is drawn up
to a maximum allowable tension of 3 tons. Each pole is braced by means of a
guy wire placed at an angle of with the horizontal, and attached to the pole at

a point 30 ft above the ground. AvSsumc that the guys alone prevent the poles from

overturning under the pulls from the cable, and calculate the tension that each

guy sustains under these conditions. 5.64 tons.

90. The Catenary Cable. The load in this case is assumed to be

distributed uniformly along the center line of the cable. Any cable of

constant cross section, sustaining no load except its own weight, con-

Fig. 296 Fig. 297

forms to the foregoing assumption. Sometimes certain additional loads,

such as coatings of ice, are assumed to be distributed in this manner,

also.

Figure 296 represents such a cable. Let w represent the load per

unit distance along the center line of the cable. Let I represent the

total length of the cable, between supports. The total load on the entire

cable is, then, equal to wl.

Equation of the Curve. Figure 297 represents a portion of the cable,

extending from the lowest point, 0, to any other point, B. Let s repre-

sent the length of this portion. The body Is in equilibrium under the

action of the two tensile forces, Pq and P, and the load, ws.

In the theory of the parabolic cable. Art. 89, the position of the line

of action of the load could be expressed at once in terms of x. In the

present case this is impossible, and the procedure will necessarily be
somewhat different. From Fig. 29?,

« 0

XFy = 0

— Pq + Px =» 0

— ws + Py == 0

tan $
W8

K

P.^Po
Py =* WS

[76]

[76]

[77]
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Since P is tangent to the curve at B,

tan 6 =
dy dy ws

dx dx Po

From the calculus

ds^ = dx^ + dy^

Dividing Eq. 79 by dy^, Dividing Eq. 79 by dx^,

W/ W/ + 1 [80]

Inverting Eq. 78 and substituting Substituting in Eq. 85, from
in Eq. 80, Eq. 78,

f-Y =
\dy/ \ws

/

+ 1 [81]

dy = w
Vpg +

[82] dx = Po [87]

\'Po + taV

y - w (
«/0

r8-?i X = Po / -7====== [88]
•^0 \ Po +

Po
[84] X = — [loge {ws + VPo + wV)

w
-log,Po] [89]

wx ws + VPi~+wV
;^

= loge p [90]

_ ws + Vpg + wV

S = -2- [92]

I
2 w

Eliminating s between Eqs. 84 and 92, it is found that

y [1(6“*/^' + - 1] [93]
w

Equation 93 is the equation of the catenary, with the origin of coordi-

nates at the center point of the curve.

Tendon at the Lowest Point, The quantities 6/2 and h are the co-

ordinates of the right-hand point of support, A, Therefore, these

quantities will satisfy Eq. 93. Substituting x = 6/2 and y = h in
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Eq. 93, the following equation results:

h = ~ - 1] [94]w

Tension at Any Point. Fi-om Fig. 297,

P = + [95]

Substituting in Eq. 95 the values of and Py given by Eqs. 75 and 76,

P = \'7^ + wV [96]

Substituting in Eq. 96 the value of s given by Eq. 92,

P = Po A' 1 ^ [97]

Substituting in Eq. 77 the value of 6' given by Eq. 92,

tan e =

Maximum Tension in tJie Cable. An examination of Eq. 97 shows

that for any given cable P is a maximum when x is a maximum. The
maximum value of x is 6/2, showing that the tension is greatest at the

points of support. Let this maximum tension be represented by Pa>

Substituting x = 6/2 in Eqs. 97 and 98, the following formulas are

obtained

:

Pa = PqV 1 + [99]

tan Oa =

Length of the Cable. A formula for the length of the cable can be

obtained by substituting x — 6/2 in Eq. 92, and multiplying by 2.

Let the length of the cable, between the two supports, be represented

by 1.

I = ^ (e«*/2P. _ g-irf-ZZft) Moi]
w

It is evident that some of the quantities involved in the formulas

for the catenary cable cannot be solved for by the usual methods of

algebra. In such cases the trial method can be used, various values

being substituted for the unknown quantity until one is found that

closely satisfies the equation. The use of tables of logarithms facilitates

the calculations. Various curves and diagrams have also been devised

to simplify the solution of problems. These are to be found in many
of the books and papers that deal more extensively with the application

of mechanics to suspended cables.
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The Formulas Expressed in Terms of Hyperbolic Functions, Calcu-

lations involving the use of Eqs. 92, 93, 94, 97, 98, 99, 100, and 101

can be expedited by means of tables of the hyperbolic functions. The
expression is the hyperbolic sine of x, and is written

sinh X. Also, the expression is the hyperbolic cosine of

X, and is written cosh x. Therefore, such an expression as +
^-wz/Po^ may be written cosh wx/Po, By virtue of these facts, the

principal formulas for the catenary may be written as follows:

Equation of the Curve,

\ Po )

Tension at the Lowest Point.

h = — (cosh
w \

wb

2¥o 0
Tension at Any Point.

P = Pq cosh
wx

[102 ]

[103]

[104]

tan 6 = sinh
wx

K
Maximum Tension in the Cable.

Length of the Cable,

[105]

Pa = Po cosh
Z ro

[106]

. ,
wb

tan 6

A

= smh
Z rQ

[107]

2Po , ,
wb

1 = sinh „ „w 2Po
[108]

The relation, cosh^ x — sinh^ x = 1, was also used in obtaining some of

the foregoing formulas.

Illustrative Problem

481 . A wire weighing 2 lb per lin ft is suspended between two points at

the same elevation, 600 ft apart. The sag is 100 ft. Find the maximum
tension. Calculate the length of the wire.

Solution. First, it is necessary to calculate Po, the tension at the lowest

point. This can be done by means of Eq. 94. The value 2.718 may be
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used for e.

w

100 = 2.718 -«x«>0)/2P.) _ jj
2

Po cannot be solved for in the foregoing equation by the usual methods.

Its value can be found by trial, however, without great difficulty. That
value which will satisfy the equation is, of course, the correct one. Some
idea of the correct value can be formed by the use of Eq. 55, w^hich gives the

magnitude of Po for the parabolic cable. Thus, Po = wb^/S h — 2 X (600)V (8

X 100) = 900 lb. This value of Po, substituted in the equation above, gives

100 = 103.7, showing that 900 lb is only roughly correct.

After a few trials it will be found that the value Po = 931 lb gives 100 =
100.08, w^hich is sufficiently accurate. The maximum tension can now be

found from Eq. 99.

Pa = Po Vi +

Pa = 931 Vl + — 2,718

Pa = 1 130 lb

Equation 100 gives the angle of inclination of Pa-

tmOA =
= — 2.718

tan Oa == 0.690 Oa = 34° 35'

Equation 101 gives the length of the wire.

^
__ ^ ^^wb/2Po ^—wb/2Po'^

W

« (2.7i8(2X0oo)/(2xa3i) _ 2.718-^^^®^^/^^^®^^^)

I - 642 ft.

PROBLEMS

482. A cable weighing 8.4 lb per lin ft is suspended between two points at the

same elevation, 1000 ft apart. The sag is 200 ft. Calculate the tension at the low-

est point. Calculate the magnitude of the maximum tension. Ana, 5510 lb;

7190 lb.

483 . Calculate the length of the cable described in Prob. 482, using the value of

Po given in the answers to that problem.

484. Solve Prob. 482 by means of the parabolic formulas of Art. 89. Compare
the results thus obtained with those obtained in Prob. 482. Ana, 5250 lb; 6720 lb.
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496. A cable weighing 2.1 lb per lin ft is to be suspended between two supports

at the same elevation, 600 ft apart. The maximum allowable tension in the cable

is 1000 lb. Calculate the minimum sag to wliich the cable may be drawn up. Cal-

culate the length of the cable.

486. A wire 680 ft long, weighing 1.002 lb per lin ft, is suspended between two

supports at the same elevation, 500 ft apart. Calculate the sag, and the magnitude

of the maximum tension. Am. 205 ft; 385 lb.



CHAPTER IX

CENTER OF GRAVITY

91. Center of Gravity of a Body. The center of gravity of a body is that

point through which the resultant weight passes^ regardless of the position

in which the body is placed.

That a body really possesses such a point

will be shown by means of a simple proof.

Proof. In Fig. 298 let A and B repre-

sent any two particles of a given body. The
remainder of the body is not shown. I^et

dWA and dWB represent the weights of the

two particles, and let dR represent the result-

ant of the two weights.

By the principle of moments, Art. 50, using

point A as the center of moments,

dWB XAD^^dRxAE [109]

From Fig. 298,

AD — ABsmB and AE-AG^vaB [110]

Substituting in Eq. 109 the values of AD and AE given by Eq. 110,

dW

B

X AB sin B = dR X AG sin B [111]

which can be written as follows:

dW^

dW,

dR

Fig. 208

AG AB
dWs
dR

[112]

The point G is the jx)int of intersection of dR with the line A5, drawn
between the two particles. Equation 1 12 shows that the position of G
depends only upon the distance between the two particles and upon
the ratio of their weights, and that it does not depend upon the value

of the angle B. It follows that, regardless of the position in which the

body may be placed, dR will always pass through (?, provided that the

dimensions of the body itself are not alterexl.

Since the resultant, d/2, always passes through G, regardless of the

position of the body, its behavior when the position of the body is

changed is the same as that of the weight of any single particle. Con-
sequently, a process of reasoning similar to that above can be followed

206
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in connection with dR and the weight of a third particle of the body.

Thus it can be proved that any three of the particles possess a center

of gravity of their own, conforming to the definition. An extension

of the reasoning proves the existence of a center of gravity for the entire

body.

Strictly, the weights of the particles of a body do not constitute a
parallel system, but from the viewpoint of the engineer their departure

from parallelism is negligible.

In a problem in mechanics it is usually permissible to treat the total

weight of a body as a single
^
concentrated force acting through the center of

gravity, thereby simplifying many calculations. This is one of the

many reasons why the conception of the center of gravity is of great

importance to the engineer.

92. Center of Gravity of a Line, Area, or Volume. The center of

gravity of a line, area, or volume is a point whose position relative to the

elementary portions of such line, area, or volume is essentially the same as

the position of the center of gravity of a body relative to the particles of the

body.

A line, for example, may be considered to be made up of elementary

lengths. These elementary lengths may be thought of as corresponding

to the particles of a body. The lengths of the elements may be repre-

sented by a s>^stem of parallel vectors, similar to the vectors repre-

senting the weights of the particles of a body, the magnitude of each

vector being made proportional to the length of the element that it

represents. Also, as was true of the body, it is to be understood that

each vector always passes through its corresponding element, regardless

of the inclination of the vectors relative to the line.

Under the foregoing conception, and from the proof in Art. 91, it is

seen that there exists a point through which the resultant of the system

always passes, regardleas of the inclination of the system of vectors

relative to the line. Tliis point is called the center of gravity of the line.

In the area» or the volume, the existence of the center of gravity can

be demonstrated by a process of reasoning similar to that used above

for the line.

In connection with lines, areas, and volumes, some writers prefer

the term “ centroid ” to center of gravity,^^ limiting the use of the

latter term exclusively to bodies. From the academic viewpoint this

distinction is desirable, but in engineering practice the tenn center of

gravity is widely used for all cases, and it will be so used in this book.

The term mass-center appears in most of the books on physics or

mechanics. The center of gravity and the mass-center have the same

position in a body, and the latter term will not be used in this book.
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93. Coordinates of the Center of Gravity; General Formulas.

General formulas for the rectangular coordinates of the center of gravity

Y
of a body, line, area, and volume

will now be derived.

Bodies. Let Fig. 299 represent

any three of the particles of a

body, and let dWi^ dW2 ^
and dWz

represent their weights. Let the

resultant of the weights of all the

particles or, in other words, the

total weight of the body, be rep-

resented by W (not shown in the

figure).

Since, by Art. 91, the resultant

weight always passes through the

center of gravity of the body, it

follows that the x-coordinate of the line of action of TV is equal to thft

x-coordinate of the center of gravity. Let tliis coordinate be repre-

sented by 5.

By the principle of moments, Art. 50, using the 2-axis as the axis of

moments,

= (dWi)Xi -b (dW2)x2 + (dW3)xs • •
• [113]

with the understanding that the summation of moments in the right-hand

member of Eq. 113 is extended to include all the particles of the body.

This summation may be represented, more briefly, by J*x dW. Equa^

tion 113 may now be written as follows:

fxdW
[114]

If the body, together with the coordinate axes, is now rotated through

an angle of 90° about the 2-axis, and a similar analysis is made, the

following formula will result:

V =
fffdW

[115]

If, in Fig. 299, the x-axis is taken as the axis of moments, it vrill be
found that

[116]
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Lines
j
AreaSy and Volumes. By a process of reasoning similar to that

employed in the case of the body, together with the conception of the

center of gravity of a line, area, or volume presented in Art. 92, the

following formulas can be derived:

For a Line.

in which L represents the total length of the line.

For an Area.

in which A represents the total area.

For a Volume.

in which V represents the total volume.

In the foregoing discussion it is tacitly assumed that there will be

no uncertainty as to the coordinate of a given element. There is no

uncertainty, of course, if the element is so designed that all its dimen-

sions are infinitesimals. However, some persons prefer to simplify the

integration by so choosing the element that some of its dimensions are

finite. This may be done if certain precautions are observ^ed. For

example, if it is desired to calculate x for a given volume, the element

dV may be so selected that its coordinate, x, has a single value for all

points in the element, even though some of the dimensions are finite.

In addition, an element of any fonn may be used if the position of its

center of gravity is known. In this case x should be taken as the coordi-

nate of the center of gravity of the element.

The quantities x, y, and 5, in the foregoing formulas, are read gravity

gravity t/,'' and “ gravity 2,'’ or ‘‘ bar x,’’ “ bar and bar

94. Axes and Planes of Symmetry. If a line, area, volume^ or

homogeneous body has one or more axes, or planes, of symmetry, the center

of gravity will lie in all such axes or planes.

The foregoing principle is useful in reducing the amount of labor in

many problems. The proof is simple, and will be omitted.
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96. First Moments; Gravity Axes. In the development o£ many
of the formulas used by engineers, and in the solution of many engineer-

ing problems, integrals of the form J*xdV, J't/dA, JxdL, J'zdW,

etc., are frequently encountered. Such integrals are called first mo-

ments
^
static momentSf or simply moments. For example, JydA Is the

first moment of the area, Aj with respect to either the x-axis or the

2:-axls. Since y also represents the distance from the element to the

X2-plane, the expression J*ydA is sometimes referred to as the first

moment of the area A with respect to the x2;-plane. It can be seen that

these moments bear a certain resemblance to the moments of forces

about axes.

Equation 118, Art. 93, shows that JydA - Ay. Therefore, the

expression Ay also gives the first moment of A with respect to the

x-axis, the z-axis, or the :r2-plane. Expressions of this type are usually

more convenient for calculating first moments than the expressions

containing integrals, by virtue of the fact that simple special formulas

not involving the use of the calculus are generally available for the

computation of such (juantitles as x, y, z, L, A, F, and W, Methods

for deriving these special formulas will be shown in Arts. 96, 97, and 98.

Frequently the ability to find the position of the center of gravity

k important in itself, entirely apart from the matter of first moments.

This is an additional reason for the importance of the special formulas

mentioned above.

It can easily be shown that such a quantity as x is equal to the arith-

metic mean of the x-coordinates to all the points in a given figure.

Any straight line passing through the center of gravity is called a

gravity axis. It Ls obvious that the first moment of any linCy area^ volume,

or weight with respect to a gravity curis is eqxml to zero.

96. Derivation of Special Formulas for Lines. The position of the

center of gravity of a line, as such, is of limited importance in engi-

neering problems. However, formulas giving the position of the center

of gravity of a line may be used to find the i)osition of the center of

gravity of a slender rod, wire, or other object, if the object is homo-
geneous and of constant cross section. The line used is the center line

of the rod or wire. Such results are approximate, but usually sufficiently

accurate, the degree of approximation depending on the slenderness

of the object.
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Illustrative Problem

487

.

Derive a formula showing the position of the center of gravity of a

circular arc.

Solution. Figure 300 shows a circular arc, whose central angle is 2 Q. Let

the length of the arc be represented by L, and the radius by r. Let the origin

of coordinates be placed at the center of the

arc, the x-axis coinciding with the axis of

symmetry. ByEq. 117,

X = /
X dL

From Fig. 300,

X == r cos 6; dL ~ r dd and L = 2 r/3

Substituting these values in the foregoing

formula,

J
X ~ -—

-

r cos $ r dd

2r/3

The first moments of the upper and lower halves of the arc, with respect to the

t/-axi8, are equal. For greater convenience, then, the integral may be rewritten,

and solved, as follows:

_ ^
2 J/'"

cos e dd
^ 2 [sin

^ ^ «in 3
*

2 r8 2 r/3 3

From symmetry (Art. 94) it is clear that 5 = 0.

PROBLEMS

488 . Derive a formula showing the position of the center of gravity of a circular

arc whose central angle is 90°. Place the x- and y-axes as in Fig. 300. Solve by
integration, from Eq. J117. Check by substituting in the formula derived in Prob.

487. Am. i = W2rlT.
489 . Derive a formula showing the position of the center of gravity of a circular

arc whose central angle is 180°. Place the x- and y-axes as in Fig. 300. Solve by

integration, from Eq. 117. Check by substituting in the formula derived in ?reb.

487. Ans. 3c == 2r/7r.

490 . Place a 90° circular arc in the first quadrant formed by the x- and j/-axes,

and derive formulas for 3 and y. Solve by integration, from Eq. 117. Check by

using the answer obtained for Prob. 488. Also, compare the result with that of

Prob, 489, and explain why the two results are the same. Ans. 2 = 5 = 2r/ir.

491. Solve Prob. 487, using rectangular instead of polar coordinates.
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97, Derivation of Special Formulas for Areas. The position of the

center of gravity of an area is a matter of great importance in the

solution of many engineering problems, particularly in those involving

strength of materials and hydraulics.

Illustrative Problems

492. Derive a formula showing the position of the center of gravity of any

triangular area.

Solution, Figure 301 shows a triangular area of a general type. The most

useful formula for practical purposes is one that gives the perpendicular dis-

y
tance from the center of gravity to any side

I
of the triangle. Let b represent the length

of one of the sides, and let h represent the

altitude of the triangle, measured from that

side as a base.

X =
X dA

From Fig. 301,

dA = (2
/" -

2
/') dx and

Therefore,

From similar triangles,

y'' -y' _b
h — X h

V - y

2

(h - x)

Thus, it is seen that the distance from any side of a triangle to the center of

gravity depends only on the altitude measured from that side, and is inde-

pendent of the shape of the triangle.

The center of gravity of a triangle lies on any median. This follows from

the fact that the moment of each element of area, Fig. 301, with respect to the

median drawn to the side b, is equal to zero.

493. Derive a formula showing the position of the center of gravity of any
circular sector.

Solution, Figure 302 shows a circular sector having any central angle, 23,

Let the radius of the sector be represented by r.
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From Fig. 302,

X = p cos 6
;

dA = p dp dd and A = r^Q

ff"VO

•r

p COS 6 p dp dO 2If p^ dp cos 6 dS 2 sin /3i^p*dp

r'0

2 sin S - .

3 2 r sm 8

3

From the symmetry of the figure (Art. 94), y — Q.

494. Derive a formula showing the position of the center of gravity of any
circular sector, by means of polar coordinates as in Prob. 493, but by the use

of a single integration only.

Y

Solution. Figure 303 shows a circular sector having any central angle, 28

Select an element of triangular form, as shown. This makes it possible to

solve by means of a single integration. However, since the dimension of the

element measured parallel to the a;-axis is finite, it is necessary to know the

position of its center of gravity, as was stated in Art. 93. Referring to

Prob. 492, it follows that the distance from 0 to the center of gravity of the

element is |r.

1 dA.

f a, sL-— X » |r 008 ^ dA ^ ^{TdB)r A ^ f^8
A

f

COB 9 dd ^ r

3 Jo

+/>

cos $ dd

From the symmetry of the figure (Art. 94), 5

38

= 0.

2 r sin ^
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PROBLEMS496.

Derive a special formula showing the position of the center of gravity of a

circular sector whose central angle is 90°, placing the axes as in Fig. 302. S^ilve by

integration, from Eq. 118, and then check by substitution in the formula obtained in

Prob. 493. Aris, = (4\/2)r/3ir.

496. Derive a special fonnula showing the position of the center of gravity of a

semicircular area. Solve by integration, from Eq. 118, and then check by substitu-

tion in the formula obtained in Prob. 493. Ans. $ = *

497. Derive a formula giving the distance from the center of gravity of a 90®

circular sector to one of the bounding radii. Solve by using the answer obtained

in Prob. 495, and check by an examination of Prob. 496. Explain this agreement in

results. Ans. x = 4r/3T.

498. The equation of a semi-cubical parabola is ay^ ~ r*. Derive formulas for

locating the center of gravity of the area bounded by this curve and by the line whose

equation is x ~ b. Ans. J y — 0.

499. Derive formulas showing the position of the center of gravity of the area

enclosed within the parabola whose equation is y^ = a.r, the x-axis, and the Une whose

equation is x ~ b. Ans. 2 = |h; y = ^'^ab.

600. Derive fonnulas showing the fjosition of the center of gravity of that quarter

of an elliptical area lying in the first quadrant. The equation of the ellipse is 3^b^ -f

Ans. x - 4a/Sir; y = 4b/Sw.

601. The equation of a cubical parabola is a!^y — x^. Derive formulas for loc.ating

tlic center of gravity of the area bounded by the

upper half of this curve, by the x-axis, and by the

line whose equation is x = 5. Ans. ^ ^b;

y == 2b^/7a^.

602. Derive formulas for locating the center of

gravity of the area under the first arch of the sine

curve, y ~ sin x. Ans. S = 7r/2; y = ir/8.

603. Derive formulas for locating the center

of gravity of the shaded area in Fig. 304. The
curved boundary is the parabola whose equation

is ^ = ax. Ans. 2 *= -^b] y = fV^.
604. Derive a formula for locating the center

of gravity of the surface area of a right circular

Fig. 304
cone, exclusive of the base. Ans. y 3*

606. Derive formulas for locating the center of gravity of the curved surface of

a hemisphere. Ans. y
r

2

606. Solve Prob. 493, using rectangular instead of polar coordinates.

98. Derivation of Special Formulas for Volumesu In engineering,

the importance of formulas locating the centers of gravity of volumes

rests chiefly on the fact that such formulas can be used in locating the

centers of gravity of homogeneous bodies having the same geometrical

forms as the given volumes.
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Illustrative Problems

607. Derive a formula showing the position of the center of gravity of any
cone or pyramid.

Solution. Let Fig. 305 represent a side elevation of any cone or pyramid.
Use a lamina, parallel to the base, as the element of volume. Let a represent

the area of either of the plane faces of the lamina. Let A ref)resent the area

of the base of the cone or pyramid. By Eq. 119,

From solid geometry it is learned that parallel sections of a cone or pyramid
are to each other as the squares of their distances from the vertex. Therefore,

a ^ (h - x)‘‘

A
~ dV a dx - — (h

Ah/Z

3 Vhrx^

h^l 2

~ f {h^x — 2hx^ -h X®) dz
Jo

2/ix® ^ h

3 4 J0
“ 4

Y

Fia. 305 Fig. 300

The center of gravity of a cone or pyramid also lies on a line drawn through

the vertex, and through the center of gravity of the base This is clear from

the fact that such a line passes through the center of gravity of each laminar

element, and that the first moment of each lamina with respect to the line is

equal to zero (Art. 95).

608 . Derive a formula showing the position of the center of gravity of a

hemisphere.

Solution. Let Fig. 306 represent a side view of a hemisphere. Use a

lamina, parallel to the base, as the element of volume. Let r represent the
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radius of the hemisphere. Let a represent the area of either of the plane faces

of the lamina.

From the figure,

dV - a dx ^ 7r(r^ — x^) dx

xir(r^ -x^)dx TT
[

dx-^x^dx"]

2jrr«/3 27rr»/3

[rV/2];-[^Vl]; 3

2r*/3 8
*'

From symmetry” (Art. 94), it is obvious that y = 0.

PROBLEMS

609. The equation of the serai-cubical parabola is ar^ ~ o^. Let the area en*

dosed between such a curve and the line wiiosc equation is x - h be revolved about

the aj-axis, tlirough an angle of 180'". Derive formulas for locating the center of

gravity of the volume thus generated. A ns. x ~ y - 0.

610. Let the area bounded by the parabohi = ax, the a;-axis, and the straight

line whose equation is x — h be revolved about the x-axis, through an angle of 360®.

Derive formulas for locating the center of gravity of tho volume thus generated.

Ans. 5 Jf = 0.

611. Let the shaded area in Fig. 304 be revolved about the jc-axis, through an angje

of 360®. Derive formulas for locating the center of gravity of the volume thus gen-

erated. Ans. 2 = ^6; y - 0.

612. Let a quarter of an elliptical area be revolved about the y-a,xis, through an

angle of 360°. The equation of the ellipse is -f y^a^ =* Derive formulas

for locating the center of gravity of the volume thus generated. Arw. 2 =* 0;

s = ffc-

618. Let the shaded area in Fig. 304 be revolved about the y-axis, through an angle

of 360°. Derive formulas for locating the center of gravity of the volume thus

generated. Ans. 2 — 0; y =* ^Vab.

99. First Moments by Finite Summation. The first moment of an

entire body^ line, area, or volume is equal to the algebraic sum of the first

moments of its parts. This fact is of great usefulness in locating centers

of gravity.

For example, a line frequently can be divided into finite parts in

such a manner that the center of gravity of each part can be located

cither by inspection or by means of a special fonnula. The first mo-
ment of each part can then be calculated and the results added alge-

braically to give the first moment of the entire line. The fiirst moment
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of the line also can be expressed as Lf, Ly^ or Lz (Art. 95). The two
expressions for the first moment then can be equated and the equation

solved for x, y, or 5.

In some cases it can be seen that the arbitrary addition of one or

more portions to the figure will produce a new figure whose first moment
can be calculated more easily than that of the original figure. Then
the first moments of the added portions are calculated separately and
subtracted from the first moment of the altered figure. This process

gives the first moment of the original figure. The proofs of the fore-

going statements are very simple and will be omitted.

The meiliods suggested above usually render it possible to avoid

entirely tlie use of integration.

100. Concerning Subsequent Problems. The remaining problems

in this chapter are designed ])rimarily to illustrate the use of the various

special formulas in numerical problems and, in some cases, in the deri-

vation of other useful special formulas. It will be understood, unless

otherwise specified, that in the solution of these problems any formulas

or results obtained in previous discussions or problems may be utilized.

101. Applications of the Special Formulas for Lines. As has been

indicated, the engineer is seldom concerned with the position of the

center of gravity of a line, as such. How-
ever, he sometimes utilizes formulas pertaining

to lines in finding the approximate positions of

the centers of gravity of slender rods, wares,

and similar objects.

Illustrative Problem

614. Figure 307 represents the center line of a

uniform, slender rod bent into the form ABCDj as

shown. Calculate approximate values of 5, y, and

2 for the rod.

SoliUion. For the purposes of the solution the figure divides naturally into

three finite parts, AB, BC, and CD. Length of AB = 27r X 16/4 = 25.1 in.;

BC = V(12)^ + (16? = 20in.; W = V(9)2 + (12)^ = 15 in. Total length

= 60.1 in.

The coordinates of the centers of gravity of the three parts are as follows:

For ABj using the answer to Prob. 490, Art. 96,

^ . 2r 2 X 16 s nf ^ — = *= -f-10.2 m. 0
IT TT

For BC, by inspection,

^ « +8 in. y « 0 I « +6m«
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For CD, by inspection,

X = 0 p = —4.5 in. I = +6 in.

Using the method suggested in Art. 99,

60.1

X = 25,1 X 10.2 + 20 X 8 + 15 X 0 5 = +6.92 in.

60.1

y = 25.1 X 10.2 + 20 X 0 - 15 X 4.5 y ^ +3.14 in.

60.1

z - 25.1 X0 + 20 X6+ 15 X6 z = +3.49 in.

PROBLEMS

616

.

Locate the center of gravity of the line AOBC^ shown in Fig. 308. Arts.

(-1.04", +2.46", +6.92").

616. A uniform, slender rod is bent into the form OABO, Fig. 309. Locate the

center of gravity.

Fig. 310 Fig. 311

617. A uniform, slender rod is bent into the form OABCO, Fig. 310, The portion

AB is a circular arc whose center is at C. Locate the center of gravity. Ana.

(+14.1", +9.79").

618. A uniform, slender rod is bent into the form ABODE, Fig. 31 1. The portion

ABC is semicircular, and the portion DE is a 90® circular arc. Locate the center of

gravity.

102. Applications of the Special Formulas for Areas. The special

formulas obtained in the problems of Art. 97 will now be utilized in

the solution of various numerical problems. The method of utilizing
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the special formulas in the derivation of additional special formulas,

thus avoiding integration, will also be illustrated.

Illusthative Problems

619. Locate the center of gravity of the shaded area, 0ABODE

^

shown in

Fig. 312. The portion GAB, of the boundary, is a semicircular arc.

Solution. The first moment of the shaded area can be calculated most
easily by calculating the moment of the rectangle, OCFE, and by subtracting

from this the moments of the semicircular area, GAB, and the triangular area,

DFE (Art. 99).

For the rectangle GCFE, by inspection,

X = +12 in. +8 in.

For the semicircle GAB^ utilizing Prob. 496,

4 r 4 V K
X = +8 in. y = = +3.39 in.

3 TT 3 TT

Y

Fig. 312 Fig. 313

For the triangle DFE, utilizing Prob. 492,

h 24
X = 24 ^ = 24 = +16 in. = 16 - = +12 in.

3 3

For the shaded area,

f = 24 X 16 (+12) - I X 24 X 12 (+16) - jir X 8^ (+8)
^

24 X 16 - i X 24 X 12 - §7r X 8=*

- = 24 X 16 (+8) - ^ X 24 X 12 (+12) - ^tt X 8^ (+3.39)
^

24 X 16 - i X 24 X 12 - X 8‘^

+ 10.8 in.

= +7.19 in.

520. Derive a formula showing the position of the center of gravity of a

segment of a circular area.

Soltdion. The shaded area in Fig. 313 represents the segment. The prolh

lem can be solved most easily by finite summation, advantage being taken of
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special formulas obtained in Art, 97. The moment of the sector OACB is

calculated first, and from this is subtracted the moment of the triangle OAB.

For the sector, utilizing Prob. 493,

A ^ J

For the triangle, utilizing Prob. 492,

A — sin 8 cos 8

2 r sin 8

3 8

J cos 8

For the segment,

f^Q — — (r^ sin 8 cos 8) §r cos 8

^ =
r^8 ~ sin 8 cos 8

2r sin 8 (1 — cos^ 8)

3 {8 — sin 8 cos 8)

4r sin^ 8
^ ""

3 (2/3 -sin 2/3)

From symmetry (Art. 94),

y = 0.

PROBLEMS

521 . Locate the center of gravity of the standard 8 by 4 by 1 in. angle section

shown in Fig. 314. Am. (+ 1.05", +3.05").

622 . Locate the center of gravity of the standard tee section shown in Fig. 315.

523 . Locate the center of gravity of the small channel section shown in Fig. 316.

Am. (+0.182", +1.00").

524. Locate the center of gravity of the shaded area in Fig. 304, Prob. 503, with-

out using the calculus. UtiHze the answer given in Prob. 499. Assume that the

shaded area ~ ^b^ab.

525 . Locate the center of gravity of the shaded area shown in Fig. 317. A7is.

(+6.40", +4.42").

526. A certain water tank is cylindrical in form, having a conical cover and a

hemispherical bottom. The diameter is 12 ft, and the height of the cyhndrical por-

tion is 16 ft. The height of the conical cover is 3 ft. lx)cate the center of gravity of

the empty tank, assuming that it will coincide with the center of gravity of the outer

surface. Assume that the edge of the cover does not project beyond the cylindrical

surface. Ans. y = +12.6 ft.

527. Figure 318 represents a bin having the fonn of a trapezoidal prism. The
bin has no lid. Locate the center of gravity of the empty bin, assuming that it

coincides with the center of gravity of the outer surface. Am. (+2.63', +4.42',

+6 .00').

528. Derive a formula giving the distance from the center of gravity of a trape-

zoidal area to the longer base. Represent the length of the longer base by R, the

shorter by b, and the distance between the two bases by h. Solve without using the

calculus. Am.
h(B + 25)

3(R + b)
‘

529.

Locate the center of gravity of the area enclosed within the line OABCO,
in Fig. 310, Art. 101.

580. Locate the center of gravity of the area shown in Fig. 319. Am. (+24",

+10 .0").
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103. Applications of the Special Formulas for Volumes and Bodies.

Formulas locating the centers of gravity of volumes are of interest to

the engineer chiefly because of the fact that they enable him to locate

the centers of gravity of homogeneous bodies having the same forms as

the given volume^?.

It may happen that a body, when considered in its entirety, is not

homogeneous, but can be divided into finite parts, each of which is

homogeneous in itself. In such bodies the center of gravity can be

located by the method of finite^ summation,

if the position of the center of gravity of

each part is known. The differences in the

densities of the various parts are taken into

account in the calculation of their weights.

Illustrative Problems

631. Derive a formula showing the position

of the center of gravity of a frustum of any

pyramid or cone.

Solution. Let OABd, in Fig. 320, represent

a side view of the frustum of any pyramid or

cone. Let A represent the area of the larger base of the frustum, and let

a represent the area of the smaller base. Let A represent the altitude of the

frustum, and let hi represent the altitude of the completed cone or pyramid.

The first moment of the frustum is calculated most easily by subtracting the

moment of the part BCD from the moment of the completed figure, ADO.
For the frustum, utilizing the results of Prob. 507,

V

5 =

Ahi h-i

r O Tc
-..I... ..V— I

Ahi a{hi — A)

3 3

From solid geometry (Prob. 507),

a (Ai — A)^ L= hi ^ h
A h\ A - a

Substitute the foregoing value of Ai in the equation for I,

X

(4 + VAo)* o ^ + VJa
2 a

A A — a 4 — a

4

+ 3a

4 + V 4a + a



SPECIAL FORMULAS FOR VOLUMES AND BODIES 223

The foregoing equation can be reduced to

^ h, A ^ '\/~A d “f"

4 A -f VAa + a

The center of gravity of the frustum also lies on a straight line drawn through

the centers of gravity of the two bases.

632 . Figure 321 represents a homogeneous wooden block, weighing 40 lb per

cu ft. A hole 4 in. in diameter is drilled

entirely through the block in a direc-

tion parallel to the x-axis, the hole

being centered in the face ABCD. A
4-in. steel pin, weighing 4901b per cu ft,

is driven into the hole, completely fill-

ing it. Locate the center of gravity of

the body.

Solution. Let the block be divided

as indicated in the figure, into a cube

and a triangular prism. The moment
of the body may be found as follows:

calculate the moment of the block as

it was before the hole was bored; sub-

tract from this the moment of the

wooden cylinder wliich is to be removed; add the moment of the steel pin

which is inserted.

TXT • 1 X r 1 1
18 X 18 X 18,^ „

Weight of solid wood cube = 40 =»= 135 lb
^ 1728

^ X 18 X 15 X 18
Weight of triangular prism = 40 = 56.3 lb

TT X 4 X 18
Weight of wood cylinder = 40 = 5.24 lb

Weight of steel cylinder = 499 = 54.1 lb
1728

Actual weight of body = 135 + 56.3 - 5.24 + 64.1 = 250.2 lb

. 135 X 9 + 56.3 X 6 - 5.24 X 9 + 64.1 X 9

250.2

By inspection, y = +9.00 in.

135 X 9 + 56.3 X 23 - 5.24 X 9 + 64.1 X 9

= +8.32 in.

z =
250.2

~ +12.2 in.
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PROBLEMS

533. Locate the center of gravity of the volume sliown in Fig. 322. Am.
(+3.6", +1.80", +5.40").

634. The frustum of a certain right circular cone is 20 in. high. The diameters

of the ends are 8 in. and 10 in. Locate the center of gravity. Solve without refer-

ence to Prob. 631; then check the result by means of the forthula derived in that

problem.

636

.

The bin described in Prob. 527, Art. 102, weighs 1000 lb. It is filled with

whesat weighing 50 lb per cu ft. Locate the center of gravity of the full bin, utilizing

the answers to Prob. 527. Ans. (+2.79^ +5.37\ +0,00').

636. The water tank described in Prob. 626 weighs 8 tons, empty. Ix)cate the

center of gravity of the full tank, the water surface being at the top of the cylindrical

portion. Water weighs 62.4 lb per cu ft. Utilize the answer to Prob. 526.

637 . A certain homogeneous block has the fonn of a rectangular prism, 12 by

12 by 24 in. In one end is a recess having the form of a right pyramid with a square

base, 12 by 12 in. The altitude of the pyramid is 12 in., and its base coincides with

the end of the prism. Locate the center of gravity. Ans. 10.2 in. from the heavy

end.

638 . A certain homogeneous right circular cylinder is 20 in. in diameter and

40 in. long. In one end is a recess having the form of a right circular cone, whose

base is 20 in. in diameter and whose height is 24 in. The base of the recess coincides

with the end of the cylinder. It is desired to fill the reccvss with homogeneous mate-

rial such that the center of gravity of the entire body will be 18 in. from the recessed

end. Calculate the ratio of the density of the filling material to that of the cylinder.

639 . Locate the center of gravity of the homogeneous body shown in Fig. 323.

The curved recess shown at one edge has the form of a quarter of a circular cylinder

having a radius of 10 in. Am. (+ 10.8", +4.96", +7.43").

640. A certain solid, right circular cone is 8 in, high, and its base is 4 in. in diameter.

The tip, or upper portion, of the cone is made of cast iron, weighing 450 lb per cu ft.

The lower part is of aluminum, weighing 165 lb per cu ft. The boundary between

the two materials is a plane, 4 in. from the base of the cone, and parallel thereto.

Locate the center of gravity of the body.

641. Figure 324 shows side and end elevations of a wooden beam, 12 by 12 by 48 in.,

to which two steel plates, each 12 by 12 by ^ in., have been fastened. A hole 6 in.

in diameter has been bored through the beam and the plates. The wood and the
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steel weigh 40 lb per cii ft and 490 lb per cu ft, respectively. Locate the center of

gravity of the body. Arts. 2.2 ft from the left end.

1
4 o

48 '^

^

Vui. 324

542 . Figure 32.'') represents a pier having the form of a truncated right pyramid,

20 ft square at th(‘ base and 10 ft square at the top. The height is 24 ft. Locate

the center of gravity. Solve by dividing the figure into

simpler portions and applying the method of finite sum-

mation of moments; then cliec^k the result by using the

answers to Prob. 531.

543 . A certain homogeneous body has the form of

a hemisphere and a right circular cone, the base of

the cone coinciding with tlie base of the hemisphere.

The center of gravity of the entire bf)dy coincides with

tile (‘.enter of the common base of the hemisphere and

cone. Derive a formula showing the relationship be-

tween the altitude of the cone and the common di-

ameter of the bases. A ns, h - 1)
v/3

Fig. 325
104. Theorems of Pappus and Guldinus.

The foregoing title is given to two simple theo-

rems that are useful in the solution of a certain type of problem, and in

the derivation of certain formulas.

For Areas. The area of a surface generated by revolving a plane curve

about any axis in its plane is equal to the product of the length of the gen-

erating curve and the distance described by the center of gravity of that curve,

provided that the generating curve lies entirely on one side of the axis of

revolution.

Proof. Let BC, in Fig. 326, represent any plane curve, which is to

be rotated, through any desired angle, about the 2/-axis. Let dL repre-

sent any element of length of the curve, and let L represent the total

length. Let represent the angle through which the curve BC is to be
rotated. Let A represent the area of the surface generated. From the

calculus,

A xdL - BtL [120]



226 CENTER OF GRAVITY

The foregoing theorem, or Eq. 120, can be use^d to calculate the

area of a surface of revolution when the position of the center of gravity

of the generating curve is known; or it can l>e used to locate the center

of gravit}^ of the generating curve when the area of the surface of rev-

olution is known.

If the generating curve does not lie entirely on one side of the axis of

revolution, it can be divided into two parts at that axis, and the theorem

can then be applied to tlu^ two portions separately.

For Volumes, The volume generated by revolving a 'plane area about

any axis in its plane is equal to the product of the generating area and tJw

distance described by the center of gravity of that area, provided that the

generating area lies entirely on one side of the axis of revolution.

Y

Fig. 326

Y

Proof. Let A, in Fig. 327, represent any plane area, which is to be

rotated, through any desired angle, about the ^-axis. Let dA represent

any element of the area. Let 6 represent the angle through which

the area is to be rotated. Let V represent the volume of the solid of

revolution generated. From the calculus,

F = y* {xd) dA —
6 l*xdA — $xA [121]

The foregoing theorem, or Eq. 121, can be used to calculate the

volume of a solid of revolution when the position of the center of gravity

of the generating area is known; or it can be used to locate the center

of gravity of the generating area when the volume of the solid of revo-

lution is known.

If the generating area does not lie entirely on one side of the axis of

revolution, it can be divided into two parts at that axis, and the theorem

can then be applied to the two portions separately.

If either Eq. 120 or Eq. 121 is used, the angle d must be expressed

in radians.
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Illustrative Problems t

644. A casting is made in the form of the solid

of revolution generated by revolving the semicir-

cular area shown in Fig. 328 about the 2/-axis,

through an angle of 360°. Calculate the volume of

the casting.

Solution. It will be assumed that the formula

for the area of a semicircle is known. A =
= = 56.55 sq in. The next step is the calcu-

lation of X for the generating area. Utilizing the

answer given to ITob. 496, Art. 97,

x=12 + i^=12 + l^^
37r 3 TT

12 -f 2.55 = 14.55 in.

The distance described by the center of gravity of the generating area is as

follows:

And so

2Trx = 2t X 14.55 = 91.43 in.

V = 56.55 X 91.43 = 5170 cu in.

646. Calculate the entire surface area of the casting described in Prob. 544.

Solution. The generating line is the boundary of the semicircle in Fig. 328.

Utilizing the answer given to Prob. 489, Art. 96, the x-coordinate of the center

of gravity of the semicircular arc is found to be 12 2r/7r = 12 + 2 X6/7r =
15.82 in. The length of the arc is 6t = 18.85 in.

Area generated by the semicircular arc,

A = 18.85 (27r 15.82) = 1870 sq in.

Area generated by the straight line, RC,

A = 12 (2x 12) = 905 sq in.

Total surface area of casting,

A = 1870 + 905 == 2775 sq in.

PROBLEMS
"--646. A circular area may be generated by revolving a straight line in the proper

manner. Derive the formula for the area of a circle, basing the calculation on the

foregoing fact. Ana. A =
647. Derive the formula for the area of the curved surface of a right circular cone,

in terms of the slant height, and the radius of the base, r. A ns. A =» nra.

648. Derive the formula for the area of the surface of a sphere, assuming that the

necessary formulas pertaining to the semicircular arc are known. A ns. A » 4 Trr^,

649. Derive a formula for the area of the surface generated by revolving a 90®

circular arc about a tangent drawn at one of the extremities of the arc, through an

angle of 360®. Ana. A « 7rr^(r — 2).

660. Derive a formula for the volume of a sphere, by the methods of the present

article. Am. V *
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661 . Assuming that the volume of a right circular cone is given by the formula,

V =» use the methods of the present artitilc to lo(;ate the center of gravity of

a right triangle.

662. A 45 right triangle, each leg of which is 3 in. long, is rotated about an axis

in its own plane, through an angle of 360'^. The axis is parallel to one of the legs,

and 3 in. distant therefrom, and does not intersect the triangle. Calculate the

volume by the methods of the present article. Check the result by ordinary geo-

metrical methods. A7?s. 113 cu in.

663 . Calculate the area of the surface generated by revolving the line ABODE,
in Fig. 329, about the 2/-axis, through an angle of 300^.

664. Calculate the volume of the solid generated by revolving the shaded are^

in Fig. 329, about the 2/-axis, through an angle of 360''. A 609 cu in.

666.

The area bounded by the parabola = ax, the a;-axis, and the straight line

a; == 6 is revolved about the j:-axis, through an angle of 360°. (/alculat-e the volume

of the solid thus generated. V — ^Tralr.

666. Calculate the volume generated by revolving the shaded area shown in Fig.

330, about the y-axis, through an angle of 360°. The curved line A B is a parabola

with its origin at A, and having the equation = 1.8 x. Ans. 201 cu in.

667 . Locate the center of gravity of the standard angle section in Fig. 314, Art. 102,

by the methods of the present article.

668. Locate the center of gravity of the tee section in Fig. 315, Art. 102, by the

methods of the present article.

106. Graphic Methods. Sometimes in practice an in*egular figure is

encountered the relations between whose dimensions cannot be expressed

by means of mathematical equations, or can be expressed only by equa-

tions of an extremely complex form. To some of these figures approxi-

mate algebraic or graphic methods are applicable. Such methods,

though of some importance in practice^ are of minor interest from the

standpoint of fundamental mechanics, and they will not be included in

this book.

106. Experimental Methods. Sometimes if the object under con-

sideration is irregular, or extremely complex, experimental methods are

to for the purpose of locating the center of gravity. The
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principles of statics are usually needed in the calculations accompanying
these methods.

PROBLEMS

669. In many of the calculations necessary in automotive engineering the position

of the center of gravity of a car is of importance. A completely assembled automobile
is so complicated as to render any exact

mathemat ical determination of the coordi-

nates of tlie center of gravity extremely

difficult. The determination can be made,

with sufficient acc.uracy, by a combina-

tion of experimental and mathematical

metho<l8. ^'he following method is recom-

mended by the New Departure Manufac-

turing Company

:

The car is fii^st placed in a level position,

with the two wheels on one side resting on

a scale ])latform. Let si represent the

reading of the scales in this case. Let W
represent the total weiglit of the ctar, and

let b represent the distance between the

centers of contact of the front, or i*ear,

wheels. The distance h is eornmonly called

the tread. The standard tread is 56 in.,

but there are slight variations from this

value. It will be assumed that the tread

is the same, whet her measured at the front

or rear wheels. Obviously, the formula

for the transverse position of the center of gravity is as follows: x = sih/W, That

side of the (;ar wliich rests on the ground is then elevated to some convenient height,

Cl, as shown in Fig. 331. Let S2 represent the new reading of the scales. The for-

mula for y, giving the vertical position of the center of gravity when the car is level

is as follows

:

. 6(»2 - »l) V62 _ Cj2

Derive this formula.

660. The longitudinal position of the center of gravity of an automobile is also of

importance. This can be ascertained by resting the two rear wheels of the car on a

scale platfonn, with all four tire contacts at the same elevation. Placing the origin

of coordinates at the center of contact of one of the front wheels, with the z-&xia

parallel to the wheelbase, representing the scale reading by S3 ,
and the length of the

wheelbase by I, derive the formula for z. Show how the vertical position of the center

of gravity obtained by the method of Prob. 659 could now be checked by elevating

the front end of the car. Derive the formula for y in this case, representing the

elevation of the front wheels by C2 ,
and the new scale reading by S4 .

661. For a given amount of elevation of the w^heels, which method for finding y

would be more accurate; that suggested in Prob. 560, or that suggested in Prob. 559?

662. A class of University of Kansas students performed the experiment described

in Prob. 559, using fo\ir cars of different manufacture. In one case the following

data were obtained: si = 1475 lb; W = 2925 lb; h = 54f in.; ci — 1,006 ft;

Fig. 331
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32 = 1810 lb. Calculate 5 and y for this car. Ans. $ == 27.6 in.; 5 = 27.7 in.

663 . In the design of a ship a knowledge of the vertical position of the center of

gravity is a matter of extreme importance. It is possible to obtain this information

by calculation alone, but the procc.S3 is long and laborious. ;Vfter a shij) has been

launched the position of the center of gravity can be ascertained very accurately and

fairly easily by experiment, sup])lemented by a simple calculation. The information

thus obtained can be used in the design of other ships of a similar tyj>e, as well as in

the operation of the particidar ship on which the experiment is performed.

Figure 332 represents a cross section of a ship in the water. A known weight, W\
which can be shifted about on the deck, at will, is used in performing the experiment.

This “inclining" weight must be of a magnitude such tliat when it is .shifted to the

edge of the deck it will cause the ship to assume an apprecriable inclination, or het^l.

Let W represent the total weight, or displacement, of the ship, including W\ I-iet

G represent the center of gravity of the total weight when the inclining weight is at the

center, and the ship is trim. T..et a represent the distance through which the inclin-

ing weight is moved transversely to its second position. This tmnsverse movement
of W' causes the center of gravity to move to G\ through a distamjc, 6. Let the line

MO' represent a vertical line drawn through G' when the ship has assumed its inclined

position. The point M is called a metacenter. It i.s at the intersection of the center

line of the ship and a vertical line drawn through the center of buoyancy of the ship

in the inclined position. The position of the metacenter can be accurately calculated

from the known dimensions of the hull and the position of the water line. Therefore,

if the distance h can be obtained from the experiment, the vertical position of the

center of gravity will then be known. Let B represent the angle of inclination. The
value of tan 0 is readily found by means of a plumb line, during the experiment.

The formula used in obtaining from the data of the experiment is as follows: h «
W'a

W tajx$
• Prove that this formula is correct.
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107, General. Kinetics is the study of motion. Changes in the

motions of bodies are caused by forces. The immediate result of an
unbalanced force is acceleration, and the relation between the force

and the acceleration is influenced by a third quantity, the weight of the

body. Acceleration results in changes in velocity.

There are important relations among the purely geometric quanti-

ties, distance, velocity, and acceleration, that can well be studied and
fixed in the memory, as a preliminary to the study of the complete

kinetic relations. This study of the purely geometric features of mo-
tion is called kinematics.

In this book the term point will be used as in mathematics.

The term “ particle will be used to designate an elementary body, or

portion of a l)ody, all of whose dimensions are infinitesimals.

It will be notici'd that the kineynatics of a 'point and the kinetics of a

particle are discussed before bodies of finite size are considered. There

are various reasons why such a method of study is desirable. Certain

terms in kinetics are likely to lack clearness unless used solely in con-

nection with points or particles. The term linear velocity is an

example. At any one instant the linear velocities of various points

throughout a moving body may differ widely. Hence the term linear

velocity cannot with clearness be applied to the motion of the body as

a whole; it should l)e applied only to individual points in or on the

body, unless the case happens to be the special one in which the veloci-

ties of all points are alike. Possible confusion in the use of such terms

is more readily avoided if the motion of points is given separate atten-

tion.

The fundamental laws of motion will be stated and discussed with

reference to the single particle. The transition from the laws for the

particle to the practical formulas for the finite body will then be made

by means of summations and other algebraic processes. It is desirable,

therefore, to master the kinetics of the particle thoroughly before at-

tempting to analyze the case of the finite body, with its more complex

motion.

231



CHAPTER X

RECTILINEAR MOTION OF A POINT

108. Linear Velocity. The linear velocity of a moving point at any
instant is the time rate at which the point is traversing distance at that

instant. In many of the problems of mechanics th(^ direction of motion

is of importance, and for this reason velocity is treated as a vector

quantity. The magnitude of the vector shows the rate of motion, and
the inclination and sense of the vector

show the direction of motion.

Let Fig. 333 represent the path of

a point in rectilinear motion. Let A
represent the moving point. Let 0 rep-

resent a stationary” point, placed at any convenient position on the path.

Let 5 represent the distance between A and considered ])ositive when
the moving point is on one side of O, and negative when it is on the

opposite side. Let i represent the time, and let v represent the magni-

tude of the velocity.

Obviously, the rate at which A is traversing distance is measured by
the rate at which 5 is changing at the given instant. The velocity at

any instant, then, is equal to the rate at which s is changing with res[)ect

to i. The principles of the calculus teach that the ditferentiation of s

with respect to t gives the rate of change of s with respect to t. The
general formula for the magnitude of velocity in rectilinear motion is,

therefore,

ds
» - J,

1122]

The inclination of the velocity is equal to the inclination of the path.

The sense of the velocity is shown by the sign obtained for v when
Eq. 122 is used in a problem. For example, a minus sign indicates

that s and t are changing in the opposite manner. Since t is bound to

increase, the minus sign is interpreted as meaning that s is decreasing,

algebraically. In other words, a negative velocity means that the

point is moving in the negative direction, or toward the negative end of

the path.

For the sake of brevity the adjective linear is frequently dropped

when linear velocities and accelerations arc under consideration. The
232
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term should be used, however, in any case in which there is danger of

confusion between linear and angular quantities. When the terms

velocity and acceleration are used without qualification it is undez'stood

that the lin(iar types are meant.

Graphic Methods. Equation 122 is commonly used to find the

velocity when the algebraic relation between s and t is known. In some
cases, simultaneous values of s and i are obtained from instrumental

observations in the field or laboratory. Frequently it is difficult to

obtain a satisfactory algebraic relation between the quantities. In such

cases the points represented by the values can be plottexl on coordinate

paper, and an average curve drawn. A tangent to the curve can be

drawn at any desired ]>oint. The slope of this tangent, with proper

attention to the scales used in the plotting, will give the velocity at the

chosen point. If desired, a velocity-time curve can then be plotted.

The foregoing process is sometimes referred to as grai)hic, or geometric,

differentiation. The reverse process, graphic integration, can be used

to obtain the (s, t) curve when the (y, t) curve is given. This process

consists m measuring areas under the curv^e, with proper attention to

scales.

Units. The unit of velocity is a combination of the units employed

for distance and for time. For example, if s is in feet and t is in seconds,

V will be in feet per second. The unit may be abbreviated in various

ways.

Illustrative Problems

564. A point moves in a straight line in such a manner that s = + 2^ — 60,

in which ,s is expressed in feet and t is expressed in seconds. Calculate the

values of s and v for the instant when / == 9 sec.

Solution. The value of s for the given instant is obtained by direct substi-

tution in the equation of the motion,

s = + 2< - 60 = + 2 X 9 - 60 = -15 ft

The negative sign shows that at the given instant the point is on the negative

side of the origin.

V
ds

dt

d(t^ + 2t- 60)

dt

At the instant when t == 9 sec,

==—^^9 + 2 *= +6.5 ft/sec
2 2

The positive sign shows that at the given instant the point is moving toward

the positive end of the path.
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666.

Apointmoves in a straight line in accordance with the law: v = — 50,

in which v is expressed in feet per second and I is expressed in seconds. It is

also known that vS has the value + 10 ft at the instant when t is zero. Calcu-

late the values of v and .9 for the instant wlien t ~ 3 sec.

Solution. The value of v for the given instant is obtained by direct substi-

tution in the equation of the motion,

V = - 50 - 3 X (3)“ - 50 = -23 ft/sec

The minus sign shows that at the given instant the point is moving toward

the negative end of the path.

Integrating,

d.v

r ~ ---

dt
d.s = V dt ds = (3^- - 50) dt

s ~ — 30t -f C

in which C is the constant of integration. The value of this constant must

be found before a numerical result can be obtained for .s\ The problem states

that s = +10 ft at the instant when ^ = 0. Since the eciuation for s obtained

above is valid for any values of s and t that rnay occur, the simultaneous

values, « = +10 and t
~

0, will satisfy the equation. Substituting,

10 = 0 - 0 + C C - +10

The completed equation for s is as follows:

6‘ = - m + 10

At the instant when t = 3 sec,

s = (3)^^ - 50 X 3 + 10 = -113 ft

The minus sign shows that at the given instant the moving point is on the

negative side of the origin.

PROBLEMS

666. A point moves in a straight line in accordance with the law « = + 8, in

which 8 is expressed in feet, and t is expressed in seconds. Calculate the velocity of

the point for the instant when t = 20 sec. Arts. +1G0 ft per sec.

667. A point moves in a stniight line in accordance with the law v — — 2<,

in which v is in feet per minute and t Ls in minutes. It is also known that « — + 10 ft

at the instant when i ~ 0. Calculate s and v for the instant when t — S min.

668. A point moves in a straight line in acfjordance with the law s == 10 — in

which 8 is in inches and t is in minutes. Calculate the velocity of the point at the

instant when ^ = 15 sec. Arts, —0.75 in. per min.

669. A point moves in a straight line in accordance with the law v = — 8, in

which i? is in miles per hour and t is in hours. It is also known that < 0 at the instant

when « » 0. Calculate the values of v and s at the instant when t « 30 min. Ans,

—7 mi per hr; —3.75 mi.
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570. A point moves in a straight line in oonformity with the law s = — 10,

in which 8 is in feet and t is in seconds. Calculate « and v for the instant when t *=

15 sec.

671. A point movevS in a straight line in accordance with the law v ~ -f 6,

in which v is in feet per second and t is in seconds. It is also known that s = 4*10 ft

at the instant when t = 0. Calculate the value of s for the instant when i = 10 sec.

Ans. 4-870 ft.

672. A certain point in rectilinear motion follows the law v == — 6^^^, in

which c is in feet per second and t is in seconds. It is also known that s = 4-8 ft at

the instant when t = 0. (Calculate v and s for the instant when t
~ 4 sec.

673. A point moves in a straight line in accordance with the law s — 10 cos (2f),

in which s is in inches and t is in seconds. The angle {2t) is in radians. Calculate

the velocity of the point at the instant when t = 4 sec. An,s. —19.8 in. per sec.

674. A point moves in a straight line in accordance with the law s = —
4- 4, in which s is in feet and t is in minutes. Calculate s and v for the instant

when t — 4 min.

676. A point movas in a straight line in accordance with the law v — 2 cos (3f),

in which v is in feet i)er second and t is in seconds. The angle (3/) is in radians. It is

also known that « — 0 at the instant when t ~ 0. Calculate v and s for the instant

when t = 10 sec. Ans. 4*0.312 ft per sec; --0.G59 ft.

109. Linear Acceleration. The linear acceleration of a point at any

instant is the time rate at which the linear velocity of the point is changing

at that instant. Linear acceleration is a vector quantity.

Let a represent th(^ linear acceleration of any point moving in a
straight line. By the definition, a is equal to the rate at which v is

changing with respect to t. The general formula for the magnitude

of the acceleration in rectilinear motion is, then, as follows:

From an inspection of Eqs. 123 and 122 it can also be seen that

[124]

In rectilinear motion the inclination of the acceleration is equal to the

inclination of the path. In other words, the acceleration is along
”

the path. The sense of the acceleration is revealed by the sign ob-

tained for a when either of the foregoing formulas is used in a problem.

For example, a minus sign indicates that v is decreasing, algebraically.

This does not necessarily mean that the rapidity of motion is decreasing.

If the velocity is positive at' a given instant, a negative acceleration at

that instant means that the point is slowing down but if the velocity

is negative, a negative acceleration means that the point is speeding

up/’ although in either case the velocity is decreasing, algebraically.

In short, when the velocity and the acceleration agree in sign, the
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rapidity of motion is increasing; when they disagree, the rapidity of

motion is decreasing.

Thus, the term acceleration ” is correct whether the rapidity of

motion is increasing or decreasing. Frequently, however, the term

deceleration is used in lieu of acceleration ” where the rapidity of

motion is decreasing. The term retardation ’’
is also applied, to a

limited extent, under these conditions. In this hook the term accel-

eration will be used in its general sense, although the term deceler-

ation ” may be found occasionally in problems in which that particular

condition obtains.

The impression is sometimes received that if at a c(‘rtain instant the

velocity becomes zero the acceleration necessarily becomes zero. If the

point remains at rest for any finite^ interval of time the acceleration must

be zero during that interv^al, but if the point remains at rest for only

an instant, or, more properl}^, if it does not remain at revst at all, the

acceleration can have any value except zero at the instant of zero

velocity. For example, if a ball is thrown vertically into the air its

velocity becomes zero for an instant at ihe upper end of its path, but

the acceleration has the same value at that instant as at any other

instant during the motion, if air n'sistance and the slight variation in

the earth-pull are disregarded. The value of the velocity simply passes

through zero at the given point, its rate of variation at that instant

being the same as at any other instant. In some motions the accelera-

tion actually has its maximum value at the instant of zero velocity.

In certain problems the following formula is more convenient than

either of those given at the beginning of the article

:

vdv = ads [125]

This formula is obtained by eliminating dt between Eq. 122 and Eq. 123.

Graphic Methods. When necessaiyq values of acceleration can be

found by graphic differentiation from a (y, t) cur\^e. If desired, the

(a, t) curve can then be plotted. By means of graphic integration, a

{Vj t) curve can be constructed from an (a, i) curve.

Units. The unit of acceleration is a combination of the units used for

velocity and for time. Usually the same unit Ls used for the time in

expressing the rate of change of the velocity as is used in expressing the

velocity itself. For example, the value of the acceleration of a freely

falling body is usually given as 32.2 ft per sec per sec. This may also

be written 32.2 ft/sec^.

Illustrative Problems

576. A point moves in a straight line in obedience to the law s « —
10/ — 6, in which s is in feet and t is in minutes. Calculate the velocity and
acceleration of the point for the instant when / =« 4 min.
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Solution. From the problem,

8 = - 10« - 6

r =

At the instant when t

(h _ d{t^ - 10< - 6)

dt dt

= 4 min,

= 1.5«^ - 10

V = 1.5\/4 — 10 = —7 ft/min

The minus sign shows that at the given instant the point is moving toward

the negative end of the

dv
__

— 10)

dt dt
0.75r^^

At the instant when t
— 4 min,

0 75
a — = -f0.375 fi/min^

V4

Since a is positive and v is negative at the given instant, the speed of the

point is decreasing, although v is increasing algebraically. In other words,

a, although positive, is a ‘‘ deceleration at the given instant.

677. A point moves in a straight line in accordance with the law a — 12^ —
3.75i^'^ in which a is in feet per second per second and t is in seconds. It is

also known that v — 0 and s = +12 ft at the instant when f = 0. Calculate

a, r;, and s for the instant when t = 9 sec.

SoltUion. From the problem,

a = 121- 3.75t^

At the instant when t = 0 sec,

o = 12 X 9 - 3.75V9 = +96.8 ft/sec*

dv

dt

Integrating,

a = T‘ dv ^ a dt dv — {12 1
— 3.75^^*’) dt

?; = 6^2 - + Cl

in which C\ represents the constant of integration. From the problem,

t; = 0 wlien t 0. This simultaneous pair of values must satisfy the equation

for V obtained above. Substituting,

Therefore,

0 = 0- 0 + Cl Ci=0

t; = 6^2 - 2.5t^

At the instant when t = 9 sec,

y = 6 X 81 - 2.5V^ = +419 ft/see
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In this problem the signs of the velocity and of the acceleration agree at the

given instant; therefore, the speed of the point is increasing.

Integrating,

ds = V dl ds — (6/- — dt

8 - 2e -
-f Co

From the problem, 8 — -|-12 ft at the instant when t = 0. Substituting these

in the foregoing equation,

12 = 0 - 0 + Co Ca = +12

The completed equation is

s = 2e - l^‘‘ + 12

At the instant when t
— 9 sec,

s = 2 X (9)'^ - + 12 = +1230 ft

Summarizing: at the given instant the point is 1230 ft from the origin and on

the positive side thereof, moving in the positive direction at a speed of 419 ft

per sec, and with a positive acceleration of 96.8 ft per sec per sec.

PROBLEMS

678. At a certain instant the linear acceleration of a moving point is 70 mi per hr

per min. Express this acceleration in feet iH)r second i)€r second. A ns. 1.71 ft/sec^.

679. A certain table contains a large number of accelerations expressed in miles

per hour per second. It is desired to calculate a second table, giving the same accel-

erations, but expressed in feet per minute per minute. Calculate the coefficient by
which the values in the first table should be multiplied.

680. A certain table contains a large number of accelerations expressed in feet per

second per second. It is desired to calculate a second table, giving the same accelera-

tions, but expressed in inches per minute per second. C'alculate the coefficient by
which the values in the first table should be multiplied. 720.

681 . A point moves in a straight line in accordance with the law s — 4 ~ 2< —
in which s is in feet and t is in seconds. Calculate v and a for the instant wluin t =
6 sec. Is the point ‘'speeding up'' or “slowing down" at the given instant?

Ans. —32 ft/sec; —6 ft/sec^; spijeding up. _
682. A point moves in a straight line in obedience to the law a = — 3V^t, in which

0 is in feet per second per second and t is in seconds. It is known, also, that r « —4 ft

per sec and s = 0 at the instant when t = 0. Calculate v and s for the instant when
1 *= 4 sec.

683 . A point moves in a straight line in accordance with the law v = — 2t,

in which v is in feet per second and t is in seconds. It is also known that s = +10 ft

at the instant when t = 0. Calculate s, v, and a for the instant when t S sec. Is

the point “speeding up’^ or “slowing down" at that instant? Ans. —38.0 ft;

— 13.3 ft/sec; — 1.89 ft/sec^.*

684. A point moves in a straight line in accordance with the law a « 3,76vT—
3/V^ in which a is expressed in feet per second j>er second, and t is in seconds. It is
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also known that v - 0 and s +2 ft at the instant when < = 0. Calculate t;, and
a for the instant when i = 4 sec.

686.

A certain rectilinear motion is governed by the following law: t; •= — 10,

in which r is in feet per minute and t is in minutes. It is also known that s « 0 at

the instant when i
~

0. Calculate s, Vy and a for the instant when t — 5 min. Is

the point ‘‘speeding up” or “slowing do\\Ti” at the given instant? Am. —‘24.7 ft;

-f3.13 ft/min; -4-4.20 ft/min^.

686. A point moves in a straight line in accordance with the law a — —4 s, in

which a is in feci per s(?cond per second and .s is in feet. It is also known that v == -f2
ft per sec and 5 = Oat the instant when ^ = 0. Derive the formula s = sin (2t -h titt),

in which 7i is any positive integer. Start by using Kq. 125. __

687 . A certain rectilinear motion is governed by the following law: a = 0.75/\/s,

in which a is in feet per second per set^aid and s is in feet. It is also known that

«, r, and t liave the value zero at tlie same instant. Derive the equation o -

110. Uniform Motion. Uniform rectilinear motion is motion in a

straight line at con.starit velocity. It should be remembered that

velocity is a vector (piantity. The term constant/’ when applied to a

vector quantity, means that there is no change in magnitude, inclina-

tion, or sense. Thus, it is seen that rectilinear motion is the only type of

motion in which the linear velocity of a point can remain constant. In

curvilinear motion the magnitude of the velocity may remain constant,

but the inclination necc'ssarily changes.

It follows, from tlie definition, that in a uniform rectilinear motion the

acceleration is zero. Eciuation 122, Art. 108, is valid for any case.

ds
V as = V at

dt

Integrating, and remembering that in the present case v is constant,

s ==vt + C [1261

The value of the constant of integration, C, depends upon the position

of the moving point in its path at the instant when ^ = 0. In a specific

problem it is usually possi]>le and convenic^nt to measure t from the

instant when the moving point is at the origin. Adopting this pro-

cedure, it follows that s — 0 when t = 0. Substituting these simul-

tamxms values in Eq. 126,

Therefore,

0 = 0 + C C = 0

s - vt [127]

PROBLEMS

688.

Express a velocity of 60 mi per hr in feet per second. From the foregoing

result, express velocities of 15, 20, 45, and 50 mi per hr in feet per second, by propor-

tion.
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689. In nautical parlance the knot is the unit of velocity for expressing the speed

of a ship. One knot is equivalent to one nauti(;al mile j>er hour. The length of the

nautical mile is 6080.27 ft. A certain vessel has a speed of 30 knots. Express this

speed in ordinary statute miles per hour. A ns. 34.5 mi/hr.

690. A certain automobile maintains an average speed of 40 ft per sec between two

points 265 mi apart. How many hours will the journey consume?

691 . The average speed of the pistons in the cylinders of an engine is called the

piston speed.” It is usually e.xpressed in feet per minute. Cyalculate the piston

speed of an automobile engine having a 4^ -in. stroke, when the crankshaft is rotating

at the rate of 3400 rpm. Ans. 2550 ft/min.

692. A certain army in marching order is 15 mi long. It tnivels at constant speed.

A messenger starts at the rear end of the line, rides to the head, and returns to the

rear. The army meanwhile moves forward 15 mi. The messeng(^r rides at constant

speed. Calculate the actual distance traveled by the messenger. Disregard the time

lost in turning at the head of the line. A ns, 36.2 mi.

693 . Car A, traveling at a constant speed of 70 mi per hr, overtakes and passes

car R, which is traveling at 60 mi per hr. Car C approaches, traveling at 70 mi per

hr in the opposite direction. Car A turns out at the instant when the clear sjmee

between it and B is 100 ft. At the instant w’hen A returns to its own lane, ahead of

B, the clear space between A and B is again 100 ft. At the same instant the front

end of car C is just even with the rear end of A. Each car has a total length of 18 ft.

Calculate the clear distance between cars A and C at the beginning of the maneuver.

Disregard the slight additional distance traveled by car A owing to its deviation

from a straight path.

111. Motion with Constant Acceleration. In this type of rectilinear

motion the velocity varies, but the acceleration is constant. It follows

that equal increments of velocity occur during equal increments of time.

This motion is also frequently called uniformly accelerated motion.

From Eq. 123, Art. 109,

dv = a di

Integrating, and remembering that a is constant,

V == at + Cl [128]

Let To represent the velocity of the point at the instant when t == 0,

This is called the initial velocity. Substituting the simultaneous

values, V = and ^ = 0, in Eq. 128,

Therefore,

t’o = 0 + Cl Cl

i; = 1^0 +
From Eq. 122, Art. 108,

[129]

ds ^ V dt
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Substituting in this equation the value of v from Eq. 129, and integrating,

ds = (t)o + at) dt 8 = vot + + Cz [130]

The value of the constant of integration, Cz, depends upon the position

of the moving point in its path at the instant when i = 0 . Let t be
measuiod from the instant when the moving point is at the origin.

Consequently, s = 0 wlnai t = 0 . Substituting in Eq. 130,

Therefore,

From Eq. 125, Art. 109,

0 = 0 + 0 + C2 C2 = 0

s = Vot +

V dv ^ a ds

[131]

Integrating, and remembering that a is constant,

-- - as + C3 [132]

The initial conditions adopted in deriving Eqs. 129 and 131 were:

V = Vo when t = 0
,
and s = 0 when t = 0 , Therefore, v Vq when

s = 0. Substituting in Eq. 132,

Substituting this value of C3 in Eq. 132, and rearranging,

[133]

Another useful formula can be obtained by eliminating a between Eqs,

129 and 133; it is as follows:

s =
^0 + ^

^

2
[134]

Illustrative Problems

694. A point moves in a horizontal straight line. The initial velocity is

100 ft per sec, toward the right. Two minutes later the velocity is 200 ft

per sec, toward the left. The acceleration is constant. Calculate the accel-

eration, and find the position of the point at the end of the interval.

Solution. By Eep 129,

t/ = ro +

From the problem, with due regard for signs and units, v ~ —200, Vq » +100,

and t « 120. Substituting,

-200 = +100 + a X 120 a = -2.5ft/sec2
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From the statement of the problem it is clear that the acceleration is toward

the left. However, the minus sign obtained above verifies this conclusion.

By Eq. 131,

= Vot +
Substituting,

8 - 100 X 120 + ^(-2.5) (120)- - -6000 ft

Therefore, at the final instant the moving point is 6000 ft to the left of the

origin. It is suggested that the student check the solution by the use of

Eq. 133 or 134.

696 . A ball is thrown vertically upward from the top of a tower, with an

initial velocity of 80 ft per sec. The velocity of the ball is 120 ft per sec at the

instant when it reaches the ground. Calculate the height of the tower.

Solution. Equation 133 provides the most direct solution.

V — \^Vq 2(is

In the present case v - — 120, t’o = +30, and a ~ —32.2. Substituting and
squaring,

(-120)2 = (+80)2 -f 2(- 32.2)8 8 = -124 ft

The use of Eq. 133 necessitates placing the origin of coordinates at the point

of initial velocity, vo, wdiich in the present case is at the top of the tower.

8 is the coordinate of the moving point. The value actually obtained above

is the coordinate of the bottom of the tower, measured from the origin at the

top. This accounts for the negative sign.

696 . A point, A, starts from rest and moves in a horizontal straight line,

with a constant acceleration of 2 ft per sec per sec, toward the right. A
second point, B, moves along the same line, in the same direction, with a con-

stant velocity of 20 ft per sec. B passes A^s starting point 4 sec after

A departs. How much time will elapse, after A starts, until the two points

coincide? How far from the starting point will the conjunction occur?

Solution. Let and represent the elapsed times of the two points.

Let Sa and represent the coordinates of the points, measured from an
origin at A’s starting point.

Point A moves with constant acceleration; therefore, Eq. 131 may be used.

s = Vot + lat^

Substituting,

SA = 0 X Ia -\- h X2 XtA = d
B moves with constant velocity; therefore,

8 - Vt SB ^ 20tB

When the points coincide, = sb; therefore,

Ia = 20tB

And, from the conditions of the problem,

t.i == fa + 4
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The solution of the two preceding equations yields two values of Iaj as follows:

5.53 sec and 14.5 sec. This outcome means tliat the two points coincide twice.

This was to be expected; B must overtake A if they are to coincide at all,

but A will eventually overtake B since B has no acceleration.

Substituting the values of tA thus found, in the equation for sa obtained

above,

SA = d = (5.53)2 (14 5)2 ^ 4.30 0 ft or +210 ft

It is suggested that the .student check the solution by calculating sb^

PROBLEMS

697 . The building laws of the City of New York, July 17, 1917, contained a

provision to the effect that, with certain exceptions, elevators should have a governor

or speed regulator of such a nature as to bring the car to an easy and gradual stop in a

distance not greater than 8 ft, from a speed of 700 ft per min. Calculate the decelera-

tion, assumed constant, represented

by the foregoing figures. Ans. 8.51

ft/sec^.

698 . The curve in Fig. 334 shows

the distances in which it wiis claimed,

some years ago, that a certain

automobile could l>e brought to rest,

on level ground, by the use of the

brakes. Assuming constant decelera-

tion, calculate the time consumed in

coming to rest from si^eeds of 20, 40,

and 60 mi per hr.

699 . The Uniform Vehicle Code

(1938) recommended by the National
( 'Conference on Street and Highway

Safety specifies that, vehicles equipped with brakes on all wheels shall be able to

stop in a distance of 30 ft, from a speed of 20 mi per hr, or that they shall be able

to decelerate at the rate of 14 ft per sec per sec. Assuming constant deceleration,

ascertain whether the two requirements are re^isonably consistent.

600. The driver of an automobile traveling at a speed of 80 mi per hr sees danger

ahead, applies the brakes, and stops the car. If he is of average quickness the car

will travel 88 ft before deceleration begins. It will travel an additional 352 ft in

coming to rest. Calculate the total time required for stopping, from the instant

when the danger is first discovei-ed. Am. 6.75 sec.

601 . A train, moving at a speed of 30 mi per hr, slows down tu 20 mi per hr, and

then accelerates and resumes its former speed. The deceleration is accomplished at

the rate of 1.8 mi per hr per sec, and the rate of acceleration in resuming speed is

0.125 mi per hr per sec. Calculate the amount of time lost because of this change

of speed.

602 . The average speed that a train makes, based on the total time consumed in

running and in stopping at stations, is sometimes called the schedule speed.*^ A
certain electric train has an average acceleration of 2.2 ft per sec per sec, and its

average braking retardation is 3 ft [wr sec per sec. Its maximum constant running

speed is 45 mi per hr. Calcuhite the best schedule speed that the train can maintain

Distance in which car stops -Ft

Fig. 334
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if the stations are 1 mi apart and the stops are of SOnsec duration. Am. 26.5

mi/hr.

603 . A ball is dropped from a captive balloon at a point 1000 ft above the earth,

without initial velocity. At the same instant a ball is thrown vertically upward

from the gmund. What initial velocity must be given to the second ball, to cause

it to meet the first ball at a point 300 ft above the ground?

604 . A shell is fired vertically upward with an initial v^elocity of 2000 ft per sec.

It is timed to burst in 5 sec. '^hwo seconds after the firing of th(^ first shell a second

shell is fired with the same initial veloc^ity. I'his shell is timed to burst, in 4 sec. An
observ^er stationed in a balloon near the line of fire hears })oth bursts at the same

instant. How far is the balloon above the earth? Assume the velocity of sound to

be 1100 ft jKir sec. Ans. 8120 ft.

606

.

Two points, A and B, move along the same horizontal line. They pass the

origin at the same instant, A having a velocity of 10 ft per sec, toward the right, and

B having a velocity of 20 ft per sec, toward the left. A has a constant acceleration

of 4 ft per sec per sec, toward the left, anti B has a constant acceleration of 2 ft per

sec per sec, toward the right. When and where will the two points be together again,

and what velocities will they have?

606 . Observ'ations indicate that a parachutist of average weight whose chute”

failed to open would attain a velocity of approximately 140 ft f)er sec at the end of

the first 6 sec of his fall, and that at the end of the next 7 sec his velocity w’ould be

175 ft per sec, remaining constant thereafter. If he “ bails out ” at an altitude of

3000 ft, calculate the total time required to reach the earth. Assume constant accel-

eration in each of the acceleration periods. Ans. 21.5 hoc.

607 . Solve Prob. 006, assuming that the parachutist opens his chute at a distance

of 1000 ft above the earth, and that his velocity thereby decreases to 18 ft per sec in a

distance of 200 ft and remains constant thereafter. Let the other conditions of the

problem remain unchanged.

608 . A man standing at the top of a cliff wishes U) ascertain its approximate

height. He drops a rock over the edge, and hears the sound of the rock striking the

ground at the base of the cliff 10 sec after the rock leaves his hand. Calculate the

height of the cliff. Assume the velocity of sound to be 1100 ft per sec. Am.
1270 ft.

609 . A certain automobile has a top speed of 60 mi per hr. It can attain that

speed, from rest, at an average acceleration of 3 ft jjor hoc per sec, and can be stopped

in a distance of 250 ft. Assuming constant acceleration during the starting period

and also during the stopping period, calculate the minimum time in which the car

could be driven between two pr>ints J mi apart, starting from rest at one point and

coming to rest again at the other.

610. One car c^n accelerate from rest to its top speed of 50 mi i)er hr, in 25 sec.

A second car requires 45 sec to rea(;h its top speed of 70 mi per hr. The two cars

start from rest at the same point, the slower car leaving the starting point 40 sec

ahead of the faster. In what length of time after the departure of the second car

will it overtake the other? How far from the starting point will this occur? Ans.

147.5 sec; 12,830 ft.

611 . The first car mentioned in Prob. 610 starts from re^t at station A, and makes

all possible speed toward station R, 10 mi away. At the same instant the other car

starts at B and makes all jxissible speed toward A . How’ much time elapses before

the two cars meet? At what distance from A do they meet?
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112. The Crank-and-Connecting-Rod Mechanism. Figure 335 is

a diagrammatic representation of the crank-and-connecting-rod mecha-

nism, as used in ordinary steam and gas engines. The point A is on

the axis of the crankshaft, and the

point B is on the axis of the crankpin.

B moves in a circular path, called

the crank circle, about A as a center.

The })oint D is on i/he axis of the

(aosshead pin, or wristpin. All points

on the ci osshead, piston rod, or piston

have the same motion as D. llie

distance OE is called the stroke, and

is equal to tlu^ diameUa- of the crank circle. The point 0 is called

the outer dead-cent('r position, and the point E is called the inner dead-

center i)osition.

Formulas will be derived for the motion of /), assuming the crankshaft

to l)e rotating in a clockwise direction at constant speed. The origin

will be }:ilaced at the outer dead-center position, 0. The angle BAC
is called the cmiik angle. Let the crank angle be represented by
expressed in radians.

Exact Formulas, Let n represent the number of revolutions of the

crankshaft per unit time. Let t have the value zero at the instant when
D Is at the origin and B is at F, In a unit of time the crank angle will

have the valine 2x7? radians. This quantity is the angular velocity of

the crankshaft. Let it be represented by w. The relation between 0

and t may be expressed, then, by the eejuation 6 = o}t. From Fig. 335,

OF + FA =- OD + DC + CA [135]

;q-r - s + I cos 0 + r cos 6 [136]

[137]

Substituting in Eq. 136 the value of cos given by Eq. 137, replacing

6 by its value co^, and rearranging, the following relation between s and t

is obtained:

s = / + r — sin^ — r cos [138]

Equation 122, Art. 108, can now be utilized.
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By Eq. 123, Ai-t. 109,

dv
a =

dt
a =

^
cos <jot +

rl^ cos 2 oit + sin^ o)(

{P — sin^ )
[140]

Equations 138, 139, and 140 completely describe the motion. They

show that the motion is of the type having variable acceleration.

Approximate Formulas, Equations 138, 139, and 140 are exact,

but somewhat cumbersome. Simpler, approximate formulas can be ob-

tained in the following manner:

Expanding the radical in Eq. 138 by the binomial theorem, to four

terms,

(P - sin^
sin^ o)t sin^ o)t sin^ 03t

mP [141]

In practice the ratio r/l Is not likely to exceed 1/2.5. The maximum
possible value of sina>^ is unity. Substituting these extreme valuas

in Eq. 141,

(P — 7^ sin^ (jot)'"^ (l_l L
\ 5 125 1562.5’“/ [142]

An examination of Eq, 142 reveals the fact that the terms of the

series rapidly diminish in magnitude, and that no serious error can

result if all terms except the fiust two are discarded. Equation 138

can now be written as follows:

5 = r +
sin^ 0)1

21
— r cos od

from which, by the use of Eqs. 122 and 123,

V = TO) sin 2 0)^ + sin

a = ro)^
( y

cos 2 oit + cos o)t

)

1143]

[144]

[145]

In many of the applications of kinematics, including the one with

which the present article is concerned, graphic methods have been

devised, to eliminate much of the labor of solution. The algebraic

solutions are useful, however, where only a few values are desired.

Algebraic solutions are of special importance to the student, in that

they serve to fix in the mind the fundamental relations between the

quantities, and show the connection between principles and practice.
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PROBLEMS

612 . In a certain automobile engine tlie length of the stroke is 4 in., and the length

of the connecting rod is 8 in. Calculate tiie velocity and the acceleration of the

piston when the crankshaft is rotating at a constant speed of 3000 rp*m, for

the instant when the crank angle, 0, is equal to 90'^. Use tlie exact fonnulas.

Ans. V ~ -1-52.4 ft/sec; a = — 4250 ft/sec^.

613 . Solve Prob. 012 by means of the approximate formulas.

614 . Solve I^rob. 012 for the instant when the crank angle is equal to 180'\ using

the exact formulas. Ans. v — 0; a ~ — 12,300 ft/sec^.

615 . Solve Prob. 012 for the instant when the crank angle is equal to 180°, using

the approximate formuhis.

616 . ('alculate the value of the crank angle at which the piston in Prob. 012 has

its maximum velocity. Use the approximate formulas. Calculate the maximum
velocity. Aris. B - 77°; v

- 4-53.9 ft/sec.

617. Calculate the value of the crank angle at whicli the piston in Prob. 012 has

its maximum acceleration. Calculate the maximum acceleration. Use the approxi-

mate formulas.

113. Simple Harmonic Motion. Rectilinear motion in which the

acceleration Is always directed toward a fixed point in the path, and in

which the magnitude of the acceleration is

proportional to the distance between the

moving point and the fixed point, is called

simple harmonic motion.

Let Fig. 336 represent the path of a ixiint

having simple harmonic motion. Let B rep-

resent the position of the moving point at any instant. 0, the fixed

point, will be used as the origin from which to measure s. The fun-

damental facts of the motion, as stated in the definition above, can

be expressed in algebraic form, as follows:

a = -ks [146]

in which A; is a constant in any particular problem. It can be seen that

a will be negative for positive values of s, and positive for negative

values of s, thus satisfying the requirement that the acceleration always

be directed toward 0.

Let it be imagined that the motion is started by projecting B through

0 with the initial velocity vq. A formula for v in terms of s can be ob-

tained by substituting the value a == —/cs in the general formula

V dv — a dSf and integrating,

fvdv = C - Ic^ds « = Vvo- ks^ [147]

A formula for s in terms of t can be obtained by substituting, m the

general formula v = ds/dt, the value of w obtained in Eq. 147, and mte-

r-,

Fig. 336
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grating. It will also be specified that t is to have its zero value at the

instant when s is zero and the point is passing through 0 in the positive

direction.

1,481
t/o Vvq- ks^ Vk

in which t represents an angle, expressed in radians.

A formula for v in terms of i can be obtained by eliminating s between

Eqs. 147 and 148, or by ditTerentiating Eq. 148 with respect to L The
resulting formula is as follows:

V ~ ^0 cos V k t [149]

The following formula for a in terms of t can be obtained in a similar

manner:

a — --Vo ^'^k sin v k t [150]

An examination of Eq. 147 reveals the fact that, w^hen s has the

value zt the value of t; is zero. The substitution of the foregoing
\ k

value of s m Eq. 146 gives a = ^Vo^k. These results show that the

point comes to rest at the instant when s = + —^ ,
but that the acceler-

Va
ation at this instant is a = Therefore, the point does not

remain at rest, but immediately starts back toward 0. It passes

through 0 in the negative direction, with the velocity voy and comes to

rest again at the instant when s = —^ . The point immediately
V/i;

starts back toward 0, and repasses 0 in the positive direction with the

velocity vq.

The foregoing analysis shows that simple harmonic motion consists of

a series of vibrations through a common center, 0, wdth a symmetrical

arrangement of velocities and accelerations on either side of that center.

The distance from the center point, 0, to the extreme limit of motion

on either side of the center, is called the amplitude of the vibration. Let

the amplitude be represented by sa- The formula for is as follows:

.. - I1511

The time required to execute one complete cycle, or vibration, is

called the period of vibration. It is the time that elapses between two
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successive passages through 0 in the same direction. Let the period of

vibration be represented by T. Let Eq. 148 be rearranged, as follows:

t = JL .

/“ arc sm
V/c Vq

[152]

Substituting s = 0 in Eq. 152,

1 , nir
i
~ -

: 0 = —

^

Vk V'k
[153]

in whicli n represents any integer. When n is zero, t is zero. When
n is unity, tlu' point has icdurncd to the origin after a half-vibration.

When n is 2, tlu^ full vibration has been completed. The formula for

the period is, therefore,

T =~ [154]
V k

In physics many cases arise in which motions are found to be very

nearly simple harmonic, vibrations of tuning forks, of the strings of

musical instruments, of si)rings, and of air that is transmitting sound

waves are examples. Pendulums of various types frequently have

simple harmonic rotational motions. In the engineering field are

found many examples of bodies that move more or less closely in ac-

cordance with the laws of simple harmonic motion. It can easily be

shown that the motion of the piston of an engine, as discussed in Art.

112, is approximately simple harmonic and approaches that motion

more closel^y in those cases in which the ratio of the length of the

connecting rod to the length of the crank is large. If this ratio were

infinite the two motions would agree exactly.

Figure 337 represents a mechanism in which the connecting rod is

dispensed with altogether. This device is called the Scotch cross-

head. When the crankshaft is rotating at constant speed the cross-

head executes an exact simple harmonic motion. This mechanism has

been used to a limited extent in pumping machineiy, where compactness

is of paramount importance.

PROBLEMS

618. Figure 338 represents a block resting on a sniootb, horizontal plane, between

two helical springs. The block is pulled toward the left a distance of 1 ft, and is

then released, from rest. It then executes a simple harmonic motion through O as

the central point. The stiffness of the springs, and the weight of the block, are

such that the motion follows the law, a = —96s, in which a is expressed in feet per

second i>er second, and s is expressed in feet. Calculate the maximum velocity of
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the block, and the period of vibration. Calculate the maximum acceleration.

Vo
— 9.8 ft/sec; T = 0.641 sec; a = 96 ft/sec^.

619

.

In Prob. 618, let i be counted from the instant when the block passes O,

moving in the positive direction. Calculate the values of s, r, and o, for the instant

when t = 60 sec.

620 . Assume that the motion of the Scotch crosshead, in Fig. 337, is simple har-

monic motion, when the crankshaft is rotating at con.stant speed. If the radius, OA
,

of the crank circle is 6 in., and the crankshaft has a constant angular velocity of 180

rpm, calculate the maximum velocity and acceleration of the crosshead. Ans.

vq = 9.43 ft/sec; a = 178 ft/sec^.

621 . Calculate the velo(;ity and acceleration of the Scotch crosshead described in

Prob. 620, at the instant when its position is 3 in. from the positive end of its stroke.

622 . Calculate the velocity and acceleration of the Scotch crosshead described in

Prob, 620, at the instant when the crank angle, 0 (Fig. 337), is equal to ISO'". Ans.

V == —4.71 ft/sec; a = +154 ft/sec^



CHAPTER XI

CURVILINEAR MOTION OF A POINT

114. Linear Velocity. The definition of velocity given in Art. 108

for rectilinear motion will serve as a formal definition of velocity in

curmlinear motion. The magnitude of the velocity at any instant is

the time rate at which the moving point is traversing distance at that

instant, and it can l)(‘ calculated by means of a method similar to that

developed for rectilinear motion.

However, for a clear understanding of cuiwilinear motion it is neces-

sary to be fully aware of the vectorial nature of velocity. A change of

inclination is just as surely a chanye of velocity as is a change of magnitude.

A person accustomed only to the ]X)pular usage of the terms velocity

and acceleration finds it somewhat difficult to adjust his thinking

to the technical usage. Acceleration is one of the important funda-

mental quantities in mechanics. The general conception of acceleration^

involving, as it does, change of velocity, contemplates velocity as a quan-

tity that changes whenever its magnitude, or its inclination, or both, change.

(^'onstant velocity cannot exist, then, in curvilinear motion. The

only feature of the velocity that may remain constant in such motion is

the magnitude. The word speed is sometimes used as a shorter

term for the magnitude of velocity. This term is not supposed to

arouse in the mind any thought of the inclination of the velocity.

Thus, in a curvilinear motion there may be constant speed, but never

constant velocity.

The inclination of the velocity at any instant in curvilinear motion

is equal to the inclination of the tangent to the ])ath. It is a matter of

common observation that a particle which is moving in a curved path

has a tendency to fly off on a tangent.'^ A more scientific statement

of this situation is that a particle will not follow a curved path at all

unless it is subjected to unbalanced forces, and if at any time the forces

become balanced the particle will assume a rectilinear motion. Obser-

vation indicates that the rectilinear path will be tangent to the curved

path at the point at which the curvilinear motion (Tases.

Let Fig. 339 represent the path of a point in curvilinear motion.

Ix^t A represent the moving point. I^t O' represent a stationary point

at any convenient position on the path. Ijot s rei)resent the distance,

251
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measured along the cuitc, between A and O', considered positive when
the moving point is on one side of O', and negative when it is on the

opposite side. Since the moving j)oint traverses distance along a curved

path, and since is measurc'd along the path, the magnitude of the

^'(‘locity at any instant is etiual to the rate

at which « is changing with respect to t at

that instant. The general formula for the

speed of a point in curvilinear motion is,

then, the same as in rectilinear motion.

V = ds

Tt
[155]

It was stated above that the inclination of the velocity agrees with

the inclination of the tangent to the path at the position under con-

sideration. This inclination can be found by the usual methods of the

calculus. The interpretation of the algebraic signs obtained for v in

the use of Eq. 155 is similar to that for the case of rectilinear motion,

as discussed in Art. 108.

Illustrative Problems

623 . Figure 340 represents a point, P, moving in a circle 200 ft in diameter.

The distance along the path from the fixed iK)int, A, to the moving particle at

any instant is represented by s. The motion is such that s = 0.25 t^, in which

8 is expressed in feet and i in seconds. Find the velocity of the moving

particle at the instant when t — 10 sec.

Solution. By utilizing Eq. 155, and the law of the motion as stated in the

problem, the magnitude of the velocity can be readily calculated.

ds
8 « 0.25 e V t; « 0.75 P

dt
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At the instant when i = 10 sec,

y = 0.75 (10)2 = 75 ft/sec

The angle of inclination of the velocity can be found as follows:

At the instant when t = 10 sec, s = 0.25 — 0.25 (lO)’** = 250 ft

o 250
/3 = - = — — 2.5 radians = 143° 13'

r 100

from which

e = 233° 13'

624 . Figure 341 represents a semi-cubical parabola, whose equation is

2 i/ ~ in which x and y are both expressed in feet. A point, A
,
moves along

the upper portion of the curve, following the law .s == 2 in which s is expressed

in feet and t in seconds. Find the velocity of the point for the instant at

which t — 2 sec.

Solution. The speed, or magnitude of the velocity, is readily calculated by
means of Eq. 155.

s ==2 f

ds
V = ~ V — it

dt

At the instant when t = 2 sec,

r = 4 X 2 = 8 ft/sec

The inclination of the velocity is the same as that of the tangent to the curve,

and may be found as follows:

The equation of the curved path is

2 7/ = or y =
V2

By differentiation,

iy dy = Sx^ dx

from which

dy 3 x^

dx iy

From the equation of the curve,

dx 4

Differentiating,
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The foregoing equation will give the value of the slope for any value of x.

However, the value of x corresponding to the value t — 2 sec must first be

found. This can be done as follows:

From the calculus,

ds^ =» dx^ + dy^

Substituting in thi.s exjiression the value dy = f 2 dx, as given by the

preceding equation, and solving for ds,

dfi == a: + 1 dx

Integrating,

S = 3^ (§ + c

From the figure, when x — 0, .s = 0. These values will satisfy the foregoing

equation. Therefore,

The completed (s, x) equation is, then,

s = M (2 X + 1)^' - U
From the problem, s = 2 For i = 2 sec, s = 2 X 4 = 8 ft. The corre-

sponding value of X can now be found by substituting this value of s in the

(.S x) equation obtained above.

8 = « (I X + - if

Transposing, rationalizing, and solving for x,

X —
-f 4.4 ft

Substituting this value of x in the equation for dy/dx obtained above, it is

found that

^ = f ^2^4.4 = 2.22
dx

From which the angle of inclination of the velocity is found to be

B = arc tan 2.22 = 65° 45'

Thus, it has been learned that, at the instant when i == 2 sec, the point is

moving at a speed of 8 ft per sec, and at an angle of 65° 45' with the x-axis.

PROBLEMS

625. The point P in Fig. 340 moves along its circular path in accordance with the

law « = 4V^^, in which s is in feet and t is in seconds. Find the velocity of P at the

instant when i = 16 sec. Am, 24 ft/sec; 6x * 236*" 40'.

626. The point P in Fig. 340 moves in accordance with the law « » 2^® — 20^,
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in which s is in feet and t is in seconds. Find the velocity of P at the instant when
( — 2 sec.

627. The point P in Fig. 340 moves in accordance with the law r = 3VT-i- 20,

in which v is in feet per second and t is in seconds. It is also known that s = 0 at the

instant when i = 0, Find the velocity of P at the instant when t = 4 sec. -4ns.

26 ft/sec; 0^ = 145° OO'.

628. The point P in Fig. 340 moves in accordance with the law ^ - v t, in which /3

is expressed in radians and t is expressed in seconds. Find the velocity of the point

for the instant when t = 4 sec. _
629. The point P in Fig. 340 moves in acwirdance with tlie law v = in

which V is in feet per second and ^ is in radians. It is also known that s = 0 at the

instant when i = 0. Find the velocity of the point at the instant when t — 126 sec.

Ans. 0.811 ft/sec; 6^ = 177° 05'.

630. A point moves along a curve whose equation is y ” in which x and y
are expressed in feet. The point moves along the upper portion of the curve in

such a manner that s ~ 4<, in wliich s is in feet and t is in seconds. Find the velocity

of the point at the instant when t = 1 sec.

116. AT- and F-Components of Velocity. The methods of Art. 114

are convenient for the calculation of velocity in cases in vrhich the

iclation between s and t is known, or can be readily ascertained, and in

which the sloj^e of the path can be found without es]>ecial difficulty.

Frequently, however, the velocity can be calculated more readily

through the medium of its compo-

nents parallel to a set of rectangular

coordinate axes.

Velocity is a vector quantity, and

it can be resolved into components,

or can be found from its components,

by methods identical with those used

for forces and other vector quanti-

ties.

Let Ay in Fig. 342, represent a

point moving along the curved path

shown. Let O' represent any convenient fixed point in the path.

Ijct V represent the velocity of A, and 6 the angle of inclination between
V and the x-axis. Let the coordinates of the moving point. A, be repre-

sented by X and y, as shown. Obviously, x and y vary in some manner
with respect to time. Let s represent the distance, measured along the
path, from O' to A. From the figure,

Vjp == V cos e [156]

From the calculus, cos 0 = dx/ds. Substituting this value of cos 0 in

Eq. 166,
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Equation 157 shows that the a:-component of the velocity at any

instant is equal to the time rate at which the x-coordinate of the mov-

ing point is changing.

In a similar manner it can be shown that

Vy = [158]

Illustrative Problems

631. The curve shown in Fig. 313 is a cubical parabola, whose equation is

16 2/
= In this eciuation x and y are both expressed in feet. A point, A,

moves along this curve in such a manner that

X == 2 fy in which x is expressed in feet., and t is

expressed in seconds. Find the velocity of the

point for the instant when t = 1 sec.

Solution. The x-component of the velocity

can be found directly from the law of the motion,

as stated in the problem, with the assistance of

Eq. 157.

dx
Vx =X - 2 v

dt
Cx = 4 <

In the calculation of

At the instant when t = 1 sec,

Vx = 4 X 1 == 4 ft/sec

it is first necessary to ascertain the relation between

y and t. This can be done by substituting the value x — 2 in the equation

of the curve, as given in the problem.

16 2/
= X = 2

f

16 2/
= 8^® y =

From the foregoing equation, and from Eq. 158,

—
~

dt
y = ¥

At the instant when t = 1 sec^,

Vy = 3 (1)® = 3 ft/sec

V = 4“ rj = ^(4)^ -f (3)^ = = 5 ft/sec

6 = arc tan ~ = arc tan - = 36® 50'

Vx 4

632. A point moves along a curve whose equation is lOi/^ = x^, in which

X and y are expressed in* feet. The motion is such that Vx = +4 ft per sec,

and is constant. It is also known that i = 0 at the instant when the moving
point is at the origin. Calculate the velocity at the instant when f »= 9 sec.
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Solution. From Eq. 157, and from the problem,

Vx ^ Vx — +4 — = 4 (ix «* 4cfc

di dt

Integrating,

X = 4f + C

From the problem, a; = 0 when t = 0. Substituting,

0 = 0 + C' C - 0

Therefore,

X ~ 41

From the problem,

IG?/^ =

Eliminating x between the two preceding eciuations,

= f)4<» y = 2t^

From the y, i relationship thus obtained, and from Eq. 158,

dl
''

dt

At the instant when t
— 9 sec,

Vy = 3(9)^" — +9 ft /sec

From the problem,

Vx
—

H-4 ft/sec

= ^(4)^ + (9)^ == 9.85 ft/sec

V 9
Bx — arc tan ~ = arc tan “ = 66° 00'

PROBLEMS

633 . A point travels in a curvilinear path whose equation is xy = 48, in which x

and y are in feet. The motion follows the law y = 24/t^j in which y is in feet and t

is in minutes. Find the velocity of the point at the instant when i = 2 min. Ans.

lOft/min; == 323° 10'.

634. A point travels in a path whose equation is 4j/ == in which x and y are in

feet. The motion is governed by the* law Vy = 3V7, in which Vy is in feet per second

and t is in seconds. It is also known that < = 0 at the instant when the moving

ix>int is at the origin. Find the velocity of the point at the instant when i = \ sec.

636 . A point travels in a plane curve in such a manner that Vx — 3V7 and Vy =
3/i^^. It is also known that ^ — 0 at the instant when the point is at the origin.

Derive the equation of the path. Am. *= 8a;.
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636.

Figure 344 represents the upper portion of a parabola whose equation is

^ = 2x. The point B moves along the rc-axis in accordance with the law vb ~ 8^.

It is also known that t = 0 at the instant when B leaves the origin, llie point C
moves along the 2/-axis, and A moves along the curve. These motions are so coor-

dinated that tiie figure OBAC is always a rectangle. Prove

that vc = 4^.

637.

Figure 344 represents the upper portion of a pa-

rabola whose equation is = 2:c, in which x and y are in

feet. The point C moves along the ?/-axis in accordance with

the law y = in which y is in feet and i is in seconds. B
moves along the a^-axis, and A moves along the curve, in

such a manner that the figure OBAC is always a rectangle,

h'ind the velocity of the point A at the instant when t ~ J

sec. Ans. 1.42 ft/sec; Bx = 77° 45^

638.

A straight piece of pipe, 25 ft long, is listened rigidly on a flat car, in a vertical

position. Both ends of the pipe are open. The car moves toward the right along a

straight, horizontal track, with a constant acceleration, also toward the right, of 4 ft

per sec per sec. At the instant when the speed of the car is 30 ft per sec, a ball is

Y

released in the upper end of the pipe, with no initial velocity in the vertical direction.

Calculate the velocity of the ball at the instant when it emerges from the lower end

of the pipe. Disregard friction.

639. The point C, in Fig. 345, starts from rest at 0 and moves toward the right

along the x-axis, in accordance with the law x = At the same instant a second

point, A, starts at D and moves toward 0, along the y-axis, and a third |X)int, J5,

starts at D, and moves along the circular path. The three points move in such a

manner that the figure ABCO is always a rectangle. Derive a formula for the

640. Three automobiles, A, B, and C, start from rest at the point 0, in Fig, 346.

Car A follows the curved road, in accordance with the law » *= The curve is a
dreular arc, having a radius of 300 ft. Cars B and C start simultaneously with A,

car B going due east, and car C going due north. Cars B and C move in such a man-
ner that the figure ABOC. is always a rectangle. Derive general formulas for the

velocities of A, jB, and C, in terms of i. If all distances are expressed in feet, and t is

expressed in seconds, calculate the velocity of each car for the instant when t »> 40

magnitude of the velocity of B, in terms of r and t, Ans. v

V?
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sec. Arts, va = 20 ft/sec, N 13® 35^ E; vb = 4.7 ft/sec, east; vc = 19.4 ft/sec,

north.

641 . A point moves in a plane in such a manner that its j;-coordinate follows the

law a; = c cos kty and its ^/-coordinate follows the law y — csin kt. Derive a formula

for the velocity of the point at any instant, and find the equation of the curve in

which the point moves. The quantities c and k are constants.

642 . Figure 347 represents a familiar mechanism, known as an isosceles linkage.

The link OB rotates about O. The point A, at the end of the link AC, can move
only in the straight line AOX. The lengths AB and OB are equal, and each will be
represented by r. The length BC will be represented by /. In the present case the

Y

Fig. 347 Fig. 348

link OB is rotating in a counterclockwise direction in such a manner that d ~
4^,

in which 6 is expressed in radians and t is expressed in seconds. Derive general

formulas for x and y, in terms of /, r, and t. From these, derive formulas for the x-

and ^-components of the velocity of the point C. Calculate the velocity of C for the

instant when ^ = 3 sec. Assume r = 12 in. and I — 20 in. Derive the equation of

the path in which C moves, in terms of r and 1. Ans. vc — 73.8 in. /sec, Bx ~ 68° 30'.

643

.

Figure 348 represents a rigid bar, AB, whose upper end moves along the y-axis,

and whose lower end moves along the a!-axis. P is a point marked on the bar at a

distance, m, from the upper end. The bar moves in such a manner as to cause the

angle 6 to vary in accordance with the law 6 = (7r/2) -f 0.5<, in which B is expressed in

radians and t is expressed in seconds. Derive formulas for the x- and ^/-components

of the velocity of P, in terms of m, n, and t. Find the equation of the curve in which

P moves. Calculate the velocity of P for the instant when t == 8 sec, assuming that

m » 8 ft and n « 4 ft.

116. Linear Acceleration. The linear acceleration of a point in curvi-

linear motion, at any instant, is the time rate at which the linear velocity

of the point is changing at that instant. In its wording, this definition is

the same as that stated for acceleration in rectilinear motion (Art. 109).

It must be remembered, however, that velocity is a vector quantity,

and is capable of being changed in inclination, as well as in magnitude

and sense. In rectilinear motion change in the inclination of velocity
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does not occur, but in curvilinear motion change in inclination u in

progress at all times, whether magnitude is changing or not. It is neces-

sary to gain a clear conception of what is meant by “ rate of cliange of

velocity in the general case in which both magnitude and inclination

are changing.

In Fig. 349
,

let the curved line

represent the path of a moving

point. Let V\ represent the velocity

at A
,
and let 1*2 ix^present the veloc-

ity at any later instant in the mo-
tion. Let represent the inter-

val of time betweem these two

instants.

Change of Velocity. l.et a triangle be formed, consisting of the

vectors and V2, and a tliird vector, AB, directed toward B, as shown

in the figure.

This third vector, A B, is called the (Lange of velocity of the moving

point, for the given interval. 'That AB actually docs represent the

change that has occurred in the velocity can be demonstrated as follows:

From the figure, V2 is the vector sum, or resultant, of V\ and AB. In

other words, V2 is the result of adding A vectorially, to Vi. Thus,

the velocity vi can be changed into the velocity ^2 by the vectorial

addition of AB.
Average Acceleration for the Interval. The vector designated in the

figure as AB/M is called the average acceleration for the given interval,

AL It has the same inclination and sense as AB, but its magnitude is

equal to the magnitude of AB divided by the time interval, AL If one

such vector were added, vectorially, to vi per unit time, the resultant

velocity at the end of the interval would be V2^ AB/ IVL represents,

therefore, the average vectorial change per unit time, for the given

interval.

The average acceleration for the interval '' must not be confused

with the “ acceleration at A.'' By acceleration at A is meant the rate

at which the velocity is changing at the particular instant when the

moving point passes through A. This may have a value entirely differ-

ent from that of the average acceleration for the interval.

Acceleration at A. Now let Ai represent a shorter time interval than

in the first case, but having the same point of beginning, A. There

will now be a new average acceleration, represented by a new vector,

AB/At, whose magnitu<le and inclination will be different, in general,

from those in the first case.

Imagine this process to be repeated with successively shorter inter-

AB
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vals, all beginning at A. A whole series of vectors representing average
accelerations is thus established. The magnitude of this vector variable

approaches a definite limit at A as M approaches zero. The inclination

of the vector also approaches a definite limit. The vector whose magni-
tude is the limit of this series of magnitudes^ and whose inclination is the

limit of the series of inclinations, is called the acceleration of the moving
pointy at A.

There Ls no reason for concluding that the acceleration at A will he
tangent to the path. A study of the possibilitias will show that it may
make any angle, other than zero, with the tangent, but that it mil
always he directed inward

y
or toward the concave side of the curve.

Methods for the actual calculation of acceleration in curvilinear

motion will be developed in subsequent articles.

117. Tangential and Normal Components of Acceleration. The case

in whi(;h the acceleration of a point Ls resolved into components tangent

and normal to the path can be made to yield special formulas of great

utility.

In Fig. 350, let the curved line represent the path of a moving point.

Let vi represent the velocity at A,

and let V2 represent the velocity at

any later instant in the motion.

Let At represent the interval of

time between these two instants.

As was explained in Art. 116, the

vector AB represents the change of

velocity for the interval, and the

vector AB/At represents the average

acceleration. It was explained, also,

that, as the interv^al A^, always

beginning at A, is made to approach zero, the vector AB/At approaches

as its limit a certain definite vector called the acceleration at A.

The lines AC' and FC, in Fig. 350, are drawn normal to the path.

Let the angle between them be represented by A/3. Obviously, A/S is

also the angle between vi and V2 - Let the lines BD and AE be drawn,

parallel to and C2 ,
respectively. Let the angle DAB be represented

by a.

Tangential Component. From the figure, the tangential component

, , , . . AB . ^
AJ5sin5 BD

of the average acceleration is —7 sin 0 = — = — . 1 he limit
At At At

approached by the magnitude, BD/Aty of the tangential component of

the average acceleration, as At approaches zero, is the magnitude of the

tangential component of the acceleration at A. Let this be repre-
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Rented by a^. In algebraic language,

BD
ax = lim

From the figure,

BD — Vi — V2 cos Aj8

Substituting in Eq. 159, and using the theory of limits,

— V2 cos

1159]

[160]

ax = lim (-
Afr—O \ At

s\ _ / th V2 CQ3 A/3\

/
~ ~

At )

= lim
(
—

)
— lira

( — ) lira (cos Afi)
A«-*o \At/ M—»o \At/ m—po

[IGll

From the figure, as At approaches zero, A/3 also approaches zero as a

limit. Therefore, lim (cos A/3) = 1. Continuing, from Eq. 161,
A(-*0

In Eq. 162

Or = lim (—^ — lim (-^ = lim [162]
M-Po\At/ M-^\At/ At /

,
lim
At—*0 \ At )

may be expressed as the derivative, dojdip

Also, from Eq. 155, Art. 114, v — ds/dt. Therefore,

dv d^s
[163]

The tangential component of the acceleration is often referred to,

more briefly, as the tangential acceleration.

Normal Component. From Fig. 350, the normal component of the

, . _ , . . AB AB cos 5 AD
average acceleration for the mterval is— cos o = == •

At At At

The limit approached by the magnitude, AD/At^ of this normal com-

ponent, as A^ approaches zero, is the magnitude of the normal com-

ponent of the acjceleration at A. Let this be represented by a^-. In

algebraic language,

AD
= hm— [164]

From the figure,

A«-W) At

AD = ^2 sin A/S [165]
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Substituting in Eq. 164, and referring to the figure,

a^r = lim

= lim
Ai—M)

lim
/V2 X AE/AC

\ M )

By the theory of limits,

= lim
Ai—M) (

^2

Ac^

lim (V2 )

A^->0

lim (AC)
lim
At—

[166]

[107]

From the figure, as approaches zero, AE approaches equality with

ds

dt
= ri. Also,the arc AF. Therefore, lim — lim

At— At ) At-*^\ At )

lim (y2 ) = 2^ 1 . From the figure, lim (AC) = the radius of curv^ature
At— At—M)

of the path at A . Let this be represented by ?*.

2

Equation 167 now can be written ~ or, since vi may be con-
r

sidered to be the velocity at any instant.

On —
r

[168]

The normal component of the acceleration is often referred to more

briefly as the normal acceleration. It is also called the centripetal

acceleration.

Constant Speed. The normal acceleration of a point in curvilinear

motion cannot l)e zero. Sometimes, however, the tangential acceleration

is zero, and as a result the point travels at constant speed. The
formula s ~ vt, Art. 1 10, may be used in this case.

Constant Tangential Acceleration. Sometimes the tangential accelera-

tion is constant in magnitude. In such an event all the formulas in

Art. Ill, derived therein for the case of constant acceleration in rec-

tilinear motion, may be used, provided that a is replaced by a^.

Effects of Tangential and Normal Acceleration. Equation 163 shows

that the tangential component of the acceleration is equal to the rate

at which the magnitude of the velocity (speed) is changing. Equation

168 shows that the normal component depends upon the speed at the

particular instant, but not on the rate at which the speed is changing.

However, the normal component depends upon the rate at which the

inclination of the velocity is changing, since it is proportional to the

curvature of the path, and since velocity is always tangent to the path.
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It may be stated, then, that the tangential acceleration results only in

changes in the speedy and that the normal, acceleration results only in

changes in the inclination of the velocity. Thus, a normal component of

acceleration is essential to a cui-vilinear motion, and if it becomes zero,

and remains so for any finite interval of time, the path changes to a

straight line, and remains straight throughout the interval. (Curvi-

linear motion can continue, however, without tangential acceleration.

In such a case the point simply moves along the curved i)ath at constant

speed.

It is difficult, at first, to accept the idea that a point which is

moving at constant speed in a curved path is ])eing acceleratc^d. The
source of the difficulty is in the popular conception of the term “ accel-

eration.’’ The technical meaning of the term, as discussed in Art. 116,

is the meaning assumed in the statement of the fundamental laws of

motion, and, like any other definition, simply must be accepted.

Illustrative Problems

644. Figure 351 represents a point, P, moving in a circular path whose

radius is 10 ft. The point moves in accordance with the law s = —
lOt “h 50, in wliich s is in feet and t is in seconds, s is measured as shown in

^
the figure. Calculate the acceleration of the

point at the instant when t = 4 sec.

Solution. From Eq. 155, Art. 114, and from

the problem,

dt

d{t- -

s = - 10< + 50

10« + 50)

dt

- 10

At the instant when t = 4 sec,

V = 2.5(4)’'^ - 10 = +10 ft/sec

From Eq. 163, and from the foregoing,

ax = V = 2.5P - 10 a. - . 3.7a>*
dt ‘ dt

At the instant when t = 4 sec,

ar = 3.75(4)« « +7.5 ft/sec*

From Eq. 168, using the value of v calculated above,

-2
(10)2

ON
10

= 10 ft/sec2
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The position of the moving point in its path at

the given instant can be found by calculating Q,

From the figure, 3 = s/r. At the instant when
^ = 4 sec,

s = - 10< + 50 = (4)^^ -
10 X 4 + 50 = +42 ft

8 42
4.2 radians = 240° 40'

r 10

Therefore, the position of the point at the given

instant is as shown in Fig. 352. The resultant ac-

celeration is as follows:

Y

a = V'4T^ = V(7.5)'' + (10)2 _ 12.5 ft/sec’

ar 7.5
y = arc tan— ~ arc tan -— = 36° 50'

as 10

3 - 180° - 7 = 240° 40' ~ 180° - 36° 50' = 23° 50'

646. A point, P, moves in the circular path shown in Fig. 361, in such a

manner that ar = — 2 ft per sec per sec, and is constant. The negative sign

means tliat the sense of ar is clockwise with reference to the circular path.

It is also known that 5 = 0 and v = +36 ft per sec at the instant when i = 0.

Find the resultant acceleration of P at the instant when / = 15 sec.

Solution. Although ar is constant, necessarily varies; therefore a is

variable. The problem belongs to the special case discussed in the present

article, in which the tangential acceleration is constant in magnitude. The
formulas of Art. Ill will be used, a being replaced by ar- From Eq. 129, and
from the problem,

t; = Vo + O'vt V — +36 — 2t

At the instant when ^ = 15 sec,

t; = 36 — 2 X 15 = +6 ft/sec

From Eq. 168,

^ op 2
a/i — —

fliV
= = 3.6 ft/sec*^

r 10

o = Val + a%- = V(2)- + (3.6)2 4 ,2 ft/sec*

(It 2
7 = arc tan— = arc tan— = 29° 05'

ajvr 3.6

From Eq. 134, Art. Ill,

Vo -h V

2

8 315
- tS= «'' -

r 10

I a = 36_+6 ^ ,5 ^ ^3,5

= 31.5 radians = 1804° 57' = 4° 57'
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The angle of inclination of a with the ar-axis is calculated as follows:

= 180'^
-f. -f- 7 = 180® -f 4® 57' -h 29® 05' == 214® 02'

PROBLEMS

646. A train travels on a curve having a radius of 1000 ft, at a constant speed of

40 n3i per hr. Calculate the acceleration of the train in miles per hour per second,

and in feet per second per second. Ans. 2.35; 3.45.

647 . The normal acceleration of a point on the rim of a 6-ft flywheel has a constant

magnitude of 20,000 ft per sec i)er sec. Calculate the speed of the flywheel in revolu-

tions per minute.

648 . The crankshaft of an automobile engine is rotating at the constant 8i>eed of

2500 rpm. The crank is 2 in. long, on centers. Calculate the centripetal acceleration

of a point at the center of the crankpin. Ans. 11,400 ft/sec“.

649 . The speed of a point moving in a 12-ft circle decreases uniformly from 200 ft

per sec to 100 ft per sec, in an interval of 2.5 sec. Calculate the tangential and normal

accelerations of the point at the instant ending the interval.

660 . A point starta from rest and gains speed at a uniform rate with respect to

time, attaining a speed of 50 ft per sec at the instant when it has traveled 20 ft. The
path is a circle whose diameter is 100 ft. Calculate the tangential and normal accel-

erations of the point at the instant when it hits traveled 30 ft. Aiis. 62.5 ft/sec^;

75.0 ft/sec^.

661 . The point P, in Fig. 351, moves in such a manner that ar ~ +1.5 ft per sec

per sec. It is also known that s = 0 and v ~ +3 ft per sec at the instant when
f = 0. Calculate the resulbint acceleration of the point at the instant when t — 2 sec.

662 . The point P, in Fig. 351, moves in accordance with the law s = ^<^ + 2< + 20,

in which s is in feet and t is in seconds. Calculate the resultant acceleration of the

point at the instant when t = 2 sec. Ans. 15.6 ft/sec^; 6x ~ 290*" 15'.

663 . The point P, in Fig. 351, moves in accordance with the law v = 0.6P, in

which is in feet per second and t is in seconds. It is also known that « = 0 at the

instant when t = 0. Calculate the resultant acceleration of the point at the instant

when t — 5 sec.

664 . The centrifugal pull of a rotating body on a shaft is equal to the weight of the

body, multiplied by the normal acceleration of its center of gravity, and divided by

the acceleration due to gravity. A certain body, weighing 60 lb, is attached to a

shaft in such a manner that its center of gravity is 18 in. from the center of the shaft.

It is desired to balance the centrifugal pull of the body by means of a counterweight

placed exactly opposite, with its center of gravity 8 in. from the center of the shaft.

Calculate the necessary weight of the second body. Aw«. 135 lb.

666. A point moves in the parabolic path whose equation is - 4a;, in which x

and y are in feet. The law governing the motion is a; = P, in w+ich a; is in feet and

t is in seconds. Calculate the x- and y-components of the acceleration, at the instant

when t
- 2 sec. By means of the values thus obtained, and from the slope of the

curve, calculate the tangential and normal components of the acceleration for the

given instant. Ans. 1.79 ft/sec^; 0.894 ft/sec^.

118. X- and F-Components of Acceleration. In some cases accelera-

tion in curvilinear motion can be dealt with most conveniently through

the medium of rectangular components not parallel to the tangent or

to the normal.
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In Fig. 353, let the curved line represent the path of a moving point.

Let vi represent the velocity at and let reprasent the velocity at

any later instant in the motion.

Let M represent the time inter-

val between these two instants.

As was explained in Art. 116, . I

the vector AB represents the

change of velocity for the inter-

val, and the vector AB/Li rep-
1 A

resents the average acceleration. ^x'b^(AB»x
It was also exy)lained that as the 1

interval Af, always considered
^

^ ^ X

as beginning at A, is made to

a})proach zero, the vector AB/M
approaches as its limit a certain vectoi*, which called the acceler-

ation at A .

X-Componeni. The x-coinponent, at A, of the average acceleration

AB, AB Aficos(9 (AB),,— Ls;
-- - cos 6 = — = —--— . The limit approached by this

Fig. S53

component,
,
as At approaches zero, is the j-component of the

acceleration of the moving point, at T. Let this be represented by
In algebraic language,

From the figure,

Substituting,

(AB),
ajr = lim

At

(AB),, V2x

Gx = lim {

-

~ Vu

In Eq. 171, jean be expressed as the derivative.
At /

Also, from Eq. 157, Art. 115, v„ = Therefore,

Y-Componmt. By a process of reasoning similar to that employed
in deriving Eq. 172, it can be shown that

[173 ]
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Thus, it is seen that the component of the acceleration of a point,

along any axis, is equal to the time rate at which the component of the

velocity, along that axis, is changing.

Illustrative Problems

666 , A point travels in a parabolic path whose equation is if- = 16a:, in

which X and y are in The motion is governed by the law x = in

which X is in feet and t is in seconds. Find the acceleration of the point for

the instant when i = 1 sec.

Solution. From Eq, 157, Art. 115, and from the problem,

Vz
dx

dt
Vx

d^
dt

- e

From Eq, 172, and from the foregoing result,

dvz
Ux == —

di

— ——
. —

dt

When t ~ 1 sec.

From the problem,

Eliminating a:.

- 3 X (1)" = +3 ft/sec-^

= 16a: X ~ jt'*

r = 16 X (it^) y = 2/2

From Eq. 158, Art. 115, and from the foregoing result,

Vy y = 2/2 Vy
di2f)

dt
4/

From Eq. 173, and from the foregoing result,

Qy — Vy == 4/ ^ = ^ 4. ft/sec^
dt

Thus, it is seen that Oy is constant. Therefore, for the instant when / » 1 sec,

a = a\ + aj == \/ + (4)^ x= 5 ft/sec^

CL 4
= arc tan — = arc tan - == 53® 10'

a« 3

667. A point moves along a plane curve in such a manner that a* » 4 and

ay « 15/^, in which a* and ay are in feet per second per second and / is in

seconds. It is also known that t; = 0 and / = 0 at the instant when the

moving point is at the origin. Derive the equation of the path.

Solution, From Eq. 172, and from the problem,

©x
dvx

H
dvx

dt
Ox =» 4 4 dvx »
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Integrating,

» U + Cl

From the initial conditions stated in the problem it follows that, when i = 0,

Vx = 0. Substituting in the foregoing equation,

0 = 0 + Cl Cl - 0

Therefore,

Vx = 4^

From Eq. 157, Art. 115, and from the foregoing result.

Vx ==
-r Vx =
at

dx

Integrating,

dt

X = 2e -f C2

= 4.t dx — dt

From the initial conditions stated in the problem, x = 0 when t =* 0, Sub-

stituting in the foregoing equation,

Therefore,

0 = 04" C2 C2 = 0

Reverting to the statement of the problem, and from Eq. 173,^

ay
dVy

dt
Qy — 15/^ dVy = 15/^

If this equation is then integrated, and a series of steps are taken similar to

those in the first half of the solution, it will be found that

y = ¥
The equation of the path of the moving point now can be found by eliminating

t between the foregoing equation for y and the equation for x obtained earlier

in the solution.

Eliminating /,

a: = 2/2 y =

IBi/ = x*

which is the equation of a cubical parabola.

PROBLEMS

668. Calculate the acceleration of the point in Prob. 631, Art. 115, at the given

instant. An«. 15.5 ft/sec2; = 75° 05'.

669. Calculate the acceleration of the point in Prob. 632, Art. 115, at the given

instant.

660. A point moves along a plane curve in such a manner that =* 0, and

tty *= 4-2 ft per sec per sec, throughout the motion. It is also known that / = 0,

Vy * 0, and v* = 42 ft per sec, at the instant when the moving point Is at the origin.
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Find the equation of the path. Calculate the coordinates of the nxoving point at the

instant when i = 3 sec. Aris. = Ay\ 4-90*

661 . A point moves along a plane curve in such a manner that x = f and y — 2iy

in which x and y are in feet and t is in seconds. Calculate the velocity and accelera-

tion of the point for the instant when ^ = 1.5 sec. Find the equation of the path,

662 . A point moves along a plane curve in accordance with the following: Vx
~

and Dy - 4f^ ~ 12/, in which Vx and Vy are expressed in feet per minute and t is in

minutns. It is also known that j; = 0 and y = -f 9 ft at the instant when t — 0.

Calculate the acceleration of the point at the instant when t ^ 2 min. Derive the

equation of the path. Ati.s. 00 ft/min^; Ox ~ 36° 50'; i - 3.

663 . A belt conveyor discharges its material at a velocity of 400 ft per min, at

an upwaixl angle of 20° with the horizontal. Air resistance may be disregarded,

which means that the motion of the material after it leaves tlu^ conveyor will be such

that aa: = 0 and Oy = —32.2 ft per sec per sec. If the ground level is 20 ft below

the point of discharge, calculate the horizontal distance from that point to the point

at which the stream of material strikes the ground. I’his problem was suggested

by the Link-Belt Company.

664. In Prob. 641, derive a formula for the acceleration of the moving point at

any instant. Also derive the equation of the path. Ans. a = ck^; Ox = kt;

a;2 _j_ ^2 _

666.

Calculate the acceleration of the point C in Prob. 642, Fig. 347, for the given

instant.

666. Calculate the acceleration of the point P, in Pi*ub. 6*13, Fig. 348, for the given

instant. 1.65ft/sec^; ^x==23°25'.

Y

667 . In Fig. 354, A represents a plate cam in which a groove, R, has been cut.

The groove engages a follower, C, which is constrained to move in a vertical straight

line by the stationary guides, DD. In the present case the groove has been cut to

conform to the sine curve whose equation is i/ = 0.5 sin 2a:, in which x and y are in

inches, and the angle 2x is in radians. The cam moves toward the left with a con-

stant velocity of 10 in. per sec. Prove that the follower executeij a simple harmonic

motion. Calculate the maximum velocity and maximum acceleration of the follower.

668. A shell is fired from a gun at an angle 6 with the horizontal. The initial

velocity is vo. Derive the equation of the path, referred to an origin of coordinates

at the muzzle of the gun. Disregard atmospheric resistance. Assume that a* = 0

and that Oy =* — Am. .y — -f (tan $)x.

2vq 0



CHAPTER XII

KINETICS OF A PARTICLE

119. The Laws of Motion. Sir Isaac Newton was the first to state

the fundamental laws of kinetics in a clear and comprehensive manner.

He piiblishe'd them in 1687, and since that time they have been referred

to as Newton’s laws of motion. The wording of the laws in this book

is different from that of Newton, but it has the same fundamental

significance, leads to the same results, and is more in accord with

modern methods of presenting the subject.

The First Law, A particle that is subjected to the action of balanced

forces has no acceleration.

The Secorul Law. A particle that is s^ibjected to the action of unbalanced

forces has an acceleration whose inclination and sense at any instant are the

same as the inclination and sense of the resultant force, and whose magnitude

is directly proportional to the magnitude of the resultant force.

The Third Law. For every force there is an equals opposite^ and simid-

taneous force.

Discussion of the Laws. It must be remembered that the term

acceleration,” in the first and second laws, has the general meaning

ascribed to it in Art. 116.

The fii*st law shows that a particle which, for any interval, is subjected

sok'ly to balanced forces, will either be at rest or will move at constant

speed in a straight line, throughout the interval. These are the only

situations possible when there is no acceleration. The first law is

really the statement of a special case under the second law.

The second law shows that imbalanced force causes acceleration of

the particle, and gives the fundamental relation between the force and

the resulting acceleration. Since all the dimensions of a particle are

infinitesimal, the system of forces acting on any single particle is neces-

sarily a concurrent system, and the resultant is a single force. It might

be added that the acceleration comes into existence simultaneously

with the condition of unbalanced force, beginning at the instant when

the forces become unbalanced, and ceasing at the instant when they

become balanced.

The third law is the basis for the statements in Art. 5 to the effect

that, if a body A exerts a force on body J5, B will “ react ” on A with an

equal, opposite, and simultaneous force.

271
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Because of the elementary nature of the particle the term particle

may be used interchangeably with the term point '' in any statement

of purely kinematic facts. In any statement of kinetic facts, however,

the particle takes on an additional significance because of its inertia, and

its weight.

120. Inertia. To give a particle an acceleration it is necessary to

apply to the particle a single force, or its equivalent, an unbalanced

system of forces. Matter may be considered, therefore, to possess an

inherent property by virtue of which it “ resists acceleration. This

property of matter is called inertia. To accelerate a particle it is

necessary’' to “ overcome inertia, by the application of unbalanced

forces. Inertia is not force, but it causes the particle to exert re-

acting
”

forces on other particles. Reacting forces hav ing their origin

in inertia alone disappear when the forces acting on the given particle

become balanced and the acceleration ceases.

Fig. 355 Fig. 356 Fig. 357

121. The Ftmdamental Kinetic Formula for the Particle. The
second law of motion states that the magnitude of the acceleration of a

particle is proportional to tl>e magnitude of the resultant force.

Let A, in Fig. 355, represent any particle. Since a particle is simply

an elementary portion of a body, and is partially or wholly surrounded

by many other particles, it would seem that each particle must be

subjected to a great number of elementary forces, caused in various

ways. However, let the few forces shown in Fig. 355 represent the

entire system to which A is subjected.

Let A, in Fig. 356, represent the same particle as in Fig. 355. Let

dR represent the resultant of the entire system of forces acting on the

particle. According to the second law of motion, as stated in Art. 119,
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this resultant force will produce an acceleration whose inclination and
sense are the same as the inclination and sense of the resultant force.

Let a represent this accelei ation.

In Fig. 357, let A represent the same particle as in Figs. 355 and 356,

but now considered to })e falling freely in a vacuum. Let dW repre-

sent the weight of the particle. Obviously, dW is the only force acting

on the particle, and in this case itself constitutes the resultant force.

Let g represc^nt the acceleration produced by dW. This acceleration is

usually referred to as the acceleration du(‘. to gravity.

The second law of motion covers all cases, regardless of the number of

individual forces that may be acting on the particle. Therefore, it

includes the case rei)resented by Fig. 357. The law includes a statement

to the effect that the magnitude of the accekiration is directly pro-

portional to the magnitude of the resultant force. It follows, then, that

for the cases represented })y Figs. 356 and 357,

a _ dR

This is usually written,

dR ==

9

Equation 175 m the fimdamental formula of kinetics. Practical

formulas for the kinetics of finite bodies moving in various ways will be

obtained from it by direct mathematical analysis.

It can easily be sho\vn that dR^ = {dW/g)a:ry in which dR^ represents

the x-compoiient of the resultant, and represents the or-component

of the acceleration. In statics it was leanied that Rj^ = in which

rej)rescnts the component-sum of the forces of the system, along

the x-axis. Therefore, the following formulas, usually more convenient

of application than Eq. 175, may be written:

SF* — - Cx
9

[176]

=— a„
g

[177]

SFz = flx [178]
9

In Art. 7 it was explained that the weight of a body really varies

slightly as the position of the body, relative to the earth, is changed.

The acceleration, Qj caused by the weight, varies in the same ratio.

[174]

[175]
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Strict correctness in the use of any of the formulas obtained above

would require the use of values for dW and g that correspond as regards

locality. Observance of this prec^aution would necessitate consider-

ation of the methods by which the values were obtained. However,

the accuracy of the average engineering problem is limited by other

factoi-s, to such an extent that variations in weight, and in the acceler-

ation caused by weight, attributable to changes in locality, can usually

be disregarded. Ordinaiily, g may be given the value 32.2 ft per sec

per sec. The foregoing value for g will be used in this book.

Units. Ordinarily, in kinetic problenxs, any convenient unit may be

used for expressing the magnitudes of the forces acting on a particle, or

body, but the weight of the particle or body must be expressed in the

same unit as is used for the other forces. A similar statement may be

made regarding the unites to be used for a and g.

122. Mass. Statements of the second law of motion usually include

a clause to the effect that the acceleration Ls inversely proportional to

the mass ’’ of the particle. However, no reference Avas made to mass

in the statement of the laws of motion in Art. 119, and in Art. 121 the

fundamental formula of kinetics was derived without the inclusion of

the term.

Various definitions of mass have been given in textbooks, but they

differ considerably. The use of the term mass is not \itally necessary

to the development of the formulas of kinetics, nor is it indispensable in

the solution of the problems of that subject. The latter statement is

especially applicable in problems of the type with which the engineer is

usually concerned. The term mass will not be utilized in this book.

However, because of the frequent occurrence of the term in teclinical

writings, it is desirable to gain some idea of its meaning.

Inertia Concept. The mass of a finite body is always understood to

be the sum of the masses of the particles of which the body Ls composed.

The mass of a particle is, in one sense at least, a measure of the degree of

inertia possessed by that particle. Since the accelerations produced by a

given resultant force, applied successively to different particles, are

inversely proportional to the masses of the particles, it follows that

mass is a measure of the resistance of a particle to acceleration. Re-

sistance to acceleration is the tangible result of the property of inertia.

The foregoing is sometimes referred to as the inertia concept of

mass, and it conveys the meaning of mass to the mind of the average

individual as well, perhaps, as does any other concept.

Units. When the term mass is used, Eq. 175, Art. 121, appears in

the form dR = dMa, or some equivalent thereof, in which dM represents

the mass of the particle. The engineering student who has completed
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a course in physics, and has begun the study of engineering mechanics,

usually finds that his difficulty in understanding th(i meaning of mass
is to be accompanied by another possible source of confusion. This new
difficulty has its origin in the fact that the engineer ordinarily uses units

for mass and for force differing from those used by the physicist. For

example, the ph.ysicist, if he happens to be working under the English

s>'stem of units, takes the value of dM in the formula as numerically

equal U) the standard weight of the particle, in pounds. In so doing he

uses a unit of mass that is also called the pound. This procedure he

ac(Mjmpanies by the use of the poundal as the unit of force. The
poundal is equal to the standard pound force divided by the standard

value of g. The engineer uses the pound for the imit of force, but

expresses mass in terms of a unit equal to the pound mass multiplied by
the standard value of g. This unit of mass is called the slug, gee-pound,

engineer's unit of mass, etc.

In this book, then, the fundamental foruiula is dealt with as a relation

between force and acceleration only. The quantity dW/g performs

the same service as that performed by dM in other books, and in the

formulas for finite bodies W/g appears in lieu of M.
123. The Effective Force for the Particle. In Arts. 119 and 121,

laws were stated and formulas derived for the kinetics of the individual

particle of matter. A particle, however. Is only an elementary portion

of a body, and engineers are interested in principles and formulas that

can be applied directly to the motions of finite bodies. In subsequent

articles it will be shown how the transition can be made from the kinetics

of the particle to the kinetics of the finite body.

Any individual particle of a body is subjected to countless minute

forces, many of which are exerted on the given particle by other particles

of the same body, in contact with the given particle, or in the immediate

neighborhood. Some of the forces acting on the given particle, however,

are exerted by bodies other than that which contains the particle. In

other words, some of the forces acting on a given particle are internal,

and some are external, to the body to which the particle belongs.

The resultant of all the forces that act on a given particle is called the

effective force for that particle. In Fig. 356, Art. 121, the resultant dR
is the effective force for particle A. By Eq. 175, the magnitude of the

effective force is (dW/g)a.

In Fig. 358, let A represent a finite body moving in any manner.

Let B represent another body in contact with A, and exerting a force on

A at the surface of contact. Two of the particles of which A is composed

are represented in the figure. No. 1 represents a particle in the interior

of A, and No. 2 represents a particle lying in that part of the surface of A
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which ia in contact with B. A few forces are shown acting on particle

1, as representative of the entire system of forces acting on that particle.

One of the forces shown, however, is a specific force, the weight of the

particle, and is represented by dW. So far as particle 1 is concerned

all these forces are external, but when body A as a whole is under con-

sideration all are internal except dW.

The effective force for particle 1 is the resultant of aU the forces

acting on that particle, whether they are internal or external to body A.

The system of forces acting on a given particle is nece.ssarily a concurrent

system, and the resultant is a single force. The effective force for a

particle is, then, as the name implies, a single force. In Fig. 359 the

effective force for each of the two particles is shown, and its magnitude

is represented by dR.

Particle 2 is in contact with body B, and one of the forces that act

on this particle is a part of the total force that body B exerts on body

A at the surface of contact. This force is represented by dP, in Fig.

358. In the case of particle 2, then, both dW and dP are external

to body A.

In the discussions to follow there will be imagined a single effective

force for each particle of a given body, equivalent to all the forces

actually exerted on that particle.



CHAPTER XTII

KINETICS OF A BODY IN GENERAL

124. Fundamental Difference between the Formulas of Statics and
Eanetics. Statics is really a special case under kinetics. In this book,

as in many others, stati(‘s is ])i*esented first. This method of presenta-

tion has many advanta^^es. Tt also has certain disadvantages. Chief

among the disadvantages is the danger that the student will become so

habituated to the formulas and principles of statics that he will find

himself attempting to use them indiscriminately in kinetic problems.

For example, the student who has completed a course in statics has

Icarncni that wlnai a body is in equilibrium the external forces acting on

the body are related as follows: = 0, ZFy = 0, = 0, Zilf^ = 0,

XMy - 0, and ZJ/^ = 0. In kinetics, however, the body is not in

equilibrium; a difTerent situation exists, and, in general, the quantities

ZF^r, ZF;., and are not equal to zero. What these

quantities are equal to in the A’arious cases will be revealed as the study

of kinetics progrcvsscs. It is tme that some of them are equal to zero

in certain cases, even in kinetics. However, the danger mentioned

above will be entirely avoided if the student holds firmly in mind the

fact that he is now dealing v ith the more general phases of mechanics,

and that each case will inevitably require careful consideration and the

acquirement of much information that will be entirely new to him .

To the certain avoidance of confusion it Ls necessary to classify

carefully each problem as it is attacked, and to be sure that no principles

or formulas are used except those that are known to be valid for the case

at hand.

126. Effective Forces and External Forces. The resultant of the

effective forces for all the particles of a given body is identical with the

resultant of the external forces acting on that bofy.

The foregoing statement is, in effect, what is known as d^AlemberPs

principle, and, as will be seen, its application is an important step in the

transition from the kinetics of the particle to the kinetics of the finite

body.

Proof, Each effective force is, in itself, the resultant of all the forces

actually exerted on one particle of the given body. The resultant of the

effective forces for all the particles is nothing more or less than the

277
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resultant of all the forces acting on all the particles, or, in other words, it

is the resultant of all the external and internal forces acting on, or

within, the given body. The internal forces occur in balanced paire and

would simply cancel out of any summation into which they might be

introduced. A composition of all the internal and external forces would

amount to the same thing as a composition of the external forces alone,

and the same resultant would be obtained vdiether the internal forces

were introduced or simply ignored. Thus, the effective forces for all the

particles of the body have the same resultant as the external forcei^i

acting on the body.

The effective force for a single particle is a single force, but the resultant

of the cff’ccti^'e forces, or of the external forces, is not necessarily a single

force. It may be a single force, or a couple, oi- a single force and couple.

126. The Motion of the Center of Gravity of a Finite Body. The

relation between the forces acting on a single particle and the motion

of that particle follows directly from the laws of motion and is of a

simple nature, as was shown in Art. 121. The relation between the

external forces acting on a finite body and the motion of the body or of

its particles cannot, in general, be expressed in so simple a manner.

Theses relations will be fully discussed, in later articles, for bodies in

translation, rotation, and ))lane motion.

Certain general relations of a simple nature do exist, however, between

the external forces acting on a finite body and the motion of a particular

point of that body: namely, the center of gravity. These relations are

p
valid for any kind of motion, and

y
y' ’ they apply to non-rigid bodies as—-n/ well as to rigid bodies. They are

I

sufficient for the complete solution

j

f
^

some problems and are useful
L

y. \ many othei'S. The relations

j

I ^
j

will now be established, and they

^ utilized frequently in the

I
^

I X. remainder of the book.^ bet Fig. 360 repi'esent any body,
1 X rigid or non-rigid, moving in any

3^ manner. LetOX and 0Y represent

any convenient pair of stationary

rectangular axes. Let any single particle of the body be shown, and let

a represent the linear acceleration of the particle at any given instant.

Let Pi, P2, P3, ‘ * ‘ represent the external forces acting on the body at

the given instant. Ijet IFz represent the component-sum of the external

forces, along the x-axis, at the given instant. Let {dW/g)a represent

rectangular axes.
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the effective force for the particle at the given instant, agreeing with

the acceleration in the manner shown.

In Art. 125 it was shown that the resultant of the external forces

acting on a body at any instant is identical with the resultant of the

effective forces for all the particles at that instant. It follows that the

comiX)nent-sum of the external forces along any axis is equal to the com-
ponent-sum of the effective forces akmg that axis. The a:-component

of the effective force for the given particle, Fig. 300, is readily seen to be

{dW/g)axy in w'hich a^, is the .r-component of the acceleration of the

particle. The following equation may, then, be written:

dWi dW2 c/lTs
d « 2x H «3x

• • • etc.

g g €
[179]

The summation indicated by the right-hand member of Eq. 179 is

to be thought of as including all the ])articles of the body, the numerical

subscripts referring to the different particles. Replacing ai^ by dvi^ldi,

aox by dv2xldi, etc., in Ecp 179, and integrating with respect to there

is obtained

( {^F^)dt = vu + • • • etc. [180]
9 g 9

Replacing by dxi/dt, by dx2/dt, etc., in Eq. 180, and again inte-

grating with respect to b

gjJ i^Fjc) dt dt = dWiXi + dW2X2 + dlTa-rs • •
• etc. [181]

The right-hand member of Eq. 181 is equivalent to JxdW for the

entire body. This may be WTitten xW in which x represents the

x-coordinate of the center of gravity of the body at the given instant.

Equation 181 may then be written as follows:

JJ(2F^)dtdt-=jx [182]

Differentiating twice with respect to t, there is obtained

wfi
9 df

[183]

The quantity dPxIdt^, in Eq. 183, is the x-component of the accel-

eration of the center of gravity of the body at the given instant. Let

this be represented by 3i. Equation 1 83 may now be written as follows

:

[184]
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For the sake of simplicity the constants of integration were not intro-

duced in the foregoing integrations, inasmuch as they would have dis-

appeared in the subsequent differentiations. By means of analyses

similar to that by which Ecp 184 was obtained, it can be shown that

W
SF, = [185]

W
SF, = — a, [186]

9

Units, When the English system of units is used, the value 32.2 ft

per sec per sec, or thereabouts, is usually assigned to g. This renders

it necessary to express a in feet per second per second, also, in the

formulas of the present cluiptor and in all the other kinetic formulas in

which g and a appear together. Any desired unit may be used for IE,

provided that the same unit is used in expressing the other forces in-

volved in the formula.

A comparison of the results obtained above for the finite bod}", with

those obtained in Art. 121 for the single particle, shows that the motion

of the center of gravity of a body is r(‘lated tx) the external forces in

the same manner as the motion of a single particle is related to the

forces acting on the particle. As was stated, the foregoing formulas

apply in all cases of motion. In some problems, of which those in the

present article are examples, they are in themselves sufficient for the

solution.

161 lb.

Illustrative Problems

669. Figure 361 represents a car having" an inclined floor, running on a

horizontal track. A body weighing 161 lb rests on the incline. The coefficient

of static friction for the contact between the

body and the car is 0.1. The car is given a

constant horizontal acceleration of 20 ft per

sec per sec, toward the left. Calculate the

frictional force and normal pressure exerted on

the body. Also, calculate the maximum accel-

eration that the car could have, toward the

left, without causing the body to move up the

incline.

Solution, In the first part of the problem

there is no certainty as to whether the body
tends to slide up the incline, or down. Let

it be assumed that it tends to slide upward, in which case F would act down-

ward, as shown in the figure. F'urthermore, there is no assurance that slid-

ing is impending; therefore the coefficient of static friction cannot be used

(Art. 80).

Fig. 361
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the X- and ?/-axes he placed as shown. Using Eqs. 184 and 185, with

careful attention to algebraic signs,

W Ifil
SF, = -(3. -161 X f ~ F -^ (-20 X i)

g 32.2

W 161
•LFy^-Ti, -unxi + N = ~A+20X%)

g o2d,Jd

The solution of these equations gives
\

F = -16.Glb N = +189 lb

The negative sign accompanying the value of F shows that the sense of the

frictional force was assumed incorrectly. Therefore, F acts up the incline,

and the body tends to vslide downward. If the acceleration were greater

this situation would be reversed.

In the second part of the problem it is desired to find the maximum accelera-

tion that could be imposed without causing the body to slide up the incline.

It should be assumed, therefore, that upward sliding is impending. In such a

case F is necessarily directed down the incline. Also, Eq. 27, Art. 78, may be

used.

SF. = — S* -161 xf-F =^(-axi)
g 32.2

W 161
SF^ - —Tty -161 X ^ + AT -— (+S X I)

g 32.2

F == /iAT F = O.IAT

The solution of these equations gives: a — 29.6 ft/sec^

670. Figure 362 re])resents a ball weighing 64.4 lb, swinging in a vertical

plane, as a simple pendulum, at the end of a wire. At the instant depicted by

the figure the velocit}^ of the center of gravity of the ball is 12 ft per sec.

Calculate the tangential and normal components of the acceleration of the

center of gravity, and the tension in the wire, at the given instant.

Solution. In the figure the tangential and normal accelerations of the

center of gravity are represented by and Oj,, respectively. From Eq. 168,

Art. 117,

UN = - Sjy = a = = 36 ft/sec*
r 4

From Eqs. 184 and 185,

W
SF* -

Q

W
^Fy ^ ^Uy

9

64 4
-64.4 sin 30° = (-Sr)

-64.4 cos 30° + P =^ (+36)
32.2
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The solution of these equations gives

Ut - 16.1 ft/sec^ P = 128 lb

671. Figure 363 represents two bodies, weighing 16.1 lb and 48.3 lb, sus-

pended from a slender wire passing over two small pulleys. Calculate the

velocity of the bodies at the instant when they have moved 20 ft, starting

from rest. Calculate the tension in the wire. Disregard friction, and the

inertia of the pulleys and wire.

Fig. 362 Fig. 363

Solution. Since friction and the inertia of the pulleys and wire are to be

disregarded, the tension in the cable will be equal at the points of connection

with the two bodies. Let P represent the tension. The accelerations of the

bodies are equal and opposite, as shown.

Using Eq. 185 in connection with each body,

W 16

1

= +P-H,1 =— (+a)

+P - 48.3 =— (-3)
32.2

^

The solution of these equations gives

n = 16.1 ft/sec2 P = 24.2 lb

672. Two elevators, each weighing 2 tons, start at the same instant, from

the same elevation. The cable supporting one of the elevators is under a

constant tension of 1.5 tons, and the cable supporting the other is under a

constant tension of 2.5 tons. What is the position of the second elevator
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when the first has descended 40 ft? Solve by treating the two elevators as

one body, and by considering the motion of their common center of gravity.

Solution. Figure 364 represents the two elevators,

in their starting position. G represents the common
center of gravit3^ Since the formulas for the motion 1.5 tons _ f
of the center of gravity are valid for non-rigid bodies,

they may be applied in the present case to the two
elevators, considered as one body.

W 4- — fly -f 1.5 + 2.5 - 2 - 2 = (-f^J
g 32.2

(ly == 0
W=2 tons W=2 tons

Thus, it is seen that the common center of gravity of
^54

the two elevators remains stationary. Therefore,

since the w^eights of the two are equal, the second elevator will be at a

point 40 ft above the starting point, at the instant when the first elevator is

40 ft below the starting point.

PROBLEMS

673. A certain elevator, rising at a speed of 720 ft per min, is brought to rest in a

distance of 12 ft, with constant deceleration. A body weighing 30 lb is suspended

from a spring balance attached to the ceiling of the elevator. What will be the

reading of the spring balance while the elevator is coming to rest? What would be

the reading of ordinary platform scales under similar circumstances? Ans. 24.4 lb;

30 lb,

674. In Prob. 673, assume that the elevator is descending, and solve. Let all

the other data remain imcdianged.

676.

A block weighing 100 lb is drawn along a horizontal plane by a constant force

of 100 lb. The l(X)-lb force is inclined at a slope of 3 (horizontal) to 4 (vertical).

The coefficient of kinetic friction is 0.25. Calculate the time that will elapse while

the velocity of the body changes from 20 to 40 ft per sec. If the 100-lb force is

suddenly reversed in sense at the instant when the velocity is 40 ft per sec, what will

be the velocity at the end of the next 20 sec? Ans. 2.48 sec; 0.

676. A body weighing 300 lb slides down an incline whose slope is 4 (horizontal)

to 3 (vertical). A constant force, P, horizontal and directed toward the incline, is

applied to the body. The coefficient of kinetic friction is
I*.

The body has an accel-

eration of 3.22 ft per sec per sec, down the incline. Calculate P.

677. In Prob. 598, find the constant net retarding force, expressed in terms of the

weight of the car, for each of the three cases mentioned in the problem.

678. An aviator performs an outside loop ” in an airplane. The vertical circle

described by the plane is 2()00 ft in diameter. The speed at the lowest point of the

circle, when the man is directly under the plane, is 280 mi per hr. The man’s weight

is 160 lb. Calculate the vertical component of the total pull of the life belt on the

man^s body, assuming that the belt provides the entire pull necessary to hold the

man in his seat. Ans. 1000 lb.

679. Figure 365 represents a body weighing 50 lb, resting on the floor of a car.

A wire is attached to the body and to the car in the manner indicated. Calculate

the maximum acceleration, toward the left, that could be given to the car without
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causing the body to rise from the car floor. Calculate the tension in the wire when
the foregoing acceleration is given to the car.

680. Figure 365 represents a bod}^ weighing 50 lb, resting on the floor of a car. A
wire is attached to tlie body and io tlie car in the manner indicated. The car is

given an acceleration of 10 ft per sec per sec, toward the k^ft. Calculate all the forces

acting on the 50-lb body. Disregard friction. A ns. P = 25.0 lb; A — 29.3 lb.

681. A car travels on an incline whose slope is 4 (horizontal) to 3 (vertical). The
car is so designed that when it is on the incline its floor is liorizontal. A body weigh-

ing 100 lb rests on the car floor. Cahuilate the frictional force and ncjrmal pn^ssure

exerted on the 100-lb body when the car has an acccdoration of 8 ft per sec per sec,

up the incline. Assume that the body does not slip.

682. The floor of a certain elevator slopo.s at an angle of 30'^ to the horizontal, A
body weighing 500 lb rests on the floor. A vertical, upward acceleration of 5 ft per

sec per sec is given to the elevator. Calculate tlie frictional force and normal pnis-

Bure exerted on the 500-lb body, assuming that no slipping occurs. Ans. 289 lb;

5001b.

683. Figure 366 represents a cylindrical drum rotating at constant speed on a

vertical shaft. A body weighing 48.3 lb rests against th(' interior wall of the drum,
prevented from falling by friction alone. The coefficient of static fnidion is 0.2.

Calculate the minimum speed, in revolutions per minute, at which (he drum could

rotate without permitting the body to slip downward. Calculate the forces acting

on the body at this minimum speed.

684. Figure 367 represents a trolley running on an inclined track. A body
weighing 96.6 lb is suspended from a wire attached to the trolley. The trolley is

given a constant acceleration, down the incline, and the wire assumes a horizontal

I>osition. Calculate the acceleration, and the tension in the wire. Ans. 40.3 ft/sec^;

72.5 lb.

686 . A ball weighing 20 lb is attached to the lower end of a wire. The upper end
of the wire is attached to a vertical shaft. The distance from the center of the ball

to the upper end of the wire is 6 ft. The system rotates as a conical pendulum, about

the vertical axis of the shaft, the center of the ball moving in a horizontal circle and
the wire describing a conical surface. The radius of the circle is 3.6 ft. Calculate

the linear velocity of the center of the balh and the tension in the wire.

686. A ball weighing 20 lb, suspended from a ceiling by means of a fine wire,

swings freely in a vertical plane, as a simple pendulum. The distance from the point

of suspension to the center of the ball is 5 ft. At the extremity of the swing the center

of the ball is 1 ft, measured vertically, above its lowest position. Calculate the

tension in the wire, and the acceleration of the center of the ball, at the extremity of
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the swing. Also, solve with the center of the ball at the extremity of the swing at

the same elevation as the point of attachment. Am. 16 lb; 19.3 ft/sec^, Oz =
323° 10'; 0; 32.2 ft/sec^, - 270°.

687 . Figure 368 represents three bodies, attached to fine wires passing over two
pulleys as shown. The bodies A, B, and C weigh 120, 180,

and 200 lb, respectively. Cah^ulate the acceleration of the

bodies and the tension in each wire. Disregard friction

and the inertia of the pulleys and wire.

688. In Fig. 364, change the tension in the left-hand cattle

to 1.8 tons, and in the right-hand cable to 1.4 tons. Find

the position of the common center of gravity of the two ele-

vators at the end of 4 sec, starting from rest. Solve first by
writing equations for the two elevators considered as differ-

ent bodies, and then finding the final position of the com-
mon center of gravity by geometry. Then solve by consid-

ering the two elevators as a single, non-rigid body, dealing

solely with the motion of the common center of gravity.

Ans. —51.5 ft. Fig. 368

127. The Resultant of the External Forces. Since, by Art. 50, the

cornpoiient-suin of the forces of any system, along any axis, is equal to

the component of ttie resultant along that axis, Eqs. 184, 185, and 186

ma>' be thought of as expressing relations between the resultant of the

extt'rnal forces acting on a body, and the acceleration of the center of

gravity of the body.

The resultant of tlie external forces may be a single force, a couple,

or a non-coplanar single force and couple. If the resultant is a single

force, its component along any axis is equal to W/g multiplied by the

component of the acceleration of the center of gravity, along that axis.

If the resultant is a couple, its component along any axis is zero, and the

center of gravity has no acceleration. In such a case the center of

gravity is either at rest or is moving with constant speed in a straight

line. If the resultant is a non-coplanar single force and couple, the

resultant couple has no effect on the value of or 2F*, and the

motion of the center of gravity depends solely on the resultant single

force, the relation being the same as when the entire resultant is a single

force.

If the external forcas are in equilibrium, the center of gravity may be

at rest, or may be moving at constant speed in a straight line, as in the

case in which the resultant is a couple.



CHAPTER XrV

KINEMATICS OF TRANSLATION

128. Kinematics of a Translating Body. Translation is that motion

of a body in which the straight line passing through any two particles of the

bodyy at any instanty is parallel to the line pass'ing through the same two

particles, at any other instant. The term '' translation is applicable

only to bodies that are assumc'd j-igid.

Fig. 369

In Fig. 369, let A represent a translating body, at any given instant

during the motion. Two of the particles of the body have been shown,

and the straight line mm has been drawn through them. Let A' repre-

sent the position of the body at any other instant. The same two

particles have been shown in the new position, with the line m'm'

passing through them. By the definition of translation, the lines mm
and m'm' are parallel. Since the body is assumed to be rigid, the two

particles are at a constant distance from each other throughout the

motion.

The foregoing definition of translation does not preclude the possi-

bility that the particles will move in curved paths. Such a motion is

called curvilinear translation. Motion in which the particles move only

in straight lines is called rectilinear translation.

The motion of a piston in an automobile engine is rectilinear trans-
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lation, as long as the car itself is stationary, and becomes curvilinear

translation if the car moves straight ahead on a plane surface.

Motions of the Particles. The following are the important kinematic

facts peculiar to the motions of the particles of a translating body:

(1) The paths described by all the particles of the body are alike in every

respect. (2 ) The velocities of all the particles at any given instant have

the same magnitude, inclination, and sense. (3) The accelerations of

all the particles at any given instant have the same magnitude, inclina-

tion, and sense.

The foregoing principles would be accepted by many persons, as

obvious from the definition of the motion. The mathematical proof

Is of a very simple nature and will be omitted.

PROBLEM

689. In each of the following cases state whether or not the motion is translation;

and, if so, state whether it is rectilinear or curvilinear: the side rod of a locomotive

when the locomotive is running on a track having ncitluir horizontal nor vertical

curvature; the connecting rod of the same locomotive; the wheels of the same

locomotive; the crosshead of the same locomotive; the side rod of the locomotive if

the track has horizontal curvature, if the track has vertical curvature; the car of a

Perris wheel if the car is not swinging to and fro.



CHAPTER XV

KINETICS OF TRANSLATION

129. The Resultant of the External Forces. The resultant of the

system of external forces aciing on a translating body at any instant is a

single force. Its magnitude is equal to {W/g)a: its inclination and sense

are the sa7ne as the inclination and sense of the acceleration; and its line

of action passes through the center of gravity of the body.

Proof. The weights of the particles of a body coiistitute, practically,

a non-coplanar parallel system of forces agreeing in sense. Their

resultant is a single force, W, equal to their sum, parallel to them and

agreeing with them in sense. The resultant always passes through

the center of gravity, regardless of the position or orientation of the

body (Art. 91).

The resultant of all the forces acting on a single particle of a body

is called the effective force for that particle (Art. 123). In Art. 121 it

is shown that dR ~ (dW/g)a, in which dR repiesents the effective

force, dW the weight of the particle, and a the acceleration of the par-

ticle. Also, the inclination and sense of dR are the same as the inclina-

tion and sense of a (Art. 119).

The accelerations of all the particles of a translating body at any

given instant have the same magnitude, inclination, and scnsci (Art. 128).

Therefore, the effective forces for the particles, like the weights, con-

stitute a non-coplanar parallel system of forces agreeing in sense. Let

/
rdW

dR — J — a.

At any given instant in the motion, a and g arc constants throughout the

a C TL
body. Therefore, R - I dW = — a, as was stated in the beginning.

g

Since the magnitude of each effective force is equal to {dW/g)a^ and,

since a and g are constants throughout the body at a given instant, the

effective force is equal to the weight of the particle multiplied by a

constant. It follows that the effective forces are proportional to the

weights of the particles.

Thus, it has been shown that the system of effective forces has all

the characteristics of the system formed by the weights of the particles.

Therefore, the resultant of the effective forces also will pass through

the center of gravity of the body at all times.
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Finally, since the resultant of the external forces is identical with

the resultant of the effective forces (Art. 125), the validity of the

principles stated at the beginning is established.

It should be noticed that, although the effective forces for the particles

constitute a non-coplanar parallel system, the external forces acting on

the body do not necessarily constitute such a system.

130. Methods of Solving Problems. Three methods for the solution

of problems in the kinetics of translation will be described.

The Resultant Method, A convenient method is suggested by the

principles stated and proved in Art. 129. A sketch is made of the

moving body, and all the external forces acting on the body are shown.

The resultant of the external forces is also shown, in conformity with

its descrij)tion in Art. 129. Certain unknown quantities will exist, of

course, associated with the forces, or with the resultant, or both.

Equations are then formed on the bjisis of the known relationships

between a system of forces and its resultant, as discussed in statics

(Arts. 11 ”50). These equations are solved for the various unknown
quantities.

The Equilibrant MctJwd. This method differs but little from the

resultant method, although it is preferred by some persons. A sketch is

made of the body and the external forces acting thereon, as in the

resultant method, but the ecpiilibrant of the external forces is inserted

instead of the resultant. The equilibrant Ls the resultant, reversed in

sense (Art. 11).

Any system of forces, together with its equilibrant, would constitute

a balanced system of vectors. Therefore, the equations for the solution

can be formed on the basis of the principles of equilibrium (Arts. 51-74).

If the student uses this method he should not permit himself to re-

ceive any impression that the body actually is in equilibrium. When
a body has acceleration it is definitely not in equilibrium; neither are

the external forces in that state. The equilibrant, like the resultant,

is not an actual force but merely a device used for the purposes of con-

venient solution.

The equilibrant method is also called the inertia-force method, or

the reversed-effective-force method.

Solution by Formulas, Many problems in translation are so simple

that the use of moment-sum equations is not necessary. If desired,

such problems can be solved completely by direct substitution in Eqs.

184, 185, and 186, Art. 126. Illustrative Probs. 669 and 671, of Art.

126, and the majority of the practice problems in that article, are of

this type.
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Illustrative Problems

690. Figure 370 represents a homogeneous body weighing 750 lb, having

the form of a triangular prism, and mounted on a car running on an incline.

The prism is supported by a pin-bearing at A, and rests on a roller at B. The
car has an acceleration of 3.22 ft per sec per

sec, up the inchne. Calculate the forces

jff exerted on the prism by its supports.

Solution. The problem will be solved by

the '' resultant method. Because of the

roller, the force at B will have no com-

ponent parallel to the incline (Art. 14).

Let R represent the resultant of the

external forces acting on the prism. From
Art. 129, R = {W/g)a = (750/32.2) X
3.22 = 75 lb. The acceleration is parallel

to the incline, and upward. Also, R acts

through the center of gravity, C, of the

body.

By the principle of moments. Art. 50,

the moment-sum of the external forces is equal to the moment of the result-

ant, about any point or axis. Using A as the center of moments,

+750(1 X^) - ByX 7.5 = -75(i X 3.6) By = 412 lb

By the principle of components (Art. 50), the comporieht-surn of the

external forces is equal to the component of the resultant, along any axis.

Using an axis parallel to the incline,

-750 X I + = +75 Ax - 525 lb

By the principle of components, using an axis at right angles to the incline,

-750 X ^ + 412 + - 0 Ay ^ 18S lb

It is suggested that the student check the results by using the principle of

moments, with the center of moments at G.

691. Solve Prob. 690, Fig. 370, by the equilibrant method.

Soltdion. The equilibrant of a system of forces is the reversed resultant.

Figure 370 shows the resultant, /?, of the external forces acting on the prism.

Its magnitude was found, in Prob. 690, to be 75 lb. The equilibrant is, then,

equal to 75 lb, and is the same as in all respects, except that its sense is down
the incline.

The entire vectorial system, consisting of the external forces and their

equilibrant, is a balanced system. The principles of equilibrium may be

applied to the complete system, although the external forces acting on the

body are not in equilibrium among themselves.

By the principle of moments, Art. 53, the moment-sum of the system about

any axis or point is equal to zero. Using point A as the center of moments,
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and remembering that the equilibrant is directed down the incline,

+ 750(1 X 6) - By X 7.5 + 75(i X 3.6) - 0 By ^ 412 lb

By the principle of components, Art. 53, the component-sum of the system

along any axis is equal to zero. Using an axis parallel to the incline,

-750 X I + A;, - 75 = 0 A:, = 525 lb

By the principle of components, using an axis at right angles to the incline,

-750 X h + 412 + Ay = 0 Ay 188 lb

A comparison of tlie solution of the present problem with that of Prob. 690

shows that there is no essential difference between the two methods. The
mere shifting of one term in some of the equations written under one method
renders the entire set of equations iden-

tical with those used in the other

method.

692. Figure 371 represents a homogc-
neons, hemispherical body weighing 300

lb, sliding up an inclined plane. A con-

stant, applied force of 220 lb acts on

the body as shown. The coefficient (ff

kinetic, friction is 0.3. The radius of the

hemisphere is 1 ft. Calculate F, N, h, and

the acceleration of the body.

Solution. The resultant method of

solution will be used. In this problem it

is intended that it shall not at first be

known whether the acceleration of the

body is up, or down, the incline. It is in-

tended, however, that it shall be known that the body is moving up the incline.

The frictional force, therefore, acts downward. N represents the resultant of

the distributed normal force acting on the bottom of the body. It is desired

to locate the line of action of N, by means of the distance b.

From Prob. 508, Art. 98: /? == fr = f X 1 = f ft. Let it be assumed
that the acceleration is up the incline. Let R represent the resultant of

the external forces. R = (W/g)a - (300/32.2)a = 9.32a. If the foregoing

assumption is correct, R will be as shown in the figure.

From the principle of components, Art. 50, using an axis at right angles to

the incline,

-300 Xi + iV = 0 N« 2401b

From Eq. 32, Art. 81,

F ^ fiN F * 0.3 X 240 = 72 lb

Again by the principle of components, using an axis parallel to the incline,

-300 X f - 72 + 220 = 9.32a a « -3.43 ft/sec^

3001b.
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The negative sign shows that the sense of a was assumed incorrectly; there-

fore, a and R are directed down the incline. Since it is known that the body
is moving up the incline, the fact that a is downwartl does not mean that

F should be reversed. Therefore, the acceleration is the only quantity that

was incorrectly assumed.

By the principle of moments, Art. 50, using G as the center of moments,

-220 X (I X 1) - 72 X (i X 1) 4- 240(1 - h) = 0

b - 0.315 ft

It is suggested that the student (4ie(*k the results by using the principle of

moments, with a center of moments different from that used above.

693 . Figure 372 represents a homogeneous body weighing 400 lb, having

the form of a triangular prism, mounted on a car. The prism is supported by a

pin-bearing at C, and by the brace, AB, The brace is homogeneous, of uniform

cross section, and weighs 160 lb. The car has an acceleration of 6.44 ft per sec

per sec, toward the left. Calculate all the forces acting on the prism, and on

the brace.

Solution. The resultant method of solution will be used. First, let the

brace, AR, be considered. Figure 373 is a free-body sketch of AB. The
senses of the components of the unknown forces are difficult to predict. Let

them be assumed as shown. Ri represents the resultant of the external forces.

By Art. 129, R\ = {W/g)a *= (160/32.2) X 6.44 = 32 lb, and acts through

the center of gravity, G, as shown in the figure.

By the principle of moments, Art. 50, using A as the center of moments,

-160 X 2 - R* X 3 + Rv X 4 = +32 X 1.5

By the principle of components, Art. 50, using horizontal and vertical axes,

-Ax + Rx = -32

;an(J

-160 + Ay + Ry * 0
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Three independent equations have thus been obtained. They contain,

however, four unknown quantities. No additional independent equations

can be written for the brace, AB.
Lot the prism now be considered, as shown in Fig. 374. By Art. 5, it is

known that the components acting on the prism at B are equal and opposite to

those acting on the brace at that point. It is necessary that these components

Fkj. 373 Fro. 374

be assumed strictly in accordance with this law, as has been done in the

figure. Let represent the resultant of the external forces. R 2 ~ {W/g)a =
(400/32.2) X 6.44 = 80 lb.

By the principle of moments, using C as the center of moments,

-400 X 1 -f i?x X 3 = +80 X 1

By the principle of components, using horizontal and vertical axes,

-Bx - C. - -80

and
-400 - By + Cy = 0

There are now six independent equations and six unknown quantities.

The solution of these equations gives: Ax = +192 lb; Ay - —52 lb; B, «
+ 160 lb; By « +212 lb; C\ - -801b; Cy = +612 lb.

The negative signs accompanying Ay and Cx show that the senses of these

components were assumed incorrectly. Therefore, Ay acts downward and

acts toward the right. Circles have been drawn around the arrowheads to

indicate this fact. All the other components were assumed correctly.

It is suggested that the student check the results by using the principle of

moments, with the center of moments at 0, or at B.
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PROBLEMS

694. A box weighing 1000 lb rests on the floor of an elevator. A second box,

weighing 500 lb, rests on the larger one. The elevator has a vertical, upward accelera-

tion of 6.44 ft per sec per sec. Calculate the force acting on the bottom of each box.

Reverse the acceleration and solve again.

696

.

The following problem was given in a registration examination in highway

engineering: a car weighing 5000 lb is started from rest and pulled 1000 ft up an

incline making an angle of 00° wifh the horizontal, in 50 sec. The force causing the

motion is constant, and parallel to the incline. The resistance to traction due to

friction and rolling resistance is 200 lb. f'ind the magnitude of the constant foroc^

causing the motion. A?is, 2820 lb.

696 . A homogeneous cube, 2 by 2 by 2 ft, weighing 800 lb, is ]daced on a horizontal

plane. A constant, horizontal force of 320 lb is applied at the top of the cube. The
coefficient of kinetic friction is 0.3. Calculate the acceleration, the frictional force,

and the normal pressure. Locate the point of application of the resultant normal

pressure. Ans. 3.22 ft/sec^; 210 lb; 800 lb; 0.3 ft from front edge.

697 . Let the 320-lb force in Prob. 696 be increased gradually. What maximum
value can be attained without causing the cube to tip?

2
'

698 . Pdgure 2.75 represents a car nmning on an incline. The floor of the car is

horizontal. A homogeneou.s block weighing 644 lb is placed on the car, and the car

is given an acceleration of 4.83 ft per sec per sec, up the incline. Calculate the

frictional force, the normal jiressure, and the distance b. Assume that the block

does not slip. A 89.2 1b; 6811b; 0.804 ft.

699. Calculate the maximum acceleration, down the incline, tliat could be given

to the car in Prob. 690, Fig. 370, without causing the prism to break contact with the

roller at B.

700. Remove the 220-Ib force in Prob. 692, Fig. 371. Then solve the problem,

with the understanding that the body is still in motion up the incline. Also solve

the problem with the body in motion down the incline. Ans. 1st part: 72 lb;

2401b; 0.888 ft; 27 ft/sec^ 2nd part: 72 l6; 2401b; 1.11ft; 11.6 ft/sec®.

701 . Reverse the acceleration in Prob. 693, Fig. 372, and solve the problem.

702. Figure 376 represents a uniform, homogeneous bar, AB, weighing 644 lb, in

an elevator having a vertical, upward acceleration of 6 ft ix^r sec per sec. The bar

is Bupported by a pin-bearing at A, and rests against the wall of the elevator at B.
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Calculate all the unknown forces acting on the bar. Disregard friction. Ans.

- +509 lb; Ay = +764 lb; = -509 lb.

703. When four-wheel brakes for automobiles were first introduced, stories were

circulated to the effect that it was possible to cause a car to turn a front somersault

by the too sudden application of such brakes, A car on the market at that time had
a wheelbase of 104 in., and a center of gravity 62 in. to the rear of the front hubs.

Assume that the coefficient of static fricjtion for the tires on the roadway is unity.

Calculate the minimum height of the center of gravity, above the roadway, that would

make the front somersault possible, through the action of the brakes alone. Calculate

the deceleration of the car. Assume that the entire car has a motion of rectilinear

translation, and that the maximum braking effect is being attained, at the front

wheels.

Fig. 377 Fkj. 378

704. P'igure 377 represents an automobile equipped with four-wheel brakes, being

brought to rest by the action of the brakes. The center of gravity is at G. Assume
W = 35(X) lb, h — 112 in., 5 — 68 in., y ~ 28 in., and that the coefficient of static

friction for (he tires on the roadway is 0.6. Assume that the arrangement of the

brakes is such that Fi - F^. Assume that slipping of the tires on the roadway
impends at the rear wheels, only. Calculate the minimum distance in which, under

ide^l conditions, the car can be brought to rest from a speed of 60 mi per hr. Calcu-

late Fi, A i, F2, and iV*>. A 71 S. 215 ft; 9811b; 18701b; 9811b; 1630 1b.

706.

Solve Prob. 704 for a car equipped with rear-wheel brakes only, all other data

remaining the .same as in that problem. Assume Fi — 0. Explain, in the terms of

mechanics, why four-wheel brakes are more effective than two-wheel brakes. In

what manner does the deceleration of the car in this problem influence the effective-

ness of the brakes?

706. Figure 378 represents a homogeneous half-cylinder weighing 100 lb, and

having a radius of 6 in., resting on a car. The car is given a constant acceleration

toward the left, and the cylinder assumes the position shown. Calculate the accel-

eration, and the frictional force, assuming that the cylinder does not slip. Ans,

12.4ft/sec2; 38.61b.

707. Figure 379 represents a body being drawn up an inclined plane by a force, P,

applied as shown. The body weighs 1000 lb, and its center of gravity is at G, The
body is supported by wheels at B, and at A by a leg which slides on the incline. The
coefficient of kinetic friction at A is 0.2. The wheels wrill be assumed frictionless.

The acceleration is 3.22 ft per sec per sec, up the incline. Calculate all the forces

acting on the body. Ans. Fa *= 25.81b; Na = 1291b; Nb “ 6711b; P = 7261b.

708. In Prob. 707, Fig. 379, calculate the maximum value that could be given to

the force P writhout causing the body to tip. Calculate the maximum acceleration

that the body could have under the same conditions.
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709 . Omit the force P in Prob. 707,

Fig. 379, and calculate the velocity of

the body after it haa moved 20 ft,

starting from rest. Calculate the forces

acting on the body at A and B. Am.
25.9 ft/sec; Fa - 781b; = 3901b;

- 410 lb.

710 . In Prob. 706, Fig. 378, let the

acceleration of the car be represented

by fl, the radius of the half-cylinder by
r, and the weight by W. Let the angle

of inclination, to the horizontal, of the

rectangular face of the half-cylinder

be represented by B. Prove that

g sin 0

0.757r — cos B

711 . Figure 380 represents an in-

clined plane mounted on wheels. A
Fig. 379 cylinder rests on the iruhne, against a

small block. The block is attached

to the incline. Derive a formula for the maximum acceleration, toward the left, that

could be given to the car without causing the cylinder to roll up the incline. Arts.

a ^ g tan B.

712 . Figure 380 represents an inclined plane mounted on wherds. A cylinder
rests on the car, against a small block, as shown. The block is attached to the
incline. The height of the block, me^ured at right angles to the incline, is equal to

one-half the radius of the cylinder. Derive a formula for the maximum acceleration,

toward the right, that could be given to the car without causing the cylinder to roll

over the block. Am. a = g cot (B -f 30°).

713 . Two uniform, homogeneous bars, AB and AC, in Fig. 381, are connected
at A by a smooth pin, and at B and C are attached to the floor of the car by smooth
pins, as shown. Each bar weighs 50 lb. The car is drawn along a straight, horizontal
track, with an acceleration of 4 ft per sec per sec, toward the right. Find the hon-
zontal and vertical components of the forces exerted on the bars by the pins.

714. Figure 382 represents two uniform, homogeneous bars, AB and CD, weighing
322 lb and 161 lb, respectively. The bars are connected by a pin at C, and are sup-
ported on the floor of a car by pin-bearings at A and D. The bearing shoes are
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ffistened rigidly to the car floor. The car has an acceleration of 10 ft per sec per sec,

toward the left. Calculate the horizontal and vertical components of all the forces

acting on each bar. Ans, On AB: A^ = +231 lb; Ay = +143 lb; C* = -3211b;
Cy == +179 lb. On CD: - +321 lb; Cy = -179 lb; = -371 lb; Dy «
+340 lb.

716. Reverse the acceleration in Prob. 714, Fig. 382, and solve the problem.

716. A rectangular block, instead of a cylinder, rests on the car of Prob. 711,

Fig. 380. The coefficient of static friction is //. Derive a formula for the maximum
acceleration, toward the left, that could be given to the car without causing the block

to slide up the incline. A m. a = g - .

1 - M tan



CHAPTER XVI

MOMENT OF INERTIA

131. Moment of Inertia of a Line, Area, or Volume; General For-

mulas. The 7nonient of inei'tia of a line with respect to a given axis

is the quantity expressed by the following formula:

/ = fq^dL [187]

in which dL represents an elementary portion of the length of the line,

and q represents the distance between dL and the given axis, measured

at right angles to that axis. The element dL must be formed in such

a manner that q has a single value foi- all the points in any one element.

In many cases the element can be formed in such a way that multiple

integration is unnecessary. If this is done, some of the dimeasions of

the element will be finite, but it must be done so as to satisfy the speci-

fication given above. The impression is sometimes received that the

element may be formed in some manner other than that specified, and

that q may be taken as the distance from the given axis to the center of

gravity of the element. In general, such a procedure gives incorrect

results.

The moment of inertia of an area with respect to a given axis is the

quantity expressed by the following formula:

I^fq^dA [188]

The moment of inertia of a volume with respect to a given axis is the

quantity expressed by the following formula:

/ = fq^dV [189]

The specification limiting the formation of the element, given above

for the line, applies also for an area or a volume.

Units, Moment of inertia is a scalar quantity, and is always positive.

The unit has no special name. If the inch is used for the unit of dis-

tance, the moment of inerl> of a line is expressed in inches^, the mo-
ment of inertia of an area in inches^, and the moment of inertia of a

volume in inches^.

Physical Significance, A moment oi inertia of a volume, area, or

line has no definite physical significance of its own. The term is simply
2ds
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a convenient name for the result of a certain calculation that has been

found to occur in many engineering problems. Moments of inertia of

areas are of special importance in engineering because of their frequent

occurrence in strength of materials. Moments of inertia of lines are of

importance chiefly because of the fact that simple approximate formulas

for thin rods and wires can be o])tained from them. Moments of in-

ertia of volumes as such are of little importance in engineering.

132. Moment of Inertia of a Body; General Formulas. T\\q moment

of inertia of a body with respect to a given axis, as calculated in engi-

neering practice, is the quantity expressed by the following formula:

/-P^' [1901

in which dW represents the weight of an elementary portion of the

body. The distance, q, has the same meaning as in Art. 131, and the

specification in that article regarding the formation of the element

applies also in the j)resent ca.se.

Let w represent the weight per unit volume of the body. Equation

190 can be written, for homogeneous bodies, as follows:

[191]

Equation 191 shows that the moment of inertia of a homogeneous

body is equal to the moment of inertia of the volume of the body, mul-

tiplied by w/g.

Units. There is no generally accepted name for the unit moment of

inertia. Engineers use the value 32.2 feet per second per second, or

thereabouts, for and express q in feet. The weight of the body may
be exprcvssed in any unit of force, but the pound is usually employed.

When feet, pounds, and seconds are used, the moment of inertia is some-

times spoken of as being expressed in “ engineer's units." The foregoing

term will be used in this book.

Physical Significance. The term “ moment of inertia " may be

thought of simply as a name for the result of a certain calculation of

frequent occurrence in engineering problems. When used in connection

with bodies, the term is of special importance in problems involving

rotation. The moment of inertia of a body is, in a sense, a measure of

the resistance of the body to angular acceleration about the axis to

which the value refers.

Some writers use the term “ second moment " instead of moment
of inertia " when referring to lines, areas, and volumes, thus limiting the

use of the latter term to the case of bodies. Because of the similarity
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in the methods by which the quantity is obtained, however, engineers

usually prefer the use of the one term, moment of inertia, for all cases.

133. Radius of Gyration. The radius of gyration of a line with

respect to a given axis is the quantity expressed by the following formula:

k = [192]

in which I represents the moment of inertia of the line with respect to

the given axis, and L represents the total length of the line.

The formulas for the radii of gyration of areas and volumes are as

follows:

The formula for the radius of gyration of a body is as follows

:

In many problems the radius of gyration is known, or calculated, in

advance. In such cases the foregoing formulas can be used more con-

veniently in the following forms:

W
I ^ Lk^ I Ak^ / = ^ *2 jiggj

9

Through his desire to simplify the conception of the radius of gyra-

tion, the beginner often attempts to convince himself that it Is the

distance from the given axis to the center of gravity, or to some other

tangible point on the figure. Such attempts are futile. The radius of

gyration is a definite distance in any concrete problem, but not to any
point whose position can readily be found in advance. The radius of

gyration should be thought of simply as a certain linear quantity,

related to the moment of inertia in the manner indicated by the for-

mulas of the present article, and often appearing in various engineering

formulas in which the moment of inertia otherwise would appear.

Units. In motion problems the radius of gyration must ordinarily

be expressed in feet. In the problems of strength of materials it is usu-

ally expressed in inches.
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PROBLEMS

717. The moment of inertia of a 6 by 12 in. rectangular area, with respect to one
of its 6-in. sides, is 3456 in.^ Calculate the radius of gyration. Compare the result

with the distance from the axis to the center of gravity of the rectangle. Ans.
6.93 in.

718. The moment of inertia of a triangular area with respect to its base is given

by the formula I = j in which 6 is the length of the base, and h is the altitude

measured from that base Derive the corresponding formula for the radius of

gyration.

719. A certain flywheel weighs 30 tons. Its radius of gyration, with respect to

the axis of its shaft, is 8.5 ft. Calculate the moment of inertia. Ana. 135,000

engineers units.

720. The moment of inertia of a solid, homogeneous sphere with respect to a

diameter is given by the formula, I = ^ {W/g)r^. Derive the corresponding formula

for the radius of gyration. Ans. 'n/o.4 r.

721. The rim of a certain flywheel weighs 62,500 lb. The outside diameter of the

rim is 23 ft, and the radial thickness is 18 in. An approximate value of the moment
of inertia in such cases is sometimes found by assuming that the radius of gyration of

the rim is equal to the arithmetic mean of the outer and inner radii. Calculate the

moment of inertia of this flyivheel, making the foregoing assumption.

134. The Parallel-Axis Theo-

rem. The moment of inertia of a

line^ areOy or volume with respect to

any axis is equal to the moment of

ertia with respect to the parallel

gravity axiSj plus the product of the

length, area, or volume and the square

of the distance between the two axes.

The foregoing principle also

applies to the moment of inertia

of a body, if the ratio W/g is

used instead of the length, area, or volume. It is called the paralleU

axis theorem for moments of inertia.

Proof. Let Fig. 383 reprasent any volume. Let G represent the

center of gravity, and A any other point. Let the x-axis be placed,

for convenience, so as to pass through G and A. Let I represent the

moment of inertia of the volume with respect to an axis through G at

right angles to the plane of the paper. Let I represent the moment

of inertia with respect to an axis through A, also at right angles to the

plane of the paper. Let c represent the distance between these two

axes. From the figure,

/ ^ fpUV
p® = 1/^ + (c — x)*

r

[1971

[198]
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Substituting in Eq. 197 the value of p® given by Eq. 198,

/ = /[2/* + (c - x)^] dV = f(y^ + c^-2cx + x^) dV [199]

Equaticfti 199 may be written

/ = fy^dV + c^fdV-2cfxdV + fx^ dV [200]

The first and last terms in Eq. 200 may be combined, as follows:

fy^dV + fx^dV = f (x^ -h dV = fq^dV = l

Furthermore,

c^J*dV = c^V and 2 x dV = 2 cxV = 0, since 2 = 0

Therefore,

/ = / + [201]

Equation 201 is the algebraic statement of the parallel-axis theorem

for volumes. The proof for the case of a line, area, or body is similar to

the foregoing proof for volumes. Formulas for these cases are as follows:

/ = 7 + Lc" [202]

/ = 7 + [203]

W
/ = / + — [204]

9

In the use of the parallel-axis theorem it must be remembered that

one of the two parallel axes is a gravity axis.

PROBLEMS

722 . The moment of inertia of a certain plane area with respect to an axis passing

through the center of gravity of the area is equal to 432 in.'* The area itself is equal

to 60 sq in. Calculate the moment of inertia of the area with respect to an axis par-

allel to the given gravity axis, and at a distance of 8.6 in. therefrom. .4 ns. 4130 in.**

723 . The moment of inertia of a certain body with respect to a given axis outside

the body is equal to 539 engineer’s units. The weight of the body is 322 lb. Calcu-

late the radius of gyration of the body with respect to the gravity axis parallel to

the given axis, if the distance between the two axes is 7 ft.

724. The formula for the moment of inertia of a triangular area with respect to a
gravity axis parallel to the base, 6, in terms of the altitude, /i, is: / = Derive

a formula for the moment of inertia with respect to the base, by means of the parallel-

axis theorem. Ans. ^hh^.

725. The formula for the moment of inertia of a rectangular area with respect to

the side 6 is / = in which h is the length of the other side. Derive a formula
for the moment of inertia with respect to a gravity axis parallel to 6. Am, /
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726, The moment of inertia ef a certain area with respect to an axis 5 in. from

the center of gravity is 4000 in."* The area is 120 sq in. Calculate the moment of

inertia with respect to a parallel axis 10 in. from the center of gravity.

136. Derivation of Special Formulas for Lines. The engineer

seldom finds it necessary to use the general formulas for moment of

inertia given in Arts. 131 and 132. Many of the handbooks and text-

books of engineering contain special formulas for the moments of inertia

of standard geometrical forms, in terms of convenient dimensions.

Such formulas usually make it possible to obtain the desired value

without the use of the calculus. A few examples of the methods used

in deriving these special formulas will be given in the present article,

and in articles to follow.

The moment of inertia of a line is of importance to the engineer

chiefly because of the fact that it often provides him with an approximate

method of calculating the moment of iner-

tia of a slender bar, by a shorter process

than that necessitated by the exact

method.

Illustrative Problem

727. Derive a formula for the moment of

inertia of any circular arc, with respect to the

axis of symmetry. Also derive a formula for

the radius of gyration of the arc with respect

to the given axis.

Solution. Let Fig, 384 represent any cir-

cular arc, whose radius is r, and whose central angle is 28. Let the x-axis

be taken as the axis of symmetry of the arc. Let dL represent any elemen-

tary portion of the length, and let L represent the total length. By Eq. 187,

Y

From Fig. 384,

y = r sin and dL = r dB

Substituting, and integrating,

which is a convenient formula for the desired moment of inertia. In the use o#

this formula the angle 8 must be expressed in radians.
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A formula for the radius of gyration can now be obtained from the foregoing

formula, by substitution in Eq. 192.

rr? j 2 d\

2rd

PROBLEMS

sin 2 8

~ir

728 . Derive a formula for the moment of inertia of a straight line, with respect to

a gravity axis making any angle, with the line. Also, derive a formula for the

1,0 L sin 0
radius of gyration. A ns. 1 - AL sin^ 6; k — —

•

V 12

729 . Derive formulas for the moment of inertia and radius of gyration of a straight

line, with respect to a gravity axis at right angles to the line. Ans. / =*

,
L

k = —jr^ .

V12
730 . Derive formulas for the moment of inertia and radius of gyration of a straight

line, with respect to an axis through one end of the line, making any angle, 0^ with

the line. Ans. I = sin^ 6; k = .

a/s

731 . Derive formulas for the moment of inertia and radius of gyration of a straight

line, with respect to an axis through one end of the line, making an angle of 90° with

the line. Ans. I ~ k -
V3

732 . Derive formulas for the moment of inertia and radius of gyration of the circu-

lar arc in Prob. 727, Fig. 384, with respect to the i/-axis. Ans. / = r®
;

i4
sm2£

2 + -

733. Derive formulas for the moment of inertia and radius of gyration of any
circular arc, whose radius is r, and whose central angle is 2/S, with respect to an axis

through the geometric center at right angles to the plane of the arc. Arts. I ^ 2r^j3;

k - r.

734. Solve Prob. 727 by the use of rectangular, instead of polar, coordinates.

136. Polar Moment of Inertia. The mo-
ment of inertia of a plane area, with respect

to an axis at right angles to the plane of the

area, is called the polar moment of inertia of

the area. The following special principle

regarding polar moments of inertia is of

considerable utility in many cases:

The polar moment of inertia of a plane

area is equal to the sum of the moments of

inertia with respect to any two rectanqular axes

in the plane of the area concurrent with the given polar axis.
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Proof. Let Fig. 385 represent any plane area. Let OX and OY
represent any two rectangular axes in the plane of the area. Let a

polar axis, OZ, be imagined, passing through 0, at right angles to the

plane of the paper. From the figure,

Iz = Jq^
dA = J (x^ + y^) dA = dA + fy^ dA [205]

In Eq. 205,

J‘x‘^ dA == lyy and
Jy^

dA == Ix

Therefore,

= 4 + h [206]

A formula similar to Eq. 206 can easily be derived for plane lines.

Parollel-Axis Theorem. The parallel-axis theorem, as stated and
proved in Art. 134, is valid for polar moments of inertia, as is evident

from the general nature of the proof given in that article.

«

PROBLEMS

736

.

Assuming that the formulas for moment of inertia obtained in Probs. 727

and 732 are correct, derive a formula for the polar moment of inertia of any circular

arc with respect to an axis through the geometric center of the arc. Use the principle

developed in the present article. Compare the result with that of Prob. 733.

736 . The moment of inertia of a circular area with respect to a diameter is equal

to I^erive a formula for the moment of inertia with respect to a polar axis

passing through the center of the circle. A 7is.

737 . The moment of inertia of a square with respect to a gravity axis parallel to

two of the sides is equal to which b is the length of each side. Prove that the

polar moment of inertia with respect to an axis through one comer is § Solve in

two ways, using the principles of the present article in both cases.

738. The moment of inertia of a circular area with resjMJct to a diameter is

Calculate the moment of inertia of a 6-in. circular area with respect to an axis at

right angles to the plane of the circle and 8 in. from the center.

137. Derivation of Special Formulas for Areas. As has been

stated, moments of inertia of areas are of great importance in strength

of mat^erials, and in the many branches of study based thereon. Fur-

thermore, the moment of inertia of an area may often be used in an

approximate method of calculating the moment of inertia of a homo-

geneous, thin plate.

Illustrative Problems

739. Derive a formula for the moment of inertia of a rectangular area, with

respect to a gravity axis parallel to any side. Also derive a formula for the

radius of gyration with respect to the given axis.
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Solution, Let Fig. 386 represent any rectangular area. Let b represent

the width, and h the height. Let an element of area, dA, be selected as shown.

When an element is formed in this manner, a single integration is sufficient,

and yet the element conforms to the limitation imposed upon it in Art. 131.

By Eq. 188,

Ix = fy^^dA

From the figure,

dA ~ h dy

Therefore,

/
+V2 r?/3n+'‘/2 1

i/bdy^2b
/

yUy = 2bW\ ^--bh^
-h/2 ^0 L’^Jo

-yl‘i-4
bh^

12 bh

h

Y

I ^
dA -T""

T . . Y r-

G

1

A

1

b

Fig. 386

Y

Particular attention should be given to the fact that the foregoing formulas

give the values for a gravity axis parallel to the side b. In a given problem

6 may be used to designate either side, as may be desired.

740. Derive formulas for the moment of inertia and radius of gyration of a

triangular area, with respect to a gravity axis parallel to any side.

Solution. Let Fig, 387 represent any triangular area. Let OX be the axis

for which the values are desired. Ijet the side, or base, parallel to OX be repre-

sented by h. Let the altitude, measured to the side 6 as a base, be represented

by h. Let the element be formed as shown, with a view to avoiding a multiple

integration. By Eq. 188,

h =

Prom the figure,

dA =

Prom similar triangles,

^ b

— y h

fy^dA

(x" - x') dy

x" -x’
n
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Substituting in the first equation, and integrating,

/
+ h j, p +

V^-A^h-y)dy^l\ (IV
-HA « n'J -Mh-Hh

ij-Hk 36

2/®) dy

W ^
f36 bh

h

vTs

It should be remembered that the gravity axis to which the formulas are

referred is parallel to the side 6.

74L Derive formulas for the moment of inertia and radius of gyration of

any circular sector, with respect to its axis of symmetry.

Solution. Let Fig. 388 represent any circular sector. Let the radius be

represented by r, and the central angle by 23. OX is the axis of symmetry.

Polar coordinates will be used. Let dA represent any element of area. It

would be possible so to select the element as to av^oid multiple integration,

but the integrations are simple and little would be gained thereby.

/, = fyUA
From the figure,

y — p sin d and dA — p dp dd

28
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PROBLEMS

742. Derive formulas for the moment of inertia and radius of gyration of a rec-

tangular area, with respect to any side, h. Use the general formulas, and check the

result by the use of the parallel-axis theorem in connection with the answers to

Prob. 739. I - k - •

743. Derive formulas for the moment of inertia and radius of gyration of a rec-

tangular area, with respect to a polar axis tlirough the center of gravity. Use the

general formulas, and then check the result by means of Eq. 206, in connection with

the answers to Prob. 739. Ans. I - -h k —

744. Derive a formula for the moment of inertia of a square area wiUi respect to a

diagonal. Let h represent the length of each side. Solve by using the general

fomiulas; then check by using the answer to Prob. 730. Ans.

746.

Derive formulas for the moment of inertia and radius of gyration of a circular

area, with respect to a diameter. Use the general formulas, and check the results

\ 12

by substitution in the formulas obtained in Prob. 741. Ans. I - k = ~ *

2

746 . Derive formulas for the polar moment of inertia and radius of gyration of a

circular area, t\ith respect to a gravity axis. Solve by the general method; then

check the results by means of Eq. 206, in connection with the answers to Prob. 745.

T

Ans. I - k = •

747. Derive formulas for the moment of inertia and radius of gyration of a triangu-

lar area, with respect to the side h. Solve by the use of the general formulas; then

check the results by means of the parallel-axis theorem, in connection with the

answers to Prob. 740. Ans. I - j^bh^; k =* •

748 . Derive formulas for the moment of inertia and radius of gyration of the area

enclosed within the parabola whose equation is = cue, and the straight line whose

equation is x — by with respect to the x-axis. Ans. I - ^ ~ *

749 . Derive formulas for the moment of inertia and radius of gyration of the

parabolic area described in Prob. 748, with respect to the 2/-axi8 . das. I =

k = bV^.
760 . The general equation of the semi-cubical parabola is in which a is a

constant. Derive a formula for the moment of inertia of the total area included

between this curve and the straight line whose equation is aj — 6, with respect to the

x-axis. Ans. I = ~—n‘33a‘®
781. Derive a formula for the moment of inertia of the area in Prob. 750, with

respect to the y-axis. Ans.

762 . Derive formulas for the moment of inertia and radius of gyration of the

area enclosed within the ellipse whose equation is ^ + “g “ respect to the

1 , b
z-axiB. Am. I « froh’; ^ •
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753. Derive formulas for the polar moment of inertia and radius of gyration of

the elliptical area described in Prob. 752, with respect to a gravity axis. Solve by
the use of the general formulas; then check the results by means of Eq. 206, in con-

nection with the answers to Prob. 752. Ans. I = iirab{a^ -p k = ^

138. Moments of Inertia of Slender Rods and Thin Plates; Approx-

imate Methods. The radius of gyration of any relatively slender

,

homogeneous rod or bar of constant cross section
^
with respect to any axiSj

is approximately equal to the radius of gyration of the center line of the

body with respect to the given axis.

The radius of gyration of any relatively thin^ homogeneous plate or shell

of constant thickness, with respect to any axis, is approximately eqvxil to

the radius of gyration of the area of either face of the plate with respect to

the given axis.

The foregoing principles are almost self-evident, but a simple mathe-
matical proof can be devised, if desired. The i)rinciples may be used

to save time in problems in which extreme accuracy is unnecessary.

I LLUSTRATIVE PROBLEM

764. Derive an approximate formula for the moment of inertia of a straight,

slender, and liomogeneous bar, of constant cross section, with respect to

gravit}^ axis at any angle, 0, with the long axis of the bar.

Solution. In the answers to Prob. 728, the following formula is given for the

radius of gyration of a straight line with respect to a gravity axis making any

angle with the line:

^
L sin 6

This value is approximately correct for the bar described in the present prob-

lem. Let the total weight of the bar be represented by W.

T _ 1.2
^ ^

1 —
s g 12

PROBLEMS

756. Derive an approximate formula for the moment of inertia of a straight,

slender, and homogeneous bar, of constant cross section, with respect to a gravity

axis at right angles to the length of the bar. Am. / = ^iW/g)L^.
756. Derive an approximate formula for the moment of inertia of a straight,

slender, and homogeneous bar, of constant cross section, with respect to an axis

through one end, at any angle, $, with the length of the bar. Use the answers given

in Prob. 730. An«. / - 4(Tr/flt)L* Bin* e.

767. Derive an approximate formula for the moment of inertia of a straight,

slender, and homogeneous bar, of constant cross section, with respect to an axis

through one end, at right angles to the length of the bar. Ans. I » \{W/g)L^.
758. Derive an approximate formula for the moment of inertia of a thin, circular,

and homogeneous plate, of constant thickness, with respect to a diametric, gravity

axis. Use the answers given in Prob. 745. Am. I * \{W/Q)f^.
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769. Given a thin, homogeneous, and rectangular plate, of constant thickness,

whose length is h and whose width is 6; derive an approximate formula for the

moment of inertia with respect to a gravity axis parallel to 6. Use the answers to

Prob. 739. Am. I = ^^{W/g)h\

139. Derivation of Special Formulas for Homogeneous Bodies* As

the title indicates, the discussion in the present article will be limited to

the case of the homogeneous body. The bodies with which the engineer

deals, if not entirely hornogt^neous, can usually be divided into finite

parts each of which is homogeneous in itself, in which event the moment
of inertia of each homogeneous portion can be calculated separately,

and thase re^sults can then be added to give the moment of inertia of

the entire body.

Formulas for moments of inertia of volumes, as such, do not often

appear in engineering books, and will not be derived or given in this book.

Any formula giving the moment of inertia of a homogeneous body

could, if desired, be transformed into a formula for the moment of

inertia of the volume of that body, by dividing by the quantity w/g,

in which w represents the weight per unit volume.

Y

Fig. 389

Illustrative Problems

760. Derive formulas for the moment of inertia and radius of gyration of a

rectangular parallelepiped, with respect to a gravity axis parallel to any edge.

SoliUicm. Let Fig. 389 represent any homogeneous rectangular parallele-

piped. Let bif 62 ,
and 63 represent the lengths of the edges. Let the a;-axis

be the axis for which the values are desired. A filament, parallel to the

aj-axis, is convenient for use as the element, dV,
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From the figure,

= + and dV^hidydz

Substituting these values in the first equation, and integrating,

+6,/2 /*+6,/2
^ w r

gJ^ht/2 J-hx/2
{:y^ + z^)h\dydz = 4 6i

+6s/2 /»+V2w r

gJo Jo
iy^ + z^) dy dz

:r (!-¥)-

In the last expression, bib 2bzw = IF, the total weight of the body, and so

7
^ ^

,
, 2n

* V If V 12

It should be noticed that in the foregoing formulas 62 and 63 are the lengths

of the two edges which are at right angles to the a:-axis.

761 . Derive formulas for the moment of inertia and radius of gyration of a

right circular cylinder, with respect to a gravity axis parallel to the base.

Solution. Let Fig. 390 represent any right circular cylinder. Let r repre-

sent the radius of the cylinder, and let h represent the length. A thin slice, or

lamina, will be used as the element, as shown in the figure. This element

does not satisfy the requirement that q have a single value for all points in the

element. Therefore, the general formulas may not be used. However, the

principles stated in Art. 138 lead to a simple solution, as follows:

The axis O'F', in Fig. 390, is a diameter of the lamina. The radius of g3nra-
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tion of the lamina with respect to O'F' is equal to the radius of pjyration of

either of its circular faces with respect to that axis. Tlie answers to Prob. 745

show that the radius of gyration of a circular area with respect to a diameter

is equal to |r. Let the moment of inertia of tlie lamina with respect to O'F'
be represented by dl'. Then,

rr- dx w
(9=

TT^W dx

Let the moment of inertia of the lamina with respect to the desired axis, (xF, be

represented by dij,. By the parallel-axis theorem, Art. 134,

dly = dr +—
g

irr^w dx
.

irrhv dx •

Integrating,

ph/2 /u (

7rr*w dx ttt^w dxT"w dx o\ 2 irr^w Fr^x

g * / g L 4 ^ sjo

4 A 3/

The principles of Art. 138 give approximate results for thin plates of finite

thickness. For plates of infinitesimal thickness they are exact. Therefore,

y
the foregoing results are exact.

I

762. Derive formulas for the moment of inertia

and radius of gyration of a sphere, with respect to

^ diameter.

X r/ ^\ Solution. Let Fig. 391 represent any sphere.

/ ^
^ \ Let GX represent the desired axis. I^t a lamina

\
G^ ~

^
^ ^ element, placed at right angles to

\ ^-X'. From the principles of Art. 138, utilizing the

V
j

/ answer to Prob. 746,

iry^ dx w

Fig. 391

From the figure,

(*)’

y2 = r*-

= IE rv _ - ijnwfPT
9 VO 9 L ]o g L 3 J0 g L^Jo
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5 g

PROBLEMS

763 . Solve Prob. 760, using a lamina for the element, and following a method
similar to that used in Prob. 761.

764. Derive formulas for the moment of inertia and radius of gyration of a right

circular cylinder, with respect to its geometric axis. / = liW/gV-, k =

765. Derive formulas for the moment of inertia and radius of gyration of a right

cinudar cone, with respect to its geometric axis. Ans. I = MW/gy-, h = rV^.
766 . The equation of the semi-cubical parabola is ay^ = in wliich a is a con-

stant. Let the total plane area enclosed between this curve and the straight line

a; = 6 be rotated around the a;-axis, through an angle of 180°. Let tiie solid of

revolution thus generated be regarded as a homogeneous body. Derive formulas

for the moment of inertia and radius of gyration of the body with respect to the

, 2 IT lA
, /

2I?
.r-axLs. Ans. / = -

: A:==\/ —

.

7 g a \7 a

767 . Derive a formula for the moment of inertia of a right circular cone, with

3 W
respect to an axis through the apex, parallel to the base. Ans. — (4/i^ -f r^).

768 . The area bounded by the parabola ~ ax, the a;-axis, and the straight line

a; == 5 Ls revolved about t he x-axis, through an angle of 300°. Derive a formula for

the moment of inertia of a homogeneous bwly having such a form, with respect to

the a>-axis. Ans. I ~ \{W/g)ah.

769 . An elliptical area is revolved about the .r-a.xis, generating a complete solid

of revolution. The equation of the ellipse is x?\r -f = d^lr. Derive a formula

for the moment of inertia of a homogeneous body having this form, with respect to

the aj-axis. Ans. I — l{W/g)b‘^.

770 . Derive formuhis for the moment of inertia and radius of gyration of a right cir-

cular cylinder with respect to a diameter of the base. A ns. I ~ \ iW/g) (r^ -f | ;

k =
771 . Derive formulas for the moment of inertia imd radius of gyration of a right

1 IF
circular cone, with respect to a diameter of the base. Ans. / = 7;:

— 4- f r®)

;

10 g

y 10

772 . Derive formulas for the moment of inertia and radius of gyration of a right

circular cone, with respect to a gravity axis parallel to the base. Use the parallel-

axis theorem, in connection with the results of Prob. 771.

, ,
S W/J-

,

A,
, ,

» + r>)
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140. Moment of Inertia by Finite Summation. The figure repre-

senting a line, area, volume, or body may he divided into finite parts,

and the moment of inertia of each part may then be calc'oLated. The

moment of inertia of the whole is equal to the sum of the moments of inertia

of the parts.

In some problems it can be seen that the arbitrary addition of one

or more portions to the figure will produce a new figure whose moment

of inertia can be calculated more easily than the moment of inertia of

the original figure. The moments of inertia of all such added portions

are calculated, and arc then subtracted from the moment of inertia of

the altered figure. The result is the moment of inertia of the original

figure.

The proofs of the foregoing statements are simple, and will not be given.

141. Concerning Subsequent Problems. The remaining problems

in the present chapter are designed primarily to illustrate the use of the

various special formulas in the solution of numerical problems and, in

some cases, in the derivation of other useful special formulas. The

method of finite summation will be used extensively. Unless otherwise

specified, it will be understood that any formulas or results obtained

in previous problems may be utilized.

142. Applications of the Special Formulas for Lines. As has been

indicated, the engineer is not often concerned with the moment of

inertia of a line, as such, but is inter-

ested in the fact that the radius of

gyration of a slender, imiform, and

homogeneous rod is approximately

equal to the radius of gyration of the

center line of the rod (Art. 138).

Illustrative Problem

773. Figure 392 represents a slender,

homogeneous rod, of constant cross sec-

tion, which has been bent into the

form ABDEF. The rod weighs 1.5 lb

per lin ft. The portion ABD is in the form of a circular arc, and lies in the

xy-p]me. DE is parallel to the 2/-axis, and EF lies in the xz-plane. Calculate

an approximate value of the moment of inertia of the rod, with respect to the

j^-axis.

Solution.

Weight of ABD « (2 ttH X iU)L6 « 2.62 lb

Weight of DE - (A) 1.5 = 0.625 lb

Weight of EF = (i|)1.5 - 1*25 lb



APPLICATIONS OF THE SPECIAL FORMULAS FOR LINES 315

Moment of Inertia of ABD, In Prob. 727, the radiuR of gyration of a circu-

lar arc, with respect to its axis of symmetry, was found to be

2 > 8

By Art. 138, the foregoing formula is approximately correct for the radius

of gyration of ABD, with respect to the y-axis. Therefore,

1 2 { V/^ sin 120A
ky = I 1(2 ; ) 0.204 ft^

\2 X 12/ V /

The moment of inertia of ABD is, then, approximately

, W 2 2.62
ly — —ky = 0.204 = 0.0166 engineer's unit

y oJi.Jh

Moment of Inertia of DE. The moment of inertia of the portion DE, with

resi)ect to a gravity axis parallel to the y-axis, is approximately equal to zero.

The distance, OE, is equal to 10 cos 30®/ 12 = 0.722 ft. Therefore, by the

parallel-axis theorem, Art. 134,

/, = 0 + — {OEf = (0.722)2 = 0.0101 engineer’s unit
g 32.2

Moment of Inertia of EF, First, the moment of inertia of the portion EF
nmst be calculated with respect to a gravity axis parallel to the y-axis. The
answer to Prob. 755 is the desired fonnula.

7 = -1- = 0.00225 engineer's unit
12 y 12 X 32.2

The distance, c, from the center of gravity of EF, to the y-axis, is equal to

5 in. Therefore, by the parallel-axis theorem,

1 25 / 5 \2
ly = 0.00225 + —— ( T )

~ 0.00899 engineer's unit
32.2 \12/

Total Moment of Inertia of the Rod. The moment of inertia of the entire rod

can now be obtained.

ly = 0.0166 + 0.0101 -f 0.00899 = 0.0357 engineer’s unit

PROBLEMS

774. A certain slender, uniform bar is 48 in. long and weighs 35 lb. Calculate the

moment of inertia with respect to an axis through one end, at right angles to the

length, by the approximate method, Ans. 5.80 engineer's units.

776 . A certain piece of fir lumber is 12 by 12 in. in cross section, and 12 ft long.

The material weighs 30 lb per cii ft. Calculate the moment of inertia of the body

with respect to a gravity axis at right angles to two of the lateral faces. Solve by

the exact method, using the results of Prob, 760. Solve also by the approximate
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method for slender rods (Art. 138). Calculate the percentage error of the approxi-

mate result.

776 . Calculate the moment of inertia of a uniform, round steel bar, 2 in. in diameter

and 3 ft long, with respect to an axis through one end at an angle of 60” with the axis

of the bar. The material weighs 490 lb per cu ft. Use the approximate method of

Art. 138. A as. 2.24 engineer’s um'ts.

777 . Derive a formula for the moment of inertia of the arc of a full circle, w’^ith

respect to a tangent. Solve without using the calculus. A ns. 37rr^.

778 . The sides of a certain right triangle are 6, 8, and 10 in. long. Calculate the

moment of inertia of the boundary line of the triangle, with respect to the 10-in. side.

779 . Calculate the moment of inertia of the boundary line of the triangle in

Prob. 778, w’ith respect to an axis at. right angles to the plane of the triangle and

psissing through the intersection of the 6- and 8-in. sides.

780 . Calculate the moment of inertia of the line AOBC^ in Fig. 308, Art. 101, with

respect to the a:-axis. A ns. 7710 in.^

781 . Calculate the moment of inertia of the line OABO, in Fig. 309, Art. 101,

with respect to the x-axiB.

782. Calculate the moment of inertia of the line ABCDE^ in Fig. 311, Art. 101,

with respect to the z-axis. A ais. 7130 in.^

783 . Calculate the moment of inertia of the hne ABCD, in Fig. 307, Art. 101.

with respect to the 2-axis.

143. Applications of the Special Formulas for

Areas. The problems to follow include a few

examples of areas whose moments of inertia are

often of importance in structural design.

Illustrative Problem

to Prob.

case.

742, Art.

784. Calculate the moment of inertia of the area

shown in Fig. 393, with respect to the |/-axis.

Solution. The problem can be solved most
readily by calculating the moment of inertia of the

full rectangle, 16 by 24 in., and by subtracting there-

from the moment of inertia of the semicircular area.

Moment of Inertia of the Rectangle. The answers

137, contain a formula directly applicable to the present

7 = ^ = 32,800 in.«

Moment of Inertia of the Semicircular Area. Let A represent the geometric

center of the semicircle, ^nd let G represent its center of gravil^y. By Prob.

496, Art. 97,

4X6
37r

2.65 in.

= 16 - A(? = 16 - 2.65 « 13.6 in.

The moment of inertia of the semicircle with respect to a vertical axis through
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A can be calculated from the formula given in the answers to Prob. 745, Art.

137,

~ = 509 in.^
8

By the parallel-axis theorem, Art. 134, the moment of inertia of the semi-

circle with respect to a vertical axis through G is as follows:

1 = 1 + Ac’ 509 = Ig + X (2.55)- la = 141 in.<
iU

Again by the parallel-axis theorem, ly for the semicircle now can be calculated,

as follows:

ly = 141 + X (13.5)- = 10,400 in."

Moment of Inertia of the f^haded Area. 3'hc moment of inertia of the shaded

area now can be obtained by subtraction.

ly - 32,800 - 10,400 - 22, 100 in.^

PROBLEMS

786.

Calculate the moment of inertia of the shaded area in Fig. 393, with respect

to the x-axis. A ns. 17,900 in.

^

786. Calculate the moment of inertia, of the shatled area in Fig. 317, Art. 102,

with respect to the x-axis.

787. Calculate the moment of inertia of the standard angle section in Fig. 394,

with respect to the x-axis. 62.4 in.**

788. Calculate the moment of inertia of the standard angle section in Fig. 394,

with respect to the ^-axis.

Fia. 394 Fig. 395

789. CaJcuIate the moment of inertia and radius of gyration of the standard zee

section, in Fig. 395, with respect to the x-axis. Am, 19.2 in.'*

790. Calculate the moment of inertia of the standard zee section in Fig. 395,

with respect to the y-axis. Mso calculate the moment of inertia with respect to an
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axis through 0 at right angles to the plane of the area, using the results of this problem

and of Prob. 789.

791. Calculate the moment of inertia of the shaded area in Fig. 312, Art. 102,

with respect to the as-axis.

A ns. 9270 in.

^

792. Derive a formula for the moment
of inertia of the shaded area in Fig. 313,

Art. 102, with respect to the a;-axis.

793 . Derive a formula for the moment
of inertia of any trapezoidal area, with

respect to the longer base. Represent

the longer and shorter bases by B and &,

respectively, and the height by h. A 718 ,

h\B + 36)
7 =

12

794

.

Derive a formula for the moment of inert,ia of any trapezoidal area with

respect to a gravity axis parallel to the two bases. Use the notation of Prob. 793,

and also the result of that problem. The answer to Prob. 628 also may be used.

,
6’ {B^ + 4B6 -f- 6*)

Am. / =* -r— .

36 (R -f 6)

79(5 . A piece is cut from a flat steel plate, in the form of an ellipse. The major
and minor axes of the piece are 24 in. and 18 in., respectively. The thickness is 1 in.

throughout. The material weighs 490 lb per cu ft. Calculate the moment of inertia

of the plate with respect to the major axis, using the approximate method for thin

plates (Art. 138) in connection with the results of Prob. 752, Art. 137.

796 . Figure 396 represente the cross section of a tjrpe of colunm frequently used,

consisting of four angles riveted to a rectangular web plate. In the present case the

web plate is 10 by J in. in cross section. The four angles are alike, each having the

dimensions shown. Calculate the moment of inertia and radius of gyration of the

column section, with respect to the aj-axis. Am, 412 in.^; 4.14 in.

797. Figure 397 represents the cross section of a standard channel. Calculate

the moment of inertia and mdius of gyration of the section with respect to the gravity

axis, OX.
798. Calculate the moment of inertia of the area in Fig. 319, Art. 102, with respect

to the :6-axis.
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144. Applications of the Special Fonnulas for Bodies. Bodies com-
posed of more than one kind of material can be dealt with^by finite

summation, if it is possible to divide the body into finite parts, each

of which is homogeneous in itself.

Illustrative Problems

799. A certain piece of oak lumber is 4 by 4 by 24 in. The material weighs

45 Ib per cu ft. Calculate the moment of inertia of the piece with respect to

an axis lying in one of the 4 by 4 in. faces, passing through the center of the

face and parallel to two of its sides. Solve by the exact method. Solve also

by the api)roximate method of Art. 138. Calculate the percentage error of

the approximate result.

Solution. The weight of the body, W = 4 X 4 X 24 X 45/1728 = 10 lb.

Plrst calculate the moment of inertia of the body with respect to a gravity axis

at right angles to its length. This can be done by means of the formula in

Prob. 760, Art. 139. In the present case: 62 = 4 in. = i ft, 63 - 24 in. =
2 ft. Substituting,

1 W
12 g

1 =
10

12 X 32.2
= 0.1064 engineer’s unit

Then, by the parallel-axis theorem (Art. 134),

1 I = 0.106 +
10

32.2
== 0.4170 engineer's unit

Approximate Method. In Prob. 731, Art. 135, the radius of gyration of a
straight line with respect to an axis at right angles to the line, through one end,

is found to be L/Vs. By Art. 138, this value should be approximately

correct for the timber in the present problem. Therefore, k = 2/V3 ft.

,
IT ,2 10 / 2 Y 1

/ = — I —
;

1 = 0.4141 engmeer's unit
g 32.2 \VsJ

The percentage error in the approximate result is

equal to (0.4170 ~ 0.4141) X 100/0.4170 - 0,695

per cent. The given body would hardly be called

slender, in the ordinary sense of the term, and

yet the approximate method gives a fairly accurate

result.

800. Figure 398 represents a cylindrical ring,

having inner and outer diameters equal to 12 in.

and 20 in., respectively, and having a length of 6 in. The ring is made of

wood, weighing 45 lb per cu ft. Eight holes are drilled entirely through

Fig. 398
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the ring, in a direction parallel to the geometric axis, OZ. Each hole is 2 in.

in diameter, and its own axis is at a distance of 8 in. from OZ, A solid, steel

pin is fitted into each hole, completely filling it. Calculate the moment of

inertia of the entire body with respect to OZ.

Solution.

Wt. of 20-in. solid wood cylinder = ----- 45 == 49.1 lb
1728

Wt. of 12-ill. solid wood cylinder = 45 = 17.7 lb
1728

Wt. of 2-in. solid wood cylinder = 45 = 0.491 lb
1728

Wt. of 2-in. solid steel cylinder = - 490 = 5.t35 lb
1728

In the answers to Prob. 764 is found the formula for the moment of inertia of

a right circular cylinder, with respect to its geometric axis.

For the 20-in. solid wood cylinder,

,
40.1(10)'

It =
:
= 0.529 engineer s umt

2 X 32.2 X 144

For the 12-in. solid wood cylinder,

17.7(6)2
= 0.0687 engineer’s unit

2 X 32.2 X 144

For the 2-in. wood cylinders, using the parallel-axis theorem. Art. 134,

^ 0.491(1)2
,

0.491/ 8 VI
7, = 8 1 — I = 0.0546 engineer’s unit

L2 X 32.2 X 144 32.2 \12/ J

For the 2-in. steel cylinders,

5.35(1)2
+ ^ 0 .

32.2\12/

J

595 engineer’s unit

J X 32.2 X 144 32.:

The moment of inertia of the entire body can now be calculated, as follows:

It = 0.529 - 0.0687 - 0.0546 + 0.595 == 1.00 engineer’s unit

PROBLEMS

801. The rim of a certain cast-iron flywheel has an outside diameter of 22 ft,

and a radial thickness of 30 in. The width across the face is 24 in. Calculate tJie

moment of inertia of the rim, with respect to the axis of rotation of the wheel, assum-

ing that the radius of gyration is equal to the arithmetic mean of the inner and outer

radii. Ans. 407,000 engineer’s units.
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802 . Solve Prob. 801 by the exact method. Compare the result with the answer
to that problem.

803 . Calculate the moment of inertia of a solid, steel sphere, 6 in. in diameter, with
respect to an axis 18 in. from the center of the sphere. The material weighs 490 lb per

cu ft. Solve t)y the exact method. Also solve approximately by lissuming that the

radius of gyration is equal to the distance between the given axis and the center of

the sphere. A ns. 2.27 engineer’s units; 2.24 engineer's units.

804 . A certain cylindrical disk of cast iron is 18 in. in diameter and 4 in. thick.

The material weighs 450 Ib per cu ft. Calculate the moment of inertia with respect

to an axis at right angles to the plane faces and 3 in. from the center of the disk.

806

.

A certain round, steel bar is 2 in. in diameter and 16 in. long, 4'he material

weighs 4V>0 lb per cu ft. Calculate the momf^nt of inertia with respect to an axis

through one end, making an angle of 60° with the length of the bar. Solve by the

approximate method of Art. 138. A7is, 0.197 engineer’s unit.

806 . A (ertain right circular cone is 12 in. high and 4 in. in diameter at the base.

A cylindrical hole 2 in. in diameter and 4 in. deep is drilled, axially, in the base.

The material is aluminum weighing 165 lb per cu ft. Calculate the moment of inertia

with respect to an axis tlirough the apex, parallel to the base.

807 . Given a square, flat plate of cast iron, 18 by 18 by 1 in., weighing 450 lb per

cu ft. Calculate the moment of inertia with respect to a gravity axis parallel to

four of the 18-in. edges. Solve by the exact method. Check by the approximate

method of iVrt. 138. Calculate the percentage error of the approximate result.

Ans. 0.4930 engineer’s unit; 0.4915 engineer’s unit; 0.304 %.
808 . Calculate the moment of inertia of the cone in Prob. 80G, with respect to its

geometric axis, if the hole is filled with lead weighing 700 ib per cu ft.

809 . A certain block of wood mcasurcis 12 by 12 by 15 in. A hole, 6 in. in diameter,

is bored through the center of the block, in a direction at right angles to two of the

12 by 15 in. faces. The hole is filled by a plug of steel weigliing 490 lb per cu ft.

The wood weiglis 30 lb per cu ft. Calculate the moment of inertia of the body with

respect to a central axis parallel to the 15-in. edges. Ans. 0.472 engineer’s unit.

810. Derive a formula for the moment of inertia of a homogeneous rectangular

parallelepiped, the lengths of whose edges are 5i, 62, and 5 3, with respect to one of

the hi edges. Ans. I — (.hi 4- hi)

.

811

.

A solid, wooden disk, 36 in, in diameter and 4 in. thick, is fitted with a steel

rim whose outer diameter is 38 in., and whose sides are flush with the surface of the

disk. Calculate the moment of inertia of the body with respect to its geometric

axis. Use 40 and 490 lb per cu ft for the unit weights of the two materials.

146. Moments of Inertia with Respect to Planes and Points. In the

preceding articles the term “ moment of inertia ” was usually accom-

panied by the phrase with respect to,” followed by the designation of

an axis. The term moment of inertia is occasionally encountered in

situations in which a plane, or a point, is dovsignated, instead of an axis.

Moments of inertia with respect to planes and points are of limited

importance in engineeiing, however, and wdll not be discussed in this

hook.

146. Moments of Inertia of Irregular Forms. In the case of an

irregular figure that cannot be subjected to exact mathematical analysis,
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or a figure which is so complex that a mathematical analysis would be

extremely laborious, recourse may be had to various approximate

methods. Graphical constructions are usually of assistance in such

solutions. Experimental methods are also used in many cases. The

description of these special methods is beyond the scope of this book,

but can be found in some of the more extended treatments of the subject.



CHAPTER XVII

KINEMATICS OF ROTATION

147. Definition of Rotation. Rotation is that motion of a body
in which the particles move in circular paths whose centers lie on a

fixed straight line. The term rotation Is applicable only to bodies

that are assumed rigid; therefore, the planes of the circles in which the

particles move are at right angles to the line on which the centers lie.

This fixed line is called the axis of rotation,

148. Angular Velocity. The terms “ linear velocity and linear

acceleration ” refer properly to single points or particles. With the

exception of the translating body, the use of these terms with reference

to bodies should be avoided, unless it is distinctly understood that some

definite point, or particle, of the body is in mind. The terms angular

velocity ” and angular acceleration,” however, refer primarily to

finite bodies; in some books they are also used in connection with

points, but they will not be so used in this book.

The linear velocity of a moving point at any instant is the time rate

at which the point is traversing distance at that instant. In this

definition the word distance ” is used in the ordinary sense, implying

linear measurement. The angular velocity of a rotating body may be

defined as the time rate at which the body is traversing angular distance at

the given instant. By angular distance is meant the angle through

which the body turns in any given time or, more specifically, the angle

described by any straight line lying in a plane at right angles to the

axis of rotation and always passing through the same particles of the

body. Since the body is assumed rigid, all such lines describe equal

angles during any given interval of time.

Let Fig. 399 represent a body rotating about an axis through 0 at

right angles to the plane of the paper. Let A represent any given

particle of the body. Let OA represent a line which, throughout the

motion, passes through the moving particle A, lies in a plane at right

angles to the axis of rotation, and intersects that axis at 0. Let OX
represent any convenient stationary axis through 0, at right angles to

the axis of rotation. Let 6 represent the angle between the stationary

axis OX and the moving line OA, at any instant. The direction of

measurement of 6 will be considered to be from OX to OA. If this

323
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measurement is made in a counterclockwise direction, B will be con-

sidered positive; if the measurement is made in a clockwise direction,

B will be considered negative.

The angle B is the angular distance from OX
to OA, The time rate at which the body is

traversing angular distance at any instant is

equal to the rate at which 6 is changing with

respect to t at that instant. Let o) represent

the angular velocity of the body. The general

formula for the angular velocity of a rotating

bod}^ at any instant is, then,

d%
o> = [207]

A plus sign accompanying an angular velocity obtained from Eq.

207 indicates that the body is rotating in the counterclockwise direction.

A minus sign indicates clockwise rotation.

Units, The units most commonly used for angular velocity are

radians per second and revolutions per minute. The unit of an angular

velocity obtained from Eq. 207 will depend on the units in which B

and t are expressed.

Illustrative Problems

812. A certain body rotates in accordance with the law ^ + 10, in

which B is expressed in radians and t is expressed in seconds. Calculate the

angular velocity of the body at the instant when t = o sec.

Solution,

^ + 10

dt dt

The foregoing equation can be used to calculate the value of co for any value of

t. At the instant when ^ = 5 sec,

CO = 3(5)2 = 75 rad/sec

813. A certain body rotates in accordance with the law w =*» 6 — 4f, in

which io is expressed in radians per second, and t is expressed in seconds. It is

also known that 0 = 2 radians at the instant when i = 0. Calculate the value

of B for the instant when i = 10 sec.

Solution,

dB

dt
CO = 6 — 4^ dB ^ 0) dl
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Substituting,

dd 4:1) dt

Integrating,

e ^ -2e + C

in which C represents the constant of integration. The problem states that

6 = 2 radians at the instant wlien ^ = 0. These values must satisfy the fore-

going equation. Substituting,

2-0-0 + C C = 2

The completed (0, t) equation is, then,

e = Gt-2e + 2

For the instant when ^ = 10 sec,

6 = 6(10) - 2(10)2 ^ 2 = -138 rad

PROBLEMS

814. The crankshaft of a certain automobile rotates at a speed of 3000 rpm.
Express this angular velocity in radians per second.

816.

Express an angular velocity of 480 rad per sec, in revolutions per minute.

816. The flywheel of a certain engine is 12 ft in diameter. The wheel rotates at n
constant angular velocity of 20 rad per sec. Calculate the linear velocity of a point

on the rim of the wheel. Ans. 120 ft/sec. '

817. A body rotates in accordance with the law 0 = — 10, in which B is in

revolutions and t is in minutes. Calculate the angular velocity of the body, in

radians per second, for the instant when t — 4 min.

818. A certain pulley rotateis in accordance with the law B = 6t, in which B is in

radians and i is in seconds. Calculate the angular velocity of the pulley, in revolu-

tions per minute. Ans, 57.3 rpm.

819. A body rotates in accordance with the law co = in wliich w is in radians

per second and t is in seconds. It is also known that B = 4 rad at the instant when
t = 0. Calculate 6 and w for the instant when t = 9 sec.

820. A certain flywheel, 4 ft in diameter, rotates in accordance with the law

B == 100<2 -f- bOt — 4, in which B is in revolutions and t is in minutes. Calculate the

linear velocity of a point on the rim of the wheel at the instant w^hen t = 2 min.

821. A body rotates in accordance with the law w = in which w is in radians

per second and f is in seconds. It is also known tliat <? = 0 at the instant when
t = 0. Calculate w and B for the instant when < = 10 sec. Ans. 0.251 rad /sec;

6.28 rad.

149. Angular Acceleration. The angular acceleration of a rotating

body at any instant is the time rate at which the angular velocity of the

body is changing at that instant.

Let a represent the angular acceleration at any instant. The angular

acceleration, then, is equal to the rate at w'hich w is changing with

respect to tj and is given by the following general formula:

dt
^ df [208J
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If the angular velocity and the angular acceleration agree in sign the

rapidity of the rotary motion is increasing; if they disagree, the rapidity

is decreasing.

In certain problems the following formula is more convenient than

is Eq. 208. It is obtained by eliminating di between Eqs. 207 and 208.

= adO [209]

Units. The units most commonly used for angular acceleration

are radians per second per second and revolutions per minute per min-

ute. The unit of an angular acceleration obtained from Eq. 208 will

depend on the units in which w and ty or d and i, are expressed.

% Illustrative Problems

822. A certain body rotates in accordance with the law 6 = + 10.

In this equation, 6 is expressed in revolutions, and t is expressed in minutes.

Calculate the angular velocity and angular acceleration of the body, for the

instant when < = 4 min.

Solution.

e + 10

0)
dt

(a)

- ^2 + 10)

dt
2.5t^ ~2<

At the instant when t = 4 min,

<t) = 2.5(4)^ — 8 = 20 — 8 = 12 rev/min

du)
a

d{2.5 -2 t)

di
3.75 - 2

At the instant when i = 4 min,

a = 3.75(4)^^ — 2 = 7.5 — 2 = 5.5 rev/min*

At the given instant w and a are both positive, showing that the body is

rotating in the counterclockwise direction, at increasing speed.

823. A body rotates in accordance with the law a = 0.84^°-^, in which

a is in radians per second per second and < is in seconds. It is also known
that 6 = +4 rad and w = —6 rad per sec at the instant when t « 0. Cal-

culate By £0,
and a for the instant when f == 10 sec.

Solution. From the problem, a = 0.84<®-^. At the instant when < « 10 sec.

a = 0.84(10)®*^ - +2.11 rad/sec*

do3 — a dt (0.84i®*^) dt
dt

Integrating,

09 « + Cl
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in which Ci represents the constant of integration. From the problem,
cj = — 6 when t = 0. This pair of simultaneous values must satisfy the
equation for o) obtained above. Substituting, to find the value of Ci,

-6 = 0 + Cl Cl = ~6

The general equation for o) in this problem is, therefore,

w = — 6

At the instant when t - 10 sec,

w - 0.6(10)1-^ - 6 = +9.07 rad/sec

= dB (j)dt dS =- (0.6^^--^ - 6) dt
at

Integrating,

e = 0.25/2-* - + C 2

From the problem, 0 = +4 when t = 0. Substituting these values in the

foregoing equation,

+4 == 0 - 0 + C2 C2 = +4

The completed equation for 6 is, therefore,

e = 0.25(2 -^ -6^ + 4

At the instant when i = 10 sec,

e = 0 .25 ( 10)2
-* _ 0(10) 4. 4 == + 6.80 rad

824. A body rotates in accordance with the law, a* = 6^, in which a is

expressed in radians per second, and ^ is expressed in radians. It is also known
that o) = 0 and ^ = 0 at the instant when ^ = 0. Derive the equation express-

ing the relation between a and L

SoliUion. This is a case in which Eq. 209 is directly useful. Solving for a
in the equation of the motion,

a =

Substituting this value of a in Eq. 209,

u du = a d6 (jidu — (6)^^ 0^ dB

Integrating,

The problem states that w = 0 at the instant when ^ « 0. These values must
satisfy the foregoing equation. Substituting,

0 * 0 + Cl Cl = 0
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Therefore, the («, 6) relation for the given motion is

= 1.5(6)’* or w = (1.5)’*(6)’*5’*

Substituting the foregoing expression for co in Eq. 207, and transposing,

Integrating,

dt = (L5r^^(6r^d-^d0

t = (1.5)“’*(6)“’*3e+’* + C*

By the use of the initial conditions stated in the problem, the value of C 2 is

found to be zero. Therefore, the completed (^, i) relation is as follows:

or

from which, by means of two successive differentiations, in accordance with

Eqs. 207 and 208, it is found that,

w = and a — t

the latter being the desired equation.

PROBLEMS

826

.

A flywheel hiis an angular acceleration of 1.25 rad per sec per sec. Express

this acceleration in revolutions per minute per minute. Ans. '716 rev/rain^.

826 . A flywheel has an angular acceleration of 400 rev per min per min. Express

this acceleration in radians per second per second.

827 . A rotating body has an angular acceleration of 10 rev per min per sec.

Express this acceleration in rad per sec per sec. Ans. 1.05 rad/sec^.

828 . A motor attains a speed of 1750 rpm, during an interval of 5 sec, starting

from rest. Assuming that the speed increases at a constant rate with respect to

time, calculate the angular acceleration, in radians per second per second.

829 . A 24«in. pulley starts from rest and accelerates uniformly with respect to

time. At the end of 20 sec a ix)int on the periphery of the pulley has a linear velocity

of 1 mi per min. Calculate the angular acceleration of the pulley, in revolutions

p)er minute per minute. Ans. 2520 rev/min^.

830 . A body rotates in accordance with the law B — 0.3^^ + — 2, in wliich B is

in radians and t is in seconds. Calculate co and a for the instant when i ~ \ min.

831 . A body rotates in accordance with the law co = 2^ 4- 4, in wdiich co is in

radians per second and t is in seconds. It is also known that B = 0 when t » 0.

Calculate co, B, and a for the instant when ^ = 3 sec. Ans. -j-lO rad/sec; 4-21 rad
;

4-2 rad/sec^.

832 . A body rotates in accordance with the law a = 4.5^^^ in which a is in revolu-

tions per minute per minute and t is in minutes. It is also known that co = 0 and

^ = 0 at the instant when t - 0. Calculate the value of B for the instant when
t *= 16 min.

833 . A body rotates in accordance with the law 4^ = o^. It is also known tliat

<0 = 0 and 0 = 0 at the instant when t = 0. Derive the equation showing the rela-

tion between a and t. Ans. a =
834. A body rotates in accordance with the law 0 in which B is in revolu-

tions and t is in minutes. Cialculate the average angular acceleration of the body

during the interval from 1 — 4 min to i = 12 min.
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836. A body rotates in accordance with the law a == —5^, in wliich a is in radians
per second per second and 0 is in radians. It is known, also, that 0 - ir14: rad at the
instant when w == 0. Calculate the angular velocity for the instant when 0 — tt/S

rad. Ans. 1,52 rad/sec.

836. A certain pendulum rotates in accordance with the law a = —2 sin in

which a is in radians per second per second and 0 is in radians. It is known, also,

that ^ = tt/G rad at the instant when w — 0. Calculate the value of w at the instant

when 0 = 0.

160. Relations between the Motion of a Rotating Body and the

Motions of Its Particles. Didances, The linear distance through

which a 'particle of a rotating body moves in a given interval of time is equal

to the product of the radius of the path of the particle and the angular dis^

tancCf in radians^ traversed by the body in

the given interval.

The truth of the foregoing statement Is

obvious from principles of plane geomeiiy.

Velocities, The linear velocity of a par-

ticle of a rotating body at any instant is

equal to the product of the radius of the path

of the particle and the ayigular velocity of the

body at that instant.

Proof, Let Fig. 400 represent a body

rotating about an axis through 0 at

right angles to the plane of the paper. Let A represent the given

particle, and let r represent the radius of the circular path in which the

particle moves. Let s represent the distance from A to any fixed

point, O', on the path, me[isured along the path. Let 0 represent the

angle between the fixed axis, OX, and the moving line, OA, at any

instant. The angle 6 will be understood to be expressed in radians, in

all the equations of the present article. Let v represent the linear

velocity of the particle A, at the given instant. From the figure,

ds = rdd [210]

Fig. 400

Differentiating in Eq. 210, with respect tef t,

ds do

di dt
ro) [211 ]

Equation 211 is an algebraic statement of the relations stated above.

Obviously, v Ls at right angles to the radius of rotation of the particle,

and its sense must be consistent with the direction of rotation of the

body.

Accelerations, The tangential component of the linear acceleration of a

particle of a rotating body is equal to the product of the radius of the path of

the particle and the angidar acceleratwi of the body.
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Proof. From Eq. 163, Art. 117, Or = du/di. Substituting in this

equation the value of v given by Eq. 211,

CiX “
d (roj)

dt

do)

[212]

which proves the principle stated above. The tangential component,

ctj is also at right angles to the radius of rotation of the particle, and

its sense must be such as to be consistent with the sign of a.

The normal component of the linear acceleration of a particle of a rotating

body is equal to the product of the radius of the path of the particle and the

square of the angular velocity of the body.

Proof. Equation 168, Art. 117, gives the value of aj^ for any case

of curvilinear motion. In the present case the radius of curvature of

the path is the radius of the circle in which A moves. Substituting in

Eq. 168, the value of v given by Eq. 211,

The normal acceleration, ujyr, coincides with the radius of rotation, r,

and its sense is tow^ard the center of the circular path. It is sometimes

called the centripetal acceleration.

Units. It must be kept firmly in mind that the equations^ of the

present article are in forms that necessitate the use of the radian for the

unit of angular measure.

Illustrative Problems

837. The speed of a certain 12-ft flywheel increases uniformly at the rate of

600 rev per min per min. Calculate v, and uat, for a point on the rim of

the wheel at the instant when the speed is 90 rpm.

Solution. As was stated, substitution in Eqs. 211, 212, or 213 necessitates

the use of the radian as the unit of angular measure. Any unit of time, and

of length, may be used, but the second and the foot are most common, and are

required by many kinetic formulas. The foregoing units will be used in the

present problem. Expressing w and a in radians and seconds,

0) = 90 rpm = — = 9.42 rad/sec

a = 600 rev/min^ == ^ rad/sec^
3600

From Eq. 211,

f)
sst roi i; 6 X 9.42 ** 66.5 ft/sec
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From Eq. 212,

ar - tol ar = 6 X 1.05 = 6.30 ft/sec*

From Eq. 213,

as - ru? as = 6(9.42)^ = 532 ft/sec^

838.

A body rotates in accordance with the law 0 == — 2< + 4, in which

6 is expressed in revolutions, and t is expressed in minutes. Calculate v,

ar, and as for a particle of the body at a distance of 18 in. from the axis of

rotation, at the instant when t — 60 sec. Express the results in terms of feet

and seconds.

Solution.

e ^ e - 2t + 4

03

dt
CO =

d(t^ - 2 ^ 4- 4)

dt

= 3 <2 - 2

a a
d(3 - 2)

dt
6f

At the instant when ^ = 60 sec == 1 min

w == 3(1)^ — 2 = 1 rev/min

a — 6(1) = 6 rev/min“

Changing to radians and seconds,

^ ^ ^
«= 0. 105 rad/sec

60

a = = 0.0105 rad/sec.^

(60)2

Substituting in Eqs. 211, 212, and 213,

t; = rw = 1,5(0.105) - 0.158 ft/sec

ar = m = 1.5(0.0105) = 0.0158 ft/sec^

as = rw2 = 1.5(0.105)2 = 0.0165 ft/sec^

PROBLEMS

839. The crankshaft of a certain engine is rotating at a constant speed of 2400 rptn.

The stroke is 6 in. Calculate the linear velocity of the center of the crankpin.

Ana. 62.8 ft/sec.

840. A 36-in. pulley is rotating at a constant speed of 1200 rpm. Calculate the

linear velocity and acceleration of a point on the rim of the pulley.

841 . Calculate the angular acceleration necessary to cause a 12-ft flywheel to

attain a rim speed of 1 mi per min, during an interval of 40 sec, starting from rest.

Am. 0.367 rad/sec^.
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842. A belt accelerates a 3-ft pulley uniformly, from a speed of 1200 rpm to a
speed of 2400 rpm, during an interval of 45 sec. Calculate the linear velocity and
tangential acceleration of the belt at the instant ending the interval.

843. A 4-ft pulley is retarded uniformly from a speed of 120 rpm to a speed of

30 rpm, during an interval of 3 sec. Calculate the resultant acceleration of a point

on the rim, at the instant when 2 sec have elapsed. Also calculate the angle between

the resultant acceleration and the normal component. Aiis. 79.2 ft/sec^; 4° 35'.

844. At a given instant a point on the rim of a 2-ft pulley has a resultant linear

acceleration of 360 ft per sec per sec. The angle between the acceleration and the

radius of the pulley is 30°. Calculate the angular velocity and angular acceleration

of the pulley at the given instant.

846.

A body rotates in accordance wdth the law 9 — 2/'^-, in which 9 is in revolu-

tions and t is in minutes. Calculate art and a,y for a point 2 ft from the axis of

rotation, at the instant when t = 4 min.

846. A particle on the rim of an 18-in flywheel moves in accordance with the law

8 » in which s is in feet and t is in seconds. Calculate v, ar, and a^r for the

instant when ^ - 16 sec. Ans, 3580 ft/sec; 560 ft/sec^; 17,100,000 ft/sec^.

847. The tangential acceleration of the center of the crankpin of a certain engine

has a constant magnitude of 2 ft per sec per sec. The stroke of the engine is 16 in.

Calculate the velocity of the point, its normal acceleration, and the angular velocity

of the crankshaft at the instant wdien ^ min has elapsed, starting from rest.

848. A certain body rotates in accordance with the law 9 = 2t^. It is desired to

prepare a table giving valucjs of the magnitude of the resultant acceleration of a point

at a distance, r, from the axis of rotation, at several instants during the motion.

Derive a formula for the magnitude of a, in terms of r and f.

Ans. a = 12r/Vir-|-

161, Rotation with Constant Angular Velocity. Rotation in which

the angular velocity is constant is often called uniform rotation. It

follows, from the title, that the angular acceleration is zero.

The special formula for uniform rotation is as follows:

e = (Of [214]

The derivation of Eq, 214 is similar to that of Eq. 127, 110. The
two formulas are alike, except for differences in notation.

In the use of Eq. 214, the stationary axis OX, Fig 399, from which

d is measured, must be placed in the position occupied by the moving

line OA at the instant when t is zero.

PROBLEMS

849. A certain pulley describes 1,000,000 rev in 24 hr, at constant speed. Calcu-

late the angular velocity of the pulley, in radians per second.

860. Calculate the angular velocity of the earth on its axis, in radians per second.

Ans. 0.0000727 rad/sec.

861. A point on the rim of a 10-ft flywheel travels 3,000,000 ft in 24 hr. Calcu-

late the angular velocity of the wheel in radians per second, assuming uniform

rotation.
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852. A certain flywheel rotates at a constant speed of 4 rad i>er sec. How many
revolutions will the wheel describe in 8 hr? Calculate the iinejir velocity, in miles

per hour, of a point on the wheel at a distance of 18 in. from the axis of the shaft.

Ans. 4.09 mi/hr.

863. The 1927 model of a certain automobile had a gear ratio, in high,” of 46/11.

This means that the crankvshaft made 46 revolutions about its own axis while the

rear wheels made 11 revolutions about their axis, when the car was running in a

straight line in high gear. The tires were 29 in. in diameter,

of revolutions made by the engine while the car traveled

1 mi. Calculate the angular velocity of the crankshaft,

in revolutions per minute, and in radians per second, when
the car had a speed of GO mi per hr.

854. In Fig. 401, A and B represent a pair of fihition

wheels, used in transmitting small amounts of power. The
small wheel is 4 in. in diameter, and luis a constant speed

of 240 rpm. The distance, r, is 6 in. Calculate the angu-

lar velocity of the larger wheel. Assume that no slipping

occurs. Ans. 80 rpm.

856. A certain elecdric motor has a speed of 1750 rpm.

The pulley on the motor shaft is 4 in. in diameter. The
motor drives a lineshaft, by means of a belt running on an

18-in. pulley on the lineshaft. A machine is to be driven

from the lineshaft by means of a second belt. The machine

must run at a speed of 250 rpm and its pulley is 14 in. in diameter. Calculate the

necessary diameter of the second lino-shaft, pulley.

866 . A power punch is to be operated at the rate of 20 strokes per min. It

makes one stroke during ea(!h revolution of its mainshaft. 'Fhe mainshaft has a spur

gear having 120 teeth. This gear is driven by a 24-tooth pinion on a countershaft.

The pulley on the countershaft is 24 in. in diameter, and is belt-(;onnected to a line-

shaft. The lineshaft has a speed of 300 rpm. Calculate the necessary diameter of

the linesluift pulley. A ns, 8 in,

867 . A certain body rotates in accordance with the law 0 2, in which 6 is

in radians and t is in seconds. Calculate the angular velocity of the body, in revolu-

tions per minute, for the instant when t ~ 2 sec, and also for t = 4 sec.

868. A body rotates in accordance with the law 0 - 4 — 2^, in which $ is in revo-

lutions and t is in minutes. Calculate the’angular velocity of the body, in radians

per seiiond. Arts. —0.209 rad/sec.

Calculate the number

162. Rotation with Constant Angular Acceleration. In this type of

rotation the angular velocity varies, but the angular acceleration is

constant. The angular velocity varies uniformly with respect to time.

The special formulas for this type of rotation are as follows:

0) = (Do +
6 = (Oot +

0) = -f 20:0

0 =
(Do + (D

t

[215]

[216]

[217]

(218]
2
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The derivations of the foregoing formulas are similar to those of the

formulas in Art. 111. It will be noticed that the two sets of formulas

are exactly alike except for differences in notation.

When Eqs. 215, 216, 217, and 218 are used in problems it is necessary

to place the stationary axis OX, in Fig. 399, in the position occupied

by the moving line OA at the instant when t is zero.

The quantity coo is the particular value of co at the instant when t is

zero, and is sometimes called the initial angular velocity.

Rotation in which the angular acceleration is constant is often called

uniformly accelerated rotation.

Illustrative Problems

869. A certain flywheel has a constant angular acceleration of 20 rad per

sec per sec. The initial angular velocity is 1800 rpin. Calculate the total

number of revolutions described in the next 12 sec.

Solution. Expressing the given angular acceleration in revolutions per

minute per minute,

a = 20 rad/sec'' =» = 11,500 rev/mm^
27r

By Eq. 216,

^ - 0)0^ -h e - 1800 X (U) + i’ X 11,500 = 590 rev

860. The angular velocity of a certain wheel increases uniformly from

500 rpm to 3000 rpm in | min. Calculate the angular acceleration of the

wheel, in radians per second per second. Calculate the total number of

revolutions described by the wheel during the interval. Calculate the

angular velocity of the wheel, in revolutions per minute, at the instant when
500 rev have been described, counting from the beginning of the interval.

Solution. Substituting in Eq. 216,

w = Wo + 3000 = 500 + a(0.5)

a = 5000 rev/min^ =* 8.73 rad/sec*

Substituting in Eq. 218,

= <? = 521±i222 X i = 875 rev
2 2 2

Substituting in Eq. 217,

« = Vto* + 2ad v'(500)=' + 2 X 5000 X 500 = 2290 rpm

PROBLEMS

861. A certain wheel rotates with a constant angular acceleration of 3.25 rad per

sec per sec. Calculate the angular velocity, in revolutions per minute, that the

wheel will attain in 45 sec, starting from rest. Ans. 1390 rpm.
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862. What angular deceleration, in revolutions per minute per minute, would be

necessary to reduce the speed of a rotating body from 3600 to 1200 rpm, during an

interval of 30 sec?

863. A flywheel is accelerated uniformly at the rate of 3 rev per min per sec. How
much time will elapse while the speed is changing from 50 to 200 rad per sec? How
many revolutions will be described by the wheel during the interval? Ana, 478 sec;

9510 rev.

864. A brakewheel is rotating at a speed of 3200 rpm. When the brake is applied

the wheel is brought to rest, uniformly with respect to time, while it describes 212 rev.

Calculate the angular deceleration, in radians per second per second, produced by the

brake, and the time consumed in bringing the wheel to rest.

866.

What angular acceleration, in radians per second per second, is necessary

in order to increase the speed of a wheel uniformly, with respect to time, from 2500

to 4500 rpm, while the wheel desenbes 3000 rev? How much time is required?

Ana. 4.08 rad /sec^; 51.4 sec.

866. An elevator is raised and lowered by means of a cable which is wound on a

hoisting drum 6 ft in diameter. It is desired to accelerate the elevator from rest to a

speed of 650 ft per min, in a distance of 15 ft. Calculate the constant angular

acceleration that the drum should have. How many revolutions would be described

by the drum during the acceleration period? How much time would be required?

867. A certain rotating body describes 20,000 rev in 8 min, with a constant angular

acceleration of 0.5 rad per sec per sec. Calculate the initial and final angular veloc-

ities. Ana. 142 rad/sec; 382 rad/sec.

868. A wheel has a constant angular acceleration of 4 rev per min per sec. The
initial angular velocity is 1000 rpm. Calculate the angular velocity at the instant

when the wheel has described 750 rev. Calculate the elapsed time.

869. A body rotates in accordance with the law 0 = -f 4< — 12, in which d is

in radians and t is in seconds. Calculate the angular acceleration. A ns. 2 rad/sec^.

870. A certain flywheel rotates in accordance with the kinetic equation, SM, *

22.5a, in wliich represents the torque of the external forces about the axis of

rotation, in foot-pounds, and a represents the angular acceleration of the body, in

radians per second per second. Calculate the torque necessary to accelerate the

flywheel from 1200 to 3600 rpm, while the wheel describes 200 rev. A na. 1 130 ft-lb.



CHAPTER XVIII

KINETICS OF ROTATION

163. Special Nature of the Discussion. The study of the kinetics of

rotation in this book will be confined to the case in which the rotating

body is homogeneous and luis a plane of symmetry at right angles to

the axis of rotation?*

The majority of the problems in rotation encountered in engineering

practice conform to these special conditions. In some problems, when
the body as a whole lacks such a plane of symmetry, it is possible to

divide it into two or more parts, each of which does have such a plane.

Then the problem can be solved by treating each symmetrical part

individually by means of the methods to be developed in the present

chapter. The results thus obtained, properly combined, are valid for

the entire body.

164. The Resultant of the External Forces. The resultant of the

external forces acting on a homogeneous^ rotating body having a plane of

symmetry at right angles to the axis of rotation is a force lying in the plane

of symmetry y
whose magnitude is equal to {W/g)ay whose inclination and

sense are the same as the inclination and sense of S, and whose moment

about the axis of rotation is equal to Iza.

In the foregoing, U is the linear acceleration of the center of gravity,

a is the angular acceleration of the body, and Iz is the moment of inertia

with respect to the axis of rotation.

In the special case in which the center of gravity is on the axis of

rotation the resultant reduces to a couple whose moment is equal to

IzUy lying in an}" plane at right angles to the axis of rotation. The sense

of the couple agrees with that of a.

Proof. In Fig. 402, A represents any particle of the body, at any

given instant. The body itself is not shovm. The X7j-p]me represents

the plane of symmetry of the body. The center of gravity, represented

by G, is necessarily in the plane of symmetry. The 2:-axis is the axis of

rotation, and p represents the radius of rotation of A. represents

certain equal angles,, as indicated in the figure. A' represents that

particle of the body which is symmetrical with A on the opposite side

of the xy-plane. A and A' are equal in weight.

The vector {dW/g)a represents the effective force for the particle

336
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A (Art. 123). The vectors {dWlg)aT and {dWlg)af^ are the tangential

and normal components of the effective force. Obviously the effective

force for particle A' is in all respects equal to the effective force for

particle A.

By the principle of components, Art, 50, Rx = By Eq. 184,

iFx = Therefore,

W
Rx^—^x [219]

9

In a similar manner it can be shown that

W
Ry = ~ ny [220]

Since G moves in a plane at right angles to the axis of rotation, = 0.

From this fact, and by the process of reasoning used above, Rz = SF^,

and 2F, = i}V/g)nz = 0. ^fherefore,

F, = 0 [221]

By compounding F^, Ry, and Rz, as given by Eqs. 219, 220, and 221, it

can be shown that

WR^~n [222]

9

The foregoing results also show that F has the same inclination and

sense as has 3.

The fact that the resultant lies in the plane of symmetry can be
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shown from Fig. 402. As was stated, the effective forces for particles

A and A' are equal, parallel, and alike in sense. Their resultant lies

in the plane of symmetry. Since the body is homogeneous and sym-

metrical, all the effective forces will be paired in this manner. It

follows that the resultant of all the effective forces will lie in the plane

of symmetiy. By Art. 125, the resultant of the external forces is

identical with the resultant of the eliective forces. Therefore, the re-

sultant of the external forces also lies in the plane of symmetry.

It now remains to be proved that the moment of 72 about the axis of

rotation is equal to I^a. Since, by Art. 125, the resultant of the ex-

ternal forces is identical with the resultant of the effective forces, it

follows that the moment of Ji about the axis of rotation is equal to the

moment-sum of the effective forces about that axis. Let this moment-
sum be represented by From the figure,

By Eq. 212, Art. 150, ar = pa. Substituting in Eq. 223,

ZM, = J' a [224]

The angular acceleration, a, is a constant for the entire body at any

one instant. Therefore, Eq. 224 may be written as follows;

rdJV
= a

I iJ g
[225]

/
dW

represents the moment of inertia of

g

the body with respect to the axis of rotation (Art. 132). Representing

this by Izi

EM, = [226]

By the principle of moments, Art. 50, the moment of 72 is equal to the

moment-sum of the external forces. Therefore, EM, also represents

the moment-sum of the external forces about the axis of rotation.

figure 403 represents the resultant of the external forces as a single

force, in accordance wdth the conception set forth in the beginning.

The moment-arm of R with respect to the axis of rotation must be such

that the moment of R will be equal to /,a.

Alternative Form of the Residtant. Any force can be resolved into an

equivalent force and couple (Art. 38). Thus, the resultant as shown

in Fig. 403 can be resolved into an equal force in the plane of symmetry,
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intersecting the axis of rotation, and a couple in that plane whose
moment is equal to ha and whose sense agrees with that of a. This

conception of the resultant is shown in Fig. 404. It is preferred by
some persons.

Y

0 X

Fig. 403 Pig. 404

If desired, the ar-axis may be placed so that it will pass through the

center of gravity of the body. If this is done, will be equal to

and Sj, will be equal to fa, in which f represents the radius of rotation

of the center of gravity.

166. Methods of Solving Problems. Three slightly different methods

for the solution of problems will be described.

The Residtant Method, In this method the external forces, together

with their resultant, are shown on the sketch. The resultant may be

represented in accordance with either of the conceptions discussed in

Art. 154. The equations for the solution are then formed on the basis

of the principle of components, Art. 50, or the principle of moments,

or both.

The Equilibrant Method. In this method the equilibrant, or reversed

resultant, of the external forces is used instead of the resultant. The

principles of equilibrium. Arts. 51-74, are then applied to the entire

system, external forces and equilibrant, to provide the necessary" equa-

tions. If the student uses this method he should be careful to avoid

any impression that the body actually is in equilibrium. Equilibrium

of the body exists only under the special conditions that the center of

gravity lies on the axis of rotation and the body has no angular accel-

eration.
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Solution by Formulas. In many problems direct substitution in Eq.

226, Art. 154, is sufficient for a complete solution. Equations 184,

185, and 186, of Art. 126, may be used if needed. If additional equa-

tions are necessary the following principle may be used;

The moment-sum of the external forces about any axis lying in the plane

of symmetry of the body is equal to zero.

The foregoing principle follows from the fact that the resultant of

the external forces lies entirely in the plane of

symmetry (Art. 154), and consequently has no

moment about any axis in that plane.

Illustrative Problems

871. Figure 405 represents a pulley 3 ft in di-

ameter, weighing 200 lb, mounted in bearings and

subjected to two constant belt pulls, as shown. The

radius of gj^ation of the pulley with respect to the

How many revolutions will the pulley describe while

its speed changes from 1000 to 2000 rpm? Disregard friction.

Solution. The moment of inertia of the pulley with respect to the a.xis of

W 200
rotation is /, = — (1-2)^ == 8.94 engineer’s units. Equation 226,

g 32.2

Art. 154, is sufficient for the calculation of a.

SAf, - ha +60 X 1.5 - 10 X 1.5 = 8.94a a = 8.39 rad/sec^

601b.

Expressing a in revolutions per minute per minute,

a

By Eq. 217, Art. 152,

<a = V^coo + 2a^

8.39 X 3600

27r

= 4810 rev/min^

(2000)^ - (1000)^

2 X 4810
= 312 rev

The resultant method, or the equilibrant method, could have been used, of

course. These methods offer little or no advantage, however, in such a

simple problem.

872. Figure 406 represents a drum, A, keyed to a horizontal shaft. A body,

is suspended from a light cable which is wrapped around the drum. The
drum and its shaft weigh 966 lb, and have a radius of gyration of 1.6 ft, with

respect to the axis of rotation. The suspended body, R, weighs 644 lb.

Calculate the angular acceleration of the drum, the linear acceleration of J?,

and the tension in the cable. Disregard friction, and the weight and stiffness

of the cable.

Soluiion. The drum has a motion of rotation, and body B has a motion of

rectilinear translation. Thus far in the book no method has been devised in
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the use of which it would be possible to treat this entire mechanism as a single

body. Therefore, it is necessary to deal with A and B individually.

Figure 407 represents the drum alone. The external forces acting on the

drum are its weight, Wa, the reaction at the shaft bearings, Q, and the pull

exerted by the cable, F. A very common error in problems of this type con-

sists in assuming that P, which is the tension in the cable, is equal to the

weight of the body F, suspended from the cable. This would be correct if B
were in eciuilibriurn, but there is no reason for expecting a condition of equilib-

rium in the present case.

Fig. 406 Fig. 407 Fig. 408

Since friction is to be disregarded, the force Q will be normal to the periphery

of the shaft.

Figure 408 represents i? as a free body. The external forces acting on B
are its own weight, Wb, and the upward pull, P, of the cable.

The angular acceleration, a, of the drum has been assumed clockwise. The
linear acceleration, a, of body B has been assumed downward. Great care

must be exercised to make assumptions that are consistent with the possibili-

ties of a given mechanism. In the present case it would be plainly inconsistent

to assume a clockwise and a upward. If desired, however, a could be assumed

counterclockwise and a upward. The results obtained under such an assump-

tion would be numerically correct, but would be accompanied by minus signs,

showing the entire assumption regarding directions to be incorrect.

For the drum, applying Eq. 226, Art. 154, with careful attention to signs,

P « 38.4a

For body P, applying Eq. 185, Art. 126, with careful attention to signs,

SFy = — P - 644
9

(—a) P =* 644 — 20a
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By Eq. 212, Art. 150,

ar ^ ra a = 2a

The solution of the three equations obtained above gives,

a = 8.21 rad/sec2 a - 16.4 ft/sec^ P = 315 lb

It should be noticed that the tension in the cable is decidedly different from the

weight of body B,

873. Figure 409 represents a horizontal shaft, AB, turning in bearings at A
and B. The bearings themselves are not shown. An arm, OG, is attached

rigidly to the shaft, and carries at its outer end a solid cylinder, weigliing

322 lb. The cylinder is 1 ft in diameter, and its geometric axis is parallel to

the axis of the shaft, the distance between the two axes being 1.5 ft. At the

instant under consideration the axis of the cylinder is in the horizontal plane

containing the axis of the shaft. At D an 18-in. pulley is keyed to the shaft,

and is subjected to horizontal belt pulls, as shown. Distance AO = OD =
DB *5 4 ft. The angular velocity of the system, at the given instant, is 30

rpm. Calculate the angular acceleration of the system, and the components

of the reactions exerted on the shaft by its bearings, for the given instant.

Disregard all weights except that of the cylinder, and disregard all friction.

Soltdion, It will be assumed that a is clockwise, as indicated by the

curved arrow. Ux is the normal acceleration of O and is directed toward 0.

Uy is the tangential acceleration of (?, and must be assumed upward in order
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to be consistent with the assumed sense of a. Assume the x- and ^/-components

of the bearing reactions in the manner shown. Assume that these reactions

have no ^-components.

For the cylinder, using the parallel-axis theorem, Art. 134, and the answers
to Prob. 764,

1 .

IW
2 g

r2 +
W 2— OG

9

322 X (0.5)^ 322 X (1.5)^

2 X 32.2 32.2
23.8 engineer's units

Substituting in Eqs. 184 and 185, Art. 126,

TV

9

W
ZFy = -S,

9

-Ar - + 800 + 130 =— (+S*)
32.2

322
+ + if. - 322 =— (+a„)

In the present article it is shown that the moment-sum of the external forces

about any axis in the plane of symmetry is equal to zero. Using the x- and
t/-axes as axes of moments,

2M* = 0 -4Ay + 8By = 0

2My = 0 -4Ax -f - 800 X 4 - 130 X 4 = 0

From Eq. 226, Art. 154, and from Eqs. 212 and 213, Art. 150,

XM, = +322 X 1.5 - 800 X 0.75 +" 130 X 0.75 = 23.8(-a)

Uy — 1.5a

The solution of the foregoing equations gives

a — 0.819 rad/sec^

Ax == 211 lb Ay = 223 lb - 571 lb By = 111 lb

Positive signs were obtained with all results, showing that the senses were

assumed correctly in all cases.

874. Solve Prob. 873 by the resultant method.

Solution. Figure 410 is a simplified representation of the system. In

Art. 154 it is shown that the resultant of the external forces may be indicated

as a single force whose magnitude is (W/g)U, lying in the plane of symmetry

and intersecting the axis of rotation, and a couple, also lying in the plane of

symmetry, whose moment is /,a. In Fig. 410 the single force has been

resolved, for greater convenience, into its components, {W/g)Ux and {W/g)^y.

The sense of the couple must be assumed in conformity with the assumed

ar = tol

as =
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(clockwise) sense of a. From Prob. 873, 7* = 23.8 engineer’s units. By the

principle of components, Art. 50,

By the principle of moments, Art. 50, using the axes x' and y\ at R, as the

axes of moments.

- ilf - l2Ay + 322 X 8

V32.2 /

ZMy, = M(R)y, -12.il + 800 X 4 + 130 X 4
/322 \= + (— flx )l

\32.2 V
ZM. = +322 X 1.5 - 800 X 0.75 + 130 X 0.75 = 23.8(-a)

By Eqs. 212 and 213, Art. 150,
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The solution of the seven equations thus formed gives the same results as in

Prob. 873, It should be noticed that the resultant method is of advantage
because of its general nature, offering complete freedom in the choice of axes.

The equations are more easily solved than those of Prob. 873, because of th(

fact that the unknown quantities appear less frequently.

876.

Solve Prob. 873 by the equilibrant method.

Solution. In this method the equilibrant, instead of the resultant, of the

external forces is shown in the figure. The figure would be like Fig. 410,

except that the four vectors rei^resenting the resultant in that figure would be

reversed. The eciuatioris would be formed by equating the algebraic sum of

the components of the forces and their equilibrant, along any desired axis, to

zero; and by equating the algebraic sum of the moments of the forces and their

equilibrant, about any desired axis, to zero.

If the axes were selected as in Prob. 874, the resulting equations would be

identical with those of that problem, except for the position of the equality

sign and for the consequent differences in algebraic signs. Obviously they

would yield the same results. The details of the solution will not be given.

PROBLEMS

876 . A certain flywheel weighs 60,(X)0 lb, and its radius of gyration about the

axis of rotation is 8 ft. Calculate the torque nec^essary to increase the angular

velocity of the wheel from 100 to 200 rpni, in 0 min. Calculate the total number of

revolutions described during the interval. A ns. 3460 ft-lb; 900 rev.

877 . A solid, homogeneous cylinder 1 ft in diameter, weighing 120 lb, is keyed to

a short, horizontal sliaft. The shaft is 2 in. in diameter, and the total friction

between it and its bearings is 2 lb. The body is caused to rotate at a speed of 1200

rpm, and is then permitted to coast to rest. How much time will be consumed in

coming to rest, and how many revolutions will be described? Disregard the inertia

of the projecting portions of the shaft. Treat the friction as a single force tangent

to the shaft.

878 . The following problem, furnished by the Westinghouse Electric and Manu-
facturing Company, is of the type that the engineers of that company are called

upon to solve in connection with the application of electrical equipment: a direct

motor-driven centrifugal extractor, such as is used in the textile and laundry indus-

tries, has a basket 48 in. in diameter and 24 in. deep. The empty basket, together

with the attached shaft and rotor, weighs 1050 lb. The capacity of the basket is

900 lb of wet goods. The full-load speed is 700 rpm. Assuming the radius of

gyration to be 0.7 of the radius of the basket, what torque is it necessary for the

motor to develop in order to bring the macliine to full speed in 1.5 min, assuming

that 15 per cent of the torque is utilized in overcoming friction? A ns. 114 ft-lb.

879. A wheel 4 ft in diameter, weighing 644 lb, is mounted on a shaft. The radius

of gyration is 1.8 ft. A brake is applied with a constant normal pressure of 25 lb,

and brings the wheel to rest from an initial speed of 2000 rpm, while describing

20,000 rev. Calculate tlie coefficient of kinetic friction for the brake-shoe.

880 . A wheel weighing 322 lb, 2 ft in diameter, is mounted on a horizontal shaft in

the manner indicated in Fig. 411. The radius of gyration of the wheel with respect

to its geometric axis is 0.7 ft. In the position shown in the figure the angular velocity
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of the wheel is 10 rad per sec in a counterclockwise sense. Calculate the horizontal

and vertical components of the reaction exerted on the wheel by its bearings.

Ans. Px - -599 lb; Py = -4931b.
881 . Solve Prob. 880, with the center of gravity, G, on a horizontal line through

the center of the shaft, and to the right. Let all the other conditions remain as in

Prob. 880.

882 . In Fig. 406, Prob. 872, it is desired to give the body B an upward velocity

of 30 ft per sec, in a distance of 20 ft, starting from rest. Tliis is to be done by apply-

ing a constant torque directly to the shaft of the drum. Calculate the necessary

torque. Ar^s. 3040 ft-lb.

883 . The radius of gyration of the drum and brake-wheel of Fig. 251, Art. 78, is

12 in., and their combined weight is 241.5 lb. The coefficient of kinetic friction

for the brake-shoe on the wheel is 0.22, and the suspended weight, TF, is 250 Ib.

Calculate the force, P, which it would be necessary to use on the brake in order to

permit W to attain a velocity of 8 ft per sec in 4 sec, starting from rest. Calculate

the tension in the cable, and the total horizontal and vertical components of the

reactions exerted on the shaft by its bearings. Disregard axle friction.

884. An elevator weighing 2 tons is raised by means of a cable which is wrapped

around a hoisting drum. The drum is 4 ft in diameter, and weighs 1200 lb. The
radius of gyration of the drum with respect to its axis of rotation is 22.5 in. Cal-

culate the constant torque that must be supplied to the drum by the motor, in order

to give the elevator an upward acceleration of 8 ft per sec per sec. Calculate the

tension in the cable. Disregard friction, and the weight of the cable. Ans. 10,500

ft-lb; 49901b.

886. Figure 412 represents a simple Watt governor, which is the simplest of all

fiyball governors. It is now seldom used on engines, without certain modifications.

Disregarding the weights of all parts of the mechanism except the balls, B and

prove that in which w represents the angular velocity of the governor. If

the distance AB is 15 in., and the weight of each ball is 14 lb, calculate the tension

in the arm AB when the governor is rotating uniformly at a speed of 60 rpm.

886. Figure 413 represents a Porter governor. The inclusion of the central weight,

D, constitutes the essential difference between this governor and the simple Watt
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governor. In the figure the distance AA' — CC' = 3 in., AB == 6 in., and BC — 8
in. The weight of each ball is 5 lb, and the central weight, D, is 25 lb. Disregarding

all other weights, calculate that constant angular velocity of the governor at which

€)

./Ui

Fiq. 415

the arm BC will make an angle of 30° with the vertical. Calculate the tensions in

AB and BC, at this speed. Ans. 171 rpm; 23.5 lb; 14.4 lb.

887. In Fig. 414 is shown a portion of a spring-controlled governor. The ball,

B, is attached to a small bellcrank lever, which is pivoted at A. A spring exerts a

vertical, downward force, P, on the bellcrank, as shown. The ball and lever rotate

about the vertical axis, ZZ. The ball weighs 12 Ib, and the weight of the bellcrank

will be disregarded. Assume that the ball takes the position shown in the figure

when the governor is rotating at a constant speed of 240 rpm. Calculate the spring

pressure, P, and the components. Ax and Asf of the reaction exerted on the bellcrank

by the pin at A.

888. In Fig. 415, A represents a homogeneous sphere, 1 ft in diameter, weigh-

ing 250 lb. The sphere is attached to the vertical shaft, BC, by means of a hori-

zontal arm, as shown. The entire system is rotating about the axis of the shaft at

a constant speed of 60 rpm. Calculate the reactions exertetl on the shaft by its

bearings, B and C, when the system is in the position shown by the figure. Assume
that the reaction at B is horizontal. Disregard friction, and the weight of the shaft

and the connecting arm. Ans. Bx = —669 lb; Ci « — 251 lb; C* = H-250 lb.

889. In Fig. 416, B represents a square, homogeneous bar, 4 by 4 in. in cross sec-

tion, weighing 48.3 lb. The bar is held in a yoke, by means of a pin at A, and the

bar and its yoke rotate about a horizontal shaft through O at right angles to the plane

of the figure. The bar presses against the stop C, or D, depending on circumstances.

In the position shown in the figure the angular velocity of the system is 4 rad per

sec, and the angular acceleration is 6 rad per sec per sec, both counterclockwise.

Calculate the reaction exerted on the bar by the pin, A, Also ascertain which stop
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is acting, and calculate its reaction on the bar, assuming the force to be vertical.

Am. Ax » -24 lb; Ay - +29.9 lb; C - +27.4 lb.

890. Solve Prob. 889 with the bar and yoke in a position 180° from that shown

in Fig. 416. Let all the other data remain unchanged.

891 . Solve Prob, 889 with the bar and yoke in a position 60°, clockwise, from that

shown in Fig. 416. Let all the other data remain undianged.

892. Figure 417 represents a horizontal shaft, AD, rotating in bearings at A
and B. At C a solid, cylindrical disk, 24 in. in diameter, weighing 322 lb, is keyed

eccentrically to the shaft, the center of the disk being 4 in. from the center of

the shaft. At the instant under consideration the center of the disk is vertically

above the shaft. At D a light pulley, 18 in. in diameter, is keyed to the shaft, and

is subjected to belt pulls as showm. At the given instant the system is rotating at

a speed of 360 rpm. Calculate the components of the react ions exerted on the shaft

by its bearings. Disregard friction, and the weight of the pulley and shaft. Am.
A, - +17.4 lb; Ay = -1890 lb; = -56.9 lb; By = -2520 lb.

893

.

Solve Prob. 892 with the center of disk C in a position 90^ counterclockwise,

from that shown in Fig. 417. Let all the other data of the problem iremain un-

changed.
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894. Solve Prob. 873, Fig. 400, with tlie cylinder in such a position that its center

of gravity, G, is directly below the axis of the shaft. Let all the other data of the

problem remain unchanged. Arts. Ax - —5221b; Ay =* 4*313 lb; Bx = —7261b;
By « 4-157 lb.

895. Solve Prob. 873, with the line OG in a position 45°, clockwise, from that shown
in Fig. 409. Let all the other data of the problem remain unchanged.

156. Superelevation of Curves. Those portions of railway lines,

highways, race tracks, etc., whicli have horizontal curvature are usually

built with the outer rail or boundary at a higher elevation than the

inner, causing vehicles to lean inward, toward the center of curvature.

This arrangement is called superelevation. It may be omitted where the

curvature is very slight.

If superelevation were omitted from a highway curve, friction exerted

on the wheels by the roadway would be the sole dependence in maintain-

ing the normal, or centripetal, acceleration necessary to curvilinear

motion (Art. 117). At the higher speeds the danger of skidding would

be extreme. In the railway the forces exerted by the outer rail on the

flanges of the wheels largely supplant friction in maintaining normal

acceleration, but danger of overturning would still exist, and excessive

stresses in rolling stock and track might result in accident. Also, the

wheels would tend to climb the outer rails and cause derailment.

Excessive superelevation would create somewhat similar dangers,

although in lesser degree. In the highway, excessive superelevation

would create additional dangers in icy weather, associated with the

lower speeds prevailing under such conditions.

The superelevation chosen for a given curve will be theoretically

correct only for one speed. The speed assumed in the calculation is

usually higher than the average speed expected on such a curve, but

lower than the extreme speeds used by a small minority of drivers.

A formula commonly used for highw^ays, for the case in which trans-

verse friction is to be avoided entirely at the chosen speed, is as follows:

tan a = — [227]
lor

in which 0 is the transverse angle of inclination between the roadway

and the horizontal, v is the velocity of the vehicle in miles per hour,

and r is the radius of the curve in feet. Equation 227 also applies to

railways, for the case in which flange pressures are to be avoided at the

chosen speed.

In some cases in the design of highways a certain limited amount of

transverse friction against the wheels is considered safe, and the follow-
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ing approximate formula is sometimes used:

tan 0 / [228]
15r

in which 6^ v, and r have the same meanings as in Eq. 227, and in which

/ represents a quantity called the safe side frictum factor. The quantity

/ is the ratio of the transverse frictional force to the normal pressure,

but should be considerably less than the coefficient of static friction,

the difference representing the margin of safety. The value 0.16 is

sometimes used for/, for moderate speeds. For the highest speeds the

value of / is reduced.

PROBLEMS

8%. Calculate the correct angle of superelevation for a highway curve whase

radius is 2000 ft, for a speed of 50 mi per hr. Assume that transverse friction is to

be avoided at the designated speed. Arts. 4° 45'.

897

.

Calculate the correct angle of superelevation for the curve in Prob. 896,

using a safe side friction factor of 0.16.

^1

Fig. 418

898. Figure 418 represents an automobile traveling on a superelevated curve.

Equation 227 givers the value of tan d for the case in which no transverse friction is

to be permitted at the chosen speed. Therefore, Fi and Fa should be taken equal

to zero. Derive Eq. 227, using Eqs. 184 and 185, Art. 126.

899. In Eq. 228, f is called the safe side friction factor. Derive Eq. 228, referring

to Fig. 418, and assuming that Fi ^ fNi and that F2 « /N2 . Disregard the vertical

components of Fi and F2 .



CHAPTER XIX

KINEMATICS OF PLANE MOTION

167. Definition of Plane Motion. Plane motion is that motion of a

body in which all the particles move in parallel planes. That par-

ticular plane in which the center of gravit}^ of the bod}^ moves is called

the plane of the motion. Rotation is a special case of plane motion.

Translation may, or may not, be plane motion.

The term plane motion is applicable only to rigid bodies. It

follows that i/ic motions of all the particles lying on any given straight line

at right angles to the plane of the motion mil be alike. At any given

instant the velocities of the particles lying on such a line are equal in mag-

nitude and inclinaiionj and agree in sense. This is also trm of their

accelerations.

Let a locomotive be imagined to be running on a stretch of track that

has neither horizontal nor vertical curvature. Under such conditions

the motion of the side rod of the locomotive is an example of a plane

motion which is also a translation. The motion of the connecting rod

is not translation, but is a plane motion of a more general nature. The
motion of any wheel of the locomotive is an example of plane motion,

but not of translation. If the track has vertical curvature only, the

side rod, connecting rod, and wheels still have plane motion, but the

motion of the side rod is no longer transla-

tion.

168. Angular Velocity. The angular veloc-

ity of a body in plane motion may be defined

as the time rate at which the body is describ-
‘

ing angular distance at the instant under

consideration.

Let Fig. 419 represent a body having

plane motion, in which the plane of the

motion is parallel to the plane of the paper.

Let A and B represent any two of the par-

ticles of the body that move in the same

plane. Let OX represent any convenient stationary axis. Let 6 rep-

resent the angle between the line AB and the axis OX at any instant.

As the body moves the line AB tu|^ and the angle 6 varies, except in
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the special case in which the motion is one of translation. The time

rate at which the body describes angular distance is the rate at which

B changes with respect to i. The general formula for the angular

velocity, at any instant, of a body in plane motion is, therefore, as

follows:

a>
dt

[229]

The formula is the same as that for the angular velocity of a rotating

body, and the statements in Art. 148 regarding signs and units apply

also in the present case.

Obviously, the angular velocity of a translating body is equal to zero.

169. Angular Acceleration. The angular acccieraiion of a body in

plane motion^ at any insiantj is the time raie at which the angular velocity

of the body is changing at that instant.

The general formula for the angular acceleration of a body in plane

motion is, therefore, as follows:

^
dt de

[230]

Naturally, the formula is the same as that for the angular acceleration

of a rotating body, and the statements in Art. 149 regarding signs and

units apply also in the present case.

The following formula, obtained by eliminating dt between Eqs. 229

and 230, may be used, if desired:

<0 cfa)= a d0 [231]

Because of the fact that in a motion of rotation there is a certain

specific and important axis, called the axis of rotation, students some-

times receive the impression that the angular velocity of a body will

not have a definite value unless it is referred to some such axis at right

angles to the plane of the motion. Such an impression is erroneous.

At any specific instant, in a specific problem, the angular velocity of the body

has one, and only one, value, and, consequently, that value does not

depend on any selection of axes that may be made during the solution

of the problem. For example, let it be stated that the angular velocity

of a certain body in plane motion is 2 rad per sec at a given instant.

It is not necessary to mention an axis in order to clarify the under-

standing of the situation; the statement is definite and complete in

itself, from the definition of angular velocity. The foregoing statements

are also true for angular acceleration,^
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Illustrative Problem

900. Figure 420 represents a straight bar, AR, of which one end slides on a

horizontal floor and the other on a vertical wall. The plane of the motion is

a vertical plane at right angles to the wall. Derive a formula showing the

relation between the angular velocity of the

bar and the linear velocity of its lower end, at

any instant.

Solution. Let x represent the distance from

the lower end, A, of the bar, to the fixed point,

O, at any instant. From the figure,

B = arc cos

By Eq. 229,

[arc cos {—x/D] ^ 1 dx

dt dt — x^dt Fig. 420

But, dx/dt = Therefore,

Va _ Hd _
Vp - y I sin B

PROBLEMS

901 . Calculate the angular velocity and angular acceleration of the bar AC in

Prob. 642, Art. 115. Ans. —4 rad/sec; 0.

902. Calculate the angular velocity and angular acceleration of the bar AB in

Prob. 643, Art. 115.

903 . The bar in Fig. 420 moves in such a manner that ^ = t — in which

radians and seconds are the units used. Calculate the angular velocity and angular

acceleration of the bar, for the instant when i = 4 sec. Ans. —20 rad/sec; —7.5

rad/sec^.

904. The bar in Fig. 420 moves in such a manner that x = I cos (t^), in which the

units used are feet, seconds, and radians. The length of the bar is 2 ft. Calculate

the angular velocity and angular acceleration of the bar for the instant when t — 2 sec.

905. Derive a formula for the angular velocity of the bar in Prob. 900, in terms of

Vs
I, 0, and the linear velocity ef the upper end, B. Ans. a; = ;

i cos 6

906. Derive a formula for the angular acceleration of the bar in Prob. 900, in

. ^

^

4 — vaw cot 0
terms of I, 0, va, and a^. An#, a « •

I sin 9

160. Roiling Bodies. Motion in which a wheel, cylinder, sphere, or

similar object rolls on a track or other surface is of wide importance

in engineering. If no slipping occurs at the surface of contact the

motion is called perfect rolling. In this book perfect rolling will always

be assumed unless there is some statement or indication to the contrary.
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The discussion in the present article will be limited to perfect rolling

of wheels or other bodies having circular peripheries. Certain useful

formulas will be derived, showing the relationship between the angular

motion of the body and the linear motion of its geometric center.

Y

Fig. 421

Let Fig. 421 represent a wheel or other body having a circular periph-

ery, rolling on a plane surface, without slipping, its center point moving

in a straight line parallel to the supporting surface. Obviously this

is plane motion.

Let C' represent the position of the center point at a certain initial

instant. Let A' repre^sent the position of the lowest particle on the

periphery of the body at that instant. Let C and A represent the posi-

tions of the same particles at any later instant. Let OX and OY repre-

sent a pair of stationary axes. Let s represent the distance between

the moving point C and the fixed initial point C'. The arc, OA, is also

equal to s, since no slipping occurs. Let vc and ac represent the linear

velocity and linear acceleration of C at any instant.

From geometry, s rd. By Eq. 122, Art. 108,

dt dt dt
^
dt

[232]

But, from Eq. 229, Art. 158, a? = dd/dL Substituting in Eq. 232,

By Eq. 123, Art. 109,

Vc = m

^
di

~
dt

From Eq. 230, Art. 159, a = doj/dL Substituting in Eq. 234,

ac = ra 1236]
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Units, Because of the fact that the formula s = is valid only

when the radian is the unit of angular measure, it follows that the

radian must be used in applying Eqs. 233 and 235. Any desired units

may be employed for r and and their choice will determine the units

in which vc and ac will be expressed.

PROBLEMS

907 . A wheel, 6 ft in diameter, rolls on a plane surface, without slipping. The
linear acceleration of the center point is 1.25 mi per hr per sec. Calculate the

angular acceleration of the wheel, in radians per second per second. Calculate the

angular velocity, in radians per second, at the end of 10 sec, starting from rest.

Ans. 0.610 rad/sec^; 6.10 rad/sec.

908. A sphere, 24 in. in diameter, starts from rest and rolls on a plane surface,

without slipping. It has a constant angular acceleration of 0.18 rad per sec per sec.

Calculate the linear velocity of the center point at the instant when ^ min has elapsed.

909. A wheel 3 ft in diameter rolls on a plane surface, without shpping. The
velocity of the center point increases from 10 to 30 mi per hr, in a distance of 100 ft.

Calculate the angular acceleration, in revolutions per minute per minute. Arts.

3200 rev/min^.

910. A wheel 4 ft in diameter rolls on a plane surface, in accordance with the law

e ~ in which 0 is in revolutions and < is in minutes. Calculate the linear accelera-

tion of the center point, for the instant when t — 2\ min.

911. Explain, on the basis of the similarity of the motions, why Eqs. 233 and 235
are the same in form as Eqs. 211 and 212, of Art. 150.

161. Relation between the Motions of Two Particles of the Body.

Certain useful formulas will be derived, showing the relation between

the linear velocities, and between the linear accelerations, of any two
particles of a body in plane motion.

Velocities. Let Fig. 422 represent a body in plane motion, the plane

of the motion being parallel to the plane of the paper. Let particles

1 and 2 in the figure represent any two particles of the body, lying in the

plane of the motion or in any parallel plane. Let OX and OY rep-

resent any convenient pair of stationary rectangular axes in the plane of

the motion. Let vi, V2 y oi, and a2 represent the linear velocities and
accelerations of the two chosen particles at the instant under consid-

eration. Let B represent the angle between the fixed axis, OX, and the

moving line, (1, 2), at the given instant. Let q represent the distance

between the two particles. The body is assumed to be rigid; therefore,

the distance q remains constant.

From the figure,

^2 — = g cos [236]

Differentiating in Eq. 236, with respect to

dx2

dt

dxi

lu
— gsintf

(U
[237]
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By Eq. 157, Art. 115, = *’2z and ctei/di = Vi*. By Eq. 229,

Art. 158, dO/dt = w. Substituting in Eq. 237,

t'2x — vix = —gw sin 0 [238]

By a similar process of analysis it can be shown that

V2 y — I’ly
— gw COS 9 [239]

Accelerations. Differentiating in Eq. 238, with respect to

dV2x

dt

dvix

dt

( X
• d03\— o I 0? COS ^ -V + sin 0 — I

^ \ dt dtj
[240]

Fig. 422

By Eq. 172, Art. 118, dv<ijdt = a^x and dvu/dt = ai*. By Eq. 229,

Art. 158, dS/dt =*= o). By Eq. 230, Art. 159, cfaj/cK =» a. Substituting

in Eq. 240,

ci'2x — uiaj = —qo)^ cos 0 ~ sin e [241]

By a similar process of analysis it can be shown that

a2y — aiy = —qo)^ sin ^ + ga cos ^ . [242]

Equations 238, 239, 241, and 242 can be expressed more concisely, as

Ipllpwp; From Fig. 422, g sin ^ 2^2 — and q cm 0 ^ Z2 -- Xy.
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Substituting in Eqs. 238, 239, 241, and 242,

V2x - Vu ^ - {y2 - y\)oi [2431

V2y - Viy = (X2 - Xi)oi [244]

a2x ~ aia: = - {X2 - Xi)o3
^ -

(2/2 - yi)a [245]

a2y - aiy = -
(2/2 - yiW + (X2 ~ Xi)a [246]

In the majority of problems it is convenient to place the origin of

coordinates at the point occupied by particle 1. In this case let x and

y represent the coordinates of particle 2. The four equations then

assume the following simple forms:

V2x - Vlx = —ya [247]

V2y - Vly = xm [248]

02x
“

Qlx = 1 1
[249]

a2y ““
Qly = -ya^ + xa [250]

When any of the formulas of the present article are used in the solu-

tion of problems it is immaterial which of the two particles is called 1,

provided that strict attention is paid to the algebraic signs of all quan-

tities. The velocity and acceleration components, and the angular

velocity and angular acceleration of the body, are given signs in accord-

ance with the conventions previously adopted in this book. The
coordinates x and i/, of particle 2 in Eqs. 247-250, are given signs in

accordance with the customary practice in analytical geometry. Simi-

lar precautions must be observed in connection with the various coordi-

nates in Eqs. 243-246.

Special Case, Equations 247-250 can be further simplified if the

x-axis is placed in a position such that it passes through the two par-

ticles. If tliis is done, 2/
= 0, and the four formulas appear as follows:

V2X - Vix =0 [251]

V2v — Viy - X(A [252]

€L2x ^ix ^ [253]

^21/
— aiy == xct [254]

In the application of these formulas the origin of coordinates must be

made to coincide with particle 1, as in the preceding case.

Equations 251-254 show that either of the two particles may be con-

sidered to have a motion of rotation about the other particle as a center,

superimposed on a motion identical with that of the other. In other
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words, general plane motion may be regarded as rotation and trans-

lation occurring simultaneously with the same body.

Units. In applying any of the formulas of the present article the

radian must be chosen as the unit of angular measure. Any convenient

imits may be used for time, and for linear distance, provided that con-

sistency is observed.

Illustrative Problems

912. Figure 423 represents a straight, rigid bar, AB, 5 ft long. The upper

end moves on a wall, in a vertical straight line, and the lower end moves in a

horizontal straight line at right angles to the wall. The lower end, A
,
has a

constant velocity of 8 ft per sec, toward the left. Calculate the angular

velocity and angular acceleration of the bar, and the linear velocity and

acceleration of at the instant represented by the figure.

Solution. Let A be chosen as particle 1, and B as particle 2. Assume the

senses of o) and vb in the manner indicated. Solution will be made by means
of Eqs. 247-250. The use of these particular formulas renders it mandatory
to place the origin of coordinates at particle 1. Therefore, x — — 3 ft, y =* +4
ft. Also, va = —8 ft/sec. Substituting in Eqs. 247 and 248, and paying

strict attention to algebraic signs,

V2x - vix = -yo) 0 - (-8) = --(-|-4)(-w)

V2y — Viy = XO) +VB — 0 = (~3)(— w)

The solution of these equations gives

Cl) = +2 rad/sec t>ij = +6 ft/sec

The positive signs accompanying the results show that the senses of w and vb

were assumed correctly. Therefore o) is clockwise and db is upward.
Let a and as be assumed as shown in Pig, 424. From the problem, since
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va is constant, aa
—

0. Substituting in Eqs. 249 and 250,

02x — dix == ya 0 — 0 = — (
— 3)( — 2)^ — (-f4)(--a)

«2y — +aj5 — 0 = — (+4)( — 2)^ + (-“3)(-~a)

from which

. a = — 3 rad/sec^ = --25 ft/sec^

In this case negative signs are obtained, showing that a and as were assumed
incorrectly. Therefore a is counterclockwise and is downward. Draw
small circles enclosing the arrowheads, to show that the correct senses are

opposite to those assumed.

It is suggested that the student check the solution by using Eqs. 251-254.

If this is done, the a;-axis must be made to pass through A and B,

Fig. 425

913. Figure 425 represents a straight bar, AB, the ends of which slide on

inclined planes, as shown. The bar moves in a vertical plane. At the instant

under consideration the bar is horizontal, has a clockwise angular velocity of

1.8 rad per sec, and a counterclockwise angular acceleration of 0.4 rad per sec

per sec. Calculate the linear velocity and linear acceleration of each end of

the bar at the given instant.

Solution, A moves along the straight line AD, and B moves along BD.
Therefore, va and aa are parallel to AD, and vb and as are parallel to BD,
Assume the senses of all quantities as shown in the figure. In this problem it

will be convenient to use Eqs. 251-254, in which the x-axis is placed so as to

pass through the two chosen particles, with the origin at particle 1. Let A be

chosen as particle 1 and B as particle 2. The arrangement of axes will be as

shown in the figure. Therefore, .t = -f 12 ft. Also, co = —1.8 rad/sec, and

a « +0.4 rad/sec^. Substituting in Eqs. 251 and 252, paying close attention

to the signs of all quantities,

^2* - Vix ^ 0 -VBx — (-VAz) ® 0

V2v - Viy = XW —VBy — (+VAy) » (+12)(-1.8)
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From the figure, vax == va cos 45®, vav = va sin 45®, vbx = vb cos 30®,

vbv ~ sin 30®. Substituting these values in the preceding equations,

-0.866?;^ -f 0.707?;^ - 0

-0,5vb - 0.707VA = - 21.6

The solution of these equations gives

Va — +10.4 ft/sec vb = +15.8 ft/sec

Substituting now in Eqs. 253 and 254, with careful attention to signs,

02i - aix = -xui^ +aBx — ttAx = -(+12)(-1.8)*

02v — aiu = xa +aBy — (— a^v) = (+12)(+0.4)

From the figure, oax = aa cos 45®, aAy — aa sin 45®, asx = ub cos 30®,

and o-By == ttB sin 30®. Substituting these values in the two preceding equa-

tions,

0.866aB - 0.707a^ - -38.9

0.5ajs + 0.707a4 = +4.8

The solution of these equations gives

dA = +24.5 ft/sec^ ub = —24.9 ft/sec^

The negative sign accompanying the value of ub shows that the sense of that

acceleration was incorrectly assumed. Therefore, ub is directed toward D.

A small circle has been drajvn around the arrowhead to indicate these facts.

914. Figure 426 represents a specific example of the familiar crank-and-

connecting-rod mechanism. The crank rotates in a clockwise direction at a

constant angular velocity of 180 rpm. At the instant under consideration

the crank angle, ACB, is 60®. Other dimensions are as shown. Calculate the

angular velocity and angular acceleration of the connecting rod, and the linear

velocity and linear acceleration of the crosshead pin, A, at the given instant.

Solution, The connecting rod executes a plane motion of a general type.

The crank, J5C, is in simple rotation. The point B common to the crank
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and the connecting rod. The angled can be calculated from the triangle

ABCj by the law of sines, as follows:

sin 6 _ sin 60^

T“ ~
8

d = 12® 30'

The velocity of B can be calculated from the rotational motion of the crank.

By Eq. 211, Art. 150,

vbx ~ vb cos 30® = 37.7 X 0.866 = 32.6 fi/sec

VBy ~ Vb cos 60® = 37.7 X 0.5 = 18.9 ft/sec

The problem will be solved by means of Eqs. 247-250, using A and B as the

two particles. A will be chosen as particle 1. This necessitates placing the

origin at that point. Arrange the axes as shown in the figure. Let 0^2 and

a 2 represent the angular velocity and angular acceleration of the connecting

rod, and let their senses be assumed as .shown. In the formulas, x and y are

the coordinates of particle 2, in this case, B. I>om the figure, .r = +8 cos 0 —

+8 cos 12® 30' = +7.81 ft, and y = +2 sin 60® = +1.73 ft. By Eqs. 247

and 248,

V2x - Viz = -yw +32.6 - va = -(+1.73)(+aJ2)

V 2v Viy = xo) +18.9 —
• 0 = +7.81(+co2)

The solution of these equations gives

0)2 = +2.42 rad/sec va = +36.8 ft/sec

Since the angular velocity of the crank is constant, B has normal accelera-

tion only. By Eq. 213, Art. 150,

0 ^ /I8O X 27rV . . , o
atr « gbn ^ 2 f

j
=711 h/secr

gbx = 711 cos 60® = 356 ft/sec^

Gsy = 711 cos 30® = 616 ft/sec^

By Eqs. 249 and 250, using the value of 0)2 previously obtained,

a2x - aiz = - ya +356 - = -(+7.81)(+2.42)2

-(+ 1.73)(+a2)

02y - aiy « -yw2 _010 _ 0 - -(+1.73)(+2.42)2

+ (+7.81)(+a2)

The solution of these equations gives

a2 = —77.6 rad/sec^ ga = +267 ft/sec^

The negative sign obtained with a 2 shows that the sense of the angular acceler-

ation was incorrectly assumed; therefore, it is clockwise.
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PROBLEMS

916

.

The wheel shown in Fij?. 427 rolls on a horizontal plane, without slipping.

The diameter is 4 ft. At the instant represented by the figure the velocity of the

center is 4 ft per sec, toward the right. The acceleration of the center is 6 ft per see

per sec, toward the left. Calculate the velocity and acceleration of Bi. Ans.

8 ft/sec, - 0°; 14.4 ft/sec^, 0^ - 213M0'.

916 . Calculate the velocity and acceleration of of the wheel in Prob. 915,

Fig. 427.

D,

917. Calculate the velocity and acceleration of particle Bg, of the wheel in Prob.

915, Fig. 427. Ans. 5.66 ft/sec, * 45°; 6.32 ft/sec^, B^ = 288° 25'.,

918 . Calculate the velocity and acceleration of particle B 4, of the wheel in Prob.

915, Fig. 427.

919. Figure 428 represents a rigid bar, AB^ 5 ft long. The upper end, A, moves
in a vertical straight line on a wall, and the lower end, B, moves in a horizontal

straight line at right angles to the wall. A has a constant velocity of 12 ft per sec,

upward. Calculate the velocity and acceleration of B, and the angular velocity and
angular acceleration of the bar, for the position shown in the figure. Ans. —9
ft/sec; —56.3 ft/sec^; -^3 rad/sec; —6.75 rad/sec'^.

920. In Fig. 428, let the point B have a velocity of 6 ft per sec, toward the right,

and an acceleration of 4 ft per ^^ec per sec, tow^ard the left. Calculate the velocity

and acceleration of A for the position shown by the figure.
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921 . Figure 429 represents a rigid bar ABy 10 ft long, in plane motion. The plane

of the motion is parallel to the plane of the figure. The upper end has a velocity of

10 ft per sec, down the incline, and a deceleration of 5 ft per sec per sec, in the posi-

tion shown. Calculate the velocity and acceleration of the lower end, A.
922 . The bar in Fig. 429 has a constant angular velocity of 2 rad per sec, clock-

wise. Calculate the velocity and acceleration of each end of the bar, for the position

shown by the figure. A ns, ~ 24 ft per sec, left; vb = 20 ft/sec, down; =* 14

ft/sec*'^, right; an — 30 ft/sec^, down.

923 . The body shown in Fig. 430 consists of a large disk 5 ft in diameter, to which
a pair of wheels 2.5 ft in diameter are rigidly attached. The wheels roll, without
slipping, on a horizontal tra(!k, which is elevated sufficiently to permit the disk to

move without touching the ground. At the instant representcxi by the figure the

velocity of the center point, Cy is 5 ft per sec, toward the left. At the same instant C
is gaining speed at the rate of 2.5 ft per sec per sec. Calculate the velocity and ac-

celeration of I>i at the given instant.

1

Fig. 431

924

.

Calculate the velocity and acceleration of the point D2 ,
in Prob. 923, Fig. 430 .

Ans. 5 ft/sec, 6^ = 0°; 40.1 ft/sec®, = 86" 25'.

926

.

Calculate the velocity and acceleration of the point Z>3 ,
in Prob. 923, Fig. 430.

926. Calculate the velocity and acceleration of a point on the connecting rod in

Prob. 914, Fig. 426, 5 ft from A, Make use of any of the results obtained in the

'solution of that problem. Ans. 36.2 ft/sec, Ox — 19° OO'; 502 ft/sec^, dx = 309° 50'.

927. Calculate the velocity and acceleration of the crosshead pin, A, in Prob. 914,

Fig. 426, for the instant when the crank angle, ACR, is equal to 216° 52'. Let all

the other conditions of the problem remain unchanged.

928. Calculate the velocity and acceleration of a point at the middle of the bar AB
in Prob. 913, Fig, 425. Use any of the results obtained in that problem which may
be needed. Ans. 14.0 ft/sec, Ox = 168° OO'; 15.0 ft/sec^, Ox = 261° 65'.

929. Mechanisms similar in principle to that shown in Fig. 431 are frequently

utilized in machines. The links, AC and BD, can rotate about the fixed points,

C and Dy respectively. In the present case BD is rotating in a counterclockwise

direction with an angular velocity of 1.25 rad per sec. Calculate the angular veloc-

ity of AC, for the position shown by the figure. Ans. 4-2.46 rad/sec.

930. In Prob. 929, Fig. 431, the angular acceleration of link BD is zero at the given

instant. Calculate the angular acceleration of link AC at that instant.
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931. In Fig. 432, the upper end of the bar AB moves along a panabola whose

equation is = 4jp, in which x and y are expressed in feet. The lower end moves

along the aj-axis. In the position shown by the figure the velocity of the lower end

is 10 ft per sec, toward the right. Calculate the velocity of the upper end. An$.

6.71 ft/sec, Ox = 26'’ 35'.

932. In Prob. 931, the acceleration of the lower end of the bar at the given instant

is zero. Calculate the acceleration of the upper end.

933. Figure 433 represents a variation of the crosshead-and-connecting-rod

mechanism. The crankpin, A, travels in the circle at a constant angular velocity of

20 rad per sec, clockwise. The crosshead pin, O, travels along the y-axis. Calculate

the velocity and acceleration of the crosshead pin for the given position. Ana.

-4.97 ft/sec; -f278 ft/sec^.

934. Solve Prob. 933 with the crankpin in a position one-half revolution from that

shown in Fig. 433. Let all the other conditions of the problem remain unchanged.

936. Figure 434 represents a straight, rigid bar 10 ft in length. The lower end,

A, shdes in a horizontal, straight line parallel to the plane of the paper. The bar

leans against a wall, at C, and remains in contact therewith at all times. In the

position shown the velocity of A is 2.5 ft per sec, toward the left. Calculate the

velocity of B for the given position. Am, 2.5 ft/sec, Bx = 286° 16^.

162. The Instantaneous Axis. At each instant during plane motion
there are certain particles of the body, or of the body extended, that

have zero velocity. These particles fall on a straight line at right

angles to the plane of the motion. This line is called the instantaneovs

axis. The relation existing, at the given instant, between the linear velocity

of any particle of the body, the angvlar velocity of the body, and the distance

from the instantaneous axis to the particle, is precisely the same as in a
rotating body {Art. 150), the instantaneous axis corresponding to the axis

of rotation. The point at which the instantaneous axis intersects the

plane of the motion is called the instantaneous center.

The sole exception to the foregoing statements occurs when the con-
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ditions are those of translation, in which case there is no instantaneous

axis.

Proof. Let Fig. 435 represent a body in plane motion. Let A repre-

sent any particle lying in the plane of the motion, and let va represent

the velocity of A at any given instant. Place the origin of coordinates

at Aj with the a:-axis lying in the plane of the motion, at right angles to

Va- Let B represent any other particle lying on the a:-axis.

By Eq. 251, Art. 161, V2x — vix = 0. Therefore, vbx — Vax == 0.

But, by the construction, vax = 0. This proves that the velocities of

all the particles lying on the a:-axis are at right angles to that axis.

By Eq. 252, Art. 161, V2y — viy == xco. Therefore, vb — va — xoo.

Since w is constant for the entire body at any single instant, it follows

that the difference between the velocities of an}^ two particles lying on

the x-axis is proportional to the distance between the particles. There-

fore, the velocities of all the particles lying on the x-axis are proportional

to the ordinates to the straight line DE, Obviously, the velocit}^ of the

particle at C, where DE intersects the x-axis, is zero.

Now let the origin of coordinates be shifted to C, without disturbing

the position of the x-axis. Let the velocity of any other particle on

the x-axis be represented by t;, and its abscissa by q. By Eq. 252,

V2v
— viy = xo). But Viy = vc — 0. Therefore, v = qo).

Thus, it has been proved that if a line is drawn through any particle

at right angles to the velocity of the latter, one particle on that line wUl

have zero velocity at the given instant, and the relation among the

velocities of all the particles lying on any such line is precisely the same

as in a rotating body (Art. 150), the point of zero velocity corresponding

to the center of rotation.

Obviously, if a second line is drawn, similar to that studied above,

but passing through a different set of particles, similar results will be

obtained. If the body is not translating, the two lines will intersect.

Since the point of intersection lies on both lines its velocity must be
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at right angles to both. This is impossible; therefore, the velocity of

the point of intersection is zero. It follows that there is only one

particle in the plane of the motion having zero velocity. This point

is the instantaneous center.

The entire discussion would apply to the particles in any plane parallel

to the plane of the motion, leading to the conclusion that for the entire

body at any given instant there is a line of particles, at right angles to

the plane of the motion, whose velocity is zero. This line is the instan-

taneous axis.

As the motion continues, the instantaneous axis shifts with respect to

the body and also wdth respect to the earth. The instantaneous axis is

sometimes called the instantaneous axis of zero velocity, in order to

emphasize the fact that it is not an axis of zero acceleration. It is

possible to locate an axis of zero acceleration, but space for that purpose

will not be used in this book.

Methods for locating the instantaneous axis in a specific problem

follow naturally from the various relationships revealed in the foregoing

proof, the detailed procedure in any given case depending upon the

manner in which the data are presented.

Illustrative Problems

936. Figure 436 represents a wheel rolling on a plane surface, without

slipping. Prove that the instantaneous axis is at the point of contact between

the wheel and the supporting plane.

Solution. Let vc represent the velocity of the center

/
j

point, and let co represent the angular velocity of

I cl ^ the wheel, at any instant. Let r represent the radius

V Vj T /
wheel.

I Q
Obviously, vc is horizontal. From the discussion in

learned that the instantaneous center lies

! 1 on a line drawm through any particle in the plane of the

I motion, at right angles to the velocity of that particle.

Fia. 436 Therefore, for the wheel the instantaneous center lies on
a vertical line through Q.

Also, the relation between the position of the instantaneous center, the

angular velocity of the body, and the linear velocities of the particles is the

same as in simple rotation. Therefore, the instantaneous center lies below C,

and Vc = gw, in which g represents the distance from C to the instantaneous

center.

From Art. 160, vc - rw. Equating the two expressions for gw “ rw.

Therefore, g == r. This proves that the instantaneous center is at the point

of contact. The instantaneous axis is at right angles to the plane of the

motion, through the instantaneous center.
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937. Calculate the angular velocity of the connecting rod, and the linear

velocity of the crosshead pin, A, in Prob. 914, by the instantaneous axis

method.

Solution, The particles A and J5, in Fig. 437, are two particles of the con-

necting rod. The inclinations of their velocities are known, tu is along the

line AC, and vb is at right angles to BC. It was shown in the present article

that a line drawn at right angles to the velocity of any particle intersects the

0

instantaneous axis. Therefore, when the inclinations of the velocities of two

particles of the body are known, the obvious method of locating the instantane-

ous axis is to draw lines through the two particles at right angles to their

velocities. The instantaneous axis must lie at the intersection of these two

lines.

In the present case, the line BD is drawn at right angles to vp, and the line

AD is drawn at right angles to va- The two lines intersect at D. The instan-

taneous axis passes through D, at right angles to the plane of the paper.

From Prob. 914, /.BAC = 12® 30', and vb = 37.7 ft per sec. The three

angles of triangle ABD are easily calculated, and are as shown in the figure.

By the law of sines.

BD sin 77° 30'
BD = 15.6 ft

8 sin 30°

AD ^ Bin 72° 30'
AD = 15.3 ft

8 sin 30°
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From the present article,

V ^ qoo C02 = — = =* 2.42 rad/sec
^ BD 15.6

= Zd X C02 = 15.3 X 2.42 = 37.0 ft/sec

938. Figure 438 represents a car on which is mounted a wheel 5 ft in diame-

ter. The wheel is carried on a horizontal shaft which is at right angles to the

plane of the figure. At the instant shown the car has a velocity of 6 ft per sec,

toward the right, and the wheel has an angular velocity of 10 rpm, counter-

clockwise. Find the linear velocity of the particle, F, on the rim of the wheel,

at the given instant.

Solution. Expressing the angular velocity of the wheel in radians per

second,

10 X 27r TT

^ = = — = 1.05 rad/sec
60 3

The linear velocity of particle A
,
of the wheel, is 6 ft per sec, and is horizontal

and toward the right. The instantaneous axis for the wheel intersects the

plane of motion somewhere on a vertical line through A. The senses of va

and 0) show that the instantaneous axis will lie above A. Let C represent its

position. The distance AC now can be calculated.

Ic = - Ic = -^ = 5.71 ft
CO 1.05

In the triangle ACP the sides AP and AC, and the included angle, PAC, are

known. By the law of cosines,

CP = V(5.71)2 + (2.5)* - 2 X 5.71 X 2.5 cos 60“ = 4.96 ft

vp «= CPco =» 4.96 X 1.05 *= 5.21 ft/sec



THE INSTANTANEOUS AXIS 369

The inclination of vp to the horizontal is equal to the angle A CP, since vp is at

right angles to CP. By the law of sines,

sin (ACP) _ sin 60^

2^5 4.96
ZACP = 25° 55'

PROBLEMS

939. The wheel in Fig. 427, Art. 161, is 4 ft in diameter, and rolls without slipping.

The velocity of the center point is 4 ft per sec, toward the right. Calculate the

velocity of Pi, and of P3, by the instantaneous-axis method. Am. 8 ft/sec, $x ^ 0°;

5.66 ft/sec, dx - 45°.

940. Calculate the velocity of the point P4, in Fig. 427, Prob. 939, by the instan-

taneous-axis method.

941. Calculate the velocity of the point B, in Fig. 428, Prob. 919, by the instan-

taneous-axis method. Also calculate the velocity of a point at the middle of the bar.

A ns. 9 ft /sec, Ox = 180°; 7.5 ft/sec, Bx = 126° 50'.

942. Calculate the velocity of point A, in Fig. 429, Prob. 921, by the instanta-

neous-axis method. Also calculate the velocity of a point on the bar 7.2 ft from A.
943. Solve Prob. 922, P’ig. 429, for velocities only, by the instantaneous-axis

method.

944. Calculate the velocities of points Pi, P2, and P3, in Fig. 430, Prob. 923, by
the instantaneous-axis method.

946.

Figure 439 represents a rectangular block in plane motion. Point B slides

on a wall, in a vertical line, and point A slides in a straight line at right angles to the

wall. In the position shown the velocity of B is 100 in. per min, downward. Calcu-

late the velocities of points A, C, P, and P, for the given position. Ans. =
75 in./min, Ox = 180°; vc == 86.9 in./min. Ox = 329° 45'; vd = 56.3 in./min,

Ox = 90°; VE ~ 38 in./min, $x = 9° 30'.

946. Solve Prob. 929, Fig. 431, by the instantaneous-axis method.

947. Solve Prob. 931, Fig. 432, by the instantaneous-axis method.

948. Figure 440 represents a wheel rolling on a plane surface, without slipping,

and P represents any point on the rim. B is the angle of inclination of the radius, CP,

measured as indicated. Prove that vp *= vcV^2 -|- 2 sin at any given instant.
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949. Solve Prob. 933, Fig. 433, for velocity only, by the instantaneous-axis

method.

960. Figure 441 represents an epieja'lic gear train. The larger gear is stationary,

and the arm OA rotates about O, causing the smaller gear to roll on the circumference

of the larger one. The gears arc 12 and 16 in. in diameter. The arm OA rotates

in a clockwise direction at a constant speed of 60 rpm. Find the linear velocities of

the points /^i, J^ 2 ,
and Am. vi = 14.7 ft/sec, Ox = 0®; V2 = 10.4 ft/sec.

Ox » 315®; rs = 10.4 ft/sec, Ox == 45®.

961 . Solve Prob. 935, Fig. 434, for velocity only, by the instantaneous-axis

method.

962 . Calculate the velocity of the middle point of the connecting rod in Prob. 937,

Fig. 437. Am. 36.3 ft/sec. Ox = 15® 05'.

963

.

Figure 442 represents a cylinder, 2 ft in diameter, rolling on a horizontal

plane, without sUpping. AB repre.sents a straight bar, whose lower end moves in a

horizontal straight line. The bar rests against the cylinder at all times. No slip-

ping occurs between the bar and the cylinder or between the cylinder and the sup-

porting surface. In the position shown the velocity of A is 6 ft per sec, toward the

right. Calculate the angular velocity of the cylinder. Am. —2 rad/sec.



CHAPTER XX

KINETICS OF PLANE MOTION

163 . Special Nature of the Discussion. The study of the kinetics of

plane motion will be restricted to the case in which the body is homo-

geneous, and is symmetrical with respect to the plane of the motion.

The majority of practical problems in plane motion conform to this

special case. In some problems, when the body as a whole is not sym-

metrical with respect to the plane of the motion, it is possible to divide

it into two or more parts, each of which, considered individually, is sym-

metrical with respect to its own plane of motion. The problem can

then be solved by the methods of the present chapter, by treating each

part separately and combining the results.

164 . The Resultant of the External Forces. In plane motion the re~

sultant of the external forces acting on a homogeneous body which is sym-

metrical with respect to the plane of the motion is a force lying in that

plane
^
whose magnitude is equal to {W/g)aj whose inclination and sense

are the same as the inclination and sense of a, and whose moment about

the center of gravity is equal to la.

In the foregoing, S is the linear acceleration of the center of gravity,

a is the angular acceleration of the body, and I is the moment of inertia

of the body with respect to a gravity axis at right angles to the plane of

the motion.

In the special case in which a = 0, the resultant reduces to a couple,

lying in the plane of the motion, whose moment is equal to la, and

whose sense agrees with that of a.

Proof. Let A, in Fig. 443, represent any particle of the body. The
body itself is not shovm. Let G represent the center of gravity. Let

the x^z-plane be so placed as to contain (?, and let the origin of coordi-

nates be placed at G. The xy-plme is both the plane of the motion and

the plane of symmetry of the body. The 2:-axis passes through (j, at

right angles to the plane of the motion. Let B represent a particle on

the 2^-axis, moving in the same plane with particle A. Let q represent

the distance AJS, and let 6 represent the angle indicated in the figure.

Let Hx and Uy represent the components of the acceleration of (?.

Obviously, and Uy also will represent the components of the accel-

eration of B. The ^-component of the acceleration of any particle of

the body is equal to zero.

371
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Let ax and ay represent the components of the acceleration of A.

Let (dWlg)ax and (dW/g)ay represent the components of the effective

force for particle A (Art. 123).

The fact that the resultant of the external forces acting on the body
at a given instant is equal to (W/g)d,f that its inclination and sense

agree with those of 5, and that it lies in the plane of the motion, can

be demonstrated by a process of reasoning essentially the same as that

followed in the case of the rotating body (Art. 154). That portion of

the proof will be considered to have been accomplished, and will not

be repeated. It remains to be proved, however, that the moment of

the resultant about a gravity axis at right angles to the plane of the

motion is equal to la.

Let Eqs. 249 and 250, of Art. 161, be adapted to the present case.

Let B be selected as particle 1 and A as particle 2.

a^x ^ix ~ ~~~ Xo) ya ax xo) yet [255]

a2y ®ij/ “ 2/^ “b Xa ay ~ Sy *“ yos “b xa [256]

Let represent the moment-sum of the effective forces for all the

particles of the body, about the z-axis. By the principle of moments,

Art. 50, is equal to the moment of the resultant of the effective

forces about the ;2J-axis. Furthermore, by Art. 125, the resultant of

the effective forces is identical with the resultant of the external forces.

(Consequently, XM also represents the moment of the resultant of the
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external forces, about the 2-axis. From Fig. 443,

ZM - /(^
dW

,
dW \

a^y H ]

0 Q /

Substituting in Eq. 257 the values of ajc and given by Eqs. 255

and 256,

IM =
J y dW + 0

^^J
xy h (xj y^ 1

J
x dW

2 r ^
I
xy h «Jan.

Since the coordinate axes pass through the center of gravity of the body

the integrals, ^y dW and Jx dWy in Eq. 258, are equal to zero

/
dW r dW

and be combined

into th(^ single expression, a I (x^ + y^),«/(j From the figure, x^ + y^

= q^. Equation 258 can now be reduced as follows:

= aJ {x^ + r)
r

/
d\V

q
2— jg moment of inertia of the body with

9

respect to the 2-axis. Denoting this by 7, the following formula is

obtained :

SM = /a [259]

thus completing the proof.

'vl /
Fig, 444 Fig. 445

Figure 444 depicts the resuftant of the external forces in conformity

with the foregoing discussion. The moment-arm of R with respect to
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the center of gravity, G, must be such that the moment of R will be

equal to /a.

Alternative Form of the Resultant, Any force can be resolved into an
equivalent force and couple (Art. 38). Thus, the resultant of the

external forces as shown in Fig. 444 can be resolved into an equal force

passing through the (‘enter of gravity, and a couple in the j^lane of the

motion whose moment is equal to /a, and whose sense agrees with that

of a. This conception of the resultant is depicted in Fig. 445. It is

preferred by some persons.

166. Methods of Solving Problems. The usual methods of solving

problems in the kinetics of plane motion correspond closely to those

described for the case of rotation, in Art. 155.

The Resultant Method. In this method the external forces, together

with their resultant, are shown on the sketch. The resultant may be

represented in accordance with either of the conceptions discussed in

Art. 164. The equations for the solution are then formed on the basis

of the principle of components (Art. 50), or of the principle of moments,

or of both.

The Equilibrant Method. In this method the equilibrant, or revei'sed

resultant, of the external forces is used instead of the resultant. The

principles of equilibrium, Arts. 51-74, are then applied to the entire

system, external forces and equilibrant, to provide the necessary equa-

tions. If the student uses this method he should be careful to avoid

any impression that the body actually is in equilibrium. Equilibrium

of a body in plane motion exists only in the special case in which the

acceleration of the center of gravity is zero and the angular acceleration

of the body is zero.

Solution by Formulas. Equations 184, 185, and 186, Art. 126, may be

used in any problem. Equation 259, Art. 164, is frequently useful. If

additional equations are needed, the following principle may be used:

The moment-sum of the external forces about any axis lying in the plane

of the motion is equal to zero.

The foregoing principle follows from the fact that the resultant of

the external forces lies entirely in the plane of the motion (Art. 164),

and consequently has no moment about any axis in that plane.

Illustrative Problems

664« Figure 446 represents a solid, homogeneous cylinder 3 ft in diameter,

weighing 644 lb. The cylinder rolls on a horizontal plane, without slipping,

under a constant, horizontal pull of 30 lb, applied as shown. Calculate a, a,

F, and JV.
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Solution. It is obvious that S will be toward

the right, and that a will be clockwise. In pro!)-

lems of this kind it is particularly important

to make assumptions that are consistent with each

other and with the conditions of the problem. No
harm would be done in the present case if U were

inadvertently assumed toward the left, provided

that a were assumed counterclockwise, which

would be consistent with the fact that no slipping

occurs.

N is obviously upward, but the correct sense

of F is less apparent. Let F be assumed toward

the left.

The resultant method and the equilibrant

method are of doubtful advantage in the

simpler problems. Solution will be made in the

present case by direct substitution in various formulas,

to Prob. 764, Art. 139,

644 lb.

30 lb.

Using the answer

2 g

1 644
^ - X X (1.5)^ = 22.5 engineer's units

By Eqs. 184 and 185, Art. 126,

IP 644= +30-F = ^(+5)

w
2Fy = —(ly +N - 644 =* 0

g

By Eq. 259, Art. 164,

ZM = la -30 X 1.5 - F X 1.5 = 22.5(-a)

By Eq. 235, Art. 160,

ac — ra S =» 1.5a

The solution of the foregoing equations gives: 5 = +2 ft per sec per sec;

a = +1.33 rad per sec per sec; F = —10 lb; N = +644 Ib. The negative

sign accompanying the value of F shows that the sense was incorrectly

assumed; therefore, F acts toward the right. The student may be somewhat
puzzled by the fact that a was given the minus sign in the moment equation

above, but was given the plus sign in the last equation. The moment equation

and the two preceding equations involve algebraic sums, SFx, and SM",

and the algebraic signs of all quantities must be carefully regarded. The last

formula, ac = ra, is designed merely to give the relationship of the magnitudes

of ac, r, and a, and has nothing to do with algebraic signs. The student

should always distinguish carefully between these two types of equations.

955. Figure 447 represents a drum, A, 3 ft in diameter. The drum is

mounted on a shaft, and a wheel, B, 1 ft in diameter, is keyed to each end of the
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shaft. The drum, shaft, and wheels are fastened rigidly together. Their total

weight is 966 lb, and their radius of gyration with respect to the axis of the

shaft is 1 ft. The wheels roll on an elevated, inclined track, as shown. The

coefficient of static friction for the wheels on the rails is 0.5. A light cable is

wrapped around the drum, and is subjected to a constant, horizontal force of

100 lb, as shown. Calculate the angular acceleration of the body, the linear

acceleration of its center point, and the total friction and normal pressure

exerted on the two wheels by the rails.

W=966 lb.

Solution. The problem will be solved by the use of formulas. A casual

examination of the figure does not reveal whether the system will be acceler-

ated up, or down, the incline. Let it be assumed that 5 is up the incline.

It is extremely important that a be assumed in such a manner as to be con-

sistent with S and with the condition that slipping does not occur. There-

fore, <x will be assumed clockwise. Let F and N be assumed as shown. 1 =
{W/g)k‘^ = (966/32.2) (1)^ — 30 engineer's units. By Eqs. 184 and 185,

Art. 126,

W 966
2F* = ~ S, +F + 100 cos 30° - 966 sin 30° =— (+3)

g 32.2

W 966
ZFy = — d-iV - 100 sin 30° - 966 cos 30° =— (0)

g 32.2

By Eq. 259, Art. 164,

ZM ^ la +F X 0.5 - 100 X 1.5 = 30(-a)

By Eq. 235, Art. 160,
*

ac ™ ra 3= 0.5ac

The solution of the foregoing equations gives: a = —1.29 rad per sec per sec;

3 « —0.643 ft per sec per sec; F « 4-377 lb; N * 4-887 Jh.
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The signs obtained show that S and a were assumed incorrectly os regards

sense; therefore, the acceleration of the system is down the incline. F and N
were assumed correctly.

The coefficient of static friction could not be used in the solution, since it

was not known whether sliding was impending between the wheels and the

track. The coefficient now may be used, however, to ascertain whether the

conditions of the problem are possible. The actual frictional force called for

by the conditions is 377 lb. The maximum possible amount of friction,

with a normal pressure of 887 lb, is equal to fiN == 0.5 X 887 = 444 lb. The
actual friction needed is well within this limiting value; therefore, the system

can roll without slipping, as assumed.

Y

966. The connecting rod described in Prob. 914, Art. 161, weighs 322 lb.

The horizontal component of the force exerted on the rod by the crosshead

pin, at A (Fig. 448), is 15,000 lb. Find the vertical component of this force,

and the horizontal and vertical components of the force exerted on the rod

by the crankpin, at B, Assume that all conditions are the same as in Prob.

914. Disregard friction. Assume the rod to be a slender, uniform bar.

Solution. The problem will be solved by the resultant method. Let the

forces acting on the rod be assumed as shown in Fig. 448. Let S* be assumed

toward the right, and let Uy be assumed downward.

First it is necessary to calculate S* and Uy for the rod. In the solution of

Prob. 914 it was found that: qa = 267 ft per sec per sec, toward the right;

a = 77.6 rad per sec per sec, clockwise; and a> = 2.42 rad per sec, counter-

clockwise. Choosing A as particle 1 and G as particle 2, for use in Eqs. 249

and 250, Art. 161, the coordinates of G are as follows: x — +4 cos 12® 30' =*

-1-3.91 ft; and y = -|-4 sin 12® 30' == 4-0.866 ft. Substituting,

02. - oi. - - ya 4-5. - (+267) = -(+3.91)(+2.42)2

-(+0.866)(--77.6)

o*v - Oi, = -yoj^ + xa -S» - 0 = -(+0.866)(+2.42)*

+ (H-3.91)(-77.6)
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The solution of these equations gives: S* == -f-311 ft per sec per sec; Uy == 4-308

ft per sec per sec. The positive signs show that Ux and Sy were correctly

assumed; therefore, Ux is toward the right and Uy is downward.

The moment of inertia of the connecting rod may be calculated by the

approximate formula obtained in Prob. 755, Art. 138.

^
ITF.2

,
322(8)* . ,

/ = 7 = = 53.3 engineer s units
12 ^ 12 X 32.2

The resultant of the external forces acting on the connecting rod consists of

the following:

•ppr 322
A component, — Ux — -— X 311 = +3110 lb, through (7, toward the right

g 32.2

TV 322
A component, — Uy — -— (—308) = —30801b, through (7, downward

g 32.2

A. couple, C = la === 53.3 (
— 77.6) = —4140 ft-lb, in the plane of the

motion

The resultant has been completely shown in the figure.

The figure now contains a system of forces, partially known, and their

resultant, completely known. The necessary equations now can be obtained

by means of the principle of components and the principle of moments. Any
convenient axes may be used, a fact vrhich lends a certain advantage to the

resultant method in this problem.

By the principle of moments, the moment-sum of the forces is equal to the

moment of the resultant. Choosing B as the center of moments, and remem-

bering that the moment of the couple must be included,

-Ay (8 cos 12^ 30') + 15,000 (8 sin 12'=’ 30') + 322 (4 cos 12° 30')

= +3110 (4 sin 12° 30') + 3080 (4 cos 12° 30') - 4140

from which.

Ay = +2130 lb

By the principle of components, the component-sum of the forces is equal to

the component of the resultant. Using the x- and y-axes, and remembering

that the component-sum for the couple along any axis is zero,

SF, = Rx -Bx + 15,000 = 3110 Bx == +11,900 lb

SFy ^ Ey -By + 2130 - 322 = -3080 By = +4890 lb

The fact that positive signs were obtained with Ay, Bx, and By shows that

these components were correctly assumed, and that they act as shown in the

figure.

967. Solve Prob. 956 by the equilibrant method.

Solution by the equilibrant method would be like the solution by the
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resultant method, used in Prob. 956, except that the equilibrant of the external

forces would be used, instead of the resultant.

In the present case the equilibrant would consist of two components,

{W/g)^x and {W/g)d.y^ acting at G as in Fig. 448, but reversed in sense, and

a couple having the moment 7a, like the couple in Fig. 448, but reversed in

sense.

The principles of equilibrium would then be applied to the entire system,

forces and equilibrant, to obtain the necessary kinetic equations. If the same

axes as in Prob. 956 were used, the only difference between the resulting

kinetic equations and those obtained in that*

problem would be the position of the equality

sign.

Because of the similarity of the two methods,

actual solution by the equilibrant method will

be' omitted.

968. Figure 449 represents a uniform bar 5 ft

long, weighing 96.6 lb, whose upper end rests

against a vertical plane and whose lower end

rests on a horizontal plane. The bar is held

momentarily in the position shown and then is

suddenly released. Calculate the forces act-

ing on the bar at the instant following its re-

lease. The bar may be assumed to be slender. Disregard friction.

Solution. The problem will be solved by direct substitution in the neces-

sary formulas. Since friction is to be disregarded, the force acting on the bar

at A will be horizontal, and that at B will be vertical. Assume 5*, Sy, and a
as shown.

Since the bar is slender, 7 may be calculated by the approximate formula

from Prob. 755, Art. 138.

1
12 g

96.6(5)^

12 X 32.2
6.25 engineer's units

Four equations can be obtained by the use of Eqs. 249 and 250, Art. 161.

First, let A be selected as particle 1, and B as particle 2. Since the origin must

be placed at particle 1, a: = +3 ft, and y = —4 ft. The angular velocity of

the body, w, obviously is equal to zero.

dix ~ uix — — yoL -\-ciB — 0 = “(+3)(0) — (
— 4)(+a)

a2v ~ ai, = + xa 0 - (-a^) = ~(~4)(0) + (+3)(+a)

Simplifying,

gb * 4a

Uji = 3a

Now let A again be selected as particle 1, but let G be selected as particle 2.



380 KINETICS OF PLANE MOTION

In this case, x = +1.5 ft, and y *= —2 ft.

— dix = — yoc +dx — 0 = —(+1.5)(0) — (~-2)(+a)

02y CLiy == — + xa —Sy (“ a^) = — (
— 2)(0) + (+1.5)(+a)

Simplifying,

= 2a

Sy — ax == —1.5a

From Eqs. 184 and 185, Art. 12G,

2F* = — a* =— a.
g 32.2

IF Q6 6
XF, = -a, -96.6 + B, =^ (-a„)

From Eq. 259, Art. 164,

XM = 7a -A* X 2 + By X 1.5 = 6.25 (+a)

From the seven equations obtained above the values of A* and By are found to

be A* = +34.8 lb and By — +70.5 ib. The positive signs show that A, and

By act as assumed.

PROBLEMS

969. A solid, homogeneous cylinder is given an initial velocity and is then per-

mitted to roll freely up an inclined plane. The angle of inclination of the plane is

represented by 6. No slipping occurs. Prove that the deceleration of the center

point of the cylinder is equal to 21.5 sin Prove that the frictional force is equal

to sin e.

960. A solid, homogeneous cylinder of any diameter rolls freely down an inclined

plane. The coefficient of static friction for the cylinder on the plane is 0.3. Calcu-

late the angle of inclination of the steepest plane down wliich the cylinder could roll,

without slipping. A ns. 42°.

961. A solid, homogeneous cylinder 3 ft in diameter, weighing 966 lb, rolls down
an inclined plane, without slipping. The slope of the incline is 4 (horizontal) to 3

(vertical). The only forces acting on the cylinder are its own weight, and the

reaction exerted by the plane. Calculate d, F,

and N. Calculate the minimum possible value of

the coefficient of static friction consistent with the

assumption that no slipping occurs.

962.

Figure 450 represents a 2-ft drum, rigidly

attached to a pair of +ft wheels. The entire as-

sembly rolls on a horizontal plane, without slipping.

, A light, flexible wire has been wound on the drum,

Fig. 450 f^ being subjected to a constant pull of 25

lb, as shown. The assembly weighs 322 lb, and its

radius of gyration with respect to its geometric axis is 1.5 ft. Calculate the linear

acceleration of the center point, and the frictional force. Calculate the minimum

coefficient of static friction consistent with “ no sUpping.” Arw. +0.8 ft/sec®;

-171b; 0.0528.
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963. In Prob. 962, Fig. 450, change the position of the free end of the wire so that

it comes vertically upward off the drum, on the left-hand side. Assume that this

direction is maintained throughout the motion. Solve the problem, letting all the

other data remain unchanged. Calculate the distance through which the center point

moves in 18 sec, starting from rest-

964. Change the wire in Prob. 962, Fig. 450, in such a manner that the 25-lb pull

will act tangentially at the top of the drum, and toward the left. Solve the problem,

letting the other data remain unchanged. Ana, —2.4 ft/sec^; -pi lb; 0.00311.

966.

Change the wire in Prob. 962, Fig. 450, in such a manner that the 25-lb pull

will be directed upward and toward the right, at an angle of 60° with the horizontal.

The point at which the wire leaves the drum is to the right of, and below, the center.

Solve the problem, letting the other data remain unchanged.

966. A wheel 3 ft in diameter, weighing 64.4 lb, rolls on a horizontal plane, with-

out slipping. The radius of gyration is 1 ft. A constant horizontal force of 10 lb is

applied at the center of the wheel. Calculate the distance described by the center

point while its velocity changes from 10 to 30 ft per sec. Ana. 116 ft.

967. The wheel in Prob. 96f) arrives at the foot of a 30° inchned plane at the instant

when the velocity of its center is 30 ft per sec. The 10-lb force continues to act

horizontally at the center. How far up the incline will the wheel roll before coming
to rest?

968. Reverse the sense of the 100-lb force in Prob. 955, Fig. 447, and solve the

problem. Ans. -+-11*6 rad/sec^; 5.80 ft/sec^ downward; 396 lb, upward; 7871b.

969. A drum fitted with a pair of wheels, similar to that shown in Fig. 450, rests

on a horizontal plane. A light, flexible wire has been wound on the drum. The
free end of the wire comes off the drum at the top, horizontally, and is subjected to a

constant pull. Let F represent the pull on the wire, and let ri and r2 represent the

radii of the drum and of the wheels, respectively. Let k represent the radius of

gyration of the assembly with respect to its geometric axis. Prove that the drum
would roll perfectly, even though the supporting plane were frictionless, if rir2 —

970. Figure 451 represents a drum, A, 2 ft in diameter, to which a pair of 3-ft

wheels are rigidly attached. The assembly weighs 322 lb, and its radius of gyration

is 1 ft. At R is a second drum, the counterpart of the first one. A light, flexible

wire unwinds from drum A, passes over a small pulley C, and winds onto drum R.

The pulley is to be considered weightless and frictionless. The drums roll without

slipping. Calculate the acceleration of the center of each drum, and the frictional

force exerted on each, by the plane. Calculate the tension in the wire.

971. Figure 452 represents a slender, uniform bar, AR, weighing 32.2 lb. The
Upper end, R, moves in a vertical line on a vertical plane, and the lower end, A,
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moves along a horizontal plane in a straight line at right angles to the vertical plane.

At the instant represented by the figure the angular velocity of the bar is 2 rad per sec,

counterclockwise. Calculate the forces acting on the bar at A and B. Disregard

friction. Ans. Aj, — -f 10.7 lb; =* +3.59 lb.

972. Change the angular velocity of the bar in Prob. 071, Fig. 452, to zero. Solve

the problem, letting all the other data remain unchanged.

973. Figure 453 represents a plank moving down an incline on two rollers. The
plank weighs 64.4 lb. Each roller weiglis 32.2 Ib, and is 1 ft in diameter. Assume
that no slipping occurs. Calculate the acceleration of the center point of each

roller. Calculate the frictional forces acting on the rollera. A ns. a — 8.78 ft/sec^;

Fa ^ Fc — 5.85 lb, up the incline; Fb = Fz> = 1.46 lb, up the incline.

974,

The plank and rollers described in Prob. 973 are placed on a horizontal plane.

A constant pull of 5.5 lb is applied horizontally to the plank, at the right end. As-

sume that no slipping occurs, and calculate the acceleration of the center point of

each roller. Calculate the frictional forces acting on the rollers.

976. Figure 454 represents a 4-ft cylinder, with a hole through it in the form of a

half-cylinder, shown. The body weighs 1610 lb. It rolls toward the left, without

slipping, and in the position shown the velocity of the point 0 is 4 ft per sec. The

only forces acting on the body are its own weight, and the reaction of the plane.

Calculate the angular acceleration, and the frictional force and normal pressure.

Am. +3.34 rad/sec^; -2301b; +1520 lb.

976. Turn the body in Prob. 975 through a counterclockwise angle of 90®, and

solve the problem. Let all the other data remain unchanged.

977. Figure 455 represents a crank, BC, and a connecting rod, AB, The crank

rotates in a clockwise direction with a constant angular velocity of 20 rad per sec.

Nothing is attached to' the rod at A except a crosshead whose weight shall be

disregarded. Friction also may be disregarded. The connecting rod weighs

322 lb, and may be treated as a slender, uniform bar. The angle ABC is 90®.

Calculate the forces acting on the connecting rod. Am, Ay * —1070 lb;

« +1070 lb; By ^ -19701b.
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978. Solve Prob. 977, Fig. 455, for the position in wliich the crank angle, ACB^ is

90°. Let the other data remain unchanged.

979. Solve I’rob. 977, Fig. 455, for the position in which the crank angle, ACB^ Ls

180°. Let the other data remain unchanged. Ans. Ay ~ +161 lb; Bx - —5980
lb; ^1, » +161 lb.

166. Rolling Resistance. Wlien a cylinder, wheel, sphere, or other

round body rolls on any surface, it deforms that surface. Furthermore,

the rolling body itself Ls deformed. These deformations may be small

or they may be large, they may be temporaiy or they may be perma-

nent, but they alwa^^s occur. Experiments indicate that among the

various resistances that can impede rolling motion there is one that can

be attributed solely to the deformations just mentioned. This is called

rolling resistance.

A comparatively small amount of information is available regarding

the amount and exact nature of rolling resistance. In many cases the

experiments have been jierformed in such a manner that the results

include the effects of various other resistances, and the amount of rolling

resistance has not been obtained as a separate item. This is especially

true of experiments made with railway trains, motor cars, and other

vehicles. However, a certain amount of experimenting has been done

on rolling bodies in such a manner as to make it possible to estimate

roughly the amount of pure rolling resistance to

be expected under similar conditions.

The Cas9 of the Rigid Body. As an approach to

the discussion of the manner in which deformations

are capable of causing rolling resistance, let a case be

considered in which the bodies are assumed to be

perfectly rigid, and in which, therefore, rolling re-

sistance could not exist. Let Fig. 45G represent

such a case. In the figure, W represents the total

load carried by the rolling ,body, and N represents

the reaction exerted on that body, by the support-

ing surface.

Since the two bodies are to be assumed rigid they

can be in contact at a single point only, or along a

line. For this reason N is necessarily at right angles

to the direction of motion, and can act neither as a re-

sistance nor as a propulsive force. The existence of axle or brake fric-

tion would tend to produce a frictional Jorce at the point of contact

between the body and the supporting surface, opposing the motion, but

it is obvious that in the hypothetical case now under consideration the

supporting surface is unable to offer resistance to the motion by virtue

of any action inherent in itself.

w

N

Fig. 456
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Two cases more typical of dfctual conditions will now be considered.

The bodies will not be assumed rigid, and rolling resistance will occur,

as a result of the deformations of the bodies. First consider a rolling

body which serves as a wheel, carrying its load by means of an axle.

It is desired to study the effect of rolling resistance alone, and for that

reason axle friction and other resistances

will be disregarded. It is generally con-

sidered that the magnitude of the rolling

resistance is not affected by the addition or

removal of other resistances.

Body Serving as a Wiieel. Let Fig. 457

represent the rolling body that serves as a

wheel. In the figure the supporting surface

is depicted as suffering a deformation of

considerable magnitude. The figure is also

typical of the case in which the roadway is

inelastic. Frecpiently the roadway is elas-

tic, and returns to its original condition as

soon as the rolling body has passed over it. The general nature

of rolling resistance is the same in all cases, but an elastic roadway

tends to offer a resistance of lesser magnitude.

Sometimes the magnitude of the rolling resistance is more seriously

affected by the deformation of the rolling body than by the deformation

of the supporting surface. This situation Is especially noticeable when
a wheel with a pneumatic tire rolls on a hard road or pavement.

In any case there is a finite surface of contact between the two bodies.

It is obvious that the force N will have its point of application in an

advanced position, such as A. Thus, N w^ill assume a rearward incli-

nation, and will have a component opposing the motion of the wheel.

Let W represent the total load carried by the wheel, and let P represent

the force that propels the wheel. This propulsive force will be assumed

to be just sufficient to overcome the rolling resistance, and since this

is the only resistance being considered, the wheel will move at constant

speed. The distance/ is called the coefficient of rolling resistance. Values

for /have been obtained for rolling bodies and surfaces of various ma-
terials. Since / is a distance, and not a true coefficient, the unit in

which it is expressed must be known before any practical use can be

made of it. It is usually given in inches.

Since the center of gravity of the wheel moves at constant speed in a
direction parallel to the supporting surface, the following equations can

be formulated:

P — iV sin /3 ~ 0

N cos — IF =» 0

[260]

12611
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Eliminating N between Eqs. 260 and 261, and solving for P,

P = IT tan /3 = IF -

[262]
Vr^-f

If the coefficient of rolling resistance is comparatively large, Eq.

262 should be used. In many cases, however, / is small, compared

with r. If so, tan p may be replaced by sin /3, and the formula becomes

P = TF- [263]
r

Body Serving as a Roller. Equations 2G2 and 263 were derived for

the case in which the body serves as a wheel, and thus has rolling con-

tact with only one surface. Now the case will be discussed in which

the body serves as a roller between two

parallel surfaces and, naturally, has roll-

ing contact with both surfaces. This

situation exists in roller bearings, ball

bearings, and in rollers used for moving

heavy objects. It is called double roll-

ing.

Figure 458 represents the case. The
surface B will be assumed stationary.

The superimposed load, 17, is applied

through the medium of body C. It is

desired to obtain a formula for the

force, applied to the body C, that will maintain uniform motion against

rolling resistance alone. Let P represent this force. The analysis will

be limited to the case in which the coefficient of rolling resistance, /,

is equal for the two surfaces of contact.

Considering the motion of body C only, the following equations can

be written:

P — N sin p [264]

W

Fig. 458

ATcoal? - IF = 0 [265]

From which,

P = IF tan /3 = IF -7-^Vr^-f
[266]

or, approximately.

P = TF- [267]

It will be observed that Eqs. 266 and 267 are identical, in form,

with Eqs. 262 and 263. In the case of the roller there are two surfaces
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at which rolling contact occurs, while in the case of the wheel there is

only one. It would be expected, therefore, that the roller would experi-

ence a resistance to rolling twice as great as that experienced by the

wheel. This would be tnic if the propulsive force, P, were applied in

the same manner in the two cases. In the roller, however, P is applied

in such a manner as to render it twice as effective in maintaining motion.

This accounts for the fact that the same propulsive force will suffice in

both cases, if equal loads are carried.
*

The following table gives a few values of the coefficient of rolling

resistance, as offered by Goodman

:

Iron or steel wheels on steel rails

“ wood
“ “ “ macadam
“ “ “ soft ground

Pneumatic tires on good roads or asphalt

"in heavy mud
Solid rubber tires on good roads or asphalt

“ " " in heavy mud

/ (in inches)

0.007 to 0.015

0.06 to 0.10

0.05 to 0.20

3.00 to 5.00

0.020 to 0.022

0.04 to 0.06

0.04

0.09 to 0.11

For the sake of uniformity and simplicity, rolling resistance has been,

and will be, disregarded in all the problems in this book, with the ex-

ception of those appended to the present article. In some problems

involving the motion of vehicles, however, the total vehicle or train

resistances are given, and the values ordinarily used for these include

the effects of rolling resistance. In practice, the decision as to whether

rolling resistance should be taken into account calls for good judgment

and an appreciation of the relative importance of the various factors

influencing the motion.

PROBLEMS

980. A solid cylinder, 2 ft in diameter and weighing 644 lb, rolls on a horizontal

surface. The coefficient of rolling resistance is 0.06 in. The initial velocity of the

center of the cylinder is 4 ft per sec. How far will the cylinder move while coming

to rest under the influence of rolling resistance? Ans. 74.5 ft.

981 . The cylinder described in Prob. 980 starts from rest on a 10° inclined plane,

and rolls down the plane a distance of 20 ft. It then reaches a horizontal plane, and

continues to roll until brought to rest by rolling resistance. The coefficient of

rolling resistance is 0.06 in., throughout the motion. How far does the cylinder roll

on the horizontal surface? Assume that the rolling resistance on the incline is equal

to that on the level surface.

982 . A weight of 500 lb is placed on rollers on a horizontal surface. The rollers

are 3 in. in diameter, and are in contact with similar materials at top and bottom.

A horizontal force of 6 lb, applied to the weight, is just sufficient to cause motion.

Calculate the coefficient of rolling resistance. Am, 0.018 in.
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983. A machine weigliing 2 tons is to be moved on a set of rollers 2 in. in diameter.

The coefficient of rolling resistance is 0.02 in. Calculate the horizontal force that

must be applied to the machine to cause uniform motion Ans. 80 lb.

984. A set of rollers, each of which is 2 in. in diameter, is placed on a horizontal

surface. A board is laid across the rollers. A second set of 2-in. rollers is placed

on the board, and a weight of 1000 lb is placed on these rollers. The weight

blocked in such a manner that it is prevented from moving. What force will

required to start the board from beneath the weight, if the coefficient of rolling re-

sistance is 0.02 in. at all points?

•a

J



CHAPTER XXI

RELATIVE MOTION

167. The Path of a Point. The term “ path ” has been frequently

used in previous dLscussions in this book, in connection with the motions

of points, but no attempt was made to formulate a definition of it.

It was considered that the reader^s conception of what is meant by the

path of a point would be adequate for the more elementary studies

in kinematics and kinetics. It now becomes desirable, as a basis for

the study of relative motion, to acquire a definite understanding of the

meaning of the term. The term ** path ” is strictly a relative one, the

nature of the path described by a moving point depending entirely upon
the body on which, or within which, the path is considered to be traced.

The path of a point relative to a given body may be defined as a line joining

the s'liccessive particles of (he given body touched by the point. However,

a point may be considered to have a path relative to a given body,

even though the motion of the ]x>int is entirely outside of the material

confines, or boundaries, of the body. In such a case the definition can

still be considered applicable if the path is conceived of as a line joining

those particles which would be touched by the moving point if the body

were sufficiently large. In other words, the relative path, under such

conditions, lies in the body “ extended.^’ Such an imaginary “ ex-

tension
”

of a body is to be considered rigid, having whatever motion

would belong to it as an integral portion of the body, the motion of the

body being in no way altered by the extension. The definition of

relative path contemplates that the body to which the path is referred

is a rigid body.

The path of a point relative to the earth is iLsitally called the absolvie

pathy the earth being considered stationary. It can be seen that a point

which is stationary has no absolute path, but does have a path relative

to any moving body.

As an example of relative paths let the familiar steam-engine indicator,

as illustrated in Fig. 459, be considered. A small cylinder. A, is con-

nected to the cylinder of the engine, by suitable piping. The piston, J5,

is forced upward by the pressure of the steam from the engine cylinder,

against the resistance of a calibrated spring. The motion of the piston,

B, is communicated to the pencil, D. The mechanism that transmits
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the motion is so designed as to give the pencil a rectilinear motion

parallel to that of the small piston, but multiplied several times in

order to furnish a diagram of convenient size. The pencil touches the

drum, E, which is covered with a card. This drum rotates about its

own geometric axis, receiving its motion from the crosshead of the

engine in such a manner that its angular motion is proportional to

the linear motion of tlie crosshead,

but greatly reduced in magnitude.

The motion of the pencil-point fur-

nishes an excellent illustration of the

meaning of the terms discussed above,

as will be shown.

First, let it be imagined that the

indicator drum is disconnected from

the crosshead of the engine, and that

steam is admitted into the indicator

cylinder. If the pencil-point is

brought into contact with the drum,

a straight vertical line will be draxMi

on the card. Since the card is sta-

tionary it is essentially a part of the

earth, and the line drawn upon it by the pencil is the absolute path of

the pencil-point.

Now let it be imagined that the drum is connected to the crosshead,

but that the steam is shut off from the indicator cylinder, so that the

pencil does not move and, therefore, has no absolute path. The pencil

will, however, mark out a horizontal circular arc on the card, showing

the successive particles of the card that are touched by the pencil-point.

This arc is, therefore, the path of the pencil-point relative to the drum.

In actual practice the line drawn in this manner

is called the atmospheric line.

As a final illustration let it be imagined that

the steam is admitted into the indicator cylin-

der, with the drum connected to the crosshead

as in the preceding case. The absolute path of

Fia. 460 the pencil-point is a vertical straight line, as

in the first illustration, but the path relative

to the drum is the one that is actually marked on the paper, and is quite

of a different nature. When the card is removed from the drum and

flattened out, the diagram usually has an appearance similar to that

shown in Fig. 460. The indicator diagram is much used by engineers

in ascertaining the power developed in the cylinders of steam engines,

Fiq. 459
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gasoline engines, air compressors, etc,, and in obtaining other informa-

tion regarding the performance of such machines.

The illustrations given above are cases in which the paths are actually

made visible by means of a pencil line. Usually, however, relative

and absolute paths are purely imaginary.

PROBLEMS

986. A certain lo(X)m()tive runs on a track that has neither horizontal nor vertical

curvature. What is the general nature of the absolute path of a point on the rim

of one of the drivers? What is the nature of the path of this point relative to the

frame of the locomotive? Answer the same questions for a point on one of the cross-

heads.

986. A certain automobile runs straight forward on a level road. What is the

general nature of the absolute path of a point on the rim of the flywheel? What is

the nature of the path of this point relative to the body of the car? Answer the same

questions for a point on one of the pistons.

168. Relative Velocity. The linear velocity of a moving point was

defined, in Art, 105, as the time rate at which the point traversCvS dis-

tance, and was shown to be given by the expression ds/dt. It will be

remembered that in the foregoing expression s represents the linear

distance to the moving point from some point fixed on the path, and is

measured along the path. The discussion in Art. 167 shows, however,

that in each si)ecific case of motion there exists a definite path for each

body to which the motion of the point may be referred, or related, and

that these relative paths may be quite different in form and in dimen-

sions. Thus it can be seen that the relation between s and t will depend

upon which of these paths is to be used for the measurement of s.

It becomes evident, therefore, that velocity is a relative quantity,

and that a given point at a given instant has any number of relative

velocities, one for each relative path along which the point is considered

to be moving. Consequently, if s is meamred along the path of the point

relative to a given body the formula v == ds/dt gives the velocity of the point

relative to that particidar body. The vector intended to represent the

relative velocity should be drawn tangent to the relative path. When
velocity is mentioned without any statement regarding the body to

which it is referred, it is understood that absolute velocity is meant;

that is, velocity relative to the earth.

It can be seen that the formulas Vx = dx/dt and Vy = dy/dtj Art. 115,

will give components of absolute velocity if x and y are measured from

stationary axes; but if the coordinate axes are considered to be fixed

to some moving body, thus partaking of the motion of the body, these

formulas will give the components of the velocity of the point relative

to the body.
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To illustrate the foregoing discussion, let the steam-engine indicator

of Art. 167 again be considered. If the distances s, x, and y are measured
from points and axes fixed to the earth, the various velocity formulas

will determine the absolute velocity of the pencil-point. If, however, 8

is measured along the indicator diagram, from a point fixed on that

diagram, and if the coordinate axes are drawn in a fixed position on the

indicator card, the results obtained will pertain to the velocity of the

pencil-point relative to the drum.

169. Relation between Relative and Absolute Velocities. The abso-

Ivie velocity of a moving point at any instant is the vector sum^ or result-

anty of the following:

I. The velocity of the moving point relative to any moving body at the

given instanty and

II. The absolute velocity of that particle belonging to the moving bodyy or

extension thereof, which coincides with the moving point at the given instant.

Proof. The foregoing relation will be proved only for the case in

which the point moves in a plane, and the moving body has plane mo-

tion, the plane in which the point moves being parallel to the plane of

motion of the body. The majority of examples in practice conform

essentially to this special case.

The moving body is represented in Fig. 461, the plane of its motion

being parallel to the plane of the paper. Let P represent the moving
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point. Let OX and OY represent a pair of stationaiy coordinate axes.

Let QM and QN represent a pair of coordinate axes fixed in the moving
body and, naturally'', partaking of its motion. Let xp and yp represent

the coordinates of P with respect to the stationary axes OX and OY, Let

m and n represent the coordinates of P with respect to the moving axes

QM and QN, Since P has a motion relative to the moving body, as

well as a motion relative to the earth, it can be seen that xp, ypy m, and
n are all variables, the variation of xp and yp being governed by the

absolute motion of P, and the variation of m and n being governed by
the motion of P relative to the mo\dng body. Let Xq and yQ represent

the coordinates of the point Q with respect to the stationary axes OX
and OF. The point Q is the origin of the moving axes QM and QNy
and is fixed in the moving body. Let q represent the distance QP, as

shovm. Let and 6 represent the various angles indicated in the figure.

Let w represent the angular velocity of the moving body at any instant.

It will be noticed that the letter B also has been placed at the point

P. jB is intended to represent that particle, belonging to the moving

body, with which P coincides at the instant under consideration. It

must be kept in mind that P moves with respect to both sets of co-

ordinate axes, while Q and B are particles belonging to the moving
body itself and move with respect to OX and OY only. The body is

assumed to be rigid.

Absolute and relative velocities will be distinguished by the use of

V (lower-case) to represent absolute velocity, and V (upper-case) to

represent relative velocity. When it is desired to represent the velocity

ofP the various symbols, r, F, F^, Vny etc., will be used without additional

subscripts. In the cases of Q and B additional subscripts will be used;

for example, Vqx^ vpyy etc.

From Fig. 461,

Xp — Xq — n sin jS + m cos 0 [268]

Since Vx = dxp/dt, an expression for Vx can now be obtained by differ-

entiating in Eq. 268 with respect to t,

^ dn , ^ . «

/

dp\
,
dm ^

[2691

In Eq. 269, dxQ/dt = vqx\ dfi/dt — w; dn/dl = V„, the n-component

of the relative velocity; and dm/dt = Vm, the m-component of the

relative velocity. Equation 269 may now be written as follows:

* Vg = Vqx — o> (n COS-/3 + w sin /3) + (F„ cos j3 — F„ sin /3) [270]

From the figure, (n cos /3 + m sin jS) >= yp — yQ. The figure also

shows that {Vm cos p — Vn sin fi) * Vg, the x-component of tbe relative
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velocity. Substituting these values in Eq. 270, and replacing the

symbol yp by its equivalent, ypy

Vx = Vx +vqx — (yp — yQ)o} [271]

Particles Q and B are two particles of a body in plane motion. Equation

243, Art. 161, states that V2x — vix = — (2/2 Selecting Q as

particle 1 and B as particle 2, Eq. 243 becomes, in the notation of

Fig. 461,

vbx - vqx = - {yp - yQ)oi [272]

Eliminating the expression — {yp — yQ)o> between Eqs. 271 and 272,

the following simple relationship is obtained:

Vx — Ex 4" vpx [273]

Referring again to Fig. 461, it can be seen that

yp = yQ + n 0,0^ ^ + m sin jS [274]

From Eq. 274, by an analysis similar to that used in deriving Eq. 273,

the following formula can be obtained:

Vy = Vy Vpy [275]

Equations 273 and 275 constitute an algebraic statement of the prin-

ciple set forth at the beginning of the article and, therefore, the deriva-

tion of these equations Ls a proof of the principle. Equations 273 and
275 may be used directly in the solution of problems, if desired. How-
ever, the principle itself is easily remembered and can be applied in

any particular case in conjunction with whatever method of vector

composition is most convenient.

Illustrative Problems

987. Figure 462 represents a car, on which is mounted a wheel 5 ft in

diameter. The wheel is carried on a horizontal shaft at right angles to the

plane of the figure. At the instant shown the car has a velocity of 6 ft per sec,

toward the right, and the wheel has an angular velocity of 10 rpm, counter-

clockwise. Find the absolute velocity of the particle, P, on the rim of the

wheel, at the given instant.

Solution, Let P be taken as the moving point referred to in the principle

stated at the beginning of the article. Let the car be taken as the moving

body.

The path of P relative to the car is the circle representing the periphery

of the wheel. The velocity of P relative to the car is tangent to this path.

The relative velocity can be calculated from the radius, and angular velocity,

of the wheel.

Vp
10(27r X 2.5)

60
2.62 ft/sec
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Since <a is counterclockwise, the relative velocity is directed upward and

toward the left, as shown in the figure.

Let B represent that particle belonging to the moving body, with which

P coincides at the given instant. In other words, P is a particle belonging to

an imaginary extension of the body of the car. Since the car is translating,

the velocities of all its particles are equal. Therefore, vb = 6 ft per sec,

horizontal and toward the right, as shown.

According to the principle, vp is the resultant of Vp and vb- Therefore,

vp is represented by the diagonal of the parallelogram, as indicated in the

figure. By the law of cosines, from trigonometry,

vp = + Vp — 2 X Vp X Vb cos 60®

= V{2.62)2 + (6)2 - 2 X 2.62 X 6 X 0.5 = 5.21 ft/sec

The angle of inclination of vp can be calculated by the law of sines.

e ^ 25» 45'

2.62 5.21

988. Figure 463 represents a bar, AD, in plane motion. The plane of the

motion is parallel to the plane of the paper. A moves horizontally and D
moves vertically. A point, P, moves along the center line of the bar, toward D.

At the instant represented by the figure, P is 2 ft from the lower end of the bar,

and its velocity relative to the bar is 5 ft per sec. At the same instant the

velocity of Z) is 6 ft per sec, downward. Calculate the absolute velocity of P.

Solution. Let P be chosen as the moving point, and let the bar be chosen

as the moving body. Let B represent that particle belonging to the bar,

with which P coincides at the given instant. The absolute velocity of P is the

resultant of the velocity of P relative to the bar and the absolute velocity of B.

The absolute velocity of B can be calculated conveniently by the instantaneous-

axis method. Art. 162.

It is known that the velocities of A and D are horizontal and vertical,

respectively. The instantaneous center lies on a line drawn in the plane of the
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motion, passing through any particle, at right angles to the velocity of the

particle. Therefore the instantaneous center in Fig. 463 is at C. Also,

vj} = CDo3 o) = f = 2 rad/sec

Obviously, co is clockwise. In calculating vb, the distance BC and the angle

ACB will be needed. From the figure,

ABAC — arc tan | = 36® 50'

In the triangle ABC, by the law of cosines,

W = yllu? + Ic’* - 2AB X AC cos {BAO

= V(2)2 + (4)2 - 2 X 2 X 4 cos 36° = 2.68 ft

By the law of sines,

sin (ACB) _ sin 36® 50'

2
“

2.68
j

AACB = 26® 36'

Therefore,

vb — BC(j> = 2.68 X 2 = 5.36 ft/sec

Since vb is at right angles to BC, its angle of inclination to the horizontal is

equal to AACB - 26® 35'. vp, being the resultant of Vp and vp, is repre-

sented by the diagonal of the parallelogram, as shown in the figure.

Let the magnitude and angle of inclination of vp be calculated by the princi-

ple of components,

vpx = Fpx — vbx = 5 X f — 5.36 cos 26® 35' = —1.79

vpy = Vpy — vbv = 5x1^ — 5.36 sin 26® 35' == +1.60

vp = V(1.79f + (1.60)® = 2.40 ft/sec

1 An
dx = arc tan = 41® 50'

1.79

989. Figure 464 represents a cylinder 4 ft in diameter, rolling toward the

left, without slipping, on a horizontal plane. In the position shown the

linear velocity of the center of the cylinder is 5 ft per sec. A circular arc,

DCB, having its center at E, is inscribed on the end of the cylinder. The

radius of the arc is 2 ft. A point, P, traverses this arc, moving toward jB,

The point reaches B at the instant when the cylinder is in the position shown

by the figure, and its velocity relative to the cylinder at this instant is 6 ft per

sec. Find the absolute velocity of P at the given instant.

Solution. Let P be chosen as the moving point and the cylinder as the

moving body. Let Vp represent the velocity of P relative to the cylinder.

From the problem, the arc DCB is the relative path. Vp is tangent to the

relative path, at B. Let 0 represent the angle of inclination of Fp at the given

instant. From the figure,

/3 « 90® - ACEB « 90® - 60® « 30®
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Let B represent that particle belonging to the cylinder, with which the moving
point P coincides at the given instant. It is now necessary to find the abso-

lute velocity of B. Let Eqs. 247 and 248, Art. 161, be utilized, and let C be

chosen as particle 1 and B as particle 2. Then, since the origin is to be at C,

X = -f 1 ft, and 2/ = +2 sin 60^ = -f 1.73 ft. By Eq. 233, Art. 160, vc = rco.

Therefore, oo = vc/r = | = 2.5 rad per sec, counterclockwise. Assume vbx

and VBy as shown in the figure.

Vis - Viz = -2/0? -vbx - (-5) = *-(+1.73)(+2.5)

vbx = +9.33 ft/sec

Viy — Viy = +xa? — 0 = +(+ l)(+2.5)

vbv ~ +2.50 ft/sec

The components of I’s, as found above, can be used directly in the final calcu-

lation, and vb itself need not be calculated.

By the principle stated at the beginning of the article, rp is the resultant

of Fp and vb> Using the principle of components,

vpx — Fpx — vbx = +6 cos 30® — 9.33 « —4.13 ft/sec

vpy = Vpy + VBy = +6 sin 30® + 2.50 = +6.50ft/seo

vp = V (4.13)2 + (5.50)» = 6.88 ft/sec

5 50
Oz «= arc tan — « 53® 05'

- 4.13

990. Figure 465 represents a pair of cams, A and D. They rotate about

the shafts E and F. The line CC' shows the position of the common tangent

plane to the two cams at their point of contact. The angular velocity of

cam A, at the instant shown by the figure, is 2.4 rad per sec, clockwise, Calcu-
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late the angular velocity of cam D at the given instant, assuming that contact is

being maintained between the two cams.

Solution. Let P represent that particle, belonging to cam A, which lies at

the point of contact. Let P be chosen as the moving point, and cam D as the

moving body. The absolute velocity of P can be found as follows

:

vp = EPu^a = V(3)^ + (1.5)^ X (2.4) = 8.04 in./sec

is at right angles to EP; therefore,

Ox — arc tan
3

1.5
- arc tan 2.0 - 63° 25'

Vp is directed upward and toward the left, as shown in the figure.

Y

The path of P relative to cam D is a curve lying somewhere between the

two cams. So far as the present problem is concerned the important fact is

that P touches cam D only once, at B. Therefore, the common tangent,

CC\ also is the tangent to the relative path, and the relative velocity, Vp^

coincides with CC\ Obviously, the sense of Fp will be as shown.

Let B represent that particle^ belonging to cam /), with which P coincides

at the instant under consideration. The absolute velocity of B can be found

as follows:

VB = FBXiOD = V^(2)“ + (1.5)* XWD = 2.5wd

vb is at right angles to FB; therefore,

2
8 * arc tan— = arc tan 1.33 = 53° 05'
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By the principle stated at the beginning of the article, vp is the resultant of Fp
and vb- Therefore, by the principle of components, using an axis at right

angles to CC',

vp sin [30° + (90° - 6^)] - sin (60° - B)

8.04 sin 56° 35' = 2.5ci?d sin 6° 55'

8.04 X 0.835 ^

.

c*5i)
== —— — == 22.4 rad/sec, clockwise

PROBLEMS

991. Solve Prob. 987, Fig. 462, for the case in which the point P is in a position

180*^ from that shown in the figure. I^t all the other data of the problem remain

unchanged. Ans, 7.65 ft/sec, Ox
— 342^" 45'.

992 . A certain automobile has tires 30 in. in diameter, and a high-gear ratio of

4.77. The stroke is 4 in. Find the absolute velocity of a point at the center of one

of the crankpins, when the crank is horizontal, the crankpin is, moving downward,

and the car has a speed of 70 mi per hr on a straight, horizontal roadway.

993 . A certain motor boat has a speed of 40 mi per hr, in still water. It crosses

a river 1 mi wide, steered in such a manner as to keep it headed at right angles to the

stream. When it reaches the opposite bank it is 100 ft downstream from the starting

point. Calculate the velocity of the stream, assuming that the speed of the boat

relative to the water is the same as in still water. Am, 0.758 mi/hr.

994

.

Figure 466 represents a rectangular, flat plate, 3 by 4 ft, in plane motion, the

plane of the motion being vertical and parallel to the plane of the paper. C moves
vertically up a wall, and D moves horizontally along a floor. The velocity of C is

4.8 ft per sec, upward. A point, P, moves along the edge CP, toward P, at a con-

stant speed of 4 ft per sec, relative to the plate. At the instant represented by the

figure, P is 1.92 ft from C. Find the absolute velocity of P at the given instant.

996. Let the point P, in Prob. 994, Fig. 466, move along the edge PP, toward P,

reaching P when the plate is in the position shown in the figure. Find the absolute

velocity of P at the given instant. Let all the other data remain as in Prob. 994.

Ana. 3.42 ft/sec, 0* = 69° 30'.

996. A point moves along the edge CD of the plate in Fig. 466, Prob. 994. At the

ixistant depicted by the figure the absolute velocity of the point is zero. How far is

the point from C? Calculate the velocity of the point relative to the plate.



RELATION BETWEEN RELATIVE AND ABSOLUTE VELOCITIES 399

097. Figure 467 represents a cam similar to those used to operate the valves in an
automobile engine. Tlie tappet, C, can move in a vertical direction only. If the

speed of the camshaft is 1500 rpm, calculate the absolute velocity.of the tappet at the

instant when the distance OA is 1.4 in., and the angle AOB is 126°. Also calculate

the velocity of a point on the cam at A, relative to the tappet. Ans. 10.8 ft/sec,

downward; 14.8 ft/sec, horizontal and toward the left.

998. Figure 468 represents a type of intermittent gearing usually known as the

Geneva wheel. The driving wheeh A, rotates at constant speed, and carries the

small roller, C. The driven wheel, B, has four radial slots, 90° apart. In the figure

the roller is shown just as it enters one of the slots, at which instant angle COD =
angle ODC ~ 45°. The roller leaves the slot after each wheel has made 4 rev.

Wheel B then remains stationary while A completes its revolution. If OC — 4.24 in.,

OD — 6 in., and otA = 60 rpm, calculate the angular velocity of wheel B for the

instants when angle COD has the following values: 45°; 22° 30'; 0°. Calculate

also the velocity of the center of roller C, relative to wheel B, for those positions

999. On a certain clock, at a certain instant, the velocity of the point at the tip of

the hour hand, relative to the minute hand, is I.Itt in. per min, and is directed down-
ward and toward the right, at an angle of 70° with the horizontal. What time is it?

How long is the hour hand? Ans, 8:20; 3 ft.

1000. In 1%. 469, B represents a cross section of one of the buckets of a hydraulic

turbine of the type known as impulse wheels. A represents the jet of water striking

the bucket. The stream divides and, in the present case, is turned through an angle

of 165°, relative to tlie bucket. The lines CD and EF are drawn tangent to the curve

of the bucket at the point where the water leaves. If the velocity, va, of the jet is

200 ft per sec, and the velocity, vbj of the bucket is 100 ft per sec, ascertain the amount

and inclination of the absolute velocity of the water at the instant when it leaves the

bucket. Assume that the velocity of the water relative to the bucket remains con-

stant in magnitude.

1001. Figure 470 represents a circular cam, 10 in. in diameter, mounted on a

horizontal shaft. The follower, A ,
moves in a vertical direction only. The cam has a

counterclockwise angular velocity of 120 rpm. Calculate the absolute velocity of

the follower for the position shown. An-®. 3,34 ft/sec, upward.
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1002. Figure 471 represents a quick-return mechanism of a type often used to

drive certain machines. The wheel, A, carries a block, R, mounted on a pin. As the

wheel rotates, B slides up and down in the link CD, causing CD to oscillate about the

fixed center, C. D is connected to the machine by means of the link DE. While B

Fig. 472 Fig. 473

traverses the upper portion of its arc a slow stroke is executed. The return stroke is

accomplished more quickly, thus saving considerable time. OR « 6 in., OC « 18 in.,

and DC « 30 in. If the wheel A rotates at a constant si)eed of 10 rpm, calculate the

velocity ofB relative to CD, and the absolute linear velocity of D, for the instant when
e - 160^

1003. Figure 472 represents the impeller of a centrifugal pump. Water issues

from the impeller at A with a velocity, relative to the impeller, of 7 ft per sec, along
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the line AB, which is drawn tangent to the vane. If the impeller is 4 ft in diameter,

and is rotating in a clockwise direction at a speed of 400 rpm, find the absolute

velocity of the water at A as it leaves the impeller. Ans. 77,5 ft/sec, dx *= 2° 16^.

1004 . Figure 473 illustrates the principle of a rotary engine formerly used in

aviation, known as the Gnome engine. The cylinders rotate about the crankshaft, O,

All the connecting rods turn on the fixed crankpin, A. Because of the eccentric

position of the crankpin, each piston executes a reciprocating motion within its

cylinder as the cylinder revolves about O. Only one piston and connecting rod are

shown in the figure. If OA = 3.5 in. and AB 1 1 .5 in., and the speed of the engine

is 3000 rpm, clockwise, calculate the absolute velocity of the point B, and its velocity

relative to the cylinder, at the instant when 6 — 45°.

1005 . Figure 474 represents a cylinder, 3.5 ft in diameter, rolling on a horizontal

plane, without slipping. A bar, DE, rotates on a shaft at D, and rests on the cylinder.

At the instant represented by the figure the velocity of (he center of the cylinder is

5 ft per sec, toward the left. Calculate the angular velocity of the bar at the given

instant. A7is. -i~0.448 rad /sec.

170. Relative Acceleration. Linear acceleration, as well as linear

velocity, is a relative term, depending on the body to which the path

of the moving point is referred. The formula ax = d^s/dt^ gives the

tangential component of the absolute acceleration of a point if s is meas-

ured along the absolute path^ but it gives the tangential component of the

relative cu^celeration if s is measured along the relative path. The alter-

native formula, ar = dv/dty also gives the absolute or relative tangential

acceleration, depending on whether v represents the absolute or relative

velocity. The formula a^ = v^/r gives the normal component of the

absolute acceleration if v represents the absolute velocity^ and it gives

the normal component of the relative acceleration if v represents the relative

velocity. In the first case the value used for r would be the radius of

curvature of the absolute path, and in the second it would be the radius

of curvature of the relative path.

Likewise, the formulas for the axial components of linear acceleration

tviU give components of the absolute acceleration if they refer to a stationary
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pair of axeSy and mil give the relative acceleration if they refer to a pair of

axes fixed in the moving body.

Obviously, a vector intended to represent the tangential component
of an absolute acceleration would be drawn tangent to the absolute

path, and a vector intended to represent a normal absolute acceleration

would be drawn normal to that path. Similarly, vectors representing

relative accelerations would be drawn m their proper positions with

regard to the relative path.

171. Relation between Relative and Absolute Accelerations. The
absolute acceleration of a moving point at any instant is the vector sum, or

resultanty of the following:

I. The acceleration of the moving point relative to any moving body at the

given instanty and

II. The absolute acceleration of that particle belonging to the moving

bodyy or extension thereof
y
which coincides with the moving point at the

given instanty and

III. A third accelerationy called the^ acceleration of Coriolis also

called the complementary acceleration. The acceleration of Coriolis

is made up as follows:

(a) Magnitude. Its magnitude is equal to twice the product of the

velocity of the moving point relative to the moving body, and the

angular velocity of the body, at the given instant.

(b) Inclination. It is at right angles to the relative velocity.

(c) Sense. Let the reader imagine that he stands on the plane of

motion of the body and faces in the direction of the relative velocity.

If the angular velocity of the body is clockwise, the sense of Coriolis^

acceleration is to the reader^s right; if the angular velocity of the body is

coimterclockwise, the sense of Coriolis’ acceleration is to his left.

Proof. The foregoing relations will be proved only for the case in

which the point moves in a plane, and the moving body has plane

motion, the plane in which the point moves being parallel to the plane

of motion of the body. The majority of problems in practice conform
essentially to this special case.

Figure 461, and the various symbols used in Art. 169, will also be
employed in the present proof. In addition to these, the following sym-
bols wdll be used: oq and as will represent the absolute accelerations of

particles Q and By respectively; a (lower-case) will represent the abso-

lute acceleration of the moving point, P; A (upper-case) will represent

the acceleration of P relative to the moving body; and a will represent

the angular acceleration of the moving body at the given instant.

For convenience, Eq. 270, of Art. 169, will be repeated here, slightly

changed in form.

^ vqx — om cos /9 — wm sin /3 *+- F,n cos /S — Vnsmff [276]
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Since = dvx/dty an expression for a* can now be obtained by differ-

entiating in Eq. 276, with respect to t. The following equation results:

dvQx
,

> r.d^ ^dn du)
O'x = r wn sm co cos /3

— n cos —
dt dt dt di

— umi cos P
dt

u) sin p
dm
dt

do) . dQm sin /3
— - F„, sin /3

—
at dt

+ cosiS

In Eq. 277,

dvQx d/5

dt

dVr,

dt

dn

Fn cos /5-“ ~ 8in/3-—
dt dt

[277]

dw _ dm dVm dV„
^

dt dt dt dt

Substituting these values in Eq. 277, and rearranging,

(lx ~ dQx — o)^(rn cos /3 — n sin /3) — a(m sin /3 + n cos jS)

+ {Am cos /3 — iln sin /5) - 2 a? (F,^ sin + Vn cos /5) [278]

From Fig. 461, Art. 169, (m cos jS — n sin 0) = xp — xq, and
(m sin /3 + n cos fi) = yp — yg. Also, from the figure, (Am cos —
An sin /S) = Axj and (F,^* sin /3 + Fn cos = F^. vSubstituting these

values in Eq. 278, and replacing the symbols xp and yp by their equiva-

lents, xb and ypj

ax = Ax + agx - 2Fj,o; - {xb ~ xq)o)^ - {yB - yQ)a [279]

Particles Q and B are two particles of a body in plane motion. Equa-
tion 245, Aiii. 161, states that a2x ~ aix = — fe — Xi)o)^ — {y2 — yi)a.

Selecting Q as particle 1 and B as particle 2, and using the notation of

Fig. 461, Eq. 245 becomes,

dBx ~ oqx = - {xb - xq)J^ - {yB - yQ)ot [280]

Eliminating the expression — {xb — Xq)(j)^ — (ys — between

Eqs. 279 and 280,

ax = Ax + aBx — 2Fyco [281]

An analysis similar to the foregoing, and based on Eq. 246, Art. 161,

leads to the following formula for ayi

tty ^ Ay d” apy ”t“ 2FxW [282]

It will now be shown that Eqs. 281 and 282 constitute a proof of

the principles stated at the beginning of the article. The absolute

acceleration, a, of the moving point, P, is the resultant of and Oy.

Therefore, from Eqs. 281 and 282^ a is the resultant of the six vector
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quantities, clbxj (-^^V^co), Aj,, asy, and {+2VxCo). The resultant

of Ax and Ay alone is Aj the relativ^e acceleration. The resultant of aBx

and asy is aBi the absolute acceleration of particle B.

It only remains to be shown that the resultant of the two vectors,

(—2VyCo) and (+2Fxa)), is the acceleration of Coriolis, as described

at the beginning of the article. The magnitude of the resultant of

these two vectors is equal to (2 + (-' 2 FyO?)^ = 2 co V vl + Fy
= 2 Fw. This last expression is the magnitude ascribed to the accelera-

tion of Coriolis, at the beginning of the article. The angle that this

resultant, 2 Fco, makes with OX is arc tan = arc tan — — •

~2kyaj Fy

F
The angle that the relative velocity, F, makes with OX is arc tan ^ •

y X

A comparison of the two expressions shows that the acceleration of

Coriolis is at right angles to the relative velocity.

The sense of Coriolis^ acceleration depends on the algebraic signs

that its components, (
— 2Fya)) and (-{-2Vx03)^ have in any particular

problem. These signs depend, in turn, on the signs of F^, Fy, and w.

A study of all possible combinations of these signs readily shows that

the sense of the vector, 2Fa), representing the acceleration of Coriolis,

will always be as stated in the beginning; that is, as seen by a person

facing in the direction of F, the sense of 2Fa) will be toward the right if

w is clockwise, and toward the left if a? is counterclockwise.

Methods of Solving Problems. The study made in this article furnishes

a choice of two procedures in the solution of specific problems involving

relative and absolute accelerations. The general principles stated at

the beginning of the article can be learned, and a sketch made of the

various vectors involved in the problem at hand. The unknown
quantities can then be found by whatever method seems best suited

to the situation. A graphic solution could be used, if desired.

In the alternative method a convenient pair of x- and ^/-axes can be
selected, and the problem solved by the direct use of Eqs. 281 and
282. If the quantities Ay, obxi F^, Fy, and w are given their

proper algebraic signs, Eqs. 281 and 282 will apply in any problem.

Illustrative Problems

1006. Figure 475 represents a car on which is mounted a wheel 5 ft in

diameter. The wheel has a constant angular velocity of 10 rpm, counter-

clockwise. The car has a linear acceleration of 2 ft per sec per sec, toward the

right. Find the absolute acceleration of a particle, P, on the rim of the wheel,

for the position shown in the figure.

Solution. Let P be selected as the moving point, and the body of the car as
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the moving body. By the principle stated at the beginning of the article, the
absolute acceleration of P is the resultant of various components, as follows:

1.

The deceleration of P relative to the body of the car. The path of P rela-

tive to the car is the circle representing the periphery of the wheel. Since the
angular velocity of the wheel is constant, and since the angular velocity of the

body of the car ls zero, the angular velocity of the wheel relative to the car

also is constant and is ecjual to 10 rpm. Therefore, the linear acceleration of

P relative to the body of the car has a normal component, only.

Ap - rw’^ = 2.5 = 2.74 ft/sec’^

Ap is situated as shown in the figure, along the radius through P and toward the

center of the wheel.

II. The absolute acceleration of that point belonging to the moving body^ with

which the moving point coincides at the given instant. Let B represent that

particle belonging to the body of the car (extended) with which P coincides.

The body has a motion of translation; therefore, the accelerations of all its

points are equal. The absolute acceleration of B is, then,

ap = 2 ft/sec^

horizontal, and toward the right.

III. The acceleration of Coriolis. The magnitude of this component is

equal to 2Fa), in which co represents the angular velocity of the moving body.

Since the car body is translating, its angular velocity is zero; therefore, the

acceleration of Coriolis in this problem is zero.

It follows, then, that ap is the resultant of Ap and ap. The parallelogram of

accelerations is as shown in the figure. By the law of cosines,

ap = -j- ap •— 2Apap cos 30®

- V(2.74)2 4- (2)2 - 2 X 2.74 X 2 X 0.866

= 1.42 ft/sec®
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By the law of sines,

sin Ox _ sin 30°

Ap ap

^ . 2.74 X 0.5
Ox ~ arc sm = 105 10

1.42

1007. Figure 476 represents a wheel 8 ft in diameter, mounted on a shaft.

A straight line, AB, is inscribed on the wheel at a distance of 2 ft from the

center. A point, P, traverses this line, moving from A toward B, At the

instant when P reaches B its velocity relative to the wheel is 2 ft per sec and is

decreasing at the rate of 3 ft per sec per sec. At the same instant the angular

velocity of the wheel is 1 rad per sec, counterclockwise, and is decreasing at the

rate of 2 rad per sec per sec. Find the absolute acceleration of P at the given

instant.

Solution, Naturally, P will be chosen as the moving point and the wheel

as the moving body. The absolute acceleration of P is the resultant of the

foDowing:

I. The acceleration of P relative to the wheel. Obviously the line AP is the

relative path. From the problem, Ap « 3 ft/sec^. Since AB is a straight

line, Ap is parallel to the path, and since Fp is decreasing in magnitude, Ap
is upward, as shown in the figure.

II. The obsolvJte acceleration of that particle belonging to the moving body

which coincides with the moving point ot the given instant. Let B represent this

particle. Its acceleration has a tangential, and -a normal, component. By
Eqs. 212 and 213, Art. 150,

ar = ra apT * 4 X 2 « 8 ft/sec^

ajv = rco^ apN *= 4(1)^ « 4 ft/sec^
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Since the angular acceleration of the wheel is clockwise, the sense of cbt is as

shown in the figure. asN is radial and toward the center of the wheel.

III. The acceleration of Coriolis, The magnitude of the acceleration of

Coriolis = 2F/>a? = 2X2Xl = 4ft per sec per sec. It is at right angles to

Vp; consequently it is horizontal in the figure. To ascertain its correct

sense, the observer imagines himself standing on the plane of motion of the

wheel, facing in the direction of Vp. In the present problem he faces down-

ward, in the figure. Since the angular velocity of the wheel is counterclock-

wise, the acceleration of Coriolis will be directed toward the observer’s left.

Tills will be as shown.

All the components of ap are now known. By the principle of components,

assuming ap to be inclined upward and toward the left,

— ap* = — aprcosSO® — ap^sin30° + 2Fpco

= -8 X 0.866 - 4 X 0.5 + 4

"f" flPv — — ^BT sin 30° 4“ obn cos 30° -{- Ap = — 8 X 0.5 -}- 4 X 0.866 4~ 3

From wliich, ap* = -f4.93 ft per sec per sec and apy - 4-2.46 ft per sec per

sec. The positive signs show that the senses of ap* and apy were correctly

assumed, and that the sense of ap is upward and toward the left.

ap = V'(4.93)^ + (2.46)2 = 5.51 ft/sec^

q 4A
d* = arc tan— = 26° 30'

4.93

1008. Figure 477 represents a bar,

AB, 10 ft long, in plane motion. The

plane of the motion coincides with the

plane of the paper. The upper end

moves in a vertical line, and the lower

end in a horizontal line. In the given

position the angular velocity of the

bar is 2.5 rad per sec, counterclock-

wise, and the angular acceleration is 2

rad per sec per sec, clockwise. A point,

P, moves along the bar, toward B. At

the instant when P reaches B its veloc-

ity relative to the bar is 5 ft per sec,

and is increasing at the rate of 6 ft per

sec per sec. Find the absolute acceler-

ation of P at the given instant.

Solution. Naturally, P will be chosen as the moving point and the bar as

the moving body. The^ various components of the absolute acceleration of P
are calculated as follows:

I. The acceleration of P relative to the ban By the problem, this accelera-

tion, A p, is 6 ft per sec per sec. The relative path of P is a straight line along
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the axis of the bar. Therefore, A /> is along the bar and, since the relative

velocity is increasing, is directed ujiward and toward the left, as shown.

II. The absolute acceleration of the point R, belonging to the bar and coincid-

ing with P. as can be calculated from Eq. 250, Art. 161. Let A be chosen

as particle 1 and B as particle 2. The origin must be placed at A
;
therefore,

X = —8 ft and 2/
= -fG ft. Let be assumed downward. By Eq. 250,

a 2y — aiy = —7/0)^ -f xa —an — 0 = — (4-6)(+2.5)^ + (-~8)(— 2)

Ob = +21.5 ft/sec^

The positive sign shows that ob was assumed correctly and is, therefore,

downward.

III. The acceleration of Coriolis. The magnitude of this component is

equal to 2F/>a) = 2 X 5 X 2.5 = 25 ft/sec^. It is at right angles to V

p

and

to the bar. To ascertain the sense of the component the observer imagines

himself standing on the plane of motion of tlie bar, facang in the direction of

Vp. The angular velocity of the bar is counterclockwise; therefore, the

acceleration of Coriolis is directed toward the observer’s left, as shown in the

figure.

All the components of ap are now known. By the principle of components,

using horizontal and vertical axes, and assuming ap to be inclined downward
and toward the left,

— apx = —Ap X s — {2Vpw) X f = —6 X — 25 X f

— apy = +Ap X f ~ ap — (2Fpw) X |- = +6 X f — 21.5 — 25 X

Solving, apx — +19.8 ft/sec^ and apy = +37.9 ft/sec^. The positive signs

show that the sense of ap was assumed correctly.

ap = V(19!s)2 + (37.9)2 ^ 42.8 ft/ggeS

37 9
Bx = arc tan —^ = 62° 20'

19.8

1009. Figure 478 represents a wheel, C, mounted on a horizontal shaft at E.

A small pin, P, is fastened to the wheel, at a distance of 2.5 ft from the axis of

the shaft. A straight bar, D, mounted on a horizontal shaft at F, rests on the

pin P. In the position shown the wheel has a counterclockwise angular

velocity of 2 rad per sec, and a clockwise angular acceleration of 3 rad per sec

per sec. Calculate the angular velocity and angular acceleration of the bar D,

for the given position, assuming that the bar is in contact with the pin at all

times.

Solution. Let the center of the pin, P, be chosen as the moving point, and
the bar D as the moving body. Certain distances and angles will be needed

in the solution. In the triangle BEF, by the law of cosines,

W = V(2.5)2 + (6)^ - 2 X 2.5 X 6 cos 45“ = 4.59 ft
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In the triangle BEF, by the law of sines,

sin {EBF) 6

4.59
ZEBF = 112° 30'

sin 45°

ZEPH = 112° 30' - 90° = 22° 30'

Absolute Velocity of P. In this problem the absolute velocity of the moving

point can be calculated immediately, since P is a particle of a rotating body,

V — r(j) vp — BE X o)c — 2.5 X 2 == 5 ft/sec

rp is at right angles to BE, and its sense is as shown, vp is the resultant of the

following:

L Velocity of P relative to the bar. Since the pin is small, it may be assumed

that its center point, P, is in contact with the lower surface of the bar at all

times. Therefore, the path of P relative to the bar is a straight line along the

lower surface of the bar. Fp is along this line, directed as shown in the figure.

Its magnitude must remain unknown until the final solution is performed.

II. Absolute velocity of B. I^et B represent that particle belonging to the

bar, with which P is in contact. The bar rotates about an axis at F. There-

fore,

V — roi vb - BF X o)D — 4.59c*)i>

vb is at right angles to BF, and is directed as shown.

By the principle of Art. 169, vp is the resultant of Vp and I’p. Therefore,

Vp = t;p cos 22° 30' = 5 X 0.924 = 4.62 ft/sec

Vb = Vp sin 22° 30' = 6 X 0.383 ~ 1.91 ft/sec
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The angular velocity of the bar now can be calculated, since the radius of

rotation, and linear velocity, of one of its particles are known.

V vb 1.91 ^ ,

t; -« rw w == WD = == = 0.416 rad/sec
r BF 4.59

The solution for accelerations will be shown in Fig. 479.

y

Absolute acceleration of P. The absolute acceleration of the moving point

also can be calculated immediately. Since the absolute path of P is a circle

and the wheel has an angular acceleration, ap will have both a tangential and

a normal component, ap itself need not be calculated.

ar = ra app = BE X ac ~ 2.5 X 3 = 7.5 ft/sec^

On = ru)^ apN = BE{o)c)^ = 2.5 X (2)^ = 10 ft/sec^

ap is also the resultant of various components, as follows:

I. Acceleration of P relative to the bar. Since the relative path is a straight

line along the lower surface of the bar, Ap will be directed along this line, and

its sense probably will be as assumed in the figure. Its magnitude is unknown

.

II. Absolute acceleration of B. Since B moves in a circle whose center i0 at

P, its acceleration has a normal component, and probably a tangential com-

ponent. Let au represent the angular acceleration of the bar.

or = Ta apT == PF X old ^ 4.69aD

as *= roP' apN = 4.59 (0.416)^ « 0.794 ft/sec*

These components will be directed as shown in Fig. 479.
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III, Acceleration of Coriolis. The magnitude of the acceleration of Coriolis

is as follows:

2 Fco « 2Vpo)d = 2 X 4.62 X 0.416 = 3.84 ft/sec^

This acceleration is at right angles to Vp. To ascertain its correct sense the

observer imagines himself standing on the plane of motion of the bar, facing

in the direction of Vp. Since the angular velocity of the bar is clockwise, the

acceleration of Coriolis is directed toward the observer's right, as shown in the

figure.

ap now has been expressed in two ways: as the resultant of apr and apN,

and as the resultant of Ap, apTf ^bn, and 2Vpo}d. Since these two groups of

vectors have the same resultant they are equivalent, and their component-

sums along any axis are e(|ual. Using the 2/-axis,

— ajpAT cos 22° 30^ — apr sin 22° 30^ == —apT + 2Vpij)D

-10 X 0.924 - 7.5 X 0.383 = --4.59az) + 3.84

From which,

ttD = 3.84 rad/sec^

The positive sign shows that the sense of a was a.ssumed correctly, and that

the angular acceleration of the bar is counterclockwise.

1010. Find the absolute acceleration of the point P in Prob. 989, Art. 169.

Assume that the center of the cylinder has a linear acceleration of 1.6 ft per sec

per sec, toward the left, and that the velocity of P relative to the cylinder is

decreasing at the rate of 4 ft per sec per sec. All other conditions are to be the

same as in Prob. 989.

Solution. Figure 480 shows the cylinder. As in Prob. 989, P will be

chosen as the moving point, and the cylinder as the moving body. The abso-

lute acceleration of P is the resultant of the following

:

I. Acceleration of P relative to the cylinder. The path of P relative to the

cylinder is the circular arc, DCB. The statement of the problem shows that

the tangential component of the relative acceleration, Apr = 4 ft/sec^. Since

Fp is decreasing. Apt is opposite to Fp in sense, as shown in the figure. By
Eq. 213, Art. 150,

UN = ApN = — = = 18 ft/sec^
r r 2

This component is normal to the relative path, and is directed toward E, the

center of curvature.

II. Absolute acceleration of B, Let B represent that particle belonging to

the cylinder, with which P coincides at the given instant. From Prob. 989,

the angular velocity of the cylinder w 5® 2.5 rad/sec, counterclockwise. By
Eq. 235, Art. 160, ^

.

ac 1.6 _ _ , , «
ac — ra — = — = 0.8 rad/secr

r 2



412 RELATIVE MOTION

Components of the absolute acceleration of B now can be calculated by
means of Eqs. 249 and 250, Art. 161. Let C be chosen as particle 1 and B as

particle 2. The origin is placed at C) hence, x — -|-1 ft and y — +2 X 0.866

« 4-1.73 ft. Assuming asx and asy as shown in the figure,

0*ar OLlz = — ya

-anz - (-1.6) = ~-(-bl)(+2.5)2 - (+l.73)(+0.8)

asx ~ +9.23 ft/sec^

— oiy = — 2/c*?^ + xa

-UBy - 0 = ~(+1.73)(+2.5)2 + (+l)(+0.8)

(^By — +10.0ft/8ec^

The positive signs show that the senses of asx and asy were assumed correctly.

III. Acceleration of Coriolis, The magnitude of this component is calcu-

lated as follows:

2Fw = 2Fpa^ = 2 X 6 X 2.5 = 30 ft/sec^

The acceleration of Coriolis is at right angles to Vp. To ascertain its correct

sense the observer imagines himself standing on the plane of motion of the

wheel, facing in the direction of Vp. The angular velocity of the wheel is

counterclockwise; therefore, the acceleration of Coriolis is directed toward the

observer’s left, as shown in the figure.

All the components of the absolute acceleration of P are now known. By
the principle of components, using horizontal and vertical axes, and assuming
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that ap is inclined downward and toward the left,

— ap* ~ —Apr cos 30® + Apn cos 60® — apx — (2Fpco) cos 60®

= -4 cos 30® + 18 cos 60® - 9.23 - 30 cos 60®

apx = -f 18.7 ft/sec^

—flpy = — Aprsin30® — Apj\rsin60® — apy + (2Fpco) sinOO®

= — 4 sin 30® — 18 sin 60® — 10 + 30 sin 60®

dpy — +1.61 ft/sec^

The positive signs show that ap was assumed correctly in sense, and that it is

directed downward and toward the left. Compounding,

ap = V(18.7)=' + (1.61)=' = 18.8 ft/sec*

Bx = arc tan—- = 4 55
18.7

PROBLEMS

1011 . Calculate the absolute acceleration of the point in Prob. 992. Assume that

the car is moving at constant speed. Ans. 25,600 ft/sec^, horizontal and at right

angles to the crankshaft.

1012 . An automobile, moving along a straight, level road, at a speed of 60 mi per

hr, is brought to rest in a distance of 250 ft, with constant deceleration. The tires

are 28 in. in diameter. Find the velocity and acceleration of the highest point on one

of the tires, relative to the body of the car, at the instant when the speed of the car

is 5 mi per hr. Find the absolute velocity and acceleration of the point at the gfiven

instant.

1013 . Solve Prob. 1012 for the lowest point on one of the tires. Am. V * 7.33

ft/sec, horizontal and toward the rear; A - 48.6 ft/sec^, upward and forward,

= 71°30'; V - 0; a = 46.1 ft/sec^ vertical

and upward.

1014. Figure 481 represents a car, C, having

an inclined floor. A block, B, is placed at the

upper end of the incline. Both the car and the

block start from rest, the car being pulled toward

the right with a constant acceleration of 2 ft per

sec per sec in that direction. The block descends

the inchne with a constant acceleration, relative

to the car, of 5 ft per sec per sec. Find the ab-

solute velocity, and acceleration, of the block at Fig. 481

the instant when it leaves the car.

1015. A certain box car runs on a straight, horizontal track. At a given instant

the velocity of the car is 4 ft per sec, toward the right, and the acceleration is 3 ft

per sec per sec, also toward the right. A circle 6 ft in diameter is drawn on the side

of the car. A point, P, traverses the circle in a clockwise direction, at a constant

speed of 3 ft per sec, relative to the car. Calculate the absolute velocity and accelera-

tion of P, assuming that it is in the “3 o'clock” position on the circle at the given
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instiuit. Solve also for the ^'9 o'clock” position. Ans. v ~ 5 ft/sec, $x » 323® 10^;

o =» 0; V 5 ft/sec, 6^ =* 36° 50^; o = 6 ft/sec^, 6* = 0.

1016. Solve Prob. 1015, assuming P to be in the ”1 o'clock” position. Solve also

for the ”7 o'clock” position.

1017. Calculate the linear acceleration of the follower in Prob. 1001, Fig. 470,

assuming that the angular velocity of the cam is constant. Ans, 66.3 ft/sec*,

Bx « 270^

Fio. 482 Fig. 483

1018. Figure 482 represents a cylinder 4 ft in diameter, rolling on a horizontal

surface, without slipping. At the given instant the velocity of the center point is 4 ft

per sec, toward the left, and its acceleration is 5 ft per sec per sec, toward the right.

A point P moves along the radius jBC, toward By at a constant velocity of 3 ft per sec,

relative to the cylinder. Calculate the absolute velocity and acceleration of P at

the instant when it reaches B, assuming that the position of the cylinder at that

instant is as shown.

1019. In Fig. 483, C represents a sliding cam, whose profile is a circular arc. At

the instant represented by the figure the velocity of the cam is 3 ft per sec, toward

the right, and its acceleration is 2 ft per sec per sec, also toward the right. The

follower, Ff can move only in the vertical direction. Calculate the absolute accelera-

tion of the follower at the given instant.

1020. Turn the wheel in Prob. 1009 until the radius BE is at right angles to

the bar I>, and solve the problem. Let all the other data of the problem remain

unchanged. Ans, <o 0; a = 4-1.83 rad/sec*.

1021 Calculate the absolute acceleration of the point D in Prob. 1002, Fig. 471 .

1022. A wheel 4 ft in diameter rotates on a horizontal shaft. A ball is dropped

from a point 9 ft vertically above the center of the wheel. At the instant when the

ball is about to touch the wheel, the angular velocity of the wheel is 6 rad per sec,

oounterolockwise, and the angular acceleration is 4 rad per sec per sec, clockwise.

Calculate the acceleration of the ball, relative to the wheel, at the given instant.

Am. 234 ft/sec*, - 200“ 26'.

1023. Find the absolute acceleration of the point B, in the rotary engine of Prob.

1004, Fig. 473. Assume that the engine is rotating at constant sp^.
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1024. Figure 484 represents a fiat, rectangular plate, 3 by 4 ft, moving in a vertical

plane. Corner C moves vertically and D moves horizontally. C moves downward
at a constant velocity of 2.4 ft per sec. A point, P, moves along the edge CP, toward

P, at a constant velocity of 2.5 ft per sec, relative to the plate. Calculate the abso-

lute velocity and acceleration of P for the instant when it reaches P, assuming that

the plate at that instant is in the position shown by the figure. Am. 1.51 ft/sec,

« 82^^25'; 3.16 ft/sec^, 0, = 198^^ 15'.

F

1026. A point, P, moves along the edge FE of the plate in Prob. 1024, Fig. 484.

It moves toward P at a constant velocity of 2.5 ft per sec, relative to the plate. Cal-

culate the absolute; velocity and acceleration of P for the instant when it reaches P,

assuming that the plate at that instant is in the position shown. Let all the other

data of Prob. 1024 remain unchanged.

1026. Figure 485 represents a sliding cam, C, whose profile is a circular arc having

a radius of 12 in. The follower, D, is a straight bar 18 in. long, mounted on a shaft

at A and resting against the cam at D. In the position shown the cam has a velocity

of 2 ft per sec toward the right, and an acceleration of 3 ft per sec per sec toward the

left. Calculate the angular acceleration of the follower for the given instant. Am.
+ 16.6 rad/sec^.

1027. Calculate the angular acceleration of the bar DE in Prob. 1005, Fig. 474.

Assume that the cyhnder is rolhng at constant velocity.

172. Motion of a Point Relative to a Second Point. In the pre-

ceding articles such phrases as “ the path of a point relative to a body/^

“ the velocity of a point relative to a body/' and ** the acceleration of

a point relative to a body ” were explained, and various relations and

formulas, useful in engineering practice, were obtained.

Expressions are sometimes encountered that refer the motion of a

point to a second point, instead of referring the motion to a body.

Thus, a point A may be said to have a path, a velocity and an accelera-

tion relative to a second point B. It will not be necessary to acquire

any new conception of relative motion in order to understand what is

meant by such expressions; the understanding of relative motion al-

ready reached in the preceding articles can be made to suffice.

Let two points, A and J5, be imagined. Regardless of the type of
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motion actually described by the body to Ayhich B belongs, let a body be

imagined, each particle of which moves in exactly the same manner as

B, The motion of this imaginary body is, consequently, a motion of

translation. The path, velociti/j and a^cceleratiori of the point A relaiive

to the point B are identical with the pathy velocity, and acceleration of A
relative to this imaginary translating body. The conception of the motion

of a point relative to a second point is thus made a special case of the

motion of a point relative to a body. Furthermore, the general princi-

ples involving relative and absolute motion, proved in the preceding

articles, now will be shown to apply in a simplified form to the case

under discussion in the present article, as follows:

I. The absolute velocity of a moving point at any instant is the vector

sum, or resultant, of the velocity of the moving point relative to a second

moving point, and the absolute velocity of the second, point.

II. The absolute acceleration of a moving point at any instant is the

vector sum, or resultant, of the acceleration of the moving point relative to a

second moving point, and the absolute acceleration of the second point.

Proof. The fact that the absolute velocities of the particles of a

translating body are exactly alike at any given instant, that the absolute

accelerations of the particles arc also alike, and that the acceleration of

Coriolis is equal to zero in the case of the motion of a point relative to a

translating body, constitutes the verification of the foregoing principles.

Illustrative Problem

1028. Figure 486 represents two wheels, each of which is 4 ft in diameter,

mounted on horizontal shafts in the manner indicated. The wheels have

angular velocities and angular accelerations as shown, at the instant depicted

by the figure. Find the Unear velocity and linear acceleration of point C,

relative to point D, at the given instant. Points C and D are fixed on the rims

of the wheels.

Solution. The absolute velocities of C and D can be calculated at once,

from the given conditions.

vc = rcac =2X2 = 4 ft/sec

vd = ro)D = 2 X 1.5 = 3 ft/sec

VC is at right angles to the radius CE, and vd is at right angles to DF. Vectors

representing vc and vd are sho\vn in Fig. 487.

By the principle stated in the article, vc is the resultant of vd and the velocity

of C relative to D. The relative velocity is represented by Vc, in Fig. 487, and
the three vectors must form a triangle, as shown in that figure. From the

figure, by the law of cosines,

Vc =• v'(4)=' + (3)== - 2 X 4 X 3 cos 75“ = 4.33 ft/sec
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Ac - ^(4.28)2 + (15.9)2 = 16.5 ft/sec2

= arc tan = arc tan 3.71 = 74° 55'
4.28

Negative signs were obtained for both components of Ac, showing that the

senses of these components were incorrectly^ assumed in the figure. Therefore,

Ac is directed downward, and toward the left, at an angle of 74° 55' with OX.

PROBLEMS

1029. At a certain instant a moving point, C, is traveling along the y-axis in the

negative direction with a velocity of 10 ft per sec. At the same instant a second

point, D, has a velocity of 6 ft per sec, at an angle of 30° with the j-axis. Find the

velocity of D relative to C at the given instant. A7is. 14 ft/sec, ~ 68° 15'.

1030. At a certain instant a point, C, has a velocity of 30 mi per hr, due east.

At the same instant the velocity of C relative to a second moving point, D, is 60 mi

per hr, due south. Find the absolute velocity of D.

Y

1031 . A point, C, travels due north, and a second point, Z>, travels due west.

At a certain instant the velocity of C relative to D is 100 ft i>er sec, in a direction

N. 30° 00' E. Calculate the absolute velocity of each point. Ans. vc = 86.6

ft/sec; vd = 50 ft/sec.

1032. The point, C, in Fig. 489, moves in the circular path, as indicated, with a

constant speed of 8 ft per sec, A second point, D, moves in the negative direction

along the a;-axis. At the instant represented by the figure the speed of Z) is decreasing

at the rate of 4 ft per sec per sec. Calculate the acceleration of C relative to Z>.

1033 . Solve Prob. 1032, if the speed of point C is decreasing, at the given instant,

at the rate of 6 ft per sec per sec, all other data remaining the same as in that problem.

Ans. 9.52 ft/sec^ - 247° OO'.



CHAPTER XXII

WORK

173. Work Done by a Single Concentrated Force. If a force that

acts on a moving particle has a component tangent to the path of the

particle during any intei’val of the motion, the force is said to do work

on the particle during that interval. The component tangent to the path

is called the working component. The sense of the working component
may agree with the direction of the

motion of the particle, in which case

the work done by the force is con-

sidered to be positive; or the sense of

the working component may disagree

with the direction of the motion of

the particle, in which case the work is

negative.

Let Fig. 490 represent a particle,

Ay moving in the curved path, OAB.
Let s represent the distance, meas-

ured along the path, from the fixed

point 0 to the moving particle, at any instant. Let P represent a

force acting on the particle, and let B represent the angle between the

line of action of P and the tangent to the path, drawn through the

moving particle at the instant under consideration. The amount of

work done by P during any interval of the motion is calculated by

integrating the product of the working component and the differential

of the distance traversed by the particle. The working component is

equal to P cos B. Let U represent the work done by P during any

interval. The value of IJ can be expressed by a formula, as follows:

£/= JPcosOrfs [283]

Equation 283 is the general formula for the work done by any single,

concentrated force, whether the magnitude of the force and the value of

9 are variable or constant.

Units. The imit of work is usually named from the imits used to

express the distance and the force. In the English system the foot-

pound is the most common unit, although the inch-ton and the foot-ton

419
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are sometimes encountered. In problems involving power a unit of

work is frequently used which is a combination of imits of power and

and time, namely, the horsepower-hour. The kilowatt-hour is another

power-time imit of work ^videly used in electrical engineering practice.

The fundamental unit of work in the metric system is the centimeter-

dyne, also called the erg. Another unit, called the joule, is equal to

10,000,000 ergs. The following equivalents are often useful:

One horsepower-hour = 1,980,000 foot-pounds

One kilowatt-hour = 3,600,000 joules

Illustrative Problems

1034. Figure 491 represents a helical spring, having a normal length of 12 in.

One end of the spring is attached to a wall, as shown. The modulus of the

spring is 10 lb per in. This means that a force of 10 lb will hold the spring at

an elongation, or shortening, of 1 in. It ia

known, also, that the force required to maintain

any longitudinal deformation of the spring is

proportional to that deformation, provided that

the elastic limit of the material is not exceeded.

Calculate the work done on this spring in elon-

gating it gradually to a length of 16 in., assuming

that the elastic limit is not exceeded.

Solution. The upper portion of the figure

represents the spring in its normal, or start-

ing, position, when the force P is equal to

zero. The lower view .shows the spring under any elongation. Let s repre-

sent the elongation, in inches.

Since P = 10 lb at the instant when s = 1 in., and since the magnitude of P
is proportional to s, it follows that P == lOs. The angle d in the present case

is equal to zero, since P acts along the path of the particle to which it is

applied. By Eq. 283,

U = J'Pcos$ds U = J(l0s) (+l)ds

The limits for s are s « 0 and s = 16 — 12 « 4. Therefore,

U = J*10
8 ds = 1^5

= +80 in-lb

The result was given the positive sign because of the fact that the working

component of the force is in the same direction as the motion of the particle

to which the force is applied.

1085. Prove that the work done on a spring by an axial force, when one

end of the spring is held stationary and the inclination of the axis is constant,

Fig. 491
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is equal to the arithmetic mean of the initial and final values of the force

multiplied by the deformation of the spring.

Solution. Ijet m represent the modulus of the spring. Let Pi and P2

represent the initial and final values of the axial force. Let s represent the

deformation of the spring. By Eq. 283,

P cos 0 (Is (ms) ds — m —
2

si - Si (.92 - 5i) (S2 -f Si) mS2 “f msi . .

= m = m = (S 2 — 81)
2 2 2

In the foregoing equation, ms2 == P2 and msi = Pi. Therefore,

P2 4* Pi
^

(J ~ (^2 — Si)

P2 "4“ ^1
The expression —- represents the arithmetic mean of the initial and final

values of P, and (s 2 — Si) represents the elongation or shortening of the spring.

1036. Solve Prob. 1034 by the method of Prob. 1035.

Solution. The initial value of P in this case is equal to zero. The final

value = 10 X 4 = 40 lb. Therefore,

0 4- 40
4 == 4-80 in-lb

1037. Figure 492 represents a helical spring

whose normal length is 12 in. One end is

fastened at A. The other end moves from 0
to B, in a vertical, straight line. P is the ^

force that stretches the spring, and acts along

the axis of the spring. Calculate the work

done on the spring by P. The modulus of

the spring is 10 lb per in.

Solution. By Eq, 283,

17 = j^P cos 6 da
Fig. 492

From the figure, the elongation of the spring at any instant is as follows:

AD- AO Vs" + (12)2 - 12

And since the modulus of the spring is 10 lb per in.,

P - 10 [Vs* + (12)* - 12]

COS0 =
V + (12)*

Also, from the figure,
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"Substituting these values of P and cos d in the original formula,

10

r + (12)2

s d.s*

T'(W

-.dsU= f 10 [Vs^ + (12)2 _ ]2]-_
Jo V

pr2 pvz

I
-ml --r:

Jo Jo

= 10 - 120
”
= +121 in-lb

This problem can be solved more easily by a special method developed in

Art. 181, and is introduced here merely as a convenient illustration of the

method of applying the general formula for work.

1038. Figure 493 represents a body weighing 500 lb, being drawn along a

horizontal plane by a cable. The cable runs over a small pulley at B. The
coefficient of kinetic friction is 0.2. Calculate the work done on the body by
P, the pull of the cable, while the body moves from a point l(X) ft from A to a

point 50 ft from A. The velocity of the

body is constant.

Solution. Equations 184 and 185, Art.

126, and Eq. 32, Art. 81, can be used to

ascertain the relation between P and 6.

P cos - P =: 0

Psin(9 + iV'“500 = 0

F = 0.2N

-i 100'

1

J

t
50

G

t

'

Olb.

1
” F"; n

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTZ^.

A

W
DP, = —Gx

9

W
XFy

9

F ^ tiN

Eliminating P and N from the foregoing equations,

100

Fig. 493

P =

Substituting in Eq. 283,

17 =*= J*P ooB 0 ds U

From the figure, tan 6 =

plifying,

0.2 sin 6 -f- cos 0

100 cos 0
= r—J 0.2 si;sin 6 + cos 6

ds‘h
100 ds

2 tan ^ + 1

10

100 - s
Substituting in the foregoing, and sim-

8 ds

102 - s
V . 100 r . 100 r wgji - 100 fJ, 102 - » 102 - <

r ISO r n®= 10,000 l^-log, (102 - s)

J
- 100 1^102 - s - 102 log, (102 - s)

which gives

U = +4870 ft-lb
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PROBLEMS

1039. A body weighing 90 lb is dragged along a horizontal plane by a constant

force of 25 lb, which acts upward at a constant inclination of 4 (horizontal) to 3

(vertical). The coefficient of kinetic friction is 0.2. Calculate the work done by
each of the external forces acting on the body, while the body moves 30 ft. Am.
Uw =* 0; Un = 0; f/25 - +600 fUb; Up = ~450 ft-lb.

1040. A block slides along a straight path on a horizontal plane. A horizontal

force acts on the block in the direction of the motion. The force remains horizontal,

but its magnitude varies in accordance with the law P = Vs, in which P is in pounds

and 5 is in feet. Calculate the work done on the body by the force in the interval

during wliich s varies from +16 to +81 ft.

1041. In Prob. 1034, calculate the additional work that would be necessary to

stretch the spring an additional 2.5 in. Solve by integration, using Eq. 283, and

check by the shorter method, as developed in Prob. 1035. Am. +131 in-lb.

1042. I’he working component of a certain force varies in accordance with the

law P cos 0 — in which P is in tons and s is in inches. Calculate the work done

by the force in the interval during which the value of s varies from 4 to 16 in.

1043. iVn airplane executes a circular loop in a vertical plane. Prove that the*

work done by the weigiit of the plane, during the interval in which the plane moves
from the bottom to the top of the loop, is equal to — IFD, in which W represents the

weight of the plane and D represents the diameter of the loop. With due

regard to signs, how much work would be done by gravity while the plane made a

complete loop?

1044. In Prob. 1037, Fig. 492, calculate the work that would be done by P, if

the end of the spring were moved from E to O.

Fig. 494 Fig. 495

1045. Figure 494 represents a body being drawn along a horizontal plane by a
rope, AB. The rope is 16 ft long. Its lower end is attached to the body at A, and

its upper end, P, moves verticaDy up a wall. A tension having a constant magnitude

of 100 lb is maintained in the rope. Calculate the work done on the body by this

force while the point A moves from a position 15 ft from the wall to a position 5 ft

from the wall. A ns. +625 ft-lb.

1046. Figure 495 represents a helical spring having a modulus of 10 lb per in.

The lower end is fixed to the floor at A. The upper end, P, is caused to move
vertically up a wall, by a force P whose line of action coincides with the axis of the

spring. The normal length of the spring is 15 in. Calculate the work done on the

spring, by P, while P moves from a position 6 in, above C to a position 18 in. above C.
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1M7. The formula e ~ Pl/aE is a very important one in strength of materials.

It gives the elongation, or shortening, of any prismatic bar of elastic material, when
subjected to a steady axial load, P, not large enough to stress the material beyond the

elastic limit. Calculate the work that would be done on a 3 by 3 by ^ in. angle,

12 ft long, by an axial load, gradually applied from zero up to a final magnitude of

40,000 lb. The modulus of elasticity, P, may be assumed to be 30,000,000 lb per

sq in., and the cross-sectional area, a, of the angle is 2.75 sq in. Use pounds and

inches throughout. ^4 ns. 1400 in-lb.

1048. The formula / = PP/4tSEI gives the deflection at the center of a simply

supported beam, caused by a steady load applied at that point. In the formula,

P is the load in pounds, I is the length of the beam in inches, E is the modulus of

elasticity of the material in pounds p>er square inch, and / is the moment of inertia

of the cross-sectional area of the beam about a horizontal axis in the plane of the

section and passing through its center of gravity. Assume a Douglas fir beam, 7,5

by 11.5 in. in section, and 115 in. long, the modulus of elasticity being 1,600,000 lb

per sq in. Calculate the work done in gradually applying a load at the center of the

beam, reaching a final value of 2000 lb.

• 1049. A small body moves in a circular path whose radius is r. A force, P,

having a constant magnitude but a variable inclination acts on the body. The
inclination of P varies in such a manner that the line of action always passes through

a fixed point on the circular path. Prove that the work done by P while the body
moves halfway around the circle, starting from the fixed point, is equal to ih2Pr, the

sign depending on the sense of P,

174, Work Done by a Force with a Constant Working Component.

If the working component of the force is constant in magnitude and in

sense during a given interval, Eq. 283, of Art. 173, may be simplified,

as follows:

tf = J'p
cos 6 ds - P cose ds = P cos B {$2 -- Si) [284]

The foregoing formula shows that the work done by a force whose worh^

ing component is constant may be calculated by m'ldtiplying the magnitude

of the working component by the distance traversed by the particle on which

the force acts.

The most common case of a force with a constant working component
is that in which the particle moves in a straight line, and in which the

magnitude of the force and its inclination to the path are both constant.

It is possible, however, for P and S to remain constant while the particle

moves in a curved path. It is also possible for the magnitude of the

working component, P cos 0, to remain constant, with P and S variable,

and with the path of the particle either straight or curved.

PROBLEMS

1060. An elevator weighing 4 tons is being raised by means of a cable in which
there is a constant tension of 4.2 tons. Calculate the work done on the devator by
the tension in the cable, and by gravity, in a distance of 60 ft. Am. 4-252 ft-tons;

—240 ft-tons.
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1051. A locomotive exerts a constant drawbar pull of 60,000 Ib, and thereby
accelerates a train at the rate of 1.25 mi per hr per sec. Calculate the quantity of

work done on the train by the locomotive, during the interval while the speed changes
from 30 to 70 mi per hr.

1062. A belt passes halfway around a 36-m. pulley. The tension in the belt at

the point where it leaves the pulley has a constant value of 75 lb. At the point
where the belt goes onto the pulley the tension is 15 lb. Calculate the work done
on the pulley by each of these pulls in one minute, while the pulley rotates at a
constant speed of 1000 rpm.

1063 . A body weigliing 322 lb slides down an incline whose slope is 4 (horizontal)

to 3 (vertical). The angle of kinetic friction is 14“.

the body by gravity, and by the reaction of the plane,

during the first 10 sec, starting from rest. Ans.

4-125,000 ft-lb; -41,500 ft-lb.

1064. The average pressure in the cylinders of a
certain six-cylinder automobile engine, during the

working stroke, is 100 lb per sq in. The cylinders

are 3| in. in diameter, and the stroke is 4^ in. Each
piston has one working stroke during two revolutions

of the crankshaft. Calculate the work done in all

the cylinders, per second, by the gas, if the crank-

shaft rotates at a constant speed of 3000 rpm.

1066. The body shown in Fig. 496 is drawn along

a horizontal plane by the cord, AB. One end of the

cord is attached to the body at A
,
and the other end

moves up a vertical wall. The tension, F, in the

cord, varies in accordance with the law P = 200/s, in which P is in pounds and s is

in feet. The cord is 20 ft long. Calculate the work done by F while the body moves
10 ft. Ans. 4-100 ft-lb.

176. Total Work. If a given force does both positive and negative

work during an interval, the total work done by the force during the

interval is the algebraic sura of the various quantities of positive and

negative work. The algebraic sum of the quantities of work done by

several forces during a given interval is called the total work of these forces

for the interval. Thus it is seen that even though the forces have differ-

ent inclinations in space, the total work done by them is calculated by

adding the various amounts algebraically, and not vectorialiy. Work
is treated, therefore, as a scalar, and not a vector, quantity, and so

it does not have such attributes as inclination and sense.

Equation 283, of Art. 173, gives the total work done by the force,

F, during any interval, if proper attention is paid to the limits for the

integration, and to the algebraic signs of the various functions.

Calculate the work done on

Illustrative Problem

1066. Figure 497 represents a body weighing 50 lb, resting on a horiuontal

plane. A helical spring, having a modulus of 4 lb per in., is attached to the
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body at 4, at an angle of 15® with the horizontal. A force P is gradual-

ly applied to the spring, its magnitude

being slowly increased until the body

begins to move. At this instant P
becomes constant. Assume that the

coefficient of static friction and the

coefficient of kinetic friction are equal,

and that their value is 0.2. Calculate

the total work done by all the external

forces, from the instant when P is first

applied until the body has moved 6 in.

Solution, For the instant when motion of the body is impending,

= 0 - P cos 15® 4- F = 0

= 0 - P sin 15° + A - 50 = 0

F ^ ixN F = 02 N

The solution of these equations gives

P = 10.9 lb F = 10.6 lb N = 52.8 lb

Work Done by P before the Body Moves. The force P compresses the spring,

and does a certain amount of work before the body begins to move. The

initial value of P is zero. The final value is tlie value calculated above, 10.9 lb.

The amount by which the spring is shortened is 10.9/4 = 2.73 in. By the

method of Prob. 1035, Art. 173,

^ 0 + 10:9
2,73 = + 14.9 in.jb

2

Work Done by P after the Body Begins to Move. P remains constant after

the body begins to move.

Vp = (F cos 6) s = (10.9 cos 15°)6 - +63.2 in-lb

Work Done by F.

Uf = -(10.6 X 6) - -63.6 in-lb

Total Work, Obviously, the forces W and A do no work. The total work

is as follows:

U == +14.9 + 63.2 - 63.6 = +14.5 in-lb

PROBLEMS

1057. A locomotive exerts a constant drawbar pull of 52,000 lb in hauling a 900-

ton train up a 2 per cent grade. The train resistance is equal to 12 lb per ton of

weight. Calculate the total work done by all the extenial forces acting on the train

in a distance of \ mile. Am. +1.3 ton-miles.

1058* A body weighing 300 Ib slides down an incline whose slope is 3 (horizontal)

to 4 (vertical). A constant force of 200 lb is applied horizontally to the body, in

such a manner as to oppose the motion. The coefficient of kinetic friction is 0.2.

Y

I W=50lb.

Fia. 497
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Calculate the total work done by the external forces during a displacement of 100 ft,

1069 . A certain automobile weighing 3200 Ib is driven up a 6 per cent grade at a
constant speed of 20 mi per hr. The constant propulsive force necessary is equal

to 250 lb. Calculate the work done by each of the external forces acting on the

automobile during a displacement, of 100 ft. Calculate the total work. Am,
Work of tractive effort = -f25,000 ft-lb; work of gravity = — 19,200 ft-lb; work of

frictional resistances = — 5800ft-lb; total work = 0.

1060 . A cylinder 3 ft in diameter, weighing 350 lb, is rolled up a 30° inclined plane

by means of a cord which is wound on the cylinder. The cord is pulled in a direction

parallel to the incline, under a constant tension of 200 lb. The cyUnder does not

slip. (Calculate the total work done by the external forces, assuming that the

frictional force between the cylinder and the plane does no work, while the center

point moves 16 ft up the slope.

1061 . A body weighing 75 lb rests on a horizontal plane. A helical spring having

a modulus of 5 lb per in. is attached to the body in a horizontal position. The
coefficient of friction is 0.25 for both static and kinetic conditions. A force is grad-

ually applied to the spring until the body begins to move. The force then becomes

constant. Calculate the total work done by all the forces up to the instant when the

body has moved 15 in. A as, 4-35.2 in-lb.

1062 . A body weighing 250 lb is pulled along a horizontal plane by a constant

horizontal force of 100 lb. The coefficient of Idnetic friction is 0.2. A helical

spring is attached horizontally to the rear ertd of the body. The rear end of the

spring is attached to a post. The modulus of the spring is 2 ib per in., and the normal

length is 18 in. Calculate the total work done on the body by the external forces

during a displacement of G in., if the spring has an initial elongation of 8 in. at the

beginning of the interval.

176. Work Done by a Constant Force. The total work done during

any interval by a force that remains constant in magnitudCy inclinationy

and sense is equal to the magnitude of the force multiplied by the length of

the straight line joining tJw initial and final positions of the particle on

which the force actSy and by the. cosine of the angle between the force and this

line.

This principle is valid, regardless of the nature of the path traversed

by the particle in moving from the initial to the final position; therefore,

the working component of the force is not necessarily constant.

Proof, Let Ay in Fig. 498, represent a particle moving in the curved

path, A 1AA 2 . Let Ai and A 2 represent the initial and final positions

of the particle. Let P represent the constant force. Let the x-axis

be placed, for convenience, parallel to P, Let x represent the x-

coordinate of the moving particle at any instant. Let xi and X2 jepre-

sent the initial and final values of x. Let B represent the angle between

the line of action of P and the tangent to the path, at any instant.

Throughout the motion P remains parallel to the x-axis; therefore.

1286]
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Substituting this value of cos 6 in Eq. 283, of Art. 173,

= fp^ds= fpdx = P f
’

dx = P (X2- Xi) [286]
i/ ds

The quantity {x2 — J^i) in Eq. 286 is equal to the distance A 1A 2

multiplied by the cosine of the angle between A 1A 2 and the line of

Y

action of P, as can be seen from a consideration of the figure. Thus,

it is seen that the total work done by P for the interval during which

the particle moves in any path from Ai to A2 is

the same as if the particle moved in a straight

line from Ay to A2 *

The total work done by P, Fig. 498, is posi-

tive, because of the fact that the sense of the

force is toward the right and the final position

is to the right of the initial position. In gen-

eral, if the final position is on that side of the

initial position toward which the force acts,

the work is positive, and if on the opposite

side, the work is negative.

Illustrative Problem

Pjq 409 1063. Figure 499 represents a cubical parabola,

whose equation is 4 y « in which x and y are

expressed in feet. A particle moves upward along the curve. Throughout

the motion a constant force, P, having a magnitude of 30 lb and inclined as

shown, is applied to the particle. Calculate the work done by P while the

particle moves from Ai to A 2 .



WORK DONE BY A CONSTANT FORCE 429

Solution. Substituting the values Xi = 2 and xt = 4, in the equation of

the curve,

Ay = 3^ Ayi = (2)* 2/i = 2

4j/2 = (4)* 2/2 = 16

From the figure,

A1A2 = V {xi - xif + (2/2 - y\Y

MAl = ^^(4 - 2)2 + (16 - 2)2 = V2OO = 14.1 ft

By the principle stated at the beginning of the article,

Up = -P cos e = -30 X 14.1 cos 51° 50' - -261 ft-lb

The work done by P is negative, because of the fact that the final position, A 2 ,

is on the opposite side of Ai from that toward which P acts.

PROBLEMS

1064 . A certain force has a constant magnitude of 4 tons. The force is, and
remains, parallel to the 2/-axis, and downward. During a certain interval the point

of application of the forc^ moves from the point (4-9', — 12'
j to the point (

— 6', 4“ 8'),

by any path. Calculate the work done by the force. How much work will be done
if the force is parallel to the x-axis and toward the left? Also solve for tlie case in

which the force is inclined upward and toward the left at a slope of 3 (horizontal)

to 4 (vertical). A ns. — 80 ft-tons; 4-60 ftr-tons; -f 100 ft-tons.

1066

.

A certain constant force of 100 lb has a horizontal line of action and is

directed toward the right. The point of application moves around a 20-ft circle in a
vertical plane, clockwise. IIow much work is done by the force while the point of

application moves from the ‘‘six o^clock^^ position on the circle to the “ 10 o’clock”

position? How much work is done w'hile the point moves from “ 1 o'clock” to “5

o’clock ”?

1066. Calculate the total work done by the force in Prob. 1065 while the point

of application makes 3^ revolutions around the circle, clockwise, starting from the
‘‘ 4 o’clock ” position. A ns. — 1370 ft-lb.

1067. A certain constant force has a magnitude of 250 lb, and is vertical and
downward. The path of the point of application is the cubical parabola whose

equation is in which x and y are in feet. During a certain interval the point

of application moves from the origin to the point whose abscissa is 4-8 ft. Calculate

the work done by the force.

1068. If the force in Prob. 1067 were inclined downward and toward the right,

at a slope of 3 (horizontal) to 4 (vertical), how much work would it do? Let the

other data of the problem remain unchanged. Arts. —24,400 ft-lb.

1069. A particle moves in a vertical plane, its path being the ellipse whose equa-

tion is 4x^ -f 16y^ =« 64, in which x and y are in feet. Acting on the particle is a

constant force of 200 lb, whose line of action is at a slope of 1 (horizontal) to 2 (verti-

cal), and whose sense is downward and toward the left. Calculate the work done

by this force while the particle moves from the point whose abscissa is 4-4 ft to the

point whose ordinate is -f2 ft. Also calculate the work done while the particle

moves from the point whose ordinate is 4-2 ft to the point whose abscissa is —4 ft.

The motion is counterclockwise in each case.
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177. Work Done by Distributed Forces. All finite forces are more

or less distributed^ but are usually assumed to be concentrated when the

area of contact between the two bodies is comparatively small. The

work done by a force which is assumed to be concentrated is calculated

by the methods of the preceding articles, the entire force being con-

sidered to be applied to a single particle within the area of contact.

A distributed force which is not io be assumed concentrated may be

considered to consist of elementary forces, each of which is applied to a

single particle. The work done by the distributed force during any

interval is equal to the algebraic sum, or integral, of the quantities of

work done by all the elementary forces of which the distributed force

is composed. Frequently the elementary forces are parallel, and the

particles move equal distances in paths which are alike. In such a case,

the work done by the distributed force may be calculated as if the force

were concentrated on any one of the particles.

178. Work Done by Gravity. The work done by the weight of a

body is an important example of the work of a distributed force. In

this case the elementary forces are parallel, but the paths of the particles

are not necessarily alike. When a body moves, the earth-pull does

Y
work on all the particles, except

I

those which may happen to move

I

! in horizontal planes.

/ A, \ The total work done by the weight of

I

® daring any interval is equal to

I T J y the total weight midiiplied by the differ-

once in elevation of the initial and

jftnaZ positions of the center of gravity

: T * body. If the final position of

J 1.J!!! X the center of gravity is at a lower

elevation than the initial, the work

done by the weight is positive; if

higher, the work is negative. This principle applies to any group of

particles or bodies, whether they constitute a rigid body or not.

Proof. Let Fig. 500 represent any body, whether rigid or non-rigid.

Let Ai represent the initial position of one of the particles, and let A

2

represent the final position of that particle. Let dW represent the

weight of the particle. Let a set of fixed coordinate axes be selected,

with the y-axis in a vertical position. It is not necessary to the proof

to show the 2J-axis. By Art. 176, the work done by dW is equal to

dW{yi — y2)

f

110 matter what path the particle traverses in moving
from A 1 to A 2. The total work done by the weights of all the particles
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is, then, as follows:

U = fdW iyi
-

2/2 ) = Jyidw - fyzdW [287]

In Eq. 287 the expression Jyi dW may be replaced by yiW, and

J'y
2 dW may be replaced by y^lV, in which yi and y-j represent the

^-coordinates of the center of gravity of the body in its initial and final

positions. Equation 287 thus becomes,

U = W(yi - y2) [288]

which proves the principle stated above.

The foregoing facts provide a very simple method for the calculation

of the work done by the weight of a body, when the elevation of the

center of gravity of tlu^ body is changed. For example, if a quantity

of water is pumped from a re.servoir into a standpipe, the total work
done by gravity on the water can lie easily calculated by multiplying

the wedght of the water pumped during any interval, by the difference

between the elevation of the center of gravity of the water after it is in

the standpii)c and its elevation in the reservoir. In this case the center

of gravity has been raised, and the work done on the water by gravity is

negative. If the same body of water were permitted to flow back to its

former position in the reservoir, gravity would do an amount of positive

work numerically equal to the negative work done by it in the first case.

Illustrative Problem

1070. Figure 501 represents a quantity of coal, weighing 50 lb per cu ft,

piled on the ground in a conical pile 10 ft high. The coal is elevated into a

bin of trapezoidal cross section, the bottom of which is 20 ft above the ground.

The bin is 15 ft long. Calculate the total work done by gravity on the coal,

during the process.
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Solution. From the figure, the radius of the base of the cone is equal to

10 cot 30® = 10 X 1.73 = 17.3 ft.

Volume of cone - i tt (17.3)210 = 3130 cu ft

Weight of coal ^ 3130 X 50 - 150,500 lb

Volume of coal in bin — (lOd-d)d X 15 == 150d + 15cP

Assuming that the coal occupies the same volume in the bin as it does on

the ground,

150 d -f 15 d" = 3130 d - 10.3 ft

I^t Gi and (?2 represent the center of gravity of the body of coal in its initial

and final positions. From Prob. 528, assuming the coal to be homogeneous,

the depth of G 2 below the u])per surface is as follows:

/? (2? + 2 5) _ 10.3 (30.6 + 20) ^ ^ ft

3 (B + 6) 3 (30.0 +10)

c = 10.3 - 4.28 - 6.02 ft

^2 = 20 + 6.02 = 26.0 ft

5, = i X 10 - 2.5 ft

By Eq. 288,

U (h - 2/2)
= 156,500 (2.5 - 26) - -3,680,000 ft-lb

PROBLEMS

1071 . Theoretically, the energy available from a waterfall is equal to the work that

gravity does on the water as the water descends to a lower elevation. Calculate the

theoretical energy available each second from a fall of 24 ft, if the discharge of the

stream is 250,000 cu ft per sec. Assume that a cubic foot of water weighs 62.4 lb.

Ans. 187,000 ft-tons.

1072 . The hammer of a certain piledriver weighs 800 lb. It drops from a height

of 18 ft and drives a pile through a distance of 1.5 in. Assuming that all the work
done by gravity on the hammer is utilized in driving the pile, calculate the average

force exerted by the hammer on the pile.

1073 . A certain homogeneous cone weighs 80 lb. Its altitude is 12 in., and its

base is 10 in. in diameter. It rests on its base on a horizontal surface. The cone is

then tipped over onto its side without being lifted from the table. Calculate the

positive work, the negative work, and the total work done by gravity. Ans. + 189.5

in-lb; -226.5 in-lb; -37.0 in-lb.

1074. A rectangular hole, 8 by 10 ft, 6 ft deep, is dug in the earth. The dirt is

elevated to a platform 6 ft above the surface, and is piled there in a conical pile having

a slope of ij (horizontal) to 1 (vertical). Calculate the total work done on the mate-

rial, by gravity, during the process. The dirt weighs 80 lb per cu ft.

1076 . A certain reservoir is rectangular in plan, 120 by 160 ft, with vertical sides.

Water is pumped out of it into a cylindrical standpipe 18 ft in diameter. Before the

pump is started the surface of the water in the standpipe is 100 ft above that in the

reservoir. The pump is operated until the water level in the reservoir is lowered
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1 ft. Calculate the work done by gravity during the operation. The water weighs

62.4 lb per cu ft. Ans. —76,300 ft-tons.

1076 . A chain weighing 5 lb per lin ft hangs over a 3-ft pulley, the two ends of the

chain being at the same elevation. Calculate the work done on the chain by gravity

while the pulley is turned through 10 rev, assuming that the chain does not slip.

1077 . Figure 502 represents a skip, A, being hoisted by a cable which passes over a

pulley. By and is wound on a drum, C. The skip weighs 1850 lb, and the cable weighs

1.44 lb per lin ft. Calculate the total work done on the skip and cable, by gravity,

while the skip is raised from a point 3000 ft below R, to a point 500 ft below B,

Ans. —5320 ft-tons.

1078 . Two equal, homogeneous hemispheres rest '^side by side" on a horizontal

floor. The plane faces are uppermost, and horizontal. A man desires to move them
through a short distance, lie rolls the first one until it rests on its edge, and then

lets it fall onto its j)lane face, in such a manner that no slipping occurs. He decides

to drag the second one, without tipping it at all, and using a horizontal force. When
he finishes, the hemispheres are again side by side, but one, of course, has been in-

verted. The amount of work that the man does against gravity in the one case is

equal to the amount of work that he does against friction in the second case. Calcu-

late the coefficient of kinetic friction.

179. Work in Terms of Torque. The work done by a force acting

on a rotating body can be expressed in a simple manner in terms of the

moment of the force about the axis of rotation, and the angular distance

described by the body during any given inteiwal.

Let Fig. 503 represent a body rotating about the 2;-axis, which passes

through 0 at right angles to the plane of the paper. Let A represent

one of the particles of the body, and let P represent a force which is

applied to the body at A during the given interval. Let ds represent

the distance through which A moves while the body rotates through a

small angle, Let p represent the radius of rotation of A.

By Eq. 283, Art. 173, U — J*P cos ^ ds. From the figure, ds ^ p dfi.

Therefore, 17 = JP B p dp. The expression (P cos B) p, in this
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equation, represents the moment of P about the axis of rotation. Let

this be represented by Therefore,

£/= jM.cfp [289]

Frequently the torque, Mz, of the force, about the axis of rotation,

remains constant throughout a given interval. In such a case, Mz
may be placed outside the integral sign. Let /3 represent the total

angular distance described by the body during any interval in which

the force has a constant torque about the axis of rotation. It follows

that

U = [290]

From the nature of the derivation of Eqs. 289 and 290, it is clear

that the angle must be expressed in radians before its value is substi-

tuted in the formulas.

PROBLEMS

1079 . A certain automobile engine exerts a constant torque of 250 ft-lb on its

crankshaft, at 2000 rpm. Calculate the work done on the crankshaft, per second.

Ana, 52,400 ft-lb.

1080. A certain Hneshaft is rotating at a speed of 360 rpm. The shaft is trans-

mitting 100 ft-tons of work per second. Calculate the constant torque to which the

shaft is subjected.

1081 . A constant force of 60 lb acts tangentially on a pulley 30 in. in diameter.

How much work will the force do on the pulley while the latter rotates through an

angle of 325®? Solve by two methods. Ana, 425 ft-lb.

1082 . A 36-in. pulley, partially encircled by a belt, runs at a constant sp)eed of

360 rpm, and receives 600,000 ft-lb of work per minute from the belt. Calculate the

difference between the tensions in the two parts of the belt.

1083 . A certain shaft js clamped at one end, and a torque is applied gradually to

the other end. The torque increases in accordance with the following law: Mz =
1,260,000/3, in which Mg represents the torque about the axis of the shaft, in inch-

pounds, and /3 represents the angle of twist, in radians. Calculate the work done on

the shaft up to the instant when the angle of twist is 2®. Ana, -b768 in-lb.

1084. A certain wheel is subjected to a torque that varies in accordance with the

law Af* = V^, in which Mg is in foot-pounds and /3 is in radians. Calculate the work
done on the wheel in the interval during which varies from 0 to 9 radians.

180. Work Done by Frictional Forces. A static frictional force may,

or may not, do work, depending on the conditions. It was explained

in Art. 76 that static friction may exist between two bodies which are

in motion, as long as there is no relative motion, or sliding, at the surface

of contact. Therefore, since static friction may act on a body in motion,

it may do work.

Ordinarily, when static frictional forces do work, that fact is quite

obvious, and the method of calculating the work done is the same as
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for any other kind of force. For example, let a box be imagined rest-

ing on the level floor of a freight car, but not in contact with any

object other than the floor of the car. As long as the car is at rest, or

is moving with constant velocity, the car floor does not exert any

frictional force on the box. If the car is given an acceleration whose

magnitude is not sufficiently great to cause the box to slide on the floor,

the floor will exert a static frictional force on the bottom of the box.

The work done on the box by this force is calculated in the usual manner.

The Case of the Rolling Body. There is a certain case of static friction

in which the frictional force does no work, but in which the conditions

are such that it is very easy to make the mistake of concluding that it

does. This is the case in which a wheel, cylinder, sphere, or other

round object rolls with an accelerated motion, but without slipping, on a

track, roadway or other surface. Under these conditions static friction

exists between the rolling body and the supporting surface. This static

friction does no work on the rolling body. Any given particle on the

periphery of the rolling body is acted on by the static frictional force

only for an instant as it comes into contact with the supporting surface,

and at that instant the particle has zero velocity and is, therefore,

stationary. The frictional force does not fulfil the condition under

which work is done; that is, it does not have a component in the direc-

tion of the motion of the particle to which it is applied, during some

interval of that motion.

The foregoing statements regarding the rolling body are made with

the rigid body in mind. Actually a rolling body encounters more or less

rolling resistance, and kinetic friction undoubtedly exists at certain

points in the surface of contact. This kinetic friction does a certain

amount of negative work on the rolling body, thus dissipating a portion,

if not all, of the energy of that body. Naturally, this work is disre-

garded in all problems in which rolling resistance is disregarded.

Kinetic Friction. In the case of kinetic frictional forces, work is

always done on one, and frequently on both, of the bodies between which

these forces act. If a body A exerts a kinetic frictional force on a body

JB, body B must exert an equal and opposite kinetic frictional force on A.

If the particles of body A remain stationary, work is done only by the

force that A exerts on B. If the particles of both bodies move work

may be done on both A and B,

As was indicated in the foregoing paragraph, if two bodies, A and JB,

are in sliding contact, they exert equal and opposite kinetic frictional

forces on each other. It can be shown that the total work done by

these two forces during any interval is equal to the magnitude of either,

multiplied by the distance through which one body moves relative to
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the other, at the surface of contact. This distance is sometimes called

the distance of sliding.

Illustrative Problem

1085

.

A certain automobile, equipped with four-wheel brakes, is brought

to rest from a speed of GO mi per hr, in a distance of 400 ft. It is estimated

that the brakes must do 400,000 ft-lb of work in accomj)lishing the purpose.

The tires are 29 in. in diameter, and the brake-drums are 12 in. in diameter.

Assume that the four brakes share equally in the work of stopping the car,

and calculate the average kinetic frictional force that each brake must exert

on its drum.

Solviion, The number of revolutions described by each wheel, while the

car travels 400 ft, is as follows

:

n
400

TT xl*

52.7

The distance described by each brake-shoe, relative to its drum, is,

s = 52.7 (tt = 166 ft

Let F represent the average kinetic frictional force exerted by each brake-

shoe on its drum, during the interval.

166 F = i X 400,000 F == 602 lb

PROBLEMS

1086. A body weighing 322 lb rests on the horizontal floor of a car. The car is

drawn along a horizontal track with a constant acceleration of 1.5 ft per sec per sec.

Calculate the work done on the body by the frictional force exerted on it by the car

floor, in the interval during which the speed of the car changes from 10 to 30 ft per sec.

Assume that the body does not shde on the car floor. Atis. -+-4000 ft-lb.

1087 . In order to bring a certain rotating drum to rest, from a speed of 120 rpm,

it is necessary to do 3000 ft-lb of work. The brake-wheel is 6 ft in diameter, and the

axle shaft of the drum is 4 in. in diameter. The total frictional force acting on the

axle is 25 lb. Calculate the frictional force that the brake-slioe must exert on the

brake-wheel, in order to bring the drum to rest in 4 sec.

1088. A brake-shoe exerts a normal pressure of 2400 lb on the wheel of a car.

The coefficient of kinetic friction for the shoe is 0.2. Calculate the work done on tlie

wheel by the shoe while the car travels ^ mi. Assume that no slipping occurs between

the wheel and the track. Arts. — 1,270,000 ft-lb.

1089. A cylinder 2 ft in diameter, weighing 500 lb, is placed on an inclined plane

having a slope of 4 (horizontal) to 3 (vertical). A wire is wrapped around the

cylinder, coming off near the highest point, in a direction parallel to the incline, and

upward. A constant pull of 160 lb, parallel to the slope, is applied to the wire,

causing the cylinder to roll iip the slope, without slipping. Calculate the work done

by each external force while the center of the cylinder moves 50 ft.

1090. A certain freight car, weighing 80,000 lb, has eight wheels, with one brake-

shoe for each wheel. The kinetic energy of the car, at 30 mi per hr, is 1200 ftr-tons.
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In stopping the car the brake-etioes must do work equal in amount to the kinetic

energy of the car, if other frictional resistances are disregarded. Assuming the

coefficient of kinetic friction for the brake-shoes to be 0.15, calculate the average

normal pressure necessary at each shoe, in order to stop the car in a distance of

1000 ft.

1091 . A box weighing 644 lb rests on the floor at the front end of a car. The car is

accelerated at the rate of 2 ft i)er sec per sec up a 4 per cent grade, starting from rest.

While the car is moving a distance of 225 ft, the box slides to the rear end of the car.

The distance, measured on the (;ar floor, between the initial and final positions of the

box, is 25 ft. ('alculate the work done on the box by the kinetic frictional force, and

by gravity. (Calculate the total work done on the box. Calculate the coeflBcient

of kinetic friction. Ajts. Up ~ +12,300 ft-ib; Uw — — 5150ft“lb; Ut— +7150
ft-lb; M = 0.095.

181. Work Done by Two CoUinear, Equal, and Opposite Forces.

The total work done by two forces that are collinear, equal in magnitude,

and opposite in sense, during a given interval, can be ascertained by
calculating separately the amount of work done by each force, and by

adding these amounts algebraically. In most cases, however, the result

can be obtained more readily by means of the formula to be derived

below.

In Fig. 504, let PP represent the two collinear, equal, and opposite

forces, applied to the particles Ax and ^ 2 ,
and directed toward each

other, as shown. Let q represent the value, at any given instant, of the

variable distance between the two particles. Let dsi and ds2 represent

elementary portions of the paths of the two particles. By Eq. 283,

Art. 173, the total work done by the two forces during the elementary

interval is as follows:

dU - P cos 0% dsi -- P cos $2 d82 ^ P (dsi cos — d82 cos ^2 ) [291]
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It can be seen, from the figure, that the expression cos di — d82 cos

62) represents the change that occurs in the value of q during the ele-

mentary interval. If the expression is positive, however, q is decreased,

and if negative, q is increased. Therefore, the expression may be

replaced by (— dq). The formula for the total work done by the two

forces during any finite interval may, then, be written as follows:

£/ = -fPdq [292]

Equation 292 is general for any pair of forces related to each other

as specified alcove, no rnattcu- what paths the particles may traverse,

or how the forces may vary. The formula was derived for two forces

directed toward each other, and gives the correct sign for the work
done in such a case, provided that the limits for the integration are

correctly assigned.

For the case in which the two forces are directed away from each other

the formula will be as follows:

U = +fpdq [293]

ILLUSTKATIVP: PROBLEMS

1092 . Figure 505 represents a helical spring whose modulus is 8 lb per in.,

and whose normal length is 16 in. The spring is subjected to a pair of equal,

opposite, and coUinear forces, PP, acting along its axis, as shown. The
figure shows the spring in its initial position, A\Bi. The end Ai moves to
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the final position A 2 ,
and Bj moves to B2, the forces PP maintaining the same

relation to each other, and to the axis of the spring, throughout the movement.
Calculate the total work done on the spring by the two forces, regardless of

the paths traversed by A and B in moving from their initial to their final

positions. Assume that the elastic limit of the material is not exceeded at

any point.

Solution. In the present problem the two forces are directed away from
each other. Therefore, Eq. 293 apphes.

U =
-\-Jpdq

Since q represents the distance between tlie two particles to which the forces

are applied, it also rejiresents the lengtli of the spring at any instant during the

motion. Let f/i and q 2 represent the initial and final values of q. From the

figure,

qi = V(12)2 + (](i)2 = 20 in.

92 = V(14 - 4)“ + (14 + 10)'^ = 20 in.

The normal length of the spring is 10 in., and the modulus is 8 lb per in.

Therefore,

p = 8 (g - 16)

Substituting this value of P in the original e(iuation, and integrating.

C/ = + 8 {q - 10) dr/ = 8 ^ - 8 Km; - +330 in-lb

qi L2J2U L J20

It is seen that in the foregoing solution it was not necessary to know what
paths were traversed by the ends of the spring in moving from their initial

to their final positions. Tliis is true in any case in which Eq. 293 or Eq. 292

is used^ provided that the magnitude of P dei)ends only on q,

1093. Solve Prob. 1092 by the use of the average value of the force P.

Solution. In the solution of Prob. 1092 it was learned that the work done

on the spring by the two forces did not depend on the paths followed by the

ends of the spring in passing from the initial to the final positions. Therefore,

the problem may be solved by the method of Prob. 1035, as though one end

of the spring were held stationary, and the other end were moved along the

axis of the spring. Using the values of qi and q 2 obtained in Prob. 1092,

U - 8 (20 - 16) + 8 (26 - 16)

2
(26 - 20) = +336 in-lb

PROBLEMS

1094. At a certain instant the points of appbcation of two forces occupy the

positions (+3", +8") and (~4", —16"). At a later instant the points of applica-

tion have shifted to the pi>sitions (—5", +9^0 and (+3^\ —6"). The two forces

are coUinear, equal, and opposite, throughout the motion, and each has a constant
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magnitude of 12 lb. They are directed outward. Calculate the total work done

by the pair during the interval. Ans. —96 in-lb.

1095. A helical spring whose modulus is 0.25 lb per in. has a normal length of 12 in.

The ends of the spring are placed at the points whose coordinates are (--3^', —8^0

and (
— 11", +7"). The ends are then shifted to the points (~3", -f6") and

(4-2^^, -f-18"). Calculate the total work done on the spring by the pair of collinear

and equal forces acting at its ends, during the interval.

1096 . Solve Prob. 1037, Art. 173, by the method of the present article. Ans.

4-124 in-lb.

1097 . Solve Prob. 1046, Art. 173, by the use of Eq. 293, and clieck by the method

of Prob. 1093.

1 'A

1

__

Fig. 506

1098 . At a certain instant the points of application of two forces occupy the

positions (4-3^ 4-5^ and (—5', — lO'). At a later instant the two points have
assumed the positions (4-15^ —70 and (4*3', 4-90* The two forces are collinear,

equal, and opposite, and are directed inward, throughout the interval. The magni-

tude of each force varies in accordance with the law P — 20/(y^, in which q represents

the distance, in feet, between the points of application at any instant, and P repre-

sents the magnitude of each force, in pounds. Calculate the total work done by the

pair of forces during the interval. Ana. —0.176 ft-lb.

1099 . Figure 506 represents the cylinder and piston of a steam engine. The two

equal forces, PP, represent the pressure of the steam on the head of the cylinder, and
on the piston. Assume that the total pressure, as the piston moves along the

cylinder, follows the law P = 15,000/^, in which P is in pounds and q is in inches.

Calculate the total work done in the cylinder by the steam, while q varies from 1.5

to 13.5 in., regardless of any motion that the engine itself may have during the

interval.

1100. Figure 507 represents a bar, AC, rotating about an axis through A at right

angles to the plane of the paper. A block, P, weighing 8.05 lb, fits into a longitudinal

slot, enabling it to slide lengthwise of the bar. The outer end of the slot contains a
helical spring whose modulus is 4 lb per in,, and whose normal length is 18 in. The
bar rotates at a constant speed of 4 rad per sec, clockwise. Calculate the work done
on the spring while 6 varies from 0° to 90°. Disregard friction, and the weight of the

spring. Ana, —22.4 in-lb.

IIOL Solve Prob. 1100, Fig. 407, for the case in which 6 varies from 0° to 120^
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POWER

182. Power in General. Power is the rate at which work is done^

with respect to time. Let p represent the power of a given force at any
instant. I et U represent the total work done by the force, measured

from some convenient initial instant. The general formula for the

power of the force is, then, as follows:

dU
1294]

Equation 294 gives the power of any force at any instant, whether

the rate at which the force does work is variable or constant. In the

special case in which the force does work at a constant rate, the formula

reduces to

V
P^j [295]

Equation 295 expresses the fact that when th£ force does its work

uniformly with respect to time the power of the force is equal to the total

work done during any interval divided by the length of the interval. In

any case Eq. 295 gives the average power of the force for the entire

interval.

Units, The fundamental unit of power, in the English system, is

the foot-pound per second. The unit most commonly used in engineer-

ing, however, is the horsepower. In the English system, one horse-

power is equal to 550 ft-lb per sec, or 33,000 ft-lb per min.

The Continental horsepower is equal to 75 kilogram-meters per

second. The electrical unit of power is the watt, and is equal to

10,000,000 ergs per second. The English horsepower is equivalent to

746 watts.

The foregoing conception of power is in accordance with the technical

and exact meaning of the term as used in mechanics. In non-technical

literature the term is used rather broadly, even in connection with

mechanical subjects. For example, a large locomotive that can pull a

heavy train is frequently referred to as having great power. In the

technical sense, however, the power of this locomotive may be com-
441
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paratively small. Many electric and hydraulic motors, and even steam

engines and steam turbines, develop much greater power than the loco-

motive. This is because they work at higher speeds, and are thus

able to perform more work in a given time, although they may not be

capable of exerting continuous forces

as great as those obtainable from

the locomotive.

Illustrative Problems

1102. Figure 508 represents a body,

weighing 96.6 lb, being pulled along a

horizontal plane by a constant force, P,

of 25 lb, applied as shown. The coeffi-

cient of kinetic friction is 0:2. The ini-

tial velocity of the body is 4 ft per sec,

toward the right. Calculate the power of each of the external forces acting

on the body, at the initial instant. Calculate the power of each force at the

instant when 10 sec have elapsed.

Solution, By Eqs, 184 and 185, Art. 126, and Eq. 32, Art. 81,

2Px = -a,
g

W
g

F ^ fiN

96.6
+25 cos 20" - P - (+S*)

+N + 25 sin 20° - 96.6 =^ (0)

F = 0.2 N

The solution of these equations gives

a, = 1.96 ft/sec2 F = 17.6 lb N = 88.0 lb

Let s represent the distance traversed by the body since it passed 0, a fixed

point on the path. The work done by the force P since the body passed 0 is

equal to +(P cos 20")5. By Eq. 294, the power of the force at any instant is

as follows:

pp =
dUp d (Ps cos 20")

dt dt

= P cos 20"

in which v represents the velocity of the body. At

V = 4'ft/sec,

pp = (25 cos 20") 4 = 94 ft-lb/sec

(P cos 20") V

the instant when

In a similar manner,

pf = 17.6 X 4 =* 70.4 ft-lb/sec

By Eq. 129, Art. Ill, at the instant when 10 sec have elapsed, v = vo + at =

4 + 1.96 X 10 « 23.6 ft/sec.

Pp = (25 cos 20°)23,6 = 556 ft-lb/sec

pp « 17.6 X 23.6 = 415 ft-lb/sec
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1103. The engine of a certain automobile delivers 80 hp at the flywheel,

when the engine speed is 3000 rpm. Assume that the efficiency of the entire

mechanism between the flywheel and the driving wheels, in high gear, is

90 per cent. The gear ratio at the differential is 4.5 to 1, and the tires are

29 in. in diameter. Calculate the constant force, or tractive effort, that the

engine is capable of producing at the driving wheels, to propel the car under

these conditions.

Solution. Let v represent the velocity of the car, in high gear. The value

of Vf with Uie engine rotating at 3000 rpm, can be calculated as follows:

3000
Angular velocity of wheels = = 667 rprn =4190 rad/rain

4.5

By Eq. 211, Art;. 150,

t; = rco = (
-

) 4190 = 5060 ft/min
\2 X 12/

Power delivered at flywheel = 80 X 33,000 = 2,640,000 ft-lb/min

Power delivered at ground = 0.90 X 2,640,000 = 2,380,000 ft-lb/min

Let P represent the tractive effort. In 1 min the work done by P is P X 5060.

Therefore,

P X 5060 = 2,380,000 P == 470 lb

PROBLEMS

1104 . A certain electric locomotive exerts a drawbar pull of 30,000 Ib on the train

to which it is coupled, at a speed of 50 mi per lir. Calculate the horsepower being

delivered to the train. Ans. 4000 hp.

1106

.

The discharge of a certain river is 160,000 cu ft per sec, and the height of a

certain falls is 36 ft. Calculate the theoretical horsepower available. Assume that

water weighs 62.4 lb per cu ft.

1106. The wat/cr passing through a certain hydraulic turbine has a total fall of

30 ft. The capacity of the turbine is 60 cu ft per sec, and the efficiency (Art. 191)

is 80 per cent. Calculate the horsepower delivered by the turbine. Assume that

water weighs 62.4 lb per cu ft. Ans. 163 hp.

1107 . It is necessary to deliver 18 hp to a certain machine. The power is trans-

mitted to the machine by a spur gear 12 in. in diameter, mounted on the shaft, and

rotating at a speed of 120 rpm. Calculate the tangential force that must be exerted

on the spur gear by the pinion.

1108. A given shaft transmits 80 hp at a speed of 360 rpm. Calculate the torque

sustained by the shaft. Ans. 1170 ft-lb.

1109 . A body weighing 0.5 ton is pulled up an inclined plane by a constant force

parallel to the incline. The coefficient of kinetic friction is 0.25. The speed is 10 ft

per sec, and is constant. It is found that it is necessary to deliver 4 hp to the body

to satisfy tlie foregoing conditions. Calculate the angle of inclination of the plane.

1110. Power is supplied to a lineshaft by a belt running on a 24-in. pulley. The
tension in the belt is 180 lb on the tight side and 12 lb on the slack side. The speed

of the shaft is 360 rpm. Calculate the horsepower being transmitted by the belt to

the shaft. Ans. 11.6 hp.



444 POWER

1111. In Prob. 878, Art. 155, calculate the horsepower being delivered to the

centrifugal extractor by the motor at the instant just before the maximum speed is

attained. Assuming, as in that problem, that the torque necessary to overcome the

frictional resistances is 15 per cent of the total torque required during the accelerating

period, calculate the horsepower that the motor must deliver to maintain the con-

stant speed of 700 rpm. Ans, 15.2 hp; 2.28 hp.

1112 . A cylinder 3 ft in diameter, weighing 250 lb, is rolled along a horizontal

surface, without slipping. A wire is wrapped around the cylinder, coming off

horizontally, at the top. A constant pull of 10 lb applied to the end of the wire

serves to propel the cylinder. Calculate the horsepower being delivered to the

cylinder at the instant when the velocity of the center point is 6 ft per sec.

1113 . A certain internal-combustion engine has a bore of 1 0 in. and a stroke of 12 in.

The average pressure on the piston during the power stroke is 100 lb per sq in, at a

speed of 550 rpm. The engine is four-cycle, having one power stroke during two
revolutions of the crankshaft. Calculate the horaepower developed in each cylinder

by the expansion of the gas. An^. 65.5 hp.

1114. In Prob. 453, Fig. 282, calculate the horsepower dissipated by the brake, if

the drum is rotating at a speed of 240 rpm, assuming that the results obtained in the

solution of Prob. 453 are valid for the present case.

1116

.

The normal pressure exerted on a certain car wheel by a brake-shoe is

5000 lb. The coefficient of kinetic friction for the rubbing surfaces is 0.15. The
speed of the car is 60 mi per hr. Calculate the horsepower being dissipated by the

brake at the given speed. Ans. 120 hp.

1116 . A certain rectangular re.servoir with vertical sides is 80 by 40 ft in plan, and

contains water to a depth of 4 ft. This water is to be pumped into a cylindrical

standpipe 16 ft in diameter. The bottom of the standpipe is at an elevation 100 ft

above the bottom of the reservoir. It is desired to elevate the entire quantity of

water in 15 min. Calculate the average horsepower necessary, disregarding friction

losses.

1117. The skip of a certain mine hoist is raised to the surface of the ground, from a

point 1000 ft below the surface, in 2 min. The cable by means of which the skip is

raised weighs 4.62 lb per lin ft, and is wound on a drum whose axle shaft is 12 ft

above ground. Calculate the work done solely in elevating the cable. Calculate the

average horsepower expended for the same purpose. Ans. 1180 ft-tons; 35.8 hp.

1118. The S.A.E. formula for the brake horsepower of an automobile engine is as

follows: bhp =* AZ>^/2.489, in which N represents the number of cylinders, and D
represents the diameter of each cylinder, in inches. In the derivation of this formula

the average effective pressure on each piston during its power stroke is assumed to be

90 lb per sq in., and the piston is assumed to travel at an average speed of 1000 ft

per min. The efficiency of transmission between piston and flywheel (mechanical

eflSciency) is assumed to be 75 per cent. Check the derivation of the formula. It

will be remembered that in the usual automobile engine each piston has one power

stroke during two revolutions of the crankshaft.

1119. The air resistance against the front of a moving automobile may be calcu-

lated from the formula P « CAi^^ in which P represents the air resistance, in pounds,

A represents the projected area of the front of the car, in square feet, and v represents

the speed of the car, in miles per hour. The quantity C is a constant whose value

depends on the type of car. In a certain car, A « 12 sq ft and C » 0.002. Calcu-

late the horsepower utilized in overcoming air resistance at a speed of 20 mi per hr,

for this oar. Solve also for a speed of 60 mi per hr. Calculate the ratio of the larger

value to the smaller. Ans. 0.512 hp; 13.8 hp; 27 to 1.
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183. Measurenient of Power. The rate at which work is done by
the pressure of the steam, gas, or other fluid in the cylinders of an engine

is usually expressed in horsepower, and is called the indicated horsepower

of the engine. It is calculated from a diagram drawn on a card by a
device called an indicator.

The horsepower that can be delivered by the crankshaft of an engine

to a belt, gear train, or other device, or directly to a machine, Is called

the brake horsepower of the engine. Brake horsepower is measured by

Fig. 509

means of a device called a dynamometer, of which there are several kinds.

The most common form of dynamometer is the Prony brake, a simple

type of which is represented in Fig. 509. In the figure, A represents the

flywheel of the engine, or a pulley keyed to the crankshaft. Bi and B2

are wooden blocks, partially encircling the wheel. Bi has a projecting

arm, the outer end of which rests on a platform scale or other device for

measuring the force exerted at the end of the arm. The pressure of the

brake on the wheel can be increased or decreased at will by means of the

bolts, Cl and Cg.

Let G represent the center of gravity of the brake, and let W represent

the weight of the brake. Let P represent the upward pressure at the

end of the arm. Let it be assumed that the wheel is rotating in a clock-

wise direction. The forces Ft, F2 y Ni, and N2 represent the kinetic

frictional forces and normal pressures exerted by the wheel on the brake.

When a test is being made the bolts are adjusted until the engine runs

uniformly at the speed at which it is desired to measure the power.

The brake exerts frictional and normal forces on the wheel, equal and

opposite to those shown in the figure. The normal forces do no work
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on the wheel, but the frictional forces do negative work. Let n repre-

sent the speed of the wheel in revolutions per minute. In 1 min the

friction performs an amount of work on the wheel numerically equal

to (2 rr){F\ + F2 ) n, which represents the power being delivered, in

foot-pounds per minute, r being expressed in feet. The brake horse-

power at the given speed is, then, as follows:

hp = (2 7rr) {Fi+F2)n

33,000
[296]

A relation between {Fi + F2 ) and P will now be obtained by con-

sidering the brake itself, which is a body in equilibrium. This can best

be done by taking the moment-sum of the external forces about 0, the

center of the wheel, as follows:

- {Fx + F2)t - Wx + Pa:i = 0 [297]

Eliminating (Pi + F2 ) between Eqs. 296 and 297,

hp
{Pxi — Wx)n

5250
[298]

The force P is measured by keeping the scale balanced during the

progress of each test. The speed is measured at freciuent intervals,

usually by means of a watch and a revolution counter. For any given

Prony brake, xi^ and x are constants.

In the case of the Prony brake, practiciilly all the output of energy

from the engine is absorbed by the brake, and passes to the atmosphere

in the form of heat. For this reason brakes of this t3q)e are called

absorption dynamometers. Another type, called transmission dynamom-

eters^ measure the power as it is transmitted from the crankshaft of the

engine to another machine. Transmission dynamometers do not

dissipate any considerable amount of energy. Electrical generators of

known efficiency are sometimes used to measure the power being de-

livered by an engine.

. PROBLEM

1120. The weight of a certain Prony brake is 36.5 lb. The distance a?i, in Fig. 609,

is 30 in., and f is 6 in. The brake is attached to a pulley 16 in. in diameter. At a

speed of 260 rpm it is found that the force P is equal to 175 lb. Calculate the brake

horsepower of the engine at this speed. Ana. 20 hp.



CHAPTER XXIV

ENERGY

184, Energy in General. A force that opposes the motion, or the

tendency toward motion, of the particle on which it acts, is called a

resistance. If the particle moves against tiie opposition offered by the

resistance, the particle, or the body to which the particle belongs, is said

to overcome the resistance. A resistance does negative work on the

body that overcomes it.

The situation that exists when a body is capable of overcoming resistances

is described by saying that the body possesses energy. The energy possessed

by the body is considered to be zero when the body is in a certain

standard situation, or condition. This standard, or zero, energy con-

dition is selected more or less arbitrarily, and depends on the form of

energy under consideration. Energy is a scalar quantity, and is in-

herently positive.

Work is taken as the measure of energy. The amount of energy pos-

sessed by a particle at any instant is taken numerically equal to the

total work that the forces acting on the particle would perform in

bringing the particle from the condition obtaining at the given instant

to the standard condition. The amount of energy possessed by a body

at any instant is taken equal to the sum of the amounts of energy

possessed by the particles of the body at that instant.

It is observed that bodies are able, within limits, to transfer their

energy to other bodies, and that the energy Ls often changed in form

during the transfer. The Theory of the Conservation of Energy teaches

that energy can neither be created nor destroyed, or, in other words, that

the total quantity of energy in the universe is constant. It follows that,

if a given body gains a quantity of energy, some other body or bodies

must lose an equal quantity, and that if the given body loses a quantity

of energy, an equal quantity must be acquired by other bodies. Work
is one of the means of transferring energy from one body to another.

Kinetic frictional forces tend to transform energy into heat. Heat

is one of the forms of energy, but heat generated in such a manner

usually represents energy wasted, in the sense that it does not result in

the performance of work directly useful in the accomplishment of the

desired purpose. Kinetic frictional forces constitute a portion of the
447
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resistances that bodies must overcome in practically all cases of motion,

and the energy that they transform into heat is usually conducted more
or less directly to the atmosphere. It has been ascertained that a

kinetic frictional force must do about 778 ft-lb of work in order to

generate an amount of heat equal to 1 British thermal unit. This

quantity of work is called the mechanical equivaleM of the heat unit.

Since work is taken as the measure of energy, the latter is expressed

in the same units as those in which work is expressed. There are

many forms of energy, but the discussion in this book will be limited to

the consideration of the two forms, kinetic energy and potential energyy

that have the most direct bearing on the study of engineering mechanics.

Kinetic energy and potential energy are sometimes grouped together

under the name of mechanical energy.

186. Kinetic Energy. A body that is in motion is able to overcome

resistances by virtue of its motion, alone. This form of energy is called

kinetic energy. A reduction of the velocity of the body; causes the body

to give up a portion of its kinetic energy, and the energy thus delivered

can frequently be made to serve some useful purpose.

For example, water Issuing from a nozzle at high velocity can be made
to drive an impulse wheel, together with an electric generator or other

mechanism that may be connected to the wheel. The buckets of the

wheel are so designed, and the speed of the wheel so regulated, that

under average conditions the velocity of the water is reduced nearly to

zero by the time the water leaves the wheel. Thus, it is seen that the

water gives up nearly all its kinetic energy, a portion of the energy given

up being transformed into heat by the action of kinetic frictional forces

during the passage of the water across the buckets, and the remainder

being delivered to the wheel. The change in velocity is virtually the

only change in the condition of the water, and consequently the impulse

type of hydraulic motor is peculiarly one that depends on the utiliza-

tion of kinetic energy.

In the majority of engineering problems the velocity of a particle is

considered to be zero when the particle is at rest relative to the earth.

Naturally, the kinetic energy of a body is also considered to be zero when
all the particles of the body are at rest relative to the earth. Inherency,

kinetic energy is always a positive quantity.

The kinetic energy of a body at any instant is equal to the sum of the

amounts of kinetic energy possessed by its parts. This fact is frequently

convenient for use in calculating the kinetic eneiigy of a complex body
which can be divided into simpler parts.

In subsequent articles, formulas will be derived for the kinetic energy

of a single particle, and for the kinetic energy of bodies having the
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Fig. 510

various standard types of motion studied in previous articles. Rela-
tions will also be developed between work and kinetic energy which
furnish a more direct and convenient method for the solution of certain

types of problems than the methods

heretofore used in this book.

186. Kinetic Energy of a Particle.

Let Aj in Fig. 510, represent one

of the particles of a body that

moves in any manner. Let it be

imagined that the particle moves

from left to right along the curved

path shown in the figure. Let Pi,

P2, P3, etc., represent the various

forces acting on the particle during

its motion, and let 0i, 02, ^3, etc.,

represent the angles between these forces and the tangent, to the

path of the particle. Let represent the velocity of the particle at

the beginning of any interval, and let V2 represent the velocity at the

end of the interval. By Eq. 283, Art. 173, the total work performed
on the particle during the interval can be expressed as follows:

f/ = JPiCOsdids +JP2 cos 62 ds +JPs cos 03 ds • •
•

,
etc.

-fip. cos 01 + P2 cos 02 + P3 cos 03 • •
•

,
etc.) d$

[299 ]

In Eq. 299 the expression (Pi cos 0i + P2 cos 02 + P3 cos 03 • • •

etc.) represents the algebraic sum of the tangential components of all

the forces acting on the particle at any instant. From Art. 121, it is

seen that this expression may be replaced by {dW/g)aT> Equation 299

then becomes

u
'dW ^— df ds

9
[300]

dv/dt; therefore,

dW fdv ,
dW r , ds

g 'f di
ds == — / dv--

9 J di
[301]

Since d$/dt = v, Eq. 301 may be written, and integrated, as follows:

dTT P*" , 1 dW
U ^ t

V dv - v{)

9 ^ vi ^9 [302]

In the foregoing analysis U represents the total work done on the

particle in bringing it from the point at which its velocity is vi to the
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point at which its velocity is V2 . It will be assumed that the change in

velocity is the only change in the condition of the particle. Equation

302, therefore, gives the change in the amount of kinetic energy pos-

sessed by the particle, for the given interval.

If vi, in Eq. 302, is given the value zero, the formula then gives the

kinetic energy acquired by the particle, starting from rest. If V2 is

given the value zero, the formula gives the kinetic energy given up by
the particle in coming to rest. Since rest, or zero velocity relative to the

earth, is the standard by which kinetic energy is usually evaluated,

the formula for the kinetic energy possessed by a particle at any instant

is as follows:

^ IdW ,E = -

—

2 g
[303]

If V2 is given the value zero, in Eq. 302, the minus sign is obtained

for U, This simply signifies that the work done in bringing the particle

to rest is negative, but not that the kinetic energy of the particle Is

negative. Kinetic energy Is inherently a })ositive quantity.

In subsequent articles Eci- 303 will be used as the basis for the deri-

vation of specific formulas for the kinetic energy of finite bodies having

the various standard types of motion treated in previous articles.

187. Kinetic Energy of a Translating Body. As was stalled in Art.

184, the total energy possessed by a body at any given instant is taken

equal to the sum of the amounts of energy possessed by the particles of

the body at that instant. In Art. 186 it was shown that the kinetic

energy of a single particle is given by the expression j(dW/g)v^. The
total amount of kinetic energy possessed by any body, havdng any type

of motion, may be expressed, therefore, as follows:

E = /
IdW
2 g

'

[304]

In the case of a body having a motion of translation, the velocities of

all the particles are equal at any instant, and, therefore, v is constant

for the various particles at a given instant. Equation 304, when
applied particularly to a translating body, becomes

£ = — I dW =
2gJ 2 g

[305]

in which v represents the velocity of the body and its particles at the

given instant.

Units. In the great majority of engineering problems, under the

English ^stem, g is expressed in feet per second per second. On this
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account, v must be expressed in feet per second. IT, representing the

'total weight of the body, may be exprassed in terms of any convenient

unit. Equation 305 will then give the kinetic energy of the body in

foot-pounds, foot-tons, etc., depending on the unit used for W,

PROBLEMS

1121. It is believed that a shrapnel ball which has 58 ft-lb of kinetic energy will

disable a man. If the ball weighs Ih, calculate the necessary velocity. Ans.

396 ft/sec.

1122. In a certain accident in which several persons were killed, the car, with its

passengers, weighed 3600 lb and was traveling at a speed of 100 mi per hr. Calculate

the kinetic energy.

1123. Assuming that the risk of damage and injury, when an automobile is sud-

denly stopped in an accident, is proportional to the kinetic energy of the car, calcu-

late the percentage Increase in risk when the speed is incretxsed from 40 to 50 mi per hr.

1124. Calculate Uie energy that must he delivered to a train weighing 2000 tons,

to change its speed from 20 to 60 mi per hr, over and above that necessary to overcome

frictional and other resistances. Aiis. 214,000 ft-tons.

1126. The muzzle velocity of a certain cartridge for the Springfield military rifle

is 2170 ft per sec. The bullet weighs 170 grains, and will penetrate twelve |-in.

pine boards. Calculate the average retarding force (with respect to distance) acting

on the bullet as it penetrates the wood. Disregard the rotational energy of the bullet.

One pound is equal to 7000 grains.

1126. The driving wheels of a certain locomotive are 80 in. in diameter. The
crankpin on each wheel is 12 in. from the center of the wheel. The side rod, which

connects all the crankpins on one side of the locomotive, weighs 420 lb. Calculate

the kinetic energy of the side rod, when the locomotive is running on a straight track

at a speed of 60 mi per hr, and the rod is in its highest position. Ans. 85,400 ft-lb.

188. Kinetic Energy of a Rotating Body.

Let Fig. 511 represent a body rotating about

an axis through 0 at right angles to the plane

of the paper. Let A represent any particle of

the body. Let p represent the radius of the

circular path in which A moves. Let v repre-

sent the linear velocity of the particle at a given

instant, and let w represent the angular velocity

of the body at that instant. Let Iz represent

the moment of inertia of the body with respect

to the axis of rotation. Substituting the value

p = pcD in Eq. 303, Art. 186, the following

formula for the kinetic energy of particle A is obtained:

I. n2Ea = ;;;

—

2 g

Fig. 511

[3061

The kinetic energy of the entire body at the given instant is the sum of
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the kinetic energy

formed for the one

energy of the body

of all the particles. Since the summation Ls per-

instant, w is constant. The formula for the kinetic

at the given instant is, then, as follows:

dW
[307]

Units, If, in obtaining the value of Jj, for use in Eq. 307, the cus-

tomary value, 32.2, Ls used for g, it will be necessary to express w in

radians per second. The kinetic energy of the rotating body will then

be obtained in foot-pounds, foot-tons, etc., depending on the unit in

which W is expressed.

Illustrative Problem

1127.

A certain power shears does 5000 ft-lb of work on the material placed

between its jaws, during each cutting stroke. The flywheel of the machine is

mounted on a shaft that rotates at a constant speed of 90 rpm, when idling.

It is desired that the total decrease in the speed of the flywheel during a cutting

stroke shall not exceed 8 per cent. Calculate the necessary moment of inertia

of the flywheel, assuming that all the energy used in cutting the material is

supplied by the flywheel. Disregard friction losses in the machine itself.

Solution. Let Ex and E 2 represent the amounts of kinetic energy possessed

by the flywheel at the beginning of, and end of, a cutting stroke. Let wi and

W2 represent the corresponding values of the angular velocity of the flywheel.

From the problem, 0)2 = 0.92 wi. By Eq. 307,

El -M - 44.47.

El - E2 = 5000 44.47, - 37.67, = 5000

7, = 735 engineer's units

PROBLEMS

1128. A solid, steel cylinder, 18 in. in diameter and 4 in. long, is keyed to a 3-m.

steel shaft 6 ft long. The axis of the shaft coincides with the geometric axis of the

cylinder. The entire assembly rotates at a speed of 600 rpm. Calculate its kinetic

energy. The material weighs 490 lb per cu ft. Am, 5060 ft-lb.

1129. The reduction in the kinetic energy of a certain flywheel, while the speed

decreases from 60 to 50 rpm, is 100 ft-tons. How much would the kinetic energy be
increased if the speed were increased from 60 to 70 rpm?

1180. A certain flywheel weighs 1500 lb, and its r^us of gyration with respect to

the axis of rotation is 2 ft. A brake is applied to the rim of the wheel, bringing the

wheel to rest in 20 sec, from an initial speed of 300 rpm. Calculate the average

horsepower of the brake, assuming that it absorbs all the energy lost by the wheel.

Am. 8.36 hp.
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1131. The rim of a certain cast-iron flywheel is 16 in. wide and 6 in. thick. The
outer diameter of the wheel is 12 ft. The peripheral speed of the wheel is 4000 ft per

sec. Calculate the kinetic energy of the wheel. Disregard the spokes and hub, and
assume that the radius of gyration is equal to the mean radius of the rim. The ma-
terial weighs 450 lb per cu ft.

1132 . A solid, cast-iron sphere 6 in. in diameter rotates about an axis 18- in. from
the center of the sphere. The linear velocity of the center of the sphere is 15 ft per

sec. Calculate the kinetic energy of the sphere. Also calculate the kinetic energy

of the sphere, assuming a motion of translation, and compare with the first result.

Ans. 104ft-lb; 103 fUb.

1133 . When the greater part of a body lies at a relatively large distance from the

axis of rotation, an approximate value for the kinetic energy can be obtained by dis-

regarding the rotation of the body, assuming that the body is translating with a

velocity equal to the actual velocity of the center of gravity. This simplifies the

calculations in many cases. Prove that the percentage error of a result obtained in

this manner is equal to 100(1 ~ in which r is the radius of rotation of the

center of gravity, and kg is the radius of gyration of the body with respect to the

axis of rotation.

189. Kinetic Energy of a Body in Plane Motion. Let Fig. 512 repre-

sent a body in general plane motion, the plane of the motion being

parallel to the plane of the paper. Let

B represent any particle of the body,

and let G represent the center of gravity.

Let OX and OF represent any conven-

ient pair of stationary axes parallel to

the plane of the motion. Let q repre-

sent the distance from B to a line pass-

ing through G at right angles to the

plane of the motion. Let v represent

the velocity of B, and v the velocity

of Gj at the given instant. Let o)

represent the angular velocity of the

body at the given instant. Let 1 rep-

resent the moment of inertia of the body with respect to an axis

through G at right angles to the plane of the motion.

Applying Eqs. 247 and 248, Art. 161, and choosing G as particle 1

and B as particle 2,

V2x v\x = —yw Vx — Vx — Vx Vx — yo> [308]

V2y — Viy = Vy -- Vy = X(x) Vy — Vy + xo) [309]

Obviously, Substituting in this equation the values of

Vx and Vy given by Eqs. 308 and 309,

~ {Vx + (Pv +

«= - 2f)xyo) + 2^yX(a + 5^0)2 [310]
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Substituting the foregoing value of in Eq. 303, Art. 186,

Eb == ^
— 2vxyio + 2^yXo) +

2 g
[311 ]

The integral of Eq. 31 1 is the kinetic energy of the entire body. There-

fore,

^ " 1/"'^ - + t/" + 1/’
g

[312]

The expression y dW represents the first moment of the weight of

the body, with respect to a gravity axis, and is equal to zero (Art. 95).

Likewise, ^x dW — 0, The expression fdW Ls equal to Wj and the

sion
J*

q

dW
expression f

—
- represents the moment of inertia of the body with

g

respect to a gravity axis at right angles to the plane of the motion.

Equation 312 may now be written

2 g 2
[313]

It will be noticed that, in a certain sense, Eq. 313 is a combination

of Eq. 305, Art. 187, and Eq. 307, Art. 188. However, in the use of

Eq. 313 it must be remembered particularly that v represents the

velocity of the center of gravity of the body at the given instant, and

that 1 represents the moment of inertia of the body with respect to a

gravity axis at right angles to the plane of

the motion. The statements in Arts, 187

and 188, regarding units, apply in the pres-

ent case also.

Illustrative Problem

1134. Figure 513 represents a straight slender

bar, ABj 4 ft in length, and weighing 50 lb.

The bar moves in a vertical plane, the lower

end sliding along a horizontal floor, and the up-

per end sliding on a vertical wall. At the in-

stant represented by the figure the linear ve-

locity of the lower end is 3 ft per sec, toward the left. Calculate the kinetic

energy of the bar at the given instant.

SoliUion. va is horizontal, and vn is vertical, as shown. Therefore, the in-

stantaneous axis is at C. AC = BC = 4 cos 45® » 2.83 ft. By inspection,



POTENTIAL ENERGT 455

Cff = 2 ft. By Art. 162,

V = CGoi = 2 X 1.06 = 2.12 ft/sec

By Prob. 755, Art. 138,

7 == -L ifj^2 ^ 50 X (4)^

12 g

^
12 X 32.2

By Eq. 313,

2.07 engineer's units

ITP.o
,

n 50(2.12)2
,
2.07 (1.06)2= + Uo)^ — :

2 g
^

2 X 32.2 2
4.65 ft-lb

PROBLEMS

1135 . A solid cylinder 3 ft in diameter, weighing 322 lb, rolls on a plane surface,

without slipping. Calculate the kinetic energy of the cylinder at the instant when
the velocity of the center point is 6 ft per sec. Arts. 270 ft-lb.

1136 . The cylinder of Prob. 1 135 starts from rest on an inclined plane whose angle

of inclination is 30*^, and rolls wit hout slipping. Calculate the kinetic energy of the

cylinder at the instant when it is 10 ft from the starting point. Calculate the total

work done on the cylinder up to that instant.

1137 . Calculate the kinetic energy of the bar in Prob. 971, Fig. 452, under the

conditions described in that problem. Arts. 16.7 ft-lb.

1138. Calculat/e the total kinetic energy of the plank and the two rollers in Prob.

973, Fig. 453, at the instant when the velocity of the center of each roller is 5 ft per sec.

1139. Calculate the kinetic energy of the connecting rod described in Prob. 977,

Fig. 455, under the conditions stated in that problem. A?is. 6310 ft-lb.

1140. A homogeneous sphere rolls on a plane surface, without slipping. Prove

that the right and left halves of the sphere possess equal amounts of kinetic energy.

Prove that the kinetic energy of the upper half is 3-^ times that of the lower half.

1141 . A wooden cylinder 4 ft in diameter and 1 ft long rolls on a horizontal surface,

without slipping. The wood weighs 40 lb per cu ft. A cylindrical hole 1.5 ft in

diameter extends through the cylinder. The axis of the hole is parallel to the geo-

metric axis of the cylinder and is 1 ft therefrom. Ciilcidate the kinetic energy of the

body, for the instant when the velocity of the geometric center of the cylinder is 4 ft

per sec, and the hole is in its highest position. Arts. 147 ft-lb.

1142. Solve Prob. 1141 for the case in which the center of the hole is level with the

center of the cylinder.

190. Potential Energy. It is observed that bodies, or systems of

bodies, sometimes possess energy which is attributable solely to the

configuratiouj or relative position, of the particles of which the body or

system is composed. This form of energy is called potential energy.

Systems possessing potential energy tend to pass, of their own accord,

to configurations in which their potential energy is less in amount.

Thus they can readily be made to give up energy, a portion of which can

frequently be turned to some useful purpose.
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The amount of potential energy possessed by a system in a given

configuration is taken numerically equal to the amount of work which

would be done on the system in bringing it from the given configur-

ation to some arbitrarily chosen zero, or standard, configuration.

Therefore, the value assigned to the potential energy of a system in a

given configuration depends on the choice of the standard configuration.

The latter is usually chosen in such a manner that the potential energy

of the system will have the positive sign in any configuration that is

likely to be of importance in the particular problem at hand.

An elastic body, such as a steel spring, that has been stretched or

deformed in any manner, will overcome resistances if it is permitted

to return to its normal condition. Obviously, such a body, in its

deformed state, possesses potential energy. The normal, or unstrained,

condition is usually taken for the standard configuration. In most

cases of elastic deformation the average value of any given force acting

on the body is equal to the arithmetic mean of the initial and final values

of that force, provided that the elastic limit of the material is not

exceeded. The work done by each force can be found by means of

this average value, and the potential energy calculated. Potential

energy stored in elastic bodies by means of deformations is sometimes

called stress energy.

The earth, together with any smaller body at an elevation above the

earth^s surface, constitute an important example of a system of distinct

bodies possessing potential energy. By permitting the smaller body to

descend to a lower elevation it is frequently possible to obtain energy

for engineering purposes. Any convenient elevation for the smaller

body is taken as the standard, and the potential energy is considered

to be zero when the system is in this standard configuration.

The amount of energy thus possessed by the system is equal to the

weight of the smaller body multiplied by the elevation of the latter

above the standard, or datum. This datum is usually so selected that

the potential energy will have the positive sign.

Care was taken in the foregoing discussion to refer to the potential

energy stored up in the case of an elevated body as being possessed by

the system, and not by the elevated body. In practice, however, the energy

is frequently spoken of as the possession of the smaller body. The latter

viewpoint leads to erroneous results in certain cases, and should be
thought of merely as a convenient mode of expression, and not as an
accurate statement of energy conditions.

The foregoing facts regarding potential energy of elevation are

pecially important in engineering problems involving the estimation of

power available from reservoirs, streams, and other bodies of water.
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191. Efficiency. Machines transmit energy from one place to

another. Also, many machines convert energy from forms in which it

cannot be directly utilized into forms in which it can be so utilized.

Energy is supplied to the machine at one or more points. This

energy is called the inpid. The energy is then transmitted through the

mechanism toward the point at which it is to be utilized. Frictional

resistances and other conditions along the way always cause the escape

of a certain amount of energy from the machine. Finally the point is

reached at which the remaining energy can be applied to the purpose

for which the machine has been designed. The energy thus utilized

is called the output. The efficiency is the ratio of the output to the input

during any given interval. This ratio is usually multiplied by 100, the

efficiency thus being expressed as a percentage.

Inasmuch as losses are inevitable, the output is necessarily less than

the input, and the efficiency is always less than xmity. Sometimes a

certain portion of the input is stored in the machine, for a time at least.

In calculating efficiency in such cases it is necessary to make an allowance

for any portion of the input that is stored in the machine and can ulti-

mately be recovered and applied to the purpose for which the machine
is intended. It should alwa.ys be understood that efficiency is intended

to be a measure of the degree to which a machine avoids waste of

energy. Therefore, care should be exercised to make certain that the

difference between the values used for the input and the output really

represents energy wasted, or lost so far as the primary function of the

machine is concerned.

The efficiency of an entire mechanism, or of any of its parts, may be

calculated. The overall efficiency of a number of mechanisms placed

in series is equal to the product of the individual efficiencies of the mecha-
nisms in the series.

PROBLEMS

1148. Calculate the efficiency of the train of spur gears shown in Fig. 514, assuming

the efficiency of a single pair of such gears to be 96 per cent. Ans. 88.5%.

1144. A constant torque of 40 ft-lb is applied to the crank of a certain hand-power
crane, in lifting a load of ^ ton. The load is raised 2 in. during one revolution of the

crank. Calculate the efficiency of the crane.
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1146

.

Calculate the efficiency of the screw jack described in Prob. 452, Art. 84,

when the load is being lifted by the jack. 20%.
1146. The available discharge of a certain stream is 200 cu ft per sec. The fall

that can be utilized is 18 ft. The overall efficiency of the turbine installation is

72 per cent. Calculate the horsepower that the turbine can deliver.

1147. A certain elevator is to be operated at a speed of 200 ft per min. The motor

must develop a pull of 1,4 tons in the cables, to drive the elevator at this speed.

The overall efficiency of the mechanism is 50 per cent. Calculate the necessary horse-

power of the motor. Ans. 33.9 hp.

1148. A jet of water 4 in. in diameter, having a velocity of 180 ft per sec, is used

with a certain impulse wheel. The efficiency of the wheel is 85 per cent. Calculate

the horsepower delivered by the wheel, assuming the weight of the water to be 62.4 lb

per cu ft.

1149. A certain automobile develops 75 brake horsepower, at an engine speed

of 2800 rpm, corresponding to a car speed of 50 mi per hr. Assuming that the

efficiency of the transmission of power from the engine to the rear wheels is 85 per

cent, calculate the tractive effort developed. Am^ 478 lb.



CHAPTER XXV

WORK AND ENERGY

192. The Work-Energy Method. The Theory of the Conservation

of Energy can be used as the basis for a convenient method of solution

of many problems in kinetics.

Energy is transferred from one body to another in various ways.

Work is one very important means of transferring energy. When a force

does positive work on a body the body gains energy, the amount of en-

ergy gained being equal to the work done. When a force does negative

work on a body, the body loses an amoimt of energy numerically equal

to the work done. Since energy can neither be created nor destroyed,

it follows that the total work done on a body^ during any given interval^ by

the external forces, is equal to the difference between the amounts of energy

possessed by the body at the beginning and at the end of the interval, pro-

vided that during the interval no energy is transferred to or from the body by

agencies other than the external forces. By means of this principle equa-

tions can be formed between work and energy, leading to the direct

solution of many problems. In many cases the only energy change that

occurs during the interval is a change in kinetic energy. This is true

in problems in which the body is assumed to be rigid.

Whenever the work-energy method is applied to the solution of a

problem, confusion in the matter of algebraic signs can be most easily

avoided if the increment in the amount of energy possessed by the

body is always calculated by the subtraction of the initial amount from

the final amount. This procedure insures an agreement between the

sign of the total work and the sign of the energy increment.

The Case of the Elevated Body^ As was stated in Art. 190, it is cus-

tomary to say that a body which is in an elevated position above the

surface of the earth possesses potential energy by virtue of that eleva-

tion. This is a convenient mode of describing the situation, but it

cannot be reconciled with the usual definition of potential energy.

Potential energy is energy that is attributable to the configuration of

the particles of the system possessing it. The configuration of the

particles of a body is not changed by the mere raising or lowering of

that body. A change does occur, however, in the configuration of the

particles of the earth and the smaller body considered together as a
459
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system. Therefore, the potential energy that is stored up when a

body is elevated should be assigned to the entire system, and not to the

smaller body. Likewise, the ix)tential energy released when a body is

lowered should be considered as having come from the system.

The importance of the foregoing distinction lies in the application of

the work-energ3^ method to the solution of problems in which the center

of gravity of the moving body at the end of the given interval is at an

elevation different from that occupied at the beginning of the interval.

The work-energy equation is usually written for the moving body only.

That part of the equation which expresses the increment in the energy

possessed by the body should not contain any allowance for a change in

potential energy unless the body itself is deformed elastically.

If the work-energy equation were to be written for the entire system

consisting of the earth and the moving body, the potential energy stored

or released during the interval would, of course, be included.

Illustrative Problems

1160. A certain automobile weighs 3000 lb. The maximum retarding force

that can be developed by the use of the brakes is equal to one-half the weight

of the car. In what minimum distance can the car be brought to rest from a

speed of 50 mi per hr? Disregard all resistances except that produced by the

brakes. Assume that the entire car has a motion of translation.

Solution. Let U represent the total work done on the car. Let P represent

the total retarding force developed by the brakes, and let s represent the dis-

tance in which the car is stopped. Let and represent the energy pos-

sessed by the car at the initial and final instants. The entire energy of the

car is in the kinetic form at both instants. By the principle of work and

energy,

XJ =* E% — El

-(0.5 X 3000) s

2 g

- 1 X X
5280Y

2 ^ 32.2 \ 3600 /

8 = 167 ft

1151. Figure 515 represents a helical spring whose modulus is 6 lb per in.,

and whose upper end is fastened to a ceiling. The normal length of the spring

is 24 in. A ball weighing 12 lb is attached to the lower end of the spring, and
is supported in the position A, so that the spring is unstretched. The support

is suddenly removed and the ball descends, stretching the spring and momen-
tarily coming to rest again at B, under the action of the spring. Calculate

the downward distance traveled by the ball.

SohUion. Let P represent the upward pull of the spring on the ball at any
instant. The maximum value reached by P is 6s, in which s represents the
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total elongation of the spring, in inches. The initial value of P is zero. The
mean value is (0 + 65)/2 = 3s. The initial energy possessed by the ball is

zero, and the final energy is also zero. By the principle of work and energy,

C/ « P2 - Pi -(3 s) s -h 12s - 0 - 0
s = 4 in.

It is instructive to observe that the spring is stretched twice as much as it

would be if the ball were lowered gradually.

Wal215.

Fia. 515

W=B441l>.

1162. Figure 516 represents a wheel, A, and a drum, D, fastened rigidly

together, and having a total weight of 644 lb. Their radius of gyration with
respect to a gravity axis at right angles to the plane of motion is 1.2 ft. The
wheel rolls without slipping, and, as it rolls, a cable is unwound from the drum
and passes over the pulley, C, A body P, weighing 16.1 lb, is attached to the
lower end of the cable. Calculate the velocity of the center of the wheel at the
instant when the weight B has descended 12 ft, starting from rest. Disregard
all frictional losses. Disregard the weight of the pulley, C.

Solution, Let vb represent the velocity of B at the final instant. It is

obvious that the particle P, at the highest point of the drum D, also has the
velocity vb> Let vd represent the velocity of the center of the drum. By the
method of Art. 161, or Art. 162, it is easily ascertained that

CO = — = -;r and that vd = -vb
7* 2 3

For the rolling body,

7
IF , 0 644 O n , , ,

(L2)^ *= 28.8 engineer’s units
Q o2.2

It is obvious that the weight of A and D does no work, and that N does no
work. It was explained in Art. 180 that the static frictional force under a
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rolling body does no work. Therefore, considering the entire moving system,

the only force doing work is the weight of body B. The work-energy equation

for the present case is, then, as follows:

U =* Ez E\

+ 16.1 X 12 =

2 g \2 g 2 J

2 X 32.2

vb = 5.54 ft/sec vd = f = 3.69 ft/sec

PROBLEMS

11S3. A ball weighing 6 lb is hung from a fixed point of support, by means of a

fine wire. The center of gravity of the ball is 3 ft from the point of support. The
ball is swung to a position level with the point of support, the wire being kept taut,

and is then released. Calculate the velocity of the center of gravity of the ball

when it reaches its lowest position. Disregard the rotational energy of the ball.

A ns. 13.9 ft/sec.

1164. A certain railway train weighs 1000 tons. The total resistance attributable

to friction is 10 lb per ton of weight, regardless of whether the train is on level track

or on a grade. Calculate the drawbar pull necessary to increfise the speed of the

train from 20 to 40 mi per hr, on a 1 per cent upgrade, in a distance of 1 mi.

1166.

A wheel 6 ft in diameter, weighing 3220 lb, is mounted on a shaft. The
radius of gyration is 2.8 ft. A constant torque applied directly to the shaft gives the

wheel a speed of 60 rpm after the wheel has described 20 rev, starting from rest.

Calculate the torque. Am, 123 ft-lb.

1166. Solve Prob. 871, Fig. 405, by the work-energy method.

1167. A body weighing 322 lb is propelled along a horizontal plane by a constant

force of KK) lb. The force is incUned downward at a slope of 4 (horizontal) to 3

(vertical). The coefficient of kinetic friction is 0.15. How far will the body move
while its speed changes from 25 to 50 ft per sec? Am. 413 ft.

1168. A pulley 4 ft in diameter, weighing 644 lb, is mounted on a shaft. The
radius of gyration is 1.8 ft. A belt passes halfway around the pulley, and is sub-

jected to a constant pull of 50 lb on one side and 5 lb on the other. Calculate the

angular velocity of the pulley at the instant when it has described 200 rev, starting

from rest.

1169. A ball weighing 20 lb starts from rest and falls through a distance of 6 ft.

At this point it strikes a helical spring whose axis is vertical and whose lower end is

fixed. The spring is shortened 4 in. in bringing the ball momentarily to rest. Calcu-

late the modulus of the spring in pounds per inch. Am, 190 Ib/in.

1160. A freight car weighing 80,000 lb, moving at a speed of 5 mi per hr, on a level

track, strikes a spring buffer assembly whose modulus is 50 tons per inch. In what

distance will the car be brought to rest? Disregard friction.

1161. A solid, homogeneous cylinder, 1 ft in diameter and weighing 161 lb, rolls

up a 75 per cent grade, its center having an initial velocity of 30 ft per sec. Assum-
ing that no slipping occurs, calculate the distance that the cylinder wiU travel up the

incline before coming to rest. Am. 34.9 ft.

1162. A body weighing 96.6 lb starts from rest and slides down an incline on a

76 per cent grade, through a distance of 200 ft. At this point the body moves onto
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a horizontal plane and continues to slide until brought to rest by friction. The
coefficient of kinetic friction is 0.2. How far does the body move on the horizontal

plane?

1163 . A solid, homogeneous cylinder, 4 ft in diameter and weighing 1610 lb, is

rolled along a horizontal plane, without slipping, by a constant force of 20 lb. The
force is applied at the axis of the cyhnder, at a downward slope of 4 (horizontal) to 3

(vertical). Calculate the velocity of the center point of the cylinder after it has

traveled 60 ft, starting from rest. Ana. 5.06 ft/sec.

1164 . A body weighing 20 lb starts from rest on a 75 per cent inclined plane, and

slides downward through a distance of 100 ft. At this point the incline ends abruptly

in a chff 50 ft high, and the body is projected into space. The coefficient of kinetic

friction for the incUne is 0.25. Calculate the velocity of the body as it reaches the

earth.

1166

.

A ball weighing 5 lb is hung from a fixed point of support, by means of a

fine wire. The center of gravity of the ball is 6 ft from the point of support. The
ball is swung out to a position in which the wire makes an angle of 60° with the

vertical, and is released from rest at that point. Upon reaching its lowest position

the ball strikes the end of a horizontal, helical spring whose modulus is 40 lb per in.

The other end of the spring is fixed. C'alculate the amount by which the spring is

shortened. Assume that the ball moves horizontally after striking the spring. Dis-

regard the rotational energy of the ball. Ana. 3 in.

1166. Figure 517 represents a solid, homogeneous cylinder 2 ft

in diameter. A fine wire is wrapped around the cylinder. One
end of the wire Is fastened to a support. The cylinder is held

momentarily in the position shown, and is then suddenly released.

Calculate the velocity of the center point when it has descended

30 ft.

1167 . If the brake in Prob. 883 is applied when the load W has

a velocity of 20 ft per sec, downward, and if the force P on the brake

arm is 200 lb, how far will the load move before coming to rest?

Ana. 43.1 ft.

1168 . Calculate the velocity of the center point of the drum
in Prob. 962, Fig. 450, when it has traveled 20 ft, starting from rest.

1169. What velocity would the centers of the drums in Prob. 970, Fig. 451, attain

after traveling 10 ft, starting from rest? Ana. 6.68 ft/sec.

1170. If the plank and rollers in Prob. 973, Fig. 453, start from rest, what velocity

will the centers of the rollers attain after traveling 4 ft?

1171 . In a certain railway hump yard the grades, starting from the top of the

hump, are as follows: 300 ft of 2.5 per cent grade; 100 ft of 1.5 per cent grade;

1000 ft of 1 per cent grade, the remainder of the yard being on a 0.5 per cent grade.

A box car weighing 40,000 lb goes over the summit of the hump at a speed of 5 mi

per hr, and coasts down into the yard. Assuming a constant resistance of 150 lb

opposing the motion of the car, calculate the velocity of the car at a point | mi from

t^ summit. Ana. 22 mi /hr.

1172. Figure 518 represents a hoist of a type in common use. A and B are drums,

fastened together so as to rotate as one body. Their total weight is 1000 lb, and

their radius of gyration with respect to the axis of rotation is 26 in. The skips,

C and D, weigh 1600 lb and 1200 lb, respectively. Calculate the torque that the

motor must furnish in order to give C a velocity of 15 ft per sec, downward, in a dis-

tance of 20 ft, starting from rest. Disregard friction and the weight of the cable.

Fig. 517



m WORK AND ENERGY

1178 . A body weighing 50 lb starts from rest on an inclined plane, and slides down-
ward through a distance of 10 ft. At this point it strikes the end of a helical spring

placed with its ajcis parallel to the slope and with its lower end fixed. The modulus
of the spring is 80 lb per in,, the grade of the incline

is 75 per cent, and the coefficient of friction is 0.25.

How much will the spring be shortened in bringing

the body to rest? The spring expands and pro-

jects the body back up the slope. By what amount
will the body fail to reach its original starting posi-

tion? Ans. 8 in.; 64 in.

1174 . Figure 519 represents a solid, homoge-
neous cylinder 2 ft in diameter, weighing 161 lb,

mounted on a shaft in frictionless bearings. AB
represents a helical spring having a modulus of 2 lb

per in. One end of the spring is attached to the rim

of the wheel, and the other is fastened in a fixed

position at B. The normal length of the spring is

2 ft. The wheel is turned until A occupies the

position A', and is then released, from rest. Find

the angular velocity of the wheel at the instant when
it reaches its original position. Disregard all frictional losses. Disregard the

kinetic energy of the spring.

Fig. 519 Fig. 520

1176. A straight, slender bar 5 ft long, weighing 32.2 lb, is placed with its upper

end against a vertical wall, and its lower end resting on a horizontal floor at a point

3 ft from the wall. The bar is then released. Calculate the velocity of the lower

end at the instant when it reaches a point 4 ft from the wall. Disregard friction.

Ans. 5.88 ft/sec.

1176. Figure 520 represents a wheel 4 ft in diameter, weighing 644 lb, and having

a radius of gyration of 1.5 ft. A fine wire is wrapped around the wheel, and is

attached to a helical spring whose modulus is 60 lb per in. The other end of the

spring is fixed. The wheel rolls toward the left, without slipping. At the instant

when the wire tightens and the spring begins to act, the velocity of the center of the

pylinder is 3 ft per sec. How far will the center point move before the wheel comes

to rest?



CHAPTER XXVI.

LINEAR IMPULSE AND LINEAR MOMENTUM

193. Elementary Linear Impulse. The linear im/pulse of a force

during an eleynentary interval of time is a vector quantity whose magnitude

is equxil to the magnitude of the force during the interval
y
multiplied by

the length of the intervaL For example, if F represents the magnitude

of a given force during a certain elementary interval, and dt represents

the length of that interval, the magnitude of the linear impulse of the

force during the interv^al is equal to F dt. Furthermore, linear impulse

is a true vector quantity, with a line of action occupying a definite

position in space. The line of action of a linear impulse coincides with

the line of action of the force with which the impulse is associated.

Also, the sense of the impulse agrees with the sense of the force.

Therefore, it is possible to resolve linear impulses into their com-

ponents along any desired axes, to calculate their moments about axes,

and to find their resultants, the procedure in all such cases being similar

to that followed in the resolution and composition of forces.

194. Finite Linear Impulse; General Case. The linear impulse of a

force during a finite interval of time is the resultant of ail the elementary

impulses occurring during the intervaL

The process of calculating the resultant of a system of infinitesimal

vectors is similar to that used in the case of finite vectors, such as a

system of forces, and is called vectorial integration. The chief difference

between the two processes lies in the fact that in the composition of

infinitesimal vectors it is neceasary, in general, to obtain the various

component-sums and moment-sums by means of integrations, instead of

finite summations.

In the general case, the magnitude and inclination of the force vary

during the finite interval, and the line of action moves about in space.

Thus it can be seen that the resultant impulse of the force for the

interval may be a single vector, or a couple, or both, just as in the

composition of force systems. A complete treatment of all these

possible situations is not necessary to the purposes for which the con-

ception of impulse is ordinarily used. The discussion in the present

article will be limited to the derivation of a formula for the component,
465
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along any axis, of the linear impulse of a variable force during any

finite interval of time.

The Formulas. The elementary linear impulses of a force whose

magnitude and inclination vary during the interval, and whose line of

action shifts about in space, constitute a general system of non-coplanar

vectors. The resultant may answer any one of the three descriptions

mentioned above, but in any event the component of the resultant along

any axis is equal to the algebraic sum, or integral, of the components of

the elementary impulses along that axis.

Y

Fig. 521

Let the vector F dt, in Fig. 521, represent any one of the elementary

linear impulses of a variable force, F. The line of action of F dt co-

incides with the line of action of F. The force itself is not shown.

Let 6x represent the angle between F dt and the x-axis. During the

finite interval the force will produce a series of these elementary impulses,

occupying various lines of action in space.

Let the x-component of the resultant impulse for the finite interval be

represented by Lx- The following equation can now be written:

= JiFdt) cos Ox = /(F cos 0x) dt [314]

The expression (F cos dx), in Eq. 314, is equal to the x-component

of the force F at the instant represented by the figure- Representing

this component by Fx, the following formula results:

Lx^JPxdt [316]

Formulas for other components of L would be similar to Eq. 316.

In order to perform the integration indicated in the formula it is neces-

sary to know the law by which F* varies with respect to t.
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Units. There is no single name for the imit of linear impulse. It is

designated by a combination of the names of the units of force and time

used in the calculations. In the English sys-

tem the pound-second is the most common
unit of linear impulse.

Illustrative Problem

1177. Figure 522 represents a particle, A, mov-

ing in a circular path in accordance with the law

in which 6x is expressed in radians and t

in seconds. A force, P, acts radially on the par-

ticle, and outward, throughout the motion. The

magnitude of P varies in accordance with the law P in which P is ex-

pressed in pounds and t in seconds. Find the magnitude and angle of incli-

nation of the linear impulse of the force P, for the interval from < = 0 to

t — 36 sec.

Solution. By Eq. 315,

Lx ~ JPxdt - Jp cos dx dt

I rorn the problem, P = and B — Substituting these values in the fore-

going equation, and integrating,

cos dt = 1^1
sin = I sin (216 rad) ~ | sin (0)

- I sin 134° 15' ~ 0 - | (0.716)

Lx — + 0.477 lb-sec

In a similar manner,

Ly = J*Py dt = J*P sin Bx dt

Substituting in this equation the values of P and Bx given in the problem,

Ly - J*
sin (t^'') dt = j^~| cos (^^)]^

= ~f cos (216 rad) + | cos (0)

- -I cos 134° 15' + f = +0.465 + 0.667

Ly = +1.13 lb-sec

Vl* + 4 = (0.477)’* + (1.13)* = 1.23 lb-see

L 1 13
arc tan — ~ arc tan —^— == arc tan 2.37 ~ 67° 05'

Lx 0.477

Both Lx and Ly are positive; therefore, the sense of the linear impulse is up-

ward and toward the right.



468 LINEAR IMPULSE AND LINEAR MOMENTUM

PROBLEMS

1178. The line of action of a certain force is horizontal, and the sense is toward the

right. The magnitude varies in accordance with the law P « 0.5^, in which P is in

pounds and t is in seconds. Calculate the linear impulse of the force for the interval

between < == 10 sec and i = 20 sec. Am. -+-75 lb-sec.

1179 . The normal length of a certain helical spring is 48 in., and the modulus is

4 lb per in. One end is fastened to a fixed support. With the axis of the spring

horizontal, a variable force is applied to the other end, of such a nature that the

spring elongates at a constant rate of 12 in. per min. Calculate the linear impulse

of the force for the interval during which the length of the spring changes from 64 to

66 in.

1180 . Figure 523 represents a body to which is applied a force P. This force has a

constant magnitude of 10 lb, but its angle of inclination, 9, varies in accordance with

the following law: 6 = 0,05/, in which 9 is in radians and t is in seconds. Calculate

the magnitude, and angle of inclination, of the linear impulse of P for the interval

from f ~ 0 to / = 30 sec.

1181 . The magnitude of the force P in Fig. 523 varies in accordance with the law

P = 2V<2 + 4, in which P is in pounds and t is in seconds. The angle of inclination.

Of varies in accordance with the law cos 9 = t/\^

P

-f 4, in which t is in seconds. Cal-

culate the magnitude and angle of inclination of the linear impulse of P for the interval

from / = 0 to / = 8 sec. Am. 71.6 lb-sec, 9x — 26° 35'.

1182 . Figure 524 represents a wheel rotating on a shaft. A is a point on the rim

of the wheel. The force P is applied tangentially at A, following that point in its

motion around the circle, and remaining tangent to the wheel at all times. Tlie

motion of the wheel obeys the following law: /d = 0.1/, in which is in radians and t

is in seconds. The force has a constant magnitude of 12 lb. Calculate the magni-

tude and inclination of the linear impulse of the force during the interval in which

varies from 0 to fr/2 rsid.

1183. Calculate the magnitude and angle of inclination of the linear impulse of

the force in Prob. 1182, for the interval during which ^ varies from 0 to t rad. An«.

240 lb-sec, dx ** 180°.

1184 . Calculate the linear impulse of the force in Prob. 1182, for the interval

during which ^ varies from 0 to 27r rad,

1186. The magnitude of the force P in Fig. 524 varies in accordance with the law

p « 2 sin ^8, in which P is in pounds and is in radians. The other conditions are
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the same as m Prob. 1182. Calculate the magnitude and angle of inclination of the
linear impulse of P for the interval from < = 0 to i = 4 sec. Ans. 1.67 lb-«ec,

0^ « 105° 15'.

196. Finite Linear Impulse; Special Cases. In many of the engi-

neering problems in which the facts concerning impulse can be utilized

to advantage, the force whose impulse Ls to be calculated remains
constant in magnitude, or in inclination, or both, during the finite

interval under consideration.

Force with Constant Inclination. A force whose inclination and sense

remain constant, but whose magnitude varies, and whose line of action

shifts about in space, will now be considered. In this case the series

of elementary linear impulses constitutes a system of parallel vectors

alike in sense but unequal in magnitude. It follows that the resultant

linear impulse of the force for the finite interval is a single vector parallel

to the line of action of the force.

Since the force is of variable magnitude, is also variable, although

is constant. The formula for in the present case is, therefore,

identical with Eq. 315, of Art. 194, which is,

dt [316]

However, since all the elementary linear impulses are parallel, a simple

formula can be written for the resultant linear impulse, as follows:

L=fFdt [317]

Constant Force. Now let the magnitude of the force, as well as the

inclination and sense, remain constant. In this case, it is readily seen

that

L = F/ [318]

Thus, it is seen that the finite linear impulse of a force that is constant in

mcLgnitvdej inclination^ and sense during the interval is equal simply to the

product of the magnitude of the force and the length of the time interval.

Obviously, the inclination and sense of the resultant impulse, L, are the

same as the inclination and sense of the force, F, producing the impulse.

Illustrative Problems

1186. A certain helical spring has a normal length of 12 in., and a modulus

of 6 lb per in. One end of the spring is fastened in a fixed position. An
axial force, P, is applied to the free end of the spring, in such a manner as to

elongate the spring at a constant rate of 4 in. per min. Calculate the resultant

linear impulse of the force P, for the interval during which the length of the
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spring changes from 12 in. to 14 in. Calculate the linear impulse of the

force at the fixed end of the spring. Assume that the spring is weightless.

Solution. Let t represent the time that has elapsed since the spring had

its normal length of 12 in. The value of t at the final instant, when the spring

14 - 12
has a length of 14 in., is 60 = 30 sec. The elongation of the spring,

in inches, at any time, t, is given by the expression 4—
,

t being expressed in

seconds. Therefore, the value of P at any instant is P = 6

By Eq. 317,

0.4 t.

L = JP dt = QA t dt = 1^0.2
= 180 lb-sec

The line of action of L coincides with the line of action of P, and the sense of L
agrees with the sense of P.

Since the spring is considered to be weightless, the force at the fixed end

of the spring will be equal to P at all times, but opposite in sense. Its linear

impulse for the interval is 180 lb-sec, coUinear with the linear impulse of P,

but opposite in sense.

Fia. 525 Fig. 526

1187. The body shown in Fig. 525 weighs 161 lb. It is pushed along a

horizontal plane by a constant force, P, as shown. The coefficient of friction

is 0.2. Calculate the linear impulse of each of the external forces acting on

the body, for the interval during which the speed changes from 10 to 20 ft per

sec. Find the resultant linear impulse for the entire system.

Solution. By Eqs. 184 and 185, Art. 126, and Eq. 32, Art. 81,

w
g

-H 100 cos 30“ - F -^ (-f-a.)
o2.2

w
9

-100 sin 30* + AT - 161 =
3̂2.2

P - iuAT F = 0.2 JV
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The solution of these equations gives

== 8.88 ft/sec2 F = 42.2 lb A' = 211 lb

By Eq. 129, Art. Ill, the time that elapses while the velocity of the body
changes from 10 to 20 ft/sec is found as follows:

V — vq at
— i>o _ 20 — 10

a 8.88
1.13 sec

By means of Eq. 318, the linear impulses of the four external forces, for the

given interval, can now be calculated.

L = Ft Lw 101 X 1.13 - 182 lb-sec

Lp - 100 X 1.13 - 113 lb-sec

Lp = 42.2 X 1.13 = 47.7 lb-sec

Ljsr = 211 X 1.13 = 238 lb-sec

The vectors representing the four linear impulses are shown in Fig. 526.

These vectors show only the correct inclinations and senses of the impulses;

the exact positions of their lines of action in space need not be found.

The resultant linear impulse of the entire system of forces is found in the

usual way. Let this resultant be represented by Lr.

Lrx = 2:L* Lpx = +113 cos 30® - 47.7 = +50.2 lb-sec

LRy = llLy iRy = -113 sin 30® - 182 + 238 = 0

Therefore, the resultant linear impulse of the system has a magnitude of

50.2 lb-sec and is horizontal, and toward the right.

PROBLEMS

1188. A certain force acts at a constant, upward inclination of 4 (horizontal) to

3 (vertical). The magnitude of the force varies in accordance with the law P =

lOV^, in wliich P is in pounds and i is in seconds. Calculate the linear impulse of

the force for the interval from ^ = 0 to ^ = 9 sec. Ans. 180 Ib-eec.

1189. A certain helical spring, whose modulus is 5 lb per in., is fixed at one end.

A variable, axial force is applied to the other end, of such a nature that the elongation

of the spring occurs in accordance with the law e = V7. In this formula 6 is in

inches and t is in seconds. Calculate the linear impulse of the force for the interval

during which e varies from 0 to 4 in.

1190. A certain automobile, moving in stiU air, accelerates uniformly from rest

and attains a speed of 60 mi per hr, in 40 sec. The air resistance for the particular

car imder consideration is given by the formula P = 0.01 Ir^, in which P is the resist-

ance in pounds and v is the speed of the car in feet per second. Calculate the linear

impulse of the air resistance for the period of acceleration, Ans. 1140 Ibnsec.

1191. A ball weighing 10 lb is dropped from a height of 300 ft above the earth.

Calculate the linear impulse of the weight of the ball for the interval during which the

ball falls to the earth. Disregard air resistance.

1192. A body weighing 500 Ib is placed on an incline whose slope is 4 (horizontal)

to 3 (vertical) . The coefficient of kinetic friction is 0,2, Calculate the linear impulse

of each external force acting on the body, and the resultant hnear impulse of aU the
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forces, for the interval during which the body moves 300 ft down the incline, starting

from rest. Ans. Lw =* 3250 lb-sec, Bx ~ 270®; Lm = 2600 lb-sec, 6x = 126® 60^;

Lf « 520 lb-sec, Bx == 36° 50'; L = 1430 lb-sec, B^ == 216° 50'.

1193. Calculate the linear impulse of each external force acting on the body in the

first part of Prob. 669, Fig. 361, for the interval during which the velocity of the body
changes from 10 to 20 ft per sec. Also calculate the resultant linear impulse of all

the forces.

1194. Calculate the linear impulse of each external force acting on the cylinder in

Prob. 954, Fig. 446, for the interval during which the velocity of the center point

changes from 15 to 30 ft per sec. Also calculate the resultant linear impulse of all

the forces. Ans, Lp = +225 lb-sec; Lp — +75 lb-sec; Lw — —4830 Ib-eec;

+4830 lb-sec; L = 300 lb-sec. Ox = 0°.

196. Linear Momentum of a Particle. The linear momentum of a

particle at any given instant is a vector quantity whose magnitude is equal

to {dW/g)Vy and whose inclination and sense are the same as the inclination

and sense of the velocity of the particle. In the foregoing expression for

the magnitude of the linear momentum, dW represents the weight of

the particle, and v represents the velocity of the particle at the given

instant.

Linear momentum, like linear impulse, is treated as a localized vector

quantity. It is considered that the line of action of the linear mo-

mentum of a particle passes through the particle.

197. Linear Momentum of a Body. The linear momentum of a

finite body at any given instant is the resultant of the linear momenta of all

the particles of the body at that instant.

Formulas will now be derived for the calculation of the linear mo-
mentum of a finite body at any given instant. These formulas will be

valid for use in connection with either rigid or non-rigid bodies, moving

in any manner.

The Formulas, Let Fig. 527 represent one of the particles of a rigid

or non-rigid body having any kind of motion. The vector {dW\/g)vi

represents the linear momentum of this particle at the given instant.

Let OX, OF, and OZ represent any convenient set of stationary co-

ordinate axes. Let Bix represent the angle between the linear momentum
of particle 1 and the x-axis. Let the other particles of the body be

numbered 2, 3, 4, etc., their linear momenta, angles of inclination, and
coordinates carrying the corresponding subscripts. The velocity of

particle 1 has not been shown in the figure, but, in accordance with

the definition given in Art. 196, the linear momentum of the particle

must agree with it in inclination and sense.

Let the linear momentum of the entire body at the given instant be

represented by T,

By the definition, the linear momentum of the body at the given in-
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stant is the resultant of the linear momenta of all the particles of the

body at that instant. It follows that the component of the linear

momentum of a finite body, along any axis, is equal to the algebraic

sum of the components of the linear momenta of the particles along

that axis. Therefore,

Fio. 527

The summation indicated by the right-hand side of Eq. 319 is to

be understood to extend to all the particles of the body at the given

instant. Since ai cos 6i = ai^, V2 cos O2 = etc., Eq. 319 may be

written as follows:

T, =
dWx

.

dW2
,
dWs

Vix i Vzx Vsx - • •

,

etc.

9 9 9
[320]

Replacing Vh by dxx/dt, V2x by dx2/dt, etc., and multiplying through

by (gdt),

gT^ dt = dWi dxi dWs dx2 + dWs dxs--, etc. [321]

Integrating Eq. 321,

^gTx dt — dWiX\ dW2X2'{~ dW3X3 • • •

,
etc. [322]

The right-hand side of Eq. 322 is equivalent to JxdW for the

entire body at the given instant, this being the first moment of the

weight of the body with respect to OZ. The first moment may be

r^resented by WSt, in which If represents the total weight of the body,

and X represents the x-coordinate of the center of gravity of the body
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at the given instant. Equation 322 may now be written,

JgTx dt = Wx
[323]

Now let Eq. 323 be differentiated with respect to t Any constants

of integration that might have been introduced in the integration per-

formed above would be eliminated by the differentiation now to be

performed. The result of the differentiation is

T
^ g dt

[324]

The quantity d^/dt, in Eq. 324, is the a:;-component of the velocity of the

center of gravity of the body at the given instant. Let this be repre-

sented by Vx- Therefore,

W
Tx = —Vx [325]

9

It is obvious that similar formulas could be derived for the 2/- and z-

components of T.

Furthermore, it can easily be shown that

W
T = —u [326]

9

in which T represents the resultant linear momentum of the body.

Equation 325 or Eq. 326 usually makes it possible to calculate the

linear momentum of a body without the use of the calculus for that

purpose.

Nothing in the foregoing analysis requires that the body be thought

of as rigid. In fact, the results may be used in connection with a

group of entirely disconnected bodies, considered collectively as a non-

rigid body.

It is possible to conceive of a situation in which Txy Ty, and Tz would

all be equal to zero at the given instant. Such a condition could be

interpreted only as meaning that the body, as a whole, had no linear

momentum along any axis. The resultant momentum, however, might

be of the nature of a couple, in which case the body would have angular

momentum about certain axes. Angular momentum will be discussed

in a later article.

Units. The unit of. linear momentum is the same as the unit of

linear impulse. In the English system the pound-second is used most

frequently. Particular attention should be paid to the fact that the

use of the usual value of 32.2, or thereabouts, for gf necessitates ex-
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pressing the velocity in feet per second. The usual expression for

linear momentum is made up as follows: „— = lb-sec.
ft/sec^ sec

Illustrative Problem

1196. Figure 528 represents a homogeneous half-cylinder 4 ft in

and weighing 322 lb. At the instant represented by the figure the

clockwise angular velocity of 1.6 rad per sec. It

rolls, without slipping, on a horizontal surface. Find

the linear momentum of the body at the given

instant.

Solution. Let G represent the center of gravity

of the body. From Prob. 496, Axt. 97,

diameter

body has

AG = ^ = = 0.849 ft
Sir Stt

Let va represent the linear velocity of the point A, at the center of the plane

face of the body.

Va = rco == 2 X 1.6 == 3.2 ft/sec

Applying Eqs. 238 and 239, of Art. 161, to the points A and G, designating

A as particle 1 and G as particle 2,

V2x - vu = - (jfw sin B - vax = -TGo) sin 225°

Vx - 3.2 = -0.849 (-1.6) (-0.707)

V2v — = qo) cos 6 Vy — vav = AGo) cos 225°

V,, - 0 = 0.849 (-1.6) (-0.707)

The solution of the foregoing equations gives

= +2.24 ft/sec Vy = +0.96 ft/sec

By Eq. 325,

W 322
r* = — t), r. =— (+2.24) = +22.4 lb-sec

Q o2.2

W 322
Ty^ — v^ Ty =~ (+0.96) = +9.6 lb-sec

Q 32.2

T = ^Ji+Tl = ^(22.4)2 + (9.6)=* = 24.4 lb-sec

T 9.6
Bx = arc tan— ~ arc tan -j— == arc tan 0.429 « 23° 15'

The sense of T is upward and toward the right.

PROBLEMS

1196. An automobile weighing 3600 lb has a speed of 70 mi per hr at a certain

instant. Calculate the linear momentum of the car at that instant. An«. 11,500

Ib-eec.
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lld7« A solid, cast-iron cylinder 24 in. in diameter and 6 in. long rolls on a plane

surface, without slipping. The cylinder rolls with a constant angular velocity of

90 ipm. Calculate the linear momentum of the cylinder at any inst/ant. The
material weighs 450 lb per cu ft.

1198. A wheel 3 ft in diameter, weighing 644 lb, rolls toward the right on a plane

surface, without slipping. The center of gravity of the wheel is 6 in. from the

geometric center. At a certain instant the center of gravity is level with the

geometric center. The linear velocity of the geometric center is G ft per sec. Calcu-

late the linear momentum of the wheel at the given instant. Ans, 126 lb-sec,

- 34^35'.

1199 . A straight, uniform bar 2.5 ft long, weighing 16.1 lb, rotates attout an axis

through one end. The axis of rotation is at a constant angle of 30"* with the longi-

tudinal axis of the bar. Calculate the linear momentum of the bar at the instant

when the angular velocity is 600 rpm.

1200 . The bar in Fig. 449, Art. 165, is 5 ft long and weighs 96.6 lb. The end A
moves vertically and the end B moves horizontally. In the position shown by the

figure the velocity of A is 9 ft per sec, downward. Calculate the linear momentum
of the bar. Ans. 22.5 lb-sec, 0^ = 323° lO'.

1201 . Calculate the linear momentum of the wheel in Prob. 880, Fig. 411.

1202. Supply the missing half of the cyhnder in Prob. 1195, Fig. 528. Calculate

the linear momentum of the added half. Using this result, together with the result

obtained in Prob. 1195, calculate the linear momentum of the entire cylinder. Check

the result by calculating the linear momentum of the complete cylinder directly

from Eq. 326. Ans. 64.0 lb-sec, Ox = 0°.

198. Relation between External Forces and Linear Momentum.
The algebraic sum of the components

j
along any axis^ of the external forces

acting on a body at any given instant^ is equal to the time rate at which the

component, along that axis, of the linear momentum of the body is changing

at the given instant.

The foregoing principle is valid for either rigid or non-rigid bodies,

moving in any manner.

Proof. The following relation, applying either to rigid or to non-

rigid bodies, moving in any manner, is found in Eq. 184, Art. 126:

W
SFa:-— Sx [327]

g

By Eq. 172, Art. 118, ^ . Substituting in Eq. 327,
at

The quantity (,W/g)K, in Eq. 328, is equal to Tx, the aj-component of

tile linear momentum of the body, as is shown by Eq. 325. llierefore.

2F,=
dTx

dt
[329]
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Equation 329 is the algebraic expression of the principle stated at

the beginning of the article, and the derivation of the equation consti-

tutes a proof of the principle.

199. Conservation of Linear Momentum. If the components of the

external forces orating on a body^ along any given axiSy are halanced, and
remain so during an interval of timCy the component of the linear momentum
of the body along the given axis is constant throughout the interval.

The foregoing statement is called the principle of the conservation of

linear momentum. Although it is merely a special case of the principle

discussed in Art. 198, its usefulness in certain types of problems renders

it worthy of special attention.

Proof, If the components of the external forces, along a given axis,

are balanced, their algebraic sum is equal to zero. In such a case Eq.

329, Art. 198, becomes: (dT^/dt) = 0. The expression {dTJdt) repre-

sents the time rate at which the rc-component of the linear momentum
of the body is changing at any instant. Since in the present case this

rate of change is zero, and remains so during the interval, Tx must neces-

sarily be constant throughout the interval.

The principle of the conservation of linear momentum is valid for

either a rigid or a non-rigid body, having any type of motion.

Illustrative Problem

1203. Figure 529 represents a car, (7, weighing 644 lb, and a block, R,

weighing 161 lb. The car is coasting, toward the right, on a horizontal sur-

face. When the forward end of the car is under the block the latter is

dropped onto the horizontal floor of the car. At the instant of contact the

absolute velocity of the car is 10 ft per

sec, toward the right, and the absolute

velocity of the block is 5 ft per sec,

horizontal and toward the left. The

block remains on the car floor, finally

coming to rest relative to the car. The
coefficient of kinetic friction for the

surface of contact is 0.3. Assume that

there are no resistances impeding the

motion of the car except that caused by the block. Calculate the common
velocity of the two bodies after the block has come to rest relative to the

car. Calculate the time consumed by the block in sliding on the car floor.

Calculate the minimum necessary length of the car.

Solution, Let vc and vb represent the initial absolute velocities of the

car and the block, respectively. Let v represent the final velocity, common to

the two bodies. Let Tc and Tb represent the initial linear momenta of the

bodies, and let T represent the final linear momentum of the pair.

Considering the car and the block as one body after they are in contact,

W* 1611b.

Fig. 629
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it can be seen that there are no horizontal external forces. Therefore, by the

principle of the conservation of linear momentum, the total horizontal

momentum of the two bodies is constant throughout the period of contact.

Therefore,

T --Tc + Tb

644 + 161

32.2

Wc + Wb Wc,
,
Wb.

y ==
-I yjj

ff g 9

V = (+10) H (~5)
32.2

^
^ 32.2

V = +7 ft/sec

Considering the block as a free body, the external forces acting after contact

with the car are TF, and N, as shown in the figure. By inspection.

N = IF = 161 lb.

F = ^lN Fp== 0.3 X 161 - 48.3 lb

Let t represent the time consumed by the block in coming to rest relative

to the car. By the principle of Art. 198, the component-sum of the external

forces acting on the block, along the horizontal, is equal to the rate of change

of the horizontal linear momentum of that body. This momentum changes

uniformly with respect to time, the forces being constant. Therefore, for

the block,

Wb Wb— P

+Fp = ^

+48.3

161

32.2
(+7) - 161

32.2
(- 5)

t

t — 1.24 sec

The velocity of the block relative to the car, at the first instant of contact,

is, by inspection, —15 ft/sec. It is obvious that this relative velocity de-

creases uniformly, with respect to time. Let A represent the acceleration of

the block relative to the car. Therefore, for the relative motion,

V ^ Vo + at 0 = -15 + A (1.24) A == +12.1 ft/sec^

^vl + 2as 0 = (-15)2 ^ 2 X U.ls

s = 9.3 ft

Therefore, the length of the car must be equal to 9.3 ft plus the length of

the block.

PROBLEMS

1204. A wooden block weighing 20 lb is suspended at the end of a long, fine wire.

A rifie bullet weighing 140 grains is shot centrally and horizontally into the blocks at

a velocity of 3000 ft per sec, and remains embedded therein. Calculate the velocity

imparted to the block. One pound equals 7000 grains. Ana. 3 ft/sec.
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1205. A wooden block weighing 20 lb is suspended at the end of a long, fine wire,

and is caused to swing in a vertical plane as a simple pendulum. At the lowest point

of the swing the velocity is 10 ft per sec. At this instant a bullet weighing 140

grains is shot centrally and horizontally into the block, at a velocity of 3000 ft per sec,

and remains embedded therein. The bullet and the block are moving in the same
direction. Calculate the velocity of the block at the instant when the j)enetration

ceases. Ans. 13 ft/sec.

1206. Solve Prob. 1205, if the block and bullet are moving in opposite directions

when contact occurs.

1207. Solve Prob. 1205, if the bullet passes completely through the block and
emerges with a residual velocity of 500 ft per sec. Ans. 12.5 ft/sec.

1208. The case of a certain shrapnel shell weighs 9 lb, and the balls contained

therein have a total weight of 6 lb. Before bursting, the shell is moving with a

velocity of 800 ft per sec. The bursting charge is designed to add 250 ft per sec to

the velocity of the balls. Calculate the velocity of the shell case after the burst.

The case remains intact, only the head being blown off.

1209. The recoiling portion of a certain field gun weighs 1000 lb. Tlie shell

weighs 15 lb, and the powder charge weighs 1.5 lb. Tlie muzzle velocity is 1800 ft

per sec. The velocity of the powder charge is equal to one-half the velocity of the

shell. Calculate the velocity of recoil at the instant when the shell leaves the muzzle

of the gun. Assume that the gun Ls fired horizon-

tally, and that it recoils without resistance. Ans.

28.4 ft/sec.

1210. Two bodies are placed on a smooth, hori-

zontal plane, with a helical spring between them, as Piq, 530
shown in Fig, 530. A weighs 20 lb and B weighs

10 lb. The modulus of the spring is 40 lb per in. The normal length of the spring

is 9 in. The bodies are moved nearer to each other until the clear distance between

them is 6 in. They are then suddenly released, from rest. Calculate the velocity

of each body at the instant when they are again 9 in. apart. Use the principle of work

and energy, and the principle of the conservation of linear momentum.
1211. After the two bodies in Prob. 1210 have been pushed toward each other

tliey are tied together, at a clear distance of 6 in., by means of a cord. The entire

assembly is then pulled toward the left until a velocity of 10 ft per sec is reached.

At this instant the propulsive force is removed, and the cord suddenly breaks. Cal-

culate the velocity of each body at the instant when the spring regains its normal

length. Am. va ~ —14.0 ft/sec; vb = —1.98 ft/sec.

200. Relation between Linear Impulse and Linear Momentum.
r/ic algebraic mm of the components^ along any axiSj of the linear impulses

of the external forces acting on a body, during any finite interval^ is equal

to the component along thaJt oxts, of the linear momentum of ike body at the

instant ending the intervaly minus the corresponding component at the

instant beginning the interval.

The foregoing statement is called the principle of linear impulse and

momentum, and applies to either rigid or non-rigid bodies, moving in

any manner, under tiie influence of either variable or constant external

forces.
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Proof. Let Fi, F2 ,
F3 ,

etc., represent the various external forces

acting on the body during the given finite interval. In Eq. 329, of

Art. 198, the expression XFx represents the algebraic sum of the x-com-

ponents of the external forces at any given instant. Let SF^ be replaced

by the equivalent expression, (Fi^; + F2:r + Fa* • •
•

,
etc.), and let

Eq. 329 be written as follows:

Fix dt + F2X "f“ Fax dt *
f
etc. = dTx [330]

Let r' and T'f represent the x-components of the linear momentum
of the body at the instants beginning and ending the interval, respec-

tively. Integrating Eq. 330,

Jfi* dt+JF2. dt+JPasdl---

,

etc. dT^ = T'J
- T' [331]

By comparison with Eq. 315, of Art. 194, it is seen that dt =

I^lX) fp,.
dt — L2XJ etc., showing that the left-hand side of Eq. 331

represents the algebraic sum of the a;-coraponents of the linear impulses

of the external forces for the given time interval. Denoting this sum
by Eq. 331 can then be written as follows:

= 7^' - 21 [332]

which constitutes a proof of the principle of linear impulse and momen-
tum.

In the application of the principle, or of Eq. 332, to a specific problem,

strict attention must be paid to the algebraic signs of the impulse

components, and also to the signs of the initial and final momentum
components. If these precautions are taken, and the principle, or the

formula, is applied exactly as it reads,

X
there will be no confusion in the matter

of signs.

The principle of linear impulse and

momentum provides a rapid and con-

venient method of solution of problems

in which force, time, and velocity are

directly involved. This is especially

true if the acceleration is not required.

Illustbativb Problem

1212. The body shown in Fig. 531 weighs 96.6 lb. It is projected up the

inclined plane with an initial velocity of 60 ft per sec. The coefficient of

friction is 0.2 at all times. After a time the body comas to rest, and be^ns
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to (leecend the plane. Calculate the time consumed in moving up the

incline. Calculate the time required for the body to attain a velocity of 60

ft per sec down the incline.

Solution.

:^Fy =-0 N - W cos 30^^ - 0 iV = 96.6 cos 30® = 83.7 lb

F - F = 0.2 X 83.7 = 16.7 lb

Let h represent the time consumed in moving up the incline, and let io rep-

resent the time consumed in moving down the incline. By Eq. 332:

for the upward journey,

= T," - T/ -(96

for the downward journey,

-(96,

.6 <,) sin 30° - 16.7 <i = 0 - (
+— 60

)

\ 32.2 f
/i = 2.77 sec

.6 < 2) sin 30° + 16.7 t. = —
60^

- 0

<2 == 5.70 sec

PROBLEMS

1213. A body falls from rest, without air resistance. Calculate the velocity at

the end of 20 sec, by the method of linear impulse and momentum. Check by two

other methods. Arts. 644 ft/sec.

1214. A ball is thrown vertically upward with an initial velocity of 60 ft per sec.

How much time will elapse before the ball has a velocity of 40 ft per sec, downward?
Solve by the method of linear impulse and momentum, writing the equation for the

entire interval and solving directly for the required result. Check by another

method. Disregard air resistance.

1215. It has been stated that a certain long-range cannon used during World
War I fired a shell weighing 264 lb, with a muzzle velocity of 5500 ft per sec, and that

the shell traversed the barrel of the gun in 0.02 sec. Assuming these values to be

correct, calculate the average resultant force acting on the shell in its journey through

the barrel of the gun. Aris. 1130 tons.

1216. A body weighing 100 lb starts from rest and slides down an inclined plane

whose slope is 4 (horizontal) to 3 (vertical). The coefficient of kinetic friction is 0.3.

Calculate the velocity of the body at the end of 30 sec.

1217. The engine of a certain automobile develops an average tractive effort of

400 lb, while the speed of the car is being increased from 10 to 40 mi per hr. The total

wind and frictional resistance has an average value of 150 lb. Calculate the time

required to accomplish the speed change, if the car is climbing a 6 per cent grade.

The car weighs 3000 lb. Am. 58.6 sec.

1218. Solve Prob. 675, Art. 126, by the method of linear impulse and momentum.
1219. A body weighing 200 lb is pushed up a 75 per cent grade by a constant force,

F, applied horizontally. The coefficient of kinetic friction Ls 0.25. The speed

increases from 50 to 100 ft per sec, in 25 sec. Calculate the magnitude of P. Am.
265 1b.
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201. Pressure Caused by the Diversion of a Jet or Stream. A
jet or stream of water, or other fluid, exerts a force on any object that

is placed in its path in such a manner as to cause any change in the

velocity of the fluid. The piinciple of linear impulse and momentum is

often used in the calculation of such forces. Two of the simpler cases

will be discussed.

Pressure of a Jet on a Stationary Vane. A jet is a stream discharged

into space, from a pipe or reservoir. In Fig. 532 is repi esented a portion

of a steady jet impinging on a stationary vane which deflects the jet

through an angle, in a horizontal plane. Let v represent the velocity

of the jet. It will be assumed that the magnitude of v is not changed

during the passage ol' the jet across the vane.

The body whose motion is to be studied Is a portion of the jet, slightly

longer than the vane, as shovm in the figure. Let M represent the time

that elapses while the body moves from the position shown in the upper

portion of the figure to that shown in the lower portion. In the upper

figure the body Is represented as if divided, by an imaginary plane,

into two parts, B and C. In the lower figure the body is divided into

two parts, C and D. Let TFb, Wc, and Wd represent the weights of

these parts. Let Px and Py represent the components of the force

exerted on the body of fluid, by the vane.

Let Tx and T'f represent the x*components of the linear momentum
of the body in the first and second positions, respectively. Let Tbxi

Tcx} and Tbx represent the x-components of the momenta of the portioas

By Cy and D.

Equation 332, of Art. 200, states that SL* = — 7^. In the

present case, for the time interval A<, = —P* AL Also,

= Tcx + Tdx» and P* = Tbx + Tcx- It follows that

Wn Ws
-^Pa, M = Tcx + - Tbx - Tcx Tbx = ~ vcoq$ -v

Q Q

[333]
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Let Wi represent the weight of the fluid discharged by the jet per

unit time. In steady flow Wi is the same at all points of the jet. It

follows that Wb = Wb = Wi At. Equation 333 now reduces to

P. = lii
(p _ i,

{/

(334J

By means of a similar analysis it can be shown that

p = — V sin 6

g
[335]

If the path of the jet across the vane is in a vertical plane, Py will be

increased by an amount equal to the weight of that iwrtion of the

jet in contact with the vane at any

instant.

Equations 334 and 335 give the

pressure exerted on the jet, by the

vane. The pressure exerted on the

vane by the jet is, of course, equal

and opposite to that given by the

equations.

Force Exerted at a Bend in a Pipe.

The discuasion will be limited to

the usual case, in which the pipe

is uniform in cross section. In Fig.

533, let Px and Py represent the x- and ^/-components of the force

exerted on the body of fluid, by the pipe.

The analysis differs from that leading to Eqs. 334 and 335 in one

respect, only. Those formulas were derived for a jet, surrounded by
the atmosphere, and in the analysis no mention was made of the pres-

sures exerted on the moving body of fluid by the bodies of fluid im-

mediately preceding and following it in the jet. Such pressures exist,

but since the jet is not enclosed they have values depending only on the

pressure of the atmosphere. In the majority of hydmulic problems,

atmospheric pressure acts in such a manner as to balance itself, and is

thus of no effect on the values of the other forces concerned.

In the case now under discussion the fluid is enclosed in a pipe, and it

Ls necessary to consider the forces acting on the ends of the body, since

the pressures in a pipe are usually above atmospheric. These forces,

in Fig. 533, are represented by Pi and P2 -

The analysis is similar to that used in the case of the jet, and leads to
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the following formulas:

IFi
Px = — (y — V cos d) + Pi — P2 cos B [336]

9

IFi= — V sin ^ + JP2 sin 6 [337]
9

If the bend is in a vertical plane, Py will be increased b}^ an amount
equal to the weight of the fluid occupying the bend at any given instant.

Equations 336 and 337 give the pressure exerted on the fluid, by
the pipe. The pressure exerted on the pipe, by the fluid, is equal and

opposite to that given by the formulas. In a large pipe, placed above

the ground, this pressure is often so large as to necessitate the use of

heavy supports at the bends, to relieve the pipe of the excessive stress.

Illustrative Problem

1220. The pipe shown in Fig. 533 is 12 in. in diameter. The angle, is 60®,

and the velocity of the water in the pipe is 12 ft per sec. The unit pressure in

the pipe is 20 lb per sq in., at both ends of the elbow. The elbow is in a hori-

zontal plane. Calculate the r- and ^/-components of the resultant force exerted

by the water, on the elbow.

Solution, The pressures. Pi and P2, in the formulas, represent total pres-

sures on the entire cross section of the pipe. Therefore, in the present case,

Pi = 20 t(6)2 - 2260 lb

P2 == 20 7r(6)2 = 2260 lb

Wi represents the weight of the water discharged by the pipe, per second.

This is equal to the weight of a cylindrical body of water 12 in. in diameter>

whose length is equal to the distance traveled by the water in 1 sec. There-

fore, assuming that the water weighs 62.4 lb per cu ft,

TFi = X (i)2 12 X 62.4 = 588 Ib/sec

By Eq. 336,

TTi
P* = —

- {V — V COB 0) + Pi — P 2 COB 0
Q

p, = (12 - 12 cos 60”) + 2260 - 2260 cos 60*
32.2

P, = +1240 lb
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By Eq. 337,

Wi .

-a — V Sin 0 + P2 Sin 0
g

Py^ —12 sin 60° + 2260 sin 60°
32.2

Py = +2150 lb

The pressures exerted on the pipe, by the water, are equal and opposite to the

values of P* and Py found above.

PROBLEMS

1221. A cylindrical jet of water 3 in. in diameter, with a velocity of 80 ft per sec.

impinges against a stationary, flat plate placed at right angles to the direction of the

jet. Calculate the pressure exerted on the plate, in the direction of the jet. The
water weighs 62.4 Ib per cu ft. Ans. 609 lb.

1222. A cylindrical jet of water 3 in. in diameter, with a velocity of 80 ft per sec.

impinges horizontally against a stationary vane. The vane deflects the jet through

an angle of 60°, in a horizontal plane. Calculate the resultant horizontal pressure

exerted on the vane.

1223. Solve Prob. 1222, if the jet is deflected 120°, all other data remaining

unchanged. Ans. 1050 lb, Ox = 30°.

1224. Solve Prob. 1222, if the jet is deflected 180°, all other data remaining un-

changed.

1226. A steady stream of bullets, each weighing 200 grains, is fired at the rate of

600 bullets per min, against a stationary target placed at right angles to the direction

of fire. The velocity of the bullets is 2500 ft per sec. Calculate the average force

exerted on the target. One pound equals 7000 grains. Ans. 22.2 Ib.

1226. Solve Prob. 1220 for a 90° elbow, the other conditions being the same as in

that problem.

1227. Solve Prob. 1220 for a 180° elbow, letting all the other conditions remain

unchanged. Am. P* = 4960 lb; Py = 0.

1226. Solve Prob. 1220 for a 120° elbow, letting ail other conditions remain

unchanged.



CHAPTER XXVII

ANGULAR IMPULSE AND ANGULAR MOMENTUM

202. Elementary Angular Impulse. The angular impulse of a force

about a given axis, during an elementary interval, is the moment, about that

axis, of the linear impulse of the force during the given elementary irderval.

The moment of the elementary linear impulse about the given axis is

calculated, and its sign determined, by the same methods as those used

in calculating the moment of a force about an axis. If the axis about

which the angular impulse is to be calculated is inclined to the line of

action of the force, the elementary linear impulse is resolved into com-

ponents, and the moment-sum of the components is calculated, just as

is done in calculating the moment of a force about an inclined axis.

Y

Fig. 634

203. Finite Angular Impulse; General Case. The angular impulse

of a force about a given axis, during a finite interval of time, is the algebraic

sum, or integral, of all the elementary angular impulses of the force about

the given axis, occurring during the finite interval.

A formula for calculating the angular impulse of a force for a finite

time interval will now be derived. The analysis will be made for the

general case, in which the force is inclined to the given axis during the

interval, and in which the moment of the force about the giv^ axis

varies.

The Formulas. Let the vector F dt, in Fig. 634, represent the linear

impulse of a force, F, during an elementary interval, dt. Let 9^ represent

486
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the angle between F dt and the x-axis- Let F dt be resolved, at into

its y-j and ^-components. The magnitude of the x-component is as

follows: (F dt) cos 6x = {F cos Bx) dt = Fx dt. In a similar manner, the

2/- and ^-components can be shown to be equal to Fy dt and Fg dt, rt3spec-

tively.

Let the 2-axis be the axis about which the moments are to be taken.

Let X, represent the angular impulse of F about the 2-axis for the finite

interval under consideration. By the definition,

X, = J*
(-f’* dty -\-Fydlx) ji-F^y + Fyx) dt [338]

The integrations indicated in Eq. 338 are to be understood to extend

throughout the finite time interval. The quantity {
— FxV + F^) is

equal to the moment of the force F about the 2-axis. Representing this

moment by Mz,

K = j*M, dt [339]

Thus it is seen that the angular impulse of a force about a given axis,

during a finite time interval, can be calculated by integrating the product

of the moment of the force about the given axis, and the differential of the

time. It is necessary to know the law by wliich Mz varies with respect

to t, in order to perform the integration. The integration extends

throughout the finite time interval.

Units. There is no single name for the unit of angular impulse.

The unit is designated by a combination of the names of the units used

for the force, the moment-arm, and the time. The pound-foot-second

is the unit most commonly used in the English system.

Illustrative Problem

1229. Figure 535 represents a wheel, 6 ft in diameter, mounted on a shaft

and rotating in a counterclockwise direction in accordance with the law

Cl) « 0.3f, in which a? is expressed in radians per second,

and i is expressed in seconds. A represents a particle on

the rim of the wheel. The force P acts on the particle A,

its line of action remaining tangent to the wheel at all

times. The magnitude of P varies in accordance with the

law P «» 10 cu, in which P is expressed in pounds and w is

expressed in radians per second. Calculate the angular

impulse of P, about the axis of rotation, for the interval

from < 10 sec to f »» 20 sec.

Solution. Let Mg represent the moment of P about the

axis of rotation, at any instant. From the figure. Mg «
^3P. From the problem, P « 10ci>. Therefore, M, « — 3 (10 «) «= —30 c*).

From the problem. Cl) »= 0.3^ Therefore, Mg — 9i.
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By Eq. 339,

/
p20 r#2*120

Mz(U ^ =s -9 I

-J
= — 1360 lb-ftH3ec

PROBLEMS
1230.

A certain force, applied tangentially to the rim of a 4-ft pulley, varies in

accordance with the law P = 0.5V7, in which P is in pounds and i is in seconds.

Calculate the angular impulse of the force about the shaft of the pulley, for the

interval during which t varies from 25 to 100 sec. Ans. 583 Ib-ft-sec.

1231.

The body shown in Fig. 523, Art. 104, weighs 100 lb. The force P has a

constant magnitude of 20 lb, and the angle 0 has a constant magnitude of 30®. The
body is moving toward the right at a constant speed of 4 ft per sec. Calculate the

angular impulse of the weight of the body, about a fixed axis through 0 at right

angles to the plane of the figure, for the interval during which s varies from 0 to 50 ft.

1232.

Calculate the angular impulse of the force P, in Prob. 1231, about the

axis, and for the interval, designated in that problem. Ans. 4-3060 Ib-ft-sec.

1233.

The moment of a certain force about a given axis varies in accordance with

the law Mg - 10/ in which is in foot-pounds and tisin seconds. Calculate

the angular impulse of the force about the given axis, for the interval during which t

varies from 16 to 36 sec.

1234.

A drum 4 ft in diameter is mounted on a shaft. One end of a wire is fastened

to the drum, and the other end is attached to a helical spring whose normal length

is 60 in., and whose modulus is 5 lb per in. The other end of the spring is fixed.

The drum rotates at a constant speed of 0.01 rad per sec, the wire tightens, and the

spring elongates. Calculate the angular impulse of the tension in the spring, about

the shaft, for the interval during which the length of the spring changes from 70 to

80 in. Am. 6250 Ib-ft-sec.

204. Finite Angular Impulse; Special Case. In many of the engi-

neering problems in which the facts concerning angular impulse can be
utilized to advantage, the force whose angular impulse is to be calcu-

lated has a constant moment about the given axis, during the finite time

interval. A formula will now be derived for the angular impulse of

such a force.

The Fomidas. Under the conditions stated above, the quantity

Mt, in Eq. 339, of Art. 203, is constant during the interval, and may be
placed outside the integral sign. Therefore,

V* “ di - Mgt [340]

in which i represents the length of the finite time interval. Thus it is

seen thRi the angular impulse of a force whose moment is constant during
the interval is equal to the product of the constant moment and the length of
the time interval.
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PROBLEMS

1236

.

A cable which is being unwound tangentially from a 3-ft drum is under a
constant tension of 5(X) lb. Calculate the angular impulse of the tension, about the
shaft of the drum, for an interval of 6 min. Ans. 270,000 Ib-ft-sec.

1236 . A belt running on a 24~in. puUey has a tension of 200 lb on one side and 20 lb

on the other. The pulley has a consUnt speed of 600 rpm. Calculate the resultant

angular impulse of the two belt pulls, with respect to the axis of rotation of the pulley,

for an interval during which the pulley describes 2400 rev.

1237. A motor dehvers 20 hp to a machine, under constant load, at a constant

speed of 1200 rpm. Calculate the angular impulse of the torque for an interval of

3 min. Ana. 15,800 Ib-ft-sec.

1238. Calculate the constant force which, if applied tangentially to a 6-ft flywheel,

would produce an angular impulse of 3,600,000 Ib-ft-sec, about the axis of rotation,

in an interval of 5 min.

1239 . A belt running on a 30-in. pulley delivers 60 hp to the shaft, under constant

load. The shaft rotates at a constant speed of 1500 rpm. Calculate the difference

between the tensions in the two parts of the belt. Calculate the angular impulse

of the torque, for an interval of 2 min. Ans. 25,200 Ib-ftnsec.

206. Angular Momentum of a Particle. The angular momentum

of a 'particle about a given axiSj at any instant, is the. moment of the linear

momentum of the. particle at that instant, about the given axis.

The moment of the momentum of a particle is calculated in accordance

with the same rules as those followed in calculating the moment of a

force.

Units, The unit of angular momentum is the same as the unit of

angular impulse, which was described in Art. 203. The pound-foot-

second is used most frequently.

206. Angular Momentum of a Rotating Body about the Axis of

Rotation. The angular momentum of any finite body about a given

axis, at any instant, is the algebraic sum, or integral, of the angular mo-

menta of all the particles of the body at that instant, about the given axis.

It is possible to calculate the angular momentum of a translating

body, and of a body having general plane motion. However, methods

of solution involving angular momentum are used principally in con-

nection with rotating bodies, and the discussion will be confined to this

case. The axis of rotation is the axis about which the angular momen-

tum of a rotating body is usually calculated, and the analysis will be

further limited to this case.

l^he Formulas. Let the z-axis be placed so as to coincide with the

axis of rotation. Let A, in Fig. 536, represent one of the particles of the

rotating body. Let p represent the radius of the circle in which A
moves. Let the vector {dW/g)v represent the linear momentum of the

particle. Obviously, p is also the moment-arm of the linear momentum,

about the axis of rotation, OZ. Let u represent the angular momentum
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of the body about the axis of rotation. By definition,

Ts = 1341]

In Eq. 341, v may be replaced by pco, in which w represents the angular

velocity of the body at the given instant. Then,

T* = [342]

The expression J {dW/g)f in Eq. 342, is the moment of inertia of

the body about the axis of rotation. Representing this by /«, the equar

tion becomes,

T, - 4a [343]

Thus it is seen that the angular momentum of a rotating body about the

axis of rotatiany at any instanty is equal to the moment of inertia of the body

abotd that axis, multiplied by the angular velocity of the body at the given

instant.

Units. If the usual value of 32.2 is used for g in the calculation of

the value of w must be expressed in radians per second.

Illustrative Problem

1240. A solid cylinder, 3 ft in diameter, is rotating about its geometric

axis at a speed of 500 rpm. The weight of the cylinder is 300 Ib. Calculate

the angular momentum of the cylinder about the axis of rotation. A
stant tangential force of 8 lb is applied to the periphery of the cylinder, bring-

ing the latter to rest in 45.8 sec. Calculate the angular impulse of this

force about the axis of rotation, for the period during which the cylinder is

coming to rest.
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Solvtion.

. IWj, 300(1.6)*
“

2 7 “ 2'7'32.2
“ ®

T, = 7*w = 10.5 Ib-ft-sec

Xa = Mzt = (8 X 1.5) 45.8 == 550 Ib-ft-sec

PROBLEMS
1241. The moment of inertia of a certain flywheel about its axis of rotation is

5000 engineer’s units. Calculate the angular momentum of the wheel about that

axis at the instant when the angular velocity is 220 rpm. Am. 115,000 Ib-ft-sec.

1242. A straight, square steel bar 2 ft long, weighing 16.1 lb, rotates about an

axis passing through its center at an angle of 60° with its longitudinal axis. The
angular velocity is 480 rpm. Calculate the angular momentum of the bar. In

calculating /, assume the bar to be slender.

1243 . A solid, cast-iron cylinder 3 ft in diameter and 6 in. long rotates about its

geometric axis. The speed increases from 500 to 1000 rpm. Calculate the increase

in angular momentum about the axis of rotation. The material weighs 450 lb per

cu ft. Am. 2910 Ib-ft-sec.

1244. A solid, homogeneous sphere weighing 16.1 lb, and having a relatively

small diameter, rotates about an axis at a constant angular velocity. The center of

gravity of the sphere is 36 in. from the axis of rotation, and its linear velocity is

30 ft per sec. Calculate the angular momentum of the sphere about the axis of

rotation. Solve by means of Eq. 343, then check by calculating the linear momentum
of the sphere and its moment about the axis of rotation. Asvsume that the line of

action of the linear momentum passes through the center of gravity of the sphere.

1245 . The angular momentum of a certain pulley about the axis of rotation is

240 Ib-ftrsec, at a speed of 200 rpm. Calculate the moment of inertia of the pulley

about the axis of rotation.

207. Relation between External Forces and Angular Momentum of

a Rotating Body. The algebraic sum of the moments, about the axis of

rotation, of the external forces acting on a rotating body at any instant, is

equal to the time rate at which the angular momentum of the body, about

that axis, is changing at the given instant.

Proof. Let represent the algebraic sum of the moments, about

the axis of rotation, of the external forces acting on the body at any

given instant. In Art. 154 it was shown that = Iza, for a rotating

body. This formula may be expressed as follows:

j
d<j) ^ dilzUi)

""
dt~^

[344]

By Eq. 343, Art. 206, the quantity /»w is equal to t„ the angular momen-
tum of the body about the axis of rotation. Therefore,

dt
[346 ]
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Equation 345 is the algebraic expression of the principle stated at

the beginning of the article, and the derivation of the equation con-

stitutes a proof of the principle.

208. Conservation of Angxilar Momentum of a Rotating Body. If

the moments of the external forces acting on a rotating body, about the axis

of rotation, are balanced, and remain so during an interval of time, the

angular momenturn of the body about that axis is constant throughout the

interval.

The foregoing statement is called the principle of the conservation of

angular momentum. Although it is merely a special case of the principle

discussed in Art, 207, its usefulneas in certain types of problems renders

it worthy of special attention.

Proof. If the momenh^ of the external forces about the axis of ro-

tation are balanced, their algebraic sum is equal to zero. In such a

case, Eq. 345 becomes dr^/dt = 0. Thus the time rate of change of the

angular momentum of the body about the axis of rotation is zero at all

instants during the interv^al. It follows that remains constant

throughout the interval.

Illustrative Problem

1246. Figure 537 represents a uniform, homogeneous timber, 6 ft in length,

and weighing 125 lb. The timber rotates in a vertical plane, on a light, hori-

zontal shaft passing through its center of gravity. The
body is given a clockwise angular velocity of 0.6 rad per

sec. At the instant when the timber is in a vertical posi-

tion, a buUet weighing 0.04 lb is shot horizontally into

the timber, toward the right, with a velocity of 2400 ft per

sec. The bullet enters the timber at the point A, 1.6 ft

from the axis of rotation, and remains embedded in the

wood. Calculate the subsequent angular velocity of the

timber. Disregard axle friction and air resistance.

Solution. Let It and Ib represent the moments of in-

ertia of the timber and the bullet, respectively, with re-

spect to the axis of rotation. By approximate methods,

It =
12 g

125 (6)^

12 X 32.2
11.6 engineers units

W
^2 ^ 0.04(1.5)2

Fig. 537 9 32.2
0.0028 engineer's unit

Considering the timber and the bullet as one body, the external forces

have practically no moments about the axis of rotation during the period of

contact. Therefore, the principle of the conservation of angular momentum
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applies, for that axis. Let oyp and represent the angular velocities of the

two bodies at the first instant of contact, and let co represent their common
angular velocity after the penetration of the bullet ceases.

vb 2400
0,5 =: — = = -f-1600 rad/sec wr = —0.6 rad/sec

r 1.5

Ito)t + = {It -f Ib) w

11.6 (-0.6) + 0.0028 (+1600) = (11.6 + 0.0028) w

0) = —0.214 rad/sec

PROBLEMS

1247. Reverse the direction of motion of the bullet in Prob. 1246, and solve. Cal-

culate the kinetic energy of the system before, and after, the impact. How do you
account for the reduction? Ans. —0.986 rad/sec.

1248. In Prob. 1246, how far from the axis of rotation would it be necessary to

shoot the bullet into the timber in order to stop motion?

1249. Two pulleys are placed next to each other on the same shaft. The pulleys

turn on the shaft, the shaft remaining stationary. One of the pulleys weighs 100 lb

and has a radius of gyration of 12 in. about the axis of rotation. The other weighs

160 lb and has a radius of gyration of 16 in. The smaller pulley is rotating with an

Fig. 538 Fig. 539

angular velocity of 120 rpm, and the larger pulley has an angular velocity of 180 rpm

in the same direction. The puUeys are provided with a mechanism by means of

which they can be quickly clamped together while in motion. This is accomplished

without introducing any forces external to the two pulleys. Calculate the angular

vdocity of the two pulleys after they have been joined. Disregard air resistance,

and friction between the puUeys and the shadt. Ans, 163 rpm.

1250. Solve Prob. 1249 for the case in which the two pulleys are rotating In oppo-

site directions before being clamped together.

1251. In Fig. 538 is shown a vertical shaft, C, equipped with two projecting

arms. On each of these arms is placed a sphere weighing 8.05 lb, in the positions
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indicated by AA, The spheres are arranged in such a manner that they can be re-

leased and will slide along the arms to the positions BB, The moment of inertia of

the shaft and arms, with respect to the axis of rotation, is 0.03 engineer's unit. The
spheres may be considered to be small, relative to their radii of rotation. The
entire system, with the spheres in their upper positions, is given an angular velocity

of 60 rpm. Calculate the angular velocity of the system after one sphere has been

permitted to drop to position B. Calculate the angular velocity after both spheres

have dropped. Disregard friction. Am. 14.2 rpm; 8.05 rpm.

1252. Figure 539 represents two disks mounted on a horizontal shaft. The disks

rotate on the shaft, the shaft remaining stationary. Disk A has a moment of inertia

of 4 engineer's units, and disk B has a moment of inertia of 1 engineer's unit. The
spring, C, is attached to both disks. Disk B is held stationary, and disk A is turned

in a clockwise direction until 10 ft-lb of energy has been ''wound up " in the spring.

Both disks are then held at rest for a moment, and released. Calculate the angular

velocity of each disk at the instant when the spring has given up all its stress energy,

assuming that the disks receive this energy. Disregard friction, and the weight of

the spring. Let the directions of rotation be viewed from the right-hand end of the

shaft.

1263 . The spring in Prob. 1252 is " wound up " as there described, but the two disks

are given a common angular velocity of 2 rad per sec, in a clockwise direction, before

being released. Calculate the angular velocity of each disk at the instant when the

spring has given up its energy. Ans. ~ — 1 rad/sec; cob - —6 rad/sec.

1254. The spring in Prob. 1252 is "wound up" as there described, but the two

disks are given a common angular velocity of 2 rad per sec, in a counterclockwise

direction, before being released. Calculate the angular velocity of each disk at the

instant when the spring has given up its energy.

209. Relation between Angular Impulse and Angular Momentum for

a Rotating Body. The algebraic sum of the angular impulses, about

the axis of rotation, of the external forces acting on a rotating body, during

any finite interval, is equal to the angular momentum of the body about

that axis at the instant ending the interval, minus the corresponding angular

momentum at the instant beginning the interval.

The foregoing statement is called the principle of angular impulse and

momentum.
Proof, Let the 2-axis be taken as the axis of rotation. Let Mut
M2z, M^z, etc., represent the moments of the varioas external forces

about the axis of rotation, at any instant during the interval. In

Eq. 345, of Art. 207, the expression 'LMz represents the moment-sum
of the external forces about the axis of rotation, at any instant. Let

Sifcf* be replaced by the equivalent expression (Mu + ^2* + Ma, • •
•

,

etc.), and let the relation expressed by Eq. 345 be written as follows:

Mu dt +-^2* dt Mzt dt • •
•

,

etc. « drg [346]

Let r' and r/ represent the angular momenta the body about
the axis of rotation at the instants beginning and ending the interval,
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respectively. Integrating, in Eq. 346,

Jm dt + Jm„ dt +^Mzt dt • *
•

,

etc. =»

[347]

Comparison with Eq. 339, of Art. 203, shows that J*Afu dt =

ku, fM,. dt = X2,, etc., proving that the left-hand side of Eq. 347

represents the algebraic sum of the angular impulses of the external

forces, about the axis of rotation, for the given time intervlaJ. Denoting

this sum by SX„ Eq. 347 may now be written as follows:

2X, = t'J - r' [348]

which completes the proof of the principle of angular impulse and
momentum of rotating bodies. If careful attention is paid to the

algebraic sign of each angular impulse, and also to the signs of the

initial and final angular momenta, there need be no confusion in apply-

ing the principle, or Eq. 348, in a specific problem.

Fm. 541

1

1

1 •'i
V,

Wa4000ib.

Fig. 542

Illustrative Problem

1255. Figure 540 represents a drum, D, 4 ft in diameter, and weighing 1200

lb. The radius of gyration of the drum with respect to its axis of rotation is

22.6 in. A cable, a portion of which is wrapped around the drum, supports

an elevator, B, The elevator weighs 2 tons. An angular velocity of 60 rpm

is imparted to the drum, in a counterclockwise direction. The system is then
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permitted to coast. Eventually it comes to rest, reverses, and moves in the

opposite direction. Calculate the total time elapsing until the drum attains

an angular velocity of 90 rpm in a clockwise direction. Calculate the tension

in the cable. Disregard friction, air resistance, and the weight of the cable.

Solution. Let Iz represent the moment of inertia of the drum, with respect

to the axis of rotation.

g 32.2
131 engineer's units

Let 0)1 and 0)2 represent the angular velocities of the drum at the initial and

final instants, respectively. Let vi and represent the initial and final linear

velocities of the elevator, B. Let P represent the tension in the cable. In

Figs. 541 and 542 the drum and the elevator are represented as free bodies.

Vi = ro)i

V2 == ro)2

12.6 ft/sec, upward

18.9 ft/sec, downward

For the drum, by the principle of angular impulse and momentum,

= Ti' -- Tg ll(Mzt) ~ /2a)2 — IzCOi

For the elevator, by the principle of linear impulse and momentum,

W W
XLy - T'J - T'y Z{Fyi) = ~ ^

9 9

+Pt - 4000 1 =— (-18.9) -— (+12.6)
32.2 32.2

'

The solution of the foregoing equations gives

t «= 1.24 sec P = 833 lb

PROBLEMS

1266. A certain flywheel weighs 60,000 lb and has a radius of gyration of 8 ft.

A constant torque of 5 ft-tons is applied. Calculate the time elapsing while the

speed of the wheel changes from 50 to 100 rpm. Solve by the method of angular

impulse and angular momentum, and check by two other methods. A ns. 62.4 sec.

1267. Solve Prob. 871, Fig. 405, by the method of angular impulse and angular

momentum.
1268. Solve Prob. 876, Art. 155, by the method of angular impulse and angular

momentum. An«. Af# *= 3470 ft-lb,

1269. A certain flywheel weighs 150,000 lb and has a radius of gyration of 10 ft.

Calculate the constant torque required to increase the speed from 40 to 80 rpm in an

interval of 3 min.
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1260. Solve Prob. 877, Art. 155, by the method of angular impulse and angular

momentum. Am, 351 sec.

1261. Solve Prob. 878, Art. 155, by the method of angular impulse and angular

momentum.

1262. A solid, homogeneous cylinder 1 ft in diameter, weighing 140 lb, is keyed

to a short, horizontal shaft which is mounted in bearings in such a manner as to

permit the system to rotate about its geometric axis. The shaft is 2 in. in diameter,

and the total friction on the axle is 3 lb. The system is caused to rotate at a speed

of 600 rpm, and is then permitted to coast until it comes to rest under the influence

of the axle friction alone. IIow much time will he consumed in coming to rest?

Disregard the inertia of the projecting portions of the shaft. Arts, 137 sec.

1263. A wheel 4 ft in diameter, weighing 644 lb, is mounted on a shaft. The

radius of gyration is 1.8 ft. An initial speed of 300 rpm, clockwise, is imparted to

the wheel, A constant force of 60 lb is applied to the rim, tangentially, in such a

manner that it eventually brings the wheel to rest and causes it to rotate in the

reverse direction. Calculate the total time elapsing up to the instant when the

speed is 300 rpm, counterclockwise.

1264. In Prob. 1255, calculate the constant torque which, applied directly to the

drum, would give the elevator a velocity of 20 ft per sec, upward, in an interval of

10 sec, starting from rest. Am. 8630 ft-lb.
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Instantaneous center, 364

J

Joule, 420

Journal bearings, 189

K

Kilowatt-hour, 420

Kinematics, definition of, 231

Kinetic energy, 448

of a })ody in })lane motion, 453

of a parti<4e, 449

of a rotating body, 451

of a translating body, 450

l^inetics

definition of, 231

of a body in general, 277

of a particle, 271
,
272

L

Laws of motion, Newton’s, 271

Lever-arm, 27

M
Mass, 274

Mass center, 207

Mechanical equivalent of heat, 448

Members, 97

two-force, 97

Moment
about a line, 27, 66

about a point, 27

general case, 64

physical significance of a, 28

sign of, 27, 67

special case, 26

Moment-arm, 27

Moment of inertia

by finite sununation, 314

general formulas, 298, 299

of irregular forms, 321

of rods and plates, 309

parallel axes, 301, 305

physical significance of, 299

polar, 304

specif formulas, 303, 305, 310, 314,

316, 319

with respect to planes and points, 321

Moments
axis of, 27, 67

center of, 27

Momentum, angular

(conservation of, 492

of a particle, 189

of a rotating body, 489

relation to angular impulse, 494
relation to (external forces, 491

Momentum, linear

cons(u*vation of, 477

of a finite body, 472

of a particle, 472

relation to external forces, 476

relation to linear impulse. 479

N

Newton’s law^s of motion, 271

third law, 3

Normal pressure, 160

O

Output, 457

P

Pappus and Guldinus, theorems of, 225

Parabolic cable, 195

Parallel-axis theorem, 301, 305

Parallelogram law, 11

Particle

definition of, 231

effective force for, 275

kinetic formula for, 272

kinetics of, 271, 272, 275

Plane motion

angular acceleration in, 352

angular velocity in, 351

definition of, 351

instantaneous axis in, 352

kinematics of, 351, 352, 355, 364

kinetics of, 371, 374

motions of two particles in, 355

Power, 441, 445

measurement of, 445

Pressure of a jet or stream, 482

Primary stresses, 128, 139

Principle

d’Membert’s, 277
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Principle

of angular impulse and momentum,
494

of components, 23, 42, 50, 64, 81, 91

general nature, 91

for bodies in equilibrium, 94

of linear impulse and momentum, 479

of moments, 30, 43, 50, 82, 90, 91

general nature, 91

for bodies in equilibrium, 94

for two concurrent forces, 30, 90

of the conservation of angular momen-
tum, 492

of the conservation of linear momen-
tum, 477

of the motion of the center of gravity,

278

of traiismissibility, 7
Principles of composition, general nature,

91

Prony brake, 445

R

Radius of g>’ration, 300

Rectilinear motion

imiform, 239

uniformly accelerated, 240

wth constant acceleration, 240

with variable acceleration, 225

Relative acceleration, 401

and absolute acceleration, 402

and absolute velocity, 391

Relative motion of two points, 415

Relative path, 388

Relative velocity, 390

Resolution, 6

of a couple, 75

of a force into a force and couple, 59

of a force into rectangular compo-

nents, 16, 62

Resultant of a force system, 6

a coplanar couple and force, 58

coplauar couples, 56

external forces, in kinetics, 285, 288,

289, 336, 339, 371, 374

non-coplanar couples, 78

the collinear system, 19

the coplanar concurrent system, 20, 23

the coplanar parallel system, 37, 42

Resultant of a force system

the general coplanar S3^tem, 47, 50

the non-coplanar concurrent system,

64

the non-coplanar parallel system, 81

three couples at right angles, 71

three forces at right angles, 61

two concurrent forces, 1

1

two forces at right angles, 14

Retardation, 236

Rigid and non-rigid bodies, 5

RoUem, effect of, 9

Rolling lx>dies, kinematics of, 353

Rolling resistance, 383

coefficient of, 384, 386

Rotation

angular acceleration in, 325

angular velocity in, 323

axis of, 323

definition of, 323

kinematics of, 323

kinetics of, 336, 339

motions of }>articlcs of a body in, 329

normal acceleration in, 330

tangential acceleration in, 330

uniform, 332

uniformly accelerated, 334

with constant acceleration, 33*3

with (constant velocity, 332

Rough surfaces, 160

S

Scotch crosshead, 249

Screw, the, 180

Screws jack, 183

Signs

conventions for, 19

of comi)onents, 69

of moments, 27, 67

of results, interpretation of, 19

Simple harmonic motion, 247

Smooth pulleys, 9

Smooth surfaces, 8

Solids of revolution, volume of, 226

Space diagram, 20

Speed, 251

Statically indeUnrminate cases, 96

Stress

axial, 126
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Stress

compressive, 127

tensile, 127

Su|)erelevat ion of curvtjs, 349

Surfaces of revolution, area of, 225

Siisjxuided cables, 194

T

I'ensile stress, 127

Theory of the consovation of energy,

447, 459

Torque, 27

work done by, 433

Translation

definition of, 286

kinematics of, 2S6

kinetics of, 288, 289

Triangle law, 12

Trusses, 126, 127

'rwohu’ce members, 97

V

Varignon’s theorem, 30

Vector of a couple, 69

Vector quantities, 9

Vectorial integration, 463

Velocity

angular, 323, 351

linear, 232, 251

x- and //-components of, 255

Velocity-time curvtis, 233

W
Watt, 441

Weight, 4

Work
and energy, 459

jis a means of transfiirring energy, 459

a sc^alar quantity, 425

done on a rolling body, 435

in terms of torque, 433

in the case of a constant wcjrkiiig com-

ponent, 424

of a constant force, 427

of a single concentrated force, 419

of distributed forces, 430

of frictional forces, 434

of gravity, 430

of kinetic friction, 435

of two collinear forces, 437

total, 425

Working (;omponent, 419
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