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PREFACE TO THE SIXTH EDITION 

In this sixth edition of a well-established textbook, two aims have 

been kept in mind, namely, the retention of the presentation of the 

fundamentals and the use of current terminology, notation, standards, 

illustrations, and examples. In order to bring this textbook up to date, 

all chapters have been completely revised. Chapters III, IV, and V, 

(Vectors, Velocity Analysis, and Acceleration Analysis respectively) 

have been rewritten in an attempt to present these important subjects 

more clearly. New illustrative examples have been used throughout 

the text. Many new problems have been added at the end of each 

chapter. All problems may be worked on 8 34 by 11-inch paper. 

* The sequence of chapters has been changed to procure better con¬ 

tinuity. Two chapters have been combined in order to provide space 

for the inclusion of additional illustrative examples and laboratory 

problems. Chapter XIII, Miscellaneous Mechanisms, contains some 

material which was previously presented in other chapters. In courses 

where the time is limited or where it is desirable to place more emphasis 

upon velocity and acceleration analyses, this chapter may be treated 

lightly or omitted. 

I wish to thank Professor Walter H. James for reviewing the manu¬ 

script and offering many valuable suggestions; Professor W. J. Carter, 

of The University of Texas, for his assistance in preparing the chapters 

on velocity and acceleration analyses; and Mr. Sertorio Arruda, Jr., a 

student of The University of Texas, for preparing the numerous new 

illustrations. I also wish to acknowledge the many valuable sugges¬ 

tions made by the users of previous editions. All suggestions could not 

be followed but many have been included in this revision. Acknowl¬ 

edgment is made throughout the text to the manufacturers who have 

furnished illustrations and other material. 

Venton Levy Doughtie 

Austin, Texas 

November, 1946 





PREFACE TO THE FIFTH EDITION 

A study of the elements of mechanism, as treated in the following 

pages, is intended primarily to give the student familiarity with, and 

practise in thinking about, the application of the fundamental prin¬ 

ciples of kinematics in a specific field, namely, the field of mechanical 

movements. The purpose is not to describe a large number of different 

devices, but rather to select the relatively more common and more 

fundamental machine elements and study their motions when combined 

in certain definite ways. In the making of a number of such analyses, 

involving the application of well-known lawrs of physics and employing 

both graphical and algebraic methods, the student may be expected to 

acquire those habits of thought and powers of visualization necessary 

{or the analysis of any mechanical device. He will learn how to ap¬ 

proach his task. That is, he will discover that any device, however 

complicated, can be resolved into groups of the elementary combina¬ 

tions and studied as such. Having achieved this viewpoint he will be 

prepared to apply his ability to any problem which requires similar 

habits of thought for its solution. 

The first edition of this work was written during 1885 by Professor 

Peter Schwamb and for many years was used in the form of printed 

notes at the Massachusetts Institute of Technology. 

In 1904 the second edition was published, in the preparation of which 

Professor Merrill collaborated. 

The undersigned joined in the authorship of the third and fourth 

editions, in 1920 and 1930 respectively, and the responsibility for the 

present revision has devolved upon him since Professor Merrill has 

retired from active teaching. 

The same general method of treatment has been followed here as in 

the previous editions. Added emphasis, however, has been given to 

certain parts of the subject with correspondingly less attention to other 

parts, in conformity with the present-day requirements in applied 

mechanics and machine design. 

The most important changes are: 

1. A more thorough discussion of the general laws of motion with 

special attention to acceleration. 

2. Replacement of some of the old examples by others based on 

present-day practise. 

vii 



PREFACE TO THE FIFTH EDITION viii 

3. Rearrangement of the order of the chapters in accordance with the 

suggestions of a number of instructors who are using the book in 

their classes. 

4. Placing all the problems which apply directly to a given chapter 

at the end of the chapter. 

The book is planned to meet the requirements of the average course 

of about forty-five class hours accompanied by seventy-five to ninety 

hours of outside work and study. It is believed that the material is so 

arranged that the amount of time spent on the various subdivisions 

may be varied to meet the needs of different groups of students. 

Frequent use is made of the simpler methods of the calculus but 

classes which have not studied calculus may omit most of these sections 

without destroying the continuity of the work. 

Acknowledgment is made of the many valuable criticisms and sug¬ 

gestions given by professors in all parts of the country who have used the 

previous edition. Although it has not been possible to conform to all 

the suggestions offered, because of their varying character, all have been 

of great help. Especial mention should be made of assistance given by 

Professor Alvin Sloane of Massachusetts Institute of Technology, who 

has prepared the copy for most of the new illustrations and reviewed 

much of the manuscript. 

Cambridge, Massachusetts 

1938 

Walter H. James 
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NOTATION AND SYMBOLS 

Whenever a subscript occurs it indicates the particle, point, line, or 

body which is under consideration. 

a or A = linear acceleration. 

s - linear displacement. 

t — time. 

vovV — linear velocity or speed, 

ft = foot. 

fpm = feet per minute, 

fps = feet per second, 

ips = inches per second, 

mph = miles per hour, 

lb - pound. 

rpm = revolutions per minute, 

rps = revolutions per second. 

Vb = linear velocity of point B. 

Vbc = linear velocity of point B rela¬ 

tive to point C. 

Abn = normal acceleration of point 

B. 

Abcn = normal acceleration of point 

B relative to point C. 

Abl = tangential acceleration of 

point B. 

Abe - tangential acceleration of 

point B relative to point C. 

+> = vector sum. 

—» = vector difference. 

Qz = instantaneous axis of velocity 

of body 3. 

a = angular acceleration. 

d - angular displacement, 

co == angular velocity in rad/sec. 

N - angular velocity in rpm. 

° = degree, 

min = minute, 

sec = second. 

ft/min2 = feet per minute per 

minute. 

ft/sec2 = feet per second per second, 

in. = inch. 

in./sec2 = inches per second per 

second. 

rad/sec = radians per second. 

rad/sec/2 = radians per second per 

second. 

Point in a link. 

Pair joining two 

links moving rela¬ 

tive to each other. 

Fixed axis. 

Pin joint on a rigid 

link joining the end 

of another link. 

Bent rocker turning 

on a movable axis. 

Bent rocker or two 

cranks turning to¬ 

gether on a fixed axis. 

-£3-°r-E3- Sliding pair. 

, Sliding pair with 

rfi fixed guides. 

xi 

© 
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CHAPTER I 

INTRODUCTION 

1-1. The Science of Mechanism treats of the laws governing the 

motion of the parts of a machine and the forces transmitted by these 

parts. 

In designing a machine, or in studying the design of an existing ma¬ 

chine, two distinct but closely related divisions of the problem present 

themselves. First, the machine parts must be so proportioned and so 

related to one another that each has the proper motion. Second, each 

part must be adapted to withstand the stresses imposed upon it. The 

nature of the movements does not depend upon the strength or absolute 

dimensions of the moving parts. This can be shown by models whose 

dimensions may vary much from those requisite for strength, and yet 

the motions of the parts will be the same as those in the machine. 

Therefore, the force and the motion may be considered separately, thus 

dividing the science of mechanism into two parts: 

1. Pure Mechanism or Geometry of Machinery, which treats of the 

motion and forms of the parts of a machine, and the manner of support¬ 

ing and guiding them, independent of their strength. 

2. Constructive Mechanism, which involves the calculation of the 

forces acting on different parts of the machine; the selection of ma¬ 

terials as to strength, durability, and other physical properties in order 

to withstand these forces, taking into account the convenience for 

repairs and facilities for manufacture. 

1-2. Kinematics of Machines is a name commonly applied to that 

branch of the science of mechanism referred to in the preceding article 

as pure mechanism or geometry of machinery. It is the term which will 

be used in the following text, whereas the word mechanism will have 

the specific meaning given to it in Art. 1-6. 

1-3. A Particle is an infinitesimal part of a body or of matter. It 

may be represented on a drawing by a point and is often referred to as a 

point. A line on a body may be thought of as a series of contiguous 

particles arranged in a line. 

1-4. A Rigid Body is one whose component particles remain at a 
* constant distance from one another; that is, the body is assumed not 
to suffer any distortion by the forces which may act on it. 

1 



2 INTRODUCTION 

For the purpose of kinematic study a line may be considered as being 
of indefinite length and a body of indefinite magnitude. For example, 
in analyzing the motion of a body it may be necessary to consider the 
motion of a point which is a part of that body but beyond the limits 
of the actual body. Such a point on the extension of a body must have 
all the properties common to other points on the same body. 

1-6. A Machine is a combination of resistant bodies so arranged that 
by their means the mechanical forces of nature can be compelled to 
produce some effect or work accompanied with certain determinate 
motions.* In general, it may properly be said that a machine is an 
assemblage of parts interposed between the source of power and the 
work, for the purpose of adapting the one to the other. Each of the 
pieces in a machine either moves or helps to guide some of the other 
pieces in their motion. Still another definition follows. 

A machine is an assemblage of parts so connected that when the first, 
or recipient, has a certain motion, the parts where the work is done, or 
effect produced, will have certain other definite motions. 

No machine can move itself, nor can it create motive power; this 
must be derived from external sources. As an example of a machine 
commonly encountered, an engine might be mentioned. It is able to 
do certain definite work, provided some external force acts upon it, 
setting the parts in motion. It consists of a fixed frame, supporting 
the moving parts, some of which cause the rotation of the engine shaft, 
others move the valves distributing the fluid to the cylinder, and still 
others have other functions. These moving parts are so arranged that 
they have certain definite motions relative to one another when an 
external force is applied to the piston. 

A structure is a combination of resistant bodies capable of transmit¬ 
ting forces or carrying loads but having no relative motion between 
parts. 

1-6. A Mechanism is a combination of rigid bodies so arranged that 
the motion of one compels the motion of the others, according to a law 
depending on the nature of the combination. The terms mechanism 
and machine are often used synonymously but actually the combination 
is a mechanism when used to transmit or modify motion and a machine 
if energy is transferred or work is done. The combination of a crank 
and connecting rod with guides and frame, in a steam engine, is a 
mechanism since reciprocating motion is converted into circular motion. 
In order for this mechanism to become a machine, other mechanisms as 
valve gears and accessories must be added so that the energy of the 

• Reuleaux, Kinematics of Machinery. 
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steam may be converted into useful work. Thus, a machine is a series 
or train of mechanisms but no mechanism is necessarily a machine. 

1-7. Frame. The frame of a machine is a structure that supports 
the moving parts and regulates the path, or kind of motion, of many of 
them directly. In discussing the motions of the moving parts, it is 
convenient to refer them to the frame, even though it may have, as in 
the locomotive, a motion of its own. 

1-8. Driver and Follower. That piece of a mechanism which causes 
motion is called the driver, and the one whose motion is effected is 
called the follower. 

1-9. Modes of Transmission. If the action of natural forces of 
attraction and repulsion is not considered, one piece cannot move 
another unless the two are in contact or are connected to each other by 
some intervening body that is capable of communicating the motion of 

the one to the other. 
*Thus motion can be transmitted from driver to follower: 

1. By direct contact 
Sliding 
Rolling 

2. By intermediate connectors 
Rigid 
Flexible 
Fluid 

If an intermediate connector is rigid it is called a link, and it can either 
push or pull, as the connecting rod of a steam engine. Pivots or other 
joints are necessary to connect the link to the driver and follower. 

If the connector is flexible, it is called a band, which is supposed to be 
inextensible, and capable only of transmitting a pull. A fluid confined 
in a suitable receptacle may also serve as a connector, as in the hydrau¬ 
lic press. The fluid might be 
called a pressure organ in dis¬ 
tinction from the band, which 
is a tension organ. 

1-10. Pairs of Elements. In 
order that a moving body, as 
A, Fig. 1-1, may remain con¬ 
tinually in contact with another 
body, B, and at the same time 
move in a definite path, B would have a shape which could be 
found by allowing A to occupy a series of consecutive positions 
relative to B, and drawing the envelope of all these positions. Thus, 
if A were of the form shown in the figure, the form of B would be 
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that of a curved channel. Therefore, in order to compel a body to 
move in a definite path, it must be paired with another, the shape of 
which is determined by the nature of the relative motion of the two 
bodies. 

1-11. Closed or Lower Pair. If one element not only forms the 
envelope of the other, but also encloses it, the forms of the elements 
being geometrically identical, the one being solid or full, and the other 
being hollow or open, we have what may be called a closed pair, also 
called a lower pair. In such a pair, surface contact exists between the two 
members. 

On the surfaces of two bodies forming a closed pair, coincident lines 
may be supposed to be drawn, one on each surface; and if these lines 
are of such form as to allow them to move along each other, that is, 
allow a certain motion of the two bodies paired, three forms only can 
exist: 

1. A straight line, which allows straight translation, Fig. 1-2. 
2. A circle, which allows rotation, or revolution, Figs. 1-3 and 1-4. 
3. A helix, which allows a combination of rotation and straight 

translation, Fig. 1-5. 

Fig. 1-4 Fig. 1-5 

1-12. Higher Pairs. The pair represented in Fig. 1-1 is not closed, 
as the elementary bodies A and B do not enclose each other in the above 
sense. Such a pair is called a higher pair, and the elements are either 
in point or line contact. Ball and roller bearings are examples of 
higher pairs. 

1-13. Incomplete Pairs of Elements. Hitherto it has been assumed 
that the reciprocal restraint of two elements forming a pair was com¬ 

plete; that is, that each of the two bodies, by the rigidity of its material 
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and the form given to it, restrained the other. In certain cases it is 
only necessary to prevent forces having a certain definite direction from 
affecting the pair, and then it is no longer absolutely necessary to make 
the pair complete; one element can be cut away where it is not needed 
to resist the forces. 

The bearings for railway axles, the steps for water-wheel shafts, the 
ways of a planer, railway wheels kept in contact with the rails by the 
force of gravity are all examples of incomplete pairs in which the ele¬ 
ments are kept in contact by external forces. 

1-14. Inversion of Pairs. In Fig. 1-2 if B is the fixed piece all points 
on A move in straight lines. If A were the fixed piece all points on B 
would move in straight lines. In other words the absolute motion of 
the moving piece is the same, whichever piece is fixed. The same state¬ 
ment holds true of the pairs shown in Figs. 1-3, 1-4, and 1-5. 

This exchange of the fixedness of an element with its partner is called 
the inversion of the pair, and in any dosed or lower pair it does mt affect 

either the absolute or the relative motion. 
In the pairs shown in Figs. 1-1 and 1-6, both of which are higher 

pairs, the relative motion of A and B is the same when A is fixed as when B 
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is fixed. The absolute motion of A when B is fixed is not the same as the 
absolute motion of B when A is fixed. 

This is illustrated in Fig. 1-7, which is the same mechanism as 
Fig. 1-6. A point on A is in contact with a point on B at P. Roll A 
along B until its center C comes to C\ then the radius CP0 will be at 
C'P'o and the point on A which was at P will be at Pa, having followed 
the cycloidal path PPa. Now restore A to its original position and roll 
B around A until it is tangent to A at P0. Then the point on B which 
was at P will be at P&, having followed the involute path PP&. The 
straight-line distances of Pa and Pb from P are equal although the two 
curves described by the points as they move are different; that is, the 
position of one piece relative to the other at the end of the motion is the 
same regardless of which piece has moved, whereas the absolute motion 
of a point on one piece as it moves is different from the absolute motion 
of a point on the other piece when it moves. 

1-16. Bearings. The word bearing is applied, in general, to the 
surfaces of contact between two pieces which have relative motion, 
one of which supports or partially supports the other. One of the 
pieces may be stationary, in which case the bearing may be called a 
stationary bearing; or both pieces may be moving. 

Bearings may be arranged, according to the relative motions they will 
allow, in three classes: 

1. For straight translation, the bearings must have plane or cylindri¬ 
cal surfaces, cylindrical being understood in its most general sense. If 
one piece is fixed the surfaces of the moving pieces are called slides; 
those of the fixed pieces, slides or guides. 

2. For rotation, or turning, the bearings must have surfaces of 
circular cylinders, cones, conoids, or flat disks. The surface of the solid 
or full piece is called a journal, neck, spindle, or pivot; that of the 
hollow or open piece, a bearing, gudgeon, pedestal, plumber-block, 
pillow-block, bush, or step. 

3. For translation and rotation combined (helical motion), they 
must have a helical or screw shape. Here, the full piece is called a 
screw and the open piece a nut. 

1-16. Collars and Keys. It is very often required that pulleys or 
wheels turn freely on their cylindrical shafts and at the same time 
have no motion along them. For this purpose, rings or collars (Fig. 
l-8a) are used; the collars D and E, held by set screws, prevent the 
motion of the pulley along the shaft but allow it free rotation. Some¬ 
times pulleys or couplings must be free to slide along their shafts, but at 
the same time must turn with them; they must then be changed 

to a sliding pair. This is often done by fitting to the shaft and pulley 
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or sliding piece a key C (Fig. 1-86), parallel to the axis of the shaft. 
The key may be made fast or integral to either piece, the other having a 
groove in which it can slide freely. The above arrangement is very 
common, and is called a feather and groove, or spline, or a key and 
keyway. 

Fig. 1-8 

c 1-17. Cranks and Levers. A crank may be defined in a general way 
as an arm rotating or oscillating about an axis. (See Fig. 1-9.) When 
two cranks on the same axis are rigidly connected to each other the 
name lever is often applied to the combination, particularly when the 
motion is oscillating over a relatively small angle. 

Fig. 1-9 Fig. 1-10 

The two arms of a lever may make any angle with each other from 
180° as in Fig. 1-10 down to 0° as in Fig. 1-11. When the angle 
between the two arms is less than 90° as in Figs. 1-11 and 1-12 it is 
often called a bell crank lever, and when the angle is more than 90° 
as in Figs. 1-10 and 1-13 it is often called a rocker. These terms, 
however, are used rather loosely and somewhat interchangeably. The 
two lever arms may be in the same plane as in Figs. 1-10 to 1-13, or 
they may be attached to the same shaft but lie in different planes as 

in Fig. 1-14. 
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1-18. Action of a Crank. A crank may be considered as a rigid piece 
connecting one member of a pair of cylindrical elements to one member 
of another pair. The axis of one pair is assumed to be stationary, and 
the axis of the other pair is constrained by the crank to move in a circu¬ 
lar path about the stationary axis. Referring to Fig. 1-15, let the 

piece g be a fixed bearing containing a cylindrical hole in which the 
shaft fi may turn; jfi is prevented from moving in the direction of its 
axis by collars not shown in the figure, g and fi therefore constitute a 
cylindrical pair of elements similar to that in Fig. 1-4. The axis of 
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this pair is A-A. fx is keyed or otherwise rigidly fastened to the crank/. 
At the other end of / is a second pair/2/ri with axis B-B. If any motion 
is imparted to / all points on it must remain at constant distances from 
A and therefore must move in circular paths about A. The axis B of 
the pair/2/ri is a part of / and therefore must move in a circle about A. 
The axis B is common to kx and /2, therefore kx must have motion of 
turning about A and it may also have turning about B; that is, the 
crank / constrains kx to turn about A but does not determine its turning 
about B. 

1-19. A Link may be defined as a rigid piece or a non-elastic sub¬ 
stance which serves to transmit force from one piece to another or to 
cause or control motion. 

For example, that part of a belt or chain running from the driven to 
the driving wheel, the connecting rod of an engine, and the fluid (if 
assumed to be incompressible) in the cylinder of a hydraulic press would 
Be links according to the above definition. In ordinary practice, how¬ 
ever, the name is applied to a rigid connector which may be fixed or in 
motion. 

1-20. The Four-Bar Linkage consists of two cranks, 2 and 4, 
Fig. 1-16, having their stationary pair-members gx and g2 attached to, 
or a part of, a stationary piece 1, and the moving pair-members kx and k2 
connected to each other by a rigid rod or bar 3 called the connecting 
rod, coupler, or floating link. kx is now constrained to move about A 
as explained in Art. 1-18 and k2 about D, and the rigid connection 3 
between ki and k2 controls the turning of each about its own axis (B and 
C respectively). Hence, if any motion is given to any part of this com¬ 
bination every other part must have a corresponding determinate 
motion, and the combination constitutes a mechanism. (See Art. 1-6.) 

Any of the four pairs might be inverted. (See Art. 1-14.) That is, 
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the shaft/i or hi might be held firmly in the bearing and the crank turn 
on it, or the pin /2 or h2 might be attached firmly to 3. The four pieces 

1,2,3, and 4 are called links. 
The essential part of a link, from a kinematic standpoint, is its center 

line, and it is convenient, in 
studying a linkage, to represent 
it by the center lines of its 
links, that is, the lines connect¬ 
ing the axes of the four pairs of 
elements. Figure 1-17 repre¬ 
sents the linkage shown in 
Fig. 1-16. 

Any mechanism may be re¬ 
solved into an elementary four- 

bar linkage, or a combination of such linkages, and its action analyzed 
in accordance with the laws which, in a later chapter, will be shown 
to apply to the motions of the members of a four-bar linkage. 

1-21. Four-Bar Linkage with a Sliding Member. In Fig. 1-18, the 
end of the connecting rod carries a block, pivoted to it at the axis Cf 
which slides back and forth in the circular slot as the crank AB revolves. 
The center of curvature of the slot is at D. The center of the crank 
pin C evidently has the same motion that it would have were it guided 
by a crank of length DC turning about D. The mechanism, therefore, 
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is really a four-bar linkage with the lines AB and DC as center lines of 
the cranks, AD as the line of centers, and BC as the center line of the 
connecting rod. 

Let it now be supposed that the slot is made of greater radius than 
that shown in the figure, for example, with its center at Z>i. Then the 
equivalent four-bar linkage would be ABCDi. 

Carrying the same idea still further, let the slot be made straight. 
Then the equivalent center D would be at a point an infinite distance 
away. The mechanism, however, would still be the equivalent of a 
four-bar linkage, as shown in Fig. 1-19, where AB is one crank, the line 
through C perpendicular to the slot is the other crank, BC the con¬ 
necting rod, and a line through A parallel to the crank through C is 

the line of centers. 

Figure 1-20 shows the special form in which this linkage commonly 
occurs, where the center line of the slot passes through the center of the 
shaft A. This is the mechanism formed by the crank shaft, crank, 
connecting rod, crosshead, and crosshead guides of the reciprocating 
steam engine, or the crank, connecting rod, piston, and cylinder of an 

automobile engine. 
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PROBLEMS 

1-1. Axes A and D are fixed. AB = 1§ in., BC = 3 in., DC = 2 in., AD = 3 in. 

Crank 2 is the driver turning counterclockwise. The proportions are such that, 

while 2 makes a complete revolution, 4 oscillates through a certain angle. Find 

graphically the two extreme positions of the center line DC of the crank 4. 

1-2. Axes A and D are fixed. AB = 1J in., DC = 2 in., AD — 3 in. BC is of 

such a length that when the driving crank 2 is 30° above AD the driven crank 4 

is 60° below AD as shown. Find the length of BC and the two extreme positions 
of the center line DC of crank 4. 

Solve graphically. 

1-3, Block 4 slides in the slot in the fixed piece 1. Axis A of crank 2 is fixed 

on 1. AB = 1£ in., BC = 4§ in. Draw the mechanism full size, assuming 

dimensions for 1 if desired or use center lines only. Draw in the two lines which 

represent the infinitely long links, and letter on the drawing the name of each of the 
four links. 
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Find graphically the two extreme positions of C, the axis of the pin by which the 

link 3 is attached to the block 4. Dimension the length of the stroke of C, that is, 

the distance between its two extreme positions. 

Prob. 1-4 

1-4. A is a fixed axis. 1 is a fixed guide for the sliding block 4. If the stroke 
(that is, the length of path) of C is 4 in., what is the length of AB? Find the length 

BC if the maximum value of the angle 4> is 30°. 



CHAPTER II 

MOTION 

2-1. Motion is change of position. Motion and rest are necessarily 
relative terms within the limits of our knowledge. We may conceive 
a body as fixed in space, but we cannot know that there is one so fixed. 
If two bodies, both moving in space, remain in the same position relative 
to each other, they are said to be at rest, one relatively to the other; 
if they do not, either may be said to be in motion relative to the other. 

Motion may thus be either relative, or it may be absolute, provided 
some point is assumed as fixed. Ordinarily the earth is assumed to be 
at rest and motions referred to it are considered as absolute. 

2-2. Path. A point moving in space describes a line called its path, 
which may be rectilinear or curvilinear. The motion of a body is 
determined by the paths of three of its points not on a straight line. 
If the motion is in a plane, two points suffice, and, if rectilinear, one 
point suffices, to determine the motion. 

2-3. Direction and Sense. If a point is moving along a straight 
path the direction of its motion is along the line which constitutes its 
path; motion toward one end of the line being assumed as having 
positive direction and indicated by a + sign, the motion toward the 
other end would be negative and indicated by a — sign. Often this is 
referred to as the sense of the motion. For example, if a point moves 
along a straight line CD from a point A toward a point B, the direction 
of the motion is that of the line CD while the sense of the motion is from 
A toward B, or simply, AB. If a point is moving along a curved 
path, the direction at any instant is along the tangent to the curve and 
may be indicated as positive or negative, or the sense given, as for 
rectilinear motion. 

2-4. Continuous Motion. When a point continues to move indefi¬ 
nitely in a given path in the same sense, its motion is said to be con¬ 
tinuous. In this case the path must return on itself, as a circle or other 
closed curve. A wheel turning on its bearings affords an example of 
this motion. 

2-5. Reciprocating Motion. When a point traverses the same path 
and reverses its motion at the ends of such path, the motion is said to 
be reciprocating. 

14 
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2-6. Oscillation is a term applied to reciprocating circular motion, 
as that of a pendulum. 

2-7. Intermittent Motion. When the motion of a point is inter¬ 

rupted by periods of rest, its motion is said to be intermittent 
2-8. Revolution and Rotation. A point is said to revolve about an 

axis when it describes a circle of which the center is in the axis and of 

which the plane is perpendicular to that axis. When all the points of a 
body thus move, the body is said to revolve about the axis. If this 

axis passes through the body, as in a wheel, the word rotation is used 
synonymously with revolution. The word turn is often used synony¬ 
mously with revolution and rotation. It frequently occurs that a body 
not only rotates about an axis passing through itself, but also moves in 
an orbit about another axis. 

2-9. An Axis of Rotation or Revolution is a line whose direction is 

not changed by the rotation; a fixed axis is one whose position, as well 
m its direction, remains unchanged. 

2-10. A Plane of Rotation or Revolution is a plane perpendicular to 
the axis of rotation or revolution. 

2-11. Direction of Rotation or Revolution is defined by giving the 
direction of the axis, and the sense is given by stating whether the 

turning is right handed (clockwise) or left handed (counterclockwise), 
when viewed from a specified side of the plane of motion. 

2-12. Coplanar Motion. A body, or a series of bodies, may be said 
to have coplanar motion when all their component particles are moving 
in the same plane or in parallel planes. 

2-13. Cycle of Motions. When a mechanism is set in motion and 
its parts go through a series of movements which are repeated over and 
over, the relations between and order of the different divisions of the 
series being the same for each repetition, one of these series is called a 
cycle of motions or kinematic cycle. For example, one revolution of 
the crank of a gasoline engine causes a series of. different positions of the 
piston, and this series of positions is repeated over and over for each 
revolution of the crank. 

2-14. Period of Motion is the time occupied in completing one cycle. 
2-15. Linear Speed is the time rate of motion of a point along its 

path, or the rate at which a point is approaching or receding from 

another point in its path. If the point to which the motion of the mov¬ 
ing point is referred is fixed, the speed is the absolute speed of the 
point. If the reference point is itself in motion the speed of the point 

in question is relative. Linear speed is expressed in linear units per 
unit of time. 
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2-16. Angular Speed is the time rate of turning of a body about an 
axis, or the rate at which a line on a revolving body is changing direc¬ 
tion, and is expressed in angular units per unit of time. 

If a body is revolving about an axis, any point in the body has only 
linear speed, but a line, real or imaginary, joining the point to the axis 
of revolution has angular speed; also a line joining any two points on 
the body has angular speed. 

2-17. Uniform and Variable Speed. Speed is uniform when equal 
spaces are passed over in equal times, however small the intervals into 
which the time is divided. The speed in this case is the space passed 
over in a unit of time, and if s represents the space passed over in the 
time t) the speed v will be 

Speed is variable when unequal spaces are passed over in equal inter¬ 
vals of time. The speed, when variable, is the limit of the ratio of 
the space passed over in a small interval of time, to the time, when these 
intervals of time become infinitely small. If s represents the space 
passed over in the time t, then 

v = Limit of — as At approaches zero 
At 

or 

(2) 

2-18. Velocity is a word often used synonymously with speed. This 
is incorrect, since velocity includes direction and sense as well as speed. 
The linear velocity of a point is not fully defined unless the direction 
and sense in which it is moving and the rate at which it is moving are 
known. The angular velocity of a line would be defined by stating its 
angular speed, the direction of the perpendicular to the plane in which 
the line is turning, and the sense of the motion. 

2-19. Linear Acceleration is the time rate of change of linear velocity. 
Since velocity involves direction as well as rate of motion, linear acceler¬ 
ation may involve a change in speed or direction, or both. Any change 
in the speed takes place in a direction tangent to the path of the point 
and is called tangential acceleration; a change in direction takes place 
normal to the path and is called normal acceleration. Acceleration 
may be either positive or negative. If the speed is increasing the 
acceleration is positive; if the ^peed is decreasing the acceleration is 
negative and is called retardation or deceleration. If the speed changes 
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by the same amount during all equal time intervals the acceleration is 
uniform, but if the speed changes by different amounts during equal 
intervals of time the acceleration is variable. If Av represents the 
change in speed in the time At, then 

Av 

If the acceleration a is uniform 

v 
a — - 

t 

When the acceleration is variable 

or 

a = Limit of 
Av 

At 
as At approaches zero 

a = 
dv 

dt 

(3) 

(4) 

2-20. Angular Acceleration is the time rate of change of angular 
velocity. As in linear acceleration, a change in either speed or direction 
of rotation, or both, may be involved. For example, if a line is turning 
in a plane with a varying angular speed it has angular acceleration 
which may be positive or negative; or, if the direction of the plane of 
rotation is changing, the line also has angular acceleration. Unless 
otherwise stated, angular acceleration in this book will be understood to 
refer to change in angular speed. Angular acceleration is expressed in 
angular units change of speed per unit time (such as radians, degrees, or 
revolutions per minute each minute). Equations 3 and 4 will apply to 
angular acceleration if for a and v the corresponding angular units 
a and w are substituted. 

2-21. Translation. A body is said to have motion of translation 
when all its component particles have the same velocity, as regards 
both speed and direction; that is, all points on the body are, for the 
instant at least, moving in the same direction with equal speeds. If 
the particles all move in straight lines, the body has rectilinear trans¬ 
lation and, if they move in curved paths, the body has curvilinear 

translation. 
2-22. Turning Bodies. All motion consists of translation, turning 

about an axis, or a combination of the two. For this reason it is de¬ 
sirable, before proceeding further, to consider in greater detail some of 
the laws applying to turning bodies. It is customary to refer to motion 
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of turning as revolving or rotating. These terms are used more or less 
interchangeably although sometimes a distinction is made. (See 
Art. 2-8.) 

2-23. Angular Speed. Given a circular cylinder or wheel supported 
on a shaft which in turn is supported in fixed bearings. The wheel 
may be made fast to the shaft and the two turn as a unit as in Fig. 2-1, 
or the shaft may be held stationary and the wheel turn on it as in Fig. 
2-2. The speed at which the wheel turns is the rate at which any line 
on it (radial or otherwise) changes direction. If the wheel makes N 
complete turns in 1 minute its angular speed is N revolution per 
minute (written N rpm). 

In many computations it is necessary to use as a unit of angular 
motion the radian, which is the angle subtended by the arc of a circle 
equal in length to its radius. Since the radius is contained in the 
circumference 2tt times there must be 2w radians in 360°, or 1 radian 
is equal to 57.296°. 

Fence 

1 revolution = 2tt radians 

If N represents the angular speed in revolutions per unit of time and co 
the angular speed in radians per same unit of time then 

co = 2tN (5) 

Referring to Fig. 2-3, let the body M be rigidly attached to an arm 
which is turning around the axis C, the arm and M revolving together. 
Then the lines CA and CB which join any two points A and B to the 
axis have angular speed about C, and since the entire body is rigid and 
the angle ACB is constant, CA and CB each have the same angular 
speed as the arm. Moreover, since, as the body revolves, the line AB 
constantly changes direction, it may also be said to have angular speed, 
which, in this case, is the same as that of the lines CA and CB. 
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If M is not rigidly attached to the arm but is rotating relative to the 
arm on the axis 8 which is carried by the arm, as in Fig. 2-4, the lines 
CA, CBy and AB will no longer necessarily have the same angular 
speed. The angles turned through in a given time by these lines 
depend not only on the speed at which the arm is turning about C 
but also upon the speed at which M is turning about the axis S relative 
to the arm. 

2-24. Linear Speed of a Point on a Revolving Body. Consider a 
particle A on the circumference of the wheel in Fig. 2-1. For every 
revolution of the wheel, A moves over the circumference of a circle of 
radius R, so that for N turns A moves a distance of 2ttRN linear units. 
Let Va = linear speed of A. Then 

V a = 2wRN (6) 

0) 

From equation 5, w = 2wN, or N = — . By substituting this value of 
ATT 

N in equation 6, we get 

Va = uR (7) 

Consider another point B at distance h\ from the axis. Let Vi repre¬ 

sent its speed. Then 

or 

Vb = 

Vb = Ri 
Va R (8) 

The linear speed of a point on the circumference of a revolving wheel is 
often referred to as the periphery speed or surface speed. 

Take another case, that of two wheels fast to the same shaft as shown 
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in Fig. 2-5. The weight P is supposed to be hung from a very thin steel 
band which is wound on the outside of wheel A and the weight W from 

another steel band wound on the outside of 
wheel B. Suppose that the shaft starts to 
turn in the direction shown by the arrow. 
Then the band which supports P will be paid 
out, that is, will unwind, at a speed equal to 
the periphery speed of A, and the weight P 
will descend at that speed. At the same 
time the other band will be winding onto 
the wheel B and the weight W will be rising 
at a speed equal to the periphery speed of B. 

If N represents the number of turns per unit of time of the shaft, R the 
radius of A, and Ri the radius of B, then the speed of P = 2irRN 
and the speed of W = 2ttRiN, or 

Speed P R . 

Speed W = R[ U 

which is the same equation found when both points were on the same 
wheel. 

2-26. Motion Classified. Since the motion of a body is determined 
by the motion of not more than three of its component particles, not 
lying in a straight line, it is essential before beginning the analysis of the 
motion of rigid bodies that the laws governing the motion of a particle 
be fully understood. For this purpose it is convenient to classify mo¬ 
tion as applied to a particle or point according to the kind of accelera¬ 
tion which the moving particle has: 

1. Acceleration zero. 
2. Acceleration constant. 

3. Acceleration variable. 

(a) According to some simple law 
which may be expressed in 
terms of s, v, or t. 

(b) In a manner which can be ex¬ 
pressed only by a graph or 
similar means. 

A brief consideration will now be given to the methods of analyzing 
each of these cases for a particle having rectilinear motion. Later on it 
will appear that the same general principles, with proper modifications, 
will apply to a particle moving in a curved path and to the angular 
motion of a line. 
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2-26. Uniform Motion. When the acceleration is zero the velocity 
is constant and the moving particle continues to move in a straight 
line over equal distances in equal intervals of time. The velocity (or 
speed) therefore is equal to the length of the path divided by the time 
required to traverse the path, or 

(10) 

where v is expressed in linear units per unit of time. 
2-27. Uniformly Varying Motion. In this case the acceleration is 

constant; that is, the speed changes by equal amounts in equal inter¬ 
vals of time, like that of a body falling under the action of gravity. 

Let a represent the acceleration, that is, the number of speed units 
added per unit of time (a minus sign must precede a if the speed is de¬ 
creasing). Then during a time t the change in speed is at, and if at 
the beginning of that time interval the speed is v0 then at the end of 
time t the speed will be v0 + at. Therefore 

v — Vo + at (11) 

From this it follows that the average speed is 

Vo + fo+ at 1 
--- or v0 + - at 

and since the distance moved is the average speed multiplied by the 
time 

s = [^o 4" \at\t = Vot + \at2 (12) 

From equations 11 and 12, 

V = V,02 + 2 as (13) 

If the particle starts from rest, v0 = 0 and the above equations reduce to 

v — at (14) 

s = (15) 

v = (16) 

It must be borne in mind that the above equations apply only when the 
acceleration is constant. 

By substituting in equation 15 successive values of t, as t = 1, 
t = 2, and so on, it will be evident that when a particle starts from rest 
and moves with constant acceleration the distances moved in successive 
equal intervals of time are in the ratio of the odd numbers 1, 3, 5, 7, 9, 
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and so on. Such motion may be applied in machine parts where a piece 
is required to traverse a given path in a definite period of time, starting 
from rest at the beginning and coming to rest again at the end of the 
path. In this case the piece would increase its speed for each interval 

-► 

_J 1 ■* 3 ► «-5-> --5-* 4—3 —* / t n 
/ 1 A '/ J f, A lj A U A if > U 

Fir,. 2-6 

of time until it had traveled one-half its path (in one-half the total 
time) and decrease its speed at the same rate during the remaining 
time. For example, if the particle represented by the point A, Fig. 
2-6, is to move along the rectilinear path AA$ in 6 sec, starting from 
rest at A and coming to rest at A6, the distances moved over in each of 
the 6 sec would be as shown. Therefore 

4^4i = A1A2 = t$AA§ A^Az = y$AA$ 

2-28. Variable Acceleration. The acceleration of a moving particle 
may vary as some function of distance moved, velocity, or time. When 
this condition exists, definite equations may be written expressing the 
relations between a, s, v, and t. 

Three cases will be considered: 

1. a = a function of t. 
2. a = a function of v. 
3. a = a function of a. 

Since the acceleration is the time rate of change of velocity, if this 
At) 

rate of change in a time At is constant then a = —, and as At is de- 
At 

creased indefinitely this approaches as a limit — 

instant. 
Therefore at the end of time t, 

Hence a = — at any 

v — (17) 

Similarly 

ds rl 
v = — or s = I v at 

at Jh 
(18) 
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Again, from v 
ds 

It9 

v 
:.t = / ds 

v 

From the two equations v 
ds dv 
— and a = — we have 
dt dt 

and 

v 

a 
-r or v dv = ads 
dv 

whence 

(19) 

(20) 

(21) 

By the use of these equations problems involving any of the above 
cases may be solved. In some instances, especially when v0 has some 
value other than zero, the resulting equations may be awkward to solve. 
It might be advisable to resort to a semigraphical solution, to be 
explained later. 

The same formulas will apply to angular motion if acceleration, dis¬ 
tance moved, and velocity are expressed in radians instead of linear 
units. 

2-29. Motion Formulas. 

Rectilinear Angular 

t = time t = time 

s = linear displacement 6 = angular displacement 

V = linear velocity CO = angular velocity 

Vq = linear velocity when t = 0 00 0 = angular velocity when t = 0 

a = linear acceleration a = angular acceleration 

V 
s 

~ 1 
(v constant) CO 

e 

~ ~t 
(co constant) 

ds 
(v variable) 

dd 
V 

“ ~dt 
CO 

dt 
(co variable) 

dv d2s 
(a variable) 

dco d26 
a 

~ ~dt~ dt2 
a 

~ dt dt2 
(a variable) 

V = Vo + at (a constant) CO — COO -h C(t (a constant) 

s - Vqt 4- \at2 (a constant) e = coot -j- \od2 (a constant) 

V = fa dt (a variable) CO II 0a variable) 
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v = Vv02 + 2as 

vdv = ads 

(o variable) 

(a constant) 

v ads (a variable) 

co — Vo>o2 -f- 

(a variable) 

(a constant) 

(a variable) 

2-30. Semigraphical Methods. In many cases no direct relation 
exists between acceleration, velocity, distance moved, and time which 
can conveniently be expressed in the form of equations. The data may 
be obtained by observations or computations at certain frequent inter¬ 
vals during the cycle of motion and the relations worked out on graphs. 

The process of working problems of this type consists in approxi¬ 
mating, by means of graphs, the necessary differentiations or integra¬ 
tions instead of solving for them directly from equations 17 to 22. 
Small finite increments As, Av, and At are used instead of the infinitely 
small ds, dv, and dt. Then where differentiation is required the ratio of 

~ or ^7 is found from measurements on the drawing. Similarly, where, 
dt dt 
in the use of the equations, integration is involved, the approximate 
equivalent is obtained by summation of the finite increments found 

from the drawing ^this is expressed by £ instead of the integral 

sign For instance £ Av means the summation of the successive 

values of Av. 
The following examples will illustrate the methods; cases not 

covered by these examples may be worked out by similar processes. 

Example 1. Graphical Differentiation. Let s represent the distance moved from 

some initial or reference position by a particle having rectilinear motion. The 

values of s for a series of successive values of t are found by observation to be as 

shown by the following table. Required: to find the velocity (v) and the accelera¬ 

tion (a) for each of these values of t. 

t seconds s inches t seconds s inches 

0.0 0.0 2.5 8.0 

0.5 1.0 3.0 10.0 

1.0 2.5 3.5 11.5 

1.5 4.0 4.0 12.5 

2.0 6.0 13.0 
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Solution. See Fig. 2-7. Choose some unit of length to represent one unit of 

time, and a unit of length to represent one unit of displacement. With these scales 

plot a curve with values of t for abscissas and the corresponding values of s as ordi¬ 

nates. This will be called the space-time curve. 

Fig. 2-7 

At each of the time stations draw a tangent to the space-time curve. With this 

tangent as the hypotenuse construct a right triangle whose base is parallel to the 

time axis and whose length represents one time unit or some convenient fraction 

or multiple of one unit. Then the ratio of the vertical leg to the base of this tri- 

As 
angle represents the value of — as At is made to approach zero. In other words, As 

At 

represents what would be the increment of displacement in time A* if the instantane¬ 

ous rate of increase were to remain constant during the time At. Hence 

— = — = v at that instant 
At dt 

In the figure the construction is shown at the point on the curve corresponding to 
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3.5 sec. In dividing As by At, care must be taken to express As in displacement 

units as indicated by the scale of the graph and At in time units. For example, 

if the vertical leg of the triangle should measure £ in. and the scale of ordinates 

is such that 1 in. represents 4 in. displacement then As = f X 4 or 3 in. The values 

As 
of v * — for each of the given values of t having been obtained, they may be plotted 

At 

as ordinates against the same time units, either at the same scale as in the previous 

graph or at any other scale if more convenient. A similar process of “differentiat¬ 

ing ” the velocity-time curve may then be followed to obtain the acceleration. The 

only approximation in the above method is that involved in the accuracy of the 

drafting. The velocity-time and acceleration-time curves are shown in the figure. 

Example 2. Graphical Integration. Given values of a for a series of known 

values of t as shown in the following table. Assume the particle to start from rest 

(vo = 0) and move in a straight line. Required: to find v and s. 

t seconds 
a inches per second 

per second 
t seconds 

a inches per second 

per second 

mam 2.5 

0.5 2.50 3.0 -0.25 

1.0 1.50 3.5 -0.63 

1.5 0.75 4.0 

2.0 0.25 4.5 -3.50 

Solution. See Fig. 2-8. Plot a curve with t values for abscissas and correspond¬ 

ing a values as ordinates, choosing convenient scales. Obtain the average value of 

a during each of the intervals by constructing a rectangle whose area is equal as 

nearly as may be estimated to the area included under that portion of the curve. 

This is shown by the dotted line across the 0 to 0.5 interval. Now, since average 

Av 
o = ■— , then Av = average a • At; that is, the amount of velocity added during 

At 

each time interval is equal to the average acceleration multiplied by the length of 

the interval. Record these values as shown in columns 2 and 3 of the table accom¬ 

panying the plot in Fig. 2-8 and obtain their summation as shown in the fourth 

column. Thus the values of v at the end of each interval are found. Plot a v-t 

curve from these values, and get the values of s in a similar way, as shown in the 

fifth, sixth, and seventh columns. 
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Example 3. Given the values of a for a series of known values of $ as shown 

the following table. Required: to find » and t. Let^o = 5ips. 

s inches 
a inches per second 

per second 

0 6 

2 8 

4 9 

6 7 

8 4 

10 2.5 

A
c
c
e
le

ra
ti

o
n
 

in
 
in

c
h
e
s 

p
e
r 

s
e
c
.p

e
r 

se
c
. 



28 MOTION 

Solution, See Fig. 2-9. The process is somewhat similar to that used in Exam¬ 
ple 2, with the modifications made necessary by the fact that the data show the 

relation between a and s instead of a and t. The figure shows the curves, and the 

table which accompanies it records the steps involved in the solution. 

i 

! 
5 

Space 
Interval 

Average 
a 

a-As ZaAs 
yVq+ZZoAs 
-v at end 
of interval 

HP m 2At*t 
at end ot 
interval 

0-2 7,05 A4,10 7,29 6/5 0325 0.325 

2-4 8,55 17,10 837 0.239 

4-6 EBB3 kzesh 1 
6-8 E5H EsSB MEM■ TtXfilU 
3-/0 2/6 ESI 6478 1243 12,15 a/64 1,097 | 

Fig. 2-9 

2-31. Harmonic Motion. A type of motion in which the accelera¬ 
tion varies directly as the displacement is known as simple harmonic 
motion. The most common example is reciprocation over a straight 
path with the sense of the acceleration always toward the center of the 
path and its magnitude directly proportional to the distance of the 
moving particle from that center. The nature of the motion may be 
visualized by reference to Fig. 2-10. Suppose a particle E to be moving 
with uniform speed around the circumference of a semicircle of radius 
R, center C, and diameter AB, Another particle P moves along the 
diameter AB at such a variable speed that it is at all times at the foot 
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of a perpendicular dropped from E to AB. When E is at A, P is at A 
also. If E moves with a linear speed Ve the radial line CE will turn at 

Ve 
an angular speed equal to . Call this constant angular speed c*>. 

R 
Then o> = w -f- time required for the motion from A to B. Then 

Ve = coR 

Now the displacement s = AP = AC — PC = R — R cos 0. There¬ 
fore 

s = R( 1 — cos 0) (23) 

Putting 6 = ut, we get s = R (1 — cos cct). Let Vp = velocity of P. 
Then 

ds 
VP = “ = coP sin = wP sin 0 (24) 

at 

Siijce coR = F«, equation 24 may be written Vp — Ve sin 0. Again, 

, dFp d „ . 
Ap — —— = — cjP sin oj£ 

Therefore 

^ CP But cos 0 = — . 
P 

Ap = co2P cos cct = w2P cos 0 

Therefore 

= oACP 

(25) 

(26) 

From this it appears that the acceleration of the particle P is propor¬ 
tional to its distance from the center of its path. When P is approach¬ 

ing C its velocity is increasing, and when receding from C its velocity 
is decreasing; that is, P has its maximum velocity when it coincides 
with C and zero velocity when at A or B. It has its maximum acceler¬ 
ation when at A or B and zero acceleration when at C. 

Figure 2-11 shows the a-s graph corresponding to Fig. 2-10 with 

Ve = R; that is, c*> = 1 radian per unit time. 
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2-32. Variable and Constant Speed. Instead of causing a moving 
piece or particle to travel its entire path with variable motion, it is 
sometimes desirable to have it travel the major portion of its path with 
uniform motion, accelerating for a short interval at the beginning, until 
it has acquired sufficient speed to travel the uniform part in the time 
allowed, and retarding for a similar interval after the uniform motion 
is completed, so that it will have lost all speed when it reaches the end 
of its path. The acceleration and retardation may be uniform or har¬ 
monic, or of any other character. 

Fig. 2-12 

In Fig. 2-12 let it be assumed that a body, represented by a point, 
is to start from rest at A and move to Ai in time 77, accelerating uni¬ 
formly over the distance M at the beginning, moving with constant 
speed over the distance D, and retarding uniformly over distance M at 
the end, coming to rest at A\. Let t be the time required to move 
the distance M with constant acceleration a, and v the speed at the 
end of time t. Then 

but 

also 

therefore 

M = iat2 or a = 
2 M 

t2 

v — at 
2M 

t 

D 
v =- 

T — 2t 

2M _ D 

t ~ T — 2t 

whence 
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In Fig. 2-13 let the conditions be the same as in Fig. 2-12 except that 
the acceleration and retardation are in accordance with the law of 
simple harmonic motion. Draw a quadrant of a circle with radius M 

H—-D-* 

. _ i r-i 
K 

Fig. 2-13 

as shown. Let co = the angular speed at which the radius of this circle 
moves as the point A accelerates to K; v = velocity when the point 
reaches K. Then 

whence 

CO = 

7T 

21 

7i^ D v = «M-— also » = 

ttM D 

W = T - 2t 

ttMT 

2ttM + 2D 
(28) 

PROBLEMS 

II-l. A particle moves in a straight line in such a way that s — 2t feet where t 

is in seconds. Is its acceleration zero, or has it constant or variable acceleration? 

Find v when s = 0. 
II-2. If a particle moves along a straight path in such a way that 5 = 212 feet, 

where t is in seconds, what kind of acceleration has it? Find the acceleration 

whenJ = 5 sec. Find v when t = 10 sec. 

H-3. Same as Prob. II-2 except that s = (213 + t2) feet. 

II-4. If the acceleration a of a particle is 3 in./sec2 and its initial velocity v0 is 

zero, find the time required for this particle to move 27 in. Find v at the end of this 

time. 
II-6. Let a = 1200 ft/min2 and i>o = 100 ips. Find s in inches and v in inches 

per second at the end of 10 sec. 
n-6. A particle starts from rest and accelerates at constant rate for 3 min, at 

the end of which time it has acquired enough velocity to carry it at uniform velocity 

a distance of 10 ft in 2 min. Find a during first 3 min and v at the end of that time. 

H-7. A particle is moving in a straight line, a = 60 ft/min2 constant. When 

passing another fixed particle B it has a velocity of 40 fpm. What will be its veloc¬ 

ity when it has moved 2000 ft from B? 
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H-8. Let a = (v + 3) feet per minute per minute. Find s and t when v * 12 

fpm. Vo = 0. 

H-9. Let a = - feet per second per second; Vo = 5 fps. Find v and $ when 

8 * 25 ft. 

11-10. Let a = 4s feet per second per second; v0 = 5 fps. Find v and s at the 

end of 4 sec. 

n-11. Let a « (2s + 3) feet per second per second; vq = 0. Find a, t;, and f 

when s = 7 ft. 

11-12. Referring to Fig. 2-10, let CE = 4 in. Find the speed and acceleration 

of P when 6 = 75° if CE has an angular speed of 247r radians per second. 

11-13. A particle moves with harmonic motion, over a path 12 in. long, in 5 sec. 

Find a, v, and t when it has moved 3 in. from one end. 

n-14. A particle reciprocates with harmonic motion over a path 6 in. long. 

a = —16s inches per second per second, where s is the displacement from the center 

of its path. Find a and v when the particle is 1J in. from left end of path and moving 

to right. Indicate sense of each. Find time t required for this lf-in. motion and 

for the entire 6-in. motion. 

11-15. Let a — t2 feet per second per second; v0 = 5 fps. Find t and v when 

s - 27 ft. 

H-16. Let a = — t feet per second per second; v0 = 800 fps. How long a 

time will be required for the particle to come to rest, and how far will it travel in 

that time? 

H-17. A particle moves in a straight line in such a way that its displacement s, 

in inches, from a given reference point at successive 1-sec intervals from 0 to 6, both 

inclusive, is 4.1, 4.5, 4.2, 3.0, 1.45, 0.40, 0 respectively. Plot a displacement-time 

curve. Scales: Time 1 in. = 1 sec. Displacement 1 in. = 1 in. From this curve 

find the velocity for each value of t. 

n-18. A particle moves in a straight line. Its velocity at successive seconds 

from 0 to 6 inclusive is 0, 0.814, 1.571, 2.220, 2.712, 3.03,7r, all in inches per second. 

Plot a velocity-time curve. Scales: Time 1 in. = 1 sec. Velocity 2 in. = 1 ips. 

From this curve determine the displacement at the end of each second. 

IT-19. A particle moves in a straight line. By means of suitable instruments 

the acceleration is measured at a given instant and at the end of each 2-ft interval of 

displacement until it has moved 12 ft. The values of a in feet per minute per 

minute are: 6, 4, 3i, 3, li, 0, — 1. Plot an acceleration-displacement curve. 

Scales: Displacement 1 in. = 2 ft. Acceleration 1 in. = 1 ft/min2. From this 

curve find v at the end of each 2-ft interval. Assume that v0 was 3 fpm when the 

first measurement of a was made. 

n-20. A block is to start from rest and slide along a rectilinear path 12 in. long 

in 8 sec. It is to accelerate uniformly over half its path during the first 4 sec, and 

retard at the same rate during the remaining 4 sec. Determine the acceleration in 

inches per second per second and the speed at the end of the fourth second. Draw 

half size the path of one point on the block, and show and dimension the position of 

the point at the end of each second. 

H-21. A point is to start from rest, accelerate uniformly for 1 \ in., then move at 

a constant speed for 15 in., and retard uniformly for li in., coming to rest at the end. 

The time allowed for the entire motion is 18 sec. Find the time required for 

acceleration, and the speed when moving at constant speed. 
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11-22. Same as Prob. 11-21 except that the acceleration and retardation are to 

be according to the laws of simple harmonic motion. 

11-23. The flywheel of a steam engine is 9 ft in diameter and rotates at J12 

rpm. Find the angular speed in radians per second; the linear speed in feet per 

minute of a point on the rim; and the linear speed in feet per minute of a point 

located on the spoke midway between the center and rim of the wheel. 

11-24. A 2J-ft diameter flywheel of a gas engine has a pulley 10 in. in diameter 

bolted to it (both turning together). The flywheel turns at a speed of 150 rpm. 

Find the angular speed of the pulley in revolutions per minute and radians per 

second; the angular speed of the flywheel in radians per second; the linear speed in 

feet per minute of a point on the surface of the flywheel; and the linear speed in 

feet per minute of a belt running on the pulley, assuming no slip between the belt and 

pulley surface. 

n-25. The economical speed for leather belting is around 4500 fpm. A pulley 

of what diameter in inches should be used on a motor running at 1760 rpm to give 

the required belt speed, if there is no slip between the belt and pulley surface? 

11-26. The power of an engine running at 125 rpm is turned off and the engine 

comes to rest at the end of 2 min and 40 sec. Find the average speed in radians 

par second of the engine pulley in coming to rest; the total angular distance traveled 

in revolutions, radians, and degrees in coming to rest; and the distance in feet 

traveled by a belt in coming to rest if the pulley diameter is 3 ft. Assume that there 

is no slip between the belt and pulley surface and that the deceleration is uniform. 



CHAPTER III 

VECTORS 

3-1. Scalar and Vector Quantities. A scalar quantity is one which 
has magnitude only, as 1 ft, 2 lb, and so on. A vector quantity is one 
which has magnitude, direction, and sense, such as force, velocity, 
acceleration. 

3-2. Vectors. A vector is a line which represents a vector quantity. 
The length of the line, drawn at any convenient scale, shows the magni¬ 
tude; the direction of the line is parallel to the direction in which the 
quantity acts; and an arrowhead or some other suitable convention 
indicates the sense of the quantity. (See Fig. 3-1.) The initial end of 
the line is the origin or tail, and the other end is the terminus or head. 
The sense of the quantity is from the origin to the terminus, and often 
an arrowhead is placed at the terminus. 

Fig. 3-1 

The principal use of vectors is for the solution of problems involving 
vector quantities. Many such problems are difficult to solve by com¬ 
putation but are readily solved by geometric constructions employing 
vectors. 

The principles and methods discussed in this chapter apply to vectors 
in general without regard to the nature of the quantities which the vec¬ 
tors represent. In later chapters these principles are applied to specific 
quantities such as velocity and acceleration. 

3-3. Space Diagram. In Fig. 3-2 the irregular line represents a por¬ 
tion of a rigid body, and the points A, B, and C indicate the position of 
three particles or points in or on the body. Such a diagram, showing 
the relative position of certain points, lines, and so on, on a body or a 

34 
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group of bodies, is called a space diagram. Usually it must be drawn 
at a reduced scale, but all dimensions must be represented at the same 
scale to show parts in proper proportion. 

3-4. Position of Vectors. A vector may be drawn anywhere, without 
regard to the position of the point to which it applies. If several points 
are under consideration, usually their vectors are drawn either on the 
space diagram or on a separate figure from a common origin. In 
Fig. 3-3 the vectors Aa% Bb, and Cc, representing the velocities of 
particles at A, B, and (7, respectively, are drawn on the space diagram 
using points A, B, and C as origins. In Fig. 3-4 the equivalent vectors 
are drawn from a common origin Q, and the point to which a vector 
applies is shown by a lower-case letter at the terminus of the vector. 

3-6. Vector Addition. The sum of two vector quantities is a quan¬ 
tity whose effect is the same as the combined effect of the two original 
quantities. Consequently, the sum of two vectors is a vector repre¬ 
senting the sum of the two quantities shown by the vectors themselves. 
Similarly, a vector may be drawn representing the sum of any number 
of vector quantities. The sum of the quantities is called their resultant, 
and its vector the resultant vector^ The quantities added together to 
obtain the resultant are its components, and the corresponding vectors 
the component vectors. 

The following general statements will be found to hold true for 
vectors lying in the same plane. 

The sum of two vectors is the diagonal of a parallelogram of which the two 
component vectors drawn from a common origin form two of the sides. - 

The sum of two vectors is the closing side of a triangle whose other two 
sides are formed by using the terminus of one of the component vectors as the 

origin for the second. 
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The sum of any number of vectors is the closing side of a polygon of which 

the component vectors form the sides. 

Example 1. Refer to Fig. 3-5; let particle A be given two simultaneous 
impulses, one of which, if acting alone, would impart a velocity represented by 
vector Aa,i and the other a velocity Aa2. Then the actual velocity or resultant Aa 
due to the combined impulses is obtained by drawing the parallelogram AdiOdi. 

The resultant may be obtained as shown in Fig. 3-6 by drawing from A the vector 
Aai and from di the other vector aia equal and parallel to A02. The closing side 
Aa is the resultant whose sense is from A toward a as shown. This process is 
expressed by the equation 

Aai 4-> Adi — Aa 

Example 2. In Fig. 3-7, Aai, Aa2, Aa3, and,4a4 are component vectors all apply¬ 
ing to particle A. They may represent forces or velocities or any other vector quan¬ 
tities, but all must represent the same kind of vector quantities and all must be 
drawn to the same scale. Required: to find their vector sum. 

In Fig. 3-8 draw any one of the given vectors from a point Q. In the figure Qa 1 
is drawn first equal and parallel to Aai. Then use a\ as an origin and draw aid2 
equal and parallel to Adi. Continue the process, making a*az equal and parallel to 
Adi and 0*04 equal and parallel to Aa4; then a line Qa4 drawn from Q toward o4 is the 
sum of the other vectors, its sense being from Q toward a4. This may be expressed 
by the equation 

Adi “h’* Adi +* Adi “f-* Adi 33 Qfy 
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The order in which the vectors are drawn is immaterial. In vector 
addition remember to place the vectors tail to head and that the sense 
of the resultant will be from the tail of the first vector toward the head 
of the last vector. The vectors in Fig. 3-7 might be added by combin¬ 
ing two of the vectors in a parallelogram, then combining the diagonal 
of that parallelogram with a third vector, and so on. The method of 
Fig. 3-8 is simpler and involves less chance for error or inaccuracy. 
Figures 3-6 and 3-8 are called vector polygons. 

In adding parallel vectors, the vector sum is of the same magnitude as 
the arithmetical sum if the senses are alike, and as the arithmetical 
difference if the senses are opposite. 

If it is desired to compute the length of the resultant vector and the 
angle which it makes with some known reference fine it would be neces¬ 
sary to compute by trigonometry the third side of the triangle Qaia2, 

that is, the resultant of Aai and Aa2; then the third side Qa3 of the tri¬ 
angle Qa2a3f and so on. 

3-6. Subtraction by Vectors. To subtract a vector quantity 
from the vector quantity Aa is to find the component which, when 
added (vectorially) to Aah will give Aa as a resultant. Hence to sub¬ 
tract Aai from Aa add to Aa a vector equal and parallel to Aai but 
with the opposite sense. This in effect is arranging the vectors to be 
subtracted head to head and obtaining the closing side of a triangle. 
The sense of the resulting vector is toward the vector quantity which is 
subtracted from the other vector quantity. 

Fig. 3-9 

Example 3. Refer to Fig. 3-9; let it be required to subtract vector Aai from 

Aa. From any point Q draw Qa2 equal, parallel, and with the same sense as Aa; 

from Oi draw 0202 equal and parallel to Aai but with the opposite sense. Then 

Qa8 is the desired vector difference and the sense is from Q toward a3. This may be 

written 

Aa —> Aai = Qas 

The procedure for subtracting vector A a from Aai is exactly the same but the sense 

of the resulting vector Qa4 is from a3 toward Q. 
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In subtracting parallel vectors the vector difference is of the same 
magnitude as the arithmetical difference if the senses are alike and of 
the same magnitude as the arithmetical sum if the senses are opposite. 

3-7. Resolution and Composition of Vectors. A vector quantity 
may be resolved into two components parallel to lines making any 

desired angle with each other. In any case 
the resultant or original vector will be the 
diagonal of a parallelogram obtained with 
the components forming two of the sides. 
The same result is obtained by making the 
components two sides of a triangle and the 
resultant or original vector the closing side 
as used in vector addition. The process of 
obtaining the resultant of any number of 
vectors is called vector composition, and the 
reversed process of breaking up a vector 
into components is called vector resolution. 

In Fig. 3-10 the vector Aa is resolved into 
components Aai and Aa2. This same vector 
may be broken up into any number of sets 

of components. Another set, Aa3 and Aa4, is shown. Note that in 
each case Aa is the resultant of each set of components. 

Example 4. In Fig. 3-11 the vector Aa is given. Find the components of Aa 
parallel to Qb and Qc. 

Draw Qai equal and parallel to Aa. Complete the parallelogram Qa^aia*. Then 

Qa2 and Qa& are the required components. The same result is obtained by drawing 

Fig. 3-10 

a triangle as follows: Draw Qa1 equal and parallel to Aa. From Oi draw aia8 

parallel to Qb, obtaining a%. Then Qa$ is one required component and a vector 
Qat from Q, but parallel and equal to a\a%} is the other required vector. 

Example 5. In Fig. 3-12 the vector Aa is given. Find the components of Aa 
parallel and perpendicular to Qb. 
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From Q lay off Qcii equal and parallel to Aa. From a\ draw (k(h perpendicular to 

Qb. Then Qa% is the component parallel to Qb, and Qah equal and parallel to aiOt, 
is the component perpendicular to Qb. Note that this is in effect drawing a paral¬ 

lelogram. Often the line aid? representing the component Qa3 is used without 
transferring it to Qa^. 

3-8. Vector Solutions. The use of vectors offers a quick solution 
to many problems. In connection with Fig. 3-13, vector resolution 
arid composition may be expressed in equation form 

Aai +> aid = Aa 

Each vector may be considered as having two quantities: (1) magni¬ 
tude represented by the length of the line, and (2) direction-sense repre¬ 
sented by the angularity of the 
line and an arrow showing the 
sense. A vector equation can be 
solved graphically if it contains 
two unknowns. These two un¬ 
knowns may be: (1) the magni- A 

tude and the direction-sense of 
one vector, (2) the magnitude of 
one vector and the direction-sense of another vector, (3) the magnitude 
of two vectors, or (4) the direction-sense of two vectors. 

Example 6. In Fig. 3-13 the vectors Aai and axa are known in magnitude and 

direction-sense. Required: to find the resultant which is not known in either 

magnitude or direction-sense. This is expressed 

Aai H—> aia = Aa 
2 2 0 

The numerals under each vector represent the number of known quantities 

for that vector. For example, both the magnitude and the direction-sense of Aai 
and aid are known but neither the magnitude nor the direction-sense of Aa is 

known. Draw the known vectors Aai and did as indicated. The resultant is Aa. 
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Example 7. In Fig. 3-14 the resultant vector A a is known in magnitude and 

direction-sense, the direction-sense (notated as D-S) of the components Aax and axa 
are known but their magnitudes are unknown. Find the magnitude of each com¬ 

ponent. From A draw a line parallel to the direction-sense of Aax. From a 
draw a line parallel to the direction-sense of oio. Then Aax and a\a represent the 

desired vectors. 

Fig. 3-14 

D-S of Aa, 

Example 8. In Fig. 3-15 the direction-sense of the resultant Aa is known, the 

magnitude and direction-sense of one component Aax is known, and the direction- 

sense of the other component axa is known. Obtain the magnitude of each unknown 

vector. 

Draw Aax. From A draw a line parallel to the direction-sense of Aa. Then from 

ax draw a line parallel to the direction-sense of axa. Then Aa and axa represent the 

desired vectors. Note that the sense (designated by an arrow) is not used in the 

solution and that there is only one possible solution since the lines Aa and axa will 

not meet at any other point than a. 
Example 9. In Fig. 3-16 the magnitude and direction-sense of the resultant Aa 

is known, the direction-sense of Aax is known, and the magnitude of axa is known. 

Find all vectors. 
From A draw a line parallel to the direction of Aax. With a radius equal to the 

magnitude of axa and a center at a, draw an arc cutting the line representing the 

direction of Aax at ai. Then the magnitude and direction-sense of all vectors are 
obtained as shown. 
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It should be noted that the sense of the vector Aai was not needed. If Aai had 
been drawn to the left, arc aai would not cut Aai and the direction of Aai must be 

to the right. Arc about a may also cut Aai nearer A, causing a different 
direction-sense for aia. 

a 

Fig. 3-16 

Example 10. In Fig. 3-17 the direction of the resultant Aa is known, the 

magnitude and direction-sense of the component Aai are known, and the magnitude 

of tiie component aia is known. Find the magnitude and sense of all vectors. 

Draw Aai. From A draw a line parallel to the direction-sense of Aa. Then 

with a radius equal to the magnitude of axa and a center at ah draw an arc cutting 

the direction-sense line of A a at a. Connect a and ai; then all vectors are known. 

Aa,-^a,a ~Aa 
2 / / 

Fig. 3-17 

In this problem the sense of Aa is necessary. If Aa had been drawn downward, 

an arc with a radiu3 equal to the magnitude of aia would cut Aa and different results 

would be obtained. 

PROBLEMS 

m-1. A vector Bb is 1 in. long and makes an angle of 45° with the horizontal. 

Its sense is upward to the right. Vector Cc is 1J in. long, 30° with horizontal, down¬ 

ward to the right. Find their vector sum. 
Ill—2. A vector Bb, 2 in. long, upward to left at 45° with horizontal, is the 

resultant of two components, one horizontal, the other along an axis 60° with the 

horizontal sloping upward to the right. Find the components. 

III-3. Given five vectors Aah Aa2, Aah Aa4, Aa6, whose length, directions, and 
senses are as follows: Aai is 1J in. long, north, that is, its direction is along a line 
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north and south and its sense is toward the north; Aa* is 1} in. long, southeast; 

Aa8 is 2 in. long, east; Aa± is li in. long, southwest; Aa6 is 1J in. long, northeast. 

Find the vector sum of the first four, and subtract Aah from this resultant vector. 

m-4. Vector A a is 1 in. long. Vector Bb is 2 in. long. They make an angle of 

60° with each other. Find Bb —► Aa. 
m-6. A vector is 4 in. long and is upward and to the right making an angle of 60° 

with the horizontal. (1) Resolve the vector into horizontal and vertical com¬ 

ponents. (2) Find the components of this vector on lines making 15° and 75° with 

the horizontal. 

m-6. A force of 75 lb acts downward and to the left making an angle of 30° with 

the horizontal. This force is to be replaced by two forces, one of which is 30 lb 

horizontal, and to the left. Find the magnitude and direction-sense of the other 

force. 

m-7. A stream has parallel banks and is 1000 ft across. A boat has traveled 

500 ft in a straight line making 30° with the bank. At this instant find the distance 

the boat has gone parallel to the bank and the shortest distance to the opposite bank. 

m-8. A hunter desires to go to a point northeast but because of a canyon he 

goes one-half mile due east and then turns left 120° and goes straight to the point. 

How far was he originally from the point and how far did he travel in arriving at 

the point? 

m-9. A hunter desires to go to a point northeast but because of a canyon he goes 

one-half mile due east and then turns left and travels three-fourths mile in a straight 

direction to the point. How far was he originally from the point and what direction 

in degrees did he travel in going the three-fourths mile? 



CHAPTER IV 

VELOCITY ANALYSIS 

4-1. Velocities in Machines. In analyzing the operation of a ma¬ 
chine, it is necessary to consider the motion of the various members or 

resistant bodies constituting the machine. See Art. 1-5. The motion 
of a body consists of displacement, velocity, and acceleration. A 
machine is created to perform a certain duty with definite displacement, 

velocity, and acceleration of certain points in its rigid bodies. The 
displacement of the members is obtained by drawing the machine in 
various positions, obtaining the location of the desired points at each 
position, and showing this displacement by means of a graph. The 
determination of the velocity and acceleration of points in a machine is 

more complex and will need special attention. The methods for 
obtaining velocities will be described in this chapter. Acceleration 
analysis will be discussed in the following chapter. 

The fact has been mentioned previously that if the motion of a body 
is translation, the velocities of all particles composing the body are 
equal and parallel; hence it is necessary to know the velocity of only 

one particle in order to find the velocity of any other particle. If the 
body has any coplanar motion other than translation (see Art. 2-12), it 
is necessary to have enough data to determine the velocity of two 
particles in order to determine the velocity of any part of the body. 
In the present chapter, only coplanar motion will be considered unless 

otherwise stated. 
In analyzing the velocity of a rigid body, or a group of such bodies, 

the words point and particle will be used interchangeably. The princi¬ 

pal cases which occur are the following: 

1. Two or more points on the same body. 
2. Points on two or more bodies connected by pin joints. 

3. Points on bodies in rolling contact. 
4. Points on bodies in sliding contact. 

Any given problem is likely to involve any or all of these cases, hence 
it is essential that the principles involved in each be thoroughly 

understood. 
43 
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There are four commonly used methods for obtaining velocities: 

1. Resolution and composition. 
2. Instantaneous axis of velocity. 

3. Centro. 
4. Relative velocity or velocity polygon. 

Each method has its advantages. Some problems may be solved by 
any or all of the methods listed, whereas other problems can be solved 
more readily by one particular method. Many problems may best be 
solved by a combination of the methods. As a general rule methods 1 
and 2 give the quickest solution. Method 2 is a simplified version of 
method 3. Method 4 can be used in the solution of practically all 
problems and is probably the most desirable method. 

4-2. Scales. In the graphical solution of problems it is necessary to 
draw the machine full scale, to a smaller scale, or to a larger scale. This 
space scale is expressed in three ways: (1) proportionate size, e.g., 
one-fourth size (i scale) or twice size (double scale); (2) the number of 
inches on the drawing equal to one foot on the machine, e.g., three 
inches equal one foot (3 in. = 1 ft) or twenty-four inches equal one 
foot (24 in. = 1 ft); (3) one inch on the drawing equals so many feet, 
e.g., one inch equals one-third foot (1 in. = £ ft) or one inch equals one- 
twenty-fourth foot (1 in. = ft). The space scale is designated Ka. 

The velocity scale, designated Kv, is defined as the linear velocity in 
distance units per unit of time represented by 1 in. on the drawing. If 
the linear velocity of a point is 5 fps and the Kv scale is 5, then a line 
1 in. long would represent a linear velocity of 5 fps and would be written 
Kv = 5 fps. 

The acceleration scale, designated Ka, is defined as the linear acceler¬ 
ation in distance units per unit of time per unit of time represented by 
1 in. on the drawing. If the linear acceleration of a point is 100 ft/sec2 
and the Ka scale is 100, then a line 1 in. long would represent a linear 
acceleration of 100 ft/sec2, and would be written Ka = 100 ft/sec2. 

4-3. Rotating and Oscillating Cranks. The magnitude of the 
instantaneous linear velocity of a point on a revolving body, rotating 
crank, or oscillating crank is proportional to the distance of that point 
from the axis of rotation of the body or crank. See Art. 2-24. The 
direction of the velocity is perpendicular to a line joining the point 
whose velocity is considered and the axis of rotation. The sense of the 
linear velocity is the same as that of the angular velocity of the body, 
that is, right-handed if clockwise rotation and left-handed if counter¬ 
clockwise rotation. Figure 4-1 represents an irregularly shaped crank 
m turning about the fixed axis Q with an instantaneous angular velocity 
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N producing the linear velocity of A represented to a scale by the line 
Aa. The magnitude of the velocities of B and C are proportional to V„ 
as their respective distance from Q. By the use of similar triangles the 
magnitudes are obtained as shown. In each case the direction is per¬ 
pendicular to AQ, BQ, and CQ and the sense of each linear velocity is 
consistent with the clockwise angular velocity of m. 

4-4. Resolution and Composition. If the velocity of one point on a 
body is known, the velocity of any other point on that body may be 
obtained by resolving the known velocity vector into components along 

and 'perpendicular to the line joining these points and making one of the 
components of the velocity of the other point equal to the component 

along the line. The other component of this velocity will be perpendic¬ 
ular to the line. The validity of this procedure is apparent when it is 
realized that, in a rigid body, the distance between the two points 
remains constant and the velocity component along the line joining 
these points must be the same at each point. 
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In the following discussion the components will be referred to as the 
component along the line or link and the component perpendicular to 
the line or link or simply along and perpendicular components. 

In Fig. 4-2, A and B represent two points on the rigid body m. The 
velocity of A, Fa, is completely known and the direction of the velocity 
of B is along BM. Since this is a rigid body, the distance AB is con¬ 
stant and the component of the velocity of B along AB is equal to the 
component of the velocity of A along AB. Resolve Va into components 
along and perpendicular to AB. Then any point on AB must have a 
component of velocity along AB equal to A a, the component of the 
velocity of A along AB. Extend AB and lay off Bb equal to Aa. Now 
Bb is one component of the velocity of B. Draw bbx perpendicular to 
ABy cutting BM at &i. bbi is the perpendicular component of the 
velocity of B, and Bbi is the absolute or total velocity of B. 

Fig. 4-3 

In Fig. 4-3, A, B} and C are points on the rigid body m. Va is known 
and the direction of the velocity of B is along BM. The velocity of B is 
obtained as in Fig. 4-2. Neither the magnitude nor the direction- 
sense of the velocity of C is known, but Vc can be obtained by the 
graphical solution of the following vector equations: 

Vc = Vc along AC +* Vc ± AC (1) 

0 2 1 

Vc — Vc along BC "h* Vc ± BC (2) 

0 2 1 



RESOLUTION AND COMPOSITION 47 

This equation can be solved graphically since there are only two 
unknowns. See Art. 3-8. Resolve Va into components along and 
perpendicular to AC. Lay off Cc equal to Aa. Cc is the velocity of C 
along AC, and is written Vc &\ong AC. Draw a line perpendicular to AC 
from c. This line represents the direction of the velocity of C per¬ 
pendicular to AC and is written Vc ± AC. Resolve Vb into components 
along and perpendicular to BC. Lay off Cci equal to Bb. Draw a line 
perpendicular to BC from c\. The intersection of this perpendicular 
and the perpendicular from c locates c2. Then Cc2 is the velocity of C. 
This method of solving simultaneous vector equations is very useful. 

In Fig. 4-4, A, B, and C are points on the rigid body m. Since C is 
located on a straight line from A to B, the method used in finding the 
velocity of C in Fig. 4-3 cannot be used. However, a ready solution for 
the velocities of B and C may be had when it is realized that m has 
angular motion about an axis of rotation and that the velocity com¬ 
ponents perpendicular to AB must be proportional to each other. The 
velocity of A is completely known and the direction of the velocity of B 
is along BM. Obtain F& as in Fig. 4-2. Lay off Cc equal to Aa, the 
component of Vc along ACB. Obtain the proportional lengths of all 
perpendicular components by joining a\ and bi. From c draw the 
perpendicular component of C, cci. Then Cci is the velocity of C. 

Figure 4-5 shows a combination of the methods developed in Figs. 
4-2 and 4-4. A, B, C, and D are points on the body ra. Va is com¬ 
pletely known. The direction-sense of Vb is known. Vb} Vd> and Vc 
are to be obtained. Aa, B&, Dd} and Cc are the velocity components 
along AB of each point and are equal to each other. The motion of m 
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may be considered as made up of a translation in the direction of AB 
and a rotation about Q, a point on the body or in space. It should be 
noted that Q has a linear velocity which is equal to the velocity com¬ 
ponent along AB. Vb and Vd are obtained as previously explained. 

Vc is obtained as follows: With Q as a center draw arc Ce. ef, per¬ 
pendicular to AB, is the magnitude of the velocity of C about Q or the 
velocity of C due to the rotation of m. Cci is equal to ef and per¬ 
pendicular to CQ. Cc, the component of Vc along AB, is equal to Aa, 
is parallel to AB, and is due to the translation of m in a direction along 
AB. Then Vc is the resultant of the two components, the velocity of C 
parallel to AB and the velocity of C about Q. 

4-5. Examples of Velocities by Resolution and Composition. 

Example 1. In Fig. 4-6, the instantaneous angular velocity of the crank QtA is 
100 rpm counterclockwise. Q2A is 24 in. long and the other members are drawn to 

the Kame scale as QiA. Ka: 1 in. — 1 ft. Kv — 10 fps. Find Vb, Vc, Vd, and V9. 
Solution. 

Va - 
2ir X QzA X N 

12 X 60 

2tt X 24 X 100 

12 X 60 
= 20.94 fps 

Lay off Va — Aa, to scale, and perpendicular to Q2A (the velocity of a point is 

perpendicular to the line joining the point and the axis of rotation). Resolve Va 
into components along and perpendicular to ABD. Lay off Bbx and Ddx equal to 

Aai, the component along ABD. The direction of the velocity of B is perpendicular 

to Q*B. Draw bbi perpendicular to AB. Then Bb is the vector representing the 

velocity of B to the Kv scale. Vb = Bb X Kv = 1.3 X 10 = 13 fps. Draw the 

proportional line abd. From dx draw the component of Vd perpendicular to ABD 
cutting the proportional line at d. Then Vd =* Dd X Kv = 1.42 X 10 = 14.2 fps. 

The velocity of C is found as follows: Resolve Va into components along and per¬ 

pendicular to AC. Lay off Cc\ equal to A02, the component along AC. From ci 

draw a perpendicular to AC. Resolve Vb into components along and perpendicular 
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to BC. Lay off Cc^ equal to Bb2, the component along BC. From C2 draw a per¬ 

pendicular to BC. The point c, found by the intersection of this perpendicular with 

the perpendicular from cA is the terminus of the velocity of C. Then Ve = Cc X 

Kv = 2.1 X 10 = 21 fps. Vc could also be obtained by the method of Fig. 4-5. 

Since E is a point on the crank its velocity is proportional to the velocity of B 
as their distances are from Qi, (Vb : Ve = QS : Q<E). Draw the direction of Ve 
perpendicular to Q4B. Then by similar triangles F. = Ee X Kv = 0.67 X 10 =» 

6.7 fps. 

Example 2. In Fig. 4-7 the linear velocity of A is represented by the line Aa. 

Find the linear velocity of D. 
Solution. Resolve Aa into components along and perpendicular to ABC. Lay 

off Bbi and CcA equal to Aah the component along ABC. Since the sliding block is 

constrained to move along QX, the velocity of B is along QB. Draw the per¬ 

pendicular component of the velocity of B, bib. Then Vb equals Bb. Draw the 

proportional line abc. From Ci draw the perpendicular component of Vc, CiC, per¬ 

pendicular to ABC. Then Vc = Cc. Resolve Vc into components along and 

perpendicular to DC. Lay off Ddi equal to Cc2, the component along DC. The 

velocity of D is along the vertical center line, the path of travel of the block D. 
Draw did perpendicular to DC. ThenFd = Dd, 

Example 3. In Fig. 4-8 the absolute linear velocity of A on Q2A (link 2) is 

represented by the line Aa. Find the absolute linear velocity of C. 

Solution. Resolve the velocity of A on link 2 (Fa0n2) into components along and 

perpendicular to link 3. Then Aa 1 is the absolute velocity of A on link 3 (Faon3) 

and a\a is the sliding velocity of the block A on link 3. From the similar triangles 

QzAai and Q*Bb it may be seen that Bb is the velocity of B, Vb. Resolve Vb into 

components along and perpendicular to BC. Make Cci = Bbi = component along 

BC. cic equals the perpendicular component of Vc and Cc is the absolute linear 

velocity of the block C. 
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4-6. Instantaneous Axis of Velocity. Each member of a machine is 
either rotating about a fixed axis or about a moving axis. Instantane¬ 
ously this moving axis may be thought of as a stationary axis with 
properties similar to a fixed axis. In other words, the cranks of a 
machine rotate or oscillate about their respective fixed axes and the 
floating link (i.e., connecting rod) rotates with an absolute angular 
velocity about an instantaneous axis of velocity. The absolute instan¬ 
taneous linear velocities of points on the link are proportional to the 
distance of the points from the instantaneous axis and are perpendicular 
to lines joining the points with the instantaneous axis. See Art. 4-3. 

Figure 4-9 represents an irregularly shaped floating link. The abso¬ 
lute linear velocity of A is known in magnitude and direction-sense. 
Another point B on this body has a velocity in the direction-sense of 
BX. The instantaneous axis of velocity, Q, may be found by locating 
the intersection of lines perpendicular to the directions of the velocities 
of A and B. At the instant under consideration all points in the body 
are tending to rotate about Q. The magnitude of the velocity of B 
can be obtained when the magnitude of the velocity of A is known by 
the use of similar triangles as shown. Instantaneously the velocities of 
all points in the body are proportional to their distances from Q. It 
should be clearly understood that (1) there is one instantaneous axis of 
velocity for each floating link in a machine, (2) there is not one common 
instantaneous axis of velocity for all links in a machine, and (3) the 
instantaneous axis of velocity changes position as the link moves. The 
instantaneous axis of velocity can be located whenever the directions of 
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the velocities of two points on the link are known. The instantaneous 
axis of velocity is not an instantaneous axis of acceleration. The 
instantaneous axis of velocity is a moving axis and may have an actual 
acceleration, and does not necessarily have zero acceleration as does a 
fixed center of rotation. 

4-7. Angular Velocity of a Floating Link. A method for obtaining 
the instantaneous absolute angular velocity of a floating link is illus¬ 
trated in Fig. 4-10. The instantaneous axis of link 3, Q3, is located by 
drawing lines perpendicular to the velocities of A and B. Since these 

velocities are respectively perpendicular to cranks 2 and 4, Q3 may be 
located by extending the lines Q2A and Q4C until the lines intersect. 
Since A is a point on the floating link 3 as well as on the crank 2, and 
since link 3 is instantaneously turning about Q3, the angular velocity of 
3 is equal to the linear velocity of A divided by the distance Q3A. 
Expressed in equation form, 

V, 
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The angular velocity of 3 might be obtained without finding the 
instantaneous axis. By the method used in Fig. 4-5 locate B, a point 
on link 3 which has a velocity along AB but none perpendicular to AB. 

Vb = Bbi = Adi 

Triangles QzBA and Aa^a are similar. Then 

Aa aai 

(M~AB 

(5) 

(6) 

From equation 4, 

By substitution, 

Va Aa 

QzA QsA 

AB 
(7) 

But aai is the perpendicular component of the velocity of A. 
The angular velocity of a floating link may be obtained as follows: 

Draw a line connecting any point whose linear velocity is known and the 
point on this line with the least velocity. The angular velocity in radians 
per second of the link is equal to the component, perpendicular to this line, 
of the linear velocity in feet per second of the point whose velocity is known 
divided by the distance in feet between these two points. The point on this 
line with the least velocity is that point with a total velocity equal to 
the velocity component along this line and, therefore, has no component 
perpendicular to this line. It should be noted that the velocity of B} 
the point on ACB with least velocity, is perpendicular to QzB and is, 
therefore, the nearest point on ACB to Q3, the instantaneous axis, and is 
the point on ACB with the least velocity, namely, velocity along ACB. 

4-8. Instantaneous Axis of Rolling Bodies. If a wheel, as in Fig. 
4-11, rolls along the surface XX without slipping (see Art. 7-2), the 
point of contact Q of the wheel and the surface is the instantaneous axis 
of velocity and the entire wheel acts as if it were a crank rotating about 
the axis Q. The magnitudes of the velocities of points on the wheel are 
proportional to their respective distances from Q and are perpendicular 
to lines joining the points with Q. If Aa represents the velocity of A, 
the center of the wheel, then by similar triangles Bb represents the 

velocity of B. 
This velocity of B is made up of a rotation about the center A of the 

wheel combined with a velocity parallel to XX and equal to the velocity 
of 4. In Fig. 4—11, Bb\ is the component of the velocity of B parallel to 
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XX and is equal to the velocity of A. Bb% is perpendicular to AB and 
has a magnitude such that Bb is the diagonal of the parallelogram 
Bl^bbi. It should be noted that the velocity component Bbz is equal to 

the linear velocity of B about the center A. 

4-9. Examples of Velocities by Instantaneous Axis. 

Example 4. The linear velocity of A in Fig. 4-12 is represented by the line Aa. 
Determine the linear velocities of B, C, and D on link 3 by the instantaneous axis 

method. 
Solution 1. Since the directions of the velocities of two points, A and B, on link 3 

are known, the instantaneous axis of link 3 is located at Qz by obtaining the inter¬ 

section of lines drawn perpendicular to the directions of the velocities of A and B. 

By similar triangles, Vb = = Va and is perpendicular to 

and is perpendicular to QiC. The graphical solution is 

shown in Fig. 4-12. 
Solution 2. When the instantaneous axis does not lie on the paper, another 

construction may be used to obtain the velocities. This method may also save 

time. This construction is shown in Fig. 4-13. Lay off Am = Aa. Draw mnp 
parallel to ABC. Bn represents the magnitude of Vb and Cp represents the magni¬ 

tude of Vc. Draw mx parallel to AD. Dx represents the magnitude of Vd. The 

proof of this method follows. 

Vb ^ Q*B 

Va Q*A 
tive distances from the instantaneous axis. 

, since the velocities of points on a link are proportional to their respec- 
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= — , since a line drawn through two sides of a triangle parallel to the 
QzA Am 

third side divides the two sides proportionally. Therefore, — = -—. 
Va Am 

By construction Am was made equal to the magnitude of Va. Then Bn equals 

the magnitude of Vi. Similarly, the construction for Vc and Vd may be proved. 

It should be noted that only small portions of each line going to are needed and 
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that the actual location of Q* is not necessary. For example, the direction of CQs 

may be obtained by locating p on the parallel line mnp so that np = BC X ~rz . 
At> 

Example 5. In Fig. 4-14. the linear velocity of A, Va, is known. Required: to 

find the linear velocity of the slide D. 
Solution. The directions of the velocities of A and B being known, the instan¬ 

taneous axis of link 3 is located at Qz by drawing lines perpendicular to the directions 

of the velocities of A and B. The direction of the velocity of C is perpendicular to 

QaC. Since C is a point on both links 3 and 4, the instantaneous axis of link 4 is 

located at Qa, the intersection of a line perpendicular to the direction of the velocity 

of D and QzC. By similar triangles obtain Vc - Va( ) and Vd = Vc( . 
VQsA/ \Q4C/ 

Example 6. In Fig. 4-15, the wheel whose center is at C rolls along the horizon¬ 

tal plane without slipping. The velocity of A is known and is represented by Va. 
Find the velocity of C, the center of the wheel, and D, the top of the wheel. 

Solution. Qa is the instantaneous axis of the wheel. Then the direction of the 

velocity of B, a point common to the wheel and link AB, is perpendicular to QJ3. 
Knowing the direction of the velocity of A and B, Qit the instantaneous axis of AB, 

is located as shown. Then by similar triangles Vb = Va . The velocities 
KQaA/ 

of all points on the wheel are proportional to their distances from Q4 and are per¬ 

pendicular to lines joining the points with Q4. Then by similar triangles Vc and Vd 
are determined as shown. 
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4-10. Centros. As previously stated, the instantaneous axis of 
velocity method of obtaining velocities is a simplified version of the 
centro method and can be used in obtaining velocities when the instan¬ 
taneous axis can be located if the directions of the velocities of two 
points on a link are known. In many mechanisms, the instantaneous 
axis of rotation cannot be located in this manner, since the direction of 
motion of only one point on the link may be known. By using the 
method of centros, velocities in all mechanisms can be obtained. 

A centro may be defined as (1) a point common to two bodies having 
the same velocity in each; (2) a point in one body about which another 
body actually turns; and (3) a point in one body about which another 
body tends to turn. The last definition is also the definition of an 
instantaneous axis of velocity. Definitions 2 and 3 satisfy definition 1 
in that the velocities are the same, namely, zero. It should be noted 
that a centro satisfying the second definition is permanently fixed and 
would be a point in the frame of the machine about which a crank 
turns. A centro as defined by the first definition may be either a point 
actually in the two bodies and at the geometric center of the pair of the 
two bodies and, therefore, a permanent center but movable, or a point 
in space, not actually in either body, but a point assumed to be in both 
links and, therefore, movable but not permanent. 

4-11. Notation of Centros. All links, including the frame, are 
numbered as 1, 2, 3, and so on. The centro has a double number as 12, 
13, 23, and so on. The centro 23 (called two-three) is in both links 2 
and 3 and may be notated as 32, but for consistency the smaller number 
will be written first. 
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4-12. Number of Centros. The number of centros in a mechanism 
is the number of possible combinations of the links taken two at a time. 
It may be obtained by the equation 

Number of centros 
N(N - 1) 

2 
(8) 

where N = the number of links. 
4-13. Location of Centros. Centros are located by (1) observation 

and (2) the application of Kennedy's theorem which states that any three 
bodies having plane motion relative to each other have only three cen¬ 
tros which lie along the same straight line. In other words, the three 

centros which are akin to each other lie along the same straight line. 
The meaning of akin should be further explained. Assume a four-link 
mechanism with the links numbered 1, 2, 3, and 4. From equation 8 
it is seen that there are six centros, namely 12, 13, 14, 23, 24, and 34. 
Centros 12, 13, and 23 are akin because, if the common number in 
either two is canceled, the numbers remaining will be the name of the 
third centro. Likewise, centros 14, 34, and 13 are akin. Also 24, 23, 
and 34 are akin; and so are 14, 12, and 24. According to Kennedy’s 
theorem, each of these four sets of akin centros lie on a straight line. 
The number of sets of akin centros depends upon the number of links 
in the mechanism. The proof of this theorem is shown in Fig. 4-16. 
The three bodies 1, 2, and 3 move relatively to each other. Link 2 is 
pinned to 1 at 12 and link 3 is pinned to 1 at 13; 12 and 13 are centros. 
The remaining centro 23, a point common to 2 and 3 and having the 
same linear velocity in each, must be along the line passing through 12 
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and 13. Assume this centro to be located at K. The magnitude of the 
velocity of Ky when considered in link 2, can be equal to the magnitude 
of the velocity of K, when considered in link 3, but the direction is not 
the same in each link because Vk in link 2 is perpendicular to K-12 and 
Vk in link 3 is perpendicular to K-13. For the directions to be the 
same K must be located along the line 12-13. Therefore, the third 
centro 23 must be along a straight line passing through 12 and 13. 
The exact location of 23 on this line cannot be determined since links 2 
and 3 are not constrained to any definite relative motion. 

No. of Centros 6 

Links / 2 3 4 

f@ ® @ 
Centros 24 

13 

/ 
/ 

/ 
/ 

A 

\ 
\ 
\ 

There are always a number of centros in each mechanism which can 
be located by observation. In Fig. 4-17, link 1 is the frame of the 
machine, 2 and 4 are cranks, and 3 the connecting rod. The number 
and names of the centros may be obtained as shown in Fig. 4-17. The 
circled centros are found by observation. Those found by the use of 
Kennedy’s theorem are underlined. Centros 12 and 14 are points in 
the frame 1 about which cranks 2 and 4 actually turn, satisfying defini¬ 
tion 2; they are readily located by observation. Centro 23 is the geo¬ 
metric center of the pair connecting links 2 and 3. It, therefore, 
has the same velocity whether considered in link 2 or link 3 and satisfies 
definition 1. In like manner 34 is obtained by observation. The 
remaining centros cannot be found by observation but may be found 
by the application of Kennedy's theorem. In order to facilitate the use 
of the theorem a centro polygon, shown in Fig. 4-17, is helpful. Locate 
a point for each link as 1, 2, 3, and 4. Whenever a centro is found by 
observation connect the two points whose numbers are the same as the 
centro located. Thus, 1 and 2, 1 and 4, 2 and 3r and 3 and 4 are joined. 
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Whenever a line can be drawn from two points completing two tri¬ 
angles, the centro whose number is the same as the numbers of the points 
joined can be located. A line joining 2 and 4 completes the triangles 
124 and 234. In triangle 124, sides 12 and 14, representing centros 12 
and 14, are already drawn. In other words, centros 12 and 14 are 
located, and centro 24 is on a line joining these two centros. In like 
manner, triangle 234 has the sides 23 and 34 already drawn and indi¬ 
cates that the centro 24 is on a line joining these two centros. At the 
intersection of lines 12-14 and 23-34, the centro 24 is located. Like¬ 
wise, centro 13 is located at the intersection of 12-23 and 14-34. Note 
that centro 24 satisfies definition (1), a point common to 2 and 4, 
having the same velocity in each. Centro 13 satisfies definition (3) and 
in reality is the instantaneous axis of velocity of link 3. 

4-14. Linear Velocities by Centros. The centros are located and the 
linear velocity of centro 23 is known for the mechanism shown in 
Fig. 4-18. The method for finding the linear velocity of centro 34 

follows. The velocity of the point 23 in link 2 is known. The velocity 
of the point 34 in link 4 is desired. Since by definition, 24 is a point 
common to both 2 and 4 and has the same velocity in each, the deter¬ 
mination of the velocity of 24 would solve the problem. All points in 
link 2 actually rotate around the centro 12. As 23 is a point in 2, so 
24 is a point in 2. Therefore 

The construction by similar triangles is shown. Now the velocity of 
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24, a point in 4, is known, and the velocity of 34, another point in 4, is 
desired. Link 4 rotates about the centro 14. So by similar triangles, 

Figure 4-19 is a slider-crank mechanism with all centros located and 
the linear velocity of 23 known. The method of finding the linear 

13 
A 

velocity of the centro 34, the same as the velocity of the block 4, is 
shown. Note that the centro 14 is located at infinity, on a line per¬ 

pendicular to the path of travel of the block 4. F24 and 

is equal to F34, since 24 and 34 are moving in the same direction and the 
velocity of any point common to the block is the velocity of the block. 
The construction shows the correctness of this statement. 

4-15. Angular Velocities of Links. The method of centros affords an 
excellent manner for determining the instantaneous angular velocity 
ratio of any two links and the instantaneous absolute angular velocity 
of any link when the instantaneous absolute angular velocity of one 
link in a mechanism is known. Referring to Fig. 4-18 and considering 
centro 24 to be in link 2, 

F24 = £02(24-12) 

When 24 is considered to be in link 4, 

V24 = co4(24-14) 
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But the velocity of 24 is the same in each link. Therefore 

co4 (24-14) = w2 (24-12) 

or 
C04 _ 24-12 

cos ~ 24-14 
(9) 

Stated in words: the instantaneous angular velocities of two links are 

inversely as the distances from their common centro to the centers about 

which they are turning or tending to turn. By applying this principle, 

The sense of rotation is obtained by giving the wanted link’s angular 
velocity a direction corresponding to the sense of the linear velocity of 
the common centro. 

The above method of obtaining the angular velocities of links in a 
mechanism may be applied regardless of the number of links in the 
mechanism. It should be pointed out that when the mechanism is a 
four-bar linkage, the centro 24 is always located at the intersection of 
the center line of the connecting rod, 23-34, and the line of centers, 
12-14. Therefore, the angular speeds of the two cranks of a four-bar 

linkage are inversely as the distances from the fixed centers to the point of 

intersection of the center line of the connecting rod and the line of centers 

{extended if necessary). 

4-16. Example of Velocities by Centros. 

Example 7. Figure 4-20 represents a shaper mechanism. Crank 2, with 

block 3 attached to it, turns counterclockwise at a speed of 100 rpm and has an 

actual length of 9 in. The length of each link is known. For the position of the 

crank shown, it is required to find the instantaneous linear velocity of the block or 

cutting tool 6 and the angular velocities of the guiding arm 4 and the connecting 

link 5. 

Solution. Draw the mechanism to scale with the crank 2 in the position shown. 

(Original drawing one-sixth size.) Number each link in the mechanism including 

the frame or earth, which is designated as 1 and includes all stationary parts of the 

machine. The number of centros will be 15 as shown. Lay off the six points for 

the drawing of the centro polygon and label the points 1, 2, 3, 4, 5, and 6. Also 

make a table for the names of the centros. Next locate centros 12, 23, 34, 45, 56, 14, 

and 16 by observation. Remember that the centro of a sliding block and its guide 

is at infinity, perpendicular to the guide. So 16 is at infinity, perpendicular to the 

travel of block 6, and 34 is at infinity, perpendicular to the bar or guide on which 3 

slides on 4. As the centros are found, join the corresponding points in the polygon 

with a solid line and in the table draw a circle around the centros found by observa¬ 

tion. By applying Kennedy's theorem the remaining eight centros are located. 

Join 4 and 6 in the polygon by the dotted line, completing triangles 614 and 654. 
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In triangle 614, the sides 16 and 14 were already drawn. Therefore, centro 46 is 
along a straight line connecting 16 and 14. This line is drawn by starting from 14 

and drawing a line toward infinity, the location of 16, or drawing it perpendicular 

to path of travel of block 6. In triangle 654, the known sides are 45 and 56. Cen- 

tros 45 and 56 are already connected by a line. So centro 46 is at the intersection of 

these two lines (16-14 and 45-56). Draw a line under 46 in the centro table to 

show that it has been located. Next 1 and 5 are joined in the polygon; this com¬ 

pletes triangles 145 and 165, and indicates that centro 15 is obtained by the inter¬ 

section of the broken dash lines 14-45 and 16-56. Draw a line under centro 15 in 

the centro table. In like manner the remaining centros are found in the following 

order: 24, 13, 25, 35, 26, and 36. The same type of line has been used in com¬ 

pleting the triangles of the polygon as in joining the centros for obtaining the third 

centro on that line. Centros found by observation have been circled in the table; 

those found by the application of Kennedy’s theorem have been underlined. After 

all centros have been located the required velocities are obtained as follows: 

2ttRN _ 2tt X 9 X 100 

12 X 60 “ 12 X 60 
7.85 fps 

Using a velocity scale of 1 in. =* 7 fps, lay off F23 = 1.12 in. and perpendicular to 

link 2. Now the velocity of one point in 2, namely 23, is known and it is desired to 

obtain the velocity of a point in 6, namely 56. Centro 26 is a point common to 2 

and 6, with the same velocity in each. Link 2 turns about centro 12 and the 

velocities of all points in 2 are proportional to their distances from 12. So 

This relation is obtained by similar triangles. Draw an arc 

cutting link 2 at m by using 12 as a center and a radius of 12-26. From m draw a 

perpendicular to 2. Join the terminus of F23 and the centro 12. Then mn equals 

to scale the magnitude of F^. Its true position is at centro 26, perpendicular to 

12-26 and toward the left. Now, since the velocities of all points on a sliding block 

are equal and since centro 26 is a point common to the block, the line mn also equals 

to scale the magnitude of F«. The velocity of block 6 may be obtained by the use 

of several combinations of centros. 

One other combination is shown. The velocity of a point in 3, 23, is known. 

The velocity of a point in 5, 56, is wanted. Remember that the centro 35 has the 

same velocity whether considered in 3 or 5. All points in link 3 tend to turn about 

centro 13 (the fixed link number and the link under consideration). Then 

F* With 13 as a center and a radius equal to 13-23 draw an arc 

cutting the line 13-35 at o. Make ah equal to F23 in length and perpendicular to 

13-35. At 35 draw a line perpendicular to 13-35. From 13 draw a line through b, 

cutting the perpendicular from 35. Then by similar triangles F36 is found as shown. 

Now the velocity of one point in 5, namely Fm, is known. The velocity of 

another point in 5, namely FM, is wanted. Link 5 tends to turn about 15 

F„ = F35 

/15-56\ 

V15-35/ 
With 15 as a center and a radius equal to 15-35 draw an aro 

cutting 15-56 extended at c. Then draw cd equal to FM and perpendicular to 

15-56. Join d with 15. By similar triangles Vu is obtained as shown. F* « 

0.78 X 7 - 5.46 fps. 
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Reference to Art. 4-15 shows that 

Angular velocity of 4 = angular velocity of 2 

== 31.6 rpm coi 

and 

^24-14/ 

31.6 rpm counterclockwise 

/25-12N 
Angular velocity of 5 = angular velocity of 2 I --J 

= 17.15 rpm counterclockwise 

The sense of the speed of 4 is counterclockwise because Vu is toward the left. The 

sense of the speed of 5 is counterclockwise because F26 is toward the left. 

4-17. Relative Velocity. All motions, strictly speaking, are relative 
motions in that some arbitrary set of axes or planes must be established 
in order that the motion may be defined. It is customary to assume 
that the earth is a fixed reference plane when analyzing the velocities 
and motions of machine members, and to refer to such motions as 
absolute motions. A crank, in a machine, rotating about an axis fixed 
to the machine frame which is attached to a foundation in the earth has 
absolute motion. A floating link, the connecting rod of a machine, has 
motion relative to the crank. The floating link also has absolute 
motion or motion with respect to the earth. A very common example 
is a brakeman walking on the top of a box car as the car runs along the 
track. The car has absolute motion, the brakeman has motion relative 
to the car, and the brakeman has absolute motion. The absolute 
motion of the brakeman is equal to the motion of the car plus the motion 
of the brakeman relative to the car. Expressed in equation form 

Dm = Dc+> Dmo (10) 

where Dm = the absolute motion of the man 
Dc = the absolute motion of the car 

DmG = the motion of the man relative to the car. 
If the time rate of change for the above three displacements are con¬ 

sidered, the relationship for velocities may be written 

Vm = Vc ++ V mc (11) 

where Vm = the absolute velocity of the man 
Vc = the absolute velocity of the car 

Vme = the velocity of the man relative to the car. 
This equation shows that the absolute velocity of the man is equiva¬ 

lent to the velocity of the car plus the velocity of the man relative to the 

car. 
By rewriting equation 11, 

Vmc=Vm-*Ve (12) 
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It may be stated that the velocity of one point relative to a second point is 
equal to the absolute velocity of the first point minus the absolute velocity of 

the second point 
If the brakeman is walking on top of the car with the same direction- 

sense as the car, the absolute velocity of the brakeman will be the alge¬ 
braic sum of the absolute velocity of the car and the velocity of the 

Fig. 4-21 

brakeman relative to the car. However, if the direction-sense of the 
velocity of the brakeman relative to the car is not the same as the 
direction-sense of the absolute velocity of the car, the absolute velocity 
of the brakeman may be obtained by equation 11 and vectors as shown 
in Fig. 4-21. 

Fig. 4-22 

Consider the velocities of points on a crank rotating about the fixed 
axis Q with an angular velocity of co as shown in Fig. 4-22. The veloc¬ 

ity of A, Va = w X QA, the velocity of C, Vc = cu X QC, and the veloc¬ 
ity of B, Vb = w X QB. From equation 12, 

Vac = Va~>Vc (13) 

In the polygon draw qa equal and parallel to Va. Vc (qc) is on qa, since 
the directions of both Va and Vc are perpendicular to QA. By using the 
lengths of the lines in the polygon, equation 13 may be written 

Vac = qa — qc = ac (14) 
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Equation 13 may also be written 

Vac = 6> X QA - co X QC = 0) X (QA - QC) = « X AC (15) 

Stated in words: Equations 14 and 15 show that the velocity of me 
point on a body, relative to another point on the body, is the difference 
between their absolute velocities and is equal to the absolute angular velocity 
of the body multiplied by the linear distance between the two points. 

Considering points A and B, 

Vab= Fa—> Vt 

In the polygon, draw qb equal and parallel to Vb- Then ab equals 
Vab and the direction-sense of Vab is as shown. It should be noted that, 
in the polygon, qa is perpendicular to QA, qb is perpendicular to QB, and 
ab is perpendicular to AB. This is as expected since the direction of 
the linear velocity of a point is perpendicular to a line joining the point 
and the axis about which the point is rotating or tending to rotate. 
The velocity of A relative to B in reality is the velocity of A with 
respect to B or the velocity of A about B. Reasoning in this manner 

shows that the velocity of one point relative to another point is per¬ 
pendicular to the line joining the two points and has a magnitude equal 
to the angular velocity of the body multiplied by the linear distance 
between the points. As previously pointed out, the velocity of A is not 
an absolute velocity but is the velocity of A relative to the earth or 
velocity of A relative to Q. There is no question about Va being per¬ 
pendicular to QA and equal in magnitude to w X QA. With this idea 
in mind, it may be more easily understood that the velocity of A rela¬ 
tive to B is perpendicular to AB and equal to u X AB. The angular 
velocity o> used in obtaining the relative velocity is the absolute angular 
velocity of the link as is shown in the consideration of Fig. 4-23. 
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Figure 4-23 represents any body m with an angular velocity w as 
shown. It is assumed that Va and Vb are known in magnitude and 
direction-sense. The instantaneous axis of velocity of m is located at 
Q. In the velocity polygon, obtain ab by drawing qa equal and parallel 
to Va and qb equal and parallel to Vb. The vector ab is the velocity of 
B relative to A. Note that qa is perpendicular to QA, qb is perpendicu¬ 
lar to QB, and ab is perpendicular to AB. Then triangles AQB and 
aqb are similar and 

QA _ AB 

qa ab 

But 

3
 

II II 8
. 

Then 
QA AB 

a) X QA ab 

or 
ab = o) X AB 

But 
ab = Vba 

Therefore 
Vab = CO X AB 

It may now be definitely stated that (1) the absolute linear velocity of 

one point on a body is equal to the absolute linear velocity of a second 

point on the body plus the velocity of the first point relative to the second 

point; (2) the velocity of one point on a body relative to a second point on 

the body is equal to the product of the absolute angular velocity of the body 

arid the linear distance between the two points; (3) the direction of this 

relative velocity is perpendicular to a line joining the two points; and 

(4) the sense of this relative velocity is such as to be consistent with the sense 

of the absolute angular velocity. 

4-18. Relative Velocity Method of Obtaining Velocities. The prin¬ 
ciples discussed in the preceding article afford a useful method of 
obtaining the instantaneous angular velocities of the members in a 
machine and the instantaneous linear velocities of points on these mem¬ 
bers. In Fig. 4-24, the instantaneous linear velocity of A is known 
and drawn to scale. The procedure for obtaining the linear velocities 
of B and C and the angular velocity of the connecting link 3 follows: 

Vb = Va +> Vba 
1 2 1 

This equation can be solved graphically since there are only two 
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unknowns. See Art. 3-8. The direction of F& is perpendicular to 
Q4B. Both the magnitude and direction-sense of Va are known. The 
direction of Vba is perpendicular to AB. The magnitude of Vba cannot 
be obtained at present because the angular velocity of link 3 is unknown. 
The equation is solved graphically by drawing qa equal and parallel to 

Va) drawing from q a line, representing the direction of F&, perpendicu¬ 
lar to QJB; and drawing from a a line, representing the direction of 
Vba, perpendicular to AB. Locate b at the intersection of the last two 
lines drawn. Then Vb = qb and Vba = ob. The senses of these veloci¬ 
ties are indicated by an arrow. After becoming familiar with the 
method the arrows are not needed. Now obtain Fc. 

Vc = Va +> Vca 

0 2 1 

There are three unknowns in this equation but the velocity of C can 
also be expressed by the equation 

Fc = F& -U Vc, 
0 2 1 

Neither of these two equations can be solved independently but the 
two equations can be solved simultaneously by drawing a line, repre¬ 
senting the direction of Vca, from a, perpendicular to CA, and another 
line, representing the direction of Vcb, from 6, perpendicular to CB. 
Notate the intersection of these lines by c. Then Vca = ac, Vcb = be, 

and Vc = qc. 
The absolute angular velocity of link 3, co3, may be obtained by either 

of the following relations: 

F&a   Vca   Vcb 

Ua = AB = CAZ=CB 

The proper dimensional relationship must be observed. If it is 
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desired to obtain co in radians per second, the linear velocity should be 
in feet per second, and the length of the link, the actual length in feet 

on the machine. 
The polygon qacb is called the velocity polygon. It should be noted 

that all absolute velocities originate at the pole q and relative velocities 
originate and terminate at points other than q. All lines in a velocity 
polygon are perpendicular to the corresponding lettered links (e.g., aq is 
perpendicular to AQ2, ab is perpendicular to AB, etc.). Each line in 
the polygon is an image of the parent line in the sketch (e.g., aq is the 
image of AQ2) ab is the image of AB, etc.). The entire triangle abc is 
the image of link ABC. The velocity image is always perpendicular 
to the parent link and may be larger or smaller than the parent link, 
depending upon the scales chosen. Conceive the velocity image as 
being the image obtained by placing the sketch in front of a mirror 
whose properties are such as to cause (1) all lines in the image to be 
perpendicular to lines in the sketch, (2) all lines in the image to be pro¬ 
portional to the parent line in the sketch, and (3) all points on the 
sketch to be proportionally located in the image. The velocity image 
is useful in obtaining the linear velocity of points in a link. If the 
velocity of a point D on QS is desired, locate d on the velocity image 
qb by the proportion 

qd _ qb 

Q4D QiB 

In this proportion, QJ) and QiB are known from the location of D on 
the sketch and qb is measured on the velocity image. Calculate qd and 
locate d on the image qb. Then Vd = qd. If the linear velocity of the 
midpoint M of BC is wanted, locate m, the midpoint of the velocity 
image be. Then Vm = qm. 

4-19. Example of the Relative Velocity Method. 

Example 8. In Fig. 4-25 a non-parallel equal crank mechanism is drawn to an 

original scale of 11 in. = 1 ft. The crank QzA is 9 in. long and is rotating with a 

uniform angular velocity of 60 rpm counterclockwise. The connecting rod AB is 

3 ft 4 in. long. By means of the relative velocity method determine the absolute 

instantaneous linear velocities of the slide D and the point P, located 1 ft from A on 

AB, and the absolute instantaneous angular velocity of AB. 
Solution. 

Vo 
2tt X QiA X N 

12 X 60 

2tt X 9 X 60 

12 X 60 
= 4.71 fps 

Choose a velocity scale, say Kv » 5 fps.. Locate the pole q at a convenient point. 

From q draw qa, representing Va, perpendicular to Q%A and 0.94 in. long. From q 
draw a line perpendicular to QJB, representing the direction of F&. From a, draw a 
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line perpendicular to AB, representing the direction of F*0. At the intersection of 

these perpendiculars locate b. Then Vb = qb and Vba — ab. The sense of Vb is 

from q toward b and of Vba is from a toward b. From q draw a line perpendicular to 

QiC, representing the direction of Ve. From b draw a line perpendicular to BCf 

representing the direction of Veb. At the intersection of these perpendiculars locate 

c. Then Ve = qc and Vcb = be. The sense of Vc is from q toward c and that of V 
is from b toward c. From q draw a line, parallel to the path of travel of D, represent¬ 

ing the direction of Vd. Then draw a line from c perpendicular to CD, representing 

the direction of Vdc. At the intersection of these two lines is d. Then Vd — qd. 
The magnitude of Vd = 0.9 X 5 = 4.5 fps. The sense of Vd is downward. In 

order to find VP} locate p on the image of APB by making ap = ^ 

0.83 X 12 

40 

AB 

= 0.249 in. Then Vp = qp and is from q toward p. The magnitude of 

Vba ab X Kv 
Vp = 0.94 X 5 = 4.7 fps. The angular velocity of AB, a>a& = — = 

AB AB 

0.82 X 5 
= 1.23 rad/sec. Since the sense of Vba is from a toward b (downward and 

to left), u>ab must be clockwise. 

PROBLEMS 

IV-1. A and B are particles on the same rigid body k. Aax is 1 in. long and is 

the velocity vector for A. At the instant, B is so guided that the direction of its 
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velocity is along XX. Find the velocity vector for B and the length, direction, and 

sense of the vector representing the velocity of B relative to A. Solve the problem 

first on the space diagram and then construct a vector polygon from a pole q. 

IV-2. Points A, B, and D on the rigid body k form the vertices of an equilateral 

triangle with sides If in. long. Bbx is the velocity vector for B and is 1J in. long. 

The direction of the velocity of A is along the line ZZ. Find the velocity vectors 

for A and D. Compare the triangle formed by the termini of the three vectors 

with the triangle formed by the points A, B, and D. Solve on the space diagram 

and also on a vector polygon with pole q. 

IV-3. Using the figure for Prob. IV-2, find the instantaneous axis g* of k and the 

velocity of the point on the line AB at the foot of the perpendicular let fall from qk 
to AB. 

IV-4. An airplane is moving due west at a speed of 100 mph. The propeller 

blades are 5 ft long from the axis of the shaft to the tips of the blades. The pro¬ 

peller is turning 1800 rpm clockwise when viewed from the front. Find the veloc¬ 

ity of a point on the tip of a blade at the instant when it is vertically above the axis 

of the shaft. Solve graphically, and also compute. State the magnitude and direc¬ 

tion of the velocity. 
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IV—5. A man riding in an automobile which is moving north at the rate of 30 

mph throws a ball toward the northeast so that its speed relative to the car is 

44 fps. Find graphically the resultant velocity of the ball. 

IV-6. A slide moves outward in a radial groove of a disk rotating at 180 rad/ 
min. When the slide is 12 in. from the center of rotation, its absolute velocity is 
5 fps. 

1. What is the velocity of the slide relative to the groove in feet per second? 

2. If the rate at which the slide moves in the groove remains constant, what will 

be the absolute velocity of the slide when 2 ft from the center of rotation? 

IV-7. ARisliin.; AD is 3£ in.; DC is If in.; DC is 2 in. A and D are fixed 

axes. The angular speed of crank AB is 1 rad/sec counterclockwise. Find graphi¬ 

cally the velocity of C and of P without reference to the instantaneous axis. 

IV-6. AB = 2\ in.; DC = 3J in.; AD = 5 in.; BC — 5 in. AB is turning 

uniformly clockwise at a speed of 1 rad/sec. Find graphically: 

1. The velocity of C when 0 — 15°. 

2. The position and velocity of that point H on the center line of BC (produced if 

necessary) which has the least velocity, when 6 = 15°. 

3. The velocity of C and of the same point H when Q - 60°. 

4. The value (or values) of 6 when the velocity of C is zero. 
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IV-9. AB - 2% in.; AD = 6 in.; DC = 5 in.; BC ~ 3£ in. BCK is a rigid 

piece. Bbi is the velocity vector for B and is 2 in. long. 

1. Find the velocity vector for K. 
2. Find that point on the line BCK which, at the instant* has the least velocity, 

and find its vector. 

Prob. IV-9 

IV-10. Using the figure for Prob. IV-8, let the angular speed of AB — 1 rad/sec. 

Find graphically as far as possible: 

1. The velocity of C when 9 = 30°. 

2. The angular speed of DC and of BC. 

Prob. IV-11 

IV-11. Velocity of A is represented by a line II in. long. Find graphically the 

velocity of B if B moves without slip on C. C and D turn together, and D rolls 

without slip on surface E. 

9 
Prob. IV-12 

IV-12. Drum d is 2 in. in diameter and is attached to the wheel k which is 3 in. in 

diameter. Wheel k rolls without slip on the straight track g. The cord is attached 

to and wound around the drum d and pulled parallel to g as shown with a velocity 

of 1 ips. What is the velocity of the axis C? 

At what angle with g would the cord need to be pulled in order that the velocity of 

C be reversed in sense? 
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IV-13. Assuming no slip between the disks, and a surface velocity of disk A « 1 

in., find the velocity of the center of disk C. 

Prob. IV-13 

XV-14. Given the velocity of A represented by a line 1 in. long; find the 

velocity of B. 

Prob. IV-14 

IV-16. The slotted 

piece h slides in the fixed 

guides g. Crank AB is 

1 in. long and makes an 

angle of 30° with XX. 
The velocity vector for 

By the axis of the pin 

which connects the crank 

/ to the block k, is 1 in. 

long, toward the left. 

Find the vector for a 
point on h. 

Prob. IV-15 
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IV-16. D and E are fixed axes. 

DA = 3| in.; DF = If in.; EC = 

2£ in.; FG = 1^ in.; GB - 3 in.; 

FF = 2 in. If the velocity of A is 

2 in., find the velocity of B, 

IV-17. In the figure of Prob. IV-16, designate the frame by 1, the crank ADF by 

2, the block C by 3, the crank CEG by 4, the link BG by 5, and link BF by 6. If the 

velocity of A is represented by a line 2 in. long, find the lenglh of a line represent¬ 

ing the velocity of B by the centro method. 

IV-18. The crank / is turning counterclockwise at the instant, with angular 

speed of i rad/min. Block b slides in fixed guides and forms a bearing for the 

wheel k. The wheel Jc rolls without slip on the fixed track g. The pin E is attached 

to k and is connected to crank / by the rod h. Find the velocity vector for the axis 

of the pin C. 



PROBLEMS 77 

IV-20. AB = 1J in.; BC = 4 in.; CD = 3 in.; Dtf = 2 in.; EF = 5 in.; 

AZ) = 5 in. Scales: full size; = 100 fpm. AB rotates uniformly clock¬ 

wise at 200 rpm. Find the linear velocity of the slide F, giving its magnitude in 

fee* per minute and its direction. Also find the instantaneous angular velocity of 

crank DC. 

C 

IV-21. AB - 2i in.; BC = 2\ in.; DE = 2J in. AB is a crank turning 

counterclockwise about the fixed axis A. If a line | in. long represents the velocity 

of the crank pin B, find the velocities of the slides S and T, giving the direction and 

the magnitude in inches. 

Pkob. IV-21 
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IV-22. AB = 2i in.; BC = 1J in.; CD = 1 in.; CE * 4 in.; AF = 3 in. 

Diameter of wheel TV = 2 in. Find the linear velocity in feet per minute of the 

pin B and the ram E, if the wheel W makes 20 rpm counterclockwise. Show the 

directions of these velocities. 

IV-23. AB * If in.; BC = 2 in.; BCE = 3| in.; CD - 2\ in.; AD = 4 in.; 

Scales: full size; Kv = 10 ips. The crank AB is rotating uniformly counter¬ 

clockwise at 60 rpm. Find graphically: 

1. The instantaneous linear velocities of C and E. 

2. The instantaneous angular velocity of CD. 

IV-24. A plank 18 ft long rests over a smooth wall 10 ft high. The bottom end, 

on a horizontal plane, is sliding away from the wall at a rate of 6 fps. When it has 

reached a position so that it makes an angle of 60° from the horizontal: 

1. Determine the velocity of the top end of the plank. 

2. Determine the velocity of the point that is moving the slowest. 

3. Determine the velocity of a poin^ 6 ft from the lower end of the plank. 
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IV-25. Vb = 750 fpm; AB = 2 in.; BC = 1 in.; RD = 5 in.; C2£ « 5 in. 
Scales: Ka, full size; Kv = 500 fpm. Determine: 

1. The linear velocities of D and E, 
2. The angular velocity of crank AB. 

IV-26. In the figure, the crank AB is 

rotating clockwise at 5 rpm. AB = 1.5in.; 

BC = 3 in.; CD = £ in.; diameter of 

wheel W ~ 2 in. Scales: K8, full size; 

Kv » 2 fpm. Determine the velocities of E 
and F for the position shown (AB vertical); 

IV-27. In the swinging block quick-return mechanism shown, the absolute linear 

velocity of C on AC is represented by a line 1 in. long. Find the length of a line 

(and show its position, location, and direction) which represents the absolute linear 

velocity of the slide S if AC rotates counterclockwise. 
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IV-28. AB * 4 in.; AD = 6i in.; BF = 11 in.; GF = 4 in.; DE - 31 in. 

Scales: full size; = 100 fpm. If the absolute linear velocity of G is 150 fpm 

toward the left, find the absolute linear velocity in feet per minute of the slide E. 

F 

IV-29. Link 2 — } in.; link 4 = 4 in.; link 5 = 3 in. Locate all centros. Show 

the uentro polygon. If link 2 rotates at 100 rpm counterclockwise, find the linear 

velocity of 6 by the centro method. Check this velocity by using a different com¬ 

bination of centros. Also find the angular velocities of links 4 and 5. 

IV-30. link 2 * 1} in.; link 3-5 in.; link 5 *= 4 in. Locate all centros. 

Show the centro polygon. If the velocity of the end of link 2 is represented by a 

line } in. long, find lengths of lines representing the velocities of 4 and 6 by the 

centro method. Check these velocities by some other method than centros. 
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IV-31. Link 2 = 2 in.; link 3 = 11 

in.; link 4 = 2 in. Locate all centros. 
If slide 6 has an instantaneous ve¬ 

locity of 1 fps to the right, find the 

absolute velocity in feet per second 
of the block 5 and the angular ve¬ 

locity of the crank 2 by the method 

of centros. 

IV-32. Scales: K,, full size; Kv — 1.2 

ips. The sketch represents a crank and 

rocker mechanism as used for pumping. 

The crank 2 turns clockwise at 10 rpm. 

5" With the crank 2 horizontal and for the 

position shown, locate all centros and 

draw the centro polygon. Find the 

velocity of the plunger 6 in inches per 

second using one set of centros. Check 

the velocity of 6 by using a different set 

of centros. 

IV-33. AB = 2 ft; AB' = 3 ft; B'C - 3 ft; CD = 2 ft; DE - 3 ft 6 in. 

Scales: K„ 1 in. = 1 ft; Kv = 6 fps. The sketch represents a pump jack as used in 

oil fields. BB' is a 90° bell crank. If the drag line BM has a velocity to the right 

and along the line, which remains horizontal, of 9 fps, find the instantaneous linear 

velocity of the plunger, P. In showing the velocity vectors indicate on the draw¬ 

ing all 90° angles. 
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IV-34. 0%A - 12 in.; AB = 2 ft 4 in.; BC = 8 in.; CD - 2 ft; DE = 1 ft 

3 in.; ftF = 12 in.; 0&C - 2 ft; OF = 2 ft; (7F = 3 ft. Scales: li in. = 
1 ft; if, = 400 fpm. The angular velocity of the crank OiA is 75 rpm counter¬ 

clockwise. Determine the velocities in feet per minute of the point F and the slide 8. 

Draw the velocity polygon. Also determine the angular velocities of links 4, 5, 
and 7. 

Prob. IV-34 

IV-35. Using the figure of Prob. IV-34, determine the velocities required by the 

centro method. 



CHAPTER V 

ACCELERATION ANALYSIS 

6-1. Accelerations in Machines. With the advent of high speed 
machines, the accelerations of the moving parts are becoming more 
important. The inertia forces produced by the accelerations of the 
links in a machine may be of a high magnitude and in some cases, at a 
certain position, may be higher than the forces produced by the work¬ 
ing medium. The obtaining of the accelerations of points in the links 
of the machine is prerequisite to the making of an inertia force analysis 
of the machine. In this chapter the accelerations in machine members 
will be discussed. The method developed will be similar to the relative 
velocity method treated in the previous chapter; it is called the 
relative acceleration method. 

6-2. Acceleration of a Point Moving on a Curved Path. The acceler¬ 
ation of a point is the time rate of change of the velocity of the point. 
Since a velocity has both magnitude and direction-sense, there may be a 

Q 
Fig. 5-1 

change in the velocity in magnitude, in direction-sense, or in both 
magnitude and direction-sense. The rate of change in the velocity in 
direction-sense is termed the normal acceleration, and the rate of change 
in the velocity in magnitude is called the tangential acceleration. In 
Fig. 6-1 the point B is traveling along the curved path whose radius is R 
and whose center is Q. The angular velocity of the line B'Q is «. 
The magnitude of the linear velocity of B' about Q, F&<4, is uR and is 

83 
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perpendicular to QBAt the end of the time interval dt, Bf has 
reached B. B'Q has turned through the angle dd and the angular veloc¬ 
ity of BQ is o) + do). Then the linear velocity of B about Q, Vbq, is 
(w + do))R and is perpendicular to QB. Draw the velocity polygon 
with qb' = Vvq and qb = VbQ. Then b'b is the velocity of B relative to 
B' and is the increase in the velocity of B' in the time interval dt. Then 
Vb = qb = qb' +> 6'6. Lay off qa equal to qb'. Then bbthe change 
in the linear velocity of Bis equal to the vector sum of the two vectors 
6'<z and ab. The vector b'a represents the change in the velocity of Bf 

due to a change in direction. The change in the magnitude of the 
velocity of Br is represented by the vector ab. Since these changes 
occurred in the time interval dt, the normal acceleration of B about Q is 

Since 

then 

b'a RcodO 

-nsr-",R 

V„ - »R or R - is or » 
CO 

Abqn = u>2R = co X Vbq — 
TV 
R 

Vbq 

R 

(1) 

The tangential acceleration of B about Q is 

qb —> qb' R (co!+ rfco) t — ^ 
dt dt dt 

o)R ^ do) 
-= R — — a.R (2) 

dt 

Because these changes in the velocity happened in the short time 
interval dt, the vector b'a may be considered to be parallel to BQ. 

Hence, Abqn is parallel to BQ 

and Abq1 is perpendicular to 
BQ. 

Observe that if B were mov¬ 
ing uniformly about Q with no 
angular acceleration, the tan¬ 
gential acceleration of B about 
Q would be zero but the nor¬ 
mal acceleration would have a 
definite value. This is as ex¬ 
pected, since the velocity of B 

is changing in direction. 
The resultant linear acceleration of B about Q, Abqf may be obtained 

by solving vectorially the following equation: 

Abq — AbcA ~ I ^ Abqf 

This solution is shown in Fig. 5-2. 

*bqf 

\0 

Fig. 5-2 

(3) 
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The angle 0, which the resultant acceleration vector makes with the 
line BQy is expressed by the equation 

Abql aR a 
<t> = tan-1 -— = = -- 

Abqn o)2R o)2 
(4) 

It should be noted that 0 is independent of the radius R but depend¬ 
ent upon the angular velocity and acceleration of the link. Therefore, 
the resultant acceleration vector of any point on a body relative to 
another point on the body makes an angle 0 with the line joining the two 
points. It was shown in Chapter IV that the velocity of one point 
relative to a second point was perpendicular to the line joining the 
points or that the angle 0 for velocity is 90°. 

The above discussion leads to the following principles: When a point 

is moving about another point, the first point has a normal acceleration 

ab&ut the second point regardless of whether the line joining the two points 

has an angular acceleration. The magnitude of this normal acceleration is 

the product of the square of the angular velocity of the line joining the 

two points and the distance between the points. The direction-sense of the 

normal acceleration is parallel to the line joining the two points and is 

directed toward the point about which rotation is considered to occur. 

Whenever a point is moving about another point, the first point has a 

tangential acceleration about the second point provided the line joining the 

two points has an angular acceleration. The magnitude of the tangential 

acceleration is the product of the angular acceleration of the line joining the 

two points and the distance between them. The direction of the tangential 

acceleration is perpendicxdar to the line joining the two points. The sense 

is such as to be consistent with the angular acceleration. The resultant 

linear acceleration of the first point alout the second point is the vector sum 

of the normal and tangential accelerations. This resultant acceleration 

makes an angle 0 with the line joining the two points at any instant. This 

angle 0 is the same for lines joining any two points on a body and is 

dependent only upon the square of the angular velocity of the link and its 

angular acceleration. 

6-3. Relative Acceleration of Two Points on a Floating Link. In 
Fig. 5-1, no reference was made to whether Q was a point fixed to the 
earth or a point on some body moving relatively to the earth. The 
principles discussed are true for cither case. In this article a method 
will be developed for obtaining the absolute linear acceleration of one 
point on a body when the absolute linear acceleration of another point 
on the body is known. In Fig. 5-3, the crank QAf or link 2 is turning 
about Q with an absolute angular velocity of w'2 and an absolute angular 
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acceleration of <x\. The floating link A 'B' or link 3 is pinned to A1 and 
is turning with an absolute angular velocity of o/3 and an absolute 
angular acceleration of a'z. At this instant the linear velocity of A' is 
V^ and the linear velocity of B' is Vb>, as shown in the figure. At the 
end of time interval dt, A' has moved to A and B' has moved to B as 
shown at the left of the figure. Q remains fixed but the entire sketch 

is redrawn for clarity. The velocities for each point are shown in the 
new position. With q as a pole, redraw the velocities in each position 
as shown in the combined velocity polygon. The change in the velocity 
of Ay dVa, is represented by the line a'a. The change in the velocity of 
By dVby is represented by the line b'b. From a' draw a'm equal and 
parallel to ab} Vba• Then bm = a'a = dVa. In the triangle b'a'm, 
b'm represents the change in the velocity of B relative to A, dVba. 
Then from triangle b'bm, 

dVb = b'b = mb +> b'm = dVa +> dVba (5) 

In triangle a'b'mf make a'n = a'b' = F&'0'. Then from triangle mb'riy 

dVba == b'm = b'n +> 

= Vb'a'dO +> (Vba Vb'a') 

- CO X AB X de +> (a X AB - «' X AB 

= a? X AB X,d$ “K AB(o) — o)') (6) 
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Since A = dV/dt} equation 5 may be rewritten 

Ah = 

dV6 d7a , d76a 
-(->- 
dt dt 

, . __ Aj9(co — 
— + co X A£? X — H-T— 
dt dt dt 

<*') 

dV a dO doo 
—— = Aa, — = co, co co = aco ana — = a 
ut dt dt 

Then 
A6 = Aa +► co2 X A£ +> AB X a 

But, from equation 3, 

from equation 1, 

and from equation 2, 

Therefore 

A a — Aan +> A a1 

co2 X AB = Aban 

a X AB = Aba 

Ab = A an -f-> A a Aban “K Aba1 (7) 

Equation 7 shows that the absolute linear acceleration of one point on 

a floating link is equal to the vector sum of the absolute linear acceleration 

of a second point on the link, the normal acceleration of the first point 

relative to the second point, and the tangential acceleration of the first 

point relative to the second point. 

6-4. Relative Acceleration Method. The principles discussed in the 
preceding article afford a method of obtaining the linear accelerations of 
points in the links and the angular accelerations of the links in a 
machine. Consider the body m shown in Fig. 6-4. The absolute 
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acceleration of A, Aa, is known, the velocity of A, Va, is known, the 
direction of the velocity of B is along the line BN, and the direction of 
the acceleration of B is assumed to be along BM. The linear accelera¬ 
tion of B, Ab, and the angular acceleration of AB, otab, which is the 
angular acceleration of m, are desired. 

Ab — Aa -f-> Aban “f* Aba1 

AB 

Draw the velocity polygon as shown. Vba = ab X Kv. Then 

Vba2 
Aban, = -t—-, can be determined. Now the acceleration polygon can be 

AB 

drawn. From the pole q draw a line qa equal and parallel to Aa. 

From a draw a line representing the normal acceleration of B about A, 

parallel to BA, in the sense from B toward A, and equal to scale 
Aban. Remember that the direction-sense of the normal acceleration 
of one point about a second point is parallel to the line joining the two 
points and is directed toward the point about which rotation is con¬ 
sidered to occur; in this case, directed from B toward A. At the ter¬ 
minus of Aban draw a line perpendicular to AB. This line represents 
the direction of Aba*. At the intersection of this line with a line from q 

parallel to BM, the direction Ab, is the terminus of Ab. The angular 
acceleration of AB, aab, is obtained by the use of equation 2 and is 

AbJ 
AB 

The line ab is the acceleration image of AB and has properties similar 
to the velocity image as discussed in Art. 4-18. In the acceleration 
polygon, all accelerations are drawn in their correct direction-sense, 
absolute accelerations originate from the pole q, and relative accelera¬ 
tions originate and terminate at points other than the pole q. 

The key to this graphical solution is the determination of the magni¬ 
tude of Aban. This magnitude was obtained by the use of Vba from the 
velocity polygon. The normal acceleration can be obtained either by 
calculation or by graphical construction when the proper scales are 
selected. When the normal accelerations are calculated the method of 
relative accelerations is called the semigraphical method, and when the 
normal accelerations are obtained graphically the method is termed the 
strict graphical method. The process of drawing the acceleration 
polygon is the same for each method, the only difference being the 
manner in which the normal accelerations are obtained. 
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5-5. Normal Acceleration Graphically. The normal acceleration of 
a point about another point may be obtained graphically when a proper 
scale relationship is observed. In Art. 4-2 the scales N 

were defined. Since the space scale was defined three 
ways, one definition only may be used for the graph- J , 
ical normal acceleration construction. The scales j'4 
used for this construction are: \ I 

K, = the number of feet or part of a foot on the 
machine which 1 in. on the drawing repre¬ 
sents; e.g., if the drawing is one-half size, 
K. = *. 

Kv = the velocity in feet per second which 1 in. on 
the drawing represents; e.g., if a velocity 
scale of 1 in. = 10 fps is chosen, Kv — 10 fps. 

Fig. 5-6 

Ka = the acceleration in feet per second per second which 1 in. on 
the drawing represents; e.g., if an acceleration scale of 1 in. = 
600 ft/sec2 is chosen, Ka = 600 ft/sec2. 

In Fig. 5-5, the link QA, drawn to the K8 scale, is turning counter¬ 
clockwise about Q with an angular velocity which produces a linear 
velocity of A, represented to the Kv scale by the line AM. Then 

Vaq = AM X Kv 

Join Q and M. Draw MN perpendicular to QM. Assume AN is the 
normal acceleration of A about Q, Aaqn, to the Ka scale. The scales 
have been chosen so that 

Ka « 
KJ 

K. 
(8) 

V 2 Y aq 

If AN equals, to scale, Aaqn} then 

Aa9" = AN XKa = -QA x K' 

Substituting equation 8 in equation 9 gives 

. _ (AMY 
AN QA °f AM QA 

Triangles MNA and QMA are similar. Then 

AN _ AM 

AM ~ QA 

(AM X Kvy 

QA X K. 

AN AM 

(9) 

Therefore, AN represents to the Ka scale the magnitude of the normal 
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The direction-sense of Aaqn is parallel to AQ and from A 

acceleration of A relative to Q, Aasn, if the scales are chosen so that 

KS 

Kt ' 

toward Q. 
6-6. Examples of Accelerations. In order to give a better under¬ 

standing of the method of relative accelerations by the semigraphical 
and the strict graphical methods, the accelerations in a machine will be 
determined by the semigraphical method and then the normal acceler¬ 
ations will be determined graphically. 

Example 1. A crank and rocker mechanism has the dimensions as shown in 

Fig. 5-6. Crank 2 has an angular velocity of 200 rpm counterclockwise and a 

negative angular acceleration of 280 rad/sec2. For the position shown, determine 

the instantaneous linear accelerations of A, B, C, and D and the instantaneous angu¬ 

lar velocities and accelerations of links 3 and 4 by the semigraphical method. 

Solution. Draw the mechanism to scale. (Original Ka = J.) Choose a con¬ 

venient velocity and acceleration scale. (Original Kv = 5 fps and Ka — 

100 ft/sec2.) 

Va 

2ir X QiA X N _ 2tt X 9 X 200 

12 X 60 “ 12 X 60 
15.7 fps 

AS 
TV 
Q*A 

(15n7)2 = 328.8 ft/sec1 
•nr 

Aa* = OC2 X QiA 
280 X 9 

12 
= 210 ft/seca 

Obtain the velocity polygon as follows: Draw qat representing Va, = 3.14 in. and 

perpendicular to Q2A; draw a line from q, representing the direction of Vb, perpen¬ 

dicular to QiB; and draw a line from a, representing the direction of Vba, per¬ 

pendicular to AB. At the intersection of these two lines locate b. 

Aban 

AS 

(Vba)* = (ab X Kvy _ (1.44 X 5)2 

AB AB || 

(Vb)2 (qb X Kvy _ (2.32 X 5)2 

Q<B ~ Q<B if 

41.5 ft/sec2 

134.5 ft/sec2 

With these normal accelerations obtained by the semigraphical method, the 

acceleration polygon can be drawn. Locate q, at a convenient place. Draw 

Aan(ss 3.29 in.) in its true direction-sense from q parallel to AQ2. At the terminus 

of Aan draw Aa* (= 2.1 in.) perpendicular to AQt. Then 

Aa = qaXKa = 3.9 X 100 = 390 ft/sec2 

Ab =* Aa +* Aban +* Abo* 

Ab = As At,* 

Solve these simultaneous equations graphically as follows: From a draw 

Abon (■» 0.415 in.) in its true direction-sense parallel to BA. At the terminus of 

Ab«»B draw a line, representing the direction of Abo*, perpendicular to BA. (The 
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sense of Aba* is unknown at present.) From q draw Abn (= 1.345 in.) in its true 
direction-sense parallel to BQA. At the terminus of Abn draw a line, representing 

the direction of Ab* perpendicular to BQA. At the intersection of the lines repre¬ 

senting the direction of Aba1 and Ab*, locate b. Then Ab = qb X Ka = 1.63 X 

100 = 163 ft/sec2. Join a and b. ab is the acceleration image of AB. On the 

0 

Fig. 5-6 

sketch of the mechanism lay off Ab' = ab. Draw b'c' parallel to BC. With a as a 

center and a radius equal to Ac' draw an arc. With b as a center and a radius equal 

to b'c' draw an arc. At the intersection of these arcs locate c. Join a and c, and 

b and c. obc is the acceleration image of ABC. It should be pointed out that in 

the construction of the image abc the arcs could intersect to the right of ab but c 
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must be located in the acceleration polygon so that c appears in the same location 

of the sequence of letters acb as it appears in the sequence ACB; i.e., the clockwise 

sequence in the link is ACB, therefore the clockwise sequence in the image must be 

acb. Ac — qc X Ka = 3.3 X 100 = 330 ft/sec2, d is located on the polygon by 

rib X BD 2.9 X 6 
makingbd  -—— = ——— = 1.16in. Ad = qd X Ka= 1.52 X 100 = 152 

AB 15 

ft/sec2. The sense of the linear accelerations is shown on the polygon by means 

of arrows. This is unnecessary if it is remembered that all absolute accelerations 

originate at the pole q. 
The angular velocities may be obtained by using either the velocity or accelera¬ 

tion polygon. 

or 

Vba ab X Kv 1.44 X 5 
= 

AB AB 

Sl75 

h 
= 5.76 rad/sec clockwise 

«4 

Ahan 

Jab 

Vb = qb X K. 

QJ$ QiB 

} * IT 
= 5.76 rad/sec clockwise 

2.32 X 5 
1 2 
IT 

= 11.6 rad/sec counterclockwise 

0)4 = \J~~ — = 11.6 rad/sec counterclockwise 
\ Q+B \ yv 

The angular accelerations are obtained by using the acceleration polygon. 

a9 
Aba1 
AB 

2.86 X 100 
1 5 TT 

229 rad/sec2 counterclockwise 

QiB 
0.93 X 100 

1 2 
TT 

= 93 rad/sec2 counterclockwise 

Example 2. This example is the same as Example 1 except that the normal 

accelerations are to be obtained by the strict graphical method. 

Solution. Since the strict graphical method of obtaining the normal accelerations 

Kv2 
is to be used, the scale relationship Ka = ~~ must be observed. 

K, 
For the original 

(5)2 
drawing of Fig. 5-7, K9 — \ and Kv — 5 fps. Then Ka = —— = 100 ft/sec2. 

These same scales were arbitrarily chosen for Example 1 so that the results obtained 

by each method could be more easily compared. 

Draw the sketch to the K, scale. Calculate Va and draw the velocity polygon 

as in the previous example. By using the method of Art. 5-5, determine the normal 

accelerations. Lay off Va at A. Connect the terminus of Va, M, and Q2. Draw 

MN perpendicular to Q2M. Then AN equals, to the Ka scale, the magnitude of 

the normal acceleration of A. In like manner lines, representing the magnitude to 

the Ka scale, Aban and Abn are obtained as shown on the sketch. 

In drawing the acceleration polygon, which would be identical to that of Exam¬ 

ple 1, the lines representing the normal accelerations are transferred directly from 

the sketch of the mechanism to the acceleration polygon. After the normal accelera¬ 

tions are obtained the method of drawing the polygon is the same as for the semi- 

graphical method. The same results are obtained as in the previous problem. 
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5-7. The Slider-Crank Mechanism. The slider-crank mechanism 
probably is used in more machines than any other mechanism. For 
this reason special emphasis should be given to obtaining the veloc¬ 
ities and accelerations in this mechanism. In Fig. 5-8 a slider- 
crank mechanism is drawn to the K, scale. Owing to the fact that 

most acceleration analysis for this mechanism is made when the crank 
is turning uniformly, it will be assumed that the crank QA is turning at 
a uniform angular velocity counterclockwise. The Kv and Ka scales 

Kv2 
are chosen so that the scale relationship, Ka = , is satisfied and the K, 
strict graphical method of obtaining normal acceleration may be used. 
Lay off AM equal to the velocity of A, Va, to the scale Kv. Connect Q 

and M and draw MN perpendicular to MQ. Then AN equals the 
normal acceleration oi A, A0n, to the scale Ka. Since QA is rotating at 
a constant speed, the tangential acceleration of A, Aa‘, equals zero and 
the total acceleration of A, Aa, equals Aan. From the construction, it 
is seen that AM equals QA equals AN. Therefore, QA, the length of 
the crank on the drawing, equals, to the Kv scale, the linear velocity 
of A, Va, and, to the Ka scale, the linear acceleration of A, Aa. 

The velocity polygon is drawn as shown. By use of the strict graphi¬ 
cal construction for normal accelerations the normal acceleration of B 

relative to A is determined. The acceleration of B is obtained by the 
graphical solution of the following equation: 

Ai = Aa Aban +* Aba* 

12. 2 1 
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The direction of Ab is known to be along QX since the slide B is con¬ 
strained to movement along QX. The acceleration polygon is obtained 
by drawing, from the pole q, qa equal and parallel to AQ; drawing, 
from a, pa equal and parallel to BF; drawing from p a line, representing 
the direction of Aba, perpendicular to pa; and drawing from q a line, 
representing the direction Ab) parallel to QX. At the intersection of 
the last two lines locate 6, the final point on the acceleration polygon. 
Then Ab equals qb and has a sense toward Q. ab is the acceleration 
image of the connecting rod, AB. The linear acceleration of any other 
points and the angular velocity and acceleration of the connecting rod 
may be obtained by the methods discussed in Art. 5-4. 

/ N 

Special graphical constructions for obtaining the velocities and accel¬ 
erations in a slider-crank mechanism have been developed. One of 
these constructions, known as Kleins construction, is shown in Fig. 5-9. 
At Q erect a perpendicular to the path of travel of the slide. At the 
intersection of this perpendicular with the connecting rod (extended if 
necessary) locate W. With A IF as a radius and A as a center draw a 
circle. With a radius equal to one-half the length of the connecting 
rod, AB} and a center at Af, the midpoint of the connecting rod, draw 
a circle. Join the intersections, T and J, of these two circles with the 
line TJ. As a check on the construction, TJ will be perpendicular to 
AB. Locate H at the intersection of TJ and a line through Q parallel 
or coinciding with the path of travel of the slide. HQ is equal to the 
linear acceleration of the slide B to the Ka scale. For this construction 
to be applicable the following conditions must be satisfied: 

1. The mechanism must be a slider-crank mechanism with the guides 

stationary. 
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2. The crank must rotate at a uniform velocity. 
Kv2 

3. The scale relationship Ka = must be satisfied. 
K8 

4. The length of the crank QA on the drawing must equal, to the scale 
Kv, the linear velocity of the crank pin A. 

5. The length of the crank QA on the drawing must equal, to the Ka 
scale, the normal acceleration of the crank pin A. 

In Fig. 5-9 the triangle QAW is the velocity polygon turned through 
90°. QA is equal and perpendicular to qa of the velocity polygon 
of Fig. 5-8. QW is perpendicular to qb and A IF is perpendicular to 
ab. Therefore, triangles QAW and qab are equal. In the Klein con¬ 
struction QA = Va, QW — Vb, and AW = Vba, to the scale Kv. The 
true direction-senses of the velocities are obtained by turning the lines 
through 90° in a clockwise direction. 

The proof of Klein’s construction is based upon its similarity to the 
strict graphical construction shown in Fig. 5-8. The mechanisms in 
Figs. 5-8 and 5-9 have been drawn to the same Ka scale. The Kv and 
Ka scales for each figure are the same. In Fig. 5-8 triangles EFB and 
AEB are similar. Then 

BF BE 
(10) 

BE AB 

In Fig. 5-9, triangles TAP and BAT are similar. Then 

AP AT 

AT “ AB (11) 

AB in Fig. 5-8 = AB in Fig. 5-9, BE = ab in the velocity polygon of 

Fig. 5-8 = Vba, and AT = AW = Vha- Hence, 

BE = AT 

(12) 

Substituting BE for AT in equation 11, 

AP^BE 

BE “ AB 

Combining equations 10 and 12, 

BF AP 

BE ~ BE 
Hence, 

AP ^ BF = Aban 

By construction, QA in Fig. 5-8 is equal and parallel to QA in 
Fig. 5-9 is equal and parallel to qa in the acceleration polygon is equal 
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to Aa. Also by construction, Ahal and PH are perpendicular to AB 
and qb is parallel to QB. Therefore, the polygon QHPA is equal to the 
polygon qbpa, the acceleration polygon. By turning qbpa through 180 
degrees, it could be superimposed on the polygon QHPA of Fig. 5-9. 
Then, to the Ka scale, HQ = Ab; AQ = Aa; PA = Aban; HP = Aba\ 
and HA = Aba. HA is also the acceleration image of AB. It should 
be pointed out that the accelerations in the acceleration polygon in 
Fig. 5-8 are in their true senses (i.e., Ab is from q toward b) but that the 
senses of the accelerations in Fig. 5-9 are turned 180 degrees from their 
true directions (i.e., Ab is from H toward Q). 

5-8. Example of Klein’s Construction. 

Example 3. A 10 in. X 14 in. 200-rpm horizontal steam engine has a ratio of 

the length of the crank to the length of the connecting rod of one fourth. 

With the piston to the right and the crank turning counterclockwise, find the 

instantaneous linear velocity and acceleration of the piston when the crank has 

turned 60 degrees past head end dead center. Also find the linear acceleration of 

the midpoint, M, of the connecting rod and the absolute angular velocity and 

acceleration of the connecting rod. 

Solution. In Fig. 5-10, the mechanism is drawn to an original space scale of 

Ka = -g-. The length of the crank of the actual engine is 7 in., one half of the stroke 

2?r X 7 X 200 
of 14 in. The length of the connecting rod is 28 in. V« =-= 12.22 

12 X 60 

7X3 
fps. The length of the crank QA on the drawing is - = 1.75 in. Then 

Kv = = 6.98 fps. Ka = ^ = 146 ft/sec*. 
1.75 K a g 

A check of the Ka scale follows. Aan = co2 X QA 

256 

/2tt X 200V 7 

V 60 / 12 
256 

ft/sec2. Ka = = 146 ft/sec2. The Klein construction, as explained in 
1.75 

Art. 5-7, is shown on the sketch. Vb - QW X Kv = 1.61 X 6.98 =* 11.24 fps, 

and is parallel to BQ from B toward Q. Ab = HQ XR* 0.64 X 146 « 93.4 

ft/sec2, and is parallel to BQ from B toward Q. Since AH is the acceleration image 
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of the connecting rod AB, the image m of M is located on AH as shown by drawing 

Mm parallel to HB. Then Am — mQ X Ka — 1.02 X 146 =* 149 ft/sec2, and is 

parallel to mQ from M toward Q. The absolute angular velocity of the connecting 

rod, a>ab 
Vba 
AB 

WA X Kv 0.84 X 6.98 

AB ~ ^ 
2.5 rad/sec clockwise, or 

4§-4 PA X Kg 

AB 4 0.1 X 146 
2.5 rad/sec 

Aba* PH X Ka 

“ AB " AB 

1.43 X 146 

« 89.5 rad/sec2 counterclockwise 

The angular velocity of A B is clockwise because Vba is perpendicular to AB and 

downward. The angular acceleration of AB is counterclockwise since Aba* is 

upward, perpendicular to AB. 

5-9. Accelerations of Points on a Rolling Body. The acceleration 
of any point on a body which rolls without slip on another body is deter¬ 
mined by the proper application of the principles already discussed. 
In general the most convenient method is as follows: 

1. Find the acceleration of the center of curvature of that part of the 
body which is in contact with the second body. 

2. Find the acceleration of the given point relative to the center of 
curvature. 

3. Find the vector sum of these two quantities, thus obtaining the 
required acceleration of the point in question. 

In the case of a circular cylinder, simple equations may be derived 
for obtaining the acceleration of any given point. One example will be 
worked out here in order to suggest the method of procedure. 

Example 4. In Fig. 5-11 the axis C of the cylinder 2 is carried by the arm 3. 

The arm 3 turns about the fixed axis Z at a constant angular speed cos. The cylinder 

2 rolls without slip on the fixed cylinder 1 whose axis is also at Z. The radii of 2 

and 1 are R2 and Ri respectively. Then the distance ZC is evidently equal to Ri -f 

Rt. Let the angular speed of 2 be represented by a>2. 

Required to find expressions for the acceleration of C; of any point A on the 

circumference of 2; and that point P on 2 which is at the instantaneous axis Q2. 
To find Ae. Since 1 is fixed, Q2 is at the line of tangency of 2 and 1. Cc = 

Ve — «a (Ri 4- #2), and since w3 is constant Vc is constant and AJ — 0. There¬ 
fore the only acceleration which C has is that due to the fact that it is moving in a 

circle about Z. That is, 

Ac =* Acz11 — co82(#i + R2) = (13) 

Ve 
To find Aa» cot « ~ . Therefore 

R2 
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and since Vc is constant <*2 is zero. Therefore the only acceleration which A has 
relative to C is Aaen as expressed in equation 14. Hence 

A a — Ac "| > A atjn 

v 2 V 2 
---1->— • 
Ri -j~ R2 R2 

(15) 

To find Ap. Apply equation 15, substituting P for A and remembering that 

Ape11 and Ac»n act along the same line in opposite senses. Then equation 15 becomes 

Ap — Ac 4—* Apcn — Apen ACzn 
vi 
r2 

Vc2 
Ri -f" R2 

= Vc2 x Ri 

R\Ri 4" Ri2 
or 

Ap — C022 X 
R\R2 

Ri 4~ Ri 

(16) 

(17) 

The acceleration polygons for equations 15 and 16 are shown in Fig. 5-11. If 

Vc2 
the radius Ri is infinite, that is, if 1 is a plane surface, Av — o>2 X Ri — ~z~~ and acts 

Ri 

along PC toward C. The acceleration of A then has the same magnitude as A p and 

act* along AC toward C. 

It should be noted that P, the instantaneous axis of velocity of cylinder 2, has no 

linear velocity but a linear acceleration. See Art. 4-6. 

6-10. Coriolis’ Law. In Art. 5-8, the guide for the sliding member 
was fixed to the earth. There are many types of machines in which the 
guide as well as the slide moves with respect to the earth. In this case 
the method developed in Art. 5-8 will not hold true but the accelera¬ 
tions may be obtained by the use of Coriolis, law. The complete 
development of this law is rather involved. No attempt will be made 
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to prove the law but its use will be discussed. For a complete dis¬ 
cussion of this law the reader is referred to Analytical Mechanics for 
Engineers by Seely and Ensign. 

Coriolis1 law states that when a particle is moving along a path which 
is also in motion the absolute linear acceleration of this particle is the 
vector sum of (1) the acceleration which the particle would have if the path 
were fixed and the particle moved only along the path, (2) the acceleration 
which the particle would have if the particle were fixed to the path and the 
path moved, and (3) a compound supplementary acceleration called 
Coriolis} acceleration. This compound supplementary acceleration is 
equal to twice the product of the velocity of the particle relative to the path 
and the angular velocity of the path. 

A distinct notation will be used. Also only one set of units will be 
used. In Fig. 5-12, the particle P is moving outward along the path m 

whose center of curvature is at 0. The path m rotates about the fixed 
axis Q. * 

<a = the absolute angular velocity of the path, radians per second 
a = the absolute angular acceleration of the path, radians per second 

per second 
12 = the relative angular velocity of the radius OP, radians per 

second 
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ct = the relative angular acceleration of the radius OP, radians per 
second per second 

r = the radius of the path, feet 

p = the instantaneous straight-line distance from the axis of rotation 
Q and the position of the particle P on the path ra, feet 

u = the velocity of P relative to 0 and due only to 12, feet per second 

Stated in equation form Coriolis’ law is 

Ap = Ar +> Am +> 2UO) (18) 

where Ap — the absolute linear acceleration of the particle P 
Ar = the linear acceleration of P relative to 0 

Am = the absolute linear acceleration of P about Q 
2uu = the compound supplementary acceleration 

2mu is a normal acceleration and is, therefore, due to the changes of the 
directions of the velocity of P. 

Ar = Arn +> Arl 
Arn = S22r = u2/r = ui2, is parallel to PO and is from P toward 0 
Arl = or, is perpendicular to PO and in a sense consistent with a 
Am =* Amn +> Am1 

V g2 
A mn = co2p = —— = Vpqu, is parallel to PQ and is from P toward Q 

P 
Aml = ap, is perpendicular to PQ and in a sense consistent with a 

Equation 18 may now be rewritten 

AP= Arn +-> Ar +> Amn +> Am1 +» 2uo) (19) 

A rule for the direction-sense of 2ua> follows. 2uo) is always parallel 
to PO and, therefore, perpendicular to u. Assume 2uw to be a force 
placed at the head of the vector u. Then give this force a sense to 
cause the vector u to tend to rotate about P with the same sense as co. 
This sense is the sense of 2uu. 

Each of the vectors of equation 19 is drawn from the point P in 
Fig. 5-12 and the vector solution of the equation is shown in the acceler¬ 
ation polygon. Using the above rule for determining the direction- 
sense of 2uo)y assume 2ucj placed at the end of u. Since a> is clockwise, 
2uo) must be to the right in order to cause u to tend to rotate about P 

in a clockwise sense. 
There may be some confusion as to when to use Coriolis, law and 

when to use the relative acceleration method which was developed in 
the previous articles. Hence, a rule will be helpful. Whenever a 
particle is moving on a body which is moving relative to the earth, use 
Coriolis, law. When applying Coriolis' law, the relative angular 
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velocity and acceleration of the line joining the particle and the center 
of curvature must be used. When applying the relative acceleration 
method, the absolute angular velocity and acceleration of the line 
joining the two points must be used. 

6-11. Application of Coriolis’ Law. 

Example 5. In Fig. 5-13 the curved path m represents the blade of a fan. It is 

desired to find the absolute linear acceleration of a particle of air P which is moving 

outward at the instant shown. The absolute angular velocity of the blade is 120 

the instant under consideration the relative angular velocity of the radius of 

curvature r of the blade is 100 rpm counterclockwise and the relative angular 

acceleration is 300 rad/sec2. 

Solution. Applying equation 19, 

Ap = Arn +> At1 +* Amw 4-> Am* -f» 2IUO 

<2* X 100y . _ 5 
Arn- flV 

-'(2 60 
X — = 45.7 ft/sec2, parallel to PO and from P to- 

12 

ward O 

Ax* « or = 300 X — 125 ft/sec2, perpendicular to PO and up 

6 
Amn « w2p 

ward Q 

/2tt X 120V 

\ 60 / 
X — = 78.8 ft/sec2, parallel to PQ and from P to¬ 

il 2 

100 X 6 
Am1 *op =--— = 50 ft/sec2, perpendicular to PQ and toward the right 

12 

2t X 100 X 5 
« o Or = —60 ~x~l2— = 4P®1^11^011^ to OP and up 

2tt X 120 ^ J# 
co 8» —rr- = 12.57 rad/sec 

60 

2uto « 2 X 4.36 X 12.57 = 109.3 ft/secs, parallel to OP and to the right 

These acceleration vectors are drawn to a scale of Ka equal 100 ft/sec* and Ap 
determined as shown in the polygon. 

Ap * 0.66 X 100 * 66 ft/sec* 
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Example 6. In Fig. 5-14, the link QA, 2 ft long, is rotating clockwise with an 

absolute angular velocity co of 2 rad/sec and an absolute angular acceleration a of 

5 rad/sec2. The link AB, 1 ft long, is rotating about A with a uniform relative 

Relative polygon 

Fig. 5-14 

angular velocity 12 about A of 3 rad/sec. Find the absolute linear acceleration of B 
by the use of Coriolis’ law and check this acceleration by the relative acceleration 

method. 

Solution. Using Coriolis’ law: 

Ab = Arn +♦ AS +* Amn 4-> Am *4-> 2uw 
Arn = 122r = (3)2(1) = 9 ft/sec2, parallel to BA and from B toward A 
AS = <rr - (0) (1) = 0 
Amn — o>2p = (2)2 X 2.235 = 8.94 ft/sec2, parallel to BQ and from B toward Q 
Am* = ap = 5 X 2.235 = 11.185 ft/sec2, perpendicular to BQ and downward 

w = 12r = 3 X 1 = 3 fps, perpendicular to AB and to the left 

2 uco = 2X3X2 = 12 ft/sec2, parallel to BA and up 

As shown in Fig. 5-14, the Coriolis acceleration polygon is drawn to an original 

scale of Ka = 10 ft/sec2 and Ab is 19.8 ft/sec2. 
Using the relative acceleration method: 

Ab = Aan 4“* Ao* -H> Aba1 “b4 Aba 
Aan = «2 X QA = (2)2 X 2 = 8 ft/sec2, parallel to AQ and from A toward Q 
AS = « X QA = 5 X 2 = 10 ft/sec2, perpendicular to AQ and down 

Aban = (« + 12)2 X AB = (2 + 3)2 X 1 =25 ft/sec2, parallel to BA and from B 
toward A 

Aba* » (« + <?) X AB = (5 + 0) X 1 = 5 ft/sec2, perpendicular to BA and to 

the left 

As shown in Fig. 5-14, the relative acceleration method polygon is drawn to an 

original scale of Ka = 10 ft/sec2 and Ab is 19.8 ft/sec2. 

It should be noted jthat in obtaining the relative acceleration of B about A, the 

absolute angular velocity and acceleration of AB were used. 

Example 7. The crank 2 (Q2A) of the turning block mechanism in Fig. 5-15 
rotates uniformly counterclockwise at 100 rpm. Q^Qz = 3 in.; Q%A =7 in.; 

and Q*B = 4 in. When the crank 2 makes an angle of 60° with the horizontal, 

determine the absolute linear acceleration of B and the absolute angular velocity 

and acceleration of crank QzA. 



104 ACCELERATION ANALYSIS 

Solution. Basically this problem deals with the acceleration of two coincident 

points, A on link 2 and A on link 3. Since these two points are not on the same link, 

the method of relative accelerations cannot be used and recourse must be had to 

Coriolis1 law. Either A on 2 or A on 3 could be chosen as the point but a much 

simpler solution will be afforded if A on 2 is chosen as the point moving along the 

straight path, link 3. The absolute linear acceleration of A on 2, A02, is known and 

the acceleration equation is 

Ao2 — Arn Ar* +4 Amn -f-> Amt -f*» 2lUt) 

Aq2 “ Aa2n "f-* Ao2* 

Aain — X QiA = X ~ = 63.96 ft/sec2, parallel to AQt from 

A toward 

Ao24 — 0, crank 2 rotates uniformly 

Arn = 0, no change in direction of the velocity of a point rotating about infinity 

At* = <rr, unknown in magnitude but direction along AQz 

Draw the velocity polygon, as shown, to a velocity scale of Kv = 5 fps. 

A n Am 

Am1 
U 

0) 

(Faa)2 _ (qaz X Kv)2 

QzA Q$A 

from A toward Qz 

(1.16 X 5)2 

a9 
12 

= 45.3 ft/sec2, parallel to AQS and 

« a X QjA, unknown in magnitude but perpendicular to AQi 
= Vaiai — <hflt X Kv = 0.37 X 5 = 1.85 fps, parallel to AQz and outward 

Fo8 gat X Kv _ 1.16 X 5 

QiA ” &A ao 
12 

7.82 rad/sec, counterclockwise 

2u» »2 X 1.85 X 7.82 ** 28.9 ft/sec2, perpendicular to Q%A and toward the left 
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Draw the acceleration polygon to the acceleration scale of Ka * 25 ft/sec* and in 

the following order: 

1. Draw qa,2 = Aa2n, remembering this is the resultant acceleration. 

2. Draw 2uu with its vector head to the vector head of qa*. 

3. Draw Amn from q, 
(There are only two other vectors, namely, Am* and Ar*, appearing in the polygon. 

Neither vector is known in magnitude but the polygon may be completed since their 

directions are known.) 

4. Draw a line, representing the direction of Am\ perpendicular to Amn and from 

the head of vector Awn. 

5. Draw a line, representing the direction of A A, parallel to Q%A and from the 

origin of 2iuo. 
At the intersection of these last two lines locate a3. Then qaz is the acceleration 

image of Q$A. Locate 6, the image of B, on the acceleration polygon by making 

qb = 
qazXQS 1.86X4 

= 0.836 in. 
QzA 8.9 

€ Ah = qb X Ka = 0.836 X 25 = 20.9 ft/sec2 

The absolute angular velocity of the crank Q3A, u>3, has been obtained by the use 

of the velocity polygon as previously shown and is 7.82 rad/sec counterclockwise. 

A, 1 0.4 X 25 
The angular acceleration of crank QSA, a3 = — —- = 13.48 rad/sec2. 

(^3^4 o.y 

I2 

PROBLEMS 

V-l. A crank AB 1$ in. long is turning about the fixed axis A. The angular 

speed of AB at a given instant is 2 rad/sec, and the angular acceleration is 1J rad/ 

sec2. Compute the tangential and normal components of the acceleration of B. 

Draw the crank making an angle of 45° with a horizontal line and draw vectors for 

these components at a scale of Ka ~ 2 in./sec2. Find the resultant acceleration. 

V-2. The motion of the rigid 

body m is such that the point A 

moves in a circular path of 1-in. 

radius about a fixed axis C located 

at the left of A. The absolute 

linear velocity of A, represented 

by the vector Aai, is 1.5 ips. 

The linear velocity of A is de¬ 

creasing at the rate of 1 in./sec2. 

B has constrained motion along 

the line XX. Draw the velocity 

polygon to a scale of Kv = 1 ips 

and the acceleration polygon to a 

scale ofXo - 1 in./sec2. Deter- 
mine the absolute linear velocity Prob. 

of B, the absolute linear acceleration of A and B, and the absolute angular velocity 

and acceleration of m. 
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V-3. A circular disk is turning about its axis C at constant speed of } rad/sec. 

Three points A, B, and D on the disk lie on radial lines 120 degrees apart. The 

distances from C to A, B, and D are li in., 2 in., and 3 in., respectively. Draw the 

acceleration vector for each of the three points on the space diagram and on a vector 

polygon. Compare the triangle formed by the termini of the vectors with the tri¬ 

angle formed by the points A, B, and D. 
V-4. o)2 ~ 4.8 rad/sec clockwise. «2 = 8 rad/sec2 clockwise. Using Kt = } ft, 

Kv = 1.8 fps, and Ka = 6 ft/sec2, draw the mechanism to scale and obtain the 

velocity and acceleration polygons. Determine Ab, co3, o>4, <*3, and a4. 

B 

V-5. Using the data of Prob. V-4, and K„ = \ ft and Kv - 1.8 fps, determine the 

Ka scale to be used in obtaining the normal acceleration graphically. Using this K0 
scale for the acceleration polygon, draw the mechanism to scale and obtain the 

velocity and acceleration polygons. Determine Abf w3, co4, a3, and a4 using the 

strict graphical method. 

V-6. Q2B = 1 in.; BC = 3 in. 

o>2 = 1 rad/sec, constant. Find the 

vector for Ac by the relative accelera¬ 
tion method. 

V- 7. Same data as Prob. V-6 but use Klein's construction in obtaining the 

vector Ae. 

V-8. Q2B = 12 in., BC = 1 ft 9 

in., BH = 3 ft 9 in., Q4C = 1 ft 6 in., 

Q2Q4 = 2 ft 6 in. Scales: K, = 1 

ft, Ka = 100 ft/sec2. The rotation 

of Q2B is counterclockwise. The 

angular velocity of Q%B is 100 rpm 

and its acceleration is 100 rad/sec2. 

Using the semigraphical method of 

obtaining the normal accelerations, 

find the acceleration of C and H. 
Also find the absolute angular velocity and acceleration of the connecting rod BC. 

V-9. Same data as Prob. V-8 but use the strict graphical method of finding the , 

normal accelerations. 
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V-10. Q2B - 5 in., BC m 15 in., 

QiC = 21 in., QiQi = 26 in., CBE = 

27 in. K, ~ $ ft. The sketch repre¬ 

sents a crank and rocker mechanism 

as used in a certain type of wool- 

combing machinery. Q2B is the driving 

crank, rotating clockwise at a uniform 

speed of 120 rpm. For the position 

shown, AB horizontal and making an 

angle of 30° with the line of centers, 

find the linear acceleration of the 

comb, E. Also find the angular veloc¬ 

ity and angular acceleration of the con¬ 

nection rod BC, 

V-ll. K, * 1 ft. The sketch represents a beam engine. The crank AB turns 

uniformly clockwise at 150 rpm. When the crank makes an angle of 60° with the 

horizontal, find the absolute linear acceleration of the end of the beam, E; the 

absolute angular velocity and acceleration of the beam CDE. 

V-12. AB = DC — 9 in., AD - BC = 16 in. Ka - i, K* = 1 fps. Elliptic 

gears are used to drive the ram of a slotter. Gear m is on shaft At driven uniformly 

counterclockwise at 10.7 rpm. Gear n is on a shaft at D to which is attached the 

crank for moving the ram. In the consideration of the motion of such a machine, 
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the gears can be considered as a non-parallel equal crank linkage ABCD, with the 

pitch point at P. Let DC be extended 3 in., so that DCE can be considered as the 

crank driving the ram. For the position shown, find the instantaneous absolute 

linear acceleration of E, giving both its sense and magnitude. Also find the abso¬ 

lute angular velocity and acceleration of the connecting rod BC. 

V-13. QB = 1 ft, BC = 2 ft, BCH = 3 ft. Ka = 1 ft. QB is rotating counter¬ 

clockwise at a uniform speed of 100 rpm. Using the strict graphical method of 

obtaining the normal accelerations, find the acceleration of C and H. 

B 

V-14. Same data as Prob. V-13 but use Klein’s construction. 

V-15. AF = 1 ft 3 in., BC = 1 ft 2 in., CD = 0 ft 6 in. The crank CD is rotat¬ 

ing uniformly counterclockwise at 150 rpm. The sketch is to be drawn J size. 

Find the absolute instantaneous linear velocity in feet per second of point F and 

slide E; the absolute instantaneous linear acceleration in feet per second per second 

of the slide E; and the absolute instantaneous angular velocity in revolutions per 

minute of the variable-length crank AFt Indicate the direction-sense of the veloci¬ 

ties and acceleration. Give the space, velocity, and acceleration scales. 
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V-16. A 26 in. x 32 in. 150-rpm horizontal steam engine has a ratio of crank to 

connecting rod of 1 to 4|. With the piston to the left of the crank, find the instan¬ 

taneous linear acceleration in feet per second per second of the piston when the 

cr£nk has turned clockwise 45 degrees past the head end dead center. Use a space 

scale of 1J in. = 1 ft. Also find the linear velocity of the piston and the absolute 

angular velocity and acceleration of the connecting rod. 

V-17. A 10 in. x 12 in. vertical steam engine runs at a uniform speed of 260 rpm. 

The ratio of the length of the connecting rod to the length of the crank is 5 to 1. 

K8 = J ft. Determine the acceleration of the piston when the crank has rotated 

45 degrees past the head end dead center. Also find the linear velocity of the piston 

and the angular velocity and acceleration of the connecting rod. 

V-18. A water wheel is 12 ft in diameter and has radial blading. Water enters 

at the center and travels radially outward. Consider a blade vertically upward and 

a particle of water acting along the vertical center line. The wheel turns counter¬ 

clockwise at a uniform speed of 50 rpm. The water at the instant it reaches the 

periphery of the wheel has a velocity along the blading of 6 fps and is decreasing at 

the rate of 3 ft/sec2. Find the instantaneous absolute linear velocity and accelera¬ 

tion of the water. 

V-19. The particle P moves on the path 

m, which, in turn, rotates about Q. The 

velocities and accelerations are as shown on 

the sketch. Find the absolute linear accel¬ 

eration of the point P. 
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V-20. Ka = i ft, Kv = 10 fps, Ka - 100 ft/sec*. 

The angular velocity of the bar for position shown is 

120 rpm clockwise but its angular acceleration is un¬ 

known. A particle P moves outward along the bar 

with a relative linear velocity, u — 10 fps, and an 

unknown relative acceleration. The total absolute 

acceleration of the particle P is 150 ft/sec2 directed 

horizontally to the left. Find the absolute angular 
acceleration of the bar and the linear acceleration of P 
along the bar. 

V-21. QiA = 8 in., QZB = 4 in., Q2Qt = 3} in. 

The crank Q2A rotates uniformly clockwise at a speed 

of 90 rpm. Find the absolute linear acceleration of 

the point B. 

V~22. Solve Example 7 (Fig. 5-15 of the text), by using Ka =* ^ ft, Kv =» 3 fps, 

and the strict graphical method for obtaining the normal accelerations. Assume 

crank 2 (Q%A) to rotate uniformly clockwise instead of counterclockwise. 

V-23. The cylinder k rolls without slip on the 

straight track g. Rk = 2 in. Velocity of C = 1$ 

ips; acceleration of C = $ in./sec2 (same sense 

as velocity). Find the vector for the acceleration 
ofP. 
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V-24. The cylinder k has a diameter of 6/7r in. It rolls along the straight track g 
without slip, starting from rest. The axis C moves a distance of 6 in. to the right in 
1 min with harmonic motion, coming to rest at the end of the 6-in. motion. When 

C has moved 1 in. from its starting point, find the position of that point P which was 
in contact with the track at the instant of starting, and find the acceleration vector 
fof P in this new position. 

V-25. Rk * 1 in.; Rg = 2 in. P is a point on k -fo in. from C. The axis C is 
carried by the arm h which turns at constant angular speed = 1 rad/sec about 
the fixed axis Z. Cylinder k rolls without slip on the fixed cylinder g. Find Ap 
for the position shown. Also find the component of Ap parallel to YY when h has 
turned through an angle of 30° to the right. 



CHAPTER VI 

LINKAGES 

6-4. A Linkage consists of a number of pairs of elements connected 
by links. If the combination is such that relative motion of the links 
is possible, and the motion of each piece relative to the others is definite, 
the linkage becomes a kinematic chain. If one of the links of a kine¬ 
matic chain is fixed, then the chain becomes a mechanism. 

In order that a linkage may constitute a kinematic chain, the num¬ 
ber of fixed points, or points whose motions are determined by means 
outside the particular linkage in question, must bear such a relation to 
the total number of links that the linkage may form a four-bar linkage 

& or a combination of two or more four- 
ytfK bar linkages. This may be seen by 

reference to Figs. 6-1,6-2, and 6-3. 
// \\. The linkage in Fig. 6-1 consists of 

// Vs. three links AB, AC, and BC, form- 
// ing a triangle, and it is apparent 

yy that no relative motion of the links 
{q/ Vo) can occur since only one triangle 

A Fig 6-1 ° can ^ormec^ from three given 
lines. On the other hand, if four 

links are involved, as in Fig. 6-2, relative motion of a definite nature 
will result. If now five links, as AB, BC, CD, DE, and EA, Fig. 6-3, 
constitute the linkage, any link, as AE, may be fixed; then AB and 
ED become cranks, but a 
given angular motion of the 7^ 
crank AB does not impart a / / 
definite resulting angular mo- / / 
tion to DE unless the point C J_J 
is guided by some external D 

t/u n Fig. 6-2 means. If, however, C is 
guided by the crank FC turning about any fixed center F the motions 
of all the links become determinate. But the linkage, by the addition 
of the crank FC, has now been transformed into a combination of two 
four-bar linkages, namely ABCF and FCDE with A, F, and E fixed. 

In general, it may be said that any mechanism may be analyzed as a 
four-bar linkage or as a combination of two or more such linkages. 

112 

Fig. 6-2 
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G 

6-2. The Four-Bar Linkage. In Chapter I a machine was defined 
and the four-bar linkage was evolved. Chapter II treated of motion in 
general. Chapters IV and V presented graphical methods for obtain¬ 
ing the linear velocities and accelerations of points on links and the 
angular velocities and accelerations of the links in a mechanism. With 
this information as a background, some of the more common machines 
may now be considered with the intent of presenting the manner in 
which other machines may be studied. 

In studying the motion of a mechanism by applying the laws of the 
four-bar linkage the first step always is to identify the four-bar linkage 
or chain of four-bar linkages. It must be borne in mind that each 
line representing a link is a part of some rigid body. The line of centers 
is on a body assumed to be fixed; the center lines of the cranks are on 
rigid bodies turning about axes attached to the fixed body, and the 
center line of the coupler (or line of connection as it is sometimes 
called) is on a rigid body connected to each crank by either a turning 
pair or a sliding pair. 

To identify the links it is best, usually, to start at the driving member 
and find the fixed axis about which this member is turning. This 
member, being a rigid piece turning about a fixed axis, is a crank. 
Next, if possible, determine the fixed axis and the rigid piece turning 
about it which receives its motion from the driver either by direct 
contact or through one intermediate connector. Thus we find two 
cranks of a four-bar linkage. The member to which the fixed axes are 
attached is the fixed link, and the straight line joining the two fixed 
axes is the line of centers. If the driving crank imparts motion to the 
driven crank through an intermediate connector, the connector is the 
coupler or connecting rod, its center line being the line joining the axes 
of the pin joints by which the coupler is connected to the cranks. The 
center line of each crank is the line joining the fixed axis to the point of 
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connection with the coupler. If the two cranks are in direct contact 
the line of the coupler is the common normal to the two contact sur¬ 
faces; the intermediate connecting body containing this line is of zero 
dimensions and therefore is imaginary. The first four-bar linkage 
having been identified, others in a chain of linkages may be followed 
through in a similar manner. 

In some instances the axis of a crank may be its instantaneous axis 
of velocities. 

It is not necessary that any link be absolutely at rest. The link 
AD, Fig. 6-2, which is there assumed to be fixed, may be attached to 
some other part of the machine which itself is in motion. A BCD 
remains a four-bar linkage and the relative motions of its four links are 
unchanged, although, of course, the absolute motion of each link 
depends not only upon its motion with relation to the link which is 
assumed to be fixed (in this case AD) but also upon the motion which 
that link has. 

In this book, motion with respect to the link assumed to be fixed will 
be considered as absolute motion. It will be apparent that the abso¬ 
lute motion of any point in a four-bar linkage depends upon the length 
of the different links relative to the length of the fixed link. By the 
length of a link is meant the center-line distance between the axes of 
the joints connecting it to the two adjacent links of the four-bar 
linkage. 

6-3. Relative Motion of the Links in a Four-Bar Linkage. Since, as 
shown in Art. 6-2, the motions of the links, relative to some one link 
assumed to be fixed, are not changed if motion is imparted to that link, 
it follows that the motion of any link, relative to any other link of the 
linkage, is the same whichever link is fixed. In other words, the rela¬ 
tive motions of the links of a four-bar linkage are independent of the 
fixedness of the links. This principle is taken advantage of in the 
application of four-bar linkages, particularly where centrodes are sub¬ 
stituted for some of the links, as will be illustrated later. 

6-4. Angular Speed Ratio of Links. The laws governing the relation 
of the angular speeds of the links of a four-bar linkage were explained 
in Chapter IY. (See Art. 4-15.) Because of its importance in the 
analysis of linkages the law applying to the angular speed of the cranks 
may be stated as follows: The angular speeds of the two cranks of a four- 
bar linkage are inversely as the lengths of the perpendiculars or any two 
parallel lines drawn from the fixed centers to the center line of the connecting 
rod; also, inversely as the distances from the fixed centers to the point of 
intersection of the center line of the connecting rod and the line of centers 
{produced if necessary). 
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6-5. Dead Points. A position in the cycle of motion of the driven 
crank of a linkage in which it is in line with the connecting rod, and 
therefore cannot be moved by the connecting rod alone, is known as 
a dead point or dead center. If the driven crank makes complete 
revolutions there are two such positions in its cycle. 

6-6. Centrodes. In Fig. 6-4, A and D are fixed axes; the bodies con¬ 
taining AB, BC, DC, and AD are denoted by 2, 3, 4, and 1 respectively. 
The cranks 2 and 4 oscillate through angles B0ABi and C0DCi respec¬ 
tively. In any position as A BCD the instantaneous axis of 3 is at Q3. 
Draw the linkage in a series of positions from ABqCqD to AB\C\D, 

and draw a smooth curve through the successive positions of Qz. This 
curve is BqQ\QzC\. It is the locus of the instantaneous axis of 3 for the 
range of motion specified and is called the centrode of 3. Again let B 
and C be assumed fixed and a series of positions of the instantaneous 
axis of 1 found. The resulting centrode of 1 is the curve BMQZC. 

Points on the outline of the centrode of 1 can be found readily, as 
shown at M. From B and C draw arcs with radii B2Qf3 and C2Q'3 re¬ 
spectively. These arcs intersect at M, giving the point on the piece 3 
which will be at Q'3 when the linkage is in the position AB2C2D. 

Now assume the body 3 of which the line BC is a part to be given a 
contour of the form of the centrode of 1 (BMQZC) and a piece of the 
form of the centrode of 3 (BoQ'zQsCi) to be attached to the fixed piece 1. 
Then, as the cranks turn, 3 will roll on the fixed curve without slip. 
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If the cranks are removed and 3 is given such a rolling motion the 
points B and C will have exactly the same motion as they did when 
the cranks were in place. The locus of the instantaneous axis of 3 is 
referred to as the fixed centrode and that of 1 as the moving 
centrode (3 being the moving piece). 

Since the instantaneous axis is a line perpendicular to the plane of 
motion of any line in a body having coplanar motion, the centrode is a 
surface passing through the successive positions of the instantaneous 
axis. The curves shown in the figure are the “ end views,” or traces 
on the plane of the drawing, of the centrodes. 

An instantaneous axis exists for every position of a body having any 
coplanar motion other than pure translation, or rotation about a fixed 
axis. Hence every body having such motion has a centrode. The 
form of the centrode depends upon the form of the path of any two 
points in the body. In the coupler of a four-bar linkage it depends 
upon the relative lengths of the four links. Frequently the outline of 
the centrode is a complex curve having little practical value, but in 
some special cases it is a simple curve such as a circle, an ellipse, or 
even a straight line. If this occurs it may be convenient to make use 
of the centrode either in analyzing the motion or in constructing the 
mechanism. 

Fig. 6-5 

6-7. Crank and Rocker. Let the link AD (Fig. 6-5) be fixed, and 
suppose the crank AB to revolve while the lever DC oscillates about 
its axis D. In order that this may occur, the following conditions must 

exist. 

1. AB + BC + DC > AD. 3. AB + BC - DC < AD. 

2. AB + AD + DC > BC. 4. BC - AB + DC > AD. 

1 and 2 must hold in order that any motion shall be possible; 3 can 
be seen from the triangle ACtD in the extreme right position AB2C2D, 
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which must not become a straight line; and 4 can be seen from the 
triangle AC\D, in the left extreme position ABiCiD. 

At two points Ci and C2 in the path of C the motion of the lever is 
reversed, and it will be noticed that, if the lever DC is the driver, it 
cannot, unaided, drive the crank AB, as a pull or a thrust on the rod 
BC would only cause pressure on A, when C is at either C\ or C2. If 
AB is the driver, this is not the case. 

6-8. Drag Link. It will be observed that, in Fig. 6-5, one of the two 
longer links is the fixed link, and the proportions are such that only one 
of the cranks (AB) makes a complete revolution. In Fig. 6-6 the 
proportions are nearly the same as in Fig. 6-5, but AB is made the 
fixed link. The links BC and AD revolve about B and A respectively, 
that is, become cranks, and CD becomes a connecting rod. This 
mechanism is known as the drag link. 

Fig. 6-6 

In order that the cranks may make complete revolutions, and that 
there may be no dead points, the following conditions must hold: 

1. Each crank must be longer than the line of centers; this needs no 

explanation. 
2. The link CD must be greater than the lesser segment C4F and less 

than the greater segment C4D2, into which the diameter of the greater 
of the two crank circles is divided by the smaller circle. This may be 
expressed as follows: 

CD > AB + AD — BC (see triangle ACJDi) 

CD < AD + BC — A3 (see triangle BC2D2) 
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Dropping the perpendiculars AM and BN upon the center line of 
the connecting rod, 

Angular speed of AD _ BN 

Angular speed of BC AM 

In the positions ABC1D1 and ABC3D3, when CD is parallel to the line 
of centers, the angular speeds of AD and BC are equal, since the 
perpendiculars BN and AM then become equal. 

If BC revolves counterclockwise and is considered the driver, it will 
be noticed that between the positions ABC3D3 and ABC1D1 the crank 
AD is gaining on BC, and between ABC1D1 and ABC 3D 3 it is falling 
behind BC. 

Figure 6-7 shows an application of the drag link as a quick-return 
mechanism as used in a Dill slotter. The links in this figure are 
lettered to correspond with Fig. 6-6. The large gear, turning on a 
fixed boss, centered at B on the frame, carries the pin C and forms the 
driving crank corresponding to BC, Fig. 6-6. The shaft A has its 
bearing in a hole in the large boss on which the gear turns and has 
keyed to it the crank arm AD. On the other end of this shaft is 
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another crank arm, or its equivalent, the center line of which is AN. 
To this latter crank arm is attached the connecting rod which drives the 
ram. The mechanism is shown in the position which it occupies when 
the ram is about at the middle of the downward or cutting stroke. 

6-9. Parallel Crank Four-Bar Linkage. In Fig. 6-8, the crank AB 
is equal in length to the crank CD and the line of centers AD is equal 
to the connecting rod BC. The center lines of the linkage thus form a 
parallelogram in every posi¬ 
tion, provided the cranks 
turn in the same sense. 
Therefore, the perpendiculars 
AM and DN are always equal 
and the two cranks are al¬ 
ways turning at the same 
angular speed. A familiar example of this linkage is furnished by the 
cranks and parallel rod of a locomotive. Here the link formed by the 
center line of bearings in the frame carrying the axles of the two driving 
wheels corresponds to the line of centers, but is itself in motion. 

6-10. Non-Parallel Equal Crank Linkage. In the linkage shown in 
Fig. 6-9 AB is equal to CD and AD is equal to BC. Provision is made, 
however, to cause the cranks to turn in opposite senses, in which case 
the perpendiculars AM and DN do not remain equal to each other. 

Therefore, if the crank AB 
turns with uniform angular 
speed, the crank DC has a 
varying angular speed, al¬ 
though both make one com¬ 
plete turn in the same length 
of time. 

The opposite senses of revo¬ 
lution may be secured by pro¬ 
viding some means of causing 
the cranks to pass the dead 

points in the proper sense. This may be accomplished by means of 
some device placed at the instantaneous axis of the connecting rod 
when in these positions. With AD the fixed link, the centrode of BC 
will be found to be a hyperbola with A and D as foci, and the corres¬ 
ponding centrode of AD with BC fixed is an equal hyperbola with B 
and C as foci. Arcs of these hyperbolas might be used to aid in pass¬ 
ing the dead points. Usually, however, the centrodes of AB and DC 
are used since they can be shown to be ellipses and therefore closed 
curves. 
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If two equal cylinders are constructed, Fig. 6-10, the right sections of 
which are of the form of the ellipses / and h, the cylinder / held still, and 
h roll on / without slip, the points D and C which are the foci of the 
ellipse h will move about A and B as centers in exactly the same way 
that they would if the cranks AD and BC were in place. 

Now since, as has been shown previously, the relative motion of the 
links of a four-bar linkage is the same, whichevei link is fixed, the 
elliptical cylinder/ may be arranged to turn on a fixed axis at its focus A 
and the ellipse h similarly pivoted on a fixed axis at its focus Z>, the 
distance AD being equal to the major axis. Then the cylinders will be 

in contact along the line of centers 
AD (as shown at P), and if no 
slipping occurs angular motion of 
one cylinder will cause a corre¬ 
sponding angular motion of the 
other. Such an arrangement 
would be the exact equivalent of 
the linkage shown in Fig. 6-9. In 
Fig. 6-11, where ABCD is the 
same linkage as in Figs. 6-9 and 
6-10, if the cranks are prolonged as 
shown and pins placed at H and 

Fi with corresponding eyes at F and Hh these points being the same 
as the points with the corresponding letters in Fig. 6-10, a means is 
provided for passing the dead points when the links themselves are 
used. 

Elliptical gears, equivalent to the rolling cylinders / and h, have been 
used in machine tools, such as slotters, to give a slow cutting stroke to 
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the tool and a faster return stroke. In applying the gears for such a 
purpose one of them, as, for instance, /, is on a shaft at A driven at a 
uniform speed from some external source of power. The other gear h 
is on a shaft at D to which is attached the crank or other device for 
moving the ram. 

6-11. Equal Crank Linkage. The four-bar linkage shown in Fig. 
6-12 differs from that shown in Fig. 6-8 in that the connecting rod BC is 
shorter than the fixed link AD. This difference has an important 
effect on the relative angular motion of the cranks. 

In Fig. 6-12 the linkage is drawn in heavy full lines, ABCDj in the 
symmetrical position with BC parallel to AD, giving the angle BAD 
equal to angle CD A. Now if DC is turned through the angle 6i toward 
the center, then A B will turn through a corresponding angle fa which 
is smaller than 0i. On the other hand, if DC is turned through the 
angle d2 away from the center AB will turn through the corresponding 
angle fa which is larger than S2. This principle is utilized in the steering 
mechanism of automobiles, as will be explained in the next article. 

6-12. Automobile Steering Mechanism. The steering of most auto¬ 
mobiles is provided for by pivoting the short shafts or axles, upon 
which the front wheels rotate, by pins to the main front axle which is 
rigidly attached to the rear axle. This is suggested in Fig. 6-13. The 
direction in which the car moves is controlled by simultaneously turn¬ 
ing the wheels about the pivot pins (king pins) A and D. 

Front Axle 

Axis of 
Left Wheel 

Fig. 6-13 

Axis of 
3 Right Wheel 

If the car is making a left turn the axis of the left wheel must swing 
about the king pin D through a greater angle than the right wheel 
about A. If a right turn is being made, the reverse condition must 
exist. The ideal relation between the swing of the two axes would be 
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such that their center lines if extended would always intersect on the 
aenter line of the rear axle as shown at I in Fig. 6-14. Then all parts 

Fig. 6-14 

of the car would be moving about a 
vertical axis through I and the tend¬ 
ency of the wheels to skid would be re¬ 
duced to a minimum. 

Because of the difficulties of apply¬ 
ing a practicable mechanism which 
would satisfy the conditions illus¬ 
trated in Fig. 6-14 most automobiles 
employ a linkage of the type ex¬ 
plained in Art. 6-11. This fulfills 
the requirement that the axes of the 
front wheels shall swing through un¬ 
equal angles according as a left turn 
or a right turn is being made but does 
not quite conform to the condition 

suggested in Fig. 6-14. Arms are attached to the short axles as shown 
at B in Fig. 6-13, and these arms are connected by a link. Figure 

6-15 shows the linkage in its central position, and Fig. 6-16 shows 
the same linkage with the wheels set for a right turn. Suitable con¬ 
nections are made from the steering post to one of the arms DC or 
AB to give the operator control of the linkage. 

* 6-13. Slow Motion by Linkwork. The four-bar linkage can, if prop¬ 
erly proportioned, be made to produce a slow motion of one of the 
cranks. Such a combination is shown in Fig. 6-17, where two cranks 



LINKWORK WITH A SLIDING PAIR 123 

AB and DC are arranged to turn on fixed centers and are connected by 
the link BC. If the crank AB is turned clockwise, the crank DC will 

Fig. 6-17 

also turn clockwise, but with decreasing speed, which will become zero 
when the crank AB reaches posi¬ 
tion ABi in line with the link BC\. 
Any further motion of AB will 
cause the link DC to return toward 
its*first position, its motion being 
slow at first and then gradually in¬ 
creasing. This type of motion is 
used in the Corliss valve gear, as 
shown in Fig. 6-18. The linkage 
ABCD} moving one of the exhaust 
valves, will give to the crank DC a 
very slow motion when C is near 

Fig. 6-18 
Ci, when the valve is closed, where¬ 
as between C and C2) when the valve is opening or closing, the motion 
is much faster. The same is true for the admission valves, as shown by 
the linkage AEFG. 

6-14. Linkwork with a Sliding Pair. In Chapter I (Art. 1-21), the 

relation between a linkage such as the one in Fig. 6-19 and the simple 
four-bar linkage was shown. It is important that this relation be 
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dearly understood before proceeding, and it is suggested that the reader 
review that discussion before studying what follows. 

Referring now to Fig. 6-19, the four links of the linkage are AB, 
BC, CD*, and AD*,, the lines AD«, and CDmeeting at infinity, that 
is, being parallel, and perpendicular to the center line of the slot in g. 
It should be borne in mind that the line A Du is on the piece g and the 
line CDoo is on the piece h. The piece g and the block h replace, and 
constitute the equivalent of, the two infinite links AD and CD. Four 
distinct cases occur in the application of this linkage, depending upon 
which of the four pieces is fixed. An additional group in which the 
two finite links / and k are of equal length will be discussed later. 
These may be grouped and classified as follows: 

Group 1. One member of 
the sliding 
pair fixed. 

Group 2. One member of 
the sliding 
pair turning 
about a 
fixed axis. 

(a) Connecting rod longer than the finite 
crank. 

(b) Connecting rod shorter than the finite 
crank. 

(a) Line of centers longer than the finite 
crank. 

(b) Line of centers shorter than the finite 
crank. 

With g fixed, AD« is the line of centers, / and CDare the cranks, 
and k is the connecting rod or coup¬ 
ler. With the block h fixed, CDis 
the line of centers, k and AD^ are the 
cranks, and / is the connecting rod or 
coupler. With k fixed, BC is the line 
of centers, / and CD 8 are the cranks, 
and ADoo is the coupler. With/fixed, 
AB is the line of centers, k and AD00 
are the cranks, and CD«, is the coupler. 

Some examples will now be dis¬ 
cussed, the basic linkages will be 
identified, and in some cases analy¬ 
sis will be made to illustrate the ap¬ 
plication of the methods, previously 
explained, for determining velocity 
and acceleration. 

6-15. The Sliding Block Linkage. 
Figure 6-20 represents, in skeleton 
form, the cylinder, piston, connecting 
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rod, crank, and crank shaft of an automobile engine. The pieces bear 
the same letters as those of the corresponding links in Fig. 6-19. The 
cylinder g, though not absolutely fixed relative to the earth, is fixed 
to the frame and hence is to be considered as the fixed piece of the 
four-bar linkage. The crank shaft at A turns in bearings rigidly at¬ 
tached to the cylinder. Hence the line AD« is the line of centers, / is 
the finite crank, k the connecting rod, and the line CD<» is the in¬ 
finitely long crank. The piston h receives its impulses from the ex¬ 
ploding fuel and is the driving member of the linkage. 

The same mechanism occurs in steam engines, reciprocating pumps, 
and reciprocating compressors. In those machines the slider h, known 
as the crosshead, is connected rigidly to the piston by the piston rod. 

In the steam engine the crosshead is the driver of the linkage; in 
the pump and compressor the crank / is the driver. 

In the ordinary gasoline engines and steam engines and in most belt- 
driyen pumps the center line BC of the connecting rod k is longer than 
the center line AB of the crank/; hence the mechanism lies in group 1, 
case a, of the preceding article. 

>/ 
/ 

/ 

Displacement of Slider. In Fig. J5-21 the above linkage is represented 
diagrammatically. C0C2 is the path of the point C. The travel C0C2 
of the slider h is equal to twice the length of the crank AB, and the 
distance of C from A varies between BC + AB = AC0 and BC — AB 
= AC2, AB being the length of the crank and BC the length of the 
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connecting rod. When the crank and connecting rod are in a straight 
line with B at Bo and C at C0) the mechanism is said to be on head end 
dead center. When the crank and connecting rod are in a straight line 
with B at B2 and C at C2, the mechanism is said to be on crank end dead 
center. 

To find the distance the point C has moved from C0, the beginning of 
its stroke or travel, let the angle made by the crank with the line ACo 
be represented by 0, and draw Bb perpendicular to AC0. The displace¬ 
ment of the slider from the beginning of its stroke is, for the angular 
motion 8 of the crank, 

CC0 = AC0 - AC = ACo - (Ab + bC) 

From the right triangle BCb 

bC = V~bc2 - Bb1 

Hence 

CCo = ACo - ab cos e - 'SW? - Zs2 sin2 0 

= AB + BC - AB cos 6 - - TW sin2 6 (1) 

= AB (1 — cos 6) + BC (^1 — yjl — ^sin’ 0^ (2) 

It will be noticed that equation 2 indicates that the displacement 
differs from that which C would have if its motion were harmonic 
(assuming AB to turn with uniform speed) by the term 

(see Chapter II, equation 23), and that the value of this term decreases 
as BC increases relative to AB. That is, the longer the connecting rod 
is made relative to the crank, the more nearly the motion of the cross¬ 
head approaches harmonic motion. 

Linear Speed of Slider. It is convenient to be able to determine the 
speed of the slider for different positions of the stroke when the speed 
of the crank pin is known. In Fig. 6-21 

Linear speed of C IC -£1- —- (q\ 
Linear speed of B IB v ' 

Through A draw a line perpendicular to the center line of the slot, and 
extend the center line of the connecting rod to cut this line at E. Then 
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the triangles ICB and AEB are similar. Hence 

IC AE 
IB ~ AB 

Substituting this in equation 3 gives 

Linear speed of C _ AE 

Linear speed of B AB 

From the similar triangles CAE and CbB 

AE 

bB 

AC ,AC lnAb + bC 
- or AE = bB — = bB — 

whence 

AE 
AB^ sin 6 (AB cos d + ^BC^_ - AB? sin2 d) 

VBC2 ~—~Aa£‘ sin2 8 

(4) 

Substituting this value in equation 4 gives 

Linear speed of C 

Linear speed of B 

AB sin 6 cos 6 
Sin 6 H-T--'-".__ 

V5C2 - AB2 sin2 6 
(5) 

This same result may be derived by another method. Let v represent 
the speed of the crosshead, 5 its displacement, and t the time during 
which the displacement has taken place. Then 

v = 
ds 

dt 

Letting a> represent the angular speed of A B in radians per unit of time 
and expressing 6 as cot, equation 1 may be written 

s = AB + BC — AB cos cot — VBC2 — Z52 sin2 cot 

Therefore 

_ . , £ n ds oAB2 sin cot cos cot 
Linear speed of C = — = coAB sin cot H- ——- r (6) 

dt vbc2 - AB2 sin2 cot 

But the linear speed of B = coAB. Therefore 

Linear speed of C 

Linear speed of B 
sin cot + 

AB sin cot cos cot 

^BC2 — A B2 sin2 cot 
(7) 

When 6 = 90°, AE = AB and the speeds of C and B are equal. To 
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find other values of 0, when C and B have equal speeds, use equation 5. 

AB sin 6 cos 6 
sin d + 

^W2 - ~A152 sin2 0 

Solving this for sin 6 gives 

BC 
sin a = 

4 AB1 
{-BC ± V84J32 + BC2) 

dv 

(8) 

Acceleration of Slider. Since a = , where a represents the acceler- 
dt 

ation, v the linear speed, and t the time, equation 6 may be differen¬ 
tiated, giving 

a)ABZ sin cot cos cot \ 

sin2 cot) 
coAB sin cot + 

VBC2 

= ai2AB cos oit + 

+ 

AB sin2 

oi2AR2 (cos2 oit — sin2 oit) 

(BC2 - TB1 sin2 (nl)l 
(ii2ABa sin2 oit cos2 oit 

(9) 
(BC2 - AB2 An2 wt)% 

Graphical methods for finding the acceleration ef the slider were 

6-16. Sliding Slot Linkage. If the block h is fixed so that it can 
neither turn nor slide, the link CB becomes a crank oscillating about the 
fixed axis C. The connecting rod BA may make complete turns about 
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the axis A, at the same time that A moves in a straight line, carrying g 
with it. If BA makes a complete turn relative to A the stroke of g is 
equal to 2BA. 

Figure 6-22 illustrates a manner in which this mechanism may be 
applied. The worm wheel carrying the pin B forms the connecting 
rod. This wheel may be made to rotate about the axis A by a worm 
keyed to the shaft T. The worm and wheel are kept in contact by a 
piece which supports the bearing of A, hangs from the shaft T, and 
confines the worm between its bearings. A rotation of the shaft T will 
turn the worm wheel, causing a reciprocation of the axis A, and conse¬ 
quently of the driving shaft T> through a distance equal to twice AB. 

Figure 6-23 is another application of this linkage. These mecha¬ 
nisms are examples of group 1, case b, of Art. 6-14. 

6-17. Swinging or Rocking Block Linkage. Figure 6-24 is a diagram 
of the mechanism of an oscillating engine. The parts are lettered 
to correspond with the equivalent pieces in Fig. 6-19. The cylinder h 

Fig. 6-24 

oscillates on trunnions supported in fixed bearings whose axis is at C. 
The crank shaft turns in fixed bearings at A. The crank /is pinned to 
the piston rod g at B. Since A and C are the fixed axes, AC is the line 
of centers, AB and CDQ0 are the cranks, and BDw is the coupler. It 
should be noticed that g slides in h instead of over h as it was shown 
in Fig. 6-19. This, of course, has no effect on the relative motion. 

The line of centers AC is longer than the crank AB; hence this 
mechanism is an example of group 2, case a, of Art. 6-14. 

6-18. Swinging Block Quick-Return Mechanism. Figure 6-25 is a 
diagram of the mechanism used for driving the ram on some shapers. 
The ram, carrying the cutting tool, slides back and forth in fixed guides. 
As arranged in the figure the tool does its work as it moves from left to 
right and the driving mechanism is so proportioned that the speed of 
the ram as it moves toward the right is nearly uniform and of correct 
magnitude, and the return stroke is made more rapidly. 
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The gear /, driven from the source of power, turns about the fixed 
axis B. Attached to / is the pin whose axis is A. On this pin is the 
block g which slides in the slot in the swinging arm h. The arm h oscil¬ 

lates about the fixed axis C. 

The parts are lettered to correspond with the equivalent pieces in 
Fig. 6-19. Attention is called to the fact that the piece g is short while 
h is long and slides over g, but the relative motions are not affected by 
this change since g is still connected to / and A to A* by pin joints; BC is 
the line of centers, BA and CD«> are the cranks, and ADis the coupler. 
The basic linkage is the same as that in the oscillating engine. 

The driving crank/, being a part of the gear, turns at uniform angular 
speed; therefore the ratio of the time during which the working stroke 
takes place to the time occupied in returning the ram to its position to 
begin the next working stroke is equal to the ratio of the angles through 
which/ turns during these respective motions. 

This may be seen by referring to Fig. 6-26, which is a diagram of the 
same mechanism as Fig. 6-25, drawn to a smaller scale. When the 
mechanism is in the position BA0C with BA0 perpendicular to CW0 the 
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arm h is in its extreme left-hand position ready to begin the working 
stroke of the ram. When BA is in the position BAh again per¬ 
pendicular to CWi, the working stroke 
is complete and the return stroke 
about to begin. Hence BA turns 
through the angle \p during the work¬ 
ing stroke and through the angle 0 
during the return stroke. Therefore 

Time of working stroke ^ ^ 

Time of return stroke 

In Fig. 6-25 the end of the swing¬ 
ing arm h is forked and embraces a 
pin S rigidly attached to the ram. 

The pin S might be rigidly attached FlG’ 6-26 
to tohe arm and drive a forked lug attached to the ram. This change 
would have a minor effect on the velocity of the ram. 

Figure 6-27 is a drawing of a swinging block quick-return drive in 
which the end of the arm is connected to the ram by a link lettered H. 

Fig. 6-27 
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The axes 5, A, and C are lettered to correspond with those in Fig. 6-25, 
but the other letters have no significance in relation to the earlier 
figures. In some machines the swinging arm is pinned directly to the 
ram, and the axis C, instead of being fixed, is carried by a short link 
supported on a fixed axis. 

6-19. Turning Block Linkage. Figure 6-28 is a diagram of the same 
type of linkage as Fig. 6-19 with the link / fixed. AB is now the line 
of centers, BC a crank, AD& (on g) the second crank, and on 

block h the coupler. Since BA is shorter than BC this mechanism is 
an example of group 2, case b, Art. 6-14. The bar g is prolonged to N 
and drives a slider m through a connecting rod NR. The slider m 
represents the ram of a shaper or the platen of a metal planer. The 

linkage when used in this way is known as the Whitworth quick-return 
mechanism. Its action is similar to that of the swinging block quick 
return discussed in the preceding article. The essential difference is 
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that the crank g in Fig. 6-28 makes complete revolutions with variable 
angular speed while the arm h in Fig. 6-25 oscillates. 

Figure 6-29 is a drawing of an actual Whitworth quick-return 
assembly. The axes are lettered to correspond with those in Fig. 
6-28. The length of the crank AN may be changed by an adjusting 
screw shown at the right, thus changing the length of stroke of the 
slider. 

6-20. Shape and Size of the Links and Connecting Pairs. It has 
already been pointed out that the type of the relative motions of 
the members of a four-bar linkage depends only upon the relative 
lengths of the basic lines of the several links as defined in Art. 6-1. 

The shape and size of the rigid pieces which constitute the actual 
links do not affect the kinematic properties in any way. The shape and 
size are determined by dynamic considerations and by the demands for 
convenience in manufacture and application. 

A few examples will now be given to show how the parts may be 
shaped to accommodate the conditions under which they are to be 
used. 

Radius of Crank Shaft Greater than Length of Crank. Reference to 
Fig. 1-15 shows that the length of the crank center line AB is much 
greater than the radius of the crank shaft/i, so that the actual crank/ 
is made a separate piece keyed to /i and carrying the crank pin/2. 

It often happens that the desired motion of the piece driven from the 
crank is so small that the corresponding length of the crank AB is less 
than the radius which is required for the shaft /i. 

Figure 6-30 shows an arrangement by which this may be accom¬ 
plished provided the crank can be at the end of the shaft, outside the 
bearing. The crank pin B is driven into a hole in the shaft, or other¬ 
wise rigidly attached to the shaft. The effective crank length is AB, 
the shaft itself constituting the actual crank member. It is evident 
that this must be at the end of the shaft. 

Eccentric. If a crank is to be placed on a shaft anywhere other than 
at the end, neither the crank shown in Fig. 1-15 nor that in Fig. 6-30 
can be used because the connecting rod would interfere with the shaft 
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as the crank revolved. One common arrangement of the parts is as 
shown in Fig. 6-31. Here the radius of the crank pin is more than 
the crank length plus the radius of the shaft. That is, the crank pin 
is a large disk with a hole in it to fit over the shaft to which it is keyed. 
The end of the connecting rod is enlarged to correspond. 

A 
p777777777T 

9 

The crank pin is now the body constituting the actual crank, and is 
called an eccentric. The piece k constituting the connecting rod is 
called an eccentric rod. That portion of the eccentric rod surrounding 
the eccentric is the eccentric strap. The distance A B from the center of 

the eccentric to the axis of 
the shaft is the eccentricity. 
This distance may be made 
as small as necessary to pro¬ 
duce the desired length of 
stroke for the slider. 

6-21. Linkages with Two 
Sliding Pairs. Figure 6-32 
shows the effect of a com¬ 
bination of one sliding pair, 
giving the equivalent of two 
infinite links AD«, and CD*, 

and two links changed in form as suggested in Art. 6-20. The block 
h is extended and a curved slot made in it, the center of the slot being 
at C. The block k is connected to the crank / by a pin joint. 

As the crank / turns, the block moves in the slot and the point B 
remains a constant distance BC from C. Hence the line BC is the 
coupler and the piece h has the same motion that it would have if it 
were a Short block connected to B as in previous figures. 

AD is the line of centers, AB and CD the cranks and the radial line, 
and BC the coupler or connecting-rod equivalent. 

Fig. 6-32 
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\^//yy//y//A 

Figure 6-33 represents the mechanism which results when the radius 
of the slot in h instead of being finite as in Fig. 6-32 is made infinite, 
the center line YY being perpendicular to the direction of motion of h. 
AB is the crank, AD* the line of centers, BC the coupler, and the 
second crank is an 
imaginary line perpendicular 
to BC. 

Applying equation 2, page 
126, and giving BC a value 
infinity, show that the dis¬ 
placement of the slider h from 
its extreme right-hand posi¬ 
tion becomes A B (1 — cos 0). 
Hence h has simple harmonic 
motion. This mechanism is 0« 
scmietimes referred to as the 
Scotch yoke. 

An eccentric may be used instead of the crank AB and the block k. 
The eccentric may work directly in the slot or it may revolve in a hole in 
the block k. In either arrangement the effect is the same as that of the 
crank and block in Fig. 6-33. 

"p 7777777^j 

Fig. 6-33 

Figure 6-34 seems to resemble Fig. 6-33, the only apparent difference 
being that the center line YY of the slot makes an angle p, less than 
90°, with the direction of motion of the piece which carries it. If this 
mechanism were traced back to its elementary four-bar linkages it 
would be found to have been derived from two four-bar linkages with a 

common crank. 
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Such an analysis would be long and would not help much toward an 
understanding of the motion. Therefore it is omitted. 

The slider m may be shown to have simple harmonic motion over a 
path longer than twice the length of the crank AB. In Fig. 6-35. 
YqYq and Y%Y% drawn tangent to the path of B are the positions of the 

Fig. 6—35 

line YY when at the extremes of its stroke. It intersects at P0 and P2 
the line XX which is drawn through A parallel to the direction of 
motion of m. The length of stroke of m is therefore P0P2, which is 

.. 2 AB 
equal to —— . 

sm/8 

Fig. 6-36 

To show that the motion of m is harmonic: In Fig. 6-36, which is 
lettered to correspond with Fig. 6-3ft, the crank A B has turned through 
an angle 6 to move P from P0 to its present position. From the similar 
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triangles APqB0 and A PC 

PoP _ BoC _ AB (1 — cos 6) 

AP0 ' Zb0 ~ AB 
or 

PoP = APo (1 — cos 8) 

Therefore the motion of P and hence of the whole body m is harmonic. 
6-22. The Isosceles Linkage. If the link BC (Fig. 6-19) is made 

equal to AB, the four mechanisms corresponding to those discussed in 
Arts. 6-15 to 6-19 reduce to two as a result of this equality in length of 
the two finite links. 

If either one of the sliding pairs is fixed, the resulting mechanism is 
the same, and is known as the isosceles sliding block linkage. 

Similarly, if either AB or BC is fixed the mechanism formed may be 
called the isosceles turning block linkage. 

The Isosceles Sliding Block Linkage. If in Fig. 6-37 the piece T is 
fixed, AB is the driver, and C starts from the position Ci, it will be 
found when the crank AB is at an angle of 90° with AC\ (the path 
of C) that C is directly over A and any further rotation of AB will 
cause only a similar rotation of CB. In order to cause C to continue 
in its path from this position it will be necessary to pair points on the 
centrode of BC for this position (when T is fixed) with the correspond- 
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ing points on the centrode of T (when BC is fixed) as was done in the 
case of the non-parallel crank linkage in Fig. 6-11. 

The centrode of BC is the circle drawn about A as a center with radius 
2AB. This can be seen as follows: 

In any position of the linkage, as that occupied in Fig. 6-37, produce 
AB to meet the pependicular to ACi, through C, at 0, thus finding the 
instantaneous axis for that position. From B draw Bk perpendicular 

to AC±; then, since ABC is an isosceles triangle, Ak = kC = 

Hence, from the similarity of the triangles A OC and ABk, AB = 

AC 
2 ’ 

AO 

This holds for every position of the linkage. Therefore the locus of 0, 
the instantaneous axis of BC, is the circle with radius 2AB. 

A similar method of reasoning can be followed to show that the cen¬ 
trode of T, with BC fixed, is a circle about B with radius BA. 

From the properties of centrodes previously brought out, if the link 
BC is made fast to a disk of radius AB (= BC) with the point B 
at its center and C on its circumference, and this disk is rolled inside 
a fixed hollow cylinder of twice its own diameter, BC will have the 
same motion that it would if it were the connecting rod of the actual 
foui^-bar linkage ABC, and C will travel on a diameter of the larger 
circle. 

It is evident that, since BC is a radius of the centrode of T (that is, 
of the disk just referred to) and C has a motion along the diameter 
C1AC2, if BC is prolonged to E, making BE equal to BC, E will travel 
the diameter E3E4, being at A when C is at C\, at Ez when AB and BC 
are perpendicular to C2ACx above C1AC2, at A again when C is at C2, 
and at E± when AB is perpendicularly under C\AC2. 

If, now, when the actual linkage is used with the connecting rod 
prolonged to E, a pin is centered at E and corresponding fixed eyes at 
Es and E4, a means is provided for causing C to continue in its path 
when AB is in the 90° positions. 

It should be noticed that the paths of the points C and E, Fig. 6-37, 
as shown above, when considered as points of the circumference of the 
smaller circle (that is, on the surface of the centrode of T), are hypo- 
cycloids with the circle AO as the directing circle and circle BO as the 
generating circle. From this it is evident that the prolongation of BE 
need not be in the same line as BC but may be at any angle as at BE6, 
provided the eye is properly located. 

If the crank AB turns at uniform angular speed, C has harmonic 
motion over the path CiAC2 for C is always found at the foot of the 
perpendicular OC and 0 is always on the line AB produced, distant 2AB 
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from A. This agrees with the description given for harmonic motion 
in Chapter II. 

InFig. 6-38,lettered to correspondwithFig. 6-37, the actual crank AB 
is omitted and a block is placed at the end of the rod BE to guide E in a 
slot whose center line is a straight line passing through A. The nature 
of the linkage remains the same as in Fig. 6-37. The imaginary line 
joining B, the middle point of EC, to A, the point of intersection of the 
center lines of the slots, is still the theoretical crank, and, if motion is 
imparted to C, B will move in a circular path about A. The whole 
may be thought of as two four-bar linkages ABCD and ABEDh with 
the crank AB common to the two linkages. 

The Elliptic Trammel, which is so commonly used for drawing ellipses, 
is an application of the principle of the isosceles sliding block linkage. 
Referring to Fig. 6-39, if any other point, as P, on the rod CE or CE 
prolonged, is chosen, P can be shown to move in a path which is an 
ellipse with axes lying along the paths of C and E and with semiaxes 
equal in length to PE and PC. If PC is less than PE the minor axis 
lies along the path of E, as in the figure. If PE is less than PC the 
minor axis lies along the path of C. 

In the elliptic trammel the mechanism is usually applied in the form 
corresponding to Fig. 6-39 and the ellipse is usually traced by an adjust- 
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able point P outside of E or C as in the figure; E and C are made so that 
their distance apart is adjustable and they are set one-half the differ¬ 
ence of the major and minor axes apart. 

An ellipse can be readily drawn by taking a card one corner of which 
shall represent the tracing point P. Points corresponding to the 
desired positions of E and C are then marked on the edge of the card, 

and by placing these points in successive positions on lines at right 
angles with each other, corresponding to the slots in which the blocks 
in Fig. 6-39 move, and marking the successive positions of P, a series 
of points on the required ellipse will be obtained. 

To prove that the point P moves on an ellipse, let Pn = x; Pr = y; 
PE (semimajor axis) = a; PC (semiminor axis) = b. 

The equation of an ellipse referred to the center as the origin is 

a2 
1 

In Fig. 6-39 
x _ Pn y ___ Pr 

a = PE and b~ PC 

and, since the triangles nPE and rCP are similar, 

Pr nE 

PC = PE 
Therefore 

Pn , Pr Pn nE 
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and, in this case, 

Pn P? 

PE2 + PC2 
Therefore 

Pn nE2 ^ Pn + nE2 

PE* + PE2~ PE2 
1 

showing that the locus of P is an ellipse. 
By fixing the link BC, Fig. G-37, or, the equivalent, fixing the centers 

C and E (allowing the blocks to turn), Fig. 6-38 or 6-39, the mechanism 
corresponding to the swinging block linkage, Fig. 6-25, is obtained. 

Two examples will be considered in which this linkage is expanded in 
the manner suggested in Figs. 6-38 and 6-39. 

The Elliptic Chuck depends upon the principle proved for the elliptic 
trammel and upon the principle, previously referred to, that the relative 
motions of the parts of a linkage are independent of the fixedness of 
the links. 

Now in drawing an ellipse with a trammel, the paper is fixed, and 
the pencil is moved over it; but in turning an ellipse in a lathe, the 
tool, which has the same position as the pencil, is fixed, and the piece to 
be turned should have such a motion as would compel the tool to cut 
an ellipse. This is accomplished in the elliptic chuck, in which the 
spindle of the lathe, with a block on it, corresponds to the axis E of 
Fig. 6-39. In another fixed bearing whose axis corresponds to C is 
another shaft having a block on it. The point of the cutting tool is in 
a fixed position corresponding to P. 

The piece carrying the work corresponds to T and has two slots 
at right angles, sliding over the blocks on the spindle and the axis C. 
The turning of the spindle causes the point of intersection of the center 
lines of these slots to move in a.circle about the point B and the whole 
piece to have such a motion that the point of the tool cuts an ellipse 
from the material attached to it. 

The Oldham’s Coupling shown in Fig. 6-40 is an interesting example 
of this form of linkage. The axis E of the upper shaft corresponds to E 
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in Fig. 6-39, and the slotted disk on this shaft corresponds to the block 
at E; similarly with the shaft at C. The intermediate disk T with 
two projections at right angles across its diameters replaces the cross T. 

The object of the device is to connect two parallel shafts placed a 
short distance apart to communicate uniform rotation from one to the 
other. 

If the link AB, Fig. 6-37, is made the stationary link the result is the 
same, kinematically, as the linkage discussed in the last two illustra¬ 
tions. The details of application are somewhat different. If T is on a 
shaft centered at A the crank BC, through the arm T7, will cause the 
shaft at A to turn at an angular speed equal to one-half its own. There 
may be two arms BC and BE with corresponding slots, the result being 
the equivalent of a two-toothed wheel driving, internally, one of four 
teeth. If there were three arms and three slots the equivalent gears 
would have three and six teeth. 

6-23. A Straight-Line Mechanism is a linkage designed to guide a 
reciprocating piece either exactly or approximately in a straight line, 
in order to avoid the friction arising from the use of straight guides. 
Some straight-line mechanisms are exact, that is, they guide the recipro¬ 
cating piece in an exact straight line; others, which occur more fre¬ 
quently, are approximate, and are usually designed so that the middle 
and two extreme positions of the guided point shall be in one straight 
line, while at the same time care is taken that the intermediate posi¬ 
tions deviate as little as possible from that line. 

\y 

Scott Russell’8 Mechanism. The isosceles linkage, Fig. 6-37, may 
be modified to eliminate the sliding pair and still guide the point E 
in a path which is very nearly a straight line. In Fig. 6-41 the crank 
AB oscillates through an angle 20. AB, BC, and BE are equal. Then, 
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as has already been shown, if C were guided along the straight line 
XX, E would move along the line YY perpendicular to XX. If the 
point C is guided by a crank DC whose fixed axis D is on a perpendicular 
to XX drawn from a point midway between the extreme positions C 
and Ci, then E will still be on YY at E, A, and E2 but will deviate 
slightly between these positions. Increasing the length of DC reduces 
the deviation of E from the line YY. Hence DC should be made as 
long as possible. The angle 6 should be small. 

yi 
» 

Fig. 5-42 

The mechanism may be still further modified so that the path of E 
shall be at one side of A instead of through A. In Fig. 6-42 the parts 
are so proportioned that BC is a mean proportional between AB and 
BE. That is, 

AB _ BC 
BC ~ RE 

By drawing the linkage in a series of positions it will be seen that E 
follows the line YY very closely 
provided the maximum value of 
the angle 6 is small. A mathema¬ 
tical proof of this condition de¬ 
pends upon the assumption that 
sin 6 = 0 very nearly when 6 is 
small. 

Watt’s Straight-Line Mecha¬ 
nism. Figure 6-43 shows a four- 
bar linkage so arranged as to 
guide a point P located on the \ y 
connecting rod, in a complex Fig. 643 
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path, a part of which, YY, is approximately a straight line perpendicu¬ 
lar to the parallel position of the cranks AB and DC. 

The following equations, given here without demonstration, will 
serve as a guide in laying out such a linkage. Given the location of the 
fixed axes A and D, the position of the line YY along which the point P 
is to be guided, and the desired length of stroke S. To find AB, BC, 
DC, and locate the point P. Draw AF and DH perpendicular to YY. 
Then 

ab-af + iLf (ID 

DC - m + 16L 
(12) 

Join B and C, and P will be the point where BC cuts YY. Note also 
FB FP BP 

that RC - Hp - cp • 

Robert's Straight-Line Mechanism. Figure 6^4 is a four-bar linkage 
in which the cranks AB and DC are equal and the connecting rod BC 
is one half as long as the line of centers AD. P is a point rigidly 

attached to the connecting rod and lying on 
the midpoint of AD when BC is parallel to 
AD. The triangles ABP and DCP are there¬ 
fore equal isosceles triangles for this position. 
BPC is also isosceles. The cranks may 
swing to the right until BC and AB are in a 
straight line and to the left until BC and DC 
are in a straight line. In two positions near 

the extremes P will be at D and A and in midposition P will be at the 
midpoint of AD. The length of A B and DC should be not less than 
about 0.6AD and, if made longer, will cause 
less deviation of P from the line AD. 

Tchebicheff's Straight-Line Mechanism. In 
Fig. 6-45 the links are made in the following 
proportion: 

AD = 4 AB = DC = 5 BC = 2 

The guided point P is at the midpoint of BC. 
With these proportions, when the crank AB has 
turned to the position AB\, where B\ is on the 
perpendicular to AD through D, C and P will 

be at Ci and P\ respectively on the same perpendicular. Similarly 

Fig. 6-45 



THE PANTOGRAPH 145 

when C is perpendicularly above A, P will be on the same perpendicu¬ 
lar. Therefore P is on the line PiPP2 parallel to AD in three posi¬ 
tions. Between these positions it deviates slightly from that line. 

Other Types of Straight-Line Mechanisms. Many other devices 
have been employed for guiding a point in a path which is approxi¬ 
mately rectilinear without the use of sliding pairs. The examples 
given will serve to illustrate the principle and suggest the method of 
approach when designing such a device. 

One further example exists in the mechanism shown in the data for 
Prob. IV-14, on page 75. This is known as Peaucellier’s cell, and when 
it is proportioned as there shown the point B moves on an exact straight 
line perpendicular to the center line drawn through the two fixed axes. 

6-24. The Pantograph. The pantograph is a four-bar linkage so 
arranged as to form a parallelogram ABCD, Fig. 6-46. Fixing some 
point in the linkage, as E, certain other points, as F, P, and H, will 
n*ove parallel and similar to 
each other over any path 
either straight or curved. 
These points, as F, P, and 
H, must lie on the same 
straight line passing through 
the fixed point E, and their 
motions will then be propor¬ 
tional to their distances from 
the fixed point. To prove 
that this is so, move the 
point F to any other posi¬ 
tion, as Fi) the linkage will 
then be found to occupy the 
position AiBiCiDi. Con¬ 
nect Fi with E; then Hh where FiE crosses the link BiCh can be 
proved to be the same distance from Cy that H is from C, and the line 

HHi will be parallel to FF\. 
In the original position, since FD is parallel to HC, we may write 

FD DE _ FE 

HC ” CE ~ HE 

In the second position, since FJ)i is parallel to H\C\ and since FiE is 

drawn a straight line, we have 

F\D\ D\E F i E 
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■Nr • ,1 DE DiE . FD F\D\ 
Now m these equations — = —— ; therefore = 7—-; but 

GA CiE H G /ziCi 

FD = F1D1, which gives = D1C1. This proves that the point D 
FF FiE 

has moved to Hi. Also 77= = 7— , from which it follows that FFi is 
HJcj JtiiE 

parallel to HHi and 
FFi __ FE _ DE 
HHi ~~ HE~ CE 

or the motions are proportional to the distances of the points F and H 
from E. 

If the point F is moved over any curved path, P and H will trace 
similar curves reduced in size in proportion to their distances from the 
fixed point E. 

The pantograph is used to reduce or enlarge drawings and maps and 
for a variety of purposes where it is desired to reproduce the motion 
of a given point at a different scale. 

Linkages consisting of combinations of pantographs and straight- 
line mechanisms are sometimes used. 

6-26. Parallel Motion by Means of Four-Bar Linkage. The parallel 
crank mechanism, Art. 6-9, Fig. 6-8, is very often used to produce 

parallel motions. The common parallel ruler, consisting of two paral¬ 
lel straight-edges connected by two equal and parallel links, is a familiar 
example of such application. A double parallel crank mechanism is ap¬ 
plied in the Universal drafting machine, extensively used in place of T- 
square and triangles. Its essential features are shown in Fig. 6-47. 
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The clamp C is made fast to the upper left-hand edge of the drawing 
board and supports the first linkage abed. The ring cedf carries the 
second linkage efhg, guiding the head P. The two combined scales and 
straightedges A and B, fixed at right angles to each other, are arranged 
to swivel on P, and by means of a graduated circle and clamp nut may 
be set at any desired angle, the device thus serving as a protractor. 
The linkage is also shown when the head is moved to Pi, and it is easily 
seen that the straightedges will always be guided into parallel positions. 

6-26. The Conic Four-Bar Linkage. If 
the axes of the four cylindric pairs of the 
four-bar linkage are not parallel, but have 
a common point of intersection at a finite 
distance, the chain remains movable and 
also closed (Fig. 6-48). The lengths of 
the different links will now be measured 
oif the surface of a sphere whose center is 
at the point of intersection of the axes. 
The centrodes will no longer be cylinders, 
but cones, as all the instantaneous axes must pass through the common 
point of intersection of the pin axes. 

The different forms of the cylindric linkage repeat themselves in the 
conical one, but with certain differences in their relations. The princi¬ 
pal difference is in the relative lengths of the links, which would vary 
if they were measured upon spherical surfaces of different radii, the 
links being necessarily located at different distances from the center 
of the sphere in order that they may pass each other in their motions. 
The ratio, however, between the length of a link and its radius remains 
constant for all values of the radius, and these ratios are merely the 
values of the circular measures of the angles subtended by the links. 
In place of the link lengths, the relative magnitudes of these angles are 
to be considered. 

The alterations in the lengths of the links are represented by corre¬ 
sponding angular changes. The infinitely long link corresponds to an 
angle of 90°, as this gives motion on a great circle which corresponds to 
straight-line motion in the cylindric linkages. 

6-27. Hooke's Joint. The most common application of the conic 
four-bar linkage is that of the special case in which three of the links 
subtend angles of 90° and the fourth link an angle of more than 90°. 
Figure 6-49 shows two views of the elementary linkage, so arranged. 
The shafts T and S are turning in fixed bearings, and a complete revolu¬ 
tion of either one will cause the other to make a complete revolution in 
the same time, but with a varying angular speed ratio during the time. 



148 LINKAGES 

Figure 6-50 shows a skeleton model of the same mechanism. Here, 
as in practice, two cranks are used on shafts S and T for additional 
strength and better balance. The pins are fast to the sphere, which 
therefore forms the connecting rod of the linkage as suggested by the 
dotted line. A rectangular cross may replace the sphere, as shown 
in Fig. 6-51, which is a drawing of a small joint made by the Boston 
Gear Works. 

Several other forms of construction are used, most of which give the 
exact equivalent, kinematically, of the linkage in Fig. 6-49, although 
some are only approximate. 

6-28. Relative Angular Motion of Two Shafts Connected by a Single 
Hooke's Joint. If shaft !T, Fig. 6-49, turns through a known angle 6, 
the angle <f> through which S is caused to turn will depend upon the 
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Fig. 6-52 
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PLAN 

angle between the axes of S and T and upon the position of the plane 
of the crank AB relative to the plane containing the axes of S and T. 
The angle 0 may be found graph¬ 
ically or may be calculated. 

Graphical Solution for 0. In Fig. 
6-52, let 0 be the center of the 
sphere and let 6 - 0° when the 
plane of crank A B coincides with the 
plane containing S and T. In the 
elevation, where d appears in its true 
size, lay off angle BvOvB'v = 0. 
Since the radius OB is always parallel 
to the plane of projection (in the ele¬ 
vation) and since OC is perpendicu¬ 
lar to OB, it will always be projected 
as<a perpendicular to OB. The 
actual path of C is a great circle, 
which in the elevation appears as an 
ellipse of which CVDV is one quad¬ 
rant. Therefore draw OvC'v per¬ 
pendicular to OvB'v meeting the 
ellipse at C'v. The links BC and CD 
now appear as the elliptic arcs B'VC'V 
and C'VKVDV respectively. The 
angle CvOvC'v is equal to 0 and is the 
projection of 0. To find the true 
size of this angle revolve the line OvC'v parallel to the plane of projec¬ 
tion, getting CvOvWv = </>. 

Equation for 0. In Fig. 6-52 let ft be the acute angle between the 
axes of S and T. Angle C'vOvCv = 0. (See above discussion of 
Fig. 6-52.) 

Draw WvCfvr. Then 

ELEVATION 

Therefore 

, , Wvr A a C'vr 
tan 0 = —— and tan 6 =» 

Ovr Ovr 

tan 0 _ Wvr 
tan 0 C'vr 

Ohi Ohi C'vr 

0£rk " OhWh ~ W7r 

but (see plan) 
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Therefore 

or tan <t> 

It should be noticed that if the initial position of the crank AB is chosen 
so that 0 = 0° when the plane of A B is perpendicular to the plane of S 
and T then equation 13 would have to be modified. 

6-29. Angular Speed Ratio of Two Shafts Connected by a Single 
Hooke's Joint. To find the ratio of the angular speed of shaft S to 
that of T, equation 13 may be differentiated, remembering that cos /3 
is a constant. Then 

d<t> __ sec2 0 1 + tan2 0 

dd sec2 <j> cos /3 cos /3 (1 + tan2 <j>) 

Substituting for tan </> its value obtained from equation 13 gives 

d± = cos^ (14) 
dd 1 — cos2 0 sin2 /3 

d<f> 
The minimum value of — will occur when cos 6 = 0, or 6 = 90° and 

dO 
d<t> 

270°, when the value — = cos 13. The maximum value will occur 
dd 

when cos0 = 1 or 6 = 0° and 180°, when the valued == —— 
dd cos (3 

Hence in one rotation of the driving shaft the angular speed ratio 

varies twice between the limits —-— and cos (3: and between these 
cos/3 

points there are four positions where the value is unity. 
If the angle /3 increases, the variation in the angular speed ratio of 

the two connected shafts also increases; and when this variation be¬ 
comes too great to be admissible, other arrangements must be employed. 

The Maximum and Minimum Values of 6 — <£, that is, the greatest 
difference in the angular displacement of the two shafts, will occur when 
d$ d<t> 1 + tan2 S 
— = 1. Using the equation — =-—-———-—- and letting 
dd dd cos 0 (1 + tan2 <f>) * 

d<f> 
— = 1 gives 1 + tan20 = cos 0(1 + tan20), and substituting the 
dd 
value tan <f> from equation 13 gives 

/ cos2 8\ /- 
1 + tan2 0 = cos (3 (1 H-— ) or tan 0 = TV Cos ft (15) 

\ tan2 0/ 
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There will be four values of 8 at which the difference between 8 and 0 
is a maximum. For two of these 0 will be greater than 6 and for the 
other two 0 wall be less than 8. These four values of 8 are also the ones 
at which the angular speed ratio of the two connected shafts is unity. 

6-30. Angular Acceleration of Driven Shaft. Let a>T be the constant 
angular speed of the driving shaft, Fig. 6-52, cos the angular speed of the 
driven shaft S, as the angular acceleration of S. Then, in equation 14, 

8 = coTt and dd — coTdt 

Therefore equation 14 may be written 

Hence 

d<f> 

dt __ cos 0 

dt 1 — cos2 cort sin2 0 

*Tdt 

cos 
COT COS 0 

1 — cos2 cort sin2 0 
(16) 

Differentiating equation 16 gives 

dcos —2cor2 sin2 0 cos 0 sin 6 cos 8 
as = 

dt (1 — cos2 0 sin2 0)2 
(17) 

To find the value of 8 when as is a maximum or minimum, equation 17 
is differentiated, the result is made equal to zero, and the equation is 
solved for cos 8. If imaginary roots are disregarded, this gives for 
maximum or minimum values of as 

cos 8 -*4 
(3 sin2£ - 2) + V(3 sin2 0 - 2)2 + 8 sin2 g 

4 sin2 0 
(18) 

Therefore 8 will have four values, two of which represent the position of 
the linkage when as is maximum and the other two the position when 
as is minimum. The maximum occurs when 8 is between 90° and 180° 
and again between 270° and 360°. 

6-31. Double Hooke’s Joint. Two parallel or intersecting shafts may 
be connected by a double Hooke's joint and have uniform motions, provided 
that the intermediate shaft makes equal angles with the connected shafts, 
and that the links on the intermediate shaft are in the same plane. Fig¬ 
ure 6-53 gives a plan of two parallel shafts so connected, and the posi¬ 
tion after T has turned through an angle 6. It is evident from an 
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inspection of the figure that one joint exactly neutralizes the effect of 
the other. 

The fact that the angular speeds are equal will appear from the 

The term universal joint is often used to designate the above- 
described mechanism. 

Figure 6-54 shows a universal joint used on a milling machine. The 
upper end is connected to the feed shaft and the lower end to the driving 
shaft. When the work is raised and lowered or moved to the right or 
left the connecting shaft must change its length. This is made possible 
by having the connecting shaft in two pieces, one of which telescopes 
into the other, with a key and keyway. Since the connected shafts are 
always parallel they make equal angles with the connecting shaft for all 
positions. The forks on the two ends of the connecting shaft lie in the 
same plane. Hence the two requirements for constant speed ratio 
between the connected shafts are fulfilled. 

6-32. Universal Joint Connecting Two Non-Parallel, Non-Intersect¬ 
ing Shafts. Two shafts which are neither parallel nor intersecting may 
be connected by a double Hooke's joint and have uniform angular speed 
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ratio provided the connecting shaft makes equal angles with the con¬ 
nected or main shafts, and the cranks on the connecting shaft are so 
arranged that they lie simultaneously in the planes determined by the 
main shafts and the connecting shaft. 

Two shafts are located as in Fig. 6-55 where p is the projected angle 
between the two main shafts, h the length of their common perpendicu¬ 
lar. Let l be the length of the connecting shaft between its points of 
intersection with the main shafts, d the distance along the axis of each 
main shaft from the end of the common perpendicular to the point of 
intersection of its axis with the connecting shaft, /3 the angle which the 
connecting shaft makes with each main shaft, and \p the angle between 
the planes of the cranks on the connecting shaft. 

Given p, h, and l; to find d, and £. 
A full discussion of this problem would occupy too much space to be 

given here. It may be solved graphically or by calculation. The 
following equations, given here without demonstration, express the 
relations which exist. 

(Vj2 — h2) sin ^ 

cos/3 = --- 

, Vp - h2 
d = —— 

o • 9 2 sin - 
2 

, t h p 
tan - * r tan - 

hi 2 

(19) 

(20) 

(21) 
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PROBLEMS 

VI-1. A and D are fixed axes. AD = 2J in.; AB = 11 in.; DC = 1} in.; 

BC = 21 in. Angle BAD = 60°. 

1. Name the links of this four-bar linkage. 
2. Move the link AB through an angle of 30° each side of its present position and 

find the corresponding positions of BC and DC. 
3. If the angular speed of A B is 1 rad/sec, find the angular speed of DC and BC 

in the position shown. 

Prob. VI-1 Prob. VI-2 

VI-2. AD (fixed) = 10 in.; BC = 101 in.; DC = 41 in. The sketch shows a 

linkage used in the feed mechanism of a vertical boring mill. The crank AB is 
adjustable for varying throws. Determine the angle through which DC oscillates 

when AB is 21 in. (this being the setting for maximum feed). 

VI-3. In this drag link mechanism A and D are fixed axes. AD = 2 in.; AB = 

BC = DC = 3 in. Angle BAD - 631°. AB is the driving crank and turns at 

constant speed counterclockwise. Starting with the position shown, find the angu¬ 

lar displacement of DC for each 30° position of AB for a complete revolution. 

Plot a curve whose ordinates represent angular displacements of DC at 
scale 1 in. = 50°. The abscissas represent angular displacements of A B at the same 

scale as the ordinates. The positions shown in the figure are the positions of zero 

displacement. If the shaft D drives a cutting tool which is at the beginning of a 
stroke in the given position, find the ratio of time of cutting stroke to time of return 

stroke. Which is the cutting stroke? 

Prob. VI-3 Prob. VI-A 

angular speed CD 
VI-4. Plot a curve showing ratio -;-—— for 30° intervals of AB, 

angular speed AB 

starting with AB in position ABi and turning uniformly counterclockwise. 

Ordinates — angular speed ratio (1 in. = unity). 
Abscissas — angular positions of AB (i in. *= 30°). 

AC = } in.; DC * 11 in.; DB = in.; AB « 2 in. 
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VI-5. In this linkage let BC = AB = CD = li in.; and AD = 2} in. Find the 

centrode of BC between the positions B1C1 and B2C2, and then find the centrode of 
AD if BC is fixed. 

Prob. VI-5 Prob. VI-6 

VI-6. The cranks AB and DC turn about the fixed axes A and D. The crank 

pins B and C are attached to the disk whose center is S. Jn the position shown S is 

on a perpendicular to AD at its midpoint and AB and DC make equal angles with 

AD. AD = 5i in.; AB = DC = 2 in.; SC = SB = 1J- in.; angle CSB = 120°. 

Find that point on the disk which, at the instant, has zero velocity. What name is 

given to that point? 

B 

VI-7. AC - BD = 8 in.; AB = CD - 
3 in. If AB is turning uniformly at 25 

rpm, calculate the maximum angular speed 

of CD in radians per minute. Sketch the 

linkage in the position at which the maxi¬ 

mum angular speed of CD exists. 

VI-8. AB- U in.; AD = 

3J in.; DC == If in.; BC = 
3$ in.; angle DAB == 80°. 

Show and name the links of 

this four-bar linkage, and find 
the angular speed ratio of the 

cranks in this position. 

Prob. VI-8 
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VI-9. A gas engine has a stroke 

of 5 in. and a connecting rod 10 in. 

long. Calculate, and check by 

graphical construction, the speed at 

which the piston is moving when it 

is at midstroke, if the engine is turm 

ing at 1100 rpm. Calculate the ac¬ 

celeration of the piston when the 

crank is at a dead point. 

VI-10. AB = 11 in.; AP * 31 

in.; AH = 4f in.; angle PAH — 
60°; angle BAH = 60°. Which of 

the slides, P or H, has the greater 

linear speed in the position shown? 

Write an expression for the ratio 

linear speed H . . _ 
Find numerical 

linear speed P 
value of this ratio. 

VI-11. AB = 3 in.; AT = 9 in.; angle TAB = 60°. Ir this engine with cylin¬ 

der on trunnions at T indicate the members of the four-bar linkage. Give an 

_ " . angular speed of shaft A . t . _ 
expression for the ratio---:—-—-—— with numerical answer. 

angular speed of cylinder 

VI-12. FD =■ 2i in.; FA - 5 in.; DH = 21 in.; AB - 2 in.; BH = 2f in.; 

HE = 3 in.; AD = 4 in.; angle DAB — 60°. Indicate two four-bar linkages 

found in this figure. In each case state which is the fixed link, which the connecting 

rod, and which the cranks. (Draw in the infinite links where needed.) Identify 

the body which contains each of the lines that represents a link. (See Art. 6-2; 

also Fig. fi-25.) 
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VI-13. A swinging block quick-return motion has a ratio s^ro^e _ ?. 
time of return stroke 1 

If the driving crank is 1 in. long, locate the fixed point of the swinging link. Draw 

the linkage in some convenient position, draw the infinite links which have been 

, , , n , a A. angular speed driven crank „ 
replaced by the sliding pair, state the ratio ---, .- for this 

angular speed driving crank 

position (numerical values not required). State maximum (numerical) value of this 

ratio. 
VI-14. In the swinging block mechanism, Fig. 6-25, let the maximum value of 

BA = 8 in. and the minimum value = 3 in.; path of S is perpendicular to CB and 

time of cutting stroke 2 
11 in. above B; maximum value of ---—---— = - ; angular speed of 

time of return stroke 1 

BA = 30 rpm clockwise. Scale of space diagram 3 in. = 1 ft. 

1. Find position of axis C. 
time of cutting stroke 

2. Find minimum value of —--—--— • 
time of return stroke 

3. With BA — 8 in., plot a curve whose abscissas are time units and whose ordi¬ 

nates are angular speeds of h in revolutions per minute. Scale of abscissas J in. = 

time occupied by BA in turning through an angle of 15°. Scale of ordinates 1 

in. = 10 rpm. Use as zero position of the mechanism that position where A is on 

BC between B and C. Solve for one-half revolution of BC. 
4. Find the velocity and acceleration of S when angle CBA — 120°. 

VI-16. In a Whitworth quick-return mechanism similar to Fig. 6-28, BA = 5J 

in.; BC — 12i in. R is on a perpendicular to AB passing through A. Draw space 

diagram one-eighth size. 
1. Find the ratio of time of cutting stroke to time of return stroke. 

2. Let AN = 15 in.; NR = 4 ft; angular speed of BC = 1 radian per unit of 

time. Find the linear speed of R in feet per unit of time when AN is perpendicular 

to the path of R. 

3. If the path of R is 20 in. above .4, other dimensions remaining the same as 
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before, what difference results in ratio of time of cutting stroke to time of return 

stroke? 

VI-16. The cylinder h is 8 in. in diam- 

, eter and turns in the fixed bearings k. The 

' axis of h is at C. The block g slides in a 

k |\ y slot 4 in. wide cut across h as shown. An 
eccentric /, 3 in. in diameter, with center at 

f \ f f\ \ \ A, is contained in a hole in g and turns 

I jht ‘lx \ ak°ut the fixed axis B. BC = BA = 1 in. 
/ \ l \ \ Angle CBA is 120°. The angular speed 
I \\. \ of / is 2 rad/sec, counterclockwise. 

I \ \ I 1. Show and name the links of the 

I \ 9 C \ I equivalent four-bar linkage. 
\ \ \ \ / 2. Find the angular speed of h for the 

\ \ \ \ / position shown. Is this constant or vari- 

\ /7 \ x y able? Give reason for your answer. 

\ \ y 3. Find by velocity vectors the speed 

y\^ \ with which 9 is sliding on h. 

Prob. VI-16 

VI-17. CE = 2 in.; CR = 1 

in.; EP = ^ in. Describe ex¬ 

actly the paths of P and R, giv¬ 

ing dimensions, as the blocks 

slide in the fixed guides. 

Prob. VI-17 

VI-18. The slotted disk g turns at 

uniform angular speed about the 

fixed axis A. The blocks n and h 
slide in the slots in g. The block m 
slides in a fixed slot. A straight 

rigid rod is pinned to the blocks at 

C, E, and P. CE = 3i in.; CP = 

12J in. 

1. Show a four-bar linkage in¬ 

volving the axis A and the pin P. 
2. How many strokes does P 

make for a complete revolution of 
the disk g? 

3. Find the length of the stroke 
of P. Prob. VI-18 
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y» 
Prob. VI-19 

VI-19. Design a Scott Russell straight-line mechanism to guide a point P 
approximately along the line Y Y a distance of 3 in. either side of line XX, P to be on 
YY at its two extreme positions and its midposi¬ 

tion. Guiding crank to be pivoted at A and to 

swing 30° above and below XX. Assume for this 
construction that one end C of the guided link is 

always on line XX. x 
If C is guided by a crank 6 in. long, about an 

axis D, perpendicularly below a point halfway 

between the extreme positions of C, locate a point 
S which, by means of a pantograph having PC and 

DC as two sides, shall move in a vertical line 2 in. 
long. 

VI-20. Draw a pantograph to connect two points A and B,\\ in. apart, so that 
the motion of A shall be to the motion of B as 13 is to 7. Calculate the distance 

from B to the fixed point. The pantograph is to be so arranged that A may move 
at least 5 in. in either direction along the line through A and B. 

VI-21. Design a pantograph to reduce the motion of the crosshead of an engine 

that has a stroke of 12 in., to 3 in., so that a steam engine indicator may be operated 

from it. Let the distance from the fixed point to the point of connection at the 

crosshead be 15 in. Draw half size. 

VI-22. The three points A, B, and C are to be connected by a 

J«-6--_ pantograph so that A may move up 4 in., B up 3 in., and C down 
A q 0 2 in. A C = 6 in. Locate the fixed point and the point B, and 

Prob VI-22 ^?en ^raw a Pant'°grapl1 that will allow A to be moved 4 in. in 
every direction. 

VI-23. The point P is to be guided approximately on the straight line YY by a 

Watt straight-line mechanism. P is to move 1 \ in. above and below the position 

shown and is to be exactly on the line YY in its extreme positions and in its mid¬ 

position. 
Determine the lengths of the cranks DC and AB, and draw the connecting rod. 

y\ 
Prob. VI-23 

7 

Prob. VI-24 

D 

VI-24. A point P is to be guided by a Watt straight-line mechanism so that it 

shall have a stroke of 2 in. approximately along the line YY. P is to be on YY 
when at the ends and in the middle of its stroke. The fixed axes are located as 

shown. 
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Find the lengths of the cranks and connecting rod, and locate P on the connecting 
rod. 

Draw the linkage in midposition as shown in the diagram and also when P is at the 
upper end of its stroke. 

VI-26. In the Hooke's joint shown, the axes of the shafts T and S and the crank 
/ lie in the plane of the paper. Angle p = 30°. Shaft T turns with constant 
angular speed. Let 0 be the angle turned through by T in a given time and </> the 
corresponding angle turned through by S. 

1. Compute one value of the angle 0 when 4> — 0 is a maximum. 
2. For the value of 0 found in 1, find the value of <£. 

3. For the same value of 0 compute the angular speed of S ijjthe angular speed of 
T is 1 rad/sec. 



CHAPTER VII 

TRANSMISSION OF MOTION BY DIRECT CONTACT 

7-1. Nature of Contact. When the driving member of a mechanism 

is in direct contact with the driven piece (see Art. 1-9), the bodies con¬ 
stituting the driver and follower (driven member) are either in pure 
rolling contact or there must be sliding between the surfaces in contact. 

An exception to this occurs when the points or lines of contact on both 
bodies are moving along the common normal to the contact surfaces. 

In this chapter certain fundamental principles and constructions 
concerning these two kinds of relative motion will be discussed. In the 
chapters which follow, the application of these principles will be con¬ 

sidered in connection with friction drives, gears, cams, and screws. 

7-2. Pure Rolling Contact. If one body is in contact with another 
body along a line and the relative motion is such that no slipping occurs 

between coincident points on the line of contact, the bodies are said to 

be in pure rolling contact. The surfaces may be of various forms 
provided the relation between them is such that the conditions are 
proper for relative motion to take place without slipping. The funda¬ 

mental condition is that every point on one body which is in the line of con¬ 
tact must have the same velocity as the coincident point on the other body. 

The following cases may be considered as typical: 
1. A circular cylinder and a plane surface. 
2. Two circular cylinders. 

3. A right circular cone and a plane surface. 

4. Two right circular cones. 
In all cases one of the bodies may be fixed or both may be moving. 

7-3. Sliding Contact. Angular Speed Ratio. The first and one of 
the most important cases to be studied is that in which the driver and 

follower are turning about axes which are fixed in position relative to 

each other. In Fig. 7-1 the pieces / and h are turning about the fixed 

axes A and B respectively. The point F on/is at the instant in contact 

with the point H on h, and / is assumed to be the driver and turning 

clockwise. Let w/ be the angular speed of / and w* the angular speed 

of h. Then the velocity of F is equal to oo/ • AF and is represented by 

the vector Ffx perpendicular to AF. 
NN is the common normal to the two contact surfaces. The corn- 
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ponent of Ffi along NN is Fn, and H must have the same component. 
The direction of the velocity of H is perpendicular to BH. Therefore 
Hhi represents the velocity of H. Then 

Hhx 

“’•‘m 

The magnitude of the velocity of sliding of F on H (that is, the rela¬ 
tive velocity of F and H) is shown by the length of the line hifi. F is 
moving downward relative to H with velocity h\fh or H is moving 
upward relative to F with velocity fihi. 

Let P be the point where the common normal NN cuts the line of 
centers AB. Then 

<*>h __ AP 

o)f BP 

Proof. Draw Aa and Bb perpendicular to NN. Then triangles 
Hnh\ and BbH are similar, and triangles Fnfi and AaF are similar. 

Hence 

Hh, Hn 
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and 
Ffi _ Fn 

AF Aa 

Dividing I by II gives 

Hhi * Ffi _ Hn ' Fn _ Aa 

BH + AF ~ ~Bb* = ~Bb 

(II) 

since Fn and Hn are the same length. But 

Hhx Ffi 

BH an AF " 

Therefore 

<*f 

Aa 

Bb (1) 

« Aa AP 
Since the triangles AaP and BbP are similar, — = Hence 

Uh 

CO/ 

AP 

BP 
(2) 

This relation between the angular speeds is extremely important 
Stated in words it is as follows: 

When one piece drives another by direct sliding contact the angular 
speeds of the two pieces are in the inverse ratio of the segments into which 
the common normal to the two contacting surfaces cuts the line of centers. 

This law may also be shown to be true by the use of centros as dis¬ 
cussed in Art. 4-15. P is the common centro of / and h. A is the fixed 
center of /, and B is the fixed center of h. 

In Fig. 7-2 the same mechanism is drawn in another position. The 
velocity vectors are drawn at about three-eighths the scale of Fig. 7-1 
in order to bring their termini within the limits of the drawing. The 
demonstration given for the angular speed ratio in the first position 
applies equally well in the new position. 

AP 
By measuring the drawings it will be found that, in Fig. 7-1, 

2 

3 

Wh 
hence, from equation 2, — = - 

CO/ 

2 

3 

BP 
AP 

In Fig. 7-2, — is 

about 7 ; hence — 
1 COf 

3 

1 
It is apparent that the mechanism shown in Fig. 7-1 can act only 

through a limited range of angular motion, and also that the driver and 



164 TRANSMISSION OF MOTION BY DIRECT CONTACT 

follower turn in opposite senses. In Fig. 7-3, which is lettered to cor¬ 
respond with Fig. 7-1, the driver/ may make a complete revolution and 
in doing so will cause the follower h to oscillate through an angle whose 
magnitude depends upon the ratio of the line of centers AB to the crank 
length AF. 

Fig. 7-3 Fig. 7-4 

In Fig. 7-4 is a similar mechanism with the ratio of AB to BC such 
that both driver and follower turn in the same sense. 

These are, kinematically, the same mechanisms as those discussed in 
connection with Figs. 6-25 and 6-28 respectively. In each of those 
cases a block is carried by the pin on the driving crank in order to give 
surface contact with the sides of the slot instead of line contact as in 
Figs. 7-3 and 7-4. This block does not in any way affect the relative 
motion of driver and follower. 

7-4. Sliding Contact. Conditions for Constant Angular Speed 
Ratio. In the preceding article it was shown that the angular speeds 
of follower and driver are inversely as the distances from the fixed axes 
to the point P where the common normal to the surfaces which are in 
contact cuts the line of centers. Then if the shapes of these contacting 
surfaces are such that their common normal cuts the line of centers 
always at the same point the angular speed ratio of the follower and 
driver will remain constant since P will now be a fixed point and the 

AP 
ratio — will be constant. Figures 7-5 and 7-6 show two pieces whose 

form is such as to fulfill this condition. Figure 7-6 represents the same 
pieces as Fig. 7-5 in a different phase of action. It will be noticed that 
P divides the line of centers into the same two segments in both cases 
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and also that the velocity vectors are such as to give the same angular 
speed in both figures. 

When the contacting surfaces of the driver and follower are so shaped 
that their common normal intersects the line of centers at the same 
point for all positions of the pieces throughout their period of action the 
curves which form the outline of these surfaces are said to be conjugate 
curves. 

7-5. Pitch Point. Angles of Action. Pressure Angle. This article 
applies to both variable and constant angular speed ratio. 

The point P where the common normal cuts the line of centers is 
called the pitch point. 

The total angle through which the driver turns during the time it is 
in contact with the follower is the angle of action of the driver, and the 
angle turned through by the follower during the same time is the angle 
of action of the follower. With constant relative angular speeds, the 
magnitudes of the angles of action of the driver and follower are in the 
direct ratio of their angular speeds. In the case of variable angular 
speed ratio, such as in Fig. 7-1, the angles of action are directly propor¬ 
tional to the average angular speeds of the driver and follower. 

In Fig. 7-7 the same mechanism as in Figs. 7-5 and 7-6 is shown in 
full lines where/is just beginning to drive h and in dotted lines where/ 
and h are just on the point of swinging out of contact with each other. 
The angle a turned through by any line on / shows the magnitude of the 
angle of action of /, and the corresponding angle shows the magnitude 

of the angle of action of h, 
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Referring to Fig. 7-1, if a line XX is drawn through P perpendicular 
to AB, the angle 0 which NN makes with XX is equal to PAa and PBb 

7-6. To Draw the Conjugate to a Given Curve. In Fig. 7-8, given 
the curve RS which is the outline of that part of the body / that is to 
drive body h by sliding contact. Let it be required to draw the curve 

COh 
WT of such form that — shall be constant and of known value. The 

CO/ 

distance AB between the fixed axes is also known. As has already been 
shown, if the angular speed ratio remains constant the common normal 
to RS and WT must at all times cut the line of centers at a fixed point P. 
The first step then is to locate P. This is determined by the known 

value of — from the equation — = • Next choose any point C 
c0/ co/ BP 

on the given curve RS and through C draw a normal to RS. If RS is a 

curve whose properties are known, such as an arc of a circle, ellipse, 
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or involute of a circle, the normal may be drawn with precision; other¬ 
wise the direction of the normal must be estimated as carefully as possible. 

In the figure, CE is the normal. Now rotate / about A until CE 
passes through P. To do this draw an arc about A through P cutting 
CE at E; then draw the arc CC0 through C, and from P with a radius 
equal to CE cut this arc at C0. C0 is the point where C will be located 
when it is in contact with the desired curve. (Note that the triangle 
APCo is the triangle A EC turned about A until E coincides with P.) 
The point on the desired curve WT which will coincide with C at C0 
must be at the distance BCo from B. Hence draw the arc CoK about 

B and lay off the angle C0BK equal to angle C0AC X — • This may 
CO/ 

best be done by drawing an arc through P with B as a center and step¬ 
ping off from P the length of arc PM equal to the length of arc PE. 
Then from M with a radius CE cut the arc C0K at K. (Note that 
triangle BKM is the same as triangle BCqP turned through an angle 

cOh 
equal to C^AC X — *) The point K thus found is one point on the 

CO/ 

required curve. Choose other points on RS including R and S, and 
find the corresponding points on WT in the same manner. W is the 
point corresponding to R, and T the point corresponding to S. A 
sufficient number of points having been found, a smooth curve drawn 
through them will be the required conjugate to RS. 

7-7. Continuous Rotation with Constant Angular Speed Ratio. 
With a driver and follower having constant angular speed ratio through 
direct contact, as in Fig. 7-5, the range of motion is limited to a rela¬ 
tively small part of a revolution. The conditions in this respect are 
essentially the same as for the variable angular speed mechanism dis¬ 
cussed in Art. 7-3. Though it may be possible to design the pieces 
with conjugate curves such that action through a complete revolution 
of at least one of the members is possible, the resulting action is of 
questionable practicability. When continuous action of this sort is 
desired a series of duplicate pieces is used on the same axis. For exam¬ 
ple, if, in Fig. 7-5, several pieces with acting surfaces like that of / are 
equally spaced around the shaft at A and a corresponding series of 
duplicates of h is equally spaced around the shaft at B> then when one 
pair of pieces has ceased to act the next pair will have come into contact. 
The number of pieces on the two shafts must be in the direct ratio of 

AP 

BP 
, and they must be spaced close enough to allow one pair to come 

into action not later than the time when the preceding pair ceases to act. 
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This is the basic principle underlying the design of gears and gear teeth; 
it will be more fully considered in a later chapter. 

7-8. Rolling Contact. Attention has already been called to the fact 
that, when two bodies are in pure rolling contact, coincident points have 
identical velocities. In Fig. 7-1, where/is in contact with h on one side 
of the line of centers, F is sliding downward relative to the coincident 
point H. In Fig. 7-2, where the contact is on the opposite side of the 
line of centers from that in Fig. 7-1, the new point of contact F is sliding 

upward relative to H. That is, the sense of the relative velocity of the 
coincident points has changed. Now, in Fig. 7-9 the same mechanism 
as that in Fig. 7-1 is drawn in that phase of its action when the contact 
is on the line of centers. Here, it will be noticed, H and F have the 
same velocity, the component of sliding being zero. Hence at this 
instant / and h are in pure rolling contact. 

In Fig. 7-6, F and H are the points which were in contact with each 
other in Fig. 7-5. It is apparent that the curve FF2 contains all the 
points on / which have been in contact with points on h contained in the 
curve HH2. The curve FF2 is obviously much longer than HH2. The 
same condition exists in Figs. 7-1 and 7-2, although the shapes in those 
figures happen to be such that the difference in the lengths of the two 
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acting curves is not so great. If therefore the contact surfaces of driver 
and follower are so shaped that they will at all times be in contact on 
the line of centers, rolling contact will result if no slipping occurs. The 
lengths of the acting curves in such a case would be the same. Hence 
the conditions for pure rolling contact between two bodies which are 
turning about parallel axes which are fixed relative to each other are: 
The point of contact must always be on the line of centers, and the lengths 
of the contacting surfacesy as shown by their traces on a plane perpendicular 
to their axes, must be equal. 

If the point of contact is at all times in the same place on the line of 
centers the angular speed ratio remains constant. Circular cylinders 
are the only bodies which fulfill the requirements for pure rolling contact 
with constant angular speed ratio for parallel axes. Friction must be 
relied upon for transmission of motion. 

For variable speed ratio an unlimited number of forms may be 
desfgned although relatively few are capable of permitting complete 
revolutions of both pieces. 

Fig. 7-10 

7-9. To Draw a Curve to Act in Pure Rolling Contact with a Given 
Curve. Referring to Fig. 7-10, given the body / turning about the 
fixed axis A in sense indicated by the arrow. To find the outline of a 
body h, turning about the fixed axis B, which will roll without slip on 
the given outline F0Fi0. Also to find the angle through which h turns 
while/ turns through the angle a. The solution depends upon the two 
principles previously stated, namely: the point of contact must be on 
the line of centers and the lengths of the two curves which come in 
contact in a given time must be equal. 
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Divide the curve F0Fi0 into parts so small that the length of the arc is 
approximately equal to the length of its chord. P0 is one point common 
to both curves. With A as a center draw an arc through the first point 
of division, Fi. This arc cuts the line of centers at Pi. Through Pi 
draw an arc P1H1 with B as a center. From Po draw an arc with radius 
PoFi cutting the arc P\Hi at Hi. Then Hi is a point on the required 
curve. 

Next, draw an arc about A through P2 cutting the line of centers at 
P2. Through P2 draw the arc P2H2* From Hi draw an arc with 
radius equal to the chord PiP2 cutting P2P2 at //2. Then H2 is a second 
point on the required curve. Repeat this process for each of the points 
P3, P4, to F10, giving P3, H4, to Hi0, which will be the last point on the 
required curve. Draw a smooth curve through the points found. 

The angle 0 will be the angle turned through by k ’while f turns 
through the angle a. 

Action between / and h ceases when Hi0 and F10 meet on the line of 
centers. If the outline of / were assumed for the remainder of its 360° 
motion and the corresponding curve found for h, there would be no 
assurance that h would complete its 360° motion in the same time as /. 
Hence if the motion is to be continuous the given outline (in this case 
thau off) may not be chosen at random. 

In the case shown, action for the completion of the cycle might be 
provided for by placing on the axes A and P, in another plane from / 
and h, portions of two circular cylinders with radii inversely as the 
angles 360° — a and 360° — f3, the sum of whose radii is the dis¬ 
tance AB. This type of problem will be treated in more detail in 
Chapter IX. 

7-10. Sense of Relative Motion. In all the cases illustrated in the 
preceding articles the common normal to the contacting surfaces cuts 
the fine of centers between the fixed axes, thus causing the two bodies 
to rotate in opposite senses. If the pieces are so designed that the 
common normal cuts the line of centers on the same side of both axes 
the two bodies will turn in the same sense. Examples of this condition 
will be given later. 

7-11. Other vCases. The foregoing discussion has been confined 
to the simplest cases, involving only coplanar motion about parallel 
axes, relatively fixed at a finite distance from each other. The princi¬ 
ples brought out, however, are general in their nature and, with proper 
modifications, apply equally well when either of the bodies has rectilin¬ 
ear motion. In this case the distance between the axes is infinite. 

Under certain conditions such as those involving the wedge or in¬ 
clined plane both bodies may h^ve rectilinear motion. 
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Another important series of mechanisms involving transmission of 
motion by direct contact arises when the two bodies do not have co- 
planar motion. Some of these will be considered in connection with 
rolling cones, hyperboloids, screws, and cylinder cams. 

PROBLEMS 

Vn-1. In Fig. 7-1 the distance AB is 5 in. The acting surface on / is a plane 
surface tangent to a circle of $-in. radius about A. The acting surface on h is a 

cylinder of f-in. radius the axis of which is 3 in. from B. This axis oscillates over 

a 45° arc; its extreme positions are 15° to the right of the center line AB and 30° to 

the left of AB. 
1. Find the angle through which / swings to cause h to swing through the angle 

described above. 

2. The cylinder h is driven from its extreme right-hand to its extreme left- 

hand position by the body / turning at uniform angular speed of 1 rad/sec. Sub¬ 

divide the angle through which / turns into six equal angles, and find w* for each of 

the^e positions, including the two extreme positions. 

3. Find by vectors and tabulate the velocity of sliding of the point of contact F 
relative to the point of contact H for each of the positions specified in 2 above. 

State in connection with the tabulation in each case whether F is moving upward or 

downward relative to //. 

VII-2. Find the pitch point in this mechanism when it is in position shown. 

Give numerical value of the ratio • Indicate the sense of w* if <*>/ is clockwise. 
«/ 

If o/ — 1 rad/sec, find by vectors the velocity of sliding at the point of contact. 
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VH-3. 1. The shafts A and B are driven at the same angular speed by a mecha¬ 

nism not shown in the figure; each shaft oscillates through an angle of 180°. Find 

the shape of a plate h to be located on B whose outline is conjugate to that of /. 

Use points 1, 2, 3, etc., in making the construction. 

2. Let shaft A oscillate 180° in the direction of the full arrow and back to its 

present position in the direction of the dotted arrow. Find the shape of a plate h 
which is to be placed on shaft B and driven by plate / with pure rolling contact. 

State the magnitude of the angle through which B oscillates. 

VU-4. 1. Shafts A and B are driven by a mechanism (not shown) so that 

oja = 2cob, both speeds being constant. Determine the dimensions of the square 

plate /if the corner P is at the pitch point, and construct the conjugate to be located 

on shaft B. 

2. If f makes one-half turn in the direction of the arrow, find the shape of a plate 

h to be placed on B and be driven by / with pure rolling contact, the dimensions of / 

to be as found in 1. Through how great an angle will B turn while A turns 180°? 
(j$h 

Give the maximum and minimum values of — • 
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Vn-5. A and B are the axes of rotation of 

bodies / and h respectively. /, the driver, has a 

surface PM which is an arc whose chord length is 1 

in. P is the pitch point. Draw the sketch full size 

and find the conjugate curve of h by using three 

points on PM. 

VII-6. The two bodies with conjugate surfaces are in contact at P. Their 

common normal is NN. h turns as indicated at 10 rpm. For the position shown: 

1. Are the bodies in rolling or sliding contact? 

2. What is the absolute velocity of P on h? 
3. What is the absolute velocity of P on /? 

4. What is the velocity of sliding, if any? 

5. What is the angular velocity ratio of the body h to the body /? 

6. For this angular velocity ratio to remain constant, what condition must be 

satisfied? 



CHAPTER VIII 

CAMS 

8-1. A Cam is a plate, cylinder, or other solid with a surface of con¬ 
tact so designed as to cause or modify the motion of a second piece, or 

of the cam itself. Either the cam or the other piece or both may be 
moving. The most common case is that of a plate, cylinder, or other 

solid having a curved outline or a curved groove, which rotates about 
a fixed axis and, by its rotation, imparts motion to a piece in contact 
with it, known as the follower. A cam and its follower form an appli¬ 

cation of the principle of transmitting motion by direct sliding contact. 
See Art. 7-3. Sometimes a 

roller is attached to the fol¬ 

lower for the purpose of re¬ 
ducing the sliding friction. 

If the cam is properly de¬ 

signed the roller does not 
change the motion of the fol¬ 

lower to any great extent. If 
the action of the piece is in¬ 

termittent, it is sometimes 

called a wiper. That is, a 
cam, in most places, is con¬ 
tinuous in its action, whereas 

a wiper is always intermit¬ 
tent; but a wiper is often 

called a cam, notwithstand¬ 

ing. A pair of gear teeth 
may be considered to be a 
cam and its follower. 

Figure 8-1 is a drawing of 
a cam known as a plate cam, and Fig. 8-2, a drawing of a cylinder con¬ 

taining an irregular groove and known as a cylindrical cam. 

Very many machines, particularly automatic machines, depend 
largely upon cams, properly designed and properly timed, to give 

motion to the various parts. 
Usually a cam is designed for the special purpose for which it is to be 

174 
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used. Ordinarily in practice the condition to be fulfilled in designing 
a cam does not directly involve the speed ratio, but assigns a certain 
series of definite positions which the follower is to assume while the 
driver occupies a corresponding series of definite positions. 

The relations between the successive positions of the driver and 
follower in a cam motion may be represented by means of a diagram 
whose abscissas are linear distances arbitrarily chosen to represent 

angular motion of the cam and whose ordinates are the corresponding 
displacements of the follower from its initial position. This is illus¬ 
trated in Fig. 8-3, where the line Oabc represents the motion given by 
the cam. The perpendicular distance of any point in the line from the 
axis OY represents the angular motion of the driver, while the per¬ 
pendicular distance of the point from OX represents the corresponding 

Fig. 8-3 

movement of the follower, from some point considered as a starting 
point. Thus the line of motion Oabc indicates that from the position 0 
to 4 of the driver,, the follower had no motion; from the position 4 to 12 
of the driver, the follower had a uniform upward motion 612; and from 
position 12 to 16 of the driver, the follower had a uniform downward 
motion 612, thus bringing it again to its starting point. 

8-2. Diagrams for Cams Giving Rapid Movements. It very often 
happens that a cam is required to give a definite motion in a short inter¬ 
val of time, the nature of the motion not being fixed. The form of the 
diagram for such a motion will now be discussed. 
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For the diagram shown in Fig. 8-3 the follower has two uniform 
motions, and, if the earn is made to revolve quickly, quite a shock will 
occur at each of the points where the motion changes, as a, b, and c; to 
obviate this the form of the diagram can be changed, provided it is 

allowable to change the na- 
1r ture of the motion. 

Suppose that a cam is to 
raise a body rapidly from e 
to / (Fig. 8-4), the nature of 
the motion to be such that 
the shock shall be as light as 
possible. 

For the straight line Oa the 
case is one of a uniform mo¬ 
tion, the body being raised 

from e to / in an interval proportional to Ob; here the motion changes 
suddenly at 0 and a accompanied by a perceptible shock. The line 
Ocda would be an improvement, the follower not requiring so great an 
impulse at the start or near the end of the motion, each being much 
more gradual than before. 

The body may be made to move with a harmonic motion, the diagram 
for which would be drawn as follows (Fig. 8-5): 

Fig. 8-4 

Draw the semicircle e5f on ef as a diameter; divide the time line Oh 
into a convenient number of equal parts (in this case ten), and then 
divide the semicircle into the same number of equal parts; through the 
divisions of the semicircle draw horizontal lines intersecting the vertical 
lines drawn through the corresponding points of division of the time 
line Oh, thus obtaining points, as a, b, c. A smooth curve drawn 
through these points gives the full curve Oabcd . . . n. Here the body 
or follower receives a velocity increasing from zero at the start to a 
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maximum at the middle of its path, when it is again gradually dimin¬ 
ished to zero at /, the end of its path. 

This form of diagram gives very good results and is satisfactory in 
many of its practical applications. 

A body dropped from the hand has no initial velocity at the start, but 
has a uniformly increasing velocity, under the action of gravity, until it 
reaches the ground; similarly, if the body is thrown upward with the 
velocity it had on striking the ground, it will come to rest at a height 
equal to that from which it was dropped, and its upward motion is the 
reverse of the downward one, that is, a uniformly retarded motion. 
(See Art. 2-27.) 

When a cam is designed for rapid movement the motion of the 
follower may obey this same law of gravity, and have a uniformly accel¬ 
erated motion until the middle of its path is reached, then a uniformly 
retarded motion to the end of its path. This type of motion is called 
(l5 gravitational motion, (2) 'parabolic motion, or (3) uniformly acceler¬ 
ated and retarded motion. The follower may be caused to move during a 
time interval according to either uniformly accelerated motion, uni¬ 
formly retarded motion, or both uniformly accelerated and retarded 
motion. 

A body free to fall descends through spaces, during successive units 
of time, proportional to the odd numbers 1, 3, 5, 7, 9, and so on, and the 
total space passed over equals the sum of these spaces. 

To develop a line of action according to this law upon the same time 
line Oh, and with the same motion ef, as before, proceed as follows: 

Divide the time line Oh into any even number of equal parts, as ten; 
then divide the line of motion ef into successive spaces proportional to 
the numbers 1, 3, 5, 7, 9, 9, 7, 5, 3, 1, and draw horizontal lines through 
the ends of these spaces, obtaining the intersections a', b', c', and so on, 
with the vertical lines through the corresponding time divisions 1, 2, 3, 
and so on; a smooth curve, shown dotted in the figure, 
drawn through these points, will give the cam diagram. 

Another kind of motion for a cam follower which has 
been used with good results, and which avoids abrupt 
changes in acceleration, gives a displacement curve whose 
ordinates are computed from equation 1 on page 178. In 
Fig. 8-6, let the follower move along line AB. Draw a 
semicircle with AB as a diameter, and assume the radius 
CD of this semicircle to turn with uniform angular speed 
starting at CA when the follower begins to move and turning 180° to CB 
while the follower moves to B. Let AB = L. Let s be the displace¬ 

ment of the follower when CD has turned through the angle 0. Then 

Fig. 8-6 
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the cam is so designed that the follower has a displacement which satis¬ 
fies the following equation: 

s = ~ (0 — I sin 2<f>) (1) 
TT 

If p is the total angle through which the cam turns to cause the follower 
to move the distance L and 0 is the angle turned by the cam when the 
radius CD has turned through the angle <£, then 

</> 6 ttO 

Substituting this value of <f> in equation 1 gives 

L 

7T 

1 . 27T0\ 
- sin — } 
2 P ) 

(2) 

In Fig. 8-7 the full-line curve is the displacement-time curve for a cam 

follower whose ordinates were determined from equation 2. 
L / T$ 

dotted straight line represents the term 
V/ 

The 

, and the distance along 

the ordinate from the straight dotted line to the full-line curve repre- 

sents the term - I — r sin L( I • 
\ 2811 

8-3. Plate Cams. A plate cam imparts motion to a follower guided 
so that it is constrained to move in a plane which is perpendicular to 
the axis about which the cam rotates, that is, in a plane coincident with 
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or parallel to the plane in which the cam itself lies. The nature of 
the motion given to the follower depends upon the shape of the cam. 
The follower may move continuously or intermittently; it may move 
with uniform speed or variable speed; or it may have uniform speed 
part of the time and variable speed part of the time. A knowledge of 
the various types of plate cams, and an idea of the manner of attacking 
the problem of designing a cam for any specific purpose, can best be 
obtained by studying a number of examples. 

Example 1. A cam is to be keyed to the cam shaft (Fig. 8-8), which turns as 

indicated. The shape of the cam is to be such that the point of the slider S will be 

raised with uniform motion from A to 

B while the cam makes one-half turn, and 

lowered again to the original position dur¬ 

ing the second half-turn of the cam. The 

cam shaft turns at uniform speed. 

Solution. (Fig. 8-9). Draw a circle 

through A with Cas a center. This circle is 

known as the base circle and is defined as 

that circle with a center at the cam shaft 

center and a radius equal to the least dis¬ 

tance between that center and the pitch 

profile. Since the follower is to rise from 

A to B while the cam makes a half-turn 

(or turns through 180°), and since t he cam 

shaft turns at uniform speed, divide one 

Fig. 8—8 Fig. 8-9 

half of the circle (AVW) into any number of equal angles by the lines Ca, Cb, Cd, and 
Ce. Four divisions are made in the illustration, although for accurate work a 
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greater number would be desirable. The divisions are made on the side which is 

turning upward toward the follower, that is, back on the side from which the arrow 

is pointing. Now, divide the distance AB into as many parts as there are divisions 

in the angle AVW. Since the follower is to rise from A to B with uniform motion, 

the divisions of AB will be equal. That is, A to 1 = 1 to 2 = 2 to 3 = 3 to B. 
When the cam has made one fourth 

of a half-revolution, the line Ca will 

be vertical. A point m on this line, 

found by swinging an arc through 
1 with center C, will be the point on 

the cam which will be at the height 

Cl above the center when the cam 

has made one fourth of the half- 

revolution. Similarly, n will be 

the point on the cam which will be 

at 2 when the cam has turned one 

half of the half-revolution, p and 

r are found in the same way, by 

drawing arcs through 3 and B cut¬ 

ting the lines Cd and Ce, respec¬ 

tively. 

Fig. 8-10 Fig. 8-11 

A smooth curve drawn through the points A, m, n, p, and r will be the correct 

outline for that portion of the cam which will raise the follower point from A to B as 

specified. Since the follower is to be lowered from B to A, also, with uniform 

motion during the remaining half-turn of the cam, the other half of the cam outline 

will be a duplicate of that already found. 

Example 2. Data the same as for Example 1, except that the follower, 

instead of having a point shaped as in that example, has a roller, as shown 

in Fig. 8-10, on which the cam acts. The construction is shown in Fig. 

8-11. It is necessary first to find the outline of the cam for a follower 
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like that in Fig. 8-9, the point of the follower being assumed to be at the 

center A of the roller, Fig. 8-11. The construction of this curve is exactly the same 

as explained for Fig. 8-9 and is lettered the same as in Fig. 8-11, the curve itself 

being drawn as a dot and dash line. This is called the pitch line or pitch profile 

of the cam. The next step is to set a compass to a radius equal to the radius of 

the roller and, with centers at frequent intervals on the pitch line, draw arcs as 

shown dotted. The true cam outline is a smooth curve drawn tangent to these 

arcs. It should be noted that the point of tangency will not necessarily he on the 

line joining the center of the arc to the center of the cam. For instance, consider 

This condition often prevents the cam which acts on a roller or similar follower 

from giving exactly the same motion as would be obtained from the “ pitch line " 

cam acting on a pointed follower. This is likely to be true at convex places where 

the motion changes suddenly. 

Example 3. Given a follower with a roller as shown in Fig. 8-12 where the line 

of motion does not pass through the cam axis. The lowest position of the center of 

the roller is a distance N above the center of the cam shaft, and the line AB along 

which the center of the roller is guided is a distance D to the right of a vertical line 

through C. That is, the center of the cam shaft is offset a distance D to the left of 

the line of motion of the center of the follower. To draw the outline of a plate cam 

which, by turning as shown by the arrow, shall raise the center of the roller from A 
to B with uniform motion while the cam makes one-half turn, then lower it again 

to A during the second half-turn of the cam. 

Solution 1. Figure 8-13 shows one solution of this problem. Starting with C, 
locate the center A by measuring a distance D to the right of C and a distance N 
above C. Draw a line Ck through C and A. Since the upward motion is to take 
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place during one-half turn of the cam, measure back 180° from Ck and draw Ce 
(that is, kACe is a straight line). Divide the angle kCe into any convenient number 

of equal parts as before (in this case four) by the lines Ca, Cb, Cd. Divide AB into 

the same number of equal parts, since the follower is to rise with uniform speed. 

From C as a center swing an arc through 1 cutting Ck at 5. Cut Ca with the same 

arc at 9. Make the length 9-10 equal to 5-1. Then 10 is one point on the pitch 

line of the cam. In the same way point 12 is found by making arc 11-12 equal to 

arc 6-2, and, similarly, all the way around. The true cam outline is found as before 

by drawing arcs with radii equal to the radius of the roller, and with centers on the 

pitch line, and then drawing a smooth curve tangent to these arcs. 

Solution 2. Figure 8-14 shows another method for finding the pitch line of the 

cam when the follower point (in this case the axis of the roller) moves in a straight 

line not passing through the cam axis. Having the points 1, 2, 3, and so on, as in 

Solution 1, draw a circle about C with radius D. The line of motion B-1 extended 

will be tangent to this circle at h. Through h draw Ca and from Ca lay back the 

angle 180°, getting Cf. Divide this angle into four equal parts, getting lines Cb, 
Cd, Ce, and Cf, cutting the circle at j, m, p, and r respectively. Draw tangents at 

these points. On these tangents lay off j— 10= h~ 1; m — 12= h~ 2; p — 13 = 

h — 3; and r — 14 = hB. These points, 10, 12, 13, and 14, are the same points as 

found in Solution 1. The rest of the pitch line is found in a similar manner and the 

cam completed as before. 
Example 4. Figure 8-15 is a cam which raises the center of the roller from A to 

B with harmonic motion during one third of a turn, allows it to drop to its original 

position instantly, and holds it there during the remaining two thirds of a turn. 
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The angle kCf, through which 

the cam turns to raise the rol¬ 

ler's laid off (120°) and divided 

into an even number of equal 
parts. Since the roller is to rise 

with harmonic motion, a semi¬ 

circle is drawn with iB as a 

diameter, and the circumfer¬ 

ence of this semicircle is divided / 

into as many equal parts as / 

there are divisions in the angle / 

kCf. From the points of divi- / / 
sion on this semicircle perpen- / / 

diculars are drawn to the line 4-- 

AB, meeting it at points 1, 2, 1 1 

3. These points are the points \ \ 

of division oi AB to be used in \ 

finding the pitch fine of the \ 

caifi, which is found as previ- \ 

ously described. The last point 

on the part which raises the 

follower is 16. Since the fol¬ 

lower is to drop instantly, draw 

a straight line from 16 to 17, 

the point where an arc through 
A cuts Cf. The remainder of the pitch 

Example 5, In Fig. 8-16 let it be 

Cam Shaft 

4$^ 

i5\y Fig. 8-15 

line is a circle aboutCthrough 17 around to A. 
required to design a cam to be placed on shaft 

I 0 to raise slider A to Ai during one 

✓''pv third of a turn of the cam, allow it to 

\A~~J 7 drop at once to its original position 

and remain there during the rest of 

the turn of cam, the nature of the 

motion of A to be unimportant except 

that the starting and stopping shall 

be gradual. The cam is to act on a 
roller on the rocker BCD, the rocker 

being connected to the slider by the 

link BA. The cam turns counter¬ 

clockwise. 

Solution (Fig. 8-17). First draw 

the motion diagram assuming uni¬ 

form motion for A. This is shown 

by the dotted fine to*- Next substi¬ 

tute for this fine the line shown full, 

the greater part of which is straight, 

having more slope than the original 

line and connected to points t and Og 

by curves drawn tangent to the slop¬ 

ing line and tangent to horizontal 

fines at t and a*. 
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Subdivide into equal parts the distance tt%, which represents the one-third turn 
during which the motion of the slider takes place, erect ordinates at these points 

cutting the motion plot at points oi, a2, and so on, and project these points on to the 

path of A getting A1, A2, and so on. From Ah A2, and so on, with radius AB cut 

an arc drawn about C with radius CB, getting Blf B2, and so on. From these points 

draw lines through C cutting the arc of radius CD at Di, Z)2, and so on. The cam is 

found from these points as in previous examples. 

Fig. 8-17 
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Example 6. In Fig. 8-18, a plate cam on a shaft whose axis is at C is to turn 

counterclockwise and cause motion to a follower through a roller. The axis A of the 

roller is to move along the straight line from Aq to At while the cam turns 120°, 

Fig. 8-18 

remain at rest while the cam turns 30°, return to its original position while the cam 

turns 120°, and remain at rest for the remainder of the cam revolution. The motion 

of the follower for both its upward and downward stroke is to conform to the equa¬ 

tion 

1 . 2tt0> 
- sin — 
2 p y 

(See Art. 8-2.) 
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Points on the cam pitch line will be found for each of six equal subdivisions of 0, 
hence 0 will have successive values of 

2 7T 47T 67r 

-5- 6, and so on 

The points C, Ao, and A# having been located on the drawing the next step is to con¬ 
struct the displacement diagram with its x-axis perpendicular to AoA« and passing 
through Ao in order that the ordinates may be projected directly on to the line AoA«. 

To construct the displacement diagram it will be easier to use the two terms of 

equation I separately. The first term, 0.478 will give a straight line. 

Choose some distance 0-1 to represent the equal subdivisions of /3 and lay it off six 

times along the x-axis since six divisions of /? are used. 0 will have values of - , 
6 

2/S 3/3 

6 ’ 6 
and so on, and since /3 

2 T IT 2 TT 7T 

— the values of 0 will be - . — , - , 
3 9 9 ’3’ 

4ir t)7T 2tt 

’ "9 ’ 3* ’ 
Erect ordinates at the points 1, 2, and so on, and on the last ordinate 6 measure 

up the distance 6-N = A0A6 = L. Draw the straight line O-N. This is the 
/30\ 

curve for the term 0.478 f— ). For division 1 the second term 0.478 ( —i sin 30) 

becomes 0.478 (- —0.21. That is, the actual curve cuts the ordinate 

at point 1 at a distance 0.21 in. below the line O-N. 
The other points on the curve are determined in like manner. 
The ordinates are now transferred to the line A 0i46, and the pitch line of the cam 

is constructed as in previous examples. Since the return motion of the follower 
is the same as the upward motion the same displacement curve will serve for con¬ 
structing that part of the cam which controls the return motion. 

The pitch line of the cam and the diameter of the roller upon which it is to act 
having been obtained, the actual cam outline is drawn as already explained. 

8-4. Positive Motion Plate Cams. It will be noticed that, in each 
of the cams which have been discussed, the follower must be held in 
contact with the surface of the cam by some external force such as 
gravity, or a spring. The cam can only force the follower away from 
the cam shaft; some outside force must bring it back. If it is desired 
to make the cam positive in its action in either direction without de¬ 
pending upon external force, the cam must be so constructed as to act on 
both sides of the follower’s roller, or there must be two rollers, one on 
either side of the cam. In Fig. 8-19, the pitch line of the cam is made 
the center line of a groove of a width slightly greater than the roller 
diameter, thus enabling the cam to move the roller in either direction. 

Figure 8-20 shows another style of positive motion cam. The fol¬ 
lower consists of a framework carrying two rollers, one, roller (7, resting 
on cam A, which is designed to give whatever motion is desired for 
the follower. The other, roller D, rests on cam B, which is designed to 
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be in contact with roller D} the position of which depends in turn upon 
the position of roller C. It would be possible to have both rollers 
touching the same cam, but then the movement of the follower could 
only be chosen for one half a turn of the cam, the other half being 
determined by the shape of the cam necessary to be in contact with 
both rollers. 

8-6. Plate Cam with Flat Follower. The follower for the cam 
shown in Fig. 8-21 has a flat plate at its end instead of a roller. The 
cam is so designed that, when it turns clockwise, the follower is raised 
with harmonic motion while the cam makes one third of a turn, then 
remains at rest during the next third of a turn of the cam and is lowered 
with harmonic motion during the remaining third of a turn. 

If the center line of the guides in which the follower moves does not 
pass through the center of the cam, the shape of the cam is not affected, 
provided the direction is the same. The method of construction is as 
follows: Assuming that the follower is shown in its lowest position, 
measure up along a vertical line passing through the center of the cam 
the distance 08 which the follower is to move. Divide this into any 
even number of harmonic divisions, eight being used in the drawing. 
Lay back the angle OEm equal to the angle through which the cam 
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turns while the follower is being lifted. Divide 0Em into as many equal 
angles as there are harmonic divisions in the line 08. Through point 1 
swing an arc with E as a center cutting the first radial line at w; through 
w draw a line perpendicular to Ew. Through 2 draw an arc cutting 

the second radial line at v and draw through v a line perpendicular to 
Ev. In a similar way draw pependiculars to Eu, Et, Er, Ep, En, and 
Em. A smooth curve tangent to all of these perpendiculars will be the 
outline of that portion of the cam which raises the follower. 

Since the follower is to remain at rest while the cam turns through the 
next 120° the outline between the line Em and the line Ek 120° away 
from Em will be an arc of a circle through m with E as a center. 
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The outline of the portion of the cam which lowers the follower is 
found in a manner similar to that described for raising it. 

If the foot of the follower made an angle 6 with the center line of its 
path, 0 being other than 90°, the construction lines at c, d, e, /, and so on, 
instead of being drawn perpendicular to Ec) Ed, Ee, Ef, and so on, 
would be drawn making an angle 0 with these lines. 

8-6. Plate Cam with Flat Rocker. The cam in Fig. 8-22 actuates 
the follower S through the rocker R which is pivoted at P. S slides in 
guides, and remains still while the cam makes a quarter-turn clockwise, 
then rises to the upper dotted position with harmonic motion during a 
quarter-turn of the cam. During the next quarter-turn the follower 
drops with harmonic motion to its original position, and remains at rest 
during the last quarter-turn. The foot of the follower is a semicircle 
with center at 0, resting on the upper flat surface of the rocker. To find 
the cam outline, first divide the distance 06 into harmonic spaces, six 
being used in this case. These points of division are the successive 
positions of the center of the semicircle. Draw arcs of the circle with 
each of the points 1, 2, 3, 4, 5, 6 as centers. Draw the dotted circle K 
tangent to the upper surface of the rocker produced. Next, draw the 
lines a, fr, c, d, e, and / tangent to circle K and to the arcs drawn at 
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1, 2, 3, 4, 5, and 6 respectively. Parallel to, and at a distance T from, 
lines a, 6, c, and so on, draw lines K, i, j, and so on, cutting the vertical 
line through the cam center C at 7, 8, 9, 10, 11, and 12. 

Since the follower is to remain at rest during a quarter-turn of the 
cam, the outline of the cam over the angle A is an arc of a circle with 
radius CE. The initial line CE may be taken at any convenient place. 
In the figure it is parallel to the path of S. It might have been per¬ 
pendicular to the bottom of the rocker when the latter is in its lowest 
position. 

Since the upward movement takes place during a quarter-turn, or 90°, 
lay off angle B equal to 90° and divide it into as many equal angles as 
there are harmonic divisions in 06. Lay off C14 equal to (77 and 
through point 14 draw a line making the same angle with (714 that line g 
makes with CE. Draw similar lines through each of the other radial 
lines (715, (716, (717, (718, and (719. The cam outline will be a smooth 
curve tangent to all the lines which have been thus drawn. 

A similar construction is used f,or finding the curve for the part of the 
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cam which lowers the follower. The last part of the cam, over angle F, 
will be a circular arc to give the period of rest. 

8-7. Eccentric as a Cam. In Fig. 8-23 an eccentric (see Art. 6-20) 

is shown acting as a cam on a wedge-shaped follower. The eccentric 
turns about the fixed axis C, the center of the eccentric being at B. 
The stroke of the follower is equal to 
twice the eccentricity CB. The full 
lines represent the mechanism when 
the follower is in its lowest position, 
and the dotted lines, when the cam 
has turned through 90°. The motion 
does not follow any one of the simple 
laws, but its nature may be easily 
determined either graphically or by 
computation. A roller may be placed 
on the follower without materially 
changing the motion. 

Figure 8-24 shows the same eccen¬ 
tric as Fig. 8-23 acting on a flat-faced 
follower, the acting face of the fol¬ 
lower being perpendicular to the 
direction of its motion. It is evident 
that the point of tangency of the follower and cam is always directly 
over the center B\ hence the follower has simple harmonic motion. 

If the follower is made to enclose the cam as shown in Fig. 8-25, a 
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positive-motion cam results, which is the equivalent of the u Scotch 
voke ” mentioned in connection with Fig. 6-33. 

8-8. Triangular Cam. Figure 8-26 shows an equilateral triangle abc, 
formed by three circular arcs, whose centers are at a, b, and c, the whole 
turning about the axis a, and producing an intermittent motion in the 
slotted piece B. The width of the slot is equal to the radius of the three 
circular arcs composing the three equal sides of the triangular cam A, 
and therefore the cam will always bear against both sides of the groove. 

If we imagine the cam to start from the position shown in Fig. 8-27 
when b is at 1, the slotted piece B will remain at rest while b moves 
from 1 to 2 (one sixth of the circle, 1, 2 ... 6), the cam edge be merely 
sliding over the lower side of the slot. When b moves from 2 to 3, i.e., 
from the'position of A, shown by light full lines, to that shown by dotted 
lines, the edge ab will act upon the upper side of the slot, and impart 
to B a motion similar to that obtained in Fig. 8-24, which is that of a 
crank with an infinite connecting rod; from 3 to 4 the point b will drive 
the upper side of the slot, ca sliding over the lower side, the motion here 
being also that of a connecting rod with an infinite link, but decreasing 
instead of increasing as from 2 to 3. When b moves from 4 to 5 there 
is no motion in B; from 5 to 6, c acts upon the upper side of the slot, 
and B moves downward; from 6 to 1 f ac acts on the upper side of the 
slot, and B moves downward to its starting position. The motion of B 
is accelerated from 5 to 6 and retarded from 6 to 1. 

At A' a form of cam is shown where the shaft a is wholly contained 
in the cam. In this case draw the arcs de and cb from the axis of the 
shaft as a center, making ce equal to the width of the slot in B; from c 
as a center with a radius ce draw the arc eb, and note the point b where 
it cuts the arc cb; with the same radius and b as a center draw the arc 
dc, which will complete the cam. In this case the angle cab will not be 
equal to 60°, and the motions in their durations and extent will vary a 
little from those described above. 
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8-9. Cylindrical Cams. The general appearance of a cylindrical 
cam has already been shown. (See Fig. 8-2.) Figure 8-28 gives 
dimensions for the hub and groove for a cylindrical cam which is to hold 
a follower still for one-eighth turn of the cam, move it 2 in. to the right 
in a line parallel to the axis of the cam, with uniformly accelerated and 
uniformly retarded motion while the cam makes three-eighths turn, 
hold it still for one-eighth turn, and return it to its original position 
with similar motion in three-eighths turn. The solution of this prob¬ 
lem is shown in Fig. 8-29. The upper left-hand view is an end view of 
the cam; the upper right-hand view is a side elevation of the cam. 

To make the drawing, proceed as follows: 
Locate the center line XX'. On the line XX' choose the point C at 

any convenient place and draw the circle K whose radius is equal to the 
outside radius of the cylinder. Also draw the dotted circle P with the 
radius equal to the outside radius minus the depth of the groove. Draw 
thd vertical center line YY'. Lay back the angle YCB equal to one 
eighth of 360°, that is, 45°. This is the angle through which the cam 
will turn before the follower starts to move. Since the movement of 
the follower is to take place during the next three eighths of a turn, the 
cam will turn through the angle BCY' to give the motion to the follower. 
Since the follower is to remain at rest during the next one-eighth turn, 
the angle Y'CT equal to 45° will next be drawn, and the remaining angle 
TCY will be the angle through which the cam will turn to move the 
follower back to its original position. Now, draw the center line MN 
at any convenient distance on the right of the figure already drawn, 
and locate the point E on this line at a distance from XX' equal to the 
outside radius of the cylinder. On a horizontal line drawn through 
E locate the points F and G, each at a distance from E equal to the 
radius of the roller on which the cam is to act. Draw HJ parallel to 
FG at a distance from it equal to the depth of the groove. Through F 
and G draw lines to the point L where MN intersects the axis XX'. 
That portion of the line HJ intersected between FL and GL will be the 
width of the groove at the bottom. Before it is possible to proceed 
further in the construction of this side elevation of the cam, it is neces¬ 
sary to make a development of its outer surface. Draw the line M'N' 
equal in length to the circumference of the cylinder. 

Lay off M'B' equal to the length of the arc YB and B'Y\ equal to 
the length of the arc BY'. Divide B'Y\ into any even number of 
equal parts, in this case eight, and letter points of division a'y b'y c'y d'y 
e'y and g'. Through the points thus found draw vertical lines. On 
the vertical line through M' lay off M'S equal to the distance through 
which the follower is to move, and divide M'8 into “ gravity ” divi¬ 
sions, using as many divisions as there are equal divisions in B'Y 
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right. Make Y\T' equal to the length of the arc Y'T. The develop¬ 
ment of the center line of the groove between the verticals at Yf2 and 
T is a horizontal straight line. Since the return motion of the follower 
is a duplicate of the forward motion, the curve 17#', being a duplicate 
of the curve Z?'16, will be the development of the center line of that 
portion of the cam groove which moves the follower back to its original 
position. 

The above construction gives a development of the center line of the 
groove on the outer surface of the cylinder. The lines forming the 
development of the sides of the groove are smooth curves drawn tangent 
to arcs, swung about a series of centers along the line M'Z?'-16-17-#' 
with radii equal to the radius of the large end of the roller as shown in 
the drawing. Similar curves drawn tangent to arcs swung about the 
same centers with a radius equal to the radius of the large end of the 
roller, plus the thickness of the flange forming the sides of the groove, 
will t>e the development of the outer edges of these flanges. 

The development of the corners of the bottom of the groove is con¬ 
structed in the same way, except that the length of the development is 
less, because it is a development of a cylinder of smaller radius. 

The projections (on the side elevation) of the curves which have just 
been developed are drawn by finding the projections corresponding to 
points r', s', t', v', where these curves cut the vertical line, it being borne 
in mind that the vertical lines on the development really represent the 
developed positions of elements of the cylinder, drawn through points 
a, 6, c, and so on, which are found by dividing the arcs BY' and TY into 
divisions equal to the divisions in B'Y'2 and T'N'. The construction 
for the points r', s', t', and v' only will be followed through as the con¬ 
struction for all other points will be exactly similar. Through b on the 
end view draw an element of the cylinder across the side elevation. 
From 6, where this element intersects MN> lay off bt equal to b't', bv 
equal to 6V, to the right of MN since t' and v' are above M'N'f and bs 
equal to b's' and br equal to 6'r', to the left since s' and r' are below 
M'N'. The points r, s, t, v are the projections of points corresponding 
to r', s', t!, v'. Projections of all other points where the curves intersect 
the verticals on the development are found in exactly the same way, 
and smooth curves drawn through the points thus found will be the 
projections of the corners of the groove, and of the flange enclosing the 
groove. The projections of the corhers of the bottom of the groove are 
obtained in the same way also, using, of course, elements through 02, 62, 
and so on, instead of a and 6. 

8-10. Multiple-Turn Cylindrical Cam. Figure 8-30 shows a cylin¬ 
drical cam which requires two revolutions to complete the full cycle 
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of motion of its follower The method of designing such a cam would 
be similar in principle to that described for the simple cam in Fig. 8-29. 
The follower in a case like this will require a special form in order to pass 
properly the places where the groove crosses on itself. This is sug¬ 
gested in Fig. 8-31. The follower F is made to fit the groove sidewise, 

Fig. 8-30 

and is arranged to turn in the sliding rod, to which it gives motion in a 
line parallel with the axis of the cam. The guides for this rod are 
attached to the bearings of the cam, A and B} which form a part of the 
frame of the machine. A plan of the follower is shown at G: its elon¬ 
gated shape is necessary so that it may properly cross the junctures of 
the groove. In this cam there is a period of rest during one half of a 

<ED> 
G 

Fig. 8-31 

turn of the cam at each end of the motion; the motion from one limit to 
the other is uniform, and consumes one and one-half uniform turns of 
the cam. 

The cylinder may be increased in length, and the groove may be made 
of any desirable lead; the period of rest can be reduced to zero, or 
increased to nearly one turn of the cam. A cylindrical cam, having a 
right- and a left-hand groove, is often used to produce a uniform recipro¬ 
cating motion, the right- and left-hand threads, or grooves passing into 
each other at the ends of the motion, so that there is no period of rest. 

The period of rest in a cylindrical cam, like that shown in Fig. 8-31, 
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can be prolonged through nearly two turns of the cylinder by means 
of the device shown in Fig. 8-32. A switch is placed at the junction of 
the right- and left-hand grooves with the circular groove, and it is pro¬ 
vided that the switch shall be capable of turning a little in either direc¬ 
tion upon its supporting pin, while the pin is capable of a slight longi¬ 
tudinal movement parallel with the axis of the cylinder. This sup¬ 
porting pin is constantly urged to the right by a spring, shown in A, 
which acts on a slide carrying the pin; when the mechanism is in this 
position the space a between the switch and the circular part of the 
groove is too small to allow the follower to pass, and when the follower 
is in the position shown in B, the spring is compressed; then, if the 
follower moves on, the space behind it is closed, as the spring will tend 
to push the support to the right and swing the switch on the follower 
as a fulcrum. 

ABC 

Fig. 8-32 

If the cam turns in the direction of the arrow, in A the shuttle-shaped 
follower is entering the circular portion of the groove, and leaves the 
switch in a position which will guide the follower into the circular groove 
when it again reaches the switch; in B the switch is pressed toward the 
left to allow the follower to pass. As motion continues, the support 
of the switch is pressed to the right, and the switch is thrown in to the 
position shown in C, ready to guide the shuttle into the returning 
groove. The period of rest in this case continues for about one and 
two-thirds turns of the cylinder. 

Figure 8-33 shows an arrangement which may be applied for guiding 
a wire or cord as it winds upon a spool. The hub of the sheave is bored 
to fit the outside of the shaft. The shaft is stationary and has a right- 
hand groove and a left-hand groove cut in it, and is therefore a station- 
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ary cylindrical cam. On the side of the sheave is a projection which 
supports the pin on which the specially constructed follower is carried. 
The wire or cord, passing over the sheave, causes it to turn, and as it 
turns it receives a reciprocating motion along the axis of the cam. 

8-11. Cylindrical Cam Acting on a Lever. If the follower for a cylin¬ 
drical cam is a pin or roller on the end of a lever, so that it moves in an 
arc instead of a straight line, as in Fig. 8-34, an exact construction 
would require that allowance be made for the curvature of the path 
when making the development. This degree of refinement is usually 

i 

Fig. 8-34 Fig. 8-35 

unnecessary, from a practical point of view, and the cam may be de¬ 
signed on the assumption that the path of the follower is a straight line 
parallel to the elements of the cylinder. 

If the lever is in a plane passing through the axis of the cam, as in 
Fig. 8-35, the end of the lever m^y be considered as one tooth of a worm 
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wheel or helical gear, and be given the form of such a tooth. The cam 
itself then corresponds to the worm or to the mating helical gear except 
that its groove is not necessarily helical. 

8-12. Combinations of Two or More Cams. In various automatic 
machines the movements of parts which have to be timed with respect 
to each other are often obtained by means of two or more cams properly 
designed and properly adjusted to give each piece its desired motion 

at the required time. Figure 8-36 shows how a cylindrical cam and a 
plate cam might be arranged to work in combination with each other. 
In this case the cylindrical cam makes two revolutions for every one of 
the plate cam. The cylinder R is caused to swing back and forth by 
the lever S which, in turn, is operated by the plate cam. 

With the mechanism in the position shown, the cylindrical cam makes 
one-eighth turn in the direction shown, after which the pin T starts to 
move to the right with harmonic motion. T moves to the right the 
total distance of If in., during three eighths of a turn of the cylindrical 
cam, after which it remains at rest for one-eighth turn of the cam, then 
returns to its original position during the remaining three-eighths turn. 
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The plate cam is so designed that, turning counterclockwise as shown, 
the cylinder R begins to turn after T has moved to the right £ in. It 
continues to turn with uniformly accelerated and uniformly retarded 
motion until T gets back again to within £ in. of its left-hand position. 

The hole W will then be in the position now occupied by the hole V. 
R will then stop its motion and T will be inserted into the hole W. 
During the next revolution of the cylindrical cam T has a motion the 
same as before, and the plate cam swings the cylinder R back to its 
original position. 

8-13. Velocity and Acceleration of Follower. In many mechanisms 
the velocity and acceleration of a cam follower are important factors, 
particularly the acceleration. Hence it is necessary to be able to deter¬ 
mine with reasonable accuracy just how these properties vary during 
the cycle of motion. The usual method is to find the velocity and 
acceleration at the end of different successive intervals of time (or cam 
motion), and plot curves. 

If the cam is of such shape that the displacement of the follower may 
be readily expressed as a function of time, or angular motion of the cam, 
the velocity may be found by differentiating the expression for the dis¬ 
placement, and the acceleration by differentiating the expression for the 
velocity. 

If the shape of the cam is given, but nothing is known about the 
character of the motion of the follower, a graphical investigation may be 
made by drawing the cam in a series of positions, measuring the corre¬ 
sponding displacements of the follower, plotting a displacement-time 
curve, and obtaining the velocity and acceleration from this curve as 
explained in Art. 2-30, Example 1. 

Again, the velocity curve may be obtained by resolution of velocity 
by vectors, and the acceleration from the velocity curve. 

In some cases it is possible to obtain the acceleration directly from the 
drawing by means of acceleration vectors; in such cases the principles 
discusssed in Chapter V are applied. 

PROBLEMS 

Vm-1. Refer to Fig. 8-8. Design the pitch line of a cam to raise point of the 

follower from A to B with gravitational motion (uniform acceleration for $ in. and 

uniform retardation for i in.) while the cam turns 120°, hold it at rest for 60°, allow 

it to return to its original position with gravitational motion while the cam turns 

120°, and hold it at rest for the remainder of the cycle. 

Vm-2. Refer to Fig. 8-10. Let the axis of the roller when in its lowest position 

be 2 in. above the axis of the cam shaft. The roller is 1 i in. in diameter. Design a 

cam to raise the follower 1£ in. with harmonic motion while the cam turns 150°, 
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hold it at rest for 60°, and return it to its original position during the remaining 150° 
motion of the cam, with harmonic motion. 

VIII-3. Draw the pitch line of a plate cam turning uniformly clockwise to give 

motion to a point on a straight line passing 1 in. to the left of the axis of the cam. 

The highest position of the point is to be on a plane 2} in. above the axis of the cam. 
The motion of the follower is to be down 1 in. with harmonic motion 

in one-fourth revolution; still one-fourth revolution; down J in. at 

once; up 1J in. with harmonic motion in one-half revolution. After 
finding the pitch line of cam, find the proper shape of the cam if a 
roller J in. in diameter is used on the follower. 

Vffl-4. What will be the distance between the axis of the cam and 
the axis of the roller after the cam has turned 150° from the position 
shown? 

Vm-5. Refer to Fig. 8-12. Let N = 1J in., D = 1J in. The 

roller is 1J in. in diameter. Design a cam to raise the follower with 
harmonic motion 1£ in. while the cam turns 180° and return it to its 

original position with harmonic motion while the cam turns the re¬ 
maining 180°. Prob.VIII-4 

VIII-6. Same data as Prob. VIII-5 except that the motion of the follower is to 

conform to the equation 

L / tt6 1 

7T 2 

. .2tt0\ 
sm •— ) 

J 0 ) 

in which L is the total stroke of the follower and 0 is the angle through which 

the cam turns to cause the follower to move the distance L. 
VIII-7. Design a plate cam to give the following vertical motion to the follower 

which is a roller \ in. in diameter: raise 1 \ in. with accelerated harmonic motion 

for the first 90° turn of the cam; remain 

still the next 90° turn of the cam; raise 
1£ in. with retarded harmonic motion the 

next 90° turn of the cam; drop instantly 
1 in.; lower 2 in. with uniformly acceler¬ 

ated and retarded motion the last 90°. 
The cam is to turn clockwise. The diam¬ 

eter of the base circle is 3 in. and the 
center of the follower in its starting position 

is on a line bisecting the second quadrant 

(45° with the vertical). Draw full size. 

Vm-8. The plate cam with axis at C 

consists of the arcs of three circles with 

centers and radii as shown. Cam turns 

uniformly counterclockwise. Draw a dia¬ 
gram which shall show the motion of the 

follower, ordinates to be distance moved by 

the follower (full size), and abscissas to 

represent angular motion of the cam 

(1 in. = 30°). Take points every 30° with 

an extra point at 225°. 
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Vm-9. Find the outline of a plate cam 

which, by turning about the center C as 

shown by the arrow, shall cause a point A to 
move along the path A-B at a uniform 

speed as follows: the distance A-B in 

one-quarter turn of the cam. Still one- 
third turn. Remaining part of the distance 

in one-sixth turn. Return to A at once 

over the same path as previously trav¬ 
ersed. Still one-quarter turn. (Take 10 

intervals in the distance A-B.) Cam to be 

full size. 

Prob. VI1I-10 

Vm-10. Starting from the position shown, the slide is to drop 2 in. with harmonic 

motion during three eighths of a turn, to rise at once 1 in.; to remain still one eighth 

of a turn, to drop 2 in. with uniformly accelerated and uniformly retarded motion in 

one-half turn, and then to rise 3 in. at once. Find the cam outline if the end A of 

the lever is in contact with the cam, the latter to turn in the direction shown. 

(Assume that A is kept in contact with the cam by some external force.) 
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vni-ll. Find the outline of 

a plate cam turning uniformly 

clockwise to give block A the 

following motion: remain still 

one-twelfth turn, rise 1 in. with 

harmonic motion in one-third 

turn, still one-third turn, drop 1 jf 

in. at once, rise £ in. uniformly 

in one-fourth turn. Cam is to 

drive roller B 1 in. in diameter. 

Fixed 

Prob. VIII-12 

Vm-12. Piece A carries a pin which projects into the slot on the horizontal piece 

B. Find outline of a plate cam turning uniformly clockwise to act at D and give A 
the following motion: still for one-quarter turn of cam; up 1£ in. with harmonic 

motion in one-quarter turn; still one-quarter turn, drop 1$ in. at once, and still 

one-quarter turn. 
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Vm-13. A and B are two rollers (J-in. diameter) attached to the same frame. 
The rollers are in the same plane, and both are always to be in contact with a single 

plate cam. Find the outline of the cam if the frame is to be raised 1 in. with har¬ 

monic motion in one-half turn of the cam. What will be the motion of the follower 

during the remaining one-half turn of cam? 

Vm-14. This plate cam is made up of arcs of two circles and their common tan¬ 

gents, and turns about the fixed center A. Plot a curve showing the motion of the 

follower for every 15° movement of the cam for one-half turn. Scale of plot is to be 

as follows: abscissas = angles turned by cam, f in. = 15°. Ordinates = full-size 

displacements of the follower. 

Make, on the same plot, a curve that would show the displacements of the 

follower, if its motion had been harmonic. 
VHI-15. Refer to Fig. 8-21. A cam turning uniformly in a clockwise direction, 

on the axis E, is to give the following motion to the follower S, the lowest position of 

the flat surface of S being 2 in. above E: up 2 in. with harmonic motion in one- 

quarter turn of the cam, down 1 in. with harmonic motion in one-quarter turn, still 

one-quarter turn, down 1 in. with harmonic motion in one-quarter turn. Find the 

shape of the cam. 

Vni -16. Refer to Fig. 8-22. The cam turns in a clockwise direction on axis C, 

the pivot P for the lever R is 2 § in. to the right and 3 in. above C. The radius of the 

end of the slider S is J in. The center line of the slide S is 3 in. to the left of C and 
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when in its lowest position, its lowest point is 2 in. above C. T is 1 in., and a line 

parallel to the top surface of R and \ in. below it will pass through the pivot P. 
S moves up 3 in. with uniformly accelerated and uniformly retarded motion in one- 

third turn of the cam, still one-sixth turn, down 3 in. with uniformly accelerated and 

uniformly retarded motion in one-third turn, still one-sixth turn. Find the shape 

of the cam. 

vm-17. A cylindrical cam 3 in. outside diameter (turning clockwise as seen from 

the right) is to move a roller. Roller is above and moves parallel to the axis of the 

cam. Roller moves as follows: to right with harmonic motion 1{ in. in one-third 

turn of cam; still for one-sixth turn; to left with harmonic motion 1J in. in one-third 

turn; still for one-sixth turn. The roller is to be J in. in diameter at the large end 

and of such form as to give pure rolling contact. Groove in cam is to be J in. deep. 

Draw development for both top and bottom of groove of the part of cam which 

causes the motion to take place. 

VIII-18. The arm AP swings on a bearing at A. A is on a slide moving hori¬ 

zontally. The motion of the slide is controlled by a cylindrical cam (not shown), 

and the swing of the arm by a plate cam acting on roller R as shown. The point P 
is to move from the position shown, as follows: horizontally to right 3 in. with uni- 

forfnly accelerated and retarded motion in 4 sec; still 1 sec; swing down (while A 

remains stationary) a vertical distance of 4 in. with uniform motion in 3 sec; along 

a straight line (up and left) back to starting position with h .rmonic motion in 4 sec. 

Plate cam turns 5 rpm. Design the plate cam. Draw full size. 

VHI-19. The ram of a steam hammer carrying the roller R rises 10 in. with uni¬ 

form speed. Design an oscillating cam turning on the fixed center C which will 

move the valve rod S down 3 in. with uniformly accelerated and retarded motion 

during the rise of the ram. Draw full size. 



CHAPTER IX 

BODIES IN PURE ROLLING CONTACT 

9-1. Pure Rolling Contact consists of such a relative motion of two 
lines or surfaces that the consecutive points or elements of one come 
successively into contact with those of the other in their order. As 
already shown, there is no slipping between two surfaces which have 
pure rolling contact; that is, all points in contact have the same linear 

speed. 
Two bodies may be rotating on their respective axes, so arranged 

that, by pure rolling contact, one may cause the other to turn with an 
angular speed bearing a definite ratio to the angular speed of the driver. 
This speed ratio may be constant or variable, depending upon the forms 
of the two bodies. The axes may be parallel, intersecting, or neither 
parallel nor intersecting.* The present chapter will consider the cases 
of parallel axes connected by cylinders giving constant speed ratio, 

intersecting axes connected 
by cones giving constant 
speed ratio, parallel axes 
connected by bodies of ir¬ 
regular outline giving vari¬ 
able speed ratio, and non¬ 
parallel, non-intersecting 
axes connected by hyper¬ 
boloids. 

9-2. Cylinders Rolling 
Together without Slipping. 
External Contact. In Fig. 
9-1 let A be a cylinder fast 
to the shaft S and B a cylin¬ 
der fast to the shaft Si. 

Assume that the shafts are held by the frame so that their centers 
are at a distance apart just equal to the sum of the radii of the two 
cylinders; that is, R + Ri — C. Then the surfaces will touch at 

* In the case of axes which are neither parallel nor intersecting the coinciding 
elements of the rolling bodies may slide on each other in the direction of their length, 
so that the contact is not pure rolling in a strict sense. 

•206 
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P. Suppose also that the nature of the surfaces of the cylinders 
is such that, as they turn on their respective axes, there can be no 
slipping of one surface on the other. Then the surface speed of A 
must be equal to that of J5, and A and B must turn in such directions 
relative to each other than the element on A which is in contact with B 
is moving in the same direction as the element on B which it touches. 
(Notice the arrows in the figure, the full arrows belonging together and 
the dotted arrows together.) 

If A makes N revolutions per minute and B makes Ni revolutions per 
minute, 

Surface speed of A = 2tRN 

and 

Surface speed of B = 2 tRiNi 

< 

Therefore, if the surface speed of A equals the surface speed of B 

2* RN = 2*RlNl or ~ ^ (1) 
Ni R 

Or, the angular speeds of two cylinders which roll together without slipping 
are inversely proportional to the radii of the cylinders. 

It will be noticed that this principle is the same as that shown in 
Chapter VII. 

9-3. Solution of Problems on Cylinders in External Contact. In 
Fig. 9-1 suppose C, N, and Ni are known; required to find the diame¬ 
ters of the two cylinders. From equation 1 

R Ni „ R1N1 

r-jv or R~nr 
It is known also that R + Ri — C. R and Ri can, therefore, be found 
by solving these as simultaneous equations. 

9-4. Cylinders Rolling Together without Slipping. Internal Con¬ 
tact. In Fig. 9-2, where the lettering corresponds to that of Fig. 9-1, 
the cylinder A is hollow with B inside it, so that the contact is between 
the inner surface of A and the outer surface of B. This is called internal 
contact. The same mathematical reasoning will apply here as in 
Fig. 9-1, and equation 1 will hold true. The distance between centers 
now, however, is equal to R — Ri instead of R + Ri. The two cylinders 
in Fig. 9-2 will turn in the same sense instead of in opposite senses. 
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9-5. Solution of Problems on Cylinders in Internal Contact. In 
Fig. 9-2, suppose C, N, and Ni are known; required to find the diame- 

Fig. 9-2 

ters of the cylinders. 
From equation 1 

R_ = Ni 

R,~N 

It is also known that R — Ri = 
C. These may be solved as 
simultaneous equations to find R 
and R\, and therefore the diam¬ 
eters. 

9-6. Cones Rolling Together 
without Slipping. In the pre¬ 
ceding discussion relating to cyl¬ 
inders, the shafts were necessarily 
parallel. It is often required to 
connect two shafts which lie in 
the same plane but make some 
angle with each other. This is 
done by means of right cones or 
frustums of cones as shown in 

Fig. 9-3, the cones having a common apex. The same reasoning ap¬ 
plies to the ratio of speeds at the base of the cones as to the circles rep¬ 
resenting the cylinders in Fig. 9-1. 
That is, 

AT = Ri 
Ni “ R 

(2) 

But Ri — OP sin POCi and R = 
OP sin POC. Therefore 

R, OP sin POC, sin POC, 
R OP sin POC sin POC 

Substituting this expression in 
equation 2, 

N sin POC, 
N, ~ sin POC Fig. 9-3 

Therefore, the angular speeds of two cones rolling together without 
slipping are inversely as the sines of the half angles of the cones. 

If it is assumed that the sense of rotation is the sense in which a given 
shaft is seen to be turning as one looks along the shaft toward the inter- 
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section of the axes, then there are two cases: (1) opposite sense of 
rotation of shafts; (2) same sense of rotation of shafts. 

Two cones may roll in external contact or internal contact. External 
contact of cones, however, does not necessarily mean opposite sense of 
rotation, nor does internal contact necessarily mean same sense of 
rotation. As will appear later, the kind of contact (external or inter¬ 
nal) depends upon the particular combination of angle between shafts, 
sense relation, and speed ratio. 

9-7. Solution of Problems on Cones. Opposite Direction of Rota¬ 
tion. The law stated in the previous article may be utilized to calculate 
the vertical angles of the cones when the angle between the axes and the 
speed ratio are known. 

Referring to Fig. 9-3, let angle COCi = 6. 

Angle POC = a and angle POCi = (3. 

N_ 

Ni 

whence 

sin (3 sin f3 sin (3 

sin a sin (d — (3) sin 6 cos (3 — cos 6 sin (3 
sin (3 
cos (3 tan p 

sin (3 sin d — cos 6 tan (3 
sin d — cos 0- 

cos (3 

tan/3 
sin 6 

Ah 
- + COS0 

In similar manner, 

sin 6 
tan a = -- 

N 
— + COS Q 
Ni 

(4) 

(5) 

Graphical Construction. In Fig. 9-4, S and Si are two shafts which 
are to be connected by rolling cones to turn as indicated by the arrows. 
Their center lines meet at 0. S is to make N revolutions per minute, 
and Si is to make Ni revolutions per minute. Required to find the line 
of contact of two cones which will connect the shafts, and to draw a 

pair of cones. 
Draw a line parallel to OA, on the side toward which its direction 

arrow points, at a distance from OA equal to Ah units. Draw a similar 
line parallel to 0B} N units distant from OB. These two lines intersect 
at K. A line drawn through 0 and K will be the line of contact of the 
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required cones. Select any point P on OK and from P draw lines 
perpendicular to AO and BO meeting AO and BO at M and Mi, 
respectively. Produce these lines, making MH = MP and M\J = 
MiP. Draw HO and JO. Then OPH and OPJ are cones of the proper 
relative sizes to connect S and Si to give the required speeds. 

If the point P had been chosen nearer to 0, the cones would have had 
smaller diameters at their bases but the ratio of the diameters would 
have been the same, or, if P had been chosen farther away from 0, the 
bases would have been larger but still of the same ratio. If frustums 
of cones are desired, the cones can be cut off anywhere, as shown by the 
dotted lines FE and FG. 
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If (Fig. 9-3) the angle 6 is increased, the sense relation and angular 
speed ratio remaining the same (the angular speed ratio being other 
than unity), there will be a value of 6 such that a, the half angle at the 
apex of the larger cone, will be 90°. That is, the cone will become a flat 
plate as shown in Fig. 9-5. Any further increase of the angle 9 with 
same angular speed ratio will cause the half angle of the larger cone to 
become greater than 90°, thus giving a case of internal contact as in 
Fig. 9-6. The shafts are still turning in opposite senses, according to 
the definition given in Art. 9-6, and equations 4 and 5 still hold. 

9-8. Solution of Problems on Cones. Same Direction of Rotation. 
The same general methods used in Art. 9-7 apply to the solution of 
problems on cones having the same sense of rotation. The equations 
for the half angles of the cones are derived in the same manner, but 
differ from equations 4 and 5. 

Figure 9-7 is lettered the same Fig. 9-3, and 0, N, and Ni have the 
same values. The directional relation, however, is changed. Since 
a = 9 + p and P = a — 9 the equations become 

tan a — 
sin 0 

N 
cos 0 — — 

N i 

(6) 

where a is the half angle of the larger cone, and 

tan p 
sin 0 

Ni 

N 
cos 0 

(7) 

where p is the half angle of the smaller cone. 
Figures 9-8 and 9-9 correspond respectively to Figs. 9-5 and 9-6. 
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9-9. Rolling Cylinder and Sphere. Figure 9-10 shows a rolling cyl¬ 
inder and sphere as used in the Coradi planimeter. The segment of the 
sphere A turns on an axis ac passing through a, the center of the sphere. 
The cylinder B, whose axis is located in a plane also passing through 
the center of the sphere, is supported by a frame pivoted at e and is 
held to the cylinder by a spring, not shown. The frame pivots e are 
movable about an axis at right angles to ac and passing through a, the 
center of the sphere. When the roller is in the position B with its axis 
at right angles to ac, the turning of the sphere produces no motion of B; 
when, however, the roller is swung so that its axis makes an angle baci 
with its former position, as shown at Bi by dotted lines, the point of 
contact is transferred to Ci in the perpendicular from a to the roller 
axis. If the radius of the roller = R, the relative motion of roller and 
sphere, in contact at ch is the same as that of two circles of radii R and 
bci respectively. Transferring the point of contact to the opposite side 
of ib will result in changing the directional relation of the motion. The 
action of this device is purely rolling and but very little force can be 
transmitted. It is used only in very delicate mechanisms. 

9-10. Disk and Roller. If in Fig. 9-10 the radius of the sphere ac is 
assumed to become infinite and the roller B to be replaced by a sphere 
of the same diameter turning on its axis, the result will be a disk and 
roller as shown in Fig. 9-11, where A A represents the disk and 2? the 
roller, made up of the central portion of the sphere. 

If we suppose the rotation of the disk to be uniform, the velocity ratio 
between B and A will constantly decrease as the roller B is shifted 
nearer the axis of A, and conversely. If the roller is carried to the other 
side of the axis, it will rotate in the opposite direction to the first. 

This combination is sometimes used in feed mechanisms for machine 
tools, where it enables the feed to be adjusted and also reversed by 
simply adjusting the roller on the shaft CC. 

9-11. Friction Gearing. Rolling cylinders and cones, frequently 
used to transmit force, constitute what is known as friction gearing. 
The axes are arranged so that they can be pressed together with con¬ 
siderable force and, in order to prevent slipping, the surfaces of contact 
are made of slightly yielding materials, such as wood, leather, rubber, or 
paper, which, by their yielding, transform the line of contact into a sur¬ 
face of contact and also compensate for any slight irregularities in the 
rolling surfaces. Frequently only one surface is made yielding, the 
other usually being made of iron. As slipping is likely to take place 
in these combinations, the velocity ratio cannot be depended upon as 

absolute. 
When rolling cylinders or cones are used to change sliding to rolling 
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friction, that is, to reduce friction, their surfaces should be made as hard 
and smooth as possible. For example, in roller bearings and in the 
various forms of ball bearings where spheres are arranged to roll in 
suitably constructed races, all bearing surfaces are made of hardened 
steel and ground. 

Friction gearing is utilized in several forms of speed-controlling 
devices, among which the following are good examples: 

Figure 9-12 shows the mechanism of the Evans friction cones, 
consisting of two equal cones A and B turning on parallel axes with an 
endless movable leather belt C in the form of a ring running between 
them, the axis of B being urged toward A by means of springs or other¬ 
wise. By adjusting the belt along the cones, their angular speed ratio 
may be varied at will. It should be observed that there must be some 
slipping since the angular speed ratio varies from edge to edge of the 
belt, the resulting ratio approaching that of the mean line of the belt. 
A leather-faced roller might be substituted for the belt and a similar 
series of speeds obtained, the cones then turning in the same instead of 
in opposite senses. 

Figure 9-13 shows, in principle, another form of friction gearing. 
Here two equal rollers, C and D, faced with a yielding material, are 
arranged to run between two equal hollow disks A and B. The rollers 
with their supporting yokes (only one of which is shown in the eleva¬ 
tion) are arranged as indicated in the figure and are made by a geared 
connection, not shown, to turn opposite each other on the vertical yoke 
axes, $. The contour of the hollow in the disks must thus be an arc of a 
circle of radius equal that of the roller drawn from s as a center. If now 
the disk B is made fast to the shaft, and A, running loose, is urged 
toward B by a spring or otherwise, a uniform motion of A may be made 
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to give varying speeds to B by turning the rollers as shown. To in¬ 
crease the power two sets of disks are often used. 

9-12. Grooved Friction Gearing. Another form of friction gearing is 
shown in Fig. 9-14. Here increased friction is obtained between the 
rolling bodies by supplying their surfaces of contact with a series of 
interlocking wedge-shaped grooves; the sharper the angle of the 
grooves, the greater the friction for a given pressure perpendicular to the 
axes; both wheels are usually made of cast iron. Here the action is no 

longer that of rolling bodies; but considerable sliding takes place, which 
varies with the shape and depth of the groove. This form of gearing is 
very generally used in hoisting machinery for mines and also for driving 
rotary pumps; in both cases a slight slipping would be an advantage, 
as shocks are quite frequent in starting suddenly and their effect is less 

disastrous when slipping can occur. 
The speed ratio is not absolute but is substantially the same as that 

of two cylinders in rolling contact on a line drawn midway between the 
tops of the projections on each wheel, which are supposed to be in 

working contact. 
9-13. Rolling of Non-Circular Surfaces. If the angular speed ratio 

of two rolling bodies is not a constant, the outlines will not be circular. 
Whatever forms of curves the outlines take, the conditions of pure roll¬ 
ing contact should be fulfilled: the point of contact must be on the 
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line of centers, and the rolling arcs must be of equal length. This was 
illustrated in the construction given in Fig. 7-10 where the mate to the 
given curve was found by making the sum of the radiants constant and 
the lengths of the rolling arcs equal. 

There are four simple cases of curves which may be arranged to 
fulfill these conditions: 

A pair of logarithmic spirals of the same obliquity. 
A pair of equal ellipses. 
A pair of equal hyperbolas. 
A pair of equal parabolas. 

9-14. The Rolling of Two Logarithmic Spirals of Equal Obliquity. 
Figure 9-15 shows the development of a pair of such spirals, where, if 
they roll on the common tangent TTh the axes A and B will move along 
the lines XX and ZZ respectively. The arcs FXP, PFb) and so on, 

being equal to H\P, PH$, and so on, and also equal to the distances 
7iP, PJ6, and so on, on the common tangent, it will be clear that, if the 
axes A and B are fixed, the spirals may turn, fulfilling the conditions of 
perfect rolling contact; for the arc PFh = PHb and also the radiant 
AF$ + radiant BH& = AP + BP; and similarly for successive arcs 

and radiants. 
The equation for the construction of a logarithmic spiral with a given 

obliquity, as in Fig. 9-15, is 

r — aew 

where a is the value of r when 6 is zero; b = --- , 0 being the constant 
tan 0 



THE ROLLING OF TWO LOGARITHMIC SPIRALS 217 

Fig. 9-16 

angle between the tangent to the curve and the radiant to the point of 
tangency; and e is the base of the Napierian logarithms. 

In Fig. 9-16, let AP = a and APT — fi. Taking successive values 
of 0, starting from AP, the values of r may be calculated and the curve 
plotted. If, however, it is desired to pass a spiral through two points 
on radiants a given angle apart, it is to be noticed from the equation of 
the curve that, if the successive 
values of 0 are taken with a uni- --^- 

form increase, the lengths of the \ /'l \ j 
corresponding radiants will be \ ^ 
in geometrical progression. To \/ 
draw a spiral through the points 
F and K, Fig. 9-16, bisect 
the angle FAK. In the fig- Fio ^ 
ure AP is the bisector. Make 
AP a mean proportional between AF and AK; P will be a point on 
the spiral. Then by the same method bisect PAK, and find AM; 
also bisect FAP and find AG; and so on; a smooth curve through the 

ig points thus found will be the desired spiral. 
^ | Continuous Motion. Since these curves are not 

^ ^ closed, one pair cannot be used for continuous mo¬ 
tion; but a pair may be well adapted to sectional 

_ wheels requiring a varying angular speed ratio. 
For example, the curves in Fig. 9-15 are so 

-(5^ -proportioned that if / turns clockwise 180° from 
\ the position shown h will turn counterclockwise 

\f/ \ through an angle of 90°; but if / turns counter- 
I clockwise 90° h will turn clockwise through an 

angle of 180°. 
Given the distance AB, the maximum and 

N ;s ^ minimum angular speed ratio, and the angle 
through which the driver is to turn, a pair of 
spirals may be constructed by applying the princi- 

Fig. 9-17 ajrea(jy suggested. 

Logarithmic Spiral Driving Slide. Figure 9-17 shows a logarithmic 
spiral sector / driving a slide h. Here the driven surface of the slide 
coincides with the tangent to the spiral, the line of centers being from A 
through P to infinity and perpendicular to the direction of motion of the 
slide. In this combination the linear speed of the slide will equal the 
angular speed of/multiplied by the length of the radiant in contact, AP. 

Wheels Using Logarithmic Spirals Arranged to Allow Complete Ro¬ 
tations. By combining two sectors from the same or from different 

Fig. 9-17 



218 BODIES IN PURE ROLLING CONTACT 

spirals, unilobed wheels may be found which may be paired in such a 
way as to fulfill the laws of perfect rolling contact. Taking two equal 
sectors from the same spiral, we should have a symmetrical unilobed 
wheel, as / (Fig. 9-18), and this will run perfectly with a wheel h 
exactly like/, as shown. If / is the driver, the minimum angular speed 

Fig. 9-18 

of h will occur when the wheels are in the position shown. The maxi¬ 
mum angular speed of h will occur when the points F and H are in 
contact. Such wheels are readily formed, if the maximum and mini¬ 
mum angular speed ratios are known. It is to be noted that the mini¬ 
mum ratio must be the reciprocal of the maximum ratio, and that the 
angle which each sector subtends must be 180°. Unilobed wheels need 
not be formed from equal sectors, in which case the sectors used will not 
have the same obliquity nor will the subtended angles be equal, but the 
wheels must be so paired that sectors of the same obliquity shall be in 
contact. With a pair of such wheels the maximum and minimum 

angular speed ratios occur at 
unequal intervals; however, 
the minimum angular speed 
ratio must here also be the re¬ 
ciprocal of the maximum ratio. 

By a similar method wheels 
may be formed which will give 
more than one position of max¬ 
imum and of minimum angular 
speed ratio; that is, there may 
be either symmetrical or un- 
symmetrical bilobed wheels, 
trilobed wheels, and so on. 

9-15. The Rolling of Equal Ellipses. If two equal ellipses, each 
turning about one of its foci, are placed in contact in such a way that 

the distance between the axes AD, Fig. 9-19, is equal to the major 
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axis of the ellipses, they will be in contact on the line of centers and the 
rolling arcs will be of equal length. With the point P on the line of 
centers ADy AB + PD — AD. From the properties of an ellipse, 
AP + PB = the major axis = AD. Then AP + PB = AP + PD 
and PB = PD. Since the tangent to an ellipse at any point, as P, 
makes equal angles with the radii from the two foci, APT = BPTi and 
CPT = DPTi; but since PB = PD the point P is similarly situated 
in the two ellipses, and therefore the angle APT would equal the angle 
DPTh which would give a common tangent to the two curves at P. 
Hence, if AD is equal to the major axis, the ellipses could be in rolling 
contact on the line AD. Since the distances PB and PD, from the foci 
B and D respectively, are equal, it also follows that the arc PFi is equal 
to the arc PHi which completes the requirements for perfect rolling 
contact. It will also be noted that the line BPC will be straight and 
that a link could connect B and C as mentioned in Art. 6-10. 

4 

04 h 
If / (Fig. 9-19) is the driver, the angular speed ratio — will vary 

from a minimum when F2 and H2 are in contact, and then equal to 
AF2 
—— , to a maximum when Pi and Ih are in contact, when it will equal 
DH2 
AFi 
DHi 

The angular speed ratio will be unity when the major axes are 

parallel, the point of contact then being midway between A and D. 
9-16. The Rolling of Equal Parabolas and Equal Hyperbolas. Two 

parabolas may be considered as two ellipses with one focus of each at 
infinity. If one of the parabolas turns about its finite focus and the 
second one is held in contact with it, and if no slipping occurs the second 
one will have rectilinear translation; that is, it will move around its 

focus which is infinitely distant. 
If two equal hyperbolas are pivoted about their foci, properly located 

with respect to each other, the hyperbolas will turn in pure rolling con¬ 
tact through a limited range of motion. The simplest way to lay out 
such a pair of hyperbolas would be to find the centrodes of a pair of 

links as suggested in Art. 6-10. 
A complete discussion of rolling parabolas and hyperbolas would 

require more space here than their importance warrants. The princi¬ 
ples involved are the same as in rolling ellipses and may be worked 
out along the same lines if occasion requires. 

9-17. Rolling Hyperboloids. A hyperboloid of circular cross sec¬ 
tion is a solid of revolution, and its surface may be generated by a 
straight line revolving'about an axis to which it is not parallel and which 
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it does not intersect. Therefore, in Fig. 9-20, if line TT revolves 
about the fixed axis S it will generate the surface of the hyperboloid k, 
and if TT revolves about the fixed axis Z it will generate the surface of 
the hyperboloid g. Then k and g will be tangent along TT, Now 

Fig. 9-20 

if the proper relation exists between a, /3, and the gorge radii Rk and 
Rg, k and g will roll together analogously to two cones on intersecting 
axes. Imagine an infinitesimal groove cut on k along TT and a cor¬ 
responding raised line on g. Then if k is turned, any two contact 
points as F and H will have the same velocity component perpendicular 

to TT and the only sliding which occurs is along TT, 
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To determine the relation which must exist between a, 0, Rk, and Rg, 
in order that this action may take place properly along the entire 
contact line, the following method may be used. In Fig. 9-21 the hori¬ 
zontal projections of the axes S and Z intersect at 0 and make an angle 

6 with each other. Required to find hyperboloids to be located on these 
axes and roll as previously described. The angular speed of the hyper¬ 
boloid on S is to be co* and that on Z is to be cog. We must find a, 0, Rk, 
and Rg» 

Assume an arm / turning about fixed axis Z at angular speed o>/ equal 
to o)g but in opposite sense. Let / carry a shaft on which is a body k. 
The axis of this shaft at the instant coincides with S. Body k is turn¬ 
ing relative to / at angular speed wr equal to w* and in the same sense. 
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No true instantaneous axis for k exists, but there is a “ central axis ” 
TT along which all points on k have the same component of velocity 
while the components around TT are directly proportional to their 
distances from TT. To find TT assume k to be enlarged as shown 
dotted until it includes points D and E at the ends of the common per¬ 
pendicular between S and Z. Then the velocity of D about S is zero, 
and the velocity of E about Z is zero. That is, vD = cof X DE and 
v1& = X DE. Draw, in plan view, Od = vD perpendicular to ZZ 
and Oe = ve perpendicular to SS. Draw ed. Then a line through 
0 perpendicular to ed is the horizontal projection of the required central 
axis, TTy since the two points D and E and hence all points on k have 
the velocity component Oc along TT. D and E have components 
Odi and Oei respectively about TT; and TT in the vertical projection 
must cut DE at a point whose distances from S and Z are in the ratio 
of Odi and Oei. Make Dd2 = 0d\ and Ee2 = Oei. Draw d2e2 cutting 
DE at H. Then a line through H parallel to the vertical projections of 
S and Z is the vertical projection of TT. 

As / revolves about Z the line TT will trace the surface of a hyper¬ 
boloid g of revolution about Z with gorge radius HE = Rg. Now if 
S is fixed and / is revolved about S taking line TT with it TT will trace 
the surface of a hyperboloid about S with gorge radius HD = Rk. 
The body k may be considered a part of this hyperboloid. Then with 
Z and g fixed and / revolving, the hyperboloid k will roll on the fixed 
one with sliding along the element of contact. 

Since the relative motions of the members of a mechanism remain 
the same regardless of which is the fixed one, both S and Z may be fixed 
and turn the hyperboloid k at speed a>r = uk. The hyperboloid g on 
Z will turn at speed —u;/ — cog. 

a, py Rky and R0 have thus been found graphically. They may be 
found algebraically as follows: 

From inspection of Fig. 9-21 it is evident that <f>i = P and fa = a; 
also eei — dd\ = Oc. 

Then eex = Oe sin fa =* wr X DE sin a = wk 
Odi = w/ X DE cos 0i = cog X DE cos p. 

. __ ddi _ eex _ a>k sin (9 — p) 

311 Odi Odi cog cos p 

Oc 

Rh Dd2 0d\ tan p tan a 
Rg Ec2 Oei Oc tan p 

X DE sin (6 — /?), and 

sin 6 
(8) 

0)k 
+ cos 6 

tan a 



ROLLING HYPERBOLOIDS 223 

The correctness of action of the hyperboloids h and g, as above 
designed, may be further shown by velocity vectors. In Fig. 9-22 
choose any two coincident points M and Q on the element of contact TT 

Fig. 9-22 

(M being on k and Q on g). In view (2) draw Mm* = cok X Rm, and 
find in view (1) its projection Mimi. Find Qqi by drawing rriiqi parallel 

to TT. Then from find in view (3) Qqs. Let^ = coQ. Required 
Kq 

Hh 
to show that = ug = —-. From similar triangles in view (2) 

R g 

Mm\ = Rk—^— = UkRk (I) 
Km 

and in view (3) 

Qqi = Ro~r = (II) 
Kq 

Qqi __ cos a 

Mmi cos 0 

But from view (1) 
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and from equations (I) and (II) 
Qq i 

Mm i 

COqRo 

oikRk 
Hence 

&q Rk cos a 
to* Rg cos fi 

Again, in view (1), Ffi = aand Hhi = a)0Rg; also 

Hence 

Ffi _ cos p 

Hh\ cos a 

C0(, COS a 

Wyfc cos 

(HI) 

(IV) 

Therefore from (III) and (IV) o)Q = w0. The same holds true for any 
points on TT. Consequently the velocities resulting from equal com¬ 
ponents perpendicular to TT are such as to give a constant angular 
velocity ratio between right sections of the two hyperboloids at all 
points along the element of contact. 

PROBLEMS 

IX-1. A cylinder 24 in. in diameter on shaft S drives, by pure rolling contact, 

another cylinder g on shaft T. Shaft S has an angular speed of 600 radians per 

minute. Shaft T turns 143J rpm in the opposite direction from S. Calculate the 

diameter of cylinder g and the distance between the axes of the shafts. 

IX-2. Two shafts connected by rolling cylinders turn in the same direction 150 

rpm and 100 rpm respectively. The smaller cylinder is 16 in. in diameter. How 

far apart are the axes of the shafts? 

IX-& Angular speed of S = one third of the angular speed of T. Calculate and 

find graphically the diameters of cylinders to connect them; 

1. When they turn as shown by the full arrows. 

2. When they turn as shown by the dotted arrows. 

_r 3>. . 
I 
N _ 

<-24"-*| 

Prob. IX-3 Prob. IX-4 

IX-4. A and B are rolling cylinders connecting the shafts S and T. C and E 
are cylinders fast to these shafts and slipping on each other at T. Find the diameters 

of C and E if the surface speed of E'is twice that of C. 
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EX-5. Two solids of right 

section shown in the figure 

turn about the axes A and B. 
Pure rolling contact takes 

place between the circular 

arcs. What is the angular 

speed ratio for the position 

shown? Determine the size 

of the angles a, /3, and K in 

degrees and of the radii x and 
y in inches. 

Prob. IX-5 

IX-6. Two shafts, having axes in the same plane intersecting at an angle of 45°, 
turn in opposite senses at 30 rpm and 90 rpm respectively. Draw a pair of cones 

which shall be of the proper form to be located on these shafts and turn in pure 

rolling contact. Diameter of base of smaller cone is 1 in. Calculate the half 

angles at the vertices of the cones. 

EX-7. Same as IX-6 except that the shafts turn in the same sense. 

EX-8. A turns 100 rpm and B 150 rpm as shown; they are connected by rolling 

cones. Calculate the apex angle of each cone. If the base of cone on A is 3 in. from 

the vertex, calculate the diameters of both cones. Solve also graphically. 

Prob. IX-8 Prob. IX-9 

IX-9. Two shafts A and B are connected by rolling cones and turn as shown. 

A makes 300 rpm while B makes 100 rpm. Calculate the apex angle of each cone 

and the diameter of each base if the base of cone B is 2 in. from the vertex. Solve 

also graphically. 

Prob. IX-10 

IX-10. Shaft S makes 180 rpm and shaft T makes 60 rpm. Draw a pair of 

frustums of cones to connect them. Base of smaller cone 1 in. in diameter. Ele¬ 

ment of contact 1 in. long. 
1. When the shafts turn as shown by the full arrows. 

2. When they turn as shown by the dotted arrows. 
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IX-11. Shafts Ay By and C are connected by cones in external rolling contact so 
that the revolutions A :B :C — 3:2:4. If the diameter of cone B is 6 in. draw 

in the three cones giving the diameters of cones A and C. (Show method clearly.) 

A 

I\ 

Prob. IX-11 

IX-12. How far from the axis of T will the center of the roller R be located if the 

angular speed of shaft S is three times as great as that of T? 
IX-13. A and B are two shafts at right angles, in the same vertical plane. C 

is a disk carried by supporting yoke on a horizontal shaft arranged so that C is 

always in contact with the equal conoids on A and B. A turns at a constant speed 

of 60 rpm. What is the maximum speed of B? What is the minimum speed of B? 
What is the speed of B when the yoke supporting C has turned 30° from its present 

position? (Assume no slipping.) 

IX-14. Two parallel shafts, A and B, are connected by rolling equal ellipses, 
with major axes of 2\ in. and minor axes of 2 in. Shaft A turns at 30 rpm. Deter¬ 

mine the distance between shaft axes and the minimum and maximum angular 

speeds of shaft B. 
IX-15. Two horizontal shafts are so located that in the plan view their axes 

intersect at an angle of 60°. The lower shaft ZZ is in a horizontal plane 3£ in. 

below the horizontal plane containing the upper shaft SS. The upper shaft is turn¬ 

ing at twice the angular speed of the lower one. 

Draw plan and elevation of the axes. Compute the angle made with each of the 

axes by the common tangent TT to a pair of hyperboloids which will connect the 

axes. Compute the gorge radii of the hyperboloids. 

Draw the common tangent in the two views. 



CHAPTER X 

GEARS AND GEAR TEETH 

10-1. Gear Drives. It was shown in Chapter IX that one shaft 
could cause another to turn by means of two bodies in pure rolling 
contact. If the speed ratio must be exact or if an appreciable amount 
of power is to be transmitted, a drive depending solely upon friction 
between the surfaces of the rolling bodies is not sufficiently positive. 
For this reason toothed wheels, called gears, are used in place of the 
rolling bodies. As the gears turn, the teeth of one gear slide on the 
teeth of the other but are so designed that the angular speeds of the 
gearS are the same as those of the rolling bodies which they replace. 
Gear teeth constitute a direct application of the principles of sliding 
contact discussed in Chapter VII. 

10-2. Gearing Classified. In Art. 9-1 attention was called to the 
fact that rolling bodies may be used to connect axes which are parallel, 
intersecting, or neither parallel nor intersecting. The same cases arise 
in the use of gears, and special names are given to the gears according 
to the case for which they are designed. 

Gears may be classified on the above basis as follows: 

External gears, Fig. 10-1 
Internal gears, Fig. 10-20 

(Here the large gear is called an annular 
and the small one a pinion.) 

Spur gears Twisted spur or helical gear, Fig. 10-30 
Herringbone spur gear, Fig. 10-31 
Rack and pinion, Fig. 10-17 

(The rack is a gear of infinite radius.) 
Pin gearing, Fig. 10-32 

Plain bevel (including miter gears, which are 
equal bevel gears on shafts at 90°), Fig. Connecting 

Bevel gears 10-38 intersect- 
Crown gears, Fig. 10-39 ing axes 
Spiral bevel gears, Figs. 10-30, 10-35, and 

10-41 

Hyperboloidal or skew gears, Fig. 10-42 Connecting axes in different 

Hypoid, Fig. 10-43 planes 

Connecting 
parallel 
axes 
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Screw gearings 
Worm and wheel, Fig. 10-44 
Helical gears, Fig. 10-45 

} Connecting axes in differ¬ 
ent planes 

The name pinion is often applied to the smaller of a pair of gears. 
The various kinds of gears enumerated above will be discussed in 

more detail after the principles which apply to gearing in general have 
been considered. 

10-3. External Spur Gears. Figure 10-1 shows a pair of external 
spur gears in mesh with each other. Since these are the simplest form of 
gears the following discussion of definitions and general principles will 
be based on this type of gears. It must be borne in mind, however, 
that these definitions and principles are general and apply to the other 
types of gears as well as spur gears. 

10-4* Speed Ratio of a Pair of Gears. It was shown in the preced¬ 
ing chapter that if two cylinders as A and B, Fig. 10-2, are keyed 
to the shafts S and Si respectively, the angular speed of S is to the 
angular speed of Si as D\ is to D, provided there is sufficient friction 
between the circumferences of the disks to prevent one slipping on the 
other. To make sure that there shall be no slipping, wheels having 
teeth around their circumferences are substituted for the plain disks. 
The outlines of these teeth must be such that the speed ratio is constant. 
Such a pair of wheels is shown in Fig. 10-3. Here the larger gear has 
16 teeth and the smaller 12. Assume that the shaft S is being turned 
from some external source of power; the gear A} since it is keyed to Sf 
will turn with it. Then the teeth on A will push the teeth on By a tooth 
on A coming in contact with a tooth on B and pushing that tooth along 
until the gears have turned so far around that those two teeth swing 
out of reach of each other or come out of contact. But before these 
two teeth come out of contact, another pair of teeth must come in con¬ 
tact so that gear B will continue to drive gear A. In order for B to 

make a complete revolution dach one of its 12 teeth must be pushed 
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along thus past the center line. Therefore, while B turns once 12 of 
the teeth on A must pass the center line. Since A has 16 teeth in all, 
A will therefore make xt of a turn while B makes one turn. In other 
words, the turns of A in a given time are to the turns of B in the same time 
as the number of teeth on B is to the number of teeth on A. 

Fig* 10-3 

The speed ratio of a pair of gears may be defined as the ratio of the 
angular speed of the driving gear to the angidar speed of the driven gear 
and is equal to the number of teeth on the driven divided by the number of 
teeth on the driver. 

It is evident that the distance from the center of one tooth to the 
center of the next tooth on both gears must be alike in order that the 
teeth on one may mesh into the spaces on the other. 

10-5. Pitch Circles and Pitch Point. Let a point P (Fig. 10-3) be 
PS teeth on A 

found on the center line SSi such that on g and through 

this point draw circles about S and St as centers. Call their diameters 
D and Di. Then D = 2PS and Di = 2PSi. Since, as shown above, 

Revolutions of B _ teeth on A 

Revolutions of A teeth on B 
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therefore 

Revolutions of B _ D_ 
Revolutions of A D\ 

That is, the two gears when turning will have the same speed ratio as 
two rolling cylinders of diameters D and A. The point P which divides 
the line of centers of a pair of gears into two parts proportional to the 
number of teeth in the gears is called the pitch point. (See Art. 7-5.) 
The circle Z), drawn through P with center at S, is the pitch circle of 
the gear A, and the circle A is the pitch circle of the gear B. 

10-6. Addendum and Root Circles. The circle passing through the 
outer ends of the teeth of a gear is called the addendum circle, and the 
circle passing through the bottom of the spaces is called the root or 
dedendum circle. 

10-7. Addendum Distance and Root Distance. Tooth Depth. The 
radius of the addendum circle minus the radius of the pitch circle is the 
addendum distance or, more commonly, the addendum. The radius of 
the pitch circle minus the radius of the root circle is the root distance or 
dedendum. The dedendum plus the addendum is the total tooth 
depth. The working depth is equal to twice the addendum. 

10-8. Face and Flank of Tooth. Acting Flank. That portion of the 
tooth curve which is outside the pitch circle is called the face of the tooth 
or tooth face. The part of the tooth curve inside the pitch circle is 
called the flank of the tooth. 

That part of the flank which comes in contact with the face of the 
tooth of the other gear is called the acting flank. 

10-9. Face Width of Gear. The length of the gear tooth measured 
along an element of the pitch surface is called the face width of the gear. 

(See top view, Fig. 10-3.) 
10-10. Clearance. The distance measured 

on the line of centers, between the adden¬ 
dum circle of one gear and the root circle of 
the other, when they are in mesh, is the 
clearance. 

This is evidently equal to the dedendum 
of one gear minus the addendum of the 
mating gear. 

10-11. Tooth Thickness. Space Width. 
Backlash. The width of the tooth, arc dis¬ 

tance, measured on the pitch circle is called the tooth thickness. The 
arc distance between two adjacent teeth measured on the pitch circle 
is called the space width or tooth space. 
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The difference between the space width and tooth thickness is the 
backlash. In Fig. 10-4, the arc distance S is the space width and the 
arc distance T is the tooth thickness. Then S - T is the backlash. 
Accurately made gears have very little backlash, but cast gears or 
roughly made gears require considerable backlash. 

10-12. Circular Pitch. The distance from the center of one tooth to 
the center of the next tooth, measured on the pitch circle, is called the 
circular pitch. This is, of course, equal to the distance from any point 
on a tooth to the corresponding point on the next tooth measured along 
the pitch circle. The circular pitch is equal to the tooth thickness 
plus the space width. The whole circumference of the pitch circle is 
equal to the circular pitch multiplied by the number of teeth, or the 
circular pitch is equal to the circumference of the pitch circle divided 
by the number of teeth. This relationship may be expressed by the 
equation 

Pc 
7tD 

Y (1) 

where Pc = circular pitch (inches) 
D = pitch circle diameter (inches) 
T = number of teeth. 

Two gears which mesh together must have the same circular pitch. 
10-13. Diametral Pitch is the term ordinarily used to designate the 

tooth size; it is equal to the number of teeth divided by the diameter of 
the pitch circle. Often in designating the size of a gear the word pitch 
without the adjective diametral is used for diametral pitch. For this 
reason, the diametral pitch is sometimes called the pitch number. 
The diametral pitch is expressed by the equation 

Pd = 
T 
D 

(2) 

where Pd = diametral pitch or pitch number 
T and D are as defined in equation 1. 

The diametral pitch is evidently the number of teeth per inch of 
diameter. The reciprocal of the diametral pitch, called the module, 
is often used for metric gears. This is the amount of pitch diameter per 
tooth and is equal to the circular pitch divided by tt. 

10-14. Relation between Circular Pitch and Diametral Pitch. From 

equation 1 

Pc - 
7tD 

Y 
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and from equation 2 

Therefore 

r 
D 

PcPd — TT (3) 

That is, the product of the circular pitch and the diametral pitch is equal 
to 7r. 

10-15. Angle and Arc of Action. (See also Art. 7-5.) The angle 
through which the driving gear turns while a given tooth on the driving 
gear is pushing the corresponding tooth on the driven gear is called the 
angle of action of the driver. Similarly, the angle through which the 
driven gear turns while a given one of its teeth is being pushed along is 

called the angle of action of the driven gear. The angle of approach, in 
each case, is the angle through which the gear turns from the time a pair 
of teeth come into contact until they are in contact at the pitch point. 
It will be shown later that the pitch point is one of the points of contact 
of a pair of teeth during the action. The angle of recess is the angle 
turned through from the time of pitch point contact until contact 
ceases. 

The angle of action is therefore equal to the angle of approach, plus 
the angle of recess. 

In Fig. 10-5 a tooth M on the driving gear is shown (in full lines) just 
beginjiing to push a tooth N' on the driven gear. The dotted lines 
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show the position of the same pair of teeth when N is just swinging out 
of reach of M. While M has been pushing N, any radial line on the 
gear 5, as, for example, the line drawn through the center of the tooth 
M, has swung through the angle a, and any line on gear A has swung 
through the angle p. a is, therefore, the angle of action of the gear B, 
and fi is the angle of action of the gear A. 

It should be noted that the angles of approach and recess are not 
shown in Fig. 10-5. 

The arc of action is the arc of the pitch circle which subtends its angle 
of action. The arcs of approach and recess bear the same relation to 
the angles of approach and recess that the arc of action bears to the 
angle of action. Since the arcs of action on both gears must be equal, 
the angles of action must be inversely as the radii. Therefore the 
following equation holds true: 

Angle of action of driver 

Angle of action of driven gear 
number of teeth on driven gear 

number of teeth on driver 
(4) 

The arc of action must never be less than the circular pitch, for, if it 
were, one pair of teeth would cease contact before the next pair came 
into contact. 

10-16. The Path of Contact. Referring still to Fig. 10-5, the teeth 
as shown in full lines are touching each other at one point a. This 
point is really the projection on the plane of the paper of a line of con¬ 
tact equal in length to the width of the gear face. (See Art. 10-9.) In 
the position shown dotted, the teeth touch each other at the point 5. If 
the teeth were drawn in some intermediate position, they would touch 
at some other point. For every different position which the teeth 
occupy during the action of one pair of teeth they have a different point 
of contact. A line drawn through all the points at which the teeth 
touch each other (in this case the line aPb) is called the path of contact. 
This may be a straight line or a curved line, depending upon the nature 
of the curves which form the tooth outlines. In all properly con¬ 
structed gears the pitch point P is one point on the path of contact. 

10-17. Obliquity of Action or Pressure Angle. The angle between 
the line drawn through the pitch point perpendicular to the line of 
centers, and the line drawn from the pitch point to the point where a 
pair of teeth are in contact, is called the angle of obliquity of action or 
pressure angle. In some forms of gear teeth this angle remains con¬ 

stant; in others it varies. 
The direction of the force which the driving tooth exerts on the 

driven tooth is along the line drawn from the pitch point to the point 
where a pair of teeth are in contact. (See Art. 10-18.) The smaller 
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the angle of obliquity, the greater will be the component of the force in 
the direction to cause the driven gear to turn and the less will be the 
tendency to force the shafts apart. In other words, a large angle of 
obliquity tends to produce a large pressure on the bearings. 

10-18. Law Governing the Shape of the Teeth. The curves which 
form the outline of the teeth on a pair of gears may, in theory at least, 
have any form whatever, provided they conform to one law, namely: 
The line drawn from the pitch point to the point where the teeth are in 

contact must be perpendicular to a line drawn through the point of contact 

tangent to the curves of the teeth; that is, the common normal to the tooth 

curves at all points of contact must pass through the pitch point. 

This is illustrated in Fig. 10-6. The teeth in the full-line position 
touch each other at a; that is, the curves are tangent to each other 
at this point. The line ST is drawn tangent to the two curves at a. 
The curves must be made so that this tangent line is perpendicular to 
the line drawn from a to P. Similarly, in the dotted position the line 
VW which is tangent to the curves at their point of contact b must be 
perpendicular to the line bP. This must hold true for all positions in 
which a pair of teeth are in contact, in order that the speed ratio of the 
gears shall be constant. The proof of this law was given in Arts. 7-3 
and 7-4. 

10-19. Conjugate Curves. Two curves are said to be conjugate 
when they are so formed that they may be used for the outlines of two 
gear teeth which will work on each other and fulfill the law described in 
Art. 10-18. 

10-20. To Draw a Tooth Outline Which Shall be Conjugate to a 
Given Tooth Outline. Given the face or flank of a tooth of one of a 
pair of wheels; to find the flank or face of a tooth of the other. The 
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solution of this problem depends on the fundamental law stated in 
Art. 10-18. The graphical construction is that given in Art. 7-6. 

10-21. To Draw the Teeth of a Pair of Gears. When the tooth out¬ 
lines have been found and the circular pitch, backlash, addendum, and 
clearance are known, the teeth may be drawn as shown in Fig. 10-7. 
Let MN and RT be the known tooth outlines for the gears A and B 

respectively. Required to draw three teeth on each gear, one pair of 
which shall be in contact at the pitch point. Draw the addendum 
circle of each with radius equal to radius of pitch circle plus addendum. 

I 

Draw root circle of each with radius equal to radius of pitch circle minus 
an amount equal to the addendum of other gear plus clearance. Space 
off the circular pitch on either side of P on each pitch circle. This may 
be conveniently done by drawing a line tangent to the pitch circles at P, 
laying off the circular pitch PC and PCi on this line. Set the dividers 
at some small distance such that when spaced on the pitch circles the 
length of arc and chord will be nearly the same. Start at C, step back 
on CP until the point of the dividers comes nearly to P (say at K) then 
step back on the pitch circles the same number of spaces, getting H and 
L. H\ and L\ can be found in the same manner. 

♦ 

Through the point J, where the curve RT cuts the pitch circle of B, 

draw the radial line cutting the addendum circle at V. Make arc WX 

equal to arc VR. Cut a template or find a place on a French curve 
which fits the curve RJT, mark it, and transfer the curve to pass 
through X and P. Make PH2 equal to one-half PHh minus one-half 
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the backlash, turn the curve over and draw curve through H2 in the 
same way that PX was drawn. All the other curves may be drawn in a 
similar way. 

10-22* Clearing Curve. If the flanks are extended until they join 
the root line, a very weak tooth will often result; to avoid this, a fillet 
is used which is limited by the arc of a circle connecting the root line 
with the flank, and lying outside the actual path of the end of the face 
of the other wheel. This actual path of the end of the face is called the 
true clearing curve. 

This curve is the epitrochoid traced by the outermost corner of one 
tooth on the plane of the other gear. The general method of drawing 
such a curve is shown in Fig. 10-8. The tooth M is to work in the space 
N. From e lay off the equal arcs ee\, eie2, e2e3, and so on, and from / lay 
off the same distances ffh fif2, and so on. From f, fi, f2, and so on, draw 
arcs with the radii eR, e\R, e2ft, and so on, respectively. A smooth 
curve internally tangent to all these curves will be the desired epitro¬ 
choid or clearing curve. 

10-23. The Involute of a Circle. The form of the curve most com¬ 
monly given to gear teeth is that known as the involute of a circle. 
Teeth properly constructed with this curve will conform to the law 
described in Art. 10-18, as will appear in the following paragraphs. 
This curve and the method of drawing it will, therefore, be studied 
before the method of applying it to gear teeth is considered. 

In Fig. 10-9 the circle represents the end view of a cylinder around 
which is wrapped an inextensible fine thread, fastened to the cylinder 
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at A and having a pencil in a loop at P. If now the pencil is swung 
out to unwind the thread from the cylinder, keeping it always taut, 
the curve which the pencil traces on a piece of paper on which the 
cylinder rests is known as an involute of the circle which represents the 
end view of the cylinder. The same result is obtained by considering 
the tracing point to be carried by a line rolling on a circle. All involutes 
drawn from the same circle are alike, but involutes drawn from circles 
of different diameters are different. The greater the diameter of the 
circle the flatter will be its involute. 

In constructing the involute of a circle on the drawing board it is, of 
course, impossible actually to wrap a thread around the circle and 
draw the involute by unwinding the thread. Figure 10-10 shows the 
method of constructing an involute on the drawing board. Suppose 
that the involute is to be drawn starting from any point p on the circle 
whose center is C. Set the dividers at any convenient short spacing; 
a distance which is about one-eighth the diameter of the circle will give 
good results. Place one of the points of the dividers at p and space 
along on the circumference a few times, getting the equidistant points 
m, n, r, $. At each of these points draw radial lines and construct lines 
perpendicular to these radii as shown. Each of these perpendiculars 
will then be tangent to the circle at one of the points. Taking care that 
the setting of the dividers remains unchanged, lay off one space ml on 
the tangent at m. On the next line, which is tangent at n, lay off from 
n the same distance twice, getting the point 2. From r lay off the 
distance three times, getting the point 3; and so on until points are 
found as far out as desired. A smooth curve drawn through these 
points with a French curve will be a very close approximation to the 

true involute. 
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10-24. Application of the Involute to Gears. In Fig. 10-11 let A and 
B be the centers of two gears whose pitch circles are tangent at P. 
Through P draw a line XX perpendicular to the line of centers AB and 
another line FF making an angle 6 with XX. From A draw a line Aa 

V 
Fig. 10-11 

perpendicular to FF, and from B draw Bb also perpendicular to YY. 
Then Aa and Bb will be the radii of circles drawn from A and B respec¬ 
tively, tangent to FF. These circles are called base circles. The 

triangle AaP is similar to the triangle BbP; therefore . 
AP BP 

That is, the radii of the base circles are in the same ratio as the radii of 
the pitch circles. Therefore, since 

Angular speed of A BP 

Angular speed of B AP 

it follows that 
Angular speed of A __ Bb 

Angular speed of B Aa 

If now the tooth outlines on the gear A are made involutes of the 
circle whose radius is Aa and those on B involutes of the circle whose 
radius is Bb, a tooth on A will drive a tooth on B in such a way that at 
all times the angular speed of A will be to the angular speed of B as 

Bb is to Aa, the action being the same as if the lines ab and aibi were 
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inextensible cords connecting the base circles and the involutes were 
curves traced by marking points on the cords. The same ratio of 
speeds would hold if B were the driver. The teeth would always be in 
contact at a point on the line aPb or at a point on diPbi. The path of 
contact in gears having involute teeth is, therefore, a straight line, and the 
angle of obliquity or pressure angle is constant. In other words, neglect¬ 
ing friction, the direction of the force which the driving tooth exerts on 
the driven tooth is the same at all times. Since aPb is tangent to each 
base circle and is normal to the tooth curves at the point of contact, 
and the pitch point P remains at a definite place on the line of centers 
AB, involute tooth curves satisfy the fundamental law of gears dis¬ 
cussed in Art. 10-18. 

10-26, To Draw a Pair of Involute Gears. Suppose that it is 
required to draw a pair of involute gears 4-pitch, 16 teeth on the driver 
and 12 teeth on the driven gear; addendum on each to be J in. and 
dededum in.; pressure angle 6 = 22|°. 

In Fig. 10-12 draw a center line and on this line choose a point S 

which is to be the center of the driving gear. To find the distance 
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between centers and thus locate the center of the other gear, first find 
the pitch diameter of each. Since the driver has 16 teeth and is 
4-pitch (that is, it has 4 teeth for every inch of pitch diameter), its 
pitch diameter must be 16 4- 4 or 4 in. In like manner the diameter 
of the other gear is 12 4- 4 or 3 in. The distance between centers must 
be equal to the radius of the driver plus the radius of the driven gear 
and is, therefore, 2 + \\ in. or 3| in. Measure off the distance SSi 

equal to 3f in. and Si is the center of the driven gear. Next, locate the 
pitch point P, 2 in. from S or 1^ in. from Si, and through f\draw arcs of 
circles with S and Si as centers. These arcs are parts of the pitch 
circles of the two gears. Through P draw the line XX perpendicular 
to the line of centers and draw the line YY making an angle of 22|° 
with XX. From S and Si draw lines perpendicular to Y Y meeting it at 
a and b. With radii Sa and Sib draw the base circles. Draw the 
addendum circle of the upper gear with S as a center and a radius equal 
to the radius of the pitch circle plus the addendum distance. This will 
be 2\ in. In similar manner draw the addendum circle of the lower 
gear with a radius of If in. Draw the root circle of the upper gear 
with S as a center and a radius of 2 — ^ in. or Iff in. (that is, pitch 
radius minus dedendum). Draw the root circle of the lower gear with 
Si as a center and a radius of ^ in. or lfV in. Now construct the 
teeth. 

From the point a space off on the base circle the arc at equal in length 
to the line aP and from t, thus found, draw the involute of the base circle 
of the upper gear as described for Fig. 10-10. tPk is the curve thus 
found. In a similar manner find the point r such that arc br is equal in 
length to the line bP and from r draw the involute rPn of the lower base 

circle. 
The shape of the tooth curves having been found in this way, the 

next step is to find the width of the teeth on the pitch circles and draw 
in the remaining curves. Since the gears are 4-pitch, the circular pitch 
is J X 3.1416 = 0.7854 in., and if the width of the tooth is one-half the 
circular pitch, as is usual, and if the backlash is neglected, the width of 
the tooth on each gear must be f X 0.7854 or 0.39 in. nearly. There¬ 
fore, lay off the arc PR equal to 0.39 in. and through R draw an involute 
which is a duplicate of the curve tPk except that it is turned in the 
reverse direction. Similarly make PT equal 0.39 and draw an involute 
through T which is a duplicate of the curve nPr. These curves can be 
transferred to the new positions by means of templates, it being unnec¬ 
essary to construct the curve more than once. The tooth outlines 
below the base circles may be made radial lines with small fillets at the 
bottom comers. One tooth on each gear has now been completed and 
other teeth may be drawn like these by means of templates. 
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If the larger gear is the driver and turns in the direction indicated by 
the arrow, tooth contact begins at the point M where the addendum 
circle of the driven gear cuts the line of action YY and ends at the point 
N where the addendum circle of the driver cuts the line of action. The 
path of contact is the line MPN. 

10-26. Normal Pitch. The normal pitch is the distance from one 
tooth to the corresponding side of the next tooth, measured on the com¬ 
mon normal (CCi, Fig. 10-13). From the method of generating the 
curves this distance is constant and is equal to the distance between the 
corresponding sides of two adjacent teeth measured on the base circle 
(arc KKi, Fig. 10-13). 
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The definite quantities in a given involute gear are the base circle 
and the normal pitch. 

10-27. Relation between Normal Pitch and Circular Pitch. Refer¬ 
ring to Fig. 10-13, let D represent the diameter of the pitch circle and 
Dh the diameter of the base circle. Pn = normal pitch, Pc = circular 
pitch, T the number of teeth, a the point where the line of obliquity (or 
generating line) is tangent to the base circle, and 6 the pressure angle. 
D,raw Sa and produce it to meet XX (the tangent to the pitch circle 
through P) at W. Angle aSP = angle aPW = d, and the triangles 
aPW and aSP are similar. Therefore, 

aS 

sp-“' 

From the definition of normal pitch 

P rD» 
I n ~~ rp 

and from equation 1 

Therefore 
Pn _ Db 

Pc ~ D 
— cos 6 

That is, the normal pitch is equal to the circular pitch multiplied by the 
cosine of the pressure angle. 

10-28. Relation between Length of Path of Contact and Length of 
Arc of Contact. In Fig. 10-14 the teeth shown in full lines are in con¬ 
tact at the beginning of the path of contact and the teeth shown dotted 
are in contact at the end of the path of contact and at the pitch point. 
Contact begins at T7, where the addendum circle of the driven gear cuts 
the line of action, and ends at 7\, where the addendum circle of the 
driver cuts the line of action. During approaching action contact takes 
place along the line TP while the point N is moving to the position P. 
The arc NP is therefore the arc of approach. During recess the same 
point N has moved from the position P to M. The arc PM is therefore 
the arc of recess) and NPM is the arc of action. The angle a subtending 
the arc of approach is the angle of approach for the driven gear; /3 is the 
angle of recess, and <t> is the angle of action for the driven gear. 

From equation 5 we have 

Radius base circle __ 

Radius pitch circle 
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Therefore 
Arc LK 

Arc NM 
= cos 6 

But from the properties of the involute, considering the line ab as the 
connecting line between the two revolving base circles, the length 

V 
i\ 

of the line TT\ (that is, the path of contact) is equal to the length of 

the arc LK. Therefore 

TTi 

Arc NM 
= cos 8 (6) 
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Whence the length of the path of contact is equal to the length of the arc of 

action multiplied by the cosine of the pressure angle. Also, the length of 

the path of contact in approach is equal to the length of the arc of approach 

multiplied by the cosine of the pressure angle; and the length of the path of 

contact in recess is equal to the length of the arc of recess multiplied by the 

cosine of the pressure angle. 

A convenient method for determining the arcs and angles of action 
graphically is as follows: Draw XX tangent to the pitch circle at P. 

From T and T\ draw TR and TiS perpendicular to TTX meeting XX at R 

and S. The length RP is then equal to the length of the arc of ap¬ 
proach, PS is equal to the arc of recess, and RS is equal to the arc of 
action. Laying off the distances PR and PS on the pitch circle gives 
PN and PM, the arcs of approach and recess respectively, and NPM, 

the arc of action on the driven gear. Joining N and M to the center B 

of the driven gear gives a and (3, the angles of approach and of recess, 
and </>, the angle of action on the driven gear. In a similar manner, the 
arcs of approach, recess, and action and the angles of approach, recess, 
and action of the driving gear may be obtained. It should be noted 
that the lengths of the arcs of approach, recess, and action of each pair 
of mating gears are respectively equal to each other but that the angles 
are not equal unless the gears are the same size. 

Conversely, if the lengths of the arcs of approach and recess are 
known, the ends of the paths of contact may be found by laying off the 
lengths of the arcs along XX and drawing perpendiculars to ab. The 
addendum circles may be drawn through the points T and Th thus 
found. 

It is not necessary to draw the actual tooth curves in order to find the 
arcs and angles of approach, recess, and action of a pair of mating gears. 

10-29. Limits of Addendum on Involute Gears. Figure 10-14 shows 
one tooth on each of a pair of 4-pitch gears of 18 and 24 teeth respec¬ 
tively. The addendum arcs of the teeth are such that the addendum 
distance is equal to 0.875 -r- diametral pitch. If for any reason it is 
desired to redesign these gears with longer teeth, that is, with larger 
addendum circles, it will be necessary to know how long the teeth can be 
made without causing trouble. The tooth on B can be increased in 
length until the addendum circle passes through the point a, where the 
line of obliquity YY is tangent to the base circle of A. If the tooth is 
made longer than this limit, interference will result unless some special 
form of curve is constructed in place of the involute for the outer end 
of the tooth. 

At the right of Fig. 10-15 are shown the same pair of teeth with the 
addendum of gear B lengthened'so that the addendum circle is outside 
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of point a. It will be noticed that the extended face of the tooth of B 

cuts into the radial extension of the flank of the tooth on A and also 
cuts slightly into that part of the tooth outside the base circle. 

A <\ 
\ 

i \ 

Fig. 10-15 

Referring still to Fig. 10-15, the tooth on A might be lengthened until 
the addendum circle passed through the point of tangency b except for 
the fact that there is another limit to the addendum which sometimes 
has to be considered. The maximum addendum here is limited by the 
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intersection of the two sides of the tooth giving a pointed tooth. It is 
evident that no further increase in addendum is here possible. 

The following illustration will help to make the above statements 
clear. 

In Fig. 10-16 let it be required to determine if the arc of recess can 
be equal to three fourths of the circular pitch. Lay off from a on the 
tangent the distance ab — three fourths of the circular pitch. Draw be 

perpendicular to the line of obliquity; c will be the end of the path of 
contact for the given arc of recess. If the point c came beyond d, the 
tangent point of the line of obliquity and the base circle, the action 
would be impossible since no contact can occur beyond d. But if, as in 
Fig. 10-16, the point c comes between a and d, it is necessary to deter¬ 
mine if the face of the tooth on A can reach to c. Lay off on the pitch 
circle A the arc ae = ab = three fourths of the pitch; the face of the 
tooth on A will then pass through c and e. Draw the line co from c to the 
center of A, and note the point / where it cuts the pitch circle A. If ef is 
less than one-half the thickness of the tooth, the action can go as far as c 

and the teeth will not be pointed. In the figure, assuming tooth and 
space equal, the thickness of the tooth would be eg, and ef is less than 
\eg\ therefore the action is possible, as is shown by the two teeth 
drawn in contact at c. 

10-30. Pinion and Rack. Figure 
10-17 is a drawing of a pinion and 
rack in mesh. No new principle is 
involved since the rack is merely a 
spur gear the radius of whose pitch 
circle has become infinite. 

10-31. Involute Pinion and Rack. 
Figure 10-18 shows a pinion driv¬ 
ing a rack. The path of contact 
cannot begin before the point a, but 
the recess is not limited excepting 
by the addendum of the pinion, since 
the base line of the rack is tan¬ 
gent to the line of obliquity at in¬ 
finity. For the same reason it will be evident that the sides of the 
teeth of the rack will be straight lines perpendicular to the line of obliq¬ 
uity. In the figure the addendum on the rack is made as much as the 
pinion will allow, that is, so that the path of contact will begin at a. 

The addendum of the pinion will give the end of the path of contact at b. 

In Fig. 10-19, the diagram for a pinion and a rack, let it be required 
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to determine if the path of contact can begin at a and go as far as 6; 
to be solved without using the tooth curves. For the contact to begin 
at a the face of the rack must reach to a. Draw the line ac perpendicu¬ 
lar to the line of obliquity, giving cd as the arc of approach; draw ae 

parallel to the line of centers, and if ce is less than one-half the thick¬ 
ness of the rack tooth, the approaching action is possible without 
pointed teeth. Similarly, for the recess draw the line bf perpendicular 
to the line of obliquity, giving df equal to the arc of recess; make the 
arc dg on the pinion’s pitch circle equal to df, then the face of the pin¬ 
ion’s tooth will pass through b and g; draw the line bh to the center of 
the pinion, and note the point h where it crosses the pinion’s pitch 
circle. If gh is less than one-half the thickness of the tooth, the recess is 
possible without pointed teeth. 

10-32. Annular Gear and Pinion. In Fig. 10-20 a perspective view 
is given of an annular wheel with a small pinion in mesh with it. In 
Art. 10-30 mention was made of the fact that a rack and pinion in mesh 
may be thought of as being derived from a pair of external spur gears 
(with pitch point between their axes) by increasing the pitch radius of 
one gear until it becomes infinite. A further change of the radius in 
the same direction makes it a finite quantity negative with respect to 
its original direction. That is, both axes will lie on the same side of the 
pitch point, giving internal contact. 

10-33. Involute Pinion and Annular Gear. Figure 10-21 shows an 
involute pinion driving an annular gear. This is very similar to a 
pinion and rack. The addendum of the annular is limited by the tan¬ 
gent point a of the pinion’s base circle and the line of obliquity, whereas 
the addendum of the pinion is unlimited except by the teeth becoming 
pointed. The base circle of the annular lies inside the annular, so that 
its point of tangency with the line of obliquity is at 6. If we take some 
point on the line of obliquity, as c, and roll the tooth curves as they 
would appear in contact at that point, the teeth of the annular will be 
found to be concave, and the addendum of the annular would seem to be 
limited by the base circle of the annular where the curves end. But if 
these two teeth are moved back until they are in contact at a, it will be 
evident that the annular’s tooth curve cannot be extended beyond a 

without interfering with the pinion teeth as in the case of the spur gear. 
Therefore the addendum of the annular is limited by the point of tan¬ 
gency of the base circle of the pinion and the line of obliquity. 

If the ratio of the number of teeth in the pinion to the number of 
teeth in the annular exceeds a certain limit, interference will occur 
between the teeth after they have ceased contact along the path of con¬ 
tact. This is illustrated in Fig. 10-22, where an 18-tooth pinion is 
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Fig. 10-21 

shown with a 24-tooth annular of 14\° pressure angle. Their teeth are 
shown interfering at K. 

The limiting size of the pinion at which this interference begins to be 
evident is a function of the pressure angle and of the addendum of the 
annular. The mathematical work for determining the theoretically 
largest pinion to run with a given annular is very complicated, and 
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hardly worth while. If occasion arises to test any given case it may 
readily be done by drawing the teeth as in Fig. 10-22.* 

10-34. Possibility of Separating Two Involute Gears. Interchange¬ 
able Gears. One of the most important features of involute gearing 
is the fact that two such wheels may be separated, within limits, without 
destroying the accuracy of the angular speed ratio. In this way the 
backlash may be adjusted, since the original pitch circles need not be 
in contact. To show that this is so, the gears in Fig. 10-23 may 
be redrawn; the same pitch circles and base circles may be used but 
they are separated slightly and the teeth are kept in contact, as has 
been done in Fig. 10-24. Connect the base circles by the tangent be. 

If now the line 6c, Fig. 10-24, carries a marking point, it will evidently 
trace the involutes of the two base circles, as de and hey and these curves 
must be the same as the tooth curves in Fig. 10-23. In Fig. 10-24 
these curves de and he will give an angular speed ratio to the base circles 
inversely as their radii, but the radii of these base circles are directly as 
the radii of the original pitch circles (Fig. 10-23); hence in Fig. 10-24 
the tooth curves de and he would give an angular speed ratio to the two 
gears inversely as the radii of the original pitch circles, although these 
circles do not touch. The path of contact is now from k to c, which is 

* A simple graphical construction for testing any proposed case without drawing 
the tooth curves is given by Professor Heck in his Mechanics of Machinery. 
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considerably shorter than in Fig. 10-23; it is, however, slightly more 
than the normal pitch, so that the action is still sufficient. The limit of 

the separation will he when the path of contact is just equal to the normal 

pitch. The pressure angle is bam, which is greater than in Fig. 10-23. 
The backlash has also increased. 
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The gears have new pitch circles in contact at a, and a new angle 
of obliquity or pressure angle, also a greater circular pitch with a certain 

amount of backlash; and if these latter data had been chosen at first 
the result would have been exactly the same wheels as in Fig. 10-23, 
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slightly separated. It will be seen that the radii of the new pitch circles 
are to each other as the radii of the respective base circles, and conse¬ 
quently as the respective original pitch circles. It will also be seen that 
the line of obliquity, which is the common normal to the tooth curves, 
passes through the new pitch point a so that the fundamental law of 
gearing is still fulfilled. 

By the application of the preceding principles two or more gears of 
different numbers of teeth, turning about one axis, can be made to gear 
correctly with one gear or one rack; or two or more parallel racks with 
different obliquities of action can be made to operate correctly with one 
gear, the normal pitches in each case being the same. Thus differential 
movements can be obtained which are not possible with teeth of any 
other form. 

In this same connection, attention may be called to the fact that in 
a set of involute gears which are to be interchangeable the normal pitch 
must be the same in all. 

10-36. Cycloidal Gears. Formerly, gear teeth were constructed on 
the cycloidal system. The faces of the teeth were epicycloids generated 
on the pitch circles and the flanks hypocycloids generated inside the 
pitch circles. The involute system has replaced the cycloidal almost 
entirely for general purposes, although cycloidal teeth are still used in 
some special cases. 

In Fig. 10-25 let o\ and o2 be the centers of the two wheels A and B> 

their pitch circles being in contact at the point a. Let the smaller 
circles C and Z>, with centers at pi and p2, be placed so that they are 
tangent to the pitch circles at a. Assume that the centers of these four 
circles are fixed and that they turn in rolling contact; then if the point a 

on the circle A moves to ah a2, a3, the same point on B will move to bh 

62, 68, and on C to ch c2, c3. Now if the point a on the circle C carries a 
marking point, in its motion to ci it will have traced from the circle A 

the hypocycloid aiCi, and at the same time from the circle B the epicy¬ 
cloid biCi. This can be seen to be true if the circles A and B are now 
fixed; and if C rolls in A, the point Ci will roll to ah tracing the hypo- 
cycloid Cidi; if C rolls on B, ci will trace the epicycloid C1&1. These two 
curves in contact at c\ fulfill the fundamental law for tooth curves, 
namely, that the normal to the two curves at the point c\ must pass 
through a. Similarly, if the original motion of the circles had been to 
a2, £>2, c2, the same curves would be generated, only they would be longer 
and in contact at c2. If the hypocycloid c2a2 is taken for the flank of a 
tooth on A, and the epicycloid c2&2 for the face of a tooth on B, and if 
c*a2 drives c2b2 toward a, it is evident that these two curves by their 
sliding action, as they approach the line of centers, will give the same 
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type of motion to the circles as the circles had in generating the curves, 
which was pure rolling contact. Therefore the two cycloidal curves 
rolled simultaneously by the describing circle C will cause by their slid¬ 
ing contact the same angular speed ratio of A and B as would be 
obtained by A and B moving with pure rolling contact. 

If now the circles A, B, and D are rolled in the opposite direction to 
that taken for A, B, and C, and if the point a moves to a4, &4, and d4 on 
the respective circles, the point a on D while moving to d4 will trace 
from A the epicycloid a4d4, and from B the hypocycloid b4d4. The curve 
a4d4 may be the face of a tooth on A, and M4 the flank of a tooth on 
B, the normal rf4a to the two curves in contact at d4 passing through a. 
The flank and face for the teeth on A and B, respectively, which were 
previously found, have been added to the face and flank just found, 
giving the complete outlines, in contact at d4. 
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If now the wheel B is turned counterclockwise, the tooth shown on it 
will drive the tooth on A, giving a constant angular speed ratio between 
A and B until the face of the tooth on B has come to the end of its 
action with the flank which it is driving, at about the point C2. 

The following facts will be evident from the foregoing discussion: 
(1) the flank and face which are to act upon each other must be gener¬ 
ated by describing circles of the same size; (2) the describing circles 
for the face and flank of the teeth of one gear need not necessarily be of 
the same size; (3) the path of contact (arcs d^aci of Fig. 10-25) is 
always on the describing circles; (4) the center distance for which a 
pair of gears were designed must be maintained. 

10-36. Interchangeable Cycloidal Gears. A set of wheels any two of 
which will gear together are called interchangeable gears. For these 
the same describing circle must be used in generating all the faces and 
flanks. The size of the describing circle depends on the properties of 
the hypocycloid, which curve forms the flanks of the teeth (excepting 
in an annular gear). If the diameter of the describing circle is half 

that of the pitch circle, the flanks will be radial (Fig. 10-26, A), which 
gives a comparatively weak tooth at the root. If the describing circle 
is made smaller, the hypocycloid curves away from the radius (Fig. 
10-26, B)y and will give a strong form of tooth; but if the describing 
circle is larger, the hypocycloid will curve the other way, passing inside 
the radial lines (Fig. 10-26, C) and giving a still weaker form of tooth, 
and a form of tooth which may be impossible to shape with a milling 

cutter. 
From the above the practical conclusion would appear to be that the 

diameter of the describing circle should not be more than one-half that 
of the pitch circle of the smallest gear of the set. Two systems have 
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been used, one with radial flanks on a 12-tooth gear and one with radial 
flanks on a 15-tooth gear. 

10-37. To Draw the Teeth for a Pair of Cycloidal Gears, and to 
Determine the Path of Contact. In Fig. 10-27, given the pitch circles 
A and B and the describing circles C and D; required: C to roll the 
faces for B and the flanks for A, while D is to roll the faces for A and the 
flanks for B. These curves may be rolled at any convenient place. 
In the figure, the gear A is to be the driver and is to turn as 

shown. Choose any point, as b, on A and a point a on B at a distance 
from the pitch point af = bf. The epicycloid and hypocycloid rolled 
from a and b respectively, and shown in contact at b2, would be suitable 
for the faces of the teeth on B and the flanks of the teeth on A respec¬ 
tively, and could be in action during approach. The curves may be 
rolled as indicated by the light lines. The path of contact is efg on the 
describing circles and is limited by the addendum circles. 
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10-38. Annular Gears. Figure 10-28 shows a pinion A driving an 
annular gear B, the describing circle C generating the flanks of A, and 
the faces of B> which in an annular gear lie inside the pitch circle, while 
D generates the faces of A and the flanks of B. The describing circle C 

is called the interior describing circle, and D is called the exterior describ¬ 

ing circle. The method of rolling the tooth curves, and the action of the 

teeth, are the same as with two external gears, the path of contact 
being in this case efg when the pinion turns clockwise. If these gears 
were of an interchangeable set, the describing circles would be alike, 
and the annular gear would then operate with any gear of the set 
excepting for a limitation which is discussed in the following paragraph. 
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10-39. Limitation in the Use of an Annular Gear of the Cycloidal 
System. Reference to Fig. 10-28 shows that, if the pinion drives, the 
faces of the pinion and annular will tend to be rather near each other 
during recess (during approach also on the non-acting side of the teeth). 
The usual conditions are such that the faces do not touch; but the 
conditions may be such that the faces will touch each other without 
interference, for a certain arc of recess; or, finally, the conditions may 
be such that the faces would interfere. Such interference would make 
the action of the wheels impossible. 

To determine whether a given case is possible it is necessary to refer 
to the double generation of the epicycloid and of the hypocycloid. 
It will suffice to say here that, if the sum of the radii of the describing 
circles is just equal to the distance between the axes of the gear and 
annular, double contact will occur. If the sum of the radii of the 
de^pribing circles exceeds the distance between the axes there will be 
interference. 

10-40. Low-Numbered Pinions, Cycloidal System. The obliquity of 
action in cycloidal gears is constantly varying; it diminishes during the 
approach, becoming zero at the pitch point, and then increases during 
the recess. For gears doing heavy work it has been found by experi¬ 
ence that the maximum obliquity should not in general exceed 30°, 
giving a mean of 15°. When more than one pair of teeth are in contact, 
a high maximum is less objectionable. 

As the number of teeth in a gear decreases, they necessarily become 
longer to secure the proper path of contact, and both the obliquity of 
action and the sliding increase. 

10-41. Standard Gear-Tooth Proportions. Although gear teeth 
may be constructed with any proportions provided they conform to the 
principles already discussed, and, for special purposes, are often so con¬ 
structed, yet it is desirable that there be some standard relation 
between addendum, dedendum, and pitch. Most American manu¬ 
facturers use the equal addendum system; however, the Gleason Com¬ 
pany has developed an unequal addendum system for bevel gears. The 
Maag system, developed by Max Maag of Zurich, Switzerland, is an 
unequal addendum system for spur gears. The equal addendum 
system is used with interchangeable gears; that is, all gears of the same 
pitch and system will mesh properly. The tooth forms of the unequal 
addendum system afford less interference, provide stronger pinions, 
lend to better lubrication and less wear, and are quieter but sacrifice 
interchangeability. The table on page 260 gives the standard tooth 
proportions for the most common interchangeable gear systems. The 
Fellows stub-tooth system uses a compound diametral pitch, e.g., 
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5/7 or 5-7 and read five seven. The first number controls the thick¬ 
ness of the tooth and is used to obtain the number of teeth, circular 
pitch, and tooth thickness. The second number governs the height of 
the tooth and is used in obtaining the addendum, dedendum, and clear¬ 
ance. Standard pitches for the Fellows system are as follows: 4/5, 5/7, 
6/8, 7/9, 8/10, 9/11, 10/12, and 12/14. Diametral pitches for the 
other systems vary by increments of | from 1 to 3; J from 3 to 4; 1 
from 4 to 12; and 2 from 12 to 50. 

P4 = diametral pitch; T = number 0/ teeth. For Fellows Pi = first diametral pitch; P% = 
seoond diametral pitch. 
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10-42. Cutting Spur Gears. Any attempt at a complete description 
of the processes used in manufacturing gears would be out of place here. 

The two basic methods of cutting the teeth are: 
1. The use of a milling cutter or planing tool the shape of which con¬ 

forms to the shape of the space between the teeth of the gear which is to 
be cut. For the formed tool, if the teeth are to be exact a different tool 
must be used for every different size of gear, since the shape of the 
tooth curve depends upon the size of the base circle in involute gears and 
upon the size of the pitch circle in cycloidal gears. Where the formed 
cutter is employed the same one is used to cut several sizes of gears, the 
result being that the teeth on all but one of the series are approximate. 

2. The generating method. There are a number of ways of applying 
the generating principle. The basic idea, however, is to impart to the 
cutting tool and to the gear which is being cut such motions that rela¬ 
tive to each other they have the same motion that the gear and a rack, 
or another gear, running together would have. That is, the cutter, 
being the equivalent of or conjugate to the rack tooth, cuts or generates 
its own conjugate on the gear blank. 

10-43. Stepped Gears. If a pair 
of spur gears are cut transversely into 
a number of plates, and each plate is 
rotated through an angle, equal to the 
pitch angle divided by the number of 
plates, ahead of the adjacent plate, as 
shown in Fig. 10-29, the result will be 
a pair of stepped gears. This device 
has the effect of increasing the num¬ 
ber of teeth without diminishing their 
strength; and the number of contact 
points is also increased. The action 
for each pair of plates is the same as that for spur gears having the 
same outlines. In practice there is a limit to the reduction in the thick¬ 
ness of the plates, depending on the material of the teeth and the pres¬ 
sure to be transmitted, since too thin plates would abrade. The 
number of steps is usually not more than two or three, and the teeth 
are thus quite broad. These gears give a very smooth and quiet 
action. 

10-44. Twisted Spur or Helical Gears. If, instead of cutting the 
gear into a few plates, as shown in Fig. 10-29, the number of sections is 
infinite, the result is a helical gear such as that shown in Fig. 10-30. 

The twisting being uniform, the elements of the teeth become helices, 
all having the same lead. See Arts. 10-57 and 10-58. The line of con- 
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tact between two teeth will have a helical form, but will not be a true 
helix; the projection of this helix on a plane perpendicular to the axis 
will be the ordinary path of contact. It can easily be seen that the 
common normal at any point of contact can never lie in the plane of 
rotation, but will make an angle with it. The line of action then can 
have three components: (1) a component producing rotation, per¬ 
pendicular to the plane of the axes; (2) a component of side pressure, 
parallel to the line of centers; (3) a component of end pressure parallel 
to the axes. The end pressure may be neutralized as explained in 
Art. 10-45. 

10-45. Herringbone Gears. A gear like that shown in Fig. 10-31, 
known as a herringbone gear, is equivalent to two helical gears, one 
having a right-hand helix and the other a left-hand helix. The use of 
a pair of gears of this type eliminates the end thrust on the shaft 
referred to in the preceding paragraph. 

10-46. Pin Gearing. In this form of gearing the teeth of one wheel 
consist of cylindrical pins, and those of the other of surfaces parallel 
to cycloidal surfaces, from which they are derived. Figure 10-32 
shows a pair of pin gears. In Fig. 10-33 let oi and o2 be the centers of 
the pitch circles whose circumferences are divided into equal parts, as 

ce and eg. Now if we suppose that the wheels turn on their axes and 
are in rolling contact at c, the point e of the wheel 0\ will trace the 
epicycloid gp on the plane of the wheel o2, and merely a point £ upon the 
plane of Ox. Let cf be a curve similar to ge and imagine a pin of no 
sensible diameter — a rigid material line to be fixed at c in the upper 
wheel. Then, if the lower one turns to the right, it will drive the pin 
before it with a constant velocity ratio, the action ending at e if the 

driving curve is terminated at / as shown. 
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If the pins have a reasonable diameter, the outlines of the teeth 
upon the other wheel are curves parallel to the original epicycloids, as 

shown in Fig. 10-34. The diameter of the 
pins is usually made about equal to the thick¬ 
ness of the tooth, the radius being, therefore, 
about one-quarter the pitch arc. This con¬ 
dition, however, is not imperative, as the pins 
are often made considerably smaller. 

Clearance for the pin is provided by forming 
the root of the tooth with a semicircle of a 
radius equal to that of the pin, the center 
being inside of the pitch circle an amount 
equal to the clearance required. 

The pins are ordinarily supported at each 
end, two disks being fixed upon the shaft for 
the purpose, thus making what is called a 
lantern wheel or pinion. 

In wheel work of this kind the action is almost wholly confined to 
one side of the line of centers. In the elementary form (Fig. 10-34) 
the action is wholly on one side, and receding if o2 drives, since it cannot 
begin until the pin reaches c arid ceases at e; if oi is considered the 
driver, action begins at e, ends at c, and is wholly approaching. As 

approaching action is injurious, pin gearing is not adapted for use where 

the same wheel has both to drive and to follow; the pins are therefore always 

given to the follower, and the teeth to the driver, 

10-47. Bevel Gears. A pair of bevel gears bears the same relation to 
a pair of rolling cones that a pair of spur gears bears to rolling cylinders. 

Figure 10-35 shows two bevel gears meshing together. Here, as 
with spur gears, the angular speeds are inversely proportional to the 
number of teeth or the pitch diameters. 

The pitch circle of a bevel gear is the base of the cone which the gear 
replaces. 

10-48. To'Draw the Blanks for a Pair of Bevel Gears. A convenient 
way to gain an understanding of the principle of bevel gear design will 
be to study the method of drawing the blanks from which a pair of bevel 
gears are to be cut. Let it be assumed that a 6-pitch, 12-tooth gear is 
to mesh with an 18-tooth gear, the axes to intersect at 90°. Start 
with the point 0, Fig. 10-36, as the point of intersection of the two axes. 
Draw OS and OSi making the required shaft or center angle 0 (in this 
case 90°). These are the center lines of the shafts. Assume that the 
12-tooth gear is to be on Si. Call this gear A and the 18-tooth gear B. 

Since A has 12 teeth and is 6-pitch, its pitch diameter, that is, the 
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diameter of the base of its pitch cone, is 12 4- 6 or 2 in. In like manner 
the pitch diameter of B is 18 4- 6 or 3 in. From 0 measure along 0S\ 

a distance OM equal to the pitch radius of B (1| in.) and, through M> 

thus found, draw a line perpendicular to OSi. In like manner make ON 

equal to the pitch radius of A and draw a line through N perpendicular 
to OS. These lines intersect at K. Make MR equal to MK and NT 

equal to NK. From R, K> and T draw lines to 0. Then the triangle 
ORK is the projection of the pitch cone of the gear A and OTK that of 
the pitch cone of B. It will be noticed that the above construction 
is the equivalent of that for rolling cones, as discussed in Art. 9-7. 
Next, draw through K a line perpendicular to OK meeting OSi at P 

and OS at H. Draw a line from II through T and from P through R. 

The cone represented by the triangle THK is called the back cone or 
normal cone of the gear 5, and that represented by the triangle RPK 

is called the back cone of A. These cones will be explained in more 
detail later. 

From R lay off Ra equal to the addendum that is to be used on gear 
A (this is determined by the same considerations that would be used 
for the addendum on a spur gear). Along RO lay off Rr equal to the 
desired width of gear face (Art. 10-^9). Through r draw a line parallel 
to PR. From a draw a line to 0 meeting this parallel at ai. Through a 

draw a line parallel to RK meeting PKH at a2. From ai draw a line 
parallel to RK meeting a line drawn from a2 to 0 at as. Lay off along 
RP the distance Rd equal to the dedendum and draw from d toward 0 
meeting a^r at d\. Find d2 and d3 in the same way that a2 and a8 were 
found. The figure addiai represents the tooth. The dimensions of 
the hub and the position of lines FG and FiGi and of the cor¬ 
responding lines on the other gear may be made anything that is 
desirable. 

It will appear from this construction that bevel gears must be laid 
out in pairs. 

There is a nomenclature which is peculiar to bevel gears. Some of 
these terms have beenjised in the previous discussions. Additional 
ones willmow be defined and in most cases shown on Fig. 10-36. 

Pitch cone is the imaginary cone upon which the teeth are made. 
Cone distance is the length of the side of the pitch cone. 
Pitch point, K} is the point of tangency of the pitch cones at the large 

Pitch, center, or cone angle'is angles, a, \vliidn an dement ch $hb 
pitch cone makes with the axis of rotation or center line of the gear. 

Face angle is the angle, y, which the top surface of the tooth makes 
with the center line of the gear. 
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Addendum angle is the angle, <r, which the top surface of the tooth 
makes with the cone distance; it is equal to face angle minus the pitch 
angle. 

Root or cutting angle is the angle, 0, which the bottom surface of the 
tooth makes with the center line of the gear. 

Dedendum angle is the angle, rj, which the bottom surface of the 
tooth makes with the cone distance and is equal to the pitch angle 
minus the root angle. 

Back cone distance is the distance along the element of the back cone 
from the pitch point, K) to the center line of the gear. The back cone 
distance for gear A is PK and for gear B is HK. 

Formative or virtual number of teeth is the number of teeth con¬ 
tained in a spur gear whose pitch radius is equal to the back cone dis¬ 
tance and whose pitch is the same as that of the bevel gear. Since the 
spar gear is imaginary, there may be a fractional tooth in the number 
of formative teeth. The formative number of teeth is used in laying 
out and designing the teeth and in selecting a cutter of proper size. 

10-49. Teeth for Bevel Gears. The gear blanks, as laid out in 
Art. 10-48, are of the form ordinarily used, and the information there 
given is perhaps all that a person making use of bevel gears would 
need. In order to understand the principles underlying the action of 
the gears it may be desirable to notice the relation between bevel gear 
teeth and spur gear teeth. 

In the discussion on the teeth of spur gears, the motions were con¬ 
sidered as taking place in the plane of the paper, and lines instead of 
surfaces have been dealt with. But the pitch and describing curves, 
and also the tooth outlines, are but traces of surfaces acting in straight- 
line contact, and having their elements 
perpendicular to the plane of the paper. 
In bevel gearing the pitch surfaces are 
cones, and the teeth are in contact along 
straight lines, but these lines are perpen¬ 
dicular to a spherical surface, and all of 
them pass through the center of the 
sphere, which is at the point of intersec¬ 
tion of the axes of the two pitch cones. 

In Fig. 10-37, 0 is the center of the 
sphere, AOC and BOC are the pitch 
cones. If the teeth are involute, cones 
such as MON and KOL are the base 
cones, and the teeth may be thought of as being generated by a 
plane rolling on each of the base cones, the ends of the teeth lying on 
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the surface of the sphere, and the tooth outlines being the curves traced 
on this surface by the plane which generates the teeth. 

10-60. Drawing the Teeth on Bevel Gears. Tredgold’s Approxima¬ 
tion. Since narrow zones of the sphere, Fig. 10-37, near the circles BC 

and AC, will nearly coincide with cones whose elements are tangent to 
the sphere at B, C, and A, the conical surfaces may be substituted for 
the spherical ones without serious error, and as the tooth outlines are 
always comparatively short they may be supposed to lie on the cones. 
These cones BPC and AHC are called the normal cones and correspond 
to the cones RPK and THK of Fig. 10-36. Figure 10-38 shows the 

method of drawing the tooth outlines. It will be noticed that the 
developments of portions of the back cones are treated as if they were 
pitch circles of spur gears and the teeth are drawn on the development 
exactly as if they were teeth of spur gears, and are then transferred to 
the other views by ordinary principles of projection. 

10-61. Crown Gears. When the angle at the apex of the cone of one 
of a pair of bevel gears is 180° the pitch cone becomes a flat disk and 
the normal cone becomes a cylinder. Such a gear is analogous to a 
rack bent in the form of a circle.. The teeth taper inward, elements of 
the teeth converging toward the center of the disk. Another bevel 
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gear of any number of teeth may be designed to run with a crown gear 
but the angle between the axes will depend upon the ratio of the teeth. 
Figure 10-39 shows such a pair of gears. 

10-62. Internal Bevel Gears. Figure 10-40 is a diagram of a pair of 
bevel gears in internal contact, analogous to the cylindrical gears shown 
in Fig. 10-20. Though this 
type of gear is not common, 
it is sometimes used where the 
position of the axes, speed re¬ 
lation, and relative sense of 
rotation make it more con¬ 
venient than other forms of 
gear connection. 

10-63. Spiral Bevel Gears. 
TJhe teeth of bevel gears 

may be twisted in the same 

Fig. 10-39 

manner as the teeth of spur 
gears. (See Art. 10-44.) 
Figure 10 -41 shows a pair of 
twisted bevels used for the 
drive to the differential of an 
automobile. 

10-64. Skew Bevels or 
Hyperboloidal Gears. Fig¬ 
ure 10-42 shows a pair of 
skew bevel gears used in cot¬ 
ton machinery. Here the 
shafts are at right angles, 
non-intersecting, but passing 

so near each other that ordinary helical gears cannot be used to give 
the desired speed ratio. 

Fig. 10-40 
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If the gears are accurately made, the pitch surfaces of these gears are 
hyperboloids of revolution, and the teeth are in contact along straight 
lines. The angular speeds are inversely as the pitch diameters. See 

Art. 9-17. 

Courtesy Gleason Works 

Fig. 10-41 Fig. 10-42 

Correct teeth for hyperboloidal gears are difficult if not impossible to 
construct. In practice there are several methods of constructing 
approximately correct teeth. 

10-56. Hypoid Gears. Hypoid gears are a recent development of the 
Gleason Works, Rochester, N. Y., in an effort to obtain satisfactory 

Courtesy Gleason Works 

Fig. 10-43 

gears for connecting non-parallel and non-intersecting shafts. Fig¬ 
ure 10-43 shows a pair of hypoid gears connecting overlapping shafts. 
The appearance of hypoid gears is similar to spiral bevel gears. The 
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teeth on both types are generated by the use of a rotary cutter. The 
pinion of a pair of hypoid gears is larger than the pinion of a pair of 
spiral bevel gears with the same number of teeth. This is responsible 
for the pinion of hypoid gears being stronger than that of bevel gears or 
for a larger gear reduction. Hypoid gears have a continuous pitch line 

Courtesy Link-Belt 

Fig. 10-44 

contact and a larger number of teeth in contact than straight-tooth 
bevel gears; are quiet; and, when properly lubricated, wear well. 
Hypoid gears were primarily used in the differ¬ 
entials of automobiles in order to lower the drive 
shaft but are now being used in industrial equip¬ 
ment where non-intersecting and non-parallel 
shafts or overlapping shafts are desired. 

10-66. Screw Gearing. This class of gearing 
is used to connect non-parallel and non-inter¬ 
secting shafts and includes the two types known 
as worm and wheel (Fig. 10-44) and helical 
gears (Fig. 10-45). Helical gears used for this 
purpose are often, but inaccurately, called spiral 
gears. In the helical gears and the elementary 
forms of worm and wheel the teeth have point 
contact. The speed ratio is not necessarily in the inverse ratio of the 
diameters. The action of gears of this class is similar to the action of a 
screw and nut which will be considered in a later chapter. This is par- 
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ticularly evident in the worm and wheel. The distinction between the 
worm and wheel and the helical gears, however, is not a very clear one, 
being largely a matter of speed ratio and manner of forming the teeth. 
Both may properly be considered here as helical gears and the following 
discussion will apply to both. 

10-57. The Helix; Its Construction and Properties. A helix is a 
curve wound around the outside of a cylinder or cone advancing uni¬ 
formly along the axis as it winds around. The nature of the curve 
and the method of drawing it may be understood from a study of 
Fig. 10-46. 

Fig. 10--46 

The helix angle is the angle which a straight line tangent to the 
helix at any point makes with an element of the cylinder. This angle 
is the same for all points on a cylindrical helix. Two helices are said 
to be normal to each other when their tangents drawn at the point 
where the helices intersect are perpendicular to each other. 

When two parallel lines are wound around a cylinder forming par¬ 
allel helices, as in Fig. 10-47, the result is called a double helix; three 
lines give a triple helix, and so on. If the helix slopes as in Fig. 10-46 
it is called a right-hand helix; if it slopes in the reverse direction it is 
called a left-hand helix. 



HELICAL GEARS 273 

10-68. Lead. Axial Pitch. The distance L, Figs. 10-46 and 10-47, 
by which a helix advances along the axis of the cylinder for one turn 
around is called the lead. The distance A) measured parallel to the 
axis, from one point on a helix to the corresponding point on the next 
turn of a single helix, or to the corresponding point on the next helix 
in a multiple helix, is called the axial pitch. In a single helix this is 
equal to the lead; in a double helix the axial pitch is equal to one-half 
the lead; in a triple helix, one-third of the lead, and so on. 

10-69. Normal Pitch. The distance P9 between a point on a helix 
and the corresponding point on the next turn of a single helix or the 
corresponding point on the next helix in the case of a multiple helix, 
measured along the normal to the helix, is called the norm >1 pitch. 

10-60. Helical Gears are gears whose teeth wind partially around the 
pitch cylinders. A pair of such gears may be used to connect parallel 
shafts, as shown in Fig. 10-30, or non-parallel shafts, which is the case 
now under discussion. The method of forming the teeth and the 
action of the teeth differ in the two cases.f The definitions given above 
apply to the teeth of helical gears but the terminology is slightly differ¬ 
ent. The axial pitch as defined above is known as the circular pitch 
in the diametral plane and will be notated C. The normal pitch as 
defined above is called the normal circular pitch and will be notated P. 
The relationship between the circular pitch and diametral pitch in the 
same plane is the same as that for spur gears (see Art. 10-14) and their 
product is equal to ir. In order that two helical gears may work 
together they must have the same normal circular pitch and the angle 
between the shafts must be such that the tangent to the pitch helices 
of the two gears coincide at the pitch point. From this it follows 
that the sum of the angles of their helices must be equal to the angle 
between the shafts, or the supplement of this angle. For helical gears 
manufactured with standard hobs, the diametral pitch in the normal 
plane should be standard; however, the Fellows system uses a standard 
diametral pitch in the diametral plane. 

Figure 10-48 shows the pitch cylinders of a pair of helical gears. The 
line MN is the common tangent to the teeth at the point of contact of 
the pitch cylinders (that is, the pitch point). £ is therefore the angle 
of the helix of the driver and a the angle of the helix of the driven gear. 
Here the angle 0 between the two shafts is equal to 180° — -f a). 

Figure 10-49 is the development of the surfaces of the two pitch cylin¬ 
ders shown in Fig. 10-48, the slanting lines being the development of 
imaginary helices at the centers of the teeth on the pitch cylinders. 

fThe twisted gears (Fig. 10-30) have line contact between teeth; the helical 
gears in general have point contact, or multiple-point contact. 
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The perpendicular distance between these lines is the normal circular 
pitch P (the same in both gears). The distances C and Ci between the 
points of intersection of two adjacent teeth with the ends of the cylinder 

(EF and EiFi) are the circular pitches in the diametral plane of the 
respective gears. It will be noticed that the circular pitches in the 
diametral plane of the two gears are not alike but depend upon the helix 
angles. 

If the relation between the angles 0 and 0 is such that a becomes 0 
the driven gear becomes like an ordinary spur gear. Hence a properly 
formed helical gear may be made to drive a spur gear if their axes are 
set at the proper angle with each other. 

10-61. Relation between the Circular Pitches of a Pair of Helical 
Gears. Referring still to Fig. 10 -49, 

C = 
P 

COS 0' 
and Ci = 

P 

cos a (7) 
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Therefore 
Ci __ cos ft 

C cos a 
(8) 

10-62. Relation between Numbers of Teeth in a Pair of Helical 
Gears. Let T represent the number of teeth in the driver (Fig. 10-49) 
and Ti the number of teeth in the driven gear. Then 

Therefore 

T 
irD 

~C 
and Ti 

ttD\ 

cT 

tDi 

Ti "cT DiC 

T ~ tD ~ DCi 

c 

But, from equation 8, 

Therefore 

C cos a 

Ci cos ft 

Ti _ Pi cos a 

T D cos ft 

(9) 

(10) 

That is, the numbers of teeth arc directly as the product of the pitch diam¬ 

eters multiplied by the cosines of the helix angles. 

10-63. Speed Ratio of Helical Gears. As for spur gears, the angular 
speeds of a pair of helical gears are inversely as the numbers of teeth. 
If N represents the angular speed of the driver, and Ni that of the driven 
gear, it follows from equation 10 that 

N\ D cos ft 

N Di cos a 
(11) 

10-64. Relation between Lead, Helix Angle, and Pitch Diameter. 
Since the development of one turn of a helix is the hypotenuse of a 
right triangle of which one leg is the circumference of the cylinder on 
which the helix lies, and the other leg is the lead (see upper diagram, 
Fig. 10-49) it follows that 

Circumference . ... 
--—--= tan helix angle 

Lead 
Therefore 

tD 

tan ft 
Lead = (12) 
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10-65. Spur Gear Corresponding to Section of Helical Gear on Nor¬ 
mal Plane. In designing a helical gear it may be desirable to make the 
tooth section on the normal plane correspond to some standard spur 
gear tooth. The section of the pitch cylinder on a plane normal to the 
helix is an ellipse with minor axis equal to the pitch diameter and major 
axis equal to the pitch diameter divided by the cosine of the helix angle 

Hence A = , where A is the major axis of the ellipse. 

The tooth outline in the normal plane section will be that of a stand¬ 
ard pitch gear of pitch circle having a radius corresponding to the radius 
of curvature of the ellipse at the end of its minor axis. This radius (p) 
is given in the equation 

radius of pitch cylinder 

cos213 
(13) 

Then, letting T = number of teeth on helical gear, Tn = number of 
teeth on equivalent gear in normal plane, and since 

TrD ^ 7vD 7tD X cos (3 

~C = ~P~ = P ' 

and 
cos 13 

or, substituting the value 

Tn 

T 

of p from equation 13, Tn = 

7tD 

P cos213 _ 1 

irD COS /? COS3 13 

7tD 

P cos2 /3 ’ 

(14) 

P 

10-66. Distance between Axes. Let Pdn = diametral pitch of teeth 

on the normal plane. Then, from equation 3, P = , where P = 

Pdn 

normal circular pitch. 

Substituting this value of P in equation 7 we get 

C = 

Therefore 

T „ irD 
—-- but C = —■ 

Pdn COS /? T 

7rZ) 

~T Pdn COS f) 
or D = 

Pdn COS 0 
(15) 
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Similarly 

whence 

Pdn COS OC 

T T 
D -f- D\ — —-h —- = twice the distance 

PdnCOS/3 Pdr> COS a between centerg 

of shafts (16) 

10-67. Selecting the Number of Teeth and Helix Angles. 

Example. Given two shafts S and W located at right angles to each other, the 

axis of S being 15 in. above the axis of W. They are to be connected by a pair of 
helical gears so that S shall turn twice as fast as W. The helix angle on the smaller 

gear is to be as nearly as possible 45°; the sum of the pitch radii must not vary from 

15 in. more than 0.001 in. Diametral pitch on normal plane is 2. Find number of 

teeth and helix angle for each gear. 

Fig. 10-50 

Solution. (See Fig. 10-50.) Using the same notation as in the preceding dis¬ 

cussion, the first step will be to calculate the theoretical numbers of teeth T and Tx 
from equation 16, using p = 45°, a = 90° — 45° = 45°, and D + Dx — 15 X 2. 

Second, taking integers for T and 7\ nearest to the calculated value, recalculate 

the center distance. Third, if the center distance thus found does not come within 

the required limits change the values of a and p slightly and recalculate the center 

distance. Continue the process until the center distance is within the specified 

limits. 
Since the speed ratio is 2 :1, T = 27V From equation 16 

—-—— — 30 
2 cos 45 2 cos 45 

o y qq 
Tx = — cos 45 - 20 cos 45° « 20 X 0.7071 - 14.14 

3 
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Use 

Then 

Ti = 14 and T = 28 

D + A 
28 

+ ; 
14 

2 X 0.7071 2 X 0.7071 

21 

0.7071 
29.699 

which is much too small. 
Try a = 43° 30'. Then 0 = 90 - 43° 30' = 46° 30'. 
Calculating D + A for these values of a and 0 gives 29.989 which is still too 

small. Another trial with a = 43° 27' and 0 = 46° 33' gives D + D\ = 29.998 or 

center distance 14.999 which satisfies the requirements. 

10-68. Directional Relation of Helical Gears. The direction in 
which two helical gears turn relative to each other depends upon the 
direction in which the helices slope at the pitch point. This can best be 
decided for any given case by making a sketch similar to Fig. 10-51. 

Let the shaft S be turning so that the top side of the gear A is moving 
in the direction of the feathered arrow. Then the pitch point H on 
gear A will move in the direction Hhs. If the line Hh8 is assumed to 
represent the velocity of H on A, resolve this velocity into components 
along the common tangent XX and along the line on which the pitch 
point of gear B is moving, giving Hhw as the velocity of the pitch point 
on B and Hht as the sliding along the common tangent. Since Hhw 

points to the right it follows that the upper side of B is moving in that 
direction. 

10-69. Worm Gearing. A worm and wheel, in reality, is a pair of 
helical gears with one of the helical gears, called a worm, having a helix 
angle such that at least one tooth makes a complete turn around the 
pitch cylinder and thus forms a “ screw thread.” The axial pitch, 
commonly called the linear pitch, of the worm is the distance, measured 
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parallel to the axis, between corresponding points on adjacent threads. 
The lead is the axial distance traversed by a thread in one turn. The 
lead angle is the angle between the tangent to the pitch helix and the 
axis of rotation. This angle is the complement of the helix angle as 
used on the gear wheel. 

lead 
Tangent of lead angle = —— (17) 

irD 

where D = the pitch diameter of the worm. 
The connecting shafts are non-intersecting and may be at any angle 

but are usually at right angles. 
The gear wheel may have either straight-faced teeth, the outside of 

the wheel being cylindrical, or concave-faced teeth, the outside of the 
wheel following the curve of the worm as shown in Fig. 10-52. The first 
foam of teeth is simply a helical gear and gives point contact. The 
latter form, which is the accepted standard, gives line contact and is, 
therefore, the stronger. 

The angular speed ratio between the worm and wheel usually varies 
from 10 to 1 to 100 to 1 but ratios as high as 500 to 1 have been used. 

If the thread is a single helix making one or more complete turns the 
worm may be considered as a helical gear of one tooth and the angular 
speed ratio will be 

Angular speed of wheel _ 1 

Angular speed of worm number of teeth in wheel 

If the worm is double threaded, that is, has two parallel helical threads 
of equal lead, then it corresponds to a gear of two teeth, and similarly 
for other numbers of threads. 

In general, therefore, 

Angular speed of wheel _ number of separate threads on worm 

Angular speed of worm number of teeth in wheel 

It is evident that this relation is the same as for any pair of gears, since 
the number of threads is really the same as the number of teeth. 

Involute teeth are used in worm gearing. The following standard 
linear pitches are recommended: f, f, f, 1, If, 1§, If, and 2 in. 

10-70. Worm and Wheel Related to Rack and Pinion. A section of 
a worm thread on a plane containing the worm axis and perpendicular 
to the wheel axis may be thought of as a rack of infinitesimal thickness, 
and the section of the wheel tooth cut by the same plane as an infinitely 
thin gear. Now since all axial sections of the worm are alike one com¬ 
plete turn of the worm has the same effect on the gear as motion of 
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the rack through a distance equal to the lead of the worm helix. This 
is suggested in Fig. 10-53 where the tooth marked A is in the section of 
the wheel tooth on the axial plane ab of the worm and the curves adja¬ 
cent to A are the corresponding sides of the worm thread section. 

At C is a section of the wheel tooth on plane cd with corresponding 
thread section. 

If, as is usual, the axial section of the worm thread is straight sided, 
then the section of the worm and the wheel in that plane correspond 
to an involute rack and pinion with path of contact as shown in full 
lines. The section of the worm on plane cd will be unsymmetrical, 
and the outline of tooth C will be curves conjugate to the worm section. 
The path of contact on this plane is as shown dotted. The action 
between the worm thread and the wheel teeth therefore corresponds to 
that of an infinite number of thin racks and pinions, each differing 
slightly from its neighbors but all giving the same speed ratio. 

PROBLEMS 

X-l. Find the distance between centers of a pair of gears, one of which has 12 

teeth and the other 37 teeth. The diametral pitch is 7. 

X-2. Two shafts are 15 in. on centers. One of the shafts carries a 40-tooth 2 

diametral pitch gear which drives a gear on the other shaft at a speed of 150 rpm. 

How fast is the 40-tooth gear turning? 

X-3. Given a gear of 24 teeth, 4 diametral pitch. The addendum equals 1 in. 

4- diametral pitch, the clearance is to be one eighth of the addendum, and the back¬ 

lash is to be 2 per cent of the circular pitch. Calculate the following, giving results 

to three decimal places: the pitch diameter, the diameter of the blank gear before 

cutting the teeth (addendum diameter), the depth of teeth, the backlash, and the 

width of tooth and width of space. 

X-4. Find graphically and check by calculation the diameter of the base circle of 

an involute gear which has a pitch circle 6 in. in diameter and pressure angle 20°. 

X-6. Given an involute gear having 30 teeth, 2 diametral pitch, 15° pressure 

angle, which would have arcs of approach and recess each equal to the circular pitch 

if running with another gear just like itself. Find the number of teeth in the small¬ 

est possible gear that will run with this with the same pressure angle. 

X-6. Involute gears, 22i° pressure angle, 1 diametral pitch, addendum = f in. 

4- diametral pitch, clearance = J in. 4- diametral pitch, no backlash. A pinion 

having 9 teeth, turning clockwise, is to drive a gear of 12 teeth. Indicate the path of 

contact, and angles of approach and recess for each gear; also give the ratio of the 

arc of action to the circular pitch. Draw two teeth on each gear, having a pair of 

teeth in contact at the pitch point. 

X-7. Find the diameter and number of teeth of the smallest 3 diametral pitch 

pinion with 20° pressure angle, which would allow an arc of recess = arc of approach 

= the circular pitch, and draw its pitch and addendum circles. If the pinion drives 

a rack, what is the greatest allowable addendum for the rack? 

X-8. Involute gears, 15° pressure angle; a 30-tooth pinion 2 diametral pitch is 

to drive a rack. How long can the arc of approach be? Can the arc of recess equal 
the circular pitch, and why? 
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X-9. An involute gear with 21 teeth, 3 diametral pitch, 15° pressure angle, has 

an addendum diameter of 7i in. Draw its base circle and pitch circle. Could two 

such gears properly be used to connect two shafts 7i in. apart? Give reason for 

answer. 
X-10. Involute gears, 2 diametral pitch, 15° pressure angle. A 24-tooth pinion 

is to drive a 32-tooth annular. The arc of approach to be equal to li the circular 

pitch, and arc of recess to be equal to the circular pitch. Draw the addendum 

circles. Is each of these arcs possible? (Explain clearly the steps by which this is 

determined.) What is the limit of the path of contact in approach and in recess, 

and why? 
X-ll. Find graphically and check by calculation the least pressure angle that can 

be used in designing two involute gears of 8 teeth each, exactly alike, to run together. 

Suggestion: Assume 1 diametral pitch; lay off one-half circular pitch each side of 

tangent at pitch point. 
X-12. What is the least pressure angle that can be used in designing two involute 

gears of 8 teeth and 12 teeth respectively, to run together? 

Suggestion: Assume 1 diametral pitch; divide circular pitch in ratio 12 to 8 and 

lay off along tangent at pitch point. 

X-13. A 4-5 pitch 20-tooth Fellows pinion drives a gear. Velocity ratio is 2 to 1. 

What is the ratio of the arc of action to the circular pitch? Could the addendum be 

increased without interference? 

X-14. A standard 142° full-depth 6-pitch 32-tooth pinion drives a 64-tooth gear. 

Is there any interference? Can a 16-tooth pinion drive the 64-tooth gear? 

Explain. 
X-16. Two cycloidal gears with 10 and 12 teeth respectively; 2 diametral pitch; 

radial flanks on each. 

1. Draw the pitch circles and the describing circles and give their diameters. 

2. If the addendum = i in. and the 10-tooth pinion drives, turning clockwise, 

show the path of contact. 

3. How long is the arc of action in terms of the circular pitch? How long must it 

be to just give perfect action? 

X-16. A cycloidal pinion with 6 teeth, 1 diametral pitch, is to drive a gear with 8 

teeth. Radial flanks on 8-tooth gear and the same size of describing circle for the 

flanks of the 6-tooth gear. The arc of approach to be five eighths of the circular 

pitch, and the arc of recess to be three quarters of the circular pitch. 

1. Find the maximum pressure angle in approach and in recess in degrees. 

2. Is the given arc of action possible? 

X-17. Cycloidal gears; interchangeable set; 3 diametral pitch; radial flanks 

on a 15-tooth gear. Addendum equals 1 in. — diametral pitch. Clearance equals 

one eighth of the addendum. An 18-tooth pinion drives a 39-tooth annular. Show 

path of contact. How many teeth would there be in the smallest annular that would 

gear with the 18-tooth pinion? Show path of contact. 

X-18. Lay out the blanks for a pair of bevel gears, 2 diametral pitch, 15 teeth 

and 30 teeth. Addendum = i in.; clearance = fa in. Length of teeth on element 

of pitch cones li in. Axes of shafts intersect at 90°. Assume reasonable dimen¬ 

sions for thickness of metal, diameters of hubs, and so on. Give numerical values 

for the pitch cone angles and addendum v ngles for each gear. 

X-19. Lay out a pair of 20° stub-tooth involute bevel gears, 4 diametral pitch, 

velocity ratio 2 to 1, 32 teeth on gear, face width li in., and angle between shafts 

75°. Assume reasonable dimensions for thickness of metal, diameter of hubs, and 
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so on. For each gear give numerical values, calculate whenever possible and show 

the following: cone distance, cone angle, face angle, addendum angle, cutting 

angle, dedendum angle, back cone distance, formative number of teeth. 

X-20. A helical gear having 26 teeth is 3 diametral pitch on the section cut by 

a plane normal to the helix. The helix angle is 30°. Find the diameter of the pitch 

cylinder and the lead of the helix. 

X-21. A 30-tooth helical gear has a normal circular pitch of J in. and a helix 

angle of 30°. Determine the pitch diameter, normal pitch, diametral pitch in the 

diametral plane, diametral pitch in the normal plane. State size of cutter to be 

used. 

X-22. A herringbone gear with 20° stub teeth and 30° helix angle has 30 teeth of 

li diametral pitch. Determine the pitch diameter, outside diameter, root diame¬ 

ter, normal circular pitch, lead, and minimum face width. 

X-23. A pair of equal diameter helical gears connects shafts 2 in. apart, with an 

angle between shafts of 60°. If the velocity ratio is to be 2 to 1, find the circular 

pitch and the helix angle of each gear. 

X-24. Given a pair of helical gears located as shown. Let om = 2 radians per 

second, wb — Diameters equal. Distance between centers not less than 10 

in. nor more than 10.1 in. Teeth 4 diametral pitch on normal plane. Outside 

diameter^ £ in. more than diameter of pitch cylinders. Find the helix angle and 

number of teeth for each gear, and give the distance between axes to the nearest 

0.01 in. Draw two views, half size. Draw velocity vector for pitch point of A at 

scale 1 in. =2 ips, and by resolution find corresponding vector for B. Find rate of 

slip at pitch point in inches per second. 

If the teeth on A were clockwise helices wit h helix angle 15° and its angular speed 

and direction same as before, find by vectors the angular speed and direction of B. 

Prob. X-24 

X-25. Given a single-threaded clockwise worm, 3 in. pitch diameter, 1 in. lead, 
driving a worm wheel which has 36 teeth. The shafts are at 90°. Calculate the 

pitch diameter of the wheel and draw a full-size diagram similar to that shown (top 
view). 
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1. Calculate the angle which each helix makes with its axis and draw the common 
tangent for the worm thread and a tooth of the wheel in contact at P. 

2. Determine the direction in which the worm must turn to cause the wheel to 
turn as shown. 

3. The worm turns 72 rad /min. Draw to a suitable scale the velocity vector of 
the point on the thread at P. Find graphically the velocity of a point on the pitch 
cylinder of the wheel. From this find the angular speed of the wheel. 

4. Calculate the lead and the lead angle of the helix for the teeth of the wheel 
X-26, A triple-thread worm drives a gear wheel with 72 teeth. The linear pitch 

is 1^ in. The pitch diameter of the worm is 4 in. Determine the helix angle, the 
velocity ratio, pitch diameter of gear wheel, and the distance between centers. 



CHAPTER XI 

WHEELS IN TRAINS 

11-1. Train of Wheels. A train of wheels is a series of rolling cylin¬ 
ders or cones, gears, pulleys, or similar devices serving to transmit 
power from one shaft to another. 

The examples of rolling cylinders, gears, and the like, which have 
been discussed in earlier chapters, are really wheel trains each involving 
only one pair of wheels. In Fig. 11-1 D is a gear fast to shaft A. E is a 
gear fast to shaft B and meshing with D. F is another gear also fast to 
shaft B and meshing with the 
gear G which is fast to shaft C. 
If now the shaft A begins to 
turn, D will turn with it, and, 
therefore, cause# to turn. Since 
E is fast to the shaft B the latter 
will turn with E. Gear F will 
then turn at the same angular 
speed as E and will cause G to 
turn, causing the shaft C to turn 
with it. That is, D drives #, 
and F, turning with E, drives G. 

The above is an example of a 
simple train of gears, consisting 
of two pairs. Figure 11-2 shows 
an arrangement of pulleys sim¬ 
ilar in action to the gears shown 
in Fig. 11-1. H is a pulley on the shaft R belted to the pulley J 

on shaft S. On the same shaft is another pulley K belted to the pul¬ 
ley L on shaft T. 

Figure 11-3 shows a train of wheels involving both gears and pulleys. 
In this case D is a gear on shaft A, meshing with and driving the gear E 

on shaft B. On the same shaft is pulley X, belted to the pulley L on 
shaft (7. 

11-2. Driving Wheel and Driven Wheel. Refer again to Fig. 11-1. 
The gear D by its rotation causes E to turn; therefore, D may be 
called the driver or driving wheel, and E the driven or driven wheel. 

286 
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Fig. 11-2 

Fig. 11-3 

Similarly F, turning with E, is the driver for the wheel G. Hence, in 
any train such as here shown, consisting of three axes with two pairs of 

Fig. 11-4 

wheels, two of the wheels are drivers 
and two are driven wheels. 

11-3. Idler. In Fig. 11-4, gear 
D drives E, which in turn drives F. 
E is, therefore, both a driven and a 
driving gear. Such a gear is called 
an idler. When two shafts are con¬ 
nected by two external gears, the 
shafts will rotate in opposite direc¬ 
tions, but if an idler is placed be¬ 

tween these two gears their direction of rotation will be the same. An 
idler is also used to reduce the size of gears required to connect two 
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shafts with a fixed center distance and a desired velocity ratio. An 
idler does not affect the velocity ratio. 

11-4. Train Value, Considering as the fixed piece the member which 
supports the axes of the wheels of a train, the train value may be defined 

as the ratio of the absolute angular speed of the last wheel or driven to the 

absolute angular speed of the first wheel or driver. The train value is the 
reciprocal of the speed ratio as defined in Art. 10-4. The member 
carrying the wheel axes may be the frame of the machine or it may be 
an arm or link which is itself in motion relative to the frame. For 
convenience this member will be referred to as the arm of the train. 

If the train value is designated by e, then 

angular speed of last wheel relative to arm 1 / 
e —-=- (1) 

angular speed of first wheel relative to arm speed ratio 

In Fig. 11-1, if all the shafts are in fixed bearings, the shaft A turns 
25 rpm, and the sizes of the several gears are such that shaft C makes 
150 rpm, e = = 6. An inspection of the same figure will show 
that, if A turns clockwise, B will turn counterclockwise and C will turn 
clockwise. The direction, then, of C is the same as that of A. The 
value of this train is then said to be positive and will be indicated by 
putting a plus sign in front of the train value. If the number of wheels 
involved is such that the last shaft turns in the opposite direction from 
the first shaft, the value of the train will be said to be negative and will 
be indicated by a minus sign in front of the train value. 

11-6. Calculation of Speeds. Let it be assumed that the gears in 
Fig. 11-1 have teeth as follows: D, 100 teeth; E, 50 teeth; F, 125 teeth; 
and G, 25 teeth. It will also be assumed that shaft A makes 25 rpm, 
and it is required to find the speed of C. Since the speed of B is to the 
speed of A as the teeth in D are to the teeth in E, the revolutions of B 

will be equal to 25 X Jy<r'; also, since the speed of C is to the speed of B 

as the teeth in F are to the teeth in G, the speed of C = 25 X X 
V/- = 250. Expressing this as a formula, 

The speed of the last shaft is equal to the speed of the first shaft X 

the product of the teeth of all the drivers 

the product of the teeth of all the driven wheels 
(2) 

In the pulleys in Fig. 11-2 the principle is the same, except that 
diameters are used instead of numbers of teeth. Suppose that pulley 
H is 24 in. in diameter, J 8 in. in diameter, K 36 in. in diameter, and 
L 12 in. in diameter; then the speed of T will be equal to the speed of 

R X 
24 X 36 

that is, in a train of pulleys: 
8 X 12 
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The speed of the last shaft is equal to the speed of the first shaft X 

the product of the diameters of all the driving pulleys 

the product of the diameters of all the driven pulleys 

In a train consisting of a combination of gears and pulleys, as in 
Fig. 11-3, 

The speed of the last shaft is equal to the speed of the first shaft X 

the product of diameters and numbers of teeth of all the driving wheels 

the product of diameters and numbers of teeth of all the driven wheels 
(4) 

It should be noted that the last terms in equations 2, 3, and 4 are 
equal to the train value. Then, from equation 1, the speed of the last 

shaft is equal to the speed of the first shaft multiplied by the train value. 

In Fig. 11-4 let shaft A turn clockwise at 25 rpm and gear D have 100 
teeth, E 75 teeth, and F 25 teeth. Then the speed of C = 25 X e = 
^ teeth in drivers 100 X 75 _ , , .. 
25 x —t-— = 25 x = 25 x (+4) = 100 rPm teeth m dnvens 75 X 25 
clockwise. Since the idler is both a driver and a driven, the 75, which 
is the number of teeth in the idler, cancels out and, therefore, has no 
effect upon the speed of C. 

11-6. Reverted Gear Train. When the driving and driven gears 
have coincident axes, the gear train is called a reverted gear train. 

Figure 11-5 is a diagram of the 
back gear arrangement for a 
simple cone pulley headstock on 
an engine lathe. It illustrates 
the principles involved when two 
wheels whose axes coincide are 
connected by a train of wheels 
through an intermediate shaft, 
the axis of the intermediate shaft 
being parallel to the axis of the 
connected wheels. P is the cone 
pulley which may run loose on 
spindle S. A is a gear integral 

Fig. 11-5 

with P and meshing with gear B. C is another gear on the same shaft 
with B, both B and C being fast to the shaft. C meshes with gear D 

on the spindle S. From equation 2, 

O J r • Ji J r 11 w teeth in A x teeth in C 
Speed of spindle = speed of cone pulley X -—-—:——--—:—— 

teeth in B X teeth m D 

Since, however, the shaft R is parallel to S, the gears must be so pro- 
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portioned that the pitch radius of A + pitch radius of B equals pitch 
radius of C + pitch radius of D. Consequently, if the pitches of the 
two pairs are to be in some definite ratio there must be a corresponding 
relation between the sum of the teeth in A and B and the sum of the 
teeth in C and D. 

11-7. Examples of Wheels in Trains. The following paragraphs will 
give a few examples of wheels in trains. These are selected because 
they serve to illustrate the principles in¬ 
volved, and not because a knowledge of 
these particular trains is of special im¬ 
portance. 

Example 1. Clockwork. A familiar ex¬ 

ample of the employment of wheels in trains is 

seen in clockwork. Figure 11-6 represents the 
trainsrof a common clock; the numbers near the 

different wheels denote the number of teeth on 

the wheels near which they are placed. 

The verge or anchor O vibrates with the 

pendulum P and, if the pendulum vibrates once 

per second, it will let one tooth of the escape 

wheel pass for every double vibration, or every 

two seconds. Thus the shaft A will revolve once 

per minute, and is suited to carry the second 

hand S. 
The train value between the axes A and C is 

Turns C 8X8 1 

Turns A ” 60 X 64 ~ 60 

or the shaft C revolves once for 60 revolutions of 

A; it is therefore suited to carry the minute hand 

M. The hour hand H is also placed on this 

shaft C, but is attached to the loose wheel F by 

means of a hollow hub. This wheel is connected 

to the shaft C by means of a train and intermedi¬ 
ate shaft E. The value of this train is 

Turns H _ 28 X 8 _ 1 

Turns M ~ 42 X 64 " 12 

The drum Z), on which the weight cord is 

wound, makes one revolution for every 12 of the 

minute hand M, and thus revolves twice each 
Fig. 11-6 

day. Then, if the clock is to run 8 days, the drum must be large enough for 16 
coils of the cord. The drum is connected to the wheel G by means of a ratchet 
and click, so that the cord can be wound upon the drum without turning the wheel. 

Clock trains are usually arranged as shown in the figure, the wheels being placed 
on shafts, often called “ arbors/’ whose bearings are arranged in two parallel plates 
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which are kept the proper distance apart by shouldered pillars (not shown) placed 

at the corners of the plates. When the arbor E is placed outside, as shown, a 

separate bearing is provided for its outer end. 

Example 2. Cotton Card Train. Figure 11-7 shows the train in a cotton- 

carding machine. The train value is 

Turns B 135 v 37 130 17 

Turns A ~ 17 * 20 * 26 * 33 — ' 

In the machine the lap of cotton passing under the roll A is much drawn out on its 

passage through the machine, and it becomes necessary to solve for the ratio of the 

surface speeds of the rolls B and A. Since the surface speed equals turns XtX 

diameter, 

Surface speed B _ turns B X diameter B 

Surface speed A turns A X diameter A 

= 37.84 -4- = 67.27 
2.25 

Fig. 11-7 Fig. 11-8 

Example 3. Hoisting Machine Train. A train of spur gears is often used 

in machines for hoisting where the problem would be to find the ratio of the weight 

lifted to the force applied. In Fig. 11-8 the train value is 

Turns B 21 v 25 1 

Turns A = 100 X 84 = 16 

then, if D — 15" and R = 11 ft, 

Speed W 

Speed F 

L 
’* W 

or if F were 50 lb, W would be 1600 lb if loss due to friction were neglected. 

i 15 
16 30 32 

speed W _ 1 

speed F 32 
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11-8. Selective Speed Gear Drives. Many drives consist of gears 
so arranged as to constitute two or more trains with different train 
values, any one of which may be used. The different combinations 
common for this purpose may be roughly classified as follows: 

2. Driving and driven shafts parallel. One shaft carries several gears 
of different sizes, each fast to the shaft and always in mesh with a corre¬ 
sponding gear on the other shaft. Any one of these gears on the second 
shaft may be made fast to the shaft by a sliding key or clutch. 
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3. First and last members with axes coinciding. Connections made 
by employing an intermediate parallel shaft whose bearings may be 
quickly adjusted to bring the gears into mesh with those on the main 
axis. See Fig. 11-5. 

4. First and last members on parallel axes, one of which carries 
several gears of different sizes. Connections made by employing a 
sliding gear on the other axis with an adjustable idler or “ tumbler ” 
to complete the train. See Fig. 11-10. 

A description of two very common types will serve to illustrate the 
idea. 

11-9. Automobile Transmission. Figure 11-9 shows in diagram- 
- matic form the arrangement of gears in one type of automobile trans¬ 

mission. Details are not shown, nor is the diagram drawn to scale- 
The gear A is the main driving gear receiving its motion from the motor 
through the main clutch. It turns freely on the same axis as the pro¬ 
peller shaft P. Gear D also turns freely on P, Gear F may be caused 
to slide along P but is keyed to P so that they turn as a unit. K is a 
•clutch which may be caused to slide along P but compels P to turn when 
it turns. £, C, E, and II are gears which turn as a unit on an axis SS 

parallel to P. I is a gear in mesh with H and turning on an axis in 
front of and above SS. A is in mesh with B, and C with D at all times. 
M is a toothed wheel forming a part of the hub of A, and N a similar 
wheel forming a part of the hub of D. 

The train is in “ neutral ” in the figure. If the motor is running and 
the main clutch is “ in,” so that gear A is connected to the motor, all 
the gears except F are turning, but the shaft P with gear F and clutch K 

may be at rest or they may be turning independently of the other gears 
if the car is coasting. Now, if the gear-shifting mechanism is moved 
to slide F along P to the left as seen in the figure, F will come into 
mesh with E, and since F is keyed to P the drive is now from A to B 

and from E, which turns with B, to F. Then 

Angular speed of F 

Angular speed of A 

teeth in A 

teeth in B 
X 

teeth in E 

teeth in F 

This gives low gear forward. 
If the main clutch is thrown out, F put back into neutral position, and 

clutch K moved to the right as seen in the figure, the conical hub of K 

will come first in contact with the surface of a conical space inside ring 
N, thus gradually “ synchronizing ” the speeds of D and K, that is, 
connecting D and K through a friction drive so that they have the same 
speed. A further motion of K toward the right causes it to slide from 
its central position on its hub, and the teeth in an annular space in K 
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come into mesh with the teeth on the outside of N. This gives the 
positive drive from A through B, C, and D to P. This is intermediate 
or second speed forward. We then have 

Angular speed of P 

Angular speed of A 

teeth in A ^ teeth in C 

teeth in B teeth in D 

Moving K to the left connects K directly with A, first synchronizing 
their speeds in the same manner as K and D were synchronized. A is 
now connected directly to P through K, and P has the same speed as A. 

With clutch K in neutral position and gear F moved to the right, F will 
come into mesh with the idler 7, giving the drive from A through B, H, 7 
to Fy with the idler 7 causing F and therefore P to turn in the opposite 
sense from A. This, therefore, is the reverse or backing gear train. 

11-10. Cone of Gears with Adjustable Idler. Figure 11-10 shows in 
diagrammatic form an arrangement of gears often used in machine tools, 
as, for example, in the feed train of a lathe. The shaft S, which may be 
considered as the driving shaft of this train, receives its motion from the 
lathe spindle through another train. S is provided with a keyway in 
which fits a key that is fast to gear A. The hub of A turns in a hole in 
the adjusting arm, a collar being provided at the right to keep the two 
together. A drives an idler 7 which turns on a pin carried by the arm, 
and the unit thus formed may be moved along to a position opposite 
any one of the cone of gears on T. The axis of the idler is then swung 
about the axis of $ as shown in the left-hand view until 7 comes into 
mesh with the cone gear. Since there are eleven gears in the cone it is 
possible to get eleven different speeds of T for a given speed of S. The 
train by which S is driven and the train through which T drives the 
“ lead screw ” or shaft producing the feed may each be provided with 
two or more possibilities of speed change. Thus, by using different 
combinations of the three trains a great variety of speeds may be 
obtained at the lead screw for one speed of the spindle. 

11-11. Trains with Selective Direction. If it is necessary to have 
the driven shaft turn sometimes in the same direction as the gear which 
drives it and sometimes in the opposite direction, the train may be so 
arranged as to control the direction by means of one or more idle gears. 

Figures 11-11 and 11-12 show two ways in which this may be done. 
In Fig. 11-11 the power comes to the gear A from a driver on a shaft 
not shown. B is a bevel gear integral with A, both turning together, 
loose on the shaft S. B is in mesh with a bevel idler 7. D is another 
bevel gear also loose on the shaft. 

Both B and D have pins P and Pi projecting beyond their inner ends. 
Between these bevels is a clutch C which may slide along the shaft on 
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a key so that shaft and clutch must turn together. Pins T and Tx 

project on either side of C. All three bevels are turning all the time. 
If the clutch C is moved to the left the pin Ti will engage with Pi and 

Fig. 1111 

the clutch will be driven by B, thus causing S to turn in the same direc¬ 
tion and at the same speed as A and B. In the position shown in the 

Fig. 11-12 

figure the clutch is in mid or neutral position or S 

is at rest even though the gears B, /, and D may 
be turning. If the clutch is moved to the right 
T will engage with P, causing S to turn in the 
same direction as D or opposite B, although at 
the same speed. 

In Fig. 11-12 S is the driving shaft and T the 
driven shaft. Gear A is fast to S, and gear B is 
fast to T. An arm K turns loose on T and may 
be locked in the desired position by a fastening 
not shown. This arm carries two idle gears, M 

and Nj which are in mesh with each other. M is 
at all times in mesh with B. When K is locked 

in the position shown in full lines M is also in mesh with A and the 
drive is from A through M to P; this causes B to turn in the same 
direction as A. When the arm is locked in the dotted position, M is out 
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of mesh with A and N is in mesh with A. The drive is then from A 
through both N and M to B\ this gives the reversal of direction of B. 

11-12. Designing Gear Trains. No definite rules or formulas can be 
followed in designing a train of gears to have a certain train value. The 
process is mainly one of “ cut and try ” until the desired result is 
obtained. Certain general lines of attack may be followed. It is 
desirable to have as few pairs of gears as possible in order to reduce 
losses due to friction in the bearings and between the teeth; to select as 
many gears alike as possible to facilitate gear cutting and reduce the 
number of sizes to be kept in stock for replacements; and to keep the 
speed change per pair from being excessive. If the train value is chosen 
arbitrarily, it may be necessary to use a greater number of pairs of 
gears to obtain the exact train value than is required to obtain an 
approximate train value and in some cases it may be impossible to select 
gears which will give the exact train value. The general method of 
attack may best be understood by studying typical problems. 

Example 4. Select the gears for a train whose train value is +16 if no gear is to 
have less than 12 teeth nor more than 60 teeth. 

Solution. The maximum train value per pair is = 5. Since 5 is less than 16, 

one pair is insufficient. If two pairs are used, the maximum possible train value is 

5 X 5 = 25, which is greater than 16. Therefore, two pairs should suffice. If the 

pairs are to be alike, the train value per pair will be the square root of 16, which is 

exactly 4. Now 

Multiply the numerator and denominator of each fraction by the same number so 

that the product obtained will not be less than 12 nor more than 60, the minimum 

and maximum number of teeth. 

If the pairs of gears are to be 

alike, the numerator and de¬ 

nominator of both fractions are 

to be multiplied by the same 

number. There are four pos¬ 

sibilities in this case, namely, 

12,13,14, or 15. If 15, use 

60 60 _ 16 

15 X 15 _ 1 

The train of gears shown in pIQ i j_j3 
Fig. 11-13 will give the re¬ 
quired train value of *f 16. In order to obtain a train value of —16, it would be 

necessary to] place an idler in the train. This idler may have any number of teeth 

from 12 to 60; the number will depend upon space requirements. In order to have 

as few gear sizes as possible this idler should have either 15 or 60 teeth. 



296 WHEELS IN TRAINS 

Example 5. Select the gears for a train in which the last gear shall turn 23 
times while the first gear turns once, direction of rotation to be the same. No gear is 

to have less than 12 teeth nor more than 70 teeth. 
Solution. The maximum train value per pair is t§- “ 5.8, which is less than 

required train value of +23. Two pairs are required. If each pair is to be alike, 
the train value per pair will be the square root of 23. There is no exact square root 

for 23. So factor ^ as follows: 

4 23 23 
tX7 = 7 

There is no definite way of obtaining the above factors. In this particular case the 
square root of 23 is4+,and4was used 
in the first factor and in the second 
factor in order to have a resultant of 

Since the factors are unlike, the 
pairs of gears will be unlike. Multi¬ 
ply both the numerator and denomi¬ 
nator of the first factor by 12 and the 

second factor by 3. 

48 69 _ 23 

12 X 12 ~ 1 

Figure 11-14 shows this train. 
Example 6. This example is the same as Example 5 except that no gear is to 

have less than 12 teeth nor more than 60. 

SoliUion. The maximum train value per pair is = 5, which is less than the 
required train value of +23. If two pairs, each of which has a maximum train value 
of 5, are used the overall train value is 25, which is greater than 23 and appears to be 
satisfactory. The factors used in Example 5 cannot be used because no gear can 
have more than 60 teeth. Try the following: 

4.5 23 

T X 4~5 = 

23 

1 

Multiply the numerator and denominator of the first factor by 12 and the last 
by 2.4. 

54 55.2 23 

12 X 27 ~ 1 

A fraction of a whole tooth cannot be used. Use -f-f X %% = approximately. 
This arrangement does not give the exact train value of 23. It is impossible to 
obtain the desired train value of 23 with two pairs. Try three pairs. 

4 2 23 23 

txtx8=t 

Multiply the numerator and denominator of the first and second factors by 12 and 
the last factor by 2: 

48 .24 46 23 

12 X 12 X 16 " 1 
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If the exact train value is required, three pairs must be used. If it is not neces¬ 

sary to obtain an exact train value two pairs may be used. The train for the exact 

train value is shown in Fig. 11-15. The idler is used in order to cause the last gear 

to turn in the same direction as the first gear. 

Example 7. Design a train of four gears, with the axis of the last wheel coin¬ 

cident with the axis of the first wheel as in Fig. 11-5. The train value to be fa. No 

gear to have less than 12 teeth. All gears to be of the same pitch. 

Solution. Since there are two pairs in the train, the value fa must be separated 

into two factors, and it is desirable to have these factors as nearly as may be of the 

same value. The square root of fa is between J and J, so a trial pair of factors may 

be taken J X Then, letting the letters Ta, Tb, TCt Td represent the numbers of 

teeth in the gears A, By C, D, respectively (Fig. 11-5), 

Now, since the pitches are all alike, 

Ta + Tb = Te 4- Td (See Art. 11-6.) 

Let Z represent this sum. Then a value must be chosen for Z such that it may be 

broken up into two parts whose ratio is 1 to 3 and also two parts whose ratio is 

1 to 4. 
If Z is made equal to the least common multiple of 1 + 3 and 1 -f- 4, the condition 

T 5 t 4 
will be satisfied. This L. C. M. is 20. Then — would be and —■ would be — . 

But these values are too small for the numbers of teeth in the gears. Then numer¬ 

ator and denominator of both fractions must be multiplied by some number such 

that no number will be less than the number of teeth allowed in the smallest gear. 

In this case multiplying and fa each by gives ^ and yf. 

Therefore, Ta may be 15, Tb = 45, Tc = 12, Td = 48. 

The above method (Example 7) may be expressed as follows. 

When both pairs have the same pitch: 

If — X - are the factors of e (i.e., the train value) expressed in lowest 
h td, 

terms, then Ta + Tb and Tc + Td must be made equal to the L. C. M. 
of ta + tb and t0 + td or to some multiple of the L. C. M. 
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The case illustrated in Example 7 is not a practical one, because the 
stresses on the second pair of gears are always greater, and therefore 
they require a greater circular pitch. 

Example 8. The conditions are the same as in Example 7 except that the 

diametral pitch for gears A and B is to be Pdi - 3 and the diametral pitch for gears 

C and D is to be Pd% — 2. 
Solution. 

Da + Db = De + Dd 

Then 

Let 

Da 

Ta + Tb 

pd 1 

Tc + Td 

Pd 2 
and L-XL. 

n x Ti 

— = reduced to its lowest terms = - 
P2 Pd 2 2 

But 

Then 

ta + tb = (1 + 3) (1 -f 4)pi = 20pi = 20 X 3 = 60 

la l , 
— and tb ~~ ?tla 

tb 3 

ta 4" 3ta — 60 

From which ta = 15 and tb = 45. 

tc + id - (1 + 3)(1 + 4)p2 = 20p2 = 20 X 2 

But 

and then 

Then 

U 

td 

1 
4 

U - 8 and td = 32 

Ta Tc (tg tc\ „ 

¥.XTt~\ZxTjK 

40 

where K is a constant to obtain the required minimum and maximum number of 

teeth. Then 

and 

Tb Td 

Ta = 30, n = 90, rc = 16, and = 64 

The above method (Example 8) may be expressed as follows 

TF/ien the 'pitches of the two pairs are different: 

If the diametral pitch of A and B — Pi and the diametral pitch of 
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C and D = P2, and if — = reduced to its lowest terms, then Ta + T\ 
P 2 2 

is made equal to the L. C. M. of ta + th and tc + td (or to some multiple 
of the L. C. M.) multiplied by ph and Tc + Td is made equal to the 
L. C. M. (or the same multiple of the L. C. M.) multiplied by p2. 

11-13. Epicyclic Trains. An epicyclic train of gears is a train 
in which part of the gear axes are moving relative to some one of the 
axes which is the reference or fixed axis. In other words, the arm (see 
Art. 11-4), instead of being 
fixed, is turning about the axis 
of one of the gears of the train. 

In Fig. 11-16 assume the axis 
Si to be fixed and the gear A 

to be turning about Si at an 
angular speed of m revolutions 
per minute. The arm carries 
the axes S2 and S3. The gears 
B and C are attached to each 
other so that they move as a unit. Assume the arm to be turning about 
the axis Si at an angular speed of a revolutions per minute. Then the 
angular speed n of the gear D is caused in part by the turning of A and 
in part by the gear B rolling around A as the arm turns. Therefore n 
is a function of ra, a, and the train value Cad. 

In the following discussion absolute speed or absolute turns means the 
speed or number of turns relative to the frame which supports the axis 
assumed to be fixed, and relative speed or relative turns means the 
speed or number of turns relative to the arm. It must be remembered 
that relative speed is not a ratio but an algebraic difference. For 
example, if the wheel A, Fig. 11-16, has a speed of 50 rpm clockwise and 
the arm has a speed of 30 rpm clockwise, the speed of A relative to 
the arm is 50 — 30 = 20 rpm clockwise. Again, if A is turning 
50 rpm clockwise and the arm 30 rpm counterclockwise, the speed of A 

relative to the arm is 50 — ( — 30) = 80 rpm clockwise. Either 
sense of rotation may be assumed as positive (+) > but a sense having 
been chosen as positive, the reverse sense must be treated as negative 
(—). In designating the train value and speeds or number of turns in 
a given time by the letters e, m, n, a, and so on, the plus or minus sign is 
understood to be included in all ca^s. 

11-14. Tabulation of Speeds, ^^he absolute speeds of the several 
gears in an epicyclic train may be determined by tabulating the speed 
which each has, first as the result of turning the arm, second of turning 
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one of the wheels whose speed is known. The algebraic sum of the 
two tabulations gives the resulting absolute speed of the members. 

Referring to Fig. 11-16, let A turn about the fixed axis Si at a speed 
of 50 rpm clockwise, and let the arm turn about the same axis 30 rpm 
counterclockwise. The numbers of teeth in the gears are as follows: 
A = 60, B = 30, C = 60, D = 15. To find the absolute speed of D 

and of the unit B and C. First assume all the gears locked to the arm 
so that there can be no relative motion, and give to the arm its required 
number of turns. Since all the gears are locked to the arm, all must 
turn the same number of times. Write this down in tabular form as in 
the first line of the following table. Then unlock the gears, hold the 
arm fixed, and turn the gear A whose speed is known to be 50 rpm 
clockwise enough times to cause its final motion to be +50. Since A 

has already turned —30 it must be turned +80 more to equal +50. 
The train value between A and B (eAB) is = — 2. Hence B and 
C will turn 80 (— 2) = —160. The train value between A and D is eAo 

and is equal to +f§- X fr = +8. Hence D will turn 80 X 8 = 640. 
Write these values in the second line of the table as shown, and add the 
several columns. The result shows that the arm turns —30 and 
A turns +50 as required, causing B and C to turn —190 and D to 
turn +610. 

Arm A B and C D 

Train locked. —30 —30 —30 —30 

Arm fixed. 0 +80 —160 4-640 

Resultant. —30 4-50 —190 4-610 

11-16. Formula for Speeds. A simple formula may be derived to 
determine the unknown speeds in an epicyclic train. Referring still to 
Fig. 11-16, let m, a, and nD represent the speeds of A, the arm, and D 

respectively. Let eAD represent the train value between A and D, 
considering A as the first wheel of the train. 

As stated in Art. 11-4, 

_ speed of last wheel relative to arm 

6ad speed of first wheel relative to arm 

But from Art. 11-13 the speed of the last wheel D relative to the arm is 
Ud — ay and the speed of the first wheel A relative to the arm is m — a. 

Putting these values in (I) gives 

eAD 
riD — a 

m — a 
(5) 

Using the same data as in the preceding article, we have eAo = +8, 
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m = +50, a = —30. Substituting these values in equation 5 gives 

q _ Ud ~ (~~30) 
50 - (-30) 

Solving for nD, we get nD — +610, which agrees with the result 
obtained by the tabulation method. Similarly, if nB represents the 
speed of B and C, we have 

eAB = —2, m = +50, a = —30, 
or 

= nB - (-30) 

50 - (-30) 

Hence nB = —190. 
11-16. Solution by Vectors. The angular speeds of the members of 

an<epicyclic train may be found by means of velocity vectors. Such a 
solution is likely to be awkward and much less simple than solution by 
the tabular method or the formula. It does, however, have some value 
in helping one to visualize the action of the gears. In Fig. 11-17 the 

arm carries the axes T and Z. The train consists of the gear A, the unit 
B and C, and the gear D. The arm turns about the fixed axis S. Let 
m, n, and a represent the angular speed in radians per minute of A} Z>, 
and the arm respectively, and let RAy RB, Rc, and Rd be the pitch 
radii of the respective gears. Let the axes S, Ty and Z lie on a straight 
line. At the pitch point P draw the vector Ppi = mRA, representing 
the linear velocity of P, Vp. Draw the vector Th = a(RA + RB), 

representing Vt. Draw a line through h and pi intersecting the center 
line ZTS at IB. Then IB is the instantaneous axis of the two gears B 
and C. Extend 1sti to intersect at qi a perpendicular to SZ drawn at 

the pitch point Q. Then Qqi = Vq. Draw Zzx perpendicular to SZ and 



302 WHEELS IN TRAINS 

equal to a(RA + Rb + Rc + Rd), representing Vz. Draw Ziqi inter¬ 
secting SZ at ID giving Id as the instantaneous axis of D. 

Zzi 
Then the angular speed of D = n — —— ; also 

ZID 

n 
Qqi 
QId 

11-17. Reverted Epicyclic Trains. In Fig. 11-18 the arm A, fast 
to the shaft P, carries a stud H on which turn freely the three gears B, 

C, and D. These gears are at¬ 
tached to each other so that they 
turn as a unit. A gear E is at¬ 
tached to a sleeve S free to turn 
on P. Gear F is fast to a sleeve 
J free to turn on S. Gear G is 
fast to a sleeve K free to turn on 
,/. B and E have 27 teeth each, 
F has 21, G has 30, C has 33, and 
D has 24. The arm A is the 
driver, and either one of the 
gears F or G may be held from 
turning by applying a brake to 
either J or K. There are then 
two epicyclic trains. One has F 

as the first wheel, C and B as the 
intermediate wheels, and E as Fig. 11-18 

the last wheel. The other has G as the first wheel, D and B as the in¬ 
termediate wheels, and E as the last wheel. 

The numbers on the figure indicate the number of teeth in the gears. 
Let a, ns, mF, and mo represent the angular speeds of A, E, F, and G 

respectively. Let a = +1. Find nE when F is held from turning. 
Substituting in equation 5 gives eFE = Xf? = +rr, a = +1, 

and mF = 0. Then 

7 nE — 1 

n= o - f 
whence 

nE — + 
11 

§}ince the sign of nE in this case is plus and a was assumed positive, 
E is turning ^ as fast as A and in the same sense. Again let F be 
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free to turn and hold G from turning. Then eos = +f£ X fy = +f 
and Mq = 0. Therefore 

Hence 

5 _ % - 1 

4 “ 0 - 1 

nE = 
1 

4 

That is, with G held from turning, E turns one quarter as fast as A and 
in the opposite sense. This was the arrangement of gears used in the 
former Model T Ford automobile to give the low gear forward and the 
reverse drive. 

11-18. Examples of Epicyclic Trains. The following examples show 
some typical epicyclic trains and further illustrate the application of the 
forfnula in the solution of problems. 

Example 9. In Fig. 11-19 lot, gear R 
have 24 teeth and C 18 teeth. If B is 

held from turning and the arm makes 1 

turn clockwise, let it be required to find 

how many absolute turns C makes. 

Solution. Using equation 5, rn = 0, 

e = — — a = -fl (assuming 

clockwise rotation is plus). Then, sub¬ 

stituting in equation 5 and solving gives 

71 — 
Example 10. In Fig. 11-20, E is an annular gear which cannot turn, being fast 

to the frame of the machine. The arm A turns about the shaft & which is also the 

axis of the gears B and E. B has 24 teeth, C 20 teeth, DIG teeth, and E 96 teeth. 

Let it be required to find the speed of the arm A to cause the gear B to have a speed 

of 75 rpm counterclockwise. 

Solution. Assume B to be the first wheel of the train and assume clockwise rota¬ 

tion as +. Then, referring to equation 5, n = 0, m = —75, e = -f 

Substituting these values in the equation and solving gives a — +25. There¬ 

fore, A will have to have a speed of 25 rpm clockwise to give the required speed to B. 
The tabular method of solving this problem is given below. 

A B c D E 

Train locked. ... +i +i +1 +i + 1 

Arm fixed. . .. 0 
96 

~ 16 

16 20 

X 20 X 24 

, 96 16 

+ I5X» 

96 

16 
-1 

Resultant. ... +1 -3 -5 0 

Na — 75 X —- = — 25 or 25 rpm clockwise. 
—o 

N. 
Nb 

_1_ 

-3 ’ 
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This method simplifies the solution of problems when the speeds of all gears 

are required. 

75 29 
Nc — —~ X — = —145 or 145 rpm clockwise. 

—3 5 

—5 
Nd = 75 X —- = -hi25 or 125 rpm counterclockwise. 

— o 

Example 11. Sun and Planet Wheel. Figure 11-21 shows an application 

of the two-wheel epicyclic train known as the sun and planet wheel, first devised 

by James Watt to avoid the use of a crank, which was patented. In his device the 

Fig. 11-20 Fig. 11-21 

epicyclic train arm was replaced by the stationary groove Gf which kept the two 

wheels in gear, a represents the engine shaft, to which the gear D was made fast, 

B the connecting rod, attached to the walking beam. The gear C was rigidly 

attached to the end of the connecting rod. Although with such an arrangement it is 

not strictly true that the gear C does not turn, yet its action on the gear D for the 

interval of one revolution of the epicyclic arm (that is, the line joining the centers of 

D and C) is the same as though C did not turn, since the position of C at the end 

of one revolution of the arm is the same as at the beginning. 

Let it be assumed that the gears C and D have the same number of teeth. 

Then the train value = —1. Let the arm ab make one turn. 

Required to find the turns of D and therefore of the engine shaft. 

Let m represent the turns of D, a the turns of the arm, n the turns of C. 
Solution. From equation 5, 
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whence 
m = +2 

That is, the engine shaft will make two turns every time the gear C passes around it. 

Example 12. In the three-wheel train, Fig. 11-22, let A have 55 teeth and C 
have 50. A does not turn. To find the turns of C while the arm D makes +10 

turns. 
Solution. Using equation 5, 

11 n - 10 

10 ~ 0 - 10 

n = — 1 

or, the wheel C turns — 1 while the arm D turns +10. 
If the gear C in Fig. 11-22 were given the same number of teeth as A, it would not 

turn at all. If there were more teeth in C than in A its resultant number of turns 

would be in the same direction as the arm. 

Fig. 11-23 

Example 13. Ferguson’s Paradox. In the device shown in Fig. 11-23, 

known as Ferguson’s paradox, all three of the cases referred to in Example 12 occur 

in one mechanism. 
Let the gcai A have 60 teeth, C 61 teeth, E 60 teeth, F 59 teeth. B is an idle 

wheel connecting each of the others with A. The arm D turns freely on the axis 

of A and carries the axis which supports the other gears. A is fixed to the stand 

and therefore cannot turn. If the arm D is given one turn clockwise ( + ), required 

to find the turns of C, E, and F. 
Solution. By treating this as three separate trains and applying equation 5 to 

each, C will be shown to turn +-#4-» F = — 5^, E — 0. 
Example 14. Triplex Pulley Block. Figure 11-24 shows a vertical section 

and side view, with part of the casing removed, of a triplex pulley block. S is the 

shaft to which the hand chain wheel A is keyed. Also keyed to *S is the gear F 
meshing with the two gears E. The gears E turn on studs T which are carried by 

the arm B, the latter being keyed to the hub of the load chain wheel G. The gears C 
are integral with E and mesh with the annular D which is a part of the stationary 

casing. The mechanism is an epicyclic train. F is the first wheel of the train and 

has a speed imparted to it by the turning of the hand chain wheel A. The annular 

D is the last wheel of the train and does not turn. The train value is 

Teeth in F teeth in C 

Teeth in E teeth in D 

Assuming one turn of A, the turns of the arm B may be found, and, therefore, the 
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turns of G. Hence, the angular speed of A and its diameter and the angular speed of 

Q and its diameter being known, the relative linear speeds of the hand chain and the 

load chain can be calculated. The load will then be to the force exerted on the hand 

chain as the speed of the hand chain is to the speed of the load chain, friction being 

neglected. 

Fia. 11-24 

11-19. Epicyclic Bevel Trains. Figure 11-25 represents a common 
form of epicyclic bevel train, consisting of the two bevel wheels D and E 

attached to sleeves free to turn about the shaft extending through 
them. This shaft carries the cross at F which makes the bearings for 

hSh ipp rv mm ■i JHi 
_ 4- h - -4 
D nr £ 

II O 
Fig. 11-25 

the idlers GG connecting the bevels D and E (only one of these idlers 
is necessary, although the two are used to form a balanced pair, thus 
reducing friction and wear). The shaft F may be given any number 
of turns by means of the wheel A. At the same time the bevel D may 
be turned as desired, and the problem will be to determine the resulting 
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motion of the bevel E. The shaft and cross F here correspond with 
the arm of the epicyclic spur gear trains. 

When the bevels are arranged in this way the wheels D and E must 
have the same number of teeth, and the train value is — 1. It will be 
found clearer in these problems to assume that the motion is positive 
when the nearer side of the wheel moves in a given direction, say up¬ 
ward, in which case a downward motion would be negative; or if a 
downward motion is assumed to be positive, then upward motion 
would be negative. 

Example 15. In Fig. 11-26, B and E are two bevel gears running on shaft St but 

not fast to it. Attached to the collar P, which is set screwed and keyed to Sf is a 

stud T on which turns freely the gear D meshing with B and E. B and E are of the 

same size. J is a gear having 25 teeth and driving the 40-tooth gear K which is 

fast to B. L is a 51-tooth gear driven by the 17-tooth gear H which is fast to E. 
A is a 45-tooth gear fast to the same shaft as J and drives the 20-tooth gear M which 

is fast to S. It is required to find the speed of L if J makes 40 rpm. 

Solution. The first step is to pick out those gears which are a part of the epicyclic 
train. These are evidently B, D, and E. The epicyclic arm is T. Assume B as 

the first wheel of the epicyclic train, E the last wheel. Let m represent the speed of 

B, n the speed of E, a the speed of S, and e the train value between E and B. Also 

assume direction in which J turns as positive. 

e = — 1 

m = -££ X 40 = -25 

a — —X 40 = —90 

Then, substituting in equation 5, 

n — —155 rpm = speed of E 

Speed of L = -155 X (-££) = 51f 

Therefore, L has a speed of 51 £ rpm in the same sense as J. 



308 WHEELS IN TRAINS 

Example 16. Bevel Gear Differential. Figure 11-27 shows the arrange¬ 

ment of gears in the differential of an automobile. Shaft S is driven from the motor 

and has keyed to it the bevel gear D meshing with E which turns loosely on the hub 

of the gear H, which is keyed to the axle of the left wheel. E has projections on it 

which carry the studs T furnishing bearings for the gears R. There are several of 

these gears in order to distribute the load. The gears R mesh with H which is, as 

has been said, fast to the axle of the left wheel, and with K which is fast to the axle of 

the right wheel. When the automobile is going straight ahead, D drives E and all 

Fig. 11-27 

the other gears revolve as a unit with E without any relative motion. As soon, 

however, as the car starts to turn a corner, say toward the right, the left wheel will 

have to travel further, and therefore the shaft B must turn faster than C. Then the 

gears begin to move relative to each other, the action being that of an epicyclic train. 

Let it be assumed that the right wheel is jacked up so that the axle C and gear 

K may turn freely, while the left wheel remains on the ground and is held from 

turning, thus holding gear H from turning. Consider H as the first wheel of the 

train, E being the arm. Required to find the turns of C for one turn ( +) of E. 
Solution. Using equation 5, 

whence n — 2. That is, the right wheel will turn twice as fast as the gear E. 
Example 17. Water-Wheel Governor. An epicyclic bevel train has been 

used in connection with a train containing a pair of cone pulleys, in a form of water¬ 

wheel governor for regulating the supply of water to the wheel. Figure 11-28 is a 

diagram for this train, the position of the belt connecting the cone pulleys being 

regulated by a ball governor connecting by levers with the guiding forks of the belt. 

The governor is so regulated that when running at the mean speed the belt will be in 

its mid position, at which place the turns of E and D should be equal, and opposite 

in direction, in which case the arm F will not be turning. If the belt moves up from 

its mid position, and if A turns as shown^ the arm F will turn in the same direction 

as the wheel E. 
With the numbers of teeth as shown in the figure, let it be required to find the 

V 
ratio of the diameters - if C is to turn downward once for 25 turns of A in the direc- 

x 
tion shown; also to determine whether the belt shall be crossed or open; 
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y 
X 

30 
25 X — - 2 

67 308 

375 

y y 
The minus sign in this value of - signifies that the value m (in which - first ap¬ 

pears) must be negative; that is, E must turn in the opposite direction from D. 
Hence the cone B must turn in the same direction as A and the belt must be open. 

Example 18. The bevel train may be a compound train, as shown in Fig. 11-29. 

Here the train value, instead of being —1, is Xff = is considered 

as the first wheel. 
Letting m represent the turns of E} n the turns of D, and a the turns of the arm 

(same as of C), using equation 5, and assuming A to make +40 turns and B to make 

— 10 turns, 

50 _ 40 — a 

9" ~ -10 - a 



Example 19. Double Epicyclic Bevel Train. In Fig. 11-30 is shown a 

train of bevel gears which may best be solved by treating it as two epicyclic trains. 

The train EDCB causes the arm to turn, and the arm, through the train BCFH, 
causes- H to turn. 

B is fast to the frame and so cannot turn. E is fast to the driving shaft S. Let 
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the turns of E *» m = 1. The train value from E through D and C to B is 

4 12 40 

~ 40 X 303 
Then 

whence 

4 

101 

101 ’ 

0 — a 

1 - a 

4 

nB = 0 

105 

Using the train BCFH with B as the first wheel, 

303 33 9999 

eB,i 40 X 250 ~ 10,000 

mu 0 

105 

as found above; Then, from equation 5, 

9999 

10,000 

nH ~ 
105 

0 - 
105 

whence 

*h = ; 

1 

262,500 

Therefore E must turn 202,500 times to turn H once. 

PROBLEMS 

XI-1. Considering as the driver the shaft which carries the minute hand of a 
clock, what is the train value in each of the following cases: 

1. Between the minute-hand shaft and the sleeve to which the hour hand is 
attached? 

2. Between the minute-hand shaft and 
the second-hand shaft? 

XI-2. Shaft A turns 120 rpm in the 
direction shown and drives shaft B by 
means of an open belt running on the 
right-hand steps of the pulleys. Shaft C 
is driven from B by a pair of gears so that 
C turns 3 times for every 2 turns of B. 
Gear D has 26 teeth and E has 78 teeth. 
Shaft F carries a bevel gear of 12 teeth 
which drives one of 120 teeth on shaft G. 
Shaft G also carries //, a 4-pitch, 16-tooth 
gear which is in mesh with a sliding rack. 
What is the speed of the rack in inchos per minute and does it move to the right or 
left? 

XI-3. In a broaching machine, the shaft A carries a pulley 24 in. in diameter 
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which is driven by a belt from a 12-in. pulley on the countershaft overhead, the 
latter turning 150 rpm. The gears B and D have 12 teeth each, and C and E have 

60 teeth. Gear E is fast to F, which has 10 teeth and a circular pitch of 1.047 in. and 

which engages with rack G to which is attached the broach. Find the speed with 
which the broach is drawn through the work in inches per minute. 

Prob. XI-3 Prob. XI-4 

XI-4. In a brick-making machine is found this train of gears. A motor carrying 
pulley E1 which is 6 in. in diameter, drives the machine. The wide-faced roller F, 

12 in. in diameter, drives a conveyor belt. If the motor runs at 1200 rpm, what is 

the speed of the conveyor belt in feet per minute? (Neglect the thickness of the 

belt.) 
XI-6. In a crane, the chain barrel is driven by a motor on the spindle of which is 

keyed a pinion of 14 teeth. This gears with a wheel of 68 teeth keyed to the same 

spindle as a pinion of 12 teeth. The last wheel gears with a wheel of 50 teeth keyed 
to the same spindle as a wheel of 25 teeth, and the latter gears with a wheel of 54 

teeth keyed to the chain barrel spindle. Chain barrel is 16 J-in. in pitch diameter. 

Sketch the arrangement and find the number of revolutions per minute of the motor 

when 20 ft of chain are wound on the drum per minute. 

XI-6. Sketch shows side elevation of a 

molding machine. The stock is fed 

through rolls A to cutter C which is driven 

2 r. by a quarter-turn belt as shown. Rolls A 
are 4J in. in diameter, the upper one only 

being power driven. If the cutter C is 6 

in. in diameter, find the feed of the stock 

per revolution of cutter and the relative 

speed of cutter and work. (Cutter is 
shown behind the work.) 

Assume cutter makes 1 rpm. 

Prob. XI-6 

XI-7. A is an annular gear having 77 teeth, driving pinion B having 12 teeth. 

Numbers of teeth on the other gears are as given in the figure. If A makes 15 rpm, 

find the rate of slip between the cylinders R and S in feet per second. 
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XI-8. An annular gear A on a shaft Si has 100 teeth and drives a pinion B, having 
15 teeth, fast to a shaft S2. Fast to shaft S2 is also a 75-tooth gear C which drives 

a 20-tooth gear E on shaft Ss. Fast to S* is a gear F of 144 teeth driving a gear H 
on shaft SA. The axis of SA is in line with the axis of Si. All shafts are parallel and 
in the same plane. 

1. Make a freehand sketch of the train. 

2. How many teeth must the gear H have if all gears are of the same pitch? 

3. If Si is the driving shaft, what is the value of the train and is it -f or — ? 
4. If the gears are 5 diametral pitch, what is the distance between the axes of <Si 

and Si? 

XI-9. A is a double-threaded worm, on shaft S. B is the worm 

wheel having 53 teeth. The rest of the gears in the train are spur 

gears having teeth as follows: C, 82; D, 64; E, 74; //, 23. 

Through what angle does shaft T turn while shaft S makes 1 turn? 

XI-10. Refer to Fig/11-10; the figure beside each gear indicates 

the number of teeth. 

Calculate and make a table of all the possible values of the ratio 

Angular speed of T 

Angular speed of S Prob. XI-9 

XI-11. A has 20 teeth, B 80 teeth, E 30 teeth. While Si makes 5 turns, S2 makes 

2§ in the same direction. How many teeth on C? Are 1 or 2 idle wheels needed 

between C and E? 

£ S, 

Prob. XI-11 Prob. XI-12 

XI-12. ^^)€CC|~ — , and the shaft S2 is halfway between Si and Si. 
Speed Si 15 

Find the proper numbers of teeth for the different gears. Show where each 

should be. Have the same pitch on all gears. Keep numbers of teeth as low as 

may be but not under 12. Have ratio of the pairs as nearly alike as may be. 

XI-13. A reverted train of four gears is to give a reduction in the ratio of 2 to 7. 

Arrange a train to give this, using no wheel of less than 15 teeth. First pair of gears 

4-pitch, second pair 3-pitch. Make reduction of speed by the two pairs as nearly 

equal as possible. 

XI-14. ftevo*ut*ons..ff _. 1? • find suitable numbers of teeth 
Revolutions A 1 

for the four gears of this train, having all of the same pitch. No 
gear to have more than 75 teeth nor less than 10 teeth. 

Prob. XI-14 

XI-16. Shaft S has a constant speed of 100 rpm. Gears F, (?, and H form a unit 
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free to slide, but not to turn on shaft Si. Si is to have speeds of 20, 200, and 860 

rpm. Gear H has 80 teeth. 
Find numbers of teeth on all gears if they are all of the same pitch, and if gears A 

and B are equal. The slowest speed of Si is when E and H are in mesh. 

A 

Prob. XI-16 

XI-16. The sketch shows a nest of spur gears, each pair being always in mesh 

and*all gears of the same pitch. F, G, and H form a unit keyed to shaft B. Cf D, 
and E are loose on shaft A, but may be locked to the shaft one at a time. 

Find the numbers of teeth on all gears if the revolutions of B for one of A are to be 

i, 1}, and 2\ as C, D, and E respectively are keyed to A. No gear to have less than 

14 teeth. 
XI-17. Both gears on both shafts A and B are fast. The three gears on shaft C 

are fast together but not to the shaft and may be moved along shaft C as a unit. 

Shait A has a constant speed of 60 rpm, and speeds of B are to be 240, 60, and 

15 rpm. 
Find suitable numbers of teeth in all gears if they are all 4-pitch. 

Prob. XI-17 

77771 

V7777. 

D 

Y7777, 

\LOjLL 

H 

3D.F? 4D.P 5D.P 

Prob. XI-18 

XI-18. Gears A, C, and E are fast to shaft S. Shaft T is parallel to S and carries 

the gears B, Z>, and H which may be made fast to it only one at a time. S makes 

900 rpm. When H is fast to T7, T makes 1800 rpm; when D is fast, 600 rpm; and 

when B is fast, 300 rpm. Diametral pitch of gears as shown. 

Find suitable numbers of teeth for the gears, using not less than 12. 
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XI-19. Sketch the train and find suitable numbers of teeth for the gears for an 

9 
eight-day clock. Diameter of weight drum is - inches. Weight to drop 30 in. in 

T 

192 hr. Pendulum to make a double oscillation in 2 sec. The escape wheel is fast 
to the same shaft as the second hand. 

XI-20. A, B, and C are gears having 
teeth as shown. 

1. If A turns +4 and arm turns —3, 
find turns of B and C. 

2. If A is not to turn and B turns -f-30, 
find turns of the arm. 

87 T, 

XT-21. Gear A is fixed. The 

arm turns about the shaft on 

which A is located. 

Find the number of teeth on 

gear C if it makes three times as 

many absolute turns as B does 

but in the opposite direction. 

XI-22. The arm (shown dotted) turns about the axis of gear A and carries the 
pins on which gears B and C turn. 

What must be the value of the train ABC in order that the reference mark R on C 
may always be pointing downward as the arm revolves, if gear A does not turn? 

SO 

Prob. XI-22 

XI-23. In order that the shaft C may turn 60 rpm, how many revolutions per 
minute must shaft A turn, and will it turn in the same sense as C or in the opposite 
sense? 
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XI-24. In this roller bearing D represents 

the fixed bearing in which the rollers are sup¬ 

ported and S is the shaft. 

Assuming that there is pure rolling con¬ 

tact between the shaft and the rollers, and 

between the rollers and D, find the ratio of 

speed at which roller cage revolves to speed 

at which shaft revolves. 

Prob. XI-24 

XI-25. 1. IfAturns-f3 

and the arm —5, find the 

turns of Bt C, and D. 
2. Suppose two idlers 

to be used between E and 

Dy other conditions re¬ 

maining as before; find 

the turns of D, 

eo t. 

Prob. XI-25 

XI-26. If A turns +38 times, 

how many turns does the arm 
make? 

Prob. XI-27 

XI-27. The arm turns loose in bearings in C and F. Gear F is fast to Bf and C is 

fast to A. D, Ef and H are all fast to the shaft which turns loose in the arm. The 

gears have teeth as follows: (7, 18; Z), 42; -£7,12; F, 48; H, 20; K, 40. K is fast 

to the bearing. 

If A makes 1 rpm, how many revolutions per minute will B make? 
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XI-28. In the triplex pulley block Fig. 11-24, let the gears have the following 
numbers of teeth: F, 24; E 12; C 6 D 60. Let the diameter of wheel A be 36 in. 

and of G18 in. 
Calculate the ratio of the linear speed of the load chain to that of the hand chain. 

XI-29. The sketch is a diagram of the arrangement of gears in 

an epicyclio train forming part of the feed train in a boring mill. 

Gear A, having 114 teeth, turns loose on shaft S. A is driven by K 
which has 72 teeth and is fast to shaft P. The gears C and E are 

both fast to a shaft whose axis is carried around with A. B is a 

gear which cannot turn. F is fast to shaft S. B has 34 teeth; 

Ct 34; Et 32; F, 36. 
For one turn of P how many turns of S? 

Prob. XI-29 

XI-30. In this hoisting mechanism, A 

is a fixed annular having 100 teeth. The 

two idle pinions B are carried by the 
arm of the epicyclic train, which also 

carries the drum, as shown. Gear C, 

which is fast to the crank, has 70 teeth. 

Diameter of drum is 5 in., length of crank 

is 21 in., force applied at crank is 75 lb. 

Find the teeth on the pinions B and 

weight lifted, neglecting friction. 

XI-31. If shaft A makes 20 turns in a posi¬ 

tive direction, find the number of turns of shaft 

B and its direction. 

Prob. XI-31 
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XI-32. D is a fixed gear, A is fast to the shaft with the 54-toothed gear, and P is 
the arm of the epicyclic train. 

If A turns —20, find the turns of the arm, then find the turns of B. 

XI-33. Shaft P carries a pointer H which records on a fixed dial the number of 

turns made by the shaft S. Gear B turns freely on shaft P and carries the shaft on 

which the gear D turns. D is in mesh with C which is fast to P and with E which is 

fast to the frame; The figures indicate the number of teeth in the gears. How 

many divisions must there be around the dial if the movement of H over one divi¬ 

sion indicates one turn of £? 

30-34. In this train find the ratio of the diameters C and Z), if 3 turns of A as 
shown are to cause the arm to turn 11 times. Must a crossed or an open belt be 
used if the arm turns as shown? 



PROBLEMS 319 

XI-35. For 36 turns of D, find how 
many turns of F and in which 
direction. 

XI-36. For —3 turns of Dt find how many turns of F and in which direction. 

20 T. 

XI-37. If an automobile is traveling 

in a circular path, the radius of the 
track followed by the wheels nearer the 

center of the circle being 8 times the 

width of the car (from center to center 

of wheels), how many turns does each of 

the rear wheels make relative to the gear 

E, Fig. 11-27? 

XI-38. Let shaft S turn +3 times. 

Find the turns of the arm. Prob. XI-38 
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XI-39. If A is a shaft 
coupled to a dynamo mak¬ 
ing 2500 rpm, how many 
revolutions per minute does 
B make? 

XT40. In this epicyclic train let 
A turn -|-6. Find the turns of B. 

Prob. XI-40 

XI-41. The gears have numbers of teeth as follows: 
D, 105; C, 35; B, 30; A, 20; F, 25; H, 100. C, B, and 
F are fast to shaft S, which is supported by the arm. 
The arm is free to turn about the axis of shaft P. Gear 

A is fast to P. D is concentric with P but cannot turn. 
Gear H is fast to shaft R which is in line with P. 

For one turn of A, how many turns of H? 

32-42. Gear A is fast to the fixed base M. Gears B and C are keyed to shaft S; 
gear D is keyed to the shaft T. The arm K is attached to the swivel head P, sup¬ 

ports the outer end of shaft S, and.forms bearings for the shaft T. The entire 

mechanism may revolve on M about the axis of A. The train value €ad is +2. 
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Prove that as the mechanism revolves about the fixed gear A, the pencil point P 
describes an ellipse whose semimajor axis a *= r -f h and whose semiminor axis 
b = r - h. 

XI-43. The three gears D, B} and C are fast to 
each other so that they turn as a unit, on a shaft 

S carried by the arm A. Gears G, E, and F are in¬ 

dependent of each other, free to turn about the 

axis T. 
1. If F is held still and the arm turns I rad/sec 

clockwise, find by means of velocity vectors the 
angular speed and sense of E. 

2. If F turns J rad/seo clockwise at the same 

time that the arm turns 1 rad/sec, clockwise, what 

are the angular speed and sense of E? 

3. If G is held still and the arm turns 1 rad/sec 

clockwise, what will be the speed and sense of JE? 
4. How fast would G have to turn, and in which 

sense, to cause E to have no motion, with the arm 

turning 1 rad/sec clockwise? of ieeih in gcars-PD.B 

Prob. XI-43 

XI-44. Gears are 4 diametral pitch. H and K have 20 teeth. E has 23 teeth. 

Disk A is attached to the driving shaft S. Rollers C and D are integral with the 

bevel gears H and K respectively and are loose on shaft B. Gear E turns on stud T 
which is attached to shaft B, the latter being-coupled to the driven shaft (not shown) 

in such a way that B may be moved axially and still continue to drive. Assume 

pure rolling contact between A and C, and A and D. Assume A to turn 1 rad/min: 

1. Draw, in diagrammatic form, the two elevations, omitting all lines not needed 

in the solution of the problem, with rollers C and D equidistant from axis of A. 

Draw velocity vectors for points of contact of C and D with A, and determine 

graphically the velocity of the point Af, where the axis of T intersects the base of the 

pitch cone of E. From this calculate the angular speed of B. 



322 WHEELS IN TRAINS 

2. On the same figure move axis of A 3 in. to left of axis of T (equivalent to mov¬ 

ing B 3 in. to right), and repeat the work described in part 1. 

3. Move axis of A li in. to right of axis of T and repeat same operation. 

4. If A were turning 1000 rpm, how fast would B be turning in part 2? 

All gears W D.R 

Prob. IX-A5 

XI-45. Gear B turns 6 rad/sec clockwise as seen from left. Arm A turns 1 rad/ 

sec in same sense as B. Find instantaneous axis of the two intermediate gears and 

angular speed of the shaft C. 
Solve by use of velocity vectors at scale 2 in. = 1 fps. 



CHAPTER XII 

BELTS, ROPES, AND CHAINS 

12-1. Flexible Connectors. When the distance between the driving 
shaft and the driven shaft is too great (usually less than 6 ft) to be con¬ 
nected by gears, a flexible connector is used. If the wheel A, Fig. 12-1, 
is turning at a certain angular speed about the axis S, its outer surface 
will have a linear speed depend¬ 
ent upon the angular speed and 
the diameter of A. 

If a flexible band is stretched 
over Ay connecting it with an¬ 
other wheel By and if there is 
sufficient friction between the 

band and the surfaces of the 
wheels to prevent appreciable 
slipping, then the band will 
move with a linear speed approximately equal to the surface speed of 
A and will impart approximately the same linear speed to the surface 
of 8, thus causing B to turn. The wheels may be on axes which are 
parallel, intersecting, or neither parallel nor intersecting. Flexible 
connectors may be divided into three general classes: 

1. Belts made of leather, rubber, or woven fabrics are flat and thin, 
and require pulleys nearly cylindrical with smooth surfaces. Flat 
belts are used to connect shafts as much as 30 ft apart. Belts may be 
run economically at speeds as high as 4500 fpm. Belts are also made 
with V-shaped cross section to be used on grooved pulleys. V-belts 
are usually used for connecting shafts which are less than 15 ft apart. 
Speed ratios up to 7 to 1 and belt speeds up to 5000 fpm may be used. 

2. Ropes made of Manila, hemp, cotton, or wire are nearly circular in 
section and require either grooved pulleys or drums with flanges. Rope 
may be used for connecting shafts up to 100 ft apart and should operate 

at a speed of less than 600 fpm. 
3. Chains are composed of links or bars, usually metallic, jointed 

together, and require wheels, sprockets, or drums either grooved, 
notched, or toothed, to fit the links of the chain. Chains are usually 

used for connecting shafts which are less than 15 ft apart. The speed 

323 
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of the chain will depend upon the type of chain. Roller and silent 
chains may operate at speeds up to 2500 fpm. 

For convenience the word band may be used as a general term to 
denote all kinds of flexible connectors. 

Bands for communicating continuous motion are endless. 
Bands for communicating reciprocating motion are usually made 

fast at their ends to the pulleys or drums which they connect. 
12-2. Pitch Surface and Line of Connection. Figure 12-2 repre¬ 

sents the edge view of a piece of a belt before being wrapped around the 
pulley. If it is assumed that there are no irregularities in the make-up 
of the belt the upper surface o is parallel to and equal in length to the 
surface i. When this same belt is stretched around a pulley, as in 
Fig. 12-3, the surface i is drawn firmly against the surface of the pulley 
while the surface o bends over a circle whose radius is greater than that 

of the surface of the pulley by an 
amount equal to the belt thick¬ 
ness 2p. The outer part of the 
belt must therefore stretch some¬ 
what and the inner part com- 

Fig. 12-2 Fig. 12-3 press. There will be some sec¬ 
tion between i and o which is 

neither stretched nor compressed, and the name neutral section may 
be given to this part of the belt. In a flat belt the neutral section may 
be assumed to be halfway between the outer and inner surfaces. An 
imaginary cylindrical surface around the pulley, to which the neutral 
section of the belt is tangent, is the pitch surface of the pulley, the 
radius of this being the effective radius of the pulley. A line in the 
neutral section of the belt at the center of its width is the line of connec¬ 
tion between two pulleys and is tangent to the pitch surfaces, and coin¬ 
cides with a line in each pitch surface known as the pitch line. 

12-3. Speed Ratio and Directional Relation of Shafts Connected by a 
Belt. In Fig. 12-1 let the diameter of the pulley A be D inches, the 
diameter of B be A inches, and the half thickness of belt = p. Also 
let N represent the rpm of Sy and Ni = rpm of Si. 

Then, from equation 6 in Chapter II, 

Linear speed of pitch surface of A = ttN (D + 2p) 

and 
Linear speed of pitch surface of B = 7riVi(A + 2p) 

If the belt speed is supposed to be equal to the speed of the pitch 

surfaces of the pulleys 

irN(D + 2p) - tNi(Di + 2p) 
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or 
N Dl + 2p 

Ni D + 2p 

That is, the angular speeds of the shafts are in the inverse ratio of the 
effective diameters of the pulleys, and this ratio is constant for circular 
pulleys. 

As the thickness of belts generally is small as compared with the 
diameters of the pulleys, it may be neglected. 

The speed ratio will then become 

N_ _ Di 
Ni~ D 

(2) 

which is the equation almost always used in practical calculations. 

E}&mple 1. Assume that a shaft A makes 360 rpm. On A is a pulley 24 in. 

in diameter belted to a pulley 36 in. in diameter on another shaft B. To find speed 

of shaft B. 
From equation 2, 

Speed of A diameter of pulley on B 

Speed of B diameter of pulley on A 

When the known values are substituted, this equation becomes 

Therefore, 

360 __ 36 

Speed of B 24 

24 
Speed of B = — X 360 = 240 rpm 

Example 2. Suppose that a shaft A making 210 rpm is driven by a belt from a 

30-in. pulley on another shaft B which makes 140 rpm. To find the size of the pulley 

on A. 
Using the principle of equation 2, 

Therefore, 

Speed of A diameter of pulley on B 

Speed of B diameter of pulley on A 

210 

140 

30 X 140 

210 
= 20 in. 

Then a 20-in. pulley is required on A. 

The relative directions in which the pulleys turn depend upon the 
manner in which the belt is put on the pulleys. The belt shown in 

Fig. 12-1 is known as an open belt and the pulleys turn in the same 
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direction as suggested by the arrows. The belt shown in Fig. 12-4 is 
known as a crossed belt and the pulleys turn in opposite directions as 

indicated. 
12-4. Kinds of Belts. The 

material most commonly used 
for flat belts is leather. For 
some kinds of work, however, 
belts woven from cotton or sim¬ 
ilar material are used. When 
the belt is to be run in a place 
where there is much moisture, 

it may be made largely of rubber properly combined with fibrous ma¬ 
terial in order to give strength. 

Leather belts are made by gluing or riveting together strips of leather 
cut lengthwise of the hide, near the animaFs back. If single thick¬ 
nesses of the leather are fastened end to end, the belt is known as a 
single belt and is usually about A in- thick. If two thicknesses 
of leather are glued together, flesh side to flesh side, the belt is known 
as a double belt and is from ^ to f in. thick. The manner of uniting 
the ends of the strips to form a belt, and of fastening together the ends 
of the belt to make a continuous band for running over pulleys, is very 
important. A detailed discussion of these features is not necessary, 
however, in the present study of the subject. 

Leather belts always should be run with the hair side against the 
pulleys, if possible. 

12-6. Power of Belting. The amount of power which a given belt 
can transmit depends upon its speed, its strength, and its ability to 
adhere to the surface of the pulleys. The speed is usually assumed 
to be the same as the surface speed of the pulleys. The strength, of 
course, depends upon the width and thickness and upon the nature 
of the material of which the belt is made. The ability to cling to the 
pulley in order to run with little or no slipping depends upon the condi¬ 
tion of the pulley surfaces and of the surface of the belt which is in 
contact with the pulleys, and upon the tightness with which the belt 
is stretched over the pulleys. 

12-6. Tension in a Belt. In Fig. 12-5 suppose the pulley A is fast to 
the shaft S and the pulley B fast to the shaft Si. Let it be assumed 
that when the shafts are at rest a belt is stretched over the pulleys as 
shown, the tightness with which it is stretched being such that there is 
a tension or pull in the belt of a definite number of pounds. This 
tension is practically the same at all places in the belt and is called the 
initial tension. Let this initial tension be represented by the letter T0. 
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Suppose now that some external force is applied to the shaft S causing 
it to tend to turn in the direction indicated by the arrow. This 
tendency to turn will increase the tension in the lower part of the belt 
(say between m and n) and de¬ 
crease the tension in the upper 
part. Let the new tension in 
the lower or tight side of the belt 
be represented by T\ (which is 
greater than To) and the tension 
in the upper or slack side by 
T2 (which is less than To). 

If the belt sticks to the pulley B so that there is no slipping, the 
force T\ tends to cause the pulley B to turn as shown by the full arrow, 
and the force T2 tends to cause B to turn as shown by the dotted arrow. 
Aa soon as Ti becomes enough greater than T2 to overcome whatever 
resistance the shaft Si offers to turning, the pulleys will begin to turn 
in the direction of the full arrow. The unbalanced force, then, which 
makes the driven pulley B turn is the difference between the tension 7\ 
on the tight side of the belt and the tension T2 on the slack side of the 
belt. This difference in tensions is called the effective puli of the belt 
and is here represented by the letter E. 

From the above discussion it may be seen that the following equation 
holds true: 

Ti-T2 = E (3) 

12-7. Horsepower of a Belt. Since, as explained in the previous 
paragraph, the effective pull is the force in the belt which enables it to do 
work, it follows that the product of the effective pull by the speed of the 
belt in feet per minute will give the foot-pounds of work per minute 
that the belt performs, and this divided by 33,000 will give the horse¬ 
power which the belt transmits. If N is the rpm of £, and D the 
diameter of pulley A (in feet), the following equations express the 
horsepower of the belt. 

Belt speed in feet per minute XE 

-23fiM-‘ tP <4) 
or 

tDN(T, - T,) 

33,000 
= hp (5) 

12-8. Approximate Formula for Calculating the Length of Belts. In 
finding the length of belt required for a known pair of pulleys at a 
known distance apart, the most satisfactory method, when possible, 
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is to stretch a steel tape over the actual pulleys after they are in posi¬ 
tion, making a reasonable allowance (about 1 in. in every 10 ft) for 
stretch of the belt. Often, however, it is necessary to find the belt 
length from the drawings before the pulleys are in place or when, for 
some other reason, it is not convenient actually to measure the length. 
Various formulas have been devised by which the length may be calcu¬ 
lated when the pulley diameters and distance between centers of the 
shafts are known. These formulas, if exact, are all more or less complex 
and are, of course, different for crossed and for open belts. If the 
distance between shafts is large, the following will give an approximate 
value for the length of the belt. Refer to Fig. 12-7 and let L represent 
the length of the belt: 

L_^D + d)+2c 
(6) 

Dj dy and C must be expressed in like linear units; if in feet, the result¬ 
ing value of L will be in feet; if in inches, the value of L will be in inches. 

With an open belt where the two pulleys are of the same diameter 
the above formula gives an exact answer. If the pulleys are not of the 
same diameter, the length of belt obtained by equation 6 will be less 
than the correct length. If the shafts are several feet apart and the 
difference in diameters of the pulleys is not great, the percentage error 
is very small for an open belt. With a crossed belt the result from the 
use of equation 6 is considerably less than the real length. 

12-9. Exact Formulas for Length of Belt Connecting Parallel Axes. 
The methods given in the preceding paragraph are sufficient for the 
conditions there referred to, but it is necessary in designing certain 
pulleys, known as stepped pulleys and cone pulleys, to make use of an 
equation expressing exactly, or very nearly so, the belt length in terms 
of the diameters and the distance between centers of the pulleys. The 
crossed belt and the open belt must be considered separately. 

Crossed Belts. Let D and d (Fig. 12-6) be the diameters of the con¬ 
nected pulleys; C the distance between their axes; and L the length of 
the belt. Angle 6 is expressed in radians. Then 

L = 2 (mn + no + op) 

= (^ + D + 2C c°s 6 + (^+ e^d 

= ^2 + o') (D + d) + 2C cos 0 (7) 

, . ^ at an + bo D + d 
where sm 0 = -7 =-=-* 

ab ab 2C 
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Fig. 12-6 

Open Belts. Using the same notation as for crossed belts, we have 
(Fig. 12-7) 

L = 2 (mn + no + op) 

-(H D -f- 2C cos 6 -f- 
(!-)■ 

= — (D -f- d) -f- d(D — d) 4“ 2(7 cos 6 
£ 

Fig. 12-7 

For an open belt, 0 is generally small, so that 0 = sin 0, very nearly; 
then 

L = ^ (D + d) + (i)2gd) +'2C yjl - (nearly) 

= = (D + d) + 2C 
(P - d)2 CP - dy 

4 C2 
(nearly) 
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If the quantity under the radical sign is expanded, and all terms hav¬ 
ing a higher power of C than the square in the denominator are neg¬ 
lected, since C is always large compared with (D — d), 

L = l (D + d) + 2C 
\(D - dy 
1 4C2 

+ 1 - 
(D ~ <*)2 

86'2 

or 

L = | (Z) + d) + 2C + (very nearly) (9) 

12-10. Stepped Pulleys. Sometimes it is necessary to have such a 
belt connection between two shafts that the speed of the driven shaft 
may be changed readily while the speed of the driving shaft remains 
constant. One means of accomplishing this is a pair of pulleys each 

of which has several diameters as 
shown in Fig. 12-8. Such pulleys 
are known as stepped pulleys. Sup¬ 
pose that the shaft S. Fig. 12-8, 
is the driver, making N revolutions 
per minute. When the belt is in 
the position shown in full lines, the 
working diameter of pulley A is D\ 
and the working diameter of pulley 
B is di. Then if ni represents the 
rpm of zSi, when the belt is in this 
place, 

rh _ Di 

N ~ di 

If the belt is shifted to any other 
position, as that shown by dotted 
lines, Dx becomes the working diam¬ 
eter of the driving pulley and dx of 
the driven pulley. If nx represents 
the speed of Si for this belt position 

n x ^ 

N~ dx 

Therefore, by properly proportioning the diameters of the different 
pairs of steps, it is possible to get any desired series of speeds for the 
driven shaft. 

In designing such a pair of pulleys two things must be taken into 
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account. First, the ratio of the diameters of the successive pairs of 
steps must be such as to give the desired speed ratios. Second, the 
sum of the diameters of any pair of steps must be such as to maintain 
the proper tightness of the belt for all positions. This second con¬ 
sideration makes the problem of design considerably more complicated. 

Two cases arise: First, the design of the pulleys for a crossed belt and, 
second, the design for an open belt. 

12-11. Stepped Pulleys for Crossed Belt. Assuming that the values 
of Di, N, nh nx, and C are known for the drive shown in Fig. 12-8 and 
assuming that the belt is crossed, instead of open as there shown, let it 
be required to find a method for calculating Dx and dx. 

First find d\. This is readily done from the equation 

wi _ A 

N~ di 
€ 

in which di is the only unknown quantity. D\ and d\ being known, 
then, the value of A + d\ is known. 

From equation 7 the length of the belt to go over the steps A and 
di is 

- + (A + d\) + 2C cos 0i 

When the belt is on the steps whose diameters are Dx and dx the 
equation for the length of the belt is 

+ 0x^ (Dx + dx) + 2C cos 6X 

Since the same belt is to be used on both pairs of steps the value of 
these two equations must be the same. Therefore 

(.A ~f- d\) ~f~ 2(7 cos 0i — {fix 4" dx) + 2(7 cos 0x 

Since C is a constant and 0 is dependent upon C and D + d it follows 
that the above equation will be satisfied if 

Dx + dx = Di+di (10) 

Therefore in designing a pair of stepped pulleys for a crossed belt the 
sum of the diameters of all pairs of steps must be the same. 

Then from the equation 

fix D 
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and from equation 10 
Dz + dx = D\ + di 

Dx and dx may be found by the method of simultaneous equations. 

Example 3. To find the diameters of all the steps in the pulleys shown in 

Pig. 12-9 if a crossed belt is to be used. First, find di from the equation 

TTUth 

IP 
,$ 

1120 R.P.M.-'N 

whence 

ni _ Di 

N 

192 16 

120 ~ ch 

, 16 X 120 . 
dl=—= 

R.P.M.-l Therefore 
80 R.P.M-n3 

and 

A + dx = 16 + 10 = 26 in. 

Fig. 12-9 From equation 10, 

T)<i “I- d-2 — A ~|“ d\ — 26 in. 

A _ 160 

d2 ~ 120 

D2 — ‘3^2. 

Substituting this value of A in the preceding equation, 

^ -f d2 = 26 
or 

whence 

and 

Again 

and 

or 

whence 

and 

%d2 = 26 

d2=?^i = U| i„. =11.14 in. 

A = 26 - 11 j = 14f in. - 14.86 in. 

Z>s + d% = 26 in. 

A _ 80 

d% ~ 120 

A =|d, 
§ds + ds » 26 

|ds = 26 in. 

d8 = 15f in. =• 15.6 in; 

A = 26 - 15f = lOf in. = 10.4 in 
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12-12. Stepped Pulleys for Open Belt. Refer again to Fig. 12-8: 
if the belt is open its length when on the steps A and di is, from equa¬ 
tion 9, 

L = 2 (A + ^i) + 2(7 + 
(A ~ d\)2 

4 C 

and when on steps Dx and dx 

L = ^(DX + dx) +2 C+ 

Equating these two expressions gives 

* (r> \ r\ \ (Dl ~ dl)2 T (rt i j \ \ ^Dx ~ dx)2 

2 (A + dl) + 4C 2 {Dx + dx) + 4C (U) 

7lx D x 
This may be solved simultaneously with — = — to get the values of 
^ iv d x 

D x and dx .* 
If the shafts are several feet apart and the range of speeds for the 

driven shaft is not excessive, the diameters calculated for an open belt 
differ only very slightly from those for a crossed belt, and stepped 
pulleys designed for a crossed belt are often used for an open belt. If 
the shafts are close together and the speed range is large, the crossed 
belt pulleys cannot be used for an open belt. 

Example 4. To find the diameters of all 
the steps in the pulleys shown in Fig. 12-10 

if an open belt is to be used. Shafts 24 in. on 

centers. 
First find dr from the equation 

or 

whence 

ni _ D, 

N ~ di 

900 18 

150 ~ di 

d\ 
150 X 18 

900 
= 3 in. 

R. P.M.-N 

R.P.M. 
R.P.M. 
R.P.M. 

=v?» 

Fig. 12-10 

* Equation 11 may be written in the form 

(Dr - di)2 - (Dx - dx)2 
Dx+dx = Dr + dr + 

2irC 

nx Dx 
This may be solved approximately, in connection with — = —, by substituting 

N dx 

for (D, — dx)2 the value which it would have if the belt were crossed. 
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To find D% and da substitute in equation 11 the values of A, di, and C, whence 

m , (18-3)2 *,n , rfx , (A-*)1 (18 + 3) + ■ = - (ft + di) + A 
4 X 24 4 X 24 

whence 

ria Da 

N = & 

450 _ D2 

150 “ d2 

D2 = 3d2 

Substituting this value for D2 and solving, 

d2 = 5.43 in. 

D2 = 16.29 in. 

Similarly, 

4 X 24 4 X 24 

whence 

Substituting and solving, 

ns _ A 
N~ dz 

75 D, 

150 “ d3 

da - 2Da 

D3 = 7.38 in. 

d3 - 14.76 in. 

The proportion chosen in the data for Example 4 gives an extreme 
case, and it will be noticed that the amount that Z)2 + d2 varies 
from Di + di is about f in. and the variation of Z)3 + d3 is a trifle 
less than 1^ in. These quantities are large enough to affect the tight¬ 
ness of the belt and must, therefore, be taken into account. In ordi¬ 
nary cases, however, where the distance between centers is much 
larger than in Example 4 and where the speed ratios are not so great, 
the value of Dx + dX) as obtained from equation 11 by the method 
just illustrated, differs very little from A + dh and this difference 
ctfn. usually be neglected. 

y Graphical Method. Owing to the difficulty in determining the 
pulley diameters by the analytical method outlined above, several 
graphical methods have been proposed for the solution of the diameters 



STEPPED PULLEYS FOR OPEN BELT 335 

of stepped pulleys for an open belt. One of these graphical construc¬ 
tions is known as the C. A. Smith Graphical Method.f This method 
gives fairly accurate results if the speed ratio is not excessive. Two 
types of problems may arise. 

Case 1 (Fig. 12-11). Given the distance between axes (7, diameter 
of one set of pulleys on axis b and the diameter of one pulley on axis a. 
Required to find the diameters of all pulleys on axis a. 

Solution. Locate axes a and b a distance (7, to scale, apart. On the 
C 

center line ab, make aD = Db = — • At D erect a perpendicular line 

to ab. Make DE — 0.314C if the angle made by the belt and the 
center line ab is less than 18°; make DE = 0.298(7 if this angle is 
greater than 18°. With a and b as centers draw circles n and m whose 
diameters to scale represent the pair of pulleys upon which the belt is to 
run. Draw a fine, mny tangent to these circles. With E as a center, 
draw the arc xy tangent to the line mn. Now, any pair of pulleys on 
axes a and b must have their surfaces tangent to a line tangent to the 
arc xy. If circle p represents one of the given pulleys on axis 6, then 
circle q will represent the pulley diameter to scale of the mating pulley 
on axis a. 

Case 2 (Fig. 12-12). Given the distance between axes (7, diameter 
of one pulley on axis b, and the speeds of the pulleys on each axis. 
Required to find the diameters of all pulleys. 

Solution. Locate axes a and 6 a distance (7, to scale, apart. With 
b as a center, draw circle m with a diameter to scale equal to the diam- 

Q 
eter of the given pulley. On the center fine aby make aD = Db = — • 

2 
At D erect a perpendicular line to ab. Make DE = 0.314C or 0.298(7, 

f A.S.M.E. Transactions) Vol. X, page 269. 
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depending upon the angle between the belt and the center line ab. 
_ . __ _ _ _ , aK speed of m 
Locate a pomt K on the center line ab extended so that — =--—;— 

bK speed of n 
From K draw a line tangent to the circle m. With a as a center, draw 
circle n tangent to Km. With E as a center, draw the arc xy. Now, 
any pair of pulleys on axes a and b must have their surfaces tangent to a 

line tangent to the arc xy. In order to determine the diameter of either 
pair of pulleys, say p and q, locate a new point K' by use of the ratio 

speed of p __ aK . q^eri (jraw a jjne from fc' tangent to the arc xy. 
speed of q bK 
The circles p and q tangent to this line represent the required pulleys. 

12-13. Equal Stepped Pulleys. It is common practice, when con¬ 
venient, to design a pair of stepped pulleys in such a way that both 
pulleys have the same dimensions and can, therefore, be cast from the 
same pattern. This condition imposes certain restrictions on the speed 
ratios as may be seen from the following. 

Refer to Fig. 12-13; if the pulleys are alike 

D\ = dg, D2 — = dsf D4 = c?2, I?6 = di 

As in previous discussions, 
Tli Di 
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Therefore, 

In a similar manner, 

and 

Ui _ N 

N n$ 

rh __ N 

N m 

N = m 

(12) 

That is: When equal stepped pulleys are used the speeds of the driven shaft 
must he so chosen that the speed of the driving shaft is a mean proportional 
between the speeds of the driven shaft for belt positions symmetrically 
either side of the middle. 

Fig. 12-13 Fig. 12-14 

Example 5. A pair of equal three-stepped pulleys, Fig. 12-14, are to carry a 

belt to connect two shafts. The driving shaft makes 120 rpm, and the lowest speed 

of the driven shaft is 60 rpm. To find the other two speeds of the driven shaft. 

or 

Therefore 

Tli _ N 

N~ns 

ni_ __ 120 

120 ~ 60 

rii = 240 

n, - N - 120 

If the step diameters are to be calculated, it will be done by the methods explained in 
Art. 12-11 or Art. 12-12, according as the belt is crossed or opem 
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12-14. Speed Cones. Sometimes, instead of stepped pulleys, pulleys 
which are approximately frustums of cones are used, as shown in 
Fig. 12-15. Here the working diameters of the pulleys, as Dx and dx for 
any belt position, are measured at the middle of the belt. To design 
such a pair of pulleys a series of diameters A, A, A, and so on (Fig. 
12-16), may be calculated in the same way as steps and plotted at 

equal distances (a) apart, then a smooth line drawn through their ends, 
as shown. The length (a) does not affect the problem except as it 
makes the cone longer or shorter. The contours may be straight lines 
as in Fig. 12-16, or curves as in Fig. 12-17. 

When cone pulleys are used, a shipper must guide each part of the 
belt near the point where it runs on to the pulley (see Fig. 12-15); 
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otherwise the belt will tend to climb toward the large end of each 
pulley. Both shippers must be moved simultaneously when the belt is 
shifted. 

12-16. Belt Connections between Shafts Which Are Not Parallel. 
Non-parallel shafts may be connected by a flat belt with satisfactory 
results, provided the pulleys are so located as to conform to a funda¬ 
mental principle which governs the running of all belts, namely: The 
point where the pitch line of the belt leaves a pulley must lie in a plane 
passing through the center of the pulley toward which the belt runs. 
In other words, a belt leaving a pulley may be drawn out of the plane of the 
pulley, but when approaching a pulley its center line must lie in the mid 
plane of that pulley. This may be seen by a reference to Fig. 12-18. 
Here the shafts S and T are intended to turn in the directions indicated 
by the arrows. Consider elevation A; the pitch line of the belt 
leaves the pulley M at the point a. If the pulley N is in such a position 
on the shaft T that a plane through the middle of its face contains the 
point a, the belt will run properly on to pulley N. XX is the trace of 
this plane and evidently contains point a. Similarly, in elevation Bf 
the pitch line of the belt leaves the pulley N at bi and M is so located 
on shaft S that a plane ¥ Y through the middle of its face contains &i. 

Changes in the directions of rotation of either pulley would necessi¬ 
tate changes in their relative positions. 

In Fig. 12-18 the pulleys are at 90° with each other. The belt 
would run equally well if the pulleys were turned at any angle about 
XX as an axis. 

12-16. Quarter-Turn Belt. A belt which connects two non-inter¬ 
secting shafts at right angles with each other, similar to that in Fig. 
12-18, is called a quarter-turn belt. Emphasis should be laid on the 
fact that, for any given setting of the pulleys, the shafts must always 
turn in the direction in which they were designed to turn. If the direc¬ 
tion of rotation is changed without resetting the pulleys, the belt will 
immediately leave the pulleys. For this reason simple quarter-turn 

belts like that illustrated above are likely to give trouble if used in 
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places where there is possibility of the shafting turning backwards 
even a small fraction of a turn. If this should happen to a small belt, 
it could easily be replaced on the pulleys; for a large belt, however, the 
replacing would be more difficult. 

i 

13-17. Reversible Direction Belt Connection between Non-Parallel 
Shafts^-Guide Pulleys. If the connection between two non-parallel 

shafts is to be such that the shafting may run in either direction and 
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still have the pulleys deliver the belt properly, in accordance with the 
fundamental law already explained, it is necessary to make use of inter¬ 
mediate pulleys to guide the belt into the proper plane. Such pulleys 
are called guide pulleys. 

12-18. Examples of Belt Drives — Method of Laying Out. The 
following examples will illustrate two of the types of belt drives which 
may occur and will give some idea of the method of procedure in design¬ 
ing such drives. 

Example 6. See Fig. 12-19. The pulley B drives the pulley A by means of an 

8-in. double belt. Required to arrange two 15-in. guide pulleys so that the drive is 

reversible. 

FRONT ELEVATION Y RIGHT ELEVATION 

Fig. 12-19 

Solution; After the three views of the main shafts and pulleys have been drawn, 

the problem becomes one of so placing the guide pulleys that they will conduct the 

belt in either direction. There are a great many possible solutions of this problem, 

but that shown in Fig. 12-19 is the simplest. 

In the front elevation the points a and b are the center"points of the upper and 

lower contour elements of the pulley B. From a and b draw lines ae and bf tangent 

to pulley A. The center planes of the guide pulley C must contain the line ae, and 

the center plane of the guide pulley D must contain the line bf. C will appear in 

this view, therefore, as a rectangle with one end passing through a, and D will appear 
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as a rectangle with one end passing through b. In the other views the edges of the 
guide pulleys will appear as ellipses, as shown. 

Example 7. Given two shafts at right angles, located as shown in Fig. 12-20. 

Shaft A carries a 52-in. pulley which drives a 60-in. pulley on shaft B by means of a 

double belt 12 in. wide. The ordinary direction of rotation is as shown by the 

arrows. One guide pulley 30 in. in diameter is to be so located that the direction of 
rotation may be reversed without the belt running off. When turning in the direc¬ 

tion shown, the tight side of the belt 
is to run direct from driven to driving 

pulley in a vertical line, the loose side 

returning around the guide pulley. 
The main pulleys are 14 in. wide. 

Two elevations and a plan are to be 
drawn. 

Solution. Locate the two main 
pulleys so that the pitch line of the 
tight side of the belt is the line of in¬ 

tersection of the pulley planes. To 
draw the guide pulley proceed as fol¬ 

lows (see Fig. 12-21): The distance 

of this guide from either one of the 
main pulleys wouldbe governed some¬ 

what by convenience in actually set¬ 
ting up the bearings to support it, and 

partly also by the relative sizes of the 

main pulleys. It is desirable so to locate it as to give the least possible abruptness to 

the bend in the belt. In this case there has been selected a point C in the line of in¬ 

tersection of the two main pulley planes which is 6 ft 6 in. below the axis of the up¬ 
per shaft. This point will be at CL and CP in the two elevations. From CL draw 

a line tangent to the lower pulley at DL and project across, getting the other view of 
this point at DP. In a similar way draw a line from CP tangent to the upper pulley 

at EP and project across to find EL. We now have the two projections of two lines 

CD and CE drawn from a point in the intersection of the pulley planes tangent to 

the two pulleys, and the guide pulley must be set in such a position that its center 

plan'' will contain these two lines. The problem then is to draw the projections of 

the guide pulley when so set. By applying the principles of descriptive geometry 
the completed drawing is obtained as shown in Fig. 12-21. 

12-19. Crowning of Pulleys. If a belt is led upon a revolving conical 
pulley, it will tend to lie flat upon the conical surface, and, on account of 
its lateral stiffness, will assume the position shown in Fig. 12-22. If 
the belt travels in the direction of the arrow, the point a will, on account 
of the pull on the belt, tend to adhere to the cone and will be carried to 
by a point nearer the base of the cone than that previously occupied by 
the edge of the belt; the belt would then occupy the position shown by 
the dotted lines. Now if a pulley is made up of two equal cones placed 
base to base, the belt will tend to climb both, and will thus run with 
its center line on the ridge formed by the union of the two cones. In 
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practice, pulley rims are slightly crowned, except where the belt must 
occupy different parts of the same pulley. The amount of crowning is 
often made one ninety-sixth of the pulley face width. One pulley 
only on a drive should be crowned. If both pulleys are crowned and 
are not properly aligned, the belt will travel back and forth across the 
pulley faces, causing excessive wear and loss of powervi In Fig. 12-22 
two common forms of rim sections are shown at C and D; that shown 
at C is more commonly met with, as it is the easier to construct. 

Fig. 12-23 

When pulleys are located on shafts which are slightly out of parallel, 
the belt will generally work toward the edges of the pulleys which are 
closer together. The reason for this may be seen from Fig. 12-23. 
The pitch line of the belt leaves pulley* A at point a. In order to con¬ 
tain this point the center plane of pulley B would have to coincide with 
XXx; that is, the belt should approach B in the plane XXu Simi¬ 
larly, the belt should approach A in the plane Y\Y. The result of this 
action is that the belt works toward the left and tends to leave the 
pulleys. 



V-BELTS 345 

12-20. Tight and Loose Pulleys are used for throwing machinery into 
and out of gear. They consist of two pulleys placed side by side upon 
the driven shaft CD (Fig. 12-24); A, the tight pul¬ 
ley, is keyed to the shaft, whereas B, the loose pulley, 
turns loose upon the shaft and is kept in place by the 
hub of the tight pulley and a collar. The driving 
shaft carries a pulley G, whose width is the same as 
that of A and B put together, or twice that of A. 
The belt, when in motion, can be moved by means of 
a shipper that guides its advancing side, onto either 
the tight or the loose pulley. The pulley G (Fig. 
12-24) has a flat face, because the belt must occupy 
different positions upon it, whereas A and B have 
crowning faces, which will allow the shifting of the 
belt and will retain it in position when shifted upon 
theift. 

12-21. V-Belts. A type of belting which has become popular in 
recent years is known as V-belting. Probably the most familiar exam¬ 
ple is the fan belt on an automobile. Multiple V-belt drives are used 
when the power transmitted is too great for a single belt. Figure 12-25 

shows a cross section of a V-belt and a portion of a single- 
grooved pulley, called the sheave. With multiple V-belt 
drives the sheave will contain a groove for each belt. V- 
belts may be run from a grooved sheave to a flat pulley, 
not crowned, but the belt capacity will be reduced. The 
V-belt has a trapezoidal cross section and is fabricated by 
using layers of high strength cords impregnated with rub¬ 
ber, alternate layers of vulcanized rubber and canvas, and 
covered with a canvas and vulcanized rubber casing. 

The details of the construction vary with different manufacturers. 
The slope of the sides of the groove in the pulley is the same as the 
slope of the edges of the belt, so that surface contact occurs between 
the edges of the belt and the pulley. As the tension increases, the belt 
wedges, thus reducing the tendency to slip. 

Various advantages are claimed for this type of belting, such as high 
efficiency, silent operation, use on short center drives, high speed 
ratios, ability to absorb shock, and the fact that it is not affected 
by changes in direction of rotation or angular inclination of center 
line. 

V-belts should not be used where temperatures are very high, where 
there is likely to be an excess of oil, or in places where it is difficult to 
put on an endless belt. 

Fig. 12-25 
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12-22. Variable Speed Transmission. The stepped pulleys and 
speed cones previously considered may be regarded as the elementary 
mechanisms through which one shaft running at a constant speed may 
drive another shaft at a variety of speeds. In both those cases the 
speed is changed by moving the belt along the axes of the pulleys to 

make use of a different pair of work¬ 
ing diameters on the driving and 
driven pulleys. 

Several devices accomplish a 
similar purpose in a different way. 
One of these, the Reeves variable- 
speed transmission, is shown in Fig. 
12-26. The upper shaft T is driv¬ 
en from the source of power (in this 
case a motor). The lower shaft S 
is driven from T through a V-shaped 
belt. Each of the pulleys for the 
belt consists of a pair of beveled disks 
keyed to the shaft so that disks and 
shaft must turn together, but the 
disks are free to be moved along the 
shaft. The two disks at the right 
are connected to the lever L on op¬ 
posite sides of its fulcrum, and the 
two disks at the left are similarly 
connected to lever M. The shaft H 

has a right-hand screw at one end and a left-hand screw at the other 
end working in nuts attached to the levers L and M respectively. By 
turning the shaft H by the hand wheel W the levers are swung in oppo¬ 
site directions about their respective fulcrums, thus causing the two 
disks on one shaft to approach each other at the same time that the two 
disks on the other shaft separate. Bringing the two disks nearer 
together causes the V-shaped belt to be in contact with them farther out 
from the axis, and separating them causes the belt to be in contact 
nearer the axis. Thus the effective radius of one pulley is increased at 
the same time that the effective radius of the other pulley is decreased. 
In this way the ratio of driving diameter to driven diameter is readily 
changed; thus the speed of shaft S, from which a belt or a gear train 
may drive to the shaft or machine where the power is required, is 
also changed. 

Bearings and connections are carefully designed to avoid loss of 
power in the transmission, and suitable adjusting and equalizing 

Fig. 12-26 
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mechanisms are provided to insure proper tension in the belt. Either 
shaft may be the constant speed driver. The transmission may be of 
the vertical type as shown in Fig. 12-26 or of the horizontal type. 

12-23. Ropes and Cords. Power is often transmitted by means of 
ropes running over pulleys, called sheaves, having grooved surfaces. 
For large amounts of power inside of buildings the ropes are made of 
hemp or similar material. For long-distance drives and drives which 
are exposed to the weather, wire ropes are used. For small amounts of 
power on machines, cords of cotton are common. 

Fig. 12-27 

12-24. Systems of Driving with Hemp Rope. There are two distinct 
systems of rope driving, each of which has its advantages. One is the 
multiple rope or English system. This is the simpler of the two and 
consists of independent ropes running side by side in grooves on the 
pulleys. A large drive using this system is shown in Fig. 12-27. 

The other system is the continuous or American system, shown in 
Figs. 12-28 and 12-29. One rope is wound around the driving and 
driven pulleys several times, and conducted back from the last groove 
of one pulley to the first groove of the other pulley by means of one or 
more intermediate pulleys which also serve the purpose of maintaining a 
uniform tension throughout the entire rope. The slack should be taken 
up on the loose side just off the driving sheave. There are two ways 
of accomplishing this. First (see Fig. 12-28), the rope is conducted 
from an outside groove of the driver to the tension sheave and, after 
passing around it, is returned to the opposite outside groove of the 
driven sheave. Second (see Fig. 12-29), where it is inconvenient to 
take the slack directly from the driver the rope is passed around a loose 
sheave on the driven shaft, thence over the tension sheave, and is 
returned to the first groove in the driven sheave. 
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12-25. Grooves for Hemp Rope. The shape and proportions of the 
grooves used on many pulleys for hemp rope depend somewhat upon 
the system used. Figures 12-30 and 12-31 show two forms much used. 
Figure 12-32 illustrates the groove used on idle wheels. 

It will be noticed that'the rope wedges in¬ 
to the grooves on the driving and driven 
pulleys, whereas on the loose or idle pullevs 
it rides on the bottom of the groove. Fia. 12-32 
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12-26. Small Cords are often used to connect non-parallel axes, and 
very often the directional relation of these axes must vary. The most 
common example is found in spinning frames and 
mules, where the spindles are driven by cords from 
a long, cylindrical drum, whose axis is at right angles 
to the axes of the spindles. In such cases, the com¬ 
mon perpendicular to the two axes must be contained 
in the planes of the connected pulleys; both pulleys 
may be grooved, or one may be cylindrical, as in the 
example given above. Figure 12-33 shows two 
grooved pulleys, whose axes are at right angles to 
each other, connected by a cord which can run in 
either direction, provided the groove is deep enough. 
To determine whether a groove has sufficient depth 
in any case, the following construction (Fig. 12-34) 
may'be used. Let AB and AiBi be the projections 
of the approaching side of the cord; pass a plane 
through AB parallel to the axis of the pulley; it will 
cut the hyperbola CBD from the cone which forms 
one side of the groove. The cord will lie upon the 
pulley from B to /, where it will leave the hyperbola 
on a tangent. If the tangent at I falls well within 
the edge of the pulley at C, the groove is deep enough. It will usually 

Fig. 12-34 

be sufficient to draw a straight line, as ab (Fig. 12-33), and see that it 
falls well inside of the point corresponding to C in Fig. 12-34. 
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12-27. Drum. When a cord does not merely pass over a pulley, 
but is made fast to it at one end and wound upon it, the pulley usually 
becomes what is called a drum. A drum for a round rope is cylindrical 
and the rope is wound upon it in helical coils. Each layer of coils 
increases the effective radius of the drum by an amount equal to the 
diameter of the rope. A drum for a flat rope has a breadth equal to 
that of the rope, which is wound upon itself in single coils, each of which 
increases the effective radius by an amount equal to the thickness of the 

rope. 
12-28. Wire Ropes. Wire rope is very suitable for the transmission 

of large powers to great distances, as for instance in cable and inclined 
railways. Its rigidness, great weight, and rapid destruction due to 
bending, however, unfit it for use in mill service, where the average 
speed of rope is about 4000 fpm. As the easiest way to break wire is 
by bending it, ropes made of it, by any method whatsoever, have 
proved unsatisfactory for drives of short centers and high speed unless 
the diameters of the sheaves are large enough to avoid bending the rope 
to strain it above the elastic limit. 

Wire ropes will not support without injury the lateral crushing 
caused by the V-shaped grooves; hence it is necessary to construct the 
pulleys with grooves so wide that the rope rests on the rounded bottom 
of the groove, as shown in Fig. 12-35, which shows a section of the rim 
of a wire-rope pulley. The friction is greatly increased, and the wear of 
the rope diminished, by lining the bottom of the groove with some elas¬ 
tic material, as gutta-percha, wood, or leather, made up in short sec¬ 
tions and forced into the bottom of the groove. 

12-29. Chains are frequently used as connectors between parallel 
axes and also for conveying and hoisting machinery and for similar 
purposes. The wheels over which chains run are called sprockets; 

they have their surfaces shaped to conform to the type of chain used. 
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Chains may be classified as follows: 

1. Hoisting chains 

2. Conveyor chains 

3. Power-transmission chains 

Coil 
Stud-link 

Detachable or hook-joint 
Closed-end pintle 

Block 
Roller 
Inverted-tooth 

12-30. Hoisting Chains. The most common form of hoisting chain 
(Fig. 12-36) consists of oval links and is called a coil chain. The form 
of sprocket used with such a chain is also shown in the figure. Another 

Fig. 12-37 

type of hoisting chain is known as the stud-link chain and is shown in 
Fig. 12-37. The stud-link chain will not kink or tangle so easily as the 

coil chain. 
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12-31. Conveyor Chains may be of the detachable or hook-joint type 
shown in Fig. 12-38, or of the closed-end pintle type illustrated in 

Fig. 12-39. 
The design of the sprocket teeth is largely empirical, care being taken 

to have the teeth so shaped and spaced that the chain will run onto 
and off the sprockets smoothly and without interference even after 

it has stretched or worn somewhat. Chains of this general class are 
often used for transmitting power at low speeds, as in agricultural 
machinery. They are usually made of malleable cast links and lack 
the smooth running qualities of the more carefully made chains. 

Courtesy Link-Belt 

Fig. 12-39 

12-32. Power-Transmission Chains. This class includes the three 
types known as block, roller, and silent. The chains are made of steel, 
accurately machined, with wearing parts hardened, and run on care¬ 
fully designed sprockets. In the following discussion no attempt is 
made to give an exhaustive treatment of the subject, but merely to 
give some idea of the nature of the three types and some of the points 
which need to be considered in. their design. 
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Fig. 12-40 

12-33. Block Chains. Figure 12-40 shows a block chain made by 
the Diamond Chain & Mfg. Co. 

Chains of the block type are used for the transmission of power at 
comparatively low speeds. They are also used to some extent as con¬ 
veyor chains and for other pur¬ 
poses in place of the malleable 
conveyor chains. 

12-34. Roller Chains. Fig¬ 
ure 12-41 illustrates a form of 
roller chain similar to one made 
by the Diamond Chain & Mfg. 
Co., and Fig. 12-42 shows the 
same chain in place on the 
sprocket. 

12-36. Design of Standard 
Sprocket Teeth for Roller 
Chains. Figure 12-43 shows 
the construction for the out¬ 
line of the approved standard 
sprocket teeth for a roller chain. This figure, together with much 
of the following text, is taken from the catalog of the Diamond 
Chain & Mfg. Co. Let 

P = pitch of chain 

D = nominal diameter of roller 

T = number of teeth 

1.005D + 0.003 in. 
r =--- 

Fig. 12-41 

a = 35° + 

0 = 18° - 

0 = 

180° 

60^ 
T 

56_° 

T 

ac — 0.8 D 

ab = 1.24D 

P P 
Diameter pitch circle = ——- = -—r- 

y sin 6 180° 
sin —— 

(13) 

(180°\ 

0.6 + cot —— J (14) 
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Draw an arc of the pitch circle and draw the radius and tangent at 
any point a on the circle. Lay off angle a and locate point c. Draw 
the “ seating arc ” kfa with radius r. From c as a center and radius 
ck draw the “ working curve ” km. At m draw a straight line mh 

tangent to km. Locate point b and from b as a center draw the “ top¬ 
ping curve ” tangent to mh. A similar construction for the other side 
of the tooth will complete the tooth outline. 

12-36. Chain Length. The length of the chain required for a given 
pair of sprockets set at a known distance on centers may be calculated 
according to the same general method previously given for an open 
belt. (See Art. 12-9.) Since the pitch line of the sprocket is a poly¬ 
gon instead of a circle, equation 9, if applied to a chain, will give a 
length slightly in excess of the actual length. 

The open belt formula may be adapted to the chain as follows: Let 
D and d be the pitch diameters, in inches, of the sprockets having 
N and n teeth respectively. Dp and dp the same diameters in pitches. 
P = pitch of chain; C = distance between centers of sprockets, in 
inches; Cv = center distance in pitches; L = length of chain in 
inches; Lp = length of chain in pitches. 

From equation 9, 

L = ^(D+d)+2C+ {D-~C<1Y (nearly) 

Then 

Lv = ~ {DP + dp) + 2CP + P ^ 

It is evident that the first term of this equation is half the sum of 
the circumferences of the pitch circles. The corresponding half sum 

N ~f" 71 
of the perimeters of the pitch polygons is —-— • Also, from equa¬ 

tion 13, 
^ P 180° 
D = - r” = P esc 

. 180° 
sin- 

N 

N 

Therefore 

Dv = esc ^ and 

and d = P esc 
180° 

n 

dp = esc 
180° 

n 

Substituting these values in the first and last terms in the above equa¬ 
tion for Lp gives 

Lp _ + 2CP + 
{esc 

180° 

N 

180°Y 
esc-1 

n } 

4 C, 
(nearly) (15) 
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Equation 15 gives approximately the theoretical minimum length 
of chain in pitches for any given values of N, n, and C. The actual 
chain used must contain an integral number of pitches, hence the length 
must be increased, above that calculated, enough to make it a multiple 
of the pitch. 

12-37. Angular Speed Ratio and Distance between Centers of 
Sprockets. Since the pitch line of the chain lies on the driving sprocket 
as a part of a polygon it follows that, if this sprocket is turning at a 
constant angular speed, the speed with which the chain is drawn toward 
this sprocket varies from a maximum when the pitch line is in the posi¬ 
tion shown in full lines (Fig. 12-44) to a minimum for the dotted-line 

position. This variation of chain speed tends to cause a variation in 
angular speed of the driven sprocket. It is desirable to adjust the cen¬ 
ter distance so that the span of the chain (ab) between sprockets shall 
be equal to an integral number of pitches, thus reducing the angular 
speed variation to a minimum. The relation between the center dis¬ 
tance and the span to satisfy this condition is expressed by the equation 

ST = + (a6)2 

It is better also to have the center distance such that the chain length 
will contain the pitch an even number of times, thus avoiding the neces¬ 
sity of using a special or offset link. Reference to Fig. 12-41 will show 
that the chain consists of alternate narrow and wide links, the side 
plates of the narrow link fitting between the plates of the adjoining 
wide link. If the chain were to contain an odd number of links, it 
would be necessary to have one end of one link narrow and the other end 

wide. Such a link is called an'offset link. 
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Center adjustment should be allowed to take up elongation due to 
wear. Some slack should always be allowed. 

A center distance equivalent to 40 i 10 pitches is recommended 
practice, and it must be greater than one-half the sum of the outside 
diameters of the sprockets. 

12-38. Inverted Tooth Chains. Although roller chains on sprockets 
as now designed can run quietly at fairly high speeds, the inverted tooth 
chain, commonly known in the United States as the silent chain, is 
widely used when maximum quietness is desired and where it is neces¬ 
sary to transmit heavier loads than can be carried by roller chains of 
the same pitch. These chains have no rollers, but the links themselves 
are so shaped that they engage directly with the sprocket teeth. Like 
the roller chains, they adapt themselves to the sprocket after the pitch 
of the chain has increased because of wear. 

Two examples will illustrate this type of chain. In selecting these 
exanfples no attempt has been made to illustrate the latest improve¬ 
ments, but merely to show the principle of action. 

12-39. Renold Inverted Tooth Chain. Figure 12-45 shows a chain 
developed by Hans Renold. It consists of links C of a peculiar form 
with straight bearing edges a, 6, which run over cut sprocket wheels 
with straight-sided teeth whose angles vary with the diameter of the 
wheel. The chain may be made any convenient width, the pins bind¬ 
ing the whole together. One sprocket of each pair is supplied with 
flanges to retain the chain in place. The upper drawing shows a new 

chain in position on its sprocket, the bearing parts of the links being on 
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the straight edges of the links only, not on the tops or roots of the teeth. 
The chain thus adjusts itself to the sprocket at a diameter correspond¬ 
ing to its pitch, and as any tooth comes into or out of gear there is 
neither slipping nor noise. The lower figure shows the position taken 
by a worn chain of increased pitch on the same wheel. 

12-40. Morse Rocker-Joint Chain. This chain (Fig. 12-46) elimi¬ 
nates the sliding friction of the rivets as the chain bends around the 
sprocket. Instead of the ordinary pin bearing, a rocking bearing is pro¬ 
vided at each joint. The following description, with slight changes, is 
taken from the catalog of the Morse Chain Co. Two pins are em¬ 
ployed at each joint; the left-hand pin a is called the seat pin and the 
right-hand pin b the rocker. Each is securely held in its respective end 
of the link. The seat pin has a plane surface against which the edge of 
the rocker pin rocks or rolls when the chain goes on and off the sprock¬ 
ets. The joint is so designed that the pressure due to tension of driving 
will be taken on a flat surface when in between the sprockets. 

Figure 12-46 shows the chain on a driving sprocket running in the 
direction indicated by the arrows. The angle of the tooth to the line of 
the pull and any centrifugal force that may exist both tend to keep the 
link out to its true pitch diameter during the revolution of the wheel; 
it will fall below this point only when the pull of the slack side of the 
chain is greater than the forces in the opposite direction. 

From this it will be seen that two forces are definitely operative to 
keep the chain in its proper pitch contact with the wheels by causing 
it to assume a larger and larger circle as the chain lengthens in pitch; 
thus, the driving load continues to be distributed over a large number 
of teeth. 

The climbing, which compensates for the increase of pitch, is gradual, 

it is easily noticed in the running drive, it does not decrease the effi- 
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ciency of the transmission, and, as the chain lengthens and approaches 
the top of the teeth, it gives fair warning of the necessity of replacement 
or repairs of the chain. 

PROBLEMS 

XII-1. A shaft turning 120 rpm is to drive another shaft at 180 rpms Find 

the diameters of the two pulleys, using integral number of inches for each diameter, 

to give as nearly as possible a belt speed of 2500 fpm. 

XU-2. What horsepower may an 8-in. double belt be expected to transmit, assum¬ 

ing that its speed is 3300 fpm and that it is not to be stressed more than 140 lb /in. 

of width and that the tension on the tight side is not more than 2J times that on the 

slack side? 

XII-3. The main driving pulley of a broaching machine is 18 in. in diameter and 

turns at a speed of 400 rpm. If the pulley is driven by a belt from a 10-hp motor 

developing its full rated power, what is the effective pull of the belt? 

Xn-4. A shaft making 200 rpm carries a pulley 36 in. in diameter driven by a belt 

which transmits 5 hp. What is the effective pull in the belt? Wbiat should be the 

diameter of the pulley if the effective pull is to be 50 lb? 

XII-6. Two shafts 12 ft between centers carry pulleys 4 ft in diameter and 3 ft in 

diameter respectively, connected by a crossed belt. It is desired to put the belt 

on as an open belt. How long a piece must be cut out of it? 

XH-6. A pair of equal three-stepped pulleys connect two shafts A and B by 

means of a crossed belt. A is the driver having a constant speed of 75 rpm. High¬ 

est speed of B is 225 rpm. Diameter of largest step is 15 in. Find the other two 

speeds of B and the diameters of all steps. 

XH-7. Using same data as in Prob. XII-6 except that belt is open, and distance 

between centers is 18 in., find the diameters of the middle pair of steps. 

XII-8. Shaft A, turning 120 rpm, drives shaft B at speeds of 80, 120, 180, and 

240 rpm by means of a pair of stepped pulleys and a crossed belt. The diameter of 

the largest step on the driving pulley is 18 in. Calculate the diameters of all the 

steps of both pulleys. 

XII-9. Two shafts, each carrying a four-stop pulley, are to be connected by a 

crossed belt. The driving shaft is to turn 150 rpm while the driven shaft is to turn 

50, 150, 250, and 600 rpm. The smallest step of the driver is 10 in. in diameter. 

Find the diameters of all the steps. 

XH-10. Solve the preceding problem if an open belt is used instead of a crossed 

belt and if the shafts are 30 in. apart. 

XH-11. Determine the pulley diameters of Prob. XII-10 by the graphical 

method. 

XII-12. Two shafts carrying five-step pulleys are to be connected by a crossed 

belt. The driver is to turn 150 rpm, while the follower is to have speeds of 50,100, 
150, 200, and 250 rpm. If the smallest, step on either pulley is 8 in. in diameter, find 

the diameters of all the steps to two decimal places. 

XII-13. The feed mechanism of an upright drill is operated by an open belt run¬ 

ning on three-step pulleys. The driving shaft turns 150 rpm, while the driven shaft 

turns 150, 450, and 900 rpm, the two shafts being 15 in. apart. If the largest diame¬ 

ter of the driver is 18 in., find the diameters of all the steps. If the steps of these 

pulleys had been calculated for a crossed belt but an open belt had been used on 

them, the belt would have been found too short to run on some of the steps. State 

approximately how much too short it would have been for the worst case. 
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XU-14. A lathe having a five-step pulley is driven by a belt (assumed to be 

crossed) from a pulley of the same size on the countershaft. The countershaft is to 

have a constant speed, and the lathe is to have speeds of 60 rpm and 135 rpm when 

the belt is on the steps either side of the center step. If the minimum speed is 40 

rpm and the smallest diameter 4 in., find proper speed of countershaft, maximum 

speed of lathe, and diameter of all steps on the pulleys. 

XII-15. Each of a pair of equal five-stepped pulleys has diameters 20, 17f, 151, 

12}, 10} in. Were these pulleys designed for an open belt or a crossed belt? If the 

driving shaft turns 500 rpm, calculate the five speeds of the driven shaft. 

XU-16. In a pair of stepped pulleys the driver has diameters of 31.62, 25.5, 20.53, 

10 in. The smallest diameter of the driven pulley is 7.91 in. and its largest diameter 

30 in. Is the belt crossed or open? Calculate the distance between centers of the 

shafts and the other two diameters of the driven pulley 

XH-17. Two shafts are connected by a crossed belt running on a pair of speed 

cones. The driving shaft has a constant speed of 135 rpm, and the driven shaft is to 

have a range of speeds from 45 to 300 rpm, the speeds to increase in arithmetical 

progression as the belt is moved equal distances along the cones. The smallest 

diameter of the driving cone is 3 in. Find the diameters of the cones at the ends 

and at two intermediate points. Plot the cones (} size) if their length is 24 in. 

XII-18. A rope drive composed of 15 ropes is to transmit 120 hp. If the pitch 

diameter of one of the sheaves is 4 ft and if its angular speed is 1500 rad/min, 

what is the effective pull in each rope? 

XU-19. A rope drive (multiple system) consisting of 15 ropes is transmitting 200 

hp when the speed of the ropes is 1100 ft per min. The maximum tension per rope is 

650 lb, which is one-quarter the breaking strength of the rope (expressed as “ a 

factor of safety of 4 ”). Find the ratio — . Suppose that 3 of the ropes break, the 
T 2 

the maximum tension become and what the factor of safety on the rope? 

XU-20. A motor running 500 rpm transmits 3 hp through a chain drive. The 

pitch diameter of the driving sprocket is 3 in. What is the effective pull in the chain, 

and what is the maximum tension, centrifugal force being neglected? 

XU-21. A chain drive is transmitting 3 hp when the speed of the chain is 900 

fpm. What is the effective pull in the chain? Suppose the speed of the chain to 

be increased to 1200 fpm. If the power transmitted remains the same as before, 

what is the effective pull? 

XU-22. A 19-tooth sprocket is driven at 1200 rpm by a }-in. pitch roller chain. 

Find the chain pull if 50 hp is being transmitted. 

XU-23. A f-in. pitch silent chain 1 in. wide is used to transmit power by means 

of a 21-tooth sprocket turning at 1500 rpm. Determine the horse power trans¬ 

mitted if the allowable chain pull is 100 lb/in. 

XU-24. Sketch shows the positions in front and side elevation of two shafts and 

pulleys. Pulley A, 28 in. in diameter and turning 144 rpm, drives B 252 rpm. 

Calculate the diameter of pulley B. Belt is 4 in. wide. 

The drive is to be made reversible by using two guide pulleys 12 in. in diameter 

with shafts in the same vertical plane. 

Draw front and side elevations of drive and show the guide pulleys. Draw 

pitch line of belt. Make all pulley faces same as belt width (whole inches). All 

shafts 1} in. in diameter. Scale: } in, * 1 in. 
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Make no allowance for belt thickness in finding diameters and positions of 
pulleys. 

Put calculations on drawing. 

XII-26. A 24-in. pulley on shaft A turning 150 rpm is to drive shaft B 200 rpm. 
Fin^ diameter of pulley on shaft B. The drive is to be made reversible by using a 
12-in. guide pulley. To locate the guide pulley choose a point in the intersection of 
the pulley planes 22 in. above the center of shaft A. 

Show pitch line of belt and central circle of guide pulley in all three views. 
Use scale: i in. = 1 in. 



CHAPTER XIII 

MISCELLANEOUS MECHANISMS 

13-1. Aggregate Combinations is a term applied to assemblages of 
pieces in a mechanism in which the motion of the follower is the result¬ 
ant of the motions given to it by more than one driver. The number of 
independently acting drivers which give motion to the follower is gen¬ 
erally two, and cannot be greater than three, as each driver determines 
the motion of at least one point of the follower, and the motion of three 
points in a body fixes its motion. 

Very rapid or slow movements and complex paths, which could not 
well be obtained from a single driver, may be produced by means of 
aggregate combinations. 

The epicyclic gear trains discussed in Chapter XI in reality come 
under the heading of aggregate combinations. 

13-2. Aggregate Motion by Linkwork. Figures 13-1 and 13-2 
represent the usual arrangement of such a combination. A rigid bar ab 
has two points, as a and b> connected with independent drivers; c 
may be connected with a follower. Let aai represent the linear veloc- 

Fig. 13-1 Fig. 13-2 

ity of a, and bbi the linear velocity 
^ of b] to find the linear velocity of c. 

Consider the motions to take place 
)c separately; then if b were fixed, the 

linear velocity aai given to a would 
cause c to have a velocity repre¬ 
sented by cci. Considering a as 
fixed, the linear velocity bbi at b 
would give to c a velocity cc2. The 
aggregate of these two would be the 
algebraic sum of cci and cc2. In 
Fig. 13-1 we have cci acting to the 
left, while cc2 acts to the right; there¬ 
fore the resulting linear velocity of c 

will be ccz = cc\ — cc2 acting to the left, since cci > cc2. In Fig. 13-2, 
where both cci and cc2 act to the left, the result is cc3 = cc\ + cc2 acting 
to the left. It will be seen that the same results could have been 
obtained by finding the instantaneous axis o of ab in each case, when 
we should have linear velocity c : linear velocity a = co : ao. 

362 
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In many cases the lines of motion are not exactly perpendicular to 
the link, nor parallel to each other; neither do the points a, 6, and c 
necessarily lie in the same straight line, but often the conditions are 
approximately as assumed in Figs. 13-1 and 13-2, so that the error 
introduced by so considering them may be sufficiently small to be 
practically disregarded. 

As examples of aggregate motion by linkwork we have the different 
forms of link motions as used in the valve gears of reversing steam 

engines. Here the ends of the links are ’driven by eccen¬ 
trics, and the motion for the valve is taken from some in¬ 
termediate point on the link whose distance from the ends 
may be varied at will, the nearer end having proportionally 
the greater influence on the resulting motion. 

A wheel rolling upon a plane is an example of aggregate 
motion, the center of the wheel moving parallel to the plane, 
and the wheel itself rotating 
upon its center. The result¬ 
ant ol these two motions 
gives the aggregate result of 
rolling. 

13-3. Pulley Blocks for 
Hoisting. The simple forms 
of hoisting tackle, as in Fig. 
13-3, are examples of aggre¬ 
gate combinations. The 
sheaves C and D turn on a 

w fixed axis, while A and B 
Fig. 13-3 ^urn on a bearing from 

which the weight W is suspended. Fig¬ 
ure 13-4 is in effect the same as Fig. 
13-3, but it gives a clearer diagram for 
studying the linear velocity ratio. Assume that the bar ah with the 
sheaves A and B and the weight W has an upward velocity represented 
by v. The effect of this at the sheave A, since the point c at any in¬ 
stant is fixed, is equivalent to a wheel rolling on a plane, and there 
would be an upward linear velocity at d = 2v. At the sheave B there 
is the aggregate motion due to the downward linear velocity at e = 2v 
and the upward linear velocity of the axis b = v, giving, for the linear 
velocity of /, 4i> upwards. Therefore 

<( 

\ 
2V 

—6—^ 

Fig. 13-4 

Linear speed F _ 4 __ W 

Linear speed W 1 F 
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Many elevator-hoisting mechanisms are arranged in a similar 
manner, the force being applied at W, and the resulting force being 
given at F. This means a large force acting through a relatively small 
distance, producing a relatively small force acting through a much 
greater distance. 

The mechanical advantage of a hoist is the ratio of the weight which 
can be lifted to the force which is exerted, friction being neglected. 

The mechanical advantage of a given hoist can be determined by 
finding the velocity ratio as above and then, since the distances moved 
through in a given time (assuming constant velocity ratio) are directly 
as the velocities, the forces must be inversely as the velocities. Other 
methods of determining the mechanical advantage are illustrated by 
the following examples.* 

Example 1. Hoist with Two Single Sheave Blocks. In Fig. 13-5 the 

upper block A, known as the standing block, is suspended from a fixed support. 

The rope is made fast to the casing of the upper 

block, passes around the sheave in the lower block 

and up around the sheave P which turns about 

the axis S in the upper block. It is required to 

find the force at F necessary to raise a weight W 
of 100 lb suspended from the lower block. 

Solution. Assume that W is lifted 1 ft by 

some external force with the rope at F not mov¬ 

ing. Then 1 ft of slack rope would result at R 
and another foot of slack at T, giving a total of 2 

ft of slack which must be drawn over to F in 

order to keep the rope tight. Therefore, the lin¬ 

ear speed of F is to the linear speed of IF as 2 is 

to 1. Hence F is to W as 1 is to 2, or F = = 

501b. 
Example 2. Hoist with One Single Block 

and One Double Block. The hoist shown in 

Fig. 13-6 has the part of the rope which is marked 

T made fast to the lower block; it then passes 

over a sheave in the upper block, comes down at 

R and passes under the sheave in the lower block, 

then up at P over a second sheave in the upper 

block and off at F. 
It is required to find the mechanical advantage 

of this hoist; that is, the ratio of the weight W 
to the force at F. 

Solution. Applying the same method used in 

Example 1 shows 1 ft of slack in each of the three parts R} T, and P, or a total of 3 

ft which must be drawn off at F if W is lifted 1 ft by an external force. Therefore 

W 3 

F ~ I 
* These solutions assume that the ropes are parallel. 



WESTON DIFFERENTIAL PULLEY BLOCK 365 

Example 3. “ Luff on Luff.” Figure 13-7 shows a combination of two sets 
of pulley blocks, the rope F of the first set being made fast to the moving block of 

the second set. 

Solution. The mechanical advantage of each set is found as in the previous 

examples. Then the product of the two is the mechanical advantage of the combi¬ 

nation. The first set in this case has a mechanical 

Example 4. Spanish Burton. If the weight W (Fig. 13-8) is lifted 1 ft, a 

foot of slack is caused at both P and R. The foot at P is carried over to T; this, 

in turn, causes a foot of slack in both R and F. Then there is a total of 2 ft of slack 

in R which must be drawn over to F in addition to the 1 ft already given to F from 

T. Therefore, 3 ft must be taken up at F for every foot that W is lifted. Then the 

mechanical advantage is 3. 

13-4. Weston Differential Pulley Block. Figure 13-9 shows a chain 
hoist known as the Weston differential pulley block. The two upper 
sheaves A and B are fast to each other. The diameter of A is a little 
larger than the diameter of B and it is the ratio of these two diameters 
which governs the mechanical advantage. 

The diameter of the lower sheave C is usually a mean between the 
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diameters of the upper ones in order that the supporting chain may 
hang vertically. This feature is not of great importance, and the 
diameter of the lower sheave has no effect on the mechanical advantage. 

The chain is endless, passing over A, down at R, under C, up at P, 
around P, and hanging loose. The lifting force is applied at F. The 

sheaves are so shaped that the links of the chain fit 
into spaces provided for them to prevent slipping. 

The operation of the hoist may be seen from the 
following: 

Let Da represent the pitch diameter of the sheave 
Af Db the pitch diameter of the sheave B. Assume 
that the chain is drawn down at F fast enough to 
cause A to make one complete turn in a unit of time; 
that is, F has a speed of ttDa linear units. This 
would give an upward speed to the chain at R of 
7rDa linear units. Then, if B were not turning, the 
sheave C would roll up on P, its center rising at a 
speed equal to one-half the speed of the chain at R; 
that is, the center of the lower sheave, and there- 

7T D 
fore the weight W, would rise at a speed of —^ 

Fig. 13-9 
linear units. But at the same time that R is rolling 
C up on P the pulley B is turning at the same angu¬ 

lar speed as A, and therefore paying out chain at P at the rate of irDb 
linear units per unit of time. This causes C to roll down on R at a speed 

such that its center is lowered at a speed of —- linear units. The result- 
£ 

ant upward speed of the center of C, is therefore, 

IT Da 
~2~ 

7T Db ir{Da — Db) 

Since the speed of F is wDa the ratio of the speed of F to that of W is 

7T Da 2 Da 

7r(Da — Db) Da — Db 
2 

The speed ratio may be found graphically as shown in Fig. 13-10. 
From E lay off along the chain a distance V representing the velocity 

of E. Draw a line (shown dotted) from the end of this distance, to 
the center of the sheave. The length Vi intercepted on the line of the 

chain through Ei is the velocity of E\. Draw Vi downward at the left- 



INCLINED PLANE AND WEDGE 367 

hand side of the lower sheave and V upward at the right-hand side of 
the same sheave. Join the ends of these two lines as shown, getting F4, 
the resultant velocity of M. The figure also shows, at V2 and F3, the 

effects of V and Vi respectively, 
when assumed to act successively. 

13-5. Parallel Motion by Cords. 
Cords, wire ropes, or small wires 
are frequently used to compel long 
narrow pieces into parallel positions. 
Figure 13-11 shows one such arrange¬ 
ment often used to guide a straight- 

Fig. 13-10 Fig. 13-11 

edge on a drafting board. On the under side of the blade Ry in suitable 
recesses, are the four wheels, H, F, E, and G. The cord is attached to 
the board at D, passes around F and E on the blade, next around the 
wheels B and A on the board, then around H and G on the blade, and is 
attached to the board at C. A turnbuckle at T adjusts the tension in 
the cord. When the cord is clamped to the board at S the blade may be 
moved up or down, and it will remain parallel to its original position. 
The direction of the blade is adjusted by loosening the clamp S and 
turning the blade with the fingers. Usually the wheels H and F are on 
the same axis, as are also E and G, and overhang the edges of the board, 
and the cord crosses on the top surface of the blade. 

This is only one of several different ways of arranging the pulleys and 
cord, and perhaps not the best method, but it well illustrates the princi¬ 

ple involved. 
13-6. Inclined Plane and Wedge. The inclined plane and wedge 

will be considered only as mechanical elements for producing motion 
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or exerting force. In this sense they act essentially the same. In 
Pig. 13-12, P represents a wedge, or solid, whose lower surface mn is 
horizontal, resting on a horizontal surface XX and free to be moved 

along that surface. The upper surface 
mo is inclined at an angle with the hori¬ 
zontal. In Fig. 13-12 the back surface 
no is perpendicular to mn. S is a slide 
which may move up or down in the guides 
(?, the lower end being inclined or beveled 
at the same angle as the upper surface of 

^ P, on which it rests. Suppose that P is 
X moved to the left a distance mwii, to 

occupy the position shown by the dotted 
lines. It is evident that S is forced up a 

distance ddi. If the length b and height a of P are known, it is pos¬ 
sible to calculate the amount S will move for any known movement 
of P. Draw a vertical line mt meeting miOi at t. Then mt = ddi 
since they are sides of a parallelogram. The triangles m\mt and mxniOi 
are evidently similar. Therefore 

But 

mt mmi 

0\Ui mini 

and 

Therefore 

or 

Oini = on 

mt = ddi 

mini = mn 

ddi mm\ 

on mn 

17 on 
ddi = mmi X — = mmx tan omn 

mn 

or, in words, the distance the slider rises is equal to the distance the wedge 
moves multiplied by the ratio of the height of the wedge to its length. 

In Fig. 13-13 a wedge is shown in which the end no is not perpendicu¬ 
lar to mn. The same method of calculating the rise of the slider S 
would be used as in the previous case except that the vertical height ok is 
used in place of the length no, the shape of the back end of course 
having no effect on the motion of S. 
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The wedge in Fig. 13-14 is itself raised when pushed to the left, owing 
to its sliding upon the inclined stationary surface of K, and carries S 
up with it. It also gives an additional rise to S due to the slant of the 
surface mo. The resultant rise of S is, therefore, the sum of the two. 

It should be noticed that the above laws hold true only when the 
direction of motion of the slider S is perpendicular to the direction in 
which the wedge moves. 

13-7. Screws and Screw Threads. The effect of an inclined plane 
may be obtained by cutting a helical groove around a cylinder, fitting a 
mating member to the groove, and attaching, in some manner, the load 
to be moved to this mating member. The cylinder with the helical 
groove is called a bolt (Fig. 13-15) when used for fastening machine 
members together and a power screw (Fig. 13-17) when used for the 
moving of loads. The mating member is called the nut and may be 
square or hexagonal in shape as used on a bolt or may be the frame (S 
in Fig. 13-17) or base of the machine as in the screw jack shown in 
Fig. 13-27). The projecting part of the groove is known as the 
screw thread. One may consider the nut as the member to which the 
“ load ” is applied. The nut may move, as when the nut is tightened 
on a bolt, or the nut may be stationary and the screw move, as wThen a 
stud or cap screw is driven into the frame of a machine or when the 
screw of a jack is turned as the base remains stationary and the load is 

raised. 
The screw may be considered an inclined plane with the angle of 

inclination, called the lead angle, being the angle whose tangent equals 

Lead 

TT Dm 

where the lead is the distance advanced by the nut in one turn and Dm 
is the mean diameter of the outside and the bottom of the thread. 
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The outside thread diameter is the nominal diameter of the screw. 
The bottom diameter of the thread is called the root diameter. 

The threads may be cut with a right-hand helix as shown in Fig. 
13-15 or a left-hand helix as shown in Fig. 13-16. If the screw with the 
right-hand helix thread is turned in the direction of the arrow A in 

Fig. 13-15, the screw will move downward through the stationary nut 
or, if the screw cannot move endwise, the nut will be drawn up. The 
nut with the left-hand thread would need to be turned in the direction 
of the arrow B (Fig. 13-16) in order to move downward or to draw the 
nut up. If one were looking at the end of a right-hand screw and turn¬ 
ing it clockwise, it would move away from him, whereas a left-hand 
screw looked at endwise and turned counterclockwise would move 
away. 

The pitch of a thread is the axial distance in inches from one thread 
to the next thread. The pitch is the reciprocal of the number of 
threads per inch, which is the actual number of threads counted 
lengthwise of the screw per inch length of the screw. In designating 
thread sizes, the number of threads per inch is used. 

A screw may be single threaded (the pitch equals the lead) or multi¬ 
ple threaded where the lead is a multiple of the pitch (e.g., in a double- 
threaded screw the lead is equal to twice the pitch and in a triple- 
threaded screw the lead is equal to thrice the pitch). In Fig. 13-18, 
which shows a single thread, imagine the finger is placed on any point 
of the thread, as at A, and moved along the thread until it has gone 
once around the screw. It will come to the point C; that is, in moving 
around the screw, the finger has advanced along the screw a distance 
AC. On the double thread (Fig. 13-19), if the finger starts at A and 
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follows the thread once around, it will come to C, but this time there is a 
point D which lies between A and C. D is the point of the second or 
parallel thread. 

Single Thread Double Thread 

Fig. 13-18 Fig. 13-19 

13-8. Types of Threads. Figure 13-20 shows the sqpare thread 
which is the most efficient for power screws. Figure 13-21 shows the 
Acme thread which is also used in power screws where a nut split length- 

Fig. 13-20 Fig. 13-21 

wise is desirable for adjusting for wear. The buttress thread, also 
used on power screws, is shown in Fig. 13-22. This thread can be 
used for the transmission of power in one direction only. Figures 

Fig. 13-22 Fig. 13-23 

13-23, 13-24, and 13-25 show respectively the full V-thread, the 
modified V-thread, and the Whitworth V-thread, as used on screw 
fastenings and on screws for power transmission where the power to be 
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transmitted is very low. Since the efficiency of V-threads is lower than 
square threads, this type is desirable for fastenings so that the nut will 
not shake loose so easily. V-threads are also more easily fabricated. 
The modified V-thread has been adopted as standard in America. In 
England the Whitworth thread is used. 

Fig. 13-24 Fig. 13-25 

13-9. Relation between the Speed of a Screw or Nut and the Speed 
of a Point on the Wrench or Handle. In Fig. 13-26 suppose that the 
screw S is supported in a bearing. Collars H and B prevent it from 
moving endwise. The lead of the screw is P inches. S fits into a nut N 
which is free to slide along the guides G which also keep it from turning. 

A crank with a handle K is fast to the end of the screw, the center of K 
being at a distance of R inches from the axis of the screw. It is now 
required to find a method of determining the relation between the 
linear speed of the handle K and of the nut N. If the crank is given 
one complete turn it will, of course, turn the screw once and the nut 
will move along the guides a distance P inches. While the crank turns 
once the center of K moves over the circumference of a circle whose 
radius is R, therefore it moves over a distance 2irR inches. Therefore 

Linear speed of N _ P 

Linear speed of K 2wR 

Also, since the forces at the two points are inversely as the speeds, 
neglecting friction, 

Force at N _ 2itR 

Force at K P 
(2) 
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In Fig. 13-27, which shows an ordinary jack screw, the exact value of 
the speed ratio differs slightly from that expressed by equation 1. 
Here the point K at which the force is applied rises with the screw so 
that in making a complete turn the point K moves over a helix whose 
diameter is 2R and whose lead is equal to 
that of the screw. The formula for the 

length of a helix is ^2irP2 + P2 so that 
the actual speed ratio is 

■ 91 
Linear speed of IF P 

Linear speed of K V^irR2 -|- pz 
(3) 

Fig. 13-27 

The lead (P) is so small relative to R 

that the value V2ttR2 + P2 differs only 
very slightly from 2tR. Accordingly, al¬ 
though equation 3 is the correct one, equa¬ 
tion 1 is usually accurate enough for all 
practical purposes. 

13-10. Compound and Differential 
Screws. When two screws are placed 
one inside of the other, the outer screw with inside threads acting as 
a nut turning on the inner screw, a compound or differential screw 
results. If the threads are of the same “ hand ” but different pitch, 
the driven screw moves slowly and the combination is called a differen¬ 
tial screw. If the threads are of the opposite “ hand,” pitches equal or 

unequal, the driven screw 
moves rapidly and the com¬ 
bination is called a compound 
screw. Figure 13-28 (both 
screws with right-hand 
threads) is an illustration of 
a differential screw. A part 
S of the screw itself has a 
thread whose lead isP inches; 
it fits into a nut T which is a 

part of the stationary frame. The other end Si of the screw has a differ¬ 
ent thread, of lead Pi inches which fits the nut N. This nut may slide 
along the guides G but is held bj^ the guides from turning. As the 
screw is turned the motion of the nut is the resultant of the movement 
of the screw S through the nut T and of the nut N along Si. Suppose, 
for example, P = in. and Pi = ^ in., both screws being right- 
handed. If now the handle K is turned once right-handed, as seen 
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from the left, the whole screw moves along through T toward the right 
£ in., and, if it were not for the thread Si, N would move to the right 
^ in. At the same time, however, Si has drawn N back upon itself 
ts in. so that the net movement of N toward the right is \ in. — in. 
or ^ in. 

Now assume the screw to be a compound screw, with P = | in. 
right-hand and Pi — tw in* left-hand. One turn of the handle in the 
same direction as before will advance S through T % in. and at the same 
time carry N off Si ^ in., so that the net movement of N to the right 
is § + -fa in. or yf in. A device of the first sort may be used for obtain¬ 
ing a very small movement of the nut for one turn of the screw without 
the necessity of using a very fine thread. 

13-11. Examples on Velocity and Power of Screws. 

Example 5: In Fig. 13-29 suppose it is required to find the load W, which, sus¬ 

pended from the nut N, can be raised by a force of 60 lb applied at F. The screw 
has a lead of § in. Assume that the friction loss is 40 per 

cent. Let R — 20 in. 

Solution. While the screw makes one turn F moves over 
a distance 27r20 = 125.66 in. and N rises \ in. Therefore 

F X 125.66 in. = W X } in. 

Since 40 per cent is lost in friction the net force is 

0.60 X 60 = 36 lb 

Therefore 

36 X 125.66 = W X J in. 
or 

W = 9047.5 lb 

The same result would be obtained by substituting direct¬ 
ly in equation 2. 

Example 6. In the jack screw shown in Fig. 13-27, the lead of the screw is 

J in. R — 3 ft, 6 in. The force exerted at K is 100 lb. To find the weight W 
which could be lifted if friction were neglected. 

Solution. Equation 3 applies in this case in finding the speed ratio, but 
equation 1 will be very nearly correct. 

Speed of IF \ in. 100 

Speed of K = 2^42 = ~W 
Therefore 

IF = 2tt42 X 100 X 2 = 52,779 lb 

In any case such as this the loss by friction would be great and would have to be 

taken account of. 

Example 7. In Fig. 13-30, Pi = A in. right-hand; P2 = i in. right-hand. To 

find how many turns of the hand wheel are required to lower the slide i in., and to 

determine the direction the wheel must be'turned. 
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Solution. Since the outer screw is right-hand and has a lead of A in. one turn of 
the wheel right-handed as seen from above will lower the outer screw A in. At the 
same time, since the inner screw is also right-hand, this one turn of the wheel will 
draw the inner screw into the outer one f in. so that 

the resultant downward motion of the slide for one 

turn of the wheel is A in. — i in. = A in. There¬ 
fore, to lower it § in. the wheel must be turned right- 

handed as seen from above as many times as A is 
contained in J or 8 times. 

13-12. Rotation of Screw or Nut Caused 
by Axial Pressure. In the cases above con¬ 
sidered, the rotating force has been assumed 
to act on the screw or nut in a plane perpen¬ 
dicular to the axis of the screw. With a screw 
of large lead and relatively small diameter, 
so^that the angle which the helix makes with 
the axis of the screw is small, a force acting 
in the direction of the axis may have a component in the direction to 
cause rotation which is great enough to overcome the frictional resist¬ 
ance and other resistances to turning and thus cause either the screw 
or the nut to turn. This principle is made use of in small automatic 
drills and screwdrivers, in which axial pressure on the handle causes 
the tool to turn. Such action is not possible unless the helix angle is 
small, and the rotative component of the force relatively large. It is 
well known, however, that constant jarring will cause nuts to work 
loose, hence the necessity for cotter pins or double nuts, one serving 
as a check for the other. 

13-13. Screw Cutting in a Lathe. In cutting a screw thread in a 
lathe, the stock on which the thread is being cut turns at a speed such 
that it will have a surface speed suitable for the cutting tool. While 
the work is making one turn, the tool must be fed along in a direction 
parallel to the axis of the work a distance equal to the lead of the thread 
which is being cut. Figures 13-31 and 13-32 show one of the simplest 
methods of accomplishing this result. Figure 13-31 is the front view 
of the lathe and Fig. 13-32 the end view. The gears are lettered alike 
in both views. Many of the modern lathes use a much more elaborate 
system in gearing, but that shown in the figure serves to illustrate the 
principles and is easier to understand than the more complicated ones. 

In Fig. 13-31, W is the stock on which the thread is to be cut. This 
is clamped to the face plate by the dog so that both turn together. 
The face plate is fast to the spindle which is driven from the cone pulley 
either directly or through the back gears. On the opposite end of the 
spindle is the gear A driving gear B on the stud K through one or two 



Fig. 13-31 

Fig. 13-32 

. 1 
Assume that the lead of the thread to be cut on the blank is - part 

n 

of an inch and that the lead of the thread on the lead screw is - part of 
t 
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an inch. If the blank makes a turns in a unit of time, then the distance 

which the tool must move in that time must be a X - ; also if b repre- 
n 

sents the number of turns which the lead screw makes in the same unit 

of time, 5 X “ must equal the distance the tool moves. Therefore, 
t 

Therefore, 

1 7 1 
a X - = b X - 

n t 

1 

b n 

a = 1 

t 

Angular speed of lead screw 

A ngular speed of blank 

lead of thread which is being cut 

lead of thread on lead screw 
(4) 

Now, from the laws governing wheel trains, 

Angular speed of lead screw 

Angidar speed of blank 

teeth in A 

teeth in B 
X 

teeth in C 

teeth in D 

Therefore, 

Teeth in A 

Teeth in B 
X 

teeth in C 

teeth in D 

lead of thread which is being cut 

lead of thread on lead screw 
(5) 

In any particular lathe the teeth in gears A and B are known quan¬ 
tities and cannot be changed. 

The lead of the thread on the lead screw is also known. The gears 
C and D can be changed to give the desired speed to the lead screw, 
the idler E being adjusted to make proper connection between them. 
If the thread on the lead screw and that being cut are both right- 
hand or both left-hand, the lead screw must turn in the same direction 
as the blank. If one thread is right-hand and the other left-hand, the 
lead screw and the blank must turn in opposite directions. This is 
adjusted by the idle gears M and N. 

Example 8. In Figs. 13-31 and 13r-32, assume that the lead of the thread on the 

lead screw is % in. left-hand; gear A has 20 teeth; B, 30 teeth; C, 27 teeth; and D, 

54 teeth. To find the lead of the thread which is being cut on the blank. 

Solution. Substituting in equation 5, 

20 27 lead of thread being cut 

30 X 64 = | 
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Solving this equation gives lead of thread which is being cut as -J- in. That is, a screw 

of 8 threads per inch is being cut. 

To determine whether a right-hand or a left-hand thread is being cut the direc¬ 

tions may be followed through by putting on arrows. If this were done in the figure, 

the arrows would indicate that the blank and the lead screw are turning in the same 

direction; therefore, since the lead screw has a left-hand thread the thread which is 

being cut is left-hand. If the lever R were thrown up to bring both idle gears into 

use, the direction of the lead screw would be reversed and a right-hand thread would 

be produced. 

Example 9. Referring still to Figs. 13-31 and 13-32, assume that the lead screw 

and the gears A and B are the same as in Example 8. Let it be required to find the 

number of teeth in C and D to cut 20 threads per inch on the blank. 

Solution. Substituting in equation 5, 

20 teeth in C 

30 * teeth in D 

Hence 

Teeth in C 1 8 , 30 1 

Teeth in D ~ 20 X 3 X 20 ~ 5 

Then any practical-sized gears may be used at C and D provided D has five times 

as many teeth as C; as, for example, 100 teeth in D and 20 teeth in C; 

13-14. Worm and Wheel. A worm (see Art. 10-69) may be con¬ 
sidered as a screw and the worm wheel as the nut. 

One complete turn of a single-threaded worm will advance the 

wheel one tooth; that is, it will rotate the wheel ~ part of a revolution, 

where T represents the number of teeth in the wheel. One turn of 
a double-threaded worm will advance the wheel two 

2 
teeth or — part of a revolution. 

Again, if P represents the lead of the worm thread 
and D the pitch diameter of the worm wheel, one turn 

P 
of the worm will rotate the wheel — part of a revolu- 

7tD 

tion. Evidently this relation holds true regardless of 
whether the worm is single- or multiple-threaded. 

13-15. The Swash Plate. The apparatus shown in 

Fig 13-33 Fig. 13-33, known as a swash plate, is in reality a cylin¬ 
drical cam. It consists of an elliptical plate A set 

obliquely upon the shaft 8, by its rotation causing a sliding bar C to 
move up and down, in a line parallel to the axis of the shaft, in the 
guides D, the friction between the end of the bar and the plate being 
lessened by a small roller 0. When a roller is used, the motion of 
the bar C is approximately harmonic — the smaller the roller the 



RATCHET WHEEL 379 

closer the approximation. If a point is used in place of the roller, 
the motion is harmonic; this can be shown as follows. 

Since the bar C remains always parallel to the axis of the shaft, the 
path of the point 0, projected upon an imaginary plane through the 
lowest position of 0 and perpendicular to the shaft S} will be a circle, 
and the actual path of 0 on the plate A will be an ellipse. 

In Fig. 13-34 let eba represent the angular inclin¬ 
ation of the plate to the axis of the shaft, ah the axis 
of the shaft, eof the actual path of the point o on the 
plate, and the dotted circle erd the projection of this 
path upon a plane through e (the lowest position of o) 
perpendicular to the axis ab. 

Draw om perpendicular to ef, or perpendicular to the plane erd, 
and rn perpendicular to ed> the diameter of the circle erd. Join mn> 
and suppose the plate to rotate through an angle ear = 6, and thus to 
carry the point o through a vertical distance equal to or. Then 

Fig. 13-34 

or — mn — ab X —* 
ea 

-ab (“ ~ °-) 

= ab (l - — 
\ ea, 

— ab (1 — cos 6) 

This is the formula that was derived for harmonic motion. In this case 
ab represents the length of the equivalent crank, and is equal in length 
to one half of the stroke of the rod C. 

13-16. Intermittent Motion from Reciprocating Motion. A recipro¬ 
cating motion in one piece may cause an intermittent circular or recti¬ 
linear motion in another piece. It may be so arranged that one half of 
the reciprocating movement is suppressed and that the other half 
always produces motion in the same direction, giving the ratchet wheel; 
or the reciprocating piece may act on opposite sides of a toothed wheel 
alternately, and allow the teeth to pass one at a time for each half 
reciprocation, giving the different forms of escapements as applied in 
timepieces. 

13-17. Ratchet Wheel. A wheel, provided with suitable shaped 
pins or teeth, receiving an intermittent circular motion from some 
vibrating or reciprocating piece, is called a ratchet wheel. 

In Fig. 13-35, A represents the ratchet wheel turning upon the shaft 
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a; C is an oscillating lever carrying the detent, click, or catch B, which 
acts on the teeth of the wheel. The whole forms the three-bar linkage 

Fig. 13-35 

acb. When the arm C moves left-handed, 
the click B will push the wheel A before 
it through a space dependent upon the 
motion of C. When the arm moves back, 
the click will slide over the points of the 
teeth, and will be ready to push the wheel 
on its forward motion as before; in any 
case, the click is held against the wheel 
either by its weight or the action of a 
spring. In order that the arm C may pro¬ 
duce motion in the wheel A, its oscilla¬ 

tion must be at least sufficient to cause the wheel to advance one tooth. 
If, as often happens, the wheel A must be prevented from moving 

backward on the return of the click B, 
a fixed pawl, click, or detent, similar to 
B, turning on a fixed pin, is arranged to 
bear on the wheel, being held in place by 
its weight or a spring. Figure 13-35 
might be taken to represent a retaining 
pawl; then ac is a fixed link and the 
click B would prevent any right-handed 
motion of the wheel A. Figure 13-36 
shows a retaining pawl which would 
prevent rotation of the wheel A in either direction; such pawls 
are often used to retain pieces in definite adjusted positions. 

Fig. 13-36 

Fig. 13—37 

If the diameter of the wheel A (Fig. 
13-35) is increased indefinitely, it will 
become a rack which would then re¬ 
ceive an intermittent translation on 
the vibration of the arm C; a retain¬ 
ing pawl might be required also to pre¬ 
vent a backward motion of the rack. 

A click may be arranged to push, 
as in Fig. 13-35, or to pull, as in Fig. 
13-42. In order that a click or pawl 
may retain its hold on the tooth of a 
ratchet wheel, the common normal to 
the acting surfaces of the click and 

tooth, or pawl and tooth, must pass inside of the axis of a pushing 
click or pawl, as shown on the lowest click, Fig. 13-37, and outside 
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the axis of the pulling click or pawl; the normal might pass through 
the axis, but the pawl would be more securely held if the normal 
is located according to the above rule, which also secures the easy 
falling of the pawl over the points of the teeth. It is sometimes neces¬ 
sary, or more convenient, to place the click-actuating level on an axis 
different from that of the ratchet wheel; then care must be taken that 
in all positions of the click the common normal occupies the proper 
position; it will generally be sufficient to consider only the extreme 
positions of the pawl in any case. Since, when the lever vibrates on 
the axis of the wheel, the common normal always makes the same angle 
with it in all positions, thus securing a good bearing of the pawl on the 
tooth, it is best to use this construction when practicable. 

The effective stroke of a click or pawl is the space through which the 
ratchet wheel is driven for each forward stroke of the arm. The total 
stroke of the arm should exceed the effective stroke by an amount 
sufficient to allow the click to fall freely into place. 

A common example of the application of the click and ratchet wheel 
may be seen in several forms of ratchet drills used to drill metals by 
hand. As examples of the retaining pawl and wheel we have capstans 
and windlasses, where it is applied to prevent the recoil of the drum or 
barrel, for which purpose it is also applied in clocks. 

It is sometimes desirable to hold a drum at shorter intervals than 
would correspond to the movement of one tooth of the ratchet wheel; 
several equal pawls may be used. Figure 13-37 shows three pawls, 
attached by pins c, ch c2 to the fixed piece C, and so proportioned that 
they come into action alternately. Thus, when the wheel A has moved 
an amount corresponding to one third of a tooth, the pawl Bi will be 
in contact with the tooth bi; after the next one-third movement, B2 
will be in contact with b2; then, after the remaining one-third move¬ 
ment, B will come into contact with the tooth after b; and so on. This 
arrangement enables us to obtain a slight motion and at the same time 
use comparatively large and strong teeth on the wheel in place of small 
weak ones. The piece C might also be used as a driving arm, and the 
wheel could then be moved through a space less than that of a tooth. 
The three pawls might be made of different lengths and placed side by 
side on one pin, as ch in which case a wide wheel would be necessary; 
the number of pawls required would be fixed by the conditions. 

13-18. Reversible Click or Pawl* The usual form of the teeth of a 
ratchet wheel is that given in Fig. 13-37, which admits of motion in 
only one direction; but in feed mechanisms, such as those on shapers 
and planers, it is often necessary to utilize a click and ratchet wheel that 

will drive in either direction. Such an arrangement is shown in Fig. 



382 MISCELLANEOUS MECHANISMS 

13-38, where the wheel A has radial teeth, and the click, which is made 
symmetrical, can occupy either of the positions B or B\ thus giving to 
A a right- or a left-handed motion. In order that the click B may be 

held firmly against the ratchet wheel A in all posi¬ 
tions of the arm C, its pivot c, after passing through 
the arm, is provided with a small triangular piece 
(shown dotted); this piece turning with B has a 
flat-ended presser, always urged upward by a spring 
(also shown dotted) bearing against the lower angle 
opposite Bj thus urging the click toward the wheel; 
a similar action takes place when the click is in 
the dotted position B'. When the click is placed 
in line with the arm (7, it is held in position by the 
side of the triangle parallel to the face of the click; 
thus this simple contrivance serves to hold the 

click so as to drive in either direction, and also to retain it in posi¬ 
tion when thrown out of gear. 

Since for different classes of work a change in the “ feed ” is desired, 
the arrangement must be such that the motion of the ratchet wheel 
A (Fig. 13-38), which produces the feed, can be adjusted. This is 
often done by changing the swing of the arm <7, which is usually actu¬ 
ated by a rod attached at its free end. The other end of the rod is 
attached to a vibrating lever which has a definite angular movement at 
the proper time for the feed to occur, and is provided with a T-slot in 
which the pivot for the rod can be adjusted by means of a thumb screw 
and nut. By varying the distance of the nut from the center of motion 
of the lever, the swing of the arm C can be regulated; to reverse 
the feed, if it occurs in the same position as before, the click must be 
reversed and the nut moved to the other side of the center of swing 
of the lever. 

Figures 13-39 and 13-40 show other methods of adjusting the motion 
of the ratchet wheel. In Fig. 13-39, which shows a form of feed mecha¬ 
nism used by Sir J. Whitworth in his planing machine, C is an arm 
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carrying the click B, and swinging loosely on the shaft a fixed to the 
ratchet wheel A. The wheel E, also turning loosely on the shaft a, and 
placed just behind the arm Cy has a definite angular motion sufficient to 
produce the coarsest feed desired; its concentric slot m is provided with 
two adjustable pins ee, held in place by nuts at their back ends, and 
enclosing the lever Cy but not of sufficient length to reach the click B. 
When the pins are placed at the ends of the slot, no motion will occur in 
the arm C; but when e and e are placed as near as possible to each other, 
confining the arm C between them, all the motion of E will be given 
to the arm <7, thus producing the greatest feed; any other positions of 
the pins will give motions between the above limits, and the adjust¬ 
ment may be made to suit each case. 

In Fig. 13-40, the stationary shaft ay made fast to the frame of the 
machine at my carries the vibrating arm (7, ratchet wheel A, and 
adjustable shield S; the two former turn loosely on the shaft, while the 
latter is made fast to it by means of a nut n, the hole in S being made 
smaller than that in A to provide a shoulder against which S is held 
by the nut. The arm C carries a pawl B of a thickness equal to that of 
the wheel plus that of the shield S; the extreme positions of this pawl 
are shown by dotted lines at Bf and B". The teeth of the wheel A 
may be made of such shape as to gear with another wheel operating the 
feed mechanism; or another wheel, gearing with the feed mechanism, 
might be made fast to the back of A, if more convenient, and then the 
arm C would be placed back of this second wheel. 

If we suppose the lever to be in its extreme left position, the click will 
be at B" resting upon the face of the shield S, which projects beyond the 
points of the teeth of A; and in the right-handed motion of the lever the 
click will be carried by the shield S until it reaches the position By where 
it will leave the shield and come in contact with the tooth 6, which it will 
push to 6' in the remainder of the swing. In the backward swing of 
the lever the click will be drawn over the teeth of the wheel and face of 
the shield to the position B". In the position of the shield shown in the 
figure a feed corresponding to three teeth of the wheel A is produced; 
by turning the shield to the left one, two, or three teeth, a feed of four, 
five, or six teeth might be obtained; by turning it to the right, the feed 
could be diminished, the shield S usually being made large enough to 
consume the entire swing of the arjn C. This form of feed mechanism 
has often been used in slotting machines, where, as well as in Figs. 
13-39 and 13-40, the click is usually held to its work by gravity. 

13-19. Double-Acting Click. This device consists of two clicks 
making alternate strokes to produce a nearly continuous motion of the. 
ratchet wheel which they drive, that motion being intermittent only 
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at the instant of reversal of the movement of the clicks. In Fig. 13-41 
the clicks act by pushing, and in Fig. 13-42 by pulling; the former 
arrangement is generally best adapted where much strength is required, 

as in windlasses. 

Fig. 13-41 

Each single stroke of the click arms cdc' (Fig. 13-41) advances the 
ratchet wheel through one half of its pitch or some multiple of its half¬ 
pitch. To make this evident, suppose that the double click is to ad¬ 
vance the ratchet wheel one tooth for each double stroke of the click 
arms, the arms being shown in their midstroke position in the figure. 
Now when the click be is beginning its forward stroke, the click b'c' has 
just completed its forward stroke and is beginning its backward stroke; 
during the forward stroke of be the ratchet wheel will be advanced one- 

i 

Fig. 13-42 

half a tooth; the click b'c'y being at 
the same time drawn back one-half 
a tooth, will fall into position 
ready to drive its tooth in the re¬ 
maining single stroke of the click 
arms, which are made equal in 
length. By the same reasoning it 
may be seen that the wheel can be 
moved ahead some whole number 
of teeth for each double stroke of 
the click arms. 

In Fig. 13-41 let the axis a and dimensions of the ratchet wheel be 
given, also its pitch circle BB, which is located halfway between the 
tips and roots of the teeth. Draw any convenient radius ab, and from 
it lay off the angle bae equal to the mean obliquity of action of the clicks, 
that is, the angle that the lines of action of the clicks at midstroke are 
to make with the tangent to the pitch circle through the points of action. 
On ae let fall the perpendicular be, and with the radius ae describe the 
circle CC: this is the base circle, to which the lines of action of the clicks 
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should be tangent. Lay off the angle eaf equal to an odd number of 
times the half-pitch angle} and through the points e and /, on the base 
circle, draw two tangents cutting each other at h. Draw hd bisecting 
the angle at h, and choose any convenient point in it, as d, for the center 
of the rocking shaft, to carry the click arms. From d let fall the perpen¬ 
diculars dc and dcf on the tangents hec eaidfhc' respectively; then c and 
c' will be the positions of the click pins, and dc and dcf the center lines 
of the click arms at midstroke. Let b and b' be the points where ce and 
c'f cut the pitch circle; then cb and c'b' will be the lengths of the clicks. 
The effective stroke of each click will be equal to half the pitch as meas¬ 
ured on the base circle CC (or some whole number of times this half¬ 
pitch), and the total stroke must be enough greater to make the clicks 
clear the teeth and drop well into place. 

In Fig. 13-42 the clicks pull instead of push, the obliquity of action is 
zerq, and the base circle and pitch circle become one, the points b, e, 
and / (Fig. 13-41) becoming e and / (Fig. 13-42). In all other 
respects the construction is the same as when the clicks act by pushing, 
and the different points are lettered the same as in Fig. 13-41. 

Fig. 13-43 

Since springs are likely to lose their elasticity or become broken after 
being in use some time, it is often desirable to get along without apply¬ 
ing them to keep clicks in position. Figure 13-43 shows in elevation a 
mechanism where no springs are required to keep the clicks in place, it 
being used in some forms of lawn mowers to connect the wheels to the 
revolving cutter when the mower# is pushed forward, and to allow a 
free backward motion of the mower while the cutter still revolves. The 
ratchet A is usually made on the inside of the wheels carrying the 
mower, and the piece C, turning on the same axis as A, carries the three 
equidistant pawls or clicks B, shaped to move in the cavities provided 

for them. In any position of C, at least one of the clicks will be held in 
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contact with A by the action of gravity, and any motion of A in the 
direction of the arrow will be given to the piece C. Here the ratchet 
wheel drives the click, ac being the actuated click lever. The piece C 
is sometimes the driver; then any left-handed motion of C will be given 
to A, and the right-handed motion will simply cause the clicks to 
slide over the teeth of A. The clicks B are usually held in place by a 
cap attached to C. 

Figure 13-44 shows a form of click which is always thrown into action 
when a left-handed rotation is given to its arm C; any motion of the 
wheel A left-handed will immediately throw the click out of action. 
The wheel A carries a projecting hub d, over which a spring D is so 
fitted as to move with slight friction. One end of this spring passes 
between two pins, e, placed upon an arm attached to the click B. 
When the arm C is turned left-handed, the wheel A and the spring D 
being stationary, the click B will be thrown toward the wheel by the 
action of the spring on the pin e. The motion of the wheel A will be 
equal to that of the arm C, minus the motion of C necessary to throw 
the click into gear. Similarly, when A turns left-handed, the click B is 
thrown out of gear. This mechanism is employed in some forms of 
spinning mules to actuate the spindles when winding on the spun yarn. 

Figure 13-45 shows a friction catch B working in a V-shaped groove 
in the wheel A, as shown in section A 'B'. Here B acts as a retaining 
click, and prevents any right-handed motion of A; its face is circular 
in outline, the center being located at d, a little above the axis c. A 
similarly shaped catch might be used in place of an actuating click to 
cause motion of A. 

13-20. Friction Catch. Various forms of catches depending upon 
friction are often used in place of clicks; these catches usually act upon 
the face of the wheel or in a suitably formed groove cut in the face. 
Friction catches have the advantage of being noiseless and allowing any 
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motion of the wheel, as they can take hold at any point; they have the 
disadvantage, however, of slipping when worn, and of getting out of 
order. 

Figure 13-46 shows four catches like B (Fig. 13-45) applied to drive 
an annular ring A in the direction indicated by the arrow. When the 
piece c is turned right-handed, the catches B are thrown against the 
inside b of the annular ring by means of the four springs shown; when 
the motion of c is stopped, the pieces B are pushed, by the action of 6, 
toward the springs which slightly press them against the ring and 
hold them in readiness to grip again when c moves right-handed. Thus 
an oscillation of the piece c might cause continuous rotation of the 
wheel Af provided a flywheel is applied to A to keep it going while 
c is being moved back. The annular ring A is fast to a disk carried 
by the shaft a; the piece c turning loosely on a has a collar to keep it 
in position lengthwise of the shaft. 

4 

The nipping lever shown in Fig. 13-47 is another application of the 
friction catch. A loose ring surrounds the wheel A; a friction catch 
B having a hollow face works in a pocket in the ring and is pivoted 
at c. On applying a force at the end of the catch B in the direction 
of the arrow, the hollow face of the catch will “ nip ” the wheel at b, 
and cause the ring to bear tightly against the left-hand part of the cir¬ 
cumference of the wheel; the friction thus set up will cause the catch, 
ring, and wheel to move together as one piece. The greater the pull 
applied at the end of the catch the greater will be the friction, as the 
friction is proportional to the pressure; thus the amount of friction 
developed will depend upon the resistance to motion of A. Upon 
reversing the force at the end of the catch, the hollow face of the catch 
will be drawn away from the face vof A, and the rounding top part 
of the catch, coming in contact with the top of the cavity in the ring, 
will cause the ring to slide back upon the disk. An upward motion of 
the click end will again cause the wheel A to move forward, and thus 

the action is the same as in a ratchet and wheel. 
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Figure 13-48 shows, in section, a device which has been applied to 
actuate sewing machines in place of the common crank. Two such 
mechanisms were used, one to rotate the shaft of the machine on a 
downward tip of the treadle and the other to act during the upward tip, 
the treadle rods being attached to the projections of the pieces B. The 
mechanism shown in the figure acts upon the shaft during the down¬ 

ward motion of the projection B as shown 
by the arrow. 

The piece C, containing an annular 
groove, is made fast to the shaft a, the sides 
of this groove being turned circular and con¬ 
centric with the shaft. The piece B, hav¬ 
ing a projecting hub fitting loosely on the 
inner surface of the groove in (7, is placed 
over the open groove, and is held in place 
by a collar on the shaft. The hub on the 
piece B, and the piece (7, are shown in sec¬ 
tion. The friction catch D, working in the 

groove, is fitted over the hub of B, the hole in D being elongated in 
the direction ab so that D can move slightly upon the hub and between 
the two pins e fast in the piece B. A cylindrical roller c is placed in the 
wedge-shaped space between the outer side of the groove and the piece 
Z), a spring always actuating this roller in a direction opposite to that 
of the arrow, or toward the narrower part of the space. 

Now when the piece B is turned in the direction of the arrow by a 
downward stroke of the treadle rod, it will move the piece D with it by 
means of the pins e; at the same time the roller c will move into the 
narrow part of the wedge-shaped space between C and Z>, and cause 
binding between the pieces D and C at b and at the surface of the roller. 
The friction at b thus set up will cause the motion of D to be given to 
C. On the upward motion of the projection B the roller will be moved 
to the large part of its space by the action of the piece C revolving with 
the shaft combined with that of the backward movement of D) thus 
releasing the pressure at b and allowing C to move freely onward. 
The other catch would be made just the reverse of this one, and would 
act on an upward movement of the treadle rod. 

Another form of friction catch, sometimes used in gang saws to secure 
the advance of the timber for each stroke of the saw, and called the 
silent feed, is shown in Fig. 13-49. 

The saddle block B, which rests upon the outer rim of the annular 
wheel A, carries the lever C turning upon the pin c. The block D, 
which fits the inner rim of the wheel, is carried by the lever C, and is 
securely held to its lower end by the pin d on which D can freely turn. 



MASKED WHEELS 389 

When the pieces occupy the positions shown in the figure, a small space 
exists between the piece D and the inside of the rim A. 

The upper end of the lever C has a reciprocating motion imparted to 
it by means of the rod E. The oscillation of the lever about the pin c 
is limited by the stops e and G carried by the saddle block B. When 
the rod E is moved in the direction indicated by the arrow, the lever 
turning on c will cause the block D to approach B} and thus nip the rim 
at a and b; and any further motion of C will be given to the wheel A. 
When E is moved in the opposite direction the grip will first be loosened, 
and the lever striking against the stop e will cause the combination to 
slide freely back on the rim A. The amount of movement given to the 
wheel can be regulated by changing the stroke of the rod E by an 
arrangement similar to that described in connection with the reversible 
click, Art. 13-18. The stop G can be adjusted by means of the screw F 
to prevent the oscillation of the lever upon its center c, thus throw¬ 
ing the grip out of action. The saddle block B then merely slides back 
and forth on the rim, the action being the same as that obtained by 
throwing the ordinary click out of gear. 

13-21. Masked Wheels. It is sometimes required that certain 
strokes of the click-actuating lever shall remain inoperative upon the 
ratchet wheel. Such arrangements are made 
use of in numbering machines where it is desired 
to print the same number twice in succession; 
they are called masked wheels. 

Figure 13-50, taken from a model, illustrates 
the action of a masked wheel; the pin wheel D 
represents the first ratchet wheel, and is fast to 
the axis a; the second wheel A has its teeth ar¬ 
ranged in pairs, every alternate tooth being cut 
deeper, and it turns loosely on the axis a. The 
click B is so made that one of its acting sur¬ 
faces, i, bears against the pins e of the wheel D, 
while the other, g, is placed to clear the pins and yet bear upon the 
teeth of A, the wheel A being so located as to permit this. 

If now we suppose the lever C to vibrate through an angle sufficient 
to move either wheel along one tooth, both having the same number, it 
will be noticed that, when the projecting piece g is resting in a shallow 
tooth of the wheel A, the acting surface i will be retained too far from 
the axis to act upon the tooth e, and thus this vibration of the lever will 
have no effect upon the pin wheel D, whereas, when the piece g rests in a 
deep tooth, as b', the click will be allowed to drop to bring the surface i 
into action with the pin e'. 

In the figure the click B has just pushed the tooth e' into its present 

B 
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position, the projection g having rested in the deep tooth bf of the wheel 
A; on moving back, g has slipped into the shallow tooth 6, and thus the 
next stroke of the lever and click will remain inoperative on the wheel 
D} which advances but one tooth for every two complete oscillations of 
the lever C. 

Both wheels should be provided with retaining pawls, one of which, 
p, is shown. This form of pawl, consisting of a roller p turning about 
a pivot carried by the spring s, attached to the frame carrying the mech¬ 
anism, is often used in connection with pin wheels, as by rolling between 
the teeth it always retains them in the same position relative to the axis 
of the roller; a triangular-pointed pawl which also passes between the 
pins is sometimes substituted for the roller. 

The pins of the wheel D might be replaced by teeth so made that their 
points would be just inside of the bottoms of the shallow teeth of A. A 
wide pawl would then be used; when it rested in a shallow tooth of A 
it would remain inoperative on D, and when it rested in a deep tooth 
it would come in contact with the adjacent tooth of D and push it along. 

So long as the click B and the wheels have the proper relative motion 
it makes no difference which we consider as fixed, as the action will be 

the same whether we consider the axis of the wheels 
as fixed and the click to move, or the click to be 
fixed and the axis to have the proper relative motion 
in regard to it. The latter method is made use of 
in some forms of numbering machines. 

13-22. Counter Mechanism. Figure 13-51 shows 
the mechanism of a counter used to record the num¬ 
ber of double strokes made by a pump, the revo¬ 
lutions made by a steam engine, paddle, propeller, 
or other shaft. Two views are given in the figure, 
which represents a counter capable of recording rev¬ 
olutions from 1 to 999; if it is desired to record 
higher numbers, it will only be necessary to add 

more wheels, such as A. A plate, having a long slot or series of open¬ 
ings opposite the figures 000, is placed over the wheels, thus allowing 
the numbers to be visible only as they come under the slot or openings. 

The number wheels A, Ai, A2 are arranged to turn loosely side by 
side upon the small shaft a, and are provided with a series of ten teeth 
cut into one side of their faces; upon the other side a single notch, 
having the same depth and contour, is cut opposite the zero tooth on the 
first side. This single notch can be omitted on the last wheel A2. 
The numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are printed upon the faces of the 
wheels in proper relative positions to the teeth t. 
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Two arms C are arranged to vibrate upon the shaft a of the number 
wheels, and carry at their outer ends the pin c, on which a series of 
clicks, b} bij and b2, are arranged, collars placed between them serving 
to keep them in position on the pin. The arms are made to vibrate 
through an angle sufficient to advance the wheels one tooth, i.e., one 
tenth of a turn; their position after advancing a tooth is shown by 
dotted lines in the side view. A common method of obtaining this 
vibration is to attach a rod at r, one end of the pin c, this rod to be so 
attached at its other end to the machne as to cause the required back¬ 
ward and forward vibrations of the lever C for each double stroke or 
revolution that the counter is to record. 

The click b is narrow, and works upon the toothed edge of the first 
wheel A, advancing it one tooth for every double stroke of the arm c. 
The remaining clicks 61 and b2 are made broad; they work on the 
toqthed edges of Ai and A2, as well as on the notched rims of A and Ai, 
respectively. When the notches n and m come under the clicks 61 and 
b2 the clicks will be allowed to fall and act on the toothed parts of A\ 
and A2; but in any other positions of the notches the clicks will remain 
inoperative upon the wheel, simply riding upon the smooth rims of A 
and Aly which keep the clicks out of action. Each wheel is provided 
with a retaining spring s to keep it in proper position. 

The wheels having been placed in the position shown in the figure, the 
reading being 000, the action is as follows: The click b moves the 
wheel A along one tooth for each double stroke of the arm C, the clicks 
bi and b2 remaining inoperative on A\ and A2; when the figure 9 reaches 
the slot, or the position now occupied by 0, the notch m will allow the 
click 61 to fall into the tooth 1 of the wheel Ah and the next forward 
stroke of the arm will advance both the wheels A and A\, giving the 
reading 10; the notch n having now moved along, the click 61 will 
remain inoperative until the reading is 19, when bi will again come into 
action and advance Ai one tooth, giving the reading 20; and so on up 
to 90, when the notch m comes under the click b2. To prevent the click 
62 from acting on the next forward stroke of the arm, which would 
make the reading 101 instead of 91, as it should be, a small strip is 
fastened firmly to the end of the click b2, its free end resting upon the 
click 61. This strip prevents the click b2 from acting until the click bi 
falls; this occurs when the reading is 99. On the next forward stroke 
the clicks 61 and b2 act, thus giving the reading 100. As the strip merely 
rests upon bh it cannot prevent its action at any time. If another wheel 
were added, its click would require a strip resting on the end of &2. 
A substitute for these strips might be obtained by making the wheel A 
fast to the shaft a, and allowing the remaining wheels to turn loose upon 



392 MISCELLANEOUS MECHANISMS 

it, thin disks, having the same contour as the notched edge of the wheel 
Ay being placed between the wheels AiA2, A2A3y and so on, and made 
fast to the shaft, the notches all being placed opposite n. Thus the 
edges of the disks would keep the clicks b2, b3) and so on, out of action, 
except when the figure 9 of the wheel A is opposite the slot, and the 
notches m, and so on, are in proper position. A simpler form of counter 
will be described in Art. 13-23. 

13-23. Intermittent Motion from Continuous Motion. The exam¬ 
ples of intermittent motion thus far considered have been those in which 
a uniform reciprocating motion in one piece gives an intermittent 
circular or rectilinear motion to another, the click being the driver 
and the wheel the follower. 

It is often required that a uniform circular motion of the driver shall 
produce an intermittent circular or rectilinear motion of the follower. 
The following examples give some solutions of the problem: 

Figure 13-52 shows a combination by which the toothed wheel A is 
moved in the direction of the arrow, one tooth for every complete turn 
of the shaft d, the pawl B retaining the wheel in position when the tooth 
t on the shaft d is out of action. The stationary link adc forms the 
frame, and provides bearings for the shafts d and o, and a pin c for the 
pawl B. The arm c, placed by the side of the tooth upon the shaft, is 
arranged to clear the wheel A in its motion, to lift the pawl B at the 
time when the tooth t comes into action with the wheel, and to drop the 
pawl when the action of t ceases, that is, when the wheel has been 
advanced one tooth. This is accomplished by attaching the piece n to 
the pawl, its contour in the raised position of the pawl being an arc of a 
circle about the center of the shaft d; its length is arranged to suit the 
above requirements. When the tooth t comes in contact with the 
wheel, the arm c, striking the piece n, raises the pawl (which is held in 
position by the spring s), and retains it in the raised position until the 
tooth t is ready to leave the wheel, when e, passing off from the end of n, 
allows the pawl to drop. 

In Fig. 13-53 the wheel A makes one third of a revolution for every 
turn of the wheel 6c, its period of rest being about one-half the period of 
revolution of be. If we suppose A to be the follower, and to turn right- 
handed while the driver be turns left-handed, one of the round pins 6 is 
just about to push ahead the long tooth of A, the circular retaining 
sector c being in such a position as to follow a right-handed motion of A. 
The first pin slides down the long tooth, and the other pins pass into and 
gear with the teeth 6', the last pin passing off on the long tooth e, when 
the sector c will come in contact with the arc c', and retain the wheel A 
until the wheel be again reaches its present position. 
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Figure 13-54 is a diagram of a mechanism known as a Geneva wheel. 
The wheel A makes one sixth of a revolution for one turn of the driver 
ac, the pin b working in the slots b' causing the motion of A; the circular 
portion c of the driver, coming in contact with the corresponding cir¬ 
cular hollows c', retains A in position when the tooth b is out of action. 
The wheel a is cut away just back of the pin b to provide clearance for 
the wheel A in its motion. 

The wheels may be so designed that the center line of the slot is tan¬ 
gent to the pin at the time the pin is first entering the slot, thus enabling 
the driver to start the follower with a minimum of shock. If one of the 
slots, as b'j is closed up, it will be found that the shaft a can make only 
a little over five and one-half revolutions in either direction before the 
pin b strikes the closed slot. This mechanism, when so modified, has 
been applied to watches to prevent overwinding, and is called the 
Geneva stop, the wheel a being so attached to the spring shaft as to 
turn with it, while A turns on an axis d in the spring barrel. The 
number of slots in A depends upon the number of times it is desired to 
turn the spring shaft. 

While A is in motion the mechanism is equivalent to the swinging 
block linkage discussed in Chapter VI. 

By placing another pin opposite b in the wheel ac, as shown by dotted 
lines, and providing the necessary clearance, the wheel A could be 
moved through one sixth of a turn for every half turn of ac. 

A simple type of counter extensively used on water meters is shown 
in Fig. 13-55. It consists of a series of wheels A, B) (7, mounted side by 
side and turning loosely on the shaft S; or the first wheel to the right 
may be fast to the shaft and all the remaining wheels loose upon it. 
Each wheel is numbered on its face as in Fig. 13-51, and it is provided, 
as shown, that the middle row of figures appears in a suitable slot in the 
face of the counter. The first wheel A is attached to the worm wheel E, 
having twenty teeth and being driven by the worm F geared to turn 
twice for one turn of the counter driving shaft. 

On a parallel shaft T loose pinions D are arranged between each 
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pair of wheels. Each pinion is supplied with six teeth on its left side 
extending over a little more than one-half its face and with three teeth, 
each alternate tooth being cut away, for the remainder of the face, as 
clearly shown in the sectional elevations. The middle elevation 
(Fig. 13-55) shows a view of the wheel B from the right of the line ab 
with the pinion D sectioned on the line cd. The right elevation shows 

a view of the wheel A from the left of the line ab with the pinion D 
sectioned on the line cd. The first wheel A, and all others except the 
last, at the left, have on their left sides a double tooth (?, which is 
arranged to come in contact with the six-tooth portion of the pinion; 
the space between these teeth is extended through the brass plate which 
forms the left side of the number ring whose periphery H acts as a stop 
for the three-tooth portion of the pinion, as clearly shown in the figure 
to the right. Similarly on the right side of each wheel, except the first, 
is placed a wheel of twenty teeth gearing with the six-tooth part of the 
pinion, as shown in the middle figure. When the digit 9 on any wheel, 
except the one at the left, comes under the slot, the double tooth G is 
ready to come in contact with the pinion; as the digit 9 passes under 
the slot the tooth G starts the pinion, which is then free to make one 
third of a turn and again become locked by the periphery H. Thus any 
wheel to the left receives one tenth of a turn for every passage of the 
digit 9 on the wheel to its right. In the figure the reading 329 will 
change to 330 on the passing of the digit 9. The counter can be made to 
record oscillations by supplying its actuating shaft with a ten-tooth 
ratchet, arranged with a click to move one tooth for each double 
oscillation. 

Figures 13-56 and 13-57 show two methods of advancing the wheels 
A through a space corresponding to one tooth during a small part of a 
revolution of the shafts c; in this case the shafts are at right angles to 
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each other. In Fig. 13-56 a raised circular ring with a small spiral part 
b attached to a disk is made use of; the circular part of the ring retains 
the wheel in position, and the spiral part gives it its motion. In 
Fig. 13-57 the disk carried by the shaft cc has a part of its edge bent 

Fig. 13-56 Fig. 13-57 

helically at b; this helical part gives motion to the wheel, and the 
remaining part of the disk edge retains the wheel in position. By 
lining a regular spiral, in Fig. 13-56, and one turn of a helix, in Fig. 
13-57, the wheels A could be made to move uniformly through the 
space of one tooth during a 
uniform revolution of the 
shafts c. 

In Fig. 13-58 the wheel 
A is arranged to turn the 
wheel B, on a shaft at 
right angles to that of A, 
through one half of a turn 
while it turns one sixth of 
a turn, and to lock B dur¬ 
ing the remaining five 
sixths of the turn. 

Figure 13-59 illustrates 
the star wheel. The wheel 
A turns through a space 
corresponding to one tooth 
for each revolution of the 
arm carrying the pin b and turning on the shaft c. The pin b is often 
stationary, and the star wheel is moved past it; the action is then 
evidently the same, as the pin and wheel have the same relative mo¬ 
tion in regard to each other during the time of action. The star wheel 
is often used on moving parts of machines to actuate some feed mech¬ 
anism, as may be seen in cylinder-boring machines on the facing 
attachment and in spinning machinery. 

13-24. Locking Devices. The principle of the slotted sliding bar 
combined with that of the Geneva stop is applied in the shipper mecha- 
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nism shown in Fig. 13-60, often used on machines where the motion is 
automatically reversed. The shipper bar B slides in the piece CCy 
which also1 provides a pivot a for the weighted lever wab. The end 
of the lever b opposite the weight w carries a pin which works in the 
grooved lug $ on the shipper bar. In the present position of the pieces, 
the pin b is in the upper part of the slot, and the weight w, tending 
to fall under the action of gravity, holds it there, the shipper being thus 
effectually locked in its present position. If now the lever is turned 

left-handed about its axis a until the weight 
w is just a little to the left of a, gravity will 
carry the weight and lever into the dotted 
position shown, where it will be locked until 
the lever is turned right-handed. The prin¬ 
ciple of using a weight to complete the motion 

is very convenient, as the part of the machine actuating the shipper 
often stops before the belt is carried to the wheel which produces 
the reverse motion, and the machine is thus stopped. The motion 
can always be made sufficient to raise a weighted lever, as shown above, 
and the weight will, in falling, complete the motion of the shipper. 

Fig. 13-61 Fig. 13-62 

The device shown in Fig. 13-61, of which there may be many forms, 
serves to retain a wheel A in definite adjusted positions, its use being 
the same as that of the retaining pawl shown in Fig. 13-36. The wheels 
B and A turn on the shafts c and a, respectively, carried by the link C, 
which is shown dotted, as it has been cut away in taking the section. 
Two positions of the wheel B will allow the teeth 6 of A to pass freely 
through its slotted opening; any other position effectually locks the 
wheel A. The shape of the slot in 13 and the teeth of A are clearly 
shown in the figure. 

Figure 13-62 shows another device for locking the wheel A, the teeth 
of which are round pins; but it is necessary to turn B once to pass a 

Fig. 13-60 
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tooth of A. If we suppose the wheel A under the influence of a spring 
which tends to turn it right-handed, and then turn B uniformly either 
right- or left-handed, the wheel A will advance one tooth for each com¬ 
plete turn of B, a pin first slipping into the groove on the left and leaving 
it when the groove opens toward the right, the next pin then coming 
against the circular part of B opposite the groove. It will be noticed 
that, although there are only six pins on the wheel A, yet there are 
twelve positions in which A can be locked, as a tooth may be in the 
bottom of the groove or two teeth may be bearing against the circular 
outside of B. Devices similar in principle to those shown in Figs. 
13-61 and 13-62 are often used to adjust stops in connection with feed 
mechanisms. 

Clicks and pawls as used in practice may have many different forms 
and arrangements; their shape depends very much upon their strength 
*pid the space in which they are to be placed, and the arrangement 
depends on the requirements. 

13-25. Escapements. An escapement is a combination in which a 
toothed wheel acts upon two distinct pieces or pallets attached to a 
reciprocating frame, it being so arranged that when one tooth escapes or 
ceases to drive its pallet, another tooth 
shall begin its action on the other pallet. 

A simple form of escapement is shown 
in Fig. 13-63. The frame cc' is arranged 
to slide longitudinally in the bearings 
CC, which are attached to the bearing 
for the toothed wheel. The wheel a 
turns continually in the direction of 
the arrow, and is provided with three teeth, b, b', b", the frame having 
two pallets, c and cf. In the position shown, the tooth b is just ceas¬ 
ing to drive the pallet c to the right, and is escaping, while the tooth 
b' is just coming in contact with the pallet c', when it will drive the 
frame to the left. 

Although escapements are generally used to convert circular into 
reciprocating motion, as in the above example, the wheel being the 
driver, yet, frequently, the action may be reversed. In Fig. 13-63, if 
we consider the frame to have a reciprocating motion and use it as the 
driver, the wheel will be made to turn in the opposite direction to that in 
which it would itself turn to produce reciprocating motion in the frame. 
It will be noticed also that there is a short interval at the beginning of 
each stroke of the frame in which no motion will be given to the wheel. 
It is clear that the wheel a must have 1, 3, 5, or some odd number of 

teeth upon its circumference. 



398 MISCELLANEOUS MECHANISMS 

13-26. The Crown-Wheel Escapement. The crown-wheel escape¬ 
ment (Fig. 13-64) is used for causing a vibration in one axis by means 
of a rotation of another. The latter carries a crown wheel A, consisting 
of a circular band with an odd number of large teeth, like those of a 

splitting saw, cut on its upper edge. The vibrat¬ 
ing axis, o, or verge as it is often called, is located 
just above the teeth of the crown wheel, in a plane 
at right angles to the vertical wheel axis. The 
verge carries two pallets, b and bh located in planes 
passing through its axis, the distance between them 
being arranged so that they may engage alter¬ 
nately with teeth on opposite sides of the wheel. 
If the crown wheel is made to revolve under the 

action of a spring or weight, the alternate action of the teeth on the 
pallets will cause a reciprocating motion in the verge. The rapidity 
of this vibration depends upon the inertia of the verge, which may be 
adjusted by attaching to it a suitably weighted arm. 

This escapement, having the disadvantage of causing a recoil in the 
wheel because the vibrating arm cannot be suddenly stopped, is not 
used in timepieces, and rarely in other places. It is of interest, how¬ 
ever, as being the first contrivance used in a clock for measuring time. 

13-27. The Anchor Escapement. The anchor escapement as applied 
in clocks is shown in Fig. 13-65. The escape wheel Ai turns in the 
direction of the arrow and is supplied with long pointed teeth. The 
pallets are connected to the vibrating axis or verge Ci by means of the 

Fig. 13-64 
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arms diCi and e\Ch the axis of the verge and wheel being parallel to each 
other. The verge is supplied at its back end with an arm Cipi, carry¬ 
ing a pin pi at its lower end. This pin works in a slot in the pendulum 
rod, not shown. The resemblance of the two pallet arms combined 
with the upright arm to an anchor gave rise to the name “ anchor 
escapement.” The left-hand pallet, di, is so shaped that all the nor¬ 
mals to its surface pass above the verge axis Ci and all the normals 
to the right-hand pallet, ei, pass below the axis Ci. Thus an upward 
movement of either pallet will allow the wheel to turn in the direction 
of the arrow, or, the wheel turning in the direction of the arrow, will, 
when the tooth bi is in contact with the pallet di, cause a left-handed 
swing of the anchor; and when bi has passed off from di and Oi reaches 
the right-hand pallet, as shown, a right-handed swing will be given to 
the anchor. As the pendulum cannot be suddenly stopped after a 
topth has escaped from a pallet, the tooth that strikes the other pallet 
is subject to a slight recoil before it can move in the proper direction, 
which motion begins when the pendulum commences its return swing. 
The action of the escape wheel on the pendulum is as follows: 

Suppose the points h and ki to show extreme positions of the point ph 
and suppose the pendulum and point pi to be moving to the left; the 
tooth bi has just escaped from the pallet dh and Oi has impinged on eh 
as shown, the point pi having reached the position mi. The recoil 
now begins, the pallet ei moving back the tooth Oi, while pi goes from 
mi to h. The pendulum then swings to the right and the pallet e\ is 
urged upward by the tooth oi, thus urging the pendulum to the right 
while pi passes from h to to, when oi escapes. Recoil then occurs on 
the pallet d\ from n 1 to kif and from ki to mi an impulse is given to the 
pendulum to the left, when the above-described cycle will be repeated. 
As the space through which the pendulum is urged on exceeds that 
through which it is held back, the action of the escape wheel keeps the 
pendulum vibrating. This alternate action with and against the pen¬ 
dulum prevents it from being, as it should be, the sole regulator of the 
speed of revolution of the escape wheel, for its own time of vibration, 
instead of depending only upon its length, depends also upon the force 
urging the escape wheel round. Therefore any change in the maintain¬ 
ing force will disturb the rate of the clock. 

13-28. Dead-Beat Escapement. The objectionable feature of the 
anchor escapement is removed in Graham’s dead-beat escapement, 
shown in Fig. 13-66. The improvement consists in making the outline 
of the lower surface, db, of the left-hand pallet, and the upper surface 
of the right-hand pallet, arcs of a circle about C, the verge axis; the 
oblique surfaces b and / complete the pallets. The construction indi- 
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cated by dotted lines in the figure insures that the oblique surfaces of 
the pallets shall make equal angles, in their normal position, with the 
tangents bC*tifidfC to the wheel circle not shown. If we suppose the 
limits of the swing of the point p to be l and kf the action of the escape 
wheel on the pendulum is as follows: 

The pendulum being in its right extreme position, the tooth b is 
bearing against the circular portion of the pallet d; as the pendulum 
swings to the left under the action of gravity, the tooth b will begin to 
move along the inclined face of the pallet when the center line has 
reached n, and will urge the pendulum onward to m, where the tooth 
leaves the pallet, and another tooth o comes in contact with the circular 
part of the pallet e, which, with the exception of a slight friction 
between it and the point of the tooth, will leave the pendulum free to 
move onward, the wheel being locked in position. On the return 
swing of the pendulum, the inclined part of the pallet e urges the pen¬ 
dulum from m to n. Hence there is no recoil, and the only action 
against the pendulum is the very minute friction between the teeth 
and the pallets. The impulse is here given through an arc mn1 very 
nearly bisected by the middle point of the swing of the pendulum, * 
which is also an advantage. The term “ dead-beat ” has been applied 
because the second hand, which is fitted to the escape wheel, stops so 
completely when the tooth falls upon the circular portion of a pallet, 
there being no recoil or subsequent trembling such as occurs in other 
escapements. 
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In watches the pendulum is replaced by a balance wheel swinging 
backward and forward on an arbor under the action of a very light 
coiled spring, often called a hair spring; the pivots of the arbor are 
very nicely made, so that they turn with very slight friction. 

13-29. The Graham Cylinder Escapement. This form of escape¬ 
ment is used in the Geneva watches. Here the balance verge o (Figs. 
13-67 and 13-68) has attached to it a very thin cylindrical shell rs 
centered at o, the axis of the verge, and the point of the 
tooth b can rest either on the outside or inside of the cylin¬ 
der during a part of the swing of the balance. As the cyl¬ 
inder turns in the direction of the arrow (Fig. 13-67), 
the wheel also being urged in the direction of its arrow, 
the inclined surface of the tooth be comes under the edge s 
of the cylinder, and thus urges the balance onward; this 
giyes one impulse, as shown in Fig. 13-68. The tooth then 
passes s, flies into the cylinder, and is stopped by the con¬ 
cave surface near r. In the opposite swing of the balance FlG‘ 
the tooth escapes from the cylinder, the inclined surface pushing r up¬ 
ward; this gives the other impulse in the opposite direction to the first. 

The action is then repeated by the 
next tooth of the wheel. 

This escapement is, in its action, 
nearly identical to the dead-beat 
escapement; but the impulse is 
here given through small equal arcs, 
situated at equal distances from 
the middle point of the swing. 

13-30. The Chronometer Es¬ 
capement is shown in Fig. 13-69. 
Here the verge o carries two cir¬ 
cular plates, one of which carries 
a projection p, which serves to op¬ 
erate the detent d; the other car¬ 
ries a projection n, which swings 

freely by the teeth of the escape wheel when a tooth is resting upon the 
pallet dj but encounters a tooth when the wheel is in any other position. 

The detent d has a compound construction and consists of four parts: 
1. The locking stone d, a piece of ruby on which the tooth of the 

escape wheel rests. 
2. The discharging spring l, a very fine strip of hammered gold. 
3. A spring s on which the detent swings, and which attaches the 

whole to the frame of the chronometer, 

Fig. 13-67 
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4. A support ey attached to the body of the detent, to prevent the 
strip Z from bending upward. 

A pin r prevents the detent from approaching too near the wheel. 
The action of the escapement is as follows: On a right-hand swing 

of the balance the projection p meets the light strip Z, which, bending 
from its point of attachment to the detent, offers but little resistance to 
the balance. On the return swing of the balance, the projection p 
meets the strip Z, which can now only bend from e, and raises the detent d 
from its support r, thus allowing the tooth b to escape, the escape wheel 
being urged in the direction of the arrow. While this is occurring, the 
tooth Z>2 encounters the projection n, and gives an impulse to the 
balance; the detent meanwhile has dropped back under the influence 
of the spring s, and catches the next tooth of the wheel b\. 

It will be noticed that the impulse is given to the balance immediately 
after it has been subject to the resistance of unlocking the detent d, 
thus immediately compensating this resistance; also that the impulse 
is given at every alternate swing of the balance. 

PROBLEMS 

Xin-1. Find W if 
there is a friction loss of 
40 per cent. 

Xm-2. In this hitch, 

what force F is required F=75 lbs 
to raise a weight W of 

1400 lb, friction being 
neglected? 

XHI-3. If W *= 3000 lb, find the force F, 
friction being neglected. 

XlLL-4. Two men, weighing 150 lb each, 
stand on W and pull just enough to sus¬ 

tain the load. Neglect friction. 

1. What pull do they exert on the rope? 
2. What is the tension on the support 

for the upper block, the weight of the blocks 

and rope itself being neglected? 
3. If the men stood on the ground what 

would be the tension in the rope which sup¬ 
ports the upper block? 
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Xin-5. A differential pulley block is to lift 1500 lb with a pull of 30 lb, friction 
being neglected. Find the ratio of the larger diameter of the upper sheave to the 
smaller one. 

XIII-6. In a differential pulley block, the smaller diameter of the upper sheave is 
12 in. It is found necessary to haul over 7 ft of chain to raise the weight 6 in. 
What is the other diameter of the upper sheave? Neglecting friction, what weight 

would be raised by a pull of 40 lb? 
XIII-7. With a differential pulley block, if the diameters of the sheaves in the 

fixed block are 12 in. and 11 in., and if the weight of the lower block is 20 lb, what 

net weight can be raised by a pull of 120 lb on the chain, assuming an efficiency of 
70 per cent? How much chain must be overhauled to lift the weight 1 ft? 

XHI-8. A standard No. 10 machine screw has 24 threads per inch. If a man with 

a screwdriver is turning the screw at the rate of 54 turns per minute, how long a time 

will be required to screw in six such screws, each going | in. into its hole, if £ min is 
required to insert each screw and place screwdriver in position for starting the work? 

XIII-9. A i -in. standard bolt, 16 threads per inch, is to be screwed through a 

nut | in. thick so as to project 5 in. beyond the nut. How many turns must be 
giyen to the screw if the nut slips in the direction the screw is turning at the average 
rate of one-quarter turn for every turn of the screw? 

XIII^IO. The pulley P makes 40 rpm in the 
direction shown. What must be the lead of the 
screw if nut A is to rise 3J in. in 45 seconds? Is 

screw right-handed or left-handed? 
XIII-11. What pressure in pounds per square 

inch is exerted on a liquid below the piston by a 

force of 40 lb at the rim of the hand wheel? 
The screw has £-in. lead and is double-threaded. 
Assume an efficiency of 20 per cent. 

Prob. XIII-10 Pros. XIII-11 

XIH-12. Find lead in inches of the screw if a force of If tons is to be exerted at W 
by a pull of 75 lb on the rope in the groove of the wheel D which has an effective 
diameter of 4£ ft. Assume an efficiency of 25 per cent. 

XIII-13. If driving pulley D makes 300 rpm, at what rate is the cross rail raised? 
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XTTI-14. In this micrometer cali¬ 

per the graduations at B are xMrr 
in. apart. The circumference at C 
is divided into 25 equal parts. The 
screw/Sis single right-hand-threaded 

with 40 threads per inch. When 

the end of the sleeve C is at the 0 
line of B} and the 0 line on C coin¬ 

cides with the line My the points P 
and Pi just touch. How far apart 
are they as shown? Give answer to 

nearest in. 

Xni-16. The threaded rod is stationary. The thread 

at S has yy-in. lead, anc* & yo“*n- lead, both right-hand. 
The nuts M and N turn at the same angular speed in the 

same direction. How many turns must they make in 
order that the distance A may decrease 1 in.? 

m 
_ — A-*| —_ 

m piii lump 
_ nt / mi 

S S/ 
Prob. XIII-15 

Xm-16. B and C are two equal gears. 
They may have no axial motion. D and E are 

two gears, E being four times as large as D. 
Shaft A is a square shaft turning with B, but 

free to slide through it. The screw threaded 
through C has a lead of \ in. left-handed. 
How many turns of the handle are needed 

and which way (front side of D going down or 
up) to move the screw 2 in. to the right? 

XIH-17. Twenty turns of F are to raise 
W 5^ in. Pi = 0.5-in. lead right-handed. 

Pi is right-handed. What is the lead of 
P2? Which way must F turn as seen from 

above (right-handed or left-handed)? 

(Two possible solutions.) 

XHI-18, Screw S has 10 threads per 
inch (single) right-handed and is fixed. 

Nut A may slide but cannot turn. How 

many (single) threads per inch has screw 
Si if 46 turns of the hand wheel in the direc¬ 

tion shown lower A 0.66 in.? Are threads 

on Si right-handed or left-handed? If 

the hand wheel had a rim radius of 7 in. 

and Si had 8 threads per inch (single) 
right-handed, what force would be neces¬ 

sary at the rim to raise a weight (W) ox 

16,800 lb? Assume an efficiency of 40 per 

cent. 

Prob. XIII-18 
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XHI-19. The hub H of the 200- 
tooth gear forms the nut for the 

screw S. The graduated wheel is 

fast to the shaft with the two pin¬ 
ions. How far will S move along 

its axis when W is turned through 

the angle represented by one divi¬ 
sion? In which direction will S 
move if W turns with the arrow? 

XIII-20. If the mechanism of 

Prob. XIII-19 were changed as 

shown in this figure, how far would 
S move and in which direction if 

W turned with the arrow one 
division? 

XIII-21. In this differential screw, A and C 
are gears which are fast to each other and are 

turned by the crank shown. H is a fixed nut, 

E is a left-hand screw having J-in. leaCd and F 
is a right-hand screw having J-in. lead.' How 

far does E move for 24 turns of the crank, and 
in which direction if the crank turns right- 
handed as seen from the left? 

Prob. XIII-21 
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Xni-22. In a worm and wheel let the worm be triple-threaded and the diameter 

of the drum be 14 in. How many teeth must the wheel have if 30 turns of the worm 

are to move IF 20 in.? If R = 16 J in., what must F be, if W equals 8800 lb actually 

lifted, efficiency being 65 per cent? If the handle is “ pushed ” to raise the weight, 

is the worm right-handed or left-handed? 

Xm-23. Worm A is double- 

threaded and its worm wheel has 

36 teeth. Worm B has a lead of f 

in. The pitch diameter of the 

drum for the weight is 1 ft. The 

force, Fy at the end of a 16-in. 

handle on B is 20 lb, and W is 

25,344 lb. If 60 per cent efficient, 

what is the diameter of worm 

wheel C? 

Xm-24. F is a double-threaded right-handed worm. A is a worm wheel having 

32 teeth. On the same shaft with A is a gear C, 17-in. pitch diameter in mesh with 

gear D, 4-in. pitch diameter. On the shaft with D is the left-handed worm E 
having a lead of 2 in., in mesh with worm wheel B, 10.83 in. pitch diameter. Disk H 
is fast to the shaft of worm F, and B is loose on this shaft. 

1. How many turns of handle before H and B will be in the same position relative 
to one another? 

2. What changes in these results would occur if worm E were right-handed 

instead of left-handed? 

3. If a drum 20 in. in diameter were attached to B and a weight of 2000 lb sus¬ 

pended from it, how large a force at the handle would be necessary to raise the 
weight? Neglect friction. 

Prob. XIII-25 

XIH-25. P is threaded through the worm wheel but cannot turn. Lead of 

thread on P is i in. right-handed. Worm is double-threaded and right-handed. 

How many turns of B> and which way (right-handed or left-handed) to raise weight 

i in.? What weight can be raised by a force of 50 lb applied at F, if the efficiency is 

70 per cent? 9 



LABORATORY PROBLEMS 

As a result of the requests of many users of this text, the following laboratory 

problems are included. All problems may be worked on 18-in. X 24-in. paper with 

i-im borders on top, bottom, and right edges, and a 1 £-im border on the left edge. 

Space for a 3-in. X 5-in. title block in the lower right-hand corner is allowed. 

The problems are stated in words and no sketches are provided. It is believed 

that the student will gain valuable information by providing his own sketch and 

locating it properly on the paper. The problems are arranged under headings 

similar to those in the text. The average time required to work each problem is 

given. This allowance provides time for a complete plate with correct engineering 

lettering, neat drawing, a properly lettered title block, and sufficient construction 

lines to show clearly the method of obtaining the desired results. 

DISPLACEMENT 

w- ABCD is a four-bar linkage. A and D are fixed centers on a horizontal line 

10 in. apart. AB is a link 5 in. long oscillating about A. DC is a crank 2J in. long 

which rotates about D. BC is a connecting rod 11 \ in. long. A is to left of D. 
A link, EF, 6 in. long is pinned to AB at E, in. from B. Another link, GF, 
3? in. long is pinned to link BC, 4 in. from C. These links, EF and GF, are pinned 

together at F in their upper position. 

Trace the paths of the points F and G while DC makes one complete revolution. 

Find points for each 15° position of DC and any others necessary in order to secure 

a smooth curve. 

Scale: Space, full size. Time: 3 hr. 

L-2. A sliding block C moves along a horizontal line AC. A rotating arm AB is 

4 ft 3 in. long and rotates around a center A. The connecting rod BC is 8 ft long. 

This rod is extended to D, making BCD 11 ft 9 in. long. 

Make a drawing of this linkage and trace the path of D while the arm makes one 

complete revolution counterclockwise. Locate points for each 15° movement of the 

arm AB, beginning with AB coinciding with AC. 
Dimension sketch. 

Scale: Space, 1 in. 1 ft. Time: 3 hr. 

L-3. A rotating arm AB, 2 ft long, rotates on the center A and is joined to an arm 

CD, 3 ft long, by a straight link BDE. Fixed link AC = 5 ft and makes an angle of 

+45° with the horizontal, C being to right of A. BD = 4 ft, DE — 1 ft 4 in.. 

BE — 5 ft 4 in. 

Make a drawing of this linkage and trace the path of the point E while the arm AB 
makes one complete kinematic cycle. Locate points for every 15° movement of 

arm AB. 
Dimension sketch. 

Scale: Space, 1J in. = 1 ft. Time: 3 hr. 

VELOCITY 

L-4. ABCDEFPS is a compound linkage. A and D are fixed centers on a hori¬ 
zontal line with D, 7£ in. to right of A AB, 3J in. long, oscillates above A. CD is 

407 
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a crank 2 in. long which rotates about D. BC is a connecting rod 7 in. long. P is an 
oscillating bearing block which is pivoted at a fixed point 4 J in. above D. EF, 8i in. 

long, which is pinned to the midpoint of the connecting rod BC at E extends through 

the oscillating block at P. F is connected to a slide valve, S, by a link FS 6$ in. 

long. The slide S moves in a vertical guide whose center line is 1^ in. to right of D. 
DC rotates uniformly counterclockwise at 30 rpm and has turned through an angle 

of 150° from right horizontal position. 

a. Determine graphically the velocities of points B, E, F, S, and midpoint of 
link FS by the instantaneous axis method. 

b. Determine the velocity of S relative to F; S relative to C; and S relative 

to E, 
c. Check the velocities obtained in part a by using another method. 

Scales: Space, full size; velocity, 1 in. = 15 fpm. Time: 6 hr. 

L-6. The linkage, ABCDEJKF, represents the mechanism of the Corliss non¬ 

releasing valve gear. AB is a crank 3^ in. long oscillating to right of fixed center A. 
AC is another crank which is 3|^ in. long and oscillates below A. J is a fixed center 

on a horizontal line through A and 633*- in. to right of A. EJK is a bell crank, with 

angle EJK 60°, oscillating below J with JK to right of JE. JE — 3f in. and 

JK — 5pg- in. CE is a connecting rod 3 5 in. long. BD is a link 23^ in. long con¬ 

necting B to link CE at D, 1}^ in. from C. KF is a connecting link 8 in. long 

extending to right of K and is attached to a slide block at F which moves on a hori¬ 
zontal line parallel to and 3 in. below AJ. When F, moving to left, reaches a posi¬ 

tion such that K is to the left of J and JK makes an angle of 15° to left of vertical, 

it has a velocity of 5 fps. 
Determine the velocities of points K, Df and B by two methods. Find velocity 

of B relative to C; B relative to D; B relative to K; and B relative to F. 

Scales: Space, full size; velocity, 1 in. = 30 ips. Time: 6 hr. 

L-6. A pumping mechanism is operated by means of four-bar linkages. A verti¬ 

cal connecting rod from a steam engine piston is fastened to a wheel 1 ft 10 in. in 

diameter. The steam engine piston is below and to the left of the center of the 

wheel. The connecting rod is fastened to the wheel at a point 6 in. from the center 

of the wheel on a 45° line below horizontal and to the left of the vertical center line 

of the wheel. A block is pinned to the wheel at a point 3i in. to left of vertical cen¬ 

ter line of the wheel and on a 9-in. radius circle (with same center as wheel). The 

block is above the horizontal center line of the wheel. A rocker arm, 5 ft long, is 

pivoted 3 ft 6 in. to the right of the center of the wheel and on the horizontal center 

fine of the wheel. This rocker has a slot 1 ft 10 in. long in it in which the block 

pinned to the wheel may slide. At the free enci of the rocker arm is a connecting 
rod 1 ft 3 in. in length on whose extremity is the water pump piston. The water 

piston center line is 1 ft f in. to the left of the steam piston center line and is vertical 

and below the rocker arm. The velocity of the steam piston is 150 fpm upward. 

Determine: 

a. The linear velocity of pump piston in feet per minute by instantaneous axis 

method. 
b. The linear velocity in feet per minute of the pair joining the rocker arm and the 

connecting rod of the pump. 

c. The linear velocity in feet per minute of the midpoint of the rocker arm. 

d. The angular velocity of the wheel in revolutions per minute. 

c. The velocity of the pump piston relative to the steam piston. 

/. The velocity of the pair joining the block to the wheel relative to the velocity 

of a coincident point on the rocker. 
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g. The velocity of the pair joining the rocker arm and the connecting rod of the 
pump relative to the pair joining the block to the wheel. 

h. Check all velocities by another method. 

Scales: Space, 3 in. = 1 ft; velocity, 1 in. = 150 fpm. Time: 6 hr. 

L-7. A link A, 1J in. long, revolves about a point in the frame £>, and the other 
end of A is connected to a link B, which is 5J in. long. A link C, i in. long, is free to 

move about a fixed point in D. The fixed point of C is 3 in. to the right and on a 

horizontal line with the fixed point of A. The link B is free to slide in a block fixed 
to C. A slide block F moves along the frame D in a vertical line 4 in. to the right of 

the fixed point in A. A link E, 4J in. long, connects the end of the link B with the 

slide block F. F is below the horizontal. 

a. Find all the centros of the mechanism when A has passed through an angle of 

i20°. Show centro polygon. 

b. Assume A to rotate uniformly counterclockwise at 75 rpm. 

1. Find the velocity relative to F of a point K, located on A and 1 in. from the 

fixed point of A. 
2. Find the velocity of F relative to the end of the crank A. 
3. Find the velocity of M, midpoint of B, relative to lower end of E. 

* 4. Find the absolute velocity of F, K, and M. 
Scales: Space, 1 in. = 1 in.; velocity, 1 in. = 50 fpm. Time: 6 hr. 

L-8. A drag-link quick-return mechanism for driving the cutting tool of a key 

slotter consists of two cranks, A which is 3-j-£ in. long, and B which is 4 in. long, 

rotating about a fixed center 2 in. to the left of the center of A and connected by a 

connecting link C, 2^ in. long. Crank A is the driver and rotates counterclock¬ 

wise at a uniform rate of 100 rpm. Keyed to the same shaft with B is a crank B\ 
1^ in. long and making an angle of 60° behind B. A sliding tool holder, F, moves in 

a horizontal line through the fixed centers of the cranks, A and B, and is driven from 

the crank B'f by a connecting link E} 9 in. long. The slide F is to the right of the 

fixed centers. 
a. When crank A makes an angle of 330° from the right horizontal in a counter¬ 

clockwise direction, locate all centros. Show the centro polygon. B1 B\ and A are 

below fixed centers. 
b. Using the method of centros determine the absolute velocity of the slide F, 

of the midpoint of the crank B, and of the midpoint of the link E. 
c. Find the velocity of the slide F relative to the end of the crank A. 
d. Representing the angular velocity of crank A by a line 1 in. long, determine 

graphically the corresponding angular velocities of links Bf C, and E. 
e. Tabulate the numerical values of all quantities that are obtained graphically in 

parts 6, c, and d. 
Scales: Drawing, full size; velocity, 1 in. = 2 fps. Time: 6 hr. 

L -9. A crank and rocker mechanism as used in a beam engine consists of the links 

A, Bf C, D, E, and F; it is the frame of the machine. Link A is a crank 12 in. 

long rotating about a fixed point in the frame of the machine and to the right of E, a 

sliding block. B is a connecting rod 4 ft long. Crank C, 4 ft 2\ in. long, rotates 

about a fixed point 3 ft 7$ in. above and 2 ft 9 in. to the left of fixed point of A. 

Crank C extends 3 ft to right of its fixed point and 1 ft 2\ in. to left of its fixed point. 

Connecting link D is 3 ft 3 in. long and connects with sliding block E which slides 

along a vertical center line 5 ft 3 in. to the left of fixed point of A. E is below C. 
C is above A. The velocity of crank A is 75 rpm counterclockwise. 

a. With crank A bisecting the second quadrant of the crank circle, draw the 

mechanism. 
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b. Locate all centros. Draw centro polygon. 

c. Find the absolute linear velocity of E; the pair connecting C and D; a point 

Mf midpoint of C. 
d. Check the velocity of E by using other sets of centros than those used in part c. 

e. Draw the velocity polygon and check the velocities found in part c. 

Scales: Space, 2 in. = 1 ft; velocity, let length of crank A — velocity of crank 

pin. Time: 6 hr. 

L-10. A non-parallel equal crank linkage as used in a slotting machine is com¬ 

posed of the following links: B, 6 in. long, rotating about its fixed center whose dis¬ 

tance is 15 in. to the left of the fixed center of the other equal crank D. The fixed 

centers are on a horizontal line. The connecting link C is 15 in. long. The link D 
has another crank D', also 6 in. long, fastened to it and turning about the same fixed 

center as D (a bell crank). D' is 90° ahead of D. A connecting link Et 16 in. 

long, connects the extremity of Df to the tool F, which travels along a vertical center 

line passing through the fixed center of D and D'. F is above the fixed center of D. 
The driving crank B turns clockwise at 75 rpm. 

a. When B has turned through an angle of +60° with the horizontal (F traveling 

from its lowest position) locate all centros. Show centro polygon. 

b. Find the absolute instantaneous linear velocities in feet per second of the tool F; 
the pair connecting links D and C; the pair connecting links D' and E; and the mid¬ 

point M, of connecting link C. 

c. Find the velocity of F relative to M; of F relative to the pair connecting links B 
and C. 

d. It is contemplated to fasten a link to link C. This point of connection desig¬ 

nated as P is to have the least velocity in link C. Locate P and determine its 

absolute linear velocity. 

e. Find the velocity of the pair connecting C and D relative to the point P. 

/. Find graphically the angular velocity of D. 
Scales: Space, 6 in. = 1 ft; velocity, 1 in. = 2 fps. Time: 6 hr. 

L-ll. Marshall’s valve gear is composed of the linkage ABCDEFGH. AC is 

vertical and represents the center line of the travel of the piston C, C being above A. 
Crank AB is 6$ in. long. Connecting rod BC is 26 in. in length. AD, on AB (D 
between A and B), represents the eccentric and is 1J in. in length. F is a fixed 

point, a vertical distance of 4J in. above the horizontal through A and a horizontal 

distance of 12 in. to left of A. Link DEG is 14\ in. in length, E being to the left of 

D and G to the left of E. EG is 5 in. long. FE is 5i in. long H is a pin, connect¬ 

ing link GH, which is 34 in. long, to slide M which represents the slide valve M 
slides along a vertical guide, the center line of which is 14 in. from the center line of C 
and to the left of C. Draw sketch so that piston C and valve M are as close to each 

other as possible. Designate links as follows: frame as 1; crank AB as 2; connect¬ 

ing rod BC as 3; piston C as 4; connecting link DEG as 5; link EF as 6; link GH as 

7; and valve M as 8, 

а. Locate all centros and show centro polygon for position in part 6. 

б. The crank AB turns clockwise at a uniform speed of 100 rpm. When the 

crank AB has turned through 270° from the head end dead center of the piston C, 

find by centros the absolute linear velocities of piston C; the slide valve M; the 

pairs E and G. 

c. Check linear velocity of M by instantaneous center method. 

d. Check linear velocity of M by resolution and composition. 

e. Do part b by drawing a velocity polygon. 
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/. Find the velocity of C relative to B; H relative to C; and B relative to H. 
Scales: Space, 3 in. =* 1 ft; velocity, 1 in. = 2 fps. Time: 9 hr. 
L-12. Given a swinging block quick-return mechanism as used in a 24-in. shaper. 

EC is a slotted link oscillating above its fixed center E. A is a fixed center 15 in. 
directly above E. AB is a crank, the length of which can be adjusted to vary the 
stroke of the tool ram and tool holder from 0 to 24 in. As AB rotates, it drives the 
link EC by means of a block pinned to AB at B which slides in the slot of EC. The 
ram travels horizontally, and is driven by means of a block D which moves along a 
horizontal line 34 in. above E and slides in a groove in the upper end of the oscillat¬ 
ing link EC. 

a. With AB adjusted to 4 in. long and making 45 rpm, draw the velocity diagram 
for the block D which is the same as the velocity diagram for the cutting tool. 

b. Obtain the velocity of D for one position by two methods. 
Scales: Space, 3 in. = 1 ft; velocity, 1 in. = 20 ips. Time: 6 hr. 
L-13. A drag-link mechanism similar to the one used on a Dill slot ter is com¬ 

posed of a four-bar linkage ABCD. When drawn to scale, B is 2 in. to the left of A 
on a horizontal line and is fixed as is A. The driving crank BC is 4 in. long and the 
driven crank AD is 6 in. long. CD, 5 in. in length, forms the connecting rod. 
BC*pulls AD. 

a. Beginning with BC coinciding with AB (D below horizontal) make a diagram 
showing the ratio of the angular speed of AD to BC when LC is rotating uniformly 
counterclockwise at a speed of 40 rpm. Locate a point for each 15° position 
of BC. 

b. Obtain a diagram for the ratio of the linear speed of the crank pin D to the 
crank pin C. Locate a point for each 15° position of BC as in part a. 

Scales: Space, full size; angular velocity ratio, 1 in. = unity; linear velocity 
ratio, 1 in. = unity; linear velocity, 1 in. = 2 fps; angular displacement, J in. = 15°. 

Time: 6 hr. 
L-14. A certain shaper has a Whitworth quick-return mechanism arranged so 

that the return stroke is made in half the time required for the cutting stroke. The 
fixed centers are on a vertical line, B being above A. The driving crank, AC, is 4 in. 
long. The driven crank, BD, is 3 in. long and is driven from AC by a sliding mem¬ 
ber pinned to AC at C. A link, DE, 10 in. long, is attached to the cutting ram at E, 
and E travels to the right of B in a straight horizontal line passing through B. 

a. Locate A so that the return stroke will be made in half the time required for the 
cutting stroke. 

b. Plot the velocity curve for the cutting tool (slide E), assuming the driving arm, 
AC, to rotate at such a speed that the maximum cutting speed will be 30 fpm. 
Plot velocity during cutting stroke above the base line (horizontal line through B). 
What will be the uniform speed in revolutions per minute of the driving arm? 

c. Assuming the force required for cutting to be 3000 lb, plot a rectangular force 
diagram showing the force required at the end of the driving arm, AC, during a 
complete revolution plotted against the angular position of AC. 

Scales: Space, full size; velocity, 1 in. = 20 fpm; force, 1 in. = 20001b; angles, 
1 in. = 60°. Time: 9 hr. 

L-16. An Averbeck shaper mechanism is as follows: The pin E which drives 
the cutting ram is driven on a horizontal line by an oscillating link ED, 18 in. long, 
the lower end of which is supported by an oscillating crank CD, the point C being 
fixed and 17 J in. below the path of the pin E. The arm CD is 4 in. long. The link 
ED is driven by a rotating crank AB 3 in. long. A is fixed 12 in. above and 3 in. to 
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the right of the point C. The end B of the crank AB slides in the link ED. D is to 

right of C. 
Obtain the linear velocity diagram of the slide block E when the crank AB has a 

uniform angular velocity of 30 rpm in a clockwise direction. Plot cutting stroke 

above path of E and return stroke below path of E. Give the value in feet per 

minute of the maximum velocities of E on cutting and return strokes. Obtain the 

velocity of E for one position by two methods. 

Scales: Space, one-half size; velocity, 1 in. = 40 fpm. Time: 6 hr. 

L-16. The linkage ABCDEF represents the skeleton diagram of the mechanism of 

the obsolete Atchinson gas engine in which the piston made two forward and return 

strokes for each revolution of the crank shaft. A B is a crank with A as fixed center. 

CD is oscillating link with fixed center D 15 in. below and 2J in. to right of A, C oscil¬ 

lating to left of D. BCE is a triangular connecting link with E to right of C. EF is 

a link connected to a slide block at F which represents the piston. F moves on a 

horizontal line through D and to left of D. AB — 6 in.; BC = 141 in.; DC = 71 

in.; BE = 14fin.; EC = 21 in.; EF = 17in. 

a. Plot displacement of piston F against angular movement of AB, using the 

upper vertical position of A B as zero displacement of F. When displacement of F is 

to left of initial position plot it as ordinate, above the horizontal. 

b. Plot velocity diagram of F, when AB is rotating uniformly at 125 rpm. When 

F is moving to left, plot velocity above path of F. Find points on curves of parts a 
and b for each 30° position of AB and oftener when contour of curve is doubtful. 

Scales: Space, 1 in. = 2 in.; velocity, 1 in. = 100 fpm; angles, 1 in. = 60°. 

Time: 6 hr. 
L-17. A certain shaper has a swinging block or oscillating arm quick-return 

mechanism arranged so that the return stroke is made in half the time required for 

the cutting stroke. The fixed centers are on a vertical line, B being above A. The 

driving crank BC is 2 in. long and rotates clockwise. The driven crank AD is 7 in. 

long and is driven from BC by a sliding member pinned to BC at C. A link DE, 
10 in. long, is attached to the cutting ram at E, and E travels to the right of B in a 

straight horizontal line 3 in. above B. 
а. Locate A so that the return stroke will be made in half the time required for the 

cutting stroke. 
б. Plot the velocity curve for the cutting tool (slide E), assuming the driving arm 

BC to rotate at such a speed that the maximum cutting speed will be 1.8 fps. Plot 

velocity during cutting stroke above the base line. What will be the uniform speed 

in revolutions per minute of the driving arm? 

c. Assuming the force required for cutting to be 3000 lb, plot a rectangular force 

diagram showing the force required at the end of the driving arm BC during a com¬ 

plete revolution plotted against angular position of BC. 
Scales: Drawing, full size; velocity, 1 in. = 1.5 fps; force, 1 in. = 2000 lb; 

angles, 1 in. = 60°. Time: 9 hr. 

ACCELERATION 

L-18. Given the linkage of Prob. L-4 with DC rotating uniformly counterclock¬ 

wise at 30 rpm and having turned through an angle of 150° from the right horizontal 

position. 

a. Draw the velocity and acceleration polygon. 

b. Determine and tabulate the instantaneous accelerations in feet per second per 

second of B, E, F, and S. 
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c. Determine and tabulate the instantaneous angular velocities and accelerations 
of links BC, EF, and FS. 

Scales: Space, full size; velocity, 1 in. = 0.25 fps; acceleration, to be chosen. 

Time: 3 hr. 
L-19. Given the linkage and conditions of Prob. L-5. 

a. Draw the velocity and acceleration polygon by the semigraphical method. 

b. Determine and tabulate the instantaneous accelerations in feet per second per 

second of K, E, D, B, and C. 
c. Determine and tabulate the instantaneous angular velocities and accelerations 

of links KF, JK, and AC. 
Scales: Space, full size; velocity, 1 in. = 2.5 fps; acceleration, to be chosen. 

Time: 3 hr. 

L-20. Same as Prob. L-19 but use the strict graphical method. Time: 3 hr. 

L-21. Given the pumping mechanism of Prob. Ij—16. 

a. Determine the instantaneous linear acceleration in feet per second per second 

of the pump piston. 

b. Determine the instantaneous angular velocity and acceleration of the rocker 

arm. 

Scales: Space, 3 in. = 1 ft; velocity, 1 in. = 2.5 fps; acceleration, to be chosen. 

Time: 3 hr. 

L-22. Given the drag-link quick-return mechanism of Prob. L-8. When crank A 
makes an angle of 330° from the right horizontal in a counterclockwise direction, 

assume that it has an angular velocity of 100 rpm counterclockwise and an angular 

acceleration of 100 rad/sec2. 

a. Using the semigraphical method, draw the velocity and acceleration polygon. 

b. Determine the linear velocity in feet per second and the linear acceleration in 

feet per second per second of the tool holder F. 
c. Determine the angular velocity and acceleration of the connecting link E and 

the bell crank BB'. 
Scales: Drawing, full size; velocity, 1 in. = 2 fps; acceleration, to be chosen. 

Time: 3 hr. 

L-23. Same as Prob. L-22, but use the strict graphical method for the accelera¬ 

tion diagram. 

Scales: Drawing, full size; velocity, 1 in. =2 fps; acceleration, to be chosen. 

Time: 3 hr. 

VELOCITY AND ACCELERATION DIAGRAMS 

L-24. Given an engine crank and crosshead mechanism such that the fixed point 

A and slide S are on same horizontal line, with A to left of S. The crank AB is 2 in. 

long and the ratio of the connecting rod to the crank is 2 i to 1. The crank turns 

clockwise at an angular velocity of 100 rpm. 

a. Plot the rectangular and polar linear velocity diagrams for the crosshead, 

plotting the velocity above the line when crosshead is moving to right. 

b. Plot the acceleration diagram by ^lein’s method. Plot acceleration above 

path of slide when the velocity is increasing and below path of slide when the 

velocity is decreasing. 
c. Using the information of parts a and 5, tabulate on the drawing the actual 

piston velocities and accelerations for 30°, 45°, 90°, 120°, and 180° positions of the 

crank. Consider head end dead center as 0°. 

d. Plot a velocity-time curve using movement of AB for abscissa. 
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e. Check the acceleration for the 30° position by use of the velocity-time curve. 
Scales: Space, full size; velocity, let length of crank AB = velocity of B; time, 

1 in. = 60° movement of AB. Time: 6 hr. 

L-26. A horizontal engine crank and crosshead mechanism has the center of the 
crank shaft A to the left and J in. below the path of the crosshead S. The crank AB 
is 2 in. long and the ratio of the connecting rod to the crank is 2} to 1. The crank 

turns counterclockwise at an angular velocity of 100 rpm. 

a. Plot a rectangular velocity-displacement diagram for one complete cycle. 
Plot curve for forward stroke above path of S and return stroke below path of S. 
(Piston travel to left is forward stroke.) Determine the velocity scale and show on 

the drawing. 

b. Plot an acceleration diagram for the crosshead by Klein’s method. Plot 

positive acceleration above the center line (path of S). Determine the acceleration 

scale and show on the drawing. 

c. Plot a velocity-time curve on a separate base line using velocities as ordinates 

and time for abscissas beginning with crank at head end dead center. 

d. Using the curve plotted in part c, determine the acceleration of the crosshead 

when the crank has turned 45° past the head end dead center; use the tangent 

method. 

e. Using the information of parts a and b, tabulate on the drawing the actual 

piston velocities and accelerations for the 30°, 45°, 90°, 120°, and 180° positions of 
the crank. Consider head end dead center as 0°. 

Scales: Space, full size; velocity, let length of crank AB = velocity of B; time, 

i in. = 15° movement of AB. Time: 6 hr. 
L-26. An 18-in. X 24-in. horizontal engine crank and crosshead mechanism has 

the center of the crankshaft A to the left and 2 in. above the path of the crosshead S. 
The ratio of the connecting rod to the crank is 3 to 1. The crank turns counter¬ 

clockwise at an angular velocity of 100 rpm. 

a. Plot a rectangular velocity displacement diagram for one complete cycle. Plot 

curve for forward stroke above path of S and return stroke below path of S. (Pis¬ 

ton travel to left is forward stroke.) Determine the velocity scale and show on the 

drawing. 

b. Plot an acceleration diagram for the crosshead by Klein’s method. Plot 

positive acceleration above the center line (path of S). Determine the acceleration 

scale and show on the drawing. 

c. Plot a velocity-time curve on a separate base line, using velocities as ordinates 

and time for abscissas, beginning with crank at head end dead center. 

d. Using the curve plotted in part c, determine the acceleration of the crosshead 

when the crank has turned 45° past the head end dead center; use the tangent 

method. 

c. Using the information of parts a and 6, tabulate on the drawing the actual 

piston velocities and accelerations for the 30°, 45°, 90°, 120°, and 180° positions of 

the crank. Consider head end dead center as 0°. 

Scales: Space, 3 in. = 1 ft; velocity, let length of crank AB = velocity of B; 

time, i in. = 15° movement of AB. Time: 6 hr. 

L-27. Given an engine crank and crosshead mechanism such that the fixed point 

A and slide S are on same horizontal line, with A to right of S. The crank B is 

2} in. long and the ratio of the connecting rod to the crank is 3 to 1. The crank 

turns counterclockwise at a uniform angular velocity of 100 rpm. 

a. Plot the rectangular velocity'diagram, plotting velocity above the line when 

crosshead is moving to the left. 
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6. Plot a velocity-time curve using movement of AB for abscissa. 

c. Plot the acceleration diagram using Klein’s method, plotting plus acceleration 

above path of slide. Consider acceleration plus when the acceleration is toward A. 
d. Using the information of parts a and b, tabulate the actual piston velocities and 

accelerations for 30°, 45°, 90°, 120°, and 330° positions of the crank. Consider head 
end dead center as 0°. 

Scales: Space, full size; velocity, let length of crank AB = velocity of B; time, 

1 in. = 60° movement of AB; acceleration, determine. Time: 6 hr. 

CAMS 

L-28. Lay out a plate cam to move a 1-in. roller follower in a vertical line passing 

If in. to the left of the center of rotation of the cam. The base circle is to have a 

diameter of 6 in. and the cam is to rotate clockwise at 1.5 rpm. The follower is to 

rise If in. with accelerated harmonic motion during the first 8f sec; to rise 1} in, 

during the next 3| sec. with uniform motion; to rise 1$ in. during the next 8} sec 

with retarded harmonic motion; to rest 5 sec; to drop 4f in. with uniform accelera¬ 

tion and deceleration during 10 sec; and to rest 5 sec. 

Scale: Space, full size. Time: 3 hr. 

L-29. a. Lay out a plate cam to move a reciprocating point follower in a vertical 

line passing through the center of rotation of the cam. The base circle is to have a 

diameter of 4 in. and the cam is to rotate clockwise at 1.5 rpm. The follower is to 

rise 1 i in., accelerating with harmonic motion during the first 8f sec; to rise 1 in. 

during the next 3? sec with uniform motion; to rise 1J in. during the next 8f sec 

with retarded harmonic motion; to rest during 5 sec; to drop 4 in. with uniform 

acceleration and deceleration during 10 sec; and to rest 5 sec. 

6. Same as part a except that the path of the follower passes If in. to the left of 

the center of rotation of the cam, and the follower has a 1-in. roller. 

c. In part b, determine graphically the linear velocity of the follower when the 

cam has turned through 90°. 

Scale: Space, full size. Time: 6 hr. 

L-30. a. Design a plate cam to move a point follower in a vertical guide directly 

above the center of rotation of cam. Lowest position of follower is to be 1J in. 

above the axis of rotation of cam. Follower to rise 3 in. with uniform motion dur¬ 

ing 120° rotation of cam; to rest 45°; to drop immediately 1 in.; rest for 45°; drop 

2 in. in 120° with simple harmonic motion; to rest 30°. Cam to rotate clockwise. 

b. Design a cam with a 1-in. diameter roller follower moving in a vertical center 

line through the center of roller to lift the follower 3 in. with uniform accelerated and 

retarded motion in 180°; rest 60°; and lower with sudden drop 3 in. The lowest 

position of the center of the roller is 1 in. to the right and 2£ in. above the center of 

rotation of the cam. Rotation counterclockwise. 

Scale: Space, full size. Time: 3 hr. 
L-31. Design a plate cam to actuate the follower S through the rocker R which is 

pivoted at P. The slide S works in vertical guides and its center line is 5 in. to the 

right of the cam shaft center. The point P is 8 in. to the left and 31 in. above the 

cam shaft center. The rocker R is £ in. thick and is pivoted at P in center of its 

thickness. R is horizontal when in its lowest position. The cam is to work against 

the lower flat face of R and the follower rides on the top of R. The foot of the 

follower S is a semicircle f in. in diameter. Cam rotates clockwise and raises S 
3J in. in the first 90° rotation with harmonic motion. S rests during next 90° rota- 
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tion of cam; next 90° is lowered with uniform motion 3£ in. and rests during the last 
90°. Indicate any points where the exact motion called for is impossible. 

When the cam has rotated through 210° find the ratio of the angular velocity of 
the cam to that of the rocker R. 

Scale: Space, full size. Time: 6 hr. 
L-32. Design a plate cam for an oscillating arm, flat face follower pivoted at A 

which is to move a sliding block D, in a vertical guide whose center line is 13J in. 

to the left of A. The follower AC, 14 in. long, oscillates to left of A from a hori¬ 
zontal position upward. D is below and connected to C by a link CD, in. long. 

Face of follower arm AC is i in. below and parallel to center line through AC. 
Center of rotation of cam is 3 in. below and 9£ in. to left of A. Cam rotates counter¬ 

clockwise at 5 rpm. Motion of D: rise 4 in. with harmonic motion during 150° 

rotation of cam; rest for 45°; drop 4 in. with uniform motion in 135° rotation 

of cam; rest for 30°. 
Determine the angular velocity of the follower in radians per second when the cam 

has rotated 135°. Indicate any points where the required motion is impossible. 

Scale: Space, full size. Time: 6 hr. 
L-33. Design a cam to actuate a reciprocating follower C by means of an oscillat¬ 

ing arm AB, £ in. in thickness, and connecting link BC. The fixed center of AB is 

5 in. to the left and 2J in. above the axis of rotation of the cam. The reciprocating 

follower, slide C, travels along a vertical center line 5 in. to the right of the axis of 
the cam. Oscillating arm AB is 11 £ in. long and connecting link BC is 5£ in. long. 

C is above AB. When AB is horizontal, C is in mid position of its stroke. Cam 

turns clockwise and gives the following motion to the slide C: rise 3f in. from its 

lowest position with uniformly accelerated and retarded motion during 120° of 
rotation of the cam; rest during 60°; drop 12 in. with uniformly accelerated motion 

during 60°; drop 2 in. with retarded harmonic motion during the last 120°. Indi¬ 

cate any points where the required motion is impossible. 
When the cam has turned 105° from the lowest position of the follower, find the 

ratio of the angular velocity of the cam to the angular velocity of the rocker AB. 
Scale: Space, full size. Time: 6 hr. 
L-34. Design a cam, turning counterclockwise, to give a reciprocating follower, 

slide D, the following motion: rise 4£ in. with simple harmonic motion during 135° 

rotation of the cam; rest for 45°; drop 1£ in. instantly; drop 3 in. with uniformly 

accelerated and retarded motion during 120°; remain still for 60°. Oscillating arm 
AC is 14 in. long and carries a roller f in. in diameter running on a journal B, 8 in. 
from A and on the center line of AC. This roller is actuated by the cam. A con¬ 

necting link CD, 6 in. in length, joins C to the slide D. D is below AC. The fixed 

center of AC is 6£ in. to the left and 3f in. above the axis of rotation of the cam. 

The center line of travel of the follower D is vertical and 6 in. to the right of the axis 

of rotation of the cam. AC is to travel equal angular distances above and below 

the horizontal. 
When the cam has turned 120 from the lowest position of the follower, find tne 

instantaneous absolute linear velocity of the slide D, if the cam rotates uniformly at 

20 rpm. 
Scale: Space, full size. Time: 6 hr. 

BELTS AND PULLEYS 

L-35. A pulley 12 in. in diameter and 4 in. wide is keyed to a 2-in. horizontal shaft 

which rotates at 250 rpm clockwise. A 3-in. X J~in. belt from this pulley is to drive a 
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vertical 2-in. shaft 40 in. to the left of the driving shaft. The driven shaft is to 
rotate at 150 rpm counterclockwise when viewed from the top. 

a. What is the diameter of the driven pulley? 

b. What is the belt speed in fpm? 

c. Make a three-view drawing of this belt drive to one-fourth scale. 

d. Indicate direction of rotation and belt travel on each view. Time: 3 hr. 

L-36. A pulley 15 in. in diameter and 4J in. wide is keyed to a horizontal 2|-in. 

shaft which rotates at 200 rpm counterclockwise when viewed from the front. A 

4-in. belt, i in. thick, from this pulley drives a 2^-in. shaft 40 in. to the right and at 

right angles with the driving shaft. The driven shaft is to rotate at 150 rpm clock¬ 

wise when viewed from the top. 

a. What is the diameter of the driven pulley? 

b. What is the belt speed in feet per minute? 

c. Make a three-view drawing of the belt drive to one-fourth scale. 

d. Indicate direction of rotation and belt travel on each view. Time: 3 hr. 
L-37. Design a pair of three-step pulleys for an open belt, using the 

following data: 

Distance on centers = 24 in.; diameter of smallest driving pulley = 4 in.; 
cfiameter of shafts = 1 in.; diameter of middle step on driver = 8 in.; speed of 

driver = 200 rpm; speed of driven on low speed step = 50 rpm; speed of driven on 

high speed (step 3) = 400 rpm. 

a. Lay out by Smith’s graphical method to one-half scale. 

b. Check by calculating belt lengths by formula. Tabulate the calculated belt 

lengths. 

c. Tabulate the step pulley diameters required for a crossed belt. Time: 3 hr. 

L-38. Design a pair of step pulleys for an open belt, using the following data: 

Center distance = 28 in.; diameter of smallest step on driver = 4f in.; diameter 

of middle step on driver = 10 in.; speed of driver = 100 rpm; speed of driven — 

low = 25 rpm; speed of driven — high = 190 rpm. 

a. Lay out by Smith’s graphical method to one-half scale, and tabulate diameters 

found. 
b. Check by calculating the belt lengths with the diameters found. Tabulate 

lengths. 
c. Calculate step pulley diameters for crossed belt. Tabulate diameters calcu¬ 

lated. Time: 3 hr. 

GEARS 

L-39. Given the tooth curve on the driving gear; to find the tooth curve on the 

driven gear. Distance on centers, 20 in.; revolutions per minute of driver, 100; 

revolutions per minute of driven, 80; number of teeth on driver, 12; addendum to 

be a maximum; clearance in.; face of driver to be a circle arc of 3-in. radius whose 

center is i in. inside the pitch line; flank of driver to be radial. Center of driver to 

left of center of driven. Make center line of driven tooth horizontal. 

o. Draw the path of contact when the driver rotates counterclockwise. 

b. Draw two complete teeth on each gear. Dimension the gears and teeth. 

c. Show complete construction for one point on the flank and one point on the 

face of the curve of the driven gear. Use letters on construction to indicate fully the 

construction. 
d. Indicate the acting flank of the driven gear; of the driver gear. 

Scale: Full size. Time: 6 hr. 
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L-40. Two gears, A and B, have a center-to-center distance of 20 in. Gear A 
rotates at 100 rpm and has 16 teeth. Gear B rotates at 160 rpm. The teeth on the 

gear A are formed as follows: The face is a circle arc whose radius is 4J in. and whose 

center is £ in. inside of the pitch circle. The flank is radial. The length of adden¬ 

dum is 1J in.; the dedendum 2 in. 

a. Find the curves forming the tooth on the gear B. 
b. Draw the path of contact if A is the driver and rotates counterclockwise. 

c. Draw two full teeth on each gear, allowing 0.1 in. backlash. Dimension the 

gears and teeth. 
d. Show complete construction for one point on the flank and one point on the 

face of curve B. Use letters on construction to indicate fully the construction. 
Scale: Full size. Time: 6 hr. 

L-41. a. Lay out the theoretical tooth curves for a diametral pitch 12-tooth 

14£° involute gear. Draw in one complete tooth, using Brown & Sharpe standards 

for the tooth proportions. There is to be no backlash. Assume the gear to be the 

driver and to rotate clockwise. Make the teeth in contact at the pitch point. 

6. In mesh with this gear draw one tooth of a rack with true involute tooth 

curves. 

c. Determine the clearance curve on the gear. 

d. Using a template, draw in three teeth on the gear and three teeth on the rack. 

e. Indicate clearly on the drawing the following: 

1. Path of contact, also length in inches. 

2. Arc of contact, also length in inches. 

3. Interference, if any. 

4. Complete dimensions. 

Scale: Full size. Time: 6 hr. 

L-42. a. Lay out the theoretical tooth curves for a -§ diametral pitch, twelve 

tooth, 14£° involute gear. Draw in one complete tooth, making the addendum 

0.3183PC and the dedendum 0.3683PC, where Pc equals the circular pitch. Tooth 

thickness equals JPC, and there is to be no backlash. Make the center line of this 

tooth vertical. Assume the gear to be the driver and to rotate clockwise. 

b. In mesh with this gear draw three teeth of a rack with true involute tooth 

curves. 

c. Determine the clearance curve on the gear. 

d. Using a template, draw in three teeth on the gear and four teeth on the rack. 

c. Indicate clearly on the drawing the following: 

1. Path of contact, also length in inches. 

2. Arc of contact, also length in inches. 

3. Interference, if any. 

4. Complete dimensions. 

Scale: Full size. Time: 6 hr. 

L-43. a. Lay out the theoretical tooth curves for a 1-pitch, 15-tooth, 14J° 

involute gear. Draw in one complete tooth, using Brown & Sharpe standards for 

the tooth proportions. There is to be no backlash. Assume the gear to be the 

driver and to rotate counterclockwise. Make the teeth in contact at the pitch point 

with center line horizontal and center of gear to the left. 

6. In mesh with this gear draw one tooth of a rack with true involute tooth curves. 

c. Determine the clearance curve on the gear 

d. Using a template, draw in three teeth on the gear and three teeth on the rack. 

e. Indicate clearly on the drawing'the following: 

1. Path of contact, also length in inches. 
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2. Arc of contact, also length in inches. 

3. Interference, if any. 

4. Complete dimensions. 

Scale: 1$ in. = 1 in. Time: 6 hr. 

L-44. Lay out the following gears and answer the questions for each case: 

а. Will these gears operate properly? 

б. Give reasons for your answer to a. 
c. Can these gears be made to work properly? 

d. State and indicate on your drawing the reasons for your answers to c. 
1. A 14§° standard, 15-tooth, 3-pitch involute gear in mesh with a standard 

24-tooth, 3-pitch involute gear. Distance between centers 6 Tff irL 

2. A 36-tooth, 4-pitch gear in mesh with a 24-tooth, 4-pitch gear. The gears are 

made from 14true involute tooth curves, with standard height of addendum and 

dedendum. 

3. A 12-tooth, 2-pitcli pinion and rack having an angle of obliquity of 14and 

true involute tooth curves. The teeth have standard dimensions and the gears are 

in mesh so that the path of contact is 2\ in. 

4. A 6-in. gear and rack having an angle of obliquity of 14 5° and true involute 

tooth curves. The addendums equal — and the dedendums —— • The gear has 9 
■t d * d 

teeth. 

5. A standard 16-tooth 142° involute gear and a standard 12-tooth 14|° involute 

gear. Pitch of both gears is 2 and the distance on centers is 7-g- inches. 

6. A 12-tooth, 3-pitch, \A\° true involute gear with standard tooth dimensions in 

mesh with an 18-tooth, 3/4-pitch Fellows stub-tooth gear. Distance between 

centers 5 in. 

7. A 16-tooth, 2-pitch cycloidal standard interchangeable series gear in mesh with 

a 20-tooth, 2-pitch cycloidal gear. The teeth on the latter gear were generated with 

3-in. describing circles. 

8. A 48-tooth, 6-pitch standard interchangeable cycloidal annular gear and a 

39-tooth standard interchangeable cycloidal gear, whose pitch diameter is 6J in. 

9. A 16-tooth, 2-pitch standard interchangeable cycloidal gear in mesh with a 

12-tooth, 2-pitch standard interchangeable cycloidal gear. Distance between 

centers 7i in. Time: 8 in 6 hr. 

L-45. Lay out the following gears and answer the following questions for each 

case: 

a. Will these gears operate properly? 

b. Give reasons for your answer to a. 

c. Can these gears be made to work properly? 

d. State and indicate on your drawing the reasons for your answer to c. 

1. A 15-tooth, 3-pitch pinion of the 141° standard involute system and a 20-tooth 

Brown & Sharpe standard gear whose circular pitch is 1.0472 in. 

2. A 15-tooth, 4-pitch, 14^° true involute gear with standard tooth height and an 

18-tooth 4/5-pitch Fellows stub-tooth gear. 

3. A 12-tooth, 2-pitch cycloidal Brown & Sharpe standard interchangeable series 

gear and a 16-tooth, 2-pitch cycloidal gear with radial flanks. 

4. A 40-tooth, 4-pitch standard interchangeable cycloidal annular gear and a 
30-tooth standard interchangeable cycloidal gear whose pitch diameter is 7£ in. 

5. A 30-tooth, 2.5-pitch cycloidal gear is driven by a 2.5-pitch cycloidal pinion. 

The describing circle of each gear is one with radial flanks for a 10-tooth gear. 
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Ratio of speed of driver to driven is 3 to 2. Addendum of each gear equals —- and 
* d 

dedendum of each gear equals 
L16 

Pd ' 

6. A 12-tooth, 3-pitch cycloidal standard interchangeable series pinion and a 

15-tooth, 3-pitch cycloidal gear with the diameter of the describing circle equal to 

2£ in. and standard tooth height. 

7. A pair of 2-pitch, 10-tooth true involute gears with an angle of obliquity of 

14$°. Addenda equal to the module. 

8. A 16-tooth and a 32-tooth true 14^° involute gear with addenda equal to 

0.3183 times the circular pitch and dedenda equal to 0.3683 times the circular pitch. 

Pitch of both gears is 4. 

9. A true 20° involute gear of 12 teeth and a rack with straight-sided teeth using 

addenda equal to module and dedenda equal to the addendum plus 0.05 times the 

circular pitch. Pitch of each is 1. Time: 8 in 6 hr. 

L-46. Lay out a pair of involute bevel gears to meet the following requirements: 

Brown <fe Sharpe standard cut teeth; angle between shafts = 75°; velocity 

ratio = 2 to 1; diametral pitch = 2; pitch diameter of the gear = 12 in.; length 

of face = 2^ in. 

Lay out three teeth on the developed back cones of each gear, and show sectional 

view of the gears. Assume proportions for bores, hubs, webs, and so on, to give a 

pleasing appearance. 

Dimension the gears. 

Scale: Full size. Time: 3 hr. 

L-47. Lay out a pair of involute bevel gears to meet the following requirements: 

Brown & Sharpe standard cut teeth; angle between shafts = 60°; velocity 

ratio = 2 to 1; diametral pitch = 1J; pitch diameter of the pinion (smallest 

gear) = 8 in.; length of face = 2-J in. 

Lay out three teeth on the developed back cones of each gear, and show sectional 

view of the gears. Assume proportions for bores, hubs, webs, and so on, to give a 

pleasing appearance. 

Dimension the gears. 

Scale. FuV size. Time: 3 hr. 
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Acceleration, 83 

angular, 17, 84 

Coriolis’, 99, 102 
Klein’s construction, 95 

linear, 16, 83 

normal, 16, 83 

graphically, 89 

of a point, 83 

of a rolling body, 98 

on a sliding pair, 94, 97 
polygon, 88 

relative, 85, 87, 90 

^emigraphical method, 88 

strict graphical, 88 

tangential, 16, 83 

uniform, 17 

variable, 17, 22 
vector image, 88 

vectors, 83 

Acceleration image, 88 

Acme thread, 371 
Action, angle of, 165, 232 

arc of, 233 
of crank, 8 

Addendum, 230 

limits of, on involute gears, 244 
Addendum circle, 230 

Addendum distance, 230 

Aggregate combinations, 362 

Aggregate motion, 362 

Anchor escapement, 398 

Angle, of action, 165, 232 
of approach, 232 
of obliquity, 165, 233 

of recess, 232 

pressure, 165 
Angular acceleration, 17, 84 

Angular speed, 16, 18 

sliding contact, 162 
Angular speed ratio, constant, 164, 167 

Angular velocity, 52 

of floating link, 52 

of links, 61 

ratio, 62 

Annular gear and pinion, 250 
Annular gears, cycloidal, 258 

limitations of, 259 
Approach, angle of, 232 

arc of, 233 

Arc, of action, 233 
of approach, 233 

of contact, 242 

of recess, 233 

Automobile differential, 308 
steering mechanism, 121 

transmission, 292 
Axial pitch, 273 

Axis, instantaneous of velocities, 51 

Backlash, 230 

Bands, 3, 323 

Base circle, of cam, 179 
of gear, 238 

Bearings, 6 

Bell crank lever, 7 

Belts, 323 
crossed, 326 
design of drives, 341 

directional relation of, 324 

double, 326 
effective pull of, 327 

effective radius of, 324 

horsepower of, 327 

length of, 328 

line of connection of, 324 

non-parallel shafts, 339 

open, 325 
pitch surface of, 324 

power of, 326 
quarter-turn, 339 

reversible direction, 340 

single, 326 

speed ratio, 324 
tension in, 326 

types of, 326 

V-, 345 
Bevel gear differential, 308 
Bevel gear trains, epicyclic, 306 

421 
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Bevel gears, 264 
internal, 269 

nomenclature, 266 

skew, 269 

spiral, 269 

teeth of, 267 

to draw blanks of, 264 

to draw teeth of, 268 

Tredgold’s approximation for, 268 

Blocks, pulley, 363 

Body, rigid, 2 

rolling, 98 

turning, 17 

Bolt, 369 

Bush, 6 

Buttress thread, 371 

Cam, 174 

acceleration of follower, 200 

base circle, 179 

cylindrical, 174, 193 

diagrams, 175 

eccentric, 191 

flat follower, 187 

flat rocker, 189 

gravitational motion, 177 

harmonic motion, 176 

multiple-turn, 195 

on lever, 198 

parabolic motion, 177 

pitch line, 181 

pitch profile, 181 

plate, 174, 178 

positive motion, 186 

triangular, 192 

types of motion, 177 

uniformly accelerated, 177 

velocity of follower, 200 

Cam combinations, 199 

Catch, 380 

friction, 386 

Centro, 57 

location of, 58 

notation of, 57 

number of, 58 

velocities by, 60, 62 

Centrode, 115 

Chains, 323, 350 

angular speed ratio, 356 

block, 353 

Chains (Continued) 
conveyor, 351 

hoisting, 351 

inverted tooth, 357 

kinematic, 112 

length of, 355 

Morse, 358 

power transmission, 352 

Renold, 357 

roller, 353 

silent, 352 

sprocket teeth for, 353 

Chronometer escapement, 401 

Chuck, elliptic, 141 

Circular pitch, 231, 242 

Clearance of gears, 230 

Clearing curve, 236 

Click, 380 

double-acting, 383 

reversible, 381 

Clockwork, 289 

Closed pair, 4 

Collar, 6 

Combinations, aggregate, 362 

Components, 35, 38 

along and perpendicular, 45 

vectors, 35, 38 

Compound screws, 373 

Cone of gears, 293 

Cones, opposite rotation, 209 

rolling, 208 

same rotation, 211 

speed, 338 

Conic four-bar linkage, 147 

Conjugate curves, 165, 233 

to draw, 166 

Conjugate teeth, construction of, 165, 

233 

Connecting rod, 9 

Connectors, flexible, 323 

Constant angular speed ratio, 164,167 

Constant speed, 30 

Contact, arc of, 233, 242 

nature of, 161 

path of, 233, 242 

rolling, 161, 168, 206 

sliding, 162, 164 

types of, 161 

Continuous motion, 14 

Conveyor chains, 351 
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Coplanar motion, 15 

Cord drives, 347 

Cords, 347, 349 

parallel motion, 367 

Coriolis’ law, 99, 102 

Corliss valve gear, 123 

Cotton card train, 290 

Counter mechanism, 390, 393 
Coupler, 9 

Coupling, Oldham’s, 141 

Crank, 7 

action of, 8 

and rocker, 116 

oscillating, 44 

rotating, 44 

Crown gears, 268 

Crown-wheel escapement, 398 

Crowning of pulleys, 342 

Curvilinear translation, 17 

Cycle of motion, 15 

Cycloidal gears, 254 

annular, 258 

interchangeable, 256 

to draw teeth of, 257 

Cycloidal pinions, 259 

Cylinders, accelerations on, 98 

external contact, 206 

internal contact, 207 

rolling together, 206 

Cylindrical cams, 174, 193 

multiple-turn, 195 

on lever, 198 

Dead-beat escapement, 399 

Dead center, 115 

Dead points, 115 

Deceleration, 16 

Dedendum, 230 

Detent, 380 

Diametral pitch, 231 

Differential, bevel gear, 308 

Differential pulley block, 365 

screws, 373 

Differentiation, graphical, 24 

Direction, 14 

Disk and roller, 213 

Double epicyclic train, 310 

Drag link, 117 

Driver, 3 

Drum, for cord drive, 350 

Eccentric, 134 

as a cam, 191 

Eccentric rod, 134 

Eccentric strap, 134 

Eccentricity, 134 

Elements, pair of, 3 

Ellipses, rolling, 218 

Elliptic chuck, 141 

Elliptic trammel, 139 

Elliptical gears, 120 

Epicyclic trains, 299, 306 
bevel, 306 

double bevel, 310 

reverted, 302 

Epitrochoid, 236 

Escapement, 397 

anchor, 398 

chronometer, 401 

crown-wheel, 398 

dead-beat, 399 

Graham cylinder, 401 

External spur gears, 228 

Face, of gear, 230 

of tooth, 230 

Face width, 230 

Feather and groove, 7 

Fillet, 236 

Flank, acting, 230 

of tooth, 230 

Flexible connectors, 323 

Floating link, 9 

angular velocity of, 52 

relative acceleration of points on, 

Follower, 3 

Foot-pound, 327 

Four-bar linkage, 9, 112, 113 

accelerations on, 90 

angular speed of links, 52, 61 

angular speed ratio of links, 114 

conic, 147 

crank and rocker, 116 

dead center, 115 

dead points of, 115 

drag link, 117 

equal crank, 121 

non-parallel crank, 119 

parallel crank, 119 

parallel motion, 119 

relative motion of links* 114 
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Four-bar linkage (Continued) 
sliding pair, 123 

slow motion by, 122 

with a sliding member, 123 

Frame, 3 

Friction catch, 386 

Friction gearing, 213 

grooved, 215 

Gear drives, 227, 291 

Gear teeth, shape of, 234 

Gear trains, design of, 289 

reverted, 288 

Gearing, classification of, 227 

friction, 213 

grooved, 215 

worm, 278 

Gears, annular, 258 

application of involute to, 238 

backlash of, 230 

bevel, 264 

internal, 269 

clearance of, 230 

cone, 293 

crown, 268 

cutting of, 261 

cycloidal, 254 

elliptical, 120 

face of, 230 

helical, 261, 273 

herringbone, 263 

hyperboloidal, 269 

hypoid, 270 

interchangeability of, 251, 256 

interchangeable, 251, 256 

involute, 238 

obliquity of, 233 

path of contact of, 234, 242 

pin, 263 

pressure angle of, 233 

proportions of standard teeth, 259 

screw, 271 

separation of, 251 

shape of teeth, 234 

speed ratio, 228 

spur, 228 

stepped, 261 

to draw teeth of, 235, 257 

twisted, 263 

Geneva stop, 393 

Geneva wheel, 393 

Governor, water-wheel, 308 

Graham cylinder escapement, 401 

Graphical differentiation, 24 

integration, 26 

methods of solving problems, 24 
Gudgeon, 6 

Guide pulleys, 340 

Guides, 6 

Harmonic motion, 28 

cam for, 176 

equations for, 29 

Head of vector, 34 

Helical gears, 261, 273 

Helix, 272 

Herringbone gears, 263 

Higher pair, 4 

Hoisting blocks, 363 

Hoisting chains, 351 

Hoisting machine trains, 290 

Hooke’s joint, 147 

angular acceleration of, 151 

angular speed ratio of, 150 

double, 151 

relative angular motion of, 148 

Horsepower, 327 

Hyperbolas, rolling of, 219 

Hyperboloidal gears, 269 

Hyperboloids, rolling, 219 

Hypoid gears, 270 

Idler, 286 

Image, acceleration vector, 88 

link, 70 

velocity vector, 70 

Inclined plane and wedge, 367 

Incomplete pair, 4 

Instantaneous axis, of rolling bodies, 53 

of velocities, 51 

Integration, graphical, 26 

Interchangeable gears, 251, 256 

Intermittent motion, 15 

from continuous motion, 392 

from reciprocating motion, 379 

Internal bevel gears, 269 

Inversion of pairs, 5 

Involute gears, 238 

limits of addendum on, 244 

separation of, 251 
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Involute gears (Continued) 
standard proportions of, 259 

to draw the teeth of, 239 

Involute of a circle, 236 

Involute pinion and annular gear, 250 

Involute pinion and rack, 247 

Isosceles linkage, 137 

Journal, 6 

Kennedy's theorem, 58 

Keys, 6 

Keyway, 7 

Kinematic chain, 112 

Kinematic cycle, 15 

Kinematics of machines, 1 

Klein’s construction, 95 

Lead, 273 

of screw, 369 

Left-handed rotation, 15 

Lever, 7 

bell crank, 7 

nipping, 387 

Line of connection for belting, 324 

Linear acceleration, 16, 83 

Linear speed, 15 

of a point on a revolving body, 19 

Link image, 70 

Linkage, 112; see also Four-bar linkage 

isosceles, 137 

rocking block, 129 

sliding block, 124 

sliding slot, 128 

slow motion by, 122 

swinging block, 129 

turning block, 132 

two sliding pairs, 134 

Links, 3, 9, 10, 90 

floating, 9 

shape and size of. 133 

Linkwork, see Four-bar linkage 

Locking devices, 395 

Logarithmic spirals, 216 

Lower pair, 4 

Machines, 2 

kinematics of, 1 

velocities in, 43 

Masked wheels, 389 

Mechanical advantage, 364 

Mechanism, 2, 112 

constructive, 1 

pure, 1 

quick-return, 129, 132 

science of, 1 

steering, 121 

straight-line, 142, 143, 145 

Morse chain, 358 

Motion, 14 

aggregate, 362 

classification of, 20 

constant acceleration, 21 

continuous, 14 

coplanar, 15 

cycle of, 15 

formulas of, 23 

intermittent, 15, 379, 392 

parallel, 146, 367 
period of, 15 

reciprocating, 14 

relative, 170 

sense of, 170 

simple harmonic, 28 

slow, 122 

uniform, 21 

uniformly varying, 21 

Multiple threads, 370 

Neck, 

Nipping lever, 387 

Normal acceleration, 16, 83 

graphically, 89 

Normal pitch, of helical gear, 273 

of involute gear, 241 

relation to circular pitch, 242 

Nut, 6 

Obliquity, angle of, 165, 233 

Oldham’s coupling, 141 

Oscillation, 15 

Pairs, closed, 4 

higher, 4 

incomplete, 4 

inverson of, 5 

lower, 4 

of elements, 3 

sliding, 49, 71, 123 

Pantograph, 145 

Parabolas, rolling of, 219 
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Parallel motion, 146, 367 

Particle, 1 

Path, 14 

of contact, 234, 242 

Pawl, 380 

reversible, 381 

Peaucellier’s straight-line mechanism, 

145 

Pedestal, 6 

Period of motion, 15 

Periphery speed, 19 

Pillow-block, 6 

Pin gearing, 263 

Pinion, 227 
and rack, 247 

cycloidal, 259 

Pitch, axial, 273 

circle, 229 

circular, 231, 242 

diametral, 231 

normal, 241, 273 

number, 231 

of screw, 308 

point, 165, 229 

surface, of belts, 324 

Pivot, 6 

Plane, inclined, 367 

Plate cam, 174, 178 

positive motion, 186 

with flat follower, 187 

with flat rocker, 189 

Plumber-block, 6 

Point, 1 

acceleration of, 83 

Polygon, acceleration, 88 

centro, 59 

vector, 37 

velocity, 70 
Positive motion cams, 186 

Power screw, 369, 374 

Pressure angle, 165, 233 

Pulley blocks, 363 

differential, 365 

Pulleys, crowning of, 342 

guide, 340 

stepped, 330, 336 

tight and loose, 345 

Quarter-turn belt, 339 

Quick-return mechanism, 129, 132 

Rack, 247 

and pinion, 247 

Radian, 18 

Ratchet wheel, 379 

Recess, angle of, 232 

arc of, 232 

Reciprocating motion, 14 

Rectilinear translation, 17 

Reeves variable speed transmission, 346 

Relative acceleration, 85, 87, 90 

Relative motion, 170 

Relative velocity, 15, 65, 68, 70 

Renold inverted tooth chain, 357 

Resolution and composition of veloci¬ 

ties, 45 

Resolution of vectors, 38 

Resultant, 35 

Resultant vector, 35 

Retardation, 16 

Reverted epicyclic trains, 302 

Reverted gear trains, 288 

Revolution, 15, 18 

axis of, 15 

direction of, 15 

plane of, 15 

sense of, 15 

Right-handed rotation, 15 

Rigid body, 2 

Robert's straight-line mechanism, 144 

Rocker, 7 

Rocking block linkage, 129 

Roller and disk, 213 

Rolling, 206 

circular cylinder on fixed surface, 53 

of equal ellipses, 218 

of equal hyperbolas, 219 

of equal parabolas, 219 

of logarithmic spirals, 216 

of non-circular surfaces, 215 

Rolling body, accelerations on, 98 

Rolling cones, 208 

speed ratio of, 208 

Rolling contact, 53, 161, 168, 206 

cylinder and sphere, 213 

external contact, 206 

internal contact, 207 

Rolling cylinders, relative speeds of, 207 

Rolling hyperboloids, 219 

Root circle, 230 

Root distance, 230 
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Rope drives, 347 

American system, 347 

continuous, 347 

English system, 347 

multiple rope system, 347 

Ropes, 323, 347 

grooves for, 348 

wire, 350 

Rotation, 15 

axis of, 15 

clockwise, 15 

continuous, 167 

counterclockwise, 15 

direction of, 15 

plane of, 15 

sense of, 15 

Scalar quantity, 34 

Scales, 44 

Scotch yoke, 135 

Scott Russell’s straight-line mecha¬ 

nism, 142 

Screw gearing, 271 

Screws, 6 

compound, 373 

cutting of, 375 

differential, 373 

gearing, 271 

lead of, 369 

nominal diameter, 370 

pitch of, 370 

power, 369, 374 

root diameter, 370 

rotation by axial pressure, 375 

speed of, 372 

threads, 369 

types of, 371 

velocity of, 374 

Selective direction of trains, 293 

Selective speed i! ives, 291 

Sense, 14 

of relative motion, 170 

Silent feed, 388 

Simple harmonic motion, 28 

equations for, 29 

Skew bevel gears, 269 

Slides, 6 

Sliding block linkage, 124 

Sliding contact, 162, 164 

angular speed ratio, 162, 164 

Sliding pairs, 49, 71, 123 

accelerations in, 94, 103 

two, 134 

Sliding slot linkage, 128 

Slow motion, 122 

Smith’s graphical method, 334 

Space diagram, 34 

Speed, absolute, 15 

angular, 16, 18, 62 

constant, 30 

linear, 15, 19 

periphery, 19 

relative, 15 

surface, 19 

uniform, 16 

variable, 16, 30 

Speed cones, 338 

Speed ratio, constant, 164 

for belts, 324 

Speed transmission, variable, 346 

Spindle, 6 

Spiral bevel gears, 269 

Spirals, logarithmic, 216 

Spline, 7 

Spur gears, 228, 276 

twisted, 261 

Square thread, 371 

Standard gear-tooth proportions, 

259 

Star wheel, 395 

Steering mechanism, automobile, 121 

Step, 6 

Stepped gears, 261 

Stepped pulleys, 330 

equal, 336 

for crossed belt, 331 

for open belt, 333 

graphically, 334 

Straight-line mechanism, 142, 145 

Peaucellier’s, 145 

Robert’s, 143 

Scott Russell’s, 142 

Tchebieheff’s, 144 

Watt’s, 143 

Structure, 2 

Sun and planet wheel, 304 

Swash plate, 378 

Swinging block, quick-return mechar 

nism, 129 

Swinging block linkage, 129 
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Tail, of vector, 34 
Tangential acceleration, 16, 83 

Tchebicheff s straight-line mechanism, 

144 

Terminus, of a vector, 34 

Thread, acme, 371 

buttress, 371 
left-hand, 370 

multiple, 370 

right-hand, 370 

screw, 369 

square, 371 

types of/ 371 

V-, 371 
Whitworth, 371 

Tooth, face of, 230 

flank of, 230 

of bevel gears, 267 

shape of, 234 

thickness of, 230 

total depth, 230 

Train, cotton card, 290 

design of, 295 

double epicyclic, 310 

epicyclic, 299, 306 

hoisting machine, 290 

of wheels, 285 

reverted, 288, 302 

selective direction, 293 

Train value, 287 

Trammel, elliptic, 139 

Translation, 17 

curvilinear, 17 

rectilinear, 17 
Transmission, automobile, 292 

modes of, 3 

variable speed, 346 
Tredgold’s approximation, 268 

Turning block linkage, 132 

Turning bodies, 17 

Twisted spur gears, 261 

Uniform acceleration, 17 
Uniform motion, 21 

Uniform speed, 16 
Universal joint, 152 

V-belts, 345 
V-thread, 371 
Variable acceleration, 17,22 
Variable speed, 16, 30 

Variable speed transmission, 346 
Vector image, acceleration, 88 

Vectors, 34 

acceleration, 83 
addition of, 35 

components of, 35, 38 

head of, 34 

laws for, 35 

origin of, 34 

polygon, 37 

position of, 35 

resolution of, 38 

resultants, 35 

solution by, 39 

subtraction of, 37 
tail, 34 

terminus of, 34 

relative velocity by, 65 

velocity image, 70 

Velocities, 16, 43 

angular, of links, 61 

by centros, 60, 62 

by instantaneous axis, 54 

by relative velocity, 68, 70 
by resolution and composition, 45, 48 

in machines, 43 

of screws, 374 

Velocity, 70 

relative, 65, 68, 70 

Velocity analysis, 43 

Velocity image, 70 

Velocity polygon, 70 

Water-wheel governor, 308 
Watt’s straight-line mechanism, 143 

Wedge, 367 

Weston pulley block, 365 

Wheel, and worm, 279, 378 

Wkeels, idle, 286 

masked, 389 

ratchet, 379 

star, 395 

sun and planet, 304 

train of, 285 

Whitworth quick-return mechanism, 

132 

Whitworth thread, 371 

Wiper, 174 

Wire ropes, 350 

Worm and wheel, 279, 378 

Wrench, speed of, 372 








