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PREFACE

This book is not meant to be a textbook of the theory of atomic

nuclei. It is merely a selection of certain topics in the theory,

and even these topics are treated in only an elementary way.

Until a more complete textbook is written, the reader who wishes

to obtain a thorough knowledge of nuclear theory will have to

consult the original literature, or for certain topics the articles

of the present author in Reviews of Modem Physics (Vol. 8, p. 83,

193(); Vol. 9, pp. 09 and 245, 1937).

The emphasis in this book is placed on the problem of nuclear

forces. This problem is the central problem of nuclear physics.

The problem is treated entirely from the empirical i)oint of view,

and I have made an effort to present the evidence available on

nuclear forces from the behavior of the simplest nuclear systems.

Purely theoretical considerations about nuclear forces, particularly

the meson theory of these forces, are treated with the greatest

brevity, because they are not yet in a form in which they would

permit useful predictions.

As a second field of nuclear physics which is sufficiently well

developed and fundamental, I have chosen the theory of beta

disintegration.

The theory of the compound nucleus and its consequences for

the prediction of the probabilities of nuclear reactions I have

treated only very briefly. The reason for this was partly a matter

of time: the lecture course on which these chapters are based

contained only twenty lectures, and it seemed more profitable

to treat part of the theory thoroughly than to treat all of it superfi-

cially, Partly, however, the brevity of treatment of the more com-

plicated nuclei was purposeful; in the last ten years the workers

in this field have shown an inclination to devote a large proportion

of their effort to the study of the complicated nuclei, and the

danger exists that the right perspective may be forgotten. The
wartime research in the atomic energy project tended further to

emphasize the usefulness of the predictions from the theory of th^^
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compound nucleus. To correct this tendency, it seemed even

more important to put special emphasis on the fundamental

theory of nuclear forces and off the theory of the complicated

nuclei.

The theory of the fission process has been left out entirely for

the same reason: this process is, after all, only a very special

phenomenon in nuclear physics.

The theory of alpha radioactivity could be left out with a good

conscience because it is given in many elementary textbooks on

wave mechanics. With some regrets I also had to leave out the

theory of nuclear systems containing from 3 to 60 nuclear par-

ticles, especially the successful calculations of binding energies

on the basis of group theory by Wigner.

H. A. Bethe
Cornell University

July, 1947
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A. DESCRIPTIVE THEORY OF NUCLEI

L BASIC FACTS ABOUT NUCLEI

Each atomic nucleus has a charge Ze, a mass M, and a mass num-
ber A, Ze is an integral multiple of the charge e of the proton. M
is very close to an integral multiple of the proton mass. The integer

A which gives the multiple closest to M is the mass number.

The nuclear charge Z determines all the chemical properties

associated with an element. It has values from Z = 0 (neutron)

to Z = 96 (curium) for observed nuclei. Some of these do not

occur in nature: Z = 0, 43, 61, 85, 87 (87 occurs in very small

abundance as a member of a branch of the radioactive family

of Ac), 93, 94, 95, 96.

The mass number A ranges from A = 1 (proton or neutron)

to A = 242 (curium). Nearly every mass number in this range

is found in nature. The notable exceptions A — 5 and A — S

have good reasons for not being stable long enough to be observed

even in the laboratory. The mass numbers of form in + 1 beyond

209 (Bi) are not found in nature but many of them have been pro-

duced in the laboratory. These nuclei belong to a radioactive

series which does not contain any long-lived members and, there-

fore, could not have survived on earth.

Isotopes, Nuclei of the same Z but different A are called iso-

topes. On the average there are about three stable isotopes for

each Z, To distinguish isotopes A is usually written as a right

superscript and for convenience Z is sometimes written as a left

superscript. To illustrate: Sr®, Si“^, and Si®^ are the stable iso-

topes of Si. In addition to the stable isotopes, most elements also

possess radioactive isotopes, e.g.. Si has the knovm isotopes Si^""

and Si®^ Of these, Si^^ is 0^ radioactive (having too little mass

for its charge) and decays with a half-life of 4 seconds to Al^^ and

a positron

Si27 = + A127

Si®^ (having too little charge for its mass) decays with a half-life

of 170 minutes to and an electron

1



2 DESCRIPTIVE THEORY OF NUCLEI

Isobars. For a given Aj there may well be several possible

values of Z (isobars). There are many instances of stable isobaric

pairs, e.g., or and some stable iso-

baric triples, e.g., as well as numerous radio-

active isobars.

Regularities. There are several striking regularities in a table

of the stable nuclei. Nuclei of even Z are much more numerous

than those of odd Z. Nuclei of even A are more numerous than

those of odd A. Nearly all nuclei with even A have even Z; the

exceptions are and (There are also

and but these are not properly stable, being /3-radioactive

with very long lifetimes.) The fact that nuclei with odd Z cannot

have even A with the listed exceptions is what makes stable nuclei

with even Z more numerous than those with odd Z, for a nucleus

\vith even Z may have A either odd or even. Table 1 illustrates

TABLE 1

Sample of Isotope Statistics

z
Numher of

Stable Isotopes

Number with

Odd A
Number with

Even A
48 8 2 6

49 2 2 0

50 10 3 7

51 2 2 0

all three rules. For odd A^ there is apparently no preference

between even Z and odd Z.

Energy. In considerations involving the energy of nuclei the

mass M is important. According to Einstein^s relation, the energy

equivalent of a change in mass AM is

AE = AMc^

Such changes in mass occur when protons and neutrons are changed

from one configuration to another in which they are bound more
or less strongly. There is no evidence at present for the total

annihilation of heavy particles (protons or neutrons). Such a

thing might happen if an ^^antiproton'^ (Z = — 1, A == +1) met
a proton (Z=+1,A = +1) but the antiproton has not as yet

been observed. On the other hand, the total annihilation of elec-
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trons and positrons with the emission of two light quanta does

occur.

Modern mass si)ectrographic techniques permit the determina-

tion of M to better than one part in 10^ (an improvement by

another order of magnitude would just make possible the deter-

0 50 100 150 200 250

Atomic mass

Fig. 1. Packing fractions of atomic nuclei.

mination of the decrease in the atomic weight of a heavy atom due

to the binding of the electrons in the field of the nucleus). From
such data the binding energies of nuclei can be calculated. For

example, using the atomic weight scale based on 0^®

= 16.00000

there results (using the masses given in the Appendix) M(^H^)

= 1.00812, M{n) = 1.00893. Supposing that the nucleus

is made up of 8 protons and 8 neutrons, the binding energy is
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8M(H^)+8M(n) — IG.OOOOO = 0.13640 mass unit. It is to be

noted that the masses of the neutral atoms and are used

here (and will be used throughout the book). The justification

for this is that the masses of 8 electrons of the are canceled

in the calculation by the masses of the 8 electrons of the hydrogen.

(The change in the mass of the 8 electrons, due to their stronger

binding around the 0^^ nucleus, is beyond the experimental error

in the mass determinations.)

Two quantities useful in describing the binding energy of nuclei

are:

Mass excess = A = il/ — A

Packing fraction =/ = A/

A

The packing fraction is plotted as a function of A in Fig. 1.

Consider now a nuclear reaction

^Li^ + -> ^He^ + ^He^

Both the mass number and charge balance. In addition, mass-

energy conservation must hold. The balance sheet is as follows:

Initial mass:

M(2LP) = 7.01822

M(^H^) - 1.00812

Total = 8.02634

Final mass:

2M{^TAe^) = 8.00780

Mass decrease = 0.01854 mass unit

To get the energy equivalent in electron volts AE — AMc^, the

conversion factor

1 milli-mass unit = 0.931 Mev

is used (see Nuclear Physics A,* p. 86). This gives 17.26 Mew
which is released as kinetic energy. If the '^Li^ and had little

* The three papers by H. A. Bethe in Reviews of Modem Physics

,

namely,

Vol. 8, 83, 1936 (with R. F. Bacher); Vol. 9, 69, 1937; and Vol. 9, 245, 1937

(with M. S. Livingston), are hereinafter referred to as Nuclear Physics A
B, and C.
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velocity, the a-particles will fly off in nearly opposite directions,

each carrying 8.63-Mev kinetic energy. Systematic observations

of reactions such as this have verified the Einstein relation very

accurately over a great range of nuclear phenomena and are one

of the strongest bulwarks of the special theory of relativity. In

all nuclear reactions involving heavy particles only, energy has

been found to be strictly conserved.

Stability. For a nucleus to be stable it must have a mass which

is less than the combined masses of any pair of nuclei made by

subdividing it. For example, ^Li^ is stable against the sub-

division

^Li^ ^He^ + 'II^

because MC^Li^) - 7.01822 and IfC^He^) + = 4.00390

+ 3.01702 = 7.02092. ^He^ is unstable because the decom-

position

He^ He^ +

is energetically possible. The mass of He'*^ can be found by study-

ing the reaction

Li^ + He^ + He^

Knowing the masses ^(Li’^), and M(He'^), and measuring

the kinetic energy and momentum of Li^, and He^, the mass

of Ile^ can be determined. It is 5.0137 mass units. This is 0.9

milli-mass unit greater than M(ne‘*) + M(n^). (There is the

possibility that the measured mass of He^ might not be for the

ground state, but in all known nuclear reactions involving heavy

particles, whenever a reaction yields an excited state, it also yields

the ground state. Since the experiment gives a unique mass it is

presumed to correspond to the ground state.) Li^ is unstable to

the decomposition Li^ —> ^He^ + H^, and Be^ to the decomposi-

tion Be® —> Ile^ + He^. This explains the absence of nuclei of

mass numbers 5 and 8 which was mentioned above.

Fundamental Particles in Nuclei. Present ideas are that a

nucleus is composed of protons and neutrons: Z protons and
{A — Z) neutrons. This replaces older conceptions which let a

nucleus be made up of protons and electrons. Thus the binding

energy of any nucleus will be If — (A — Z)M(n^) — (Z)Af(H^).



II. THE SIZE OF NUCLEI

METHODS OF DETERMINING SIZE

There are four main methods of determining the size of nuclei.

1. Lifetimes for Alpha Radioactivity, Nuclei with a mass num-

ber A greater than 208 are found to emit helium nuclei (a-parti-

cles) spontaneously according to the equation

Z^-^(Z - 2)^-^ + ^He^

The lifetimes of such radioactive nuclei are found to vary over

a wide range and to depend strongly on the amount of energy

available for the reaction. This is illustrated by the tabulation:

Element Lifetime Energy Radius

Th 2 X 10^® years 4.34 Mev 8.7 X 10~^^ cm
RaC' 10~^ second 7.83 Mev 9.4 X 10“^^ cm

A factor of 2 in energy is thus seen to be equivalent to a factor

of the order of 10^^ in lifetime. This strong energy dependence

Fia. 2. Nuclear potential barrier for a-particles.

was explained by Gamow, and simultaneously by Gurney and

Condon, to result from the necessity of the a-particle to penetrate

a potential barrier before escaping.

At large distances, the potential is that due to Coulomb repul-

sion between a nucleus of charge Z — 2 and one of charge 2. At
some very short distance, attractive nuclear forces predominate.

The potential as a function of separation r between a-particle and

residual nucleus is shown in Fig. 2.

6



SIZE OF NUCLEI 7

The inner radius R at which nuclear forces come into play is

defined as the nuclear radius. The probability of an a-particle of

energy E penetrating the barrier is given by the Wentzel-Brillouin-

Kramers method to be proportional to

exp - C V2M[F(r) - E]
h JR

(1 )

This is called the transmission coefficient of the barrier.

Comparison of this formula with experimental lifetimes shows

that the enormous variation of lifetime with energy is indeed ex-

plained by the theory, using very nearly the same radius for all

radioactive nuclei. Moreover, the formula permits a determina-

tion of nuclear radii. With three exceptions, all of these lie between

8.4 and 9.8 X 10“^^ cm. The success of this first application of

quantum mechanics to nuclear phenomena gives us confidence in

the general use of quantum mechanics for the description of the

motion of heavy particles in nuclei.

2. Cross Section for Fast Neutrons, The cross section presented

by a nucleus to a fast neutron should approach the geometrical

cross section for neutron wave lengths small compared to the

nuclear radius: X/2w = X « i2. (This condition is required in

order to make a geometrical point of view permissible.) Under
this condition every neutron hitting the nucleus strongly interacts

with it and should, therefore, cause some reaction.

The geometrical cross section is thus permitting a calcula-

tion of the nuclear radius from the observed cross sections for fast

neutrons. (^‘Shadow scattering’^ must be excluded.)

Heavy elements Pb, U, etc., are found to have cross sections of

about 3 X 10“^^ cm^ so that their radius is 10“^^ cm. Middle

elements such as Fe are found to have cross sections of about

1 X 10“^^ cm^, corresponding to radii of about 6 X cm.

3. Electrostatic Interaction of Protons in the Nucleus. If the

binding energies of a pair of nuclei which differ onfy in the inter-

change of neutrons and protons are compared, a difference in

binding energy which increases with the charge of the nuclei is

found. Examples of such ‘^mirror” nuclei are;

6cl8 7j^l3. 7j^l6 8q16, Wgj29 16p29



8 DESCRIPTIVE THEORY OF NUCLEI

If neutrons and protons are assumed to be the same as far as

nuclear forces alone are concerned, this difference in binding

energy is the result of the additional Coulomb repulsion of the

extra proton in the field of the original Z protons. To calculate

this, all protons are assumed to be uniformly distributed over a

sphere of radius R. Then the extra Coulomb repulsion energy

due to the replacement of a neutron by a proton is

C = f Zc^R (2)

Using this formula and the observed differences in binding

energy to determine nuclear radii leads to the empirical formula

R = l.bX 10" cm (3)

This is a reasonable result since it implies that there is roughly a

constant volume for each nuclear particle. It further supports the

original assumption that neutrons and protons have similar nuclear

forces. Furthermore, extrapolation of the result to high atomic

weight is in very good agreement with radii given by the a-activity

and the neutron-scattering method.

4. Cross Sections for Nuclear Reactions Involving Charged Par-

ticles. These reactions also involve the penetration of a barrier.

The cross sections, in comparison with neutron cross sections, give

the transmission of the barrier. Nuclear radii can be computed

from these transmissions, thus extending the ^‘a-activity method'^

down to non-radioactive nuclei. The results are in agreement

with the empirical formula 3.

CONCLUSIONS REGARDING THE CONSTITUENTS OF NUCLEI

The size of nuclei is a strong argument for the presence of protons

and neutrons in the nucleus rather than protons and electrons.

The de Broglie wave length of a neutron or a proton in the nucleus

can be estimated to be

:

X = Vp = ii/VmE ~ 1.5 X 10-^® cm (4)

if we use a kinetic energy E o{% Mev, in other words of the same

order of magnitude as the binding energy per nucleon.
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On the other hand, for electrons at this relativistic energy, we
would have

X = h/p « \iclE 2.5 X (5)

Thus the neutron or proton wave length is of the right order of

magnitude for the space available in the nucleus, whereas the

electron wave length is much too large.

Another argument against the presence of electrons is the long

lifetime found for ^-emitting nuclei. The long lifetime is not

explainable by a potential barrier, because the low electron mass

would result in a high transmission coefficient in any barrier the

width of which is reasonable considering the nuclear size. More-

over, no barrier at all should be expected for electrons because

they are attracted by the Coulomb field of the nucleus. Finall}",

great difficulties would be encountered in any relativistic theory

of the electron if barriers of height greater than 2mc^ (in = electron

mass) were assumed.



m. BETA DISINTEGRATION (DESCRIPTIVE)

1. Nuclei are found in nature (and more can be produced arti-

ficially) that emit electrons spontaneously according to the reac-

tion scheme:

(z+ 1)^ + r
The energy available for such a reaction is given by:

E = - M„(Z + 1)^ - m{e)

= Ma{Z^) - Zm(e) - M,(Z + 1)^ + (Z + l)m(e) - m(e)

= - AL(Z + 1)^ (6)

where the subscript n denotes nuclear mass and the subscript a

atomic mass.

2. Artificially radioactive substances are found which emit

positrons

:

Z^->(Z - 1)^ +
Writing out the mass-energy equation as before, it is now found

that the energy available is

E = Ma{Z^) - Ma{Z - 1)^ - 2m{e) (7)

3. Whenever positron emission occurs, electron capture (usually

from the K-shell) can also occur, according to the scheme

:

Z^+Pk~--{Z -1)^

leading to the same nucleus. Clearly, the energy available for

electron capture is

E = - MaiZ - 1)^ (8)

or greater than that available for positron emission by 2 electron

masses.

Whenever energy is available for a disintegration process, i.e.,

E > 0, this process can be expected to occur—although, in some
cases, the probability will be small due to nuclear selection rules.

It should be noted that the energies just computed neglect the

binding energies of the electrons in the atom since these are usually

10



BETA DISINTEGRATION (DESCRIPTIVE) 11

small compared with nuclear binding energies. This assumption,

of course, is not completely valid for K-electron capture in the

heavier elements but becomes increasingly valid for electrons from

the outer shells of the atom.

STABILITY OF ISOBARS

The criteria for /3-decay account for the rules for existence of

isobars in nature: of two nuclei and {Z — 1)"^, the one with

greater atomic mass is unstable against /S-decay to the other. This

makes the existence in nature of isobars of neighboring Z unlikely.

There are, however, many (about fifty) isobar pairs in nature of

the type Z"^ and {Z — 2)^, with both Z and A even. The inter-

mediate nucleus, {Z — 1)^, of odd charge, decays to one or the

other of its neighbors, or sometimes to both.

The occurrence of the exceptional pairs Z^, (Z — 1)"^ is accounted

for by a very long half-life of the unstable partner for /S-decay.

These pairs are discussed in the following.

A = 40 ~> ^"Ca^^
0
-

Spin 0 spill 4 Spin 0

occurs only in 1 part to 4000 of stable K, It has a half-

life of about 4.5 X 10^^ seconds for decay by /3~-emission to Ca^^.

Its decay to hah not been observed. The long half-life is ac-

counted for in the theory by showing that the probability of such

a large nuclear spin change is very small.

A = 87 3^Sr«^
/
3
-

Spin Spin %

Each of these elements is a common isotope; the half-life is

6 X 10^^ seconds. The radioactivity of Rb has been known for a

considerable time. The identification of the radioactive isotope

came from the discovery of a small quantity of Sr®^, without any

other isotope of Sr, in a mineral containing Rb. The long half-

life is again accounted for by large nuclear spin change.

Some of the details of the remaining exceptional isobar pairs

are not known.

A = 113

It is known that Cd^^^ has spin and In^^^ has spin The
large spin change will undoubtedly correspond to a long lifetime.
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The disintegration has not been observed here but the high rela-

tive abundance of Cd^^^ and the low relative abundance of In^^^

lead to the conclusion that the transformation is probably

if-electron capture by

A = 115

The spin of is kno^vn to be the spin of is un-

known.

A = 123 "'Sb'"" ""Te'"''

The spin of is J 2 ;
the spin of is unknown. In these

two pairs, the high value of the known spin makes it probable that,

like the known decay processes just referred to, they have long

half-lives because of large spin change.

.1 = 187

This was the first case in which if-capture (by osmium) was actually

observed with a natural isotope (as described in Nature, 1945).

APPLICATION TO NUCLEAR ABUNDANCE

In Chapter I it was stated that (1) with very few exceptions

the stable nuclei with even A had even Z, and (2) the number of

species with even A is larger than with odd A. These facts can

now be interpreted. It need only be assumed that for even A the

energy (atomic mass) is generally smaller for even Z than for

odd Z, whereas for odd A there is no such alternation. Then, a

nucleus with even A and odd Z will have an atomic mass greater

than one or both of its neighbors and may decay to one or both

by jS-emission and if-capture. This explains rule 1. Both neigh-

bors of the above-mentioned nucleus, however, may be stable,

giving the possibility of isobars differing by two units of nuclear

charge: for even A, there are therefore many pairs of isobars. For
any given odd A, on the other hand, there ‘is usually only one possi-

ble nucleus—either of even Z or of odd Z. This explains rule 2.

Moreover, for a given even Z, the isotopes with even A are more
stable and therefore generally extend farther away from the mean
value of the mass number. For instance, xenon has the stable

isotopes

A =» 124 126 128 130 132 134 136

129 131



IV. FURTHER FACTS ON NUCLEAR DISINTEGRATIONS

7-RAYS

Nuclei not only emit particles (hea\^ particles and electrons),

but also 7-radiation (light quanta). Such emission is possible

only when a nucleus goes from an excited energy state to a lower

energy state. The half-lives for dipole radiation (nuclear spin

change A/ = 0, or ±1) are generally of the order of 10“^^ second

to about 10“^^ second. Quadrupole radiation (A/ = ±2) also

often gives lifetimes of the order of 10”^^ second, in contrast to

the situation in atomic spectra where the lifetimes are much longer

for quadrupole than for dipole radiation. However, for lower fre-

quency (hp ^ 20-200 kev) the lifetime for quadrupole radiation

is much longer (10~^^ to 10“^ second). For octopole radiation

(A/ == ±3) of similarly low energy the half-life may be from 10“^

second to several hours, and for A/ = dz4 from 1 second to many
years.

When the lowest excited state of a nucleus has a sufficiently

different spin from the ground state that the half-life is very long,

the excited state is called metastable, or an isomer of the nucleus.

The excited isomer is usually denoted by an asterisk; In* was

the first observed.

SUMMARY OF DECAY PROCESSES

Consider a nucleus in some quantum state.

1. It may be unstable to the emission of heavy particles.

Neutrons, The lifetime will be 10”"^^ to second, except

if the energy available to the neutron is exceedingly small (a few

electron volts), when it may be as long as second, A lower

limit can be calculated roughly by finding the time for a neutron of

average velocity to travel the nuclear radius, i.e., cm/(10® cm
per second) = 10“^^ second; thus a nucleus unstable to neutron

emission is scarcely observable.

13



14 DESCRIPTIVE THEORY OF NUCLEI

Protons. If the protons have enough energy to go over the

Coulomb barrier, the lifetimes are about equal to the lifetimes for

neutrons. If the protons must penetrate the Coulomb barrier

because their kinetic energies are low, then the Gamow penetra-

tion factor leads to much longer lifetimes.

a-Partidcs. In general, the same rule applies as for protons

except that for a given energy, longer half-lives are to be expected

because of the larger mass and charge of the a-particle. In par-

ticular, to get observable half-lives (as short as 10^^ years), the

energy of the o'-particle in the nucleus must be greater than 3.5

Mev for Z — 92, greater than 1 kev for Z = 4.

2. It may be unstable to the emission of light quanta. Half-

lives are in general from 10""^^ second to second, but occa-

sionally (in isomers, for instance) run from seconds to years.

3. Emission of /^-rays or A"-electron capture. Half-hves are

0.02 second to 10^^ years, and more.

Thus the unstable nuclei can be put into three groups:

Group I. Lives unobservably short:

First, from 10“^^ to 10~^® second: The very unstable nuclei

He^ and Li^ in their ground stat(^s, or any nucleus in an excited

state of high enough energy so that a fast neutron, fast proton, or

a-particle can be emitted.

Second, from 10“^^ to about 10”^ second: Nearly all excited

states of nuclei not contained in the group just described. These

nuclei will in general lose their energy by y-emission, or sometimes

by emission of slow neutrons, protons, etc.

Group II. Lives observable (10“® second to 10^^ years) : Nearly

all jd-radioactive nuclei, many a-radioactive ones, and many
^

^nuclear isomers” emitting 7-rays.

Group HI. Lives unobserv^ably long: If a radioactive nucleus

has a half-life greater than about 10^^ years, its activity will be

unobservable. For a-radioactivity, this sets a lower limit on the

energy of the a-particles which will make the activity observable

for a given nuclear charge Z as follows:

Z = 10 30 50 70 90

(«) - 0.13 0.8 1.7 2.7 3.7 Mev



V- SPIN AND STATISTICS

SPIN

Each nucleus has an intrinsic angular momentum which inter-

acts with angular momenta of electrons or other nuclei. It is

measured in units of h and, according to quantum mechanics, can

take on only ink^gral or half-integral values. Three methods of

determining nuclear spin are:

1. Hyperfine Structure of Spectra, The interaction of the mag-

netic moments of the electrons and the nucleus may separate in

energy the states of the atom corresponding to various values of

the angular momentum and result in splitting of spectral lines.

2. Band Spectra. Intensity variations of alternate lines in

band spectra of molecules with identical nuclei yield nuclear spins.

3. Molecular Beams. The magnetic moment associated with

the nuclear spin is used to perform a Stern-Gerlach experiment,

splitting a beam of atoms in an inhomogeneous magnetic field

according to the component of their nuclear magnetic moments

in the direction of the field. First measurements were by Stem
and Rabi. Important modifications were made by Rabi, by

Purcell, and by Bloch and Hansen and their collaborators.

Table 2 gives the observed spins of some nuclei.

TABLE 2

Sample Spins

Electron ^ 1 0

H* >2

H2 1 0

He^ 0 1

Nuclear Constituents. These observed spin values are another

reason for re^jecting a nuclear model composed of electrons and

protons. Such a model for the nucleus has A protons and A — Z
electrons or 2A — Z particles. On this basis nuclei with odd Z
(and therefore an odd total number of particles) should have half-

integer spin and nuclei with even Z integer or zero spin.

15
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with spin 1 was the first contradiction found, but there are many

more, e.g.,

^Li® have spin 1

48cdlll, 48QJ113 gpin 3^

On the other hand, the model — (A — Z) neutrons + Z pro-

tons gives A particles in all, and, assuming half-integer spin for

the neutron, the rule becomes: even Ay integer or zero spin; odd Ay

half-integer spin. This agrees wuth all measured spins.

STATISTICS

Identical particles obey either Fermi statistics or Bose statistics,

that is, a wave function P?), depending on the space and

spin coordinates Pi and P2 of particles 1 and 2, will be either

symmetrical or antisymmetrical under exchange of Pi and P2

^(P2. Pi)
-t-^(FiP2 ) Bose

—^(PiP2 ) Fermi
(9)

Electrons obey Fermi statistics. To determine the statistics of

nuclei, we shall investigate Jiow an exchange of identical nuclei

will affect the sign of the w'ave function for a molecule.

Consider a diatomic molecule with identical nuclei. Its wave
function may be written

^ V^elec.^vibrationProtatioii^nucl. spin (10)

Let the operation of exchanging nuclear coordinates and spins be
denoted by P. Then

^ ^elec.

Tlie sign may be plus or minus; it is known from molecular spec-

troscopy and is usually + for the ground state. Further,

.F^vibration “F V^vibration

because <p depends on R (the distance of the nuclei) alone and
PR = R.

Now
p = P/^Ccos dy”'*

Pi^ix) is an associated Legendre polynomial, and 6 and
<t> are the
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polar coordinates of the two nuclei. P means replacing the direc-

tion d, (t> by the opposite direction, i.e.,

6 T — 6

Now

Further,

so that

<P
—> TT <p

- d) = (-iy-^Pr(e),

+ ir) _ ^
-^yn^ivKti

( 11 )

Thus p is symmetrical for even I and antisymmetrical for odd 1.

The analysis of Pdrmci spin carried out for arbitrary spin

but is particularly simple for spin zero in which case Po-nuci. spin

= +<^nuci. spin. Thus for Spin zero (and symmetrical ^eie<^.); the

total wave function \[/ is antisymmetrical for odd I and symmetrical

for even 1. Now the nuclei must certainly obey either Bose or

Fermi statistics. Therefore, either only the states with even I,

or only those with odd Z, can exist. Evidence for this conclusion

is obtained from the band spectra. These show indeed that if

the nuclei have spin zero, every second rotational state of the mole-

cule is absent. Indeed, it is found in every instance that only the

even rotational states exist, indicating that all the nuclei of zero

spin (which have been found previously to have even A), obey

Bose statistics. Similarly, it has been found that all nuclei of even

A (including those with a spin that is not zero) obey Bose statistics

and all those of odd A obey Fermi statistics.

This result throws light on the nature and statistics of the elemen-

tary particles in the nucleus. Suppose each elementary particle

obeys Fermi statistics, then \[/ must be antisymmetrical to inter-

change of a pair of elementar^^ particles. Therefore, if each of

the two identical nuclei contains an even number of particles the

exchange of the nuclei is equivalent to an even number of changes

of sign; and ^ must be symmetrical to an interchange of nuclei

(Bose statistics); if each nucleus contains an odd number of

particles then exchange of the nuclei is equivalent to an odd

number of changes of sign, i.e., ^ is antisymmetrical to nuclear

interchange (Fermi statistics).
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Now it was found experimentally that nuclei with even A obey

Bose statistics, those with odd A Fermi statistics. This can be

explained if the total number of elementary particles in a nucleus

is A—as is the case if neutrons and protons are considered the

fundamental particles—and if, further, each of the elementary

particles obeys Fermi statistics. This proves that the neutron

must obey Fermi statistics, just as the proton for which this fact

is known experimentally. The electron-proton hypothesis fails

again because, in this case, the number of elementary particles is

2

A

— Z, so that nu(;lei with even/odd Z would have to obey Bose/

Fermi statistics, whereas A rather than Z was found to be the

actual criterion.

NUCLEI OF NON-ZERO SPIN

A nucleus of total angular momentum / can have a component

M in any prescribed direction, taking any of the values /, / — 1,

—I a total of 2/ + 1 states. For two identical nuclei

(21 + 1)^ wave functions of the form ^Mi(A)^ii/ 2
(B) can be

constructed. If the two nuclei are identical, these simple products

must be replaced by linear combinations of these products which

are symmetric or antisymmetric for interchange of the nuclei.

If Ml = M2 the products themselves are (21 + 1) symmetric

wave functions. The remaining (21 + 1)(2/) functions where Mi
and M2 are unequal have the form and ^/'^/^(A)

^Afi(B). Each such pair is to be replaced by one symmetric and
one antisymmetric wave function of the form

i ^m.(A)^m/B) (12)

Thus half of the 21(21 +1) functions are antisymmetric, giving

1(21 + 1) antisymmetric functions. A similar number of sym-
metric functions exist, to which the (21 + 1) symmetric functions

with Ml — M2 must be added. Thus the ratio of the number of

symmetric to antisymmetric functions is

(/+ 1 )(2/ + 1 ) I + l

1(21 + 1 )

"
/

(13)

If the electronic wave function for the molecule is symmetric,

it was shown on page 17 that interchange of nuclei produces a
factor (

— 1)^ in the total molecular wave fimction, where I is the
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rotational quantum number. Thus, if the nuclei obey Bose

statistics, symmetric nuclear spin functions must be combined

with even I rotational states, and antisymmetric spins with odd I,

Because of the statistical weights attached to the spin states the

intensity of even rotational lines will be (/ + !)// as great as

that of neighboring odd rotational lines.

For Fermi statistics of the nuclei, the spin and the rotational

states combine in a manner opposite to that previously stated,

and the odd rotational lines are more intense in the ratio (7+1)//.

Thus, by determining which lines are more intense, even or odd,

Fig. 3, Intensity alternation in band spectra.

the nuclear statistics is determined, and by measuring the ratio

of intensities of adjacent lines the nuclear spin is obtained.

The reason why adjacent lines must be compared is that the

rotational lines vary in intensity with I (neglecting nuclear spin),

according to the occupation numbers of the rotational states; in

other words, according to a Boltzmann distribution

(2Z + l)exp[-iS?(Z)/(fcr)] (14)

where E(J) = jB Z(Z + 1), and B is a constant (about 0.01 ev in H2).

This Boltzmann distribution provides a smooth intensity varia-

tion about which the even and the odd states alternate in intensity

(Fig. 3).

The experimental results of band spectra measurements, as

already pointed out, are that nuclei of even A obey Bose statistics

and nuclei of odd A obey Fermi statistics. Experimental deter-

minations of nuclear spin are tabulated in the Appendix. One

empirical rule from these data is that, with no known exceptions,

all nuclei of even Z and even A have total nuclear spin zero.



VI. BETA DISINTEGRATION AND THE NEUTRINO

Negative iS-disintegration consists in the conversion of a neutron

into a proton and an (electron. Since all three particles are assumed

to have spin Y2 Fermi statistics, this reaction will not conserve

spin and statistics unless it is assumed that an additional particle

of spin and I^ermi statistics is emitted. To conserve charge

this particle must be neutral. It is also clear that its mass must

be small, and it. is therefore called the 7ietdrino (Italian for “the

small neutral one”).

DISTRIBUTION OF ELECTRON ENERGIES

The emitted i^-particles are found to have a continuous distri-

bution of energies, up to a certain maximum £0 ,
rather than a

single energy (Fig. 4). The neutrino is therefore also needed to

Fig. 4. Energy distribution in /3-spectrura.

conserve energy; it is assumed to take the remaining energy,

Eo — E, where E is the electron energy. This hypothesis is

strongly supported by the fact that the maximum electron energy

is found within experimental error to be equal to the energy avail-

able for the reaction, as determined from mass data. This shows
also that the neutrino mass must be assumed negligible.

Experimental data supporting this assertion may be found, for

instance, in the /3-disintegration of into with a maximum
positron energy of 1.20 Mev.

The mass difference between and was determined by
measuring the threshold of the reaction (Haxby, Shoupp, Stevens,

and Wells, Phys. Rev. 68
, 1035, 1940):

20
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The incident proton energy for threshold was measured and cor-

rected to center of mass coordinates by the factor 13/14. The
mass-energy equation then became:

2.98 Mev + + n (15)

or

J^13 _ q13 ^ 2.98 - (n -

= 2.98 - 0.75

N13 __ Qis ^ 2.23 Mev

where a neutron-proton mass difference of 0.75 Mev is used.

According to equation 7, the energy available for positron

emission is the difference in mass minxis the mass of

2 electrons, so that

E available = 2.23 — 2(0.51) = 1.21 Mev (16)

This checks with the maximum positron energy and proves that

the neutrino mass must be small if not zero.

EXPERIMENTAL EVIDENCE FOR THE NEUTRINO

The only process which a free neutrino can be expected to cause

with certainty is the inverse /3-process which is fundamentally (let-

ting V indicate the neutrino) of the form

n + v-^ + r
Actually, to observe this process, it is necessary, of course, to use

neutrons bound in some nucleus, for instance:

Li' + -> Be^ + r
This process can occur only if the incident neutrinos have suffi-

cient energy to supply the mass difference between Be^ and Li^.

In any case the cross section for such a reaction would be ex-

tremely small; its order of magnitude is given by the cross section

for striking the nucleus (about 10“^^ cm^) and the probability

of /3-decay xvithin a nucleus (about 10~^®), so that the cross sec-

tion would be of the order of cm^, or completely unobserv-

able.

Recoil, The most likely way of verifying the neutrino existence

is to obtain further evidence for its participation in jS-emission.
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For example, the neutrino energy can be determined in two ways:

first, by measuring the electron energy and subtracting it from

the total energy available, and second, by measuring the electron

and nuclear momentum and using conservation of momentum to

obtain the neutrino momentum and energy:

E(p) = E (available) -- E(e)

p{v) ~ p (nucleus) + p{e) (17)

E{v) = cp{v)

where c is the velocity of light (and of the neutrino).

This method, unfortunate^, requires measurement of both the

nuclear recoil energy and its direction witli respect to the electron

momentum. Both of these are very difficult measurements to

make because of the small recoil energy.

A method which avoids these difficulties (J. Allen, Phys. Rev.

61
, 692, 1942) is to use A-capture by a light nucleus:

Be^ + fe Li^ + V

Since the X-electron has negligible momentum, the momentum of

the recoil nucleus will be equal to that of the neutrino. Further,

the emitted neutrinos arc monochromatic, ha\mig an energy equal

to the difference in mass available. The recoil energy can thus be

easily computed {p — neutrino momentum):

E (recoil)

p^^ [E{v)/cf

2M ” 2M

[M(BeO il/(Li^)]V

2M? (18 )

Using AM — 0.85 Mev, and M = mass of Li^, we get E (re-

coil) = 45 volts.

The measured recoil energies had various values up to a maxi-

mum of 45 volts. The values less than 45 volts may be explained

by a loss in energy of the recoil nuclei on leaving the beryllium

layer.

Further evidence for the existence of the neutrino comes from

the detailed theory of iS-disintegration that is described in Chap-
ter XVL



B. QUANTITATIVE THEORY OF NUCLEAR
FORCES

vn. PHYSICAL PROPERTIES OF PROTON,
NEUTRON, AND DEUTERON

The theory of nuclei is to be contrasted with the theory of

atoms. In the latter, the principal force between the constituent

particles, electrons and nuclei, was known when the theory got

under way, and the problem was to find the proper mechanics to

describe the motion of those particles under the given force
;
quan-

tum mechanics is the answer to this problem. In nuclei, there are

good reasons to believe that quantum mechanics is correct (the

success of the Gamow theory of a-particle decay is one example),

but the forces are unknown.

In investigating these forces, the crucial test of any theory is

the deuteron, which is the simplest stable combination of the

heavy particles (neutrons and protons) which compose nuclei.

The position of the deuteron problem in nuclear theory is similar

to that of the problem of the hydrogen atom in atomic theory.

It tests the theory without aggravating the computational situa-

tion which is already complicated enough in the theory of the

simplest nuclei.

First of all, a tabulation of existing information concerning the

proton, the neutron, and the deuteron may be helpful.

Proton

Charge: e (makes it easily observable by its ionization in matter).

Mass: 1.00812 (includes mass of an electron).

Range-Akinetic energy relationship.

Protons of a given energy have a definite range in matter of

given density and atomic number (see Nuclear Physics C, p. 269,

for a graph). For example, 10-Mev protons have a range of about

1 mm of water.

Spin:

Statistics: Fermi.

Magnetic moment: +2.7896 nuclear magnetons.

The most accurate measurement is by Rabi, Kellogg, Ramsey,

and Zacharias (Phys. Rev, 66, 728, 1939). This magnetic moment
23
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is different from 1 nuclear magneton (= et\/2Mc)y which is tlie

magnetic moment which it would have if it obeyed the Dirac

equation. The meson theory of nuclear forces gives a qualitative

but as yet no quantitative account of the proton moment. The
positive sign of the magnetic moment indicates that it points in

the same direction as the spin or mechanical moment, which is what

would be expected from a rotating positive distribution of charge.

Neutron

Charge: 0.

Mass: 1.00893.

No ra7ige-kinetic energy relationship.

The neutron can only ionize matter by means of its small mag-

netic moment, which gives practically no ionization at all. It is

detectable only by means of the products of its collisions with

nuclei. Instead of a range-energy relationship the neutron has a

mean free path (of 2 to 20 cm in solids, depending on the velocity

and material). The neutron diffuses through matter.

Spin: half-integral. (Reasons for presuming the spin to be pre-

cisely Y2 are given below.)

Statistics: Fermi.

Magnetic moment: —1.9103 zb 0.0012 nuclear magnetons.

The first measurement was by Alvarez and Bloch (Phys. Rev.

67
, 111, 1940). A beam of neutrons was passed through a block

of iron saturated by a magnetic field. This polarized the neutrons

with magnetic moments parallel to the field. Then, still in a con-

stant steady field but now out of the iron, it was acted on by a

radio-frequency field perpendicular to the steady field. Finally

it passed through another iron block, the analyzer, with its satu-

rated magnetic field parallel to the former one, and into a neutron

detector. If the radio frequency were close to the Larmor pre-

cession frequency of the neutron, the beam would be strongly

depolarized in the radio-frequency field and strongly scattered

in the analyzer block. Thus the Larmor precession frequency

was the radio frequency at which fewest neutrons were trans-

mitted. The Larmor frequency divided by H, the steady magnetic

field, is proportional to the gyromagnetic ratio of the neutron, i.e.,

V (magnetic moment)
(19)H (angular momentum)
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The measurement by Alvarez and Bloch gave a value of

1.935 ± 0.02 nuclear magnetons (for a spin of

Recently a much more accurate determination of the neutron

moment was made by Arnold and Roberts (Phys. Rev. 70, 766,

1946). T^e method was similar to that of Alvarez and Bloch

except that the magnetic field was calibrated by a measurement of

the proton moment in the same field. The experiment therefore

gives directly the ratio of the moments of neutron and proton,

which is exactly the quantity needed in the theory (see Chapter

VII). The value obtained by Arnold and Roberts is the one given

above.

Deuteron

Charge: e.

Mass: 2.01472 (includes 1 electron).

Spin: 1.

Statistics: Bose.

Magnetic moment: +0.8565 it 0.0004 nuclear magneton.

All quantities are stated for the ground state of the deuteron.

The magnetic-moment measurement is also published in the paper

on the proton by Rabi and collaborators (Phys. Rev. 66, 728, 1939).

In the quantum mechanical description of the deuteron, it is

reasonable to assume the ground state to be an S state, i.e., a state

of no orbital angular momentum, L = 0. This means that the

wave function has no angular nodes. (With plausible assumptions

on the forces it can be proved theoretically that the ground-state

wave function has no nodes whatever.) With L = 0, ^ is spherically

symmetrical and the angular momentum of the nucleus is entirely

attributable to spin. Assuming that the neutron has spin 3^, the

deuteron spin of 1 implies that the proton and the neutron spins

are parallel. In such a case the magnetic moments should also add :

Proton moment = 2.7896 it 0.0008.

Neutron moment = —1.9103 ih 0.0012.
I

Sum of the two moments == 0.8793 ih 0.0015.

Deuteron moment = 0.8565 db 0.0004.

Difference = 0.0228 it 0.0016.
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It is seen that the deuteron moment agrees almost but not quite

with the sum of the moments of proton and neutron. The reason

for the small dilference will be indicated below.

The approximate agreement can only be achieved by assuming,

as has been done here, that the neutron spin is ]/2 orbital

TABLE 3

Calculated Magnetic Moment of the Deuteron

A. If the Neutron Moment Is Negative:

Sn
S = 0

y i

1

?2

1 2

L
0 — 0.854 -6.232 —
1 0.500 0.G77 -2.866 -2.512

2 — 0.323 3.866 -0.504

B. If the Neutron Moment Is Positive:

Sn
S

= M
= 0 1 1 2

L
0 4.721 3.436

1 0.500 2.610 1.968 6.190

2 — -1 .6 -0.968 2.397

Sn — assumed spin of the neutron.

S = resultant spin of the deuteron.

L = orbital momentum of the deuteron.

/ = total angular momentum = 1. A dash (—) indicates that these

combinations cannot lead to / = 1.

angular moment i»f the deuteron is 0. This is shown by Table 3,

in which the magnetic moment of the deuteron is calculated for a

great number of different assumptions on the neutron spin, the

sign of the magnetic moment of the neutron, and the value of L,

the orbital momentum in the deuteron ground state. Because

these calculations were made before Roberts’ experiments, the

magnetic moment of the neutron was assumed to be 1.93 rather

than 1.91. The results are given in the table.
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It is seen that only S = 1, L = 0 leads to a result that is not very

far from the measured one; all other combinations, especially

those for aS = or for positive neutron moment, are completely

different from the measured moment of the deuteron.

Thus the magnetic-moment measurements are good evidence

for the following:

1. In the groimd state of the deuteron the spins of proton and

neutron are parallel (triplet state).

2. The neutron spin is Yz.

3. In the ground state of the deuteron the orbital angular

momentum is zero (AS-state).

Quadrupoh moment. Rabi and his co-workers have shown that

the deuteron also possesses an electric quadrupole moment such

that it appears as a spheroid prolate along the spin axis:

__
average for proton 1

7*2 average for proton 3
(20)

instead of Y it would be for a spherically symmetrical charge

distribution: (r = + 2^). Thus the wave function

cannot be independent of the angle 6 between the total spin and

the line joining the nuclei. If xf/ be expanded in spherical harmonics^

a dependence such as

4/ = u + wPzicos 6) (21)

must be assumed, where P2 is a normalized Legendre polynomial.

(No Pi term appears because the electric dipole moment is zero.)

In order to obtain the functions u and Wy the deuteron problem

must be solved with an explicit assumption about the nuclear

forces. This was done by Rarita and Schwinger (see Chapter

XIII). The most important result of their calculations is the

fraction of the time during which the deuteron has orbital mo-
ment 2, viz.,

dr

fu^dr + fw^dr
3.9 per cent (22)

Since the deuteron now is no longer perfectly symmetric, its

magnetic moment should not be exactly the sum of the moments
of proton and neutron. This fact seemed to present a considerable

dfficulty with the old measurement of the neutron moment by
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Alvarez and Bloch. With this measurement the deuteron moment
was almost exactly the sum of the neutron and the proton mo-

ments. On the other hand, the experimental error was too large

to permit definite conclusions.

This situation has been relieved by the work of Arnold and

Roberts. According to this measurement, the deuteron moment
is smaller than the sum of the moments of the individual particles

by 0.0228 ± O.OOIG nuclear magneton. From this figure it is

possible to calculate the percentage of time during which the

deuteron is in the D state (L = 2). If this state were pure, Land^^s

formula would give for the deuteron moment the value 0.3104, on

the basis of the measured moments for proton and neutron. If

the fraction of time in the D state is p, the moment should be

M = 0.8793(1 - p) + 0.3104p (23)

Setting this equal to the measured moment, p = 4.0 zt 0.3 per

cent is obtained. This value is in excellent agreement with the

theoretical value (equation 22); in fact, the agreement is much
better than is warranted by the assumptions made in the theory.

Relativistic corrections may reduce the value of p deduced from

experiment to about 3 per cent (according to calculations of

Schwinger).

In order to account for the electric quadrupole moment, forces

must be introduced which depend on the angle d between the line

joining the nuclei and the axis of total spin (purely central forces

give no mixing of states with different L). These are called tensor

forces; Wigner has established their general characteristics. How-
ever, in the next few chapters a potential F(r) will be assumed

(r distance between nuclei). This will enable a qualitative account

of the principal features of the deuteron without giving such fine

details as the quadrupole moment.



Vm. GROUND STATE OF THE DEUTERON

Binding Energy, The most important experimental basis for

the theory of the deuteron is its binding energy. This was first

measured by Chadwick and Goldhaber in 1934, using the photo-dis-

integration of deuterons by tlie 2.G2-Mev y-rays from thorium C':

+ hv^ + n (24)

This reaction takes place when hv is greater than the binding

energy of the deuteron
;
the difference between hv and the binding

energy appears as kinetic energy of the neutron and the proton.

Because the momentum of the y-ray is so small, the momenta of

proton and neutron are very nearly equal and opposite, and since

their masses are almost exactly equal, they share the excess energy,

hv minus binding energy, very nearly equally. The energy E of

the proton can be determined by measuring the total ionization

it produces or by measuring its range. The binding energy is

then hv — 2E,

One of the best direct measurements of the deuteron binding

energy is that of Stettcr and Jentsdike who (by measuring ioni-

zation) obtained a value 2.19 ± 0.03 Mev. (The probable error

has been increased somewhat over that given by the authors.)

Another accurate determination was made by Wiedenbeck and

Marhoefer (Phys. Rev. 67, 54, 1945), who studied the excitation

of the deuteron by y-rays which were artificially produced by
letting high-energy electrons from a Van de Graaff machine fall

on a heavy target. The authors observed the yield of neutrons

as a function of the electron energy and found a linear relation

which they extrapolated to find the threshold. Although plau-

sible, the linear extrapolation does not seem established beyond

doubt and the result should, therefore, be stated with a conserva-

tive margin of error. It is then 2.185 ± 0.02 Mev. A similar

method was used by Myers and Van Atta, and a similar result

was obtained by Kimura, using a different method.

Another accurate determination can be obtained by taking the

difference in mass of the deuteron and of the free constituent

29
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particlevS. The masses of deuteron and proton are known accu-

rately from mass spectrographic data, and the mass difference of

neutron and proton is known accurately from measurements on

the reaction chain

(see Chapter VI). The equation

Binding energy - [2M{H^) + lM{n) - ~

gives the result 2.19 ± 0.03 Mcv.*

Nature of Forces. In order to discuss the deuteron quantum

mechanically, we must know or guess something about the nature

of the “nuclear^’ force holding neutron and proton together. This

force cannot be electrical as the neutron is uncharged; nor can it

be gravitational, for assuming a gravitational force gives an inter-

action potential too small by about a factor 10^^. So we must

accept the nuclear force as a new type of force and try to find out

more about it.

We shall first of all assume a central force, i.e., the interaction

potential of neutron and proton is some function F(r), where r is

the distance between the particles. This is only in slight disagree-

ment with known facts; for a central force would yield a ground

state with angular momentum 0, whereas it w^as showm in Chapter

VII, that the deuteron ground state has a small fraction of the

state Z = 2 in addition to the predominant state Z == 0.

Second, it was shown by Wigner that the nuclear force has a

short range. This assumption must be made to explain the low

binding energy (2.19 Mev; about 1 Mev per particle) of the

deuteron compared to that of II^ (8.5 Mev; about 3 Mev per

particle) and of He^ (28 Mev; about 7 Mev per particle) which

cannot be explained by a long range force (e.g., F(r) 1/r),.

Wigner's argument was essentially that the nuclei with more
particles have more nuclear bonds per particle (D^ has has

He^ has % bonds per particle). This in itself is not sufficient

to explain the ratios of binding energy per particle; however, the

larger number of bonds per particle in the heavier nuclei causes

these particles to be pulled within the (short) range of the nuclear

* An exhaustive discussion of the determinations of the binding energy of

the deuteron was given by Stevens (Rev. Mod. Phys. 19
, 19, 1947). He

adopts as the best value 2.187 =fc 0.011 .—Note added in proof.
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forces a greater percentage of the time, increasing the binding

energy by a large amount. Thomas has shown by a rigorous

mathematical proof that it is possible to get as large a ratio of

the binding energy of to that of as desired by choosing

the range of forces small enough (and simultaneously adjusting

the depth of the hole to yield the correct binding energy). From
this argument, one would expect that the binding energy of the

deuteron is small compared to the total depth of the potential

hole and that the particles in the deuteron spend a great part of

the time outside the range of the nuclear forces—i.e., the “radius’^

of the deuteron is considerably greater than the range of nuclear

forces.

Wave Equation. If the potential V(r) is known, the binding

energy is determined by the Schrodinger equation

vmr, e, 0) + (2m/h^)[E - F(r)]^(r, 6, 4>) = 0 (25)

where r is the distance between neutron and proton and m is the

reduced mass

m =
Mn + Mp

^ (of proton or neutron)

E is negative and numerically equal to the binding energy. Con-

versely, if E is known, equation 25 determines, in principle, one

parameter relating to F(r).

Since i = 0 is being taken for the ground state, xp must be spher-

ically symmetrical. Making the substitution = u{r)/r, equa-

tion 25 takes on the simpler form

d^u M
+ ~[E -V{r)]u = 0 (26)

dr h'-

We must now assume a shape for the potential function F(r).

One shape which certamly represents a short range force and also

0

Vir)

T
%

makes for easy solution of the dif-

ferential equation is the rectangu-

lar potential well shown in Fig. 5.

Here there are two parameters,

width and depth of the well
;
since

the Schrodinger equation with a given E will determine only one

parameter, we expect only to find a relation between Vo and a,

Fig. Potential “welP^ of

deuteron.
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not definite values for them. With E — —W^ where W is posi-

tive, equation 26 becomes for the potential well

d^u M
TJ + 72
dr^

oII1 for r < a (27a)

d^u M
Ib^

~ — IFu = 0 4Ar> a (27b)

yp must be continuous and bounded and have a continuous de-

rivative everywhere. Therefore, 'if ^ ryp must have the same con-

tinuity condition, must go to zero at r = 0, and must not diverge

faster than r as r —> oo . To satisfy the conditions at zero and in-

finity the solution of equation ^7 must be

w = A sin kr for r < a (28a)

u = Be”“" for r > a (28b)

where

k = Vm(Fo - W)/h. (29a)

a = VidW/h (29b)

Relation between Range and Depth of Potential, Now, if u and

its derivative are continuous, then also the derivative of In w must

be continuous; applying this at r = a gives ^

k cot fca = — a i (30)

which conveniently does not involve A and B, but only the two

unknowns a and To, W being known = 2.19 Mev. Vq and a are

not restricted further. Thus equation 30 is the relation anticipated

between a and Vq.

Equation 30 can be put in a simpler but approximate form. As
seen above, W is small compared to Fq and can be neglected in

equation 29a. Thus

cot ka = -afk « -VwJVo (31)

Thus cot ka is negative and small in absolute value. Therefore,

ka is only slightly larger than 7r/2. {ka slightly larger than 37r/2

is not the correct solution, for then there would be a radial node
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W the wave function ^ at /cr = tt, indicating that this ^ is not the

lowest energy level, which contradicts our hypothesis.) Using

ka ^ 7r/2 and again neglecting W in the expression for k gives

Foa'' « (32)

Actually is slightly greater than the quantity on the right;

but we can be virtually certain that

Foa^ < TT^hVM or ka< IT (33)

a result which will be needed later. The expression Voa^ frequently

occurs in nuclear calculations, it often being not necessary to

know Fo and a separately.

Other types of short-range potential function give about the

same results as the rectangular well. Potentials of the form

and are treated in Nuclear Physics A, and the function

e~^/r is discussed in Phys. Rev., 63, 991, 1938, by Goppert-Mayer

and Sachs.

Discussion of Wave Function. Another result which does not

depend on the form of the potential (as long as it has a short range)

is the exponential decrease of u{r) for r greater than the range of

nuclear forces. In fact, the function

u = (34)

is close enough to the true u{r) over the whole region to be useful

in many calculations. This is seen clearly by considering Fig. 6.

Fig. 6. Exact and approximate wave functions of deuteron ground state.

The quantity 1/a can be taken as a measure of the size of the

deuteron. It was shown above that the “radius'' of the deuteron

is considerably larger than the range of nuclear forces, i.e.

:

1/a » a (35)

Thus most of the area under u{r) occurs for r > a. Using another

form for the potential function changes u{r) appreciably only for
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r < a. Therefore, independent of the shape of the potential,

is close to the true wave function over most of space. This

approximation does not give a bounded ^ at r = 0; however,

^ is normalizable, and fortunately the main contribution to the

normalization integral comes from r > a, so the infinity introduces

little error.

j \l/^ d T= 4:7r fQU^dr = 47rC^ e dr = = 1

a

or

C = a/277

Therefore

M(r) = \/a/2TC-“’' (36)

is the normalized approximate form of u{r).

If definite values are assigned to a and Vo, then A and B of the

true u(r) given by equation 28 can be found from the continuity

condition and normalization. jS is a little greater than C of the

approximate u{r). In fact,

B = VV^(1 + }4aa) (37)

is a good approximation.

Excited States of the Dcuteron. On the basis of the preceding

theory the possibility of other bound states of the deuteron may

Fia. 7. Wave function of the excited state of the deuteron (if it existed).

be investigated. For I = 0 there are no other bound states. For

in the extreme case, binding energy IF — 0, fca is still only slightly

greater than 7r/2, since W of the ground state was already negligible

compared to Fq in equation 27a. But for the first excited state ka

would have to be greater than 37r/2 since the wave function yp

would have to have a radial node (Fig. 7). But from equation 33,

* ka is certainly less than for all positive binding energies. There-
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fore, there is no bound excited state for Z = 0. There are, of course,

free states.

We shall now prove that the deuteron has no bound excited

states for states of higher 1. It will be assumed in this proof that

the force between neutron and proton is the same for higher I as

it was in the case I = 0. (The possibility of excited states with

other total spins, especially aS = 0, and with a different neutron-

proton force will turn out to be of importance in our future dis-

cussions of neutron-proton scattering.)

To prove that no bound state exists for Z 0 we will compute

the minimum well depth V just required to produce a bound state,

i.e., one for which the binding energy W is just zero. This re-

quired well depth will be found to be considerably larger than the

actual well depth as determined above from the binding energy

in the ground state. Since the actual depth is less than the mini-

mum required for binding for states of angular momentum Z 5*^ 0

no such bound states exist.

The differential equation 26, generalized to angular momenta
Z 9̂ 0 becomes

d^u M
dr^

(E - V)u
l{l + 1 )

-.2
(38)

The procedure to be followed in a general proof is as follows:

Assume a square well of depth V = —Vq and radius r a. Find

the solutions to differential equation 38 inside and outside the

well. Match these solutions at r = a. This will give a relation

between well depth Vo and binding energy W = --E. Setting W = 0

will give the minimum well depth.

Only the proof for the case Z = 1 will be carried out here, as an

illustration. For this case, the solutions to differential equation 38

are found to be:

u = (sin kr)/kr — cos kr r < a (39a)

u = e”^’'[(l/ar) + 1 ] r > o (39b)

where e = M{Vo - Tf)/h2 (40a)

a® = MW/h^ (40b)
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It will be simpler to set IF = 0 before satisfying the boundary

conditions. As a —> 0, the outside solution (39b) becomes (except

for a multiplying factor)

u — \/r r ^ a
J

(41)

This outside solution satisfies

{d/dr){ru) =0 r > a (42)

The inside solution, in order to match, must satisfy the same condi-

tion at r = a

d
(kr u) — kr sin kr

d{kr) r^a

= ka sin ka 0 (43)

or

ka = TT (43a)

Using the definition of k with IF = 0 from equation 50a:

MFoaVh^ = (44)

This required well depth Vo is almost four times as large as the

actual well depth in the ground state (equation 32). The latter

satisfied an equation like 43a, in which ka was slightly greater

than 7r/2 but definitely less than tt (equation 33).

Similar proofs with larger values of I would lead to even larger

required values of ka.



IX. SCATTERING OF NEUTRONS BY FREE PROTONS

The theory of scattering developed by Born and others is pre-

sented in Mott and Massey, Theory of Atomic Collisions (1933).

The most important result of this theory is the cross section for

scattering in the center-of-mass coordinates:

da
27r sin B dS

ip

2

Z(2Z+ 1)PKcos^)(62^'^z - 1) (45)

The cross section da is defined as the number of neutrons scat-

tered per unit time by one proton through an angle between 6

and 6 + dd, if there is a primary beam intensity of one neutron

per unit area and per unit time, dil — 2t sin 6 dd is the solid angle

in center-of-mass coordinates, Iti is the angular momentum of the

system around its center of mass. The de Broglie wave number
in these coordinates is given by:

k = 2n/\ = 1/X = P/h = V2mElh (46)

The relations between center-of-mass coordinates (c.m.) and

laboratory coordinates (lab.) for two particles of equal mass are

given by

:

MpMn M
m = — —

Mp + Mn 2
(47)

^o.m. — 2^1ab. (48)

Pc.m. = /^^Plab. (49)

Equation 47 merely gives the reduced mass of the system in center-

of-mass coordinates. Equation 49 states that only half of the

neutron energy in the laboratory system is available in the center-

of-mass system, the other half representing the kinetic energy of

the center of mass. Equation 48 can be obtained from simple

geometrical considerations.

The phase shifts 6i are measured in radians, and their physical

significance may be seen as follows: At large distances beyond the

range of nuclear forces 7(r), equation 38 for the radial function

37
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ui{r) associated with angular momentum I and angular distribu-

tion Pi (cos B) reduces to the equation of a free wave. The asymp-

totic solution uiijr) of equation 38 will therefore behave in tlie same

manner, except for a possible shift in phase, as vi{r)j the radial

wave function of a, free particle which has angular momentum 1:

Vi{r) ^ sin {hr — (large r) (50a)

ui{r) ^ sin {hr — + bi) (large r) (50b)

If all the phase shifts bi were zero, the total wave u obtained

by adding up all the components of angular momentum I would

appear at large distances to add up to the incident plane wave
with no waves traveling in other directions. This result is veri-

fied if we set 6; = 0 in equation 45 for the scattering cross

section.

It should also be noted that if the two waves ui and vi differ in

phase by bi = tt, they are again indistinguishable, and the cross

section (45) vanishes.

The actual computation of bi for a square-well potential will be

carried out later. This calculation is based, as usual, on matching

solutions inside and outside the well.

PHASE SHIFTS h AS A FUNCTION OF ANGULAR MOMENTUM I

Classical Argument. If p is the momentum and h the impact

parameter (classical distance of closest approach) then the angular

momentum is given by:

|r X p|
= = Ih (51)

or Z = b(p/h) ~ h/X

An interaction will only take place if this closest approach distance

b is smaller than the range of nuclear forces a, i.e., if

I < a/X (52)

Thus for a given energy and defiinite wave length, only a finite

number of Vs contribute to the cross section for collision. The
corresponding quantum mechanical statement is that for any

integral value of I greater than a/X the phase shift bi will be

negligibly small.
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According to (52) \ — a corresponds to the energy below which

only the 1 = 0 term is of importance; this energy is

= 2hVMX2 = 2hyMa^

2 X 10“^^

""
(1.6 X 10“^^)(2.8 X

= 1.6 X 10~^ erg = 10 Mev (53)

Quantum Mechanical Argument. The quantum mechanical

argument is based on an approximate calculation of hi (see Nuclear

Physics A, p. 119).

sin = (M/h^A;)J^ V{r)ui{r)vi{r) dr (54)

The potential well is assumed to be effective only to a distance

r = a, the range of the nuclear forces. On the other hand, in

Nuclear Physics A (p. 115) the functions ui and vi are shown to be

small unless r > IX. The integral will be negligible unless these

ranges overlap, i.e., I < a/X, which is just the condition found

by the classical argument.

SPHERICAL SYMMETRY OF SCATTERING

The result of these arguments is that do is the only important

phase shift for energies up to 10 Mev. If all higher terms in

equation 45 are dropped, the cross section becomes

da = dllX^ sin (55)

where

= 27r sin 6 dd = the solid angle (55a)

Thus the cross section (55) is found to be independent of direc-

tion, or spherically symmetric for neutrons below 10 Mev. This

conclusion is based chiefly on the short-range nature of the forces.

Thus, if spherical symmetry is found experimentally, this will verify

that the forces are short range, and test the applicability of quan-

tum mechanics to such scattering problems.

The best experimental determination of the angular distribution

of scattered neutrons is based on measuring the energy distribu-

tion of the recoil protons. An elementary consideration shows

that uniform angular distribution corresponds to uniform distri-
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bution in energy of the recoil protons from zero to the incident neu-

tron energy (in the laboratory system).

Early cloud-chamber measurements of the angular distribution

showed preferential neutron scattering in the forward direction,

i.e., most of the recoil protons were at large angles to the beam.

The energy of the protons is smaller if they are emitted at large

angles. Now it could be shown that high energy tracks were often

missed in the experiments because they were long enough to leave

the chamber except when they were almost in the plane of the

chamber. A check on the azimuthal distribution, for which there

can be no asymmetry, verified this by revealing that most of the

measured long tracks were in the plane of the chamber. Careful

cloud-chamber experiments by Dee and Gilbert produced an ex-

actly spherical symmetry.

Measurements of proton recoil energy by ionization chamber

methods by Ladenburg and his co-workers gave an almost uniform

distribution in energy. Experiments at Los Alamos by Staub and

others indicate uniformity even more accurately to within an

experimental error of about 1 per cent.

One of the problems for further experimental work is to measure

the deviations from spherical symmetry at higher energies. (See

also Chapter XIV.)

TOTAL CROSS SECTION

The total cross section for scattering of neutrons by protons

follows from integration of equation 55

:

(T — sin ^do (56)

for energies of the incident neutrons less than 10 Mev, where

2irX is the de Broglie wave length of the neutron in the center-of-

mass system, and 8o is the phase shift of the scattered wave func-

tion for I == 0. Outside the range of the nuclear forces, the wave
function, u (a solution of equation 38 with I = 0 and E positive),

will be proportional to sin (kr + ^o), where k = \/ME/ti
(E == neutron energy in the center-of-mass system =
M == mass of neutron).

The phase shift Sq is determined from the condition that the

logarithmic derivative of the wave function must be continuous
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at the boundary of the nuclear forces, r — a. For the outside

wave function this derivative is:

d/dr (log u)
|a-f

= k cot {ka + 5o) (57)

The logarithmic derivative of the inside wave function can be

calculated for any given energy from the nuclear potential. How-
ever, it is most desirable to make the calculation as free as possible

from the details of the potential function used. This can be done

because it can be shown that, independently of the shape and the

range of the potential, and independently of the energy of the

neutrons (up to about 10 Mev), the logarithmic derivative of the

inside function has the same value as for the ground state, viz.,

d/dr (log u) (58)

To prove this, we write the wave equations for the two states:

Ground state:

d^uo/dr^ + {M/ti^)[-W - V{r)]uo = 0 (59)

State of energy E :

d\/dr^ + (M/h2)[£ - V{r)]u = 0 (60)

Multiplying the first by w, the second by uq, subtracting, and

integrating from 0 to ri gives

[

duQ duT^ M
^-{E + W) Tunodr^^O (61)

dr drJo hr

Since u(0) = t^o(O) == 0, dividing by u{a)uo{a) and setting ri = a

gives

(

duo/dr du/dr\ A

Uq u /a \

d log ^^o d log

dr dr )a

M r= -{E + W) —

-

m u{a)7io{a)
(62)

Now r uuo dr = a(utu\) rr,.^ f. where 0 < f < 1, and since the
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maximum value of uuo is not much larger than the value at a

(this follows, e.g., from Fig. 6),

r UoU dr = yauQ{a)u{a), 0 < 7 < 1 (63)

For the rectangular-well potential an approximate calculation gives

7 = 3^. Inserting {d log uo/dr)a = — a, we get:

{d log u/dr)a = -a - {ME/h^ + MW/h^)ya

= -a - (fc2 + a^)ya (64)

Thus the equation for 5o is

k cot {ka + 5o) = — a — (a^ + k^){ya) (65)

A first approximation to the correct solution of this equation

neglects the second term on the right and the term ka in the co-

tangent. This is equivalent to setting the range, a, of the nuclear

forces equal to zero. Then we get

cot(5o) = —a/k (66)

Setting ka = 0 is not a bad approximation for neutrons with

wave lengths greater than a few times a, i.e., with energies less

than a few Mev. The neglect of the last term {a^ + k^)yaf com-

pared to a, involves an error of the same order as that of ka; but

it should be remembered that for the actual range of the forces

(a ~ 3 X 10“^^ cm), the product aa is not very small but has a

value of about 3^^.

Substituting (66) into (56) we get

and

sin
1

1 + cot ^60

Aw

o? + k^

k^

k^ +

47rh2 1

~W E + W

(67)

(68)

The next approximation (see Nuclear Physics A, p. 119) takes

account of a 7^ 0 and leads, for the rectangular-well potential, to

an additional factor 1 + aa in the cross section.

EXPERIMENTAL RESULTS ON NEUTRON-PROTON SCATTERING

The first experiments on neutron-proton scattering used 2.5-

Mev D-D neutrons. The cross section measured was within 20

to 30 per cent of the theoretical value which was then within
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experimental error. However, the cross section was then also meas-

ured for thermal neuirona (very slow) for which equation 68 gives

<r ^ 2.4 barns (1 bam = 10“^^ cm^) (69)

The experimental result was ^50 bams.

Two reasons for this discrepancy are:

1. The finite range, a, of the nuclear forces required the correc-

tion factor (1 + aa) as mentioned. When this was included, the

theoretical cross section rose to 3.8 bams.

2. Fermi showed that protons bound in molecules should have

a (T larger than that for free protons by a factor of about 2.5.

This second correction brings the experimental value for free

protons down to ~20 barns. This was checked by measuring the

scattering at neutron energies between 1 and 10 ev, where the

molecular binding would presumably have no effect. The measured

value at 10 ev was 21 barns, still a long way from 3.8 barns.

SINGLET STATE OF THE DEUTERON

In 1935 Wigner made a suggestion which closed the gap. He
pointed out that the ground state of the deuteron gives information

about the interaction of neutrons and protons only if their spins

are parallel, and that there must also be a state of the deuteron

in which the spins of neutron and proton are antiparallel (singlet

state). We are still free to make assumptions about this singlet

state, and a small energy W for this state would lead to a large

scattering cross section at low neutron energy E, since a is propor-

tional to 1/(W + E). Since W is not known it must be deduced

from the observed cross section. Writing

as = scattering cross section due to singlet state; spins anti-

parallel

at = scattering cross section due to triplet state; spins parallel

a = total scattering cross section, we get

a = }4:^s + /'io't (70)

The and are the statistical weights of the singlet state and

the triplet state, respectively.

To prove that these are the correct statistical weights, it is

necessary only to constmct the sets of wave functions of the two

particles (1) and (2) corresponding to the two situations. Let a
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be the eigenstate of spin + and 0 of spin — along some fixed z

axis for a single particle. Then for two particles, 1 and 2,

a(l)Q:(2) has M = +1

(M = z component of total spin)

/?(l)/?(2) has M = -1

[a(l)/3(2) + a(2)/3(l)]/v^ has Af = 0

[a(l)/3(2) - a(2)fi(l)]/^/2 has M = 0

The first three functions have total spin 1 ;
the last has total spin 0

;

there are no more linearly independent functions. Therefore, the

statistical weights 3 and 1 are justified.

Inserting the weights from equation 70, and denoting the energies

of triplet and singlet state by W

t

and Ws, respectively, equation

68 for the cross section becomes

Trh^ / 3 1

'' \E + Wt E + \Ws\

Inserting the measured o”, and Wt == 2.19 Mev, it is deduced that

\Ws\ = 0.064 Mev, very much smaller than W t.

One test of Wigner’s hypothesis is by measurement of the cross

section over the range 0 to about 5 Mev, where the theoretical

0

2.8 X 10 cm

2.8 X 10‘'^cm

Fig. 8. Potential well of the deuteron giving the best fit to scattering

experiments.

expression for a should hold. This is not an easy measurement.

It was done very carefully by Williams and collaborators * at

Minnesota and Los Alamos, The calculations were carried out

by Bohm and Richman. With a rectangular potential hole of

width a = 2.8 X 10“^^ cm and depth adjusted to give the binding

* Bailey, Bennett, Bergstralh, Nuckolls, Richards, and Williams, Phys.

Rev. 70, 583 (1946); for lower energies D. H. Frisch, Phys. Rev. 70, 689

(1946).
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energy of the deuteron and the scattering cross section at very low
energy, there was complete agreement save at the upper end near
5 Mev. There better agreement was achieved with a potential

of the form indicated in Fig. 8, i.e., a deep narrow well, plus a
shallow well of double width.

Evidence for Neutron Spin. These experiments are also strong

evidence that the neutron spin is exactly If it were there

would be two states of the deuteron contributing to the scattering:

a quintet, S = 2, with statistical weight 5, and a triplet, S —
with statistical weight 3. This would give

7rh^ / 3 5 \

2M \E + Wt E + Wj ^ ^

If this is made to agree with the measured a at low energies by a

choice of IFg, then it gives results for 2E ^ 400 to 800 kev, which
are too large by a factor greater than 1.5, far outside the experi-

mental error. For spin of the neutron greater than one must
use I 7^ 0 in order to get the right total spin for the gromid state

of the deuteron. As was pointed out in Chapter VIII, I 9^ 0 is

very unlikely on general principles.

Sign of Energij in Singlet State. The measurement of the cross

section does not give information as to whether the singlet state

is bound or virtual (only = M|lF.,|/h^ occurs in the cross sec-

tion; see equation G8). All evidence favors its being virtual. The
most important evidence is the scattering of neutrons in ortho-

and para-hydrogen (Chapter X), which also constitutes a good

Fig. 9a. Wave function of the Fig. 9b. Wave function of the triplet

singlet state of the deuteron state for low neutron energy. (Bro-

(virtual). ken line: free particle.)

check on Wigner’s hypothesis that the scattering depends strongly

on spin.

Assuming that the singlet state is virtual, its wave function will

look like Fig. 9a, for large X, i.e., slow neturons, because the phase

shift do approaches zero. On the other hand, for the triplet state,

as 0, 5o goes to T (see equation 66) and the wave function will
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have the shape of Fig. 9b. In either case the scattered amplitude

of the neutron is proportional to — 1. Therefore, for low

energies, the scattered amplitude is:

For the triplet state, setting

So = IT — S', with S' small,

_ 1 = _2iS' (73)

For the singlet state (assumed virtual)

:

g2.Jo _ I ^ 2iSo (74)

Thus for small energies, the scattered amplitudes have opposite

signs for real and virtual states (6' > 0 since ir/2 < 5o < ir).

Assuming a virtual singlet state, the singlet scattering cross

section should be corrected for finite range by a factor (1 — /3o),

where 0 = M\W^/Xx.



X. SCATTERING OF NEUTRONS BY PROTONS BOUND
IN MOLECULES

The scattering of neutrons by free protons has been discussed

in the last chapter. It is now worth while to investigate the

effects of binding of the proton in molecules.

THREE EFFECTS OF BINDING OF PROTON IN MOLECULES

1. Chemical Bond Effect. If it is assumed that the scattering

may be treated in Born's approximation, then the differential cross

section is

da = constant X X V 1/^2 f (75)

where m is the reduced mass of scattered particle and scatterer^

and V is their interaction potential. The quantity within the

absolute value signs is the matrix element of V between the initia.

and the final states. Equation 75 comes from treating as a per-

turbation the term (2m/h^)V in the Schrodinger equation

VV + (2m/h2)(E - 7)^ = 0 (76)

Solution of the problem gives the cross section proportional to

the square of the matrix element of the perturbation which leads

to equation 75.

Now the reduced mass m depends on whether the proton is

free or fixed. (The integral in equation 75 does not.) The two

limiting cases are

:

1. Proton free: m =
2. Proton bound to heavy molecule (e.g., paraffin): m = M.

We therefore expect

a (bound) = Aa (free) (77)

In order to use this argument it is necessary to

:

(1) be able to say when a proton is free and when bound, and

(2) justify the use of Bom's approximation.

Fermi (as reported in Nuclear Physics B, p. 122) examined the

47
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first of these problems and showed that essentially the proton is

bound if

En <3C hv{^QA ev for CH bond in paraffin) (78)

where En is the neutron energy and v is the frequency of vibration

of the proton in the subgroup of the molecule. Figure 10 shows

the ratio of the actual to the free cross section as a function of En

For En < hv, the neutron cannot lose energy to the vibration

at En = hv the abrupt rise in the cross section comes from a con-

tribution due to the possibility of losing one quantum of energy

to the vibration. Similar

breaks occur at En — 2/iv, etc.

For En much larger than the

vibration energy of the proton

in the molecule, the proton is

easily dislodged from its posi-

tion and acts as a free pro-

ton: a —^(T (free).

Neutrons with En < hv will

be more difficult to slow down
than those with En > hv^ be-

cause they cannot lose energy

to the vibration of the proton in the subgroup of the molecule.

They can, however, lose energy to vibrations of whole CH2 sub-

groups, which have smaller quantum energies. Speaking practi-

cally, it can be said that neutrons are easily “cooled’^ to room tem-

perature (3^^o 6v), but are with difficulty ^'cooled'^ to 20® K or

lower.

Of course, Bom^s approximation is not directly justifiable for

neutrons with En of the order of 1 ev, as the perturbation (which

is considered ^^small”) is of the order of 10 Mev (interaction

potential of neutron and proton). However, it has been shown
(Nuclear Physics B, p. 123) that it is possible to construct an arti-

ficial interaction potential which would give physically the same
scattering and yet satisfy the conditions for Bom’s approximation.

The magnitude of the artificial potential is chosen small enough

to justify Bom’s approximation, and the range is increased to

maintain the same scattering. This is justifiable because the wave
function of the proton in the molecule occupies a much larger

region of space than both the tme and the artificial potentials.

The results quoted hold using this artificial potential.

Fig. 10. Cross section for scattering

of neutrons by elastically bound

protons.
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2. Molecular Velocity Effect. When the neutron energy is of

the order of thermal energies or smaller, it is certainly not permis-

sible to neglect the thermal motion of the proton. Consider a

neutron with velocity v which passes through a thickness L of

scattering material, and consider collisions with protons which

are moving with velocity u. Then the cross section ai is a function

of |v — u| and the number of collisions per second is proportional

to (71 X jv — u|. The number of collisions in the scatterer will

then be proportional to {L/v)<t^v — u|. The effective scattering

cross section, defined as proportional to the number of collisions

per unit thickness of the scatterer, is

<^eff.(u) = kl(v - u)] X |v - vl\/v (79)

To obtain the actual effective cross section this expression must

be averaged over the distribution in u (for the case when gi is

independent of the magnitude and the direction of (v — u) see

Schwinger, Phys. Rev. 58, 1004).

3. Scattering of Neutrons by Ortho-- and Para-Hydrogen. An ex-

perimental comparison of the scattering from ortho- and from para-

hydrogen was first suggested by Teller in 1936 to test the spin

dependence of the neutron-proton interaction. An ortho-hydrogen

molecule has a total proton spin of 1, whereas a para-hydrogen

molecule has a total proton spin of 0. Thus ortho-hydrogen has

a wave function symmetric in the proton spins and has a statis-

tical weight of three, whereas para-hydrogen has an antisymmetric

nuclear spin function and a statistical weight of one. Since protons

obey Fermi statistics, the total molecular wave function *

^ ^ (electronic) • yp (nuclear spin) • p (rotation) (80)

must change sign on interchanging positions and spins of the pro-

tons (cf. Chapter V). For H2 ,
it is known from molecular theory

that this interchange of protons does not change the sign of

^(electronic). Therefore ^(rotation) must be symmetric when

^(nuclear spin) is antisymmetric, and vice versa. Consequently,

ortho-hydrogen can have only odd rotational quantum numbers

(j = 1, 3,
* • •) and para-hydrogen can have only even rotational

quantum numbers 0* == 2, •••)• The lowest energy level

* The vibrational part has been left out in 80 because it is always syin-

metric in the two protons.
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(j = 0) is therefore in para-hydrogen. The rotational energy is

proportional to j(j + l)/2/, where I = the moment of inertia.

Because of the statistical weights, there is three times as much
ortho- as para-hydrogen in an equilibrium mixture at ordinary

temperatures.

Normally, there is practically no conversion between ortho-

and para-hydrogen because the spin of one proton must be turned

over for this purpose, and the forces acting on the proton spin

(magnetic forces) are extremely small. Thus a 3-to-l mixture can

be preserved at low temperature. However, in the presence of a

suitable catalyst conversion can occur; then at very low tempera-

tures practically all of the molecules go to the lowest energy state

—

the para j = 0 form. Comparing experiments on the separated

para-form with those on the quenched 3-to-l mixture will give

also the results for ortho-hydrogen alone.

We shall now derive an expression for the scattered intensity

from a molecule of ortho- or para-hydrogen when the incident

neutron energy is so small that is much greater than the dis-

tance between the atoms in the 112 molecule — 0.75 angstrom unit.

This is true for neutrons at temperatures of 20° K or lower. The
derivation follows that of Schwinger and Teller (Phys. Rev. 52 ,

286, 1937).

Let the Pauli spin operators of neutron and proton be <Tn and

CTp. (These are twice the spin operators Sat and Sp in units of h.)

We wish to investigate the eigenvalues of the operator ctat * cr^.

Let S be the total nuclear spin of the neutron and the proton

S = + Sp (81)

Therefore

S2 = + Sp2 + 2Siv • Sp (82)

since and Sp commute.

Now we already know that S^, Sn^, and Sp^ are constants of

motion and we know their eigenvalues: S{S + 1), Sn(Sn + 1),

and Sp{Sp + 1), respectively, where S is 0 and 1 for the singlet

and the triplet states of the deuteron, respectively, and Sn and Sp
are each 3^, Equation 82 can therefore be used to determine

Siv ’ Sp - y2[S(s + 1) - Sn(Sn + 1) Sp{Sp + 1)]

« SiS + l)/2 -- %
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and therefore

ctn ‘ cTp = 2S{S + 1) — 3

= 1 for aS = 1 (triplet) (83)

= —3 for aS = 0 (singlet)

Now let ao be the amplitude of the scattered neutron wave in

the singlet state (for the scattering by a free proton) and let ai be

the corresponding triplet amplitude, so that

(Ts == 47rao^, (Tt
= 47rai^, a = == + Sirai^ (84)

Then the formula

clq “h 3ui di — do
scattered amplitude = 1 (85)

4 4

is easily seen to be correct for both triplet and singlet states, by

direct substitution from equation 83.

Since the distance between protons in the molecule is assumed

to be much smaller than X^, it is permissible to neglect the small

phase difference in the scattering from the two protons and add

amplitudes directly. Therefore the scattered amplitude from a

molecule of H2 is

A =
dQ + 3a 1

2

di — do
H ^ OTv • (O'p, + <^/>2)

do + 3ai
(86)

where Pi and F2 denote the two protons and + (TpJ = Sp
is the total spin of the two protons in the Ho molecule. The scat-

tered intensity (or differential cross section) is then

A^ == }/^{dQ + 3ai)^ + 3^^(ao 3ai)(ai — ao) (Tn *

+ H(ai - ao)-(<r,v • S,,)'' (87)

for a beam of neutrons with spin (Tn- This must be averaged over

all polarizations of the beam. The average of is zero.

Furthermore, writing the scalar product out in Cartesian com-

ponents,

(o-JV*
• == CTNx^Shx^ .

-J- a^yxCTNySlixSEy + * *

the average of is zero and = a^y^ = o'nz^ = h There-
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fore, on averaging

(o’N * S//)^ = Shx^ + + Shz^ == S/i^ = Sji(Sh + 1)

With these results, the differential cross-section becomes

do-
—

3^^[(ao + 3ai)^ + (ai — ao)^Su{SH + 1)] dQ (88)

Unless ai — no, there is more scattering from ortho- than from

para-hydrogen. Since all the experiments indicate that there is

more ortho scattering than para scattering, ai 9̂ ao,* proves

Wigner's hypothesis that the neutron-proton force is spin dependent.

It was shown in the previous chapter that if the singlet state

of the deuteron is virtual, a\ and Uq have opposite sign, and vice

versa. Now ai^ — ot/^^ir can be deduced from the binding energy

of the deuteron, and = o's/47r can then be determined from the

scattering of slow neutrons by free protons (see Chapter IX). The

results are ~ 18/7r barns, 3ai^ » 3/7r barns. So |ai| « 1/V^,

|ao| ~ 4.2/\/7r; this gives no check on relative sign of Uq and ay

But, because of the form of equation 88, opposite signs of uq and ai

will give a much larger ratio of the ortho to the para cross sections

than the same signs. In fact, if ai and ao have the same sign, the

values of |ai| and |a()| just quoted give by equation 88 about 1.4

for the ratio of the ortho cross section to the para cross section,

whereas if ai and ao have opposite signs the ratio is about 35.

This great difference is easily checked by experiment. All experi-

ments indicate that the signs of Uq and ai are opposite; therefore,

the singlet state is a virtual state,

COMPARISON WITH EXPERIMENT

Before comparison of equation 88 with experiment, corrections

must be made for the chemical bond effect, the molecular motion

effect, and the slight phase shift because the scattering protons are

a finite though small fraction of a wwe length apart.

According to the chemical bond effect, the cross section for low-

energy neutron scattering is proportional to the square of the

reduced mass of the system. Since this reduced mass is %M for a

neutron and a hydrogen molecule, whereas it is for a neutron

and a proton, the result given by equation 88 must be increased

by a factor 1%.
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The molecular velocity effect which takes into account the

change in effective number of collisions produced by the relative

neutron-molecule velocity was given in equation 79. Evaluation

for H2 gas at 20° K, and for neutrons of a kinetic energy corre-

sponding to kT at 20° K, gives a correction factor of 1.247.

The phase shift effect decreases the results by about 7 to 10

per cent. Taking the entire solid angle of 47r, the formulas to be

compared with experiments are:

<^para = 6.47(3ai + ao)^ (89)

o’ortho = 6.29[(3ai + ao)^ + 2(ao — + 1.45(ao — ai)^ (90)

together with the free proton cross section (equation 84). The
last term in o-ojtho was added to take into account inelastic scatter-

ing by conversion of ortho to para. This process is energetically

possible but its cross section is small.

Experiments were made first by Brickwedde, Dunning, and

others (Phys. Rev. 64, 266, 1938), and later by Alvarez and Pitzer

(Phys. Rev. 68, 1003, 1940) using a neutron velocity selector. In

1946 the experiment was repeated with improved technique by
DeWire, Sutton, and others at the Los Alamos Laboratory. The
results of the two last experiments are:

Alvarez

and Pitzer
Los Alamos

^'‘para 5.2 4.0

^ortho 100
i

1

1

125

The ortho and para cross sections together are sufficient to

determine Uq and ai. This was done by Schwinger and Hamer-

mesh for the experiments of Alvarez and Pitzer. The result was a

very small value for ai . From ai it is possible to derive the range

of the nuclear forces using the theory developed in Chapters IX
and X which gives the approximate result

ai = 1/a + fa (91)
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When the observed ai was inserted into equation 91, the result

was 0 or a slightly negative value for the range of the nuclear

forces, a. This result was clearly unacceptable.

The same evaluation applied to the Los Alamos results gives

a much more reasonable value for the range. The improvement

is mostly attributable to the increase of the ortho-scattering cross

section. It was observed in the Los Alamos experiments that some

conversion of ortho- into para-hydrogen was constantly taking

place. At frequent intervals the composition of the hydrogen was

therefore determined. It is believed that the low value reported

by Alvarez and Pitzer might have been due to an unexpectedly

low content of ortho-hydrogen in their scatterer.

Probably the most accurate evaluation is based on the use of

the scattering cross section of free protons together with the para

cross section, using equations 84 and 89. This procedure with the

Los Alamos experiments leads to a range of the forces in the triplet

state of

a = 1.8 X 10”^^ cm (92)

This range is considerably smaller than the usually assumed value

of 2.8 X cm, which is derived from the rather accurate

experiments on the scattering of protons by protons. If the

nuclear forces are the same for protons and neutrons, for which

there is good reason (see Chapter XII), then the range of the

proton-proton scattering must also be valid in the singlet state of

proton-neutron scattering. However, it is very well possible that

the range in the triplet state is different, and there may even be

some slight indications from the meson theory of nuclear forces

that the triplet range should be smaller. Although the scattering

experiments are not yet as precise as would be desirable, it still

seems that the difference between the two ranges is outside the

experimental en*or.

The results from ortho- and para-hydrogen scattering justify

these definite conclusions:

1. The neutron-proton force is spin dependent. This follows

from the definite experimental fact that the ortho and para

cross sections are different, which implies ai 9̂ ao and the spin

dependence of the forces.

2. The singlet state of the deuteron is virtual. This follows

from the fact that the singlet scattering amplitude Oq must have
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opposite (and therefore positive) sign from that of oi in order to

give a large ratio of ortho to para scattering, as observed.

3. The spin of the neutron is Yi- This follows again from the

fairly large observed ratio of ortho to para cross sections, viz.,

^para

A spin of <Siv = higher would require a much smaller ratio,

say 2, or less. To see this, we rewrite the scattering amplitude for a

free proton (equation 85) for >SV = ^

:

(3ai + 5a2)/8 + (02 — aj) <rjv • crp/S (93)

The scattering by a hydrogen molecule (88) is then changed to:

(r/4ir = (3ai + dazY/lG + (^2 - (ii)^S(S + 1)/16 (94)

where = 0 for para, 1 for ortho as before.

Since the coefficients in the first term are now different from

before, there is no longer near-cancellation of the Oi and the 02

term, even if the quintui)let state is virtual. Indeed, 02 must be

considerably larger (about twice) than ai to explain the scattering

of slow neutrons by protons, and, moreover, 02 has the larger

coefficient. An additional reason is that the second term in equa-

tion 94 has a relatively smaller numerical coefficient.

Thus a spin of Sjv = ^'2 i« ruled out. Higher values of the

neutron spin would be inconsistent with the deuteron spin of 1

and the proton spin of Y-
4. The range of the nuclear forces in the triplet state seems to

be significantly smaller than in the singlet state, namely,

1.8 X 10“*^ cm in the triplet as compared with 2.8 X 10~^® cm

in the singlet. However, this conclusion may be in conflict with

the accurate measurements of the cross section at higher neutron

energies.



XI. INTERACTION OF THE DEUTERON WITH RADIATION

PHOTODISINTEGRATION

Photodisintegration has been used to obtain the binding energy

of the deuteron (Chapter VIII). It will now be discussed from

the point of view of its cross section. The discussion is restricted

to low energies (several Mev) so that all the needed constants can

be obtained from deuteron binding energy and neutron-proton

scattering results. Furthermore, at these energies, the transition

probability is attributable almost entirely to the dipole (electric

and magnetic) moment. Quadrupole and higher multipole transi-

tions would be important at high energies (100 Mev).

The cross section for 7-ray absorption is (compare Heitler,

Quantum Theory of Radiation

^

pp. 121, 122)

a
0)W^V

(95)

where co = 2'kv is the (circular) frequency of the incoming photon,

m is the reduced mass of the system = and v is the velocity

of the emitted particle. M is the matrix element, for the transition,

of the electric or magnetic dipole moment.

Electric Interaction. We first discuss the effect due to electric

interaction. Since the ^-component of the electric dipole moment
of the proton in the center-of-mass system is ez/2^ if z is the co-

ordinate of the proton relative to the neutron, we have

Me,. = (96)

where ypi is the wave function of the deuteron in the ground state.

This was shown to be equal to

= V^TC 6-“’-
(1 + H«a) (97)

over most of space.

The final state must be a p-state to produce a non-vanishing

matrix element. Since no stable p-states exist (Chapter VIII), it

must be a p-state of the continuous spectrum. For energies small

66
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compared to the well depth, the wave function of the p-state will

be practically zero inside the well. Thus the potential energy of

the p-state will be small, and the state will be only very slightly

distorted from that of a p-state with no potential well. In the

calculation of the matrix element, therefore, the wave function

of a free particle of angular momentum 1 may be used for ypf.

If this is inserted into equations 96 and 95, the result is

dij - 2(cVhc) cos" x[ae/{a^ + A:")*'] d^(l + aa) (98)

where k is the wave number of the system after absorption of the

quantum, so that:

E of system = hv — Wi — h^k^/M

Deuteron binding energ}^ = Wi = /M

X is the angle between the direction of 'polarization of the 7-ray

and the direction of motion of the proton. The factor cos"' x arises

from the wave function of the final state. If the beam is unpolar-

ized, and we average over all directions of polarization

(‘os^ X = 3^2
^6 (100)

when Q is the angle of the emitted proton with the direction of

propagation of the incident photon. On the other hand, if we hold

the direction of polarization fixed and average over all proton

directions, we get

jeos^ X dQ — 47r/3 (101)

Using equations 98, 99, and 101, the total cross section becomes

^el.

87r c- h^
^ (^l

3 he M {E +
(102)

where the factor (1 + aa) arises from the normalization of the

ground-state wave function (equation 97).

The phoiomagnetic disintegration makes use of the magnetic

dipole moment. If and mv are the moments of proton and

neutron, respectively, in units of the nuclear magneton, then the

magnetic dipole moment of the system is

{eh/2Mc) {ixpUp + pn<tn) ( 1 03)
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The initial state is, as before, the ground state of the deuteron

the spatial dependence of which is given approximately by equa-

tion 97. The final state must also be an /S-state, or the integration

over angles mil vanish. However, all excited ^S-states are orthog-

onal to the ground state since they are produced by the same

potential well. The only possibility, therefore, is that the final

state be the virtual state. Since this final state is an /S-state

the emitted protons will show isotropic distribution in angle, in

contrast with the result (equation 98) for photoelectric disinte-

gration in which the final state was a P-state.

The matrix element for the transition is therefore given by

:

Mm = (eh/2Mc) ^ xo (MpCp + mo‘N)xif dr (104)
spin

where xi and xo are the spin functions of the triplet and the singlet

states, and \pi is the wave function for the ground state which is

approximated by equation 97. ypf is the wave function for the

singlet /S-state in the continuous spectrum, and is normalized per

unit energy interval.

If the matrix element (104) is computed and substituted into

formula 95 for the cross section, the result is:

2t Vw,Ve{VT\\ +
<Tm = (Mp ^nY (105)

3 hcM {E ^W{){E ^Wo)Mc^

where E and TFi are defined as in the case for photoelectric disinte-

gration (equation 99): E — hv — Wi^ TFi = deuteron binding

energy. TUo is the fictitious binding energy for the singlet state

the numerical value of which is determined from the low-energy,

singlet-scattering cross section

ctq = 4:wao^ = 47r(l — + P)

= 47rh^(l ^ Pa)/M(Wo + E) (106)

The factor (ptp — /i.v)^ in equation 105 can be understood if w'e

write the operator /Xpcr^ + MiVO'A^ in the form

/'^(mp + Mv)(a^p + crjsr) + 3"^(mp — Mv)(o'p — ctaO ( 107)

and note that the first term gives no contribution to the matrix

element (104). This follows from the fact that (o-p + cta^), operat-

ing on the spin function xi, reproduces xi multiplied by a constant

factor, whereas we wish to produce xo-
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Both the electric and magnetic cross sections decrease as

at high energies » Wi — 2.19 Mev, but the magnetic cross

section is smaller by a factor of about

O^el.

1 Wi
(tip — tiN)^ (108)

1 2.19~ (2.79 + 1.91)2 = 0.013 = 1.3 per cent
4 931

The smallnes.s of this factor results from the smallness of the

magnetic dipole moment eh/2Mc compared with the electric

Energy hv

Fig. 11. Photoelectric and pliotomagnetic cross sections of the deuteron

as a function of energy.

dipole moment (’z/2^ because the deuteron is large in size compared

to a proton Compton wave length.

At low energies {E « Wi =2.19 Mev) the electric cross section

behaves as whereas the magnetic cross section behaves as

+ Wo). Thus, for energies sufficiently near the threshold,

the magnetic cross section will dominate by a factor

^el.

1 Wi
(tip

—
M.v)^

TFi Wi

~F Wo + E

= 0.013
Wt Wi

If Wo + E
(109)

For the 2.62-Mev 7-rays of ThC' the theoretical ratio of mag-

netic to electric cross sections is 0.27 (Schwinger and Rarita,

Phys. Rev. 69 , 436). Approximate computation using equation

109 gives 0.29.

A rough plot of these cross sections as a function of energy is

shown in Fig. 11. The maximum photoelectric cross section, at
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hv = 2Wij is about 2 X 10 cm^, and the cross section at 100

Mev is somewhat under 10”^^ cm^.

EXPERIMENTS ON PHOTODISINTEGRATION

The first observations of the photodisintegration of the deuteron

were made in a cloud chamber, using the 2.t)2-Mev 7~rays from

ThC' (Chadwick and Goldliaber, Nature 134, 237, 1935). The
determination of the cross section in this way is difficult: the

sensitive time of a cloud chamber is hard to determine, and also a

large error in the measured 7~ray intensity is possible. As more

measurements were made the total cross section for photodisinte-

gration grew from a value, 5 X 10~“^ cm^, in the initial experi-

ments to 10 X 10“^^ cm“ (Ilalban, Compt. Rend. 206, 1170, 1938).

This is still not in satisfactory agreement with the theoretical

value 15 X 10”^^ cm^ (Rarita and Schwinger, Phys. Rev. 69, 436).

Chadwick, Feather, and Bretscher found in 1937 (Proc. Roy.

Soc. (London) A163, 366) that the angular distribution of the 65

recoiling proton tracks in their cloud-chamber photographs was

compatible with a sh\^ 6 law (equation 100). This was slightly

disconcerting because meanwhile it had been shown that the

photomagnetic effect, which leads to a uniform distribution in

angle, gives an appreciable contribution to the cross section at 2.62

Mev. Later measurements by Halban (1938) of the intensity of

neutrons in the forward direction gave an upper limit for the photo-

magnetic cross section 0.9 X 10^^^ cm at 2.62 Mev, as compared

to a theoretical value of about 3 X 10~^®. However, in 1945

Graham and Halban (Rev. Modem Phys. 17, 297) found slightly

more neutrons in the forward direction than the theory just given

predicts. Therefore, there is now sufficient agreement between

experiment and the theory of Rarita and Schwinger. These authors

have also pointed out further isotropic contributions arising from

the tensor forces. The accuracy of present measurements would

have to be improved by a factor of 100 to detect these small cor-

rections.

CAPTURE OF NEUTRONS BY PROTONS

This is the orocess inverse to photodisintegration. The cross

section for capture can be obtained from that for photodisintegra-

tion by statistical considerations such as those which will follow.
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Consider a box containing protons, neutrons, deuterons, and
7-rays in e^quilibrium. Let state 1 consist of deuteron and 7-ray

and state 2 of neutron and proton. Then at equilibrium

Vici^2 X [number of states 1 ]

= V2e2-^i X [number of states 2] (110)

This equation will still hold if the brackets are replaced by the

density of states per unit energy. This quantity is in general

dp

dE
^ (111 )

per unit volume of the box, where p is the momentum and g is the

statistical weight of the states. Using the relativistic relations

c

dp

dE

E— and
c p

(112)

equation 110 becomes

1-.2 92 P2V2E2 92

013)

This is a general relation. To apply it to the definitions of states

1 and 2, set

g\ = fif,i..ute,oi.!7v-rayr V\ = Py = o) = 2ir X yray frequency.

92 = S'neutrou'/prot.m, P2 = P.\\p = Mv/2, M = proton or ncutron

ma.ss.

V = relative velocity of proton and neutron.

^dputoron ^ state A.S = 1 ,
corresponding to the three possible

directions of the spin, f/^-my 2, corresponding to the two pos-

sible dire(‘ti()iis of polarization of the photon, f/neutron ^proton

are each 2, corres])()nding to the two directions of spin. Using

expression 105 for we get

(-2 h jmi{Vwl+Vw^,)-{Wi+^Eo)
.TcapturP = ^ Iw^2E^ (Mp-Miv)"

(114)

where E(^/2 = E == Mv^/4: = energy of neutron and proton in the

centcr-of-mass system. The am has been used instead of the total
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photodisintegration cross section of the deuteron because o’capture

will be appreciable only at low energies and here cTei. is small com-

pared to dm- At very low energies cTcaptuie proportional to

fio”" ^ i-e., to 1/v. But (Tcapturp^^ is proportioual to the number of

capture processes per unit time; therefore, the probability (per

second) of capture of slow neutrons by protons is independent oj

the neutron velocity (also of the proton velocity, if any). At Eq ^
0.025 ev, o'capture ^ 0.3 bam according to theory; experiment agrees.

This is a rather large capture cross section as capture cross sections

go. This accounts for the fact that hydrogen is not used as a

moderator in ‘‘piles,” operating with normal uranium. Carbon and

deuterium have capture cross sections about 1/100 of that of

hydrogen. One reason for the large value for hydrogen is the large

size of (/ip ~ maO; another is the small size of Wq (near-resonance

at zero energy).

INFORMATION FROM LOW-ENERGY AND HIGH-ENERGY
PHENOMENA

The account given so far of nuclear phenomena at low energies

hangs together pretty well. Although at times during the develop-

ment of the theory it seemed that every elTect reejuired a new ad hoc

assumption, it now appears that the only assumptions needed are

the binding energies of the triplet and the singlet states of the

deuteron. The phenomena which can be explained quantitatively

by these two constants are:

1. Binding energy of the ground state of the deuteron.

2. Cross section for neutron-proton scattering as a function of

energy.

3. Angular dist ribution of neutron-proton scattering.

4. Scattering of neutrons by ortho- and para-hydrogen.

5. Photodisintegration cross section of the deuteron as a func-

tion of energy.

6. Angular distribution of resultant particles from photodisinte-

gration of deuteron.

7. Capture cross section of neutrons and protons as a function of

energy.

The success of the theory justifies the use of quantum mechanics

for heavy particles and the use of a potential function F(r), at



INTERACTION OF THE DEUTERON WITH RADIATION 63

least at low energies. Within limits the results at low energy were

independent of the shape of V{r) as long as it decreased rapidly

with increasing r. If more information is wanted about the nuclear

forces, the particles or photons must be given higher energies.

At higher eiKM’gies the states of angular momentum I 9^ 0 will

enter into (calculations of cross sections for scattering and photo-

disintegration. From the cross sections and the angular distribu-

tions of the resultant particles, one may hope to obtain:

1. F(r) for Z = 0 in more detail.

2. F(r) for Z 0 as a function of Z.

The energy necessary to give such information is sometimes higher

than w(mld appear from the simple arguments in Chapter IX.

For example, in neutron-proton scattering the energy 10 Mev
might be presumed sufficient to determine the phase shift . This

must be raised to 20 Mev for the following reason: the scattering

cross section is proportional to the absolute value scpared of

f{e) = - 1 + - 1) cos e (115)

If 61 is small, — 1 = 2ibi and the cross section becomes

j(cos 25o — 1) + t'(sin 25() + G^i cos = (ccjs 25o — 1)^ + (sin

2^0 + G61 cos 0)^. The term of first order in 61 is proportional to

sin 26o, and, unfortunately, at 10 Mev 60 ^ 7r/2(cot do = a/k

^ 0). Therefore, it is only for larger A:, corresponding to perhaps

20 Mev, that the di terms in the cross section contribute appre-

ciably. The situation is further aggravated by the fact that around

10 Mev the cos 6 terms in triplet and singlet scattering have

opposite sign and cancel approximately.

There will be some difficulty in interpreting the results of scatter-

ing experiments at high energies because the different phases must

be disentangled from each other, but this cannot be helped. The

photodisintegration at high energies ought to give some clean-cut

evidence on the transitions because for dipole transi-

tions the spin does not change and the orbital momentum changes

by one. Above about 70 Mev, one might expect to get an appre-

ciable number of quadrupole transitions to the ^D-state because

the wave length X of the 7-rays becomes comparable to the range

of the forces. These could be distinguished from the dipole transi-

tions by the angular distributions of resulting protons and neu-

trons.
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No stable state of Ile^ is observed, and this is supported theo-

retically by the fact that the potential energy function for the

proton-proton interaction which is derived from proton-proton

scattering experiments leads to no bound state. Thus proton-

proton scattering is the only way to get direct evidence on proton-

proton forces. Proton-proton scattering experiments are easier to

perform and interpret than proton-neutron experiments, for the

following reasons

:

1. Protons are readily available.

2. Protons can be made monochromatic in energy. Neutrons

made by the reaction 1) -f- D —> He^ + n can be expected to be

monochromatic only up to about 6 Mev, where it begins to be

possible to leave He^ disintegrated into H + D. The best reaction

to produce monochromatic neutrons is D + —> Ile^ + ^ ;
this

would be good to about 20 Mev, but at present tritium is not

generally available.

3. Protons can be produced in well-collimated beams. Fast

neutron beams are very hard to collimate.

4. Protons are easily detected by their ionization, which makes

possible more accurate measurements of angular distribution than

for neutrons.

5. Protons undergo Coulomb scattering simultaneously with

nuclear scattering. This might seem to be a disadvantage, but

actually it permits a determination of the interference between

nuclear and Coulomb scattering and this makes for greater sensi-

tivity (in case one of the scattering probabilities is small) and also

allows a determination of the sign of the phase shifts resulting

from the nuclear scattering. Further, the Coulomb scattering is

well known theoretically and experimentally and can be used to

calibrate the nuclear scattering measurements.

6. The proton-proton combination obeys Fermi statistics,

whereas in the neutron-proton combination, states wSymmetric

with respect to particle interchange as well as antisymmetric states

64
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occur. This simplifies the analysis of proton-proton scattering,

but of course neutron-proton scattering still must be measured in

order to get complete information.

THEORY OF PROTON-PROTON SCATTERING

The theory of proton-proton scattering is more complicated

than that of neutron-proton scattering because of the presence

of the Coulomb potential in addition to the nuclear potential.

The Coulomb potential reciuires a rather special wave-mechanical

treatment of the scattering problem because of the slow variation

of the potential with distance.

Scattering by Coulomb Field, Rutherford first investigated the

scattering by a Coulomb field from the classical standpoint. His

result is well knowm:

da = sin^ {0/2)]2Tr sin 6 dO (116)

where Zie and Z2C are the charges of the particles, v is the velocity

of the incident particle, m is the reduced mass, and 6 is the scatter-

ing angle in the center-of-mass system. For two protons,

= ^2 = 1, m = M/2, B/2 = (laboratory system). In the

laboratory system ecpiation 116 then becomes:

da = (eV^V)(l/sui^ 0 i + l/cos^^ 61 ) cos 0i 27r sin 61 dOi (117)

The term containing cos"^ 61 is added because each proton at angle

in the laboratory .system is accompanied by a recoil proton at

angle (7r/2 — ^i) and these recoil protons are not counted in

equation 116. A factor 4 cos^i arises from the transformation

of the solid angle from the center-of-mass system to the laboratory

system. Eq = is the kinetic energy in the laboratory

system.

As is well knowm, the Rutherford equation (116) agrees with

the experimental results for the scattering of low-energy a-particles

or protons by nuclei, the effect of the nuclear potential being

negligible at these low energies. However, even at fairly low ener-

gies, the classical equation (117) does not give the correct scattering

of protons by protons. One reason for this is the neglect of sym-

metry requirements by the classical theory. The wave-mechanica.



66 QUANTITATIVE THEORY OF NUCLEAR FORCES

treatment of scattering in a Coulomb field by Mott showed that

the correct result for identical scatterer and incident particle is;

/ I 1

Vsin*^ cos^ di

cos [{c^/hv) In tan^

sin^ cos^
cos 27r sin 6i ddi (118}

(see Mott and Massey, Theory of Atomic Collisions, p. 75). The
extra term comes in because the identity of sf^attercd particle and

scatterer places symmetry requirements on the wave function

This term represents interference between the two parts of the

wave function describing the two-proton system. The sign is

negative because protons obey Fermi statistics. For unlike par-

ticles these terms drop out and the ec^uation agrees exactly with

the Rutherford equation (116).

For proton energies of 1 Mev and higher {v > c/20), e^/lw <
so cos [{e^/hv) In tan^ 6i] is nearly unity except for 6i nearly zero

or nearly 7r/2. Except in these regions, equation 118 is approxi-

mately

Eo^ Vsin^ cos^ di

sin^ cos
cos 9i 2t sin di dOi

However, experiments of White, and of Tuve, Heydenburg, and

Hafstad in 1936 indicated considerably more protons at 45° than

given by equation 119 at proton energies of about 1 Mev. This

indicates that the nuclear potential already has an appreciable

effect.

Effect of Niiclear Potential, It is reasonable to assume that the

nuclear potential between two protons has the same characteristics

as that between neutron and proton. The Wigner argument about

short-range forces (Chapter VII) involves both proton-proton and

neutron-proton forces. The main difference between proton and

neutron seems to be the electric charge, and the nuclear force

apparently does not arise from charge. We assume therefore that

the potential between two protons is confined within some short
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range a as before, although the value of a need not necessarily be

the same.

Therefore, in proton-proton scattering at low energies it is

expected that only the I = 0 scattering processes will be affected

by the nuclear potential, just as in neutron-proton scattering.

We shall now merely outline the solution of the problem. (See

Mott and Massey, Theory of Atomic Collisions

^

for a more complete

development.)

In a purely Coulomb field, and in the center-of-mass system,

an asymptotic solution of the Schrodinger equation for the scatter-

ing of two particles of equal mass Jlf, one of which has an energy

is:

^(r) =* exp [ikz + ia In k(r — z)]

+ “ 2A:r + iir + 2i tjq) (120)

where

g(d) = [e^/Mv^ sin^ (0/2)] exp [—ia b sin^ (0/2)] (120a)

and

a = eVfiy, k = Mv/2h, e'’"‘ = r(l + ia)/\v{\ + m)] (120b)

The first term in e(iuation 120 is the incident wave: an almost

plane wave with a small space-dependent phase shift caused by
the long-range nature of the Coulomb potential. The second

term is the spherical scattered wave. The square of the absolute

value of g(0) gives the cross section per unit solid angle, da/d^y

when there are no symmetry requirements on Note that

IvWp agrees exactly with equation 116, which is, therefore, cor-

rect for scattering of unlike particles with a pure Coulomb field.

Now if the effect of the nuclear force is considered without tak-

ing into account the identity of the particles, it is necessary to

correct only the I = 0 component of the wave ^(r), equation 120.

Let ^(r) be expanded in Legendre polynomials of cos 0:

= (l/r) Ylvi(r)Pi(cos e) (121a)
i

and let the true wave function x(r), which includes the effect of

the nuclear forces, be also expanded:

x(r) = (l/r)^«i(r)Pz(cos 6) (121b)
i
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Vir)

0

No (j) dependence is required because the incident wave is along

the z axis (axis of the polar coordinate system). Such expansions

are possible because both the Coulomb and the nuclear potentials

are central. The Zth term in the sums is the component of the

wave with angular momentum
1. viir) and ui{r) are solutions

of the radial Schrodinger equa-

tion with pure Coulomb poten-

tial and with Coulomb-plus-

nuclear potential, respectively.

(See Fig. 12.) Thus Vo{r) and

^o(^) be found; w^hen they

are calculated, it is found that

asymptotically as 2 —> oo, UQ{kr) = i\){kr + So), wiiere Sq is a con-

stant phase shift.

Since we are correcting only the I = 0 term, we may write

x(r) = i{t) + (l/V)[uo(7-) - 2;o(r)] (122)

When Mo(r) and i)o(r) are normalized correctly, it is found that

Fig. 12. Combined Coulomb poten-

tial and nuclear well. (Coulomb

ignored inside well.)

x(r) = exp [ikz + ia In k{r — z)]

where
+ (1/r) exp [ikr — ia In 2kr + iir + 2f)7o]/(^)

m =
exp [—ia In sin^ {0/2)]

Mv^ sin^ {0/2)
+

i

2k
1 )

(123)

(124)

The difference between this f{0) and the g{0) of equation 120b is

the added term containing 5o which describes the nuclear scatter-

ing.

Symmetry of Wave Function. Equations 123 and 124 give the

correct results for the scattering of unlike particles with a Coulomb
potential. We must now correct these equations to account for

the identity of the two protons. The sjiatial w^ave function must
be either symmetrical, with total spin = 0, or antisymmetrical,

with total spin = 1. Now x(r) of equation 123 is neither sym-
metrical nor antisymmetrical. But

X. = (1/V2)[x(r) + x(-r)] (125a)

is obviously symmetrical and

Xa = (l/\/2)[x(r) - x(-r)] (125b)
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is obviously antisymmetrical. Replacing (r) by (—r) is equivalent

to replacing r by r, z by —z, and Shy {t — 6). If the expansion

(121b) is considered and it is remembered that

7^i[cos (tt — e)] = (
— ly Pi (cos 8) (126)

it is seen that in 125a components with odd I drop out, whereas

in 125b components with even I drop out. The /(0)^s for Xs and

Xa are:

fsiO) =
Mv^

fa{6) =
Mv^

exp [—ia In sin^ (8/2)]

+

sin^ (8/2)

exp [~-ia In eos^ (^/2)]]

cos^ (8/2)

exp [
— ia In sin^ (8/2)]

+ - - 1) (127a)
k

sin^ (8/2)

exp
\
—ia In cos^ (8/2)]\

cos^ (0/^ J

(127b)

ffi(8) comes from singlet (S — 0) scattering, and fa(8) comes from

triplet (S = 1) scattering. The singlet and the triplet scattering

add incoherently. Therefore, the total differential cross section is

• 2ir sin (9 dd

= F(d) • 2t sin 8 d8 (?-28)

(definition of F).

To go to the laboratory system, replace 8 by 28i:

da = F(26i)-4: cos 8i •27r sin ddi (129)

From equations 127 to 129, and neglecting again the small ex-

ponents (a complete formula, including these terms, was given by

Breit, Thaxton, and Eisenbud, Phys. Rev. 66, 1018, 1939) in

equation 127, the cross section per unit solid angle is

1 1 1
1

sin'* 6i cos^ sin^ 8i cos^

2h.v sin 5o cos 5o /2hA^
^ FT + (“T")sm^ $1 cos^ di \ /

cos (130)
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Note that equation 130 reduces to the Mott formula (119) for a

pure Coulomb field when 6o is zero, i.o., when there is no nuclear

scattering.

The fourth term in the bracket in equation 130 is an interfer-

ence term between Coulomb and nuclear scattering. This is a

very useful term as it makes possible the experimental detection

of quite small 6o^s because of the linear instead of quadratic

dependence on 5o.

The linearity in 6q of the interference term also permits determi-

nation of whether the nuclear potential is repulsive or attractwe,

as attractive potentials cause positive 5o and repulsive potentials

cause negative 5o. The experimental results indicate that the

potential for Z = 0 is attractive.

The last term in the bracket in equation 130 is exactly the

scattering that would result if only the nuclear potential were

present. For large energies this pure nuclear scattering becomes

the most important because of the coefficient.

EXPERIMENTS ON PROTON-PROTON SCATTERING

Experiments thus far * have been published for energies up to

2.4 Mev. At this energy there is 43 times as much total scattering

at 45° as Coulomb scattering. The most extensive experiments

were carried out by PTerb, Kerst, Parkinson, and Plain (Phys.

Rev. 66, 998) and analyzed by Breit, Thaxton, and Eisenbud

(Phys. Rev. 66, 1018).

From the obseiwed angular distribution, the value of 5o is ob-

tained, and an excellent check on the theory is provided by the

requirement that the entire angular distribution must be fitted

by a single parameter 5o. This condition was found to be fulfilled

within a fraction of a per cent, demonstrating again the applica-

bility of quantum mechanics to such problems.

Plaving obtained as a function of energy, Breit and his collab-

orators then derived a potential to fit these data. The potential

is, of course, not uniquely determined. However, the experi-

mental data were of sufficient accuracy to specify the well depth

to ±1 per cent for any assumed range. On the other hand, the

range can only be fixed to about ±15 per cent, similarly to the

* R. R. Wilson et al, have investigated the scattering at 10 and 14.5 Mev
(Phys. Rev. 71

,
384 and 560, 1947). See Chapter XIV .—Note added in proof.
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neutron-proton scattering. Assuming a rectangular well, the

best fit is obtained for a range a — 2.8 X 10“^^; for this range

the depth is Vq — 10.5 dz 0.1 Mev. The exact shape of the well

cannot be deduced at all from the experimental data.

More information about range and shape can be expected at

higher energies, as shown in Fig. 12 of Breit's paper. At higher

energies, also higher I components will be affected by the nuclear

potential. For these cases the preceding theory must be extended

to include the phase shifts 5i, ^2 ,
etc., which are defined similarly

to 5o. The sign of will indicate whether the potential for ^ = 1

is attractive or repulsive. 5i is still quite small ('^O.l) at

10 Mev.

Lower proton energies are also useful for the determination of

the range. In particular, at energies around 400 kev, the

scattering at 45° is much less than the Coulomb scattering

and very sensitive to the range. Ragan, Kanne, and Tashek

(Phys. Rev. 60
, 621, 1941) have carried out such experiments and

found a = 2.8 X 10“^^ cm zb 15 per cent.

From the well depth 10.5 Mev found above for the hS potential

(as stated before, symmetry requirements exclude a ^/8-state) it

can be shown that there is no bound state for two protons. Thus
He^ is not stable against disintegration into two protons.

It is now worth while to compare the proton-proton well depth

with the neutron-proton well depth for the ^>S-state. For

a - 2.8 X 10~^^ cm,

pS Vo = 11.9 Mev
Neutron-proton ]

\^S Vi = 21.3 Mev

Proton-proton 1 2 = 10.5 Mev

For the ^N-state, for which a comparison is possible, the potential

F2 for proton-proton is a little smaller than Vq for neutron-proton.

Breit has shown that this difference may almost be removed if

the Coulomb potential is allowed to continue inside of the well

(as it must be expected to do) instead of ignoring it, as in Fig. 12.

We then conclude that neutron-proton forces and proton-proton

forces are equal (except for Coulomb force), at least in the singlet

*8-state.

There is also evidence that neutron-neutron forces and proton-

proton forces are equal (barring the Coulomb force) because of
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the success of this assumption in predicting the size of nuclei

from the observed difference in binding energies of mirror nuclei.

(See Chapter II, paragraph 3.) Thus the forces

(Neutron — Neutron) = (Proton — Neutron)

= (Proton — Proton)

in the ^S-state.



XIII. NON-CENTRAL FORCES

Central forces, i.e., forces which depend only on the distance

betw(ien particles, have been adequate), so far, to explain binding

energy and scattering experiments involving neutrons and protons.

The existence of an electric quadrupole moment for the deuteron

indicates a cigar-shaped distribution of charge w^hich is not

explainable by a central force. A force is needed which not only

depends on the separation between neutron and proton, but also

depends on the angle wliich their spins make with the line joining

the two particles. This interaction potential must have the form

Si 2 T(r), where

Si2 = 3((ri * r)(cr2 * r)/r^ — cri • (r2 (131)

The first term gives the dependence of the interaction on spin

angles. The second term has been subtracted so that the average

of Si 2 over all directions r is zero. Formula 131 has the same

dependence on direction as the interaction of two dipoles ai and 0
*

2 .

Tlie non-central or tensor interaction (131) has been justified on

very general grounds by Wigner (Proc. Nat. Acad. Sci. 27
, 282,

1941). He has shown that if the interactions are assumed to be

invariant with respect to displacement, rotation, and inversion

of the observer's coordinate system, as well as independent of the

particle velocities, the most general interaction can be written in

the form

Fi(r) + F2(r) (Ti • cr2 + ^12 (132)

where the potentials V may depend on the orbital momentum of

the two particle system, as well as on the charge of the particles.

(See also Rarita and Schwinger, Phys. Rev. 69
, 436, 1941.)

The reason for such a limited choice of interactions comes from

the requirement of invariance against rotation and inversion

(change of sign of all spatial coordinates). Thus the Cartesian com-

ponents of ai and <r2 are not invariant against rotation, but cri • ^2 is.

On the other hand, (a-r) is invariant against rotation, but not

against inversion since r —> —r and <r —> cr on inversion, (a behaves

73
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like an angular momentum r X p—^ (— r) X (—p))* Because of

this, only even powers of (<r • r) may occur such as (cn • r)(cr2 • r).

However, higher powers than the second may be shown from the

commutation relationships of the spin operators to be reducible

to the second power or less, provided the spin of each particle is 3^.

Thus equation 132 constitutes the most general interaction.

STATES OF THE DEUTERON

Central forces of the form

Vx(r) + V2 (r)(Ti • (72 (133)

are invariant with respect to rotations of space and spin coordinates

separately. Since L and S correspond to infinitesimal rotation

operators for space and spin coordinates (see Kemble, Quantum

Mechariics, 1937, p. 306) these operators commute with the

Hamiltonian formed by using the expression 133 as the potential.

Since Lz and Sz commute with //, both mi, and represent good

quantum numbers, or constants of the motion. Although Lx and

Ly commute with //, they do not commute with Lz and thus

cannot be quantized simultaneously with it. On the other hand

1? commutes with both H and Lz and has the quantized eigen-

values L(L + 1). Similar statements apply to S^. Thus

the quantum numbers of a state, with a Hamiltonian containing

only central forces, are L, S, mi, and m^.

If non-central forces of the type aSi 2 are present the Hamiltonian

is invariant only under the coupled rotation of space and spin

coordinates (rotation of the observer's point of view). Thus L
and S are not in general expected to commute with the Hamilto-

nian, but J = L + S still must. Therefore J and vij will be good

quantum numbers.

Although S is not in general expected to be a good quantum
number, it will be in this particular case involving two particles^

both of spin 3^, for the Hamiltonian is symmetric in the spins of

the two particles. From this, it follows, in a manner analogous

to the discussion of parity given later, that the wave functions must
be either symmetric or antisymmetric in the spin coordinates of the

two particles. Thus the spin wsive functions correspond to triplet

or singlet states, and >S is a good quantum number, even though

is not.
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Parity. The Hamiltonian is also invariant with respect to

inversion, i.e., replacement of r = ri — r2 by — r. Thus the space

wave-functions must be either even or odd with respect to inver-

sion. This fa(;t is commonly denoted as even or odd parity of the

wave function. The statement that parity is a good quantum
number will now be proven, in general, for a system containing

any number of particles, assuming invariance of the Hamiltonian

for inversion

H{-n) = H{n) (134)

where the coordinates of all the ])articles are inverted simul-

taneously. This assumption merely corresponds to the fact that

all ph3"sical results should be independent of whether the observer

uses a right- or left-handed coordinate system.

If we write Schrodinger^s eciuation

Il{Xk)yp{tk) = Eypitk) (135)

and relabel all the coordinates Xk by — r/t, we obtain:

IK-Xkm-Tk) = EH-^Xk) (136)

Using the symmetry of the Hamiltonian, we find

ll(xk)4'i-rk) = Eyp{ — Xk), (137)

or \l/(--Xk) satisfies the same differential equation as xl^ixk). Dis-

regarding degeneracies, for a given energy, the two solutions must

be proportional to each other

^P(-Xk) = AV(r,) (138)

where K is a constant. Applying this operation twice,

4'(ik) = K^itk) (139)

X = ±1 (140)

Thus according to equations 138 and 140 parity is a good quantum

number, i.e., all wave functions are either even or odd on inversion

(i.e., they either remain unchanged or change sign). For the

deuteron, therefore, there are four good quantum numbers: J, mj,

aS, and parity.

Absence of Electric Dipole Moments. An interesting consequence

of the fact that parity is a good quantum number is that nuclei
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cannot have electric dipole moments. The definition of the dipole

moment is

D = k(rit)P dtk (141)
j

If in this formula we introduce new variables the first

factor changes sign whereas the second one, because of parity,

remains identically the same. Thus D = —D, or D => 0.

For a two-particle system even parity corresponds to a super-

position of even L’s and odd parity corresponds to a superposition

of odd Us. Thus states of even and odd L do not mix. Now the

only possible values of S are S = 0 and S = 1. But if N = 0,

L J and thus L in this instance is a good quantum number.

On the other hand, if N = 1 ,
the laws of addition of angular mo-

menta permit L — J — 1
,
J, J + l. However, L = J has oppo-

site parity to that of L = J — 1
,
J + 1

,
so that S = 1, L = J

defines a state by itself, and the state of opposite parity will liave

aS = 1 with a mixture of L = J + 1 and L = J — 1 . Therefore,

for a given J the possible states are in spectroscopic notation:

and the mixture ^{J ~ l)j + ^(J + l)j. In particular.

we have the following states of small J :

J = 0 ‘So *Po

/ = 1 ‘Pi ’Pi ’Si + ’i)l

/ = 2 ‘i>2 ’Z>2 ’P2 + ’P2

The ground state of the deuteron has a measured total angular

momentum of J = 1, and consists primarily of the triplet state ^aSi.

When non-central forces are taken into account, therefore, it

becomes the ^>Si + state.

DETERMINATION OF FORCE CONSTANTS

In order to obtain quantitative results, Rarita and Schwinger

(Phys. Rev. 69
, 436, 1941) have made extensive calculations using

the potential

^ ^ \—Vo[il — g/2) + (g/2)<Ti • 0-2 + ySi2] r < a

(0 r > a

with the constants g and 7 ,
in addition to Fq and a, to be deter-

mined from experiment. This potential uses square wells of the
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same radius a, for each of the potentials Fi, F2, and F3 of equation

132, but of depths in the ratios

(1 - g/2) : g/2 : y

Some restriction like that of equal radius a has to be made on th<

form of Fi, F2, and F3, in order to make calculations possible.

The experimental data were and are at present sufficiently limited

so that it is possible to determine only a small number of arbitrary

parameters in V
;
here these are a, ^0. and 7. (The use of the

particular definition in equation 142, especially of Fo(l — g/2)

for the spin-independent term rather than simply Fo, is devoid of

physical meaning.) For the calculations, Rarita and Schwinger

chose a = 2.80 X 10~^^ cm, in accord with proton-proton scatter-

ing * (Chapter XII). The remaining parameters are determined

from

(1) the binding energy^ of the ground state of the deuteron,

(2) the scattering of slow neutrons by free protons, and

(3) the quadrupole moment of the deuteron, Q,

First, Fo and 7 are determined from (1) and (3) ; g does not enter

the calculation since, for the and ^Di states, which are mixed

to form the deuteron ground state, cri • (12 = +1; and the terms

in g in the potential F cancel each other. For a given Fo, the 7
is chosen so that the ground state has the proper binding energy

then the ground-state wave function yields the relative percentages

of and ^Di state and a value of Q, For example,

Fo (Mev)

21

14

0

-15

7F0 (Mev)

0

10

20

29

Q(10 cm-)

0

2.67

3.71

4.26

(For further values, see Rarita and Schwinger, Phys. Rev. 69, 436

Table II, 1941.)

The observed value of Q, 2.73 X cm^, gives Fo — 13.8 Mev
and 7 = 0.775, and corresponds to 3.9 per cent of D state in

probability or ^20 per cent in amplitude. (This was the value

used in Chapter VII in the discussion of the magnetic moments.)

The ground state can be made stable even when the central force

* In view of the results of ortho- and para-hydrogen scattering (Chapter X)

the assumption of equal range for all three potentials is somewhat doubtful.
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is repulsive (Fq < 0), by the use of a sufficient amount of non-

central force. The value of Q is not particularly sensitive to the

value of 7 and therefore does not permit a very accurate deter-

mination of 7 and Vq. The percentage of D state is nearly pro-

portional to Qy and is therefore relatively well determined, once

the assumption of rectangular wells of equal width is accepted.

Next, g is determined from the depth, 11.9 Mev, of the potential

well for the singlet state. This depth comes from the observed

scattering of slow neutrons in hydrogen (see Chapter IX). For

the singlet state, (Ti • <72 = —3 and >Si 2 = 0. Thus,

V = 11.9 Mev = Fo(l — 2g)

Using Vo = 13.8 Mev, we get g — 0.07; this g is quite close to

zero, g can be made exactly zero, if a be changed to 2.70 X 10”^*^

cm (which is certainly compatible with other evidence) whereas

Vo is determined to hold Q at 2.73 X lO”^' cm^. [If we put gr = 0

but retain a == 2.80 X 10“^^ cm, then Vo = 119 and Q = 2.95

X 10~^^ cm^. This value of Q is somewhat outside the experi-

mental error of zb0.05. It is an attractive idea to make gr = 0

because this reduces the number of independent forces that have

to be assumed.

Having now determined the values of the constants,

Vo = 13.8 Mev, y = 0.775, g = 0.0715 (143)

the theory can be checked against the experiments of the list

given at the end of Chapter XI. It will be remembered that these

were in adequate agreement with the theory with central forces

alone: therefore, the tensor forces must be proved to have no

appreciable influence on the results. We are following in this proof

the paper of Rarita and Schwinger; a more general proof, free

from numerical calculations, has been given by Kepner and Peierls

(Proc. Roy. Soc. 181 , 43, 1943).

NEUTRON-PROTON SCATTERING

At low energies, the scattering is almost the same as without

tensor forces. The triplet scattering is attributable mainly to the

^Si part of the triplet state because the '^Di wave is small at small

distances, for low energy. The quantitative results are:

j? = 0, (Ttripiet
== 4.21 bams as compared with 4.30 with central

forces.
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E == 2.8 Mev, (Ttotai = 2.53 bams as compared with 2.56 with

central forces. The old experimental value (quoted by Rarita

and Schwinger) was 2.40 barns; newer experiments agree perfectly

with theory. The tensor forces reduce the cross section slightly,

for the presence of the state component decreases the per-

centage of state in the wave function without itself contributing

appreciably to the scattering. The angular dependence of the

total cross section is (1 + 0.00559 cos^ 0), which is isotropic as

far as any experiments are concerned.

CAPTURE OF NEUTRONS BY PROTONS

For magnetic di]:)ole capture, which is the only process of im-

portance at low energi(^s, the results are about the same as with

central forces but agree slightly better with experiment.

For E = 0.025 ev (thermal neutrons), a = 0.302 bam, as com-

pared with 0.312 with central forces and 0.30 observed.

PHOTODISINTEGRATION OF THE DEUTERON

The photoelectric cross section at 2.62 Mev is 11.99 X 10”^® cm^

as compared with 12.31 with central forces and about 8 according

to the very inaccurate experiments. The angular dependence is

sin^ 6 + 0.0(K)7. The isotropic term results from transitions

^Di —> and is so small that it will prol)ably never be observed.

The photomagnetic cross section at 2.62 Mev is 3.28 X lO""^®

cra^, with an angular distribution (1 — 0.0035 cos^ d). The non-

isotropic term results from to transitions and is well beyond

experimental detection.

The total cross section at 2.62 Mev is 15.27 X 10“^® cm^ with

an angular dependence of (sin^ d + 0.182). Graham and Halban

give 10 X 10“^^ cm^ with an angular dependence sin^ Q + 0.26

±0.08.

Thus for low energies, the use of non-central forces gives no

appreciable change from the central force theory. To give a

theory for higher energies at which states of / 0 contribute

essentially, the exchange properties of nuclear forces must be con-

sidered.
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The binding energ}^ and volume of nuclei are proportional to A,

the mass number. This is not in accord with a law of force which

gives equal interactions betwetm all pairs of particles in the nucleus,

for there are then A{A — l)/2 distinct interacting pairs and a

binding energy at least proportional to A (A — l)/2 might be

expected, if not to a higher power of A due to increased packing

with more interaction. Instead, the nuclear binding energies

seem similar to the internal energies of bulk matter, in which 2

pounds has twice as much energy and volume as 1 pound.

To account for this phenomenon of '‘saturation of nuclear

forces, in which one particle apparently interacts with only a

limited number of others, various hypotheses have been made,

and various other assumptions about the nature of the forces can

be shown to be impossible.

Among the impossible assumptions is that which has been used

in this book so far, namely, an ordinary potential inflependent of

the angular momentum, because it is easily shown that such a

potential does not give saturation. This is so even if the Coulomb

repulsion of the protons is taken into account. The proof can be

carried out with various degrees of exactness, using the variational

method. This method is based on the Schrodinger variational

theorem which states that the quantity

(144)

is a minimum when ^ is the correct eigenfunction of the lowest

eigenvalue Eq of //, and the minimum value of 12 is A’o. Thus, if

the assumed Hamiltonian operator representing the interaction

of the particles in a given nucleus is sandwiched between any

arbitrary ^ in the expression for 12, the value of 12 must be greater

(i.e., less negative) than the correct energy of that nucleus. The
simplest are plane waves inside a box representing the nucleus.

If the size of the box is adjusted to give as low an 12 as possible,

this size comes out about equal to the range of nuclear forces,

which is clearly much too small. Further, it gives a potential

80
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energy proportional to and a kinetic energy proportional to

The size of the coefficients of tliese powers is such that the

potential energy dominates for A >50; for A = 238 the binding

energy is greater than 238 mass units. This is convincing evidence

that the ordinary potential will not work, and this is true inde-

pendently of the shape of the potential (square well, exponential,

Gaussian, etc.).

What is needed is a potential which prevents the particles from

getting too close together. A potential repulsive at short distances,

originally used by Morse for molecules, has been explored by
SchilT and Fisk; the only objection is that the high repulsive

potential may give relativistic difficulties if it gets above

2AIc^ 1800 Mev, for a proton in such a state would have nega-

tive kinetic energy. However, the idea of a repulsive potential

has not been followed up sufficiently.

EXCHANGE FORCES

In the first paper on nuclear forces, Heisenberg proposed, in

order to explain the saturation of nuclear forces, that these forces

are ‘'exchange^' forces, similar to the force that binds ordinary

cheini(‘.al molecules. Without inquiring into tlie origin of these

exchange forces, let us write down the various types of exchange

forces that c.an exist between two particles, and then examine the

effects of these forces on the properties of the deuteron, and on the

saturation of the binding energy.

For an ordinary (non-exchange) central force the Schrodinger

equation for two particles is (in the center-of-mass system)

:

[(hVM)v2 + E]Hri, r.,, <71 ,
= F(r)^(ri, r^, <ti, ,72 ) (145)

Wigner

In nuclear physics, such forces are called Wigner forces. The
interaction does not cause any exchange between coordinates of

the two particles. Another type of interaction is one that inter-

changes the space coordinates of the two particles in addition to

multiplication of xj/ by some F(r); for such an interaction, the

Schrodinger equation is

:

I2 , <71, era) = F(r)^(r2, fi, <ri, <72) (146)

Majorana
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Such a force is called a Majorana force. Two other possibilities

are: (1) the Bartlett force, with interchange of spin coordinates,

and (2) the Heisenberg force, with interchange of both space and

spin coordinates. The Schrodmger equations are respectively:

[(hVM)v2 + E]i.(Tu i2, <7,, <7,,) = F(/-)f (ri, r2, <7,, c7i) (147)

Bartlett

[(hVM)V^ + imru ro, cri, (72) = ]^^(r)^(r2, <72 , ai) (148)

Heisenberg

Effects of Exchange Forces, Exchange forces, with a T(r), are

central forces and do not cause mixing of /’s. However, if a tensor

force is used instead of V {r) as the multiplying potential, are

mixed and the quadrupole moment of the deuteron may be ex-

plained as before. It should be pointed out that the tensor force

does not by itself lead to saturation; this was proved by Volkoff

(Phys. Rev. 62, 134).

Majorana Force. The Majorana interaction replaces (r) by

(— r) in Using the well-known behavior of the wave function

on such an inversion, the Schrodinger equation (14G) may be

rewritten

[(hVi^/)v2 + E\m = (-l)'F(r)^(r) (149)

This is equivalent to having an ordinary potential that changes

sign according to whether I is even or odd, and is independent of

spin. Since the experimental data discussed so far give informa-

tion on the potential only for I = 0, we have as yet no direct evi-

dence as to whether the potential is “ordinary’’ or of the Majorana

type. Since the potential is attractive for 1 = 0, it would be

equally repulsive for Z = 1 if the interaction were totally of the

Majorana type.

Bartlett Force. Considering still a system of two particles, the

spin function is symmetric if the total spin S is 1, and antisym-

metric if the total spin is 0. Thus, the Schrodinger equation (147)

for the Bartlett force may be rewritten

:

[(liVM)v2 + = (-])®+'F(r)^(r) (150)

This is equivalent to an ordinary potential which changes sign

between >8 = 0 and >8=1. Since we know from neutron-proton

scattering data that both the and ^>8 potentials are attractive,

the nuclear force cannot be totally of the Bartlett type.
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Heisenberg Force, Combining the arguments of the two last

paragraphs, the Sehrodinger equation (148) may be rewritten for

the Heisenberg force:

[{hyM)V^ + E}p{r) = (-l)'+^+*F(r)v^(r) (151)

This is equivalent to an ordinary potential whicli changes sign

according to whether I + S is even or odd. For example, the

effective potential is

:

for

(152)
potential + F(r) 11 + F(r)

The reversal of sign between \S- and ^^S-states indicates, as for

tho Bartlett force, tliat the nuclear force cannot be wholly of the

Heisenberg type. However, the difference between the and

neutron-proton well depths (about 21 and 12 Mev, respectively,

for a = 2.8 X cm) can be explained by assuming that the

interaction is about 25 per cent Heisenberg or Bartlett and 75 per

cent Wigner or Majorana.

Exchange Forces and Saturation. The Bartlett spin-exchange

force does not lead to saturation of the binding energy per particle.

If the nuclear force were of the Bartlett type, heavy nuclei should

exist with all spins aligned where the number of interacting pairs

is A (A — l)/2, which leads to binding energy proportional to at

least the square of A .

However, the space exchange in the Alajorana and the Heisen-

berg forces does lead to saturation because of the alternation in

sign of the potential between odd and even 1. For example, assume

the nuclear force is the Majorana type (we already know it cannot

be more than about 25 per cent Heisenberg). Then saturation

should not be apparent in nuclei up to He^, for in He^ the spatial

wave function can still be symmetrical in all four particles, without

violating the Pauli principle. We need only give antiparallel

spins (antisymmetric spin wave functions) to the two neutrons,

and likewise to the two protons. Thus the Majorana force does not

alter the Wigner argument about the short range of the forces

based on the binding energies of He^ and lighter nuclei.

In the next heavier nucleus—He^ or Li^—the Pauli principle

can no longer be satisfied by spin wave functions alone; there-

fore, the spatial wave function must have at least one node. In
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other words, only four particles can be in an s-state, whereas the

last has to be put in a p-state, and will therefore be repelled by

the other particles. He^ and Li^ should thus be unstable, in

agreement with experiment. This is a first sign of saturation.

To investigate saturation in heavy nuclei, one may use the

same variational method used at the beginning of the present

chapter to prove that ordinaiy forces do not give saturation.

It is satisfactory that this calculation, in the case of the Majorana

force, does not lead to non-saturation. On the other hand, since

the variational method gives only a maximum to the true energy,

it cannot be used to prove that the Majorana force does give

saturation. But Wigner has given a conclusive argument that

saturation is achieved with the space-exchange Majorana force

(Proc. Nat. Acad. Sci. 22, 662, 1936). The space-exchange part

of the Heisenberg force would also cause saturation.

SPIN AND ISOTOPIC SPIN

It is often convenient to write exchange forces in a slightly

different way. Since for two particles

(Ti • 0*2 = + 1 for >S = 1

= -3forS^ = 0, (153)

the Bartlett force between two particles can obviously be written as

f
+ F(r),.S = 1

MF(r)(l+crx -(72) =
^

(154)

(
-F(r), S 0

The spin-exchange part of the Heisenberg force could be written

in the same way.

In order t(j be able to use a similar notation for the space-

exchange part of forces, we introduce the concept of the charge

of a particle as a coordinate, i.e., neutron and proton are regarded

as different eigenstates of the same particle, called a nucleon. We
choose the symbol r for this charge coordinate and we define

^ 3^ for the proton

™ fQj. the neutron

r = for both

(155)
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using ±3^ in analogy with the spin coordinate. We also define

the charge functions

Charge function = y for the proton

— b for the neutron
(156)

in analogy with the spin functions a and 13.

The nucleons must obey Fermi statistics in order to be con-

sistent with the ordinary theory (this will become apparent

shortly, if it is not immediately obvious). Thus the total wave
function (including the charge function) for two or more particles

4^ \^space(^) ^8pm(^) ^charge (15/)

must be antisymmetric with respect to interchange of all coordi-

nates of two nucleons. We therefore look for symmetric and anti-

symmetric charge fuiu^tions for two particles. There are four of

these, as given in Table 4.

TABLE 4

TwoPaktk.'lk Charge Functions

State Function

R(?pre-

senting Symmetry
Net

Charge

I t(1)t(2) Ile^ symmetric 2e

II S(l)«(2) rc symmetric 0

III (l/\/2)l7a)iS(2) +t(2)5(1)1 H2 symmetric e

IV (1/V2)[7(1)«(2) - 7(2)a(l)l IP antisymmetric e

Again, in analogy to spin, two quantum numbers are defined to

describe these functions: T to des(Tibe symmetry, and Mr to

describe the net charge. These quantities have the values given

in Table 5.

TABLE 5

Quantum Numbers for Charge States

State T Mr
I 1 1

II 1 -1
III 1 0

IV 0 0
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r is 1 for symmetric functions, 0 for the antisymmetric function,

in analogy to spin. Mr is the sum of the il/r’s for the two nucleons.

In the literature r is called the ^‘isotopic spin,^’ T is called “the

total isotopic spin,^^ and Mr may be called the “component of r

in the direction of positive charge.^’ T is analogous to total spin N,

and Mr to >S%. For a given T, Mr can have the values 2' — 1,

••
•, -T.
From Table 4 it is seen that a system containing two neutrons

or two protons has a symmetric charge function. Since we are

assuming nucleons to obey Fermi statistics, the remainder of the

wave function (147) must be antisymmetric. This implies ((‘or-

rectly) Fermi statistics for neutrons and protons, disregarding

charge as a coordinate. But in a system containing a neutron and

a proton the charge function can be either symmcTric or anti-

symmetric, and so also can the remainder of the wave function.

Therefore, the treatment of proton and neutron as two eigenstates

of the same particle does not in this case introduce any restric-

tions, consistent with the ordinary theory of statistics.

It is also convenient to introduce an operator t in analogy to

the O’ operator, defined by its effect on the “charge coordinate'^

Mr. The eigenvalue of its absolute square is, again in analogy

with spin:

Iri^ = 4T(T + 1) (158)

Then, just as for spin, in a system of two nucleons

Ti • T2 = +1 for r = 1

-3 for T - 0
(159)

Now the Heisenberg interaction can be written (letting V(r)

absorb the factor — I) as

M V(r)(l + Ti T2) (160)

To prove this, we note that equation 160 changes sign according

to whether the charge part of the wave function (equation 157)

is symmetric or antisymmetric, i.e., according to whether the

product of space and spin functions is antisymmetric or symmetric,

which is just what is required according to equations 151 and 152.

The types of interaction between the two particles discussed so

far may now be summarized by listing the various types of oper-
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ators, which when multiplied by some F(r) give the interactions

listed in Table 6.

Eisenbud and Wigner (Proc. Nat. Acad. Sci. 27, 281) have shown
that these interactions and their linear combinations are the only

TABLE 6

Types of Interactions

Ordinary-

Spin exchange

Space-spin exchange

Space exchange

Tensor

Tensor exchange

1

crio-2

T1T2

(<ri-<r2)(Ti*T2)

(<ri-r)(<r2 -r)

(o-i*r)(cr2-r)(Ti-T2)

ones possible under certain reasonable invariance requirements,

namely, excluding interactions depending on total charge or on

the momentum. (The interaction (0*1 + 0*

2 )
' E depends on the

momentum.)

QUANTITATIVE THEORY OF EXCHANGE FORCES

In the last chapter, it was shown that the ground state of the

deuteron, the neutron-proton scattering, and the quadrupole

moment of the deuteron could be obtained quantitatively by
assuming a neutron-proton interaction of the form

with

F(even) -{1 - Ya + yig (Ti • 0-2 + ySi2)Jir) (161)

J{r) = V^o r < a

J{r) =0 T > a

g = 0.0715 T'o = 13.89 Mev

y = 0.775 a = 2.80 X 10~^^ cm
—Ilarita and Schwinger.

The neutron-proton interaction (161) applies only to states of

L = 0. The potential for other L is as yet arbitrary. If we assume

in particular a force of the t3^pe discussed in this chapter, i.e.,

depending only on the product of the isotopic spins Ti • T2 ,
the

potential will depend only on the parity of the state. The poten-

tial for states of odd parity can only be determined from that for
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states of even parity by making some assumption regarding the

exchange character (or dependence on Ti • T2 ) of the forces.

Rarita and Schwinger chose to investigate three potentials which

were suggested by three types of meson theory (see Chapter XV)

:

1.

Symmetric meson theory.

II. Exchange forces, or charged meson theory.

III. Ordinary forces, or neutral meson theory.

These potentials are:

I.

II.

III.

33T1 * T2 0*1 * (72 Eevcn

(- 1 )' Fevcn

b e ven

(162)

where Fevcn i« given in equation 101.

For ordinary forces III, the potential in odd states is the same

as for even. Exchange forces II, on the other hand, have opposite

sign in odd states. To determine the behavior of the force sug-

TABLE 7

Properties OF A Neutron-Proton System

State Parity Spin S
Isotopic

Spin T 0*1 0-2

KS even 0 1 -3
AV even 1 0 + 1

odd 0 0 -3
3p odd 1 1 -fl

gested by the symmetric theory I, Table 7 of values of ai * cr2

and Ti * T2 has been constructed for even and odd states of both

the singlet and the triplet types.

From equation 162 and Table 7, the symmetric theory (I) gives:

"Fodd = -H "Fevcn

'Fodd = -3 'Fevcn
(103)

The three types of forces may now be compared with experi-

ments by computing neutron-proton scattering at high energy.

The energy chosen by Rarita and Schwinger was 15.3 Mev, for

which P-wave scattering begins to be important. The P-wave

scattering is to be computed with the aid of equations 162 and 163,
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which give the potentials acting in the P-state. It should be noted

that in contrast to the usual theory in which a single phase shift di

is computed for scattering in the P-state, three phase shifts 7;o,

rji, and 772 must be computed for scattering by the ^Po~, ^Pi-, and

‘^P2-states, respec^tivcly. The reason for this is that the effective

potential well for each of these three states differs because of the

presence of the non-central tensor force Si2' Ii^ fact, the operator

*S’i2 has definite values (—4 and 2) for the states ^Pq and ^Pi

TABLE 8

Well Depths in the Neutral Theory

Effective Well Depth ^ith

State “Ordinaiy Fon^es”

^P« 29.2 Mev (repulsive)

—35.4 Mev (attractive)

'P2 — 9.6 Mev (attractive)

W’hich occur unmixed and must therefore be eigenfunctions of aSi 2.

The ^7^2-‘^f^te has a fairly definite value of S 12 (
— ^5), since at

15.3 Mev it is only slightly coupled to the '^P2"f^tate. (See Chapter

XIII for a discussion of how ^12 couples states of different L but

the same J.)

Rarita and Schwinger (Phys. Rev. 69, 556, 1941), using equation

161 and the values of aSi 2 j^^^t quoted, give the effective well depths

for the ^P-states in the neutral theory III as shown in Table 8.

TABLE 9

Phase Shifts in ^Pi, and ^¥2 States

Theory 771 V 2

I 0.074 -0.054 -0.017

II 0,531 -0.114 -0.046
HI -0.102 0.995 0.073

The potentials of the charged theory II have opposite sign to the

tabulated values; those of the symmetric theory I have opposite

sign and are one-third as large. (See equations 162, 163.) The
phase shifts for each of the three theories, using these well depths,

are given in Table 9.

Note that the phase shifts in Table 9 for theory I are small be-

cause potentials are used which are only one-third as large as for the-
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ories II and III. (See equation 103.) Note also that the signs of the

phase shifts are opposite in theories II and III because this is

also true of their potentials. (See equation 162.) Note further that

really large phase shifts occur only for strong attractive potentials,

i.e., 7)0 in theory II and rji in theory III.

If the scattering contributions from the ^P-states are added up
with the proper statistical weight (2J +1) the total scattering

for ^P-states at 15.3 Mev is found to be:

1. aid) = (0.0038 + 0.0045 cos“ 6)'

II. a(d) = (0.103 - 0.002 cos^ 6) (164)

III. a(d) = X^ (0.487 + 0.687 cos“ 6)

with 47rX^ = 0.682 X 10~“^ em^.

The scattering is also computed for the (’\8i + ^Pj) state. This

is added to equation 164, taking proper account of interference

terms with the result that the total triplet scattering in barns

becomes

:

I. aid) = 0.680 (0.983 + 0.002 cos 6 + 0.051 cos^ $)'

II. aid) = 0.746 (0.986 + 0.193 cos d + 0.041 cos^ d) • (165)

III. aid) = 1.165 (0.857 + 0.849 cos d + 0.429 cos^ <9),

The quantities in equation 165 are so normalized that the numbers

outside the parentheses represent the total cross sections.

A corresponding calculation for the ^P and scattering gives:

I. aid) = 0.444 (0.939 - 0.438 cos d + 0.182 cos^ (9)

II. a{d) = 0.424 (0.985 - 0.240 cos d + 0.044 cos^ d) (166)

III. aid) = 0.437 (0.955 + 0.498 cos d + 0.134 cos^ d)_

where the potentials used in the ^P state were:

I.
y(ip) = -3VCS) = +35.7 Mev“

II. VCP) - -VCS) = +11.9 Mev (167)

III. F('P) = VCS) = -11.9 Mev^

Note that the difference between a repulsive force (I and II) and

an attractive force III is shown by the sign of the term in cos d in
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equation 166, which represents interference between the and
the hS states.

The total cross section can be obtained V)y adding the triplet

and the singlet scattering in a S-to-l ratio. The three theories

give in fractions of a barn the values shown in Table 10.

The total cross section should not be used by itself to make a

definite decision between the three theories since it is influenced

TABLE 10

Thj:oretical Neutron-Proton Scatterino at 15.3 Mev

Theory Total Cros.‘^ Section Angular Distribution

I 0.621 barn 1 -0.080 cos 0 -f 0 . 077 cos^ d

TI 0.666 barn 1 +0.126 cos 0 + 0.042 cos^ d

111 0.9S3 barn 1 + 0.932 cos <9+ 0.457 cos“ d

by the range and the shape chosen for the interaction potential.

On the other hand, the angular distribution is good evidence for

the existence or non-existence of strong P-scattering, and also

gives the sign of that scattering—thus providing direct informa-

tion about the ex(^hange nature of the neutron-proton force.

For comparison with experiment, we may note from Table 10

that at 15.3 Mev, theory 1 gives a weak backward maximum,
theory II a weak forward maximum, and theory III a stro^^g

forward maximum.

EXPERIMENTS ON NEUTRON-PROTON SCATTERING

Total cross sections can be obtained b}^ measuring the absorption

of neutrons in paraffln and correcting for the presence of carbon.

Angular distributions have been measured b}^ Amaldi and others

(Naturwissenschaften 30, 582, 1942; also Ricerca scientifica

1942), using the recoil protons projected from a paraffin foil.

The proton directions are determined by the use of a coincidence-

counter ‘Telescope.’^ Proton ranges, hence energies, are deter-

mined by the simultaneous use of absorbing foils.

In the center-of-mass system, conservation of momentum re-

quires that the neutron and proton leave each other in opposite

directions—i.e., at angles d and 180° — B to the incident neutron,

respectively. In the laboratory system, the two particles leave

at right angles to each other, and the angle between proton and

incident neutron is 90° — 6/2,
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Amaldi found that the number of protons projected forward

was small, corresponding to weak neutron scattering in the back-

ward direction, 0 = 180°. This is in agreement with ordinary

forces III and in contradiction to exchange and symmetric theories

II and I. Amaldi measured R — o-(]80°)/or(90°), the angles

being the neutron scattering in the center-of-mass system. His

results are given in Table 11 together with their quoted accuracy.

TABLE 11

High-Energy Nexttron-Proton Scattering (Amaldi)

E (in Mev) R = <r(180")/cr(‘)0°)

12.5 0.71 =b 0.04

13.3 0.53 zb 0.03

14.0 0.52 ±0.03

The values of R at 15.3 Mev computed from the cross-section

formulas in Table 10 give for the three theories:

I. i? = 1.157 II. R = 0.910 III. R = 0.525 (1G8)

On the other hand, Champion and Powell (extension of experi-

ments reported in Proc. Roy. 8oc. 183
, 04, 1944), using neutrons

of similar energy and using photographic techniques, find that the

scattering is practically isotropic. However, their experimental

data have less good statistics and greater correction factors than

Amaldi’s.*

More definite evidence contradicting Amaldi \s results comes from

measurements of the proton-proton scattering at energies of 14.5

Mev by R. R. Wilson and collaborators (Phys. Rev. 1947). Al-

though these experiments are preliminary, they indicate a slight

repulsion in the P-state. They might be reconcilable with ex-

change forces or with zero forces in the P-state, but they appear

to fit best to a force of the (Ti •or2 type and they certainly contradict

an ordinaiy force such as would be required by Amaldi ^s experi-

ments. There is, of course, the logical possibility that neutron-

proton and proton-proton scattering are different, but in any case

the present state of this subject is inconclusive and more accurate

measurements are urgently needed.

Laughlin and Kruger (Phys. Rev. 71, 736, 1947) also find isotropic dis-

tribution (at 12-13 Mev).—Note added in proof.
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If Amaldi^s results are correct they imply that the forces in the

P-state are attractive, and they support the theory of ordinary

forces III. Unfortunately, this result cannot be easily reconciled

with the saturation property of nuclear forces.*

* Experiments carried out with the 184-inch cyclotron of the University of

California at the end of 1946 demonstrate definitely the ex(4iange nature of

the f()r(‘es between neutron and proton. It was shown in these experiments

that a neutron of about 100 Mev will produce protons mostly in the forward

direction and with energies nearly equal to 100 Mev. This had been predicted

by Wick for high energy collisions between neutrons and protons. If the

forces were ordinary forces the proton would in general receive an energy

of the order of the depth of the nuclear potential well, i.e., about 10 Mev. On
the other hand, if the interaction is of the exchange type, then neutron and

proton will change roles: the nemtron will retain an energy of the order of

10 Mev and the proton will take almost the entire energy. When this note

w'as written it had not been established whether the forces are of the pure

exchange type or of the type corresponding to the symmetrical meson theory.—

Note added in proof,



XV, SKETCH OF THE MESON THEORY
OF NUCLEAR FORCES

This theory is presented although it has so far not given any

results in quantitative agreement with empirical facts on nuclear

forces. However, it may give a valuable point of view.

The Coulomb force between two charged particles can be ex-

plained in terms of the interaction of these particles with the elec-

tromagnetic field. Similarly, the force acting between two nucleons

might be described by a meson field surrounding the first particle

which acts on the second.

Moving charges produce a radiation field whicli can be quantized

and described in terms of photons. The “quanta^ ^ surrounding

a nuclear particle arc called mesons. Yukawa, in initiating the

meson theory (Proc. Physico-Math. Soc. Japan 17
, 48, 1935),

suggested that if the mesons are given a finite rest mass m, the

range of forces arising from the meson field will be X\/mCy the

Compton wave length for the meson. If the range of nuclear

forces is assumed to be 2.8 X 10~^^ cm, the meson rest mass

should be about 140 electron masses. Particles with about this

rest mass were discovered in cosmic rays two years later. In the

meantime, Erode and Fretter have determined the rest mass to

be 202 zt 10 electron masses, giving a range of 2 X 10““^^ cm.

To determine the nature of the meson field and the correspond-

ing nuclear forces, an eciuation analogous to vV = — 47rp must be

written for the static part of the electromagnetic field. A rela-

tivistic equation suited for particles with no s[)in and a finite rest

mass m is the Klein-Gordon ecjuation

:

VV + (l/hV)[(^ - F)2 - = 47rp (109)

with

E = ih{d/dt) (lG9a)

where p in this case is proportional to the density of nucleons. In

free space, F = 0. For a static meson field, according to equation

169a, we must put .£/ = 0. Furthermore, if there is one point-

nucleon at the origin, the Klein-Gordon equation becomes

VV - (TOc/h)V = 4Tgi5(r) (170)
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where 5 represents the Dirac 6-function, and gi is a constant

replacing the electronic charge in electrodynamics.

The solution of this equation is

'P = -{gi/r) exp {-{mc/h)r] (171)

and the potential acting on a second nucleon is given by:

= 02^ (172)

where (ji and g2 are the effective nucleonic ^'charges^' or coupling

constants.

The Yukawa scalar meson theory just described produces the

recjuired range for nuclear forces. Since in this theory the nuclear

particle does not change its nature (i.e., charge) we find that

according to the theory the neutron-neutron, neutron-proton and
proton-proton forces are all equal. However, the theory does not

explain the spin-dependence of nuclear for(‘es. Furthermore, the

forces are all
‘

‘ordinary, whereas exchange for(*es were found to

be necessary to explain the saturation of nuclear forces.

Since the mesons discovered in cosmic rays were all charged

either positively or negatively, a theory of charged mesons was
developed. According to this theory, the following reactions can

take place:
/->;=* .y + or TV P + (173)

Thus protons and neutrons can transform into each other by the

emission or absorption of positive or negative mesons. The
interaction between two particles, 1 and 2, can take place, for

instance, by the following scheme:

Pi TV2 + M+ P2 (174)

It is clear that such an interaction can only occur between a

proton and a neutron, not between two like particles. This is in

contradiction to experimental evidence and rules out the charged

meson theory, at least in the case of weak coupling between

nucleons and meson field (small value of g)^ Further, the charges

of particles 1 and 2 are exchanged in the process of emission and

reabsorption of the meson
;
therefore, this meson theory leads to a

force of the charge exchange or Heisenberg type. This, while giv-

ing saturation, is in contradiction with experiment (Chapter XIV).

To explain the neutron-neutron and proton-proton forces which

are missing in the charged theory, a symmetric scalar meson theory

was developed, containing neutral, positive and negative mesons

described by three functions ^1 , ^2 ,
and V'a- To get spin-dependent
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nuclear forces, the meson field must further depend on the spin of

the nucleon which generates the field. This is achieved by intro-

ducing into the Hamiltonian of nucleon plus meson field, an inter-

action energy containing the factor a • grad ^ where a is the

nucleon spin. In this case yp must be a ^^pseudoscalar’^ since <r is

an axial and grad a polar vector. (A pseudoscalar changes sign

when the sign of the time is reversed, or on inversion of the spatial

coordinates; under Lorentz transformations, it is invariant.)

Solution of the symmetric pseudoscalar meson field equation

led to an interaction energy between two nucleons of the form

ol r /3 3/x 1
T, [s.,

(p;
+ + 7) 7 «-"J

(176)

where ju = mc/h.

The term in cri • 0’2 provides the spin dependence of nuclear

forces, and the tensor force S12 explains the existence and sign of

the quadrupole moment. All these features are in qualitative

agreement with experiment, as shown in the preceding chapters.

Unfortunately, the high singularity of F at r = 0 makes it impos-

sible to solve the Schrodinger equation.

Two ways of saving the situation have been suggested: (1) to

cut off the interaction at some finite radius tq, i.e., to give the

neutrons and the protons a finite size, or (2) to mix two meson
theories in such a way as to eliminate the undesirable singularity.

The assumption of finite sources (1) unfortunately cannot be

formulated in a relativistic invariant way. Furthermore, use of

the rigorous relativistic interaction between nucleon and meson
field leads to the reappearance of terms in 1/r^ and 1/r^ in the

^*mixed^^ theories, in higher approximations. Therefore there are at

present no trustworthy results of the meson theory of nuclear forces.

It should be noted that many of the statements made about the

spin and charge dcipendence of the nuclear forces have to be modi-

fied if the coupling between nucleon and meson field is strong, i.e.,

if many mesons are emitted simultaneously. The coupling con-

stant for an electromagnetic field is e^/hc = K37, a small value,

whereas that for the meson field g^/hc ^ 34 or 3'"3 is considerably

larger. The divergence of the interaction at small distances

makes the interaction effectively even stronger. For this reason,

much effort has been spent to treat the strong coupling problem
in meson theory, but so far no results have been obtained which
throw light on the problem of nuclear forces.



C. TOPICS NOT RELATED TO NUCLEAR
FORCES

XVI. BETA DISINTEGRATION

In Chapter VI, experimental evidence was given for the hy-

pothesis of the production of neutrinos of rest mass 0 and spin

in /3-decay processes. This assumption made possible the conserva-

tion of energy and s[)in. The first detailed theory of the process

was given by Fermi (Zeitschrift fiir Physik 88, 161, 1934). A
modifi (nation which seemed necessary but was later abandoned
was the work of Konopinski and Uhlenbeck (Phys. Rev. 48 , 7,

1935). A summary is given by Konopinski (Rev. Modern Phys.

16
, 209, 1943).

Fermi introduced a new interaction between the nucleon and

the two light particles, electron and n63utrino. His interaction

was chosen in analogy with the interaction between charges and

electromagnetic field in quantum electrodynamics. (This analogy

was also used in the last chapter in connection with the meson
theory of nuclear forces.) The heavy particles are to act as sources

and sinks of the light particles.

If the Hamiltonian of the interaction between the proton,

neutron, and electron-neutrino fields is //, then the number of

transition processes per unit time is

(2x/h)|/^fi„ * riTp • p{E) (176)

where p{E) — the number of final states of the system per unit

energy interval

ypxn, = initial state of the system

= Win. = initial state of the nucleon.

• ^eiec. • ^n. = state of the system

= (final state of nucleon) • (final state of electron)

• (final state of neutrino).

Fermi^s assumption for H was essentially

Il^in. ^ 9 ^elec.**' (177)

(neglecting relativistic corrections which are important only if the

heavy particle has high velocity) where ^eiec. and are to be



98 TOPICS NOT RELATED TO NUCLEAR FORCES

evaluated at the position of the nucleon, and therefore the integral

is over the coordinates of the nucleon alone. This is similar to

the case of electrons and light: a charge can only interact with a

light quantum when they are at the same place. The constant g

which determines the strength of the interaction must be found

from experiment. It has the dimensions erg • cm"^, since ^eicc.

and are to be normalized per unit volume.

Note that we use ^eioc *» (without a star). This corre-

sponds to the emission of an electron but the absorption of a

neutrino. However, this absorbed neutrino can V)e taken from a

state of negative energy which corresponds to the emission of an

‘^antineiitrino.^’ Owing to the absence of charge and magnetic

moment, an antineutrino is equivalent to a neutrino. The formu-

lation (177) is therefore ecpiivalent to the emission of an electron

and a neutrino, and it is a mathematical convenience to have

formally one particle absorbed and one created. The positron

emission would be described by lAdcc.^n.*-

Since the neutrino has very little interaction with anything, its

wave function may be taken as a plane wave. If p^. is the mo-

mentum of the emitted antineutrino, then —pn. is that of the

absorbed neutrino of negative energy, and

^n. = exp (-^ p,,.- r/h) (178)

where V is the volume of a box in which the wave function is

normalized. The factor may be omitted if a unit volume is

used for the normalization. yp^\ec. should be a Coulomb wave func-

tion; but if Z the charge number is small, the C/Oulornb energ}" of

the electron can be neglected in comparison with its kinetic energy

and a plane wave can be used for the electron wave function.

The number of final states per unit energy is

(Volume element of mo-
^

(Volume element of mo-

_ mentum space of electron) mentum space of neutrino)

(Volume of phase space per
^

(Volume of phase space per

electron energy state) neutrino energy state) X dE

= (Peleo.^ c^Peiec. dco„.)/(27rh)® dE^_ (179)

where are elements of solid angle.
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The result for the transition probability of an electron into

solid angle dI2/47r (integration over all directions of the

neutrino has been carried out) is

12
(7^ mc^

/ ixp.exp -^(Pn.+Polec> dr e(e^ — — «)^d<
do,

47r

(180)

with G = (^/mc^)(h/mc)”^, e = V — 1 =

€o = /^''avttiiabie/^c^- ^ plauc wavc has been substituted for the

electron wave function.

Just as in the theory of atomic transitions, there will be selection

rules for /3-decay processes. If and are both of the order

of magnitude me, as is usually the case, the exponent (pn. + Peiec.)

• r/fi will be of the order of magnitude:

R 4 X 10 cm 1

\\Jmc 3.86 X 10~^^ cm 100
(181)

(/? = nuclear radius; medium-weight nuclei have been chosen.)

Thus, exp [tXPn. + Peiec.)
' ^/h] will be nearly 1, and the matrix

element in equation 180 reduces to M = Jwfi

expression depending only on the state of the nucleon before and

after the transition. AJ is determined by the nuclear wave func-

tions. In particular, the orthogonality of the nuclear wave func-

tions for states of different angular momentum I gives the selection

M 9^ 0 implies A/ = 0 (182)

Such transitions are called allowed. Transitions for which il/ = 0

are (‘ailed forbidden; in this case the exponential in equation 180

must be expand('d in a power series; the order of the forbidden

transition is the number of the first term in this power series which

gives a non-vanishing result for the matrix element. Because of

the estimate (181), the probabilities should decrease by a factor

of about 10^ with each order.

ALLOWED TRANSITIONS

The only dependence of the allowed transition probability on

the electron energy is through the volume element in momentum
space. The energy spectrum of electrons is therefore

Nie) dt ~ tVt^ - l(«o - e)2 de ( 183)
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Since eo is unknown, the experiments have to yield a value of €o,

while giving a check on the theoretical spectrum. This is easily

done by making a ^T\urie plot/^ In this plot, the quantity

F(f) = VN(,e)/e(€^ - 1) (184)

(as observed) is plotted against the energy e. According to

equation 183, Fie) ^ €q — e; therefore the plot should yield a

straight line which cuts the e-axis at eo-

The only nuckais which checks this proportionalit}^ exactly is

measured by Lawson and Cork (Phys. Rev. 67, 982, 1940).

Here eo = 1.99 Mev (which is

high enough to make the ex-

periments on the d-rays fairly

easy) and the lifetime is 72

seconds. Luckily this short-

lifetime /?-decay follows a 50-

day-lifetime 7-decay (isomeric

transition; see Chapter IV).

There are experimental dif-

Fig. 13. Kurie plot of the positroi.
Acuities in the measurement

spectrum from Cu*^. . , , . .

oi the energy spectra oi most

other /3-radioactive nuclei which result from either the low energy

of the electrons or the short lifetimes. Cu^*'^ measured by A. W.
Tyler (Phys. Rev. 66, 125, 1939) emits both positrons and elec-

trons. The positron spectrum was measured both for thick target

and thin target (thick and thin relative to the electron range).

The Kurie plots are shown in Fig. 13, It is not known whether

the portion AB of the thin target curve is spurious or results

from another decay process (to an excited state of Ni^^) with a

very low energ>^ limit.

The thick target curve is typical of the experimental evidence

which lead Koru^pinski and Uhlenbeck to introduce their alterna-

tive theory (Phys. Rev. 48, 7, 1935). They proposed using the

time derivative of the neutrino wave function d(p/dt in the transi-

tion probability instead of (p. Since d(p/dt (eo — e)(p this led to

spectrum

Nkaj de~ eV'e^ — l(€o — e)^ de (185)

thereby moving the maximum of the spectrum to lower electron

FU)
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energies. To make a Kurie plot of this, the fourth root must be

used in equation 184 instead of the second. Many of the experi-

mental data on thick targets then give straight lines but very high

values of eo. Later experiments using thin targets showed that

the Kurie plots according to the Konopinski-Uhlenbeck theory

dropped off, as shown in Fig. 11
,
which demonstrated that the

straight-line portion was accidental. Also, when the mass differ-

ences of nuclei became better known, the values of €o given by

the Konopinski-Uhlenbeck theory were shown to be much too

high in all cases but that those given by the Fermi theory agreed

with the measured mass dilYeremce.

measured by Kkuchi et al. (Proc. Physico-Math. Soc.

Japan, 21, 52, 1939); Lyman (Phys. Rev. 56, 1123, 1939); and

Fig. 14. Typical Kurie plot of the Konopiiiiski-Uhlenbeck theory.

Townsend (Proc. Roy. Soc. A177, 357, 1941), Is one case in which

the use of very thin targe?ts still did not give a Fermi distribution.

To account for such spectra it is usually assumed that several

decay processes are taking place simultaneously, leading to various

energy levels of the residual nucleus. With

this is confirmed by the observation of a 7-ray of about 280 kev

by Richardson (Phys. Rev. 66
, 009, 1939). This 7-ray is attributed

to the transition of the residual nucleus from its excited to

the ground state. Unfortunately, various experimenters disagree

on the relative intensities of the 7-rays and of the tw’^o compo-

nents of the /3-spectrum, and on the value of the upper limit of its

low^er-energy component.

Coulomb Field, In expression 183 for the electron energy

spectrum no account has been taken of the Coulomb field. The

correct spectrum has a greater electron density at low energies.

There is no zero for c = 1 because the factor — 1 ^ v

(velocity) in the density of states is canceled by a 1 /?; in the charge
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density of electrons at the nucleus. The resulting electron spectrum

is shown in Fig. 15.

For positrons, fewer of low energy should be expecjted than the

number given by expression 183 because of the repulsion of the

positrons in the Coulomb field:

The CoulomI) wave function of

the electron in expression 177

has a factor exp (
— 27rZc^/hr),

which lowers the transition

probability considerably for low

7 velocities.

Fig. 15. Energy distribution of Ihere aie some disturbing

^-rays with Coulomb field. measurements by Backus (Phys.

# Rev. 68, 59, 1945) on the ratio

of positrons to electrons, N_j-/N_, in the Cu^*^ /^-transitions

:

Cu'

1
Zn®* + r

N+ZN-. should be smallest and behave in a calculable way at

low energies; the experimental values were compared with the

theoretical prediction but the value of N^-ZN— was found to be

ten times greater than predicted. These measurements should be

repeated. The disagreement can hardly be attributed to a failure

of /5-ray theory because the ratio of positron emission to iv -electron

capture was found to be in exact agreement with theory (Scherrer

et al., Phys. Rev. 68, 57, 1945), and this ratio involves parts of

the theory very similar to those in Backus^ experiment.

LIFETIMES IN ALLOWED TRANSITIONS

The total transition probability, or reciprocal of the lifetime,

for /3-ray emission is found by integrating over the energy distribu-

tion (equation 180) to be

l/r = (GV2ir3) • {mc'^/h)\M\^F{ia) (18G)

(? is a dimensionless constant describing the strength of the inter-

action between electron-neutrino and the heavy particles, M is

the matrix element for the transition

:

^ = /Mfia *(r)Mi„.(r)e-‘“’n dr (187)
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F(€o) is the integral of the distribution in energy

F{eo) = //“eVe" - 1 (eo - de (188)

where €o is the total energy available for neutrino and electron,

including rest mass, in units of the electron rest energy, ^(^o)

varies rapidly with eo, being approximately equal to (l/30)co^ for

€o ^ 1 and to 0.21()(€o — 1)^' for eo nearly unity. Thus r de-

creases rapidly with increasing eo, but not as fast as in the case of

a-decay, where the transition probability is proportional to an

exponential of the energy. In Chapter II it was pointed out that

in natural a-decay a factor of 2 in energy is equivalent to a factor

of 10“^^ in lifetime.

The matrix element M is in general not known because we have

very scant knowledge of nuclear wave functions. Even if we know
that the transition is allowed, we can in general say only that |A/|

is between zero and one.

However, in some cases the value of M can be guessed to some-

what better than order of magnitude. For allowed transitions

(A/ = 0), we have

M « ju^n*Um.dT (189)

M will be near unity when the wave functions and are

nearly alike. Such is the case for jS-transition between mirror

nuclei (Chapter II) (for which also the selection rule A/ = 0 is

likely to be fulfilled). Three examples of allowed transitions in

mirror nuclei are given in Table 12. The product is remark-

TABLE 12

Allowed Transitions in Mirror Nuclei

Reaction t — half-life eo ^F(eo)

H’ 10® sec 1.03 1400

C" 4- ^ 1200 sec 2.86 3500

Sc^‘ 0 . 9 sec 10.68 2500

Source: Konopinski, Rev. Modern Phys. 16, 209.

ably constant, confirming the theory underlying equation 18G.

This constancy exists in spite of t varying by a factor as large as

10^. Furthermore, it is reasonable that tF is somewhat smaller

for the first situation than for the other two, for in a nucleus
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containing only three particles we would expect and 7/in. to

be more nearly alike than in the heavier nuclei, so that \M\ would

be closer to unity in the light nucleus.

It is interesting to note that the Konopinski-Uhlenbeck theory

of jS"decay predicts variation by a factor of between the prod-

ucts tF for the various reactions in Table 12.

For nuclei of intermediate mass, the Coulomb repulsion already

introduces considerable asymmetry between the numbers of pro-

TABLE 13

Allowed Transitions in Intermediately Heavy Nuclei

Reaction tFM
S3“ - + 0- -

1
- V 19,000

Cu"'' Zn'" + 66, (KK)

Cu®'' -> + v 22,000

In"" -> Sn"" + + r 140,000

tons and neutrons (there are no more mirror nuclei), and pre-

sumably even greater differences between neutron and proton

wave functions in the nucleus. Thus, even for allowed transitions,

smaller matrix elements are expected for intermediately hea^y

nuclei than for light, mirror nuclei. This is borne out by the data

in Table 13.

In the heavy, naturally radioactive nuclei the matrix elements

TABLE 14

Allowed Transitions in Naturally Radioactive Nuclei

Emitter ^F(€o)

RaB 50,000

UX 2 270,000

are in general still smaller. This is borne out by the data in

Table 14.

Assuming \M\ ^ 1 for the lightest mirror nuclei, G can be cal-

culated from Ft. The result is

G « (190)

This corresponds to g ^ erg • cm'^. The smallness of this

coupling between electron-neutrino and the heavy particle is
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what makes /?-decay take place so slowly compared to other

nuclear reactions, except some a-radiation. It is safe to say that

13-rays are not emitted during nuclear collisions^ but only at com-
paratively long times afterwards. For example, the lifetime of

protons in the sun due to the reaction

H + H -^D + + V (191)

is about 10^^ years, even with a density of a])out 100 and a tem-

perature of 2X10^ degrees C. (See I^ethe and Critchfield, Phys.

Rev. 54
, 248.) Even so, this reaction presents about the best

opportunity for /3-decay during a collision. The long lifetime of

the proton in the sun indicates an extremely low probability of

/3-decay per collision.

The most fundamental /3-decay is that of the neutron

+ + (192)

The matrix element for this reaction should be exactly unity, as

the wave function for a single proton ought to be the same as that

of a single neutron. Measuring the lifetime of this reaction

should give an exact value of G. However, this reaction is hard

to obser\^e as the neutrons are removed much more rapidly by

other means (capture, diffusion) than by the above reaction.

Using the value of G found above, the half-life for the reaction

(192) should be about 15 minutes. There is hope of making the

measurement with the large neutron fluxes now available in piles.

LIFETIMES IN FORBIDDEN TRANSITIONS

The second term in the Taylor expansion of the exponential

in the matrix element (187) will give a non-vanishing integral when
A/ = dbl, which transition was forbidden in the first approxima-

tion. Similarly, A/ == db2 transitions become possible with the

third term in the expansion, and so on. For €o = 2, the argument

of the exponential averages about 1/100 over the range of the

heavy particle wave function, so that \M{AI = =bl)|^ might be

expected to be about 10~^ times \M (A/ = 0)|^. Actual^, the true

wave function for an electron in the Coulomb field varies faster

than the plane wave approximation used in equation 187, and the

factor 10~^ becomes about 10“^ for medium and heavy nuclei.

This correction does not help the higher forbidden transitions so
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much as the first. Higher €o makes all forbidden transitions more

probable. Table 15 quotes experimental data from Konopinski

for forbidden transitions in light nuclei.

TABLE 15

Half-Lives in Forbidden Transitions

Emitter t == Half-life to

First Forbidden Transitions

Li® 0.9 sec 24.5 2.8 X 10^

Ne23 40 sec 9 10^

Second Forbidden Transitions

1.2X10® sec 4.37 8.6 X 10^

Higher Forbidden Transitions

Be^® 10^^ sec 2.1 10^^

5.10‘®sec 2.4 10^^

Source: Konopinski, Rev, Modern Phys. 16, 209.

GAMOW-TELLER SELECTION RULES

There is good evidence that the selection rule A/ = 0 for allowed

transitions is not generally adhered to. One example is the K-

capture reaction
ec’

+

K ^ Li' + r (193)

Li^ is produced both in its ground state and in an excited state

about 440 kev above the ground state. The experimental ratio of

number of transitions to the ground state to number of transitions

to the excited state is about 10 to 1. This is about equal to the

calculated ratio, using equation 186 and assuming \M\ equal for

the two cases. From this and the absolute lifetime it may be

concluded that both transitions are allowed. Howev^er, we do

not expect both states of Li^ to have the same value for /. The
best assumption is that the two states form a P-doublet, with

7 = 3^ and I = ^2 excited and ground states, respectively.

Thus Al can certainl}^ not be zero for both transitions.

Another example is the reaction

:

He® Li® + ^“ + r (194)

Li® can be thought of as an a-particle plus a deuteron. The
o-particle has I = 0, and the deuteron has 7=1. We expect,
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therefore, that has / — 1, in agreement with experiment. In

the same picture, Ile^' is an ^-particle plus two neutrons. In the

^'ground state,^^ the double neutron should have spin zero (cf.

Chapter XII), so that the same argument gives / = 0 for He^.

An additional argument for this is that all nuclei containing even

numbers of neutrons and protons have zero spin as far as they have

been investigated. Thus A/ = 1, and the transition is forbidden.

But the exp(*rimontal lifetime of the reaction shows that it is

'^allowed. There are similar situations in the /3-decay of

and Na^^
So it seems that there can be allowed transitions with A7 = 1.

Gamow and Teller first showed how this can come aliout. They
said that in considering possible interactions, one ought to include

all relativistically invariant combinations of the four wave func-

tions, Uin.j For tuH) wavG func^tioiis, let US say

\l/ and 0, there are li\'e combinations which are covariant under

Lorentz transformations

:

1. Scalar: yp* 4> (Fermi theory).

2. Polar four ve(*tor, with components: yp* (^, \p* a (p,

3. Tensor: d cr </>, a 0.

4. Axial vector: \p* a </>, \p* 75 4>,

5. Pseudoscalar: \p* (5 75 </>.

wh(‘re /3, a, and 75 are Dirac operators and o* is the usual spin

operator. (For details, see Konopinski’s article.) To obtain a

relativistically invaiiant interaction, the corresponding combina-

tions of the wave functions of the light and of th(‘ heavy particles

must be multiplied; for example, the tensor combination of the

light, particle w'ave functions with the tensor combination of the

wave functions and of the heavy particles. In this case

the Hamiltonian becomes:

F(tensor) == (^*i3cr0) • (i^fin (195)

(The transition is still treated as though an antineutrino is

emitted.) Since the heavy particles are non-relativistic, the Dirac

operator /3 for them is eciuivalent to unity; therefore, the net effect

of equation 195 is to place the operator cr between the heavy

particle wave functions and Therefore, the matrix

element for allow^ed transitions is now^ /Mfin dTj and this

may be different from zero if the total spin I changes by one unit,
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or by zero, in the transition. Thus AI — ±1, 0 can be ‘'allowed^’

for the tensor interaction.

The axial vector interaction gives the same selection rule as the

tensor,

A/ = 0, ±1 (196)

From the experimental data it seems that these Gamow-Teller

selection rules are correct. For instance, they explain the results

for He^, F^^, and Na““. However, the reaction

3eio j^io ^ ^ ^

differs from (19-1) onl}" by the additi(.)n of fin a-particle, so that

A/ = 1 ma3' again be expected for this reaction. Hut experiment

shows that this is forbidden. The same is true for the reaction

+ 13- + V (198)

which differs from (194) by two a-particles. Thus the Garnow-

Teller selection rules, while explaining more than tlie Fermi rules,

still are in contradiction with many of the data.

K-capturc. The theory for /v-capture has been worked out,

and is in good agreement with experiment. S(‘herrer et al. (Phys.

Rev. 68
, 57) have measured the ratio of /v-capture ])rocesses to

positron-emission processes for Cd'^'^ (or with the result:

320 i 20. The Fermi theory predicts 340. (The Konopinski-

Uhlenbeck theory gives 20,000, and is conclusively ruled out.)



XVII. THE COMPOUND NUCLEUS

In this chapter, we arc no longer concerned with the determina-

tion of fundamental nuclear forces, but with the more })ractical

problem of predicting cross sections for nuclear reactions, par-

ticularly those involving heavier nuclei the quantum states of

which are not known precisely. On the other hand, the presence

of many nuclear particles will make statistical methods practical,

and these are used in the theory of the compound nucleus.

The concept of the compound nucleus was initiated by Bohr in

1935. In order to get a clear picture of this concept we shall

examine the difference between nuclear collisions and atomic

collisions.

For collisions between an atom and a particle of high or moderate

energy, tlie Born approximation is valid because the incident

particle passes right through the atom prac^tic^ally undisturbed.

Slight deflections, inelastic collisions, and emission of radiation

are progressively less likely processes. The reason that particles

are likely to pass right through is that the atom is a loosely bound

structure. Another way of saying this is that the interaction of

atomic electrons with, say an incident electron of several thousand

volts, is much smaller than the incident energ}^—which is precisely

the condition for validity of Bom’s approximation.

Nuclear interactions, on the other hand, are of the order of 20

Mev, which is much greater than the kinetic energ>^ of the incident

particle normally used, i.e., several Mev or less. This is precisely

the opposite of the conditions required for Bom’s approximation.

Here, the interaction energy is more important than the kinetic

energy.

Another difference: An electron striking an atom can be re-

garded as interacting with the average ‘TIartree” field of the atom.

This approximation is valid because the interaction wth a single

electron is much smaller than the average interaction with all the

electrons. On the other hand, the short range and the saturation

character of nuclear forces require that nucleons interact only

with a small number of neighbors. Thus individual interactions

109
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will be of the same order of importance as the average total inter-

action—and it will not be permissible to replace the nucleus by an

average field.

The Bohr picture takes advantage of these large interactions

and describes them in terms of a compound nucleus. The theory

makes the following statements:

1. Any 'particle which hits the 7iuclcus is caught. A new nucleus

is formed called tlie ccmipound nucleus. Tlie reason for tliis is

that an incident particle will interact with one or two nuck'ons,

transferring much of its energy to them and thus to the nucleus,

before penetrating it appreciably. Then it may no longer have

sufficient kinetic energy to escape the attractive nuclear forces,

and is therefore caught.

2. The compound nucleus is loyig-lived compared to the natural

nuclear time. (This is the time for a neutron to cross the nucleus

—

cm
say 10“^^ cm/10‘^ — ~ 10“^^ second.) The n^ason for this is

sec

that the compound nucleus, which is in an excited state (excitation

energy above the ground state = incident energy + binding

energy of one particle), will live until this excitation (‘iiergy, or a

reasonable fraction of it, is concentrated again on one j^article.

3.

The final break-up of the nu(*leus is independent of the mode

of formation, i.e., regardless of how the nucleus was formed tlua'c

will be definite probabilities for decay into eadi of several possible

residual nuclei. This can be explained in terms of the long life-

time of the compound nucleus during which complete statistical

equilibrium is assumed to be established—thus the nucleus forgets

how it was formed; formation and disintegration can be regarded

as independent events.

For example, the ordinaiy A1 nucleus (^^AP^) can be fonned as

a “compound nucleus^^ in a highly excited state from any of the

reactions

:

—> ^'^AP^ excited

i2yig25 ^ ijj2 I'^AP' excited

^'^AP^ excited

i3Ap7 y ^^AP^ excited.

(199)

The compound nucleus can then decay back, reversing the reac-

tion, into any of the nuclei just mentioned, or also into AP® -f- n
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with a definite probability for each which is the same for all modes
of formation. The residual nuclei may also be left in excited

states, with probabilities which are also independent of the manner
of formation.

Formation of Compound Nucleus, The cross section for forma-
tion of the compound nucleus a/ may be written in the form

<Tf
=

(200)

where R is the nuclear radius, and f is a useful parameter, called

the sticking probability, which is deliried by this ecjuation.

For fast nuclear particles, i.e., X « R(X 10“^^ cm for 200-kv

neutrons), the classical geometrical ajiproach is valid since the

uncertainty in position of the particle is only X. The cross section

for capture of fast nuclear particles is cinl-ainly not greater than

since the interaction is negligible if the particle passes at a

distance from the nucleus. For slow neutrons, hovever, cross

sections greater than irR^ are possible since the position of the

particle is poorly defined. To get a vsticking probability which is

always <1, the definition is revised. We define the contribution

<7 1 to the cross section due to particles of orbital momentum ly

<xi = {21 + (201)

Then from general principles of quantum mechanics, must be

less than (or equal to) 1. Moreover, equation 201 reduces to

equation 200 for high energy since all values of I up to R/X will

contribute appreciably (cf. Chai)ter IX, p. 38); $ is a weighted

average of Neutrons were used in the above discussion to

avoid questions involving penetration of the potential barrier

which would arise for protons and a-particles.

The Bohr statement, that any particle which hits the nucleus

is caught, is given more precisely by the equation

f 1 as X/R 0 (202)

In other words, the sticking probability approaches 1 at high

energies. This statement has been checked experimentally with

high-energy neutrons especially by Amaldi and co-workers, by

Sherr, and by Graham and Seaborg. They find cross sections of

about a/ — irR^j with R given by a formula similar to equation 3,

in good agreement with other methods of determining nuclear

radii (see Chapter II).
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Disintegration of Componmi Nucleus, The probability that the

compound nucleus will disintegrate in a particular way is related

to the cross section for the corresponding inverse capture process

with some factors containing the density of initial and final states.

This follows from considering a statistical equilibrium condition

between the compound nucleus and all the possible states of all

the residual nuclei into which it can disintegrate (similar to

Chapter XI, p. 60). In equilibrium, the number of nuclei present

in a small energy range between E and E + dE will be proportional

to the density of states p{E) in that energy range, and to a Boltz-

mann factor. Since energy is conserved in the total system, the

Boltzmann factors cancel out and the condition for equilibrium

takes the form

paWa-^j^ = pbWb-.a (203)

where pa and pb are the densities of initial and final states of the

system at corres{)onding energies, and the TU’s represent prob-

abilities for the direct and inverse processes.

For our process, A is the excited compound nucleus with a

density of states pa(Ea) = ^/Dai where D is the average separa-

tion between neighboring states, at an (mergy Ea above the ground

state of A. (Each state is counted ac(‘ording to its statistical

weight.) WA-^B is the probability of disintegration of the com-

pound nucleus into a definite state of the residual nucleus B with

energy Eb above its ground state, with the emission of a particle

(say neutron) of energy E, Wb-^

a

is the probability that nucleus

B will capture this particle of energy E and produce a compound
state of excitation Ea. Finally, pb{Eb) gives the numlier of states

between E and E + dE available for the outgoing particle, viz.

47rp^
(203a)

with p and v the momentum and velocity of the outgoing particle.

We now use the relation between the capture probability and the

capture cross section, which is

Wb-^a = vaf{E) (204)

for one neutron in a box of unit volume moving with velocity

V = {2E/m) and the relation between the excitation energies Ea
and Esf

Eb Ea - E — B (205)
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where E is the energy of the outgoing particle and B its binding
energy in the unexcited nucleus A,

Using all the relations just given, and setting Z = 0 in equation

201 (other I give very similar results), we now have a relation by
means of which the disintegration probability Wa-^b ^ Ti^/h can
be computed in terms of the sticking probability for the inverse

capture reaction:

( 1 /Da ) ( r^/h) = pbV TrX^f/i (206)

or, inserting 203a and simplifying:

^bIDa = ^B/27r (206a)

This important equation relates the disintegration probability

F/?, leading to a definite state of the residual nucleus, to the leve;

spacing Da- For high energies, approaches 1; for low energies

it is proportional to the velocity v of the emitted particle. Both

Da and F/^ can be deduced from experiment; Da and can also

be estimated from various statistical models for heavy nuclei

(Nuclear Physics B; Weisskopf, Phys. Rev, 62
, 295, 1937; 67

,

472, 1940).

The disintegration probabilities F/^/h are also related to the

widths of the resonances observed in these reactions: since the

total decay probability is

r./h = (i/h (,207)

B

the time dependence of the wave function is of the form

^

-

iEt/X\^— Yt/2h. „ Y) i/h
(208

)

(Note that the absolute square of the wave function gives the

occupation of the state and decays according to equation 207.)

Equation 208 has a Fourier transform * the absolute square of

which is

:

1

(£" - Ef + (F/2)2
(209)

Thus F has the same dimensions as E and gives the width at half-

maximum of the level, or resonance line. The c^uantity F^ repre-

* Taking the Fourier transform with respect to time of a time-dependent

wave function gives the wave function in energy space.
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sents a partial level ividthy i.e., the contribution to T arising from

the disintegration into a definite end state B.

Since the compound nucleus must eventually decay, the cross

section for a reaction ending in state B is given by the cross section

for forming the compound nucleus, times P/j/r. Thus

(TfB = <rf Tb/T (210)

and for fast particles:

a/B = Vb/T (211)

CONCLUSIONS ABOUT NUCLEAR REACTIONS

Energy Distribution of Emitted Particles. From equation 206a

we see that Tb is almost the same for any final state B, since the

sticking probability ^b i^^ a slowly varying function of the energy

of the outgoing particle. This information is useful in predicting

the energy distribution of tlie emitted particles. For example,

if we consider the inelastic scattering of neutrons

+ n-^Z^+^-^Z^ + n (212)

and make use of the fact that the density of states in the residual

nucleus increases rapidly with excitation energy, then we see that

the residual nucleus will most likely be left in a fairly high excited

state and the emitted neutron will come out with low energies.

The fact that emitted neutrons come out with greatly rtxluced

energies has been experimentally confirmed for many target nuclei.

Lead forms a notable exception to this rule. The reason for this

may be that the first excited state in this instance is quite high

—

so that this rule would not l)e confirmed unless higher energy

incident neutrons are used. In fact, the incident energy must

be high enough so that tlie residual nucleus B possesses a great

many levels with an excitation energy less than the incident

kinetic energy Lq? in order that the statistical considerations used

may be valid.

Shadow Scattering. In neutron-scattering experiments a purely

wave-optical effect must be considered at high incident energies

(X <$C i2), for which we have said the capture cross section is

In this case, the nucleus can be regarded as a black sphere of

radius R which casts a shadow. This is described in the language

of wave optics by saying that just enough light is scattered in the
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forward direction to cancel the incident beam. This would mean
a cross section for shadow scattering of Furthermore, to

cancel the incident beam behind the si)here, this shadow scattering

must be of the same energy, i.e., it represents elastic scattering.

According to an elementary wave-optical argument, the shadow
scattering will be mostly conlined to an angle \/R from the

forward direction.

In the case of light, for w hich normally X « R, the shadow^

scattering is not easily measurable since the shadow extends prac-

tically to infinity. In the nuclear case \/R is, say, 1 3 or I 5 ,
so

that the umbra or region of complete shadow extends only a short

distance back of the nucleus, certainly not as far back as the

measuring apparatus. Tlius it is possible to make measurements

outside the main beam but still at small enough angles to it to

obtain the elastic shadow^ scatUa-ing. The existence and gcmeral

features of shadow' scattering have been confirmed experimentally

by Kikuchi et ah, Amaldi et al., and Bacher.

Charged Particles. The emission of charged particles such as

protons requires the ])en('tration of a potential barrier. This

l)enetration })robabili 1 y is similar to that given in the theory of

a-deca}^ and is (piite small unless the emitted protons have energy

nearly equal to, or greater than, the barrier height B. Thus, in a

rough way, w'e may say that the ])rotons must leave with a mini-

mum energy B. This w ould leave the residual nucieus at a low^r

energy than if neutrons w'ere emitted. Since the density of residual

nucieus states decrease's rapidly with decreasing energy, the

probability for proton emission w ill be much smaller than that for

neutron emission because of the fcwver num])er of states available,

especially if the muiear charge is high and the available energy low.

y-rays. The emission of 7-rays will in general be small com-

pared to heavy particle emission when the latter is energetically

possible because the coupling of the nucleus with the radiation

field involves the small factor e^/tic — 1/137.

DENSITY OF NUCLEAR ENERGY LEVELS—
NUCLEAR TEMPERATURE

The density of nuclear energy levels increases rapidly as a

function of energy. To see how' this comes about a model w'hich

is only a crude approximation is used. We consider the nuclear
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particles as independent of each other, and suppose each of them

has a set of equally spaced energy levels spaced by an energy

difference A. Then, the excited states of the system will also be

spaced by the interval A, and will have a greater statistical weight

the greater the excitation energy, because of the greater number

of ways of dividing the energy among the particles. When an

interaction among the particles is then introduced, there will be

splitting of each energy level
;
and the statistical weight of an energy

level of the non-interacting system is a measure of the energy level

density in the same region of the spectrum, after the interaction

has been introduced.

To calculate the level density a model of the nucleus must be

used. Four models will be mentioned. (For more details see

Nuclear Physics B, p. 79.)

1. Free Particles in a Box of the Size of the Nucleus. The level

spacing D is proportional to exp(— 'v//?), where E is the excitation

energy of the nucleus. For A = 120, E = 8 Mev, we get 1) ^ 10

ev, which is about what is observed.

2. Free Particle in a Box, with Correlations. Bardeen has

pointed out that the free particle model must be modified to be

in accord with the assumption of exchange forces. The result

gives a level spacing depending on excitation energy in about the

same way as before, but the level spacings are somewhat wider:

D ^ 100 ev for A = 120, = 8 Mev.

3. Lattice Model. This model is the o})po8ite extreme of models

1 and 2, for the particles are here supposed to be firmly bound
and capable only of small vibrations about equilibrium. The re-

sults are similar to those for models 1 and 2. The level spacing is

proportional to exp(— For A = 120 and E = 8 Mev,
D 100 ev.

4. Liquid Drop Model. For heavy nuclei this mode! is ejuite a

good approximation. The level spacing is proportional to

exp(— small E and exp(->£/'*) for larger E, For A = 120

and E — 8 Mev, D ^ 10 ev.

All these models give a level spacing which is a decreasing func-

tion of the energy of the form exp[ —/(£’)], where f{E) is a slowly

variable function of the energy.

If the density of states, p{E) = 1/Z>, of any system is given

as a function of energy then an entropy can be defined as
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S = k log p(E)y and a temperature as dS/dE = 1/T(E). Each of

the four models mentioned will therefore define a nu(;lear tempera-
ture as a function of excitation (mergy. It turns out that for

10 Mev excitation energy, kT is of the order of 1 Mev, i.e.,

T he most satisfactory tn^atmcnt of nuclear thermodynamics
(Weisskopf, Phys. llev. 52, 295, 1937) avoids a model and supposes

D = C oxi){-bV~E) (213)

Tlie constants B and C are determined from experiment: For low
excitation eru'rgies the exponential is close to 1 so that D is about

e(iual to C. From the observed position of the lowest excited levels,

it is found that:

For light nuclei (A ^ 20) U ^ 10^’

For heavy nuclei (.1 ^ 200) C 10^
(214)

B can then be determined from neutron resonance levels near

jE ~ 8 Mev (binding energy of neutron in nucleus)
;
this gives

about:

/i = 2 for light nuclei

H = 4 for heavy nuclei
(215)

if E is measured in Mev.

Any of the level density functions lead approximately to a

Boltzmann distribution for inelastically scattered neutrons. If

the incident energy of the neutrons is Eq and the energy of the

emitted neutrons is IF then the excitation energy of the residual

nucleus is E^ IF. Supposing that the level density of the

residual nucleus is exp[+/(E)] and expanding,

m =/(Eo) -/'(Eo)TF+ ••• (210)

we get a level density

exp /(F) = exp/(Fo) X e.xp(-/'TF) (217)

Therefore, setting f' — 1/kT (which is exactly the expression

demanded by dS/dE = 1/T) gives a Boltzmann distribution for

the level density of the residual nucleus as a function of H and

therefore for the kinetic energies of the emitted neutrons. A more

careful consideration gives a probability of emission proportional
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to \^W exp( — W/k7') or W exp{— W/k'r) but experiment has

not as yet given enough data to make it possible to distinguish

between them.

RESONANCE PHENOMENA

Let the energy levels of a luieleus be as shown in Fig. 10 and

consider the process -f If the incident neutron

has exactly the right energy to form Z"^ in one of its excited states,

the probability of capture is large. Such energies are (tailed

resonance energies of the compound nucleus. The experimental

^^^^^Binding energy— " neutron

^^Ground state

Fig. 16. Energy levels

of a nucleus.

evidence (see Fig. 17) for neutron resonance energies in capture

processes led to the first theories of the compound nucleus. Ex-

perimentally, for ^4 ^ 100, the level spacing D is about 10 ev, if

E is about the binding energy of the neutron, i.e., 8 Mev. D is

about the same at .1 ^ 200, and the ajipropriate binding energy

E ^ b Mev. This can be understood because, on the one hand,

the number of particles is greater (and thus there are more possi-

bilities of distributing the energy); on the other hand the excita-

tion energy (binding energy of the particle) is smaller. For* A
smaller than 100, the level spacing increases rapidly.

There are several nuclei for which more than one resonance is

known: Among elements having only one (abundant) isotoi)e.

In has 3 resolved resonances, I has 5, and Ta 7. In addition,

many other elements shoAv more resonances than isotopes. Most
of the experimental evidence was obtained by llainwater, Havens,

and their collaborator, in several papers in Phys. Rev. 71 (1947).

In some cases, only one resonance is observed; the level spacing

is then not directly known but it can be taken as of the same order

of magnitude as the kinetic energy of the neutrons corresponding

to the first resonance.

Fig. 17. Typical experimi^ntal

cross section of a nucleus for

slow neutrons.
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For protons^ capture resonances have been observed only for

the very light nuclei. The level spacings are of the order of 10

to 100 kev with an excitation energy of ^10 Mev. For heavier

nuclei, the Coulomb barrier prevents capture resonances for

protons because the excitation energies which result after a proton

has been given sufficient energy to get over the Coulomb barrier

are so high that the resonance levels overlap. A few resonances

have also been observed for a-particles, the reactions of which

lead mostly to the emission of protons or neutrons.

The width F of a nuclear energy level is defined as F = h/r,

where r is the lifetime of the level. For most of the slow neutron

capture levels the width is about 0.1 ev. This can be decomposed

F = F^ + F,, (218)

into the neutron width and the 7-ray width. Almost all of F is

F.y, which means that capture is far more probable than scattering

for slow neutron resonances.* Fn may be determined separately

in two different ways. First, the capture cross section at exact

resonance is given by

(const) X iV^^rF (219)

F is the width of the resonance at half-maximum
;
therefore, F,^

can be determined from cr at resonance, F and Er. Second, the

ratio of scattering to capture cross sections at resonance is F^/F^,

and is very nearly equal to F. Unfortunately, in order to get

the scattering cross section at resonance it must be disentangled

from the potential scattering (Nuclear Physics B, p. 152) so that

this second method is ordinarily not of much use.

The first experiments on neutron capture were done b}" Fermi

and his collaborators, and by Moon and Tillman, using an ingen-

ious but rather complicated method: a neutron beam from which

the thermal neutrons had been removed by a cadmium absorber

impinged on an indium detector. Comparison of the radioactivi-

ties produced in this detector with and without an indium absorber

intervening, showed that neutrons which activated the indium

detector were strongly captured by the indium absorber. If a

silver absorber was used instead, the absorption was small. On

* Mn has a strong resonance at about 300 ev which gives mostly scattering

and therefore has Fn » Ft- This is to be expected for light nuclei because

of their large level spacnng; see equation 206a .—Note added in ‘proof.
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the other hand, a silver detector showed about as much radio-

activity with and Tvuthout the indium absorber, but with a silver

absorber the Ix^am was very strongly attenuated. The conclusion

was that indium and silver wore activated by neutrons of two

different energies. At present, the most satisfactory method con-

sists in using a modulated cyclotron beam and determining the

velocity of the neutrons by their time of flight to the target. For

very slow neutrons, a pile and a crystal spectrometer are often

preferable.

THE DISPERSION FORMULA

.^Breit and Wigner were the first to develop a theory of nuclear

resonance processes. The result was analogous to that in the

theory of optical dispersion

1

(E - Er)'^ + (r/2)2
(220)

The measurements using velocity selection can check the shape of

this curve and at the same time determine Er and F. To get the

coefficient of proportionality in equation 220, suppose that the

cross section a is for the production of B with A incident. Then,

since the cross section is proportional to the half-width for disinte-

gration into J5, it must contain Tn, It also must contain Va for

symmetry reasons. This follows from the principle of detailed

balance: apart from statistical weights and a factor depending on

the ratios of momenta, (ta-^b should be equal to (Tb-^a-

Chapter XL)
Finally we know that for the simplest case in which only one

kind of particle can be emitted or absorbed, Ta == == F, and

we know further that in this instance the largest possible cross

section for particles with / = 0 is 4irX^. Clearly, in the general

case, the wave length of the incident particle must occur. Collect-

ing all information.

<T = tXa^
TaTb

(E - Erf + (T/2f
(221 )

This is known as the one-level Breit-Wigner formula. It gives

the correct dependence on momentum, in accord with the prin-

ciple of detailed balance

<^b-,a/oa-*b = = VaIvb^ (222)
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For the dependence on the spin of the compound nucleus and
the generalization to more than one resonance level see Nuclear

Physics B, p. 101. There is only one instance in which the many-
level formula has been of use, namely,

He^ + n IIe‘^ He^ + n (223)

which has two partly overlapping resonances near 1 Mev.

The dispersion formula has been derived many times. The
derivation must be quite different from the treatment in optics,

where the interaction of the incident light and the atom can be

taken as a small perturbation.

For high-energy neutrons the dispersion theory goes over into

the statistical theory given previously. The partial widths of

the levels bec^ome of the order of magnitude of the level spacing

and the resonances are no longer observable.

For extremely slow neutrons, well below the first resonance,

Ta is proportional to (this follows from the fact that Fa is propor-

tional to the density of states in momentum space, p^{dp/dE) ^ p)

and so the Breit-Wigner formula reduces to

(X X"v ~ 1 /y (224)

This is the well-known l/v law for the cross section at very low

energy. It makes the number of processes per second, which is

(TV, independent of the energy distribution and proportional only

to the total particle density. For yery light nuclei, the spacing 1)

is very large and the l/v law holds up considerable energies. For

it is valid to 50,000 ev. Absorption by is

therefore used for measuring neutron velocities.





APPENDIX: TABLE OF NUCLEAR SPECIES

Explanation of the Table

Column 1 : “Z.” Atomic number of the element.

Column 2: “Eleiruint.’’ Cliemical symbol of (‘lemeiit.

Column 3: “A.’' Mass number of the isoto]>c.

Column 4: ^‘Abund., })er cent.” Per cent abundance of isotope in the

nat urally occurring elemcait.

Column 5: ^‘Disintegration.” Symbols for nuclear processes are:

1 Isomeric transition. (Emission of 7-rays or conversion

(‘Icctrons.)

K Electron capture,

c" Internal conversion electrons.

/3~, j3 Negative, positiv(‘ beta-j)artic]e emission.

a Alpha-particle emission,

w, H Emission of neutrons, })rotons.

JJ Denotes that tin? particular ivSotope has not been identi-

fi(‘d with complete certainty. Parentheses enclosing

one or more activities denote uncertainty in these, but

not in the identifi(‘ation of the isotope to which they

an‘ assigned. Thus, “^‘Ag^^’^ has been classified and found

detiniUdj^ to have activity; however, it is not certain

that also has A'-capture and conversion elec-

trons. A comma setting off Ie~ from one or more
symbols indicates that the conversion electrons belong

to the isomeric transition.

Columns 6 and 7 : Masses, wit h probable errors. A value in parentheses

indicates that the mass lias been estimated from theory, the

isotope not having been produced as yet.

Column 8: Spin of the designated isotope.

Main References

G. T. Seaborg, Table of Isotopes, Rev. Modern Phys. 16, 1, 1944.

E. Segre, Isotope Cliart, issued by Los Alamos Scientific Laboratory, 1946.

In general, isotojies classified as A to D by Seaborg and St^gre have been

included in this table, i.e., all those for w'^hich at least the assignment to a

definite element is certain.
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Abund., Disinte- Error

z Element A per cent gration Mass X 10'^ Spin

9 F IG (10.017 5)

17 17.007 5 30
18 18.000 5 GO

19 100 19.004 50 20

20 r >20.004 2

<20.009 2

21 (21.005 9)

10 Ne 18 (18.011 4)

19 19.007 81 20

20 90.00 19.998 77 10 0

21 0.27 20.999 03 22

22 9.73 21.998 44 30 0

23 r 23.001 3

11 Na 21 21 .003 5

22 21.999 9 50

23 100 22.990 IS 31 /2

24 r 23.997 5 45

25 Ur (24.990 7)

12 Mg 22 (22.000 2)

23 23.000 2 40

24 77.4 23.992 5 ()0 0

25 11.5 24.993 S 90

20 11.1 25.989 8 50

27 r 20.992 8 150

13 A1 25 24.998 1 100

20 25.992 9 150

27 100 20.989 9 80

28 r 27.990 3 70

29 r 28.989 3 80

30 (29.995 4)

14 Si 27 20.994 9 90

28 89.0 27.980 0 GO

29 0.2 28.980 0 70

30 4,2 29.983 2 90

31 r 30.980 2 00

32 (31.984 9)

15 P 29 28.991 9 100

30 29.987 3 10

31 100 30.984 3 50 yi

32 r 31.982 7 40

33 (32.982 0)

34 r 33.982 0 40
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Abund., Disinte- Error

z Element A per cent gration Mass X 10^ Spin

IG S 31 30.989 9

32 95.1 31.980 89 7 0

33 0.74 32.980 0 60

34 4.2 33.977 10 33

35 34.978 8 80

36 0.016 35.978 100

37 /3~ 36.982 1 30

17 Cl 33 32.986 0

34 33.980 1 200

35 75.4 34.978 67 21

36 K 35.978 8 100

37 24.6 36.977 50 14 %
38 r 37.981 300

39 (38.979 4)

18 A 35 34.985 0

36 0.307 35.978 0 100

37 K 36.977 7

38 0.061 37.974 250

39 (38.975 5)

40 99.632 39.975 6 60

41 r 40.977 0 60

19 K 37 (36.983 0)

38 37.979 5

39 93.38 38.974 7 h
40 0.012 rK 39.976 0 100 4

41 6.61 40.974 %
42 r
43 ur

20 Ca 39 u
40 96.96 39.975 3 150 0
41 U Ke-
42 0.64 41.971 1

43 0.15 42.972 3

44 2.06

45 r
46 0.0033

48 0.19

49 r
21 Sc 41

43

44 /6~
45 100 44.966 9 60 %
46 rK



Z Element

21 Sc

(cont.)

22 Ti

23 V

24 Cr

25 Mn

26 Fe

27 Co

TABLE OF NUCLEAR SPECIES 127

Abund., Disinte- Error

A per cent gration Mass X 10® Spin

47 ur
48 r
49 r
45

46 7.95 45.966 1 100

47 7.75 46.964 7 100

48 73.45 47.963 1 50

49 5.51 48.964 6 60

50 5.34 49.962 1 40

51 r 50.958 7 100

47

48 K
49 V K
50

51 100 50.957 7 50 %
52 r
49

50 4.49

51 U K e“ 50.958

52 83.78 51 .956

53 9.43 52.956

54 2.30

55 U

51

52 K
54 K
55 100 54.957

56

53

54 6.04 53.957

55 Ke-
56 91.57 55.956 8 170

57 2.11 56.957

58 0.28

59 r
55

66 K
57 /3+/C€-

58 K
59 100

60 /3" I e“
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Z

28

29

30

31

32

Element

Ni

Cu

Zn

Ga

Ge

Abund., Disinte- Error

A per cent gration Mass X 10^ Spin

57

58 67.4 57.959 4 40

59

6Q 26.7 59.949 5 40

61 1.2 60.953 7 150

62 3.8 61.949 3 40

63 r
64 0.88 63.947 1 60

58

()0

61 K
62

63 70.13 62.957 400

64 r
65 29.87 64.955 400

66 r
63

64 50.9 63.955 400 0

65 K e-

66 27.3 65.954 400

67 3.9 66.954 4(X) H
68 17.4 67.955 300

69 n
70 0.5 69.954 300

64 U /?+

65 A' 6-

66

67 K e-

68

69 61.2 68.952 800 H
70 r
71 38,8 70.952 900 y2
72 r
74 ur
69 u
70 21.2

71 Ke~
72 27.3

73 7.9

74 37.1

75 r
76 6.5

77 r
78 ur
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Abund., Disinte-

Element A per cent gration Mass

As 72 Up+
73 U Ke-
74 r
75 100

76

77 u r
78 r

Se 74 0.9

75 Ke-
76 9,5

77 8.3

78 24.0

79 U /3- I e-

80 48.0

82 9,3

83 r

Br 78 e~

79 50.6

SO /5”, / c-

81 49.4

82 r
83 r
84 r
85 r
87 V r

Kr 78 0.35

79 u
80 2.01

81 U I e-

82 11.53

83 11.53 /e-

84 57.11

85 r
86 17.47

87 ur
88 r
89 r
90 ur
91 ur
92 ur
94 u r
95 ur

Error

X 10® Spin

%

K

0
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Z Element

37 Rb

38

Sr
39

Y

40

Zr

41 Cb

Abund., Disinte- Error

SpinA per cent gration Mass X 10^

82 U
84 U
85 72.8

86 r
87 27.2

88 r
89 r
90 iifi-

91 V r
92 V r
94 [7

/
3
-

95 u r
84 0.56

85 I €" K
86 9.86

87 7.02 / e" /2

88 82.56
0

89 r
90 u r
91 V r
92 u r
94 u r
95 ur
86 UK
87 (/ e-) K
88 {K)

89 100

90 r
91 U r, / e-

92 ur
94 ur
95 U0-

89 jS+, / or K, e~

90 48.0

91 11.5

92 22.0

93 U 0-

94 17.0

95 U0-
96 1.5

97 U0-

90 U0+
91 UKe-
92 r
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Z Element

41 C!>

(coni.)

42 Mo

43 Tc

44 Ru

46 Rh

46 Pd

131

Abund., Disinte-

A per cent gration

93 100

94 r
95 U r, I e

96 u
97 ur
92 14.9

93 u
94 9.4

95 16.1

96 16.6

97 9.65

98 24.1

99 u r
100 9.25

101 u r
102 ur
96 UK
98 U K €-

99 U. I c-

101 u r
102 ur
96 5.68

98 2.22

99 12.81

100 12.70

101 16.98

102 31.34

103 r
104 18.27

105 r
106 ur
107 ur
102

103 100 I

104 0 1
7c

105 r
106 vr
107 ur
102 0.8

104 9,3

105 22.6

106 27.2

108 26,8

Error

Mass X 10® Spin

93.945 800

94.946 800 M
95.944 800

96.945 900 H
97.943 900

95.945 1100

97.943 1100

98.944 1100

99.942 1100

100.946 1100

101.941 1100

102.941 1100

101.941 1100

103.941 1100

104.942 900

106.941 1000

107.941 1000



132

Z Element A
46 Pd 109

{coni.) 110

111

112

47 Ag 105

106

107

108

109

no
111

112

48 Cd 106

107

108

no
in
112

113

114

115

116

117

118

49 In no
111

112

113

114

115

116

117

50 Sn 112

113

114

115

116

117

118

119

120

121

122

123

APPENDIX

Abund,, Disinte-

per cent gration

Ur
13.5

r
r
UK
K e~

51.9 (I e~)

r {K e-)

48.1

r
r
r

1.4

U K
1.0

12.8

13.0

24.2

12.3

28.0

r
7.3

r
17. I e-

U
U 0+ €-

(7, I €~, K e-

4.5 I e~

I c", r
95.5 I e-

r
r e-

1.1

Ke-
0.8

0.4

15.5

9.1

22.5

9.8

28.5

Ur
5.5

Ur

Error

Mass X 10^ Spin

109.941 1000

106.945 GOO

108.944 700

114.040 1400

115.939 1400

116.937 1400

117.937 1400

118.938 1400

119.937 1400

121.945 1400
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Z Element A
50 Sn 1 24

{c.ont.) 125

127

128

51 Sb 120

121

122

123

124

126

127

128

129

132

133

136

52 Te 120

121

122

123

124

125

126

127

128

129

130

131

132

133

135

136

137

53 I 124

126

127

128

130

131

132

133

135

136

137

Abund., Disinte-

per cent gration

6.8

UH-
U0-
U 0~

56
0~

44
0-

V 0-
0~
(0-
0"

0~

U0-
V 0-

0.088

{K e-)

2.43 (/ «-)

0.85

4.59

6.93

18.71

0~, I e~

31.86

0-, I c~

34.52

0~, I c~

V0-^

U0-
0-

U0-
U0-

rK
100

r
0~

r
U0-
r
0~

U0-
U0-

Error

Mass X 10^ Spin

123.944 1400
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Abund., Disinte-

A per cent gration

124 0.094

126 0.088

127 I e-

128 1.90

129 26.23

130 4.07

131 21.17

132 26.96

133 {Die-
134 10.54

135 n
136 8.95

137 U 13^

138 U (3-

139 r
140 r
141 r
143 V 13-

144 u r
130 u
132 V K e-

133 100

134 r
136 p " K e-

137 u r
138 u r
139 r
140 ur
141 r
142 ur
143 u

130 0.101

132 0.097

133 I e~

134 2.42

135 6.59

136 7.81

137 11.32

138 71.66

139 r
140 r
141 r
142 ur
143 ur
145 ur

Error

Mass X 10^ Spin
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Z Element A
57 La 137

139

140

141

143

144

145

58 Ce 136

138

140

141

142

143

144

145

59 Pr 140

141

142

143

144

145

147

60 Nd 141

142

143

144

145

146

148

150

61 61 143

144

145

146

147

62 Sm 144

146

147

148

149

Abund., Dieinte-

per cent gration

UK
100

/9“

r
ur
ur
ur

<1
<1
89 (7)

r
11

ur
ur
ur
ur

100

r
ur
u r
ur
ur

25.95

13.0

22.6

9.2

16.5

6.8

5,95

ur
U I otK
ur
u
ur

3

U I

16.1

14.2 a

15.5

Error

Mass X 10®

138.953 800

144.962 400

145.962 400

147.962 400

149.964 400

Spin

%
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Abund., Disinie-

Z Element A per cemt gration

62 Sin 150

{coni.^ 151

152

154

63 Eu 151

152

153

154

155

156

157

158

11 .6

ur
20.7

18.9

49.1

u r
50.9

ur
u r
V r
ur
ur

Error

X 10® Spin

%

64

Gd 152 0.2

154 1-5

155 18-4

156 lO-O

157 18.9

158 20.9

100 20.2

153.971 600

154.971 fiOO

155.972 600

156.973 600

157.973 600

159.974 600

65

Tb 159 100

160 r
3.

66 Dy 158 >0.1

160 0.1

161 21.1

162 26.6

163 24.8

164 27.3

165

67 Ho 165 100

166

68 Er 162 0.1

164 1.5

166 32.9

167 24.4

168 26.9

169

170 14.2

69 Tm 169 100

170

%

H
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Z Element A
Abund., Disinte- Error

per cent gration Mass X 10^ Spin

70 Yb 168

170

171

172

173

174

175

176

71 La 175

176

177

72 Hf 174

176

177

178

179

ISO

181

73 Ta ISO

181

182

74 W ISO

182

153

154

155

186

187

75 Re 1S4

185

186

187

188

0.06

4.21

14.26

21.49

17.02

29.58

13.38

97.5

2.5

0.18

5.30

18.47

27.10

13.85

35.11

100

- 0.2

22,6

17.3

30.1

29.8

38.2

61 .8

U

rK
ur

r
('/3~) K €~

1

r

V r
u r
UK

V r

ur

/2

>7

<>'2

76 Os 184

186

187

188

189

190

191

192

193

0.018

1.59

1.64 K
13.3

16.1 189.04 2000

26.4

ur
190.03 2000

41.0

ur
192.04 2000
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Abund., Disinte- Error

Z Element A per cent gration Mass X 10^ Spin

77 Ir 191 88.5 191.04 2000

192 r
193 61.5 193.04 2000

194 r
78 Pt 192 0.8

1400194 30.2 194.039

195 35.3 195.039 1400

196 26.6 (/ e-) 196.039 1400

197 u r
198 7.2 198.05 2000

199 r
79 Au 196 IJ r e-

1000197 100 I 197.04 ¥i

198 /8~ e~

199 r
200 ur

80 Hg 196 0.15

197 Ke-
0

198 10.1

199 17.0 Je- /'2

200 23.3 0

201 13.2

202 29.6 0

203 ur
0204 6.7

205 r
81 T1 198 U Ke-

199 ll K e-

202 U Ke-
203 29.1 203.05 2000

204 ur
H205 70.9 205.05 2000

206 ur
AcC'^ 207 r
ThC^ 208 r
Tl 209 r
RaC'' 210 r

82 Pb 203

204 1.5 204.05 2000

205 Uyl e-

206 23.6 206.05 2000 0

207 22.6 207.05 2000
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Abund., Disinte- Error

z Element A per cent gration Mass X 10"

82 Pb 208 52.3 208.05 2000

oni.') 209

RaD 210 r
AeH 211

ThB 212 r
Pb 213 r
RaB 214 r

83 Bi 207 K e~

209 100 209.05 2000

KiiVj 210

AcC 211 (3~ a

TliC 212 fi~ a
Bi 213 /3“‘ a
RaC 214 ti~~ a

84 Po 210 ot

AcC' 211 <x

ThC' 212 a

Po 213 a

RaCy 214 a

AcA 215 a

ThA 216 (S-a

Po 217 a

RaA 218 (i~ a

85 At 211 K a

86 An 219 OL

Tn 220 a
Rn 221 a
Rn 222 a

87 87(AcK) 223 ur
88 AcX 223 a

ThX 224 a.

Ra 225 a

Ra 226 a

MsThi 228 r
89 Ac 227 /3“ a

MsTh2 228 rcK

90 RdAc 227 a
RdTh 228 a
Th 229 a

lo 230 a

UY 231 r

Spin

0
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Abund., Disinte- Error

z Element A per cent gration Mass X 10^

90 Th 232 100 a 232.11 3000

{cont^)Th 233 r
UXi 234 r

01 Pa 231 a

232 r
233 r e~

ITZ 234 r
UX2 234 r I

92 U 233 a

UII 234 0.00518 a

AcU 235 0.719 a

U 237 r
III 238 99.274 a 238.12 3000

u 239 r
93 Np 234 K

235 K
236 r
237 a

238 r
239 r

94 Pu 238 a

239 a

95 Am 241 a

96 Cm 240 a

242 c:
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Allen, 22

Allowed transitions (/':l-(l(‘cay), 97

in int(Tinedia1ely heavy nnelei, 104

in mirror niielcu, 108

in naturally radioactive nuclei, 104

lifetiiiK's in, 102

a-partick', role of, 84

a-particle emission, 14

a-radioa(;tivity, lihdimes for, 0

Alternation, intensity, in band spec-

tra, 18

Alvarez, 24, 58, 54

A maid i, 91, 98, 115

Angular distribution, of neutron-

proton scattering, 39

at high (‘iiergy, 03

of proton-proton scattering, 09

Angular momentum, 88

Annihilation, of electrons and posi-

trons, 2

of heavy particles, 2

Arnold, 25, 28

Atomic weight, 3

Atoms, theory of, 23

Axial vector, 107

Barker, 115

Backus, 102

Bailey, 44

Hand spectra, 15

Barri(^r, potential, 7

penetration of, 115

Bartlett force, 82

Beams, molecular, 15

Bennett, 44

Bergsiralh, 44

Be», 5

/3-disintegration, 10, 97

and neutrino, 20

Fermi theory of, 97

/3-disintegrat ion, Konopinski-t^hlen-

beck th(‘f)ry of, 100

Kurie plot of, 100

of neutron, 105

seka'tion rules in, 99

/3-lif(4imes, 102

/3-spectrum, 20

Bethe, 105

Binding energy, of deuteron, 29

of neutron in heavy nuclei, 117

Binding of proton in moIecuk‘, cfTect

of, 47

Bloch, 15, 24

Bohrn, 44

Born, 37

Born’s approximation, 48, 109

Bose stati.stics, 16

Bred, 69, 70, 71, 120

Breit-Wign(‘r formula, 120

Brctscher, 60

Brickwedde, 53

Brillouin, 7

Brodc, 94

Bulk matter, internal energies of, 80

Capture of neutrons, by protons, 60,

79

in heavy nuclei, 118

Cent.(*r-of-mfiss coordinates, 37

Chmiwick, 29, 60

Champion, 92

Charge, 1

Chargi^l meson theor}', 88, 95

Charged particles, nuclear reactions

invohdng, 8

Chemical bond effect on neutron

scattering, 47

Chemical properties, 1

Compound nindeus, 109

disintegration of, 112

141
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Compound nucknis, formation of, 111

lifetime of, 110

Compton wave kmgth, 94

CoTuioTij 0

Conservation of energy, 5

Constituents of nuclei, 8

Cork, 100

Coulomb field, 101

Coulomb repulsion, 6, 8

Coulomb scattering, 04, 65

Critchfield, 105

Cross section, for nuclear reactions,

8, 114

for capture of neutrons by protons,

60, 79

for photoelectric disintegration of

deuteron, 56, 79

for scattering, of neutrons by heavy

nuclei, 7, 114

of neutrons by protons, 37, 40, 79

of protons by protons, 64

geometrical, 7

for capture by heavy nuclei, 1 1

1

total, 40

D-D neutrons, 42

de Broglie wave length, 8

of electrons, 9

of neutron or proton, 8

de Broglie wave number, 37

Decay, /3-, see /3-disintegration

Decay processes, 13

Dee, 40

Density of nuclear energy levels, 115

Depth of nuclear potential wc'll, 32, 70

Dehirmination of force coastants, 76

Deutciron, excited states of, 34

ground state of, 29

interaction of, with radiation, 56

magmitic moment of, 25

photodisintegration of, 79

physical propt^rties of, 25

quadrupole moment of, 27

singlet state of, 43

states of, with tensor forces, 74

virtual state of, 45

wave function of, 33

DeWire, 53

Dipole radiation, 13

Dirac 5-function, 95

Disintegration, /3, 10, 97

nuclear, 13

of compound nucleus, 112

Disintegration probabilities, 113

Dispersion formula, 120

Dispersion theory, 121

Distribution, angular, at high energy,

63

Dunning, 53

Einsbdn s relation, 2

FAsenbad, 69, 70, 87

Electric dipole moments in nuclei,

absence of, 75

Electron energi(‘s, distribution of, in

j3-disint(‘gration, IS

Ekjctrons, annihilation of, 2

in nucleus, 5, 9

spontaneous emission of, 10

Electrostatic* interact ion of protons, 7

Emission, of a-particles, 14

of /3-rays, 10, 14

of 7-rays, 13

of heavy parti cl(‘s, 13

of light (juanta, 14

of ncnitrons, 13

of protons, 14

Energy, 5

constirved, 5

kinetic, 5

Energy" distribution in inelastic scat-

tering, 114

Energy equivalent, 2

Energy levels, nuclear, demsity of, 115

Exchange and spin, relation between,

84

F^xchange forces, 81

and saturation, 83

effects of, 82

quantitative theory of, 87

Excited states, of deuteron, 34

of nucleus, ill

Experiments, on neutron-proton scat-

tering, 42, 91

on photodisintegration, 60

on scattering by para-hydrogen, 49
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Experiments, proton-proton, advan-

tage's of, 64

Fast neutrons, 7

Favst nuclear particles, uncertainty in

position of, 111

Feather^ GO

Fermi

j

43

Fermi interaction, 97

Fermi statistics, 16

Fink, 81

I'orbidch'n transitions, lialf-lives, 106

Forces, Bartl(‘tt, 82

Heisenlxirg, 82

Majorana, 82

Wigner, 82

I'orce^ (‘onstants, determination of, 76

Forces, exchange, 81

quantitative' theory of, 87

non-c(ait ral, 73

nuclear, meson tlu'ory of, 94

ordinary, non-saturation of, 81

proton-proton, 64

saturation of, 80

shortr-rangt‘, 66

Formula, dispersion, 120

Fre<* })a,rticle model, 116

Frisch, 44

Frociter, 94

Fundanuaital particles in nucleus, 5

7-rays, emission of, 13

Garnow, 6, 106

Gamow-T(‘ll(‘r selection rules, 106

Geometrical cross sc'ction, 7, 111

Gerlach, 15

Gilbert, 40

Goypert-Mayer, 33

Goldhaher, 29, 60

Gordon, 94

Graham, 60, 111

Ground state, of deuteron, 29

of He^ 64

Gurney, 6

Gyromagnetic rat io, 24

Hafstad, 66

Halban, 60

Hamermesh, 53

Hansen, 15

Havens, 118

Haxby, 20

Heisenberg, 81

Heisenlx^rg force, 82

Heiiler, 56

Hc^ 5

Herb, 70

Heydenhurg, 66

High-emrgy neutrons, experiments

with, 91

High-energy phenomena, information

from, 62

Hyperfine structure of spectra, 15

Inelastic scattering, energy distribu-

tion in, 114

Information obtainable from high-

(UK'rgy exp(‘riment, 63

Intensity alternation in band spectra,

18

Interaction, eh'ctrostatic, of protons, 7

of deutc'ron with radiation, 56

Interfertuice l>elween nuclear and
Coulomb scat t c'ring, 64

Invarianc(\ against inversion, 73

relativistic, 107

Inve^rsion of coordinate system, 73

Isobars, 2, 11

of neighboring Z, 11

stability of, 11

Isomer of nucleus, 13

Isotopes, di^fin(‘d, 1

Isotopic spin, 84

Isotopic spin functions, 85

Jentschke, 29

K electron capture, 10, 14, 22, 108

Kanne, 71

Kellogg, 23

Kemble, 74

Kepner, 78

Kersi, 70

Kikuchi, 101, 115

Kimura, 29

Kinetic energy, 5
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