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PREFACE 

The present volume contains a complete translation, made 

in consequence of a suggestion by my eminent friend, Professor 

E. T. Wliitiaker, F.K.8., of the Italian text of my Lczioni di 

calcolo differenziale assoluto.^ Two new chapters have been added, 

which are intended to exhibit tlie fundamental principles of 

Einstein’s General Tlicory of Relativity (including, of course, 

as a limiting case, the so-called Special or Restricted Theory) 

as an application of the Absolute Calculus. 

I have already had occasion to remark in the Preface to the 

Italian edition that we possess various systematic and well- 

written expositions of Relativity by celebrated authors. The 

short treatment which is offered in the two new chapters of tlie 

present work presents some distinctive features which it may 

be well to point out explicitly. 

In the first place, in order not to increase the size of the book 

unduly, I have thought it expedient to confine myself to tracing 

the relativistic evolution of Mechanics (properly so called) and 

of Geometrical Optics, and to developing its most important 

consequences. In this treatment the whole of Electromagnetism 

is sacrificed. The sacrifice is certainly regrettable, since Electro¬ 

magnetism was historically related in the most intimate way to 

Einstein’s conception, having served indeed as the support and 

model for Restricted Relativity. Furthermore, Electromagnetism, 

in common with every other physical phenomenon, now comes 

within the ambit of General Relativity. Much as the omission 

of Electromagnetism is to be regretted, it has the advantage 

of reducing the programme to subjects belonging to the pure 

Newtonian tradition (or to its developments); and it allows us 

to take a clearer and more exact view of the transition from the 

classical scheme of Mechanics to the relativistic one. 

^Compiled by Dr. Enrico Persico (Rome, 8tock, 1925). 
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For this reason I have followed the method—which I have 

adopted sometimes in lectures or articles on special subjects— 

of taking the classical laws as the starting point and then of 

trying to find inductively what modifications—negligible in 

ordinary circumstances—should be introduced in order to take 

account of Einstein’s ideas; and in the first place, naturally, 

to take accouiit of his Principle of Relativity, that is to say, the 

invariant beliaviour of these laws under all transformations of 

space and time, an auxiliary four-dimensional ch- being duly 

employed. This method has seemed to me to be preferable to 

the procedure of enunciating the postulates of relativistic 

Mechanics in abstract tensorial form, which is so comprehensive 

in physical content as to be almost inaccessible to ordinary 

intuition, except with ample comment and illustration. 

A further characteristic of our exposition is that we make 

extensive use not only of geometrical representation but also 

of the differential properties pertaining to the space-time con¬ 

tinuum; attention is drawn also to the special importance of 

the Einsteinian statics, the treatment being rigorous in some 

cases, while in others which involve fields variable with the time 

it is approximate. 

In closing this introduction to Chapters XI and XII I would 

add that they were prepared, still in collaboration with Professor 

Persico, at the suggestion of Mr. F. F. P. Bisacre, M.A. 

In connexion with the whole of the English edition, I must 

warmly thank the translator. Miss Marjorie Long, formerly 

Scholar of Girton College, who with double competence, scientific 

and linguistic, has known how to combine scrupulous respect 

for the text with its effective adaptation to the spirit of the 

English language. 

I owe hearty thanks also to Dr. John Dougall, who, while 

revising the proofs, has checked the analysis throughout, detected 

some oversights, and made many useful suggestions for improve¬ 

ment. I wish finally to thank my English publishers, who have 

not only acceded to, but almost always anticipated, my wishes 

in regard to symbols and the typography of the book. 

Rome, October^ 1926. 

T. LEVI-CIVITA. 



PREFACE TO THE 

FIRST (ITALIAN) EDITION 

Riemann’s general metric and a formula of Christoffel con¬ 

stitute the premises of the absolute differential calculus. Its 

development as a systematic branch of mathematics was a later 

process, the credit for which is due to Ricci, who during the ten 

years 1887-1896 elaborated the theory and worked out the 

elegant and comprehensive notation which enables it to be easily 

adapted to a wide variety of questions of analysis, geometry, 

and physics. 

Ricci himself, in an article published in Volume XVI of the 

Bulletin des Sciences Mathematiques (1892), gave a first account 

of liis methods, and applied them to some problems in differential 

geometry and mathematical physics. Later on other interesting 

applications, made by himself or his students (to which group 

I had the privilege of belonging), suggested the desirability of 

preparing a general account of the whole subject, including 

methods, results, and a bibliography. This was the origin of tlie 

memoir “ Methodes de calcul diff^rentiel absolu et leurs appli¬ 

cations ”, which was compiled by Professor Ricci and myself in 

collaboration, on the courteous invitation of Klein, and appeared 

in Volume 54 of Math. Ann. (1901). 

There is a chapter on the foundations of the absolute calculus, 

with special reference to the transformation of the equations of 

dynamics, in Wright’s Tract, Invariants of Quadratic Differential 

Forms (Cambridge University Press, 1908); apart from this, 

while special researches based on the use of this method were 

continued after 1901 by a limited number of mathematicians, 

yet general attention was not again directed to it until the great 

renaissance of natural philosophy, due to Einstein, which found 

in the absolute differential calculus the necessary instrument 
vii 
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for formulating the new ideas mathematically and for the sub- 

sequent numerical work. 

Einstein’s discovery of the gravitational equations was an¬ 

nounced by him in the famous note “ Zur allgemeinen Relati- 

vitatstheorie ” ^ in the following words; “ Sie bedeutet eineri 

wahren Triumpli der (lurch Gauss, Riemann, Christoffel, Ricci . . . 

begrandeten Methoden des allgemeinen Difterentialkalculus.” 

In an earlier memoir Einstein had given a new exposition of 

those elements and formulsB of the absolute calculus which more 

specifically served his purposes. A similar standpoint was sub¬ 

sequently adopted by the most distinguished workers in the field 

of general relativity, in particular by Weyl,- Laue,^ Eddington,^ 

and Birkhofi,^ all of whom made conspicuous original contribu¬ 

tions, both of idea and of method, to the physical theories, in 

addition to useful and elegant developments of the tensor calculus. 

Similar statements can be made for Carmichael,^ Marcolongo,'^ 

Kopff,'^ Becquerel to mention, from the vast literature on the 

subject, only tlie books I have myself had occasion to consult 

—while de Donder has avoided the notation of the absolute 

calculus and used instead the theory of integral invariants. 

In recent years there have been some general treatises devoted 

to the absolute calculus; for instance, those of Juvet,^^ Marais, 

and Galbrun.i'^ Lastly, there is another calculus, in a new order 

of ideas, not less comprehensive and perhaps even more general, 

invented by Schouten, and developed with the collaboration 
of Struik.J4 

In face of this plentiful and valuable literature a new dis¬ 

cussion of Ricci’s methods might seem to be superfluous; and 

conceptually this is perhaps true. 

In fact, of the improvements and additions to the scheme 

of 1901 (the memoir in Math. Ann.), derived mainly from the 

notion of parallelism and on this basis introduced by me into 

two courses of lectures given at the University of Rome during 

the sessions 1920-1921 and 1922-1923, all, or almost all, will 

be found as independent discoveries of the authors already cited, 

in one or other of their books. 

For instance, the definition of a tensor, and some algebraic 

anticipations of the results intended to simplify the proofs, are 

to be found in Weyl, Laue, and Marais, all of whom, like Edding¬ 

ton, establish a more or less intimate connexion between co- 
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variant differentiation and parallelism. A tliorougli discussion 

of the latter is also given by Juvet and Galbrun. But tlie associa¬ 

tion with the algebraico-tensorial notation and with the elements 

of differential geometry is always less detailed and systematic 

than what I tried to establish in my lectures. Tlie line of argu¬ 

ment followed in them has a particular unity, which may perhaps 

justify their appearance in print at this juncture. 

The manuscript was edited with great care and intelligence 

by Dr. Enrico Persico, from notes of the lectures. 1 wish to express 

my thanks to him for his valuable helj), and to my publisher, 

Signor Stock (who also attended the lectures), to whose continued 

encouragement the existence of the book is due. 

TULLIO LEVI-CIVITA. 
Rome, December, J0J3. 
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Alongside the extension of methods there is a further point which I was unable to 

deal with in the lectures, but should refer to here, namely, the extension of 

geometry beyond tin; already very wide boundaries laid down by Riemann. I 

allude to the physical speculations of Weyl and Eddington, whidi have recently 

(D05:i) 1* 



X PREFACE TO THE FIRST (ITALIAN) EDITION 

culminated in a further generalization—the work of Einstein —(d the relativistic 

Bcheme. The wpatial structure in relation to Weyl’s new concept (attine geometry) 

has been the subject of study l)y Weyl himself, whose results have been published 

in the volume Mathcmatische Analyse dcs Raumproblems (Berlin, Springer, 1923), 

of further important systematic research by Oartan, and of numerous notes on 

special problems by BeuwaU), Blasohkk, Uienes, Eisenhakt, Kasner, Veblkn, 
and others. 

Rendiconti del Circolo Matematico di Palerim^ fascicolo XLII, 1917, 
pp. 173-215. 

NOTE TO 

SECOND ENGLISH IMPRESSION 

Advantage has been taken of a reprint to correct a few 

typographical errors and to add references to some recent 

work (see p. 441). 

T. L. C. 

Rome, November, 1928* 

PUBLISHER’S NOTE 

Professor Tullio Levi-Civita died in Rome on the 29th of 

December, 1941. 

An appreciation of his work was published in the Atti della 

Aceademia Nazionale dei Lincei, Serie Ottava, Vol. I, Fascicolo 

11, November, 1946, with a list of his 204 scientific publications. 

This volume includes the Author’s last revisions of the 

English Version. 

April, 1947, 
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THE ABSOLUTE 
DIFFERENTIAL CALCULUS 

PART I 

Introductory Theories 

CHAPTER I 

Functional Determinants and Matrices 

1. Geometrical terminology. 
In analytical geometry it frequently happens that compli¬ 

cated algebraic relationships represent simple geometrical pro¬ 

perties. In some of these cases, while the algebraic relationships 

are not easily expressed in words, the use of geometrical language, 

on the contrary, makes it possible to express the equivalent 

geometrical relationships clearly, concisely, and intuitively. 

Further, geometrical relationships are often easier to discover 

than are the corresponding analytical properties, so that geo¬ 

metrical terminology offers not only an illuminating means of 

exposition, but also a powerful instrument of research. We 

can therefore anticipate that in various questions of analysis it 

will be advantageous to adopt terras taken over from geometry. 

For this purpose it is essential to adopt the fundamental 

convention of using the term poirvt of an abstract n-dimensional 
manifold {n being any positive integer whatever) to denote a 

set of n values assigned to any n variables This 

is an obvious extension of the use of the term in the one-to-one 

correspondence which can be established between pairs or trip¬ 

lets of co-ordinates and the points of a plane or space, for the 
i 
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cases = 2 and n — 3 respectively. For the case of n vari¬ 

ables we can thus also speak of a field of points (rather than of 

values assigned to the x’s), and of the region round a specified 

point Xi {i ~ 1, 2, . . . n). 

If the ic’s are n functions a:, (^) of a real variable t, then when 

t varies continuously between and we get a simply infinite 

succession of points, the aggregate of which (as for n — 2 and 

n ~ 3) is called a line, and more precisely an arc or segment of 

a line. 

2. Functional determinants and change of variables. 

Let there be n functions of n variables: 

a?2, . . . X,), 
the functions and their derivatives to any required degree being 

supposed finite and continuous in the field considered. 

To simplify the notation, let x (without a suffix) represent 

not only (as is usual) any one of the n variables x^, 

but also (as is sometimes done) the whole set of them; and 

similarly for other letters which will be used farther on. With 

this convention the given functions can be written in the abridged 

With the usual notation, the functional determinant or Jacobian 

of the w’s is the determinant of the nth. order whose terms are 

the first derivatives of the u's>\ i.e. 

dui 

dxi dX2 9*„ 
du^ 3 Mg 9% 
dx^ 9*2 9*„ 

du^ 9^, 3m„ 

dxj 9*2 9*« 

Such a determinant is sometimes represented by the abridged 

notation . ^ 
K ^2 • • • 

\x^ x^ , . . xj 



FUNCTIONAL DETERMINANTS AND MATRICES 3 

analogous to that used for fractions and substitutions, the set 

of functions u representing the numerator and the set of vari¬ 

ables X the denominator of a fraction. The analogy of form 

is justified by the analogy of properties, as can be seen by con¬ 

sidering the effect on a functional determinant of a change of 

variables. For let the x's be functions of n variables y, 

h(yv ■ ■ ■ 2/J.] 

• • Vnl) 

and suppose further that these equations represent a reversible 

transformation, i.e. that they also define the ^’s as functions 

of the a:’s, or, in other words, that they are soluble with respect 

to the If then the ?/’s are considered as functions of the 

y’s (being given in terms of the a:’s, which arc functions of the 

2/’s), and the corresponding functional determinant 

is formed, it will be found, as will be shown below in § 4, 

that Dj “ 7) multiplied by the determinant of the functions 

defined by equations (1), i.e. by 

/Xi . . . xA 

Vvi . .. yJ' 

3. The fundamental theorem on implicit functions. 
Before proving the theorem just referred to, we must recall 

a fundamental theorem relating to implicit functions. It is known 

that a relation between two variables of the type 

f(y, x) =r- 0 

defines y as a function of x, provided certain suitable qualitative 

conditions are satisfied.^ A classical form of the conditions 

sufficient for solubility is as follows. Let x®, if, be a point at which 

f vanishes, / being finite in a (plane) region I round the point. 

Let ^ exist in I and be not zero for x ~ cc® y = if. Then 
dy 

1 When an equation is said to be “ soluble ”, this will not necessarily mean that 

the process of finding an algebraic solution can be carried out. 



4 INTRODUCTORY THEORIES 

in a certain (linear) region round the value oiP the given equation 

defines a continuous function y(x) such thatx) vanishes 

identically. 

For implicit functions of several variables the following 

theorem, which is a generalization of the one just stated, holds. 

Let there be given n equations between n variables y and 

any number of variables x of the form 

fXy\x) = 0 (» = 1. 2, . . . n). 

Let there be a set of values x®, y^, which satisfy these equa¬ 

tions; in a region round the point y^, let the /’s and their 

derivatives with respect to the y's be continuous, and let the 

determinant 

be not zero. Then the given equations define the ?/\s as functions 

of the x’s in a region round the set of values x^. 

It will be seen that from a certain point of view the func¬ 

tional determinant of several functions of the same number of 

variables constitutes a natural generalization of the derivative 

of a function of one variable. This wdll follow explicitly from the 

applications of the following section. 

4. Effect on a functional determinant of a change of variables. 

Consider first the (sufficient) condition of solubility of the 

set of equations (1). Write the equations in the form 

■ ■ ■ 2/J — =0 (i = 1, 2, . . . n), 

and suppose that there exists at least one set of values of the 

2/’s and the x’s which satisfy them and for which the functions 

Xi {y) and their derivatives are continuous. Then, to apply the 

preceding theorem, we must calculate the partial derivatives of 

the left-hand side of each equation with respect to the ?/’s, and 

form their determinant. But these derivatives are the terms 

—^ (j = 1, 2, . . . n), and hence the condition of solubility with 
3% 
respect to the y\}. is 
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Now take the theorem stated in § 2, and suppose A 4= 0. 

Multiply together the two determinants D and A, i.e., inter¬ 

changing rows and columns in A, form the product 

du-^ du^ dui dx^ dx^ dx,^ 

dx^ dx^ dx„ 3 2/1 

du^ 3 M2 du^ dx^ VX.y dx„ 

dx^ dx. X ■■■ dy. 

du,. du,, du,. dx^ dx^ dx„ 

dx^ dx^ ••• dx,^ ^y,i 
Applying the ordinary rule, the product by rows gives as 

the typical element a,.^. of the resulting determinant the expression 

2 d'Xi   du,, 

^"dXi dy, dy, 

(remembering the rule for differentiating a function of one or 

more functions). Hence, as already stated, the product is the 

determinant This result is expressed by the formula 

which justifies the use of this notation for the functional deter¬ 

minants, 

5. The necessary and sufficient conditions for the independence 
of n functions of n variables. 

If therefore the functional determinant of n functions of n 

variables does not vanish identically, it follows that this pro¬ 

perty still holds when the original variables are replaced by 

others related to the first set by the transformation (1) (with 

the condition A =4 0); in other words, this is an invariant property. 

The following definition may therefore be given: 

Definition.—n functions ofn variables are said to be indepen- 

dent when their functional determinant does not vanish identically. 

The reason for applying the word ‘‘ independence ” to this 

property is shown by the following theorem. 



6 INTRODUCTORY THEORIES 

Given n functions u of n variables x, the necessary 

and sufficient condition for the non-existence of any {differentiable) 

relation between them of the type 

f(Uy U2, ... u„) = 0 . . . . (3) 

involving only the u’s and not the x's, is that their f unctional deter¬ 

minant does not vanish identically. 

We shall first show that the condition is sufficient; then that 

it is also necessary, but for the moment confining the j)roof to 

a particular case; the theorem in its general form will be shown 

farther on to be itself only a particular case of another still 

more general theorem (cf. § 7). 

Suppose the condition satisfied 

We shall then show that no relation of the type (3) can exist. 

(Identities are of course not considered; i.e. we exclude the case 

where equation (3) is satisfied when arbitrary values are assigned 

to the ^’s, as it would not then represent any relation between 

the u’s.) Suppose that such a relation does exist. Differentiating 

with respect to . . . x,^, we should get n equations 

J 5/ 3 «. = 0 
1 du^ dxi 

(i -- 1, 2, . . . n), 

linear and homogeneous in the derivatives . Now since by 
9Wa 

hypothesis / is a true function, not zero identically, these deri¬ 

vatives are not all zero. Hence the determinant of the coefficients 

of this group of equations vanishes; i.e. D = 0, which is con¬ 

trary to our hjrpothesis. The condition (4) is therefore sufficient 

to secure the non-existence of any relation of the type (3). 

To prove that condition (4) is necessary, we shall show that 

if it is not satisfied, i.e. if 

== 0,.(5) 

then the t/’s are connected by a relation (at least one) of the 

type (3). For the moment the only case considered will be that 

in which at least one of the minors of order n — I ol the deter- 
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minant D does not vanish. This minor will in general be of the 
type 

'■'3 
u,, \ 
X., ] 

^ n-1 ' 

where Pi,... _i and (l\, • ^ a represent any two arrangements 
of 1 integers chosen without repetitions from the numbers 
1, 2, .... n. But since the order in which the and are 
made to correspond to the numbers 1, 2, . . . >?. is immaterial, we 
can, without loss of generality, suppose numbers assigned to the 
variables in such a way that D' is the minor formed by the first 
n — 1 rows and n — J columns; we thus get 

D' = ■ ■ ■ ““-A 4= 0. ... (6) Ui . . . x,,./ 

This condition expresses the fact that no relation exists 
between the first n ~ \ functions. 

Now we know that if a reversible transformation is applied 
to the ic’s, it follows from hypothesis (5) that the determinant 
of the with respect to the new set of variables y is also zero. 
Let the relation between the a:’s and ^’s be given by the following 
equations: 

2/1 -- , . . X,), 

yn-\ ~ 

Vn ^ 

We may note that these formulae define a reversible trans¬ 
formation, since the functional determinant of the y’s with respect 
to the x's is 

dUy du^ dui 
dxi dx„ 

SUn-l 
dxi dx„.i 8x„ 

0 0 1 
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and expanding this from the last row, it is seen to be equal to 

D\ which by hypothesis is not zero. 

Now consider the w’s as functions of the j/’s; using equations 

(7) we get 

-- Vv 

. . . y„_i, y,). 

. (8) 

Expressing the fact that the determinant of the m’s with 

respect to the y's is zero, we get 

1 0 . . . 0 0 

0 1 . . , 0 0 

0 0 . . . 1 0 j 

du,^ du„ du^ 3?^ I 
3?/i ^2/a ' * ' h,i-i : 

It follows that the last of the equations (8) does not contain 

substituting in it from the remaining equations, it becomes 

u, —- u,XUi^, . . . u„ i), 

i.e. a relation between the u's which does not contain any of the 

x’s. 

Hence from the hypotheses (6) and (5) it follows that there 

exists one relation of the type (3), which is such that can be 

expressed in terms of the other t^’s. This relation is unique, 
because if there were another, then eliminating between them 

we should get a relation between Ui, . . . but this, as already 

pointed out, is incompatible with hypothesis (6). 

6. Functional matrices. Definition of the independence of 
m functions of n variables. 

We shall now examine the more general case in which the 

number m of the functions u is not equal to the number n of the 
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variables x. For this purpose we must consider the functional 

matrix of the given functions, i.e the following matrix of m 

rows and n columns: 

0^1 0tq du^ 

dx^ dx^ dXn 

du,„ 

dx^ dx^ 

In what follows it will be denoteid by M\ but it must be noted 

that no numerical value is attached to the symbol, and there¬ 

fore that M does not represent a quantity, but is an abbreviation 

for the arrangement of terms under consideration. 

The characteristic of a matrix is the order of the non-vanishing 

determinants of highest order which can be constructed from it; 

it can therefore obviously not be greater than the number of 

rows or the number of columns, whichever is the less. 

We now give a definition, which wall be justified in the follow¬ 

ing section. 

DEFiNTTiON.~-m/wnc^ion6‘ of any number of variables are said 

to be independent when the characteristic of their functional matrix 

is m. It foliow's immediately that if the number of functions is 

greater than the number of variables, the functions cannot be 

independent; while if the two numbers are equal, the definition 

coincides wdth that already given, since the matrix becomes a 

determinant of order m, and if its characteristic is m this is 

equivalent to saying that the determinant does not vanish. 

7. Theorem. 

Given m functions u of any number of variables x, if the 

characteristic of their functional matrix is k, then there are m k 

relations {and not more) between the u’a which do not involve 

the x’5. 

It will follow immediately as a corollary that if the functions 

are independent (the case k = m) there exists no relation between 

them. 

The theorem just stated has been proved above (§ 5) for the 

particular cases in which the number of functions is equal to the 
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number of variables and in addition Jc = mor h ~ m — 1. 

We proceed to prove it in general, taking various cases in turn, 

as follows: 

(1) ^ = m (and m < n), the case of independence; 

(2) k <m. k <n. 

Case (1): Ic — m. This hypothesis is equivalent to saying 

that there exists a minor of order m which is not zero; remember¬ 

ing the remark made on p. 7, we may suppose without loss of 

generality that 

Applying the theorem of p. G it follows that the t/’s are not 

connected by any relation which does not involve any of the 

x’s. 
Case (2a): ^ < m, h — n. There is therefore a minor of 

order n which is not zero. We may arrange the suffixes of the 

a’s and the x’s so that the minor in question is that formed by 

the first n rows and n columns, and we shall have 

We shall now show that ^n+2J • • • expressed 

in terms of the remaining ^^'s, without using the aj’s, so that we 

shall have m — n (which is the same as m — h) relations between 

the ?i’s. For since D =# 0 we, may change the variables. Let 

the new variables be given by the equations 

= %(a:i, . . . X,,), 
'^n • • • ^n)* 

Solving these equations with respect to the a:’s, and substituting 

the expressions so obtained in these will be expressed 

as functions of hence the theorem is true for this 

case. 
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Case (26): k < m, k < n. The hypothesis is that there exists 

a determinant of order k which is not zero, and that every deter¬ 

minant of higher order vanishes. Let us arrange the us and the 

x’s so that 

D - (9) 

We shall show that any function (6 — k 1, . . . m) 

can be expressed in terms of the first k functions u, without 

involving any of the ic’s. For this purpose, consider the deter¬ 

minant 0 formed by bordering D with the {k -j- l)th column 

and Ath row of the matrix; since it is of order A: + 1, it is 

zero by hypothesis, i.e. 

0 = \ = 0. . . . (10) 
\3^ . . . % + 

Now applying the theorem stated on p. 6, it follows from this 

equation and the inequality (9) that can be expressed as a 

function of Ui,. .. which does not involve i.e. 

since we are not yet able to say anything about the remaining 

x's, 

% == • • • % I %+2, • • • . . (11) 

The next step is to show that Xi do not in fact occur 

in this expression. If “ A: -f- 1, there is no need to consider 

therefore the formula (11) represents the expres¬ 

sion we are in search of, giving % in terms of . . . Ui^ alone, 

n this is not so, let Xj denote any of the variables . . . x,^, 

and consider the determinant 0', obtained from 0 by replacing 

0' = h •••“*■ “A = 0, 
\x^. . . X,. Xj / 

0' vanishing because it is a minor of order A: + 1 taken from the 

matrix. Expanding it, substituting from equation (11), and 

making certain transformations, we can easily show that it 

involves the vanishing of whence it follows that (f> does not 
dxj 

contain x. In fact, representing compactly by the letter D the 
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square matrix of those elements of 0 which form the determinant 

D, we have 

D 

0' =- 

dx^ 

9 ' 
dxj 

- •' I 

du,, du^ 

dxi_ dXj 

Using equation (11) the elements of the last row are given by 

duu 

dxf 

dxj 

^ 0^ dui 

I'dui dXi 
{i = 1, 2, . . . k); 

d<f> y d(l> dui 
Cl I A. 
dXj ‘dui dxj 

Multiplying the elements of each of the first k rows in turn 

by and subtracting the sum of these products from 
OUi OUj^. 

the elements of the last row (which does not change the value 

of th i determinant) the last row becomes 

0 . . . 0 
dj. 

dxj 

and therefore, expanding from this row, we get 

0' = D. 
dX: 

Since by hypothesis Z) 4= 0, it follows that = 0, which 
dXj 

proves the assertion. 

The theorem enunciated at the beginning of this section is 

thus completely proved. Applying it to the particular case 

m = n, it coincides with the theorem of p. 6, which is therefore 

now shown to hold without any restriction. 
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CHAPTER II 

Systems of Total Differential Equations 

1. Preliminary remarks. 

The reader may first be reminded of some general considera¬ 

tions on differential expressions. 

Given a function/(xi, ccg, . . . x,), the expression 

dj = i, dx, 
1 dxi 

is called the total differential of the function/; it is equal (except 

for infinitesimals of higher order) to the increment of/in passing 

from the point . x,^ to the infinitely near point x^ -f- dx^^ 

4- dx^, . , . x,, + dx,. 

Given n functions Z, of the a^’s, which, together with their 

first derivatives, we shall suppose finite and continuous, the 

expression 
II 

t(i = 'Ll Xi{xi, Xz, . . . x„)dxi ... (1) 
1 

is called a differential, or Pfnffian, expression. 

An expression of this form is not always an exact differential; 

i.e. there does not always exist a function/(iti, Xg, . . . x,^) such 

that the given Pfaffian is its total differential. The necessary 

and sufficient condition for the existence of such an/, i.e. for the 

integrability of an equation of the type 

df~-^i,X,dx„.(2) 
1 

is that the following ^n{n — 1) conditions should be satisfied: 

{ij = h2,...n). . . (3) 
CXj OXi 

If these conditions are satisfied in a certain field, the integral 

calculus shows how to construct the most general function / 

which has the required property; i.e. it shows how to integrate 

the given differential expression. All the possible /’s differ from 
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one another by a constant. If we follow the procedure usual m 

elementary treatises, and consider not the whole field but a suit¬ 

ably restricted region round a point x arbitrarily fixed in advance, 

then in this region each of the/’s is a uniform function (i.e. one¬ 

valued, like all the functions we are considering) of the argu¬ 

ments .Tj, Xg, . . . 

We now proceed to discuss a more general problem than this. 

Let there be m unknown functions u of n independent variables 

X, and let there be given a set of relations between their differ¬ 

entials which define the dus in terms of the d.x’s, in the form 

11 

du^ == S, Z„|,- {x I u)dxi (a = 1, 2, , . . m), . (4) 
1 

where the X's are mn arbitrarily assigned functions (finite and 

continuous, together with their first derivatives). 

A group of relations of the type (4) is called a system of 

total differential equations^; equation (2) is obviously only a 

particular case. It may be remarked that equation (2) is itself 

equivalent to the system of n equations 

If- == X,{x) (i =\,2,...n\. . (2') 
dxi 

and that the equations (4) are analogously equivalent to the 

system of 7nn equations 

Both are problems of partial differential equations, and are 

soluble only under specific conditions; but if these are satisfied, 

^ In a system of this kind the group of variables to be considered independent 

is fixed in advance. The late Professor G. Uicci in a recent work has considered 

instead a system of I equations of the type 

Xar8{x)dxs =0 (r = 1, 2, . . . ^), 

determining the conditions that the n variables x may be considered functions of 

any number ^ (< n) of independent variables, and indicating the steps necessary 

to find the solution (cf. Atti del Reale ht. Ven.^ Vol. XXXI, 1922-3, pp. 179-183). 

An account of the general theory of Pfaftian systems, with recent develop¬ 

ments due mainly to von Weber, Oartan, and Goursat, is given in the last-named 

author’s Let^om mr le probUme de P/ajf (Paris, Hermann, 1922). 



TOTAL DIFFERENTIAL EQUATIONS 15 

we shall see that the integration reduces to that of ordinary 

differential equations. 

Conditions necessary for integrability. Completely in- 
tegrable, or complete, systems. 

When the problem is stated in the form (4'), it is obvious 

(from the symmetry of the second derivatives of the ^^’s) that 

a necessary condition for the existence of solutions is that the 

following conditions shall be satisfied: 

1, 2, . . , 
h xj dx^ \i,j — 1, 2, . . . n / 

The symbol denoting total differentiation has been used as 

a reminder that in differentiating it is necessary to take into 

account that the arguments u also depend on the x’s, i.e. that 

dxj dx^ du^ dxj 

J'' + 

m 

du^ 

\i . . (6) 

Using this result, the equations (5) take the form of ^ymi{n — 1) 

relations of the type 

F{x\u) ^ 0.(5') 

These, it will be seen, in general contain not only the ir’s but 

also the i!^’s (unlike the equations (3)); and we must suppose the 

replaced by those unknown functions of x which satisfy the 

given system of equations. The conditions of integrability can¬ 

not therefore be given explicitly without knowing beforehand 

the solutions of the system. This difficulty did not arise for the 

equation (2), since the X’s, and therefore their derivatives, did 

not contain the unknown function. 

But it may happen—and this is the most interesting case— 

that the equations (5) are not only satisfied for those particular 

w s which form a solution of the system, but are true identically, 

i.e. for any set of values whatever of the u'b and of the x’s. In 

this case, as we shall see, these conditions are not only necessary, 

but also sufficient, for the integrability of the system, which is 

then said to be completely integrahle, or complete. 
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3. The integration of a mutually consistent system can 
always be reduced to that of a complete system. 

We shall now show that whenever a system of total differential 

equations is integrable (in the sense that there exists at least one 

set of m functions ^2, . . . x,) which satisfy the system), 

the integration reduces to that of a complete system; we shall 

thus be able to confine our subsequent discussions to systems of 

the latter kind. 

As we have already said, there are \mn{n — 1) conditions of 

integrability (5'), while there are m t^’s. Now for n > 2, 

m < \mn{n — 1). In general, therefore, there cannot be m func¬ 

tions u which satisfy these conditions, and therefore the system 

can certainly not admit of solutions. If exceptionally these con¬ 

ditions are mutually consistent it may happen either that m of 

them are independent, so that there is then one single set of 

values for the w’s which satisfies these m conditions, and it only 

remains to test whether these i^'s also satisfy the given system 

of equations; or that they are all satisfied identically (and then 

the system is complete); or that—the most general case—they 

reduce to a number < m of mutually consistent and indepen¬ 

dent equations. In the latter case, v of the unknowns can be found 

in finite terms, expressed in terms of the x's and the remaining 

fyi — p ~ IX unknowns. Arranging the u^s in a suitable order, 

we may suppose that the equations (5') give us the last v of the 

functions u, viz. the functions 

^/Ui + o + 

in terms of the x’s and the remaining ^^’s, 

For greater clearness, we shall denote these first /x functions 

^ by (a ~ 1, 2, . . . fx), and the last v by u'^' — ^,^4 /3 

(^ == 1, 2, ... i^). Using this notation, the equations (5') can 

be put in the form resolved with respect to the namely 

< (i8 = 1, 2, . . . v). . (5") 

Next, suppose the system of equations (4) divided into two 

groups; one consisting of the first /x: 
n 

dul = S, (a: I m) dx^ (a == 1, 2, . . . /a); . (4a) 
^ (d 666) 
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and the other of the remaining v: 

11 

dUa. = 11 I (ct ™ -f- 1, ju. -j- 2, . . . m ™ /X -j~ v). 
1 

The latter group, putting a = /x + A we shall write 

in the form: 

du'^' -- / {x I u)dxi 1, 2, . . . e). . (46) 
1 

Substituting from the equations (5") and (4a), the two sides 

of this last equation become linear expressions in the differentials 

dxi, with coefficients which depend solely on the x's and the a’s. 

Since the coefficients on both sides must be the same (the differ¬ 

entials dXf being independent), the equations (46) reduce to 

equations in finite terms, in number, between the ^'’s and 

the a;’s. 

If all these reduce to identities, we need only consider the 

system of equations (4a), in which the functions a" are to be con¬ 

sidered as replaced by their values as given by the equations 

(5"), so that we have a total differential system, of the same 

form as the original system (4), involving only the a'’s, /x in 

number, where (i m — v <C ni. The essential result in the 

case under consideration is that the system (4a) so reduced is 

necessarily complete. In fact, it consists of a part of th^ original 

system (4) with the additional relations (5") between'the a’s. 

The condition of integrability of the whole system (4) (where 

a j)nori the ?^’s were treated as so many unknowns) consisted of 

the equations (5), or, we may say, of the equivalent equations 

(5"). For the system of equations (4tt) the analogous conditions 

will consist of a part of the conditions (5") (or combinations of 

these), with the proviso that every u"' is to be replaced by the 

corresponding expression given by the equations (5") themselves. 

This process obviously leads to mere identities; hence, as stated, 

the system (4a) is complete. 

If on the other hand the equations (46) give rise to non¬ 

identical relations in finite terms between the ^^'’s and the x’s, 

we shall have to associate them with the equations (4a) and 

treat this whole system of equations in /x unknowns (including 

some total differential equations and some equations in finite 
( D 065 > 2 
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terms) as we have already treated the system of equations (4) 

and the conditions (5). 

Proceeding in this way, we shall reach a stage where either 

the conditions are found to be mutually inconsistent, when we 

must conclude that the given system has no solution, or else the 

problem reduces to the integration of a complete system (with a 

number of unknowns which is certainly less than m). Q.E.D. 

In consequence we shall now confine our attention solely to 

complete systems. 

4. Bilinear covariants and the resulting form for the conditions 
of complete integrability. 

We have expressed the condition of complete integrability 

by means of the equations (5), which are supposed to hold for 

arbitrary values of the u's and of the x’s. We shall now express 

this condition in a more concise form. 

For this purpose take two different systems of infinitesimal 

increments of the x's, denoted by dx, and Sx- respectively; the 

corresponding increments of a generic function u of the x's will 

then be denoted by du and Su respectively, and will be given 

by 
du 

Su 

S/ - dx^ f 
1 OX-^ 

A- Sx,-. 
1 uXi 

(7) 

Now the dx/s are arbitrary infinitesimals, on which we can 

a priori impose any hypotheses we please; we shall consider 

them as infinitesimal functions of the x’s. With this hypothesis 

the increments of these dx’s, corresponding to the increments 

Sx of the variables, will naturally be denoted by Sdx\ with a 

similar interpretation for d.Sx, The increment du will also be an 

infinitesimal function of the x’s, and we shall thus have to con¬ 

sider Sdu\ d!Su will be similarly defined. We shall next obtain 

the explicit expression of these two second differentials of in 

order to show that a slight restriction on the arbitrariness of 

the second differentials of the independent variables will be 

sufficient to ensure the result Sdu = dSu^ whatever the 

function u may be. 
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Applying the symbol of operation S to the first of the equations 

(7), we get (without any restrictive hypothesis) 

hdu 
1 ‘0a:,; 

“ ’* 82,,, M a,, 
. dXi^ bXj + 2,- Mx;, 

\ \ dx.oXi idX: 
. (8) 

The expression for dha will evidently be similar, with d and 

8 interchanged. Now the first part of the formula is unaltcjred 

by this interchange, while in the second Mx^ is replaced by 

dhx^. If therefore we impose on the arbitrary functions dx and 

8x of the x'h the condition 

dhx, — Mxi (i — 1, 2, . . . n), . . (9) 

which represents a very small loss of generality, the second part 

of the formula (8) will also be unaltered when d and 8 are inter¬ 

changed; we shall therefore have, for any function whatever 

u{Xi, ^2, . . . x,X 
dSu — Mu.(10) 

It may be noted incidentally that in the differential calculus 

it is usual to impose a hypothesis involving considerably greater 

restrictions than the conditions (9); the usual convention is 

that the second differentials of the independent variables are 

zero, or that the dx^^ are not functions of the a;’s, but constants. 

We shall now consider, along with the increments of the 

independent variables, not a function u with its differentials, 

but a generic Pfaffian 
n 

if/a == S,Z;rfa:„ 
1 

in which the X's are given functions of the x’s. 

The suffix d has been inserted as a reminder that the Pfaffian 

refers to the increments dx^; the same Pfaffian relative to the 

increments Sx^ will be conveniently distinguished by the analogous 

notation 

ifj^ = E^X^Sx^, 
1 
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Both and will naturally be functions of the a?’s. Cal¬ 

culating we thus get 

8>li, = 8Xi dx, + X,- z,. 8dx^ = i,- k dXi 8xj + S,- Z. Srfx,; 
1 1 11 OXj 1 

or with the abridged notation which can be used when several 

summations between the same limits arc applied to the same 

general term, 
n 7)'Y‘ 

I OXj 1 

Interchanging d and 8 we get Using the relation (9), 

the difference — di/j^ reduces to 

kj dx, 8x, - kj 8x, dx,. 
1 dx^ ' 1 dxj 

But the value of a sum is plainly unaffected by the parti¬ 

cular letters of the alphabet which we choose to assign to the 

suffixes with respect to which the summation is to be made. 

We may therefore interchange i and j in the second part of the 

preceding formula, so that we can now write the equation in the 

form 

ki dx, 8x, . (11) 
\\dxj dxJ 

The expression S?/f,/ — dijj^ is called the bilinear covariant 
relative to the given Pfaffian. The use of the term ‘‘ bilinear 

is sufficiently justified by the expression just found, which is 

linear in the arguments dx and also in the arguments Sx, The 

name covariant ” is due to the circumstance that the numerical 

value and formal structure of the two sides of equation (11) 

always remain the same when the independent variables x vary 

in any way whatever. But we shall return to this point farther 

on (cf. Chapter VI, p. 144) in connexion with the general idea of 

invariants (functions or differential forms). 

Meanwhile it may be noted that if the Pfaffian is an exact 

differential, i.e. if the conditions (3) are satisfied, the right-hand 

side of equation (11) becomes zero, and we reach a result which 

has already been found (cf. formula (10)). 
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We may now return to the examination of the system of 

equations (4), and the conditions of complete integrability. Con¬ 

sider the m Pfaffians which constitute the right-hand sides of 

the equations (4): 

1 

and construct their bilinear covariants. We shall show that the 

two conditions: (a) that these covariants vanish identically, 

however dx and hx are chosen; and (6) that the equations (5) 

are identically true whatever values are assigned to the u’s, 

are completely equivalent, so that the condition of complete 

integrability may be written in the form 

Hf- d4sf =0 (a -- 1, 2, . . . m), . (12) 

it being understood that this equation must hold for arbitrary 

values of the increments dx and 8a:.^ 

To prove this, take the explicit expression of these bilinear 

covariants, in the form given by equation (11). In dilferentiating 

it must be remembered that the must be considered as 

functions of the both directly, and also indirectly as functions 

of the ?i\s. Using the convention already adopted, the derivatives 

can therefore be denoted by the symbol for total differentiation; 

equation (12) thus becomes 

=: 0. . (12') 
1 \ dxj dx^ J 

Now if the conditions (5) for complete integrability are satisfied, 

the coefficients of this bilinear form (i.e. the expressions in paren¬ 

theses in equation (12')) are all zero, and therefore the equation 

is satisfied however the rfx’s and Sx’s are chosen. Vice versa, 

suppose that the equation is satisfied however the dx’s and Sx^a 

are chosen. Then all the coefficients must necessarily be zero. 

For if we take all the dx's and Sx's as zero, except one pair, 

e.g. dXi, Sxjy where i, j, are two arbitrarily chosen but definite 

^ As a matter of fact we have imposed the restrictions (9) on the second 

differentials ddxi^ ddxi, but the infinitesimal increments dxi, dxi to be assigned to 

the XiS at the generic point under consideration are still entirely arbitrary. 
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integers of the series 1, 2, ... then the sum in equation (12') 

reduces to the single term 

V dxj 

which cannot vanish unless 

^^a\i_ a\j _ 0 
dxj dx^ 

We therefore conclude that the conditions (5) can be written in 

the more concise form (12). 

5. Morera’s method of integration.^ 

We shall now show that the conditions of complete integrability 

are sufficient for integrability, or more precisely that if they are 

satisfied there exists one and only one set of m functions u{x) 
which satisfy the given system of equations and have values 

arbitrarily fixed in advance at a point also fixed in advance. 

Considering these initial values of u as arbitrary constants (as 

evidently they may be considered to be), we can say more 

shortly that the general integral depends on m arbitrary constants, 

or that there are integrals. 

For the proof, we first fix a generic point ^2? • • • ^11) > 

in the field of variation of the cc’s in which the Z’s are defined. 

Let P\{x\, xl, .., x\) be another arbitrary point in the field, and 

suppose it joined to Pq by a line T which does not leave the 

field. T will be defined by parametric equations 

X, Xt) (i - 1,2, . . . n), . . (13) 

where ^ is a parameter which has the value at Pq and the value 

^ at Pj. We shall provisionally confine our investigation to the 

points of this line, so that for the present any functions u of the 

ip’s are to be considered as functions of the variable t alone (via 

the x’s and the equations (13)). Their derivatives will be 

du^ __ 2 
dt i dx: dt 

(a = 1, 2, m), 

i“Zur Integration der vollstandigen Differentiale ”, in Math. Ann,^ Vol. 27, 

1886, pp. 403-411. Cf. also Skvert; “Sul metodo di Mayer per Tintegrazione 

delle equazioni linear! ai diiferenziali totali”, in Atti dd IL 1st. Veneto., VoL 

LXIX, 1910, pp. 419-425. 
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or, denoting differentiation with respect to < by a dot, and sub¬ 

stituting from equation (4'), 

du^ 

'dt 
(14) 

The a;,’8 are known functions of t given by equations (13); 

hence the equations (14') are of the type 

d,u, 
dt 

UJt I Uj_, u^,. . . u,„) (a - 1, 2, . . . m), (14") 

i.e. they form a system of ordinary differential equations, in the 

normal form. Now given m arbitrary constants 

it is known from the calculus that—subject to qualitative condi¬ 

tions of continuity and existence of derivatives, which we suppose 

satisfied—there exist m functions u^^(t) which satisfy the system 

(14''), and which are equal to the given constants when t = t^. 

If, therefore, the us are given any arbitrary set of values at Pq, 

they are defined at all points of the line T, and therefore also 

at It may however happen—and does in general—that if 

the points Pq and P^ are joined by another line instead of P, 

different values will be found for the u^s at Pj. But we shall 

now show that if the conditions of complete integrability are 

satisfied, the values of the t^’s at P^, found by the method just 

described, are independent of the line T, so that these it’s will 

be functions only of the co-ordinates of P^, that is, functions of 

position; they will satisfy the given system of equations not 

only along a line, but along all the infinite number of lines which 

can be drawn in the given field, or, in other words, in the whole 

of this field. They will therefore constitute the required solutions 

of the total differential system (4), as we shall show later on. 

We shall simplify our task by considering infinitesimal dis¬ 

placements; i.e. by showing in the first place that the values of 

the u^s at P^ remain unaltered if the line T undergoes an infinitesi¬ 

mal deformation; it will follow that they will be the same for 

any line which can be obtained from P by a succession of infini¬ 

tesimal deformations, i.e. by a continuous deformation of P. 

If then we suppose the field such that every line joining Pq and 
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Pj can be obtained in this way, we shall have all that is required. 

Such fields (e.g. a triangle or a circle in a plane, a cube or a sphere 

in space) arc called simply connected. 

Consider therefore a line T' infinitely close to T; we may 

think of it as obtained by displacing each point P of P, of co¬ 

ordinates X,, to a point P' of co-ordinates Xi~\-hx,, and the 

infinitesimal increment bx- may be taken in the form exn 

example, where every x, is a finite quantity varying from point 

to point of the curve (and therefore a function of t), and e is 

an infinitesimal factor taken as constant, and therefore indepen¬ 

dent of t. With these conditions the parametric equations of 

the curve T' will be 

x,+ 8x, <I>M+ • • • (15) 

The functions Xi considered as arbitrary, except for 

the condition of vanishing for t ~ and for t ~ so that the 

lines T and T' may have the same extremities. We shall adopt 

the natural convention of using the operator 8 to denote the incre¬ 

ment of a generic quantity (scalar or vector) in j)a8sing from the 

point P of T to the corresponding point P' of T\ 

Now suppose the equations (14") integrated along T'; we 

shall get functions of t, satisfying the equations 

I («a + \ + ^f) (a = 1, 2,. . . m), 

or 
dhu^ 

using hypothesis (12), expressing the complete integrability of 

the system, we can also write the equations in the form 

dt dt 
(16) 

From the theorem of the existence of integrals of ordinary 

differential systems (already referred to in connexion with 

equations (14')), it follows that the quantities are uniquely 

determined by these equations together with the condition of 

vanishing at Pq. Now the equations (16) are obviously satisfied 

by taking 

8^^, =.(17) 
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(i.e, assuming for the quantities Su^ the expressions appropriate 

to the case where tlie are in fact functions of the .r’s). Tliese 

expressions vanish with the Sa?/s, i.e. at (so satisfying the 

initial conditions which, together witli the equations (](>), deter¬ 

mine them uniquely), and also at I\; which proves the required 

result. 

It is thus proved that in order to construct the functions 

u whose total differentials are the assigned Pfaffians (satisfy¬ 

ing identically the equations (12) or the original equations (5) ) 

and which have given values '?/" at a given point P^,, we need 

only join P^ to any point by any Ime 1\ and integrate the 

system of ordinary differential equations along T, 

To complete the proof, we must now show that the differentials 

of the functions of the co-ordinates of P^ obtained in this way 

are in fact the functions Consider a ])oint Pg infinitesimally 

close to 7\; to construct the values of the w’s at Po take the 

broken line made up of T and the small segment PyP^^ If is 

then obvious that integrating the equations (14) along this line 

we get, in passing from P^ to Pg, the increment du^ — 

6. Note on Mayer^s method. 

The method followed in the preceding section to show the 

existence of the integrals of a complete system of total differential 

equations, is due to Morera. 

There was an earlier method, proposed by Mayer, by no 

means so clear, and seemingly dependent on a purely formal 

device. Morera’s method, which is inspired by geometrical 

intuition, brings out the true reason for the success of Mayer’s 

device, and })rovides a criterion for its validity. 

Mayer’s method is to join the points and Py by a segment 

of a straight line, instead of by any line P, so giving the equations 

(13) the form 

X, =-= xl -f [x] — x^])t {i ^ 1, 2, . . . n); 

the proof consists of a series of purely algebraic operations, 

instead of the proof developed above almost without calculations. 

In addition, while Morera’s method can be applied if we merely 

suppose that the field in which the given equations hold is simply 

connected, Mayer’s method, on the contrary, obviously requires 
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a much more restrictive hypothesis, namely, that any two points 

in the field can be joined by a straight line which lies wholly in 

the field. This property is expressed by saying that the field is 

convex, 

7. Application. 

Given a generic Pfaffian 

ifs -- 2, 
1 

we shall investigate whether it is possible to find a relation between 

x'b of the type 

f{x^, Xo, . . . X,) ~ G {C constant), . (18) 

which shall be an integral of the equation 

tfi 0, .... (19) 
1 

in the sense that the relation produced by differentiating equation 

(18) , namely, 

df = irJ-dx, = Q, . . . . (18') 
1 dxi 

is equivalent to the equation (19). 

For this it is plainly both necessary and sufficient that the 

derivatives of the unknown function / should be proportional 

to the given functions Z,-. We therefore need some test to apply 

to the Z/s themselves which will show whether they are pro 

portional to the derivatives of a single function not known in 

advance. 

This problem, which also occurs in geometrical questions (as 

we shall see in particular on pp. 263- 265), reduces at once to a 

particular case of a total differential system. In fact, given that 

iff does not vanish identically, and therefore has at least one of 

its coefficients not equal to zero, we may legitimately suppose 

that does not vanish identically. We can thus write equation 

(19) in the form 

dx,, = - .(19') 
1 Z,, 
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In order that this may be equivalent to the equation (18'), 

we must have 4= 0 in the latter. From this condition it follows 

that the equation in finite terms (18) defines a function 

X,, -- u(x^, ^2, . . . x,,_,, C), . . (18") 

which makes equation (18) an identity, and therefore also equation 

(18'), as well as the equivalent equations (19) and (19'), This 

last equation is evidently a particular case of systems of the 

type (4) consisting of one equation and one unknown function 

X,/, it must therefore be completely integrable, having as integral 

the function given by formula (18"), which depends on the arbi¬ 

trary constant C. Reciprocally, if (19') is completely integrable, 

then there will be a solution (18") depending on an arbitrary 

constant C; solving with respect to (\ this becomes an integral 

relation of the desired form (18). The j)roblem therefore reduces 

to expressing the completeness of equation (19'). 

Applying formula (5), the required conditions of completeness 

are 

d X, ^ d 

dxj X,^ dx^ Xu 
(h j ~~ 1,2,...^- 1; i 4- j). 

Expanding the derivatives, these relations are easily put in 

the following form: 

Z n 
'dXf 

,dxj 
. n —1; i 4-i). 

(20). 

Introduce for the moment the restriction that all the other 

functions X, as well as X,,, are different from zero. We can then 

write 

Prs 
1 /az,_azA 

Z,.Z,^,\air^ dx^.J 
(r,. 1, 2, . . . n) (21) 

whatever r and s may be, so that the conditions of integrability 

take the more concise form 

Pij + Pjn + Pm =0 (i j == 1, 2, . . . n — 1; i =4= j). (22) 

The conditions (22) are |(w — 1) (w — 2) in number, this being 
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the number of ways of choosing two distinct integers, i, j, from 

the series 1, 2, . . , n — 1. They represent all the conditions of 

integrability. Now the choice of the variable to be expressed 

as a function of the remaining x’s was arbitrary (subject only to 

the condition X,^ =# 0); hence in general the relations 

Pi) + Pjk + Pu ^ • • • • 

must be satisfied, where i, are any three integc^rs, no two of 

which are the same, chosen from the series 1, 2, ... Such 

a triplet can be chosen in \n{n— 1) {n— 2) ways; this is therefore 

the number of relations of the form (22'). But these are of course 

not all independent, since the conditions (22) (which form only 

part of (22') ) are sufficient for the complete integrability of the 

expression under consideration. In fact, it is easy to show directly 

that only \{n—l)(n—2) of the equations (22'), e.g. those given 

by formula (22), are essential, the others reducing to algebraic 

deductions from them. 

This can be shown by means of the following lemma, which 

holds whatever the terms p,}, may be. If p;,, (i, k, ~ 1, 2, ... n) 

is a double skew (or antisymmetrical) system/ and if for some 

fixed suffix a the cyclic relation 

Pik + Pka + Pixi ~ ^ 

is true for every pair of suffixes i, k, then this relation is also 

true for any three suffixes i, k, L 

To prove this, take the corresponding relations for the pairs 

kj I, and I, i, 

Phi + Pla + Pale 0, 

Pll + Pia + Pal 0. 

Adding, and remembering the condition of skewness 

Pka + Pak ^ 0, &c., 
there remains 

Pck + Pki + Ph = 0. Q.E.D. 

Substituting in equations (22') the values of the ^’s given by 

^l.e. a Rystern of numbers such that a one-to-one correspondence, by a given 

law, exists between them and the pairs of integers i. k 2, . . . n), and such 

that pijf = - pici for any pair of indices whatever. 
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formula (21), and multiplying by X,-X^Xf^ so as to clear of 

fractions, we get the equations of condition 

/0Z,___0ZA 0Z\ /0Z, dX\__ ] 

(i,j, k 1, 2, ... n). 

(23) 

We thus find this whole set of equations as a necessary con¬ 

sequence of that group of them—say, the group (20)—in which 

one of the suffixes is fixed, with the further condition that none 

of the Z’s vanish. This last condition was applied at the })oint 

where we divided by the product of the Z\s; it is, however, not 

essential, and can ultimately be discarded, as we shall now show. 

In fact, the equations (23) being necessary consequences of the 

equations (20) for any non-zero values of the Z’s, however 

small, and being integral in the s and their derivatives, it 

follows that we may ])ass to the limit when any one of the Z’s 

tends to zero. We therefore have, for all values of the Z’s, that 

the equations (23)—or a group of them of the type (20) —con¬ 

stitute the necessary and sufficient conditions for the complete 

integrability of the equations (19), or, in other words, the condi¬ 

tion that the n functions X^Xi, • • • ^n) proportional 

to the derivatives of a single function. 

8. Mixed systems o£ equations. 

In certain problems we have to deal with fnixed systems, i.e. 

those containing some total differential equations and some 

equations in finite terms: 

du^ - Yl^X^^^dXi {a = 1, 2, . . . m), . (4) 
1 

F,(x\u) 0 (A: 1,2, . . . c). . . (24) 

The discussion is essentially the same as in § 3 (p. IG). But 

we propose to go through it again in order to obtain, in a form 

suitable for use in concrete cases, the condition of complete 

integrability of a mixed system of the type (4), (24). 

It is obvious in the first place that a necessary condition for 

the existence of solutions is that the equations (24) (which we 

shall suppose mutually consistent and independent) are not more 

in number than m, the number of the unknowns u. If there were 
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exactly m of them, they would completely determine the t/’s, 

and we should only have to examine whether the w’s satisfy 

the equations (4). We shall therefore suppose 

V < m, 

and shall imagine the equations (24) solved with respect to v 

of the «//s, which will thus be expressed in terms of the a;’s and 

the remaining m — v ^ /jl unknowns u. 

As on p. 10, we shall call the two groups of u'h respectively 

2, , v) and ii[ (a 1, 2, . . . [jl), so that the equations 

(24) may be written (cf. equations (5") ) in the form 

(/S-1,2, ...4 . . (24') 

Corresponding to this division of the u’s into two groups it 

will be convenient to divide the equations (4) into two groups 

(4a) and (46) (as was done on p. 10), which we repeat here for the 

reader’s convenience: 

du'^ = (a 1,2, . . . ji), . . (4a.) 
1 

du” = SiZ^+3l, (a:| M)(ix,; (^ = 1, 2, . . . v). (46) 
1 

We now propose to show that the given mixed system is 

completely integrable—and it will be called complete—if the 

following conditions are satisfied: 

(a) Tlie conditions (5) for the complete integrability of the 

equations (4) are satisfied when after differentiation the values 

of u" given by equations (24') are substituted in them; they 

need not in general hold when any arbitrary functions are taken 

for the a"’s; 

(h) When the functions 'a" are replaced by their values as 

given by equations (24'), the equations (46) must be identical 

with the equations obtained by differentiating the equations 

(24'); or more concisely, the equations (46) must reduce to iden¬ 

tities on substituting from equations (24'). 

We shall show that if the mixed system is complete, in the 

sense now considered, then the equations (4a), when the w"’s 

in them are expressed in terms of the t^’s and the cc’s by means 
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of equations (24'), constitute a completely integrable system of 

/X total differential equations in /x unknowns; the u'^s can there¬ 

fore be obtained from them, and hence, by equations (24'), the 

by hypothesis (6) above, the equations (4b) will thus be 

satisfied. Hence the problem will be solved and its general integral 

(p. 22) will contain m — v arbitrary constants. 

To simplify the formulse, we shall agree that if 

<1> (x I d//, u") 

is any function whatever of the x'i^ and the dx’s, then 

[*](^ I«/) 

will denote the same function when the w"’s are replaced by tlie 

expressions (24'). We shall obviously have 

+2 r 1 
dxj Idxj] dXj 

0[oj__[dan ^ racDi a/, 
a^/ La^^^j a^^^ 

(i 1,2, . . . n), (25) 

(y 1,2, . • • m). (26) 

With this convention, we can write hypotheses (a) and (b) 

respectively in the forms 

■I’fe']* ?■['«['•■] I 

(i, j ^ 1, 2, ... n) 

(a = 1, 2, . . . iJ.), 

(27) 

We have therefore to examine the conditions of complete 

integrability of equations (4a), which will be 

(a= 1, 2, . . . ii), (29) 
dxj dxi 

and we have to show that they are satisfied identically. 
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Let us transform the left-hand side of (29) by first writing out 
d 

in full the result of applying the operator -- to a function of 
the x’s and the ?/'’s. We shall get 

dxj du\ 

or, using forniuhn (25) and (26), 

Remembering that the rn arguments u consist of the two 
groups ?i' and u'\ it will at once be seen that this is merely the 
left-hand side of (27). Interchanging i and^’, the right-hand side 
of (29) similarly is seen to be identical with the right-hand side 
of (27); equations (27) being supposed to hold, it follows that the 
equations (29) are satisfied identically. 

It follows that the integration of a complete mixed system of 
the type (4), (24), reduces to that of a complete {and therefore inte- 
grable) total differential system in /x imknmims. The gefieral integral 
therefore contains fx — m — v arbitrary constants. 

If the mixed system is not complete, i.e. if the conditions 
(a) and {b) are not satisfied without further restrictions, then 
discussion on the lines of § 3 (p. 16) obviously shows that we must 
add to the equations (24) so many of the conditions (a) and (6) 
as do not reduce to identities in virtue of equations (24), since 
the equations (12) must hold w^henever a set of m integrals 
exists. Repeating the same j)rocedure, we reach either an incon¬ 
sistency, showing that equations (4), (24), can have no solutions. 
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or else a complete system with less than fi unknowns. In the 

latter case the number of constants in the general integral is also 
less than /x. 

A particular result of the foregoing discussion is that if v 

independent equations in finite terms are associated with a system 

of total differentia] equations in 7h functions u, the differential 

system being itself complete, then in the most favourable case 

(i.e. when the combined system is also complete) the number of 

constants in the integral is lowered by v units, from to m — v. 

In general (i.e. when the mixed system is not complete) the 

integrals, if they exist, certainly contain less than m — v con¬ 
stants. 

CHAPTER 111 

Linear Partial Differential Equations 

Complete Systems 

1. Linear operators. 

In this chapter we shall frecjuently use N to denote the number 

of independent variables, which will themselves be denoted by 

the letters v. 

]jet/(2j, ... 2: J be any function whatever, subject only to the 

condition of being differentiable to any recjuired order. The 

term Ihiear opemtor relative to/ will be used to denote the opera¬ 

tion by means of which an expression of the type 

2. 
1 

is obtained from/, the a,/s being any functions whatever of the 

2:’s. An expression of this kind will sometimes be denoted by a 

formula of the type Af, in which it is hardly necessary to point 

out that A is not a quantity, but the symbol of operation just 

defined. 

We have therefore n 

1 "dz.: 

It can at once be verified that the linear operator symbol 
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behaves in exactly the same way as the differentiation symDo) 

when / is a sum, a product, or a composite function (a function 

of one or more functions); i.e. for two generic functions /j, /g, 

we have identically 

A{h+U) =-Af,-^AU .... (1) 

AiAf,) =-fxAf,+f,Af„ ... (2) 

with obvious extensions to any number of terms. Further, if 

f is given as a function of 7i arguments V2, . . . which are 

themselves functions of 2:, we obviously have 

A/K '"2> • • • 5^ Avi + y Av.^ + ■ ■ ■ f Av„. (3) 
Ol’i OVo 

Now consider the result of a])plying successively the two linear 

operators 

d 
A 

B 

N 

a., 

.V 

3^; 
0 

the 6’s, like the a’s, denoting functions of 2 which are differentiable 

to any required order. 

The second-order operators 

A{Bf), B{Af) 

are thus completely defined; they may be written without danger 

of ambiguity in the form 

ABf, BAf. 

Writing out the first of these in full, we get by successive 

stages 

dBf 
ABf 

V 9^ 3/ , V 92/ 
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Similarly, interchanging A and B, and therefore a and b. 

we get ,, ^ 

It appears from this that the two operators ABf and BAf 

are not equal; the second-order terms are however the same, 

as will be seen on iiiterclianging the indices v and p in one of the 

two double sums. It follows that the difference of the two opera¬ 

tors in question is a linear o})erator of the first order; it is called 

the alternate function or Poisson's parenthesis relative to the two 

operators A and and is denoted by the symbol of operation 

(A, B), so that 

(A, B)f ^ ABf- BAf = i.(Ab^ - Ba,)f. . (4) 
I VZ^, 

It follows from the definition of the symbol that 

{A, B)f - (B, A)f. .... (5) 

We sliall now establish a formal property of linear operators, 

which we shall use farther on. 

Let there be n linear operators 

A/ - 1,2, ...n), 
1 VZ^, 

and let any two linear combinations of these (which will also be 

linear operators), ^ 

Bf -- 
1 

Cf = 
1 

be constructed, the A’s and the ps, being any differentiable func¬ 

tions whatever of the independent variables z. 

We propose to show that the alternate function (B, C)f is 

a linear combination of the operators A and of their alternate 

functions. For the proof, it is sufficient to write out (B, C)f 

in full; this gives 

(B, Of - BCf^ CBf ^ S, A, A, {Cf) - S, pb, A, (B/) 
1 ] 

11 

= '^kh [\ Af^ (/x/4 Af^ f) (A^ Af^ /)]. 
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Applying the rule for the differentiation of a product, the last 

expression becomes 

iP'h^hK)^kfli + ^kliKl^li\.^k^lif~^ ^h^kf]y 
1 1 

so that finally 

(^^ Q/ “ 1^11)^11/— (l^h^hK)^kf 'h \cf^hi^k9 ^h)f]- 

Q.E.D. 

2. Integrals of an ordinary differential system and the partial 
differential equation which determines them. 

Consider a system of n ordinary differential equations of the 

first order, in n unknowns Xf, Denoting the independent variable 

by t, and sujqjosing the equations solved for the derivatives of 

the unknown functions, we get the equations in what is called 

the 'normal form: 

^ x,{x\t) (i = 1,2,... n). . (6) 
(it 

Any set of n functions xj^l) which satisfies the given equations 

is called a solution of the system. 

The term integral of the system, on the other hand, is used 

to denote any function /(^' | 0 which reduces to a constant when 

the x’s are replaced by any solution of the equations (6). We 

can therefore say that / is an integral if the result 

f[x\ i) -- constant 

is a necessary consequence of the differential equations (6). 

We shall now show that all the functions / with this property 

(and no other functions) satisfy a homogeneous linear partial 

differential equation of the first order; it follows, as we shall 

see farther on, that the integration of an equation of this form 

can always be reduced to that of a system of the type (6). 

Let/(x 11) be an integral of the equations (6); then by definition, 

when the x’s represent functions of t which satisfy equations (6), 

we have 

f{x 11) = constant, 
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and therefore, differentiating with respect to t. 

3/ , ^ .3/ dx, 
St i‘dx^ dt 

= 0, 

or, since the functions Xi(t) satisfy equations (6), 

3/ 
dt 

+ V 3/ 
I ’ dx, 

X, 0. (7) 

This is the partial differential equation referred to. Introducing 

for shortness the linear oi)erator 

A 
dt 

S, X. 
1 

(7') 

we can write it concisely in the form 

Af 0. 

Now by hypothesis equation (7), like the equation / — con¬ 

stant, from which it is derived by differentiation, becomes an 

identity when the in it are replaced by any solutions whatever 

of the system (6); from this it is easy to deduce that (7) is an 

identity, that is, that it holds for any values whatever (in a 

suitable field) which may be assigned to the arguments x, 

of which / is a function. In fact, given n -}- 1 numbers 

Iq, belonging to a field within which the general existence theorem 

holds for the system (6), we know that there always exists a 

solution Xj of the system (G), which takes the values x^l, . . . 

when t — Iq. Now equation (7) must hold (whatever i may be) 

when this particular solution x,(0 is substituted for the x'b. 

In particular, putting t ~ the equation is satisfied for the 

values x^!, arbitrarily chosen in advance. Q.E.D. 

It is further evident that any function f{x 11) which satisfies 

equation (7), when the x’s and the t's in it are treated as indepen¬ 

dent variables, constitutes an integral of the system (6). In 

fact, since equation (7) holds however the x's are chosen, it will 

be satisfied in particular when we take a solution of the system 

(6) for the x'&; but when this is done the left-hand side of equation 

(7) becomes identical with The function / is therefore such 
dt 
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that when the a;’s are solutions of the system (6), 

/ 

J = 0, or 
= constant. ^ 

To sum up, we can state that the necessary and sufficient 

condition that a function f(x 11) nmy he an integral of the system 

(6) is that it should satisfy the jmrtial differential equation (7), in 

which the x\s* and t are n + 1 independent variables. 

3. Principal integrals. 

Among the integrals / of the system (G) (which, as we have 

seen in the preceding section, can also be called integrals of 

equation (7)), there are, for each value t^ of t, n of special impor¬ 

tance which we now proceed to specify. 

We take as our starting-point the most general solution of 

the equations (G), which is known to be a set of n functions of t, 

containing n arbitrary constants x'l, . . . x”: 

(i - ],2, . . . n). . . . (8) 

The constants are the values of the x’s for a given value 

^0 of /, so that 
(9) 

We shall show first that the equations (8) are soluble with 

respect to the ,r^’S in a region round the point t^. Write them in 

and consider the functional determinant of the left-hand side 

with respect to the ^r^’s, which is 

\ A 

or, since the x®’s are contained only in the <^’s, and not in the 

ir’s, 
7) = /^1 ^2 • • • ^n\ 

. . . xy’ 

Now calculate the value of this determinant for t = t^. 

Pince the determinant itself contains no derivatives with respect 

to t, we shall obtain the same result if we diflferentiate the functions 

if>{t I a;®) with respect to the x®’s, form their determinant, and 

finally make t = 7g, as if we. firat make ^ and 
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then form the determinant of their derivatives. Following the 

second alternative and remembering the formuke (9) we see at 

once that the determinant becomes 

Now if Z), which is a continuous function of i, does not vanish 

for t ^ it will have these same ])roperties in some region 

round Iq, and therefore within this region the equations (8) will 

be soluble with respect to the 

Solving the equations, we shall get 

x^. - w,{x\t) {i ], 2, . . . n), . . (10) 

and the ^’s on the right-hand side constitute n integrals of the 

system (6). In fact, if we replace the x’s in them by any solution 

of the system (6), (i.e. by a set of n functions obtained from the 

equations (8) by assigning particular arbitrary values to the 

constants x^^), then each v) necessarily becomes equal to the 

corresponding x^, i.e. to a constant. 

The integrals of equation (7) obtained in this way are called 

principal integrals relative to t Iq. From the definition it follows 

that 

Writing x instead of xP, we see that a characteristic property 

of the principal integrals w,- relative to ^ is that each of the 

functions Wi{x 11) reduces to the corresponding variable x when 

t ^ 

Without undertaking a detailed study of the n principal 

integrals, we may at least show that none of tliern can be exj)ressed 

as a function of the others only; i.e. that considered as n functions 

of the -f 1 variables x and L they are independent. For this 

it is necessary and sufficient that the functional matrix (with 

n rows and n + 1 columns) of the w's with respect to the x’b 

and t shall have n for its characteristic; i.e. that the matrix shall 

contain a determinant of order n which is not zero. Now if we 

take the determinant 

/W^ 2^2 •• • '^n 

Xa?! ^2 . . . 
(11) 
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and apply to it the same considerations as we have already used 

for D, we find that it ^ 1 for / — Iq (since then = x^) and 

therefore there is a region round in which it is not zero; hence 

the characteristic of the matrix is n and the principal integrals 

are independent. 

4. Independent integrals. General integral. 

More generally, n integrals equation (7) are 

said to be independent if the functions v.i{x | ^) (i — 1, 2, . . . n) 

are independent. Of course every function 

'ih.... .(12) 
of the '?;’s only is also an integral, as follows immediately from 

formula (3), remembering that for every with the operator 

A as defined by (7'), we have 

Avi — 0. 

But the reciprocal theorem is also true, and every integral 

of equation (7) can be put in the form (12), which therefore repre¬ 

sents the general integral of equation (7). 

To prove this, let/be an integral of equation (7); then the 

n + 1 equations 

Af 

Avi 

3/ I V X 
dt'^Tdx,^ 
dv ” dv 

(i =. I, 2, . . . «j. 

linear and homogeneous in the n -4- 1 quantities 1, Xj, . . . 

which do not all vanish, will be satisfied. The determinant of 

their coefficients must therefore vanish, i.e. 

\t . . . xj 

This means that/, v,, are not independent. As the 

t;’s are independent, one of the determinants of order n of the 

functional matrix relative to Vi, is certainly not zero. 

But this is the case considered in Chapter X, pp. 5-8; hence we 
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conclude that /can be expressed in terms of the only, without 
involving t or the x’s. 

5. Direct study of the most general linear homogeneous partial 
differential equation. 

As a consequence of the relations which we have shown to 

hold between linear homogeneous partial differential equations 

of the first order, and systcuns of ordinary differential equations 

of the first order, we can in every case reduce the integration of 

an equation of the former kind to the integration of a system of 

the latter. In fact, equation (7) differs from tlie most general 

possible equation only in having one of its coefficients equal to 

1; but it will be at once obvious that every linear homogeneous 

equation of the first order can be reduced to tliis form—an 

elementary remark whicdi we shall examine in more detail. 

Consider the equation 

Af----- 0 . . . . (13) 

in N independent variables , 2:^. 

At least one of the a’s, say fly, will be different from zero. 

We may therefore divide the equation by a^. As a result of this 

step, Zj^ is in what we may call a privileged position (the co¬ 

efficient of being reduced to unity); it is therefore natural 
dZy 

to denote it by a special symbol. Calling it t, and introducing the 

symmetrical notation , x,^(n ^ N 1) for the remain¬ 

ing variables z^ equation (13) becomes 

^ + S, - 0, 
V t I Cl jf 

which will coincide term for term with equation (7) if we put 

^ - Z.- (i = 1, 2-n). 
«v 

The corresponding system of equations (6) will thus be 

== (i == 1,2, . . . n). . . . (14) 
Cl 
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Integrating these n equations, in which i is considered as the 

independent variable, we get the functions {t | which reduce 

to when t ~ solving for each of the a;®’s, the resulting 

expressions 

■U)i{X I t) = W;(z) 

will be the n principal integrals of equation (13) relative to ^ 

and we may take 

F{w^, . . . w^) 

as the form of the general integral, where the symbol F denotes 

an arbitrary function. 

It will frequently be quicker not to find the principal integrals 

w, but to obtain 7i independent integrals of the equa¬ 

tions (14) in any way whatever. The general integral is then at 

once expressible as an arbitrary function of the t’’s only, in the 

form 

F{v^, v„). 

We have seen that we may choose as independent variable 

(for the system of equations (14)) any one of the variables 2; 
r) f 

which contributes an actual term ^ to equation (13) (the corrc- 
dz 

spending coefficient a not being zero). The choice may be deter¬ 

mined by reasons of convenience for the particular case concerned. 

In order to avoid prejudging the case before the necessary reasons 

for our choice appear, we may write the equations (14) in the 

form 

dxi _ dt a - 1,2, n). 

or, returning to the original notation, 

dzy _ dz2 _ _ dZj^ 

CI2 Cljif 
(15) 

It will be seen that these can be at once written down from 
the given partial differential equation; it should be noted that 
if any of the a’s is zero, the differential of the corresponding 
variable must also be equated to zero* 
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Examples: 

(1) Take the equation in three variables 

x/ -4- 4- z 
dx dy dz 

0. (16) 

The corresponding system of two ordinary differential equa¬ 

tions is 

dx _ dy dz 

X y z' 

i.e. d logx — d logy — d logz. 

Writing these in the form 

d logy — d logo:* ^ 0, 

d logz — d logj^ 0, 

which is the same as 

d log^ “ 0, 
X 

d log- = 0, 
X 

we get 

^ rur: 0], ^ — Cg (Cj, c, constants). 
XX 

Hence two independent integrals are 

y z 
) j 

X X 

and therefore the general integral will be 

This is merely the most general homogeneous function of 

degree zero. In fact, if (fy{x, y, z) denotes the latter, then by 

definition we must have, for any value of A whatever, 

<j){Xx, Xy, Xz) = <f){x, y, z); 
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and therefore, putting A \ 
X 

<f>h, ^) = Hx, y, 2); 
\ X X/ 

t! Z> 
<f) is therefore in effect an arbitrary function F oi . 

X X 

We have thus found for a particular case (which can obviously 

be generalized) Euler’s well-known theorem on homogeneous 

functions. 

(2) Take the equation 

3/ 9/ 
dx dy 

X y 

a h 

9/ 

dz 
= 0, 

c 

where a, 6, c are constants which are not all zero. Putting 

\z x\ 
X - 

y z 

b c 
Y - 

c a 
Z =-- 

I ^ 2/| 

ah' 

the equation may be written in the form 

= 0, 
dx dy dz 

and the corresponding system of ordinary differential equations 

is 

d x _ dy _ dz 

X^~Y~~Z. 
(17) 

Taking x as independent variable, we shall have to integrate 

the two equations 

dy _ Y dz ^ Z 

dx X' dx X 

But we can find two independent integrals more easily by 
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another method. In fact, from the form of the equations defining 

X, Y, Z, we see that the equations 

xX + yY + zZ 0 ) 

aA' + (,r+cZ=0l ■ • ■ ■ 

are satisfied, since the given determinant vanishes if the elements 

of the first row are replaced by x, ?/, 2:, or by a, b, r; expanding, 

we find that the equations (18) are identically true. 

Now if dx, dy, dz satisfy equations (17), i.e. arc proportional 

to Z, Y, Z, we can substitute them for Z, Y, Z in equations 

(18), so getting 

xdx + ydy zdz 0, 

culx -f hdy 4 cdz 0. 

The left'hand side of each of these equations is an exact 

differential; hence, integrating, we get as a necessary consequence 

of equations (17) 

4- r + Cl, 

ax by 4- cz — Cg. 

These are two particular integrals of the system, which fire 

certainly independent, since at least one of the coefficients a, b, c, 

is not zero. The general integral is thus 

F{x- 4 - ?/“ 4- 2:4 ax 4 by f cz). 

Geometrical interpretation.— When there are three (or two) 

variables, the foregoing discussion can be given a geometrical 

interpretation in ordinary space (or in a plane). For this purpose, 

let any integral /(.r, y, z) of an equation 

+ yI^ + = 
dx dy d 

be considered as the parameter of a family of surfaces f “ con¬ 

stant. By a suitable choice of the constant on the right-hand 

side of this equation, we can make one surface of the family 

pass through a point P arbitrarily chosen in advance; it is plainly 

only necessary to give this constant the value of / at the chosen 

point P. The equation {a) which / must satisfy expresses the 

geometrical fact that at any point P the normal to that surface 
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of the family which passes through P is normal also to the direc^ 

tion of the vector {X, Y, Z), given as a function of position. 

The system of equations associated with equation (a), namely 

dx_dy _ dz 

( ) Y ~~ Z ’ 

which expresses the relation of two of the variables to the third, 

represents on the other hand a property of certain curves. We 

know from the existence theorem that w^e can find (and in only 

one way) two functions x ~ x{z), y ~ y{z) which satisfy tlie 

system of equations {h), and which take values Xq, arbitrarily 

fixed in advance, when 2; has the value which is also arbitrary; 

hence we can state that, given any point P, there passes through 

it one and only one curve which has the property expresvsed by 

the equations (^), i.e. that of being at every point in the direction 

of the vector (A"', Y, Z). An aggregate of curves such that one 

and only one of them passes through every point of a given field 

is called a co7i(jruence. 

There is a very simple relation between the family of surfaces 

which represent the integrals of equation (a) and the congruence 

of curves which represent the solutions of the system of equations 

(6), namely, that each curve of the congruence lies wholly on a surface 

of the family. In fact, consider a point P(x^ y, z), and let L be 

the curve of the congruence, and S the surface of the family 

considered, which pass respectively through P. We shall show 

that a point which undergoes an infinitely small displacement 

along L, from P to a point P', does not leave the surface, or in 

other words that if the equation of the surface S,f{x, y, z) “ C, 

is satisfied by the co-ordinates x, y, z of P, it is also satisfied by 

the co-ordinates x + dx, y dy, z + dz, of P'. The result is 

obvious, since for the co-ordinates of P' / becomes 

f{x, y, z) dx-\- dy + dz, 
ax dy dz 

and as dx, dy, dz, are by equations ib) proportional to X, Y. Z, 

the increment of / is proportional to 

df 

dx 
X + 

ay ^ ^ dz^’ 

which vauisbes by equation (a). 
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The surfaces considered are therefore formed by curves of 

the congruence; these curves are called their characteristics. 

We can of course avoid the use of infinitesimal displacements 

in proving the property that every curve of the congruence lies 

wholly on a surface / — constant. The argument, which is 

essentially the same as before, will be as follows. Let the vari¬ 

ables ir, z, in the expression f{x, z) be considered as the co¬ 

ordinates of points of a curve L of the congruence, and let A 

be any parameter, e.g, the arc of the curve, which fixes definitely 

the position of a point on L; x, y, z, are thus considered as definite 

functions of A. Substituting these functions of A for x, y^ z in 

the expression/(x, y, z), we shall see that the result is independent 

df of A, or that 
dX 

0. We have in fact 

df __ df dx \ 

dX dx dX dy dX dz dX' 

but by equations (6), along L, are proportional to 
dX dX dX 

X, y, Z, and /* satisfies equation (a); hence =- 0. The fact 
dX 

that f remains constant along L is the algebraical equivalent of 

the geometrical property that the curve L belongs to a surface 

f = constant. 

6. Integrals of a total differential system, and the associated 
system of partial differential equations which determines them. 

Starting from a system of ordinary differential equations, 

we have succeeded in integrating the most general linear homo¬ 

geneous partial differential equation of the first order. By an 

analogous procedure, starting from a system of total differential 

equations, we shall succeed in integrating the most general 

system of linear homogeneous partial differential equations of the 

first order. 

Consider the system of equations 

du^ — (a = 1, 2, . . . m). . (19) 
1 

We shall apply the term integral of this system to every 
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function f(x | u) which is such that it reduces to a constant when 

the us are replaced by any solution of the equations (19). 

Differentiating / we get 

dx, + du^, 
1 dXi I du^ 

and, if the u's are solutions of the equations (19), 

df= ■{-\'^^-x^^\dx, 
1 \dx, 1 d'U^ / 

The necessary and sufficient condition for the vanishing of 

this differential, whatever the dx's may be, is evidently that the 

n equations 

|/ ^ S/ = 0 (i = 1, 2, . . . n) . (20) 

shall be satisfied. Th€'.y must be satisfied not only when the 

u's are solutions of the equations (19), as is clear from what has 

already been said, but also identically, which can be seen in the 

same way as for the corresponding result in § 2 (p. 3G). 

Introducing the linear operators 

O, = .(21) 
1 du, 

B, = (i = 1,2, . . . w),. . (22) 
dxi 

the equations (20) may be written in the form 

5,/^ 0 (^ - 1,2, . . . n). . . (20') 

The system of equations (20) or (20') is said to be associated 

with the system of equations (19); the necessary and sufficient 

condition that / may be an integral of the system of equations 

(19) is that it should satisfy the associated system of partial 

differential equations (20), or, in other words, that it should be 

an integral of the associated system. 

7. Principal integrals, as typical cases o! independent integrals. 

Suppose that the system of equations (19) is completely 

integrable, and let us assign fixed arbitrary values to the con- 
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stunts and in the fi(‘ld in wliicli the A"’s are regular; tlu'n 

we know that there exist tu functions, 

- Ur\n'') (a - 1, 2, . . . m), 

regular in the region round the values wliicli satisfy the 

equations (19), and wliich become respectively equal to the 

assigned constants when x, j’*/. The equati(uis so written 

are soluble with respect to the quantities in a r(‘gioii round 

the point as can be shown by means of the same arguments 

as those of § ‘1 (p. 38). Suppose t.hem solved; we can t hen express 

the ?i^'S in terms of the j;’s and the u’s, and we shall write 

W^^(x I u) -- 

The 'ufs are (ividently integrals of t he system of total ditferential 

equations (19), and are therefore also integrals of the system of 

partial differential ecjuations (20); we shall now show that they 

are independent. 

Consider the functional matrix of the '?c’s with r(.*s])ect to the 

a?’s and the u’s; we sliall have to show that its characteristic is 

or, which comes to the same thing (since it contains no detcr- 

rnmants of order > tn), that it contains a determinant of order 

m which is not zero. Now the determinant 

/u\ . . . w,\ 

\u^ . . . u,J 

becomes ~ 1 when ~ x^l, and therefore is different from 

zero in a region round that point; hence the requircid result 

follows. 

The m independent integrals are called principal integrals 

of the total differential system (19), or of the j)artial diffcirential 

system (20), corresjionding to the values x>- of the independent 

variables x. We have thus shown that, with the hypothesis that 

the system of equations (19) is completely integrable, the system 

of equations (20) (or (20') ) admits of /a independent integrals, 

which can be ditATinined in an infinite number of ways; namely, 

the principal integrals just considered, which in general vary 

with the choice of the initial values x^\ 

Here too, as on j). 40, we shall say more generally that the 

m integrals Vy, of the syvstem (20) are independent 
(D t)5ri) ^ 
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if tlie functions v{x | u) of the n -j- m variables x and u are 

independent. 

8. The general integral. 

By a property already noted of linear operators, if we con¬ 

struct any function whatever of the v'b, 

. . .vj, .... (23) 

we get a new integral of the system of partial differential equations 

(20). In addition, for the system of equations (20), as before for 

the single equation (7), the most general function which satisfies 

the system is included in the expression (23); or this expression, 

when F is considered as an arbitrary function, constitutes the 

general integral of the system. 

To prove this, let f{x | u) denote any integral of the system 

(20), and consider the functional matrix of the 1 functions 

(of m + n variables) tq, Co >/: 

dvi dv^ dv^ 1 

dxi du-^ du,„ 

M = i , 
dx„ du,„ 

) 

df 3/ »/ ! 

^^1 du^ 

If we can show that the characteristic of this matrix is 

it will follow that there exists (m'+ 1) — m, or 1, relation between 

the m 4* 1 functions which does not involve the a?’s or the u's 

(cf. § 7, pp. 9-12). This relation must necessarily contain / ex¬ 

plicitly, since there can be no relation connecting the v's alone. 

We can therefore solve it for/, which will have the form (23), 

so giving the required result. 

We shall first make a slight change in the form of the matrix 

M, by making it contain only derivatives with respect to the 

US, This is easily done, for since 

BiV^ = 0, Bif = 0, 



LINEAR PARTIAL DIFFERENTIAL EQUATIONS 51 

we get from fornuila (22) 

dv^ 

dx; 
- K, 

dX: 

The matrix thus becomes 

|| ~ ... - 

- OiW,,,. ... — Q„v,„ 

-aj ... - aj 

- 

di\ dv^ 

d 

d 1/j du,„ 

a/ /V 
du-i du,„ 

To prove that the characteristic is m, we have to prove: 

(1) That every determinant of order m+ 1 (the highest 

order possible) vanishes; 

(2) That at least one determinant of order m does not vanish. 

A generic determinant of order m + 1 will be formed by 

taking all the m + 1 rows, and m + 1 columns chosen arbitrarily 

from the m + n of the matrix. These m + n columns arc of two 

ty])es: the first n contain the operators £i, the remaining m the 
0 

operators ; let r columns be taken of the first type, and 5 of 
du 

the second, with of course r + 8 = w- + 1* Now in order to 

write down in a perfectly general form a row of this determinant, 

which will contain either the t;’s or (if it is the last row)/, we shall 

use the symbol to denote either one of the v's or/; we can then 

write the row as follows: 

dc^ 

duj. ’ du,’ 

where the suffixes h^, • • • h,. constitute any arrangement of 

r numbers, chosen from 1 to n, and the suffixes k^, ... A:, any 

arrangement of s numbers, chosen from 1 to m. Remembering 

the definition of Q given in (21), we see that each of the first r 

elements of the general row is a linear combination of the other 

elements; or, as we usually say, that the first r columns of the 

determinant are linear combinations of the other columns. The 
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determinant can tiiiis be broken ii[) into a linear combination of 

determinants of order m + 1 in which all the columns are of the 

second type (i.e. are composed of terms But there are in 
\ d'Uf 

all only )n (‘-olumns of the second type; it is therefore impossible 

to choose m j 1 of them without repeating at least one. It 

follows tliat in each of these [)artial det(‘rminants tln^re are at 

least two columns equal, and therefore tJiese determinants all 

vanish. Tlie gem^ral determinant of order /// -]- 1, whicli is a 

linear coin})ination of tlieni, must therefore also vanish. This 

proves the first of tlie n^piired ]U‘o])ositions. 

The (‘xistence of a non-vanisl)ing determinant of order m 

is a direct consequence of the liypothesis that, the integrals v 

are iud(*])endent. 

AVe have therefore proved comphtely that the characteristic 

of M is rn, and tlierefore that / can be expressed in terms of the 

independent integrals v, i.e. that/has the form given in (23). 

9. Direct study of the most general system of linear homo¬ 
geneous partial differential equations of the first order. Complete 
systems. Jacobian systems. 

Let us consider a generic system of 71 linear homogeneous 

partial diiferential equations of the first order, in N variables, 

and witli only one unknown function: 

A,f - / -=0 {k1,2, .. .n). . (24) 
1 

We shall suf)pose that ttu^se n ecpiations are independent, 

and we can therefore assume n < N. In fact, if n > N, the 

equations, which Nve have sup])osed inde])endent, considered as 

, would be mutually 

0/ 
inconsistent; aiifl if n ~ N, this wmild imply that ^ — 0, 

0 z 

or / “ constant. Further, it is clear that every/which satisfies 

equations (24) must necessarily also satisfy the following \n{7i—\) 

equations (obtained by constructing all possible Poisson’s paren¬ 

theses with the given operators): 

{A„ A,)f == 0 (h,k 1,2, .. .n). . (25) 

algebraic equations in the Y quantities 
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Tliese are cliffereMial consecpiences of the given system. Since 

derivatives of the second order disapf)ear from equations (25), 

it may happen that tln^sci equations, or some of them, are also 

algebraic consequences of the system, i.e. that they can })e obtained 

algebraically by taking a linear combination of the a given 

equations. 

If all the equations (25) are algebraic consequences of the 

system of ecpiations (24), this system is called complete. 

In the opposite (;ase, consider the system formed by adding 

to (24) those of (25) which, tog<‘ther with (21), are linearly inde¬ 

pendent. The new system will b(‘- equivalent to the original one, 

and will contain one or mon^ additional eqiiatioris. liepeating 

the same procedure for tln^ new system, and so oTi, w(^ shall reach 

either a complete systcan or else a. systian in which tfie number 

of equations is equal to or gr(‘a1er than N tln^ case of mutual 

inconsistency, as already noted at the beginnijjg of this section. 

We need therefore only consider comj)]ete systxmis. The 

condition of completeness can be written in the following form: 

(A. /!;.)/- i a,/, . . . (2(1) 
1 

where the coefficients p denote functions {a priori of any form 

whatever) of the independent variables 2:. From the definition, 

and applying identity (5), it follows that the c(.)eificients p satisfy 

the relations 

Vim = — Vim (h, k, 1 —■ ^,2, ... n). 

A particular case of special importance — of a. com])lete 

system is that in which all Poisvson’s ])arentheses are identically 

zero (i.e. all the coefficients p are zero); when this is so the s3^stem 

is called Jacobian, 

10. Equivalence of every complete system to a Jacobian system 
with the same number of equations. Note on Cramer’s rule. 

We propose to show that a complete system can always be 

replaced by a Jacobian system with the same number of equations; 

thus the consideration of any complete system can be reduced 

to that of a Jacobian system. 

Starting from the system of equations (24), we shall suppose 

that it is complete; i.e. that the equations (20) are satisfied. We 
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shall adopt the following procedure: we shall construct n distinct 

linear combinations of the n given equations, 

BJ = =0, ... (27) 
1 

with the condition 

I ^{fc ij ^ (^* ~ I, 2, . . . h), 

and we shall choose the coefficients c in such a way that the 

system (27), wdiich is equivalent to the given system, may be 

Jacobian. 

Before doing this, how^ever, we shall write the given equations 

in a slightly different form. We know that the matrix of the 

o’s has its characteristic equal to 7i (since the equations are inde¬ 

pendent); let us arrange the variables in such an order that the 

determinant a formed by taking the first 7i columns of the matrix 

may be that which does not vanish (or one of those which do 

not): 
%2 * • • 

^21 ^22 • • * ^2n 
a = 4= 0. 

I ^n2 • • • ^nn \ 

We shall next divide the variables 2; into two groups: we shall 

call the first n of them and the remaining N — n 

= m we shall call With this notation, the given 

system can be written in the form 

\ OX^ 

where denotes an operator involving only derivatives 

with respect to the w’s, the explicit expression of which does 

not for the moment concern us. Now solve ^ these n equa- 

^ Cramer’s well-known rule may be put in the following form, which we shall 

frecjjuently use, here and elsewhere. 

Let there be given n linear equations 

n 
^ ^/c (ifc == 1, 2, , . . n)j.(a) 

such that the determinant a of their coefficients is not zero. 

We shall denote by the reciprocal dement of the generic element ar« of the 
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tions with respect to the terms . Putting them in the form 

k-- - vj, 
1 3 a:,, 

multiply each equation by the corresponding (the reciprocal 

element of in the determinant of the a’s) and sum with res})ect 

to k from 1 to n. We thus get n linear combinations: 

(f -- 1,2, . . . n), 
0 X; 1 

which are independent, since })y a well-known result the deter¬ 

minant of the coefficients is equal t-o \ and therefore is not 
a 

zero. These equations can be written in the more concise form 

+ LIJ =0 (f = 1, 2, . . . n), . (24') 
ax^ 

where the Q/’s represent linear operators containing, like the ?7’s, 

cleteniiinaiit a ; i.c. the complement (or minor) of Urs divider! by a. 

Tbrm, applying two ordinary tbeoreiiiB on determinants, and indicating by 5* either 

zero or unity, acicording as r ^ == •'^y 

(/3) 

7 • i 
S/j. a^ia’‘J = .(/S') 

Applying these properties, tlu; e((uations (a) can tie solv<:)d by constructing 

suitable linear combinations of them. For instance, to find ^i, niulti])ly the /I'th 

erpiation by ; then giving k all values from 1 to and summing, we get 

The left-hand side of this equation can be transformed as follows: 

= ^r£..«r = £i; 
1 3 1 1 

hence the solution is given by the formula : 

= . . • (a') 
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only derivatives with re.s})ect to the u’b, and therefore of the 

form 

d 

du„' 

The system of equations (21') is equivalent to the original 

system (24). The only formal simplification is the specially 

7) 
simple way in which the terms in occur. But we shall show 

ax 

that the system (21') has the advantage of being both complete 

and Jacobian; it therefore constitutes precisely the system we 

are in search of, containing n linear combinations which we 

have denoted in ecpiations (27) by the operators the co¬ 

efficients of (27) will be identical with the coefficients 

AVe shall first show that the system (24') is complete. We can 

write it shortly in the form 

wliere 
BJ - 0, 

d 

dXf I 

d 

dll/ 

(24") 

(28) 

Since the operators B are linear combinations of the ^’s, it 

follows from a tluiorem proved above on p. 2>5 that Poisson’s 

parentheses (/?,, B^)/ are linear combinations of the expressions 

Now since the system (24) is com])lete, it follows that the 

expressions (/!/,, Aj)f are in their turn linear combinations of 

the expressions Af; so that the operators {B^, B) are seen to be 

linear combinations of the A's alone. But the A’s are linear 

combinations of the /:^’s (since the Z?’s are independent com¬ 

binations of the A's); hence ultimatidy the operators (B-^ B^ 

are linear combinations of the J5’s. In other words, the system 

(24") also is itself complete. 

We can therefore write 

(5„ S,)/^-. .... (29) 
1 

where tho coefficients q are analogous to the ^?’s of formula (26). 
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To show that the system (24") is Jacobian, we must prove 
that all the coefficients q vanisli. We note that both sides of 

equation (29) are linear in the terms ^, and the identity cannot 

hold unless the coelficients of the same derivative, e.g. , are 

the same on both sides. We proceed to find these coefficients. 
The left-hand side of (29) can be written in the form 

We saw on p. 2^5 that the r{^sult contains no second-order 
derivatives; it is therefore unnecessary to apply the operator B 
to the derivatives of /*, so that the expression in question reduces 
to 

(30) 

As this contains no terms in -, it follows that the coefficient 
dx 

of every ' is zero. On the right-liand side tlu‘ coefficient of the 
dxi, 

corresponding term is q,-^f, (remembering the definition of B)\ 
hence every q - 0, and in consequence 

{B., B^)f - r 0, 

or the system (24') is Jacobian. 
A further remark which will shortly be useful is that from 

the vanishing identically of each side of equation (29) and from 
0 

equation (JO) it follows that the coefficients of the terms in ^ 
also vanish, or from (30), ^ 

- 0.(31) 

11. Integration by means of the associated system. 

Gathering up the foregoing results, we now see that, given a 
system of linear homogeneous partial differential equations of 
the first order, we can find its general integral—if one exists— 
by means of the integration of a complete system of total differ¬ 
ential equations. 

(I) 0,)5 ) 3* 
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We have seen how to transform the given system into a com¬ 

plete system (if it is not so already, and ])rovided it contains no 

inconsistency). We now note that the Jacobian system (24') 

which we reached as a result of transforming the generic complete 

system (24) for other purposes, is identical with the system (20), 

which originally arose as the system associated witli a generic 

system of total differential equations. The important point here 

is that if with the coefficients X belonging to the system (24') 

we construct the system of total differential equations (19), this 

system is completely integrable. 

In fact, the condition for this is that 

^ 11 

dx dxi 
{ij 1, 2, . . . n; a -- 1, 2, . . . m), 

“ a*, +> ■'''•■ 

and remembering the definition (28) of the operators B, these 

can be written shortly in the form 

The equations (31) show that the X’s obtained from the 

system (24) satisfy these conditions. 

Having transformed the given system into the form (24'), 

we need therefore only construct the associated system (19) 

and integrate by the method given in the preceding chapter: 

the most general solution will be obtained in the form 

\u^) - (a 1, 2, . . . m). 

Solving these m equations with respect to the we get 

m ~ N ~ n principal integrals, and constructing any function 

whatever of these integrals we have the general integral of the 

given system. 

This systematic method of integration is in theory quite 

general and covers all possible cases, but it is somewhat laborious 

to apply. In practice it is often shorter to integrate the equations 

separately, and then to look for the m common integrals which 

certainly exist, when we have ascertained beforehand that we 
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are dealing with a complete system. The following may be given 

as an example. 

Consider the system 

Af 

Bf 

' dxy «•!.“ +*2^- - + 3^3 

df 
^dx~ 

dx^ dx^ 

' dxo 

= 0, 
V x^ 

+ 3-a 
1 ^ *^'2 9:r.j V u ^ dx. 

. (32) 

0. 

We sliall first show tliat it is not only complete, but also 

Jacobian. To sliow this as shortly as possible, we put 

A ?'r 

dx.^ 
+ .T, 

d 
B, ^ 

0 d 
dx.^ dx-i 

+ -Ti- , 
d X2 

8 II a 

d d 
‘dx/ + 3-3-, d x^ 

so that A - - /12, B -- + B^, and then construct 

the alternate function of the two given operators. We get by 

successive transformations 

{A, B)f - ABf BAf 
= A,BJ+A,BJ+A,B,f+A,BJ- 

- B^AJ- BjAJ- B.,AJ- b^aj 

= {A,. B,)fA- (A,, B,)/+ Uv B,)f+ (A„'B,)f. 

Now it can be shown directly that 

(A,, B^)f 0, {A^, B,)f ^ 0, 

and interchanging x^, ^2, and x^, x^, it follows that 

(A,, B,)f - 0, (A„ B,)f - 0. 

Hence 

{A, B)f ^ 0, 

which means that the system is Jacobian. It will therefore have 

4 “ 2 -- 2 independent integrals, or rather (cf. p. 40) an infinite 

number of pairs of such integrals. 

To find one such pair, note that the first equation (which is 

of the type considered in the example on p. 43) has as its general 

integral any homogeneous function of degree zero in the variables 
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^1? ^2’ ^4- therefore ooly find two independent 

integrals of the second equation which are lioinogeneous of 

degree zero. 

Now th(3 s}^ste^l of ordinary difT(*rential equations associated 

with the second of the equations (‘52) is 

(Ixy dxr^ dx^ 

J 2 X^ X ^ 

The equation formed of the first two of tliese terms can be 

integrated immediately, and gives 

i .i\>“ - a-].(33a) 

similarly th(.^ other two b^rms give 

f 'V . 

where a and b denote constants. 

Equating tlie first and third terms, after substituting in them 

for X2 and x^ the expressions given by equations (33a) and (336), 

wc get 

dx^ dx.^ 

a- ~ x^^ 6“ — 3^3- 

and therefore integrating 

• _ [ X-i . _ j x^ 
sm ^ ~ sm - ^ = c, 

a h 

where c is a third constant. 

This last integral can be put in the form 

sin ’^ - . — sin"^ ™ c. 
V x^- + 0^2“ 's'x.^^ + 

(33c) 

We also get from (33a) and (336) 

^3^ + -^4“ 
m) 

Of the four integrals thus found, the last two, (33c) and 

(33d), are homogeneous of degree zero, and are therefore also 

integrals of the first equation; and it would be easy to verify 
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that they are inde])endent. Hence the general integral of the 

system of equations (32) is 

Xj . „J X.. Xj- T- 

\/-)- .X2“ K^x./ -j- •^■4" ^ 3“ + ^'4 / 

where/is the symbol of an arbitrary function. 

CHAPTER IV 

AlGEBKAIC FoiTNJM'nONS OF THE ABSOLUTE 

DIFFERENTIAL (AlCUJATS 

1. Eifect on some analytical entities of a change of variables. 

This cliapter is devoted to tlie study of the eifect on some 

analytical entities of a change of variables. In tliis iirst section 

we propose to give some (‘xam[)les showing the iiature of the 

general considerations which will l)e siibsecjuently (established. 

Consider indo})end(‘rh variables . . . x^,, wliich we shall 

as usual denote c(.»llectiv(dy by ;r, and su]>pose a transformation 

applied to them which leads to another set of rf independent 

variables x\ it is understood that tlu'. transformation used is 

reversible, i.e. that the transformation formulae 

1, 2, . , . n) . . . (1) 

can be so1v(h1 for the x’s in the field considered, so that wc have 

simultaneously the equivalent equations 

Xi -- Xi{x).(!') 

The geometrical name for this operation is of course change 
of co-ordinaies', to fix the ideas, we may take n - - 3, so that we 

are passing from Cartesian orthogonal co-ordinates .r, y, z to 

three generic independent combinations of tliem (curvilinear co¬ 

ordinates) q^, q^. 
Now suppose tliat in dealing with a physical, geometrical, 

or other question w^e find that we have to consider not only the 

variables x, but a certain aggregate of entities connected with 
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them. For instance, in a certain region of physical space referred 

to Cartesian co-ordinates x, y, z, let the temj)erature T be dehned 

at every point; then it is a determinate function of x, y, z. Or 

we may suppose that a field of force exists in the given region, 

and we shall then have to consider at every point a v(».ctor, and 

hence its components, i.e. three functions X, T, Z of x^ y, z. 

Now change the variables. We have to find some way of expressing 

the same quantity or physical phenomenon (temperature, force, 

&c.); for this purpose we find that we have to introduce certain 

parameters which in the new system of reference will with advan¬ 

tage take the })laoe of those which were more suitable when we 

were using Cartesian co-ordinates. These new parameters are 

naturally called transforms of the original ones; they are obtained 

from them by a law which cannot be assigned a priori, but depends 

on the nature of the problem, and in ])art on suitable conventions. 

For instance, in the new system tlie temperature T will be a 

function of <7^, such that the same temperature belongs 

to the same point of space, whether the calculations are made 

with the original or with the new variables; hence T as a function 

of the q'^ will be obtained by substituting for x, y, z in T(x, y, z) 

their values in terms of q^, q.^, q.,. This kind of behaviour, which 

is the simplest we shall have to consider, is called transformation 

by invariance; all functions of position whicli have a value inde¬ 

pendent of the system of co-ordinates chosen are transformed in 

this way. 

With the components of a vector, in the other example cited, 

this does not happen. If in fact, as we may suy)pose, the vector 

has a magnitude and a direction which are independent of the 

system of co-ordinates chosen (we shall think of it as being 

defined physically as a force), its components, on the contrary, 

even when the point considered remains unchanged, change their 

values when the frame of reference is changed. This is obvious 

in the case of a rotation of Cartesian axes. If, however, the trans¬ 

formation considered is not of this particular kind, we do not 

know a priori what to substitute for the projections X, Y, Z 

of the vector on the axes of the old system in order to specify 

the vector in the new system;^ i.e. we have to determine the law 

^ We shall see in various parts of (chapter V how the introduction of new 

variables 71, 72, 73 gives rise geometrically to corresponding co-ordinate mrfavea 

7i = constant, 72 = constant, 73 = constant, and co-ordinate lines which are their 
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of transformation which will meet the needs of the case in ques¬ 

tion. The most suitable criterion to take as a guide in making 

our choice is found by introducing, alongside the given vector, a 

scalar quantity with a physical significance which is transformed 

by invariance. In this case we take two infinitely near points 

whose co-ordinates differ by rfr, dy, dz\ th(Mi the work of the 

force whose components are X, Y, Z, in passing from one of 

these points to the other, will be 

dW Xdx + Ydy Zdz\ ... (2) 

this scalar quantity has a physical significance which is invariant, 

and it can tliendore be concretely determined. From the mathe¬ 

matical point of view it is an important fact that with any system 

of orthogonal axes Oxyz the C-artesian com])onents of the force 

are idfuitical with the coefiicieiits of dx, dy, dz in this expression. 

Cfianging to tlie curvilinear co-ordinates 

tlie resulting valu(‘s of dXy dy^ dz by means of the differentials 

of the new variables, using llu* formulae 

dx ----- dq„ &c. 
1 dq. 

The work dW will take the form 

which is analogous to formula (2). 

In fact, putting 

dx ^ dy y z ^ Q, 1, 2, 3), . (3) 
dq, dq,- dq; 

we get dW — Qi dq^ + Qo dq^ + dq.y 

intersections. this in mind, if we j)ro{»osed to use ^^eoiiietrioa] criteria 

taken from our co-()rdinate system ii» order to specify the elements which deter¬ 

mine a vector, we should find ourselves faced by four possibilities, all ecjually 

acceptable, and with one or another preferable accordini,^ to circumstances. At 

every point, in fact, the tangents to the co-ordinate lines and the normals to the 

co-ordinate surfaces form two supplementary trihedra, which are in general 

oblique-angled, and therefore distinct; and a vector may be defined either by 

its orthogonal projections on, or by its components along, either of these two 

trihedra, 
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The quantities Qo. here hold tlie same position as did 

X, y, Z in (Cartesian co-ordinates; it therefore seems suitable 

to call them tlie components of the force in the new system of 

reference, so that we may say that formula (3) represents the 

law of transformation of the components of a vector. This law 

is called awarlance. 

We can also rtiach this law from a difl’erent point of view, 

which Jiowever, we shall show in a moment to be really a particular 

case of the preceding argument. Consider an invariant function 

u{x, y, z)\ we shall try to find the most oonvenient law of trans¬ 

formation of its three derivatives ^ \ ^ which are evidently 
d X 0 y (^z 

functions of x, y, z. A natural course is to consider the three 

derivatives ^ ^ ^ as being the ex}>ressions which correspond 
dq^ dq.y dq.y 

to them in the new system of riderence; these are of course given 

by the ordinary formuhe 

du da 3.r da. dy da dz 

dq, dx dq- dy dq^ dz dq, 
(^-1,2,3). (4) 

If instc'.ad we were to assume transformation by invariance, 

the three quantities we ar(^ considering would represent deri¬ 

vatives of a function only in the original (Airtesian system of 

reference, while in any other they would in general lose this 

special property. 

The formulae (1) are evidently a particular case of the formulae 

(3), in which the derivatives of a single function u have been 

substituted for the component of the generic vector. The real 

reason for this is found in the fact that the law of persistence 

of the derivatives can also b(‘- included as a special case of the 

invariance of a linear differential form. As a particular case, we 

need m(*rely rejdace dW (which is not in general an exa-ct differ¬ 

ential) by the total differential du, which may be expressed in 

either of the two forms 

du 

dx 
dx -f- 

du 

dy 
dy + 

du 

dz 
dz 

du 

dq^ 
+ 

du 

dq^ 
+ 

du 

dqx 
dqs. and 
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The foregoing remarks will suggest what it is we propose 

to do, though naturally this will become clearer as we 

proceed. 

Given in a certain system of reference (which may be of any 

kind whatever) a set of quantities having a certain significance, 

physical, geometrical, or otluT, w(‘ assign a law of transforma¬ 

tion by means of which a set f)f (juantities having the same 

significance is associatc^d with any ot}K‘T svstem of ref(‘rence, 

and we are tlius led to introduce^ a set of parameters, collectively 

inde])(ndeTit of the system of refennee, whet her Cartesian or not. 

This is the basis of the conceptual im])ortanc(‘ and the fertility 

of the considerations which we pro])osc to develop. 

2. m-fold systems. Forms of degree ni and ///-ply linear 
forms. 

We shall lirst define a sjjstem of order m or m~fold system. 

We aq)[>ly tlu^ term to a system of numbers 

which ar(' such that a one-to-one corresy)ondence with a s])ecific 

law exists betAve(.‘n them and the. set-of /// int(‘gers q, L. • • • htn 

wliere ('{ich of the /’s can take all integral values from 1 to n. 

The number of ehanents of an ///-fold system is thus vt", this 

being the number of permutations (with r(‘petitions) of n numbers 

taken m at a time. It is not necessary that tliese >1"' elements 

should be all diflerent. 

A system C()m})osed of a .single number (which may be repre¬ 

sented by a htter without a suffix) may be considered as a system 

of order zero. A simple (oru^-fold) system will be the aggregate 

of 71 elements which can be requesented by tlie notation 

A; (^ - 1,2,... w); 

e.g. the set of three components of a vector, for which ™ 1, 

n 3. 
A double (2-fold) system will be of the type 

A,j {i, i -- 1,2,... n), 

and will consist of 71^ elements; and so on. 

A system of order greater than I is called symYnetrical if all 
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the elements in it which differ only as to the order of their suffixes 

have the same value; e.g. for the case rn — 2, if A,-,. 

A system is called antimjinmetrical {shnv) if when two suffixes 

are interchanged the element changes its sign but not its value; 

again for the case m 2, if A;^ -- ~ Aj^. The n coefficients 

u of a generic linear form^ 
n 

(j> U, Xj 
1 

constitute a simple system, which is in fact the most general of 

its kind, since, given n quantities it is evidently always j)ossiblc 

to consider them as being the coefficient,s of a linear form <ji. 

Consider next a quadratic form, which we may writ,(‘. as 

)i 

<f> -= 

1 

as the sum includes all permutations of the suffixes two at a time, 

the product of and will occur twice, once as and once 

as XjX,-, so that the coefficient of the ])roduct is^,^ + A,. This 

is unchanged if i and j are interchanged; heDC(‘. we se(^ that the 

coefficients of a quadratic form constitute a symmetrical double 

system, which is the? most general possible. But if we wish to 

determine a generic (non-symmetrical) double system by means 

of the coefficients of a form, a quadric in the independent vari¬ 

ables X is no longer sufficient. We shall now require two different 

w-fold systems of independent variables, (‘.g. the co-ordinates 

X and x' of two points between which no a priori relation exists, 

and we must construct the expression (bilmear form) 

11 

F = 
1 

which is linear in both the x’s and the a;'’s; the coefficients of this 

form are the required arbitrary quantities A;^. 

More generally, it is easy to see that a generic m-fold system 

is determined by a multilinear form of rn groups of variables, 

while the coefficients of a form of degree m constitute the most 

general symmetrical m-fold system. 

^ The term for7)i with respect to given arguments (e.g. the independent variables 

jCj, . . . Xy^) means a p^dynomial homogeneous ir? those arguments, 
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3. Invariance, covariance, and contra variance of a simple 
system with respect to linear transformations. Dual variables. 

We now proceed to examine the laws of transformation of 

systems. We shall at first limit our investigation to a linear 

change of variables and a simple system 7/j, 

We shall suppose that we can j)ass from tlK‘. variables 

X to the new variables .r, and vice versa, bv itieans of the 

formulai 

X, (i -= 1, . n), . . (5) 
1 

x,- S/, (/’'a:., {i — I, 2, . . . ->1), . . (5') 
1 

where the coefficients c are arbitrary constants whose determinant 

is not zero; the second formula follows from the first by a})plying 

(Varner’s ruh*, so that c''" is the r(‘.ci})roeal element of (cf. 

p. 54, footnote). 

The most obvious hy})othesis to make is t])at the v/’s are 

functions of position which are transformed by invariance 

(cf. § ]). 

We get a slightly less simple, but remarkable, case if we sup¬ 

pose that the '?ds are transformed by the same law as the co¬ 

ordinates, in which case th(‘. will be called eoniravariants. In 

particular, the co-ordinates themselves form a contravariant 

simple system. 

Next suppose that the ?//s are tln^ coefficients of a linear 

form 
■n 

1 

and that is transformed t)y invariance, i.e. by substituting for 

the x/s the expressions (5), so that (f> is also a linear form of the 

new variables x. We shall take the coefficients of this new form 

as the transforms u of the ^/-’s; we shall then say that the ?/’s 

form a covariant system. 

Writing out the expressions in full, we have 

n n It 

6 = ^ % S,; C,j. 

11 1 11 
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The new coefficienta are therefore 

n 

1 

Interchanging i and A;, so as to get the formulai in the same 

shape as (5'), we get 

7i 

u, -- Ci,iU,, {i = 1, 2, . . . n), 
1 

wliich gives the law of covariance. 

Here, too, we naturally add the equivalent formula^ which 

are obtained by solving for the original elements u, and are given 

by the usual formula (Cramer’s rul(‘). Writing them first, so 

that we get them in the ord(T corresponding to that of (5) and 

(5'), we have finally the law of cmxiriance expressed Jxj the two 

groups of eqiiivalent formalw, 

U; = 'Ll, C''-'-a,.,.(6) 

(i I. 2, . . . n). . (O') 
1 

Wc shall frequently consider, together with the vjiriables x 

(which are also called point variables), a system of covariant 

variables ii (called dual variables); the behaviour of both sets 

of variables when a linear change of variables is made is shown 

by formulcX‘ (5) and (6). 

To find a geometrical interpretation of dual vaiiables, we may 

fix our attention on the case n ~ 4, in which Xo, aq can 

be consider(Hl as homogenebiis Cartt‘sian co-ordinates of the 

points of space. A plane has an equation of the type 

% + % ^^3 + 0, . . (7) 

where with the usual terminology, the coefficients 7/^, Wy, 

are Pliicker’s co-ordinates of the jdane. Now, given the geometrical 

significance of equation (7), its left-hand side must be invariant 

(except for a non-essential factor, the co-ordinates being homo¬ 

geneous), and hence the Plucker’s co-ordinates u must be trans¬ 

formable by covariance. From the well-known law of duality of 
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projective geometry the ?/’s have been given the name of dual 

variables. Analogous results hold for any value of n. 

4. Invariance, covariance, and contravariance of an m-fold 
system with respect to linear transformations. Mixed systems or 
tensors. Vanishing of a tensor an invariant property. 

We shall now extend the discussion of the preceding section 

to systems of any order, but still limiting it to the case of linear 

transformations of the type (5), (5'). AVe thus define mixed 

systimis, of which covariant and eontravariarit systems are 

particular oases. 

Consider m sets of u- point variables (i.e. /// points). Denoting 

by an uj)per index the ordinal number of each point, we get the 

set of arguments 

cc}, ■ • 

xl, . , 

Xy , xT,. 

Consider also a certain number fx of sets of 7i dual variables 

u\, M2, ... ul; 

74, m|, . . . ul; 

Construct a multilinear form F in all these variables, each 

term of F containing as factor an element taken from every set 

of the'm ;r’s and the p us. The coelKcients of these terms, which 

are a priori completely arbitrary, will constitute a gcaieric system 

of order ni | /x. A\Titing the indict's corresponding to the xs 

below and those corres])onding to the iCs above, we shall have 

F 
1 

jti. . - V I 

imh- ■ hn e 
.t'." ll^ . . . it . 

hn Jix 
(8) 

Now transforming the x's by the law of contravariance and 

the us by the law of covariance, and substituting the expressions 

30 obtained in (8) (i.e. transforming F by invariance), we shall 
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get a multilinear form of the new variables x, u\ we shall take 

the coeih(;ients A of this new form as being the transforms of 

the coefficients A. We shall then say that the yl’s constitute 

a tensor or nnxed system, covariant with respect to the lower 

indices, confravarlant witli res})ect to the upper. In particular, 

m or /X may be zero, leading to the absence from F of the point 

or dual variables respectively; tlien tlu'. systean of coefficients is 

purely contravariant if the variables in F are all covariant, and 

vice versa. 

The case of tli(‘ simple system comt‘s at once under this 

definition. In fact, F in this case Ix^nornes the <f) of the preceding 

section; if we consider it as linear in the a:’s, we find that the 

coeflicients v/, according to the definition just given, must be 

called covariants; while if it is considered as linear in the n's, 

we conclude that the .r’s form a contravariant system, which 

agrees with the definitions already assigned. 

A CO variant, contravariant, or mixed txnisor, liaving in f- [jl 

indices in all, is said to be of rani: rn -|- /x; a simple system, eith(?r 

covariant or contravo>riaut (i.e. a tensor of rank 1) is also called 

a vector^ and its elements are called respectively covariant or 

contravariant components of the vector. 

Following a similar method to that used in the preceding 

section to find the formulae (0) and (O'), we cxndd find the general 

transformation formulae for mixed systems, and hence, in parti¬ 

cular, the formulae for contravariant and covariant systems. 

We shall not need these formulae, as in what follows we shall 

always go back directly to the definition just given. As an 

example, however, we propose to find them and give them in 

full for the simplest case of the mixed system, i.e. the system 

with a single index each of covariance and of contravariance. 

Consider therefore the bilinear form 

F — T,;j A{ X; Uj, 
I 

and transform it by invariance. Using formuhe (5) and (G), we 

F = S,-,-S,,x*.x^u,, 
11 1 1 

n n 

“ ^'if ^ik 
1 1 
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The coefficients of this new form are 

Al = .... (9) 
1 

which gives the law of transformation for mixed systems with 

two indices. We should get similarly, for the most general 

mixed system, 

A] 
• ■ /Oi 

As a metnorla technica, we may add that the transformation 

formnlie for the .r\s and the ?/’s give an easy way of remembering 

those for a tensor of any kind. The latter are always linear, and 

the coefiicients are composed of the e’s in a similar way to those 

of (5) and (0): to each index of covariance corresponds a c with 

the indices below, to each index of contravariance a c with the 

indices above. Th(‘ o[)posite holds in the inverse formula). 

We may sum ii[) the discussion so far in the following defini¬ 

tions. 

An m-FOLi) COVARIANT is (til m fold system which is transformed 

in the same way as the coefficients of a 'multilinear form in point 

variables] an m-Foi.o (Contravariant is one which is transformed 

in the same way as the coefficients of a mnltilmear form in dual 

variables] more yenerally, a jvirxFD system or tfnsor is one which 

is transformed in the same way as the coefficients of a ntuUilinexir 

form in both point and dual variables {including also as particular 

cases both purely covariant and purely contravariant systems). 

The indices of contravariance are generally written above, 

those of covariance below; an exception is however made for 

the variables x, which are as usual denoted by 

with the indices below, even if, as in the j)resent case, we are 

dealing with a contravariant system and linear transformations. 

We shall close this section witli a remark which is as obvious 

as it is fundamental whenever the notion of a tensor occurs. 

This is the fact that if all the elements of a tensor, with reference 

to a certain system of variables, vanish, this necessarily also 

happens for the transformed elements which correspond to any 

linear change of variables whatever. This is an immediate con¬ 

sequence of the fact that the hypothesis makes the invariant 

form F vanish identically. 
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5. Symmetrical double systems. 

Since we shall liave occasion later on to deal with a, remarkable 

symmetrical covariant double system, we propose to give here 

some properties of systems of this kind. Let the elements of such 

a system be ,,,, 
.(11) 

their covariance will be expressed by the; fact that the bilinear 

form „ 

F{x I ,/•') i:,,, a-, xl ... (12) 
i 

is invariant in any linear transformation which changes the a::’s 

and the a:'’s into other sets of variables x'. 

We shall first show that such a change of variables leaves 

the symmetry of the system unchanged; i.e. that 

«,/.• "-=«/.(1-^) 

In fa(h, if we interchange the variables x, x' in the bilinear 

form (12), we get „ 

F{X' I X) - - S,/. X,’ X, 
1 

and since the right-hand side of this equation differs from that of 

equation (12) only by the non-essential interchange of the letters 

i and A*, it follows that 

F(x' I x) F{x I x!).(IT) 

Vice versa, if this relation holds, we conclude, by reversing 

the steps of the argument, that (11) is also true. 

Hence the condition of symmetry (11) is completely equivalent 

to the condition (11'). From this standpoint it is easily seen to 

be invariant. In fact, changing the variables, and denoting for 

1x^)1 
F(x i x'), 

equation (IT) changes to the equality 

F{x' I x) F(x I x') 

which, as we have just seen, is equivalent to (13). 
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We could show in the same way that if a contravariant double 

system is symmetrical with respect to one system of co-ordinates, 

it is still symmetrical after any linear change of variables; a 

mixed system af, however, has not this property. For an anti- 

syrmnetrical double system, either covariant or contravariant, 

we could also show similarly that antisymmetry is an invariant 

property. 

We can now use the property just illustrated to establish 

the covariance of the coefficients of an invariant quadratic form. 

Let the quadratic form be 
// 

.(14) 
I 

Changing the variab)(‘s, 0(.x) evidently becomes a quadratic 

form in the x’s, which we shall write 

0(.F)  (U') 
1 

We shall show that the coefficients rT,,. are the transforms by 

covariance of the coefficients or in other words are the same 

as would be obtained by changing the variables in F{x | x'). 

In fact, we get </»(x) from F{x \ x') by first putting x' equal to x, 

or 

and from this, with the usual change of variables, we then get 

cf>{x), which is thus derived from F {x\x') by applying successively 

the two operations 

Xi ^  (a) 

X, “ x,(x).(b) 

But the same result will obviously be obtained if these two 

operations are applied in inverse order, i.e. if we pass first from 

F{x I x') to F(x I x') (the coefficients of which are by definition 

the transforms by covariance of the coefficients a,,,), and then, 

by the operation (a), which implies x' = x and on account of 

symmetry does not change the coefiicients, to </>(x); the co¬ 

efficients of this last expression are therefore the transforms by 

qovariance of the coefficients 
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6. Sets of n covariant and contravariant simple systems. 
Theorem on reciprocal sets. 

We now propose to prove a lemma in which we shall have to 

consider, not a single simple system, but a set of n covariant 

simple systems. We must therefore distinguish the elements in 

question by two indices, one showing the ordinal number of the 

system from which an element is taken, the other (which will 

be an index of covariance*, or of contravariance) showing the 

ordinal number of the element in that system. Consider, thert*- 

fore, th(', set of n covariant simple systems 

(a, i 1, 2, . . . n), . . . (15) 

where a rej:)resents the ordinal number of the system and is 

th(irefore not an index of either covariance or contravariance; 

and suppose farther that the determinant of the A’s do(‘s not 

vanish, or in other words that the n systems are independent. 

With this hypothesis, to every element A„|/ will correspond a 

reciprocal element (its algebraic com])lemeiit or minor divided 

by the value of the determinant), which we shall denote by 

a: (a, i - 1, 2, . . . . . . (15') 

In a linear change of variables the terms A„|/ will be transformed 

by the law of covariance, and the transforms will be denoted by 

\|o we shall take the reciprocal elements of the terms A^j,; 

as representing the transforms of the reciprocal elements A,C 

AYe shall now show that this law is identical with contra¬ 

variance, i.e. that giving a the values 1, 2, ... n, the terms A^ 

constitute n contravariant simple systems; or shortly, that the 

reciprocal set of n covariant systems is a set of n contravariant 

systems. This is the reason for placing the index i above. 

The hypothesis of covariance of the set of n systems (15) 

means that the n linear forms 

11 

'^a • • • ^) 
1 

are invariant. AVhat we have to prove is that the n linear forms 

i/f„ (a = 1, 2, . . . n), 
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are also invariant, i.e. that 

= ^;K Ui — Si Mi = 0 (a = 1, 2, . . . n), (16) 
1 1 

wliatever the may be. Now these last expressions are linear 

in the w’s (since the ?7’s are merely linear combinations of the 

so that each of them is of the type 

1 

To show that this vanishes identically (i.e. that all the ^’s are 

zero) we need only show that it vanishes when we give the 

n distinct sets of mimerical values, as we shall then have n homo¬ 

geneous linear equations in the ^’s, whose determinant does not 

vanish (this condition being implied by the use just now of the 

adjective distinct). We shall give the uss the values 

(^> * - 1,2,... n), 

and hence, from the covariance of these quantities, we shall have 

to give the il’s the values A^j,. Using a property of determinants 

(given as formula (/3) in the footnote on p. 55), and substituting 

in equation (16), we get 

0a - 0a - 0 (a, - 1, 2. . . . n), 

which proves the result required. 

7. Addition of tensors. 

Take two tensors (in general mixed) of the same kind, i.e. 

having the same number of indices of covariance*, and the same 

number of indices of contravariance (in particular, two covariant, 

or two contra variant, systems of the same order); 

<1 ‘ • • '>ltl li . . . l))i 

Summing corresponding elements (those with the same indices) 

we get a new system whose general term is 

I, . . . ijfi. 
+ B’y' 

' ?! ... I 

depending on the same number of indices. We shall show that 
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this new system is also a tensor, covariant and contravariant 

respectively with respect to the indices of covariance and contra- 

variance of the given systems, so that with the notation previously 

adopted the general term can be written 

Qji • • • jfj, 
ii - . . i,,; 

To simplify the formulae we shall prove the result for the 

case of a single index each of covariance and of contra variance; 

the reasoning is identical in the general case. Our hypothesis 

then is that the forms 

F = - S;, A>. X, Uj, 
1 

O “ '^;j X- 
1 

are invariants. The sum 

1 1 

will therefore also be an invariant, which is as much as to say 

that the system 

0. =- 
I I ‘ I 

is CO variant with respect to the lower index, and contravariant 

with respect to the upper. 

The tensor C is called the sum of the two tensors A and B, 

8. Multiplication of tensors. 

We shall now define the 'product of two tensors. These may be 

of any kind, in general mixed; we shall suppose that one has m 

indices of covariance and p of contravariance, and the other m' 

and p respectively, so that they are represented by 

i\ . . . ii . . . ifiri' 

Construct the system whose general term is the product of 

any element A by any element B; the element so formed will 

contain m, p m' -j- p indices, so that the rank of the 

'product system will be the sum of the ranks of the given systems. 

We shall show that it is a tensor which has the m -f- m' indices of 
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covariance of the given system as indices of covariance, and the 

jji fjb' indices of contravariance as indices of contra variance. 

To simplify the formulae we shall as before consider the case of 

only two indices. 

Let the two forms which by hypothesis are invariant be 
II 

1 

1 

Their product will also be, an invariant, and is 

or, putting 

A'! B'j Cf/, 

1 

The invariance of this form means that the indices i and j 

attached to the letter C are indices of covariance, and h and k 

are indices of contravariance, which proves the statement just 

made. The argument is the same in the general case. 

9. Contraction of tensors. 

We shall now define the operation of contraction, by which 

we pass from any mixed system to another system having one 

index of covariance aiid one of contravariance less than the 

first. 

For conveniemee of printing, we shall give explicitly only 

one of the indices of covariance and one of contravariance, 

replacing the others by points, so that we shall put 

A " "'r 

to represent the general term. 

Now construct the system 

I 

which will contain all the indices, except the two shown on the 
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right; we say then that the tensor has been contracted with 

respect to these two indices. We shall show that the system 

so obtained is also a tensor, having the same indices of covariance 

and of contravariancc—except of course the })air used in con¬ 

tracting—as the given tensor. To simplify the formula), we shall 

as usual consider a ]:)articular case, but one not differing essentially 

from the general case. Suppose, therefore, that the form 

F = 2.7,,, Jf;./:, m' 

is invariant whatever may be the variables x\ u, u', the only 

restriction being that x, x are point variables and ?/, ?// dual 

variables. 'I'heir values being arbitrary, we may replace the 

variabh's by n elistinct systems of covariant quantities, which 

we shall denote by using the notation (15) of § G; we can 

then replace the variables x' by the quantities which are 

the reciprocal elements of the former group, and therefore con¬ 

tra variant (§6). We shall thus have the n linear forms 

X, u, a: A„ u (a = ], 2, . . . r;) 

all invariant. Their sum G will therefore also be invariant. 

Writing out this sum, and making some slight transformations, 

we get (remembering the fundamental property of reciprocal 

elements) 

1 1 1 
^ihrs tr u, 

Now we know that h"",. ^ 0 if r 4= ^ and — 1 if r — s\ hence 

all the terms in the sum for which r 4= s will disappear, and there 

remains 

G x^u,, -- 
1 111 

The invariance of this form shows, as was required, that the 

system 

1 

is a tensor covariant with respect to the i’s and contravariant 

with respect to the /f’s, 
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The operation of coni raetion can evidently be repeated several 

times, contracting successively with Tes])ecd; to various pairs of 

indices, so that, for example, from the system 

A ft ks 
■^ijr 

we can pass, by using two pairs of intiices, to the tensor 

_ V 
i - 

i]. 
j>' 

Tf the process is a])plied to the only pair of indices of a mixed 

double system, the result is an invariant: 

A — 
1 

10, Composition of tensors. 

If we combine the operation of ihidliplimtion of two tensors 

with that of confracfion, we get th(‘. operation called composition 

(or inner multi pi iait ion) of two tensors. We sliall write the two 

tensors in the abridged form 

where we show only a single index of covariance for one and of 

contravariance for the other. 

The tensor 

C"' ^k^A B 
I 

is said to be compounded of tin* first two or is called their inner 

product] its indices of covariance; are those of A, except r, and 

all those of B, and its indices of contravariance are all those of 

A, and those of B, except s. 

It can at once be seen that the system C is a tensor, observing 

that it is obtained by contraction with respect to the indices 

r and s from the system 

r;;;: - a\ \,. b\\:\ 

which is itself obtained by taking the product of the given 

systems. Thus, for instance, compounding the systems 

Ai, B]\ 
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with respect to the indices r and s, we get 

ri/tk 

1 

11. Change of variables in general, m-fold systems whose 
elements are functions of position. First general definition of a 
tensor. Typical tensors of rank 1. 

Up to tliis })oint we have considered only linear changes of 

variables, and we have defined, with reference to them, covari¬ 

ance, contra variance, and the fundamental operations on systems. 

We shall now extend these definitions to any change whatever 

of the variables. 

Suppose, therefore, that the formulai of transformation, instead 

of ecpiations (5), are 

-^2. • • • *,.) (* = J, 2, . . . n), (17) 

where the //s denote arbitrary functions, except for the qn" h‘- 

tative restrictions as to differentiability, &c., which will be 

tacitly imposed whenever necessary, and the condition that the 

transformation is reversible, i.e. that the equations (17) are 

soluble for the xs and can therefore also be given in the equivalent 

form 

== ^2^ • • • • • • (^7') 

The general transformation (17) involves a linear transfor¬ 

mation of the differentials. In fact, putting 

dxi 

dx;. 
(18) 

we get, differentiating (17) and (17'), 

dx, = = 
1 dxj^ 

11 - n 

dXi = '' dx^ = :Li,c'‘' dx^ 
I dXj^ 1 

71 

^ik d^ki 
1 

• • (19) 

(i- 1, 2, . . , . n). (19') 

The second of these groups of formulae must be identical with 

the group which would result from solving the first; the quantities 

must therefore be the reciprocal elements of the quantities 
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C/,v, which justifies the choice of these symbols to represent the 

derivatives.^ 

From the analogy of formulae (19), (19') to (5), (5'), we can 

at once extend the earlier arguments to m-fold syvstems whose 

elements are any functions of position (i.e. of the independent 

variables . . . x„). We shall say that an m-fold system 

whose elements are functions of position constitutes a tensor, 

CO variant, contravariant, or mixed, with res])ect to a generic 

transformation (17), when it is a tensor of the specified kind 

(at every j)oint of the field considered) with respect to the linear 

transformation (19), (19') between the differentials of the old and 

the new variables. 

In consequence the differentials of the independent variables 

provide ns with the typical contravariant simple system. We 

shall next consider what is the typical covariant simple 

system. 

In § 3 we introduced the dual variables ?/,, which were formally 

defined as the cxx'fiicients of a linear form in the variables x. 

These latter are now to be replaced by their differentials dx, so 

that we start from a generic Pfaffian 

It. 

ijj “ lEiiiijdXi, 
1 

and consider it as invariant for any change whatever of the vari¬ 

ables x. Tlie coefficients a are considered as functions of position, 

and hence initially of the j'’s. When the transformation (17) 

is made, the dependence on the point co-ordinates is expressed 

instead in terms of tlie new variables x. Substituting in ijj for 

dXj from (19), we see in the first place that we still have a Pfaffian 

^ This can alsn he shown directly, by proving that the terms and Cki have 

the fundanitnital ])roperty of reciprocal elements. In fact, if in ecpiations (17) 

we replacij the x’s by the expressions given by equations (17'), they reduce to 

idtmtities. Diftcrcntiate one of these with respect to Xk^ using the rule for a 

compound function. We shall have 

dxh dxk 

Now the left-hand aide is 0 or 1 according as i 4= ^ or i — k; on the right-hand 

side we can introduce the notation (IS), so getting 

which proves the re(|uired result. 
( J> 665 ) ^ 
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in tlie new variable's tliis is obvious, siiice^ the original ex])ression 
is linear in dx. Writing out the result, we get 

" dx- 

1 1 O X/. 

** f) T • ** '' 7) X • 

1 chr^. 1 1 dXf, 

The coeffieieuits of the new dillerentials rfi,, i.e. the elements 
Uf, of tlie system which is the transform of the coeflicients 
are therefore 

Uf. " {h ~~ 1, 2, . . . n). 
1 0 x,. 

Interchanging i and h and adopting the notation (18), we get 
the law of transformation for the coellieients of a Pfaffian ex})ressed 
by the formuhe „ 

di --- 
1 

which are identical with the formulae (6'). Adding the inverse 
formula) and replacing the coefficients c,,,-, by their values as 
given by (18), we get the tramformation forrnulw for the coefficients 
of a Pfaffian {an incarUint) which constitute the typical simple 
covariant system, in the explicit form 

i 

dJ-„ 

dx.’ 

V 
1 dX: 

(20) 

(i 1,2,... n). . (2()') 

Suppose in particular that the (invariant) Pfaffian is the exact 
differential of a function u of pOvsition; being invariant, u is such 
that its expression in terms of the x’s is obtained from its expres¬ 
sion in terms of the .r’s by substituting /• (.f) for x,, and vice 
versa, so that the formula 

u{x) u{x) 

is an identity when we substitute in it the expressions given by 
(17) (or (17') ) for the a)’s (or the i;’s). 

» • c) 'll 
The coefficients u„ Uj of the Pfaffian are respectively 

^ 9a?; 
according as du is considered as expressed in terms of the 

dx,: 
or of the i;’s. 
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It follows that the derivatives of an invariant are transformed 

by cmnriance, the laiv being given by fonnula^ (20), (20'). 

Vice versa, to obtain the formula) of covariance (20) or (20') 

relative to a sim]>le system, without having to go through all 

the steps from the beginning or to remember them by heart, 

the easiest memoria technica is to consifler the elements of the 

generic system in question as being for the monunit the deri¬ 

vatives of a single function, and to apply the rule for differentiating 

a- function of one or more functions. We then automatically get 

formulae (20) or (20') according as we start from an original or 

a transformed element. 

The direct transformation of the differentials further, as we 

have seen, gives formulae (19) and (19'), which we can use as 

the transformation formula) for a generic contravariant simple 

system, by substituting tlie original elements for the dilferentials 

dx, and the transformed elements for the differentials dxi.. 

To sum up, the differentials of the indejxndent variables and 

the deriv^atives of a single function give what we may call the 

pattern of the transformation formuhn for simple contravariant 

and covariant systems respectively. 

12. Second general definition of tensors whose elements are 
functions of position. Examples. 

Take a multilinear form in any number of sets of contravari¬ 

ant variables (i.e. having the same law of transformation as the 

dx) and in any number of sets of covariant variables (i.e. having 

the same law of transformation as the u, 
du 

d a: :)■ Let the co¬ 

efficients be considered as functions of position, and the given 

form as invariant at eacli separate point. From the definition 

given in the preceding section it is clear that the coefficients 

form a mixed tensor, whose indices of covariance are those relative 

to the contravariant variables, and vice versa. Eeciprocally, 

every tensor, in the sense of the first definition, can be identified 

with the coefficients of a multilinear form of the kind just 

described. The two definitions are therefore completely equi¬ 

valent. 

From this point everything is analogous to what was said in 

§ 4, and we may therefore dispense with further details, except 



84 INTRODUCTORY THEORIES 

to repeat once more explicitly the remark made at the end of 

§ 4 as to the vanishing of a tensor (i.e. of all its elements) being 

an invariant property. The property holds in general for any 

change of variables of any kind. In other words, if all the elements 

of a generic tensor 

referred to a particular system of variables, are zero, we may 

be sure that the equations 

^ ^ ^ ^ ^ ^ 1, 2, . . . n) 

continue to hold however the variables may be changed. 

We shall close tins section with two examples of tensors 

which occur fairly often. 

Consider first a linear operator where 

Af-^ 

whose coefl&cients are specified functions of position. Let us 

treat the operator as an invariant. Then since the terms ■ - 
ex- 

are covariant, it follows that the A*'s are by definition contra- 

variant, and must therefore have their law of transformation 

given by the equations (19'), so that we get for the transformed 

coefficients the expressions 

— Pi ^7> 

A'' 
l‘ dX;, 

as could easily be verified directly. 

Consider next a differential quadratic form 

71 
<j} = 'L,„ai^dXidxi,, 

1 

which is to be invariant; the coefficients (in general to be con¬ 

sidered as functions of position) will then be covariant, and hence 

their transformation formulae will be 
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Or (solving for the transformed elements) 

dx,. dx^ 

dxi dxj^ 
(21') 

13. More complex laws of transformation. Scope of the 
Absolute Differential Calculus. 

In a generic change of variables a system, as we liave said, 

is transformed in a way which depends on its definition. The 

cases so far examined have been the simplest, but others of 

considerably greater complexity may also occur; we shall now 

give an example of these. 

We have seen tliat tlie simple system composed of the first 

derivatives of an invariant function u is covariant; we now 

proceed to examine the double system of the first derivatives 

' of a covariant sim})le system Ui, As a j)articular case, if the 
0 X 

du 
u/r are the derivatives of a single function u, we cover the 

dx, 

case of the transformation of the second derivatives of an in¬ 

variant function. 

To find the transformation formulae for this system, i.e. the 

relation between the terms ^ ' and the terms „ *, we start from 
dxj dxj 

tlio transformation formula for the u’s: 

1 VX; 

Differentiating it with respect to Xj, and considering the 

on the right as functions of the x's and therefore of the x's, we 

get 

dui " dx^. dx,, 3% , y d^X/, 

eXj 1 vXi uX^ ^ 1 OXiOXj 
(22) 

If the last sum were absent, the law of transformation would 

be that of covariance. But in fact the presence of the second 

derivatives of the x'& with respect to the x's shows that the 

system we are examining is neither invariant, nor covariant, nor 

contra variant, nor mixed, and therefore is not a tensor, its law 
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of transformation is more complicated than any we have yet 

examined. A similar result is true more generally for the system 

composed of the derivatives of any tensor. 

It is often necessary to consider the derivatives with respect 

to the independent variables of the elements of a tensor, covariant, 

contravariant, or mixed. In order to avoid the complication 

just observed, it is therefore convenient to replace these deriva¬ 

tives by linear combinations of them with the elements of the 

tensor, so chosen that those terms which h^ad to the aforesaid 

complication disappear in the transformation formula}. This is 

the problem which the Absolute Differential Calculus jjroposes 

to solve; it does so, as we shall see farther on, by introducing 

an auxiliary element, namely, an invariant differential quadratic 

form. We shall therefore devote the next chapter to the study 

of this important element. 

CHAPTER V 

Geometrical Introduction to the Theory of 

Differential Quadratic Forms 

(a) The Line Element on a Surface 

1. Parametric equations of a surface. 

The meaning of the term ‘‘ parametric equations of a sur¬ 

face” is known from analytical geonic^try. We propose, however, 

here to examine the idea from the beginning, in order to find the 

formulse in the shape which is best suited to our purpose. 

We shall use the letters y^ throughout this chapter 

to represent the Cartesian co-ordinates of the points of space 

referred to three orthogonal axes. Now consider a surface, or 

more generally a piece of a surface a, to which alone the following 

remarks are understood to apply, and suppose that there has 

been established, in any way whatever, a one-to-one correspon¬ 

dence between the points of a and the pairs of values which can 

be assigned to two parameters X2 within a certain field C 

of a plane representative of the arguments X2 (cf. the genera] 

remarks in Chapter I, § 1). 
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This implies that the points of a and with them their Cartesian 

co-ordinates are definite (and finite) functions of X2 

field C. We shall accordingly write 

Vv ^2) 2, 3), ... (1) 

where for subsequent purposes the three functions y^, must have 

derivatives, to any order which we may have occasion to consider, 

which are continuous in the field C, 

But this behaviour of the functions is not in itself sufficient 

to ensure that the equations (1) do (ffiectively define a surface, 

i.e. that the supposed one-to-one corres])ondence does in fact 

exist between C and the points of a portion of a two-dimensional 

manifold. 

It might for instance happen that only the sum -f- X2 

appeared in the equations (1), in which case the dependence on 

two paramet(*Ts would be only apparent, only one of them being 

essential. In this case the equations (1) would define a piece 

of a curve. To exclude the possibility of anything of this kind 

we shall suppose that two of the equations (1) are soluble (within 

C) for .Tj, X2. so that by solving them, and substituting the 

values so found in the remaining equation, we can get one (and 

only one) relation between y^, y^, y,^, i.e. the equation of a surface. 

This is equivalent to imposing the condition that the char¬ 

acteristic of tlie functional matrix ^ of the equations (1) is 2. 

Then the equations (1) will actually represent the parametric 

equations of a piece of a surface a; and it could be shown that 

—with the restriction, if necessary, of the field C to a convenient 

portion F of itself (around an arbitrarily chosen point)—the 

portion of surface so defined is such that to any point on it there 

corresponds one and only one s(d of values of the parameters 

in the field F. Accordingly, with this qualitative restriction as 

to the field—which we shall always consider as being of the 

type F—in which the parameters are made to vary, we 

are quite justified in calling x^ curvilinear co-ordinates on 

the surface a defined by equations (1). 

Giving x^ a constant value, and making x^ vary, we get all 

the points of a line, which we shall call the line x^ ~ constant, 

or the line x^, or more shortly, the line 2 (since only X2 varies along 

^ §§ 6, 7, pp. 8 12. 
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it); in the same way we can define the lines Xg = constant, or 

the lines or merely the lines 1, as those along which only 

varies. We can thus think of our surface (or portion of surface) 

a as covered by a double network of lines {co-ordinate lines) 

such that two and only two—one line Xj and one line Xg—pass 

through every point of it. 

2. Expression for ds^. 

We shall now fix two infinitely near points, P, P\ on a; 

let their curvilinear co-ordinates be 

X,, X, + dx- (i = 1, 2), 

and, subject to the equations (1), let 

Vv + dVu 2, 3) 

be their Cartesian co-ordinates. 

Note that in order to specify a point P on cr, we may take 

arbitrarily (within F) the two co-ordinates Xg; and so also, 

in order to reach P', the two increments dx-^, (ixg. 

The are defined by the equations (1), so that their differ¬ 

entials are connected with the ^ix's by the equations 

dy,. (..-1,2,3), . . (2) 
1 OX^ 

which are obtained by differentiating the equations (1). 

We shall calculate the distance PP' — ds, or rather, as 

being more direct, its square 
3 

ds^ ^,dyj^, 
1 

Substituting the expressions (2) for the dy'^, we shall have 

ds'^ = iii- = l^dx.dxX^^^ 
1 ] OXi 0X4 1 1 OXi OXh 

/Sx,- dxk 

from which, putting 

(3) 
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(by which we define a very important symmetrical double system 

of regidar functions of the ;r’s), we get 

ds- .(4) 
1 

This quadratic form, wliich, as we sliall see, is fundamental 

for the study of the metrical pro]i)erties of our surface, is an 

obvious generalization of the exfircssion 

ds^ — dx^ + dy^ 

which in CVirtesian co-ordinates gives the distance between two 

infinit(ily near points of a plane. 

We shall now sliow that the form (4) is definite and 'positive 

i.e. that it tuiyer l)(*comcs either zero or negative, whatever 

values (real and not zero) are assigiied to the r/j’s. TJjat it 

cannot be negative is at once seen from the fact that it is 

the sum of the squares of the f/?/\s, which are always real if 

the c7.r\s are real. It could therefore vanish only if all the di/s 

vanished, and we shall show that this is impossible for any 

actual displacement (on(‘ in which dx^ and are not both 

zero). 

In fact, let us try to suf)pose that we can have 

--- rf//2 -- dy^ 0. 

Using equations (2), these become three linear homogeneous 

equations in dx^, dx.y. In order that any two of these may be 

satisfied ])y non-zcr^ro values of t hese variables, the corresponding 

determinant must vanish; since^ we may choose arbitrarily the 

pair of c'quations to be satislied, we conclude that all three 

of the functional determinants (of the second order) of the 

y’s with res])ect to the r’s must vanish, which contradicts 

the hypothesis that the characteristic of the functional matrix 

is 2. 

The general thenrem relating to simultaneous linear homo¬ 

geneous equations could also be applied directly; namely, that 

the number of independent solutions is the difference between 

the number of the unknowns and the characteristic of the matrix 

of the coefficients—in our case 2 — 2, or 0. 

From the proof that the quadratic form under discussion is 
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definite, it follows, by a known theorem ^ on quadratic forms, 

that the determinant 

« = j! a* j{ 
composed of the coefScients of (called the discriminant of 

the form) is not zero; in particular, when, as in the present case, 

the form is positive as well as definit(^ we have specifically a > 0. 

The fundamental form (t) calls for one last remark, almost 

obvious but important. This is that the system of the coefficients 

aij^ is covariant with respect to any transformations whatewer of the 

variables ^2 (which justifies our having |)Iaced the indices 

i, k below). Tliis covariance follows directly (applying a remark 

made at the foot of p. 81) from the invariance of the quadratic 

form ds-. 

3. Determination of the directions drawn from a generic 

point. 

In the space a direction drawn from a generic point 

P may be considered as d(‘termined by an infinittisirnal segment 

^ Tlie theoreiii referred to i« as follows. Let 

n 

0 = (tiff. Xi X]c 
1 

be a definite ([uadratic form in n variables; vve siiall show that its discriminant a 

cannot be zero. 

In fact, putting n 
yi = (lifcXk {i = 1, 2, . . . ?i), 

1 
n 

we get <p = 
1 

Now if a — 0, wc could make 0 — 0 without .all the x’s being zero (contrary 

to the hypothesis that the form is definite); we should only have to make all the 

y'a zero, by solving the 7i linear homogenecuis etiuations 

n 

^ (^ = L 2, . . . w), 
1 

which would be soluble, giving values for the ac’s which are not all zero, provided 

a = 0. 

For definite positive forms a is therebire also necessarily positive. One way of 

seeing this is to apply one of the infinite number of (real) linear substitutions 

which reduce 0 to the canonical form (see e.g. Bianchi: Lczioni di geomctria 

analitiea^ Appendix, pp. 571-'692; Pisa, Spoerri, 1920). It is obvious that a 

positive form which contains only squares of the variables has its discriminant 

a > 0. But the original a and a are connected by the relation a = aA'-, where 

A denotes the determinant of the linear substitution. (See p. 157.) We 

therefore necessarily also have a > 0. Q.E.D. 
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having one end at P, or if preferred by another point P' infinitely 

near P, or, which comes to the same thing, by an infinitesimal 

displacement of P. 

Now suppose that P belongs to cr, and consider the directions 

drawn from P which are tangent to the surface. To determine 

them we have to take points P', infinitely near P and belonging 

to <7. If therefore we call the surface co-ordinates of P and 

we can determine P' by the surface co-ordinates 

x.2^ + dx^. 

Thus to cadi pair of infinitesimats dx^, dx2, there corresponds 

one and only one tangential direction d/rawn from, P. To one direc¬ 

tion, on the other hand, there correspond an infinite number 

of pairs of differentiaJs whi(;h differ from each other by a (positive) 

factor, since the length ds of the segment PP' chosen to deter¬ 

mine the direction is a priori arbitrary, the only condition being 

that it is infinitesimal. 

In order to make the correspondence one-to-one, we shall, 

in order to determine a direction, replace the differentials by the 

proportional quantities 

\\_dxi ^2 _ ^^2. 

"■ ds' “ (is' 

these are unchanged if we multiply dx^ and dx^ ^^y a positive 

factor A*, since it follows from equation (4) that then ds is also 

multiplied by k. 

These quantities are called parameters of the direction and 

obviously reduce to direction cosines when the surface a is a 

y)lane and x^, represent orthogonal Cartesian co-ordinates. 

The parameters are not independent but are connected by the 

relation 
2 

- 1, .... (5) 
1 

which is obtained by dividing equation (4) by ds- and which 

corresponds to the well-known identity for the Euclidean plane 

that the sum of the squares of the cosines — 1. 8ince ds is an 

invariant and the dx^s> are contravariants, the parameters are 

also contravariants, which justifies our having placed the indices 

above. 
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Instead of the parameters two linear combinations of them 

are sometimes used; these are 

Ai A^' ('*■ - 1, 2), . . . (()) 
1 

which are called moments. Since the coefficients a,-;, form a co- 

variant double system (cf. § 2), and the parameters, as we have 

just shown, form a contravariant simple system, it follows that 

the moments are awarianis.^ 

We showed in § 2 that the determinant a is not zero; the equa¬ 

tions (G) can therefore be solved, giving the formula) 

A‘'- .(6') 
1 

which give the parameters in terms of the moments. The para¬ 

meters and moments are connected by a particularly simple and 

remarkable bilinear relation, which follows immediately from 

(5) and (G). In fact, multiplying the equation (G) for the generic 

index i by A', and summing for i — 1 and i 2, we get from (5) 

^ \.(r/) 
1 

It follows directly that the moments also are connected by a 

quadratic relation. We need only substitute in (5') for A' the ex¬ 

pression given by formula (G'), wliich gives at once 

^i\c — 1.(b ) 
1 

4. Angle between two directions. Contra variance of the 
coefficients a '* . 

Consider two directions on a surface drawn from a single 

point P, We shall denote them by X and jx, where these two 

symbols mean more precisely the two unit vectors which deter¬ 

mine the given directions. The parameters and the moments 

of X will be denoted by Ab A,-, and those of p. by /x', p.,, respectively. 

We propose to find the angle between the two directions as a 

function of the parameters or of the moments. 

Denoting the increments of the co-ordinates by 

1 Cf. § 10, p. 70. 
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dx^ respectively, the direction cosines of X, for a displacement 

ds along X, will he 

h ^y" I: ^y^x’ 
ds ds dx^ 

{v = 1,2,3). . (7) 

Similarly, denoting by the symbol S tbe increments of the co¬ 

ordinate's for a displacement hs along (x, we have for the direction 

cosines of this direction 

8,v Tdx, hs - 

Hence, from the usual fornml.'n of analytical geometry, W(» 

gef 

1 

yy. 8//,. 
dti S.v 

V V ^y- f*//,. y/, /.• 

] 1 dxi aXf^ 
2,v,.A'' I; ^y. ^y. 

1 d X- d Xi^ ’ 

and therefore finally 

cosi) S;,, Uj A'/x^ .... (8) 
1 

Substituting for /x\ or A', or l)oth, their expr(‘ssions in terms 

of the moments, we get for cosh the following equivalent (‘Xpres- 

sions: 

cosO . . . 
1 

• • (8') 

cosh s, A, fi', . . . 
1 

■ • (8") 

cosh 

-) 

X, p . . . (8"') 
1 

The last of these formula*, enables us to see that the notation 

is in agreement not only with the convention adopted for 

reciprocal elements, but also with that of writing the indices of 

contra variance above. For putting 

Ui^ \ds, ty -- ix;hs (?:, h 1,2), 

where we note that the ?x’s and the v’s are independent variables 
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(not connected })y any relation as ar(i the A’s and the /x's), we can 

write equation (8'") in the form 

rfsS.s cosf> — 
1 

since the left-hand side is invariant, and the right-hand side con¬ 

sists of a bilinear form in two sets of arbitrary covariant variables, 

it follows that the coeflicients a*’"' are contra variant. 

To find sin O', we can form the })roduct by rows of the two 

determinants 

A2 !Ai Ao 
X I 

y} (IT /ig 

Applying formulae (5'), (8'), and (8"), this becomes 

1 cosh 

cosh 1 
-- 1 ~ cos“h - sin-h^. 

We therefore have 

sinh- “ 
A2! 

oi X 

a; 

1 

(9) 

where the radical must have the sign +, since by definition the 

angle h between two directions always < tt, and therefore sinh 

> 0. 

The expression (9) can be put in another form. It is easy to 

verify that 

4 j ^11 ^12 : A2 

— a 
A' A® 

(^2 1 ^21 ^^22 'i/xl 1x2 i 
1 

and therefore 

sinh 

or also sinh = va 1^1 

(9') 

(9") 

where in each case it is understood that the radical is to have 

its arithmetical value. 
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5. Associated, and in particular reciprocal, tensors. The 
typical example of the parameters and moments of a single direc¬ 
tion. 

Take a generic tensor (with reference to the variables Xg) 

'1 H 

of rank m + /x; if we compound it with the coefficients 

of our expression we can transfer any one of tlie indices A, 

say from above to below, so getting 

...h^ 

.h 
k h.2 . 
i, L . . 

which is a tensor of the same rank, but with an index of covari¬ 

ance more and an index of contra variance less, namely h^. Simi¬ 

larly, compounding with the contravariant double system com¬ 

posed of the reciprocal elements (cf. § 4), we can transfer 

any one of the indices of covariance, say from below to above. 

We need only put 

‘{■2 • . . t-in 

in which the system 0 is also a tensor of the same rank. 

These operations can obviously be rejH'ated, vso as to transfer 

not one but several or even all of the indices of the given tensor. 

All the tensors so obtained are called associated tensors of the 

tensor , so that association is a relation which is 

dependent on a given ds'^. In particular the tensor 

hi h,. . . hf. 

h - ‘ ■ jm h h.. .k ^ ^ 
1 

.. a tn Jiti 
^hiki ^hJc2 ,au , 

hJ2 ‘- ha 

in which the indices of covariance are the same as the indices of 

contra variance in A, and vice versa, is said to be reciprocal to 

A, the use of the term being justified by the consideration that 

the relation is reversible, A being the reciprocal of Z in the same 

sense as Z is of A. This can be shown explicitly if we suppose 

the above formulae defining the system Z solved for the A’s, 

Equations (6) and (6') show that the parameters and moments 
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of a single direction form a particularly simple and striking 

example of a })air of reciprocal systems. 

Re/marh 7.—The definition of the tensors associated with a 

generic tensor A involves essentially a specific ds-, Avhose co¬ 

efficients a,/, and their reciprocals a''‘ form ])art of the definition. 

When it is necessary to em])hasize this fact, we can do so by 

speaking of the tensor or tensors as associatinl with respect to the 

ds“ in (ptesLion, 

Remark //. - E'er the symmetrical covariant double system 

a,,, and the contra variant system com})ose(l of the reciprocal 

elements from wliich the associated tensors are constructed 

by composition, we could plainly take the coefficients of any 

other invariant cpiadratic cjy instead of those of r/.s- (provided 

only that (/> is irreducible, so that the reciprocal does in fact 

exist). We should then have associated systems with respect 

to the (juadric (f>. 

Remark 77/.—AVe may ]K)int out at this stage that the 

idea of associated systems holds goo<l as it stands for any 

number of variables Xc,, . . . We need only suppose that 

the indices take the values 1,2,... 'H, and that the auxiliary 

element is represented by an irreducible difterential (juadratic 

form (f> - ^-Kaji.dxi^dxi. in n instead of in two variables. 
1 

6. Surface vectors. 

Let R be a non-zero vector drawn from a point P of the surface 

c7, tangentially to the surface; we shall call it a surface or tan¬ 

gential vector, and we can determine it by its Cartesian components 

y,, (p — 1, 2, 3) or, in closer agreement with its intimate relation¬ 

ship to the surface, by its magnitude R and its direction, the 

latter being determined by its parameters A' or its moments 

A/. These three quantities are not independent, since the para¬ 

meters (or moments) are connected by the usual identity; the 

vector is therefore determined by two essential quantities. It 

will accordingly be convenient to represent it by the two inde¬ 

pendent quantities 

R ^ R\^ (i = 1, 2), . . . (10) 

or alternatively by the pair 

R, - RX, a - 1,2), . . . (10') 
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which are called respectively the contravariant and cmariant 

components of the vector. 

These obviously form a pair of reciprocal systems, since by 

the preceding section the parameters and moments are reciprocal, 

and equations (10) and (10') show that and R; diff(;r from the 

parameters and moments only by a common factor R. 

R can be calculated from them by means of the identities 

R R’ -r R\ ... (11) 
1 

n.R, R\ . . . (U') 
1 

t,R,n' .(11") 
1 

(which are merely (5), (5'), and (5"), each multiplied by R^), 

and then X and A, follow from equations (10) and (10'); thus 

we se(‘ that tiie vector is conipletely determined by its contra- 

variant (or by its covariant) components. 

To find the relation between the contravariant components 

and the components F,, with respect to Cartesian axes y2, 

i/.^, note that tlie direction cosines of the direction whose para¬ 

meters are the A's are given by equation (7), and hence the 

components (which are equal to these cosines each multiplied 

by R) are given by the equation 

i; .(12) 
1 

It is now obvious that the covariant components can be 

obtained from the contravariant components, and vice versa, 

by means of formulae completely analogous to (6) and (6'), and 

obtained from these by multiplying them by R. 

If we have to deal with zero vectors, i.e. having their length 

R zero and their direction indeterminate, we find that in order 

to satisfy equations (10) and (10') in this limiting case we have 

to take R' 0, R, -- 0. With these values all the other 

equations ((11), (11'), &c.) arc also satisfied, as can at once 

be seen from the fact that both sides of each equation vanish 

separately. 

By an analogous procedure we c^n find simple expressions 
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for the scalar product R X V of two surface vectors R, V, re¬ 

membering that if is the angle between the vectors we have 

RX Y RV CUSS'.(13) 

In fact, considering first the general case of two vectors neither 

of which is zero and whose versors are X and respectively, and 

multiplying equation (8') by RV, we get 

R X V -- .... (14) 
1 

while the equations (8), (8"), and (8'") would give analogous 

formuhn. 

The expression (14) for the scalar product also holds, like 

formula (13), when one or both vectors are zero, the scalar ])ro- 

duct (by definition) and the right-hand side being then zero in 

both formulae. 

7. Parameters and moments o£ the co-ordinate lines. Element 
of area. 

We shall next obtain the direction parameters of a co-ordinate 

line, e.g. the line (i.e. x^ - constant), considered in the 

direction of x increasing. For an infinitesimal displacement in 

this direction, we have 

dx2 ~ 0, ds^ — Uji dx^^ + 2a^2 ^^2 + ^22 ^^2“ ~ %i 

Since ds is essentially positive, and dx^ is positive by hypo¬ 

thesis, we have, extracting the square root of the last of these 

formulae, 

ds —" ^11 ^^1 ? 

where the radical is taken positively. It follows that 

Ai 
dxi 

Js 
A2 

V 11 

dx^ 

ds 
0. (15) 

Similarly, the parameters of the line 2, in the direction of 

002 increasing, will be 

Cltfo 

(15') 



DIFKKRHNTIAL quadratic forms 99 

Substituting tliese expressions in the equations (8) and (9'), 

we can get tlie angle il between the two co-ordinate directions. 

The resulting formula) are 

cosQ “ ^12 

\/ ^21 Ueys) 
• • (16) 

sinQ ™ 
\/ a 

Jflu 0522 
■ • (16') 

Equation (16) shows that the necessary and sufficient condi¬ 

tion that the co-ordinates x^ may be orthogonal is ~ 0. 

If we take an infinitesimal element of surface, obtained by 

drawing two infinitesimal segments d.s*, S.v, from a point P along 

the co-ordinate lines, anil completing the parallelogram, the 

area of this element will be 

dshs sin 12 

\/dx^ . v/a 22 dx^. 
\/ a 

\/1^21 ^22 

s/a dx^ dx^. (17) 

8. Fundamental observation (Gauss’s) on the intrinsic geo¬ 
metry of a surface. 

We are now in a position to make an observation which will 

show fully the importance of the quadratic form (4) in the study 

of the surface. For this purf)ose we shall first make use of certain 

intuitive considerations in order to fix the idea of the mtrinsic 

geometry of a surface. 

Let us give the concej)t of a surface a material form by think¬ 

ing of a flexible and in extensible sheet of matter on which figures 

can be drawn, and such that it can be deformed, bent, and folded 

in an infinite number of ways, but not torn or stretched. When 

a surface of this kind is deformed the figures drawn on it will 

take different spatial configurations, but some of their properties 

will be invariant. For instance, if two lines intersect, they retain 

this property however the sheet is deformed; the length of a 

segment of a line remains the same, and hence the distance 

between two points, measured along the surface (i.e. along the 

shortest line joining them which lies wholly on the surface), 

is unchanged; the angle between two lines which meet at a point 
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is unchanged; and so on. In short, all those properties which 

involve no element alien to the surface (or, as it is usually ex¬ 

pressed, which can be investigated without leaving the surface) 

are independent of the deformations of the surface, and con¬ 

stitute its intrinsic geometry. 

Even in elementary geometry we have examples of this 

kind. Plane geometry can be, and most of it is, constructed 

without using points outside the plane, and is therefore intrinsic 

as regfirds its plane; it still holds—at least for suitably restricted 

regions—if the plane is folded, or wrapped round a cone or a 

cylinder. 

Now consider the fact that the fundamental elements for the 

study of the metrical properties of a figure are: (a) the distance 

between two infinitely near points, and {h) the angltj between 

two directions. In fact, the length of any line whatever is found 

by integration from the length of its infinitesimal elements, the 

area of a figure can be calculated by breaking it up into elemen¬ 

tary parallelograms, and so on. Now the formuhe (i) and ((S) 

(or (8'), &c.) provide us with precisely these two fundamental 

elements for the study of the intrinsic geometry of a surface, 

whenever the coefficients of ds‘^ are known as functions of the 

a:’s; these coefficients therefore determine the metrical (intrinsic) 

properties of the surface, and are invariant for any deformation 

whatever of the surface which does not involve stretching. Hence 

the particular interest of all those theorems which can be expressinl 

analytically in terms only of the surfaces co-ordinates x and the 

coefficients of the fundamental form; namely, the fact that 

they express properties belonging to the intrinsic geometry of 

the surface. The introduction into mathematics of this idea, and 

the fundamental observation relating to it, are due to Karl 

Friedrich Gauss. 

9. Note on developable surfaces. 

A developable surface is one which is flexible and inextensible 

and can be made to coincide with a region of a plane, without 

tearing or overlapping. Examples are the cylinder and the cone, 

and any surface formed of several portions of a plane. The in¬ 

trinsic geometry of surfaces of this kind, as we have seen in the 

preceding section, is identical with that of the plane, and their 

line element can take the same forms as that of the plane; e.g. 
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we can choose a system of surface co-ordinates such that 

ds^ = dx^ dx.^. 

Consider a simple infinity of planes, which we may think of 

as represented by a linear equation in the Cartesian co-ordinates 

Vi, 2/2’ .Va? whose coefficients are continuous functions of a parameter 

The envelope of this family of planes is a developable surface 

to which they are tangent planes. This proposition is rendered 

intuitive by the following argument based on infinitesimals. 

Let Wi, ... be planes of the family corresponding to 

successive infinitesimal increments of the parameter w, and let 

be the intersection of tOj and ta2, 

<72 the intersection of TUg and 

and so on. By definition, fhe 

geometrical locus of all these lines 

is the envelope surface, I'he lines 

g^, r/g, . . . are called its charac¬ 

teristics or generators] each of the 

planes tn contains two of them, 

forming an infinitesimal angle (of. 

fig. 1), and the envelope may be 

considered as made up of an in¬ 

finite number of these infinitesimal 9‘ 

plane regions. It is thus clear Fig. i 

that the envelope surface can be 

developed into a plane by successive rotations about the 

generators r/j, 2/2 •• • • 
We shall shortly have occasion to consider the envelope of 

a particular family of planes (depending on a single parameter), 

namely, the tangent planes to any surface whatever cr, at all 

points of a syx'cilied line T lying on the surface. The envelope 

of tliese planes is a developable surface o-y., which is called the 

developable circumscribed to a along T\ since the tangent planes to 

a at points on T are also tangent planes to cr,/, it follows that the 

circumscribed developable touches a along the line T. 

{b) Paxallelism with respect to a Surface 

10. Geometrical definition. 

In Euclidean plane geometry, when two points P, Pj, are 

fixed, then to every directioxi drawn from P there corresponds 
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one and only one direction drawn from and parallel to the 

first. We now propose to extend this idea from the intrinsic 

geometry of the plane to that of any surface a whatever. 

For this purpose consider a point P of a, the corresponding 

tangent plane td, and a gem^ric direction drawn from P tangenti- 

ally to a and therefore lying in ttj. We shall consider the direction 

as determined by the corresponding versor (unit vector) u, and 

shall accordingly refer merely to the direction u instc^ad of the 

direction whose versor is u. Let be any other point on a, 

and ttjjL the tangent plane at P^. 

If the surface a is developable, we can obviously establish a 

corres])ondence, which we shall call parallelism, between tht^ 

directions drawn tangentially from P and those from P^. The 

direction which becomes parallel to u in the ordinary sense 

when a is developed upon a plane will be called parallel to u with 

respect to the surface. 

This criterion fails in the case of a non-developable surface 

a (even of the most elementary type, such as a sphere), and it 

is natural to look for an adequate generalization of it. The most 

direct solution is obtained by adding to the elements of position 

already considered (which are sufficient without further definition 

for developable s^irfaces) a connecting law, a pri(m arbitrary 

according to which Pj is to be considered as reached from P by 

moving along a specified curve T lying on a (the curve of dis- 

placement). 

We can now, with reference to this curve T, define parallel 

displacement from P to P^ as follows. Consider the developable 

circumscribed to o along T\ this surface, which we shall call 

cTy, is, as we know, tangential to a along the given curve, and in 

particular at P and P^. Hence the directions tangential to a 

at these two points are also tangential to cTy.. We can now take 

for our definition of surface parallelism on a along T the paral¬ 

lelism which we have associated with the developable 0-^., and 

we shall agree to say that the parallel at P^ along the line T 

to a generic direction (in the surface) u at P is the direction 

(in the surface) which, on the developable o-j., is parallel to 

u in the sense just defined.^ 

^ A simple and so to speak automatic way of constructing parallel directions is 
to roll the surface <t along a plane. Cf. Peksico : “ Realizzazione cinematica del 
parallelismo superficiale ”, in Rmd, delta R, Acc. dei Lincei, Vol. XXX (2nd 
half-year, 1921), pp, 127-128, 
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11. First consequences. Equipollence of vectors with respect 
to a surface. 

A necessary consequence of the foregoing definition is that 

—contrary to what happens for develo})ables—the direction Uj 

which is parallel witli res]>ect to the surfiice to the direction 

u at P, is not uniquely determined ])y P, u, P^, alone, but in 

general dcjxmds also on the curve of displacement. From this 

point of view the g(‘oinetrical concey)t of parallelism can be 

compared with the physical concey)t of work, which involves 

the integral of an exj)ression of the form X-^dj\ + X.^dx.^ (where 

^2 are co-ordinates, of any kind, of the ])oints of cr). This 

integral in general dey)ends on the line T of integration; only 

in the particular case wdien Xydx^ -f- X^dx.^ is a perfect differ¬ 

ential is there no such dependence. 

Ketiirning to paralhdism along T, we must first point out tliat 

angles are nnehanged by parallel displacement. That is to say, 

if a, b ar(‘. tw^o generic directions (in the surface) at P, their parallels 

at Pj with respect to f he surface, aj, bj, contain the same angle. 

This is obvious if we notice that we have parallelism in the 

ordinary sense in the ])lane upon which a,,, is develo})ed, and that 

furtluT the oj)eration of develoj)rnent does not change angles. 

Up to this point of the discussion we have referred solely to 

directions, with th(‘ir corresponding versors. It is clear that the 

same construction as that used to pass from u to can be a})plied 

to a tang(‘ntial vector R of any (non-unit) lengtli R. If u is the 

corresponding vc'rsor, we have R — Pu, from which we get a 

vector Rj ~ Puj, i.e. a vector localizc^d at P^, having the same 

length as R and the same direction as the versor u^ which is 

parallel to u with respect to the surface. We shall naturally 

say that the vectors R and R^ are equij)ollent with respect to 

the surface, with reference to the path T. In substance this 

concept of equi])ollence with respect to a surface reduces at once 

to parallelism, two tangential vectors being equipollent when 

they are parallel and have the same length. 

The case where the curve of displacement T is a geodesic ^ 

’I.e., with the usual definition, any line on cr such that at every point its 
osculating plane is ])erpeudicu]ar to the tangent plane to cr. The lines which give 
the shortest path lying on the surface between two given points always have this 
property. Further, the reciprocal theorem is also true (under certain restrictions); 
hence to define geodesics we can use sometimes one and sometimes the other 
criterion. We shall return to the question farther on (of. p. 130). 
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on a calls for a special note in relation to parallelism. T is then 

also a geodesic on In order to see that this is so, note that 

a and (jy. have the same tangent planes at all points of T\ hence, 

if the various osculating planes of T are normal to one of the 

surfaces, they are also normal to the other. When cr^, is developed 

on a plane, the geodesic T becomes a straight line (an immediate 

consequence of its characteristic property of giving the shortest 

path between any two points on it), and the directions u and u^, 

which become parallel in the plane as a result of the development, 

will make equal angles with this line. Since develojnneiit does 

not change angles, we deduce that 'parallel direcf/ions on u at 

points of a geodesic malce eqiml angles with this geodesic} In 

particular, if u coincides with the direction of T at P, then 

Uj will coincide with the direction of T at or in other words, 

the directions of a geodesic at its various points are all }.)araHel 

(along the geodesic itself); more shortly, the geodesics arc auto- 

parallel curves. It follows from these arguments that auto¬ 

parallelism is a characteristic property of geodesics and can be 

used to define them.^ 

12. Infinitesimal displacement. Infinitesimal form of the law 
of parallelism. 

Suppose in particular that Pj is infinitely near to P, so that 

the path T is reduced to the elementary arc PP^, wliich is uniquely 

determined (except for infinitesimals of order higher than the 

first) by its extremities. For the development in this case we 

need only give the plane lUi an elementary rotation round the 

straight line r in which it intersects w. Incidentally we may 

note that the direction of this line is said to be conjugate to the 

direction PPj, at P or at P^ (both points giving the same result, 

except for infinitesimals). AVe shall denote by — co the infini¬ 

tesimal vector, parallel to r, which in magnitude, direction, and 

^ Taking this property as defining parallelism with respect to a surface we can 

deduce from it for the sphere an elegant geometrico-kinernatical construction from 

which various other properties follow easily. Cf. G. CoimKLMNi; “Genesi 

cinernatica intrinseca del parallelismo di Levi-Civita ”, in Rend, delta R. Acc. dei 

Lincei, Vol, XXXII (1st half-year, 192^1), ]>p. 72-7f>. 

This statement will he recognized as an obvious extension to surfaces of any 

kind whatever of the primary intuition of the nature of the straight line, expressed 

by Euclid in the words evHela ypafJLfxi} eVrij/, t^tls taov roTs itp' tavriji cnj/xeloii 

Keirai (a straight line is that which lies ecjualiy with respect to all its points). 
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sense represents the elementary rotation by means of which tn, 

is brought into coincidence with m. Then co will be the elementary 

rotation which will bring tUi back from the plane of development 

w to its original })osition as tangent plane at Pj. Let R be a generic 

tangential vector drawn from P; in order to find the ccpiipollent 

vector Rj at Pj, we draw from P^, when in the plane of develop¬ 

ment, the vector e(]uij)o]lent in the ordinary sense to R, and then 

bring the plane back to its original position, carrying with it 

the vector so constructed. Thus the vector R^ is merely R, 

after having undergone a displacement (of no interest if we 

consider the vector independently of its point of application) 

and also the rotation oj. From the elementary principles of 

rigid dynamics we find that the difTerence between the vectors 

Ri and R, i.c. the vectorial increment dR of the vector R during 

the parallel displacement from P to P^, is given by 

(IR - to A R, 

i.e. the vector product toR. 

As both to and R are vectors in the plane tu it follows that the 

increment dR is perpendicular to this ]>laiie, or, in particular, 

is zero A 

We shall now show that this condition, combined with the 

condition that Rj is a tangential vector (i.e. belongs to tUi), 

completely determines the vector R^, so tliat we may take as 

the differential definition of parallelism with respect to a surface 

th(^ following geometrical relations, in which n denotes the normal 

to to: 

li n,.(18) 

Rl 1| tOjL. 

To prove this, note that the equation 

R Rl - dR 

must be satisfied; i.e. that it must be possible to resolve the 

vector R into one component R^ parallel to a given plane and 

^ The last-meiitionefl caHr will occur if R ba.s the direction of w, i.e. the con¬ 

jugate of ; in this, and only in this case, the jamallel Rj with respe(^t to the 

surface coincides with the Euclidean parallel. This remark is due te Ekofkssor K. 

Bompiant. wlio has made use of it to generalize the theory of systems conjugate to 

surfaces l)elonging to non-Euclidean spaces; cf. AUi del IL hi, Vendo, Vol. LXXX, 

1921, p. 1120. 
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another, — rfR, parallel to a given direction not contained in 

the plane; it is known that this can be done in only one wayd 

13. The intrinsic character of parallelism. 

Returning to the cpiestion of j)arallel displacement along an 

arc T of finite length, we see at once that if T is a segment of 

a geodesic, parallelism depends solely on the intrinsic })ropertics 

of the surface cr; i.e. it depends on the nature of the linear element 

ds, and not on the configuration of the surface in sj)ace, as might 

a priori have been supposed from the geometrical construction 

(which uses the surrounding space) or the ecpiivalent formuhe 

(18) and Rj || 

In fact, we need only recall the two general properties of the 

conservation of angles and the autoparallelism of geodesics. 

The parallel U| at to a generic direction u drawn from P 

is determined by the conditions of {a) belonging to the surface 

<7, and {h) of making the same angle at with the geodesic of 

disjdacement as u does at P, It will be seen that we are dealing 

with angular properties which depend solely on the metric of a. 

This argument for a geodesic T can easily be extended to 

the general case, if we sup])ose T divided up into elementary 

displacemients, from a generic point P to a very near point P^. 

In a disjfiacement of this kind the elementary change in the 

direction u is determined, as we have seen, by the extremities 

PPi’, the nature of the line joining these extremities has no 

effect, and we may therefore think of it as a displacement along 

an infinitesimal segment of a geodesic. But a displacement of 

this kind depends only on the intrinsic properties of the surface; 

hence we see that in general this is true also for the change in 

u, and therefore for parallelism, whatever may be the line of 

displacement. 

The same result holds good for equipollence, i.e. for the 

displacement of vectors of any (non-unit) length whatever. 

In fact (§ 11), this length by definition remains unchanged. 

^ Sonic interestinir geometrical conRcrjuences, especially for the case of ruled 

siirfaces, have been ]M»inted out by A. Myllkii in some notes in Comptes 

Rendu8\c^. Vol. 174 (1922), i>]). 997-998; Vol. 175 (1922), })p. 939-941 ; Vol. 176 

(1923), pp. 483-485. Cf. also a njcent note by O. Mayer: “line interpretation 

geometrique do la seconde forme <]uadratiqiie fondarnentale d’une surface en 

relation avec la theorie du parallelisme ”, ibid., Vol. 178 (1924), pp. 954-956. 
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14. The symbolic equation of parallelism. 

The condition (18) can be put in a more expressive form if 
we note that it is equivalent to saying that the vector c?R is 
perpendicular to every direction which is tangential to a at P, 
or in other words, if we think of such a direction as being deter¬ 
mined by an infinitesimal displacement of the jioint P along 
the surface, that rZR is ])erpendicular to all these disf)lacements. 
In symbols, if 8P denotes the infinitesimal vector representing 
the displacement, we shall have 

(IR X SP - 0.(19) 

for any 8P whatever which is tangential to a- an equation similar 
in form to the ecjuation of virtual work. If dY^,{v-- 1, 2, 3) 
denotes the comjxments of dR, and {v ~ 1, 2, 3) the com¬ 
ponents of 8P (in both cases referred to the orthogonal Cartesian 
co-ordinates 2/a)' have identically 

(iR X 8P - - i:.,f/y,82A, . . . (20) 
1 

and the vectorial relation (19) is thus transformed into the scalar 
relation 

.... (19') 
1 

this, or the original equation (19), may be called the symbolic 

equation of parallelism,. 

15. Intrinsic equations of parallelism. 

As the symbolic equation involves geometrical elements which 
do not belong to the surface, it does not show directly that ])aral- 
lelism is a concei)t depending only on the intrinsic properties 
of the surface. But we can (leduce from it without much diffi¬ 
culty other equations which have this important characteristic. 

In order to do so, we shall naturally try to find the values in 
terms of intrinsic elements of the quantities dY^, and 8y^, which 
occur in equation (19'). Take first the displacements 8?/,,. The 
only condition imposed on them—other than that of being 
infinitesimal—is that they represent a displacement along the 
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surface of cr; tlu\y can therefore be expressed in terms of the 

corresponding (arbitrary) variations 8.^2 of the surface co> 

ordinates, by differentiating the equations (1). We accordingly 

have 

1 dx^ 

As the vector R is tangential, we can define it intrinsically 

by means of its contravariant components, and substitute for 

the y/s the expressions (12). 

Putting 

for the sake of shortness, the identity (20) can therefore finally 

be written in the form 

c?R X 8P —- . . . (20') 
1 

since 8^2 are completely arbitrary, it follows that the sym])olic 

equation of parallelism is equivalent to the two following equa¬ 

tions; 

T, - :0 (A: -1,2). . . . (22) 

These are the two equations which define the increments 

dB}, dR^ to be assigned to the components of a generic vector 

R wlien it undergoes a ])arallel displacement along the elementary 

path that th(‘y are really intrinsic equations will be 

clear when the expressions Ty-.-are written out in full, as will now 

be done. 

Differentiating the product on the right-hand side of the 

equations (21), and using the expression for the coefficients 

given in formula (3), the expression for r,, becomes 

dR> + k 4 
'k 'j 'i 

or 

1 1 

2 

dR' + S, R> dx, . (21') 
1 l' 1 OXyj. vX^OXi 

We have now to show that the result of the summation with 
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respect to v can be expressed in terms of intrinsic elements; 

more precisely, tliat it is a linear combination of the derivatives 

of tlie coefficients Consider its general term, and note that 

we can write 

d _ 
d x,^ d Xj d xi dxj \dxi^ dxJ d Xj dxi^ dxi 

or analogously 

d A'’?/,. . 
d Xf V d Xf dxi \0,% dXj) dxfdxj, dx^ 

In order to mai?itain symmetry in the indices 7 and /, we shall 

take half the sum of the expressions on the right of these equations 

to represent the value of the term in question. Noting that the 

sum of the two terms ])receded by the minus sign is exactly the 

derivative with res])(‘et to Xf, of the j.)roduct , we get 
cxj dx, 

... -i-f ~ 4- ^ ~ - 
dx;^ d Xj ? Xf, ^ to X, \d X,, dxj d Xf \d x,^. d xj d r' ?> x^ '^rxj ] 

Now sum with respect to v. Remembering the values of the 

coefficients we get 

I'dxj, dxjdxi ^ SXf dX},\ 

Hence this sum has been p]it in the required form. The 

right-hand side of this equation is represented shortly by the 

symbol 

[3I 

{ChristojJeVs symbol of the first kind)] which is easy to remember, 

the arrangement of the indices corresponding to that of the 

negative term of the linear combination above, while the two 

positive terms have the same indices but differently arranged. 

We shall investigate presently some properties of these symbols; 

for the moment we need only remark that they represent certain 

functions of the surface co-ordinates x.^ which depend only 

on the fundamental quadratic form. 
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Returning to the expression (21') for the quantities we 

can now write it in the form 

T, - dW + 4 bl ^ dx, {k - 1, 2). (21") 
1 1 

Before continuing the argument, it is important to note that 

the quantities r , which (as showui by equation (2T) ) depend 

on two vectors (R and the disj)lace.ment dx^j as well as on 

the coefficients of ds^ and th(hr first derivatives, are covariant. 

This follows from the invTiriance of the linear form S;. 

which is itself shown by the identity (20'). ^ 

The system which is the reciprocal of tlie T//s, namely, 

t' -= «''■>„ {i -- 1, 2), 
1 

is accordingly contravariant; using equation (21"), it can be put 

in the form 

t'' = dR‘ + til R> dxi 1,1- a''‘ [jl, A;], 
i' 1 

or, putting Ej. a''‘ [jl, /•] -- {jl, i} 
I 

{ChrisloffeVs symbol of the second kind), in the form 

= dR‘+ tji[jl, R-> dxi. . . (21"') 

The equat ions of parallelism (22), as is a priori to be expected 

from their geometrical signiffcance, are invariant whatever system 

of curvilinear co-ordinates Xg is chosen. This is evident from 

the fact that they express the vanishing of the covariant system 

T/. (ef. remarks on pp. 71, 84). The equations of parallelism can 

of course also be put in the equivalent form 

(i-],2), . . . (22') 

which also shows that they are invariant. 

Solving them for the differentials dR^\ we get 

o 

dR! - - 2,, {jl, i) R> dxi (t == 1, 2). (23) 
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This is the final form of the differciiitial equations of paral¬ 

lelism. It gives tli(‘ increments of the contravariant components 

of a surface vector in an equipollent displacement along the 

elementary path dx;, expressed in terms of the f/.T/s, the com¬ 

ponents of the vector, and certain functions of position (to he 

considered as giv(in) dtq)ending only on the coefficients of ds^ 

and therefore oji the intrinsic nature of the surface. 

16. Christoffel’s symbols. 

We have introduced the symbols 

{jl, i) - . . . (25) 
1 

which can also be formally exteruled to (juadratic forms in n 

variables; we now propose to examine their more elementary 

])roperties. 

First, it is obvious that both symbols are symmetrical with 

respect to the couj)]ed indices, i.e. that 

[iU>] [jhi] 

Consequently for a form in n variables there are n of each 

kind corresponding to (‘ucF pair of indices. Htmce there are 

in all -f- 1) of each kind (the number of first derivatives 

of the coefficients 

It is easy to express the derivatives of the a^v/s in terms of 

Christoffers syml)ols. Writing down equation (24) and the 

corresp(3nding equation obtained by interchanging I and and 

adding them, we get the following formula, which frequently 

occurs: ^ 

-- [jh k] + [jk, 1]. . . . (24') 

From equation (25), applying Cramer^s rule in the usual 

way, we can get the symbols of the first kind in terms of those 

of the second kind. Multiplying by and summing with respect 

to i, we get in fact 

Uhm] = . . . (25') 
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Lastly, we sliall prove a formula which is frequently used 

and giv(?s tlie deri val i v('s of the determinant a (or more precisely 

of its logarithm) in terms of (dmistotfel’s symbols. 

Applying the usual rule for differentiating a determinant of 

order n, we see that the derivative of a with respect to any one 

of the (say X;) is the sum of n determinants, any one of which 

(say the Ath) is obtained from a by replacing the elements of 

the Xth row by their derivatives. A determinant of this kind, 

expanded from the A:th row, can be written in the form 

a 

I dx 

(the co-factor of aji^. being multij)lied by a); hence 

da 

dxi 
—-/,-y ^ an, 

1 dx. 

or dividing by «, and using formula (24'), 

d log a 

dx, 

Finally, by formula (25), we get 

d loga 

dx, 

n n 

S, +^,{kik}. 
1 1 

The two sums in this formula differ only in the letter chosen 

to denote the index of summation; hence we have 

d loga 

dx, 1 

k}. 

This formula is more frequently written in the form obtained 

by dividing by 2, i.e. 

d log n/a 

dx; 1 

ki k] 1, 2, . . . n). . (20) 

17. Equations of parallelism in terms of covariant components. 

It is easy to find equations analogous to (23) for the differentials 

of the coDariant components of the vector R. These components 
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in fact are obtained from the contra variant components by means 

of the relations (cf. §§ 3, G, pp. 90, 96) 

i?, 
1 

hence, difEerentiating and changing^’ into h in the second sum, 

dR, - 4 dx, R < + ±, a,, dR!\ 
1 GXi 1 

Now substitute for dB!" the expression given for it by formula 

(23), and we shall have 

dR, - 4, dx, R> - 4«- ^ dx,. 
I VXI J 

In the first sum, we can express the derivatives of the co¬ 

efficients a^j in terms of the symbols of the first kind, so getting 

'^nibh i] + [il,j])dx^RH 
1 

in the second, we can sum with respect to k (cf. formula (25') , 

so getting 2 

— i]RUxi. 
1 

We thus have 

dR, ^■^i[il,j]dxiRK 

In order to make the contra variant components disappear 

altogether, we substitute for W from the formula 

R^ 
1 

summing with respect to j (which, by formula (25), changes the 

symbol of the first kind to one of the second kind), we get 

2 
dRi — {il, dxi. 

1 

Finally, changing k into j in order to show more clearly the 

analogy with the equations (23), we have the equations 

dR,=^iji{il,j)Ridxi (i-1,2), . (27) 
1 

(I>655) 5 
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which are equivalent to (23). They are in fact the result of com¬ 

bining certain formulae and identities with the equations (23); 

and reciprocally, starting from (27), an analogous process will 

give (23), as can easily be verified. 

18. Some analytical verifications. 

We are now in a position to give an analytical proof of some 

properties of parallelism which have alrt^ady been obtained as 

immediate consequences of the geometrical definition. 

Consider first the parallel displacement of a vector R along a 

finite segment T of a curve, from P to P^, Let the curve be 

defined by the parametric equations 

Xi{s),.(28) 

where s represents any parameter (which may, if we wish, be 

the length of the arc measured from an arbitrary origin P^^, 

The quantities B! are to be considered as functions of s with 

arbitrarily assigned values at P. The equations (23), divided 

by ds, become 

1 

where the dot indicates differentiation with respect to s, and 

the quantities Xi are of course obtained by differentiating equa¬ 

tions (28), and are therefore to be considered as given functions. 

These are two linear differential equations of the first order, 

in the normal form with respect to the derivatives of the two 

unknown functions hence, as is known from the calculus, 

they uniquely determine these two functions when the (arbitrary) 

initial values are given. We have thus a confirmation of the 

geometrically obvious fact of the possibility of displacing an 

arbitrarily assigned surface vector, and of the uniqueness of the 

result. 

Using the differential equations already found, we shall now 

prove that the length of a vector and the angle between two vectors 

are unchanged by a parallel displacement. These two results 

can be proved simultaneously, as follows. Let R, V, be two 

vectors. Give them a parallel displacement along an infinitesimal 
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path, and calculate the change in their scalar product due to 

this displacement. We shall have (cf. formula (14)) 

d(R X V) - + S, V,dR\ 
j 1 

substituting for dR and dVi from (23) and (27), this becomes 

rf(R X V) = 'Lffi R‘ {il, j[ V.J dxf — Fj {jl, i) Rj dxi- 
1 ' ‘ 1 

Interchanging i and j in one of the two sums, we see that the 

sums are equal, and tlierefore 

d{R X V) 0; 

i.c. the scalar product is unchanged by an infinitesimal (and there* 

fore also by a finite) displacement. Now let V coincide with 

R, so that R X V R‘^, and we at once obtain the result 

that the length of a vector is unchanged by a parallel displace¬ 

ment. Combining this result with equation (13), we see that 

as the scalar product of two vectors and their respective lengths 

are all unchanged, the angle between them (provided neither 

vector is of zero length) must also remain the same. 

19. Permutahility. 

While a tangential vector is intrinsically defined by two 

numbers, the geometrical notion corres})onding to it, as we have 

already said, is a segment of a tangent line at a point P of the 

surface a—an entity which does not belong wholly to or, at least 

in general. If, however, we are dealing with an infinitesimal 

vector, the element of the tangent plane in which it lies coincides 

with the element of the surface cr around P, and we may say that 

we are using only points lying in o*. Hence, for a generic infini¬ 

tesimal tangential vector we can use the ordinary notion of a 

displacement from the origin P to the final point P^, where 

Pj also lies on a. As the length R reduces in this case to a linear 

element ds, it follows from the definition of direction parameters 

that the quantities R\ which are equal to Xds, are identical with 

the increments dxi of the curvilinear co-ordinates in passing 

from P to Pj. 

Next, consider two systems of differentials dx^, Sx^, and the 
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corresponding infinitesimal vectors (or displacements) dP == 

PPi, 8P --- PPg (assumed to lie in g). We sliall use the symbol 

df to denote the increment of / (where / is a generic vector or 

any scalar or vector quantity derived from it) corresponding 

to a paralhd displacement from P to P^; the symbol 8/ 

will be defined in the same way for the displacement from 

P to P^. 

With this convention dhP will represent the vectorial incre¬ 

ment of SP for a displacement from P to P^, and dhx^ the incre¬ 

ment of tlie associated contra variant system Sx^. For the latter, 

equation (23) gives 

(^Sx. — Eji {jl, i}Bxjdxi (i 1, 2). . (29) 
1 

Similarly, the displacement of dP from P to Pg gives the 

increments Mx,-, for wliich we have 

2 

8dXi ^ —'Eji[jl,i]dxj8xi. . . . (29') 
1 

Interchanging j and I in one of these two sums, and using the 

property of symmetry of Christoffel’s symbols, we see that 

dhx; — hdx^,.(30) 

which proves that the two operators d and 8, as just defined, are 

permiUable. 

The geometrical meaning of this result is particularly simf)le. 

Note first of all that for infinitesimal vectors—the only kind 

considered here—the elements of the contra variant system are 

merely the differences of corresponding co-ordinates. Hence, 

if the co-ordinates of P are the we shall have in the first 

place Xi + dxi as the co-ordinates of P^, and -|~ 80:^ as the 

co-ordinates of Pg. Let Q be the point on a reached by construct¬ 

ing at Pi the vector equipollent to 8P; as the contra variant 

system for this vector is Sx^ -f d8x^, we get finally 

dxi -f- 8ic,^ -f- dhx^ 

as the co-ordinates of Q. 

Similarly let Q* be the point on g reached by constructing 

at P2 the vector equipollent to dP\ we get the co-ordinates of 
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by interchanging tlie operators d and 8 in the co-ordinates of 

Q, which gives . , 
+ + dXf + Mx^, 

Applying equation (30), we see that Q coincides with Q*, 

A more illuminating way of expressing the same result is to say 

that the parallelogrmn rule holds for infinitesmial vectors which are 

equipollent with respect to a surface} 

It may be noted that in the foregoing argument second-order 

quantities of the type dhx have been taken into account, })ut 

(dx,)^, have been neglected. If the latter were to be taken 

into account, by considering the vectors SP, dP and the equi¬ 

pollent vectors at and P^ as vectors in space, we should no 

longer have a parallelogram, nor even a closed quadrilateral. 

In fact, referring to the space construction already given (cf. 

p. 105) for vectors-equipollent with respect to a surface, we see 

that while dSP and 8dP are l)oth in the direction of the normal 

to a at P, yet their lengths are in general different, since the 

three points P, Pj, P^ and their respective tangent jdanes have 

a priori no relation between them except that of being infinitely 

near one another. 

Idle formulae (29) or (29') provide a definition of the second 

differentials which is invariant with respect to any change of 

variables. In order to grasp the significance and value of this 

fact, we must recall the conventions as to second differentials 

which are adopted in the elementary theory of the calculus. 

To fix the ideas, consider the simj)ler case of a single inde¬ 

pendent variable. Ordinarily the convention d-x ~~ 0 is adopted; 

i.e. the increments dx are considered independent of x, as is 

quite legitimate. But this simplification does not hold if we 

change the independent variable by putting x /(^), from which, 

on the hypothesis that ive have a reversible transformation, we 

can reciprocally find | as a function F{x) of x. In fact, differ¬ 

entiating twice the formula ^ F{x), we get 

d^ ~ F'{x)dx, 

d^ - F'\x) {dxf -f F{x) d^x, 

^ This property might he taken as the starting point for an intrinsic proof of 

the properties of parallelism, depending only on the metric of cr, and making no 

use of the surrounding space. The method can be applied directly to manifolds 

Vn of any number of dimensions. Cf. H. Weyl, Jiaum, Zeit, Matcrie, g 14 (Berlin, 

Springer, 1923). 
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which shows that even if wc make d^x 0, will not in general 

be zero. 

If then there are n variables, it is usual to consider only 

systems of differentials which are completely independent of 

the variables so that we have not only d^x^ 0, but also, 

for any two systems dx,, Sx^ of these differentials whatever, 

dSx^ “ Sdx^ — 0 (i ™ 1, 2, . . . n). 

Now change the variables, by putting x^ — and there¬ 

fore Xi == Fi(x), Using the condition Mx^ ~ 0, we get 

02 fl\ 
8dx^ S v - - ' dxj Sxj, 

1 OXjOXi 

so that the property 

hdxi ~ dhxi 

also holds, but these differentials will not in general be zero. 

The usual convention is therefore legitimate, and is suggested 

by obvious reasons of simplicity, when in a given question we are 

dealing always with the same variables; but it is not invariant 

for a change of variables. 

If instead we adopt the formula? (29) and (29'), and suppose 

that 
2 

dhxi 8dXi ~ — ijSxjdxi, , (31) 
1 

we get, for the same geometrical interpretation of this formula, 

2 

dSxi — 8dxi ~ — Tiji {jl, i] 8xjdxi, 
1 

where the line above the letters denotes that Christoff el’s symbols 

refer to the variables x, i.e. to the transformed quadratic form 

2 

ds^ “ Hi-jfdij^dxidxif, 
1 

We could of course verify by direct substitution that the 

form of the expressions (31) is unchanged by the change of 

variables. We are in fact dealing with an immediate corollary 

of the invariance of the equations r’ — 0 (cf. § 15), which follows 

at once by putting K ~ Sx, in these equations. 
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On account of this invariant property the second differentials, 

defined as in (31), are called contravariant, although strictly 

speaking the term applies not to them but to the expressions 

o 

+ 1:,; {jl., i} 8xj dxi, 
l' 

which in any case (see § 15) constitute a simple contravtariant 

system. 

(c) Extension of the Foregoing Notions to n-diniensional 

Manifolds of any Metric 

20. n-dimensional manifolds. 

Alongside the extension of the use of geometrical terms which 

was developed in C^hapter I, we vshall now introduce, on the lines 

of the discussion in subdivision (a) of this chapter, the fundamental 

notion of an n-dimensional metric manifold, where n is any 

integer. 

If there are n variables Xg, . . . we know that the aggre¬ 

gate of values which can be assigned to them is called an n- 

dimensional manifold. Now suyjpose that together with these 

variables and their field of variation there is also given a priori 

a differential quadratic form 

n 

ds^ ^ ltif,aif,dXidx/„ .... (32) 
1 

in which the coefficients a,j. are given functions of the x's, and 

~ a,^-. We shall agree to consider ds as the distance between 

the two infinitely near points whose co-ordinates are x^, . • , 

and x-^ + dx^, x^ -j- dx^, . . . x,, dx,^; we shall in consequence 

agree that ds is to be invariant for any change of co-ordinates. 

Having thus introduced into the manifold the notion of an 

elementary distance, we get from it at once by integration the 

notion of the length of a line, and also deduce from it, as we shall 

see, the most direct criteria for defining all the properties of 

extension (angles, areas, volumes, &c.). 

A manifold with which has been associated a quadratic form 

of the type (32), or in other words, a manifold whose metric is 

given, is called a metric manifold^ and will be here denoted briefly 
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by Vn> Since ds^ is invariant, the coefficients a,7^ obviously form 

a symmetrical covariant double system; we shall throughout 

the discussion suppose that they and their first and second 

derivatives are finite and continuous functions, and so chosen 

as to make the quadratic form definite and positive.^ Thus the 

distance between two real points will always be real; the deter¬ 

minant a of the coefficients an, will always be positive. With the 

usual notation the reciprocal elements will be denoted by 

&c. 

We shall now extend the concept of direction to a generic 

We shall consider direction as determined by two infinitely 

near points, i.e. by a system of As before, we shall apply 

the term 'parameters to the n contravariant quantities 

A‘ - p {i - 1, 2, ... n) 
ds 

which define a direction (and are uni(]|uely determined by it), 

and we shall apjily the terra 'moments to the covariant quantities 

A; = ('i -= 1, 2, . . . n). 
1 

Thus for any value of n we have again two simple systems, 

reciprocal with respect to ds^, or to the form (32) (cf. p. 96, 

Remark III). 

The parameters are connected by a relation completely 

analogous to (5), and the formulae (5'), (5"), and (6') can be 

extended without difficulty, the summations being now from 

1 to n instead of from 1 to 2. The aggregate consisting of a direc¬ 

tion and a positive number R will be called a vector R in a 

(R being the magnitude of the vector); the products of R by 

the parameters of the direction will be called the contravariant 

components R', and the products of R by the moments the 

covariant components R^. We shall then have a set of formulae 

analogous to (11), (IF), (11"). 

Suppose the a;’s expressed as regular functions (i.e. finite and 

continuous, together with all their derivatives which enter the 

1 At the end of the chapter (p. 141),we shall also consider wliortly the case of 

an indefinite quadratic form. This case was at first neglected as offering little 

likelihood of useful application, but the theory of relativity has now invested 

it with very great importance. 
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discussion, in the field considered) of j) parameters 

where p is a positive integer less than n\ 

^ 1,2, . n). . (33) 

We shall make the hypothesis that at least one set of p func¬ 

tions/is independent, i.e. that p is the characteristic of the func¬ 

tional matrix of the/’s with respect to the w,’s. Hence the x’s 

are connected by n — p relations and no more, namely, those 

which we should get by eliminating the w’s from equations (33). 

In this way we define a subordinate p-dimensional manifold 

whose co-ordinates are the Wj, is said to be contained or 

i/fmnersed in F.,^, since to every system of p values assigned to 

the u'a there corres})onds, by (33), a system of n values assigned 

to the x’s (i.e. every point of belongs to V,,), while not all 

the systems of values which can be assigned to the x's satisfy 

the equations (33) {i.i\ not all the points of F„ belong to W^,), 

Now, remembering the analogy with the case n ~ 3, p ~ 2 

(cf. p. 87), we naturally assign to the distance between two points 

of the subordinate variety the same value (32) as that of the 

distance between tlie same two points when they are considered 

as belonging to V,,,; i.e. we construct ds^ for the subordinate 

manifold ])y substituting in (32) for the dx's their values obtained 

by differentiating the equations (33). In this way we can easily 

find the coefficients of the fundamental quadratic form in the 

du’s, and the metric of tlie p-dimensional manifold immersed 

in V„y will be completely defined. For p = 1 the definition 

coincides with that given in Chapter I, § 1, for a line, of which the 

equations (33) are the parametric equations. 

If p n — 1, the Wj, is often called a surface, or more pro¬ 

perly a hypers arface, 

21. Euclidean manifolds. Any can always be considered 
as immersed in a Euclidean space. 

If ds^ reduces to the sum of the squares of the differentials, 

as in the case of orthogonal Cartesian co-ordinates, the quadratic 

form is said to be Euclidean, and the co-ordinates, by an obvious 

analogy with the elementary cases n 2 and n " 3, are called 

orthogonal Cartesian co-ordinates. When this is so, all Christoffers 

symbols obviously vanish identically, since the coefficients a^jf. 
(D655) ft* 
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are constants. Given a generic and therefore a generic ds^, 

it is not in general possible to bring about a change of variables 

such that d6‘^ takes the Euclidean form, or in other words to 

establish a system of Cartesian co-ordinates in V,^; if it is possible 

is called a Euclidean ynanifold, and we shall denote it by 

S,^, We shall find later on the conditions to be satisfied by the 

a^’s in order that may be Euclidean. however, can always 

be considered as immersed in an iV'-dimensional fCuclidean variety, 

where N n, we shall now show. 

We propose to determine N functions of the x's, 

Viix), iMx), . . . yy{x), . . . (34) 

such that when we differentiate them and take the sum of the 

squares of the differentials we get a form, quadratic in the dx’s, 

which is identical with the given ds^, so that we have identically 

A" ’ n 

1 1 

Expressing the dy^s in terms of the eZic’s, we have 

s. Si*. dXi dxi, S.„ a,* dXi dx^ 
X 1 dXi 1 

or, equating the coefficients of dxi dxi^, 

^4-^^ {i,h = \,2^ . . .n). (35) 
1 OXi O Xf^ 

We have thus obtained ^n{n -j- 1) partial differential 

equations of the first order in the N unknowns y\ unless any of 

these are mutually inconsistent (and a more detailed discussion 

would show that this is not so) we deduce that the problem is 

soluble for N = \n{n +1), and a fortiori for N > \n{n +1). 

The y’s can evidently be considered as Cartesian co-ordinates in 

a Euclidean manifold (space) in which the given is immersed, 

F„ being parametrically represented by the values of the y's 

in (34) (cf. formula (33) ). It is therefore possible to immerse a 

generic F,^ in a Euclidean space provided N > ln{n + !)• 

For particular F,/s, however, a smaller number of dimen¬ 

sions may suffice; e.g. for a Euclidean F,„ n dimensions are 
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sufficient; in this case the j/’s are Cartesian co-ordinates of 

itself. 

If N has the smallest possible value, the difference N — n 

is called the dms of the F,,. Since the minimum N is not greater 

than \n{n + 1), the class cannot be greater than \n{n -f- 1) ~ n, 

or \n{n — 1). Further, N cannot be less than n} and therefore 

the minimum value of the class is 0. For ^ — 2, the class is 1, 

which shows that every binary ds^ may be considered as belonging 

to an ordin<ary surface. In other words, the parametric expressions 

which were our starting point (p. 86) impose no restrictions on 

the study of the intrinsic properties of a ds^ in two variables. 

22. Angular metric. 

We shall ik)w extend to the generic F,^ the notion of the 

angle between two directioyis. The most direct method is by the 

formal extension of formula (8) (and its equivalents) by summing 

from 1 to 71 instead of from 1 to 2; this however will be legitimate, 

if we wish to avoid imaginary values of O', only when we have 

shown that the expression on the right < 1. 

In order to do this, we shall examine some algebraic properties 

of quadratic forms. 

Let , ^ 
Yzz ^Uc ^ilc 

1 

be a definite positive quadratic form. Suppose that the 2’s are 

linear combinations of two different systems of non-proportional 

variables, so that we may put 

Z; = Xxi + fj-yi-, 
we therefore have 

n. 

<f>zz = S* a* (Aa:; + /xyt) (Ax* + /t?/*) 
1 

V/. 

= «;* [A2 X. X* + A/a, (X; y,, + ?/,: x.) + /x® y. y]. 
1 

‘A <|[uadratic form <f> — Sift called irreducible when the number of 

independent variables cannot be reduced by substituting for the ^ s linear com¬ 

binations of them. This is always so when the form is definite, as in this case the 

determinant a of the coelficieiits is certainly not zero (p. 90). A' cannot therefore 

be less than n. 
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Splitting up the right-hand side into three sums, and putting 

n 

1 

71 n 

'^ik^ik ^'iVk ““ ^ik^ikyi^k " ' “ 4^0X7 
1 1 

71 

^ik ^ik Vi Vk 4*yy7 
1 

we have finally 

4^zz “ ^4^XX + 2 

This may be considered as a quadratic form in A and it 

is easy to show that it is definite and positive, i.e. that it is 

always greater than 0 when A and /x are not zero. In fact, 

considered as a quadratic form in the 2:’s, is always positive, 

provided at least one of the 2’s is not zero; and this condition 

is equivalent to our hypothesis that the x’s and y’s are not 

proportional. 

From (36) we therefore get 

4^xx + 2 A /X 4^n,f > 0, 

whatever A and /x may be. 

Hence, from an ordinary property of quadratic inequalities, 

we get 

.(37) 

which is the formula we wished to prove. 

We now return to the proposed formal extension of formula 

(8). What we have to prove is that 

i.e. that 
i^ik ^ik ^ / 1^1 >0, 

whatever A" and p} may be, provided they are not proportional 

(since we exclude the obvious case where the directions coincide 

or are opposite). 

This inequality can now be proved at once. Introducing the 
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quadratic relations between the parameters, we can write it in 

the form 

^2* a,*. A* fj f/j — ^2.* a,* A‘ > 0; 

and this is merely (37), with the x's and ly’s replaced by the 

and /x' ’s. 

We may therefore assume 

cos^> .=- i„a,,A'/, . . . (38) 
1 

and the other expressions equivalent to it will also hold good, 

namely, ,, 

cosB^ .(38') 
1 

cosff -- .(38") 
1 

cosa - 2,,a''^A,/t„ . . . (38'") 
1 

in which the moments (cf. § 20) of one or both directions take the 

place of the corresponding parameters. 

In the provisionally excluded case of two coincident or opposite 

directions (A' + /x'), we must naturally agree that cosif — + 1- 

With this convention the four formulae just given still hold 

good, the right-hand side in each case also reducing to + 1 

virtue of the fundamental relations 

2,,a,,A‘-A*- 2, A, A'- = = 1 
1 1 1 

between the parameters and moments of a single direction 

(cf. §20). 

Now consider our F,^, immersed in a Euclidean space 

Given two directions X, (Jl belonging to F„, and drawn from the 

same point, the angle between them is defined in two ways, 

since the directions X, p. may be specified either by their para¬ 

meters X, fji^ relative to F,^, or by their parameters A"', /x'*' relative 

to /Sy,^ and formula (38) may be applied to either set. We 

^ We may note in passing that in a Euclidean space, referred to rectangular 

Cartesian co-ordinates, the parameters of a direction coincide with its moments; 

also (as follows directly from the properties of linear orthogonal substitutions) the 

formulae of covariance are identical with those of contra variance (cf. § 3, p. 67). 
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shall call the angle calculated in the first way 0* and in the 

second and we shall show that cos^’ — cosB*', 

Remembering that for the Cartesian co-ordinates y of 
N 

ds^ has the form 2 we have 

n 

cosS- = 
1 

cosr 
1 

Now the parameters A''', /x'" are given by the formulae analogous 

to (7), (7') 

, 

11 

ds 'i' dxj ds 1 dxi^ 

li 

O
o 

^
 

il ^y'j 
1 0 Xj^ 

We have therefore 

cosy = 2, 2,, 7" 
n 

- 2,, A' u^v 

1 1 OXi ox If 1 1 C>Xi 

and therefore by (35) 
n 

GOSS'' “ jj!'afj. — cosS. 

Q.E.D. 

Now consider two vectors R, V, whose directions are X, p. 

respectively. We can extend the definition of the scalar product 

by giving this name to the invariant 

R X V - RV cosS, 

where S is the angle between the two directions. For each of 

the various expressions for cosS we shall get a corresponding 

expression for the scalar product by multiplying (38), (38'), 

(38"), (38'") in turn by RV. The resulting formulae are: 

R X V = = 'i,R! V, = i,R, r V,. 
1 111 

If one of the vectors, say V, is of unit length, we shall call 
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the product R X V the 'projection of the vector R on the direc¬ 

tion determined by the unit vector V, or its component in this 

direction. 

The orthogonality of two non-zero vectors is evidently ex¬ 

pressed by the vanishing of their scalar product. 

We can now make some useful remarks relating to certain 

particular directions. Let s^- denote ^ the direction of the co¬ 

ordinate line i (i.e. the unit vector in that direction, in the sense 

of the ic/s increasing); remembering that for a displacement 

along the line i we have dx^. 0 for r 4= ^ and ds -- \/a^ldXl, 

we see that the parameters s'^- of the direction are all zero 

except the ith, so that we have 

Si --- 0 (r =t= i), s) = 
V a,.- 

On the other hand, the direction of the normal to the co¬ 

ordinate hypersurface Xj -- constant (the normal meaning the 

direction perpendicular to any direction drawn on the hyper¬ 

surface) has its moments nj | all zero except theyth. For n^- must 

be perj)endicular to each of the n — 1 directions s, {i =4 j), so 

that applying formula (38') to the values just found for the 

parameters of we can write 

whence nj^f -- 0 for i ^ j. The value of n^y is therefore deter¬ 

mined by the quadratic identity between the moments, which 

gives 

^J\j == 

1 

\/ 

if we suppose that the sense of is that of the xjs> increasing; 

for the opposite sense the radical must have the minus sign. 

That the direction so defined (at a generic point) is actually 

perpendicular to any direction X (through the same point) on 

the hypersurface Xj — constant, follows from the fact that for 

every such direction the parameter is zero, and therefore 

= 0. 

^ The suffix i is not of course an index of covariance. 
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Applying the above remarks, it can at once be seen that the 

angle between the co-ordinate lines i and k is given by the 

formula 

^ifr 

while the angle between the co-ordinate hypersurfaces 

constant and Xj, ^ constant (i.e. the angle between their normals 

and n;,) is given by 

These formulae show the real meaning of the coefficients of 

and the geometrical interpretation to be given to their 

vanishing. 

We shall now try to find the geometrical meaning of the 

CO variant and contra variant components of a vector R. For 

this purpose w^e shall calculate the orthogonal projections of 

R on the directions S; and Uj. We get for these 

R X Sf = 

R X Q; 

Ri 

R 

These results show that and represent the projections 

of the vector R on the co-ordinate direction i and on the normal 

to the co-ordinate hypersurface x^ ™ constant, multiplied by 

s/an and s/respectively. 

23. Definition of geodesics. 

We shall fix any two points ^1, 5 in a generic F,i, and we 

shall try to find the shortest of the lines which join A and B, 

In a certain sense this problem is analogous to that of finding 

the points at which a function is a maximum or minimum, the 

solution of which is of course an important application of the 

calculus. Here, however, we are not trying to find points, and 

hence the values of one (or in general of n) variables which 

satisfy the required condition; we are trying to determine a 

line, and hence, analytically, to determine the form of n functions 
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(the parametric equations of the line). The problem is therefore 

of a higher order of difficulty: while the former led to equations 

in finite terms, the latter leads to differential equations. The 

solution of this problem and of others related to it is the principal 

object of the calculus of variations. Wc shall recall shortly the 

fundamental idea of this calculus, which does not differ in prin¬ 

ciple from the idea which leads to the solution of the other more 

elementary problem of the maxima and minima of a given 

function. 

To fix the ideas, we shall suppose that there is only one 

variable. We know that if a function f{x) has a maximum or 

minimum at x^, its differential df = f'{x^)dx is zero at that 

point (and therefore/'(^Pq) “ 0), whatever dx may be; in other 

words, for an infinitely small displacement to left or right from 

the point Xq, f remains constant (except for infinitesimals of 

higher order). This can also be seen intuitively from the graphical 

representation of the function (cf. the points M and N in the 

diagram). The converse, however, is not true, i.e. when rf/ — 0 

it does not necessarily follow that there is a maximum or 

minimum (cf. for instance the point P in the diagram). The 

maxima and minima must be looked for among the points where 

df^O. 
Let us now see how we can apply this method to the deter¬ 

mination of the shortest line joining A and B, without going 

outside a given (we may think of a line drawn on a surface, 
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i.e. the case n — 2). Let g be such a line; draw a line g\ having 

the same extremities as g, and infinitely near g, but otherwise 

completely arbitrary. We can consider g' as derived from g 

by an infinitesimal deformation, i.e. by displacing each point 

(iTi, . . . x,^) olg to • • • x,^ + Sx,J. If gis the shortest 

of these lines, its length is not changed^ by this deformation 

(except for infinitesimals of higher order); hence if Zis the length 

of g and I + 8^ of g\ we have 

S/ 0,.(39) 

whatever g' may be (subject only to the conditions imposed 

above), a condition analogous to the vanishing of r//in the former 

case. Here too, however, it is to be noted that in general the 

condition (39) can be satisfied not only by the required line 

but also by other lines which do not give the shortest path from 

A to B. 

For instance, let A and B be on the same generator of a cylin¬ 

der. Then the shortest path is evidently given [)y the generator, 

which, as can easily be seen, satisfies (39). Jbit all the infinite 

number of helices which j)ass from A to B, wrapping them¬ 

selves 1, 2, , . . times round the cylinder also satisfy the same 

equation. 

We shall call all the lines which satisfy condition (39) geodesics. 

They possess important characteristic propertitis, which can be 

deduced from (39); e.g. the osculating plane at any point of a 

geodesic on a surface is normal to the tangent plane to the 

surface—the property adopted on p. 103 as the definition of a 

geodesic. The lines of minimum length between two given 

points must be looked for among the geodesics through the two 

points. 

This is the definition which we shall use below; but it is to 

be noted that some writers in defining geodesics start from another 

property. We could in fact show that when a point A is fixed 

on a geodesic g, then for all points B (on g) sufficiently near A, 

g is the only geodesic joining A and 5, and is therefore the 

shortest line joining them. Hence we can also say that 

a geodesic is a line such that it forms the shortest path 

^ For a more rigorous and complete discussion the reader is referred to treatises 

on analysis. 
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between any two of its points, provided they are sufficiently close 

together. 

With this restriction the two definitions are equivalent. 

24. Differential equations of geodesics. 

We shall now examine the property, concisely expressed by 

the equation (39), that the length remains unchanged in an 

infinitesimal displacement which does not move the extremities, 

and see how to express it by means of n differential equations 

which the n functions 

Xi — x-{s) (^ — 1, 2, . . . n) 

defining the curve g must satisfy. 

Let the equations of g' be 

+ Sx,: {i 1, 2, . . . n), 

where the 8x's are to be considered as infinitesimal functions of 

5, vanishing for .s* — 0 and s ~ I, and having finite and con¬ 

tinuous first and second derivatives, but otherwise arbitrary. 

Take an infinitesimal segment PP^ of g, of length ds; we 

have to calculate 8ds, i.e. the increment (or, as it is called, the 

variation) of ds in the deformation which displaces P to P' 

and to Pt If dx- {i ~ 1,2,... n) is the diff'erence between 

the co-ordinates of P and of Pj, the corresponding difference 

after the deformation—which we shall denote by d{x^ + — 

dx^ -f- d8xf, where d8xf is of course the differential of the function 

8x—is calculated as follows: 

The co-ordinates of P' are x^ -f- Sx^-; 

those of Pi are (x,; -f- dx^) -j- 8(x^ -)- dx^); 

therefore the required difference is dx^ + 8dxi, 

Tt follows that 

8dXi — rfSx/,.. (40) 

a result which we shall at once make use of. 

We shall now take the expression for ds^, and calculate its 

variation, differentiating with the operator 8. We have 

n n n 

2ds . 8ds = Tijk 8ajjc dxj dxj^ -f- dxj^ 8dxj + ajj. dxj 8dx^. 
Ill 
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Since the last two sums are identical, we can write this in 
the form (using equation (40)) 

n n 

2ds . Sds ™ hajj^ dxj dx^ + 22^^. ajj^ dxj dSx/^. 
1 1 

Dividing by 2ds, and denoting differentiation with respect 
to 5 by a dot, this gives 

)L n 

Ms iSj, Mji Xj Xt ds + Sy, aj^ Xj dSx/,; 
1 ■ 1 

and from this, since 

Say = 
idx^ 

we get 8ds in the form 

n 0a- " 
Bds = Py^ - Xj Xt 8x„ ds + 'Ljt, a/i, Xj dS%. 

\ a Xj^ 1 ■ 

Now since the length of g is 

I z= ds, 
A 

the variation which is to be equated to 0 in (39) is 

81 ~ / 8ds, 
'' A 

or 81 = f ^ (kjn^ XjXt8x^ ds +1. ■ ■ (4l) 

where we have put 

I == / ^j,,at„Xjd8xi,.(42) 
A 1 

We shall leave (41) aside for a moment and examine the 
possibility of transforming the integral in (42) also into a form 
which explicitly contains the arbitrary variations 8xj^, Integrat¬ 
ing by parts we get t7i “jJB rH n 

^jkajkXj8xA — i:jttd(ajt.Xj)Sxtt. 
1 Ja A 1 



DIFFERENTIAL QUADRATIC FORMS 133 

The integrated part vanishes, since = 0 at the extremities; 
differentiating the product, the other part gives 

rB n rB n 

I=— ^icaj^XjdsSxi,— 'Lji,Xjdaji,hxi,. (42') 
A I yl 1 

Expanding the sum under the second integral sign may 
be written 

XjXibx^:ds, 
I OXi 

or, interchanging j and I, 

7)n 

dxj ^ ‘ ' 

We shall take half the sum of these two expressions to repre 
sent the value of either. Substituting in (42'), we get 

/ -= - J ^ aj^ Xj8xi,ds —fi + |“"'J Xj xfix^ ds. 

We now return to (41) and insert in it this ex})ression for L 
Putting all the terms under a single integral sign, and taking 
out the common factor Sx/.ds, we get 

rB n f fin. 

81= - S, - m,p>xjx, + Ejaj,xj 
A 1 ^ 1 C/^A: I 

+ 4 [at + s'!] 
or, remembering the definition of Christoffers symbols, 

rB n r n n ^ 

81 = — S* ] 2; a* Xj + liji [jl, A:] xj ±1 [ 8x^ ds. 
^ 1 W ■ 1 J 

Putting 
?i n 

P/t = Sj. a^j. Xj + Sj-i [jl, A;] Xj ±1, . . (43) 

the formula appears in the concise form 

81 = —f ^^p^8x^ds. . . . (44) 
J A -x 
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The result of all these calculations is that (39) can be written 

in the form 

f ''^kVk^Xi.ds = 0.(39') 
.4 1 

Now since (39') must hold however the arbitrary functions 

hxjc are chosen (subject to the qualitative conditions stated above), 

we must necessarily have 

Ih - 0 1, 2, . . . n); . . (45) 

for if not, we need only take each with the same sign as the 

corresponding p. (which can be done without going outside the 

conditions imposed); the sum would then certainly be positive 

at all points of the arc of intcigration and therefore the integral 

would not vanish. This is the fundamental argument in the 

calculus of variations; by means of it we get from (39') (which 

is only (39) expanded) the n differential equations (45) which 

written at length are 

% djk Xj + 2;; [jl, A:] XjZi -= 0 (A; = 1, 2, . . . n). (46') 
1 r 

It is convenient to write these equations in the form obtained 

by solving for the To do this we introduce the quantities 

f hc^^'Pk. .... (46) 
1 

and replace the equations (45) by the equivalent system of 

linear combinations 

f .. 0, 

n 

or Xi + Xii {jl, il XjXi = 0. . . . (47) 
1 

These n differential equations of the second order in the n 

unknown functions cr,(5) are equivalent to equation (39) and 

are therefore the characteristic eqvations of a geodesic', when 

integrated, they give the parametric equations of the curve. 

By the ordinary theory of such equations, the integrals will 

contain 2n arbitrary constants, which can be determined by 

the condition that the geodesic passes through two specified 
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points, or that it starts from a given point and lias a specified 

direction. 

It may be noted that the equations (47) contain only intrinsic 

elements, as the definition of a geodesic would lead us to expect, 

25. Geodesic curvature. 

The discussion in the preceding section jirovides us with an 

opening for the introduction of an illuminating and fertile 

geometrical notion relating to any curve x- = x^{s) in 

our F„. 

We must first show that the quantities j),. defined by (43), 

corresponding to a generic curve x- — xXs), are covariant (and 

in consequence the are contra variant), so that we shall 

naturally associate with every point of the curve I (which is 

a priori any curve whatever) the vector p of which they are the 

components. 8u|)j)ose then that we pass by any transformation 

from the variables x to new variables x, and let represent the 

values of the pz/s calculated in the new system. We get from 

(41), through the invariance of 81, 

hi -j ^^.p^hxi,ds, 
^ 4 1 

and therefore 
rh r n n “I 

0 -= I I — ^^i,Pi,hxA ds. 

By a similar argument to that used in passing from (39') to 

(45) we deduce from this that at every point of I we must have 

n II 

“ ^kPk^Xk = 0, 
1 1 

vvhich expresses the invariance of 

71. 

^kPk^^k 
1 

(a linear form in the arbitrary contravariant variables Sx,.) and 

therefore the covariance of the p^/s. It follows from (46) that 

the reciprocal contravariant system consists of the p’’s, i.e. of 

the left-hand side of equations (47). 

We shall use the term geodesic curvature of the curve I at 
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any point on I to denote the vector p whose covariant components 

are defined by (43), its contravariant components being in con¬ 

sequence defined by (46), or by 

y = aif + Syi {jl, Xj Xi (r = 1, 2, . . . n). (43') 

An immediate corollary is that the geodesics are the lines whose 
geodesic curvature is everywhere zero. 

More generally we have for the length of the vector p an 

import/ant property, pointed out by Lipka,^ which we shall 

merely state without proof: The absolute value of the geodesic 
curvature is represented, as in ordinary space, by the ratio between 
the angle of contingency^, and the elementary arc, where the angle 

of contingence is defined as the angle, at one extremity of the 

arc, between the tangent at that point and the parallel to the 

tangential direction at the other extremity. 

Another important property is that the geodesic curvature is 
normal to the curve, which is equivalent to saying that 

= 0,.(48) 
1 

since the parameters of the tangent to the curve are the 

To prove this, take the identity 

n 

1 

(obtained by dividing (32) by ds"^) and differentiate it with respect 

to s. We get 
n n- 

22^4: % 4 Xj + 4 Xj = 0, 
1 1 

n da ■ 
or ■ a^j x,, Xj -f ^ 4 Xj x^ = 0, 

1 I OXi 

and therefore, by (24'), 

n n n 

22,7, 4 4 + S-w [jl, Tc] 4 Xj x, -f 2^^; [B, j] 4 4 4 = 0. 
11 1 

^ “Sulla curvatura geodetica delle linee appartenenti ad una varietil qualunque” 

in Rend, della R. Aoc. dei Lincei, Vol. XXXI (1st half-year, 1922), pp. 863-366. 



DIFFERENTIAL QUADRATIC FORMS 137 

Interchanging h and j, we see that the third sum is the same 

as the second; hence, taking out the factor 2, we have 

n n 

^ik %,• 4 4 = 0. 
l‘ 1 

This is merely (48), with replaced by its value as given by 

(43); hence the assertion made above is proved. 

In ordinary space, as will at once be seen, the geodesic curva¬ 

ture coincides in direction with the principal normal, and in 

magnitude with the flexion or principal curvature of the curve. 

26. Extension of the notion of parallelism. Bianchi’s derived 
vectors. 

We propose next to extend to a the notion of parallelism 

or, more generally, of equipollence defined above for a F2. 

In this case we have no criterion analogous to that used for 

the Fg, as in general the circumscribed developable which formed 

the starting-point of the former argument does not exist. 

The differential law of parallelism, however, expressed by 

the symbolic equation (19), can be immediately adapted to the 

case of a F,„. To do so, consider a vector R drawn from a point ' 

P of F,,, and let R -|- (iR denote the equipollent vector drawn 

from a point of F„, very near to P. We can think of the F„, 

and therefore of the vectors R, R-j- dR, as immersed in a| 

Euclidean space where iV^ is a sufficiently large integer; we | 

can therefore define the vectors R, R -f dR, not only by their 

(co variant or contra variant) components with respect to F„, 

but also by their components dY^ {v ^ 1, 2, . . . iV^) 

with respect to a system of Cartesian co-ordinates y-^, 2/2? • • • Vn 
in Now consider an arbitrary infinitesimal displacement 

8P, contained in F,, and drawn from P; it can be specified either 

intrinsically, by means of the (i = 1, 2, . . . n), or with 

reference to Cartesian co-ordinates by means of the hyjs (v = 1, 

2, . . . iV); but it is to be noted that while the first set are 

arbitrary the second are not, on account of the equations (§ 21) 

which define the y'^ as functions of the x’s. We can also say, 

in geometrical language, that the displacement must satisfy the 

condition of being tangential, i.e. of belonging to F„. We shall 

define the vector dR, and therefore the parallel displacement^ 
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by means of the symbolic equation (19), which can be expanded 

(p. 107) into the form, analogous to (19'): 

^^dY^8y^ = 0, .... (49) 
1 

which holds for all displacements satisfying the given condition. 

The only difference between formula (49) and (19'), which 

defines parallelism with respect to a surface, is that the sum¬ 

mation for V is from 1 to iV, instead of from 1 to 3. All successive 

steps in the calculation follow automatically as in § 15, p. 107. 

We shall first write the equation in terms of the Sir’s by put¬ 

ting 

dR X 8P . (50) 
1 1 

after transformations analogous to those formerly used, we find 

for the r’s the expressions 

Tj Jc^R-'dxi (k = 1, 2, . . . n), (51) 
1' ' 1 

an obvious generalization of formula (21"). Evidently, in view 

of the identity (50), we are here dealing with covariant expres¬ 

sions (with respect to any transformations of the x’s). The 

reciprocal system 

1 

can also be expressed in the form 

t' - dR + {jl, i] Rj dx, (f = 1, 2, . . . n), (51') 
1 

in complete analogy to (21"'). 

From (49) and (50) we finally reach the intrinsic equations of 
parallelism: 

n -= 0 (^— 1, 2, . . . n)) 

these are equivalent to r* = 0, or to 

dR + {jl, i} R dx^^O (i = 1, 2, . . . n), (52) 
1 

which define the increments dR of the contravariant components 
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of a vector R for a dis]:)]acemeTit parallel with respect to 

from P (of co-ordinates to (of co-ordinates x + dx). 
For the covariant components we find, as on p. 113, the 

equivalent equations 

dR, - [d, j} Rjdxi 1, 2, . . . n). (52') 
1 

This equation and (52) alike show that parallel displacement 

is an intrinsic operation with respect to the metric of F„. This 

was not a priori evident from the geometrical definition we 

adoj)ted, which is expressed in formula (49), involving the use of 

a surrounding space 

The equations (52) and (52') are, so to speak, identical with 

the equations (23) and (27) which hold for a the only differ¬ 

ence being in the number of dimensions. It is of course under¬ 

stood that {jl, i} and {il, j] denote Christoffers symbols of the 

second kind constructed with the ds^ of F,^. 

All the properties deduced from the equations of parallelism 

with respect to a surface can be extended without difficulty to 

parallelism in V,,; in particular, the properties that parallel dis¬ 

placement along any finite curve whatever is always possible, and 

in only one way, and that parallel displacement leaves unchanged 

the scalar product of two vectors, and therefore lengths and 

angles. We shall show in the following section that we can also 

extend the property of autoparallelism of geodesics, which we 

proved geometrically in the case of surfaces. 

We may also call attention here to the notion due to Bianchi ^ 

of the derivative of a generic vector R along a curve T, R being 

a function of the points of T. If the vectors R(s) at various 

points of T are not parallel along T, the contravariaiit simple 

system defined by (51'), is not identically zero. Accordingly 

the quantities 

(Z)R)‘' ^ [jl, 
ds ds 1 ds 

may be considered as contravariant components of a non-zero 

vector Z>R which is also a function of the points of T. The 

1 Cf. “ Sul parallelismo vincolato di Levi-Civita nella metrica degli spazi curvi”, 

in Rend, della R. Acc. di Napoli, Vol. XXVIII, 1922, pp. 150-171. 
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vector DR has been called by Bianchi associated, and its direc¬ 
tion and length the direction and curvature associated point 
by point with the vector R(s). We prefer, however, the quali¬ 
fication derived, because in Euclidean spaces DR is precisely 
the vector commonly known as the derivative of R with 
respect to the arc s of T. In fact, if we assume Cartesian 
co-ordinates, the Christoff el’s symbols vanish, and the pre¬ 
ceding expressions for the (ordinary) components of (DR)' 

reduce to 
ds 

Returning to a general manifold F,^, if R(.s*) reduces to the 
versor which is tangential to the curve T, i.e. in particular 

dx‘ 
if ‘ ~ X-, we find that we are again dealing with 

ds 

the vector p of geodesic curvature considered in the preceding 
section. 

It can be shown that in every case DR (if not zero) is perpen¬ 
dicular to R, and that it has other interesting properties demon¬ 
strated by Bianchi. For further details the reader is referred 
to the paper just cited in the footnote, or to the Appendix to 
Vol. II of the same writer’s Lezioni di geometria differenziale} 

27. Autoparallelism of geodesics. 

Analytically we may derive this property from the equations 
of parallelism by using the differential equations found above 
for geodesics. 

Let X denote a unit vector defined at all points of the geodesic 
under consideration and having everywhere the same direction 
as the geodesic. We shall show that X may be considered as 
undergoing a parallel displacement along the geodesic. 

Let its parameters be A'. From the definition of these para¬ 
meters, and using the parametric equations Xi = ^^(5) of the 
geodesic in question, we plainly have 

.. dx^ 

ds 

and therefore 

ds 

^ Second edition. Bologna, Zanichelli, 1923. 



DIFFERENTIAL QUADRATIC FORMS 141 

Now the x's and the cc’s are connected by the equations 
(47) (the characteristic equations of the geodesics). Substituting 

dX^ 
A' and — for and x^, these become 

ds 
fJVi n 

y 0- . . (53) 

or multiplying by ds, 
n 

p' ds {jl, i] X^ dxi ~ 0, 

which are the equations expressing the parallel displacement of 
the vector X. 

It is worth noting that a comparison of (5T) and (53) shows 
that the quantities p‘ ds are a j)articiilar case of ther' ’s, the generic 
vector R being replaced by the unit vector X of contra variant 
components x,-. Tliere follows immediately the contravariance 
of the quantities p\ or, which comes to the same thing, the co- 
variance of the quantities pi, which we proved directly in § 25. 

28. Remarks on the case of an indefinite ds^. 

We agreed (§ 20) to say that an n-dimensional is metrically 
defined when there is associated with it a differential quadratic 
form, with real coefficients 

n 

4^ d^. dxi dxj^, 
1 

We then introduced the hypothesis that ^ is definite and posi¬ 
tive, and this is the only case we have considered in the fore¬ 
going sections. We now propose to make some remarks on the 
case in which (f> is still supposed irreducible (or such that its dis¬ 
criminant a is not zero), but is no longer definite, being capable 
of taking positive values for certain sets of differentials dx^ and 
negative values for certain others. 

In this case also, fixing a generic point P of co-ordinates 
0?,; and an infinitely near point P' of co-ordinates x,- -|- dx,, we 

put 
n 

ds^ = <f> = ^i^a^^dx^dx^, (54) 
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and we shall call (which can now be positive, negative, or 
zero) the square of the line element (the distance), or better the 
interval between the two points P and P'. 

Among the 00(real) systems of differentials or, as we shall 
say, considering only ratios, among the 00directions drawn 
from P, there are 00which satisfy the quadratic equation 

ds^ -- 0.(55) 

For a moment we sliall interpret the differentials dx^ as 
referring to Cartesian co-ordinates with origin P. Then the 
directions just defined, which are said to be of zero interval, 
constitute a quadric cone of vertex P. This cone divides the 
sheaf of directions drawn from P into two regions, in one of 
which 

ds^>0,.(56) 
and in the other 

ds^ <0.(57) 

All the directions in the first region are said to be of the first 
kind or timelike (the term being suggested by the interj)retation 
given to these symbols in the theory of relativity); those in the 
second region are said to be of the second kind or spacelike. The 
parameters of a direction of either kind are defined by the for¬ 
mulae 

A‘ = ^ (i = 1, 2, . . . n); . . (58) 

there is no analogous result for the directions of zero interval 
corresponding to which ™ 0. 

For timelike directions ds^ > 0; hence, if ds denotes the 
arithmetic value of the square root of ds^, we have | | ™ ds, 
and the argument is exactly as it was for the definite quadric. 

For spacelike directions, on the contrary, we have 

n 

I I = — = — Sfi an, dXi dx^, 
1 

so that the quadratic identity satisfied by the parameters A* 

is 

-I, . 
1 

(59) 
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with ~1 on the right, instead of -f-l for the timelike direc¬ 
tions. 

Granted these results, the systematic extension of the pre¬ 
ceding sections to the indefinite case would certainly not seem 
likely to be difficidt. As we are not aware that this has yet been 
done exhaustively, the reader’s attention may be called to it. 
We propose merely to point out an essential fact, almost evident 
a 'priori and often used in the theory of relativity; namely, that 
the definitions, geometrical representations, and formulae in the 
foregoing sections can certainly be carried over and applied to 

the indefinite case, provided (a) that we take account of the 
exceptional behaviour of the directions of zero interval, and 
(b) that we make the obvious formal modifications necessitated 

by (59) when we have to deal with spacelike directions. 
We leave the matter here,^ with two examples to conclude 

the discussion: 
(1) The condition that two directions, whether timelike or 

spacelike, of f)arameters A', fx\ may be orthogonal is in every 

case expressed by the equation 

- 0. 
1 

(2) If we consider only lines wholly composed of timelike 

elements {dn- > 0), the discussion in § 24 holds without modi- 

fi(}ation, and we reach the same equations (47) of the geodesics. 

See Cha])ter XI, |). 287. 



PART II 

The Fundamental Quadratic Form and 
the Absolute Differential Calculus 

CHAPTER VI 

Covariant Differentiation; Invariants ani:) Differential 

Parameters; Locally Geodesic Co-ordinates 

1. Covariant differentiation* 

Returning to the remarks made on p. 86 of Chapter IV, 
we now propose to generalize the operation of differentiation by 
substituting for the ordinary derivatives of the elements of a 
tensor certain linear combinations of these derivatives and of 
the elements of the given system, which will in their turn con¬ 
stitute a mixed (or in particular, covariant) system with one 
index of covariance more than the given system. Explicitly, if 

generic system whose elements are functions 

of the x’& or, in geometrical terms, functions of position, we shall 

deduce from it another system where {is a new index of 

covariance, which reduces to the system-’ * - ~ in the particular 

case when th e co-ordinates are Cartesian. ^ 
To simplify the formulae, we shall consider first a mixed system 
with a single index i of covariance and a single index h of 

contravariance. 
Fixing our attention on a specific point of ignoring 

the fact that the A^b are defined as functions of position), we 
know that the law of transformation of the functions Ai for 

144 
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a change of variables is defined by the invariance of the form 

F = . (1) 
1 

in which the ^'’s constitute a generic contra variant system, or, 

in other words, are the contravariant components of a generic 

vector similarly the %’s can be considered as the covariant 

components of a generic vector u. 
Now, since a set of values of the ^-’s is associated with 

every point of we can at every point choose two arbitrary 

vectors u, and construct an invariant form with them and 

the u4’s. 

Suppose this choice made at an arbitrary but determined 

point P, and consider also a generic point infinitely near to 

P. We shall agree to take for ^ and u at P^ the vectors parallel 
to those chosen at P; as the displacement is infinitesimal, the 

curve of displacement is immaterial. We shall use the operator 

S to denote in general the increment of a quantity in passing 

Irom P to Pj, and we propose to calculate SP. Differentiating 

(1) with the operator S, we have 

Si?- = 18 A'l i' u, + A’l H' u, + A’: e }• 
1 

Now, by the convention just adopted as to the vectors ^ 

and u, the differentials and S% must be calculated by the 

formulae of parallelism ((52) and (52'), pp. 138, 139), while 

SA'j is given by the usual rule of differentiation 

8^? = hxi, 
1 dxi 

then’s being by hypothesis functions of position. Using these 

results, we have 

n p) Jh n 
8F = ‘ % 83;^ — Af {jl, i} % Sxi 

\ CXi 1 

1 

Interchanging i and j in the second sum and h and j in the 

third, so as to get the factor $''Uf^8xi in all three sums, and 
( D 665 ) ^ 
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collecting all the terms under a single summation sign, we Jiave 

8F = S,,, [ - s, A’; {il, j} + A{ {jl, h} J % 8^^ (2) 

Now the left-hand side of this equation is invariant on account 
of its meaning, while are arbitrary contra variant or 
covariant systems; hence the coefficients of this form (the expres¬ 
sion in square brackets) constitute by definition a system which 
is covariant with respect to i and I and contra variant with respect 
to A. We can therefore put 

dA': 

dxt 
^jAl{zl,j} +i:jA{{jl,h}. 

1 1 
(3) 

This system is called the covariant derivative of the system 
A], It is sometimes denoted by the symbol i, and also, when 
no ambiguity is possible, simply by A^^, 

It is obvious that in Cartesian co-ordinates (which exist when 
we are dealing with Euclidean forms; cf. § 21 of Chapter V, 
p. 121) the system reduces to t-liat of ordinary derivatives. 

The method used above can be applied, mutatis mutandis, 

to a generic mixed system. We shall always gcit for (as follows 
at once on carrying out the necessary operations) a multilinear 
form whose coefficients we shall define as elements of the co¬ 
variant derived system. These coefficients consist of a first 
term which is the ordinary derivative, followed by as many 
terms preceded by the minus sign as there are indices of co- 
variance of the given system, and as many terms preceded by 
the plus sign as there are indices of contra variance. If we denote 
by (i) the aggregate of indices i^ , , , and by (A) the aggregate 
Ai . . . A^, the general formula is ^ 

p/0 

dxi 

^^(i) y y 

fjL n 1 

"p j • 1 1 (0 

(4) 

^ Cf. A. Palatini: “Sui fondamenti del Calcolo Ditfereny.iale asHoluto ”, in 

Rend, del Circolo Mat. di PalerniOy Vol. XLIII, 1919, pp. 192-202. Another 

vectorial illustration of covariant differentiation was given by the late Prof. 

HESHENBBRa in his paper “Vektorielle Begriindung der Differentialgeometrie ”, in 

Math. Ann., Vol. 78, 1917, pp. 187-217. 
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2. Particular cases. 

Consider first a covariant simple system A^, which we can 
always interpret as consisting of the covariant components 
(moments) of a vector A. In this case the terms contributed by 
the indices of contravariance arc absent, and (4) (or (3) ) gives 

... (5) 
(JXi 1 

It is easy to see that this double system is not in general 
symmetrical; from (5) however we get at once the important 
relation 

11 I i 
SA, __ dA,^ 
dxi dXj^ 

. . (6) 

The vanishing of the covariant derivative A,^^^ has a simple 
geometrical significance. In tliis case, multiplying (5) by dxi, we 
have 

%{il,j\A^dxc, 
CXi 1 

comparing this with equation (52') of the preceding chapter, in 
which we suppose all the rfj^’s to vanish except the /th, we see 
that it expresses the fact that the vector A undergoes a parallel 
displacement along the line L 

Analogously, for the derivatives of a contra variant simple 
system^', we have 

dA^ 

dxi 
(5') 

Next, consider a system of order zero, i.e. an invariant /. In 
this case (4) becomes 

(7) 

or the covariant and the ordinary derivatives are identical. If we 
construct the system of covariant second derivatives, applying 
formulae (5) to (7), we shall have 

ft Ik 
dxidx„ 

[Ih j 
?/. (8) 
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these are not the same as the ordinary second derivatives but, 
like them, are symmetrical. 

For a covariant double tensor (4) becomes 

Aa.il = , - 2, {^7. j} Aj, - S, {kl, j} A,; (9) 
OX^ I 1 

and for a contravariant double tensor it becomes 

Afl = - + Sj {jl, i} + 2:, [jl, k) A'>. (9') 
O Xi \ 1 

3. Ricci's lemma. 

If formula (9) is applied to the system of the coefficients 
of we get, remembering the expression for the derivatives 
of these coefficients in terms of Christoffel’s symbols (Chap. V, 

§ 16, p. Ill), 
0 - 1, 2, . . . n). . (10) 

This important theorem, that the covariant derivatives of the 

coefficients aj^ are zero, can be proved directly from the definition 
of covariant differentiation. To do so, we must choose two 
arbitrary vectors r\, and construct the expression 

1 

we then calculate 8F corresponding to a parallel displacement 
of the vectors yj, and we shall get a trilinear form in 'if, 8xi, 

whose coefficients, by definition, will give the required derived 
system. 

Now F is merely the scalar product of the vectors ^ and yj, 
which, as we know, is not changed by a parallel displacement; 
hence we shall have SF — 0 for any values whatever of yj, 

and Sir’s, which means that all the coefficients of this form vanish 
identically. 

Similarly we can show that the covariant derivatives of the 
reciprocals vanish; in this case we have to use the expression 

F = i,aca''^UiV^, 
1 
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which is again the scalar product of the (arbitrary) vectors 
u and V. 

4. Contravariant differentiation. 

There is in the absolute differential calculus a kind of law 
of reciprocity or duality in accordance with which we can deduce 
from every theorem or formula a reciprocal theorem or formula, 
by interchanging the words cxyvariant and contravariant, and 
lowering or raising the indices. We have already had several 
examples of this; we shall now make some brief remarks on the 
operation of contravariant differentiation, which corresponds to 
that of covariant differentiation just described. 

The shortest way to deduce from a system the system 

which has the properties reciprocal to those of the co¬ 

variant derivatives, is to find the covariant derivative of the 
given system and then compound it with the system of the 
i.e. to make 

Wc _ 
^(i) — 

(A) 
0)Z* 

We could find for this system an expression analogous to 
(4) and properties corresponding exactly to those of the covariant 
derivatives; or we could find these properties directly from those 
of the CO variant derivatives, by using the foregoing formula of 
definition. We shall therefore not pursue the argument in detail, 
and shall instead resume our discussion of the fundamental 
properties of covariant differentiation. 

5. Conservation of the rules of the ordinary differential 
calculus. 

First, consider a tensor, in general mixed, which is the sum 
of two others of the same rank and species, i.e. 

Ah) 
\i> <+ cr (0* 

It will at once be seen that the covariant derivative of the 
system A is obtained, like an ordinary derivative, by adding 
together that of B and that of C, or 

Ah) 
= BZ + cr, 

10) 
(i)i- (11) 
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This formula follows either from the linearity of (4), or from 
the consideration that the form F relative to A is the sum of a 
form relative to B and a form relative to C, so that a similar 
result holds for SjP; the coefficients of the latter expression 

(which are by definition the derivatives will therefore be 

the sums of the corresponding coefficients of the other two 

(which are by definition the derivatives and The 

reasoning can be extended without difficulty to a sum of any 
number of terms. 

Next, consider the derivative of a product. If B^^^y are 

two generic tensors, we sliall denote their product by 

Ah) __ (h') iin 

^(0 — > 

where the symbol {i) stands for the aggregate of the indices 
{i') and (i") together, and similarly for {h). We shall show that 

rSh ) ^(/r) 
(12) 

To simplify the formula) we shall suppose that the systems 
A and B have each only one index of covariance and one of 
contra variance. We know (Chapter IV, § 8, p. 70) that if 

<!> = 

^ rf'V,,. 

are the invariant forms for the systems B and C, that for the 
system A is 

F 

We shall therefore have 

^F S ^ 8 

and equating the coefficients of on both sides 
of this equation we get equation (12) (for the particular case 

considered). 
Now consider the derivative of a compounded mixed system 

(Chapter IV, p. 79) 

(13) 
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where (i) and (h) have the meanings already explained, and 
(f) and (s) denote the aggregate of all the indices affected by the 
process of contraction. We shall show that 

^(i)i + %')(o (14) 

In particular, if eacli aggregate reduces to a single index 
and if tlie process of contraction is applied only to one index, 
(13) becomes 

.... (13') 
1 

and (14) becomes 

4^'-,: . Q']. . ■ (14') 

We shall give the jiroof for this simpler case, merely point¬ 
ing out that it can be immediately extended to the general 
case. 

We start from the invariant forms relative to the systems 
B and C 

1 

l’ 

where we have followed the same procedure as in Chapter IV, 
p. 78, and introduced a vset of 7i contra variant systems 
(a -- 1, 2, . . . n) and the associated reciprocal set. The 
invariant form 

F k<f>x 
1 

has the A's as coefficients, as we saw in Chapter IV. 
Applying the symbol of operation 8 to this we get 

1 

and equating the coefficients of Uf^ Vf^Sx^ on both sides of 

this equation, we get (14'). 
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To sum up, we have shown that the fundamental rules of 
ordinary differentiation hold good for covariant differentiation. 

6. Applications. 

We note first of all that if we start from a generic simple 
system (a function of position), say a covariant system 
and consider its reciprocal V\ we have by definition 

I 

hence, taking the covariant derivative and using Ricci’s lemma, 

Ff, - .(15) 

We shall next calculate the covariant derivative of the scalar 
product X of two vectors, which, as we know already, is identical 
with the ordinary derivative. 

Let XJ, V, be two generic vectors, and put 

z - U X V - s, u, v\ 
1 

Taking the covariant derivative, we have 

X, ^ 2, [[/,„ F' + u, Vll 
I 

In the second term on the right we can replace V\i by the 
expression for it in (15), so that 

n n ' n 

2, U, F|, = 2^a“ U, F,„ = 2, F,,, 
11 1 

Changing h into i, and substituting in Z^, we get the formula 

Z, - 2:,[C7,,,F^*+ . . . (16) 
1 

which is often used. 
In particular, if V — U, we have Z = U^, and therefore 

Zj = 2Tj|5 = 22.?7‘t/,,,. . . (16') 
dx^ 1 
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7. Divergence of a vector and of a double tensor. of 
an invariant. 

Take a covariant simple system X^, which we can always 
think of as the aggregate of the components of a vector X, and* 
construct the invariant 

0 .(17) 

where the terms denote covariant derivatives. In the 
particular case of the fundamental form being Euclidean, we 
have and also the covariant and ordinary derivatives 
are identical; hence in this case (17) becomes 

0 - 

In three dimensions this expression is called the divergence 

of the vector X. We shall extend the use of this term to the 
general case (17). 

We can transform (17) by means of (15). Writing X instead 
of Fj (15) becomes, for I 

z;. ^ ia'-' z,,,. 
1 

Summing with respect to f, the right-hand side gives 0, 
as can be seen at once from (17) by putting I instead of k and 
then interchanging I and ?. Hence we have 

e -= kxi.(17') 
1 

From the general rule for covariant differentiation, or more 
specifically from (5'), we have 

9Z' 

dx^ 
+ ^{jii}XK 

1 

Now sum with respect to i. Substituting from (17') on the 
left, and from the identity 

Si {>■,*} = 
1 

1 c)x/a 
\/a dXj 

( D 655 ^ 
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(cf. forHUila (215), Cliiij)k‘r V, p. 112) on the riju;lit, and writing 
I as the index of sunnnation on the right instead of i and j, we 
get 

(-) 
“ /dX , 

1 

I 

a dx^ 

or, taking tlie factor outside the summation sign, 
V a 

0 - 
1 

s/ a 
{>JaX'). (17”) 

This expression for the divergence is completely ecpiivalent 
to the formula) (17) and (17'); it is more useful for purposes of 
calculation, while (17) and (17') on the contrary are more suited 
to theoretical discussions. 

In particular, consider the case where the vector in question 
is the gradient of an invariant u, i.e. where 

^ - I"" {i - 1,2_n). 
VX; 

In this case the divergence is denoted by the symbol AgW 
and is called the second differential parameter of the function u\ 

the expression for it can be deduced at once from (17) or from 
(17"), using in the calculations the fact that 

We thus get 
1 

1 ^ a 
Ja 1 

(\/a u^), (18) 

both these expressions being generalizations of the ordinary 
expression for A2 in Cartesian co-ordinates. 

Next, take a contra variant double tensor We note 
first of all that if instead the given tensor were covariant {X^f^) 

or mixed (Xf), we could always compound it with the and 
so obtain an associated tensor in which both indices are indices 
of contravariance; so that the choice of a contravariant tensor 
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does not really constitute a restriction. From this tensor, taking 
the covariant derivative and applying the process of contraction, 
we get the contra variant simple system 

V . . . (19) 

which, by an obvious analogy with the former case, is called the 
divergence of the given double tensor. If the process of contraction 
were applied to the first instead of to the second index, we 
should plainly get a contravariant system 

in general this is distinct from the divergence Y\ coinciding with 
it only ill the jiarticular case when the given tensor is sym¬ 
metrical. Vice versa, if X.ii^ is the system reciprocal to JC''" (the 
indices corresponding in the order written), we see at once from 
the rules in § 5 that the system 

1 

is merely the covariant system reciprocal to (19). Returning 
to (19), it should be added that the expression on the right 
cannot in general be transformed (as was done for the ordinary 
divergence (17) ) into an expression which is convenient for 
actual calculations. In the case of an antisymmetrical tensor 
{X*^' ~~ 0), however, the analogy in this respect is per¬ 
fect. In fact, if we substitute in (19) the values of given 
by (9'), the second term on the right vanishes from the anti¬ 
symmetry of the Z's, while the other two give 

From this expression, by the same method as that just used 
to pass from (17') to (17"), we get the equation 

VO 1 

” dis/aX'’^) 
(19') 
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8. Some laws of transformation. £-systems. Vector product. 
Extension of a field. 

Consider a set of n covariant simple systems A„|,: (where 
a is the ordinal number of the system and i the index of 
covariance) and the determinant of the set 

V =- ||A„|i||. 

Changing the co-ordinates from the a:’s to another set of 
variables Jc, the systems are transformed (in accordance 

with the law of covariance) into another set of systems A^|,^- 
Construct the determinant of these new quantities 

V - ||A,|,|i. 

We shall show that the relation between V and V is 

V - VA.(20) 

where D denotes the Jacobian determinant of the transformation, 
i.e. 

^ ^ . . XA 

\x^x^ . . . xj’ 

which is of course not zero, it being always supposed that we are 
using a reversible transformation (§ 2, p. 3). The relation (20) 
can be verified at once if we construct the product by rows of 
the two determinants on the right, viz. 

Ai|i ^112 . . Aj^ j 
dx^ 

3^1 

dx2 

dxi dx^ 

^2ll ^212 • * '^2 {n 

• 

dxi 

dx^ 

dx2 

dx2 

\l|l \(2 • • • K\n i 
dxi 

dx,. 

d x^ 

dx„ dx,, 

Recalling (§ 11, p. 80) that 
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we see at once that the elements of the product determinant are 

precisely the quantities A^jj. 
It is also useful to examine the behaviour of the discriminant 

a = 11 11 

of the fundamental form when we change from the variables 
X to the variables x. For this purpose, we take the trans¬ 
formation law of the coefficients (§ 12, p. 85), 

dx, dx,, 

dxi dxu 

putting y n 

1 

we can write this law in the form 

4^ 7 dXx 

' J U X,^ 

This law, which is completely analogous to (21), enables us 
to conclude at once, from the example of the preceding case, 
that the relation between a and the determinant b of the quan¬ 
tities is analogous to (20), i.e. that 

d =^bD.(23) 

Further, as (22) is of the same type as (21), the determinant 
b will be connected with a by the relation 

b - aD, 

which, combined with (23), gives us the required relation between 
a and a, namely, 

d -= aD^.(24) 

It follows from (20) and (24) that the ratio - is an absolute 
invariant, i.e. that 

V _ V 

\/d s/ a 

Strictly speaking, this equality holds except for sign; but if 
we agree to change the sign of the radical when a transformation 
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is made for which D is negative, it holds in sign as well as in 

numerical value. 

The remark just made leads us to define a particularly useful 

tensor whose elements can be expressed in a very simple form. 

V 
In fact, we note that the quantity , which we have just 

V a 
seen to be invariant, is merely a multilinear form in the 7i sets 

of variables this is seen at once by expanding the deter¬ 

minant V in the usual way, as the sum of ynodiicts of its elements 

n at a time, where no product contains two elements from tlie 

same row or column, and with tln^ usual rule as to sign. We 

may write the result in the form 

± 

where the symbol S denotes the sum of all the possible pro¬ 

ducts, subject to the conventions stated as to their structure 

and sign. Since this form is invariant, its coefficients constitute 

a contra variant system. If we put for the coefficient of 

the product Aj 1A.j . . . A,^ | , we see at once that we have: 

0 jj: least two of the indices ^^4 . . . 4 are 

equal; 

€** ^ _ if these indices are all different and con- 
V a 

stitute a permutation of even order with respect to the 

fundamental permutation 1, 2, ... n; 

4... in _ „ 1 jf indices are all different and constitute 
V a 

a permutation of odd order. 

Hence it follows that the system of order n whose elements 

are 0, •— ^ , respectively according to the rules just stated, 
V a V a 

is contravariant] we shall call it the contravariant ^-system. 
We can give an analogous definition of the covariant ^-system 

by considering the determinant (reciprocal to V) 

V = II A1II 
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constructed from the reciprocal elements of the systems A^|.^ in 

the determinant V; tliese elements, as we know from Chapter 

IV, p. 74, constitute a set of 71 contra variant simple systems. By 

a well-known theorem, which can at once be verified, we have 

VA - 1; 

hence the quantity s/ a A (the reciprocal of \ will be invariant. 

Expanding the determinant A, this can be written in the form 

where the symbol S as before denotes the sum for all per¬ 

mutations of the indices i. 

It follows that the system whose elements are zero 

if the indices arc not all different, and are equal to 

\/a OT —Va if the indices are all different according as the per¬ 

mutation ^2 . . . of even or odd order, is covariayit. 

The use of the same letter € for both is justified by the fact 

that this covariant system is the reciprocal of the former system. 

This statement can easily be verified by the reader.^ 

By means of the e-systems, when 71 — 1 vectors v„ (a 1, 

2, , , , 71 1) are givtm, we can deduce from them (by invariant 

processes) an nth vc'ctor w, which is called their vector' jyroduct, 

as in three-dimensional Euclidean space it is identical with the 

ordinary vector product. If and ~ 1,2,... n) denote 

the contravariant and covariant components of the n — 1 given 

vectors, the formula 

Wi = S,,. 
1 

. . in-1 i\ii. . 

i, to 

.. i»-i ■ 71-1’ 

w" 

n 

= 2„,,, , H • • 
. . 171-1 • • • ^n-J LI in~l 

define two reciprocal systems, as can easily be verified; hence 

either separately defines the same vector, which we call w. 
When n ~ 3 and the space is Euclidean the components of w 
do in fact reduce to those of the ordinary vector product. 

1 For this and othor properties of the e-aystems, cf. an interestinn- note by 

Lipka: “Sui sistemi E ne] e.alcolo differenziale assolnto ”, in Rend, della R. Aoc. 

dei fAncci Vol. XXXI (first half-year, 1922), pp. 242-245. 



i6o ABSOLUTE DIFFERENTIAL CALCULUS 

In any case it follows from the preceding definition of the 

components (or w') that w — 0 if the vectors are not all 

linearly independent, i.e. if the characteristic of the matrix com¬ 

posed of their components <Cn — 1; when they are independent, 

w =4= 0 and is perpendicular to every v„. The latter property 

follows from the consideration of a generic vector product w X v^. 
Taking, say, the first group of formula), we have 

wxv„= ■ 
1 

€• • • • V 
<n-l . . in-l 1 , . V V 

n~l °- 

which is zero from the definition of the e-system, or, in other 

words, because the sum is the expansion of a determinant with 

two rows the same. 

Lastly, we wish to introduce into the metric of a the 

notion of the extension of a field, i.e. to define, for a given field 

of F„, a quantity F analogous to the area of a portion of a 

surface or to the volume of a three-dimensional field. Evidently 

we have a 'priori a free choice as to the definition of dV, provided 

that when n~ 2 it reduces to the expression already given 

for the element of area (formula (17), p. 99), and that when 

n = 3, in Cartesian co-ordinates, we have rfF = dxdydz; 
further, from the geometrical meaning of the term, the extension 

F of a field must be an invariant.^ All these conditions are 

satisfied if we assume 

dV = \^a dxi . . . dx,^, , . . (26) 

where \/a denotes the arithmetical value of the radical, and 

therefore 

F — j^s/ddx^ . , . dx^^. 

We know in fact that on a change of co-ordinates the pro¬ 

duct dx^ dx2 ... dx,^ must be replaced by | | dx^ dx^ . . . dx^^. 
From (24), extracting the square root, and taking the absolute 

values of both sides of the equation, we get 

\ \/a \ , \ D \ dxi dx2 . . . dXf^ = d dx^ dx2 • • • dx,^, 

^ A detailed study of the concept of extension and of its analytical expression has 

recently been made by O. Holder. Of. “Das Volumen in einer Riemann’schen 

Mftnni^faltigkeit ”, in Math. Zeitschrift, Vol. 20 (1924), pp. 7~20, 
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But the left-hand side s/a dxi dx2 ... dx^^, which is there¬ 

fore invariant. 

9. Rotor of a simple tensor in three dimensions. 

We can now give a definition of the rotor (or rotation, or 

curl) of a vector X given as a function of position, which shall 

hold good both when the space considered is not Euclidean, 

and also when it is Euclidean but the co-ordinates are not Car¬ 

tesian. For any value of n, the generalization consists in defining 

as the rotor the covariant double system 

Va ~ — ^i\h 

which is obviously antisymmetrical, since -f- = 0 identi¬ 

cally. As we saw in § 2, the p’s can also be written as the differ- 

0 Al 0 X 
ences of the ordinary derivatives —- — if then we con- 

dxi d Xj 

sider the Al’s as coefficients of a Pfaffian 

tjj 
1 

it will be seen that the p’s are merely the coefficients of the 

bilinear covariant of this Pfaffian (cf. Chapter II, p. 20). 

To get the full analogy to the ordinary rotor, however, we 

should consider a space of only three dimensions. For n “ 3, 

there are three different elements — —pn, corresponding 

to the pairs of different suffixes 23, 31, 12, pairs of equal suffixes 

giving zero values of the p’s. Each of the pairs 23, 31, 12, can be 

associated with the absent suffix (1, 2, or 3 respectively), or, 

in a general formula, the index h can be associated with the 

pair 6i the type h 1, //+ 2, with the convention that suffixes 

which differ by 3 are to be considered equivalent; for instance, 

if A — 2, A -f- 2 represents the suffix 1. It is therefore easy to 

understand how when n ~ S the rotor can be represented by 

a simple instead of a double system. If, however, we were to 

put 

Th ~ Pa+I,/t+2J 

the simple system so defined would be neither covariant nor 

<?9ntravariant. Instead, it will be convenient to apply the term 
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rotor to a vector R whose contravariant components are 

defined as follows (with the help of the e-systems introduced in 

the preceding section): 

R!' - ia 2, 3). 
1 

The contravariance of R!' follows immediately from the prin¬ 

ciple of contraction. In order to see the analogy between this 

expression and the ordinary rotor, note that in the double sum 

i and I can take only the values h -(- li 2 (since the e corre¬ 

sponding to the value h would be zero); since i and I must also 

be unequal, there are two possible cases: 

i A -f 1, I h “b 2, when , 
V a 

i ~ h 2, I - h + 1, when ~ ^ . 
va 

Hence this sum will have only two terms, and R^' can be 

written in the following form: 

■— 7^ ("^/t-f2|/i+l 1/1+2) 
va 

or R^' ^ ^ • 

the latter being convenient for actual calculations. In Cartesian 

co-ordinates a ~ 1, and we get the ordinary expression for the 

components of a rotor (it being supposed that X2, corre¬ 

spond in order with x, y, z), 

10. Sections of a manifold. Geodesic manifolds. 

We know that in ordinary space if we are given two direc¬ 

tions X, [I starting from the same point P and defined by their 

cosines (i ™ 1, 2, Jl), every other direction ? through 

P whose cosines are linear combinations of those of X and [jl, 

i.e. = pX^ + in the plane determined by X and fji. 

The coefficients p and a are of course not independent, as the 

^’s must satisfy a quadratic identity; we have in fact 

-j- + 2pcr cosXfi == 1. 
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The directions ^ so defined are therefore simj)ly infinite in 

number, and their aggregate is called a section. 

All this can easily be extended to a generic in which 

m directions (a 1, 2, . . . m) are given. 

Take m multipliers for the moment arbitrary, and con¬ 

sider the directions \ wliose parameters are 

e-=^aP.K,.(27) 
1 

and consequently whose moments are 

in 

.(27') 
1 

In order that these expressions may efiectively represent 

parameters and moments respectively, it is necessary and suffi¬ 

cient that they should satisfy the relation 

- 1, 
1 

in ii 

that is to say, S, ,, = 1, 
1 1 

A 

or, denoting the angle between the direction X„ and X^ by ajS, 

III A 

/>„ Pp cosa^ = 1.(28) 
I 

Now suppose that the p’s are connected by this relation but 

are otherwise arbitrary. We then see that (27) (or (27') ) defines 

an aggregate of 00"^“^ directions (this being the number of arbi¬ 

trary parameters), including in particular the m given directions; 

this aggregate is called a section. 

A section G being defined in this way by means of w of its 

directions X^, take in it any m directions X'^ whatever (a — 1, 

2, . . . m). It is almost obvious that the section G' determined 

by these directions is again G itself. 

This can of course be verified algebraically. In fact, if a 

direction ^ belongs to 6?', this is equivalent to saying that its 

parameters are linear combinations of the parameters A^', and 

therefore also of the parameters A^,; i.e. the direction ^ also belongs 

to G\ and vice versa. 
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We saw ii) Chapter V,p. 130, that a geodesic is uniquely deter¬ 

mined if its starting-point and direction are given. Now let us 

fix a point P in a and draw from it two directions X, [jl; 

these will determine a section of oo^ directions drawn from P. 

Consider the oo^ geodesics drawn from P in all these directions: 

they constitute a surface (oo- points) wliich is called a geodesic 

surface with pole P. 

A geodesic surface is therefore determined by a point and 

two directions. 

A similar definition can be given of an m-dimensional geodesic 

manifold. Take a point in F,,, and ni directions drawn from it, 

which will define a section of directions, and construct the 

geodesic corresponding to each of these directions. Since each 

geodesic contains 00^ points, the aggregate of all of them will 

contain 00points; i.e. it will constitute a manifold F^^^, which 

we shall call a geodesic 7nanifold. 

Particularly important cases are i\io. geodesic surfaces (m ~ 2), 

and the geodesic hypersurfaces (m — n — 1) determined by n — 1 

directions drawn from a point; we shall use these in the following 

section. 

11. Locally geodesic (or locally Cartesian) co-ordinates. 

In general, a system of co-ordinates in which ds"^ is repre¬ 

sented by a form with constant coefficients is called Cartesian. 

It is not always possible to choose co-ordinates of this kind in a 

given F„; it is however always possible to find a system of 

co-ordinates which behave like Cartesians in the immediate vicinity 

of a point P assigned beforehand, or, more precisely, which are such 

that the derivatives of the coefficients of ds"^ (which would vanish 

identically if the co-ordinates were Cartesian) all vanish at the 

point P. Such co-ordinates are called locally geodesic, or locally 

Cartesian, co-ordinates. 

Their interest from the point of view of parallelism, or more 

generally of elementary equipollent displacement, appears plainly 

from equations (52) and (52') of Chapter V, pp. 138, 139, which 

define the increments of the contravariant and covariant com¬ 

ponents respectively. It follows from these equations that when 

the system of reference is geodesic at P, these increments, in 

passing to any very near point, are zero, precisely as are those 

of the ordinary Cartesian components in Euclidean spaces. 
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Now take a F,,, and in it any system of co-ordinates x; we 

propose to introduce-—if this is possible—a new set of vari¬ 

ables 

= fi 3^2, .. . xj (i = 1, 2, . , . . (29) 

such that the x’s are geodesic co-ordinates at P, or in other words, 

putting for the coefficients of d6‘^ in the new variables, such 

that 

where the use of the suffix P denotes that after differentiation 

the x’s are to be replaced by the co-ordinates f p of P. Remember¬ 

ing the definition of Christoffers symbols (Chapter V, pp. 109, 

110), we see that (30) is equivalent to the condition that these 

symbols themselves are all zero at P, i.e. that 

= 0 (j, l,i= 1,2, ... n). . (30') 

The following analysis shows the possibility of finding a 

set of functions to define a transformation of this kind. 

The condition (30) consists of n-|n(n + 1) equations con¬ 

taining the first and second derivatives of the /'s (since df,., by 

the law of covariance, can be expressed in terms of the 

and the first derivatives of thc/’s). Now the number of first 

derivatives is and that of second derivatives is 1), 

so that the number of both together is greater than the number 

of equations. Since, as we shall see, the equations are not 

algebraically inconsistent, it follows that we can solve the 

equations (30) for the values at P of the first and second 

derivatives of the /’s, or rather for some of them, the others 

remaining arbitrary; further, the behaviour of the functions 

at points other than P is a matter of indifference. Thus 

the choice of the /’s can be made with a wide degree of 

arbitrariness. 

To avoid, however, the direct discussion of the equations (30), 

we shall start from the ideas contained in § 26 of Chapter V, 

p. 138, We saw there that the expressions 

T* == {jl, t} 
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constitute a contra variant simple tensor, the vector ^ and there¬ 

fore its contra variant components and also the differentials 

dxi, being all arbitrary. This holds in particular for the 

hypothesis ~ dx-, i.e. when we su})pose 

t'' . . . (31) 
1 

If on changing the variables we have at a special point P 

-- K,.(32) dxj, 

then at that point, from the law of contra variance 

it follows that 

7t- 

1 

(33) 

If we suppose (as we are always free to do, by making a 

preliminary change of variables from to x,- + ^ constant) 

that the x/s vanish at P, the equations (32) are satisfied pro¬ 

vided the formula) of transformation (29) are of the type 

= Xi + ^;(xi, x^, . . . x„), . . (29') 

where 0; denotes a function of the x’s which is regular at P, 

and whose expansion in a series of powers of the x’s begins with 

terms of at least the second degi*ee, e.g. a polynomial of the 

second degree in the x’s. In fact, if these conditions are ful¬ 

filled, all the first derivatives of-the <^’s vanish at P. Tlie second 

dxi dxi 

, and give the terms of the second degree (by Maclaurin’s 
dx^dxi 

derivatives 

02 X: 

are identical with the second derivatives 

theorem) on the right-hand side of the equations (29'). By a 

suitable choice of the numerical values of these second derivatives 

at P, we can make all the Christoff el’s symbols for the variables 

X vanish, so satisfying the equations (30'), as we shall now show. 

In fact, writing out both sides of equation (33) in full by 

means of (31), and considering the x’s, in virtue of (29'), as 

independent variables (with their second differentials zero) and 
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the x’s as functions of them, we can writ(i (3'^) in tlie form 

/I _ ?i 
d‘^ X. + ^;./f { i} dx,, dx„ = "Lji {jl, i) dx^ dx^. 

1 t 

Equating the coefficients of dXjdxi on both sides and remem¬ 

bering (32) we get 

from whicli it appears tliat we need only take 

*}/• (i> 1> 2, . . . n) 
dx^dx^ 

at P in order to luive 

[jh ^ r p “ ^ 

tor every possible set of values of Z, i. Q.E.DA 

^ Prof. Perini luis recently established an important extension of this result hy 

showing tiiat, given any curve whatever, it is also possible to ehoose eo-ordinates 

which are locally geodesic at every point of the curve. Cf. his notes “JSojtra 

i ftmomeni che avvengono in pr()ssiinitadi una linea oraiia ” in Rend, della R. Arc. 

del Lined, Vol. XXXI (first half-year, 192‘2), pp. 21-23, r>l-r>2. Fermi’s result 

can he (packly justified as follows, by calculating tlie number of available unknowns 

and of conditions to be satisfied. 

Take the eejnations of the curve L in the form 

- Xd-'n) = 1, 2, . . . n - 1), 

as we may always do by considering a suitably limited segment. Note first that 

if the values zi, of a generic function z{X], x.., . . . x^) and of its partial derivatives 

with respect to Xi, x-i, . . . are known at all points of the curve, then the values 

of also are determined at all points of the curve. This is obvious if we take 
dxn 

the identity jo, . . . ;r„) = wliicli holds at all jioints of L, and dif¬ 

ferentiate it, so getting 
dz _ dzi, __ dz dxi 

dxn dx^ 1 ‘ 

Now suppose that we make a change of variables of the general tyjie (29), and 

that we wisli to determine, if possible, the n functions 'X-z, . . . Xn) so as to 

make every = 0 along L. As has already been noted in dealing with a single 
oxi 

point P, we thus get n«i?>7r(a-f 1) conditions involving the first and second deriva- 
f- 

tives of the /”s. Now the number of first derivatives - is n', and that of the 

dHi . 
second derivatives ^ \ is 7id,n{n-\-l) ] hut from the preceding remark, the 7i^ 

cXfi o Xk r. 
of the latter, which are of the type — (*» ^ = 1, 2, ... n), can be expressed 

dXn dxjc 
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It is not inapposite to give a geometrical interpretation of 

the conditions imposed on the co-ordinates x in order that (30') 

may be satisfied, or, in other words, in order that they may be 

geodesic at P. These conditions may be put in the following 

form: 

(a) The n co-ordinate hypersurfaces passing through P must 

behave as geodesic hypersurfaces with respect to points infinitely 

near P (or, in particular, must be geodesic everywhere). 

{h) If through a point P\ infinitely near to P and on one of 

the n co-ordinate lines through P—say that along which 

alone varies—we construct the direction parallel to another of 

the co-ordinate lines, this parallel must belong to the co-ordinate 

surface x- — coiLstant which passes through P'. 

(c) When the co-ordinate hypersurfaces are fixed in accordance 

with the foregoing conditions (which, as is geometrically obvious, 

is always possible), the numbering of these surfaces (i.e. the way 

in which they are associated with the values of the parameters 

iK,, (Tg. • • • ^/i) iiiust be carried out so as to satisfy certain numerical 

conditions which we shall subsequently specify, and which, as 

we shall see, can always be satisfied. 

That (a) and {b) are consequences of (30') follows immediately 

from the equations of parallelism and of geodesics. Recipro¬ 

cally, we shall show that a system of co-ordinates which satisfies 

the conditions (a), (6), (c) is geodesic at P. 

We shall begin by expressing the condition (a) analytically. 

Take a direction with parameters dxj^., drawn from P and lying 

in the hypersurface x- == constant (so that dx^ ~ 0). We have 

to express the fact that the geodesic in this direction behaves at 

at points of L in terms of the others and of the first derivatives. There remain 

altogether, including both first and second derivatives, -f- {n-in(?i-|-l) — ri”} 

= n'‘\n{n + 1) unknown functions of to determine by means of the same 

number of equations — 0. These last equations, as can at once be seen, 

av- 
contain the second derivatives ^~—(/t, A; < n) in finite terms (in fact linearly), 

dxh dxje 

while the unknown values of the first derivatives ^— appear together with the 
d df- 

terms - In any case we have a system of as many equations as there are 
dxn dxk 

unknown functions of Xn alone to determine. When the values of these deriva* 

tives are known on L, we can determine, with a wide degree of arbitrariness, func¬ 

tions fi which admit of these values. This can I:)e seen by taking a Taylor expan¬ 

sion of the /’s as a function of the w — 1 arguments , x^^,^ — sCn-r 

where the quantities x\ {i — 1, 2, ... n — 1) are the values of the Xi’s on Z, i.e. of 

the functions xi (a^n) which define this curve. 
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P as if it lay on this hypersurface, i.e. that vanishes along 

this geodesic. It follows that dx^ ~ == 0, and therefore, 

from the equation of geodesics, 

n 

i},.dxjdxi = 0. 

Of the terms in this sum, those in wliich either or Z, or 

both, are equal to i vanisli, since dx^ — 0; the otlier rfx’s being 

arbitrary, the necessary condition for the vanishing of the otlier 

terms is that 

{ fly (i? Z 4= ?.). 

We thus see the analytical meaning of condition (a). 

Next consider (h). We shall take P' on the line so that, if 

dx represents the increments of the co-ordinates from P to P', 

w^e shall have dxi ~ 0 for every value of I other than i. Let 

X denote the direction of the co-ordinate line j at P, so that 

0 for (^very h other than 7, anfl let X undergo a parallel 

displacement from P to P'. Aj>plying the usual formula and 

remembering that dx^‘ and A"' are the only components which are 

not zero, we get 

dX == — {ji, i}j, A^ dXi, 

In order that the direction A' — A dA may lie on the 

hypersurface X; — constant, we must have A'‘ — 0, or (since, 

as we noted, A' ~ 0 if « j) = 0 if « 4= so that w’e must 

have 

{jh i) ^ 4^,?)- 

This is the analytical expression of condition (b). We must 

now use the third condition in order to show that the symbols 

with three equal indices vanish; we shall thus have exliausted 

all the types of Christoffers symbols. 

Suppose that the co-ordinates x satisfy the foregoing condi¬ 

tions. Apply a transformation which leaves the co-ordinate 

surfaces unchanged; this can be done by putting X; =- //(^4 

(i.e. every rr is a function of a single x), or, which is the same 

thing, 

dXi ^ (x^) dxi, 
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where X,^ denotes the derivative of / with respect to its 

argument. 

We shall now calculate the explicit expression of the symbols 

which we intend shall vanish. We have 

[ii,q 'Lja,j[ii,j], 

or, remembering that all the symbols are already zero except 

those with three equal indices, 

Substituting on the left-hand side the expression which defines 

the symbol of the first kind, we get 

dd: 
V 
“ dX{ 

d,i {a, i}. 

a 1,2, 

Hence the condition 

[ii, i} == 0 

is equivalent to 

Now ‘from the law of covariance we have 

dx^ d X/, 

{i 1, 2, 

n) 

n). 

and therefore 

^ife Ct,h r ax, oxj^ 

d Xi d X; 
X\-\-2a,, X,Xl 

In order that the required condition may be satisfied, the 

fimctions X therefore need only satisfy, at P, the n numerical 

conditions 

9%/ 

dXi 
Zf + == 0; 

otherwise they may be completely arbitrary. 

We thus see how to determine a system of co-ordinates x 

which shall be locally geodesic at P, 
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12. Seven’s theorem. 

The possibility of choosing co-ordinates which are locally 

Cartesian at a given point enables us to simplify the j)roof of 

some geometrical properties which hold in the neighbourhood of 

a point. As an example we shall ])rove, without any calculation, 

a remarkable theorem due to Professor Severi.^ 

In a given Vconsider two infinitely near points, P and Pj, 

and a direction u drawn from P. This direction, and the direc¬ 

tion PP^ determine a section of F„, and therefore a geodesic 

surface which j)asses through P and P^ and contains u. 

We can now give u a parallel displacement, from P to P^, 

in two ways: 

(1) by considering u as a direction in and therefore using 

the metric of this variety; this will give a direction Uj, which 

we shall call the ambiental parallel; 

(2) by considering u as a surface direction, belonging to the 

geodesic surface F2 just defined, and using the metric of 

this will give a direction uj. 

Seven’s theorem is that % and u] are identical. 

We shall examine first the cUvSe in which F,^. is Euclidean. 

In this case the geodesics are straight lines (since, with a system 

of Cartesian co-ordinates y, Christoffel’s symbols are zero and 

the equations of the geodesics become 0 {i= 1, 2, . , . ) 

and th(^ geodesic surfaces are planes; Severi’s theorem becomes 

an immediate consequence of the ordinary theory of parallelism 

in Euclidean spaces. 

Next, if Vn is not Euclidean, we note that in the definitions 

of the ambiental parallel Uj, the geodesic surface Fg, and the 

parallel uj relative to Fg, the only metrical elements used are 

Christoff el’s symbols for the F„; since all these can be made 

to vanish by a suitable choice of co-ordinates, the two methods 

of displacement are applied exactly as if F,j were Euclidean, and 

therefore lead to the same result. 

^ “Sulla ciirvatiira delle siiperficie e varietA” in Fend, del Circolo Mat di 
Palermo^ Vol. XLII, 1917, pp. 227-259. Cf. especially § 11. 
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CHAPTER VII 

Riemann’s Symbols and Properties relating to Curvature; 

Ricci’s and Einstein’s Symbols; Geodesic Deviation 

1. Cyclic displacement and the relations between parallelism 
and curvature. 

Scliouteii,^ by his vector methods, and independently of him 

Peres,2 by ordinary calculus methods, have demonstrated the 

great importance, for determining the geometrical properties of 

a F„, of the displacement of a direction round a closed circuit; 

in particular the importance of infinitesimal circuits in investi¬ 

gating local properties at a generic point P. 

Consider a generic direction (a unit vector) u drawn from P, 

and give it a parallel displacement round a closed curve T of 

infinitesimal length so that it comes back again to P; after the 

displacement we shall have a direction U|, also drawn from P, 

but not in general coinciding with u. The change in the contra- 

variant components iC’ due to the displacement round the circuit 

will in general depend on the area of the circuit, on its configara- 

lion (i.e. on the orientation in of the element of surface on 

which the circuit is drawn), and on the metrical properties of the 

F,j at P. The influence of the last-named properties is exerted 

through the first and second derivatives of the a,/s; these 

derivatives occur in certain characteristic groups which are 

called Riemanris symbols, and which are composed of Christoffel’s 

symbols and their first derivatives. In the particular case of a 

surface, these expressions reduce to one, which is that knowu 

in geometry as the (Gaussian) curvature of the surface; for any 

F,i the consideration of Riemann’s symbols provides a convenient 

way of extending the notion of curvature. 

In this chapter we shall first consider displacement round a 

particular form of infinitesimal circuit, namely, an elementary 

parallelogram. We shall then discuss some of the properties of 

Riemann’s symbols, which occur in the investigation of the 

^ “ Die direkte Analysis zur neueren Ilelativittotheorie ”, in Verh. der Kon, 

Ah. van Wet. te Amsterdam, Deel 12, No. 6, 1919. Of. also the same writer’s Der 

Ricci-Kalkill (Berlin, Sprinj^er, 1924), II, §§ 12-16. 

^ “ Le parallelisme de M. Levi-Civita et la courbure riemannienne ”, in Rend* 

delta R. Acc. dei Lincei, (6), Vol. XXVII (first half-year, 1919), pp. 425-428, 
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displacement, and shall use these properties to obtain the formula 

for changing the order of two successive covariant differentiations, 

by determining the difference between the derivatives. Lastly, 

we shall return to the question of displacement round any circuit 

whatever, and shall deduce from it the notion of curvature, 

first for a surface, then for any whatevoir. 

2. Cyclic displacement round an elementary parallelogram. 

Let two elementary vectors, 8P, 8'P, be drawn from a generic 

point P of a V,,. We shall interpret the first as an elementary 

displacement PP^, and give the vector 8'P a parallel displace¬ 

ment along it; let Q be the position of the extremity of 8'P after 

this displacement. If we a])ply the same process to SP, and give 

it a parallel displacement along the path PPo, we reach the same 

point Q (as we have already shown in Chapt(^r V, p. 116), even if 

we retain terms of the type 88'P, 8'8P, while neglecting terms 

of the second order in 8P and 8'P. We can therefore, in any 

consider an eJetnnitary j)araUelogmm PPj^^Pg. 

We shall adopt the obvious convention of representing by 

8q the change in any quantity q (scalar or vector) in passing 

from P to P^ and by 8'q the analogous change in passing from 

P to Po. For a vector, we shall calculate these changes by the 

formula} of parallelism. 

Now let D^q be the change in q on passing from P to Q 

along the path PPiQ, and D2q the analogous change on passing 

along the other pair of sides PP^Q which with the first pair 

make up the circuit. 

It will be seen at once that (neglecting second order terms as 

explained above) the total change Ag on going round the entire 

circuit in the sense PP^QPJP is D^q — D^q- We shall first 

examine D^q. 

The change denoted by 8 corresponds to the displacement 

along PPi; hence, if the value of our quantity was q at P, its 

value at P. will be , ^ 
i + M = h- 

The displacement along P^Q changes q^ into q^ + so 

that at Q we shall have the quantity 

q + 8q + S'{q + 8q) 

= g + 8? + + 8% 
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so that 

A? ~ 

As D^q, by its definition, differs from D^q only by interchang¬ 

ing Pj and P2, and therefore 8 and S', we get 

h'q + ^q + SS'y. 

It follows that the change caused by the displacement round 

the circuit is A<1 (S'& - SS')g.(I) 

We must now find an explicit form for this ex])ression, sup¬ 

posing that the quantity q is a vector u, and calculating the 

increments 8 and S' by the formulae of parallelism. By these 

formula), the changes 8u/ of the contravariant components will 

be given by the Pfaffian (p. 138, equation (52) ) 

hu"' - r] u'. . . (2) 
1 

while the changes 8'u/' will be given by the same Pfaffian relative 

to the increments S'a"/,. From (1) we see that we have to calculate 

the bilinear covariant (cf. p. 20, § 4) of this Pfaffian. 

Differentiating (2) with the symbol S' we get 

— — 2^,^ S' I ih, r] u' 8% ~ S,-,, (ih, r] h'u' 8Xf^ 
1 1 

— r] u' S'Sx,,. 
1 

To expand the first sum, we note that the expressions | ih^ r} 

are functions of the x’s, and tlierefore 

h'{ih,r) %,l-{ih,T]h'x,. 
1 dx,^ 

The second, on substituting for S'tt^ the expression analogous 

to (2), becomes 
n 

'^mi i r\{kl,i} S'a:*, 8a:*, 
1 

or, interchanging i and I in order to get the factor u' here too, 
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We have, therefore, taking out the factors w' 8'% in the first 

two sums, 

S'Sl/ = — {*^*> »■} — »■} S'x* 

— S,/, [z'A, r] u* S'Sxj^, 
1 

The expression for 88'?/ can be obtained from tliis by inter¬ 

changing 8 and 8'; in the first sum we shall also interchange 

h and k, giving 

88V - - [g^ {ih r} - |, {Ih r} {hi, l}^u' 8'x, 8x, 

— r]u‘88'xi,. 
1 

In taking the difference 8'8'?^'* — 88'i/ the third sum cancels 

out, because SS'Xf, -- 8'8xy^ (cL pp. 18, 19, § 4), and there remain 

the terms involving the indices i, h, k, in which u' 8x/^ Wx,^ can be 

taken out as a common factor. If we introduce Riemwmis symbols 

of the second kind, 

{i,r,h,k^\,2,...n), (3) 

we shall therefore have 

A?/ - (S'S - §8')^ = - 
n 

'LM{ir,hk\u^8x,,8'x,,. . (4) 

This fornnda shows that the required increment Au depends 

on the vector u, on the two vectors 8P, 8'P which define the 

parallelogram, and lastly, on the metric of the manifold, through 

the quantities [ir, hk]. From (4) it follows as a particidar case 

that for Euclidean spaces Riemann’s symbols as just defined are 

all zero, whatever may be the co-ordinates x chosen for reference. 

In fact, for such a manifold, we have — 0 (r — 1,2,... n), 

since any vector resumes its original value after parallel dis¬ 

placement round any closed circuit whatever. Hence the right- 

hand side of (4) vanishes for every r, and for any value of the 
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vector u and of the displacements 8P, S'P, i.e. for any values of 

the arguments u\ 8'Xf,, The coefficients [ir, hk] must there¬ 

fore vanish separately. 

It will be useful to point out at once the following two pro¬ 

perties of the operator A: 

{a) When applied to a product, it behaves like a symbol of 

ordinary differentiation, i.e. 

which can be verified directly, by calculating first S(^^), then 

8'8(ip(f)), &c.; 

(b) when applied to a function of position, the result is zero, 

as is obvious from the meaning of the symbol. 

If instead of tlie increments Ati'' we wish to find those of the 

covariant components, we can use the relation 

n 

Uj = 

I 

and therefore, from the properties of the operator A. 

AUj ^ 

1 
n 

= djr {ir, hk] M‘ Sa:* 
1 

If we introduce Riemann’s symbols of the first kind, 

n 

(ij,Jik) T.,aj,{ir,hk], .... (6) 
1 

we can sum with respect to r, and can then write 

Am, = -Siftj, {ij, hk) u' 8x^ 8%, . . (4') 
1 

which is analogous to (4). 

Solving (5) we get Riemann’s s3rmbols ot the second kind in 

terms of those of the first kind by the formula (the inverse of 

[ir,hk] == {ij, hk.) . . . (5') 
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3. Fundamental properties of Riemann's symbols of the 
second kind. 

As can be seen from their definition (3), Riemann’s symbols 

of the second kind are functions of position, depending on the 

coefficients a-j., their first derivatives (contained in Christoffel’s 

symbols) and second derivatives (contained in the derivatives of 

Christoffers symbols). They have the following fundamental 

properties: 

{a) They are antisymmetrical in the last two indices, i.e. 

^ . . . (G) 

whence in particular 

hh) — 0. 

This projjerty follows immediately from (3). 

{})) They constitute a mixed tensor,^ coTitravariant with respect 

to the second index and covariant with respect to the other three, 

so that the symbol [/r, hh] could also be denoted (as is sometimes 

done) by To prove this, consider the invariant 

1 

where the p’s are given (but completely arbitrary) functions of 

position, so that Ap,, —- 0. If we give F a displacement round 

an infinitesimal circuit, we find (remembering the behaviour of 

the operator A) 

Ai^ r- 2;^ {u"" Ap,, + p,. Au^) 
1 

== S^p^AwL 
1 

As F is invariant, this quantity must also be so; replacing 

Aw'’ in it by its expression (4), we get the quadrilinear form 

AF = —^M,{ir,hk}p,u‘8x^B'x^, . . (7) 
1 

which expresses the required property of the Riemann’s symbols, 

since the simple systems p^, u\ Sx/,, are all arbitrary. 

^ Very generally, especially in works on the Theory of Relativity, called the 

Rlemann-Christoffel tensor. 
( D 066) ^ 
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We can use tlie tensor character of Rieinann’s symbols to 

obtain a second proof of the fact that Riemami’s symbols are 

all zero for a Euclidean (the first proof is an immediate con¬ 

sequence of (4), as was shown in the preceding section). In fact, 

the definition (3) shows at once that they vanish in Cartesian 

co-ordinates, and in consequence they vanish in any other system 

of co-ordinates. 

(c) They have an important cyclic property with respect to 

the three indices of covariance, namely, 

{ir, Ilk [ 4" {f + {' 0. . . (8) 

To prove this, we again take F and formula (7), but we sujipose 

that in them the jt)’s are derivatives of an invariant function / 

of position (whose numerical values are otherwise arbitrary), 

and we also take as vector u an infinitesimal displacement with 

components == dx^, which is also arbitrary. Witli this choice 

F becomes 

F dx, = df, 
1 ox, 

and (7) becomes 

(S'S — S5') df hk] p, dx^ Sx/, 8'x„. . (9) 
1 

Interchanging cyclically the three infinitesimal vectors denoted 

by the operators d, 8, 8\ we get the other two formulae: 

(rfS' — 8'd) 8f = —{ir, hk \p, 8xi 8'xi, dxj,, (9') 
1 

{8d — d8) 8'f == —^M,.\ir, hk} p, dx^ 8x,,. (9”) 
1 

Now on the right-hand side of these last two formula! we can 

arrange to have the product dx^ 8xf^ 8'Xf^ in the general term, 

merely by a suitable interchange of the indices of summation. 

We can then add (9), (9'), and (9"); the left-hand side gives 0, 

since the terms cancel out in pairs (e.g. 8'8df— 8'd8f = 8'(8df 

— d8f) = 0, since / is a function of position); and we get 

n 

0 = hk] + {hr,ki} + [kr, ih)]pr dxi8x,,8'x^. 
1 

As p,, dxi, 8xj^, 8'xj. are arbitrary, (8) follows at once. 
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4. Fundamental properties and number of Riemann’s symbols 
of the first kind. 

Eiemami’s Bymbols of the first kind, as defined by (5) (i.e. 

the quantities obtained by compounding the quadruple system 

of the symbols of the second kind with the system of coefficients 

au^) have the following properties: 

{a) They are mvariant ivith respect to all four indices, so that 

they may be denoted, as is often done, by this follows 

from the definition, in consequence of the law of contraction. 

The remark that a Euclidean has all its Riemann’s symbols 

zero is true hero too, whatever may be the system of reference. 

{b) They are antisyntmeirical with respect to each pair of indices, 

so that we have identically 

(y, hk) - - (ij, Ih), .... (10) 

(y, hk) — —iji, hk).(11) 

The identity (10) follows at once from (5), and from the 

analogous property of the symbols of the second kind. To prove 

(11) we shall follow a method analogous to that used in § 3 (h), 

taking as invariant the scalar product of two arbitrary vectors 

u, V, 

F -= ^jVjuj. 
1 

Applying the operator A and remembering that in a parallel 

displacement the scalar product does not change (so that A 0) 

we get 

0 'EtjViAu-^ Aih. . . . (12) 
i' ■ 1 

The expression for Au^ is given by (4), by writing j in it instead 

of r; that for A?;^- is given by (4'). Substituting, we get 

0 = hk) u' Sxft 8’x,, + w-' {ij, hk] v' 8x,, 8%. (12') 
1 1 

In the first sum we express in terms of the contra variant 

components u,., and then, remembering (5), we sum with respect 

to j\ we get successively 

%ihicr ajr {ij, hk} «'■ 8x^ 8'x^ = {ir, hk) m* 8xi, 8'x,,; 
1 1 

lastly, changing the indices i and r into j and i respectively (to 
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get the term in the same form as the second part of (12')), we 

get 
^jMc v' Uh hk) 8x^ S'%. 
1 

We can now return to (12'), and taking out the common 

factor we get 

0 - [(>:, hi) + (y, M)] hx, (13) 
1 

from this, since ii\ v\ S.T/,, h'x,^ are arbitrary, we get formula 

(11)- 
(c) Riemanirs symbols of the first kind have also a cyclic 

property analogous to that of the symbols of the second kind 

and immediately deducible from the latter, namely, 

(ij, hk) + {hj, hi) + {kj, ih) 0, . . (14) 

where the second index remains fixed and the other three are 

permuted cyclically. This formula follows directly from (8), 

on multiplying by and summing with respect to r. 

As each of the terms in this sum is antisymmetrical, we can 

at once obtain from (14) a similar identity 

(y, hk) + {ih, kj) + {ikjh) - 0, . . (14') 

in which the first index remains fixed and the other three are 

permuted cyclically. 

(d) Lastly, for the symbols of the first kind, there is a pro¬ 

perty of permutahility, which is a consequence of the foregoing 

properties, and according to which we can interchange the two 

pairs of indices without altering the value of the symbol; namely, 

{ij, hk) =- (hk, ij).(1.5) 

To prove this, take (14') and the three other identities obtained 
from it by cyclic permutation of the four indices in the order 
i,j, h, k, or 

((;, M) + (ih, kj) + (ik, jh) = 0, 

(jh, ki) + (jk, ih) + (ji, hk) = 0, 

{hk, ij) + (hi, jk) + (hj, ki) = 0, 

(ki, jh) + (kj, hi) + (kh, ij) = 0. 
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Adding the first and fonrth and subtracting the second and 

third of these identities, and using the property of antisymmetry, 

we see that the terms cancel out in pairs, except the four under¬ 

lined, which give 

hlc) — 2{hh, ij) 0, 

whence the required property follows. 

We shall now calculate the number of independent Riemanns 

symbols of the first kind. A quadruple system (cf. § 2, p. 65) 

has in general n^ elements, if there are n ir)depen(]ent variables. 

The number of distinct Riemann’s symbols of each kind is 

smaller, however, as these symbols are connected by the identities 

we have just proved. We shall determine this number for the 

symbols of the first kind, dividing them into three classes, and 

counting separately those in each class, as follows: 

(1) Symbols with only two dilTerent indices: these are of the 

type (y, ij), since the other possible arrangements are either 

reducible to this, or give zero values. Each pair of unequal 

indices i, j therefore gives a single symbol of this class, which 

thus contains 

n(n — 1 

(2) Symbols with three different indices: these are of the type 

{ij, ih), since here too the other possible arrangements are reducible 

to this or give zero values. Every triplet of unequal indices will 

give three symbols of this type (since the repeated index may be 

any one of the three); since there are 
- \)(n- 

1 •2-3 
triplets, 

the number of distinct symbols of the class we are considering 

amounts to 

n{n — l)(n — 2) 

(3) Symbols with four different indices: a set of four different 

indices i, j, h, h will give the three symbols 

{ij, hk), {ih, kj), {ik, jh), 

while every other possible arrangement gives a symbol reducible 

to one of these. But these three are not independent, on account 

of the cyclic relation (14'). It follows that each of the 
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set8 of four indices gives two distinct 
n{n — 1) (n — 2) (n — 3) 

r-2-3-4 
symbols, so that the total number of these is 

n{n — 1) — 2) {n ~ 3) 

12 

Adding these three partial totals, and simplifying, we get 
the total number N of independent Riemann’s symbols of the 
first kind; 

„ ^ n^{n- — 1) 

12 

Thus for an ordinary surface (ft = 2) we have N 1; 
for a three-dimensional space, ~ 6; for a four-dimensional 
space, N 20. 

5. Bianchi’s identities.^ 

Bianchi’s identities are cyclic relations between the covariant 
derivatives of Riemann’s symbols of both the first and second 
kinds. They are obtained as follows: 

Take formula (3), which defines the symbol of the second 
kind [ir, and differentiate it with respect to We note, 
however, that on differentiation the last part, which consists of 
terms of the second order in ChristoffeFs symbols, gives terms 
made up of the product of one such symbol by the derivative of 
another: the essential point for us is that, with reference to a 
specified point P, by choosing co-ordinates which are geodesic 
at that point, we can make all these terms vanish. We cannot, 
however, treat the first part in the same way, as the geodesic 
co-ordinates make Christoffers symbols vanish but not their 
derivatives. We shall therefore have the formula, valid at the 
point P for co-ordinates geodesic at P, 

^-{ir,hlc\ = ^ [ih,r) 
C Xi O Xj^ vXi 

-HTc r\ 
dxn dW ’ 

^ These identities were stated without proof by Padova, on the strength of 
a verbal communication of Rioct (cf. “ Sulle deformazioni infinitesimein Rend, 
della R. Aec. del Lincei, (4), Vol. V (first half-year, 1889), p. 176). They were then 
forgotten even by Ricci himself. Bianchi rediscovered them and published a 
proof obtained by direct calculation in 1902 {Ibid,, (5), Vol. XI (first half-year, 
1902), pp. 3-7). 
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Write down also the two other formulae obtained from this 

by cyclic permutation of the indices h, k, I, leaving i and r fixed; 

A [ir, kl) 

a 
dXf, [ir, lh[ 

dx,,dxi 
{ il, r } 

02 

dx^dx^ 

a Xi d x^. 

[il, r], 

(ih, r}. 

Adding the terms on the left and right of these three equations 

we get 

a 
dxi 

[ir, hk\ + 
a 

dx,, 
ir, kl \ + 

a 
dXf. 

ir, III I - 0, (16) 

which holds at the jioint P, in the particular system of co-ordinates 

chosen. Now consider the following mixed tensor of rank five 

■ {lr,hk)i + {ir,kl),,+ {ir,lh),„ 

in which the suffixes outside tlie brackets denote covariant differ¬ 

entiation. This system, referred to the point P and to co¬ 

ordinates geodesic at P, is identical with the left-hand side of 

(16), since in these conditions the covariant and ordinary 

derivatives are identical; all its elements are therefore equal to 

zero, and it will therefore be identically zero whatever may be 

the system of reference (cf. Chapter IV, p. 84). We have thus 

proved the identity 

{ir, }ik]i + [ir, kl),, + {ir, Ih),, = 0, . (17) 

which is a first form of the result established by Bianchi. 

For the symbols of the first kind the analogous relation is 

easily proved from the definition of these symbols given by (5). 

In fact, taking the covariant derivative of this formula, and 

using Ricci’s lemma, we find that 

n 

(ij, hk)i = 'E.,ajr{ir, hk},. 
1 

From this, permuting cyclically the indices h, k, I and sum¬ 

ming, we get, by (17), 

(ij, hk)t + {ij, kl),, 4- {ij, Ih),, -= 0, . . (17') 

which is the second form of Bianchi’s identity. 
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6. Commutation rule for the second covariant derivatives. 

An important application of Riemann’s symbols occurs in 

the formula which gives the relation between the two systems 

A.i) j Aj) 

obtained by double covariant differentiation from a generic 

tensor where (/) stands for the aggi‘egate of indices of 

covariance and ( j) for the aggregate of indices of contra- 

variance ji . . . j^. To simplify the formula) we shall consider a 

mixed double system A{, with the remark that the procedure 

is similar if there are more indices. 

We start as usual from the bilinear form 

F = 
1 

the invariance of which determines the law of transformation 

of the A's; the ^'’s are the contra variant components of an 

arbitrary vector the ufs are the covariant components 

of another arbitrary vector u. The procedure will consist in 

calculating, in two different ways, the quantity AF correspond¬ 

ing to a cyclic displacement round an elementary parallelo¬ 

gram (cf, § 2), and in equating the two expressions so 

obtained. 

A first way of calculating AF is as follows. We associate the 

increments 8, 8' with two sides of the parallelogram, as in § 2, 

and use (1). Note first that from the definition of the covariant 

derivative (cf. Chapter VI, p. 146) SF is given by 

8F = 
1 

Similarly, applying the symbol 8' to this expression, we 

shall get 

S'SF = 41 A* ^ ‘Sa^A 8 'x*. 
1 

From this, interchanging 8 and 8', we get 

88T = 
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subtracting these two equations, after interchanging the indices 

li and h in the second, we get 

. (18) 
1 

The other method of calculating this quantity consists in 

applying the operator A directly to the expression for F. Remem¬ 

bering the fundamental properties of A (§ 2) we shall get 

AjF' + i'Auj), 
] 

or, substituting for A^' and AUj the expressions given by (4) 

and (4'), 
n 

AF A {^' Sx/, 8'x,, 
1 

— A {pj, hi) 8t.,, B'x,,. 
1 

In order to get the second sum in the same form as the first, 

we shall express it in terms of symbols of th(i second kind and 

of the covariant components of u; to do this we first use the 

property of antisymmetry with respect to the first pair of indices, 

and express the in terms of the t//s, so that the sum becomes 

+ ^Ojmi a ijp, Me) a'”' Ui Sx/. 8'x;,. 
1 

Summing with respect to jp, and using (5'), we get 

1 

Now, in order to reconstruct the second expression for AF 
in a suitable form, we shall first interchange some indices, so 

as to be able to take out the factor UiSXf^S'Xf. which occurs 

in (18). We must interchange I and i in the first sum, and I and 

j in the (modified) second; we shall then get, collecting both sums 

under a single summation sign, 

- -kj„u\^A^ {il, Me] - M:}J i’uj8x,S'x,. 

(dOoS) 
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Comparing this expression with (18), and remembering that 

u, the Sic’s, and the 8'x’s arc arbitrary, we get the commutation 
formula 

4m-4m = [4m-4{tj.M|]. (19) 

If the system from which we start has m indices of covariance 

and jji of contravariance, we must consider m vectors deter¬ 

mined by their contravariant com])onents, and /x vectors u, deter¬ 

mined by their covariant components; by an analogous process 

we shall find 

n r m , A 

4*'', „ - 4- = -Si s, ... , {i,i, m} 
(i)|/c^ 11 11.. . V-1 ^ V+1 • • • ^ 

(20) 

7. Cyclic displacement round any infinitesimal circuit. 

We now return to the order of ideas interrupted at § 2. Given 

a direction u at a point P, we shall give u a parallel displacement 

(in round a closed curve P, infinitesimal, but of any shape 

whatever, and of course passing through P; we propose to 

calculate the change Du^ in a generic parameter of u caused 

by the cyclic displacement. The formula we shall find will be 

merely a generalization of (4), and must reduce to (4) 

if as a particular case we take for T an infinitesimal parallelo¬ 

gram. 

For an elementary displacement dxj^ we know that the change 

in u^ is 
n 

du"' — — {ih, 
1 

so that it has the form of a Pfaffian 

= kXrndx,, .... (21) 
1 

in which the Z’s are functions of position (since they contain 

Christoffel’s symbols) and of the w^’s which are defined along 
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the curve T by the equations of parallelism du^ = ifs^. We have 

to calculate the integral 

D'if — j i/fj. — f Xrh dXf^^ , , (22) 

where we use the operator D to indicate the increment resulting 

from displacement right round the circuit. We shall now con¬ 

sider any surface g containing the curve T, and we shall call 

r the region of this surface which is within T, and is such that 

T constitutes its complete boundary. We propose to transform 

the integral round the circuit T, which occurs in (22), into an 

integral over the surface F. To do this, we shall first introduce 

a system of co-ordinates and ^2 surface in question, 

defining them by the parametric equations 

1, 2, ... n). 

The dx'fi will consequently be linear functions of dq^ and 

dq2\ substituting their expressions in the Pfaffian (21), this will 

take the form 

du"' ™ dq^ -f- Q2 ' (21') 

where the quantities and Q2, like the Z\s, are defined along 

the curve T. The integral to be calculated will thus be 

Du^ = f (Q^dq,+ Q^dq^Y . . (22') 
J rp 

We shall suppose the curvilinear co-ordinates g'j, q^ so chosen 

that the sense of integration round T is the same as that deter¬ 

mined on r (at a generic point) by the rotation (through the 

angle less than 180°) from the positive direction of the line q^ 

(i.e. in the sense of q^ increasing) to the positive direction of 

the line q^- 
The transformation of the line integral (22') into a surface 

integral taken over F could be effected at once if the were 

defiTied as functions of position in the interior of F as well as on 

its boundary. But instead of this they contain the w'*’s, which 

are given at P, and at points on T have values resulting from 

the parallel displacement along T itself, but are not defined for 
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a point M within F, their values at M depending on the path 

followed in the parallel displacement of u from P to M. We 

shall, however, show that if F is infinitesimal the influence of the 

path of displacement on the values of the at M is negligible, 

and therefore we may consider the ti' ’s, and in consequence the 

^’s or the 4)’s, as functions of })osition over the whole area F, 

which will enable us to make the required transformation of 

(22').i 
AVe shall make some preliminary remarks on orders of magni¬ 

tude, using for this purpose the general existence theorem for 

integrals of systems of ordinary difYerential equations. Such a 

system is constituted by the equations 

du^' =- i/j., (r 1, 2, . . . n), 

which define the functions u/', along a generic line T, start¬ 

ing from a given set of initial values at P (cf. Chapter II, 

p.23). 

Now the existence theorem assures us that in general (i.e. 

when certain not very restrictive conditions of continuity 

and difTerentiability are satisfied) the initial values define the 

integrals uniquely, and these integrals and their derivatives 

are continuous functions for values of the independent variable 

within an interval which is not shorter than some assignable 

quantity. 

In our case, granting, what will naturally be the case, that 

the coefficients of ds^ and the reciprocals are finite and 

continuous, as well as their first and second derivatives, in a 

certain region round P, and supposing also that the length of 

the vector u at P is limited, i.e. is not greater than some specified, 

but arbitrary, constant U, it can easily ])e deduced from the 

above-mentioned existence theorem that—considering the arc 

of the curve of displacement as the independent variable—the 

u^ ’s are defined (as continuous, difterentiable, &c., functions), with 

P as starting-point, along any curve whatever, for a segment 

of the curve of length not greater than a certain quantity A 

’ We shall in fact here limit the discussion to an indication of the general lines 

of the argument, without pausing over the details needed to justify the various 

steps of the proof with complete rigour. There is an exhaustive proof in the 

article by H. Tiki’ze: “Ueber Parallelverschiebung in Riemann’sehen Ralimen”, 

in Math, Zeitschrift^ Voh 16, 1923, pp. 308-317. 
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which depends exchisivcdy on the metric of the manifold and on 

JJ. Hence it follows in particular that the differences between 

the ’s and their initial values are of the same order ^ of magni¬ 

tude as the length L of the arc along which the integration of 

the system dii'' = ifj,. is effected. 

Further, the area P which we arc considering on the surface 

cr is infinitesimal, in the sense that we pro})()se to make it diminish 

indefinitely. It is therefore perfectly legitimate to suppose that 

it is already so small that every point in it can be reached from 

P by a line of length iiot greater than A and that the length of 

the whole contour T is also less than A. 

We thus have the result that if u undergoes a ])arallel dis¬ 

placement from P to a point M within the area P, or on its boun¬ 

dary T, the w/ ’s at M differ from tluar values at P by quantities 

of the same order as L, if L{<^A) is the maximum length of 

the lines considered. As a first a])proximation, in which quan¬ 

tities of the same order as L are neglected, we can therefore 

take the coin])onents u'' as constant and over the whole 

area P, including its boundary. 

We can find a chjser af)proxiination if we calculate the 

at M by integrating the Pfaffian (21) along a curve PQ, sub¬ 

stituting, however, for the coefficients their values at P. 

This process involves an error of order L in the values of these 

coefficients, and therefore an error of order in the values 

found for the u' ’s at ilf; the choice of the curve PM is indifferent, 

as in this case the Pfaffian becomes an exact differential. As 

the coefficients are constants, the integration can be at once 

effected, and will give linear functions of the .t’s for the 

We shall thus have obtained the as functions of position at 

all points (including the boundary) of the area P, neglecting 

quantities of order L^. 
We can get a third approximation by substituting these 

approximate linear expressions of the in the coefficients 

X^,^, The A’s will thus become functions of position, as was 

required, defined throughout P, including its boundary T, and 

coinciding on T (if we neglect U) with their accurate values 

as already defined. These values of the A’s can be used to 

^ This means that the differences in question are not greater than the product 

of L by a certain finite coefficient, which does not depend on L or on the curve of 

integration, but onl}^ on /^, i/, and the metric of the manifold. 
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calculate the integral (22), which will give the value of 

the error being now of order It was necessary to carry 

the approximation thus far, since the other two approximations 

make \fj an exact differential, and would give the value zero for 

Dii\ the obvious meaning of this being that Du* is a quantity 

of order i-. 

We shall therefore return to (22), giving the X’s the meaning 

just explained, and transform it into the form (22') by using the 

parametric equations of the surface cr; and Q2 will now 

represent functions of position defined at all points of F. In 

consequence ^ we can transform the line integral into a surface 

integral, getting 

or also 

■Dm’" = (^2 dq^) dq^ — {Q^ dq^) (23) 

We must now find the value of the integrand on the right of 

(23), which can be done by means of the following considera¬ 

tions, without writing out the expressions for and at full 

length. 

Let the operator S denote the increment of a quantity corre¬ 

sponding to a displacement along the line — constant, when 

^ By the ordinary formulte, 

where f i^s a function of and qi which is continuous, together with its first 

derivatives. Usually in these formuhe r/i and q.2 are interpreted as Cartesian 

co-ordinates in a plane, and the sense in which the curve T is described is defined 

by the condition that the pair of directions s, n {s the tangent to the boundary in 

the sense in which it is described, n the normal to T'drawn inwards) is congruent 

in the plane with the pair r/,, q^. The formulae obviously hold, however, indepen¬ 

dently of this interjiretation in plane geometry, and can therefore be applied even 

if <7i, ^2 are any curvilinear co-ordinates whatever, the semse of describing the curve 

being determined by an analogous criterion to that just explained, {)rovided that 

we introduce, at a generic point of the boundary curve, the directions tangential 

to <7i (i.e. 92 = constant) and 90, in the sense in which the respective parameters 

increase. Now we have already supposed (p. 187) that the auxiliary curvilinear 

co-ordinates 91, 90 behave as regards sense in precisely this way. Hence the 

equations {G) hold both in magnitude and in sign. 
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increases by dq{; similarly, 8' corresponds to an increase dq2 

in alone. We shall therefore have 

Sxi 
dxij ^ 

• (24) 

and analogous expressions for any function of position. Now 

note that in (21') the first term represents precisely the incre* 

ment of due to a disj)lacement of the first type 

so that 

S'U ^9^1 > 

and, the second term having an analogous meaning, 

8'u‘' Q2 d(j2. 

We can therefore write (23) in the form 

Z)w’- I" (S'w-) - -- (Su’-) dq^ 
J r Ldqj dq^ J 

= 1^, [ss'm’- - a'aM"]; 

and from this, remembering equation (4), we get 

Du' = i [ir, hk \ m* Sx/, 8'a;*. 
J1' i 

Now let us put 7] for the parameters (in F„) of the lines 

^2 — constant, q^ = constant, i.e. 

8xi 

8s’ 

8'Xi 

S's’ 

where 8s, S's are the lengths of the displacements, along the 

lines q^ — constant, q^ — constant, whose components are 8a;„ 

8%. Then we can also write 

Dv! fr 8S S's, . (25) 
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where for shortness we have put 

fr = {ir, hk\ 
1 

We can now remark that if ^ is the angle between the co¬ 

ordinate lines q^, q^, the element of area (cf. Chapter V, p. 99) is 

dV — hs 8's sinO', 

and therefore (25) becomes 

Du-- = I dV. 
J V sinB' 

By the mean value theorem, if 1^1 denotes the value 

of the function of position at a suitable point (not known 
smO' 

a 'priori) within F, and DV the area of the region F, we can also 

write 

f 
Now the value at of the function of position - differs 

siiiB' 

from its value at P by quantities of order L (since the distance 

MqP is of this order); siiice the area Z>F is of order the error 

caused by substituting the value at P for that at M is of ordei 

which we have agreed to neglect. We shall therefore have 

Du-'== I' DV, 
sin-S* 

DF 
or Du-^ --= . 'Li,hk{i'r,hk)u'. . (26) 

In this formula the quantities and represent the para¬ 

meters of the lines q-^, q2 at P, and ^ is the angle between these 

lines; the values of the ’s and of the Riemann’s symbols refer 

to the point P. It will be seen that the influence of the circuit 

of displacement appears in this formula in three geometrical 

elements, which serve substantially to determine the circuit 

itself, namely: two directions tQ (^ priori any whatever) which 



PARALLELISM AND CURVATURE 193 

determine the section on which the circuit is supposed drawn, 

together with the angle between them; and the area Z^F of the 

circuit itself (measured according to the metric of V 

8. Peres’s formula. 

From (26) we immediately get tlie fundamental formula which 

serves as a link between parallelism and curvature. 

Take any (fourth) direction v drawn from P. Let a be the 

angle between v and u, and a + Da the angle between v and 

u t” Dvl\ we propose to calculatci Da. To do this we take the 

scalar product 

u X V cosa 

(assuming that u, like v, is a unit vector), and differentiate with 

the symbol D, remembering that D\ - - 0 since v is a fixed 

vector. We get 

V X Dn -- — sina Da, 

or, substituting for the scalar product on the left its ex})ression 
'll 

Dif, and using (26), 
1 

np H 
sina Da -- — . hk] ii'v^. 

sinff 1 

If in this formula we express the v,.^s in terms of the v^’s, and 

sum with resj)ect to r (remembering (5) ), we get 

sinaDa ^ - ~ {ij, hlc) ^ rf. 

Now if the directions u, v coincide or are opposite, this formula 

reduces to an identity of no interest, since on the left we have 

sina — 0, and the right-hand side vanishes from the antisym¬ 

metry of the Riemann’s symbols. Excluding this case, we can 

divide the whole equation by sina, and we get Pitres's formula 

Da S,.,, (ij, Jik) v!'v‘ e rf- . (27) 
sina sm^ i 

9. Application to surfaces. Gaussian curvature of a Fj. 

In considering the particular case of a V^, i.e. an ordinary 
surface, the directions u, v must of course be contained in the 



194 ABSOLUTE DIFFERENTIAL CALCULUS 

section (the only one there is) defined bv yj. Since the only 

purpose of these last two vectors is to specify the section on which 

the circuit is drawn, we can make them coincide with u and v 
without loss of generality; (27) will then become 

_7)r 
Z)a = M) m'w'mSA . . (27') 

sm“a 1 

Since for n ^ 2 Riemann’s symbols which do not vanish 

are represented by the single arrangement of indices (12, 12), 

this formula can be further reduced to 

— jDr 
Da -- . , (12, 12) (id ^2 __ .^2 

sm-a 

or finally, remembering the expression for sina in terms of the 

parameters of the two directions u, v (cf. Chap. V, p. 94, formula 

(9')), we get 

DP 
Da = (12, 12). 

It is usual to put 

(12, 12) 
- K, . . (28) 

so that the foregoing formula becomes 

Da 

DP 
= -K. (29) 

From this it will be seen that the function of position K 
defined by (28) is an invariant; it depends on the coefficients 

and their first and second derivatives, and is identical with 

the quantity which in the theory of surfaces is known as the total, 
or Gaussian, curvature (the product of the curvatures of the prin¬ 

cipal sections).^ The equation (29) can be put in a more instructive 

form if we introduce the angle of parallelism e, i.e. the angle 

between u and u + Dn (or between u and its parallel obtained 

by displacement round the circuit), measured in the sense in 

which the circuit is described. We can also say that € is the angle 

through which u has been rotated as a result of the cyclic dis- 

^ See also below, Chapter IX, p. 261. 
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placement. It is obvious that e has the same absolute value as 

Day but we shall see that as regards sign the precise relation is 

e -- -Da. 

To show this we need only remember the convention adopted 

above (§ 7) that tlie circuit 

is to be described in the 

positive sense with respect 

to the co-ordiuate lines 

q^y or from the versor ^ 

to the versor r). As ^ and y) 
now coincide with u and v 

the sense in which the cir¬ 

cuit is describ(id is from u 

to V (tlirough the convex 

angle). Accordingly (sec 

fig. 3) if Da > 0, u + Dvl 

is outside the convex angle 

uv, and is therefore reached 

from u by moving in the 

negative sense {e < 0), and vice versa, 

write (29) in the form 

Fig. 3 

We can therefore 

Dr 
- /i, (29') 

which gives the following important interpretation of the curva- 

ture K: K is the ratio of the angle of parallelism (taken with its 

proper sign in relation to the sense of describing the circuit) 

to the area of the circuit. 

In the case of a Euclidean Fg Eicmann’s symbol is zero 

(cf. § 4) and therefore K ~ 0. This can also be deduced from 

the geometrically obvious fact (already used in § 2) that the 

parallel displacement is integrable (i.e. that the result does not 

depend on the curve of displacement). 

10. Riemannian curvature of a F„. 

If instead of a surface we consider any F,^ whatever, the 

notion of curvature becomes less simple. If P is a fixed point 

of the F,„ then with every section through P determined by two 

arbitrary directions yj drawn from P we can associate an 
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invariant K, wliicli is called the Riemannian curvature of the 

at P with respect to the section considered. Following Rie- 

mann, we construct the geodesic surface determined by the 

point P and the two directions y), and then take the Gaussian 

curvature K of this geodesic surface as the curvature of the 

Vn at the point and in the section in question. In general the 

Riemannian curvature differs in the different sections. 

The foregoing considerations enable us to give another impor¬ 

tant definition of the Riemannian curvature, and to find the 

analytical expression for it. 

Given the elements P, 5? construct the geodesic surface 

g defined by tliein and consider an infinitesimal circuit on 

passing tlirough P, of area PF. Take one of t he given directions, 

say and give it a parallel displacement with respect to the 

surface g round the circuit, in the sense ^ * yj. Now calculate 

by Peres’s formula the change Da in the angle betwt3en ^ ‘"i-nd yj, 

i.e. the difference between its values before and after the dis¬ 

placement. The curvature K will then be given by (29). Now 

from Severi’s theorem that an infinitesimal parallel displac(3ment 

with respect to the surface (/ (using the metric oig) can be replaced 

by the analogous infinitesimal j)ara]l(d displacement in F,^ it 

follows at once that this method of calculatirig K does not really 

involve the use of the geodesic surface g. Hence the Riemannian 

curvature K can be defined as the ratio {with sign changed) of 

Da to DF, where Da is the change in the angle between the given 

directions y) caused by the parallel displacement in V„ of one of 

these directions rounds an infinitesimal circuit of area DF, belonging 

to the section 5, tq, and described in the sense ^ — tQ* We therefore 

have 

(30) 

as in the Fg. 

The explicit expression for K corresponding to this can be 

obtained from (27'), and we get 

K - (y > ^^) 
sin^a ^ 

(31) 

The symmetry of the right-hand side in u and v provides 

formal confirmation of the fact that it is immaterial whether 
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we displace u or v, as we get in either case the same value for 

Da and the same value for K. 

A third definition of the Riemannian curvature can be 

obtained from the proof of the following lemma. 

Take any three points P, P', P" on a surface V2, and join 

them in pairs by arcs of geodesics, forming a so-called geodesic 

triangle. If are the angles of this triangle, the quantity 

e -r ^ -f- “f- (jy' — 77 , . . , (32) 

is called the geodesic excess. 

Now take any point on the triangle, and give a parallel dis¬ 

placement round the triangle to the direction of the side at 

that ])oint, or of one of the sides if the 2)oint is a vertex; e.g. 

starting from P, the direction u at P of the side PP' (taken in 

the sense P —^ P'). 

We want to show that the angle between the initial and 

final positions of u (measured from the initial position in the 

sense which at each vertex is dependent on the sense PP'P" 

in which the circuit is described), i.e. the angle of parallelism 

(relative in this case to a circuit of a special kind, but without 

the restriction of bcang infinitesimal), is ilie same as the geodesic 

excess e. 

For the proof we shall follow u in a cyclic dis])lacement 

round the circuit PP'P", noting in the first j)lace that from 

P to P' u remains tangential to the side PP', on account of the 

auto})arallelism of geodesics (cf. Chapter V, ]). lOf). On arriving 

at P', u is thus inclined at an angle 77 — (outside the triangle 

at P') to the side P'P" (in the sense indicated by tliese letters); 

more precisely, u is behind the tangent to the side P'P" by an 

angle of 77 — <f)\ the sense of rotation at P\ as we have already 

said, b(ung determined by the sense of description PP'P". In 

the displacement from P' to P" this angle remains unclianged; 

at P" there will be a further loss of 77 — (j>" (with respect to 

the new side P"P); and finally at P yet another loss ot tt — <f> 

(with respect to PP'). Taking all these together, we see that 

in its final position the parallel to u has been rotated away from 

its initial position through an angle of 877 — (^ + </►' -j- </>") 

in the negative direction, or € — 277 in the positive direction. 

Now in the pencil of directions at a point an angle is determined 

geometrically by a quantity of the form 6 + 2^77, where n is any 
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integer; hence we have proved that one value of the angle of 

'parallelism is the geodesic excess e. Now in a Euclidean space 

the geodesic excess is zero, and in any manifold whatever, for 

an infinitesimal triangle, the excess is infinitesimal; we therefore 

see that for reasons of continuity the value adopted for the 

angle of parallelism is in fact the most suitable, being that which 

tends to zero with the triangle. 

The lemma just proved is rigorously true in a V2, whatever 

may be the magnitude of the geodesic triangle considered. If 

in particular we apply it to an infinitesimal triangle, we can 

substitute e for —Da in (29), so getting 

a fonnida which defines the Kiemannian curvature as the ratio 

of the geodesic excess to the area of an infinitesimal geodesic triangle 

lying in the section considered, and having one vertex at the given 

point P. It will be seen that this is an obvious extension to n- 

dimensional manifolds with any metric of an elementary theorem 

in spherical geometry (the area of a spherical triangle — the 

spherical excess X the square of the radius); the latter 

theorem, however, unlike the former, holds also for a finite 

triangle. 

We must confine ourselves to a mere reference to the 

important researches of Professors Schouten^ and Bomj)iani“ 

on the simultaneous cyclic displacement of several directions, 

and even of the whole sheaf of directions drawn from a single 

point. Their work throws light on the theory of Riemannian 

curvature under various new aspects. 

11. Case of a Fg. The tensors a,,, of Ricci and of Einstein. 

For a manifold of three dimensions the symbols of the first 

species (ij\ hk) which do not vanish reduce substantially, in virtue 

of (10), (11), and (14), to the scheme 

{i+1 i+2,k+l k+2) {i, k ^ 1,2, 3), 

^See references given in note (1), ]>. 172. 

Studi sugli spazi curvi”, in Atti dd B, ht, Veneto, Vol. LXXX, 1921, p»). 355- 

386, 839-859, 1113-1145. 
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with the convention (p. IGJ, § 9) of regarding as equivalent 

two indices which dilTer by a multiple of 3. 

Using this notation, we now introduce after Ricci the double 

symmetric system 

(2 f 1 i+2, i+2) 
(i,k - 1,2,3), (33) 

which constitutes, as we shall now show, a contravariant tensor. 

In fact, if we make use of the contravariant system e (Cha])ter 

VI, p. 158) we see that (33) is equivalent to 

a"''- - i in, «•) {i, ^ = 1, 2, 3); . (33') 
1 

which proves the assertion. The verification of this last formula 

is immediate, wlien we remember that of the various determina¬ 

tions a ^priori possible for the pair jh there are only two, 

P = i-[- I, y 2 + 2 

and JO = i + 2, q — i 

corresponding to which has a value different from zero, 

viz. ^ in the former case, — in the latter. Similarly, for 
s/a s/a 

the other pair r, s, the only determinations to which there corre¬ 

sponds a non-vaiiishing are 

r k+ 1, 5 /r -f 2 

and T k 2i, s = k li. 

The sum reduces therefore to four terms all expressible as 

{i -f* 1 i 2, 1 “h 2) 
“ > 

a 

thus giving the result stated in (33). 

The name Riccis symbols is sometimes given to the 

just defined, or, more vspecifically, to the elements 

a-ik ” S/Tj a;j aj^j^ (i, k = 1, 2, 3) . (34) 

of the reciprocal covariant tensor^ 
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It is worth noting that equations (33), if we taJ^e account of 

the properties of Riemann’s symbols in respect of symmetry 

and antisymmetry, can be solved so as to give the values of these 

symbols in the form 

{ij,}ik) “ €^,11 . . . (33") 
1 

In fact, expanding the second member and attending to the 

definition of the covariant system e, we find the value zero corre¬ 

sponding to every set of four i, h, k for which the first member 

vanishes, and the value corresponding to a set of four of the 

tyx)e i + 1, i + 2, k + 1, + 2; (33") therefore follows from (33). 

By contracting the Ricci tensor a by means of tlie funda¬ 

mental tensor (the coefficients of cls^, or their reciprocals) we 

obtain the linear invariant of the tensor a 

a If. 
1 

^ik ^ik' 
1 

(35) 

We may point out another formal relation of which use will be 

made in Chapter XII. For any whatever we can derive from 

the Rieraannian tensor, by contraction with respect to two in¬ 

dices, the covariant double tensor 

G,, .... (36) 
1 

which, in virtue of equations (5), can also be written in the 

form „ 

G^=--Y,,{ih,hl).(36') 
1 

This tensor w’as noticed by Ricci, who applied it to the study of 

the local distribution of curvatures in a F^,; it was afterwards 

taken up by Einstein, who gave it a fundamental place in the 

theory of relativity (in which 7i -- 4): it is commonly known 

as the Einstein tensor. 

For n ™ 3 the a-7/s are related in a simple way to the fr,vi/s. 

To bring out the connexion simply and neatly, it is convenient 

to make use of two properties of the ternary systems e: one 

expressed by the identity (which can be verified immediately) 

SJ's? — 8»- 8'/ 
r g g y ip, q,r,s=r-- 1, 2, 3), . (37) 
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the S’s having the usual meaning (0 for different indices, 1 for 

equal indices); and the other translating, as it were, the definition 

of as a reciprocal element 

a,,. 
1 

Substitute in equations (^^6), in place of the the second 

member here; and, in ])laee of the {ij, 7?i:)’s, the expression for 

them in with changed into — 6^;,.;,. Taking account of 

(37) we find 

— 1 
^ili ““ '2 ^pqrsvp ^pr '^qs 

1 

a„,a-'’(8^s;/-8f8p(8;;8;~s;s;). 

Of the four terms obtained by expanding the product of the 

bracketed ex])ressions, the two which are positive are merely 

interchanged by interchange of p with q and of r with s, which 

does not alter the product and similarly with the negative 

terms. We can thendore confine our attention to one term only 

of each kind, and suppress the factor If we take, e.g. 

S^>Sv(S; 8^‘ - 
V i ' Ic p p 

and bear in mind the meaning of the symbols 8, we find that the 

sum reduces to one with respect to v and p only, giving 

3 

^Uc ~ ^ip ^ ^ ^I’P ^ik ^ ^)f 
1 

or finally, having regard to (34), (35), 

(j,/. (i, ifc = 1, 2, 3). . (38) 

12. Curvature of a manifold of three dimensions around a 
point. Principal directions and invariants. 

Consid(‘T in a F3 a generic section or facet, f defined by two 

directions (versors) u, v, whose parameters are u^, {i = 1, 2, 3), 

issuing from the same point P. Let w be their vector product 

(Chapter VI, p. 159), the moments of which are 

(»'== 1,2,3). . . (39) 
1 * 

Corresponding to the section / in our manifold F3 we have the 
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Riemannian curvature K given by (31), with n “ 3. In the 
3 

sum ^ijhjc of (31) it is convenient to introduce, in place of Rie- 
1 

mann’s symbols {ij, hk) the expressions for them given in (33"). 

Taking account of (39), we find immediately 

K ^ 
3 

sin-a I 
w p* (40) 

Deferring for a moment the illustration of this formula, we recall 

the fact that in general the length w of the vector u A v (the 

vector product of u and v) is given by the product of the lengths 

of u, V by the sine of the angle between them. For the Euclidean 

F3 this implies, as already mentioned (Chapter VI, p. 159), the 

identity of the moments (39) referred to Cartesian co-ordinates with 

the ordinary components (orthogonal projections) of the vector 

product XL f\ For a general Vj, it is sufficient to remember 

that we can choose co-ordinates which are locally Cartesian at 

any assigned point P, so that the an/s have the values Sf (and 

so that also—though this is not important for the present pur¬ 

pose—their first derivatives vanish). Now both in the measures 

of the lengths and the angular distances of vectors })roceeding 

from the point P, and in the definition (39) of the wJh, tlu^re 

enter only the components of the vectors and the values of the 

Gif/s at P. Locally then everything is the same as for Euclidean 

space.^ 

Turn now to our case, in which u and v are unit vectors. It 

follows that w = sina, whence — = constitute the 
w sma 

^ We can also of course calculate the leni^th of w. Thus we note that, besides 

(39), we have the equivalent formula? defining the contravariant components; 

W" = Sm 4- 

Hence, in view of (37) (the index of summation in which we may suppose 

transferred to the first jfiace), 

— ^ijhk "W* 

8.3. 3.3. 
= Si tti 2 j vj — Si Vi vj uj 

1 11 1 

== — {uv cosa)^ = 1*2 ^ sin®a. 
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moments of tlie direction X normal to the section/. The sense 

assigned to the normal by (39) is characterized by the system 

€ or, geometrically, by the sense of the trihedron formed at P 

by the positive directions of the co-ordinate lines. In fact, from 

these equations (39), if we suppose, for example, that the lines 

1, .2 are taken in the directions u, v, there results 

^ 

n/ 6^21 ^22 

so that ((Chapter V, p. 127) w makes an acute angle with the 

})ositive direction of the line 3, whose parameters arc 

Thus X is perpendicular to / at P, and directed so that the 

trihedron u, v, X has the same sense as the trihedron formed 

by the positive directions of the co-ordinate lines at the same 

point P. 

Equation (40) now takes the form, given by Ricci, 

1 

. (40') 

which defines the curvature of a variable section i through P as a 

homogeneous quadric in the 'paraineters A" {or in the moments XJ) 

of the normal to f, the sense of the normal being indifferent, since 

the expressions in (40') do not change when we change the signs 

of the A’s. 

The dependence of K on the direction X of the section with 

centre at P is of purely local nature. We can therefore, in accord¬ 

ance with an observation made above, make use of the elemen¬ 

tary criteria of analytical geometry just as if it were a question 

of ordinary space—we have only to take co-ordinates which are 

Cartesian and orthogonal at P. The A'^’s then become direction 

cosines, and we have for K (except for a different signification 

of the coefficients a,,^) the same expression as the one which 

characterizes the distribution of moments of inertia (of an assigned 

material system) with respect to the oo^ axes coinciding with the 

lines of the versors X proceeding from P. As we know, the law 

of variation of K becomes expressible geometrically if we intro- 
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duce the ellipsoid of inertia E, of centre P: to any direction of 

X there belongs a value of/i", viz. where Q is the intersection 

of the line of X with the ellipsoid E\ the three axes of E corre¬ 

spond to stationary values of K (with respect to neighbouring 

directions), the axes of maximum and minimum length in parti¬ 

cular corresponding respectively to minimum and maximum 

values of K. 

That being so, the same law of variation will hold for K the 

curvature; but in the general F3 interpretation is necessary. 

This implies merely that the ellipsoid E (like, for example, 

Dupin’s indicatrix for the case of an ordinary surface) takes us 

in thought outside the F3, as an auxiliary representative element 

to be associated with the Euclidean three-dimensional space 

which is tangential to the F3 at P when, as is always allowable 

(Chapter V, p. 121), we imagine the F3 immersed in a Euclidean 

The outstanding result is that there exist at every 'point P at 

least three mnUmlly orthogonal directions X^, X2, X3 to which (or 

rather to the normal sections perpendicular to which) belong 

curvatures ivhich are stationary with respect to those of adjacent 

sections. These directions are called principal directions of curva¬ 

ture, and the corresponding values oj^, cog, C03 of K principal 

curvatures. In general, that is when the three cu’s are distinct, 

the principal directions arc uniquely determinate (ellipsoid with 

three unequal axes); when two principal curvatures are equal 

but differ from the third (ellipsoid of revolution), e.g. caj ™ 
0^2 u)3, only the principal direction X3 is uniquely determinate, 

while every pair of directions X2 orthogonal to X3 and to each 

other can be considered principal. If the three principal curva¬ 

tures coincide (sphere) the curvature K is the same for all sections, 

and every set of three mutually orthogonal directions is a prin¬ 

cipal set. 

All this of course can be established by purely algebraic 

methods: we have only to avail ourselves of the theory of quad¬ 

ratic forms and their transformations. Let 

^ == ^ . . (41) 
1 1 

be two quadrics, one of which at least is definite, say <f>; the inde- 
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pendent variables being A' (i = 1, 2,. • . n). Then the following 

facts are well-known^: 

(1) If we consider the ratio 

as a function of the A\s, and look for the values of these variables 

which make Sco 0, we are led to the system of n linear homo¬ 

geneous equations 

S; (a,y — wa,;) A' = 0 (i — 1, 2, . . . n); . (42) 
1 

these are satisfied by values not all null of the A’s if and only 

if the determinant of the coefficients vanishes, so that the oj’s 

are roots of the equation of degree n: 

II ^0 ~~ ^^^0 II = .... (43) 

called the characteristic eqriation, 

(2) If X, A^’ are two solutions of equations (42) corresponding 

to two distinct roots co, ca' of the characteristic equation, there 

exists between them the relation (of orthogonality) 

A'A'^ 0. 
1 

(3) The characteristic equation (43) has its n roots • • - co^ 

all real (distinct or coincident). 

(4) To each simple root oa;, of (43) corresponds, in the mani¬ 

fold the of which has the a^fs as its coefficients, one and 

only one direction X/, whose parameters A), satisfy (42) force == cof,. 

With each root of multiplicity fi (> 1) we can in an infinite 

number of ways associate /x mutually orthogonal directions in 

F,,, whose j)arameters are independent solutions of equations 

(42) when we give a> the value of the said multiple root. 

From all this there results that it is possible in every case 

to set up at least one set of n imitually orthogonal directions 

X/i (A “ 1, 2, . . . n), (uniquely determined in the general case, 

^For proofs, see for examj>le: Bjancht, LezJoni di geometria analitica. 

Appendix; (Pisa: Spoerri, 1915): or Bromvviok, Quadratic Forms and their 
Classification . . . (Cambridge tracts on Mathematics . . . No. 3). 
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in which the roots of (43) are all simple), the parameters X], of 

which satisfy the system (42), with w equal to the corresponding 

By means of these X//s we can obtain the so-called canonical 

expressions. We begin by introducing the moments 

A^ii = %aijXi (h, i = 1, 2, . . . n), . (44) 
1 

and observe that, by associating with the n identities 

SjAIa,,,. = 1 (A-],2, ...M) 
1 

the \n{7i — 1) conditions of orthogonality of two different direc¬ 

tions X/i, X/,- of the n-ple set 

^ (Ji ^ k)y 
i 

we obtain altogether the relations 

- S^: l,2,...n), 
1 

which express the noteworthy fact that the n^ parameters 

of an n-ple orthogoyial set are the elements reciprocal {in an algebraic 

sense) to the n^ moments in the detenninayit |1 A/,|y || which they for^n] 

and vice versa that the 7no7nents are the reciprocals of the parameters 

in the corresponding determinant !| A*^ || (cf. Chapter IV, p. 74). 

Further, besides the relations just written which refer to the 

columns, their analogues with respect to the rows also hold good; 

these may be written 

(ii ^ 1,2, ...n). . (45) 
1 

Taking account of this, if we multiply (44) by A;j|;i. and sum 

with respect to h, there results immediately 

n 

“ 2/, A/^l,- A/^i^ (i, k ~ 1, 2, . . n), . (46) 

which are expressions for the fundamental tensor in terms of 

the moments of any orthogonal n-ple set. 
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Consider in particular the n-ple set (or one of the n-ple sets) 

A/,, the parameters of which, Aj,, satisfy (42) where, for each index 
h, CO ~ co/^. These equations, in virtue of (44), may be written 

(J^9 ^ ^5 • • • 

Multiplying by and summing with respect to the index h, 
while attending to (45), we obtain the canonical expression for 
the to be associated with (46). viz. 

n 

o-ik = Saw,, A,,I; A;,It {i, Ic 1,2, ... n). . (47) 
1 

After this the simullaneous reduction of the tw'o quadrics to 
orthogonal form is easily effected by substituting for the original 
variables A^ the n linear combinations 

(A ^ 1, 2, ...n). . (48) 
1 

In fact, when we substitute in (41) the values (46), (47) of the 
coefficients, taking account of (48), there results 

<i> ----- ^ ----- . . . (49) 
1 1 

The condition that tlie A' ’s should be parameters, that is to say 
that the expression (41) for ^ should have the value 1, becomes 

n 

in the new variables z, S/, ~ 1. The mode of variation of 
I 

when the A’s are parameters of direction, is identical with that 

of the ratio when the variables are independent; or, if we 

wish, of the quadric ifj = when the z's are connected 
11. 1 

the relation ~ 1. 
1 

Moreover, the stationary values of i/j in these cases are pre¬ 
cisely the roots of the characteristic equation (43). 

The form 

^ = i,a,^A'A' 
1 
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is an obvious generalization, for any value of n, of the expression 

(40') for K, which defines the local distribution of curvature in 

a F3. 

The above considerations manifestly apply also to the 

behaviour of the curvature K when the direction of the section 

is supposed to vary, a topic which has already been discussed in 

a more elementary way. 

13. Geodesics infinitely near a given geodesic. 

We shall conclude this cha])ter with a discussion of the 

extension to n dimensions of a classical formula due to Jacobi, 

which defines in a very simple way the aggregate of those geo¬ 

desics g of a surface which are infinitely near a given geodesic 

B, called the geodesic base. Jacobi gives the linear equation 

d^y 
do^ 

H- Ky 0, (J) 

where y denotes the distance (normal) of any point M of g from 

the base, a the arc of the base measured from an arbitrary origin 

0 up to the projection P oi M upon B, and K{g) the Gaussian 

curvature of the surface at P. 
(J) is simply, in Poincare^s phrase, the equation of variations 

of geodesics starting from B. There can be deduced from it, as 

we know,^ some very remarkable consequences with respect to 

the behaviour of geodesics in the immediate neighbourhood of 

the base, the nature of the surface intervening only through its 

total curvature K. This is obviously an intrinsic question, 

depending entirely on the metric of the surface (as defined by 

its ds^), and not at all on the different configurations which the 

surface can present in space. 

It naturally suggests itself that we should try to extend the 

study of this subject of geodesic deviation to a Riemannian 

manifold of any number of dimensions. We have long had, 

of course, the equations of Lagrange defining the geodesics of a 

in a form the convenience of which, whether from the point 

of view of theory or of notation, is all that could be desired. 

^See, for example, Darboux, Theorie des surfaces, Vol. Ill (Paris, Gauthior- 
Villars, 1894; new impret^aion 1923), Chap. V; or Blaschke, Vorlesungen iiher 
l>ifferentialgeoirvetrie, Vol. I (2iid edition, Berlin, Springer, 1924), §§ 83-88. 
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Thes(i (iquatioDH we may tlierefore use for tlie i)urpose of forming 

the ec|uation>s of variations. Then with the help of l^ianchi’s idea 

(Chapter V, p. 139) of the derivative of a vector attached to 

the points of a line of F,,, we reduce these equations to a condensed 

form, geometrically suggestive and of course invariant. The actual 

construction of the equations (linear of the second order, n in 

all, with the same number of unknowns) requires no further 

data than the base B and the metric of the manifold (especially 

Riemann’s symbols) along that curve. 

We find that this system of equations admits a linear first 

integral, which in its turn leads to a linear relation in finite terms 

among the unknowns. We are thus left with a system of 71 — 1 

equations or, in the special case of an ordinary surface, with a 

single equation, as in Jacobi’s classical result. 

To bring the final system of equations to as simple a form 

as possible we have to make a suitable choice of variables. Now 

we have already seen (§ 11, p. 164) that it is possible, begin¬ 

ning with any co-ordinates x, to define new co-ordinates y in 

terms of wl)ich becomes locally Cartesian, in the sense tliat 

the derivatives of the coeflicients all vaTiisli at an assigned 

point 0. We have also seen (Chapter VI, p. 167, footnote) that it 

is possible, any curve B being given, to choose co-ordinates y 
for which has this locally Cartesian character at every fomt 
of B. Wlien R is a geodesic, the system of co-ordinates y which 

(§17) will finally be used has the following properties, which we 

merely state here without proof.^ Let M be any point in the 

immediate neighbourhood of jB, P the orthogonal projection of 

M upon B. Then is the arc of the base B measured from an 

arbitrary origin O up to P; the yf^ (a = 1, 2, ... — 1) may 

be regarded as components of the elementary vector PM in 

n — \ directions mutually perpendicular and all perpendicular 

to P, chosen arbitrarily at O and carried by parallelism 

along B, 

14. Geodesic deviation in an n-dimensional manifold. 

Consider, along with the geodesic P, any other geodesic g 
(more precisely, an arc of g) belonging to the immediate neigh- 

^ For a complete developiiietit of this point, compare the paper “Sur I’^cart 

geodesitjue ” in Matlicinmtische Annalen (Vol. 97). 

(D 666 ) 
8 
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bourhood of B} Corres])onding to every point M of //, take the 
point P of B having the same as M and the rest of its y'a = ^ 0. 

It is important for what follows to fix precisely the relation 

between an elementary arc ds of g and the corresponding arc 

da = dy,, of B, Throughout the neighbourhood of B we have, 

for the coefficients of in terms of the co-ordinates y, the 

Euclidean values 

6,, ^0 (i 4= 6,; - 1, 

neglecting quantities of the second order. 

It follows that for any curve whatever 

* = iy.Vl +Y 
the quantity under the radical differing from its exact value only 

by terms of the second order. For g, both the y^ and the 
dyu 

may be regarded as infinitely small. It follows that 

ds ds 

dyn da 

to a seco7id approximatio7i-~a. generalization of the elementary 

fact that a segment infinitely near (with respect to direction) 

a given right line differs from its projection on the line by an 

infinitesimal of the second order. 

15. Invariant form of the equations defining geodesic deviation. 

We have now to form the equations defining in general co¬ 

ordinates the behaviour of any geodesic g infinitely near B. 
Put 

+ e, .... (50) 

where the ^'^’s and their derivatives with respect to a are infinitely 

small. 

The f ^’s represent the increments of the co-ordinates of 

a point P of P which passes to a corresponding point M of g: 
they can be regarded as the contravariant components of the 

^In the strict sense, that is to say, with the understanding that not only are 

changes of position of corresponding points on B and gr to be small, but also 

changes of direction of corresponding tangents. 
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elementary vector PM “ Adopting a more general point of 

view, we Bhall now regard this vector as not necessarily perpen¬ 

dicular to B, its orientation depending on the law of corre- 

s[)ondence between the points P and M of our two geodesics. 

We can therefore no longer assume that the elementary arc 

ds of g is (as in § 14) equal to the corresponding arc da of B; 

but, the displacement in question being always infinitely small, 

we can foresee all the same that, if we put 

// 
, - 1 -1 A,.(51) 

da 

the elongation (or coefficient of dilatation) A remains infinitely 

small with the ^^’s and their derivatives. This will be proved 

formally in a moment. Meantime, differentiate the formula) (50) 

with respect to a. We Jiave 

where ±1 is written for 

ds 

da 

dx; 

ds 

X- — . -f- , 
da 

, and for 
da 

(50') 

A second differentiation gives 

dh /dsY , 
\da/ ‘ 

From (51), d^s 

da^ 

dX 

da’ 

and (50') can be written 

(j). — — Xcc^ + 
~d<j’ 

all this holds without any assumption concerning the smallness 

of A. 

Considering now A and ^ as infinitesmial, and neglecting all 

terms of the second order, we may replace f ^ by 
dxjr da da 

and consequently take the equation for Xi to be 

d^^^ dX: /ds\^ .. y 
( ) Xi = <f>i 
\da/ da^~ da'^'- 

(50") 
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Now (Chapter V, p. 134) for any geodesic g we have 

71 
Xi = — T,j,, {jh, i} Xj 4 {i == 1, 2, . . . n). 

1 

Multiply these equations by ( _ ) , and make the following sub- 
\da/ 7 

stitutions: (50) in the [jh, i], (50') in the ^ (50") in the 

Remembering tliat 

(jy. =: [jh, 
I 

since R is a geodesic, and of course retaining terms of the first 

order only, we find 

dHj _dX: 

j d X, 
de 
da 

Next, for the sake of showing explicitly the contra variance of 

the <56^ (parameters of the direction tangential to B), put 

0^.(cy) ^ 1/ a 1,2, ...7^). . . (52) 

The equations just obtained (if we also change the indices i and 

j into r and i) become 

dH^ 

= -N 
a Xf^ 

(53) 

We proceed to transform these equations for the sake of showing 

their invariant structure with reference to any change) of co¬ 

ordinates. For this purpose we introduce Bianchi’s conception 

of the derivative vector of a vector ^ given as a function of the 

points of a line (Chapter V, p. 139). 

If B is the line, the contravariant components of the vector 

the derivative of 5, are given by the equations 

{D%y = li' + {ih, r) 6‘ e (r = 1,2,... n). (54) 
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For co-ordinates which are Cartesian either rigorously, or else 

locally along the line B, we have simply 

da 

With the help of the vector it is easy to give an explicit expres¬ 

sion for the elongation A, without making any hypothesis as to 

its order of magnitude, the equations (50) and (50'), which we 

shall use, being exact. 

On g we have identically 

II 
-- 1. 

1 

(ds \ ^ 
^ ] , and replace (in the a^/s) 

ds 
the x's by their values (50) and the x's by (50'), we find at 

da 
once (neglecting terms of the second order with respect to ^) 

\da/ 1 da 1 a X/^ 

We have, moreover, the well-known identities (Chapter V, p. Ill) 

K, [U, h\ + a,„ {il, h}]. 

If in the last sum of the expression for we replace the indices 

r, h by h, I and take account of the identity just written down, 

replacing also, as in (52), 

^ir ^0 ^hi ^hk 
111 

by 

we find, on account of (54), 

//Jq \ ^ ^ (f) =i + 2i:,{mK 
\da/ 1 
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The vector is infinitely small at the same time as the 

and their derivatives. We have, therefore, by extracting the 

root, neglecting terms of the second order, and attending to the 

definition (51) of the elongation A, 

.... (51') 
1 

which shows its infinitesimal character. 

Naturally admits in its turn a derivative vector Its 

contravariant components are defined, from (54), by 

r}y‘ {D^y. 

Introducing on the right-hand side the expressions (54) for {D%Y 
and (D^Y (after making some literal changes in the indices), we 

obtain 

+ S,, I kl, r !■ b'‘- {U, r) {ih l]bn^ e, (55) 
1 aa 1 

the second members, like the first, constituting a contravariant 

system. Bringing out explicitly the difi(irentiation with respect 

to cr, and making some changes of indices, we can write 

+ 2 Ijb, r}b^^£^ + S<’\ (55') 

where we put for brevity 

S(^> - rj e 
I dXf^ 1 

db^ 

dor 

+ r){ik, l)Ub^e. 

We may note in passing that, in the auxiliary quantities 

the index r is purely ordinal: we have placed it above, but in 

brackets, so as to avoid the suggestion that the form 

a contravariant system, which they do not. 
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For our purpose it is sufficient to replace in the derivatives 

^ by their values 

as given by the equations for geodesics (Chapter V, p. 134), so that 

we may write 

SM = 
1 dx,, 

+ ^auk [ [Ih, r] {ik, 1} — {Ik, r] {ih, Z}] V (56) 

If then we add S'’’' to the two members of equations (53), attend- 

ing to (55') and to the definition of Riemann’s symbols (§ 2), 

the equations take the invariant form 

{D%y ^ ~ s,,, {ir, hk} yif e (r = 1, 2,... ^). (57) 

16. Geodesic deviation. Specification of the differential system. 
First integral. Linear relation in finite terms. 

The system (57), taken along with the value of A given in 

(5T), contains n + 1 equations, with the same number of un¬ 

knowns; but it is easy to foresee, from the method of obtaining 

it, that it cannot by itself determine completely all the unknowns; 

there ought to remain an element of indeterminateness arising 

from the arbitrary nature of the law of correspondence between 

the points P oi B and M of g. More definitely, we can prove 

that the definition (51') of A, or rather the relation derived from 

it by differentiation 

. . . (sn 

is a consequence of equations (57) themselves. To establish this, 

note first that, for any vector v whose contravariant components 

are v^, we have 

d(j 

71 Jr n 

1 do 1 

db, 
da 
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But the derivatives ^ of the moments of a geodesic B satisfy 
da 

the equations (Chapter V, p. 134 and p. 139 (52')) 

which express, we may say, the autoparallelism of the gc^odesic 

B in terms of its moments 6^. The preceding identity, after inter¬ 

change of the indices h and r in the last sum, therefore takes the 

form 

.(58) 
da 1 1 

In virtue of this equation, the first member of (51") now becomes 

(if we replace the vector v by Z)^) 

da 1 

That this expression vanishes we can easily prove from equation 

(57), making use of the properties of Riemann’s symbols, as 

follows. Multiply both sides of (57) by b,. and sum with respect 
n 

to r, noting that — 1. The right-hand member can be 
1 

written n 

— '^ihkrp { } V 
1 

We now sum with respect to r, thus changing the Riemann 

symbol to the symbol of the first kind, and then make use of the 

antisymmetry of (/p, hi') in i and p (p. 179), from which it follows 

that the sum is zero. 

Equation (51') is therefore simply a particular integral (or 

invariant relation) of the system (57); its role reduces to that 

of fixing one of the constants of integration. As the system (57) 

contains n \ unknowns, to make it determinate it is necessary 

to associate with it some other condition—-a circumstance easy 

to understand from the geometrical point of view, since we have 

still to fix the law of punctual correspondence between g and the 

base. 
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Prom a formal point of view the easiest way to complete 

tlie system (57) is to cut out the unknown A by putting 

da 

The equations (57) are thus reduced to the normal form (Chapter 

III, p. 3G) 

hk)y y' e (r = 1, 2, . . . n); (1) 
1 

and we see that, on account of the identity (51"), the system (I) 

admits the first integral 

h^. A -" constant, . . . (II) 
1 

expressing tlie fact that there is a constant linear dilatation 

when we pass from any arc of B to the corresponding arc of g. 
Since, on account of the identity (58), the first member of 

-it 

the integral (II) is sim])Iy the derivative of 2,. it follows that 
1 

every solution of the dillerential system (I) gives also 

v .r?;, - Acr 1- C, .... (Ill) 
1 

where C is a second constant. 

If in particular we take A ^ - 0, we see that we can associate 

with the differential system the relation 

- c, 
1 

This gives the translation into analysis of the obvious geometrical 

fact that we can assign the correspondence between the points 

M of g and P oiB in such a way chat the (infinitely small) vector 

PM will have its orthogonal projection upon the tangent t to 

the base at the point P equal to a constant C. Such a law of 

correspondence implies, in virtue of (II), that there is no altera¬ 

tion of length (A — 0) as between the arcs of B and the corre¬ 

sponding arcs of g. To particularize still further, if C “ 0, 

we arrive at the orthogonal law of correspondence {PM perpen¬ 

dicular to B) considered in § 13. 
(D055) 
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It is scarcely necessary to add that, in order to substitute 

other geometrical laws of correspoiuhiiice, we have only to 

associate with the system (57) the analytical translation of the 

law chosen, instead of the law ~ 0. For example, if we wish 
da 

PM to be inclined to B at an angle xfs (constant or a given func¬ 

tion of a) the additional equation will be 

- ^cos*^, 

1 

represents the length of the vector 1^. 
Ill a case like this, some slight supplementary discussion of 

the complete system will be needed-—its reduction to the normal 

form, determination of the number of consiants of integra¬ 

tion, &c. 

17. Reduced form of the differential system (I) in terms of 
the co-ordinates y. 

We now return to the co-ordinates y, and fix definitely on 

the orthogonal law of corresj)ondence between the base B and 

any geodesic in its neighbourhood. As we have just seen, such 

a correspondence is expressed analytically by the differential 

system (I), with the specifications A - - C ^ 0 of the constants 

of integration connected with (II) and (III). 

As remarked in § 14, the co-ordinate of M is identical with 

that of P. Since the other co-ordinates (a 1, 2, . . . 1) 

of P are 0, the variations 77^ of the co-ordinates y are respectively 

t=ya (a = 1, 2, ... w — 1), Tj" = 0, 

thus justifying the name of Cartesian components of the normal 

displacement or deviation PM = yj which we give to the y„’s. 

Moreover, the parameters U — of the base B vanish 
da 

for i = 1, 2, ... /I — 1; and 6’^ = 1. Christofiel’s symbols also 

vanish along jB, as well as their first derivatives with respect to 

where ^ ~ 
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or (or, what comes to the same thing, to tj,), and consequently 

(Drif ^ 
da 

Equations (1) thus become 

— Sp {na, n^) (a = 1, 2, ... w — 1), (!') 

n~ 1 

1 

where, in })oth sums, we have suppressed the term corresponding 

to the value n of the index, since every Riemann’s symbol 

which h«as its last Indices equal vanishes (p. 177). 

The Jirst fp'ouj) (!') (coni])rising n - - 1 linear equations of 

the second order) defines the n — 1 Cartesian components of the 

{normal) deviation PM. The last equation reduces to an identity, 

as may be seen as follows. Riemann’s symbols of the second 

kind are in all cases connected to those of the first kind by the 

relations „ 

{■ij, hk) -= M}; 

w(i have, moreover, for the symbols of the first kind (§ 4), 

{ij, hk) =~- — iji, hk). 

In our case the coefficients of ds^ reduce, 07i B, to 0 (for r 4- j) 

and to 1 (for r - j). We have therefore, on the base, equality 

between symbols of the two kinds whose indices are the same; 

and, in particular, 

i^nn, njS} = {nn, n^) — 0. Q.E.D. 

Of course, the integral relations (IT) and (III) are of no further 

account, being now identities on account of the vanishing of the 

(^ ^ 1, 2, ... n — 1) and of the nth component — t?" of 

the displacement PM, 

18. Case of n ~ 2 ~ formula of Jacobi. 

For n — 2, that is to say for an ordinary surface, if B is 

the geodesic base, -= the arc a, and (^ y) the normal 

distance from M to 5, the system (P) reduces to the single 

equation 
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Now (§ 9) for any co-ordinates whatever, the Gaussian curvature 

K of a F2 is expressed by the ratio 

(12, 12) _ (21, 21)^ 

a a 

a denoting the discriminant of the of F2. 
For our co-ordinates, which are Cartesian along B, a ~ 1, 

and Riemarm’s symbols of the second kind are (§17) the same as 

their homologues of the first kind. The equation defining y is 

therefore none other than the equation of Jacobi (§ 13) 

CHAPTER Vlll 

Relations between two Different Metrics referred to 

THE SAME Parameters; Manifolds of Constant Curvature 

1. Differences between Christoff el’s symbols relative to two 
different metrics assigned to the same analytical manifold. 

We introduced in Chapter IV notions of tensor, covariance, 

&c., relative to an analytical manifold F,,, i.e. to the aggregate 

of n variables x^, X2, • . . x^,; we then, in the third part of the 

following chapter, considered the m€‘Jrical manifolds obtained 

by associating with an analytical manifold F^, a specified (but 

arbitrary) positive and definite differential quadratic form. 

There is clearly no reason against assigning in turn to the 

same analytical manifold two distinct metrical determinations, 

defined by the two quadratic forms ^ 
n 

a,„ rfaJi rfa:,,, .... (1) 
1 

ds’^ = a* dxi dx^ ... . (1') 
1 

^As a geometrical interpretation, we can think of two distinct U„’a whose 

points are in one-to-one correspondence, so that a set of n values as8igne<l to 

Xi, Xj, .,. Xfi can be represented either by a point P of one, or by the corresjKmding 
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From each of these forms we can obtain a set of ChristoffeFs 

symbols, whicli we shall denote by 

[ih,r) and |^7i, r}' 

respectively, and from these we can construct Riemann’s symbols 

[ir,hk] and {ir,hh]', 

and the analogous symbols of the first kind. In this chapter we 

propose to find the relations between the symbols relative to the 

two metrics, and then to apply the results to geometrical con¬ 

siderations. 

We shall begin by forming tlm differences 

... (2) 

we shall justify the positions of the indices on the right by showing 

that the p’s constitute a tensor covariant with respect to i and 

h and contra variant with resj)ect to r. 

To prove this, consider an arbitrary (‘ontravariant system 

whose elements are functions of position, and a system (also 

arbitrary) of increments (Ixf, of the independent variables. We 

know (cf. Chapter V, p. 138) that the expressions of the type 

T-- - dr + ku [ih, r] rdx, 
1 

constitute a contra variant system. The same result is of course 

true for the analogous exjuessions corresponding to ds'^ 

t"- dr' + ^ih {ih, r}'i'dxi, 
1 

and also for the differences 

t"' — t’’ = ki, p^hi' dx,^- 
1 

The fact that this expression is contravariant means that, 

denoting by u,. an arbitrary covariant simjile system, the expres¬ 

sion 

S,. (t"' — t' ) u, ^ T,i,„ p-A r dxi, u, 
1 3 

point P' of the other. K.g. a. ma}> and the surface of the earth are two with 

different metrics (one is Euclidean, the other not), and to every pair of values, 0 

(for the latitude), \ (for the longitude), corre.spond one point on the map and one 

point on the earth. 
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is an invariant; and if we examine the right-hand side of this 

equality we see that its invariance requires that pJ/j should be 

a tensor of the kind stated. 

It will be convenient for subsequent purposes to introduce 

also the associated covariant system 

Pihj = .(2') 
1 

2. Differences between the covariant derivatives. 

Given a generic tensor where as usual (i) and (h) denote 

the aggregates of ni indices % . . . and fi indices /q . . . respec¬ 

tively, we can consider its covariant derivatives with reference 

to either the first or the second fundamental form, i.e. with 

respect to either ds^ or ds'^, A generic element of the system 

obtained by differentiation relative to the first form will be 

denoted as usual by and the analogous expression relative 

to the second by We wish to evaluate the difference 

To find it we can use the explicit expression (p. 140, 

formula (4)) for the covariant derivatives of a generic mixed 

system. These are linear in Christoffers symbols, so that the 

differences in question will be linear in the p’s; the expression 

for them will be 

These general formulae can also be obtained, without using 

any special mermria technica, from the original definition of 

co variant differentiation, with respect to a given fundamental 

form, of a generic tensor. It is therefore well to remind the reader 

that, for an arbitrary displacement dXj, we assigned to the 

symbol d, when prefixed to a function of position, the usual 

meaning of the infinitesimal increment (the differential) caused 

by the displacement (cf. Chapter VI, p. 145); while for a generic 
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vector % and its contravariant components we assumed 

di'' = — {ih, r) dx^; ... (4) 
1 

i.e. we defined the expressions as the increments dependent 

on parallelism. All of this referred to the metric (1), which was 

then supposed fixed once and for all. We can of course follow 

the same procedure taking (!') as the fundamental form; but to 

avoid ambiguity it will be well to denote by d' the increments 

of the due to the same displacement as before, so that we 

shall have 

d'e -- - i.,.{ik,ryi‘dx,. . . . (4') 
1 

It will also be useful to introduce the operator 

d* d' - d. 

Since for functions of position d' and d have the same meaning, 

we have 

d*f 0 

for any function of position/; for the contravariant components 

of a generic vector ^ we have, subtracting (4) from (4'), 

d^e - - 2,, pI, e dx, (r 1, 2, . . . n), . (5) 
1 

Similarly, given the covariant components Uf^ of some other 

vector u, we find that 

= hjipj^^Vjdxi.(5') 

Now, in order to prove (3), we need only consider the invariant 

multilinear form F whose coefficients are the elements of the 

given tensor we know that the covariant derivatives 

are merely the coefficients of dF and d'F respectively. 

If now we take the identity 

d'F -dF d^F,.(6) 

and apply the operator d* on the right, using the property 

(i*/ = 0 for any function of position/, and (5), (5'), then 
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equating coefficients of like terms on each side we get 

formula (3). 

As a very simple application of this process, we shall deter¬ 

mine directly the values of the differences (^4,.)/^ — of 

the derivatives of a covariant simple system J,.. We start 

from the invariant form 

.(7) 

and consider the usual generic dis])lacement, determined by the 

increments dx,- of the independent variables. We shall have, 

with reference to ds'^, 

dF dX].\ .... (8) 
1 

and with reference to 

d'F .(8') 
1 

Further, applying tlu' operator rf* to F, and remembering 

that d^A,. is zero, and that d*^^' is given by (5), we get 

d*F dx,,. 
1 

The identity (6) therefore takes the form 

Srt [{AX- — A^,^] dx^ — i:,.;,, A,. f ‘ dx,,. 
1 1 

Replacing on the right Ji by hy and interchanging i and r, 

we get the typical term on the right also in a form involving 

dxj.] hence, equating coefficients, we have 

(J,)t “^rli =-- - ... (9) 
1 

This is the particular case of (3) which we shall require in 

the next section. 

3. Differences between Riemann’s symbols. 

We propose in this section to calculate the differences 

== hk}' — {ir, hh\, 
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which, being differences of two like tensors, are by definition 
tensors of the kind indicated. The calculations could be effected 
directly on the expressions defining Riemann’s symbols (Chapter 
VII, p. 175), but the long formal expansion can be avoided by 
the following method. 

Let be any covariant simple system, and any contra- 
variant siin])le system, and consider the invariant form (7). 
Af)[)lying to it the operator ^ A — 8d ~ dS with reference to 
ds^ (cf. Cliapter VII, p. 173), and remembering the fundamental 
properties of this operator, we shall get 

AF - 2, A, A^\ 
1 

or, expanding by formula (4) of Chapter VII, 

71 

AF = — M} 
1 

Similarly, with reference to ds'^, we can introduce the operator 
A' --- 8'd' — d'S\ and write 

A'F - = - i,„,,{ir,hkyeA,.dx;MA 
1 

and subtracting the former equation from this we get 

(A' ~A)F ^ ~ R:,, e A, dx, 8x,. . (10) 
1 

We shall now obtain by another method the expression for 
the same quantity as a quadrilinear form in the quantities 

Aj.dxf,8x}^. and hence, equating corresponding coefficients of 
the two forms, we shall find the expression for Rh^^, 

Note first that 

A' - A - (S'rf' - d'S') - {U - dh) 

(S'rf' - 8d) - {d'8' - d8). 

Since the second expression in brackets is obtained from the first 
by interchanging d and 8, we need only calculate the expression 

^To avoid ambiguity wo have here replaced the symbols 5 and 5', used in 

Chaj)ter VII to denote two distinct systems of increments, by d anc^ ^ 
respectively. 
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for h'd' — M. Further, in making this calculation we can ignore 
all those terms wliich remain unchanged on interchanging d and 
8, since they will disappear when we take the difference; we shall 
denote them collectively by X{dy 8). 

Introducing the notation 

d'-~ d ^ d*, 8' -- 8 8*, 
we have 

8'd' - (8 + 8*)d' - 8d'+ 8*d' 

= 8{d + d*) + 8*d' 

= 8d + 8d* + 
so that 

8'd'~ 8d - 8d* + 8*d'. 

We therefore get 

(A' - A)F - 8d*F + S^d'F - (d8^F + d^8'F), 

To calculate the first term we first apply the operator d* 
to the form F, remembering d'^A,. — 0 and (5). We get 

d*F - 'L.A.d^i^' 
1 

n 

Ay. ^ dXj^. 
1 

Applying the operator 8 to this form we get, from the definition 
of covariant differentiation, 

U*F 
1 

n n 

'^ihrk Pih \k -^r ^irhk Pih \k ^^k’ 
1 1 

Observing that the second sum can be written in the form 

71 n 

'^rk ^7' \k ^^k ^ih Pih ^ dXj^, 
1 1 

we have, applying (5), 

8d*F = i.,y,pl,^,eArdx,8x, + (11) 
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To calculate the second term 8*d'F, we apply the operator 
8* to (8'), and get 

S^d'F == S,, (A,)' ^S^dx, + k, (A)l dx,. 
1 1 

In the second sum, we can substitute for {A^)l the expression 
given by (9), and we get 

8*d'F k,(AXe8*dx, 
1 

+ S,, r Ax, - p\, h*rdx,. (12) 
1 1 

We must now add (11) and (12). In doing this, we notice 
that the first sum in (12) is symmetrical in d and 8, since expanding 
8*dX}^ by (5) it can be written as 

— ^w«7. (^r)k ^pfft dxi 8x,; 

while the second sum in (12) and the second in (11) change one 
into the other if we interchange d and 8, so that their sum is 
symmetrical. There remains therefore 

8d*F + 8*d'F 

“ X{d, 8) '^thrlc P)h\k^^ ~~ ^irk Plk 
1 1 

In the last term we substitute for 8*^"' its explicit expression, 
so that it becomes 

n 

■“ ^irklh P)k P\h 

In order to be able to collect the terms in the two sums with 
the common factor A^,dxf^8x/^, we apply the substitution for¬ 

mula 
(r I i h 7^\ 

I i T k hj 
to the indices in the last sum, so getting 

8d^F + 8^d!F - X{d, 8) ^ihrk \.Pih | k 
1 

'^iPmp\k\^"Adx,M,. 
1 

The expression obtained by interchanging d and 8 on the 
right (remembering the definition of X) is 

X{d^ 8) ^ihrk [pik \k p\h p\l^ ^ dXf^, 
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Interchanging h and k in the second of these, and subtracting, 
we get finally 

(A' - ^)F 

~~ '^ihrk Ha 1 k P\k 1A (PzA p\k Plk p\h)] i' 
1 1 

Comparing this with (10) we get the required formula: 

^ihk ~ 

P^h\k ~~ Pik\h ”■ (plh Pik ■“ PUcp\h)y • 
1 

which expresses the differences between Riemann’s symbols of 
the second kind in terms of the differences between Christoffers 
symbols. The analogy between this formula and that defining 
Riemann’s symbols (p. 175, formula (3)) should be noted. 

If we contract (13) by multiplying by aj,, and summing with 
respect to r, and then use the formula 

n 

Pihjlk ~ \'^JrPUi\k 

obtained by covariant differentiation of (2') with respect to ds^, 

we get the covariant system 
n n 

Pikj\h ^z {pihjp\k ~~ PikjPih)- (14) 
1 1 

It is to be noted that this does not give the differences between 
Riemann’s symbols of the first kind. In fact, substituting on the 
left the expression for (14) becomes 

n 

2^ajy{ir, hk}'— {ij, hk) 
1 n 

Pihjlk PUcj\k ^Z {PlhJ Pik Plkj Pik) f (1-4: ) 
1 

and the first sum is not the same as (^y, hk)\ which would be 

n 

M}', 
1 

4. Case of two metrics in conformal representation. 

We shall now apply the formula (14) to the case in which the 
two fundamental forms (1) and (!') differ only by a factor. As 
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both forms are positive, this factor must also be positive, so 
that we can denote it by we shall therefore suppose that 

~ ds^,.(15) 

or ds' = ds. 

The geometrical interpretation of this condition is quite 
simple, namely, that the correspondence between the two mani¬ 
folds is such that infinitesimal segments are proportional, or 
there is similarity of infinitesimal parts. It follows that the 
angle between two curves (the angle between their tangents 
at the point of intersection of two infinitesimal elements) is equal 
to the angle between the corresponding curves; hence the name 
of conformal representation. 

In order to calculate (14), we shall obtain in turn, first, 
Christofi’ers symbols of the first kind for the two forms, then 
those of the second kind, from which we shall get the pj)/s, 
and lastly the p,7,/s and their derivatives. 

We start from the relations equivalent to (15) 

(i, k = 1, 2, ... n) . (150 

and shall calculate the spnbol [ih, Tf. We get 

= ([ih, 1] + aat,. + t,), 

0T 
where stands for , &c. 

To construct the symbols of the second kind, or 

{ih,ry = 
1 

we observe that the coefficients are, by definition, expressible 

as the quotient of a determinant .4^^ of order n — 1 (the comple- 
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mentary minor of in the determinant || || ) by a determinant 

a' (namely, || ah || ) of order n. Remembering (15'), we see that 
in these determinants we can take out a factor which is 
common to every element, so that we can write 

Ah -- a' -- 

where A^i and a denote the determinants corresponding to Ah 

and a', but relative to the coefficients a,.;. We thus have 

and therefore 

[ih, r]’ - ({ih, /] + + a„,T,, — 
1 

= ■; ih, r} +8;' T,, -f s;, t,. - «,,, T^ 

where the 8’s as usual denote a factor which is 0 or 1 according 
as the indices are the same or different. 

The difference [ih, r]' — [ih, r} is therefore given by 

pIa == SrT/. + 8;T,-a..,T’-. . . . (16) 

Multiplying this by and summing with respect to r, we 
get (using (2')) 

Pihj — a^f^Tj. . . . (16') 

By covariant differentiation with respect to ds^ we get 

Pifr}\k 

subtracting from this formula the analogous one obtained by 
interchanging h and k (so as to form the first part of (14)), and 
remembering that Tf^j^ ~ we find that 

PihJ\k PiJrj\h ^iij'^ik ^kj'^ili ^ih'^jh “b ^ik'^jh* (1^) 

The second part of (14) can be constructed with the help of 
(16) and (16'). We shall first calculate 

n n 

^ipihjplk = (atjTk + — aih'Tj) — aar') 
1 1 

— O'ikO-hj^'r — aih'Tjrk — + aaTjr,,, 
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where At ™ (the first differential parameter). The third 
1 

term and the last term cancel out. Denoting by X the aggregate 
of the four terms underlined, which are unchanged if we inter¬ 
change the indices h and k, we can write 

S; Pih j p\k = — «a- a,,j At + — a,/, Tj t/, + X. 
1 

We shall now subtract from this the formula obtained by 
interchanging h and Ic. We shall get 

n 

iplhj p\k — Pile} p\h) “ ^jk ^ik ^jh) 
1 

+ (^hj T/, T,- — a,,j T/, T,- -- Tj r,, -f Tj t,,. 

Using this and (17), we get the right-hand side of (14') in the 
form 

~ <^ih i'Tjk — 'TTjTj,) + a,/, {tjj, — TjT,,) + {Tij, — T, Tj) 

“ (^jk (t/a — riT,) - {a,,, ajj, ~ a^j) At. 

The left-hand side of (14'), using (15'), can be written as 

e‘2,,a/,. (iV, Jik\' — {ij, hk) 
1 

or {ij, hky - {ij, hk). 

Finally, formula (14'), for two metrics in conformal repre¬ 
sentation, can be written in the form 

e ~(ij, hky — {ij, hk) (tj,, — t,,) -f a,,, {tjj, — Tj tJ| 

+ ^jh i'^ik — 'T’/r) — «j/r {^ih — '^i n) — i^ih (^jk — ^ik ^jh) 

This formula was found by Finzi, by another method, as early 
as 1903.1 

’Cf. “Le ipersuperficie a tre dimensioiii cbe si I)Ossot1() rappresentare conforme- 

mente sullo Hpazio euclideo ”, in Atti del U. 1st. Vencto^ Vol. LXII, pp. 1049-1062. 

The later researches of Finzi and Schouten on the manifolds of any number of 

dimensions which can be conformally represented in a Euclidean .spac^eof tlie same 

number of dimensions, should also be mentioned. Cf. Rend, della R. Ace. dei 

Lincei^ Vol. XXX (first half-year, 1922), pp. 8-12, and Vol. XXXI (first half- 

year, 1923), pp. 215 218, and Schouten's book cited at Chap. VII, p. 172. Cf. also 

D, J. Stuuik : Grundzilge der viehrdiniensiomden Dlffcrentialyeorncti'le (Berlin, 

Springer, 1922), Ch. IV, § 13, p. 150, where Schouten’s results are given with 

bibliographical notes. 
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This formula can be given a simpler form by putting 

u — 
so that (15) becomes 

We then have 
Ui = ~ 

M* = — '"('Ta- — 'Tin), 
from which we get 

Ti——U^e, Tit— TjT,, " ■ 5 
u 

A?^ 
At = UiU^ = e''^ b^u ~ 

1 1 

Thus (18) becomes 

«2 (,J, M)' — (y, /t^;) 

= Oift - a,;^. - a,,, + «;*• - (flih ajk ~ ^ik aji.) ^ “ (f8') 
u u u u ir 

At the end of this chapter we shall have occasion to point 
out an interesting geometrical application of this result. 

5. Isotropic manifolds. 

Leaving avside for a moment this order of ideas, we propose 
to study those F,/s in which the Riemannian curvature, as 
defined in Chapter VII, pp. 195-198, docs not depend on the 
8(5ctiori, but only (if it is variable) on the point. This is expressed 
analytically by the fact that the expression for K given by (31) 
of the preceding chapter is independent of the and the v's. 
We shall see that these ,F,/s, which we shall call isotropic, i.e, 
with (locally) constant curvature, are characterized by a parti¬ 
cularly simple expression for Riemann’s symbols. 

We observe first that a fairly simple algebraic combination 
of the coefficients which possesses the fundamental properties 
of Riemann's symbols, is the following: 

^ij, hk — y {^ih ^jlc ^ik ^jh)f 

where y is a priori any function whatever of position. Everything 
reduces to proving that when these quantities are substituted 
for the symbols {ij, hk) in (31) of the preceding chapter, the 
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resulting value of K is independent of u and v. In fact, making 

the substitution, we have 

K 
sin^a 1 

sin-a L 1 
S;,. — S;. an, U ih ^ih ^ ^jlc ^jlc ^ 

and since 

S;/, «,v,-«'■'((/' - -^ == 1, 

I,j,,aj,,v'-u'‘ = cosa, 
1 1’ 

it follows that 

K [1 - COS^a] = y. 
Silica 

Hence the Riemannian (nirvature of a V,, whose Riemann's 

symbols are tlu^ expressions is y, and is therefore indepen¬ 

dent of tlie section. But we can also show that this is the most 

general expression of Riemann’s symbols which will make K y. 

In fact, if we put 

(?j, /(Z/) h(j^ J^ij^ fijfi 

where has the meaning assigned to it above, we shall show 

that Bfj r- 0. To do this, we insert this expression for {ij, hk) 
in (31); the right-hand side can then be broken uj) into two parts, 

the first of wliich, containing the symbols b^j is, as we have 

seen, equal to y, and the second, which is 

sm^-a 1 ‘ 

must vanish if we are to have K ^ y. 
The sum just written can be simplified if w^e observe that 

since Riemann’s symbols are antisymmetrical, the two terms 

'S//, A* ^ 

can be collected into a single term; putting 

u'‘v’' — v!‘i^ = 
this term becomes 
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Thus the sum for all the permutations hk becomes merely a 

sum for all the simple coynbinations (A, k) of unlike indices, since 

it is useless to consider terms with a repeated index {k — A), 

because ~ 0. We shall denote the sum extended only to 
n 

simple combinations of the indices by instead of The 
1 1 

quadruple sum thus becomes 

It if 

Ijfl u* S/,4. B^j 44. p^f^, 
1 ‘ 1 

Proceeding in the same way for the indices f, j, we get ulti¬ 

mately 
n n 

^/i/c ^fj, hk Vij Vhk'y 
1 1 

i.e. an expression bilinear in the p’s. Each summation will extend 

to m = \n{n — 1) pairs; w^e shall number these (in any order) 

from 1 to m, and put 

Pij ~ Phk ~ ^ij, hk — (y) 

{ij, A, k =- 1, 2, . . . n\ 1, 2, . . . 771), 

where ^ is the ordinal number of the pair ij and y that of hk, 

so that the sum can be written 

m 
(y) Z^. 

It will now be clear that this expression cannot vanish for 

arbitrary values of the z's, imless all the B's are zero; which is 

precisely what we wished to prove. 

We may therefore conclude that for a Vn whose curvature 

is locally constant (i.e. independent of the section) and equal to 

a given function of position K, Riemann’s symbols are neces¬ 

sarily given by the formula 

{ij,hk) = at^ajf,). . . (19) 

Multiplying by a'^ and summing with respect to j, we get 

the expression for the symbols of the second kind: 

{ir,hk} = . . (19') 

The function K, however, cannot be arbitrarily assigned; 
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we sliall show in the following section that for ^ > 2 it must be 

a constant. 

6. Schur’s theorem. 

This theorem states that if the curvature is locally constant, 

it is also the sa?ne at all points. The case n — 2 is not considered, 

as there is only one section at each point, so that we cannot 

properly speak of locally constant curvature. 

We shall therefore show that the K of formula (19) is constant, 

or that Ki= a (Z = 1, 2, . . . n). 

where Ki represents a generic covariaiit derivative, identical 

(cf. Chapter VI, p. 147) with the ordinary derivative. 

To prove this, we take the covariant derivative of (19), 

remembering Ricci’s lemma. This gives 

(ij, hk)i = Ki (a.v, a,,- — a,i-a^A). 

Taking three distinct values for A, Z*, I (which is possible, 

since n > 2), the other two relations obtained from this one 

by cyclic permutation of A, k, I can be written in the form 

(y. = Kh («a-«/( — «>), 

(y, Ih)^ = {an 

Adding the terms on the left and on the right of these three 

equations, and remembering Bianchi’s identity (Chapter VII, 

p. 183), we get 

0 = Ki {an, aj,, — a,^ aj,,) + {a^Uji — a^ aj^) 

+ {an an, ~ an, aji). (20) 

By varying i and j>, we thus get ln{7i — 1) relations, of which 

we shall now make a suitable linear combination. Multij)lying 

(20) by and summing with respect to i, j, we find that the 

coeflFicients of Ki, Kf„ Kj,, are all of the type 

1 

where a, jS denote two of the indices h, k, 1; or, making the two 

summations in turn, of the type 

n n 
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where the S’s as usual denote either 0 or 1. These quantities are 

therefore always zero, unless we have simultaneously a “ 

^ :=z k (which happens in the coefficient of tlie first term), in 

which case the value is 1. Our linear combination of the equations 

(20) thus reduces to 

Ki 0. Q.E.D. 

7. Canonical form of ds^ for a manifold of constant curvature. 

Given a Euclidean space we propose to find, if it exists, 

a manifold 7,^ with constant curvature ii, which can be con¬ 

formally represented on or in other w'ords (cf. § 4) such that 

its linear element is given by 

where ds is the element of S„, We shall see that this is always 

possible, and the solution of the problem will lead us to assign 

two important forms for the ds'^ of a manifold with constant 

curvature. 

Keeping the notation of § 4, we shall have for Riemann’s 

symbols for the the expression (cf. formula (19) ) 

K 
{ij, hiy ^ K (ai a'l, — a',, a',,) -- (a,-,, a,;,. — aj/,). 

and for S,^ 

{ij, hk) 0, 

since for a Euclidean space all Riemann’s symbols are zero (cf. 

pp. 173-178). 

We must now substitute these values in the equations (18'); 

these constitute a system of differential equations the integration 

of which will give the function u. Making the substitution, (18') 

becomes 

__ u, 
n JL n 
^jh — + - 

u ■' U 

f . Aw + K 
{^ih ^jk ^ik ^jh)-- 2- 

{i, j, Tl, k 1, 2, ... w) 

== 0 
(21) 
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These — 1) equations can be satisfied by putting 

^ik ^ oaik = 1, 2, . . . 7i), . . (22) 

where c is a constaut; in fact, substituting these values, they 

take the form 

^^2 «y, - «/*■«;/,) (2cm — K ~ An) ^ 0 

{i, j, h, Jc == 1,2,... n); 

and in order tliat they may all be satisfied, we need only make 

the common factor vanish, i.e. put 

2cu — K — An ^ 0.(22') 

We liave therefore substituted for (21) the system composed 

of the equations (22) and (22'), which holds whatever may be 

the co-ordinates .r. If then we suppose, as we always may, that 

tlie x's are orthogonal C^artesian co-ordinates of so that 

our system will take the simpler form 

. == c8‘- . 
d X, dx/. ^ ’ 

. . (23) 

2cm. - K - (PY = 1 vv . . (23') 

We shall examine separately the two cases c = 
li c = 0, the system becomes 

= 0, c =t= 0. 

^0. . . . 
0 x-i a % 

• • (24) 

• • (24') 

and from the second of these it follows that jRl < 0. Such a 

solution is therefore possible only for manifolds of constant 

negative curvature, since we do not consider the case K 0, 

which has no special interest, i.e. the case when F," is itself Eucli- 
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dean. Equations (24) then give, by an immediate integration, 

+ .... (25) 
1 

where the 6^’s, and b are constants and therefore, substituting 

in (24'), 

Z+ ^. 
1 

This shows that the are not all zero, and that therefore, 

by applying an orthogonal substitution to the co-ordinates/ 

(25) can be put in the form 

u = k (k constant) 

so that (25') becomes 

K -j- 0, 

01 k = s/ — K. We therefore have 

u ~ s/ — K X,, 

and therefore 

ds'^ 
dx^ + ^^2 • • • 4* 

~^Kx2 ’ 

(26) 

This is the canonical form of the line element of a manifold 

of constant negative curvature. It was found by Beltrami ^ in 1868 

by another method. 

Another type of solution which holds for any value of K 

whatever is obtained by supposing c 0. (23) gives us the two 

groups of equations 

d^u 

dx^dxj, 
== 0, i =f= k^ . (27) 

d^u 

~dxf 
(27') 

^ The hypersurfaces u — constant, i.e. t)^ — constant, are a set of parallel 

hyperplanes; we need therefore only choose the axis Xn in the direction perpen¬ 

dicular to them in order that their equations may take the form Xn = constant, 

and therefore that ii ~ k xa- 

Opere matematiche, Vol. I, p. 419. Milan, Hoepli, 1902. 
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The first group has for its general integral 
n 

U - -L.Xi, .(28) 
1 

where X.i is a function of alone. 

The second group gives 

X': - c, 

where differentiation is denoted without ambiguity by dashes, 

since the argument of X^ is only. 

From this, integrating once, we get 

X'i -= C[Xi— X^;), 

where the arbitrary constant of integration has been put in the 

form — using the hypothesis c 0; and integrating a second 

time 

where bi is a constant. Substituting from this in (28) and putting 
n 

b = 2■ 6- we get the following expression for u: 
1 

M = ^ S,. {Xi — +6, ... (29) 
^ 1 

containing n + 2 arbitrary constants. 

We still have to consider (23'); substituting in it this value 

of u, it becomes 
2ch — K = 0 .... (23") 

and therefore merely establishes a relation between the two 

constants c and b. 

We have therefore obtained a solution containing n + 1 

arbitrary constants; we can choose these to satisfy specified 

conditions at a generic but fixed point 0 of E.g. suppose we 

wish to take the ir^’s in such a way that all the are zero at 

the origin. We have from (29) 

Uj = c {Xj — xj); 

lienee every x^ must vanish, so that (29) becomes (substituting 

for b from (23")) 

M = .(30) 
Z 1 JiC 
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We can then deterniiiie c so that at the origin u 

K 
this we must have c — , and we thus get finally 

4 1 

1; for 

(30') 

This value of u makes take the form given by Riemann: 

ds'^ - -- 

dx^ -j~ dx, —1“ • • • ~1~ 

(31) 

We shall show farther on (§ 2, p. 240) that the ds^ of any 

whatever of constant curvature K can be put in the form 

(31), and also if < 0, in the form (26); this will justify the 

choice of the term canonical forms for these expressions. 

Here we shall also prove the almost obvious property that a 

hypersphere of radius R in Euclidean space of n + 1 dimensions 

constitutes a of constant positive curvature ^ ~ 

do this we shall take 2/2’ * 2/h denote orthogonal 

Cartesian co-ordinates in so that 

ds^ =^. .(32) 
0 

Without loss of generality we can consider only the hyper¬ 

sphere which has its centre at the origin, and is therefore repre¬ 

sented by the equation 

ky;^= .(33) 
0 

We shall prove the assertion in the most direct way, by 

expressing the n + 1 co-ordinates y of the points of the hyper¬ 

sphere, connected by the relation (33), in terms of n suitable 

curvilinear co-ordinates x, and showing that ds"^ takes the required 

canonical form (31) when these parametric expressions of the 

y’s in terms of the ic’s are substituted in (33). 

The parametric representation of the ?/’s referred to is an 

immediate generalization of that given for an ordinary spherical 

surface by stereographic projection. In this case {n = 2), if 
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we project from a point whose co-ordinates are — jS, 

0 upon tlie tangent plane at the diametrically 

opposite point, every point ('^q, ^2) sphere projects into 

a point on the plane whose co-ordinates are connected 

with the ^’s by the relations^ 

Js ^ (.= 1.2), (34) 

where 

« = 1 + K^- == . (36) 
4 it- 1 

For any value of n, we shall adopt the same formulae, with 

the obvious modification that v is to vary from 1 to n. This does 

in fact give a parametric representation of our hypersphere; 

for squaring and adding the equations (34), and substituting 

for ir^^its expression in terms of u as given by (30'), namely, 

y. (^^— 1), we get back to equation (33). We have then, 
A 

diffiTentiating, 
j 1 2dii 
%o == - -7- 

VA W“ 

dy^ = 
(Ix^, 

u 

x^,du 
(v - 1,2,... n). 

Squaring and adding, and substituting 
n n 

1) and ~du 
A 

for 2^ 2 2^, x^ dx^ respectively on the right-hand side, we 
1 

get finally 

ds^ = 

which is the required result. 

^ These relations can eiusily be shown to be the same as those ordinarily used if 

we replace p, the radius vector of the projection, by the colatitudc ^ of the point 

on the sphere. As by definition VA' y© — cos^, it follows that ^ = cos^^^, 

p = 2/if tan^^. 

(D 6B6 ) 9 
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CHAPTER IX 

Differential Quadratic Forms of Class Zero 

AND Class One 

1. Forms of class zero (or Euclidean forms). 

In Chapter V, p. 123, we defined the class of a given (or 

of the quadratic form ds^ which characterizes it) as the number 

N — n, where N is the minimum number of dimensions of a 

Euclidean space in which the can be immersed. 

We shall consequently say that a quadratic differential form 

n 

ds^ = 'L,^.an.dXidx„.(J) 
1 

is of class zero (or is Euclidemi) if it is possible to substitute for 

the n variables x a set of n variables y (since N = n), connected 

with the x’s by the relations 

Hv Vv ^2> ■ • ■ ^n) == 1, 2, , . . n), (2) 

and such that (1) assumes the Cartesian form 

ds^ == id!/,:-.(1') 
1 

Given (1) we wisli to find a criterion which will enable us to 

recognize whether such a transformation is possible. We shall 

show that it is sufficient to construct Riemann’s symbols relative 

to (1), and to determine whether they vanish identically or not. 

We have already seen (Chapter VII, p. 178) that this condition 

is necessary; we wish to prove that if, inversely, all Riemann’s 

symbols relative to (1) are identically zero, then (1) can be trans¬ 

formed into (!'); or in other words that the n functions (2) can 

be so determined as to satisfy the ^n(n -f- 1) equations 

where 

ait = '^,y.\iy.\k 1, 2, . . . nl . (3) 

.(4) 

(cf. Chapter V, p. 122, formula (35)). 
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By covariant differentiation of (3), we get 

n 

0 Sj, (2/|/|i/ yv\k H” 2/i'IA'/)' 

By cyclic permutation of the indices h, I, we get from this 

the two further equations 

n 

1 

n 

0 + yv\Lyv\ik)- 
1 

Now add the last two of these equations and subtract the 

first. From the commutation rule (§ 6, p. 184), combined with 

the vanishing of Riernann’s symbols, it follow^s that the second 

derivatives are permutable, so that we get 

n 

^.y.\ikyr\i = 0. 
1 

Keeping i and h fixed, and making I vary from 1 to n, this 

formula gives us n linear homogeneous equations in the n un¬ 

knowns (i; -™ 1, 2, ... n). The determinant of the system 

is certainly not zero, since it is composed of the terms j/, |^, 

i.e. is the functional determinant of the transformation (2); we 

therefore conclude that 

yv\ik == 0 (»^> % k = \,2, . . . n). . . (5) 

These equations, which we have deduced from (3), can be 

put in the form 

= % [ik, j} = /.,|« {x I y„|i, . . . , J, (5') 
dX}^. 1 

in which we are concerned only to the extent of observing that 

the right-hand side is a known function of position and of the 

terms 

It is now easy to see that the problem is reduced to that of a 

mixed system of total differential equations and equations in 

finite terms which we have already considered in § 8, p. 29. 

In fact, considering as unknowns the n quantities y^,, and the 
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quantities we can collect together the equations (4) and 

(5') into a system of total differential equations 

^Vv yi>\k 
1 

n 

dy.\i = ^icL\iic{x\y.n, ■ ■ . y,.\n)dx^ 

{v, i = 1,2,... n), (S) 

while the group (3) constitutes in{n + 1) relations in finite 

terms between the -(- n ~ n (n + 1) unknowns. 

The conditions for com])lete integrability, by the usual rule, 

are as follows: 

(a) 

(b) 

dx,, dx^ 

dXf, dX}^ 

{p, i, h, k 1, 2, . . . «); 

(c) the equations obtained by differentiating the equa¬ 

tions (3) must be identically satisfied in virtue of the 

equations (>S). 

Introducing the covariant derivatives and once more apply¬ 

ing the commutation rule for the second derivatives, the con¬ 

ditions (a) can be written in the form 

yv\kh ““ yv\hk “ linear combinations of Riemann’s symbols, 

and it will then at once be seen that they are satisfied identically, 

since the left-hand side vanishes in virtue of (5), and the right- 

hand side also vanishes, since by hypothesis Riemann’s symbols 

are zero. 

A similar argument holds for the conditions (6), which are 

equivalent to 

yv\ikh ~ yv\ihk — linear combinations of Riemann’s symbols. 

Lastly, taking the covariant derivatives of (3), we find the 

conditions (c) in the form 

n 

^ikjl — (y^'ltiyylk 'h 
1 

and it can at once be verified that all these are satisfied, in virtue 
of Ricci’s lemma and the equations (6). 
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The mixed system is therefore coniplete, and it will be possible 

to find the functions (2), which will contain ln{n + 1) arbitrary 

constants, this being the difference between the number of un¬ 

knowns and the number of equations in finite terms. In geo¬ 

metrical terms, if the manifold is Euclidean there are in it 

(orthogonal) Cartesian systems. If we can find a particular 

solution rj2, we can get the most general solution by 

a substitution of the type 

Iji Ci + {i = 1, 2, . . . n), . (6) 
1 

where the a’s are the coefficients of an orthogonal substitution, 

i.e. are connected by the \n{n -f- 1) equations 

= O', ], 2, . (7) 
1 

while the c’s are n completely aibitrary constants. 

This can be immediately proved from the characteristic pro¬ 

perties of orthogonal substitutions. In fact, from equations (G), 

differentiating, squaring, and adding, we get 

n 

1 

n 

1 

71 a 

1 1 

summing the last of these with respect to i and using (7), we get 

= kdv,/ 
1 1’ 1 

The hypothesis that the 77’s are a particular solution of the 
n 

system is expressed algebraically by the equation ds^; 
1 

hence we can write 

= ds^ 
1 

which proves that the y’s also constitute a solution. An easy 

calculation shows that the number of independent constants in 
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(6) is \n{n +1)) and hence the solution so obtained is the most 

general. 

It is obvious that the equations (6) are a generalization 

of the formulae for changing the co-ordinate axes in ordinary 

analytical geometry. 

2. Conformal representation of a manifold of constant curvature 
on a Euclidean space. Mutual applicability of all F,/s with the 
same constant curvature. 

In the preceding chapter (p. 236) we solved the following prob¬ 

lem: given a Euclidean space to find a manifold F',, of given 

constant curvature which can be conformally represented on 

We now propose to prove that conversely, given a manifold F^ 

of constant curvature, it is always possible to represent it con¬ 

formally on a Euclidean space In other words, if ds^ is the 

line element of a F,^ of constant curvature if, we wish to prove 

that a suitable function V --- can be so chosen that 

ds'^ — ds^ — ^2^^^ 
is Euclidean. 

The necessary and sufficient condition for this is that the 

equations (18') of Chapter VIII, p. 232, should all be satisfied 

iij. km = 0, 
{ij, M) K {au,aj,, — 

and writing U instead of u, V must therefore satisfy the 

— 1) equations 

Putting 

Uik “ a^4.(af7 -f- ^), .... (8) 

where a and ^ are two constants, and following the same method 

as that used in § 7 of Chapter VIII, p. 236, we see that these 

equations are satisfied provided ultimately 

AC7 

[72 
K+2a+^^. . (9) 
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If we consider the equations (8) as defining all the derivatives 

of the n quantities Ui, then together with the identity 

dU^iu.dx,.(8') 
1 

they constitute a total differential system in the n + 1 functions 

Ui, U\ the equation in finite terms (9) is to be associated with 

it. It is easy to verify that we need only take a = — K in order 

that this mixed system may be completely integi*able (cf. Chapter 

II, p. 29). 
In fact, the conditions of integrability of the equations (8) 

are expressed by the cfunmutation formulse (§ 6. p. 184) 

-- — [if, Uy, . . {C) 
1 

and those of the equations (8') by 

Ui, - U,,, 

These latter conditions are at once satisfied, on account of 

equations (8). The left-hand side of (0), also by (8), reduces 

to 

a(aif, Vi anUf,), 

and the right-hand side, using the expression (19') of the pre¬ 

ceding chapter for Riemann’s symbols for manifolds of constant 

curvature, becomes 

The equations (C) therefore reduce to identities provided, as 

stated above, we take a — K, 

Lastly, there is the equation in finite terms (9); putting 

a = — A", this becomes 

2. Uj - - Km + 2^V. . . . (9') 
1 

Differentiating this, using formula (16') of p. 152, and taking 

out the factor 2, we get the conditions 

1 

which are also identically satisfied in virtue of (8). 
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- Having thus seen that tlie system is completely 

integrable, we know (§ 8, pp. 29”33) that the solution contains 

n arbitrary constants w'hich we can choose in such a way that 

at a specified (but perfectly general) point 0 of the manifold the 

n functions Vi take values arbitrarily fixed in advance. Further, 

the constant p is still at our disposal. 

We get a first class of solutions if we take jS = 0, which 

makes (8) into 

C7,, ^ - Ka;, U. 

The hypothesis ^ 0 is therefore admissible in the real 

field only when K < 0; in fact, for ^ 0 the equation (9') 
reduces to 

AC7 - - /if/2. 

In the real field the left-hand side is always essentially positive, 

excluding the case when the function U is a pure constant, or 

in other words (on account of equations (8), which now reduce 

to = — K U) retaining the conditions K ^ 0. Since 

the right-hand side has the opposite sign to ii, it follows that 

the equality is possible only if J5l < 0. 

In order to have a generally valid solution, we must suppose 

^ =4= 0. We shall then choose f and the n other constants so 

that 

Ui -- 0, f/ “ 1 (i ~ 1, 2, ... n) 

K 
at the point 0, so that from (9') we see that ^ , and JJ will 

be completely determined. ^ 

With the notation of the present problem (i.e. using dashes to 

denote quantities relative to the Eticlidean space) we proved in 

Chapter VIII, § 7, p. 236, that if a factor u exists such that the 

manifold for which 

ds‘ = 

has constant curvature K, and if the conditions w = 1, = 0 

are satisfied at a specified point 0 (which may always be supposed 

taken as origin of Cartesian co-ordinates), then the expression 

for w is „ „ 
u = 1 + 

* I 
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Further, we have now found that the quantity ^ satisfies 

all these conditions (in fact = 

at 0), and therefore we must have 

1 

u 
V 

1 at 0, 

1 

(y, f0 
f/2 

K 
1 + " 

4 1 

An extremely important corollary can be deduced from the 

foregoing results. Given two ^-dimensional manifolds with the 

same constant curvature K, both their ds^^ as we have seen, 

can be reduced by suitable changes of variables to the same 

canonical form 

1 

where 
n 

4 1 

It is therefore possible by a change of variables to transform 

one form into the other; or in other words, if two manifolds of 

the same number of dimensions satisfy the single condition of 

having the same constant curvature, then either can be conform¬ 

ally represented on the other. 

3. General remarks on hypersurfaces in Euclidean space. 
Second fundamental form. 

Let be a Euclidean space and • • • 2/n + i ^ system 

of Cartesian co-ordinates in it, so that 

1 

Consider a hypersurface (frequently called merely a 

surface ’’ when there is no danger of ambiguity) immersed in 

Snj^i and defined by the parametric equations 

y. = y. Xz, . . . x„) (v = 1, 2, ... n 4- 1). . (10) 
(0 055) 9* 
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As usual, the functional matrix of these equations must have 

n as its characteristic (cf. p. 87). 

As an obvious extension of the ordinary case {n --- 2) we shall 

first define the direction of /Sn-fi which is normal to Vy^ at any 

given point P. 

Let (i' ~ 1, 2, ... n + 1) denote the cosines of the direc¬ 

tion we are in search of, relative to the axes y (i.e. the parameters 

or moments, which are indistinguishable in a Euclidean space). 

These cosines will be comiected by the usual quadratic identity 

■u + l 

].(11) 
1 

The geometrical property which w^e have to express is that 

the direction whose cosines are a,, is perpendicular to any tangent 

to at P, or, which is the same thing, to any elementary dis¬ 

placement dP which is a tangent to V„ and therefore (neglecting 

infinitesimals of higher order than the first) does not move out¬ 

side the surface. For every such displacement the equations 

(10) must still be satisfied, but the increments dxi of the ic’s 

will be otherwise arbitrary. If dy^ denotes the corresponding 

increments of the Cartesian co-ordinates the a’s must satisfy 

the equation 
w-f 1 

0.(11') 
I 

for every system of dy's given by (10), i.e. by 

7i 

dy^ =- ^ly.^idxi, ..... (12) 
1 

with the dx’^ arbitrary. 

Substituting in (lU) we have 

n »» 4-1 

= 0; 
1 1 

and since the dx’s are arbitrary this means that the a’s must 
satisfy the n equations 

1 

=0 (( = 1,2, ...n). . (12') 
1 

These equations, together with (11), determine the a’s except 
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as to sign. The ambiguity of the sign is natural, as we are dealing 

with a direction and have made no hypothesis as to its sense. 

In what follows we shall suppose the sense fixed in advance as 

may be most convenient. 

We know that the metric of is defined by the quadratic 

form 
n 

(j> = ds^ == 'Lii.ai^dxidxi,. 
1 

In addition to this it is useful to consider a second differential 

quadratic form 0 which differs from the first in that it depends 

on the configuration of F,^ in (or in other words is not an 

intrinsic element), or rather completely determines this con¬ 

figuration. 

To find tins function we suppose an infinitesimal segment of 

constant length € measured off along the i)ositive sense (as defined 

in advance) of the normal at every point of the given F,^. The 

extremities of all these segments will lie on a hypersurface F^, 

which is said to be parallel to F,j there is an obvious one-to-one 

correspondence between points on one and points on the other. 

We wish to consider two infinitely near points of F,,, and to com¬ 

pare their distance apart ds with the distance ds' of the two 

corresponding points of F„. 

If the co-ordinates of a generic point of F„ are [v ~ 1, 

2, ... n those of the corresponding point of will be 

y.' + a,, e. 

From this, ditferentiating and remembering that « is a con- 

stant, we get 

Squaring and adding, we get ds'^; denoting it by cf>', we have 

</,' -- €^da^^+ 2edy,.da,). 
1 

}»+1 

Now (f), and since € is infinitesimal it follows that 
1 

negligible compared with the other terms; hence 

f ^ .... (13) 
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where we have put 
n+l 

tfi —'L.dy.da.(14) 
1 

Formula (13) gives the increment of the first fundamental 

form </> in passing from the given F,^ to an infinitely near parallel 

surface; this increment is expressed in terms of the quantity 

</f, which, as we shall now see, is a quadratic form in the 

To show this, we note that 

n 

n 

da, = ^ta,^idXi; 

hence, substituting in (14), and putting 

/>41 

^ik ^ki ^iyi'\i 1 k yv\lc 11)» ■ (16) 

we get 
n 

^ = ^ucKdXidx^- • • • 
1 

. (14') 

This is what is called the second fundamental form. Its coeffi- 

cients 6,7., given by (15), can also be expressed in another way, 

which will be useful farther on. Dift'erentiating (12'), we get 

71+1 

^v{^v\icyv\i ^ ~ 
1 

or, interchanging the indices I and k, 

n + l 
+ ^^yyllcl) ~ 

Taking the half sum of these two identities, and remembering 

the symmetry of the second derivatives, we get 

71+1 71+1 

\^v^^v\kyv\i ^v\iyv\i^ ^v^vyv\ik* 

Changing I into i, the left-hand side of this equality becomes 

the same as the right-hand side of (15), and therefore 

7t + ] 

^ik ^1/ Vv j ik* (16') 
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4. Forms of class 1 (hypersurfaces in Euclidean space). 

We now wish to find a criterion to determine wliether a given 
differential quadratic form 

n 

ds^ 'Lii.a^^dXidxi, 
1 

is of class 1, i.e. whether we can find n \ functions (10) which 
will reduce it to the (^artesian type. We shall follow a method 
similar to that usv'^d in § 1, taking as unknowns the n -j~ 1 functions 

and their n(;n + 1) derivatives making (^^ + 1)^ unknowns 
in all. By definition these must reduce the given ds^ to the 

f I 
Euclidean form this is expressed by the ?,n(n + 1) con¬ 
ditions ^ 

n+l 

"= '^„y,.\iy,.\k.(16) 
\ 

From these by covariant differentiation we get the equations 

0 ^v{yv\iiyv\k’^yv\iyv\}d)' • • • 

1 

We have also the condition that the principal unknowns y^, 

and the auxiliary unknowns are not independent but are 
connected by the differential relations 

dxi. 
yr\v (18) 

We have to determine the conditions of integrability of the 
system composed of (IG), (17), (18). 

First, suppose written down tlie two equations obtained from 
(17) by cyclic interchange of i, Ic, 1; from these three equations, 
by adding two of them and subtracting the third, we find, as 
in § 1, 

^„yyiiky„\i 6 (*. 1 =-■ 1,2,... n). 
1 

Keeping i and h fixed, we have n linear homogeneous equations 
in the n + 1 unknowns y^,^ik. The matrix of the coefficients 

as in the preceding section, has n for its characteristic; 
hence the equations have {n — n 1 independent solu- 
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tion; the others differ from it by a multiplier. Now we see from 
(12') that we get one solution by taking === a^; hence, intro¬ 
ducing a multiplier 6,;,, we can write the most general solution 
in the form 

yv\ik ~ . 

To find the significance of these 6’s, multiply (19) by and 
sum with respect to v from 1 to + 1, using (11); we get 

u-f 1 

1 

comparing this with (15'), we find that the fe’s just introduced 
(which have the property — hf^,) are identical with the co¬ 
efficients of the second fundamental form. 

We have now to express the fact that the second covariant 
derivatives of the quantities 11 satisfy the commutation formula 

n 

yv\ihk yi>\ikh “ 

which takes the place of the ordinary condition of symmetry of 
the second derivatives. To calculate the left-hand side we must 
start from (19). By covariant differentiation we get 

yv\ikh ~ ^v^ikh~\~ ^ik^v\h> • * ’ (21) 

and we have to calculate a„|,^. To do this, we note that on dif¬ 
ferentiating (11) we have 

= 0,.(22) 

and also that the coefficients hin can also be expressed in the 
form 

== —^ih {h Ji == 1, 2, . . . r^), . (23) 

which is at once verified by covariant differentiation of the 
identity 

= 0 

combined with the expression (15') for the 6’s. If h is fixed, the 
formula (23) represents n linear equations in the n -f* 1 unknowns 

combined with (22) they form a system which can deter- 
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mine these unknowns. The determinant of this system is in 
fact 

ai ^2 

yi\i y^ii • • 2/h+1|1 

2/i|« Ihln * • • yn->r\\n 

squaring this, and remembering (11), (12'), and (16), we get the 
determinant |1 a,/. ||, which is certainly not zero. 

It is easy to verify that the solution of the system (22), (23) is 

°:\h .... (24) 
1 

where we have put 

yi ^ka^'‘y.\k.(25) 
1 

Hence (21) becomes 
n 

yv\ikh 
1 

The expression for is obtained from this by interchanging 
the indices h and k. We can therefore write (20) in the form 

— — ^^\y,\i- (26) 
1 * ■ 1 

In order to exju’ess the right-hand side too in terms of yl we 
apply Cramer’s usual rule to (25), which gives 

n 

y,-\i ■■=" ^jajiyl 
1 

and substitute this result in the sum; summing with respect to 
I we have 

n n 

'Ll {il, hk] y„|, = Lj {ij, hk) yl 
1 1 

and therefore (26) becomes 

— a. {Kk - Kk) + % yl {{^Oc bjh - bin h) + {ij, hk) ] =- 0 
1 

(v — 1, 2, . . . n + 1; i, k, h = 1, 2, . . . n). 

. (27) 
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These conditions can be expressed in a considerably simpler 

form. Multiply the equality just written by a,, and sum with 

respect to v from 1 to n + 1; remembering (11) and observing 

that from (25) and (12') 

» + l n M-fl 

=- 0, 
1 11 

we get == 0, 

or in other words the coefficients b must satisfy the condition 

— ^ikh.(^8) 

The condition (26) can then be written in the form 

^jyiPij.hic = 0 (i^ = 1, 2, . . . + 1), (29) 
1 

where we have put 

Pfj.hk = Q>ikhh — ^ihi>jk) (y. 

Keeping i, h, k fixed, the equations (29) constitute 

n 1 linear homogeneous equations in the n unknowns 

Pij,hk (i = Ij 2, . . . n). The characteristic of the matrix of 

the coefficients yl is n; in fact, taking any one of its deter¬ 

minants of order n, e.g. 

y\ y\ ■ ■ y'l 

yl y'l • ■ y\ 

yl * ■ • yl 11 

it will easily be seen with the help of (25) that it is equal to the 

product of the two determinants 

yi\i 2/112 • • 2/1 In a” a'® . . a”* 

2/2 ii .^212 • 2/2 j n 
• 

a-* a« . 

2/»|i y>i\2 • ' • • yn\n a"' a”" . . 
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the second of which is certainly not zero. It follows that the 
characteristic of the matrix yl is the same as that of the matrix 

which is n. From a well-known theorem on linear equations 
it follows that the system (29) has no solutions except 

Pij.hk = 0 {i,j, h,Jc --= 1,2, .. . n), 

which is the same as 

{ij, hk) = . . . (30) 

A more rigorous discussion would show that the formulae 
(28) and (30) express all the conditions of integrahility of the 
system. We can therefore conclude that: 

The necessary and sufficient conditions that a given differential 
quadratic form may he of class 1 are that it shall be possible to 
determme a (real) symmetrical double system bj,j such that 
Riemann's symbols for the given form, can be expressed by 
formula (30), and also such that the system (the covariant 
derivative of bjj^ ivith respect to the given differemtial form) is 
symmetrical (formula (28)). 

At the end of last chapter (§ 7, p. 236) we found directly, 
by assigning suitable explicit expressions to the functions 
2/r ^very ds^ of constant positive curvature 
is of class 1. The necessary and sufficient conditions just 
enumerated must of course be wsatisfied. 

To verify this, we need only take the auxiliary quantities 

in the form s/K a^f., and remember that, as the manifold in 
question by hypothesis is of constant curvature, Eiemann’s 
symbols (ij, hh) take the form A"(a*7, ajf. — a,7^ a^^.). The conditions 
(30) are therefore automatically satisfied. Further, by Ricci’s 
lemma, the covariant derivatives of the quantities b^j., i.e. of 

\/K a^f^, vanish, so that the conditions (28) are also satisfied. 

For K < 0, the hypothesis = x/A is of no use, as 
it would take us out of the real field, so that we cannot assert 
that the analogous property holds. We can in fact prove that 
for > 2 a ds^ of constant negative curvature is not of class 1.^ 
For n = 2 we know already (§ 21, p. 123) that any ds"^, and 
therefore in particular a ds^ of constant curvature, is of class 1 

■ Cf. Bianchi: Lezioni di ffcometria differenziale, 2nd edition (I’isa, Spoerri, 
1902), Vol. I, Cli. XIV, § 20.’i,'p. 471. 



258 ABSOLUTE DIFFERENTIAL CALCULUS 

(at most), or in other words belongs certainly to some surface of 

ordinary space. There are an infinite number of surfaces of this 

kind (pseudospherical surfaces), with constant negative in¬ 

cluding surfaces of revolution of three types.^ 

5. Hyperspherical representation and curvature of a hyper¬ 
surface. 

Take any hypersurface Vand consider it as immersed in a 

Euclidean space and consider also a hypersphere of unit 

radius and centre the origin.^ 

We can make each point P of the correspond to a point 

P' of the hypersphere by drawing from the centre of the latter 

the parallel to the normal to the F„ at P, and taking the inter¬ 

section of this parallel with the hypersphere as P'; \\ is then 

said to be represented on the hypersphere. 

The chief interest of this representation is as follows. Let 

V denote the extension (Chapter VI, p. IGO) of a region (f> of 

and F' the extension of the corresponding hyperspherical region 

. F'. 
(f}\ Then the ratio is closely related to the curvature jiroperties 

of F„, and is called the mean curvature of V^, in the region cf). If 

this region reduces to the infinitesimal region round a point 

P—or in other words if the maximum dimension of f tends to 

F' 
zero—then (if P is not a singular })oint) the ratio y tends to a 

positive limit F, which is called the hyperspherical (if n 2, 

the spherical) curvature of the F,^ at P. 

To find an expression for this quantity, we shall first establish 

a system of intrinsic co-ordinates on the hypersphere. The most 

obvious way of doing this is to assign to each point P' of the 

hypersphere the co-ordinates of the correspond¬ 

ing point P of F,,. We shall call the line element of the 

hypersphere da, and shall try to find an expression for it in 

terms of the rfx’s. 

^ Ibid., Ch. VIT, § 103, p, 22.5; or 3rd edition (Bologna, Zanicbelli, 1922), 
Vol. I, Ch. VII, § 127, p. 338. 

^That is to say, as explained in § 7, Chapter VITT, p. 240, a hypersurface 
(In whose equation in Cartesian co-ordinates is 
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If we denote tlie direction cosines of the normal to at a 

generic point P by a,, (i^ ^ 1, 2, ... n -f- 1), as in preceding 

sections, then the direction cosines of the parallel through the 

origin (the centre of the hypersphere) to this normal will also 

be a„. The point P' lies on this line, at unit distance from the 

origin; its Cartesian co-ordinates are therefore a^. 

We then have at once 
n+l 

1 

ri+l 

and putting .... (31) 

n 

it follows that da^ llf^i.ef^f.dxj^dx,,.(32) 

This is the first fundamental form relative to the hypersphere; 

it is sometimes called the tMrd fundamental form of the given 

By means of it we can at once calculate the extension F' 

of a hyperspherical region 

F' — j ^^2 • * • 

where e rej)resents the determinant of the quantities Analog¬ 

ously, for the corresponding field of we have the extension 

F of 

F ~ ^^2 • • • 

If the regions considered are infinitesimal, each integral 

reduces to a single element; taking the ratio of these, we get 

r - Lt r ™ .,33) 
^0 V ^ a 

where in every case the radicals are of course supposed to have 

their absolute values. 

The coefficients can be expressed in terms of the derivatives 

of the y’s by means of (31), which on substituting for the 

values given by (24) becomes 

n n+l 
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and by 0^5) and (16) 
n /t-fl 

■^ijuv ^ih^jk ^ 2/f1 V 

1 1 

n 

^ijuv^ih^jk^ ^uv 
1 

I 

From this expression of the in terms of tlie 6.^;^’8 and the 
a^^‘’s it is easy to obtain an expression for the determinant e in 
terms of the determinants a and b. To find it, put 

^ . (34) 
1 

so that the last of the formulae just given for may be written 
as 

^'hk — ^ih Pk.) 

Comparing (34) and (34') with the formulae for the general 
term in the product of two determinants, we see that from them 
follow the two equations 

iS - .(35) 
a 

e=b^, .(35') 

where ^ “ ||a^^ || and we have put j8 ™ ||^^ ||, as can easily be 
a 

verified. Multiplying together (35) and (35') term by term we 
have 

e -- -.(36) 
a 

Hence (33) becomes 

(33') 

a formula expressing the hyperspherical curvature F in terms of 
the discriminants of the two fundamental forms. 

It will be seen that the curvature defined here is not an 
intrinsic property, as it depends on the coefficients b^j^. 
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Let us apply these remarks to an ordinary surface V2 im¬ 
mersed in a three-dimensional Euclidean space. In this case, 
as we know, there is one distinct Eiemann’s symbol (12, 12), 
and (30) gives 

(12, 12) - 61,6.2-- == 

Hence (33') can be written in the form 

Comparing this with formula (28) on p. 194, we sec tliat 
for n -- 2, the curvature F coincides in absolute value with the 

Gaussian curvature li. 

CHAPTER X 

Some Applications of Intrinsic Geometry 

1. General remarks on congruences. Geodesic and normal 
congruences. 

Consider a metric manifold and suppose that at every 
point of Vn (or of a region of there is fixed a direction X, 
defined e.g. by its parameters A*; i.e. that there is given a contra- 
variant system of regular functions A^(a';i, connected 
only by the usual quadratic identity and otherwise arbitrary. 
On account of this identity one at least of the parameters is 
certainly not zero. 

If then we consider the following system of n — 1 differential 
equations 

dxi dx.^ _ ^ 

(considering e.g. one of the ^r’s as the independent variable and 
the other n — 1 as imknown functions of the first), we see at 
once that the integrals of this system represent lines of V,„ which 
at every point are in the previously fixed direction X; in fact, for 
an infinitesimal displacement along one of these lines, the dx^ 

are proportional to the parameters of X. Through every point 
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of the region considered there passes one (and only one) of these 

lines; this follows from the fact that the general integral of 

(1) contains n — 1 arbitrary constants, which can be so deter¬ 

mined that for an arbitrarily assigned value of the independent 

variable the other n — 1 variables have values which are also 

arbitrarily assigned. To fix the ideas su])pose that in the field 

considered is not zero; then (I) can be written 

dxj A' 

dx,, A" 
- 1), 

considering as the independent variable. 

It follows from the existence theorem that the integral 

equations 

{i 1, 2, - 1) 

of the line can b(i satisfied by an arbitrary set of values of the 

n variables, which is equivalent to saying that the line can be 

made to pass through a point arbitrarily fixed in advance.^ 

Such a system of lines is called a congruence. The quantities 

• dX‘ 
V ™ , where ds denotes the clement of arc of the line passing 

ds 

through the generic point {x^, a-g, . . . are called the jx/m- 

meters of the congruence, and the elements At of the reciprocal 

system are its moments. 

If all the lines of a congruence are geodesics, the congruence 

is said to be geodesic) e.g. congruences of straight lines in ordinary 

space. It is easy to determine the analytical condition wliich 

expresses this property. We know that the characteristic equa¬ 

tions of a geodesic can be put in the following form (cf. Chapter 

V, formula (53), p. l i P- 
n 

p* = — + = 0, 

where A‘ = — x^. 
ds 

^ The arirument may be made clearer by considering the example of a field 

of force in ordinary physics. In this case, when a direction X (that of the force) 

is physically defined at every point of the space considere^l, then a system of lines 

(the lines of force) is determined which have at every point the direction of the 

force at that j»oint and which, so to speak, fill all space, as through every point 

there passes one (and only one) line of the system. 
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Now we have ~ 2^, x^; 
ds I dxi 

substituting in the previous equation and writing everywhere 

instead of ±1, we get 

from which, by (5'), p. .147, we get 

y - i:,(A'hA* = 0 (i - 1,2,.. .i^). . (2) 
1 

These are the required conditions. We can express them partly 

in terms of the wowents by multi})lying by and summing with 

respect to i, which gives 

Pk 2;, a^. (A*); A' = 0; 
I 

and as by Ricci’s lemma 

aa(A*)i = {ai^X%, 
we get finally 

p, = i^A^A'^ 0 {k.= l,2,...n). . (20 
1 

Another important special property which a congruence may 

have is that of being normal, i.e. that of being comj)osed of the 

orthogonal trajectories of a family of surfaces. It should be noted 

here that, given a family of surfaces, there always exists a congru¬ 

ence of curves which ciit all the surfaces of the family at right 

angles and are called orthogonal trajectories', while there does not 

always exist a family of surfaces which cut at right angles all the 

curves of a congruence. This can be shown as follows.^ 

First, let there be given a generic family of surfaces whose 

equation is 

fi^x) ^ constant. 

^ It inay be noted incidentally that in chapter V, p. 127, we have already recog* 

nized the existence of the directions normal to the families of co-ordinate surfaces 

Xi =s constant, and determined their moments. TheSfs lesiilts could have been 

used here, as any family of surfaces / — constant can always be turned into co¬ 

ordinate surfaces by a change of variables. The line of argument followed in the 

text has the advantage of giving directly the explicit expression for the momenta 

of the normal directions when the equation of the family of surfaces is general. 
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Consider the surface which passes through a specified point 

P whose co-ordinates are . . . x,;, it is understood that P 

is regular, i.e. that the first derivativcis are finite and con- 
ox- 

tinuous at P and are not all zero. We wish to show that a direc¬ 

tion perpendicular to the surface, i.e. to every displacement 8x; 

belonging to the surface, is uniquely associated with P. 

We first note that for every such displacement 8xi we have 

or 

fix + SaO -- fix) 

" 'V S, - 0, Si'-'-Sx, 
1 dX: 

(3) 

If we denote by A, the moments of the hypothetical perpendi¬ 

cular direction, then the condition of perpendicularity to every 

displacement in the surface is expressed by the relation 

n 

-"0,.(4) 
1 

which must hold for all values of the Sx/s which satisfy (3). The 

coefficients in (3) and (4) of each Sx^ must tlierefore be propor¬ 

tional (cf. § 3, p. 250). In virtue of the quadratic identity 

S,.a‘n,A, ^ I 

the moments cannot all be zero, so that we can suppose that one 

of them, say is not zero, and put ^ ~ p. Writing 

9/ 
A,, dx,, 

instead of for shortness, the explicit relations equivalent to 
V Xi 

(4) take the form 

f,= p\ (7: - 1,2, ...n). . . (5) 

The //s being known, these equations determine the A/s, 

except for a factor, which in turn is determined (except in 

sign) by the above-mentioned quadratic identity, which gives 
n 

^ik^ikfifk = The left-hand side cannot vanish, as by hy- 
1 

pothesis one at least of the //s is not zero; we are therefore sure 
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that p 4= 0. Thus given the family of surfaces / ~ constant, 

the orthogonal direction at each point is uniquely determined; 

the positive sense on this direction can be chosen at will (cor¬ 

responding to the double sign of p). The A/s being known as 

functions of position, the reciprocal elements A' can be obtained 

from them, and thence, by (i), we get a congruence of lines 

which cut orthogonally the surfaces of the given family. 

Vice versa, given a priori a congruence of lines by means of 

their moments A, (to be considered as given functions of position), 

then in order that tlie lines of the congruence may be considered 

as orthogonal trajectories of a family of surfaces / = constant 

the necessary condition is that the derivatives of the function 

/(a^i, :ro, . . . x,,) (which is a jyt^iori unknown) should satisfy (5), in 

which p denotes a factor which is not zero, but is a priori un¬ 

determined. Such an / does not always exist; we have indeed 

already seen that the necessary and sufficient conditions for its 

existence are (Chapter II, p. 29, formula (23) ) 

\dx^ dx, 
(i,j, k ^ 1, 2, . . . n). 

where we must now take X: A. Z; A, Z, 

(6) 

Only 

some of these conditions are distinct, e.g. those in which the index 

k has the fixed value n (the conditions (20) of p. 27), the others 

being deducible from them. 

2. Sets of n congruences. Determination of a vector by n 

invariants. 

We shall now consider n congruences of lines in a generic 

V^; thxis n directions Xj, Xg, . . . X„ will be fixed at each point. 

We shall further suppose that every two of these directions are 

orthogonal, and we shall then say that we have fixed in V^^ 

a set of n orthogomil congruences. 

The parameters and moments of these congruences will of 

course have two indices, the first of which represents the ordinal 

number of the congruence. We shall use the term the congruemae 

{h) to denote the congruence whose parameters are AJ, A^, . . . A](, 

and whose moments are therefore the reciprocal elements A/^|p 

A/ija? • * • A,^j,j (with respect to the ds^ of the manifold). 
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In addition to the usual quadratic identities we shall here 

have the conditions of orthogonality of the congruences. Both 

sets are included in the formula 

= == 1,2, . . .n); . . (7) 

if h ” k, this is the usual relation between parameters 

and moments, and if A 4= ^ it expresses the fact that the 

directions X/^ and X;^., i.e. the congruences {h) and {k), are 

orthogonal. 

The equations (7) also express the essential fact that the 

parameters AJ. of a set of n orthogonal congruences are the recip¬ 

rocal elements (in the algebraic sense) of the moments 

of the same set of congruences, and vice versa (cf. Chapter IV, 

p. 74; Chapter VII, p. 206). In addition to (7) the equivalent 

formuloo 

hK\iK--^K (ii = 1,2, ...n) . (7') 
1 

therefore hold. Multiplying these by and summing with respect 

to j we get the important formula 

n 

^ik ^ 1, 2, , . . I?/) , (7 ) 
1 

giving the coefficients of ds'^ in terms of the moments of any set 

of n orthogonal congruences. Analogously, multiplying (7') by 

summing with respect to i, and then putting i instead of j, 

we get 

= (i*- 1,2, ...71). . (7'") 
1 

A vector R of our V.,^ is determined, as we know, by its co- 

variant components or its contravariant components 

Hence when a set of n congruences is fixed in the vector can 

also be determined by its n projections on the directions belonging 

to these congruences at the point where the vector is considered. 

By definition (Chapter V, p. 126), the projection of R on the 

direction X/^ is the invariant 

= R X X4, 
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which can be expressed in either of the two equivalent forms 

Cft = .(8) 

n 

c, = .(9) 
1 

Thus the vector R is determined by the n invariants If 

we wish to deduce from tliese, in a given system of reference, the 

covariant or contravariant components, we need only solve the 

equations (8) or (9), which, together with (7'), give 

.(8') 
1 

Ri = S;, j .(9 ) 
1 

If in particular the vector R is the gradient of an invariant 

/ (i.e. if the components are the derivatives^, of / with respect 

to the variables x^), then the invariant C/, represents the intrinsic 

derivative of / in the direction of the congruence (h). In fact, 

if Sf^ denotes the length of the arc of one of the lines of the con¬ 

gruence (A), measured from an arbitrary origin, then for a dis¬ 

placement dSh along this direction the increment of / will be 

df ij,dx, 
I 

where the dx^s are the differentials corresponding to this dis¬ 

placement. 

Dividing this quantity by dsj^ we get by definition the deri¬ 

vative of/in the direction of the congruence (h); remembering 
dSf, 

dx' 
that ' == A/,,j we therefore have 

dSk 

= ijx..(10) 

a formula corresponding to (9). Solving it, we get the formula 

.... (10') 
1 as* 
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corresponding to (9'); and lastly, changing to the reciprocal 

elements, we get also 

f = .(10") 

which corresponds to (8'). 

In general, it would be easy to show that when a set of n 

congruences is fixed a tensor of rank m can be determined by 

n'” invariants, instead of by that number of components, covariant, 

contra variant, or mixed, the proof being completely analogous 

to that given above for determining a vector by means of 

invariants. This result simplifies the study of certain questions, 

so that we shall find it useful to carry somewhat further our 

investigations on sets of n congruences. 

3. Geometrical definition of Ricci’s coefficients of rotation. 

We must now introduce a system of differential invariants 

which are closely connected with the set of n congruences. We 

shall reach the required result quickly by the following 

method. 

Consider two very near points P and P' of At each of 

them the lines of the n congruences determine a 'pyramid (a genera¬ 

lization of the notion of the trihedron) whose directions are 

mutually orthogonal. If X^, . . . X,^ are the n directions at P, 

those at P' will be Xj ^ X^ + S'X^, . . . X', ~ X,, + S'X,„ and 

we shall say that we pass from the first to the second by local 

displacement, i.e. by the law previously fixed which regulates the 

behaviour of the lines of the set of n congruences. But 

the pyramid of directions can also be moved from P to P' by 

parallel displacemeyit', we shall then get at P' n mutually ortho¬ 

gonal directions X* ~ Xj + S'Xi, . . . X* “ X,^ + S^'X^, which 

will not in general coincide with those obtained by local dis¬ 

placement. We shall thus have at P' two pyramids infinitely 

near one another, since each is infinitely near the pyramid 

X^, X2, . . . X,^. This means in particular that the ith direction of 

one makes an infinitesimal angle with the ith direction of the 

other, and an angle very nearly equal to ~ with the remaining 
2 

n — 1 directions of the other. We propose to examine these 
infinitesimal differences. 
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Consider two directions X/„ X* of the pyramid at P; these 

either coincide Qi — k) or are orthogonal, so that we have 

A 

cosX/A -= 8/*. 

Let them be displaced to P', the first by local and the second 

by parallel displacement, so that the first will coincide with 

Xy^ and the second witli X,]. We shall calculate the resulting change 

in the cosine of the angle between them, i.e. the quantity 

AAA 

ScOsXy^Xy, COsXy,X/^ — cosX/iX/.. 

This is an infinitesimal of the same order as the distance ds 

between P and P', and we shall therefore write it in the form 

ds) thus will give us a kind of measure of the rate at which 

the cosine in question changes for a displacement in the direction 

PP'. To calculate it, we start from the formula 

A 

COSX/^Xy^ = 

and differentiate it, remembering that we have to operate on 

A/^|y with the wsymbol S' (local displacement) and on X\ with the 

s3nnbol S' (parallel displacement). We shall get 

Vukds ^ ScosX,,Xt- =- 1:^(8'A/,a;, + A/,|,-8" A'). . (11) 
1 

We have also from the ordinary rule of the differential cal¬ 

culus 

aA, 
S' A. ̂h\i 

1 a 

where Sxj denotes the increment of the co-ordinate Xj in passing 

from P to P', and from the law of parallelism 

8* A^ = — %i {jh if A^8xj. 
1 

Substituting in (II) we get 

.aA, 
PhJids s,Ar:*i^sx, 

z dxj 1 
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In the second sum interchange the indices i and I, so as to 

get the same factor AJ. Sxj as in the first. We can then write 

or, remembering formula (5) of p. 147, 

n 

Phkds! = . . . (11') 
1 

Denoting the parameters of the direction PP' by 

tj ^ 
ds’ 

we have the formula 

= .... (11") 
1 

which holds for any direction w^hatever. 

It is to be noted that jij,,,, as given by the original definition 

(11), changes sign when the two indices are interchanged. This 

can be proved without difficulty, either from the final expression 

(11"), by going back to (7) and taking its covariant derivative; 
A 

or more geometrically, by using the property that any cosX^^X^. 

is unchanged by either local or parallel displacement, so that the 

formulae 

8'(I.A„Ai) = 0. S-(I..A.,.Ai) = 0 

both hold. 

Carrying out both differentiations and using the results to 

transform (11), we get 

p,,ds = - + A'-S'A,,,). 

Further since cos\X.,f can also be expressed in the form 
n 

(11) is equivalent to 
1 

Phjcds == S,;(S'+ A^*S A;j.|^). 
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Interchanging h aiul h, and adding to the previous equation, 

we get the required identity 

Phk + Pkh =0 {h,h = 1,2, . . .n). . (12) 

We shall now examine the case when the direction of dis¬ 

placement coincides with one of the directions belonging to the 

set of congruences, say the Ith. We shall then have 

- a;, 

and, denoting by yfj,i the value of in this particular case 
A 

(i.e. the rate of variation, of cosX/,X/.. for a displacement in the 

direction of X^, in which X/^ is moved by local, and X,. by parallel, 

displacement), we shall have from (IT) 

Ynn =- a; (h, k, I ^ 1,2,... n). . (13) 
I 

The quantities y were introduced by Ricci, and named by 

him the coefficients of rotation of the set of congruences. They 

have various important properties. 

In the first place, they are invariant, as follows from (13) by 

the law of contraction. We have farther, as a particular case of 

(12), 
YiM + Yku {h,k,l . . . n), . (14) 

which for k = h reduces to 

7/*/,^ -- 0.(15) 

We can also give a direct formal proof of (14), on the lines 

already suggested for the more general case of the jt>’s. Starting 

from the identity (7), and taking the covariant derivative, we 

shall get (remembering (diapter VI, p. 152) 

Si \ I ij K + Si Afr| ij K = 0. 
1 1 

Multiplying by A^, and summing with respect to j from 1 

to n, we get „ . . n 
Sy Aa| y A^ A^ + S,;; A;i,|,-; A^ A^ = 0 

Yhki + YkM = 0. 
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The number of these invariants y, which depend on three 

indices, is a priori n^; but they are connected by the |n^(n + f) 

relations (14) of antisymmetry. Hence the number which are 

algebraically distinct is at most 

3 n^7i + 1) __ n^{n — 1) 

The minuend is equal to the number of the derivatives 

A/, of the quantities A;, |/,, and the subtrahend + 1) to 

the number of the relations given above as resulting from the 

differentiation of the equations (7) and connecting the deriva¬ 

tives. We can accordingly ex])ress the derivatives as func¬ 

tions of the quantities A;,|^ and y, by solving the equations (13). 

To do this, multiply (13) by A/^i^r A^iy, and sum with respect to 

k and L We get 

n n n , n . 

= s,A,„8::s^. 

or finally, replacing i' and j' by i and j, 

n 

I ij “ Yhkl KI i \ Ir • 
1 

(16) 

This result shows that in order to study the differential pro¬ 

perties (i.e. the properties depending on the way in which the 

A's vary) of the lines of the given congniences we need only 

consider the invariants y, in* terms of which all the derivatives 

of the A’s can be expressed. 

The geometrical significance of the y’s, which we have already 

illustrated, is particularly expressive in the case of ordinary space. 

In this case the three congruences define at every point a triplet 

of orthogonal directions, and P12 components of 

a vector a> such that cods is the elementary rotation of the triplet 

in the local displacement from P to P'} 

^See e.g. Levi-Civita and Amaldi: Lezimii di Meccaniea Razioumle^ Vol. I, 

p. 178; Bologna, Zanichelli, 1928. For the general case, the reader may be referred 

further to a paper by Signorina Cakpanesk; “ Parallelismo e curvatnra in una 

varieta qualunque”, in Annali di Mat,, Vol. XXVIII, 1919, pp. 147-109. 
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4. Commutation formula for the second derivatives along the 
arcs. 

The invariants y occur in another important formula, which 

we shall now establish. 

We wish to compare the two second derivatives 

0 3/ ,0 0/ 
06-;^ 05/, 05/, 05^. 

we shall find that they are not equal, but are connected by 

a more complicated relation involving also the first derivatives 

and the y’s. 

We have in the first place from (10), diffeirentiating the 
^ ■/* 

invariant with respect to and apj)lying to the right-hand 
0 5/, 

side the rule for differentiation given in Chapter VI, p. 152, 

3 ¥ 
0 a:/ 05/, 1 1 

We next replace/' in the first tt^rin on the right by the expres¬ 

sion given for it by (10") (putting I instead of h for the index of 

summation), multiply both sides by Aj!, and sum with respect 

to j. We thus get 

S A' ^ (^f\ \dsj 
V ^/ V \ 4„ V r y 

By the definition (10) of the intrinsic derivative, the left-hand 

side of this equation is precisely - ^ ; the first term on the 
05/. 05/, 

right, from the definition (13) of the invariants y, reduces to 

V 

1 05/ 

n 

Yihic 
1 dsi 

We therefore have 

dsj, dsf, 

n 

— Arm 
1 

9/ 
dsi 

(De66) 10 
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To get the other second derivative, we interchange h and k, 

which gives 

9 a/ 

dsf, dsi, 
a/ 

yikh ^ “1“ ^ijf y \ 
1 <JSi 1 

Now take the difference of these two expressions. The second 

terms on the right cancel out, as on interchanging i and j they 

become identical. Hence 

A A 
a^fc dsf, 

a a/ 
ds,, ds^ 

V 3// 
A“- (yihk 

1 dsi 
yikh)* (17) 

This is the commutation formula required. 

5. Case in which one of the congruences of the set is geodesic. 

Suppose that one of the congruences of the set is geodesic 

(cf. § 1); without loss of generality we can always suppose that 

it is the nth. We propose to investigate the special characteristics 

of the coelFicients of rotation y in this case. 

From formula (2') we get the following relations for the 

elements of the direction 

iA,.|i;A* = 0 a l,2,...n). . (18) 
1 

We now multiply by A), and sum with respect to i] remember¬ 

ing the formula (13) defining the y’s, we get 

(/. ^ l,2,...n); . . (18') 

this is equivalent to (18), as can be shown by multiplying by 

A/,|,;, summing with respect to h, and using (16). 

The n equations (18') are invariant not only for all possible 

changes of co-ordinates, but also for any change whatever of 

the n —- 1 congruences (1), (2), . . . (n — 1), which together with 

(n) form an orthogonal set; in fact, to establish the equations 

(18) we made no special hypothesis as to the choice of these 

n — 1 congruences. 

In particular, if the space is Euclidean, the equations (18') 

are the intrinsic equations of a rectilinear congruence. 
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6. Geodesic curvature of one of the congruences of the set. 

Returning to the caBe where the congruence (n) is general, 

we wish to show that the n invariants {h ^ 1, 2, ... n) 

have a simple geometrical interpretation. It will be remembered 

that the left-hand side of (2'), which we denoted by jpf., is a co¬ 

variant component of the geodesic curvature p (cf. Chapter V, 
p. 135). If the congruence considered is (w), we can therefore write 

n 

P/c “ 
1 

Now in accordance with § 2 the vector p can be represented 

by the n invariants 
n 

~ ^kPfcK^ 
1 

which give its orthogonal projections on the lines of the n con¬ 

gruences. 

Carrying out this operation on the expression just given for 

we find, by (13), 

Ynhiv 

this shows that the invariants {h ~ 1, 2, ... n) represent 

the orthogonal projections on the lines of the set of congruences 

of the vector which is the geodesic curvature of the congruence 

(n). 

7. Case in which one of the congruences of the set is normal. 
Complete normality. Differential relations satisfied in every case 
by the y’s. 

Suppose that (/?/) is a normal congruence. We know that the 

equivalent analytical condition is given by (6) where we take 

Xi = We thus have 

{i,j, k 1, 2, ... n). 

(19) 

W^e now multiply this equation by Af^|/./where k' and 

t' are two new indices, chosen among 1, 2, ... n — 1, and sum 
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with respect to i and h from 1 to n\ remembering (13), we get 

iynk't' ym'A') ) 

As j may have any value, we can always choose it so that 
. 4= 0; thus we have 

Ynki = Ynik (i, k 3,2,... n — 1), . (20) 

where we have written i, k instead of i\ k'. Reciprocally, if the 
equations (20) are satisfied, the equations (19') follow from them, 
and therefore also (19) as a necessary consequence. The (;quations 
(20) therefore constitute the required condition. 

It is not without interest to find this condition by another 
method, starting from the remark that if the quantities are 

to be proportional to the derivatives ^ of a single function/, 
dxi 

these derivatives can be substituted for them in the conditions 
of orthogonality 

= 0 (A - 1, 2, . . 1), 

so that the hypothetical function/must satisfy the linear system 
of partial differential equations 

== 0 (A = 1,2, ...n-1). 
1 OXi 

Reciprocally, if there exists a function / which satisfies these 
n — 1 equations, its derivatives must be proportional to the 
quantities 

Hence the conditions in question are the necessary and suffi¬ 
cient conditions that the given n — 1 equations may constitute 
a complete system (cf. Chapter III, § 9, p. 52). 

To make the notation agree with that in Chapter III, we intro¬ 
duce the linear operators 

= {h= 
1 OXi 

noting that (10) shows that these operators are identical with the 
0 

derivatives — with respect to the arcs. We thus have the system 

X,/ - 0 (A = 1, 2, . . . « - 1). 
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and we have to express the condition that, for h, Jc ^ 1, 2, . . . 
n I, Poisson’s parentheses 

(Z„Z,)/= X,XJ-X,X,f 

are linear combinations of the terms Xif, 

Now, repeating the steps of the calculation in § 4, or better, 

borrowing from it the value already found for we have 

dsf^dsj, 

^ Interchanging h and k, and subtracting, the second sum dis¬ 
appears. In the first, we must separate out the term correspond¬ 
ing to the value n of the index Z, and put Xif again instead of 

5^. We thus get 

{Xhy Xj^)f “ 'Ll yij^j) Xif {yM ynki^ ^• 
1 dSj, 

This must reduce to a linear combination of the quantities 
XJ (Z - 1,2,...^-!). 

df , . 
As is independent of the Z/s, its coefficient in each of 

the parentheses included in the above expression (i.e. for 
h^k ^ 1, 2, ... n — 3) must vanish; this brings us back to (20). 

It may be noted that if all the n congruences of the set are 
normal, the y’s with three distinct indices are all zero. In fact, 
choosing three distinct indices i, h, k, we have the following 
identities: 

adding the first two and subtracting the third, and remembering 
that the y’s are antisymmetrical in the first two indices, we get 

y ihJf yihJn 

or Yihk =0 (i,h,k = 1,2, .. .n) 

for every triplet of three distinct indices. 
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If we put 

Vij, wfc = Yijh ~ Yijk+{ytji (yihk ~ yikh) + yak yijh ~~ ym yijk}» 
OSic OSf^ 1 

we get at once, by definition and the antisymmetry of the co¬ 
efficients of rotation y with respect to the first two indices, 

yij, hk yij, k7i9 yij, hk yji, hk‘ 

I add, but without giving a proof, that the cyclic identities 

yij,hk + yih,kj + yik,jh ~ 0 

also hold; and from these it follows ultimately that 

yij.hk yhkjj h, k — 1, 2,... 7?-). 

Ricci discovered all these results as far back as 1895, basing 
his researches with regard to the four-index y’s on the analogous 
properties of Riemann’s symbols of the first kind (cf. Chapter 
VII, p. 179). A particularly simple and direct proof has recently 
been given by Dei.^ 

8. Canonical system with respect to a given congruence. 

In many questions a congruence of lines is either among the 
data of the problem, or is closely connected with them. In order 
to deal with these problems it is often useful to associate with 
the given congruence n — 1 others, forming with the given one 
a set of n mutually orthogonal congruences, so that the given 
congruence can be considered as the nth of this set. The choice 
of the n — 1 auxiliary congruences is a priori arbitrary; in many 
cases this arbitrariness may be taken advantage of to introduce 
some simplification. This is possible, as we shall now see; and 
the conclusion we shall reach is that given any congruence what¬ 
ever, there is always at least one way of choosing the other n — 1 
so that the relations 

ynki + ynik (A; =4= Z; A:, Z == 1, 2, . . . n -- 1) (21) 

may be satisfied. 
The system (or any one of the systems) of n —• 1 congruences 

’ “ Sulle relazioni differeiiziali che legano i coefficienti di rotazione del Ricci", 

in Rend, della R, Acc, dei Lined, Vol. XXXII (first half-year, 1923), pp. 474-479. 
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which possesses this characteristic is called a canonical system 

with respect to the given congruence. 

To prove that such a system exists, we associate with the 
given congruence a system—for the moment any whatever— 
of n — 1 other orthogonal congruences, and fix our attention on 
a generic point P of the manifold; for shortness we shall denote 
by w the pyramid of the n — \ directions X^, Xg, . . . X,^„i drawn 
from P, orthogonal to X,^ and to one another. Suppose this 
pyramid rotated round the direction X,,, by which we mean that 
we pass from the pyramid rn to another w' formed by n — 1 

other directions Xj, X.,, . . . X„_i, also drawn from P, and ortho¬ 
gonal to X,, and to one another. We wish, if possible, to 
determine the rotation so that after it has been effected the 
relations (21) may hold. For this we shall start from the relations 

connecting the X//s with the X//s, which express analytically 
the rotation described. 

Let h = 1, 2, ... n) be the cosine of the angle be¬ 

tween the directions X;, and X/^. Naturally, if only one of the two 
indices h, k coincides with n, the corresponding a is zero 

^X,, “ X^„ and the corresponding angle is while = 1. 

The formulae for this are 

^nh ^ ^ 1, 2, ... 71 1), 

We have in any case by definition 

(A, A: = 1, 2, ... n), 

and thence, multiplying by and summing with respect to A, 

1 

Limiting k to the values 1, 2, ... n — 1, for all of which 
= 0, we can take the sum on the right only to n — 1, so 

that we have 
^ n-l 

^k\i ^h^hk^h\i (k= 1, 2,...» - 1); . (22) 
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i.e. the moments of tn' are connected with those of td by a linear 
substitution, as could have been anticipated, and the are 
the coefficients of this substitution. It is also to be anticipated 
that the substitution is orthogonal. To prove this, we take the 
equations (7"); putting k -- i, they give 

kiKuf - ('/ = 1,2, . . .n). 
1 

The coefficients a if on the right depend on the co-ordinates of 
reference, but not on the choice of the congruences associated 
with (n). 

Since = 0 for A 4= ^5 it follows that for any value of 

i (4= n) the expression 

’S, 
1 

is invariant for rotations of the pyramid tu, and therefore the 
substitution defined by the a’s is orthogonal. We have now to 
arrange this orthogonal substitution of order n — 1 in such a 
way that the relations (21) may be satisfied. 

To do this we start from (16), from which we get as a parti 
cular case 

n 

^n\tj '^kiy7ikl ^k\i ^l\j j 1, 2, ^ 1). 

The terms of this sum in which k n vanish, by (15); those 
in which I ~ n can be separated out by writing 

n -1 71 

Iij Ytikl “1“ |} Y7ikn |i* 
1 ' 1 

The last sum can be suitably transformed by replacing 
by the expression given by (13); we then get successively 

71 n 

Ynkn ^/rli ^kpq ^n\pq ^k 

1 

n 

j iq 
I 
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We can therefore write 

ii.—1 ?/ 

^/i] ij ^/fZ yiikl ^7 ^it\ uj ^n* 
1 1 

Now in this formula it ivS to be remarked that the left-hand 
side and the last t(‘Tm on the riglit depend on the ])arameters 
and moments of the direction X,, alone, and do not dej)end on the 
other n -- 1 associated directions; the same must therefore be 
true of the remaining part, i.{\ of the sum 

II -1 
^/'Z y>i/rZ I j! j 1, 2, ... w 1). . (23) 
1 

We can therefore conclude that these ex{)ressions are invariant 

for any rotation wliatever of the pyramid m. 
Of the (/?-“ 1)^ (juadratic forms included in formula (23), 

which are obtained by choosing the indices i, j in every possible 
way, w(' are interested irj any one in which i — j. Fixing the 
index i once for all, and putting for shortness 

A,|,: == 2, (r- 1,2, ...^-1), 

the corresponding quadratic form is 

n-1 -1 

^kl ynlcl “ 2 ^kl kVnhl “1~ yulk) • (^^ ) 
1 1 

In this the coefficient of the product Zj.Zi is i.e. 
the left-hand vside of (21). If we wish to satisfy (21), we must 
make all the coefficients of the terms in for which k ^ I, 

vanisli by means of the orthogonal substitution (22), which we 
shall write in the form 

?j -1 

“ ^k^hk^h'> .... (22') 
1 

this is equivalent to reducing the invariant quadratic form (23') 
to the canonical form 

.(23") 
1 

by an orthogonal substitution. This algebraic problem is always 
soluble. In the cases rz. — 1 " 2 or 3, it corresponds to the pro- 

(D Ooj) Io ' 
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blem of finding tho axes of a conic or a quadric, and is discussed 
in ordinary analytical geometry. In the general case the theory 
leads to the foUowirig result. 

Consider the equation 

li \iyiihl + ynlh) — K P W ~ • • • (2^) 

which is of degree n — 1 in the unknown p, and is called a 
secular equation. Its n — 1 roots are always real (it is understood 
that we suppose the quantities real), and give the n — 1 
coefficients pf. of the canonical form (23"').^ 

We can therefore always choose, at any point P, the pyramid 
Ttj and therefore the system of the n — 1 congruen(;es (1), (2), . . . 
(n — 1) so as to satisfy (21); i.e. there always exists at least one 
canonical system with res})ect to a given congruence. If the 
n — I roots of (24) are all different, the carionical system is 
uniquely determined; if they are all equal, any system of ^ — 1 
congruences which are orthogonal to one another and to (n) 
satisfies (21) and may therefore be called canonical. In the 
general case where the number of different roots is p (I < p <C 
n — 1), then n — 1 — p coefficients of the orthogonal solution 
are arbitrary, and there are therefore canonical systems. 

9. Congruences of straight lines in Euclidean space. Geo¬ 
metrical significance of the canonical system. 

In ordinary (i.e. Euclidean three-dimensional) sj)ace parti¬ 
cular importance attaches to congruences of straight lines, which 
present themselves for consideration in various questions of geo¬ 
metrical optics; since the rays of a light pencil (in a homogeneous 
medium) form a rectilinear congruence. 

We shall now discuss a geometrical property of these con¬ 
gruences, which will be seen to be connected with the discussion 
in the preceding section; or rather—since it involves no greater 
complication—we shall discuss congruences of lines in a Euclidean 
space of any number n of dimensions. 

Consider a generic point P, and let r be the ray through P 
of the given rectilinear congruence; let X be the hyperplane 
(in ordinary space the plane) perpendicular to r at P. Take a 
displacement in X represented by the infinitesimal segment 

’ Compare Chapter VII, p. 205, where referencea are given. 
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PP' - € in any direction; through P' will pass another ray 

r' of the congruence. In general, the two rays r, r' are skew; 

if for a particular direction of the displacement PP' it happens 

that they botli lie in the same plane, i.e. that they meet or are 

parallel (more ])recisely, that the minimum distance between 

them is an inlinitesimal of higher order than e), this is called a 

focal direction. We shall now show that in general there exist 

n — 1 focal directions, all or some of which may be imaginary, 

coincident, or indeterminate; we shall then point out an impor¬ 

tant particular case in which th€\se directions coincide with those 

of the canonical system. 

Let PP' then be a focal direction; there will be a point C 

(which may be at an infinite distance) common to r and r'. 

Denote the length CP by - (so that we shall have the particular 
CO 

case of the rays being parallel at the limit when co ™ 0), and 

let UB take as axes of reference n orthogonal Cartesian axes 

y^, {v 1,2,... n). Let A^,|,,be the cosines of the direction n (i.e. 

its parameters or moments, since in Euclidean space ~ A)'). 

The projection on the axis of the segment CP will then be 

given by - A,^|^, and that of CP' will be 
CO 

while the projection of PP' is dy^,. If then we express this last 

term as the difference of the other two {PP' being the third side 

of the triangle CPP'), we have 

dy^, — 

CO CO 

We now wish to use the methods of the absolute calculus. 

We shall therefore associate with the given congruence n — 1 

other congruences, orthogonal to it and to each other, which we 

shall distinguish by the indices 1, 2, ... n — 1. In addition to 

the projections of PP' on the axes we require also its })rojections 

on the set of n congruences so defined; for this we must multiply 
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the last equation by (k 1,2,... n) and sum with respect 

to V, First, let k ~ n; the projection of PP' on the direction 

n is zero, as PP' by hypothesis belongs to the hyperplane X; 

hence the left-hand side is zero. Further, in consequence of the 

identity 
H 

1 y 1, 
1 

it follows that kKd-K^y ^ 0; 
1 

hence finally we get 
CO 

0, 

which expresses the a priori evident fact that CP — CP' 

(of course neglecting infinitesimals of higher order than the first). 

Putting h in turn equal to 1, 2, 1, and denoting by 

the projection of PP' on the direction h, w^c find 

c, = I - 1,2, ...n- ]). 
OJ 1 

We shall now^ expand reinembering that since Chris- 

tofEeFs symbols are all zero, w^e can replace the ordinary by the 

covariant derivatives, and also that since e^, eg, . . . are the 

projections of PP' on the directions of the set of congruences, 

and diji^ (^ = 1, 2, ... ti) its projections on the axes, we there¬ 

fore have 

1 

The last formula thus becomes 

1 V k 

“ ^yk 11'A* > 

CO 1 1 

n -In ^ 

or CO€^ 2^-I A;^ Xj, 
1 1 

Remembering the definition of the y’s we have the system 

oi n — 1 equations 

n-l 

&)€* = ^jejYnhj Qi = 1, 2, ... n - - 1), . (25) 
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which we can also write 

- 8/!^)^ - 0 (A == 1, 2, . . . ~ 1). (25') 
1 

This linear homogeneous system must determine the focal 

directions PP' (if they exist) in the hyperplane X. by giving 

their projections €2, . . . on the orthogonal directions 

1, 2, ... '/I — 1 which we have associated wdth the ray r. 

The necessary and sufficient condition that the system (25') 

may have solutions e which are not all zero, is that the deter¬ 

minant of the coefficients should vanish, i.e. thatca should satisfy 

the equation of degree n — 1 

11 Ynnj - Koj II = 0 (k,j 1, 2, ... n - 1). (26) 

To every root oj corresponds at least one set of values of the 

e’s, i.e. at least one focal direction PP\ Hence in general there 

are n-™ 1 of thes(‘, directions, which, however, like the correspond¬ 

ing roots of (2(>), may be real or imaginary, distinct or coincident, 

or (in the case of multiple roots) may be capable of having an 

infinite tiumber of determinations. 

In fact, th(^ properties of the secular equation, as noted in the 

preceding section, bold for s}pnnietrival determinants of the type 

(24), while the left-hand side of (2b) is not in general of this 

form. There is, however, an important category of congruences 

with this characteristic, which we shall now consider. 

Normal congruences of rays.—our congruence (??-) is normal, 

then by (20) 

Ynhj = Ynjh = 1, 2, . . . W — ]). 

We can therefore substitute for so that (26) 

at once becomes identical with (24), which defines the canonical 

directions. It follows that the canonical and focal directions 

coincide. Hence on the one hand we have tlie geometrical inter¬ 

pretation of the canonical directions; and on the other, from 

the properties noted at the end of the preceding section, we have 

the property that the focal directions are always real, and are 

in general determinate and mutually orthogonal; and further, 

that in the case of indeterminateness, when there is an infinite 

number of them, it is always possible (and in an infinite number 
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of ways) to choose n — 1 of them which shall be mutually ortho¬ 

gonal. 

As we arc dealing with a normal congruence, there exists 

(by definition) a family of surfaces 

fixi, x.y, , , , X,) ™ constant, 

which are cut orthogonally by the straight lines of the con¬ 

gruence; these lines therefore constitute the common normals 

to all the surfaces of the family. If we fix one of these surfaces, 

and associate with every point on it the n — 1 focal directions, 

we shall get n — \ mutually orthogonal congruences of lines on 

the surface. These lines are called lines of curvature, by an obvious 

generalization from the lines so determined in the case of sur¬ 

faces in ordinary space {n ~ 3). In fact, given such a surface, 

say or, the normals to it form a normal congruence (since they cut 

a and the surfaces parallel to o orthogonally); and if we consider 

the two focal directions at every point of a we arrive at preciselj/' 

the ordinary definition of the lines of curvature as those lines of 

a along wdiich the normals to a generate a developable ruled 

surface. 

General Case.—li the congruence {n) under consideration is 

not normal, then in general, as we have seen, the focal and 

canonical directions at a generic point P of a ray r do not coincide. 

In order to find an interpretation of the canonical directions in 

this case, we should therefore have to examine in greater detail 

the behaviour of the rays of the congruence which are infinitely 

near r. 

For n — 3 there is a classical discussion by Kummer,^ giving 

a very illuminating interpretation of the canonical directions,^ 

and pointing out in particular that the directions which bisect 

the angles between the canonical directions also bisect the angles 

between the focal directions (when the latter are real). 

We shall leave the question at this point, merely pointing 

out to the reader the possibility of analogous interpretations for 

n>d, 

^See e.g. Bianchi: Lezioni di Geormtria Differenziale, Vol. I (third edition; 

Bologna, Zaniehelli, 1922), Ch. X. 

^Cf. T, Levi-Civita: “Sulle congruenze di curve”, in Rend, della R. Acr. dei 

Lincei, Vol. VIII (first half-year, 1899), pp. 239-46. 



PART III 

Physical Applications 

CHAPTER XI 

Evolution of Mechanics and Geometrical Optics; 

Their Relation to a Four-dimensional World 

according to Einstein 

1. Hamilton’s principle for a free particle. 

Wc start from the equations of motion of a material particle 

in a conservative field. Let U be the potential for unit mass. 

The equations of motion, in Cartesian co-ordinates (referred 

to fixed axes) 7/3, 

Vi a = 1,2,3), . . . (1) 

where as usual dots represent ditferentiation with respect to the 

time t. If we denote the square of the line element described by 

the moving particle in the small interval of time dt by 

and if V is the velocity of the particle (in absolute value), then 

dlo^ 

dt^ 

L = V 
287 

Putting 



288 ABSOLUTE DIFFERENTIAL CALCULUS 

it is known that the equations (1) can be summed up in the 

equation of variation 
SjLdl ==-- 0.(2) 

which expresses Hamilton’s principle. 

Let us fix our attention for a moment on (2). It implies an 

interval of integration (/q, fixed arbitrarily in advance; and 

the vanishing of the left-hand side of (2) for variations Sy,; of 

the ly’s, zero at the extremitic^s but otherwise arbitrary, is equivai- 

lent to the equations (1) being satisfied in the same interval. 

This case, in which t does not vary (i.e. ?>t -- 0), is the 

simplest ap])lication of Hamilton’s principle. Various generaliza¬ 

tions, howev^er, in which t also varies, either freely or subject to 

certain conditions, have become classical. We shall shortly have 

occasion to discuss one of these generalizations which concern 

the equivalence between the equations (1) and (2). Meanwhile 

we may note that if the co-ordinates are changed in any 

way, so that the Cartesians replaced by any 

set of three curvilinear co-ordinates, or more, generally by three 

Lagrangian parameters x.j, connected with y^, y.^ by 

relations which may involve the time and which are regular and 

reversible in the field considered, namcJy, 

(^s): % = 2/2, 2/3, t) (h = 1, 2, 3), 

or, solving with respect to y^^ {i — 1,2, 3), 

(r;,): yi = yi{x^, x^, x^, t) {i = 1, 2, 3); 

then if we insert these expressions in L, it becomes a function 

L{x \ x\t) of the arguments Xf^y Xf^ {h ~ 1,2, 3), t, quadratic 

(in general not homogeneous) in the x’s. 

As we propose to consider L as an invariant, it follows that 

(2) will hold for the Lagrangian parameters Xy and we have only 

to find its explicit form. Calculating the variation and integrating 

by parts in the usual way, we easily find 

h^Ldt — .... (3) 

where for shortness we have put 

d dL dL 
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(Lagrangian binomials). The dynamical equations then take the 

form 
r, ^ 0 {h= h 2, 3) . . . (4) 

(known as Lagrange’s form); and it is to be noted that, in virtue 

of the invariance of the left-hand side of (3), the quantities 

constitute a co-variant tensor, as pointed out in a similar case 

in Chapter V, p. 110. It hollows that the equations v4), i.e. 

d dL _ dL 

dt d d 
{h - 1, 2, 3), . (4') 

are invariant (cf. Chapter V, p. 110) with respect to the transfor¬ 

mations (T3) which leave L invariant. 

2. Time as a fourth co-ordinate. Space-time. World lines. 

An obvious consequence of Lagrange’s equations (4') is the 

identity 

d f 
dt { 

B 

1 

dL .1 

Now suppose that in the interval t^) the independent 

variable t is also made to undergo a variation 8t which is zero 

at the extremities and is otherwise arbitrary. Since the x/s are 

unchanged by this, while the derivatives x, 

increments .. . d8t 
Sx,= - 

dX: 

dt 
' undergo the 

it will at once be seen that, by an obvious integration by parts, 

the contribution of the variation oi t to SjLdt, namely, 

f'' LSdt + f‘'dt{St + h SxX 
Jfo Jto (dt 1 dXi ‘j 

can be put in the form 

d 
dt 

2, 

which, as we have just pointed out, is zero in consequence of 
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It is therefore possible, in dealing with the Hamiltonian 

equation (2), to apply exactly the same treatment to the space- 

co-ordinates Xi, X2, and the time t. 

To simplify the argument, consider the four-dimensional 

manifold corresponding to four parameters Xi, t\ the mani¬ 

fold, in which space and time are simultaneously represented, 

may be called space-time. 

A set of three equations 

or, in terms of kinematics, a motion, corresponds to a curve 

belonging to F4, and reciprocally. Such a curve is called a world 

line] it is an obvious generalization of the plane diagram (in 

which the abscissa is the time and the ordinate the space described) 

used to represent the circumstances of motion in a given trajectory. 

Adopting this expression, we can say that the integral curves of 

the equations (4') are all those world lines of F4, and only those, 

for which the variation of the integral ^Ldt vanishes, the ex¬ 

tremities being fixed. 

3. General transformations of co-ordinates in space-time. 
Simultaneity. 

The most general transformation of parameters in F4 ob¬ 

viously includes three equations of the type (which substitute 

for the Cartesian co-ordinates t/3 three independent com¬ 

binations of them, iTj, ^2, X3, also involving t\ and a fourth 

equation which substitutes for the time t a further combination 

^o(.Vn 2/3» 0 (independent of the three preceding equations). 

This new parameter x^ is sometimes called the local time, as it 

depends not only on the original time, but also on the point in 

question. A transformation is thus represented by the 

formula: 

(^0 = ^o(yv 2/2. ^3.0. 

An obvious but important property of such a transformation 

is the following. If two events are characterized by different 

values of ^3, but the same value of t, it will in general 

happen that after the transformation is effected, not only the 

space co-ordinates x^, x^ of the two events will be different, but 
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also the time co-ordinates x^. This implies that two events which 

appear simultaneous with reference to the system 2/31 ^ 

are not in general simultaneous with reference to the system 

of the x’s; simultaneity is therefore relative to the system of 

reference. This evidently does not happen when the first of the 

relations (is of the type ^ particular Xq — t, 

so that the (T^) reduces to a And it is precisely in order 

to avoid any conflict with the intuitive concept of (absolute) 

simultaneity that only transformations of the type (T3) are 

considered in the classical physics. But a more acute criticism 

of this intuitive concept shows that, far from being a logical 

necessity, it has an empirical origin based on experimental 

results which can only be taken as a first a})proximation; it is 

therefore reasonable, in view of the speculative nature of our 

considerations, to admit the possibility of a more general con¬ 

ception of simultaneity. 

4. Einstein’s form for Hamilton’s principle. Its invariant 
character under any transformation of co-ordinates. 

So long as L is taken to be invariant, the form of the integral 

I Ldt is evidently not invariant for a transformation (T4), since 

in general dt is replaced by an expression linear in all four 

variables x. We might try to replace the base L by something 

more general; it would then be possible to reach the required 

result, but the method would be complicated and infertile, and 

the loss in simplicity both of concept and of form would be 

much greater than the gain in generality. 

But it is not difficult to arrive at a significant form which 

shall be invariant for every (^4) if we regard Hamilton’s principle 

as an approximate result, the degree of approximation being of 

course so high that in ordinary applications, astronomical as 

well as technical, the difference between it and the rigorous 

hypothetical principle shall be imperceptible. This will evidently 

be the case if the order of magnitude of the difference between 

the two, with respect to the values given by the ordinary theory, 

is not higher than the hundred-millionth (10“^). 

A concrete application of this criterion is as follows. Let c 

denote a constant velocity, large in comparison with the greatest 

velocity attained in the motions we propose to discuss. We 
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. V 
shall consider quantities comparable with j8 as small quan- 

c 

titles of the first order, and we shall consider quantities of the 

second and higher orders as negligible in comparison with unity; 

we shall also suppose that the ratio ^ is similarlv negligible. 
C“ 

We note that this will in fact be the case if c is comparable 

with the velocity of light, not only for ordinary problems of 

terrestrial motion, but also in celestial mechanics. In order to 

see this, we need only supj)ose that v is a j)]anetary velocity and 

V the Newtonian potential which determines it, so that by a 

well-known result U (in the field of motion of the planet) is of 

the same order of magnitude as 

We may take 30 kilometres per second, corresponding to the 

earth’s motion in its orbit, as the order of magnitude of t;. In 

round numbers, c 300,000 km./sec., so that we have - = lO”"^ 

(approx.), and therefore ^ 

-- and ™ 10““^^ (approx.). 

We shall see farther on, in §§ 8, 9, and 16, that physical con« 

siderations lead us to take for c precisely the velocity of light. 

Since 8t must vanish at the limits of integration, we have 

so that L can be replaced, as the integrand of (2), by 

c^-L = c^{l- - ^). 

The terms — ^ though negligible in comparison with 

unity, are essential in order to prevent the equation of variation 

from reducing to an identity. Terms of higher order may however 

be neglected. We may therefore write 



EINSTEIN^S MODIFICATION 293 

so that, omitting the constant factor c and writing instead of 
dt^ 

the equation of Hamilton’s principle (which, as jiLst pointed 

out, is equivalent to 8 / (c^ — L)dt ~ 0) can be replaced by 

s/Vo* 
dt^ 

Wdt = 0, 

or, putting ds^ ~ (c- — 2U) dfi — dl^. ... (6) 

by Sjds — 0.(6) 

Since the value of dl^~ referred to Cartesian co-ordinates is 
3 
Sj dy;“, the ds^ just introduced is a quaternary differential 
i 

quadratic form; it is indefinite, since for real and infinitesimal 

values of dt, dy^, dy,^, dy^^ it can have both positive and negative 

values. At the same time it is to be remembered that, for the 

fhmomena of motion at 'present under consideration, 'we have always 

ds^ > 0. 
To show that this is so, note that, taking out the common 

factor c^dt^ and again replacing 
dlf 

dfi 
by v^y we can write 

ds^ = c^dt^ 

this proves the assertion, since the quantity in brackets is cer¬ 

tainly positive when the quantitative relations stipulated at the 

beginning of our argument hold. 

We may now note that if the ds^ expressed by (5) is con¬ 

sidered as the square of the line element of the manifold F4 

(which contains both space and time), then (6) represents the 

characteristic equation of geodesics of F4 (cf. Chapter V, p. 130). 

It is true that the metric of this manifold is characterized by an 

indefinite quadratic form, but, as was pointed out on p. 142 of 

Chapter V, this does not introduce any real complication so long 

as we limit our considerations to lines wholly constituted of 

elements for whicli ds^ > 0, as it is in the present case. We can 

therefore say that the proposed modification of Hamilton’s 

principle imposes a metric limitation on the space-time manifold 
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Vi, and that the mechanical problem of the motion of a free 

particle under the action of forces derived from a potential has 

been transformed—with an alteration of the laws of dynamics 

which IS quantitatively very small—into the purely geometrical 

problem of the determination of the geodesics of a certain four¬ 

dimensional metric manifold. 

If for the arguments t, y^, ^3 we substitute any four inde¬ 

pendent combinations of them whatever, by means 

of a substitution (T4), (h- will lose the s})ecial form (5) and assume 

the general type of a quaternary quadratic, 

3 

ds- = l,n.gi^dxidx^, .... (6') 
0 

whose ten co-efficients will naturally be, in general, 

functions of the 

The essential point is that, ds^ being invariant, (6) is also 

invariant for any choice whatever of co-ordinates in V^. This 

constitutes a marked superiority of (6) over the original form of 

Hamilton’s principle. From the conceptional point of view it is 

also to be noted that this change realizes Einstein’s fundamental 

concept of general relativity, which requires that it shall be possible 

to ex})ress the laws of any physical phenomenon whatever in 

a form which is invariant for every possible choice of co-ordinates, 

both of space and of time, without the time having to hold the 

privileged position assigned to it in the classical theories. 

5. Mass and energy; views suggested by the modification of 
the dynamical law. 

We shall examine in detail the form taken by the dynamical 

equations of the free material particle when the classical Lagran- 

gian function L is rejdaced by the function 

L* = - - 2U, 

which we shall write briefly in the form 

L* = -c^K, 

putting 

2U 
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Substituting — c^K for L in Lagrange’s equations, they 

become 7 

a cK oK _ ^ 

dt difi dyi 

we have also 

dK ^ _ y, 

dy, c^K 
• (7) 

d 1 dU 

dt K K dy] 
(i = L 2, 3). 

Remembering that K differs by very little from 1, we see 

that quantitatively these equations differ by very little from 

the equations (1). Considering them from the })oint of view of 

form, and comparing them with the cardinal equation of classical 

dynamics , 

(where Q is the momentum and F the force), we see that the 

momentum per unit mass of the old theory is replaced in the 

y ■ 
new by the vector whose components are -p. For a particle of 

mass m^^ and velocity V the vectorial expression for the momentum 

will therefore be 

If we wish to retain the formal property that the momentum 

is the product of the mass by the velocity, we must take as the 

mass not the constant an intrinsic property of tlie body in 

motion, but the quantity 

which will be seen to depend on the velocity and the field of 

force. Neglecting the latter so as to fix the attention in the first 

place on the motion as it depends on the velocity, we reach the 

expression 

m 



290 ABSOLUTE DIFFERENTIAL CALCULUS 

from which it appears that m increases as the velocity increases 

and would tend to infinity if the velocity could reach the value 

c. In this sense we say that the typical velocity c, introduced 

to give an invariant form to Hamilton’s principle, is a limiting 

velocity. 

We now proceed to examine the concept of energy in the 

light of relativity mechanics. 

In the classical mechanics, given a generic Lagrangian func¬ 

tion L{y I if) (where L does not explicitly contain tlic time t)^ 

the corresponding expression for the energy is 

H L-, .... (8) 
1 Hi 

in the case where L can be broken up into a part T {y | if) homo¬ 

geneous of the second degree in the y s, and a ])art U independent 

of them, this becomes, by Euler’s theorem, 

H == T{y\y)- lJ{y). 

It is known that T can be interpreted as the kinetic and 

— ?7 as the potential energy. Since we have replaced the classical 

L by the expression 

L* = - cs/c~-^W - -c^K, 

we must now determine the new expression for the energy 

per unit mass. 

Applying (8) we get 

//# dL^, 

1 

2 fv 
~ a ■ I 1 dy, 

L* 

substituting from equations (7) and using the expression for K 

we get finally 

H* = 
c2-2Z7 

K 

c^-2U 
(9) 

We see therefore that the energy cannot be divided into a 

part due to motion and a part due to position. Further, for 
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V — C7 ™ 0, the energy does not vanish, but remains equal 

to ch a remarkable fact, the interpretation of which will be 

seen in a moment. 

Expanding the radical in series we can write 

and therefore, retaining only terms of the second order, 

- c^-V + \v^. 

To tliis degree of approximation, therefore?, the energy is 

compos(Ki of a kinetic part expressed as usiial by -h:^, a part due 

to position which is still given by — ?/, and in addition a con¬ 

stant part (i.e. a part ind(q)endent of botli position and velocity) 

equal to c^; tliis la-vst part is called the intrinsic energy of unit 

mass. A matiaial particle of mass (at rest or moving under 

no forces) will thus have intrinsic energy Now considi^ra- 

tions of a different nature lead us to assign to this intrinsic 

energy a much more profound significance than that of a mere 

additive constant of conventional value; it is in fact taken to 

represent the effective atomic and molecular energy stored up 

in the body to the extent of 25 million kilowatt-hours for every 

gramme of matter. The possibility of the existence of this enor¬ 

mous quantity of latent energy is shown by phenomena of 

radioactivity: a sufficient example is the fact that any small 

mass of radium is capable of giving off for years and years, 

without perceptible modification, enough heat to raise an equal 

mass of water from 0° C. to boiling-point in every hour. The 

supply of heat would last for a very long time; more than 2500 

years for radium, and for other radioactive elements a period 

comparable with geological epochs. While radioactivity is not 

a general property of all bodies, yet it demonstrates the fact that 

(at least in certain cases) matter contains an enormous store of 

energy, and in this form the assertion can be generalized so as 

to extend to every atom of ponderable matter. 

Admitting the possibility of the existence of this intrinsic 

energy, the foregoing considerations result in our assigning 
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to it the value If instead we return to the expression (9) 

for the total energy, and suppose that the potential U is zero, 

we find for the total energy (kinetic and intrinsic) localized in 

a body whose mass when at rest is the expression 

and remembering the expression for the mass m as a function 

of the velocity we can also write this as 

E .(10) 

This result shows us that there is a proportional relation not 

only between the mass of the body when at rest and the intrinsic 

energy, but, more generally, between the mass and the total 

energy localized in the body. It also suggests the hypothesis that 

to any form of energy there must be assigned a mass connected 

with it by the relation (10); and, \yice versa, that every mass 7n 

corresponds to a quantity of energy This hypothesis is 

supported by other considerations, and leads to the view, of 

primary philosophical importance, that energy and matter may 

be considered as different manifestations of one single entity, 

which appears as ordinary matter when it is, so to speak, suffi¬ 

ciently concentrated, while it appears as energy in widely different 

forms when there are no condensation nuclei present. 

6. Einstein’s form for the principle of inertia. Restricted 
relativity. 

The equations of motion in the original Newtonian form (1) 

imply, as is well known, a state of uniform motion when the forces 

are zero or, which comes to the same thing (except for a non- 

essential constant), for ?7 — 0. Equation (2), which is rigorously 

equivalent to (1), therefore defines states of uniform motion for 

?7 = 0. This property also holds for the new Einsteinian form 

(6) of Hamilton’s principle, though it is not rigorously equivalent 

to equations (2). Before proving this we may point out that, for 

U = 0, (5) gives 

— dl^.(11) 
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By a mere change of the unit of measurement of time (the 

advantage of which will be seen shortly), i.e. by putting ct ~ 

this quadratic form becomes 

== dyo^^dk\ 

and referring the space to orthogonal Cartesian co-ordinates, 

— dyi — dy./. . . (11') 

This is analogous to the ordinary expression for the of 

a Euclidean F4 in orthogonal Cartesian co-ordinates, except for 

the signs of the co-efficients, which make it indefinite; in tliis 

case the index of inertia^ is 3. Hence the F4 with a metric of 

this kind is called pseudo-Euclidean; the system of co-ordinates 

7/0, yi, y^, which gives this form to ds'^, is called pseudo- 

Cartesian or Galilean, 

It will sometimes be convenient to put the expression for a 

pseudo-Euclidean ds- back into the general form (5'); for this 

purpose we introduce the symbols 

( 1 for i ~ k ~ 0, 

— I ~ ^ ^ ~ ^ ^ 
i 0 for i 4= k 

(the notation being similar to that introduced in the note on 

p. 55 of Chapter III). We can then say that in pseudo-Cartesian 

co-ordinates the co-efficients of ds^ are 

- S?. 

We then have also, as is easily verified, 

== 9uc - 8?'.(12) 

Returning to the property enunciated at the beginning of 

this section, we note that, for — 0, the expression for X* 

becomes 

K = 

^The index of inertia is the nuinljor of negative coefficients of a quadratic 

form when expressed (in any way) in the canonical form (i.e. so that it contains no 

product terms). 
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and that (6), which becomes 

s/*o - 0,.(6') 

can be written 

sfL*dt = 0. 

The corresponding Lagrangian equations, from the fact that 

L* does not depend explicitly on the at once give the three 

first integrals 

— constant (i “ 1, 2, 3), 
^Vi 

whence there follows the constancy of all the y/s (the principle 

of inertia). Now consider a particular, but very important, 

category of transformations {T^ specified as follows. From 

the set of four co-ordinates {t, t/i, we pass to a new set 

?72’ y^) wliich the form (11) of remains unchanged, 

this being understood in the sense that the transformation 

iormula) are to give identically 

dt^ ~ N, dye =- dl^ - i dy^S 
1 1 

The equation (6^) then ensures that in the new co-ordinates 

also, interpreting t as the time, and y^, as Cartesian co-ordinates 

the ynotion will appear uniform {restricted relativity). 

Transformations of this kind were effectively constructed by 

Lorentz, so that they may be called Lorentz transformations; 

we shall denote them shortly by (A) and discuss them fully 

in Section 8. Meanwhile we may indicate the characteristic 

property, pointed out by Professor Marcolongo, that, if we put 

V — \ ct = y^, so that dsf takes the Euclidean form — dyf, 
4 1 

a Lorentz transformation leaves unchanged the form dyf, and 
1 

thus (here too apart from any question of imaginaries) is sub¬ 

stantially identical with motion in a four-dimensional Euclidean 

space. 

To close these remarks on the effective existence of these 

special transformations (A) we may note an important corollary. 

Every (A), as we have said, transforms a generic uniform motion 
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into a new motion whicli is also uniform; but it is not possible 

to assert that the velocity is unaltered by the transformation. 

There is, however, at least one case in which this happens, namely, 

motion in which the velocity is that very large constant velocity 

c which we originally introduced in order to modify Hamilton’s 

formula in a way which should be quantitatively imperceptible, 

but fertile in its results. 

In fact, for a motion in which the velocity is c (with respect 

dl 
to the ])arameters t, 2/3)? we have obviously 

therefore 

and 
dt^ 

dSi\ cHf-dl 2_ 0. 

In view of the invariance, not only of ds^^, but also of the 

sjxicial form c- dC^ — S, dy-^ which we have given it, we have, c*n 
1 

passing to the new variables t, y.>, y.. by a Lorentz transfor¬ 

mation, 

c^dl^^^.dyr = 0 
1 

for the transformed motion as well as for the original one, and 
therefore the velocity is c. 

7. The kinematics of rigid systems. Ordinary method 0! 
approach and possible variants. 

In the foregoing sections we have been led to modify (very 

slightly in ordinary conditions) the dynamics of a material 

particle P, i.e. the relation between the motion and the disturbing 

force. Nothing however has been, or need be, modified as regards 

the kinematics, i.e. the description of the phenomenon of the 

change of position of a point P with respect to an assigned 

observer 2, or in other terms with respect to a Cartesian system, 

in a certain interval of time. For convenience (the reason for 

this choice will be clear in a moment) we shall denote these axes 

of reference by 0 y-^ y^. 

The equations of motion of P, 

. . . (13) 

dy ■ 
the velocity V as a vector of components {i = I, 2, 3), the 

dt 
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acceleration, &c., will all be as in the ordinary case. In particular, 

there is uniform motion when V is constant, i.e. the ^/s are 

linear functions of f. In this case, taking one of the axes, say 

that of the y^s, parallel to V, the equations (13) can be put in the 

simplified form 

'9i = yi + < Vi ^ y% Vz ■ ■ (I'l) 

where v obviously denotes the velocity in the scalar sense (the 

component of V along ?/]), and ff% are the initial values 

of the co-ordinates y^, y^, y^ of the moving point. 

As is well known, tliere are in ordinary kinematics two ways 

of defining rigid motion and of investigating its problems; these 

are briefly as follows: 

(1) A rigid system is defined as a system consisting of any 

number of points P, P', . . . of co-ordinates Tfi, yi, • • • 

(i = 2, 3), which move in such a way tliat their mutual 

distances apart remain unchanged; i.e. so that for any two points 

whatever of the system, P and P', and for any movement of 

these points, the relation 

Si {yi — y'if 
1 

holds, the quantity on the right being constant (geometrical 

characteristics of the moving system). 

In these relations and in their differential consequences 

are summed up all the properties concerning simultaneous 

positions, velocities, &c., of the various points of the 

system. 

(2) The ground covered by the equations just given for the 

relations between pairs of points is, so to speak, divided into 

two parts, the first expressing the intrinsic circumstance (i.e. 

independent of the system of reference 2) that when the 

moving system changes its position with respect to 2 it keeps 

its configuration unchanged. This is equivalent to the pos¬ 

sibility of placing at the points P, P', . . . an observer 2 
rigidly attached to the body, who can be represented as usual 

by an orthogonal trihedron Oy^y^y^ with respect to which 

the position of each separate point of the moving system remains 

unchanged. In other words, the co-ordinates y,-, ... of 
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these points with respect to these axes attached to the body do 

not vary with the time. 

At this stage the argument usually is as follows. In order 

to determine the position, with resj)ect to the original system of 

reference of the whole moving system «at a generic instant, it 

is only necessary to place the trihedron 0 y.^ (attached to 

the body) in its proper position with respect to O y^ y^ 

Thus we again have to deal with transformation/(yrneukv (variable 

from moment to moment) between two systems of orthogonal Car¬ 

tesian axes, and therefore of the type 

y, - + f W (i-1, 2, 3). . (15) 
1 

where denotes the cosine (variable with the time, if the motion 

is not one of pure translation) of the angle between the fixed axis 

Oyi and the moving axis and <^ft) is a function of the time 

(linear if the motion reduces to a uniform translation). 

The proposition in italics, or the ecpiivalent group of formulae 

(15), constitutes the complement of what may be called the 

intrinsic rigidity of the body (the existence of the trihedron 

attached to the body); the combination of the two gives us once 

again the kinematics of a solid body in its classical form. 

But if we analyse this complement a little further, we find 

that we can modify to some extent the ordinary idea of the 

motion of a solid body without giving up either intrinsic rigidity 

or the validity of Euclidean geometry. 

We need only introduce the hypothesis (independent of both 

the g(iometry and the kinematics of the point) that the measures 

of the distances between the points P, P', . . . (and therefore also 

of angles) of our solid may differ according as they are made 

by an observer attached to P, P', ... or by the fixed observer S. 

While granting that the two observers may disagree as to the 

measures, it is to be borne in mind that, by hyf)othesis, the 

measurements are made by each of them in accordance with a 

Euclidean metric, and that (as in the classical scheme of things) 

the rigidity of the motion must always be respected, from the 

point of view of the fixed observer S as well as of the other. 

This requires that every distance apart of two points P, P', 

... of our system must remain unchanged in time, whether the 
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distance is calculated by 2 or by the other. For this it is neces¬ 

sary and sufficient that the transformation formula) between the 

and the y’s, 

yi == fi («/i. 2/2. ^3. i) = h 2, 3), . . (16) 

where the //s are a priori unknown functions, should be such as 

to make 

independent of t at every instant, whatever may be the differen¬ 

tials 

We get an obvious case in which this condition is satisfied if 

we suppose that the transformation formula) are linear in tlie 

(tliough not necessarily with respect to t), and in particular 

that they are of the form 

Vi ^ ^i,cikyi: +.(18) 
1 

where the c’s are completely arbitrary constants, subject only 

to the qualitative condition that their determinant || [j does 

not vanish. It should be remembered that in the equations (15) 

the coefficients were in addition direction cosines (in some 

cases variable with the time) for two sets of orthogonal 

axes. 

A transformation of the type (18) between the y’s and the 

^’s is, at every instant (i.e. for any assigned value of t), linear, 

and therefore homographic, or rather affine, so that straight lines 

are transformed by it into straight lines. From our point of view, 

this means that curves which appear to the observer 2 to be 

straight lines are so also for the observer 2, and inversely. 

It would not be hard to show that, if we impose on a trans¬ 

formation (16) the double condition of making dl^ or the right- 

hand side of (17) independent of t, and also of keeping geodesics 

unchanged, we necessarily reach, if not an affine transformation 

(18), at least the product (in the sense of a product of operators) 

of an affine transformation by a rigid motion in the ordinary 

sense of the term. By a suitable choice of the trihedra of reference, 

the passage between the j/’s and the y's can thus be effected by 

applying in succession the two following transformations: 
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(1) An affine transformation given in its canonical form, 

i.e. by means of equations of the ty}3c 

y'l = y'l = *2^2. y^ = Ky-i^ • (i^^) 

where the ^'’s are positive constants; 

(2) a transformation (15) between the y’s and the ?/’s. 

We shall not spend time on the elementary considerations 

which lead to this conclusion, and shall merely point out that the 

coefficients k of the equations (19) determine the dcfonnation 

consequent on the affine correspondence between the and 

the ’s, while in the second change, from the y' ’s to the ^’s, there 

is no further deformation. 

It follows from this, taking (19) into account, and considering 

the two observers S and S, that a ftegnient hoAring the same direction 

as the axis Oy,, and of length 1 with resjgect to the observer S attached 

to the body, will a])j>eaT to the observer H as having the length kjl; 

hence the factor is called the coefficient of elongation. The 

elongation ” of unit length is accordingly k^ — 1; this represents 

an expansion or contraction according as > or < 1. The 

formula) (19) of course provide, more generally, information as 

to the alteration in length of segments (and therefore of vectors) 

in any direction whatever. If the coefficients {i -- 1, 2, 3) 

are the direction cosines with respect to the axes Oy^ y^ y^ of a 

generic segment and I the length as it appears to the observer 

S, we obviously get, for the length I as estimated by X, 

I rir: I \/kf (Xj^“ -f“ k,^" CL2^ ^3^ ^3^* 

Returning for a moment to the ordinary equations (15) of 

rigid motion, we shall fix our attention in particular on the most 

elementary case (which will serve as a guide and a basis of com¬ 

parison in the argument of the next section), that of uniform 

translatory motion. We can then take the trihedron of reference 

Oy^ y^ ys with one of its axes, say y^, parallel to the direction 

(by hypothesis constant) of the velocity, and we shall take the 

trihedron Oy^ y^ y^ attached to the body as coinciding with the 

fixed trihedron at the initial instant ^ “ 0. 

The motion being translatory, the axes attached to the body 

remain parallel to the corresponding fixed axes throughout; and 
CD066) 
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if V is the velocity of translation, the formula? determining the 

motion evidently reduce to 

§1 = yi + Vt, = y^, y^ =- 2/3. . . (15') 

We have thus again reached the typical equations (14) for 

each point y-p constant) of the body. 

8. Romerian units. Study of Lorentz transformations. 

The equations (15'), which define in the simplest form an 

ordinary uniform translation, can obviously be associated with 

the identity 

i = t. 

We thus get a quaternary transformation between [y^, ?y.j, t) 

and (;yi, ^2’ //s’ which we shall denote by T. 

We next observe that the most general representation of a 

uniform translation, with arbitrary choice of the two trihedra 

(one fixed, the other attached to the body), subject to the sole 

condition that the origins coincide initially, can be reduced to T 

together with two rotations independent of t. In fact, denoting 

as before the two trihedra of reference (hxed and moving with 

the body) by S and i], we shall denote by R a rigid rotation of 2 

(round the origin 0) which brings its axis Oy^ into the direction 

parallel to the velocity of translation. Let R' be an analogous 

rotation (round 0) of the trihedron S; and R the inverse rotation. 

Then the transformation formula} between {y^, y^, y^, t) and 

(^j, ^2? 0 represented by the symbolic product 

ItTR, 

Now consider the well-known kinematical deduction from the 

classical method of representing rigid motion, namely, that if 

we consider any velocity cu whatever with respect to (c being 

the modulus and u the versor), this becomes cu v with respect 

to S, if V is the vector representing the velocity of translation of 

E with respect to E. This, as has been observed, is in contra¬ 

diction with the results of experiment, at least as regards the 

velocity of light, for which c in cm. per second has the par¬ 

ticular value 3T0^^, which remains unaltered^ even when com¬ 

pounded with a uniform translation (Michelson-Morle^ experi- 
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ment). The wish to restore concord between theory and experi¬ 
ment leads us to modify the equations (15'), and with them, if 
necessary, the equation i ~ t, in such a way that the relation 

ds^^^ — dsj (not merely dl'^ ~ dV^) shall be rigorously satisfied; 
i.e. so that there shall be an identity between two quadratic 
forms involving not only the space co-ordinates but also the 
time. 

Special transformations. We propose to try to modify these 
transformation formulae (as usual very slightly, at least for small 
values of v) so as to make dsf invariant. For this purpose we 
shall have to replace t sometimes by the variable 

Vo (d 

and sometimes by the imaginary variable 

ICt (l n/ — 1), 

With this change, putting also ~ ^8, the equations (15') ixnd 
i = I become either ^ 

Vi Vi + = y2> Vz = Hz Vz ■ (20) 
or 

Hi --= Vi -■ ‘^^4- Hz "■-= ^2. Hz = Vz^ Hi = Vi- (20') 

The real variable introduced here is only the time measured 
by choosing as unit the time taken by light to traverse unit 
space. Thus the velocity of light is 1 and the dimensions of time 
become the same as those of length. The character of a primary 
magnitude ordinarily assigned to the time thus disappears, the 
unit of time being linked up with the unit of length by means of 
the phenomenon of the propagation of light. It will be convenient 
to apply the term ‘‘ Romerian ” ^ to measurements of time 
made in this way; we shall similarly use the term “ Romerian 
velocities ” (which are pure numbers) for velocities referred to 
the Romerian time y^. It obviously follows from the equation 
'?/q — ct that a Romerian velocity is only the corresponding 
ordinary velocity divided by c; in particular, the quantity 

^ From O. Hoivikr (1644-1710), who Wtis the first to discover and determine 
the velocity of light. His method was based on observation of the eclipses of 
Jupiter’s satellites. 
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V , . 
— - just introduced is only the. Romerian velocity of trans- 

c 

lation. 

In accordance with Marcolongo’s remark quoted on p. 300, 

the transformations we are in search of must leave invariant the 

differential quadratic form which we can write (introducing 

the imaginary variable'. 7/4) in the form 

— rfv dy-c + dy.? + dyi + dy^~. 

In order to obtain particular transformations satisfying this 

condition, we shall first consider linear homogeneous trans¬ 

formations. These will at once result, as we have already pointed 

out in the preceding section, in the condition (17) being satisfied, 

which interprets tlie transformation as equivalent to a rigid 

motion (if not in the ordinary sense, at least in the intrinsic sense 

there sjiecitied). As we are dealing with linear (and homogeneous) 

transformations, the invariance of the differential form — ds^ 

implies that of the algebraic quadratic form 

~q 2/1" + Vt + 2// + 2/4% 
and reciprocally. 

Starting from the equations (20') we shall examine whether 

w’e can reach the required result if we keep the co-ordinates 

2/2’ 2/3 invariant, i.e. if we suppose 

^2 = 2/2’ ^3 = 2/3- 

We have thus to find a linear transformation between the 

variables (y^, and {y^, y^) which will leave invariant the expres¬ 

sion .> , o 
Vi + 2/4^* 

Hence (apart from the question of imaginaries) we have to 

discuss a rigid rotation, round the origin of co-ordinates, in the 

plane y^, 7/4, and therefore of the form 

Vi ^ Vi cos^ — y^ 
^4 = sin^ + 2/4 CQS(f>. 

If we introduce the real variables ii/q, y^ instead of y^, y^, it 

will be seen that the necessary and sufficient condition for the 

disappearance of imaginaries from the ultimate formulae is that 

the coefficient of yi should be real and that of y^ imaginary in 
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the first equation, and vice versa in the second. To obtain this 

result, <l> must be a pure imaginary; in fact, putting 

(f) — Li/j (with ifj real), 

we get 

COS0 “ COSt0 “ COsht/r, 

mi(f) ™ siiu0 --- tsinhi/f, 

where cosht/r and sinhi/f as usual denote the hyperbolic cosine and 

sine. 

Hence our transformation formulm take tlie form 

yi ?/i -j- tiinhip 

y-^ “ y^^ .(21) 

:% - !h + Vo cosh^ 

If we remember that in tlie ecjuations (20) the yaire number 

j8 is in ordinary cases fairly small, we see that in tluvse cases the 

equations (21) differ quantitatively by very little from the 

equations (20), provided we sup])ose ip sufficiently small for coshi/f 

and sinlu/f not to differ by very much from 1 and 0 res])eciiv(jly. 

But we get a precise kinematical interpretation of the para¬ 

meter i/j on which the transformation (21) depends if for instance 

we fix our attention on the origin 0 of the moving axes, i.e. on 

the point whose co-ordinates are 7/2 — — 0, for a 

generic value of this last parameter denoting the time 

(Rbmerian time) as it appears to the observer S. For the fixed 

observer S, with respect to whom y^ represents the time (likewise 

Romerian) and y^, the position, we have, corresponding to 

0 and a generic value of y^, 

§1 -= «/o sinh^, cosli./., 

while ^2 iTs vanish. Hence the motion of 0 is rectilinear, and 

the ratio 

~ — tanh^, 
Vo 

which is obviously constant, is the (Romerian) velocity. Denoting 

this ratio by we have in the equation 

tanh^ = j8 
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the required kineinatical significance of the parameter ifj. More 

generally, the same quantity ^ stands for the Romerian velocity 

of any other point P rigidly attached to S. In fact, if y,^, y^ 

are constants and y^ a generic value, the result of differentiating 

the equations (21) is to give 

d/7i ~ sinhj/r dy., - dy^ “ 0, ~ coslu/r dy^^, 

vve can put the equations (21) in the form commonly used (the 

special Lorentz transformation) 

_ yi + ^yo 

^2 Vt 

Vo 

Vz 

Vo + 

v/l - ^ 

(21') 

or, using the ordinary instead of the Romerian unit of time 

(i.e. i and t instead of y^ and y^^, with ?7o ?/o “ 

It will be seen that the necessary condition for these formulse 
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to be real is < 1, or v < c; which once more demonstrates 

that the velocity of light c is a limiting velocity. 

It can be easily verified that the formulae obtained from 

(2T) or the equivalent (21") by solving these equations with 

respect to y^, .Vo ^ differ from the first set only by 

the change of v into - v (and therefore of ^ into — ^), and of 

course of the two sets of variables; precis(;]y as happens for the 

equations (15') and (20) which refer to an ordinary translation. 

If in particular we su[)pose i.e. (but not necessarily ^8), 

negligible in comparison with unity, the first three of the eiquations 

(21") reduce to the formulae (15') of the ordinary translation, 

while the fourth gives rise to an additive term denoting the 

difference of time between the two observers 2 and 2, expressed 

by the equation 

t = ^ 

It will be seen that the additional term y^ depends on the 

position of the ])oint at which 2 has to apply his own measure¬ 

ments of the time; for this reason t is called the local time. It 

was associated by Lorentz with the ordinary uniform translations 

(15') with the intention of explaining to a first approximation 

(i.e. neglecting ^“) the character of electromagnetic phenomena 

for bodies in motion; this requires explicitly that the relation 

ds,f — should hold to the same order of approximation. 

Later on Lorentz himself discovered the equations (21"), which 

result in the rigorous invariance of Einstein rediscovered 

them from the point of view of this invariance, which is the 

mathematical expression of his principle of relativity in its most 

elementary form. 

Let us examine the formulae (21"). They contain the best- 

known results (to some of which eminent students of relativity 

have assigned paradoxical consequences) of the kinematics of 

relativity. In the first place, the non-invariance of t, as noted 

above in § 3 in general for any (T^), points to the necessity of 

abandoning the ordinary concept of simultaneity in the absolute 

sense. In fact, two instantaneous events, taking place at two 

different points of space, may correspond to the same value of 

t but not of t (a sufficient condition is that the y^s should be 
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different), and may therefore be simultaneous for one observer 

who uses i] as his system of reference and not for another who 

uses D. Hence the time ceases to be an absolute quantity and 

becomes relative to the system of reference and connected up 

with the space co-ordinates; it is in fact local time, to use the 

term already referred to as having been introduced by Lorentz 

in bis res(;arches on the electrodynamics of bodies in motion. 

Suppose that two events take place at the same point P of 

the body (and therefore with the same yi, y^), but not at the 

same instant, being separated by an interval of time (measured 

in the system S): for the observer X the interval will be At, and 

the relation between tlie two is given at once by the fourth of 

the equations (21"), noting that is constant, so that 

At 
At 

x7 i - 

Hence for the observer who accompanies the point P where 

the phenomena take place, the interval of time A^. is shorter 

than for the fixed observer S; i.e. we have a slowing down of 

the time with respect to 2’s measure, as if the unit of measure¬ 

ment had become --^-JL=== times that used by S. 

Similarly two events which happen at what is for H the same 

point (i.e. with the same y^, y^, y^) but vSeparated by an interval 

of time At, will appear to S to be separated by a longer interval. 

This follows at once from the fact pointed out above that the 

inverse formulae of (21') and (21") are foimd by changing v into 

— V and therefore ^ into — 

We shall now try to determine the difference, if any, in the 

estimates of lengths made by two observers S and 2, each at a 

specified instant of his own time. Suppose, for instance, we wish 

to carry over to the observer 2 measurements made by 2. 

Substituting in the first three transformation formulae of (21") 

the value of ^ in terms of i given by the fourth, we get 

Vi Vi : yi +1’? 

Vi = «/2 

h = 
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which may be considered as resulting from the j)rodiict of the 

afiine transforma ti on 

y'l = >/i — .% = Vz, y'z = Vz 

by the ordinary translation 

fh -- y\ + vl, y. ^ ^3 2/3- 

In this form of the equations the change in length is at once 

obvious. We need only refer to the conclusions of the preceding 

section, noting that tlie elongation coefficients of the 

formulae (19) are in this case represented by 1, 1. 

Hence if the fixed observer estimates distances at a generic 

instant i, and if his results are comy)ar(^d with those of the observer 

attached to the moving body, who is also estimating the same 

distances at any instant wliatever of his own time, then the former 

observes a contraction, in the ratio s/} — : 1, for longitudinal 

segments, i.c. in the direction of motion, while there is 710 change 

for transverse segments, i.e. ])erpendiciilar to the velocity of 

translation. 

The inverse formula), for the change from 2 to 2, differ, as 

we have already said, only by the change of v into — v. Hence 

the same rules liold good; e.g. fixed segments in the direction of 

motion wall appear to the moving observer as contracted in the 

ratio s/l — : 1 in comparison wdtli the measurement of them 

made by the observer 2; and so on. 

General transformations. We j)ropose lastly to y)rove a result 

analogous to one shown above to hold for the translations of 

classical kinematics, namely, that the most general Lorentz 

transformation (A) (i.e. a linear transformation betw(‘en two 

sets of four variables ?/, and y^ {i — 1, 2, 3, 4) for which the 

quadric q remains invariant) can be rey)resented in the symbolic 

form 

RjC R, 

where R and R are ordinary orthogonal transformations, (rota¬ 

tions) between {y^, y^, 2/3) (^i> ^ is a special 

Lorentz transformation of the type studied above. 
(D 655) 11 ® 
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The transformation (A) will be a quaternary orthogonal 

transformation of the type 
4 

§h ~ '^k^hkVky .(22) 
1 

whose coefficients aj^^. constitute an orthogonal matrix, i.o. such 

that 4 

'^kO-hkO-jk = K'.(2'^) 

2* ckkii ^kj ~ .(2'^) 

(kj = 1, 2, 3, 4). 

In order that the variables ^3, ^1, 2/2, 2/3’ ^^7 

real, and y^ pure imaginaries, we must evidently have 

(k, h < 4) real, and {h < 4) pure imaginaries, and real. 

We shall of course interpret 2/2? 2/3 Cartesian co-ordinates 

with respect to a trihedron K rigidly attached to i], and 2/4 as 

the time variable; and similarly for the y^. 

The directions of the trihedra K and K are a priori arbitrary; 

we shall now determine a rotation R for K and a rotation R 

for K such that we shall have 

A - R/^R. 

To do this, we consider, with reference to /i, the vector whose 

components are ai4, a24, a34; let i denote the relative versor. If 

we turn the trihedron K round in such a way that its axis y^ 

takes the direction of i, we shall have 

^24 " - ^34 ~ 

we shall take this as the rotation R, 

Now from the identities (23) and the values just given it 

follows that 3 3 

^k^ Jc ^ ^k^'Jk “ 1? 
1 1 

3 

1 

SO that the two vectors determined (with respect to K) by the 

components agj. (k — 1, 2, 3) are of unit length and ortho¬ 

gonal. We shall call them j, k, and shall take as the rotation R 
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the rotation which turns the trihedron K so that its axes 

coincide in direction with the vectors j, k, so that we get 

a2i U03 “ = (1^2 ™ 

As a result of the two rotations R and R the form of the 

matrix of the as comes to be 

“11 0-12 ^13 “l4 1 

0 1 0 0 

0 0 1 0 

“41 042 ^43 ^44 

and, from the group properties of ortliogonal substitutions, this 

matrix must also corres{)ond to a substitution of this kind (since 

it is the result of the product of the original substitution by two 

rotations). A consequence of this is the vanishing of four other 

elements of the matrix: in fact, the conditions that the first line 

of the matrix shall be orthogonal with the second and third lines 

respectively are 
(^12 Ctl3 ~ 

and similarly, taking the fourth line with the second and third, 

we get 
U42 ^43 0. 

Thus we finally get the matrix in the form 

an 0 0 «14 

0 1 0 0 

0 0 1 0 

^41 0 0 “44 

which corresponds to a transformation of the type (21), i.e. to 

a special Lorentz transformation We have thus shown 

that, through the two rotations R (for the trihedron 7i) and 

R (for Tv), the general transformation (A) reduces to a special 

transformation 

So far we have considered only linear transformations. The 

question may be raised whether we should not get greater 

generality if this restriction were removed. In this connexion 
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we shall merely say ^ that the linear transformations studied 

here are the only ones which, in addition to retaining the 

invariance of make finite values of the correspond to 

finite values of the and vice versa. 

9. Relative motion. Composition of velocities. Kinematical 
justification of a formula of Fresnel’s. 

In order to show the relation between the various aspects of 

a single motion—let us say specilically the motion of an assigned 

point V—with reference to two different observers H and S, it 

is only necessary to use the transformation formubn between 

the corresponding co-ordinates. This liolds both in ordinary 

kinematics and in relativity kinematics, with the reminder that 

for the latter the time y^y is among the co-ordinates affected by 

the transformation. 

Consider in particular a Lorentz translation, which, as we 

have seen in the preceding section, is defined by the formula} 

(21"), suitable choice being made in advance of the two trihedra 

which represent the observers and are denoted by S and S. 

Now suppose that the motion (which we can call relative) 

of the point P in relation to 11 is given; i.e. that the expressions 

{i ~ 2, 3) for its three space co-ordinates are known 

formally as functions of (the Romerian time). To obtain a 

representation of the absolute motion, i.e. the motion with 

reference to 2, it is obviously sufficient to find the expressions 

for the co-ordinates y^ {i ^ 1, 2, 3) of the point P as functions 

of the new time variable y^. The transformation formulae (21') 

give the required result at once: in fact, if we insert in them for 

the y/s the expressions y-(^/o) belonging to the moving point P, 

all the ?7’s become known functions of y^^\ and if we suppose this 

parameter fomid from the fourth equation 

Vo 
Vo + PVi 

and substituted in the first three, we get the equations of absolute 

motion in their explicit form. 

^For the proof, of. C. Mitnari; “Sopra una espressiva interpretazione cino- 

matica del Priiicipio di Kelativitft ”, in Itend. ddla It Acc. dci Lincei, Vol. XXlll 
(1914), p. 781. 
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The resulting relation between the absolute and relative 

velocities is especially interesting. The vector rule no longer 

holds that the absolute velocity - the relative velocity + the 

velocity of the moving origin (the latter, in the case of trans¬ 

lations, of course reduces to the velocity of translation, whatever 

may be the instantaneous position of P). The relativity com¬ 

position of velocities is a little more comj)licated. In order to 

see what happens in the clearest case, we shall consider a relative 

motion parallel to the translation v. With this hypothesis the 

co-ordinates and of the point P are constant, and, from 

(21'), /72 and y.^ are also constant, or, in other words, the motion 

with respect to 2 is also in the direction oi the transLation. 

Diflereiitiating the first and fourth equations of (2i'), we get 

Putting for tlie sake of shortness 

A, 
A7 i ^ Avi 
Ayo’ ' %o’ 

so that and P,. ar(i the velocities (scalar and Romerian) of the 

point P witli respect to 2 and 2 respectively (absolute velocity 

and relative velocity), the foregoing formula?, on dividing the 

first by the second, give 

Aa - 
A.+ /3. 

1 + i8A.’ 
(24) 

this is what is called Einstein’s law for the composition of 

velocities. Multiplying by c and remembering that y^ — ct, 

y^ ~ d, we can evidently replace the Romerian velocities 

R ™ R — by the corresponding ordinary velocities 
dyo dy^ 

Vr = VI, and write 

1 + AA/- 
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If both the velocity v^, of P (with respect to S) and the velocity 

of translation v are small in comparison with c, the denominator 

differs from unity by a term of the second order; if we neglect 

this difference we get back to the fundamental relation of ordinary 

kinematics (which may be called Galilean) 

^ 

in view of the criterion we are applying, this result was of course 

to be expected. In general the equation (24) shows that, for | ^ | 

and I I less than unity, j | also < 1; while, for | ^8 j or 

I I equal to unity, | | also ^ 1. To prove this, note that, 

whenever | | < 1 and | | < 1, 

(1 + -ip + ^,)2 ^ (1 - ^^) (1 - p;) 

is always positive, so that ^ no ) while for 
\1 + ppj 

I ^ I “ 1, or I I = 1, — 1; which proves the required 

result. We thus find once more the limiting character of the 

velocity c of light: however near may be to c, provided it is 

less than c (/S^ < 1), if it is compounded with another velocity of 

translation v, less than c, but as nearly equal to c as we please 

(| ^ I < 1), the result will always be less than c, or in other 

words I I always < 1. Vice versa, the V(ilocity c for H remains 

c for any 2, whatever may be the velocity of the (Lorentz) 

translation with which tlie two observers are moving with respect 

to one another. 

Within the scale of velocities of ponderable bodies (velocities 

small compared with c), the relation (24') reduces sensibly to the 

Galilean formula + v, as we have already said. But 

when the phenomenon of motion under consideration is the 

propagation of light in a transparent medium, so that the velocity 

has an order of magnitude comparable with that of c, then the 

divergence between the Einsteinian and the Galilean kinematics 

becomes striking, and lends itself to experimental verification. 

Einstein has in fact drawn from this a magnificent argument 

in support of the theory of relativity. He deduced logically (by 

a purely kinematical proof ^) from (24') a formula of Fresners 

^ Even l)efore Einstein, Lorentz had given a theoretical justification of Fresners 

formula, leased on his celebrated electron theory of the electromagnetic phenomena 

of bodies in motion. Einstein’s explanation is plainly more attractive. 
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concerning the movement of light waves through transparent 

media in translatory motion; a formula which was experimentally 

confirmed for the first time by Fizeau (1851), whose experiments 

were repeated with improved methods by Michelson and Morley 

and by Zeeman. 

The argument is briefly as follows. In a medium of refractive 

index /X, it is known that light is propagated with velocity if 

the medium is at rest. Suppose instead that the medium has a 

velocity v in the direction of propagation of light (in the same 

or the opposite sense). Ordinary kinematics would lead us to 

expect that the velocity of propagation (with respect to the 

0 
observer) would become + v\ Fizeau and the others, however, 

by delicate experiments on interference phenomena, found that 

c 
the amount to be added to - (or subtracted from it) is not the 

. . 1 
whole of V, but v multiplied by the coefficient (< 1) 1 — -, 

so that the velocity of propagation is ^ 

. 

The factor 1 — ^ is known as FresneVs convection coefficient. 

The expressions (25) are evidently not in agreement with the 

Galilean kinematics. But they are in excellent agreement with 

the Einsteinian kinematics. In fact, let us consider, to fix 

ideas, the case in which the motion of the medium is in the same 

sense as the propagation of light, so that we take the + sign in 

c 1 
(25). Then (24') holds when we put for v,, and therefore - for 

Hence it gives ^ ^ 

1+^' 

or, neglecting terms of the second order in 
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The last term is also of the second order witli respect to the 
first, so that we are left finally with Fresnel’s formula 

10. Further generalization of the metric of still coinciding 
to a first approximation with ordinary dynamics. 

We now propose to see whether it is possible to assign to the 

F4 other metrics slightly different from that characterized by 

(5), but such that the dynamical ]:)rinciple un<]erlying them is 

still equivalent, to a first approximation, to Hamilton’s principle. 

We return to the general form (5') of and observe first 

that the particular form (5) just considered is a case of (5') 

obtained by identifying the time co-ordinate with ct and the 

space co-ordinates x^, x^, with the (Jartesian co-ordinates 

yv 2/2^ 2/3. and putting 

ffoo == 1 - 90i - 0, = - S? (i, k=h2, 3). (26) 

If now we wish to consider a metric whose coefficients g 

differ by very little from the values (26), we can ])ut 

5^00 ^ 1 “■ — Yo 9ik — 8 • ““ 7,4, (26') 

where 6 ^ 4-6, 
C“ 

with the understanding that the quantities 7 (which as regards 

dimensions are pure numbers) are of the second order Hike 
V \ ^ / 

or higher order with respect to -, while ip (which also has the 
c 

dimensions of a number) is to be considered as of at least the 

third order. 

With these values for the coefficients, and taking the variables 

Vv ^2? 2/3 co-ordinates differing very little from Cartesians, 

we can write ds^ in the form 

d8^ = (1 ~ 2^)%/- 2%o k Yi dVi - h (81^ + Yii^dyi dy,. (27) 
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If we denote derivation with respect to by a dash, and put 

we shall have 

1 

2’i = 
1 

3 

^2 ' h ^ik yuc Vi Vk 
j 

1 — 2^ — 2ri — 272 - 

(28) 

It is to be noted that since ^/- is of the first order, 
c dt 

it follows that is of the third and of the fourth order at 

least. 

To shorten the work, we shall introduce the quadrinomial 

r - ^ + + 

observing that it is composed of terms of the second order, 

which can be written \ V), plus terms of higher order. 

We then have ^ 

ds^ 1 ~ 2r, 

and we can extract the square root, neglecting powers of F 

higher than the second (i.e. terms of order higher tliaii the fourth). 

To this degree of approximation we get 

5* = 1 - r - 

i.e. rewriting c dt for and multiplying by cHt, 

cds - cHt - cHt{r + ir^). 

Substituting this expression in the variational equation of 

dynamics 

Sjcds = 0, 
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and remembering that vanishes at the limits of integration we 

see that this equation reduces to 

8/c2(r + = 0, 

and that the corresponding Lagrangian function is therefore 

L - c*-^(r 4- 

or expanding, and neglecting terms of order higlier than tlie 

fourth (in the sense just defined, i.e. ignoring the presence of the 

factor C“), 
.2 /p.,2 „ r/\2 7 7 

Ll,fi+U + 4-• (-y) 

The first two terms of the expression on the right (reduced 

to zero dimensions, i.e. divided by cr) are of tin) second order; 

they constitute the Lagrangian function of the classical mechanics, 

from which we began our investigations. 

The successive terms of (29) (reduced to zero dimensions in 

the same way) are of higher order: lienee they will represent 

small corrections to be applied to the equations of motion. The 

metric (27) which we have here assumed still gives, therefore, 

to a first approximation, the same laws as are deduced from 

Hamilton’s classical principle. Besides the potential U, it 

contains the ten functions ifj, y-, y,,. of the four variables y (position 

and time); these are small, as we agreed, and as we have repeatedly 

had to remember in making the various transformations, but 

are a priori arbitrary. We shall see farther on how the law of 

universal gravitation and a criterion provided by the tensor 

calculus lead to the determination of these ten functions (from 

ten differential equations), and so to an explanation of some 

slight divergences which have been observed between the results 

predicted by the Newtonian mechanics and the true motion of 

the heavenly bodies. This more exact correspondence between 

theory and observation provides a physical justification of 

Einstein’s new method of approach, which further incontestably 

represents an enormous speculative advance through its charac¬ 

teristic of securing invariance for all transformations of the 

co-ordinates, not only of space, but also of time. 
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11. An important particular case. Corresponding trajectories 
and their identity with those of an ordinary mechanical problem. 

We shall now apply the expression (29) for Z to a special case, 

the interest of which will be seen in next cha])ter (§ 8, p. 394). 

Suppose that we have 

0, 

(either exactly, or neglecting t(irms of order higher than the third 

and fourth respectively), where x function of the of at 

least the second order. Suppose further that ifj and x^ like U, do 

not explicitly depend on the time. We shall meet later on a 

characteristic example in which this condition is satislied. 

7'he expression (29) can now be written 

L.. 1.2(1 + -I- x) + ?/++ 2 

It is to be noted that in the last term is of the 

fourth order, while the principal part of L is of the second order; 

hence, in this last term, we may calculate “ 
u 

only to a. first 

approximation. But we know that to a first a]3proximation the 

classical mechanics holds, and that therefore the integral of vis 

viva exists in the form 

^ u Eq ~ constant; 

hence the last term on the right of (30) can be replaced by the 

constant \E^ jc?', or even suppressed, since a constant contributes 

nothing to the variational equation. 

The remaining terms of L can be separated into two groups, 

according as they do or do not depend on the velocity, by putting 

r = (1 + + x) 
u= C + cV 

and therefore 

L - T+U. 
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This form of the Lagraiigian function corresponds exactly 

to the form found in the classical mechanics (for a system with 

three degrees of freedom, if not for a material particle), if we 

consider Tas corresponding to the vis viva and Uto the potential. 

Further, it is known ^ that, whenever (as in this case) T is a 

quadratic form in the quantities not explicitly con- 
dt 

taining t, and £/is a function only of the Lagrangian co-ordinates 

y, then the differential equations arising from 

s/(r+ u)dt - 0 

admit of the integral (of ^ris viva) 

T- U ^ E, 

where E is a constant (the total energy), and the trajectories 

corresponding to a given value of E an) identical with the geodesics 

of a manifold such that the square of its line element is defined by 

2(U+ E)TdrK 

(Principle of Stationary Action.) Applying all this to our case 

we shall have the integral of vis viva in the form 

and, for any value of E fixed in advance, we can assert that the 

trajectories coim^ide with the geodesics of the manifold 

ds^ = {u + cV +F}j (l + y + x) K, 

where 
1 

or with the trajectories of the motion, in ordinary space, of a 

material particle with total energy zero, and acted on by forces 

derived from the potential 

= (u+cS>+F>l + + 

^ Cf. for example Lkvi-Civita and Amaldt: Lezioni di meccanica raztonale, 

Vol. TI, Chapter XT, No. 16 (Boloj^na, Zanichelli; in the press); or Whiitaker: 
A'aalytical Dynamics^ 2nd edition, Chapter IX (Cambridge University Press, 1917). 
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which can also be written (neglecting constant terms and terms 

of higher order) as 

f7, = ?7 + cV + +Vx+E + x)- (31) 

12. Qualitative characteristics of relativity metrics. Geodesic 
principle for the dynamics of a material particle. Stationary and, 
in particular, statical line elements. 

In accordance witli the remarks at the end of § 10, the 

metric of the space-time manifold V^ in the region round a generic 

point must be regarded in concrete cases in close connexion with 

the physical phenomena which take place in space and time, 

particularly in the neighbourhood of the j)oint and instant con¬ 

sidered. The quantitative dependence will be duly established 

in next cha])ter. At any rate, in ordinary cases, as has been 

seen, we can never go far from a ])seudo-Euclidean metric. This 

leads to the condition that in the real world of physics the metric 

of F4 is to have the same qualitative ])rop(‘rties as those belong¬ 

ing to the pseudo-Euclidean metrics. In particular, the index of 

inertia must be 3, which implies (as could be proved) that in every 

set of four orthogonal directions drawn from a generic point, 

three are spacelike {ds- < 0) and one is timelike {ds^ > 0). 

By “ relativity metric ” we shall from now onwards mean an 

indefinit-e metric subject to these qualitative restrictions. 

In a F4 with a definite metric there is no qualitative distinc¬ 

tion to be made between the various lines in it, while in a relativity 

F4, as we have already pointed out, we have at every point 

three kinds of direction, according as ds'^ < or > or 0, and, 

corresponding to these, three kinds of line—spacelike, timelike, 

and lines of zero length. Naturally the classification is much 

more complicated for manifolds of two or three dimensions 

immersed in a F4 with an indefinite metric; and the same choice 

of the variables of reference (which is geometrically equivalent 

to the choice of co-ordinate hypersurfaces) would in general 

require preliminary close study of the local behaviour from this 

point of view. 

We shall avoid any discussion of this kind, and shall impose 

some limits on the arbitrariness of the choice of co-ordinates 

by taking as a model what happens in the case of a pseudo- 

Euclidean referred to ordinary time t (or a linear function 
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of t) and three space co-ordinates Xj, which are entirely 

arbitrary. Of the four co-ordinate lines one (^q) will then be 

timelike and tlie others spacelike; further, on any hypersurface 

2/() constant we have 

where dl^ is a positive definite differential quadric, so that we can 

say that a purely spacelike metric, like that of ordinary geometry, 

holds in every timelike section of the space-time. We shall 

constantly refer the relativity manifold F4 to co-ordinates Xq, 

Xj, X2, x^ for which this qualitative property holds. 

Granting these various preliminaries we reach the following 

geodesic principle—derived from the particular cases in soctioas 

4 and 10 by an obvious generalization—which, in Einstein’s work, 

appears as a fundamental law of the dynamics of a material particle 

in clearly specified })hysical conditions (i.e. for an assigned ds-): 

The world lines of a generic free material particle are identical 

with the geodesics of the corresponding ds^, and more precisely 

with the timelike geodesics. In other words, these world lines 

satisfy the variational equation 

Sjds = 0, 

making at the same time ds^ > 0. 

Among the relativity metrics special interest attaches to those 

in which it is possible to choose a system of reference such that 

the ten coefficients g^j^ shall all be independent of the timelike 

parameter x^^; metrics of this kind are called stationary (in 

relation to the particular system of reference chosen). The 

justification for this name is obvious if it is remembered that in 

physics a phenomenon which takes place in a continuous medium, 

and is determined by a certain number of parameters which are 

functions of position and of the time (e.g. the motion of a fluid) 

is called stationary if these parameters do not depend explicitly 

on the time. 

In particular, a stationary metric will be called statical when 

the coefficients gQ, (i ~ 1, 2, 3) of the three product terms in 

dx^ vanish, i.e. when in the expression 

= S'oo + 2Si5'oi ^ x'k . . (32) 
1 1 
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(in which dashes (h^iiote dilh^.rcritiation with respect to .t^,) the 

terms of the first d(‘.^ree in .r^ are missing. The justification for 

tlie name is somewhat more indirect, and will appear from the 

following considerations. 

It is known, and can in any case be verified at once, that when 

L is an even function of the x'^s (as in the case we are considering) 

tlie Lagrangian equations (4') define a reversible motion, i.e. such 

that if P — P{t) represents the motion starting from a certain 

initial position P^^ with an initial velocity then on changing t 

into —- t (i.e. considering the motion defined by P P{ — t)) 

we have the solution corresponding to the same initial position 

and the samci initial velocity but in the reverse direction. Further, 

in the classical raeclianics it is Imown that the motion of a ])article 

is reversible whenever the field of force is invariable with respect 

to the time, i.e. when the field is statical (in the ordinary sense of 

the word). Hence the application of the term statical to a relativity 

metric whose geodcisics are reversible with res])ect to the timelike 

variable 

In the statical case it is usual to put 

iZoo ^ - aa, 

so that (32) becomes 

£2 = F2 — Ea- aa x\ 4; . . . . (32') 
1 

this coefficient F“ lias an important mechanical meaning, which 

we shall now exjilain. 

If at a given instant the velocity of the moving point vanishes, 

i.e. if each x- = 0 (case of initial motion starting from rest), 

we have in particular from (4') and (32') 

4 a,, 4' == (^= 1,2,3) 
1 OXi 

(the two dashes of course denoting double differentiation with 

respect to x^,); these define the quantities as functions of 

position. The terms on the right, 

aF2 
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being derivatives of a single function — evidently constitute 

a CO variant system (for any transformations wliatever of the 

space co-ordinates). Hencti the A\\s constitute the covariant 

components of a spacelike vector F == grad { — The 

contravariant components 

A' 
1 

of this vector, from the preceding formulae, are identical with the 

initial accelerations. Hence the vector F obviously provides the 

statical measure of the force (per unit mass) of the field (the 

initial acceleration of a free material particle, or, if preferred, 

the force per unit mass which must be overcome to maintain the 

particle at rest). 

Consider, beside the point P of co-ordinates a neighbouring 

point P' of co-ordinates x,; + dx^ and the (invariant) trinomial 

- - ^dr^. 
1 

Defining, as is natural, tlie virtual work of F for the displace¬ 

ment PP' as the product of the displacement by the ortJio- 

gonal projection of the force (just as in ordinary Euclidean 

space), the preceding identity shows that constitutes 

the potential function of the force acting in the field in statical 

conditions. 

As has been seen just above, in the statical case the force in 

the field can be very simply expressed by means of the single 

coefficient = V^. In more general conditions, the whole of 

the mechanics of the point is summed up in Einstein’s geodesic 

principle, or, as an alternative form, in the consequent Lagrangian 

equations (4'); an analogous argument can also be developed for 

the initial motion, and the expression for the force in the field 

(at a generic point and instant) as a function of the ^’s deduced 

from it, but the results are by no means so simple and expressive 

as in the statical case. To put it briefly, the concepts of mass, 

force, and energy are all contained in the four-dimensional metric, 

but, at least in general, the task of distinguishing between them 

and associating them with the coefficients of ds^ seems to be neither 

easy nor fruitful of further results. 
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13. Versors in a with pseudo-Euclidean metric. 

An important fact in connexion with a versor (unit vector) 

in the space-time manifold F4 is that it can always be made to 

correspond to a vector in three dimensions. This follows from the 

fact that it has four parameters (or moments), only three of which 

are independent, in virtue of the quadratic identity expressing 

that the length of the vector is unity (cf. Chap. V, p. 91). The 

interpretation of a vector of this kind as a velocity gives par¬ 

ticularly interesting results. 

Let us consider—-limiting the case to a pseudo-Euclidean 

^4“^ generic motion defining y^ as functions of y^, and 

giving rise to a world line in F4. If, as we shall first suppose, 

the velocity of the motion < c, we shall get a timelike line, in 

which the corresponding 

ds^ = =- dy,n\~m 

is positive. If, on the other hand, the velocity > c (i.e. > 1), 

is negative, and we shall have a s|)acelike versor (cf. C^hap. V, 

p. \A2, In either case, denoting as usual the components of 

the Romerian velocity by and the direction cosines of this 

B 
velocity by we obviously get the expressions 

P 

I' = 

dyp 
ds„ I x/l 

dyj dy^ A i8 

- x/l - i33 
a-i = 1, 2, 3), 

for the parameters of the world line (i.e. of the versor ^ tangential 

to it). 

Given the three components of an ordinary vector p, these 

formula? determine the four parameters of a four-dimensional 

unit vector (versor) 5, and vice versa. Given j8, the versor (in 

the ordinary sense) a belonging to it is of course fixed without 

ambiguity (provided jS 4= 0). It will sometimes be convenient 

to describe a as the versor reduced from the four-dimensional 

versor For ^6 == 0 the versor % has its components P 
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all zero, and is accordingly called purely timeliJce. If instead we 

consider the case of a very large velocity in a direction a (i.e. 

if we make P tend to infinity, while the ratios between the ^'’s 

remain determinate), then we have — 0, while the other 

components reduce to the direction cosines a' of the reduced 

versor. In this case the four-dimensional versor ^ i« called purely 

spacelilr; it is tangential to the three-dimensional manifold 

(space) .Tq “ constant, or rather coincides wif.h the versor a 
belonging to this manifold. 

All this can easily be extended to the case of a F4 of any 

metric whatever, referred to any co-ordinates Xq, x^, x^, x^, the 

first timelike and the other three spacelike, and characterized 

by the form 

0 

where denotes, as in § 12, the expression 

0 

and, as usual, B — 
dXfy 

Given a generic versor of parameters 

= rl', (t=0, 1,2,3) 
I 

we shall have 

do _ ^^0 _ \ 

^ \ds\ r 

ti ^^0 ___ 

I ds I dxQ I A* I L L dl * 

14. Digression on geodesics of zero length. 

Let T denote a parameter of any kind such that the co-ordinates 

X can be considered functions of it, and put 

T = if' = \kk9.kX,x, 
dr^ 0 

(dots denoting differentiation with respect to r). Consider the 
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equations of motion of a material system as summed up in the 

variational equation 

sf2Tdr = 0.(33) 

We know from ordinary mechanics that if r denotes the time 

and T the vis viva of a material system, then the Lagrangian 

equations implicit in (33), i.e. 

d dT dT _ Q ^ 2, 3), . (34) 
dr ox,- dx.i 

define the s])ontaneoiis motion of the system and have as a first 

integral the equation 

T ~ E ~~ constant. 

Whenever the value of tlu^. constant E is different from zero, 

then by using the e({uation T = £* it is easy to eliminate the 

parameter r from (33) and obtain from it a variational equation 

capable of defining the trajectories. We have in fact, from the 

definition of T, 

\/2T dr = dSf 

so that the expression for the action, i.e. the integral j2TdT 

which occurs in (33), can be written 

-J2T dr = •>/2Ej\/2Tdr = s/2Elds. 

Hence, for E ^0, the variational equation (33), by elimination 

of the parameter r, gives the equation 

sfds rr. 0,.(36) 

which is the characteristic equation of the geodesics in the V4 

whose line element is ds. From this equation we can deduce, as 

in § 2i, p. 131, the differential equations 

Xi 4- {jl, i} XjXi == 0 . . . . (36) 
0‘ 

of the geodesics, where dots denote differentiation with respect 

to s. The same equations would also be obtained, but with t 

instead of s, by writing out (34) in full and solving for the x's. 
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To sum up, for E ^ 0, it is a matter of indifference whether we 
define the geodesics of F4 as trajectories derived from tlie varia¬ 
tional equation (33), or by means of the typical property (35). 

We now propose to examine separately the case E ^ 0; 
since T ~ E and ds^ — 2T dr^, this is equivalent to ds ~ 0 
along the whole of the line in question, which therefore in this 
case takes the name of geodesic of zero length. (Such lines are of 
course real only if ds^ is an indefinite form.) In tliis case; (35) 
is no longer suitable for defining geodesics; the method just 

referred to and used in § 24, p. 131, to obtain thu differc'ntial 
equations also breaks down, since it assumes .s* as the independent 
variable, and therefore excludes the possibility of ds being identi¬ 
cally = 0. The equations (34), however, keep their significance, 
and therefore offer a means of defining geodesics of zero length 
by a process of passing to the limit (in coinlitions of complete 
analytical regularity) from ordinary geodesics. We shall thus 
apply the term geodesics of zero length ” to the lines represented 
by solutions of the Lagrangian system (34) for the value zero of 
the constant E. 

The differential equations (3G) of ordinary geodesics give 
Xq, x.^, x^ directly as functions of a parameter r (or in particular 
of s). We can suppose the parameter eliminated after integration, 
giving, for example, x^, X3 as functions of But it is also 
possible to eliminate the parameter beforehand, by obtaining 
from (35) three differential equations which define x^, x^ 
as functions of Xq. To do this, we introduce x^ as the independent 
variable in (35), so that it takes the form 

8fLdx„=0.(35') 

where, as in § 12, we have put 

= Sfoo+ -\-'^ik9ik % 4- 
1 1 

From (35') we deduce, by the ordinary method, the three 
required Lagrangian equations, which are 

d dL _dL 

dxQ dxf- dxi 
(i - 1, 2, 3). 

These are completely equivalent to (35'), since, as was seen 
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in § 2, the fourth equation (to be obtained by making Xq vary 

and equating to zero the coefficient of Sa::o) is a necessary conse¬ 

quence of these three. 

These equations, like (35) above, lose their significance in 

th(' case of geodesics of zero length (E 0). An analogous 

reduction can be found in this case too, but it is preferable to 

follow another method and leave the pure Lagrangian form. 

This method is as follows. 

We start from (33) instead of (35), and note that from the 

definition of T and L we have obviously 

ry 2 
2T - - 

Suppose that is not constant along the geodesic (or arc of 

geodesic) of zero length under consideratic)n.^ In the integral 

(33) (corresponding to a generic geodesic of the kind in question) 

we can then assume instead of r as the independent variable, 

so that 

SlL^'^pdxo = 0. 
J dr 

The parameter r is a function, a priori unknown, of such 

dx 
that ‘ ^ remains finite and not zero. We can therefore put 

dr 

dx^ A(a^o) 

where A and A are also finite and not zero. Then the preceding 

variational formula becomes 

sfL^Adx^ = 0, 

from which we get for the geodesics the equations 

^ (i= 1,2,3); 
dXf, dXi oXi 

^ From the limitations introduced in § 12, this condition can always be satisfied 
in the real field. In fact, if we put dxo = 0 in there remains a definite 
negative form, which cannot vanish along an actual line, i.e. when dxiy dx^, 
do not vanish simultaneously. 
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expanding and dividing by A, these can be written in the form 

d dL\ dL^ ^ 

dXi dXi dx\ 

The parameter A can be at once eliminated from these. 

Denoting for shortness the Lagrangian binomial on the left-hand 

side by we get finally the two equations 

•^I _'^2 _ '^3 

a// dL^ dL^ 

dxl 

which are to be taken together with the equation 

0. 

15. Some elementary theorems of geometrical optics. 

It is known that in a transparent homogeneous medium light 

is propagated in a straight line with constant velocity if no dis¬ 

turbing influence is at work. In the case of an isotrofnc medium 

—the only one we shall consider—the velocity is always the same 

in all directions and therefore is a constant characteristic of the 

medium. In vacuo (cf. § 4) the velocity is, in round numbers, 

c ~~ 3 X 10^® cm./sec. 

or 300,000 kilometres per second. 

If instead we have a heterogeneous medium, in which the 

refractive index [x (which is defined as the reciprocal of the velocity 

of propagation) varies from point to point, then the rays are in 

general not rectilinear but are bent in accordance with a law 

which depends on the way in which /x varies, i.e. on the function 

fi{x, y, z). This law can be put in a compact and useful form 

in the following way.^ If the initial point and the final point 

Pj of the path of a ray of light are fixed, the time taken by the 

ray to go from Pq to P^ along a line s will obviously be expresse/l 

by the integral 

since fi, as we have just said, is the reciprocal of the velocitj^. 

^Cf. for example Levi-Civita and Amaldi: op. cit. Chap. XI, No. 18. 



GEOMETRICAL OPTICS 335 

Now the line actually followed by the light is the one which 

makes this integral a minimum, and therefore satisfies the 

condition 

St ^ 0. 

This variational equation, which sums up the whole of 

geometrical optics, is known as Fermat's principle. 

16. Geometrical optics according to Einstein and the meaning 
of the constant c. 

In constructing a geometrical scheme to represent light rays 

the existence is assumed of an fibsolute frame of reference, exactly 

as is done in the Newtonian mechanics. In order to help the 

imagination, the system of reference is supposed to be provided 

by a hypothetical medium at rest—the so-called cosmic ether— 

which constitutes as it were a background or support for all 

optical phenomena. In space free from ponderable matter light 

is propagated in a straight line with constant velocity c with 

respect to the ether, or, which is the same thing, with respect to 

fixed axes, where fixed ” axes mean axes at rest with res})ect 

to the ether. Hence c is the velocity of light as it apjjears to a 

generic observer 0, at rest with respect to the ether. 

Consider a solid C moving with velocity u (a pure translatory 

motion) and a pencil of parallel rays of light which are being 

propagated in the same sense as the motion of C. 

With respect to the observer 0, the luminous phenomenon 

is diagrarnmatically represented, as we have just noted, as a 

particular uniform motion with velocity c. 

According to ordinary kinematics, the analogous velocity 

with respect to an observer 0' rigidly attached to C is c — u. 

Now within the range of velocities which can be realized by 

'll . . 'Up' 
material bodies the ratio and still more its square — (only 

c 

the latter of which can be submitted to effective experimental 

control) are small; we can, however, take it as definitely estab¬ 

lished that the velocity of propagation is still c with respect 

to 0' also. This follows from the classical Michelson-Morley 

experiment, subsequently repeated by other physicists, and 

recently on new bases by Professor Majorana. 

In order to explain this experimental result, it is evidently 
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sufficient that the plieiiomeiion which a}jp(‘ars to macroscopic 

methods of measurement as tlie translation of a body 0 with 

velocity u should, with more relinecJ metliods of measurement, 

be a transformation (A). The study of these transformations has 

in fact shown that any ordinary uniform translation is almost 

indistinguishable from a (A), the difference being of the order 

of one ten-millionth, provided that < 
c 

The classical laws of geometrical optics (that the propagation 

of light is rectilinear, uniform, and with velocity c), and the 

famous experiments referred to above, will tluTofore still hold 

if we suppose that for the propagation of light, as for the motion 

of a material particle under no forces, the equation 

Sl^dsg — 0 

holds, with the condition 

dsg^ — 0 

(equations of uniform motion with velocity c); and if, on the 

other hand, we consider the phenomenon of the translation of 

solid bodies as very slightly different from the description of 

ordinary kinematics, so that it corresponds to a transformation 

(A). 

Hence these special kinds of motion which correspond to 

the propagation of light in the ether, in the absence of disturbing 

influences, are dependent on the form 

ds^^ ^ c^dfi-dl^^, .... (37) 

in which the constant c has a specific numerical value. 

For ordinary motion, with velocities which are at most 

planetary, and under the action of conservative forces—e.g. in 

the presence of assigned masses-—the same i)art is played by the 

form 

ds^- - (c2 - 2V) dfi - dl,? . . . (37') 

in which on the one hand the constant c is subject only to the 

qualitative restriction of being sufficiently large, and on the 

other the influence of the masses modifies to some extent the 

coefficient of dt^. If we aim at attaining unity of conception of 

physical phenomena, we shall obviously be constrained, ccbteris 

faribrn^ to adopt a single differential form ds^ as the determining 
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form both for the motion of material particles and for the behaviour 

of light rays, serving as a basis for both cases. We must therefore 

assign to the constant c, iii the general dynamical case, the same 

specific value as belongs to it in the particular optical pheno¬ 

menon. In the absence of disturbing influences, in particular of 

masses at a perceptible distance, so that U == 0, the ds^ of 

mechanics then becomes identical with the ds^ of optics (the 

limiting case). 

Further, since in the case U — 0 (i.e. in the absence of 

masses at a perceptible distance) the intervention of ds^ has led 

to geometrical optics being summarized in two laws which appear 

as limiting cases of dynamical laws, we are led to hope for the 

extension of the same criterion also to the case in which masses 

exist {U 0). 

The propagation of light will therefore be governed in any 

case by the following postulates: 

(1) The geodesic principle (as for material motion), 

Bjds ^ 0;.(38) 

(2) ds^ 0, which is equivalent to saying that the motions 

dl 2 
in question have the square of the velocity —equal to 

dt^ 

The velocity V is thus slightly less than c; neglecting terms 

which are in fact absolutely negligible, it is given by 

These two postulates can be summed up in a single illuminating 

geometrical assertion: 

In the meiric we have assigned to V4, the world lines of light 

are geodesics of zero length. 

It is to be noted that this assertion has an invariant form, 

and is therefore suitable for defining the behaviour of light rays, 

even if these are referred to a system of any co-ordinates 

Xi, Xg, X3 whatever, instead of to the particular system ^3. 

The assertion lends itself to an obvious generalization, since it 
^ D 666) 12 
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ife natural to ext^end its scope so that it shall continue to hold 

even vv^hen the which characterizes the metric of the 

though satisfying the qualitative restrictions of § 12, is not 

reducible to the particular form (37). 

17. Interpretation in geometrical optics of the condition 
-- 0. 

Given any direction in the four-dimensional space (^, Xj, 

x.,, X3), i.e. any system of increments (dt^ dxj, dx^, dx^), we can 

obviously make a vector (velocity) v correspond to it in the 

physical space whose line element is given by 

3 8 

(IP dx,, = 'L^^a^^dx^dxi,, . (39) 
1 I 

or more precisely in the Euclidean space tangential to the given 

space at the generic point from which the specified increments 

are drawn. 

We shall take the ratios 

dxi 

dt 
{i = 1, 2, 3) 

for the contravariant system of this vector with respect to the 

metric (39). Writing these in the form 

dl 

dl dt' 

we see from the presence of the factor - \ which is the direction 
dl 

parameter, that the positive factor — measures the length of the 
dt 

vector. Referring back to the equation (39), we have for the square 

of this length 

o dl^ ^ 
dt^ 1 

Another vector w, a fimction solely of position and time 

(of position alone in stationary conditions), can be made to corre¬ 

spond to the set of three coefficients g^yf, which are covariant with 

respect to any transformations whatever of the space co-ordinates 
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alone, by taking these three quantities for the covariant system 

of the vector. Then, denoting as usual the coefficients of the form 

reciprocal to (39) by and putting 
8 

1 

we get w for the length and (for > 0) the ratios for the 
w 

moments (the system reciprocal to the parameters) of the 

direction of this vector. It is to be noted that if the spacelike 

co-ordinates x have the dimensions of a length, the coefficients 

of dP, and therefore their reciprocals are pure numbers, 

while the coefficients of the product terms in t have the dimen¬ 

sions of a velocity. Hence the vector w, like v, can be interpreted 

as a velocity. It will be obvious that this conclusion still holds 

even if the dimensions of the co-ordinates x^, x^, x^ are left 

indeterminate. 

If (f) denotes the angle between v and w, both for the moment 

supposed not zero, we have for the metric (39) 

cos^ — E,-— 
1 w V 

and therefore identically 
3 

vw == .... (40) 
1 

which holds even if v or iv vanishes. 

Using (39) and (40), the expression for ds^ can now be written 

in the form 

ds^ — dP{V'^ -f- 2vw COS0 — 

putting V^ = g^. 

This makes it evident that the condition ds^ ~ 0, charac¬ 

teristic of the propagation of light, defines its velocity v as a 

function of the position and direction of the ray, as well as of 

the time, in the general case in which the coefficients of ds^, and 

with them F, w, and <^, depend on t, 
V w 

Representing the ratios - and „ (both positive and pure 

numbers) by jS and we have for ^ the equation of the second 

degree 

P^~-2p co8<f> - 1 = 0; . . . (41) 
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the product of the roots being — 1, it follows that one is positive 

and the other negative. By definition v is necessarily positive, 

so that it is uniquely determined by (41). 

When all the product terms in dt vanish (the statical case), 

w “ 0; hence — 1, and v coincides with F. In general 

p > 0, and the difference between and F (for a specified posi¬ 

tion and time) depends on the direction of the ray, i.e. on the 

angle ^ which it makes with w. We also have v V for every 

ray perpendicular to w. It is obvious from (41) that the maximum 

and minimum values of /3 correspond to (/> — 0 and <f) = tt. 

This is equivalent to saying that the maximum velocity of pro¬ 

pagation 

F(\/l + p'^ + p) 

is along w, and the minimum velocity 

F (v/1 -f- — p) 

is in the same direction but in the opposite sense. 

Except in the statical case, it will be seen that the propagation 

of light in physical space is not only non-symmetrical for opposite 

senses but is completely irreversible. 

18. Fermat’s principle in stationary relativity metrics. 

We saw in § 14 how the difficulty involved in the variational 

principle 8jds — 0 for ds^ — 0 can be evaded in finding the 

explicit form of the differential equations of the propagation of 

light. It is not without interest to note that for every stationary 

ds^ the behaviour of the light rays can also be defined by 

associating Fermat’s principle of the minimum time with the 

equation ds^ — 0, i.e. by assuming 

Sfdxo = 0,.(42) 

with the condition that dx^ is to be connected with the space 

co-ordinates, and their differentials by ds^ — 0. Naturally 

while in the four-dimensional geodesic principle expressed by (38) 

not only dx^, dx^^ dx^ but also dx^^ are to be zero at the ex¬ 

tremities of the interval of integration, in (42) this condition 

must not apply to dx^y, as it would reduce (42) to a mere identity. 
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We now propose to establish the equivalence, for every 

stationary metric, of the two principles of geometrical optics: 

{a) the four-dimensional geodesic principle, and (6) the principle 

of minimum time. 

To do this we must consider the geodesics of zero length as 

derived by the method of limits from timelike geodesics {ds^ > 0). 

For the latter we put as usual 

/ dxi 

dxQ 
(i = 1, 2, 3) 

= 

dP 

dx^- 

ds^ 

'^ik ^ik % 
1 

1 

(43) 

where the function L has finite partial derivatives, since ds^y 

and therefore L, is not to vanish. 

The equation (38) can be written 

SjLdx^ — 0.(44) 

Taking the variation with respect to the co-ordinates x^y x^, 

we get by the classical procedure the Lagrangian equations 

d dL 

dx^^ 0 Xj 
1^=0 {i = 1, 2, 3); . 
aXi 

(45) 

while the variation with respect to gives 

d dL , ,-\ , dL 
(2, a;. - L) + — 

dx^Xi dXi / oXq 

which is a necessary consequence of the equations (45). 

On the hypothesis, characteristic of the stationary case, that 

L does not explicitly contain Xq, we get the integral 

3 C) r 

L--L,^,x'^E.(46) 
1 dXi 

where the constant E represents the total energy of the moving 

point. 
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Multiplying by L, the left-hand side may be written in the 

form / 3 

It follows from the third of the equations (43) that is a 

polynomial of the second degree in x[, a:.2, it is there already 

divided up into three liomogeneous sets of terms of degree 0, 1, 2 

respectively. By Euler’s theorem on homogeneous functions, 
3 0 jf^2 ^ 

the linear term disappears from the difference — Sy —-j x\, 
1 dxi 

which reduces to Hence (46) multiplied by L gives 

JZ2+i(F2 + ig2) - EL, 

The left - hand side is essentially positive when L tends 

to zero, being in fact, for Z — 0, > | F^ (which is to be 

taken as having a lower limit which is not zero in the field 

considered). The product EL can therefore be considered as a 

function of the x’s and x'^s which is always regular^ and not zero, 

when L tends to zero; in the latter hypothesis the constant E 

obviously tends to infinity. 

Further, for all motions with che same total energy E, the 

principle (44), in which we suppose that vanishes at the 

extremities of the interval of integration, can be replaced by an 

analogous one which has the advantage over the first of not 

requiring this condition to be satisfied. In fact, for zero at 

the extremities, we have Sjdx^ 0, and in consequence (44) 

is equivalent to 

hj(L-E)dxo = 0 
or, for Z =h 0, to 

0; 

and in this last equation we can drop the condition that Sx^^ 

vanishes at the extremities, since if we transfer the 8 under the 

integral sign and apply it to dxg (both explicit, and implicit in 

the x' ’s) we get 

which vanishes in virtue of (46). 
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It is therefore established that, for an assigned non-zero 

value of E, the equations of motion can be expressed by means 

of the formula 

without the necessity of imposing any condition as to 

U 
The function under the integral sign can be written 1 — —, 

EL 

from which it appears, remembering what was said above about 

the behaviour of EL, that this function is regular and tends to 

unity if L tends to zero. Now this is precisely the hypothesis 

which corresponds to the transition from material motion to the 

limiting case of the propagation of light. Since the fmiction is 

regular, the order of the operations sj and passage to the limit 

may be interchanged, so that (47) gives Fermat’s principle 

= 0. 

Fermat’s principle can be put in a purely geometrical form, 

referred to the spacelike metric with line element dl, if we give 

dxQ the value found from ds^ ~ 0 in terms of x^, x^, x^, x^, dx^, 

dx2, dx^, and insert this in the formula just above. The result 

is particularly easy to interpret in the statical case = 0, 

i 1,2, 3), in which we have evidently dx^ = and Fermat’s 

principle takes the form 

This shows that the light rays coincide with the geodesics 

of the three-dimensional space with line element alternatively, 

referring to the physical space dP and again applying the theorem 

of least action (cf. § 11), we can say that they coincide with a 

pencil of trajectories corresponding to the potential and 

total energy 0. 
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19. The stress tensor and its divergence in the classical 
theory. 

Let there be given a continuous medium, and in it a surface 

element (facet) da\ one side of this facet is supf)osed chosen as 

the positive side, and one sense of the normal direction is associated 

with it. We shall agree that this sense is the one which corre¬ 

sponds to the passage from the negative to the positive side, and 

shall denote its versor by n. The resultant of the molecular 

actions which the particles on the negative side of the element 

exert on those on the positive side is ordinarily called the stress ^ 

relative to the positive side of the element considered.^ In normal 

cases—-the only ones we {)ropose to consider—this resultant is 

of the same order of magnitude as da, and is represented by 

where is the specific stress on the positive side of the surface 

element normal to n. 
Referred to orthogonal Cartesian axes the three com¬ 

ponents of the vector will obviously be denoted by {i -- 1 ^ 

2, 3). To characterize the distribution of the stresses at a single 

point P, we introduce the three stresses ^3 wdiich act on 

the facets at P parallel to the co-ordinate planes, or, more pre¬ 

cisely, the facets whose normal versors are in the positive directions 

of the co-ordinate axes. Their components are denoted in order by 

^13 i 

^21» ^22’ ^23 5 

^31? ®32> ^33 5 

it follows from the postulates of ordinary mechanics that the 

matrix formed by these terms is symmetrical or that 

^32 “ ^23> ^13 “ ^31? ^21 ®12> 

SO that there are really six of these quantities 0^* {i, k = 1, 2, 3). 

^ Of., for example, A. E. H. Love, Mathematical theory of Elasticityf third 

edition, Chap. II; Cambridge University Press, 1920. 

* Some authors. Love in particular, invert the respective roles of the two sides 

of the facet in their definitions, and therefore, by the principle of reaction, change 

the sense of the vector described as the stress. The sign of its components will 

l>e changed accordingly, and the inequality will be inverted which determines 

whether a given stress is of the nature of a pressure or a pull with respect to the 

eleroont considered. 



THE STRESS TENSOR 345 

Putting for the components of the versor n (its direction 

cosines) we get the fundamental formula 

= .(48) 
1 

and hence for the three components in the direction of the 

co-ordinate axes 

1 

If 5 is a generic direction of direction cosines the scalar 

product X i-^- component of the stress along 

can naturally be written in the form 

1 

From the symmetry of the it follows that in the sum 

just written down 0,^;. can be replaced by the sum is there¬ 

fore, by (48), equivalent to the scalar product X n. Hence we 

have the relation of reciprocity, expressed by the (equation 

X 5 -- X n. 

For 5 “ ^ we have in particular wdiat is called the normal 

stress, i.e. the component along the normal to the facet of the 

stress with respect to the facet itself. In accordance with the 

conventions we have adopted, the stress will be of the nature of 

a push or a pull according as this normal component is positive 

or negative. From the remarks above, the necessary criterion 

is provided by the sign (for 5 ^ n) of the expression 

1 

To make the notation uniform, we shall write instead of n. 
Consider the bilinear form 

o ^ .m 
1 

which represents either the component along ^ of the specific 

stress on the facet normal to or the component along of 

the specific stress on the facet normal to 5* 
(D «r>5) 

12* 



346 ABSOLUTE DIFFERENTIAL CALCULUS 

If now we replace the ?/’s by any curvilinear co-ordinates x 

whatever (the geometrical nature of the sj)ace characterized by 
3 

being of course regarded as invariant), then the parameters 
1 

of the directions 5, 5' constitute, as we know, two contra- 

variant systems, reducing to the direction cosines in Cartesian 

co-ordinates, while the scalar quantity ® just defined will behave 

as an invariant on account of its intrinsic meaning. It follows 

(cf. Chapter IV, p. 70) that the coefficients of the bilinear form (I> 

(referred to these parameters as arguments) will constitute a 

symmetrical covariant double system which is called the stress 

tensor. Extending the notation adopted in the case of Cartesian 

co-ordinates we shall denote it by This tensor will of course 

have the contra variant components and the mixed 

components Oj", which can be obtained in the ordinary way by 

composition with the coefficients of the fundamental form. 

The stress tensor depends in general on the position of the 

point considered; the components referred to generic co¬ 

ordinates X, can therefore in any case be thought of as functions 

of the co-ordinates, and therefore as having derivatives-— 

ordinary, covariant, and contravariant. As we saw in Chapter 

VI, p. 153, from a given double tensor X;j, we can always obtain 

a vector Y intrinsically related to it, which we called its 

divergence, and whose covariant components are defined for 

n ™ 3 by 3 

^ik\l.(60) 
1 

Now the divergence of the stress tensor has an iniportant 

mechanical interpretation, which can be found at once by using 

Cartesian co-ordinates. We know in fact that the molecular forces 

applied to a given particle by all the surrounding particles have 

for their resultant a vector whose components per unit 

volume, in orthogonal Cartesian co-ordinates, are given by 

Xi = 
1 ^Vk 

(51) 

Noting that in this system of reference the divergence of 

is expressed by precisely the sum on the right of (51), and remem¬ 

bering that the covariant components of a vector are identical 
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in this case with the ordinary components, we see at once that 

the vector x divergence of the stress tensor with its sign 

changed. Applying the formula (50) we can therefore write 

Xi^ .(51') 

20. The fundamental equations of the mechanics of continuous 
systems, referred to fixed axes; transformations of them in general 
co-ordinates (space co-ordinates). 

It is known that, when no hypothesis is made as to the nature 

of the medium, and when therefore the stresses are not particu¬ 

larized, the fundamental equations of the mechanics of a con¬ 

tinuous system reduce to the dynamical equation 

pi pF + X.(52) 

(where p is the density, f the acceleration, F the force per unit 

mass, and x the vector defined in the jireceding section), together 

with the equation of continuity 

+ div(pv) -= 0 . . . (53) 

(v being the velocity), which can also be written 

+ pdiv(v) == 0, . , . . (530 
at 

where the symbol denotes a “ proper ” derivative, i.e. one 

which considers p as depending on i in such a way that as t varies 

p refers always to one and the same particle of matter. 

If now we wish to find the explicit form of these two equations 

with reference to any co-ordinates x whatever, connected with 

the y’s by formulae which do not involve the time, all we need 

do is to obtain the expressions for the covariant (or contra variant) 

components of the vector f, since those of x already known 

from the preceding section (cf. formula (51')) and the invariant 

expression of div(pv) is known from p. 153, Chapter VI; the force 

F will naturally be supposed given by means of its covariant (or 

contravariant) components. 
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The acceleration f is defined by 

where the (proper) derivative is supposed to be calculated with 

respect to an observer (system of axes or, more generally, co¬ 

ordinate net) fixed in the mechanical sense of the word. 

Referred to co-ordinates y this relation is equivalent to the 

three scalar relations 

If now, with reference to any co-ordinates x whatever con¬ 

nected with the ?y\s by relations which do not involve the time, 

we consider the simple system 

.(54') 
01 1 

it is easy to see that this is covariant. In fact, on the one hand 

'dv- 
the quantities —' {t being a parameter not involved in the trans¬ 

om 

formations) are covariant like the t\;’s, and on the other the 
3 

quantities are co variant from the law of contraction 
1 

of tensors. Noting once more that in orthogonal Cartesian 

co-ordinates the covariant derivatives reduce to the ordinary 

derivatives, and also the co variant and contra variant components 

of a vector to the ordinary components, we see that in these co¬ 

ordinates the expressions (54') are identical with those on the 

right of (54), i.e. with the (covariant) components of f. This 

identity will still hold with reference to the oj’s, and we can 

We can now find the explicit form of the equations (52) and 

(53) with reference to the co-ordinates x. The first will give the 

covariant equations 

P = pFi — 
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and the second the invariant equation 

+ == 0, .... (5C) 
Ot 1 

or ^^P + i,{pv%^0.(5G') 

21. Galilean systems of reference. 

Among the purely spacelike transformations a particularly 

simple group consists of those which give tlie change from a 

system of fixed (in the mechanical sense of the word) Cartesian 

axes to a system of Cartesian axes in uniform translatory motion 

with respect to the first set; the latter system is called Galilean, 

The definitions of force, specific stress on a generic surface element, 

and divergence (whether of a vector or a tensor) are not changed 

in a transformation of this kind, but the velocity v of a generic 

point is altered by the addition of a constant quantity represented 

by the velocity of translation t; this addition, however, evidently 

does not alter the acceleration (i.e. the proper derivative of v). 
It follows that such a transformation leaves unchanged the 

dynamical equation (52), and also the equation of continuity; 

the latter is evident from the form (53'), which, in addition to 

div(v) (which, as just pointed out, is invariant), contains the 

proper derivative of p, wliich from its intrinsic meaning is obviously 

independent of the axes of reference. 

Furthermore, all the laws of the classical mechanics are known 

to be unaltered if the axes of reference are suj)posed to be in 

uniform translatory motion. 

22. Equivalent form for the system (52) and (53). 

In the general equations of motion of a continuous system 

the force per unit mass P occurs explicitly. From the formal 

point of view we can always, and in an infinite number of ways, 

consider P as the divergence of a suitable tensor; its components 

can then be supposed amalgamated with the ^^v/s, so that we 

can at once put P = 0 in the equation (52). 

From the point of view of application this is not always con¬ 

venient, and in many cases the direct method is preferable; but 

from the speculative point of view this process of submerging 
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the force per unit mass in the stress is not only legitimate, but 

in accordance with the physical standpoint which refuses to 

admit action at a distance, asserting that every disturbance is 

transmitted by mediate action. In virtue of these considerations 

we shall put F — 0 in the vector equation (52). 

We now propose to transform, without altering their content, 

the three scalar equations included in (52) and the equation of 

continuity (53), in such a way as to replace these four eqiiations 

by a set of four substantially identical equations.^ 

Referring to orthogonal Cartesian axes y, we project the 

equation (52) (in which we have now put F — 0) on the axis 

y-, using (55), we get 

P 
'di\ 3 

S. 
1 

— A ? 
1 ^Ifk 

(57) 

while the equation of continuity (53) or (53') takes the well- 

known form 

I y ^{pVk) 
i' ay,- 

0. (58) 

Adding (58) multiplied by to (57) we get 

d T i" ' d y l ■ 

I; 

1 

which can be written 

dt 

3 

^ {l»\Vk + O,:,) = 0. 
^Vk 

(57') 

It will now be seen that the quantity on the left of (57') and 

(58) is in all four cases the sum of partial derivatives with respect 

to the independent variables I, y^, y^, It follows from § 6 that, 

since p denotes the material density, € = c^p can be interpreted 

as the energy density; further, it may be seen in a moment that 

the vector pv (the momentum density) represents the flux of 

matter (per unit of surface and of time), and therefore the flux 

of energy will be c^pv = ev. 

^ Cf. particularly G. D. Mattioli, Rend. Acc. Lincei^ Series V, Vol. XXIJ1 

(second half-year, 1914), pp. 328-834, 427-482. 
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Now to give greater uniformity to the equations (58) and (57'), 

and to use in them the quantities whose physical interpretation 

has just been noted, we must replace t and the by their 

V • 
Komerian expressions — cl, j8,- — and jiut 

c 

Too - e = cV,.(69) 

^ .... (60) 

Tik == =- pViVk, . (61) 

{i, 1, 2, 3). 

The result is that the four equations (58) and (57') are all 

included in the single equation 

a dT,, ^ 
22/0 ^Vk 

(62) 

by giving i in turn the values, 0, 1,2, 3. 

From the equations (59), (60), (61), we can see the interpre¬ 

tation of the various 1 s. Tqo represents the energy density; 

{{ ^ 1, 2, 3) the components with their sign changed of the 

relative Eomerian flux; the (i, k ~ 1, 2, 3) in statical 

conditions ~ 0), reduce to the ordinary stress components, 

from which they differ in general by the additive terms 

pViVf^ (which, how(‘ver, in ordinary circumstances are unim¬ 

portant compared with the other terms). To distinguish when 

necessary the T,;;/s from the ordinary stress we shall call 

them the kinetic stress. 

23. Einsteinian modification of the equations of motion of a 
continuous system in a particular case. 

The original equations (52) and (53), and therefore the equiva¬ 

lent set (62), are invariant when the axes of reference undergo 

an ordinary uniform translation. In the earlier stages of the 

argument we set out to give the dynamics of a material particle 

a form which should be invariant for a generic transformation 

(T4), and we were induced to use Hamilton’s principle in order 

to modify the equations of motion slightly. It followed from this 

operation that when there are no external forces the equations so 
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modified keep their algebraic form unaltered, not only for ordinary 

translations but also for the Lorentz transformations which we 

studied in detail in § 8. 

Now the dynamics of a continuous system must clearly 

include as a limiting case (corresponding to a medium of density 

everywhere zero except in one very small region) the mechanics 

of a single material particle. This at once shows that it is abso¬ 

lutely necessary that the postulates introduced for the mechanics 

of a continuous system should be brought into harmony with 

the modifications accepted above in the mechanics of the material 

particle. The form of the equations (62), when there are no 

external forces, must therefore remain unchanged for any Lorentz 

transformation. If in accordance with (59), (60), and (61) we 

take for the the expressions 

Tqq — 6, Tqi = e/3,, ™ * (^’^) 

this condition is not rigorously satisfied, though, as we have just 

pointed out, there is invariance for ordinary translations; but 

it is easy to show that the required invariance for Lorentz trans¬ 

formations can be obtained by a modification, which, as usual, is 

very slight in the conditions ordinarily realized. 

To do this, we take the four-dimensional form 

= dyo — 

used above in discussing the dynamics of a particle, where as 
3 

usual dl^ = 
1 

Denoting by dy^ (i = 0, 1, 2, 3) the increments of the co¬ 

ordinates of the generic material element of the system under 

consideration, and by dl^ and dsg the corresponding elements 

of the (spacelike) trajectory and the world line, we have by 

definition 

A 
%o’ 

(64) 

^7/ 2 
whence ^ ^.(64') 

and dV = (1 - • • • (64") 
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The parameters of the world line are 

A* = 
dso 

(where we have suppressed the sign of absolute value, since in 

dealing with the motion of a material particle we must have 

< 1, or dsQ^ > 0); they can be expressed in terms of the ^/s, 

using (64), (64'), and (64"), in the form 

AO = __L 
dso s/l — p' 

A^ = 
x/l — ^ 

{i= 1. 2, 3). 

From these, taking account of the general formula 

= ^k9ik^ 
0 

and of the values of corresponding to ds^ (cf. § 6, 

formula (12)), we get the moments 

Aq — 
1 

A, = 
A 

If we take the values of the monomials 

eA.A k 

as given by these formulas, and compare them with the expressions 

(63) for the T^^’s, we see at once that the difference between 

each of them and the corresponding is of the second order. 

We shall now show that if in the equations (62) we replace 

the values (63) of the T^y^’s by the very slightly different values 

(i, * - 0, 1, 2, 3), . . (66) 

the equations will behave in the required manner for Lorentz 

transformations; and we shall be able to deduce the criterion 
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to be applied for transforming the equations in the more general 
case. 

Note first that, if is taken as the fundamental form, the 
terms on the right of (65), and therefore the constitute a 
covariant double system. Further, taking into account once 
more the particular values of the coefficients of ds^ expressed 
in terms of the co-ordinates y, it will be clear that tlie covariant 
derivatives of the 7\y/s are identical with the ordinary derivatives, 
and that the terms on the left-hand side of (62) can be written in 
the form 

0 

.s 
!«■ 
iki 

and are therefore identical with the covariant components of 
the divergence of the tensor T,j. (cf. Chapter VT, p. 153). These 
equations therefore collectively express the fact that the diver¬ 
gence of this tensor vanishes—a property which is invariant for 
any transformations whatever of both the space and the time 
co-ordinates. Remembering finally that a Lorentz transformation 
leaves unchanged the form of we can now assert that the 
equations (62), with the values of given by (65), will still 
hold after the application of any Lorentz transformation. 

Q. E. D. 

24. General case. Introduction of the energy tensor, and 
meaning of its components in general co-ordinates. 

When there are no stresses, the result we have arrived at is 
that we assign to the T^y/s corresponding to the motion of a 
generic continuous system the tensor value given by 

Tijf. — eX; A^, 

where c is the energy density and the A/s are the moments of 
the world line of the material element. Further, given any 
distribution of stresses, referred to Cartesian co-ordinates, then 
in order to transform the equations of motion into any spacelike 
co-ordinates (leaving the time unchanged) we have traced out 
an argument based on the invariance of the bilinear form 

s 
O == (which showed us the three-dimensional tensor 

i 
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character of the O/z/s when we pass to generic co-ordinates), 
on the vector character of the velocity, and on the invariance of 
the density. 

We now propose to consider more generally transformations 
of space and time (i.e. of the set y^ into a new set 

Xq, X2, keeping the results already obtained in the two 
particular cases just referred to (cf. § 23 and § 20). A sufficient 
condition is that the Tj/s (defined physically with reference to 
a particular system of co-ordinates) shall have the character of 
a tensor for any transformations whatever. The tensor so intro¬ 
duced is called the energy tensor. 

This is equivalent to asserting the invariance of a bilinear 
form in four variables 

B ^ 
0 

having for its coefficients the quantities T.^^. and for its arguments 
the parameters 

f~ ^ 
^ " ds' ^ ~ds' 

of two arbitrary four-dimensional versors 5'. It will be seen 
at once that this postulate covers the two particular cases already 
discussed. In fact, when there are no stresses the tensor character 
of the follows from the expressions (65) adopted for them, 
while for transformations (T.^) which leave the timelike co¬ 
ordinate unchanged, the invariance of B involves that of the form 
<&, as will be seen from the following argument. 

When we pass from a system a; to a system x, it follows from 
the invariance of B that (with obvious meanings for the notation 
used) 

2/a- ^//r ^ ~ ^ik ^ ^k* 
0 0 

In the case of a (Tg), we shall have dx^ = dJc^, d'x^ = d^x^, 

and therefore 
3 33 

Toodxod\+dxQ i:^TQ^d'xi,+d'x„ T.^To^dx^+’Zi^Ti^dXfd'x^ 
1 1 1 

_ 3 _ ^ __ 3_ 

= ToQdxod'xo+ dx„'L^T^,,d'x^ + d'xo'E.i,To,Jx^+ 'L^^Ta-dXid'x^-, 
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and as this must hold whatever the differentials d'x^ may 
be, it follows that 

T ~ T ^00 — -*oo> 
3 3 _ 

^(Mr ^ ^/c ^Ok ^^A-> 
1 1 

^ik ^ ^k “ '^ik ik ^'^k' 
I 1 

As the differentials dxi, d'x^ are arbitrary, these relations 
express the fact that ^00 is an invariant (the energy density), 
that the ^Ok s are the components of a vector (the flux of the 
energy with its sense changed), and the T-uc’^ those of a 
CO variant double tensor (the kinetic stress). 

Q. E. D. 

We now propose to examine, with reference to pseudo- 
Cartesian co-ordinates y, the physical significance of the 
form B when the directions are chosen in a particular 
way. 

Suppose first that both the directions are purely timelike, 
i.e. that 

dx^ -= d'x^ -= 0 {i = 1, 2, 3) 

and therefore ds^ = dy^-, ds'^ = d'y^^. 

Then the only parameters which are not zero are and 
which are equal to 1, and there remains 

^ “ ^oo> 

i.e. in this case B represents the energy density. 
Now suppose that are purely spacelike, i.e. that 

dy^ == d'yQ = 0, and consequently 

ds^ = - dlo\ ds*^ = - dl'o\ 

Then there remains 

B 
y rp dyi 
^ik ik W 
1 dlQ 

^Vk 

dC 

i.e. B reduces to the linear invariant of the kinetic stress. 
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Lastly, suppose that % is purely spacelike and purely time¬ 
like; i.e. that dyQ — 0, d'yi == 0 (i = 1, 2, 3), and therefore 

ds^ = - ^ V- 

Then B = 
1 du 

and is therefore identical with the flux of the energy in the 
direction ^ with its sign changed. 

We can now determine the physical significance of the 
with reference to any system of co-ordinates whatever. This 
follows easily from the invariance of the form B if we allow 
that the physical significance of this form in the particular cases 
noted above remains the same in any other system of reference. 
The dilferent cases are in detail: 

(a) The energy density at a generic instant and point Xq, 
Xi, ^2, X3 will be what B becomes for 5' purely timelike, i.e. for 

_ 0 ( . ^ 0). 
^ 9oo 

i.e. it will be 
9oo 

(b) The flux of the energy along a specified (spacelike) direction 
• dx- 

a of parameters a' = will be what — B becomes when 
we put in it ^ 

dX: 

= 0, ^'0 

i.e. it will be 

dl 

1 

a.\ = 0 

_ 1 

~ F 

(^■ == 1, 2, 3), 

If in particular the direction a coincides with one of the co¬ 
ordinate directions, say Xf„ we have 

a 
9hh 
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and the other a' ’s are zero; hence the flux of the energy in that 
direction is given by 

_ 1 ^0 

(c) The component, in a direction a of the kinetic stress 
relative to a facet normal to a direction a' will be what B becomes 
when we f)ut 

i'' - 

i.e. it will be 

dxj _ dXi 

|'ds| ~ dl 

d'x, _ d% 
Ids'I ~ dl' 

^0 

^'0 

0, 

= 0; 

2* T,,,a‘ d fk 

If in particular the direction a coincides with that of one of 
the co-ordinate lines, say cr,., and a' with that of another, say 
we shall have 

1 / 1 

ttr , a,, 
V — 

and all the other a’s will be zero. Hence the component in the 
direction x,. of the kinetic stress relative to a facet normal to 
will be 

T IS 

^9rv 9ss 

Before concluding this section we wish to make one last 
remark. We have seen that when there are no stresses (the case 
of discrete particles of matter) the energy tensor takes the par¬ 
ticularly simple form 

-=€A,A,.(65) 

Another important particular case is when the energy tensor 
has the form 

Tijc ^ eA, A;, — .... (66) 

where jp is any invariant function of the position and the time. 
In order to see the physical significance of this expression, con- 
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sider a specified point of F4, and take a system of co-ordinates 

which are, at least locally, pseudo-Cartesian, which we know 

is always possible. Then the take the values S/', while if 

we make the direction qTq coincide with that of the world line, the 

A/s all become zero, except A^j, which is 1. 

In these conditions we shall have 

^00 = ^ — p, 
Tik = 0 {i 4^ k), 

Tu = p {i> 0). 

The last two formulae tell us that on every facet there is 

exerted a stress normal to it and independent of its direction: 

the scalar quantity p measures the value of this stress per unit of 

surface. The medium under consideration therefore behaves like 

a perfect fluid (a fluid incapable of transmitting a shearing stress), 

and p represents its pressure. It is hardly necessary to point out 

that if p is negative it represents a uniform pull in all directions 

—which, within certain limits, is known to be a possible condition 

even in a real liquid. 

25. Relativistic form of the equations of motion of a con¬ 
tinuous system. 

In the particular case of no forces, we saw in § 23 how the 

general equations of motion of a continuous system can be put 

in the form 

S, Tl*- - 0 (i = 0, 1, 2, 3), . . (67) 
0 

where the T^^’s are regarded as elements of a tensor, and that 

this equation holds in general co-ordinates x whatever may be 

the transformations (involving both space and time) imposed 

on the original co-ordinates y. The proof of this consists in the 

invariant character of the equations (67) (which express the 

vanishing of the divergence of the tensor together with 

the fact that in the original co-ordinates y the equations (67) 

reduce to the form (62), and that the quantities become 

identical (neglecting terms of the second order, if not rigorously) 

with the expressions (63) which are their values in the classical 

mechanics. All this holds without change even if we drop the 
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particular hypothesis suggested by the law of transformation of 

when the transformations (T^) are applied; that the 

forces are zero. It is only necessary to retain the tensorial character 

of the in every case, as we have already agreed; which, in 

the particular case where stresses are present, means that 

their experimental values are determined, say, with reference 

to the co-ordinates which formed the starting-point of the 

investigation. 

The equations (67) thus hold so long as the metric considered 

is pseudo-Euclidean, and for any co-ordinates of reference what¬ 

ever. But the invariant expression for the laws of motion, which 

is seen to hold under this hypothesis, can be at once extended to 

the general case of any metric whatever, in virtue of the observa¬ 

tion made earlier in this book (cf. Chapter VI, p. 164) that in a 

first-order region every metric behaves as if it had constant co¬ 

efficients, and is therefore Euclidean in the proper sense in the 

case of a definite ds^, and pseudo-Euclidean in the cases which 

concern relativity mechanics (cf. §§ 6 and 12). In fact, the equa¬ 

tions (67) contain only contra variant derivatives of the T,fr's, or, 

in other words, combinations of their ordinary first derivatives 

with the gij/s and their first derivatives; the argument thus does 

not go beyond tha consideration of a first-order region round the 

g€;neric point which is being studied. 

26. A particular class of motions of a continuous system. 

In the classical mechanics the equation (52) of the motion 

of a continuous medium, when there arc no forces and no mole¬ 

cular action (a discrete system), evidently reduces to 

I = 0, 

with which is to be associated the equation of continuity. It 

follows that the vector equation is satisfied at once by the uniform 

rectilinear motion of single particles, the density being then 

determined by the equation of continuity. This is conceptually 

evident; in order to translate it into a formula, we assign to any 

material particle, initially at a velocity v(P^) which is a 

function (a priori arbitrary) of the position P^: the geometrical 

equation of motion is then evidently 

Pit) ^ Po+v{Po)t, .... (68) 
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which shows that the solution depends in substance on three 

arbitrary functions of three arguments each. 

If we wish to find an explicit expression for the law of variation 

of the density it is perhaps jueferable to go back to the molecular 

equation of continuity instead of to the equation (53) which is 

its local form. It is a well-known result that if w(j introduce the 

functional determinant D of the actual co-ordinates y{t) with 

respect to the initial co-ordinates we get 

pD = po, 

where is the initial value of p, and is a priori arbitrary just 

as is the initial distribution of the velocity. Projecting the 

equation ((>8) on the axes, and denoting the components of v by 

Vi{y\, y%, yl), we get 

yi y'l + Vi t, 
whence 

D - 
ii ^yt 

It follows from this that 1) is a polynomial of the third degree 

in t, which reduces to unity for t — 0. Naturally (supposing that 

the r/s and their first. dcTivtatives are finite and continuous) the 

motion remains regular so long as D does not vanish; the smallest 

positive root (if such exists) of the equation of the third degree 

D — 0 determines the amplitude of the interval of regularity, 

&c. 

A particular case worth noting is when the density remains 

constant for each particle (incompressible systems). In this 

case ^ 0, and the equation of continuity, in the original 
at 

Eulerian form (53'), gives 

div(v) — 0.(69) 

This implies in particular that the divergence vanivshes at the 

initial instant, and therefore gives as a necessary condition for 

the constancy of the density that the field of the initial velocities 

must be solenoidal, i.e. that divv(Po) ~ condition is 

not however sufficient. In fact, if the density is to remain constant 

it is necessary and sufficient that Z) = 1 at any instant t\ the 
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expansion of D as a polynomial of the third degree in t shows 

that this imposes three conditions, corresponding to the vanishing 

of the coefficients of t, and (69) expresses only the first of 

these conditions. Further, if these conditions are satisfied initially, 

p remains constant for every particle (i.e. ^ =— 0), which < 
dt 

ensures 

that the equation (69) is satisfied at every instant, or in other 

words that the field of the velocities is always solenoidal.^ 

We have dealt at some length with this class of elementary 

solutions, because the results can easily be generalized for any 

whatever. If x^) denote the moments of a generic 

congruence of lines in the F4, we know (cf. Chapter X, p. 274) 

tliat the necessary and sufficient condition tor the congruence 

to be geodesic is that the curvature vector, or, what is equivalent, 

its covariant components, shall vanish, i.e. that 

i:,A,|,A' = 0 (* = 0,1, 2, 3). . . (70) 
0 

We now propose to show that in a F4 with any metric whatever 

we get solutions of the equations (67) by taking for world lines 

the lines of any geodesic congruence whatever, or, in other words, 

by supposing that the A’s satisfy the equations (70) and by 

assigning a suitable value to the density p, and through it to the 

quantity e which appears in the expression (65) for the energy 

tensor of a discrete system (i.e. a system with no molecular action). 

Take the general equations (67), which we shall write in the 

form 3 

(i = 0,l,2,3) 
0 

and in them give the value cA^- A^j.. We shall have 

and therefore by substitution 

\ ^ki ^ \ € A; Hijc = 0 (^ = 0, 1, 2, 3). 
000 

’ Cf. OisoTTi: “ Moti di un liquido che lasciano inalterata la diatribuzione 
locale delle presaioni ”, in Rend. deUa R. Acc, dei lAncei^ Series V, Vol. XIX (first 
half-year, 1910), pp. 373-376. The observation is there limited to the case of 
permanent motion, 
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The second term vanishes in virtue of (70), and therefore the 

four equations reduce to the single condition 

= 0. . . . (71) 
0 0 

If we choose c so that this condition is satisfied, the equa¬ 

tions of motion will all be satisfied also. 

Q. E. D. 

Tlie equation (71) defining e can be put in a somewhat more 

expressive form by using the results (cf. Chapter X, p. 267) that 

0 0 ds 

where s denotes the arc of the world line, and noting that 

= divX. 
0 

Hence (71) can be written 

^^ + cdivX = 0 .... (71') 
ds 

which is precisely the form of the equation of continuity. 

If in particular we consider a solenoidal geodesic congruence 

(divX = 0), the last equation becomes 

whence c = constant along any world line; i.e. the density of 

a particle remains constant throughout the motion. 

27. Experimental determination of the coefficients of an 
Einsteinian ds^. 

We shall close this chapter by some remarks of a general 

character on the experimental determination of the coefficients 

9ik- 
We suppose ourselves fixed in determinate physical conditions, 
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so that, as already noted in § 10 and § 12, we must also regard 

as determinate the Einsteinian 

== 'Li^g^dxidx^ .... (72) 
0 

of the field which we wish to explore by means of suitable expcri- 

merits. It is of course understood that we admit the validity of 

the fundamental postulates of general relativity, and more 

precisely: 

(a) (cf. § 16) the propagation of light always takes place in 

such a way that 

ds^ 0.(73) 

along every world line; 

(h) (cf. § 12) the world lines of the motion of a material particle 

in a field of force for which ds^ can be expressed by (72) are 

timelike geodesics for this ds^. 
We propose to show that (a) suffices to determine the ratios 

of the coefficients <7,7,., or, which comes to the same thing, gives 

ds^ except for a factor which can in turn be found from (6). Of 

the four parameters, will as usual denote the time, in the sense 

of the conventional time, measured at any single point by a clock 

which may be of any kind and even incorrect. However the 

timelike parameter Xq is chosen, the mere fact that it is timelike 

implies, according to the Einsteinian theory, that ds^ will always 

be greater than 0 if Xq alone varies, x^, x.^ remaining constant. 

But, when dxj^ == dx^ = dx^ 0, ds'^ reduces to g^dx^^, so 

that the coefficient necessarily > 0, and we can therefore put 

^00 = .(74) 

where c is a positive constant (introduced for the sake of homo¬ 

geneity) and V, like g^, is an unknown function of x^, x^, X2, 
(a pure number, i.e. of zero dimensions). 

We shall now choose any instant Xq we please, and three 

values X2, x^ of the space co-ordinates, i.e. a point P; we 

propose in the first place to determine the ratios of the g’s at P 

and at the instant Xq. 
For this we shall use light signals between P and very near 

points in the surrounding physical space, which is by hypothesis 

(at any given moment) in one-to-one correspondence with the 
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sets of three co-ordinates x^. In consequence, surfaces and 

lines in this physical space represented by equations between 

at the moment Xq are perfectly determinate: in particular 

the lines (given by the equations x^ — constant, x^ — con¬ 

stant) on which only x-^ varies, the lines x^, &c. 

We shall choose two points Q and Q' very near P, on the same 

line as P. Suppose tliat Q and Q' correspond to increments 

(to be treated as infinitesimals) dx^ and — dx-^ of the co-ordinate 

x^; dx2, dx.^ are zero in both cases since the displacement is along 

a line Xj^, 
Suppose that two light rays start from P at the instant Xq, 

one towards Q, the other towards Q\ Let Xq + dx^ be the 

instant when the first ray arrives at Q; d'x^ the instant 

(not in g(^neral the same as the first) when the second ray arrives 

at Q\ Using the exjuession (72) for ds^ and the condition ds‘^ 0 
for the propagation of light, we shall have in passing from P to Q 

9oo + 2,901 dXf, dx-i + = 0, . (75) 

and in passing from P to Q* 

9oo V — d'xQ dx^ -b dx^^ -= 0. . (76) 

These two equations, in which dx^, dx^, d'x^ are known (the 

first chosen as we please, the other two found by experiment), 

obviously give the ratios It is to be noted that if the 
^00 ^00 

elementary times of propagation dx^, d'x^ (found by observation) 

are equal, then (75) and (76) give by subtraction gQ^ — 0. 

Reciprocally, if g^^ “ 0, the two intervals of time must be equal. 

Hence the elementary propagation of light in the direction of a 

line x^ is a reversible phenomenon if and only if g^^ = 0. 

In the same way, considering the other two co-ordinate lines 

Xg and X3, we can determine the four ratios 

^02 922. ^03 933 
? > > • 

5^00 9oo 9oo 9oo 

To obtain the other three ratios 

923 931 9i2 
- - > - - j 

9oo 9oo 9(30 
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we must make further experiments of the same type, but with 

the point Q in a direction other than those of the co-ordinate 

lines. 

Thus to determine we can use a line on the surface through 
^00 

P, == constant, which is neither 

^3 — ^2 “ constant. 

We then have, in passing from P to a very near point Q on this 

line, the increments 

0, dx^, dxo, 

with dx2 arbitrary. 

If we make a light ray start from P at the instant x^ towards 

this point Q, and if dx^ denotes the small time of propagation, 

we get from (72) divided by 

dx^ + 2 dx^ dx2 + 2 ^—dx^ dx^ 
^/OO 5^00 

+ rfxgS + 2 -^23 = 0, . (77) 
5^00 .^00 //()() 

whence we get the ratio , all the other quantities in this equation 
5^00 

being known or already determined. In a similar way we can 

find ^ and 
9oo 9m 

It is not inapposite to add that from other experiments of the 

same type we can get any number (in fact an infinite number) 

of further equations between the ratios of the The con¬ 

sistency of these results, in so far as this is borne out by the 

further experiments, affords a very significant control of the 

validity of the Einsteinian hypothesis so far as concerns the 

postulate (a). 
The ratios 

^ (i, A; = 0, 1, 2, 3) . . (78) 
9m 

being thus determined, if we put 

=== 9m^^*^ === cH^'’ds*^ . . . (79) 
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ds^ 

(using (74)), it follows that the individMal coefficients of the 

differential form 

5^00 

are all known, and therefore the form itself is completely deter¬ 

mined. 

From (72) and (78), separating out the terms which contain 

the suffix 0, we get ds''^ in the form 

ds'^ = rfV -f- dx„ dxi + t,,, gfdx; dx„. . (80) 

At this point we find that we have to determine the function 

V by gravitational experiments, and more precisely by experiments 

on the motion of material particles in the field in which the 

expression (79) holds for ds^. 

The equations of motion are included in the variational 

equation 

Sfds ^ 0.(81) 

Now suppose that the time is taken as the indej)endent 

variable along the trajectory. Let (i = 1, 2, 3) denote the 

dx • 
derivatives and using (80), put 

dxQ 

ds' 

dXn 

V33 ^ 
1 + ^i9iH X; x* 

1 1 

=r= i (Xo I Xi, Xg, Xg I Xj, Xg, Xg). j 

(82) 

Then, remembering (79), the variational equation (81) can be 

written in the form 

8J{e*'L)dx^f “ 0.(8T) 

This is equivalent to the three Lagrangian equations 

(i = 1,2,3). 
dxQ dxi dx.; 

Noting that v does not depend on the x^s, and putting for the 

sake of brevity 

dL 

dXi 
= a,-, 

da I dL 

dxr\ d x^ 
ft (83) 
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it follows that 

dv I _i_ Q 
a.j —-^3- + ^ = 

cIxq o 
0. (84) 

It is further to be noted that direct observation of the motion 

enables us to determine how tlie co-ordinates vary as functions 

of the time so that we must consider the functions 

and therefore also the derivatives and x-^ known for every 

material particle left to itscdf in or projected into the field of force 

we are considering. It follows that the quantities a^, defined 

by (83) are also known. Since 

dv dv ^ d . 

dx^y 1 dxi 

it follows that ultimately the equations (84) are three linear 

equations in the four partial derivatives of the unknown function 

V, If we fix a generic point P and an instant any arbitrary 

choice of the velocity of the body under experiment (i.e. of the 

three numerical values to be assigned to ^3) will give tliree 

equations in the four derivatives 

dv dv dv dv 

dxQ dxi dx2 dx^ 

referred to the given position and time. The equations are there¬ 

fore more than sufficient to determine the numerical values of 

these derivatives, in the sense that by making a larger number 

of experiments we can not only determine the four unknowns, but 

also test the accuracy of the results as many times over as we 

wish. 

The derivatives of v, at every point in a certain field and at 

every instant in a certain interval, being known, v itself is 

determined except for an additive constant; hence, from (74), 

goQ is known except for a constant multiplier, which we may 

suppose absorbed into the factor of homogeneity c^, so that 

remains arbitrary. The presence of this constant in the expression 

for and hence, by (79), in ds^, seems to be in the nature of 

things, corresponding in substance to the choice, which remains 

arbitrary, of the unit chosen to measure ds^, the space-time 

interval. 
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CHAPTER XII 

The Gravitational Equations and General Relativity 

1. Qualitative properties of the coefficients of ds^o 

It follows from tlie results in the preceding chapter (p. 325) 

that when the variables of reference y^, 2/a such that 

they can be interpreted, without sensible error, the first as 

absolute time, and the others as Cartesian co-ordinates, then 

the coefficients of the Einsteinian ds^ of space-time, in con¬ 

ditions corresponding to the motion of the celestial bodies (in 

particular, of the bodies forming the planetary system), differ 

by very little from the difference being of at least the second 

order, in the sense explained above. More precisely we can say 

that: 

{a) The coefficient differs from 1 — _ - by terms of order 

higher than the second (cf. j). 320 in the preceding chapter), 

where U ref)resents the ordinary Newtonian })otential of the 

field considered. 

(6) The coefficients (i > 0) are of order higher than the 

second. If in fact they were only of the second order, it follows 

from p. 339 in the preceding chapter that the difference between 

the velocities of propagation of light in the various directions 

round a point would also have to be of the second order; 

this, how^ever, is physically inadmissible, as a difference of 

this magnitude could be detected by means of optical experi¬ 

ments. 

(c) The other coefficients g^j, {% A: > 0) differ from by 

terms of the second or higher order. 

Now let us consider the absolute motion of a generic material 

particle P, e.g. a small planet. Let u{P, P') be the Newtonian 

potential of the attraction exerted on it by any particle P' of 

the other attracting bodies, which we shall suppose to be of fairly 

large mass compared with P, as is in fact the case in the typical 

examples offered by astronomy. The disturbing effects of P on 

the motion of P' being supposed negligible, the dependence of 

u on the space co-ordinates y^, y^ involves the co-ordinates 

of P, while its dependence on the Romerian time j/q involves 
(D666) 
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the co-ordinates of the attracting body P\ If SP is a generic 
displacement (of components 8?/,) of the point P, and 

8m = k 
1 

is til 3 corresponding increment of we have 

hu ^ F X SP, 

where F is the force exerted on P by P'. Further, if we consider 
a small interval of time and denote by dP' the displacement 
of P' during that interval, and by du the increment of ii, we get 
similarly, applying the principle of reaction, 

du ~ F X dP\ 

After this it is easy to determine the order of magnitude of 
the timelike derivative of ii in relation to the spacelike derivatives. 
In fact, from the first formula, putting SP -- nhl (where n is 
the versor of a generic direction) we get the well-known result 
that the derivative of u in this direction has the value F X n, 
and is therefore of the same order of magnitude as the intensity 
F of the force; while from the second formula, on dividing by 

it follows that 

du „ dP' 
— F X 

1 

C 

dP' 

dt ' 

which shows that the order of magnitude of this derivative 
that of (with the usual meaning of yS). Hence, in the sujiposed 
conditions, the timelike derivative of u is of the first order in 
relation to the spacelike derivatives. Tlie same result holds 

2 V 
without change for which, as we have just said, is 1 —- — 

(neglecting terms of order higher than the second), IJ being a 
sum of terms of the type just considered. 

Taking the case of as typical, we shall assume, in ordinary 
astronomical conditions, that: 

(d) The derivatives of the coefficients g-^j^ with respect to j/q 
are of higher order by at least one unit than the analogous deri¬ 
vatives with respect to the other y’s. 
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We can sum up all this in the statement that if we are content 
with approximate results (meaning that we stop short at terms 
of the second order), everything happens as if the coefficients 
^,0 were zero, and the other <7,y/s independent of y^. This is 
equivalent to the statement that, to the given order of approxi¬ 
mation and in ordinary astronomical conditions, every ds^ behaves 

as if it ivere statical (cf. Chapter XI, p. 320). 

2. The tensor Gij. and its divergence. The gravitational tensor. 

We have already noted (cf. Chapter VII, ]>. 200) that for any 
V,, whatever we can construct from the Riemannian tensor the 
symmetrical double tensor 

Giir %h a"'' (y. .(1) 
1 

and its linear invariant 

G 2,/. a''* .(2) 
1 

This definition naturally holds also for an indefinite metric: 
in particular therefore for the ds^ of relativity {n -- 4), in which 
case tile tensor imder discussion is called the Einstein tensor \ 

its components are 

G,, = {v,hk), . . . . (10 
0 

and its linear invariant therefore takes the form 

G = i:,/' G,, = (^)•, hk). . . (20 
0 0 

We may note incidentally that for a Fg tensor G^j^ is 
related to the fundamental tensor and to the Gaussian cur¬ 
vature by the formula ^ 

G;, ^ - Kg,, (i, h 2);. . . (3) 

^ In fact, for n — 2, it follows from the definitions of K (p. 194, formula 

(28)) and of the 6-systems (Oliap. VI, ]>. 158) that {ij, htc) — 

at once be verified, remembering that the symbol (y, hk) either reduces to 

(12, 12) = A'a, or vanishes. Further, with the same definition of e, we have 
2 

also the identities ^ij^hk “ thk- Etjplacing {ij, hk) in the formula of 

type (1') by Keije,,, and using this identity, we get (3). 
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while for a F3 the quantities reduce to Ricci’s s5anbols (cf. 
Chapter VII, p. 199) 

a ik _ 

the relation being 

(^+ 1 i+ 2, k+^lJc+2) 

a 

^Uc — ^ik — ^ik9 (4) 

where denotes the mean curvature of the F3, or in symbols 

~ .(^) 
1 

For n = 4, from the general formula 

AT __ ~ 1) 

of Chapter VII, p. 182, it follows that in general the Rieraann- 
Christoffel tensor has 20 algebraically independent components, 
while the elements of the Einstein tensor provide only 10 
linear combinations. This simple arithmetical remark shows that 
the Einstein tensor cannot exhaust all the curvature properties 
of the F4, but, as we shall see, it does suffice to give those of 
essential physical importance. 

Before beginning the examination of this question, we shall 
find the expression for the divergence of the tensor From 
(!'), we have by covariant differentiation 

Gik\i = (v> ^k)i, 
0 

so that the components of the divergence (cf. Chapter VI, p. 153) 

... (6) 
0 0 

become 

'^i = (ij, kk)i. 
0 

In virtue of the relations 

{ij, hk) = (hk, ij). 
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Bianchi’s identities (formula (17'), Chap. VII, p. 183) enable us 
to substitute 

— (jl, hk)i — {U, hky 

for (ij, hk) i, so that we have 

Yi^- - (fl> kkh - %,h9^’'9’^^ {li, hk)j. 
0 0 

The first term is merely as follows from covariant differen¬ 
tiation of (2'), which by interchanging the indices can be written 
in the form 

G = (jhhk). 
0 

Interchanging j and I, and also h and h, in the second term, 
it becomes 

— Y,ui9^^9''‘ (ji, 
o' 

and in view of the identity 

(ji, kh) = (ij, hk) 

it obviously reduces to — We therefore have 

Yi-= Wi.(7) 

which in virtue of (6) can also be written 

4^1,^ - = 0.(7') 
0 

Since the divergence of the tensor Gg^jf. (proportional to the 
fundamental tensor g^j^) is 

= iiGX9i,9^^ = G„ 
0 0 0 

it will be seen that (7), or the equivalent equation (7'), expresses 
the property that the divergence of the tensor 

Gn.-\Og,, 

is zero. This tensor is called the gravitational tensor \ the name will 
be justified farther on. 
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3. Solidarity of physical phenomena. Criteria for the con¬ 
struction of the gravitational equations, and reduction of the 
inductive proof of their validity to the statical case. 

In the immediate vicinity of a })oint and instant fixed in 
advance, a mechanical phenomenon is completely determined 
(at least conceptually) if we know, at the specified point and 
instant, the density and velocity of the matter (or, which comes 
to the same thing, of the energy), and the distribution of the 
specific stress, which includes as a differential consequence the 
determination of the external force; the latter, however, as 
already noted (p. 349) in the preceding chapter, can be supposed 
absorbed into the stresses, the concept of action at a distance 
being as before excluded. In substance, therefore, the local 
behaviour of a mechanical phenomenon is completely determined 
by the knowledge (which is both necessary and sufficient) of the 
energy tensor Tj,.. 

This remark has a more general scope, since it holds also 
for phenomena other than mechanical (e.g. electromagnetic 
phenomena). 

Einstein’s fundamental view is that the aggregate of physical 
phenomena influences the metric of F4; more precisely, that at 
every point P of the F4 there must be a local relation between 
the value of the energy tensor, which may be taken as charac¬ 
teristic of the physical conditions, and the behaviour of the 
curvatures of the F4 at the point. As an abstract hy])othesis, 
the possibility of some such influence, limited however to the 
spatial metric, had already been vsuggested independently by 
Riemann and by Clifford. Einstein completed it, applying it 
nob only to the spatial metric, but to the metric of the space- 
time which includes both space and time and also, as we saw 

in § 4, p. 291, and § 10, p, 320, when studying the motion of a 
material particle, the force in the field, which is represented 
through the coefficient ^oo- 

We have pointed out just above that from the mathematical 
point of view the external force can be considered as produced 
by a suitable distribution of stresses. From the point of view 
of the classical mechanics this principle could also be applied to 
the particular case of forces of gravitational origin; Einstein, 
however, assigns a privileged position to these forces, and 
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supposes that all actions of gravitational origin (and only these) 
are so intimately fused with the geometrical and temporal 
properties that they are directly determined by the four-dimen¬ 
sional ds^. Such a possibility is amply justified by the considera¬ 
tions set forth in the prececiing chapter (pp. :291-328). All the 
other non-gravitational forces (in particular, actions of electro¬ 
magnetic origin), on the contrary, can be absorbed into the 
energy tensor. In order to put this view in a mathematical form, 
Einstein had to establish a relation between the ds^ (i.e. its ten 
coefficients) and the energy tensor (i.e. the t(‘n functions T//^); 
he had therefore to determine ten equations. One of these was 
a necessary consequence, at least approximately, of the New¬ 
tonian theory. In the classical mechanics space is considered 
rigorously Euclidean, and by Newton’s law the density p of the 
attracting matter determines the field of force by means of the 
Newtonian potential 

V = flf, 

where/is the gravitation constant, and the meaning of the other 
symbols is as usual. From this expression for V Poisson’s equa¬ 
tion 

A.,?/ “ — 

follows in the ordinary way for every point of the field. Since 
the density p dilfers from the element ^00 of the energy tensor 
only by a constant multiplier (pp. 349, 354, §§ 22, 24, and 25), 
while to a first approximation (cf. § 4, p. 291) we have 

it follows that Poisson’s equation establishes a relation between 
the energy tensor and a sum of second derivatives of 

The differential equations expressing the relation between 
the coefficients of ds^ and the quantities must therefore 
include this relation, at least to a first approximation. A reason¬ 
able induction suggests that in order to construct the ten required 
equations we must equate the ten components of the energy 
tensor to ten differential expressions of the second order in the 
coefficients which, the system being invariant, must them- 
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selves constitute a tensor. Now a double tensor of the second 
order is given by those combinations of the Riemann-Christoffel 
tensor which we considered in the preceding section. Accord¬ 
ingly, the procedure which would first occur to one would be to 
assume that the 6r,;//s were equal or proportional to the 
and this was in fact what at his first attempt Einstein did. But 
immediately afterwards he reflected that the fundamental equa¬ 
tions must not impose on the metric properties of space-time any 
a priori limitation, in this sense that any value whatever of ds^ 
must be capable of being regarded as theoretically possible pro¬ 
vided there is a suitable energy tensor. This property would be 
inconsistent with the condition that the 6r^//s and T^^-’s are to 
be proportional, since the latter tensor, from its physical origin, 
satisfies four differential conditions expressing the vanishing of 
its divergence (cf. pp. 351, 359, §§ 23 and 25), so that the (t/^-’s, 
would have to be connected by corresponding equations. The 
idea of a linear relation between the two tensors can however be 
retained without imposing any differential relation on the 
since the divergence of the tensor 

Gik— \Crgif, 

is identically zero, as we saw in the preceding section. If in fact 
we put 

Gik — l^gik • • • • (8) 

where k denotes a constant (to be subsequently connected with 
the constant / in Poisson’s equation), there will be no resulting 
differential relations between the These are the celebrated 
gravitational equations. The foregoing considerations serve 
merely to give them plausibility from the purely formal point 
of view; their physical justification follows a posteriori from 
arguments of two kinds, which we shall now explain. 

For the moment we consider only a first approximation; i.e. 
we suppose that differs from the pseudo-Euclidean value by 
a small amount. As we saw in Chapter XI, p. 320, we may on 
this hypothesis assume 

-?(K) = 1 —' 2y 

9(ii == — Yi 

9ik 

{i, ^ - 1, 2, 3), 
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where the y’s are small quantities of the second order. We also 
saw that (still with the same hypothesis) the equations of motion 
of a material particle, to a first approximation, depend neither 
on the y/s nor on the but only on the coefficient or, 
which is the same thing, on the function y, and that they in fact 
reduce to the classical Newtonian equations 

ai. = (i = 1, 2, 3), 
OXi 

since y = -7^.(9) 
c- 

In view of this, the problem of justifying the gravitational 
equations to a first approximation reduces to that of proving: 

(a) that one of these equations (the one corresponding to 
i ~ k ~ 0) involves only y (i.e. U) and is identical with 
Poisson’s equation; 

(d) that the other nine are consistent with values of the 
functions y of the assumed order of mcagnitude: their precise 
values in this first approximation are a matter of complete 
indifference, since whatever they may be we in any case arrive 
back at the Newtonian formulae. 

We can therefore limit the scope of (a) and (6) to the statical 
case, for the reasons indicated at the end of § 1. 

The passage to a further approximation in the equations of 
motion of a material particle involves (cf. Chapter XI, p. 320) 
either the values to a first approximation of y^ and or the 
third-order correction i/j in the expression for g^Q. It is this 
difference from the results of the Newtonian laws which, being 
within the range of astronomical observation, provides a means 
of testing whether Einstein’s hypothesis is or is not superior to 
its classical predecessor. 

At this point we are, so to speak, in conditions analogous 
to those in which Newton found himself when he substituted 
for Kepler’s kinematical laws the dynamical principle of universal 
attraction, which was capable not only of including Kepler’s laws 
as a first approximation, but also of predicting, and that on a 
magnificent scale, new facts which have since found marvellous 
confirmation. When the relativity theory is substituted for the 
Newtonian, the phenomena predicted by it are much more 

(0 655) 13* 
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minute, but even with present experimental resources, some at 
least of them are within the reach of experiment. This experi¬ 
mental control provides the second line of argument alluded 
to above in support of the gravitational equations. 

4. General equations of Einsteinian statics. Empty space. 

When we are dealing with statical phenomena (cf. Chapter 
XI, p. 32G), the ds^ of space-time has the form 

ds^ = V^dx^^-dl^ «... (10) 

3 

with dP ~ 'liy^aij.dx^dxj,.(10') 
1 

The coefficients like F, are to be functions of rrg, x^, 
only; V is interpreted (cf. Chapter XI, p. 339) as the velocity of 
light, and is therefore considered essentially positive. 

With obvious meanings for the symbols, we have 

9ik = — ^oi = 0, 900= g=—a V\ 

f = - a‘*, g’^ =0, {i, i = 1, 2, 3). j ' 

We shall use a dash (') to denote ChristofEeFs symbols and 
the components of the Riemann-Christoffel and Einstein tensors 
relative to the quaternary form (10), and shall keep the ordinary 
notation without a dash for the analogous symbols and com¬ 
ponents relative to (10'). 

From the definitions and (11) we get 

[ik, ly [ik, Z}, 

[ik, 0}' = {Oi, *}' = {00, 0}' = 0, 

{io. 0}' = I', 

{00. i)' = F F*. 

. (12) 

0 F 
where h, Z, can take any of the values 1, 2, 3, Vi == . , and 

F* == S^ ^Fj- is the reciprocal system with respect to the 

purely spatial dV. 
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We shall next express Riemann’s symbols of the second kind 
for the quaternary ds^ in terms of the analogous symbols for 
dl^ and of V. We have by definition, from formula (3) of Chapter 
VII, p. 175, 

{ir, hJk}' = (ik, r}' — dx,, {ik, r}' 

- r}' {ik, ly - {Ik, r}' {ih, Z}']. 
0 

We shall examine separately the various cases which may 
occur, according to the number of the indices i, r, h, k which are 
zero. 

(1) No index zero. The first group of (12) gives immediately 

{ir, hky — {ir, hk^.(13) 

(2) A single index zero. Riemann’s symbols being anti- 
symmetrical with respect to the last two indices, we need only 
examine the three cases in which the zero index is i, r, or h. In 
each case, from the second group of the formulae (12) it follows 
immediately that Riemann’s symbols of this type are all zero, or 

{Or, M}' = {iO, M}' = {ir,0ky = 0. . (14) 

(3) Two indices zero. From the general properties of the 
Riemann-Christoffel tensor the symbols of the type {ir, OOj' 
vanish identically (for any ds^), and those of the type 

{00, hky ^ hjg^^{0j,hk) 

vanish whenever — 0 (for j >0), as in our case. There 
remain therefore to be considered the two types {Or, 0^}' and 

{iO, 0k)\ 
From (12) and the fundamental formula of covariant different 

tiation with respect to the purely spatial dP we find 

{0r,0^}' = F(F% 

{iO, Ok)' = ^ 
(14') 

(4) Three or four indices zero. It will be seen immediately 
from (12) that these symbols are all zero. 
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We are now in a position to evaluate explicitly the sym¬ 

metrical double tensor 6r^., the elements of which, as we know 

(§ 2), are 

G'ijc = {ih, hk}' = Sa {ih, hk)’ + {fO, OA;}'. 
0 1 

Introducing the analogous system 

G,, == iu{ih,hk) 
1 

relative to the ternary form dP, we find at once, using the 
expressions obtained for the symbols { /r, M}', 

g:, - 

G’,, = 0, 

-Fi.F;:= -FA^F. 

(15) 

From these formulae and (11) we get for the linear invariant 

of the system 

0 1 

= .(16) 
y 1 

We have already seen (Chapter VII, p. 200) that for a three- 
dimensional manifold we can with advantage replace the tensor 

by Kicci’s tensor a,-;k, the linear invariant 

s 
cM = 

1 

of which (cf. Chapter VII, p. 203) represents the mean curvature 
(the sum of the three principal curvatures). 

The and a^//s are connected by the linear relations 

^ik ~ ^ik ^ik\ 

from this, multiplying by and summing with respect to i, A:, 
there follows in particular 

G = 
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Applying these results, (15) and (16) become 

= 0, (i, h^- 1,2, 3) 

G'^= - FA^F; 

\G’ --= .... (16') 

which provide convenient expressions for the components of the 
Einstein tensor and its linear invariant in statical conditions. 

We can now return to the gravitational equations (8) of the 
preceding section. We note in the first place that since in statical 
conditions there is no energy flux, the components vanish. 
Hence from (11) and (15') three of these equations reduce to 
pure identities, and there remain seven; six of these, corre¬ 
sponding to non-zero values of the indices, have the form 

a* + a,, = - K T,, {i, 1, 2, 3) (17) 

in virtue of (15'), (IG'), and (11), while the seventh,fori = A; = 0, 
is 

-FA,F-16-^00 -- 

or, from (15') and (16'), 

.(18) 

These seven equations^ (17) and (18), as is naturally to be 
expected, reduce the Einsteinian statics to the three dimensions 
of the associated space. Their form is invariant with respect to 
the metric of this space, which has the dl^ in question as its 
fundamental quadratic form. They also involve, in association 
with the fundamental form, the two invariant functions F and 
Tqq, and the covariant double system {i, k == 1, 2, 3). The 

T 
latter characterizes the distribution of the stresses, while - ^ 

^ Of. Levi-Civita: Rend, della R, Acc, dei Lincei^ Vol. XXVI (first half-year, 

1917), p. 468. 
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is to be interpreted as the energy density (cf. Chapter XI, p. 357), 
V representing the velocity of light, as was said at the outset. 

With regard to the energy density it is to be observed that 
no example of a negative density exists,^ at least within the 
range of the better-known phenomena to-day, whether mixterial, 
or electromagnetic in the broad sense. Hence we may assume 
that the right-hand side of (18) >0, and we get the following 
geometrical corollary: T/ie mean curvature OVi, determined, in 
physical space as the effect of purely statical phenomena, is in every 
case either positive or zero. 

An important consequence of the equations (17) is obtained 
on multiplying them by a"‘ and summing with respect to the 
two indices. Using the definition of c51/ and (18) we get 

where T — .(20) 
1 

and obviously represents the linear invariant of the system of 
stresses with respect to our dP (of the associated space). It may 
be remarked incidentally that this invariant must not be con¬ 
fused with the scalar invariant of the four-dimensional tensor, 
namely, 

^ ^ 
0 

the value of which, from (11), is on the contrary 

Consider in particular a region of space in which all the 
components of the energy tensor vanish (empty space). From 
the physical point of view, this condition can be considered 
satisfied when the region in question contains neither ordinary 

^ In fact, if at a ^ven point there is matter at rest distributed with density 
p, this implies an energy c^p of material origin, which in normal conditions 
enormously outweighs all other possible contributions to the total. Moreover, 
the electromagnetic contribution to the energy density also > 0. Hence even 
when there is no matter it does not seem possible for the energy density to have 
a negative value. 
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matter nor electromagnetic energy, since in this case it follows 

from the mechanics of material media that the stresses of material 

origin vanish, and, from Maxwell’s theory, that the Maxwellian 

field of force vanishes, and therefore also the Maxwellian stress.^ 

With this hypothesis the equations (17\ in view of (19), 

plainly reduce to the form 

A2F - 0, . . ..(21) 

a.>+y=0 (i, A = 1, 2, 3), . . (22) 

the first of which shows that not the timelike coefficient 

itself, but its square root, is a harmonic function. Also, (18) 

gives at once 

Jl/ 0.(21') 

If the energy tensor were zero throughout all space, it is 

intuitive from the physical standpoint that the Einsteinian ds^ 

would be rigorously pseudo-Eiiclidean, and therefore the associated 

space rigorously Euclidean. This in fact represents the starting- 

point of Einstein’s s])eculative construction, which assigns any 

deviation from a pseudo-Euclidean metric to those physical 

actions which are included in the energy tensor. Serini ^ too has 

given a rigorous proof of the hypothesis, based on equations 

(21) and (22). 

5. First approximation. Connexion with Poisson’s equation.^ 

If we suppose that the expression (10) for ds^ differs by very 

little from the Euclidean type referred to Cartesian space co¬ 

ordinates and Romerian time 

ds^ = — S, 
1 

we can put (cf. § 3, and Chapter XI, § 10, p. 320) 

F = 1 - y.(23) 

«,> = (i* = 1.2,3). . . (24) 

^ See e.g. Jeans: The Mathvnmtical Theory of Electrhity and Mny^ietism, fifth 
edition, 192f), Chap. VT, Cambridge University Press. 

2 Rend, della R. Aoc. dei Lincei„ Vol. XXVII (first half-year, 1018), p. 285. 

^ Lkvi-Civita, loco cit., and ibidem (second half-year, 1917), pp. 307-317. 
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We thus have 

dl^ = 'Lii.aa.dyidy^ = dl^^+i:,^yi,,dyidy^, (24') 
1 1 

where dl^ is the line element of ordinary Euclidean space referred 

to Cartesian co-ordinates. 

The quantities are pure numbers, like y, and the qualitative 

property we have assigned to ds^ is equivalent, to a first approxi¬ 

mation, to treating all these seven quantities as infinitesimals. 

It follows that Christoffel’s symbols 

are also infinitesimal. Since to the same order of approximation 

the quantities keep their Euclidean values SJ’, it will be seen 

that the symbols of the second kind 

{ih, r) = [ih, j] 

do not differ appreciably from the homologous symbols [ih, r\ 
of the first kind. It follows that from the definition of Riemann’s 

symbols (p. 175, formula (3)) we have, neglecting terms of 

higher order. 

{ir, M} [ih, r) — [ik, r) 

oVk 

— J 
_ 8^ a,k ] 

^Vr^Vk ^yi^yh\ 

Hence it follows, from the definition of the (?^’s (cf. § 4) and 

from (24), that 

= life 
1 \^yh 2 ‘ ^yi^yk ‘^yi^yh) 

We now return to the statical equations (17) and (18). We 
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have already made them contain Ricci’s symbols instead of 
the the relation between the two being 

^ik ^ ^ik + ^ik‘ 

It is to be noted that is now to be considered infinitesimal, 
like the 6r^,/8 and their linear invariant, so that, from (18), 
is also infinitesimal. Replacing Jid by its value (18), the explicit 
expressions which represent the a^/s to a first approximation 
take the form 

^Vh^Vk ^Vi^yJ 
+ xVl 

{i, 1,2,3) 

(25) 

Using this result, and noting further that, neglecting infini¬ 
tesimals of higher order, the covariant derivatives of F ~ 1 — y 
do not differ from the ordinary derivatives, so that in particular 

A2F - - 

we find that (17) and (19) can be written as 

a,,-(y),,+ A'jySf- -kT,,. . . (26) 

Aly = -iK(T+TJ, . . . (27) 

where the symbols (y),,,. denote covariant derivatives of y; 
and in particular, in empty space, since the terms on the right 
vanish, they become 

a,. = {yh,.(26') 

ASy == 0,.(27') 

which to a first approximation, as is naturally to be expected, 
are identical with (22) and (21). 

At this point we must consider the mechanical significance 
of the fimction y, or, better, of the product c^y. On p, 293, Chap. 
XI, when dealing with Einstein’s modification of Hamilton’s 
principle, we saw that, when ds^ is very close to the pseudo- 

Euclidean form, the difference between go^ and unity is ~ 2 -- 
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to a first approximation, U being the potential of the field of 
force in which the motion takes place. In the present case this 
difference is — 2y, so that we have 

This conclusion could of course also have been deduced 
from the general proposition in § 12 of Chaptcir XI, p. 328, that 
— 1 c2 y2 (together with a non-essential additive constant) con¬ 
stitutes the j)otential function of the force exerted in the field 
in statical conditions. In our case — 1 -- 2 y, and therefore 

1 ,2 y2 _ I (1 - 2 y) t y, 

which proves the required result. 
Now let us for the moment again take the standpoint of the 

classical mechanics, and consider the field of force due to a generic 

distribution of matter of density p , where e is the corre¬ 
ct 

spending energy density. If IJ is the Newtonian potential of 
this field, we know that Poisson’s equation 

A,f7 = e 

holds, f being the coefficient of universal attraction. If on the 
other hand we take the standpoint of general relativity, the 

same distribution of matter gives a ds^ for which y --- and 

an energy tensor whose component coincides with e, while 
the components vanish in statical conditions, so that the 
remaining components Ti, represent stresses (cf. Chapter XI, 
p. 358). If we are dealing with discrete matter, the components 

and therefore also their invariant T, are zero, and (27) 
becomes 

K e. 

In order that this may be identical with Poisson’s equation, 
it is necessary and sufficient that the constant k of the gravi¬ 
tational equations and the universal constants / = 6*7 X lO""® 
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and c == 3 X 10^® (in C.G.S. units) of the classical mechanics 

should be connected by the relation 

K 
877/ 

(28) 

which gives in round numbers (C.G.S. units) 

K -- 2 X 10-48. 

For the remainder of tlie argument we shall adopt this value 

of K, and shall definitely take up the standpoint of relativity. 

In relation to the remarks in § 3 w^e can at this point consider that 

the preliminary justification of the gravitational equatior^s is 

terminated. In fact, their first approximation is represented in 

statical conditions by (26) and (27). The equation (27), as we 

have now proved, is identical with Poisson’s (‘.quation; the 

equations (26), as we shall see in the following section, serve to 

determine the quantities which to a first approximation, as 

we have already said, do not influence the motion, but will 

become essential when we come to discriminate on a mom refined 

scale between the Newtonian mechanics and the relativity theory. 

Here we have referred specifically to the statical case, but the 

justification of the gravitational equations obtained in this case 

also holds good, as already pointed out in § 3, in the general 

case, provided the coefficients y • of the product terms in dx^ dx^ 
(i = 1, 2, 3) are of order higher than the first. We have arrived 

at this condition by a process of induction from experimental 

facts, and have used it to reduce the ten gravitational equations 

to the seven'Of (17) and (18). We are now so to speak at the 

deductive stage, and must first show that the gravitational 

equations contain in synthesis all the facts to a first approxi¬ 

mation; and at this stage we must point out that in ordinary 

conditions of material motion (i.e. with velocities which are sma.ll 

compared with that of light) the three gravitational equations 

Goi -kT^ {i^ 2, 3), . (29) 

which are rigorously true in statical conditions, continue to hold 

to a first approximation if we suppose the quantities y^ of order 

higher than the second (that of y and of the yik^). In fact, the 

left-hand side of these equations, as we have already seen (cf. § 4), 
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becomes identically zero when we put = 0: this means that 

if the three //o/s are treated as quantities of a certain order 

of smallness, the left-hand side of (29) will be of at least the same 

order.^ If therefore we suppose that the y/s are of order higher 

than the second, the left-hand side of (29) will also be of the 

same order, and therefore zero to a first approximation. As 

regards the right-hand side, we know (cf. Chapter XI, p. 356) that 

in a pseudo-Fuclidean metric, and therefore (neglecting terms 

of higher order) also in the case we are considering, 

= - e/3, = - Too A; 

and hence, from the presence of the factor it follows that 

is of higher order of smallness than and therefore that the 

right-hand side of (29) is of higher order than — k Tqq, and is 

therefore zero to a first approximation. Hence, in these con¬ 

ditions, the equation (29) is satisfied. 

6. The Einsteinian ds^ which corresponds to a first approxi¬ 
mation to an assigned Newtonian field. 

Suppose a Newtonian field and its potential TJ given. From 

the remark made in § 1, we can ignore the possibility (consequent 

on the motion of the material masses) that JJ may depend 

explicitly on the time, and treat U only as a function of the space 

co-ordinates, as if the masses were at rest in the positions they 

occupy at the instant considered. Consider a region not occupied 

by attracting masses, in which region Ag = 0. In order to 

characterize the corresponding Einsteinian ds^ to a first approxi¬ 

mation we have to determine (cf. § 5) the functions y and 

where y is given by y = and is therefore harmonic (i.e. a 
c 

solution of (27')), and the have to satisfy (26'), which can 

also be written in the simpler form 

ay 
^Vi^Vk ’ 

(26") 

^ The quickest way of showing this is to suppose that the are of the form 

A 7*, where A is a numerical coefficient determining the order of magnitude, and 

the 7j’8 are functions of jwsition and of the time, to l)e treated as finite quantities 

together with their first derivatives. It is clear in this case that the left-hand 

side of (29) contains A as a factor. 
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since the covariant derivatives which would occur on the right 

would differ from the ordinary derivatives by terms of higher order, 

and can therefore be replaced by these ordinary derivatives. 

For the integration of these equations we note in the first 

place that we get a particular solution by taking 

.(30) 

The proof follows immediately from the expression (25) for 

the in which is of course put equal to zero. Substituting 

for in (26") the values 

ii: (9Q’\ 

“ {’^Vh ^Vi^Vk ^Vh^Vk '^yfiyhV 

and remembering that y is harmonic, the required result follows. 

Since then the equations (26") constitute a linear non-homo- 

geneous system in the y^v/s, the general integral is obtained by 

adding the solution (30) to the most general solution of the 

equations with the right-hand side zero, i.e. 

o-ik = 0. 

The general integral of this system could easily be constructed 

by using the result (cf. Chapter VII, p. 200) that for a three- 

dimensional manifold the vanishing of Ricci's symbols a,4. implies 

that all Riemann’s symbols are likewise zero, or in other words 

that the quantities 

^ilc ~ + Yuc 

are the coefficients of a Euclidean dP' (referred to any curvilinear 

co-ordinates whatever). But, as it happens, the addition to the 

particular solution (30) of the general integral of the homogeneous 

system has no interest, since, as we shall see shortly, this corre¬ 

sponds merely to a change of the co-ordinates of reference. 

In fact, the vanishing of the symbols a,/^, as we have just 

pointed out, expresses the necessary and sufficient condition that 

dl^ should be Euclidean, i.e. reducible, with a suitable choice of 

parameters, to the form 2,; dy^^. Hence, if Xg, denote the 
1 

co-ordinates of reference in their most general form, the most 

general method of defining a Euclidean dl^, with respect to these 



390 ABSOLUTE DIFFERENTIAL CALCULUS 

co-ordinates x, will evidently be to introduce a transformation 

of any kind 

Vi =-^ ^3) 2, 3) 

between the y’s and the x's, and to take for the coefficients 

those which result from expressing H • dy^ in terms of the differen¬ 

tials of tlic x’s. ‘ 

Assuming the functions yi {x^, x^, x.^) in the form 

as is always legitimate, and inserting the corresponding differen- 
.*{ 

tials in the trinomial S • dy,^, we get 
1 

dp 'Li^a^^dxidx^ 
1 

where "a- 
dx^ dXf^ 

In order to take account of the condition that the difference 

^ik — ~ yik limited to the first order, together with the 

further condition that the difference between the Cartesian 

co-ordinate system of the i/s and the cur\dlinear system of the 

x^s is to be of the same order,^ it is sufficient (and necessary) that 

we should be able to treat the functions ^ and their derivatives 

as infinitesimals. It follows that 

which constitutes the formal expression for the general integral 

of the homogeneous system = 0 (the a^//s, in the J'orm (29'), 

being linearly dependent on the y/s). 

^ If this condition is not imposed, the only neceasary condition is that the six 

numerical quantities 

yik = . a & dji_ 
\dxfi. dxi' dxi dxjc 

should 1)6 infinitesimal, and this can he secured, as Prof. Almansi has shown 

(cf. ‘*L’ordinaria teoria dell’ elasticity, e la teoria delle deformazioni finite”, in 

Jtend. ddla R. Acc. dei Lined, Vol. XXVI (second half-year, 1917), pp. 3-8), 

even when the quantities f are not themselves infinitesimal. 
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But it is not this formal expression with which we are con¬ 

cerned, but rather the circumstance that the term (31), which is 

to be added to (30) in order to get the general integral of the 

system (26") with the right-hand side not zero, can always be 

made equal to zero by a suitable change of co-ordinates; this 

change being the substitution for the x’s of the combinations 

!/i = ^'i+^2> • • • (32) 

the result of which is that the expression for dP reduces, by 
3 

construction, to S,; dy,^, all the differences a^. — 8^” vanishing. 
1 

When the are chosen as variables, the transformation (32) 

must naturally be applied also to the particular solution (30). 

But since the ^’s are to be considered infinitesimal equally with 

y, (32) reduces, so far as (30) is concerned, to the mere substitu¬ 

tion of the y’s for the ir’s. The expression (30) for the particular 

solution, which alone is of any interest for our pur})ose, thus 

remains unaltered when the system of reference is changed to 

the 2/’s. 

It is further to be noted that the elementary form A^y (the 

sum of the second derivatives) of the parameter also remains 

unaltered. 

From the foregoing arguments we see that in an empty field 

the statiml potential U (Newtonian to a first approximation) is 

associated with a metric modification of the associated three-dimen- 

siofial space. With a suitable choice of the co-ordinates of reference 

(the y's just defined) we have 

U 

with y harmonic (in the y^s as well as in the cr’s); the values of 

the coefficients a^^ of the square of the line element are given 

(to the same degree of approximation) by the expression 

-f 2y), so that 

dP == (1 + 2y) {dxi^ -f- dx2^ + dx.f). 

It will be seen that in general the space does not remain 

Euclidean even to a first approximation, but, to this degree of 

approximation, can only be conformally represented in a 

Euclidean space. 
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To sum up, remembering that =1 — 2y and that Qqi == 0, 

the ds^ of the Einsteinian space-time belonging to an assigned 

Newtonian field of force with potential V -- cP‘y is given by 

ds^ = (1 - 2y) dV - (1 + 2y) . . (33) 

where dl^ is the line element of a Euclidean space. 

In the case of a single point-mass we need of course only 

take 

1 

T 

where r represents the distance between the mass and the point 

at which the attraction acts. 

7. Further approximation for the coefficient in 
statical conditions. 

In the preceding chapter (p. 320) we saw that if the ds^ of space- 

time is not far removed from being pseudo-Euclidean, then the 

motion of a material particle is affected only to a first approxi- 

2?7 
mation by the second-order difference 2y 7 between g^ and 

unity, so that the results are the same as for the Newtonian theory. 

If, however we wish to proceed to a further approximation, i.e. 

to calculate the principal part of the Einsteinian correction to be 

applied to the laws of the classical mechanics, we must not only 

find the second-order quantities y^^., which are the differences 

between the and the Euclidean values (the y/s being of 

higher order), but we shall also need an evaluation of g^ -- 
carried to the fourth order. 

This is easily found if we limit the investigation to the statical 

case and to a j)ortion of empty space (with the energy tensor 

zero). The differential equation (21) of § 4 is then rigorously 

true, i.e. 

F - 0, (21") 

it being of course understood that Ag refers to the spacelike dP. 
To a first approximation, as has already been seen, we have 
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where y is proportional to the potential of the field, by (9). We 

shall accordingly have to put 

.... (34) 

where ^ is to be of higher order than the second. The explicit 

expression of Ag in generic co-ordinates (cf. Chapter VI, p. 154) 

- 
^/a 8xi 

(Vo V‘) 

gives in the first place, by (21") and (34), 

. (21"') 

From this we have to find ^ to a fourth-order approxima¬ 

tion. As y is already of the second order, in calculating y^ 

^from yi = and Va we need only consider terms as far as 

the second order, i.e. we can use the form (cf. formula (33)) 

dP = (1 -f 2y)dZo"- 
This gives 

\/a ~ (1 + 2y)^, 

^ l + 2y’ 

whence, neglecting terms of higher order than the fourth, 

s/ay’- = yi{\ + y) = y, + I(y2),. 

A priori we do not yet know the order (by hypothesis cer¬ 

tainly higher than the second) of the additional term 0, which 

we have to calculate not only as far as its principal part of order 

V, but also so as to include additional terms, if any, up to the 

fourth order inclusive. For the moment we shall consider the 

part of order v. On the left-hand side of (21"') we can substitute 

1 for s/a, the difference between these two quantities being of 

the second order, which is equivalent to neglecting terms of order 

v-j- 2, As y is harmonic, it follows that 

m+if) - 0 
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3 02 
where AS as before represents Laplace’s operator -—, whence 

i 

i/f _j_ a harmonic function. 

With suitable hypotheses as to qualitative behaviour, it will 

be seen that the additional harmonic function must vanish, and 

there remains 

-- - 

as the principal term of the function ip. As this is already of the 

fourth order, we can take — as the expression for ifj correct 

to the fourth order inclusive. 

To the same order of approximation we get 

^(K) -- ^ (l-y+ 

=- 1 - 2y + 2y2.(35) 

8. A theorem of mechanical eauivalenceA 

From the two preceding sections it follows that to a sufficient 

degree of approximation the Einstcinian ds^ which corresponds 

to a statical Newtonian field of potential C/, fixed in advance, 

is given by 

ds^ - (1 - 2<P)dy^^ (1 + 2y)dl,^ . . (36) 

where y F.(37) 

cP^-y-^ .(37') 

(cf. formula (35) in the presiding section). 

In (36) we are satisfied with the first approximation for the 

coefficients of the spacelike dl^^, while for the part which is 

of the fourth order is also given. This formula is a particular 

case of the ds^ considered on p. 320 of Chapter XT (formula (27)). 

In order to define the motion of a material particle, i.e. the 

geodesics of a space-time of this kind, in accordance with the 

criteria of § 10, p. 320, we note first of all that (36) gives us 

ds^ 

•^Cf. LevI'Civita, Bend. Ace. Lined, Series VI, Vol. IV, 1926, pp. 3~6. 
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comparing this with the equations (28) on p. 321, and noting 
2 'ifi 

is identical with ~ -g? corresponds 
c 

to the particular case in which the linear form vanishes and 

the quadratic form reduces to This brings us back to 

the case considered in § 11, p. 323, the necessary values for 

the symbols then used being 

Equation (31) on p. 325 gives 

P. = + ■ (38) 

which leads to the following theorem: The trajectories of the 

Einsteiniav, motion coincide to a second, approxwiation with 

those of a Newtonian ^notion in ordinary Euclidean space for 

which the total energy is still E and the force is derived from the 

potential U^. 
If is the ordinary time in this auxiliary Newtonian problem, 

the corresponding integral of vis viva is 

This integral can be put in a more convenient form for the 

purpose we have in view. From equation (31) on p. 325, 

neglecting terms of higher order, + E, which we shall call 

[7*, can be written in the form 

whatever mav be the values of ds and y. In our case, since v = — 

Further, we saw in the section referred to that for the 
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Einsteinian motion, to the assigned degree of approximation, 

there exists the integral 

+ x) - (C^ + = E. 

If t is the variable which acts as the time in this problem, 

/ill 
~ I . Substituting for x and 0 their values, we can write 

From this and from (39) we get the differential relation 

dt — dt^ ; 

when the Newtonian problem is completely solved^ this relation 
enables us to find also the law of the time in the Einsteinian motion, 

9. Motion of the planets according to Einstein, to a second 
approximation. Displacement of perihelion. 

The most striking application of the foregoing result is to the 

problem of the motion of the planets round the sun. If we treat 

the planets (as is in fact usually done as a first approximation) 

as material particles with mass so small compared with the sun 

that they do not perceptibly affect the field (or more generally 

the four-dimensional metric associated with the field), then our 

problem is essentially that solved in the preceding section, for 

the particular case in which the function V is the potential of 

a single mass m^ (the sun) which can be taken as the origin 0 
of the co-ordinates. We have therefore, as in § 6, 

r 

where r is the distance between the sun and the planet, measured 

as if the space between the two were rigorously Euclidean. We 

know from the preceding section that as regards the trajectory 

everything happens as if the ordinary mechanics held and the 

planet were acted on by a unitary central force derived from 
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the potential (38). This consists of two terms, the first of which, 
/ 4J?\ 
11+ jU, corresponds to an attraction inversely proportional 

to r^, of radial component 

, , 4E\ dV 

where for brevity we have put 

. (40) 

and the second to a disturbing force, also central, but inversely 
proportional to r®, of radial component 

3 dV^ 

dr 

where 

There are thus two modifications of the Newtonian law: 
(1) a change in the coefficient of proportionality, which becomes 

instead of///?Q; (2) a disturbing force (of the second 

order relative to the Newtonian force) inversely proportional to 
the cube of the distance, and therefore of the type already con¬ 
sidered by Newton. Now it is known from the theory of central 
forces^ that for motion in a plane under a force whose radial 
component is 

Jc 

the equation of the orbit in polar co-ordinates r, Q can be put ir, 
the form 

T = _P_ 
i + e comd 

(42) 

1 See e.g. Levi-Civita and Amaldi: Lezioni di Meccanica Razi(maLt^ VoL II, 

p. 200 (Bologna, Zanichelli, 1926); or Lamb; Dynamics^ becond edition, Chap. 

XI, § 91 (Cambridge University Press, 1923). 
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by a suitable choice of the direction of the polar axis, where, 
G being the area-constant, 

2 1 1 ^ 

and e is a constant of integration, which can always be supposed 
positive, 6 being if necessary replaced by 0 -f- tt. 

All this holds generally. Now suppose in particular that 
c < 1, denoting elliptic motion as a first approximation (i.e. for 
ki ^ 0, so that a reduces to unity). We can also suppose e > 0, 
which means that we exclude the case', of the circular orbit. 
With this limitation, 0 in equation (42) can be made to vary 
without restriction, and the equation shows that when 0 increases 

by r again takes the same value. This holds in particular for 
a 

the minimum value of r (i.e. perihelion); and therefore, for two 
successive passages through perihelion, the anomalies differ by 
2nr 

In the particular case a ~ 1 (elliptic orbit with fixed peri¬ 

helion), the value of this difference is precisely 277, so that the 

difference ^ /I \ 
277 

represents, in magnitude and sign, the angular displacement of 
perihelion in one revolution. With the value of a given above, 
taking into account the smallness of we have 

Since for <7, which is already a correction, we need only a first 
approximation, we can take for its Newtonian value ^ 

G!2 = = /moa(l — e^), 

where a and e denote respectively the semi-major axis and the 
eccentricity of the orbit. Using the value (41) of we get for 
the displacement of perihelion the expression 

<7 
/mo 

l _ e2 ac2‘ 
(43) 

which was first calculated by Einstein. 

^ Cf, Lbvi Oivita and Amaldi : op. cit, p. 212. 
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In order to adapt the formula to numerical calculation for 
any planet, we introduce the mean radius of the earth’s orbit, 
and write (43) in the form 

a = 

1 •— a 

The eccentricity of any planetary orbit being small, we can 
at once put ™ 0. The radius of the orbit being a, we knov/ 
that the velocity v in the orbit is given by 

™ ^ f^h 
a ’ 

which expresses the equality of the attraction and the centripetal 
acceleration. For the earth we have in particular 

and accordingly (43) becomes 

<7 

a 
(43') 

The velocity of the earth in its orbit being practically 
30 km. per second, and c being 300,0(K) km. per second, we have 

V 
approximately ~ 10'^, and therefore 

e 

a = 677.10-® 
a 

For Mercury, the planet nearest the sun, and therefore 

evidently showing the most perceptible effect, ~ 0*39, which 

gives for a a little more than one-tenth of a second. Since Mercury 
completes about 420 revolutions in a century, we thus find for 
the perihelion of its orbit the centennial displacement of 42", 
which corresponds exactly to the difference between the total 
observed displacement and the amount predicted by ordinary 
celestial mechanics from the Newtonian theory of the per¬ 
turbations due to the other planets. It was precisely this 
residual shift of about 42" per century which before the 
birth of the relativity theory could only be explained by 
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introducing hypothetical disturbing forces with constants deter¬ 
mined ad hoc. 

For the other planets, the corresponding calculation naturally 
gives a much smaller centennial shift, hardly 8-6" for Venus, 
3-8" for the earth, 1*35" tor Mars, and still less for the others, 
and the results of observation which are at present available are 
not accurate enough to provide any basis of comparison with 
these figures. 

10. Displacement of the spectral lines. Deflection of light. 

In this section we propose to examine the effect of a field 
of force on the frequency and the path of light rays. We suppose, 
as in the preceding section, that the field is statical, with a New¬ 
tonian potential I/, and we consider regions of the field external 
to the attracting masses. The effect to a first approximation will 
be sufficient for our purpose, and we can consequently assume 
that the expression (33) of § 6 

ds^ - (1 - 2y)dV - (1 + 2y)d^o^ • • (33) 

where v stands for holds for the four-dimensional ds^. 

Now suppose that a phenomenon which is predominantly 
timelike (e.g. the vibration of an atom) takes place at a specified 
point T. If dt is an elementary interval of time in which this 
phenomenon is considered, and if within this interval the varia¬ 
tions dyi of the space co-ordinates are assumed to be negligible, 
we shall have from (33) (since = ct) 

ds\, “ (1 — 2y^)(^d£\,y 

where the suflix T denotes that the values in question are 
those belonging to the phenomenon at the point T, If the 
phenomenon takes place instead at another point S we have 
analogously 

= (1 - 

Now suppose that we have two identically similar phenomena 
at different points, e.g. the emission of light from two atoms 
chemically alike and in identical physical conditions. If we 
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admit that in such a case the space-time interval will be the 
same for both, the foregoing formula) will give 

dts _ 1 
dt„ 

Yt 

1 ~ Vs 
1 — (yj- — Ys)- 

This differential relation between corresponding times of the 
two phenomena under discussion, expressing the constancy of 

the ratio naturally implies that the same ratio exists between 
dt^ 

any finite pair whatever of corresponding intervals, and A^^,; 
in particular, if the phenomenon considered is periodic, between 
the respective periods or between the reciprocals of the fre¬ 
quencies Vq and V,.. We thus have, neglecting terms of the second 
order, 

= Vr — Ys (f/r- U,), 

which shows that in a gravitational field the vai^iation of the 
frequency is of sign opposite to that of the potential; hence, in 
particular, there will be a reduction of the frequency for a given 
spectral line (and therefore a shift of the line towards the red end 
of the spectrum) on passing to a region of higher potential. 

By way of example, let us compare two monochromatic light 
rays emitted in the same conditions on the earth T and on the 
sun S. We can neglect [7^, in comparison with and take for 

(cf. the preceding section) the value 

/wo _ /mo Op 

where denotes the sun’s radius. As we saw in the preceding 
section, we now have 

/»»0 _ 
^0 > 

the (relative) variation of the frequency, if Av = is 
therefore given by 

Ug _ Av _ V «o 
C2 r„ 

(44) 

(D656) 
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and since in round numbers 

^ 10-*, ^ = 200, 
C To 

^==2xl0-« 
V 

It was uncertain for some years whether there did in fact 
exist a shift of this kind towards the red for the solar rays, as 
compared with corresponding rays emitted from a source on the 
earth. The most recent measurements by Perot, Fabry, and St. 
John tend to confirm its existence. 

A more remarkable verification has recently been provided 
by St. John, who, following up a suggestion of Eddington’s, has 
observed analogous displacements in the spectrum of the Com¬ 
panion of Sirius. 

We now pass to the consideration of the path of a light ray 
in a field of force. Along any ray we shall have in the first place 
(cf. Chapter XI, p. 336) — 0, and further, the field being 
statical (Chapter XT, p. 340), Fermat’s principle 

sfdxQ = 0 

will also hold. 
Since ds^ == 0, the expression (33) for ds^ gives 

dx ^ ~ ^ dl^ 
^ 2y ’ 

and therefore, neglecting squares of y, 

dx^ = (1 + 2y) dl^. 

The rays are therefore defined by the variational equation 

Sj(l + 2y)dlo = 0.(45) 

At this point we note that in an ordinary Euclidean medium, 
isotropic but not homogeneous, of refractive index ^3), 
the geometric path of a ray, by Fermat’s principle, is charac¬ 
terized by the variational formula 

sfadlg = 0; 
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comparing this with (45) we see that in our field of force, with its 
ds^ given by (33), light is propagated as if the space were Euclidean 
and filled with a medium of refractive index 

/Lt - 1 + 2y. 

This remark becomes even more expressive if we refer once 
more to the trajectories of a dynamical problem. In fact, as 
we have already had occasion to show in § 11, pp. 323-325, 
the principle of least action leads to the result that the curves 
(45), or, what comes to the same thing (multiplying by and 
remembering the meaning of y), those for which 

8jc2(l + 2y) (iZo = 8/{c2 +2U) dlo = 0, . (45') 

can be considered as the trajectories of a material particle in 

ordinary space in a field of potential |c^(l + 4y) = - + 217 
2 

and with total energy zero, or, if we prefer, in a field of potential 
^2 

2U and with total energy 
2 

It is interesting to observe that even in the classical mechanics 
the mere hypothesis of tlie materialization of energy leads us to 
predict a curved path for rays in a gravitational field. If in fact 
we admit that light rays, regarded as lines of flux of energy, are 
effectively trajectories of material particles, then each of these 
rays—their mutual reactions being supposed negligible—ought 
to behave like a free material particle moving under the action 
of the force in the field (of potential U) with a velocity which 
tends to c at an infinite distance from the attracting masses 
(i.e. for U “ 0), or, which comes to the same thing, with total 
energy per unit mass. It will be seen that general relativity 
implies, to a first approximation, solely the substitution of 2i7 
for U. Now apply these considerations to the path of the rays 
in the sun’s gravitational field. In accordance with the above 
remarks, these rays are to be considered the trajectories in the 
problem of the motion of a point attracted by a fixed centre of 
force, the potential, with the same notation as before, being 

2U = 
2/mo 
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and the total energy 
E - ic2. 

These trajectories are obviously conics with a focus at the 
centre of force. The species will depend on the sign of the constant 
E\ in our case J? > 0, so that the curves are hyperbolas. Since 
the divergence from a rectilinear path must be very small, it is 
self-evident that these hyperbolas will be only very slightly 
curved; this can also be proved analytically from the differential 

equations. To show this, let n and - denote the direction of the 
P 

principal normal and the curvature at any point of a ray. 
Equating the centripetal acceleration to the centripetal force 
per unit mass, we have 

p dn 

The derivative — represents the force in the field in the 
dn 

direction n, and cannot therefore be greater than the intensity 

= f/1 of this force. Further, the integral of vis viva 
r 

shows that if we neglect terms of the second order, v may be 
taken as equal to c. Consequently we have 

If Tq is the sun’s radius, the maximum possible value for the 

in the space traversed by the light rays is evidently force r 

that given by r == Tq] 
written 

the above inequality can therefore be 

1 ^ 2/mo 

P 

Mf’y is the value Ug of the potential at the surface of the 
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eun, and the value of the ratio ^ is 2 X 10"* (cf. formula (44)), 
we get finally 

- <4 X 

In other words, if the radius of curva¬ 
ture p is not infinite as for a straight 
line, it is at any rate of the order of a 
million times the sun’s radius. 

It is therefore perfectly legitimate to 
assume that the rays are in any case 
only very slightly bent, even if they 
pass very close to the sun; in every case, 
therefore, the hyperbola in question will 
have its asymptotes OA\ OT (cf. fig. 4) 
almost in one straight line. 

Consider in further detail the hyper¬ 
bolic ray which grazes the solar sphere 
at F. Let 0 be the centre of the hyper¬ 
bola, S the centre of the sun and there¬ 
fore the focus of the given branch of the 
hyperbola. F will be its vertex, and, 
if a denotes the transverse semi-axis 
and e the eccentricity, we shall have by definition 

OF == a, OS — ae, SV — a(e — 1). 

We know also from analytical geometry that if S represents 
the exterior angle between the two asymptotes 

. S 1 
sin — -. 

In the case we are considering, S must be very small; hence, 
from this formula, e is very large. Our results will be quite sufii- 
ciently accurate if we take the sine of the angle S as equal to the 

arc, and consider i negligible in comparison with unity. Thus 

we can write 
2 
e 

2 
e 1 

e 
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Using the relation = a(e — 1), we get finally as the 
measure of S in terms of the two lengths Tq and a 

8 = (46) 

In the classical theory, the transverse semi-axis a in the 
hyperbolic motion due to the Newtonian attraction of a mass 
M is connected with the constant E of the vis viva by the relation 

Putting for E its value and noting that in our case 
M = 2/^0, this gives a, and (46) becomes 

. _ 4 /wo 

c2 r/ 
(46') 

and therefore, using the numerical value already found for this 
expression, 

S = 8 X 10-®. 

The right-hand side is a pure number, which gives the angle 
8 in radians. In seconds 

8 = 1-7".(47) 

It will at once be seen that this angle 8 gives the measure of 
the deflection, i.e. the maximum angular deviation to which a 
stellar ray can be subjected by the sun’s gravitational action. 
Suppose in fact that we are considering a ray of light which starts 
from a star A and arrives at a terrestrial observer after describing 
an arc of a hyperbola which ^azes the solar sphere at V, as in 
fig. 4. The direction of the hyperbola at T, along which the 
observer receives the light ray, is indistinguishable from that of 
the asymptote OT'; the direction in which the light left the star 
is that of the tangent at A, which in its turn is indistinguishable 
from the other asymptote A'O, so that the deflection is the 
exterior angle between ^'0 and 0T\ i.e. 8. 

The direction A'O will naturally be identified with the 
direction in which T sees the star in normal conditions, i.e. when 
the sun leaves the earth-star direction and the corresponding 
gravitational perturbation becomes imperceptible, so that the 
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visual ray again becomes rectilinear (or so nearly rectilinear that 
the difference is absolutely imperceptible). 

It may be well to point out that if the visual ray from a star 
does not graze the solar sphere but passes at a distance r > 
from the centre of the sim, the deflection diminishes, being in 
inverse ratio to the perihelion distance r. This can be seen as 
follows. The expression (46) for 8 naturally holds for any star 
whatever which is visible from the earth, provided Tq is replaced 
by the perihelion distance r. We shall thus have 

g _ 2a _ 2a 

r Tq 

^CL 
The factor — has been calculated above, so that we have 

finally ^0 

8 = 1.7" X 
r 

Since corresponds to an angle of 16', it will be obvious that 
if the angular distance from the centre of the sun is even a few 
degrees S will not be more than some hundredths of a second, 
and will therefore be totally imperceptible, just as if the ray 
were rigorously rectilinear. 

The angular displacements, if any, due to the sun become 
capable of observation during a total eclipse. A first attempt in 
this direction was made by the Lick Observatory in 1918, but 
the precision of the observations was insuflicient for the purpose. 

For the total eclipse of 29th May, 1919, two simultaneous 
expeditions were organized by the Royal Society of London: 
one for Sobral in the north of Brazil, the other for the island of 
Principe in the Gulf of Guinea, both localities being within the 
zone of totality of the eclipse. The results of the observations 
made by these two expeditions can be summarized as follows. 
For the deflection of light the mean value of the displacements 
observed at Sobral gave 1*98", with probable error + 0*12"; 
at Principe the mean value was 1*61", with probable error 0*30". 
The deflection 1*76" predicted by Einstein’s general relativity 
lies between these two. This provided a new and striking con¬ 
firmation of Einstein’s theory, as the observed results were 
definitely incompatible both with the zero deviation of geome¬ 
trical optics, and with the deviation of half this value (0-88") 
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which would be given by the ordinary theory combined with the 
simple postulate that mass and energy are proportional. 

On the occasion of the next total eclipse (21st September, 
1922), visible in Western Australia, three further expeditions 
started for the zone of totality; the American one, organized by 
the Lick Observatory and conducted by Campbell, was the only 
one to secure any useful observations. But the available stars 
were rather far from the limb of the sun, and the deflection was 
therefore small; the results ^ show a wide dispersion, so that 
many astronomers do not regard their mean value as a further 
confirmation of the theory, although it is in almost perfect 
agreement with the Einsteinian prediction. 

11. Three-dimensional metrics with spherical symmetry. 

We shall begin by defining what is meant by saying that a 
metric manifold F3 has spherical symmetry round one of its 
points 0, We shall follow the geometrical method suggested by 
Palatini^, considering along with the an ordinary Euclidean 

space F3 in one-to-one correspondence with it. This corre¬ 
spondence being established, any point-transformation (T) of 

F3 into itself (in particular, a rigid motion of F^) gives rise 
to an analogous point-transformation of F3 into itself. There is, 
however, no a priori reason that a rigid motion of F3 should 

correspond to a rigid motion of Fg, a rigid motion of a manifold 
being taken to mean any transformation which leaves dl^ im- 
changed, and therefore, in particular, changes geodesics into 
geodesics. 

We shall now say that a metric manifold F3 has spherical 
symmetry round one of its points 0 when each of the 00^ rigid 

rotations of Fg round the corresponding point 0' determines a 
rigid motion in F3. 

Some important properties of the metric of a F3 with this 
property follow easily from the definition, subject naturally to 
the obvious condition that the metric (i.e. the coefficients of dP) 
is regular in the region round every point, except possibly the 
point O. It can at once be shown that to any ray / drawn from 

^ Published in the Lick Observatory Bulletin^ No. 846, 1923. 
2 Cf. “ Lo spostamento del perielio di Mercuric, ecc," in Nmvo Omento^ XIV 

(1917), pp. 12-54. 
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(y there corresponds in F3 a geodesic j drawn from 0. Thus, let 
P' be any point on/ which is not 0\ P the corresponding point 
(which is therefore not 0) in F3. Let g be the geodesic in F3 

which is tangential to j at P; from the qualitative hypotheses of 
the case it follows that g exists and is unique. We have to show 
that g coincides with j. 

Consider in Fg the 00^ rotations which have j' for axis: 
these correspond to 00^ rigid motions in the space F3 which 
leave fixed all the points of j, and only these. If we suppose that 
g is distinct from / the effect of the 00^ rotations round/ would 
be that g would occupy a simple infinity of positions, retaining 
in each the properties of being geodesic and tangential to j at 
P; we should therefore have an infinite number of geodesics 
drawn through P in the same direction, which is impossible; 
hence g must coincide with j. 

An obvious deduction is that to any spherical surface S' 
with centre 0' there corresponds in F3 a geodesic sphere S with 
centre 0. 

Now consider any pair S, S' of these surfaces, and the corre¬ 
spondence between the points Q of one and Q' of the other 
determined by the correspondence between the two spaces. We 
wish to show that the correspondence between Q and Q' is 
conformal. 

Let do-' be a generic line element in S' drawn from Q\ dor the 
homologous element drawn from Q. If we suppose the Euclidean 
space referred to polar co-ordinates r, 6, (f>, we shall have 

(fo'2 SUl^ 0 

where r == 0'Q\ Further, when r, 0, (f> are known, they deter¬ 
mine Q', and therefore also Q, from the one-to-one correspondence; 
0 and (f> can therefore also be regarded as curvilinear co-ordinates 
of Q on S, and the line element dcr, corresponding to da' (i.e. to 
arbitrary differentials d0 and d<f>)y will in every case be repre¬ 
sented by a quadratic form which we propose to find. 

Consider two elementary arcs da' of equal length, drawn 
from Q' in two different directions. The two homologous arcs 
da will also be equal. For the two arcs dcr', being equal in length, 
can be obtained from one another, by a rotation round 0' Q'; 

hence we infer that the two arcs da can also be obtained from one 
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another by a rigid motion in F;j, and are therefore of equal length 
with respect to the metric of F3. 

It follows that the ratio is the same for the two directions 
da 

considered, or, in other terms, that this ratio is the same whatever 
the differentials dO and d(j> may be. It is therefore a function 
H of position alone, i.e. {a priori) of r, 0, but it will at once be 
seen that this function must be the same whatever may be the 
point Q' of 2' considered, since we can always pass from one 
Q' to another by a rotation. We can therefore put 

da^ - IPda'^\ 

where 11 denotes a function of r only. 
For what follows it is perhaps advantageous to replace the 

co-ordinate r (the radius vector in F3) by a function R(r) defined 
by the equation 

R(r) “ II{r)r.(48) 

The square of the line element of the geodesic sphere 2 thus 
takes the form 

da^ = R^{d6^d<f>^)\ . . . (49) 

this gives us the geometrical significance of R, no longer in the 
auxiliary Euclidean metric, but directly in F3. In fact, the 
expression (49) for da^ is that for a spliere of radius R in ordinary 
s})ace, and as such (cf. § 7, p. 240) has Gaussian curvature 

E — this curvature, from its intrinsic nature, belongs to 

any surface whose line element is given by (49), and therefore, in 
particular, to our surface 2. ' 

We can therefore attach the following significance to the 

co-ordinate R: —- represents at any point the Gaussian curvature 

of the geodesic sphere with its centre at the centre of symmetry 
0 and passing through the point. From the property of symmetry 
it follows at once that all the geodesics drawn from 0 cut the 
sphere 2 orthogonally; hence if we denote by dg the elementary 
arc of one of these geodesics, the dP of F3 can be represented 
in the form 

dP =:= ^ 
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and since dg depends solely on R (also from symmetry! we can 
put 

dg = A{R)dR^ 

where A is a function of R, a priori undetermined, so that we 
get in consequence, with the help of (49), 

dP - AHR^ + R^(de^ + sin2 6 d(j>^). . . (49') 

This is the most general expression for the dP of a F3 which is 
symmetrical round a ])oint.^ 

It is not without interest to show that every F3 of this kind 
can be conformally represented in Euclidean space. It will be 
sufficient to show that we can determine two functions H{r) 
and r{R) such that we have identically 

A^dR^ + RHdd^ + sin2 6d<f>^) - m{dr^ + r^dd^ + sin^6d<f>^)}; 

the necessary and sufficient conditions for this are 

Hr - R, Hdr = AdR, 

and therefore, eliminating H, 

. . (50) 

When is a known function of 7?, this determines r, except 
for a constant multiplier, which from the strictly geometrical 
point of view remains arbitrary. The modulus U of the conformal 
transformation is then defined by 

II ^ ?.(51) 
r 

We shall now calculate Ricci’s symbols (Chapter VII, 
p. 199) relative to a metric of this kind. W^e again make use of 
the property of symmetry, noting that an obvious consequence 
of the considerations set out in § 12, pp. 201-208 is that if the 
quadric which determines the local distribution of curvature has 
an axis of symmetry, this axis gives one of the three principal 
directions, while the other two are indeterminate (i.e. may be 

^ This formula had been given as early as 1896, from analytical considerations 
based on the theory of groups. Of. Atti ddUx, jU* 4cc. dci Idnoeiy VoL V (second 
half-year, 1896), pp. 164-171. 
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any pair of directions orthogonal to each other and to the axis 
of symmetry). In our case, a point P distinct from 0 having been 
fixed arbitrarily, and the behaviour of every metric property 
being symmetrical round the geodesic g which joins 0 and P, 
it follows that the quadric of curvatures at P is necessarily 
symmetrical round the direction of g. Hence at every point 
our co-ordinates r, 6, <f> give principal directions of curvature, 
from which it follows at once that in the quadric of curvatures, 
and therefore in the tensor a^^., the product terms are missing, i.e. 
that 

aif^ = 0 for i 4^ k. 

In addition, if co^ is the principal curvature corresponding 
to g, the other two curvatures cug, cog are equal to one another; 
we shall denote their common value by co. 

We may now recall formula (47) on p. 207, viz. 

^ik — 

1 

which gives explicitly all the a’s as functions of the curvatures 
and of the moments of the principal lines. Since these coincide 
with the co-ordinate lines, along which vary R alone, 6 alone, 
and <j) alone, respectively, they will have for parameters 

and therefore the moments will be 

-^lll = A, Aij2 = 0, CC
 11 ©

 

= 0, ^212 — Ji, ^2|3 — 

^3|1 - 0, A312 — 0, ^3|3 ^ miO, 

Substituting in the formula quoted above, and putting 

<0^ == ^3 == ^5 we get 

CtjH “—■ ^22 —~ jR^CO, ^33 ^22 

a,, - 0 (t=j=k).(63) 
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The equations (53) have already been obtained from the 
consideration that in our case the principal lines of curvature 
coincide with the co-ordinate lines. 

We shall now calculate explicitly the value of co at a generic 
point P from its definition as the Riemamiian curvature. From 
symmetry, it can be considered as belonging to any geodesic 
surface whatever with pole P and containing the direction R. 
We shall show that the surface ^ ™ constant is a particular case 
of such a surface. Take the differential equations of the geodesics 
in our Fg (of line element dl), not, however, in the form given 
in (47) on p. 134, where they are solved for the variables, which 
would require the calculation of Christoffers symbols, but 
in Lagrange’s parametric form, starting from the Lagrangian 
function (the vis viva) 

dP 
dfi' 

In the case we are considering 

T = i?2(02 4- sin2 0<^2)}, 

(where a dot over a letter denotes differentiation with respect to 
the parameter t), and therefore 

0. 

From Lagrange’s equation for the angle <j), viz. 

d _dT ^ ^ 

dt H 

it follows on integrating that one of the equations of the geodesics 
has the form 

sin® d<f> — constant. 

From this it follows that if a geodesic issuing from P touches 

initially the sxudace <j> = constant (so that ^ = 0 at P), <f> 

dT 

d4 
dT 
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vanishes along the whole geodesic, which therefore belongs 
the surface <f> — constant passing through P, as we wished 
prove. To find a>, we have therefore to find the curvature of the 
binary differential form 

A^dR^+R^de^.(54) 

which expresses the square of the line element of the surface 
<f> = constant. 

The general expression for this curvature is 

a 

(formula (28), p. 194); as our a is A^R"^, it only remains to cal¬ 
culate Eiemann’s symbol of the first kind, (12, 12) by means 
of formula". (3) and (5) of Cliapter VII. The explicit expression 
for this was formed by Gauss, and is given in all treatises on 
the subject. We thus get 

_ _ 2. d /i\ ^ _ I d ny 

- AK dR \a} 2R dR \A/ ' 

For the curvature we find 

-Ml 1) 
R^\^ »■ 

An independent calculation of these expressions is given in 
the following section. 

12. Digression on the calculation of curvatures. 

While our specific object is the calculation of co and we 
may here, for the convenience of the reader, show how the 
explicit expression for the curvature of a binary form as a function 
of its coefficients can be obtained without calculating Christoffers 
symbols.^ We shall start from the geometrical property of the 
curvature expressed by formula (29') on p. 195, viz. 

^ Cf. F. Bbrana: Jietui. della R. Acc. dei Linceij Vol, XXXIII (second half- 
year. 1924), pp. 236-238. 

-S -S 
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where DT denotes the area of an infinitesimal circuit T con¬ 
taining P, and € represents the angle of parallelism. In order to 
reduce the calculation to a minimum, we shall calculate e with 
reference to a dl^ of orthogonal form, of the type 

E dx^ + G dx.J^.(55) 

If on leaving P the direction X which is being displaced makes 
an angle a with the co-ordinate line x-^, its parameters A^ 
are plainly given by 

cosa 

Ve 
sma 

Jg 
(56) 

(cf. §§ 4 and 7, pp. 92, 98). Now consider an infinitesimal dis¬ 
placement SP, of contravariant components know 
that when X is given a parallel displacement along SP the incre¬ 
ments SA' of its parameters are given by 

8A' - - j jl, i} A' (i... 1, 2) (57) 

(formula (23), p. 110). In order to avoid the necessity of calcu¬ 
lating the coefficients on the right-hand side (Christoffers symbols), 
we note that the equations 

2 

Xi = — i] XjXt 
1 

of the geodesics have on the right-hand side quadratic forms 
whose coefficients are precisely the symbols we need. Further, 
the first of the Lagrangian equations of the geodesics corre¬ 
sponding to the form (57) (the equation relative to x-^ is 

d dT _dT ^ ^ 
dt dxi dxi 

where T ^ \ {Ex^ -f- Gx^), 

or, performing the differentiations and solving for 

\2E ^ 2E 
Xt r.2 _L ^2. 

^ B 
Xi X2 ] 
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where E^, E^, represent derivatives of E and 0 with respect 
to and x^. Comparing this with the first of the equations 
(67), we see that the latter can be written 

8Ai / ■®'i ;^i Sa; . 
\2E^ 

A18 logx/A’+ A2^ Sx, -f- ^ Sa;, 
2E ^ 2E * 

But from (56) we get 

SAi = - VIA2 8a - Ai 8 log ^E, 
’ E 

and substituting from this in the preceding equation there 
results 

Sa — 
1 

The angle of parallelism is obtained by integrating Sa round 
the circuit T. Replacing the line integral by a surface integral 
in the usual way (for the signs, cf. footnote, p. 190, Chapter VII) 
we get 

e=.-f R (-4-)+ 

hldx^ \2s/EG/ dx^ \2^EG/} 

Noting that the field of integration reduces to the infinitesimal 
element 

DT = \/EG dx^ dx2y 

we can write (neglecting infinitesimals of higher order) 

is/EO 13*1 Wise/ 9», Wi!e/J 

This gives the required expression for the curvature, viz. 

___! r - 
\3h WEG/ axa WEG/- 
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For JE = 1 (for which the lines are geodesics) we get in 
particular the formula 

which is frequently used in the theory of surfaces. 
For the line element given by (54), putting R, a*2 ~ 

so that E — A\R), G = R^, the curvature K becomes 

OJ J - A /iv . . . (58) 
AR dR \aJ' ^ ' 

as stated in the preceding section. 
We now come to the calculation of 0)^, the curvature corre¬ 

sponding to the section normal to the lines R. It is to be noted 
that the spheres R = constant, unlike the surfaces <f> = con¬ 
stant, are not geodesic surfaces, so that coj does not coincide 

with the Gaussian curvature ^ (cf. § 11) of these spheres. To 
Rr 

calculate it, instead of using the direct definition it will be more 
convenient to use the property that dl^ can be conformally repre¬ 
sented in a Euclidean space, with 

dl^ - 

as we have already seen. 
In § 4, p. 228, we found the explicit form of the relations 

between homologous Riemann’s symbols for two line elements 
ds and ds' for which 

rfs'2 = dsK 

We shall identify ds with our dl, and ds' with the Euclidean dlQ] 
we can then apply formulae (18) of p. 231 by making the symbols 
marked with a dash vanish (since they refer to the Euclidean 
dlQ^) and putting 

T = — log jy.(59) 

The formulae then become 

{ij, hk) = — TjTj.) — ai*(T,.A — t^t*) — 

+ — r'i T*) (a^ 0,4 — Oi* o,/,)At, 
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where the coefficients, the covariant derivatives, and the para¬ 
meter A are all taken to refer to 

rfP _ ^2 gJjj2 0 

Multiplying these formulae by a'^ and summing with 
respect to the four indices, the left-hand side, by formulae (1) 
and (2) of § 2, gives the linear invariant G relative to our Vs, 
which after some obvious reductions is thus expressed by 

G 4A9T — 2At, 

where At 
3 

(Chapter VIII, p. 231); and 

A^t = ^ii,a T,;, (Chapter VI, p. 154). 
1 

But for a F3 the linear invariant G is equal to — 2^^/ (cf. 
§ 4), so that the mean curvature is in our case given by 

Jil — 2A2T -|” At. (60) 

As (the sura of the three curvatures) coj -f 2a), and co 
has already been calculated, this formula will give the required 

expression for coi, it remains to find the values of the quantities 

AgT and At on the right, using for this purpose the formulae (50), 

(51), and (59). 

From the general expression 
3 

At = S/i- t,- Tr., 

we have for our dP, and for a function t which depends only on R, 

1 ,0 
At' 

the dash here also denoting the derivative with respect to JR. 
Further, from the general expression (18) on p. 154 we have 

A 1 4 a . 

^2'^ — ^ {s/ar^), 
\/a 1 ^ 

and since now \/a ^ AW sin0, it follows that 

1 d /W A 

AW dR Ka'")' 
AjT 
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In our case, from (59) and (51), 

T = — logH = log^, 

and by (50) 
d . 

dR 
A, 
R' 

hence / 
T : 

_ A- 1 

R 
It follows that 

At — 
{A- -1)2 __ 1 

(1 - 'Y. A^ R^ R^ \ A/ 

A2T -- 
1 

AR^ 
d 

dR 
[«(i 

1 d 
AR dR 

using the expression (58') for o), this can also ])e written in the 
form 

Substituting in (60) the expressions just found for At and 
AgT and for JVl its value + 2ca, 2ca cancels out on both sides, 
and we get forca^ the value stated at the end of § 11, viz. 

(61) 

13. The gravitational equations in the case of spherical sym¬ 
metry. Schwarzschild’s rigorous solution. 

We shall now apply the equations of the Einsteinian statics 
to the particular case of a single attracting mass, or more generally 
of a distribution of masses having spherical symmetry round a 
point 0. Using the terminology of § 11 we shall deal with matter 
distributed in accordance with any law dependent only on R in 
layers bounded by geodesic spheres of centre 0, The Einsteinian 
ds^ will have the statical form 

ds^ = V^dx^^~dl\ 

where dP' will necessarily be of the type (49'), and F, from 
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symmetry, will also depend only on i?. We shall agree to consider 
only regions outside the field occupied by the attracting masses. 
In these regions the statical equations (21'), (22) of § 4 for empty 
space will hold, i.e. 

0,.(21') 

V 
0. (22) 

Since denotes the mean curvature of the symmetrical 
i.e. the sum cuj + 2co of the three principal curvatures, (21'), 
together with (58) and (61) of the preceding section, gives 

oj^ -f 2ai ^ ( 1- M- 
1 d / ly 

^ \ AV R dR V a) 

whence on separating variables and integrating 

- (62) 

where a denotes a constant of integration. 
It is to be noted that whatever the constant a may be the 

expression found satisfies the physically necessary condition that 
at an infinite distance from the attracting masses the metric 
tends towards the Euclidean form. In fact, if J? oo, A —-1, 
so that the dl^ (49') becomes the ordinary Euclidean expression 
in polar co-ordinates. 

The symbols are then completely defined by the formulae 
(52) and (53), where ce and have the values (58) and (61). 

In order to put the gravitational equations (22) in an explicit 
form, we must again replace the covariant derivatives by 
the ordinary derivatives. This can also be done without any pre¬ 
liminary calculations, as follows. Let the x/s denote generic co¬ 
ordinates in a space with a generic metric. Take a function F 
of the ic's, and consider its variation along a geodesic line along 
which the x's are considered as functions of a parameter t. We 
shall have in the first place 

dV 
dt 1 

Differentiating again, and substituting for the ii/s their values 
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as given by the equations of the geodesics, we get, as a particular 
case of the notion of covariant derivatives (Chapter VI, §§ 1 

and 2, p. 144), 3 

^2 = '^ik'Vik^i^k.(63) 

Further, assuming in particular ~ JR, ~ 6, x,^ ^ 
and remembering that our V is a function of R only, we have 

(dashes denoting derivatives with respect to J?), and 

(PV 
“ [ - 4- V'R. 

But for our metric, i.e. for 

T \[A^R^+ gin2(9(;^2)], 

the equation of the geodesics for the co-ordinate R gives 

ddT_dT^^ 

dt sit 3R 

or A^R ip-I ip - Rie^ + Sin^ 0 j>^) = 0, 
dR ^ dR Yi > 

whence we get 

sin^d^®). 
A A^ 

Using this result the foregoing expression for - becomes 
U/t 

% = (^"- 

This expression, like (63), must hold along a generic geodesic, 

i.e. for arbitrary values of the quantities x^ = R^ ±2 = 6, 

a?3 = <f>. Comparing them we get 

V Vn , V33 = Foosin^d, 

== 0 (i + k). 
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Substituting in the gravitational equations (22) these values 
for the F^v/s and the values (52) and (53) for the we see 
at once that the equations with two distinct indices reduce to 
identities, those for the pairs of indices 11 and 22 take the form 

-f- 
F" 

F 
(65) 

li^oj F JiV' 
Vl^ 

0, 

and the remaining equation is the same as this last one. Sub¬ 

stituting in this equation for co its value (58), ].e. 
A' 

it becomes 

A V 
0, (66) 

or AV — constant. 

At an infinite distance from the attracting masses the 
Einsteinian must reduce to the pseudo-Euclidean form, and 
therefore the coefficient F (the Romerian velocity of light) must 
tend to 1 like A \ hence the constant must have the value 1, 
and we have 

^F - 1.(66') 

This equation and (62) give A and F in finite terms, so that 
the required ds^ is now completely determined. The equation 
(65) remains to be considered, but it will at once be seen that 
with the values (62) and (66') it reduces to an identity. In fact, 

substituting for its value 

A' 
for by (66), the equivalent 

A 

1 

(1 — V^), and 

V 
y, multiplying by F^, and 

remembering once more that AV 

1 

Pr 
1 

(1 

1, (65) becomes 

P) 4. VV" + F'2 = 0, 

0. 
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1 a 
On substituting for the value ^ ^ 1“ , we find 

R 
that this equation is satisfied identically, which proves the 
required result. 

The rigorous form of the Einsteinian ds^ with spherical sym¬ 
metry is therefore 

ds^ = (^1 - -dP . . . . (67) 

dR^ 
with dl^ ==-. R2 (^02 e dcf>% 

1 a 

This expression for ds^ was first given by Schwarzschild.^ 
The metric contains a constant a which is a priori arbitrary; its 
value can be deduced from a consideration of the intensity of the 
field of force at great distances from the attracting masses. In 
these regions the spacelike rfP tends, as we know, to become 
Euclidean, R becoming identical with the length of the 
radius vector drawn from the centre of symmetry; further, the 
expression 

_ 1^272 = - ic2+ ^c2“ 
“it 

represents the potential of the field (cf. Chapter XI, p. 328). Com- 
fM 

paring this with the classical Newtonian expression for the 

potential due to a mass M concentrated at the origin (or sym¬ 
metrically distributed round it in any way), we see that we must 
put 

2fM 
(68) 

where M is the sum of the attracting masses. 
It follows from § 11 that every dP with spherical symmetry, 

and therefore in particular the Einsteinian dP (67), can be con¬ 
formally represented in a Euclidean space, the modulus of the 

^ Sitzungsberlchtc der Preuss. Akad, dcr Wiss.y 1916, 189-196. 
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It 
conformal representation being —, where r is defined by (60), 
i.e. by ^ 

dr _ AdR 
r R 

Using the relations 

we have to express the right-hand side of this equation in terms 
of F, which gives 

dr _ 2dV 
r 1 - F2’ 

whence on integrating 

= r Ltl 
"1 - F 

_, (1 + yf 
1 - F2 

(1 + Yf, 
a 

(69^ 

where rg denotes a constant. 
If we wish to impose the natural condition that r, like R, 

shall tend to become identical with the ordinary radius vector 
at an indefinitely great distance from the attracting masses, 
we shall have to determine rg in such a way that 

lim - = 1. 
R~^oo r 

Since when 22 00, F —* 1, this gives 

a 
^0 = 4- 

Consequently H ^ = (iTW' 

and therefore dP = HHl^ = 

As an instructive example, we shall apply these rigorous 
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formulae to calculate over again, for a symmetrical field, the 
expression (33) of § 6, viz, 

ds^ = (1 - 2y)dV — (1 -f 2y)dl^^ 

^where y stands for , which to a first approximation gives the 

Einsteinian corresponding to an assigned Newtonian field. 
In our case comparison of the coefficients and 1 — 2y of dx^ 
gives rigorously 

y ^ \ 
a 
R' 

so that, from the value (68) of a, JJ is precisely the expression for 
the Newtonian potential of a mass M symmetrically distributed 
round the centre. Comparison of the coefficients of dl^ imposes 
the condition (at least to a first approximation) 

1 + 2y = ^2 _ 16 

a + W 
From the expression 1 — 2y for F^ we have to a first approxi¬ 

mation F = 1 — y, and therefore 

(1 -f- F)"** == (2 — y)~^ “ (1 + 2y), 

which ensures that the above condition is effectively satisfied so 
long as we neglect terms of higher order. 

14. Spatially uniform metrics; their cosmological interest. 

We shall now examine whether there exist solutions of the 
gravitational equations in statical conditions, and on the hypo¬ 
thesis that the spacelike dl^ has a constant curvature K and that 
the energy tensor is also uniform, meaning by this that it is 
of the type (66) of p. 358 (applied to the statical case). This 
is equivalent to assuming for the T^^’s the expressions 

Too==VH.-p)^V\ .... (70) 

Tirc = P(^i^ {ik=h2,S), . . (71) 

where the obviously denote the coefficients of dP. The two 
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quantities ( > 0) and f represent respectively (cf. Chapter XI, 
p. 358) the energy density and the pressure (or pull, if < 0) in 
the medium. 

We next take into account the geometrical hypothesis that 
the spacelike manifold has constant curvature K, When the 
three principal curvatures coj, 0^2, all reduce to K, the canonical 
expressions for Ricci’s symbols (formula (47) on p. 207), 
together with (4()) on p. 206, give immediately 

^ik “ ^ ^iky.(72) 

while by the definition of the mean curvature we have 

3X.(72') 

Using these results, the first of the gravitational equations, 
(18) of § 4, becomes 

3K = KTj.(73) 

We deduce from this that K >0, which comes within the 
general observation of § 4 that in statical conditions the mean 
curvature is always either positive or zero. The equation (73) 
then shows that rj is necessarily constant when K is, or in other 
words that the medium must have a uniform distribution of 
energy, or, what is the same thing, of matter. 

On account of this circumstance, this type of solution has a 
particular cosmological interest. It is true that the celestial 
bodies are separated by distances which are large compared with 
their dimensions, and therefore the distribution of matter in 
space is essentially discontinuous; but from a statistical point 
of view it is natural to ask what are, so to speak, the mean 
mechanical conditions of the universe; i.e. what would be the 
nature of the space-time metric on the hypothesis that the whole 
of the cosmic matter, instead of being concentrated in discrete 
masses, is uniformly distributed throughout all space, with the 

mean density of the actual distribution. 

It is important to npte that, as we are dealing with a space 
of constant positive curvature, its extension S (in the sense of 
Chapter VI, p. 160) is/finite, as we shall show in a moment. As¬ 
sociating it in the meanwhile with the foregoing cosmological 
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consideration, we reach the conclusion that in this type of solution 
the total quantity M of matter is finite, and is given by 

^ .(74) 

In order to find the extension S, we take dl^ in the canonical 
form (31) on p. 240, viz. 

dl 2 1 
== J . (76) 

U/ it 

K ^ 
where u ~ \ and . . (76) 

We have in the first place, for the element of volume corre¬ 
sponding to the Euclidean dl^ referred to polar co-ordinates 

dS^ ~ dr mnd dd d(f>, 

and therefore, for the corresponding element of physical space. 

The total volume is in consequence given by 

S - 
(d^ 

the integral being extended to the whole of space. The integration 
with respect to 6 and <f> gives An, so that we can write 

S = 
^2 dr 

Here we can introduce the radius a of the sphere of Gaussian 
1 r 

curvature K, putting K = and substitute x = ^ for r 
la 

as the variable of integration. This gives 
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and therefore, from (74), 

M = 
c» 

In the given conditions, physical space has thus the volume 
and is therefore finite, though at the same time unlimited. 

This latter property holds, as for ordinary two-dimensional 
spherical surfaces, for any manifold of constant positive curvature 
in any number of dimensions. 

Another general property which calls for mention is that in 
a variety of the kind specified the geodesics are all closed lines, 
of length 27ra. Consider specifically the case of three dimensions 
which corresponds to the physical space of the problem under 
discussion. It will be seen immediately that without loss of 

dl 2 
generality we can always refer dl^ to polar co-ordinates 

vr 

r, 0, <!> in such a way that for a geodesic assigned in any manner 

^ “ 0 at one point of it; from the Lagrangian equation relative 

to the parameter <f> it then follows, as in § 11, that = 0 all 
along the curve, which is therefore a geodesic of one of the sur¬ 
faces <!> — constant, or in particular, by suitable choice of the 
<f) - axis, of = 0. In view of the transformation formulae 
between Cartesian and polar co-ordinates, 

z= r sind cos<f>, 
^ r sind 

r cos9, 

this is equivalent to saying that any geodesic can always be 
considered as belonging to the co-ordinate plane = 0; but, 
for ^2 — assumes the canonical form of a two-dimensional 
manifold of constant curvature K, i.e. of the ordinary sphere of 
radius a. The geodesic therefore coincides with a great circle 
on this sphere, and is therefore a closed curve of length 27rflf. 

We now pass on to the other six gravitational equations. 
Taking account of (71) and (72), the equations (17) become 

+ (Z + - M) a,, = 0 (*, ^-1,2, 3), (77) 

which can be satisfied in two different ways, according as we 
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suppose V constant (Einstein’s cylindrical space-time) or F a 
function of position (De Sitter’s hyperspherical space-time)A 

15. Einstein’s solution. 

First, suppose V constant. In this case it is necessary and 
suflScient to add to (73) the condition 

K + kp 0.(78) 

From this it follows first of all that the normal stress p is 
necessarily the same at every point, and on comparison with (73) 
there follows , 

P ^ - H.(73') 

whence we get the following result: 
In a hoinogeneous medium subjected to a uniform pull of 
Tj being the energy density, the space assumes the constant 

positive curvature K y 7], the velocity V of light remaining 
3 

constant (and being naturally supposed not zero). 
Remembering that in statical conditions the potential of the 

force in the field is — |F^ (Chapter XI, p. 328), we see at once 
that in the present case the force is zero. 

16. De Sitter's solution. 

Now suppose that V is a function of position. Multiplying 
(77) by and summing with respect to i and k we get in the 

first place 
A2F + 3 (^K + Kp — 

V / 
0 

or = HK + kp). 

The equations (77) are therefore equivalent to 

= 0 .... (77') 

where for brevity we have put 

K* = K- + Kf). . . . (79) 

^ Of. T. Lkvi-Civita: “RealtA. fisica di alcuni spazi normali del Bianchi,” in 
Mmd, della R, Ace. dei Uncei, Vol. XXVI (first half-year, 1917), pp. 619-531. 
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It is easy to see that the equations (77') are mutually con¬ 
sistent for F not constant (in fact, they constitute a complete 
system with respect to F considered as the unknown function) 
if, and only if, K* = K, To prove this, take the commutation 
formula (20) on p. 186 for the second covariant derivatives of 
a simple system F^, which gives 

- F,,, = - i [ir, hk)Vr. 
1 

Substituting for Riemann’s symbols of the second kind the 
expressions for a manifold of constant curvature K (formula 
(19') on p. 234), viz. 

we get Vm — Vikh = K (a,* 7* - a,„ V,,). 

Further, multiplying (77') by F and taking the covariant 
derivative, we get 

F,., - .... (77") 

substituting in the preceding equation, we get the conditions of 
integrability 

(E*-Z)(a.,F,-a,,F,) - 0 

for every set of values of the three indices ^, h, k. Since by hypo¬ 
thesis F is an effective function, one at least of its derivatives 
(say F^.) will not be zero. In the above equations take this value 
of h and a value of h different from k\ multiply by a’* and sum 
with respect to i. This gives 

(A* - A)Ffc = 0 

whence A* —■ A = 0, 
Q. E. D. 

Using this result, we get from (79) 

ZK Kj> ~ 0, 

which leads to the same qualitative statements with regard 
to the stresses as those made above for the cylindrical space- 

time. 
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For the integration of the equations (77'), in which from now 
onwards we put K* ~ , we must again take dl^ in the canonical 
form (75). 

The CO variant derivatives V of V with respect to our dl^ 
can be found explicitly as functions of the ordinary derivatives, 
without direct calculation, from the considerations in Chapter 
VIII, pp. 222-232. In fact, considering our dP and the corre¬ 
sponding Euclidean dl^^^ referred to the same co-ordinates, we 
have, from formula (9) on p. 224, 

1 

where, by (16) on p. 230, 

Pile ^ K^lr + 

with in our case ~ vP, u having the value given in (76). 
Noting that for dl^^ referred to Cartesian co-ordinates the 

derivatives are identical with the ordinary second derivatives, 
and that — r^, --- we have the required expressions 
in the form 

V;, -- 4- (% V, -f ./, V,) - ^ S, V, 
oyidy,. u u 1 

Substitute these expressions in the equations (77'), which on 
multiplying by uV take the form 

= 0 
u 

for K* == K and == '. Putting for brevity 

W uV, . 

and using the expression (76) for u, we get 

(80) 

, T/ , T/ U - + % Vi + M, 
^yi^yie ^yioyic 

02 W AT 
sf; 

whence it follows that 

02 W ^ 

^yi^yk * '2 u 
KW 

m2 
+ SiMiFeJ 
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But by (80) 

u 

W 

substituting, and taking into account the definition (76) of u and 
the consequent identity 

V Ku, 

the foregoing equations become 

if). 
oVidy,, 2?t \ 1 / 

From this it follows at once that for i the second deri¬ 
vatives of W vanish, so that W must be a function with the 
variables separated (the sum of three functions, one of alone, 
one of alone, and one of y^ alone). Further, for i -■= k, the 
equations above show that as the terms on the right are the same 
for all three cases, we must have also 

dm dm dm 

all equal; their common value must therefore be a constant, 
K 

which we can denote by 6^ . Hence the most general expression 

for W is of the type 

W ^0 ^ ^2 _j_ ^ 

4 

where linear homogeneous function, a priori undetermined, 
and 0 is a constant. The coefficients of this expression are to 
be so determined that 

i.e. that 
1 

By Euler’s theorem on homogeneous functipns the linear 
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term w contributes nothing to the left-hand side, so that its three 

coefficients are arbitrary; there thus remains 

_ c =- u, 
4 " 

which by (76) reduces to 

C ... - 6,. 

Hence the final expression for W can be written in the 

form 

W - b^{u ^^■2) + iv, .... (81) 

tlie constant 6^ and the coefficients of w being still completely 

arbitrary. This number of constants could of course be predicted 

from tile fact that the system (77') is completely integrable; as 

all the second derivatives of the function V are defined by it, 

it is obviously equivalent (cf. Chapter II, p. 13) to a total differen¬ 

tial system in four unknown functions, viz. V itself and its 

three first derivatives. 

It is also to be noted that the three constants of integration 

Vv'hich appear in the linear expression 

w 2 + b^y^+ &3 y^) 

can obviously be reduced to one, since by a suitable orthogonal 

transformation applied to the y's (for which w, and are all 

invariant), we can always reduce the trinomial to the form 

with b \^bi^ b2^ + 63^. 

But we may also suppose b ™ 0; this can be formally proved 

(though in a less elementary way) by taking account of the 

homogeneity of a space with constant curvature, which enables 

us to take a point fixed in advance as the point y, — 0, while 

dl ^ 
retaining the canonical form ^ for dl^,^ 

^This becomes intuitive for the case of two dimensions, in which a manifold 
of constant positive curvature is an ordinary spherfi, and the canonical expression 
for dl^ is obtained by stereographic j^rojection of the sphere On a diametral plane 
(cf. Chapter VIII, p. 241). The assertion in the text reduces in this case to the 
obvious geometrical fact that any point whatever of the sphere may be chosen aa 
the centre of projection. 

(1)655) 15 
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Using these results, it follows from (80) that the expression 

for the spatially uniform on the hypothesis of F variable, is 

where W == 6o(m-2),^ 
K • 

M =:. 1 + I 
(82) 

It is assumed that the constant 6q is not zero, as otlierwise 

we should have identically F 0, which is not permissible, 

since we are considering the case of V variable. 

In view of the physical significance of V, those points, if any, 

at which F -- 0 obviously denote singularities in the field; they 

remain, so to s})eak, optically isolated, in a sense which will be 

explained further on. On the other hand, as r, and therefore u, 

increases indefinitely, tends to further, for finite values of r, 

u remains essentially finite and >1, so that the singular points 

are determined by the equation If 0. This equation, com¬ 

bined with (82) and the relation K “ becomes 

r 'In. 

which ill the representative Euclidean space defines a sphere 

I)q. The surface 1) which coiTesjxuids to it in the physical space, 

and which, by § 11, is also a (geodesic) sphere, is called the horizon, 

because it constitutes in a certain sense th(‘ limit of the perceptible 

universe. This follows from the fact that light, and a fortiori 

a material particle, would take an infinite time to reach it. To 

prove this, let A and B be two generic points; then by the 

definition of F the time taken by light to pass from A to B is 

I I 
J V J iiV J w 

where the integral is taken along the ray joining^ to B. When 

B tends to the horizon the integrand tends to an infinity of the 

first order at B, and therefore the integral cannot remain finite. 

As we have already several times recalled (in particular in the 

preceding section), the force in the field is the gradient of •— |F^; 
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in consequence it tends to displace the material masses towards 

the regions of minimum i.e. towards the horizon. This 

circumstance was regarded as an incongruence of De Sitter's 

space-time; but it is to be observed that it must be taken to refer 

solely to accidental masses (sufficiently small not to modify the 

field perceptibly), and not to those uniformly diffused masses 

which constitute it, the equilibrium of which is automatically 

assured by the gravitational equations. 

It is interesting to remark that the problem of spatially 

uniform metrics (§ 14) admits of a solution which includes both 

Einstein’s and De Sitter’s solutions as particular cases.^ 

In fact, in the argument beginning at equation (77'), it was 

tacitly assumed, at (77"), that is constant. If we drop 

this supposition we find 

Vm - = K* (a,, F, - a,,, F,) + F (a,, Kl - a,, El), 

which, on combination as before with 

^ihk ikh ^h ^ih ^k')^ 

gives 

(A^ A^) (a,, V, - a,-, F,) == F(a,, A;: a,. A,:). 

If we put A for A — A*, this becomes 

F/,) + F(a,vs. E,, — E,,) === 0, 

leading, by the same treatment as in the former case, to 

AF, + FA, == 0, 

or AF = constant 

== A, say. 

Equation (77') may now be written 

Thus, if instead of (80) we write 

^ This extension of the analysis was suggested to me by Dr. John Dougall. 
r D 665 ^ 15 * 
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the investigation proceeds exactly as before, and leads to the 

same value of W, viz. that given in equation (81). The new 

value of V is therefore 

V - 
A , W 

o 

^ , Mw - 
K'^ u 

2) 

If ^ ~ 0 we have De Sitter’s solution; if -- 0 we have 

Einstein’s. If both A and are different from zero, the 

curvature K is still constant, but the (normal) stress p is 

variable, being given by 

K - K* - E 

_ A 
- y 

or i(3A^ + xp) - y. 

We shall conclude this section by showing that De Sitter’s 

space-time not only, like Einstein’s, implies that physical space 

(i.e. any manifold —- constant) has constant positive curvature 

if, but has itself, as a four-dimensional manifold, constant 

negative curvature. 

To prove this, we start from a known property of every space¬ 

like dl^ which has constant curvature K, namely (Chapter VIII, 

p. 234), that Riemann’s symbols for dP have the form (19') of 

p. 234, or 

{ir, hk} ------ {i, r,h,k 1, 2, 3). 

By (11) and (13) of § 4, these relations can be written in the 

form 

\^ir, hh] -- K{g 11,81 • • (®3) 

still for the same values 1, 2, 3 of the indices. Now it is easy to 

see that these last formulae, in virtue of the expressions (14') 

for Riemann’s symbols for our ds^ and of the equations 

^ == Kg^ {i, k-^. 1, 2, 3), (77'") 
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will still hold when 0 is included among the values to be assigned 

to the indices. This is obvious when one, three, or four indices 

are equal to 0, since then (§ 4) both sides of the equation vanish. 

In the case of two indices zero we have, as in § 4, to examine the 

two types {Or, OA;}', {iO, 0A|'. The corresponding values of the 
3 y 

left-hand side are respectively F(F'‘)^ — F 2^ and —, 

i.e. in view of (77"'), ^ ^ 

2, a- a;, - ~ K F^Sj: Kg,,. 
1 

The values of the expression on the right are clearly the same. 

Thus the equations (83) hold for all values of the indices from 

0 to 3, which is precisely equivalent (still by formula (19') of 

p. 234) to saying that the ds^ of space-time has constant negative 

curvature — K. 
It may be well to observe that while the notion of a manifold 

of constant curvature and the measure K of this curvature are 

by their nature invariant, i.e. independent of the choice of the 

co-ordinates of reference, this invariance does not persist for 

multiplication of ds^ by a constant factor m. In fact, when all 

the coefficients //•;. are multiplied by Riemann’s symbols of 

the second kind are unchanged, so that, again by formula (19') 

of p. 234, the curvature K is divided by m. In particular, for 

ni = — 1, it changes sign. This explains the apparent contra¬ 

diction between our enunciation and that of some writers who 

take — ds^ as the fundamental form and assign constant positive 

curvature to De Sitter’s space-time. 

17. Einstein’s additional term. Indication of other rigorous 

solutions. 

For Einstein’s solution we found in §§ 14 and 15 (formulae 

(73) and (78)) 
3/l Krj, K KJ) ^ 0. 

We cannot therefore suppose the matter devoid of stresses 

(j9 =r: 0) without concluding that 77 = 0, which brings us back 

to the uninteresting case of a totally empty space. Now if 

we take the cosmologico-statistical point of view (in the sense 

indicated in § 14), it seems reasonable to suppose that there 
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must be a solution of the gravitational equations corresponding 

to the hypothesis of a uniform distribution of matter which shall 

be so tenuous that the molecular actions between contiguous 

particles, and therefore the stresses, are imperceptible; such, 

that is, that p 0, while 97 is a constant other than zero. 

Since the gravitational equations in the original form (8), viz. 

9 ik 

have no solution of this type, Einstein was led to modify them 

(very slightly) by adding a term which maintains the tensorial 

character of the equations (8), and which in ordinary cases is 

completely imperceptible while serving to render possible a solu¬ 

tion of the type indicated. This term was assumed by Einstein 

in the particularly simple form A denoting a constant which 

in most cases is negligible compared with G, The gravitational 

equations so modified are 

\^9ik “f" ^9ik " 

a i - 0,1,2,3). 

The statical equations accordingly become 

M — A ” K7], 

a,, + ^ - + a) a,, = - kT^ a 1, 2, 3). 

Proceeding as in §§ 14, 15, on the hypothesis that the space¬ 

like dP has constant curvature, that the density is constant, and 

fchat the stresses are isotropic (i.e. are given by (70) and (71)), 

we ultimately reach the two equations 

3K — K7] X, 

K Kp = A, 

between K, 97, p, and A, which take the place of (73) and (78). 

Here it plainly becomes possible to put p = 0 without rj 

necessarily having to vanish at the same time; we need only 

take 

2K 
rj == 

K ^ X. 
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To get an idea of the order of smallness of the constant A, 

we may note that the mean cosmic density - of matter can 

certainly be regarded as considerably less than that of the nebulaD. 

which is of the order of 10“^^ gm./cm.®. It is therefore legiti¬ 

mate to assume that in any case 

A - 
2 

From the numerical values (in (IG.S. units) /c — 2 x 10"^^, 

c ~ 3 X 10*^ we have 

A - A < 9 X lO'^l 

For the radius a of the universe we thus get a lower 

limit given by ^ 
^ a> 1022 cm. 

This radius is therefore certainly considerably greater than 

10^’ km. or 10,000 light-years. 

We shall conclude with some bibliographical references con¬ 

cerning the rigorous solutions of the gravitational equations (with 

or without the cosmological term) in some special cases. 

Schwarzschild’s solution is supplemented or generalized in 

various important respects by the original contributions of 

Birkhoff, De Donder, Eddington, v. Laue,^ and Weyl, which 

are given in their respective treatises, and of Signorina Longo2, 

Trefftz,^ Nuyens,^ and Vanderlinden.*'^ 

A different type of solution is considered in the researches of 

Weyl,® Levi-Civita,’ Bach,® Chazy,® Palatini,^® and Kasner.^^ 

^ Of. also Sitzungshcrichte der Preuss. Ak. der ir/ss., 1928, pp. 27-31. 

2 Nuovo Cimento, VoL XV, 1918, pp. 191-211. 

® Math, AnYKtleriy Vol. 86, 1922, pp. 317-326. 

* Comptes Rmdus, Vol. 176, 1923, pp. 1376-1379. 

^ Bull, de VAc. roycde de Belgique^ 1921, pp. 260-276. 

^ Annalen der Pkysik, 54 (1918), pp. 117-145; 59 (1919), pp. 185-188. 

7 “ ds^ einsteiniani in campi newtoniani ”, Notes I-TX, in Bend, della Jl. Aee. 

deiLincei, Vols. XXVI, XXVIT, XXVIII, 1917-1919. 

* Mathematisehe ZeiUehrift^ Vol. 13, 1922, pp. 134-145. 

® Bulletin de la Soci^td Math, de France^ Vol. LIT, 1924, pp. 17-37. 

Nuovo Cimenio, Vol. XXVI, 1923, pp. 5-24. 

Trans, of the American Math, Society, Vol. 27, 1925, pp. 101-105, 155-162. 





ADDITIONAL NOTES 

P. 122, line 9 frow foot. See a short but substantial article by 

E. Cartan, who discusses the question exhaustively from the 

geometrical point of view: Annales de la Societe Polonaise de Matke- 

matiques, Vol. VI (1927), pp. 1-7. An earlier paper by M. Janet, 

ibidem, Vol. V (1926), pp. 38-73, may also be consulted. 

P. 168, at the. end. A luminous demonstration of M. Fermi’s 

theorem, as simple as it is intimately related to fundamental prin¬ 

ciples, has been given recently by Mile. P. Nalli: Rerid. Acc. Lmcei, 

Vol. VII (1928), pp. 195-198. 

P. Ml, at the end. The use of locally geodesic co-ordinates enables 

us to recognize at once an important property of the c-spstems, which 

they possess in common with the fundamental tensors a’-'*' 

—their covariant derivative vanishes identically. For each element of 

an e-system is either zero or of the form ± x/a, d- The deri- 
" va 

vatives of the a^fs being zero (in geode.sic co-ordinates, for the 

point considered), the same is true for every element of an e-tensor. 

It follows (p. 71, final paragraph) that the covariant derivative 

vanishes in any system of co-ordinates whatever. 

P. 188, line 3. The general case in which the cycle T and conse¬ 

quently the area V are not restricted to be infinitely small, can 

also be treated without great difficulty, as has been shown very 

ingeniously by J. M. McConnell, Rend. Ac^. Lincei, Vol. VII (1928), 

pp. 208-213, 306-309. 

P. 209, end of footm)te. See also J. L. Synge, On the Geometry of 

Dynamics, Phil. Trans. Roy. Soc., A, 226 (1926). pp. 31-106; and 

various notes by MM. Berwald, Boggio, Cartan, Crudeli, 

De Mira Fernanpes, Onicescu, Vrakceani^ Rend. Acc. Lincei, 

Vols. V, VI and VII (1927, 1928). 
441 
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P. 228, after formula (14). Formulae (13) and (14) can be proved 

more readily, without any formal development, by means of geo¬ 

desic co-ordinates, as has been remarked by Mile. Nalli. See her 

note Due dimostrazioni nel calcolo assoluto, Boll, deir Unione Mat. 

Italiana, Vol. VII (1928), pp. 124, 127. 

P. 234, line 10 from foot. A simpler proof, clue to Mile. Nallt, 

is given in the paper cited in the note to p. 228. 

P. 439, at end of references. On all these questions, Darmois, 

Les equations de la gravitation dnsteiniemte, Fasc. XX, Memorial 

des Sciences Mathematiques (Paris, Gauthier-Villars, 1927) may 

also be consulted. 
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Action, in mechanics, 331. 
Action, stationary, 324, 331. 
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-in V„,, 123-126. 
Angular metric, 123, 
Antisymmetrical systems, 66. 
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Associated tensors, 95, 
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Bibliography. See Preface. 
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439- 
Bilinear covariant, 18, 20, 21. 
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— system as to given congruence, 278. 
Cartesian co-ordinates, 61. 
— co-ordinates locally, 164, 167, 171, 

202. 
Central forces, 397. 
Change of co-ordinates, 61. 
— variables, 2, 61. 

-general, 80. 
Characteristic of envelope, loi. 
-matrix, 9, 39, 87, 250. 
—- — surfaces, 47. 
ChristofFel’s symbols, derivatives of 

aik in terms of, 111. 
-determinant <2 in terms of, 112. 
-of first kind, 109, 111. 
— .... of second kind, no, in. 

-vanishing of, 121. 
Classical mechanics, correction to, 392. 

c, meaning of constant, 335. 
Coefficient second approximation to, 

392-394. 
Coefficients of by experiment, 363- 

368. 
-— qualitative properties of, 369. 
— *— quadratic form, covariance of, 73. 
Commutation of second derivatives, 

273* 
-- rule, 184. 
Complete system of partial differential 

equations, 52, 53. 
-total differential equations, 15- 

18. 

Composition of tensors, 79. 
-velocities, in relativity, 317. 
Compounded tensor, 79. 
Conformal representation, 229, 246. 
-of Einsteinian in Euclidean space, 

423- 
-of Vs, 411. 
Congruence, canonical system as to, 278. 
— geodesic, 262, 274. 

— curvature of, 275. 
— - normal, 263, 275, 285. 
— of curves, 46, 47. 
— solenoidal geodesic, 363. 
Congruences in Euclidean space, 282. 
— set of normal, 277. 
— sets of, 265. 
Constant, gravitational, 386. 
— X, in Einstein’s equations, 387. 
Continuity, equation of, 347, 349-351, 

360, 363. 
— --molecular, 361. 
Continuous system, mechanics of, 347, 

352. 
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— — relativistic equations for, 359. 
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Contravariance of the 92. 
Contravariance, m-fold system, 69-71. 



446 SUBJECT INDEX 

Contravariance, simple system, 67, 81. 
— transformation by, 67, 69-71. 
Contravariant differentiation, 149. 
Co-ordinate hypersurfaces, angle be¬ 

tween, 128. 
— lines, angle between, 128. 
-parameters of, 98. 
— — moments of, 98. 
Co-ordinates, Cartesian, 61. 
— curvilinear, 61, 87. 
— in space-time, 290. 
— locally Cartesian, 164-171, 202. 
-geodesic, 164, 167, 171. 
— Pliicker’s, 68. 
Cosmological interest, solutions of, 426. 
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-second, 184. 
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-of invariant, 147, 
-of vector, 147. 
— simple system, typical, 82. 
-systems, sets of, 74. 
Cramer’s rule, 54, 55. 
Curl of vector, i6r. 
Curvature, calculated, 413. 
— constant, canonical forms for mani¬ 

folds of, 238, 240. 
-manifolds of, 236, 246. 
— Gaussian, 172. 
-of ordinary surface, 193. 
— geodesic, 135-137* 
-of congruence, 275. 
— hyperspherical, 258. 
-formula for, 260. 
— lines of, 286. 
— locally constant, 235. 
— mean, of physical space, 382. 
-of Fn, 258. 
-of Fa, 372. 
— of a Fs, 201. 
-calculated, 413. 
-formula for, 203. 
— of space, in Einstein’s space-time, 

429, 438. 
— principal, in Fg, 204. 

— Riemannian, of Vn, 195- 
— space of constant, 425-439. 
Curvatures, calculation of, 414-419. 
Curvilinear co-ordinates, 61, 87. 
Cylindrical space-time, Einstein’s, 429. 

Density, mean cosmic, of matter, 426, 

439. 
— of energy, 350, 351. 
--momentum, 350. 

Density of nebulae, 439. 
Derivative, covariant, 146. 
— of vector, 139, 140. 
Derivatives, transformation of, 85. 
— of determinant a, iia. 
De Sitter’s space-time, 429-435. 
-constant negative curvature of, 

436. 
Determinant, functional, 2, 4-12. 
— o, derivatives of, in terms of Chris- 

toffel’s symbols, ii2. 
— reciprocal elements in, 54, 55, 80, 81. 
Developable, circumscribed, loi. 
— surfaces, 100, 101. 
Differential equations, linear partial, 

33-61. 
-normal form of, 36. 

— total, 13-33* 
— parameter, first, 231. 
— parameter, second, 154, 393. 

parameters, in special case, 418. 
total, 13, 64. 

Differentials, linear transformation of, 
80. 

Differentiation, covariant, 144, 149. 
Direction. See Versor. 
— spacelike, 356, 357. 
— timelike, 356, 357. 
Directions of co-ordinate lines, in F;,, 

127. 
-surfaces, in F^, 127. 
— specification of, 90. 
Discrete system, motion of, 360-363. 
-incompressible, 361. 
Discriminant of Uit’s, 157. 
Displacement, cyclic, 173, 186. 
— infinitesimal, 104. 
— parallel, 103. See Parallel displace¬ 

ment. 
— spectral, 400. 
ds^ and gravitation, 375. 
— approximately pseudo - Euclidean, 

383* 
— coefficients of, and gravitational 

experiments, 367. 
-by experiment, 363-368. 
— covariance of coefficients of, 90. 
— discriminant of coefficients of, 90. 
— expression for, 88. 
— for an Einsteinian space-time, 392. 
-assigned Newtonian field, 388- 

392* 
-single point mass, 419-423. 
— generalization of, 320. 
— indefinite, 141. 
— in mechanics, 293. 
— -invariance of, 294. 
— invariance of, 308, 311. 
— qualitative properties of coefficients 

of, 369. 
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ds^ same for dynamics and light, 336, 

337. 
— statical, 326, 327, 371, 377, 378,392. 
-Einstein tensor in, 380, 381. 
-Rjemann’s symbols in, 379. 
— ten functions involved in, 322. 
—■ vanishing, for light, 332, 338. 
-variational principle for, 340. 
Divergence of double tensor, 154. 
-gradient of vector, 154. 
-stress tensor, 344. 
-vector, 153. 
Dual variables, 68, 81. 

Eclipse observations, 407, 408. 
Einstein's cylindrical space-time, 429. 

form of Hamilton’s principle, 291. 
— gravitational equations, 376. 
— tensor, 200, 371. 
— — divergence of, 371. 

-for a Fa, 371. 
-in statical 380, 381. 
-linear invariant of, 371. 
Einsteinian, and Newtonian, trajec¬ 

tories, 395. 
— motion, law of time in, 396. 
— space-time, ds'^ for an, 392. 
Electrodynamics of bodies in motion, 

312. 
Element of area, 99. 
Elongation, relative, 305. 
Empty space, 392. 
-djr* for, 382, 383. 
Energy and mass, 294, 298. 
— - - matter, 298. 
-- metric of F4, 328. 

density, 350, 351, 356, 382. 
- field of uniform, 426. 
■ flux of, 350, 351, 356, 357, 358. 

- intrinsic, of matter, 297, 298. 
- kinetic and potential, 296, 324. 

- tensor, 355, 358. 
-and curvature, 374. 
-electromagnetism, 374. 
— -- equations of motion, 359. 
-local phenomena, 374, 
-— metric of space-time, 383. 
-physical interpretation of, 359. 
-vanishing, 382, 392. 
Envelope of family of planes, loi. 
Equation of orbit, 397. 
Equations, Einstein’s gravitational, 376. 
— of motion, Einsteinian modification 

of, 351- 
-in terms of stress tensor, 351. 
-of free particle, 287. 
— relativistic, for continuous system, 

359. 
— total differential, 13-33- 
.—-integrals of, 47. 

Equipollence of vectors, 103. 
Equivalence, mechanical, a theorem of. 

394. 
6-systems, 158. 
Ether, 335. 
Euclidean manifold, 121. 
-and Riemann’s symbols, 242-246. 
-Christoffers symbols in, 121. 
— metric manifold, condition for, 242- 

246. 
Experiment and coefficients of ds^, 363- 

, 368. 
Experiments, gravitational, and Js®, 367. 
— optical, and ds^, 363. 
Extension of a field, 160. 
-curved space, 426, 427, 428. 

Facet, 201. 
Fermat’s principle, 335, 402. 
-and geodesics, 341-343. 
-in relativity, 340, 341. 
Focal directions in congruences, 283. 
Force absorbed in stress system, 349, 

374» 375. 
— disturbing, in planet’s motion, 397. 
— in relativity field, 328. 
— inversely as cube of distance, 397. 
Form, bilinear, 66. 
— invariant, 73. 
— linear, 67. 
— multilinear, 66, 83. 
— quadratic, 66. 
Forms of class i, 253. 
-conditions for, 257. 
Frame of reference, 335. 
Frequency of spectral line modified, 

400. 
EVesnel’s convection coefficient, 319. 
— formula for velocity of light m 

moving media, 318-320. 
Function, alternate, 35. 
— implicit, 3. 
— uniform, 14. 
Functional matrix, characteristic of, 

9, 39, 87, 250. 
Functions of position, 80, 83. 

Galilean systems, 349. 
-force, stress, and divergence in, 

349- 
Gauss, on intrinsic geometry, 99. 
Gaussian curvature, 172. 
-of F2, 193. 
General relativity, concept of, 294. 
-postulates of, 364. 
Generalization of metric of F4, 320. 
-Lagrangian function, 322-324. 
Geodesic, co-ordinates locally, 164, 167, 

171. 
— curvature, 135-137. 
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Geodesic, definition of, 103, 128. 
•— deviation, 208-220. 
-Jacobi’s formula for, 219. 
— excess, 197. 
— manifold, 162. 
— motion of particle in, 326. 
— principle, 337. 
--Einstein’s, 328, 331. 
-in F4, 341. 
— sphere, as horizon, 434. 
— surface, 164. 
— triangle, 197. 
Geodesies and trajectories, 324, 326, 

331- 
— autoparallelism of, 104, 140. 
— differential equations of, 131-135. 
■— in rigid motions, 408. 
— in space of constant curvature, 428. 
— Lagrange’s equations for, 208, 331, 

332. 341. 3<>7, 413- 
— near given geodesic, 208. 

— of zero length, 330-334> 337- 
Geometrical optics, 334. 
—' - according to Einstein, 335-338- 
G*/. (Einstein tensor), in statical ds'^y 

380, 381. 
-— linear invariant G of, 380, 

3«i- 
G, linear invariant of Einstein tensor, 

380, 381. 
Gravitation, modification of Newton’s 

law of, 397. 
— not absorbed in energy tensor, 375. 
— with point mass, 419-423. 
Gravitational constant, 386. 
— equations, and the facts, 387. 
-Einstein’s, 376. 
-for spherical symmetry, 419. 
-for statical ds’, 381. 
-in space of constant curvature, 

428. 
-modified by cosmological term, 

438. 
-rigorous solutions of, 437. 
-solution of, 419-423. 
— experiments and di*, 367. 
— field and spectral lines, 400-402. 
-path of light in, 403-408. 
— forces, as privileged, 374. 
— tensor, 371, 372. 
-divergence of, 372, 

Hamilton’s principle, 287. 
-Einstein’s form of, 291. 
-modified, 294-298, 301, 322-324, 

351. 
Horizon, in De Sitter’s space-time, 434. 
Hyperspherical representation, 258. 
Hypersurface, 121. 
— hyperspherical representation of, 258. 

Hypersurfaces in Euclidean space, 249, 

253- 
— parallel, 251. 

Immersion of F« in Euclidean space, 
121. 

Indefinite Jr*, 141. 
Independence of functions, 5, 8-10. 
Inertia, index of, 299. 
— principle of, in relativity, 298. 
Inner multiplication of tensors, 79. 
Integral, general, 40, 42, 43, 45, 50. 
— independent, 40, 42. 

— of differential equations, 36, 37. 
— principal, 38, 39, 49- 
Intrinsic geometry of surface, 99. 
Invariance and Hamilton’s principle, 

291. 
— in relativity, 322. 
— - of Jr*, 308, 311. 
— m-fold system, 69. 
— simple system, 67. 
— transformation by, 62, 
Invariant, derivatives of, 83. 
— quadratic form, 73, 84. 
Isotropic manifolds, 232. 

Jacobi on geodesics, 208. 
Jacobian systems of equations, 52, 53. 
jacobians, 2. See Determinant, June- 

t tonal. 

Kinematics, Galilean, 318. 
— of rigid systems, 301. 
-modified, 303. 
-- relativity, 311, 316. 
Kummer on congruences, 286. 

Lagrange and geodesics, 208, 331, 332, 
341, 367, 413. 

Lagrangian binomials, 289. 
— equations, 289, 331, 332, 341, 367, 

413- 
— parameters, 288. 
Laplace’s operator, 394. 
Law' of gravitation, modifications of, 397. 
Light, constancy of velocity of, 335. 
— in gravitational field, frequency of, 

400-402. 
— path of, as trajector>% 403. 
-in gravitational field, 403-408. 
— propagation of, reversible, 365. 
— rays and trajectories, 343. 
— signals, 364. 
Local time, 290, 311, 312. 
Lorentz transformation, 300, 308, 310, 

-invariance for, 352, 353, 354. 
-most general, 313. 
— translation, 316. 
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Manifold, i. 
— Euclidean, 121. 
— geodesic, 162. 
— metric, 119. 
— n-dimensional, 119. 
— sections of, 162. 
Manifolds, isotropic, 232. 
— of constant curvature, 236, 238, 240, 

246. 
-their mutual applicability, 240. 

Mass and energy, 294, 298. 
— and metric of F4, 328. 
— and velocity, 295. 
Matrices, functional, 8-12. 
Matter, mean cosmic density of, 439. 
— total quantity of, 427, 428, 
Maximum and minimum, 128. 
Maxwell’s theory, 383. 
Mayer’s method of integration, 25. 
Mechanical equivalence, a theorem of, 

394- 
Mechanics, classical, correction to, 291- 

294» 320, 392. 
- generalized, 320-324. 

— of continuous systems, 347, 352. 
— — in covariant equations, 348, 349. 

— with any co-ordinates, 347. 
Metric, angular, 123. 
.of space-time and energy tensor, 383. 
--- of and physical phenomena, 374. 

— j;jeneraIization of, 320. 
— pseudo-Euclidean, 299, 360. 
Metrical elements of figure, 100. 
Metrics, different, covariant derivatives 

for, 222. 
-for same 220. 
... - Riemann’s symbols for, 224. 
— in conformal representation, 229. 
— relativity, qualities of, 325, 
--statical, 326. 
-stationary, 326, 
— spatially uniform, 425. 
— with spherical symmetry, 408-414 
Michelson-Morley experiment, 335. 
Minimum time, principle of, 341. See 

Fermat's Principle. 
Mixed system, or tensor, 70, 71. 
— systems of total differential equations, 

29”33- 
Molecular action, system with no, 360- 

363. 
Moments of co-ordinate lines, 98. 
--direction, 92, 120. 
— — — covariance of, 92, 120. 
-relation connecting, 92, 120 
Momentum, 295. 
Morera’s method of integration, 22-25. 
Motion, Einsteinian, of planets, 396, 
Multilinear form, 66, 69, 83. 
Multiplication of tensors, 76. 

Nebulae, density of, 439. 
Newtonian equations, 287, 377. 
— field, assigned, space-time for, 388- 

392. 
— motion, differences from Einsteinian, 

377- 
— potential, 375. 
— potential and 336, 369. 
Normal congruence, 263, 275, 277, 285. 
— form of differential equations, 36. 

Operator properties of, 176, 
— linear, 33-37, 48, 84. 
Optics, geometrical, 334. 
Orbit, equation of, 397. 
Orthogonal directions, sets of, 205. 

Parallel, ambiental, 171. 
displacement, 103. 

-along a geodesic, 103, 104. 
— .angles unchanged by, 103, 114. 

■ cyclic, 173, 186. 
-— of vector, 192. 

-P6rt*s’s formula for, 193. 
Parallelism, 102. 
— and curvature, 193-198. 

— and infinitesimal displacement, 104. 
— angle of, 198. 
— differential definition of, 105. 
-- equations of, 110-112. 
— extension of notion of, 137. 
-- - intrinsic character of, 106. 
-- intrinsic equations of, 107. 

— invariance of, 110. 
— symbolic equation of, 107. 

with respect to surface, 102. 
Parallelogram rule for vectors, 117. 
Parallels, kinematical construction of, 

102, 104. 
Parameter of family of surfaces, 45. 
— first differential, 231, 418. 
— second differential, 154, 393, 418. 
Parameters and moments, relation of, 

92, 125. 
— Lagrangian, 288. 
— of co-ordinate lines, 98. 
— of direction, 91, 120. 
-contravariance of, 91, 120. 
-relation connecting, 91, 120, 
Parametric equations of surface, 86. 
Path of light, in gravitational field, 402, 

403-408. 
P^r^s’s formula, 193. 
Perihelion, displacement of, 396, 398. 
-formula for, 398. 
-of Mercury, 399. 
-of other planets, 400. 
Permutability (d5 “ 5d), 116. 
Perturbations, Newtonian, 399. 
Pfaffian, 13, 20, 26, 161, 174. 
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Pfaffian as invariant, 8i, 82. 
— systems, 14. 
Physical phenomena and metric of V4, 

374- 
Planet, motion of, 369. 
Planets, Einsteinian motion of, 396. 
— motion of, discrepancies in, 322. 
Poisson’s equation and Einstein’s theory, 

386, 387. 
— equation for potential, 375, 377. 
— parentheses, 35, 36, 
Postulates of general relativity, 364. 
Potential, Newtonian, 287, 292, 297, 

322, 323, 369, 375, 377, 388, 394, 396, 
400, 403. 

-and 336, 369. 
-and metric of space, 391. 
Potentials, 10 gravitational, 375. 
Principe expedition, 407. 
Product of tensors, 76. 
Pseudo-Euclidean 325, 376. 
— every metric locally, 360. 
— metric, 299, 360, 383. 
— — and versors, 329. 

Quadratic, canonical form of, 205, 281. 
— differential form, invariant, 84. 
— form, 66. 
-covariance of coefficients of, 73. 
— — definite, 90. 

-character of, 120. See ds\ 
-invariant, 73. 
-with non-vanishing discriminant, 

90. 
— forms of class zero, 242. 
-of class i, 253. 
— — Euclidean, 242. 
-Riemann’s symbols for, 242-246. 
-theory of, 205. 

Radioactivity, 297. 
Radius of universe, 439. 
Reciprocal elements in determinants, 54, 

55, 80, 81. 
— tensors, 95. 
Refracting medium, space as, 402, 
Refraction of light, 334. 
Refractive index, 334. 
Relative motion, 313, 316. 
Relativity and Newtonian theory, differ¬ 

ences, 377. 
— composition of velocities in, 317- 
— general, and Poisson’s equation, 386, 

387* 
-postulates of, 364. 
— invariance in, 322. 
— kinematics of, 311, 316. 
— metrics, qualities of, 325. 
.... — statical, 326. 

— - - stationary, 326. 

Relativity, postulates of, 364. 
— principle of, 311. 
— restricted, 300. 
— special theory of, 300. 
Reversible motion, 327. 
— transformation, 3, 7, 61. 
Reversibility of light propagation, 365. 
Ricci’s coefficients of rotation, 268. 
— lemma, 148, 152. 
— symbols, 199, 372, 389, 411, 426. 
— tensor, 199. 
-linear invariant of, 200, 380. 
Riemann-Christoffel tensor in F4, 372. 
— --20 components of, 372. See 

Riemann's symbols. 
Riemannian curvature of Vm 195-198. 
Riemann’s symbols, 172. 
-and conformal representation, 228, 

246. 
— — and Euclidean metric manifold, 

242-246. 
-Bianchi’s identities in, 182. 
-of first kind, 176, 179-182. 
-of second kind, 175, 177, 178. 
Rigid motion in any manifold, 408. 
Romerian units, 307. 
Rotation, Ricci’s coefficients of, 268. 
Rotor of vector, 161. 

Saturation (of indices). See Contraction. 
Scalar product of vectors, 98, 126, 152. 
Schur’s theorem, 235. 
Schwarzschild’s solution of gravTtational 

equations, 419-423. 
-extensions of, 439. 
Second covariant derivatives, 184. 
— differential parameter, 154, 393. 
— fundamental form of Fn, 252. 
Section of manifold, 163. 
— of Fa, 201. 
Sets of orthogonal directions, 205. 
— of simple systems, 74, 156. 
— reciprocal, 74. 
Severi’s theorem, 171. 
Shift, spectral, 400. 
Signals, light, and coefficients of ds*, 

364-366. 
Simultaneity, 290, 311. 
Sirius, spectrum of Companion of, 402. 
Sobral expedition, 407. 
Solution of differential equations, 36, 

48. 
--gravitational equations, Schwarzs¬ 

child’s, 419-423. 
-first approximation deduced 

from, 425. 
Solutions, rigorous, of gravitational 

equations, 437. 
Space, metric of, and Newtonian poten¬ 

tial, 391. 
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Space, non-Euclidean, 391. 
— of constant curvature, extension of, 

426, 427, 428. 
— — gravitational equations in, 428. 
Space-time, 290. 
— an Einsteinian, ds^ for, 392. 
— co-ordinate transformations, 290. 
— De Sitter’s, 429-435. 
— l)e Sitter’s, constant negativ'c curva¬ 

ture of, 436. 
— Einstein’s and De Sitter’s, case in¬ 

cluding, 435. 
— ICinstein’s, curvattire of space in, 438. 
— Einstein s cylindrical, 429. 
— metric, and energy tensor, 374. 
— with assigned Newtonian field, 392. 
Spatially uniform metrics, 425. 
Spectral displacement, 400. 
Sphere, geodesic, in F-,, 409, 410. 
Spherical symmetry and gravitational 

equations, 410. 
-metrics v\!th, 408-414. 
Statical ds\ 326, 327, 371,377, 378, 392. 
■— field, 400. 
— metrics, 326, 327. 
Stationary metrics, 326, 327. 
-- — i'Vrmat’s prmci)'>le ff>r, 340. 
Stress, 344. 
— and bilinear form, 345. 
— force absorbed in, 349. 
— in spatially symmetrical metrics, 425, 

429, 430, 436, 437, 438. 
— kinetic, 351, 356, 358. 
— normal, 345. 
— tensor and equations of motion, 

351- 
-divergence of, 344, 34^, 354- 
-in classical theory, 344. 
-in generalized co-ordinates, 346. 
— • — interpretation of divergence, 346. 
Sum of tensors, 76. 
Surface, gcociesic, 164. 
— intrinsic geometry of, 99. 

- parametric equations of, 86. 
- vectors, 96. 

Surfaces, developable, too,r01. 
Symmetrical double systems, 72. 
— systems (tensors), 
Symmetry, spherical, and gravitational 

ec]nations, 419. 
-metrics with, 408-414. 
System, mixed, 70, 71. 
Systems (tensors), antisymmetrical, 73. 
— doul)le, 65. 
— m-fold, 65. 
—- of order ///, 65, 
— of order zero, 65. 
— symmetrical, 65. 

Tensor, 70, 71. 

Tensor, Einstein’s, 200, 371. See Ein~ 
stew's tensor. 

— energy, 355. 
-and equations of motion, 359. 
- first general definition of, 80. 

— gravitational, 371. 
-10 components of, 372. 
— Riemannian, 371. See Riemanns 

symbols. 
second general definition of, 83. 

-- stress, divergence of, 344, 346, 354. 
with vanishing elements, 71. 

j 'Fensors, addition of, 75, 
I - associated, 95, 96, 

— composition of, 79. 
— - contraction of, 77-79. 
- inner multiplication of, yo. 

multiplication of, 76. 
reciprocal, 95. 

'Third fundamental form of V,i, 259. 
Time, conventional, 364. 
— focal, 290, 31 I, 312. 

j 'i'otiu dificrentiai, 13. 
I - — equations, 13-33. 

I-equations, complete system of» 

I ^ 15-iX. 
j ''Frajeclorics, 403. 
j — and geodesics, 324, 326. 
j — and light rays, 343. 
! - I'finsreinian and Newtonian, 395. 
' - in generalized mechanics, 324. 
i — orthogonal, 263. 
, Transformation, affine, 304, 305. 
I by contravariance, 67, 69- 71. 
! — by covariance, 64, 67-71. 
I — by invariance, 62. 
, - formuhe of, 80. 
* - homographic, 304. 
1 — linear, of differentials, 80. 
j - • of derivatives, 85. 

'Transformations, linear, 67. 
— Lorentz, 300, 30K, 310, 316. 
— reversible, 3, 7, 61. 

- space-time co-ordinate, 290. 
'Translation, motion of, 305. 

Universe, radius of, 439. 

Variations, Poincart^’s equation of, 208. 
Variety. See Mnnifold. 
Vector, contravariant and covariant 

components of, 97. 
-in Vay 120, 127. 
— derivative of, 139, 140. 
— determination of, by invariants, 266. 
— product, 159. 
— product of versors, 201. 
— projection of, in F,,, 127. 
— transformation of, 62, 63, 64. 
Vectors, cquipollence of, 103. 
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Vectors, parallel and equal, 103. 
— scalar product of, 98, 126. 
— surface or tangential, q6. 
— zero, 97. 
Velocities, absolute and. relative, 316— 

3H)- 
— composition of, 306. 
-according to Einstein, 317. 
Velocity, earth’s orbital, 399. 
— large universal constant, 291, 292, 

311. 
— mass and, 295. 
— of light, 292, 306, 311, 334, 335, 339, 

382, 399. 
-irreversible, 340, 
— — law of variation of, 339. 
-• —non-symmetrical, 340 

Versor (unit vector, direction), 92, 96,. 
98, 102, 103, 123, 125, 126, 140, 

— in F4, and corresponding vector, 

329. 

Versors, and pseudo-EucIidean metrics,, 

329‘ 

— spacelike, 330. 
— timelike, 330. 
Vibration of atom, 400. 
Volume of curved space, 427, 428. 

World lines, 290, 329, 352, 353. 
-of light, 337, 364. 
-parameters of, 353. 
-and stress tensor, 353, 

Zero vectors, 97. 








