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FOREWORD 

The author has asked me to write a foreword to this little 
work on filters. 

The subject is one which the author is well qualified to expound, 
as he has been actively engaged on the design of filters of the types 
described in this book. 

The wave filter, like the loading of cables, although developed 
in America, originated in conception in this country. 

The possibility of devising low-pass and high-pass filters by the 
appropriate association of capacitances and inductances was sug- 
'gested by Mr. G. M. B. Shepherd of the Post Office Engineering 
Department in a communication to The Electrician^ June 13, 1913. 
The mathematical development of the theory of such devices, 
however, was carried out at a later date by the technicians of the 
Bell Telephone Laboratories of America. 

The use of filters is becoming of increasing importance in all 
branches of telecommunications and the latest development in this 

art lies in the utilization of piezo electric quartz plates as elements 
in such devices with a resulting gain in compactness, stability and 
performance. 

The present work should constitute a useful aid to the student 
and the designer in the approach of this rather specialized subject. 

A. J. GILL. 
April 1945, 





PREFACE TO FIRST EDITION 

Electric wave filters have become increasingly important in the 

past twenty years, and all communication engineers should have 
a knowledge of the theory on which their design is based. It is 

an advantage if engineers are able to design their own filters, and 

are able to realize the point at which a filter should be handed 
over to a specialist in, for example, crystal filters. The theory of 

the ladder-type filter is described in some detail, and a method of 

design is put forward which should enable a large number of filters 
to be designed. The theory of the lattice-type filter is dealt with 

in a brief manner, as are the developments due to Cauer and the 

design of crystal filters. It is considered that the ladder-type filter 
offers more possibilities to the non-specialist than does the lattice- 
type filter, as the computing is likely to be less, and the adjustment 

of the components is more easily carried out, the tolerances being 

wider in the case of the ladder-type filter than in the lattice-type 
filter. 

It is not intended that this book should replace the standard 

works on this subject, such as the original articles of Zobel, or 
the text-books written by Guillemin, Shea, Starr, and others. A 

bibliography of useful books and articles may encourage engineers 

to extend their reading on the subject of wave filters to these 
important works. 

The theory of the electric wave filter was first published by 

Zobel. This was followed by such authors as Bode, Guillemin, 

Laurent, Shea and Starr, to all of whom the author wishes to 

express his thanks. His acknowledgement is also made to the 

Editors of the Bell System Technical Journal and to the Editor 

of Ericsson Review for their permission to use the work of those 

authors which appear in these Journals, and on which this book 
is largely based. 

It is hoped that this book may encourage the publication of 
recent advances which have been made in the subject of electric 

wave filters. Too few articles are published on this subject, on 
which much work is being done. A pooling of ideas will do much 
to increase the rate of progress into this interesting and important 

subject. 

The author will be grateful for the bringing to his notice any 
errors that may have slipped through unnoticed, and for any 

vii 



PREFACE viii 

criticisms or suggestions that may arise on putting into practice 

the methods described herein. Finally, the author wishes to express 

his thanks to his colleagues who have helped him by their criticisms 

and suggestions, and in particular to Mr. W. H. B. Cooper; and to 

the Post Office Engineering Department for permission to use 

certain material which has been developed therein. 

F. SCOWEN. 

PREFACE TO SECOND EDITION 

The author thanks those of his readers who have told him of 

errors they found in the first edition ; these errors have now been 

corrected. 
A Section has been added in this .second edition ; it describes 

Darlington’s insertion-loss method of filter design. This method 

calls for a much greater effort from the designer than does the 

image parameter design method, but the results obtained by the 

new method are well worth the extra work. The author thinks 

that Darlington has made the most important advance in filter 

theory and design technique since the publication of Zobel’s original 

work, and he hopes that his introduction to Darlington’s method 

of filter design will give a new and powerful tool to the filter 
designer. 

F. SCOWEN. 
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1. MATHEMATICAL INTRODUCTION. 

In order to understand this study of electric wave filters, some 
mathematical knowledge is essential. Some of this knowledge is 
elementary, and has been stated below with little or no proof. 
Some is, however, not considered to be so elementary, and as it is 
of great importance in the develcpment of electric circuit theory, 
it is dealt with in some detail. 

1.1. Quadratic Equations. 

= 0 

has roots given by x — 

If b ^ > 4ac, there are two real roots. 
If 62 ^ 4^^^ there is only one root. 

If 6^ < 4ac, there are two complex roots (see 1.9). 

l(i) 

1.2. Relations between Coefficients and Roots of an 
Equation. If any equation is written so that the coefficient of 
the highest term is unity, then 

(а) the sum of the roots is equal to the coefficient of the second 
highest term wth its sign changed, 

(б) the sum of the products of the roots taken two at a time 
is equal to the coefficient of the third highest term, 

(c) the sum of the products of the roots taken three at a time 
is equal to the coefficient of the fourth highest term with 
its sign changed, 

and so on ; e.g., if 

ax^+bx"^ -\-cx-\-d = 0 
has roots a, /5, y, 

— ^ a+/?+y 
a * 

- = (xP+Py+yoL 

l(ii) 

1.3. Determinants. The quantity 
K 6. 

minant of the second order and is equal to the quantity 
E.W.F, 1 B 

is called a deter- 

0.6,)- 
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The quantity 
dl Qt^ 
bi 6, 6, 
Cl c, c, 

is called a determinant of the third order and is equal to 

The quantity 

6, 
c» 

6, 
c. 

I d^ d^ d^ d^ 

bi 62 ^4 
Cl Cf Cs C4 
C^l C^2 

is called a determinant of the foiuiih order and is equal to 

6, 6, 64 61 6, 64 b\ b^ b^ f>i fc, 6, 
Cf C* C4 
df d% 6^4 

-a, 

i 
Cl Cj C4 
di dt d^ 

-\-di Cl Cf C4 
di d^ d^ 

- 04 c, c, c, 
df 

and so on for determinants of higher orders. 

If two rows (or columns) are identical, or differ only by a common 
multiplier, the determinant is zero. 

If two rows (or columns) are interchanged, the magnitude of 
the determinant remains unaltered, but the sign is changed. 

The elements of any row (or column) may be added to, or 
subtracted from, the corresponding elements of any other row 
(or column) without altering the value of the determinant. 

1.3.1. Simultaneous Equations of the First Degree. If 
we have n independent equations involving n unknowns, there is 
only one set of values for the unknown quantities which will satisfy 
all of the n equations. By taking the n equations in (n — 1) 
different pairs, we may eliminate in each pair one of the variables, 
leaving (n — 1) independent equations involving (n — 1) unknowns. 
Successive elimination enables us to calculate the value of one of 
the unknowns. A similar process enables the remaining (n — 1) 
unknowns to be calculated. By the help of determinants the 
result may be written down direct. 

For example, ciiX+dty+d^ = 0 

biX+b^+bn = 0 
has as solution 

X _ —y _ 1 

a. a. Oi d% di a. 

b. 6. b. 6. 6. 6. j 
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and aix+a^+a^+at = 0 
bix+bty+b^+bt = 0 
Cia:+Ciy+c,z+C4 = 0 

has as solution 

X _~y_ * 

6Z’2 ^8 ^4 dl dt d^ di d2 d^ di 0^2 ^4 

^2 ^8 ^4 1 ^4 61 6a 64 61 62 

C2 C3 C4 1 Cl C3 C4 Cl C2 C4 Cl C2 Cf 

and so on. 

I(iv) 

1.4. Some Algebraic Symbols, nl or \n (factorial n) is 

used to express the product of the integers 1, 2, 3 ... n, and 
we may write 

n! = jn ^ 1.2.3. . . . (rt — l),n 

and 0! = 1. 

E (sigma) is used to express the sum of a number of similar 
terms, e.g. 

r=n 

^ aQ+aiX+a^^+ . . . 

r = 0 

77 (pi) is used to express the product of a number of similar 
terms, e.g. 

r«n 

n s a, X aiX x o*x* X . . • x o„x". 
r=0 

1.5. Arithmetic and Geometric Progressions. The terms 
of the series 

o, a+ft, a+26, a+36, . . . 

are said to be in Arithmetic Progression (A.P.). The rth term 
is a+(r — 1)6. 

The sum of the first n terms is written as 

r —n 

—16) "i“6)"|-26)-f- . . . —16) 
r-l 

n(n — 1) 
= an-\-^-6 

• l(v) 

The terms of the series 

a, ab, ab*, ab^, . . . 

are said to be in Geometric Progression (G.P.). The rth term 
is o6‘'’~*^ 
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The sum of the first n terms is written as 

=a+a6+a62+ . . . +a6^^ 

_ a(b^- 1) 
6^ 1 

I(vi) 

If b lies between — I and +I the sum of the first n terms 
approaches a finite value as n increases, and in the limit, when 
an infinite number of terms is taken 

r = 'x> 

r = l 

l(vii) 

l(viii) 

l(ix) 

where A; is a constant. 

The logarithm of a number to any base is the power to which 
the base must be raised to give the number. If N is the number 
and B the base, the logarithm of N to the base B is written as 
log^iV^, and if this is equal to L, 

. . . . l(x) 

logs MN = logs M+logB N 
logB M/N = logs M - logs N 

logfl — n logjB M 
logjj M = log^ M X logs ^ 

The most usiial bases are 10 and e. As in the majority of 
tables the base is 10 and the base e occurs in many expressions, 
the last result of l(xi) is of use, for 



1.6] EXPONENTIAL AND LOGARITHMIC FUNCTIONS 

and 

1.6.1. Circular 
degrees or radians. 

l(xii) 

log, M = logjo M X log, lO] 
= 2-3026 logxo M 

log.,M = {log,if)/2-3026 

== 0-43429 log, M 

log, X = - . . . . l(xiii) 
(lx X 

Functions. Angles may be measured in 
If a line of unit length is rotated in a plane, 

about one end, it sweeps over 360 degrees (360‘^) when it returns 
to its original position. The end travels a distance of 2n and 
the angle swept through when it has returned to its original position 

is 271 radians. When the rotating line has moved -th of the 360^^ 

or 271 radian sweep, the angle between the original and final positions 
. 3()0‘" 271 
IS — or radians. 

n n 
Thus 

and so on ; also 

360^ = 271 radians ') 
180"^ — 71 radians > 

90° = 7112 radiansJ 

1 radian = 
3G0° 

l(xiv) 

l(xv) 271 

= 57*296° 

If a line of unit length is turned about one end through an 

angle of 0 (theta), and if from the moving end of the line a perpen¬ 
dicular is dropped on to its original direction, the length of the 
perpendicular between the end of the line and the original direction 

is known as the sine of the angle, and is written as sin 6. The 
length along the original direction, between the fixed end of the 
line and the foot of the perpendicular is equal to the cosine of 

the angle, and is written as cos 0. Other relationships are obtained 
from these. These are known as the tangent (tan), secant (sec), 
cosecant (cosec), and cotangent (cot), and are defined as 

sin 61 
tan 0 

sec 0 

cos 0 

1 

cos 0 

cosec 0 = —- 
sm 0 

cot 0 
1 

. l(xvi) 

tan 0 
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The original direction, the line of unit length, and the perpen¬ 
dicular form a right-angled triangle, whose sides adjacent to the 
right-angle are of length sin 0 and cos 0, and whose hypotenuse is 
of unit length. Hence 

sin^ 0+cos* 0 = 1 . . l(xvii) 

It can be shown that 

sin (A±:B) — sin A cos J^icos A sin B 
cos (A = cos A cos fi=Fsin A sin B 

, A . m tani4±tan J8 
tan {A±B) = 

1=F tan A tan B 

and that 

COS0 — 

l(xviii) 

l(xix) 

where 0 is the angle in radians. 
It is also possible to show that 

03 06 
8in0 = 0-_+_- 

cos 0 = 1 
02 0* _ 0« 

^'^4! ~ 6!’ 

from which it will be noticed that sin 0 is an odd power series in 0, 
and if for 0 we write — 0, 

sin (— 0) = — sin 0 

whereas cos 0 is an even power series in 0, and if for 0 we write — 0, 

cos (— 0) = cos 0. 

If we write j = V — 1, then == — 1, p p x j ~ *-j, 
p == X j = - j X j = +1, and from l(ix) 

2! 3! 4! 

V 2!^4! er ‘ ■ 7 

+Y ” 31+6! - • ■ 
= COS 0+j sin 0 from l(xx). 

In a similar way we may show that 

= cos 0 — j sin 0, 
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These two last results may be combined in 

= cos Q±,j sin 0 , . . l(xxi) 

From the two results expressed in l(xxi) addition and subtraction 

cos 0 = 

sin 6 = — e~^^) 
2/ 

l(xxii) 

with similar results for the other circular functions. From l(xxii) any 
of the relationships between the circular functions may be obtained. 

It will also be seen that 
(cos B ± j sin 0) in — p-t/nO _ 

COS sin n0 l(xxiii) 
This result is known as Demoivre’s Theorem. 

1.6.2. Hyperbolic Functions. A second series of functions, 
known as Hyperbolic Functions, is obtained by eliminating the j’s 
in the exponential expressions for the circular functions. These 
functions are known as the hyperbolic sine, hyperbolic cosine, etc., 
and are written as sinh, cosh, etc. They are defined as 

cosh 0 = 
sinh 0 = 

tanh 0 == 

sech 0 = 

cosech 0 = 

cotanh 0 = 

- e-®) 

sinh 0 

cosh 0 

1 

cosh 0 

1 

sinh 0 

1 

tanh 0 

l(xxiv) 

It may be shown that 

cosh 0±sinh 0 == 
(cosh 0i;8inh 0)”^ = — cosh 7i0isinh nB 

cosh* 0 — sinh* 0 == 1 
cosh (A ±iB) = cosh A cosh JS±sinh A sinh B 
sinh {A ±J5) = sinh A cosh JB±cosh A sinh B 

i. / >4 . nx tanh A ±tanh B 
tanh (A ±B) = - 

1 ±tanh A tanh B 

cosh 0 = sinh 0 
dS 
d . _ f in 

tanh {A ±B) l(xxv) 

cosh 0 = sinh 0 

: sinh 0 = cosh 0 
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We shall use two of the relations which exist between the 
hj^rbolic functions of 6 and 0/2 which are proved below, 

cosh 0 — 
= - 2+e-o+2] 

V/2 

9/2 j 2 

e-fl/2T 2 rc9/2 _ £-9/2-] 

“‘+1 2 ] 

= 1 +2 sinh’* ^ l(xxvi) 

and tanh 20 

l(xxvii) 

tanh 0^-tanh 0 

1 +tanh^ 0 

which, on writing 0 for 20, becomes 

. , „ 2 tanh 0/2 
tanh 0 = , „ 

l+tanh* 0/2 

There are relationships between the hyperbolic function.s of a 
quantity multiplied by j and the circular functions of the same 

quantity, and vice versa, as may bo seen by witing jO for 0 in 

say l(xxiv) and comparing the resulting forms with l(xxii). They 
are as follows 

sinh jO = j sin 0 sin_;0 = j sinh 01 

coshj0 = cosO cos jO = cosh 0 > . l(xxviii) 
tanh J0 = j tan 0 tan_;0 = j tanh 0J 

It is now possible to express circular or hyperbolic functions 

of a quantity of the form in somewhat simpler forms. 
For example 

sinh (A±jB) — sinh A cosh cosh A sinh 
= sinh A cos B±j cosh ^ sin 5 

cosh (A^jB) = cosh A cosh jBd; sinh A s'mhjB 
= cosh A cos B±j sinh .4 sin B 

1.6.3. Inverse Functions. There exist also inverse circular 
and hyperbolic functions written in the form sin^^, cos~^, etc., 

and sinh'*, cosh"*, etc. They arc defined as shown below. 

If sin 0 = s, 0 — sin“ * a 
cos 0 = c, d ^ cos' * c 

etc. 

sinh 9 — ah, 9 = sinh" * ah 
cosh 0 = cfe, 0 = cosh' * ch 

etc. 

Tables are available for all these functions, and for the inverse 
functions. There is probably no need to deal further with the 

l(xxix) 
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ircular functions, but as the hyperbolic functions are not well 
nown, some general notes will not be out of place. 

Fig. 1 shows the graphs of the three principal hyperbolic functions 
if a real positive quantity. When hyperbolic functions of a nega- 

0 12 3 4 
X 

Fio. 1.—Exponential and Hyperbolic Functions of Positive Real Variable. 

tive quantity arc required, the following relationships should be 
noted. 

cosh (— 0) = cosh 0 
sinh ( — 0) " — sinh 0 
tanh (— 0) — — tanh 0. 

In addition, it should also be noted that the hyperbolic cosine 
of a real quantity is always greater than or equal to 1, and that 
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the hyperbolic tangent of a real quantity lies between — 1 and +1. 
Also, when d is large, cosh 0 = sinh 0 = ^ exp (0). 

The hyperbolic functions of any real quantity may be calculated 

firom the equations given in l(xxiv), using a table of natural logs. 
For example, we will now determine cosh 0-6. From l(xxiv) 

this is given by 

cosh 0*6 = {0'6)+exp (—O-O)] 

= |[exp(0.6)+— 

Now if N = exp (O-O) 
log, N — 0-6 

and N (= exp (0-6)) is the number whose natimal logarithm is 0-6. 
From the body of a table of natural logs, we find that N is equal 
to 1-822. If no natural log. tables are available, we may use 

common logs, and the relationship l(xii) 

logg M = log^ M X log;, A 
whence logi# N = log, N x log,# e 

= log, N X b-43429 

= 0-6 X 0-43429 
= 0-26057 

and from a table of common antilogs, we find that N is equal to 1-822. 

Thus cosh 0-6 = ^(1-822 +1/1-822) 
= i(l-822+0-549) 

= 1-186 

In order to use tables of logarithms to determine the values of 

inverse hyperbolic functions, some preliminary work is necessary. 

Now sinh 0 = |(e® — e“®) 
= sh 

Then e® — 2sh — = 0 

and e*® — 2«A.e® — 1 = 0 (as c® + 0) 

which is a quadratic equation in e®. Hence, from l(i) 

^ _ 2«fe+'\/(4aA®+4) 
2 

= 'v/(sA*+l) 

and 0 “ log,[sA'+-y/{sh^ *!" 1)] 

which we may write as 

sinh“* a: == log,[«+-/(*•+1)] • • l(xxx) 
the positive sign being chosen to make the quantity in the square 
brackets positive. 
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In a similar way we may show that 

cosh~^ X = logg — 1)] 1 
tanh”^ a; = log. [(l+a;)/(l — a:)] > . . l(xxx) 
coth“^a; = log, [(a;+l)/(a; — l)]j 

We have seen from l(xxix) that the hyperbolic function of a 
quantity of the form A +jB may be expressed in the form X +j Y, 
Hence the inverse problem may also be solved. Before we do this 
we shall have to consider more fully the use and meaning of the 
quantity ''j 

1.7. Complex Numbers. If x and y are real numbers, each 

lying between — oo and + oo, the quantity a:+jj/, where j = V — 1 
is known as a ‘‘ complex number A complex number follows 
the normal laws of algebraic quantities with the added fact that 
integral powers of j give rise to no new quantity, for 

-j, X j = ~j X j = +1, xj =j, etc. 
If we have two complex numbers, A+jB and C+jD, then 

{A+jB) + (G+jD) = {(A+C)+j(B+D)} ] 
{A+jB) X (C+jD) = AC+j{BC+AD)+j^BD } l{xxxi) 

= {{AC - BD)+j{BC+AD)}] 

The two complex numbers x+jy, x — jy are said to be “con¬ 
jugate ”, and the product of two conjugate numbers is wholly real, 
for 

(«+jy)(a; - jy) = x^+j{xy - yx) - . l(xxxii) 
= J 

We may now divide one complex number by another, for 
A+jB _{A+jB){C -jD) 
C+jD {C+jD){C-jD) 

_ {AC+BD)+j{BC - AD) 
l(xxxiii) 

This method is known as “ rationalization of the denominator 
In the complex number A+jB, A is known as the real part, 

and jB the imaginary part. If two complex numbers are equal, 
then their real parts are equal, and their imaginary parts are also 
equal, for if 

A+jB = C+jD 

then A — C = j{D — B) 

and squaring both sides, 

{A - C)« = - (D - 

i.e. {A - C)*+{D - J5)« = 0 
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and as the square of a real quantity is always positive, both 

A — C == 0, and D — B = 0, 

We have seen that 
= cos 0 +j sin 0 

from which re'*^ == r cos 0 +jr sin 0 

and this is of the form x-\-jy. If 

^+jy = 
X +jy = r cos 6 +jr sin 0 

whence x — r cos 0 
y = r sin 0. 

Squaring the last two and adding, 

and dividing. 

x- -\-y- r- cos- 0+r^ sin^ 0 

y _ sin 0 

X cos 0 

l(xxi) 

== tan 0 

Thus it is possible to write 

or 

^+jy = \/(^^+2/^)«exp 

= r cos 0 -\-jr sin 0 
l(xxxiv) 

x+jy is known as the cartesian form of the complex number, 
and r^^ as the “ polar form 

The cartesian form is of use when complex numbers are to be 
added or subtracted, whilst the polar form is of use when complex 
numbers are to be multiplied, divided, or powers or roots are to 

be determined. 

In the polar form r is known as the modulus and 0 as the argu¬ 

ment or angle. 

If Z \Z\ = mod. Z = (modulus of Z) == r, 
and arg. Z = (argument of Z) = ©,♦ 

then, as 

and -f- r^^^' == j ‘ * l(xxxv) 

we have the rules for multiplication and division of complex num¬ 
bers, viz.:— 

♦ When 0 is expressed in degrees, it is usual to write Z = r/0, the suffix 

for degrees being understood. It should be remembered, on taking logarithms, 
that the formulaa refer to 6 expressed in radians, and this conversion must 
always be made in such circrunstances. 
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Multiplication. Multiply moduli and add arguments. 
Division. Divide moduli and subtract arguments. 
Complex numbers may take up particular forms, 

e.g. a=a+jO 
= aexpj2nn 

as cos 2nn = 1, and sin 2n7i = 0, when n is an integer, 

and — a = — a+jO 
= a exp {j(2?j. + l)7r} 

as cos {(2n+l)jr} = — 1, and sin {(2n + l)7i} = 0, when n is an 
integer. 

We may now give a meaning to the expression log, { — x), 

where a; is a positive quantity, for 
— X = x.exp {j(2» + l);7r) 

.-. log, (- x) = log, [x.exp {j(2n4-l):r}] 

= Iog,x+log, [exp {j(2n + l):r}] 
= log, x+j(2ra + l)jr . . . l(xxxvi) 

and, as n is to be an integer, it is usual to put » = 0, when 

log, (- x) = \og,x+jn. 
Again 

log. {x+jy) = log, I-v/l^^+y^l-exp tan- 

= logg tan“^ - . . l(xxxvii) 

1.8. Examples on Manipulation of Complex Numbers. 

= 5 exp (jO-9269) 
4 

as tan”^ - = = 0-9269 radians. 
O 

3+i4 = exp 

5+jl2 = VIS®+ 12*).exp tan 

= 13oxp(jM761) 

{3+j4)(5+;12) = 15 - 48+;(20+36) 

= - 33+j56 

= y'(33*+56*) exp tan"^ 

= 65 exp (j n — 1-0385) 

= 65 exp (j2-1031) 

56 \ 
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the angle being chosen to make its cosine negative, and its sine 
positive. 

Or, (3+j4)(5+jT2) = 5 exp (jO-9269). 13 exp OT-1761) 

= 66 exp (j 0-9269 + M761) 

= 65 exp {j2-1030) 

which agrees with the result obtained by the first method used. 

V(3+j4) = V{5exp(j0-9269)} 

= Vs. exp (jO-4635) 

= ^/^{cos 0-4636sin 0-4635} 

= VH (0-8949+j0-4462} 

= 2-001 +j0-9977 

cosh{5 exp (jO-9269)} = cosh (3-fj4) 
= cosh 3. cos 4 +j sinh 3. sin 4. 

Now 4 radians are equal to ;i+0-8584 radians or 180°+49° 11' 

cosh {5exp(j0-9269)} = 10-068.- 0-6536+jl0-018.0-7668 

= - 6-680+j7-583 

sinh-» (5+jl2) = sinh"! (13 exp {^1-1761)} 
= sinh“ ‘ X 

= log, {a;+-v/(»* + l)} • • l(xxx) 
where a; = 13 exp {jT-1761) 

= 6+jl2. 
Then a:* = 13*.exp (j2-3622) 

= 169(cos 2-3622 +j sin 2-3522) 
= 169(- 0-7042+j0-7100) 
= - 119+jl20 

a:*+l = - 118-fjl20 

= V{118*+120*).exp(jtan-i-^) 

= 168-3 exp (j.7i~^"b“7938) 
= 168-3 exp (j2-3478) 

the angle being chosen to make its cosine negative and its sine 
positive. 
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Then -/(»*+1) = V {168-3 exp (j2-3478)} 

= ^168-3 exp (jl-1739) 

= 12-97(cos l-1739+i8in 1-1739} 

= 12-97(0-3865+j0-9223) 
= 6-012+jll-962 

Sknd X= 6-f-j 12-(-5-012-j-^l 1-962 

= 10-012-fj23-962 ( 23*962\ 
jtan-^ 10-012/ 

= 2-597 exp (jl-1749) 

and sinh"* (5-fjl2) = log, {a:-f'\/(®* + l)} 
= log, {2-697 exp OT-1749)} 
= log, 2-597-flog, {exp (jl-1749)} 
= 0-9544-f-j(2n7i-(-M749) 

where n is an integer. We must have some other knowledge to 

determine n, for example, an approximate valpe for the imaginary 
part of sinh~‘{5-fjl2) obtained from experiment or adjacent 

calculations. 
It will be seen that the work is simple in its steps, although 

it may be drawn out in any particular example. 

1.9. The Use of Complex Numbers in Electrical Calcula¬ 
tions. In some circumstances when a mathematical operation 

has to be performed on a cosine function of, say, x, it is possible 

to perform the same operation on expj* and then extract the real 

part (k.p.). If a sine is concerned, it must be put into a eosine 
7t 

form by subtracting ~ from x. 

For example, 

cos d — R.P. exp (jd) 

|cos0=R.P.^(exp(jO)) 

= R.p.jexp(j0) 
= R.P. j (cos 0 -f j sin 0) 

= R.P. (j cos 0 — sin 0) 

== — sin 0 

a result which is well known. 

We appear to have increased the complexity of the operation 

in this case, but as will be shown, we have derived some advantages 
from the use of this method. 
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For example, if a current 1 is passing through an inductance L, 

the p.d. developed across the inductance is given by 

If / is a sinusoidal current, it may be written as 

1 = 1 cos (Ot 

where ce is its angular velocity in radians per second, and t is the 

time in seconds. Then 

V = L^^(l cos cot) 

= 1L{ — o) sin cot) 

= IcoL cos 

This means that the p.d. produced is directly proportional to /, 
71 

CO and L, and is - radians in advance of I, 

Let us now write 

1 = R.p. I exp (Jcof). 

Then V = r.p. exp (jco<)} 

= jL.v.jcoLl exp (jeot). 

Now we may interpret j as 

j = 0+j 

= exp 

and V = R.p. (oLl 

= IcoL cos 

as before. We may, however, go back to 

V = 'R.v.jcoLl exp (jeot) 
and write it as 

V = R.T.jcoLI 

since I = r.p. 1 exp {jeot). 

It is the custom to leave out the symbol r.p. and write 

V = jcoLI 

^ • r -j -=3foL whence 
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and as j- is of the form of resistance, we call it the impedance of 

the inductance at an angular velocity co, and write 

This convention enables us to apply all the circuit laws which have 

been developed for steady and uniform currents and resistances, 
to the case where the current is varying sinusoidally, and the circuit 
contains inductances. It is, however, only a convention, and if 
we want to know the actual p.d., we must introduce the symbol 
R.p. to obtain the actual value of the p.d. 

In a similar way, if a current I is flowing into a capacitor of 
capacitance (7, the charge on the plates of the capacitor is given by 

where V is the p.d. between the plates. Therefore 

and if I is written as 

I ^ 1 ,COH (Ot 
~ R.p. / .exp (jeot), 

V — R.p. ^J/ exp (jeot) (It 

=.E.P.^^.;ex,.OW) 

1 , 
= R.p. T-7-^./ 

jmC 

and using the same convention, wo may write 

We interpret 

— 

ojC 
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as meaning that the p.d. across a capacitor is inversely proportional 

to 0) and 0, and directly proportional to 1 and is ^ radians after 

the current. 

Let us consider the case where a current / (= / cos <wi) is flowing 

in a circuit consisting of an inductance L, a resistance B and a 
capacitance C, all connected in series. We want to know the 

p.d. developed across the network. Without the use of complex 

numbers we work as follows. 

The p.d. across the network is equal to the sum of the p.d.8 
across its components. These are 

(o) across the inductance, 

(6) BI across the resistance, 

<«>5f I dt across the capacitance. 

and r=4f+«/+^|/d,. 

But I = i cos o)t 

d 1 
V = L^(l Gos El cos a)t+-^\l cos (otdt 

at CJ 

= (oLl cos^toi-i-Bl cos to<+—/ cos ^co< — ^ 

— El cos (ot+. 1. cos 4-?^ 

("^"1) - -OOB 

Since 

or 

since 

cos 

Now 

V = R1 cos (ot — - . 1. sin mt 

cos I sin cot. 

.4co8 0+J58in0 = 
B 

where 

= 'v/(il®+J5*)[cos ^ cos 0+8in <f> sin 0] 

ji A cos ffl = - 
- ^ V{A^+B*) 

sinflj 
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tan (f) = 
B 

and 

A cos 0+5 sin 0 = cos (0 -- <^) 

henco 

co^+tan-A O.C) 
- jK _ 

l(xxxviii) 

If we use the method of complex numbers, we work as follows. 
(a) Impedance of inductance ~ ja>L 
(b) Impedance of resistance = R 

(c) Impedance of capacitance ^ 

Total impedance 
1 

j<oC' 

~j«>L+S + .^ 

and p.d. is given by (impedance) multiplied by (current), i.e. 

l(xxxix) 

which, on putting 

1 \2 

coC 
exp I j tan 

I = / .exp (jeot) 

and reintroducing the symbol b.p. (which, it should be remembered, 
has been omitted throughout) and carrying out the operation 
denoted by r.p., the result already given by l(xxxviii) is obtained. 
The form l(xxxix) is more simple than l(xxxviii) and represents 
the same quantity. 

It is obvious from this example that the work involved using 
the complex number method is much less, and involves more simple 
operations, than does the classical method. The complex number 
method is used throughout this book, and the symbol r.p. is omitted. 
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2. ELECTRICAL INTRODUCTION. 

In addition to the Mathematical Introduction, the elementary 
theory of electric currents is also necessary for the understanding 

of the subject of electric wave filters. No proofs are given, as 
these may be found in electrical text-books. 

2.1. Current, Potential Difference and Resistance. If I is 
the current in amps, (amperes) in a circuit of resistance R ohms, 
the potential difference between the ends of the circuit is given by 

V=I.R . . . . 2(i) 

where V is in volts. The current is here assumed to be steady. 
This relationship is known as Ohm’s Law. 

If a closed or continuous loop circuit of resistance R ohms 

has a current / amps, fiowing in it, there must be a source of electro- 

motive-force (e.m.f.) of /.iZ volts in the loop. Such a source of 
e.m.f. may be provided by a cell, accumulator, generator, etc. 

If the current varies with time, we may write it as I{t)y in which 

case the p.d. will also vary with time, and a modified form of 
Ohm’s Law holds. This is 

V{t) — I{t).Z .... 2(ii) 

Z is known as the impedance of the circuit and is also measured 
in ohms. We usually shorten 2(ii) by writing I(t) as /, and V{t) 
as F, when 2(ii) becomes 

V — I,Z , . . . . 2(iia) 

In both 2(i) and 2(ii) R and Z are assumed to be independent 

of I or F. Such circuits are known as linear circuits. If, however, 
R OT Z depend on /, we may write them as R{I) or Z{I) and the 
relationships become 

E=I,R{I) .... 2(iii) 
and E=^I.Z{I) .... 2(iv) 
Circuits for which these relationships hold are known as non-linear 

circuits. Unless otherwise stated, all the results developed in this 
book refer to linear circuits. 

In the case of a linear circuit, an important theorem, the Super¬ 

position Theorem^ enables us to simplify our work on any particular 
problem. Tins theorem states that, if in a linear circuit an e.m.f. 

El gives rise to a current /j in one part of the circuit, and an e.xu.L 
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E2 gives rise to a current 12 in the same i)art of the circuit, then 
the two e.m.f.s applied together give rise to a current /1+/2 in 
the same part of the circuit. 

2.2. Kirrhhoff’s Laws. Two laws, due to KirchhofF, enable 
us to calculate the current in 
any part of a given network, 
for any applied e.m.f. These 
two laws are— 

(а) At any point in a circuit, 
the algebraic sum of the current 
flowing to the point is zero ; 

(б) Passing round a closed 
loop, or mesh, in the circuit, 
the algebraic sum of the p.d.s 
across each element of the cir¬ 
cuit is equal to the algebraic 
sum of the e.m.f.s in that 

mesh. 
These two laws are illus¬ 

trated in Figs. 2(a) and 2(6). 
An example of the use of 

these two laws is shown in 
Fig. 3, which represents a 
Wheatstone bridge network. 

As a result of the e.m.f. 
let a current flow towards 
A. Let the current in the 
arm AB be /j. Then the cur¬ 
rent in the arm AD must, by 
the first law, be /j — /j. Let 
the current in the arm BD be /g. Then, at 5, application of the 
first law shows that the current in the arm BC must be — /a- 
At the point D, it will be seen that the current in the arm DC 
must be (/j — 12) +/s, and at the point (7, the current flowing back 
to the source of e.m.f. is (/^ — /a-f-/8) + (/2 — /*) = /i- 

We now have three unknowns, /i, and /a. We shall be 
able to find three simultaneous equations with which to determine 
these quantities, by the application of the second law. 

' In the mesh AyB,C we have a source of e.m.f. JE/j. Across Zi 
we ifiave a p.d. of /iZi, across AB a p.d. of and across BC 
a p.d. of (/a — I3)Z^, By the second law 

/iZi + ZaZs + C/a — 19)^1 = El . 2(va) 

— J,Zf + J2 2^3'*’ ^ 
(1) 

Fig. 2.—Kirchhoff’s Laws. 
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D 

Fig. 3.—Wheatstone Bridge Network. 

Similarly, in the mesh ADB, there is no e.m.f. and 

(/i — /alZa — liZe — /aZg = 0 . . 2(via) 

and in the mesh BDC there is again no e.m.f. and 

II /a-f-^3)^2 (12 = 0 . . 2(viifl) 

These three equations may be written 

IxZi+l2{Z^-\-Z^) — I^Z^ — Ex = ^ , . 2(v) 
IxZz 12{Z^-\-ZIzZ^ = 0 . . 2(vi) 

IxZ% l2{Z^-\rZA'\~Iz{Z2-]rZ^-\-Z^ = 0 . . 2(vii) 

We may solve these by means of determinants, as shown in 
1.3, and 

(Z,+Z,) -Z, -E, 
hA = - (Z,+Zj) -Z, 0 

(Z,+Z.) 0 

Zr -Z, -E, 
hA = z. -Z, 0 

Z^ (Zj+Z.+Z,) 0 

Z^ {Z,+Z,) -E, 
I^A = - Z^ - {Z,+Z,) 0 

Z^ - {Z,+Z,) 0 1 

Z, (Z4+Z,) -z. 
A = z^ — (^8+Zj) -Z, 

i 
1 Z, - {Z,+Z,) (Za+^4+^e) 

where 
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Let us work out 

(^4+2?6) —El 

-Z* —(Za+Zj) 0 
Za (Z2+Z4) 0 

■(-Za+^s) 0 

"(-^2+^4) ^ 
■[-(Z.+Z.4: “ 

^ Z, -(Z,+Z.) 

—(Z,+Z,)+Z, (adding first 
—(Z, +Z4) +Z, column to sec¬ 

ond column) 

-•z.l 

= — Ei(ZtZt — ZjZj) 

and /, = — 
A 

Now /a is zero if 
Z3Z4 = Z2Z5 

and in this condition the bridge is said to be balanced, and the 
circuits AC and BD are said to be conjugate. 

2,3. Maxwell’s Cyclic Currents. As the number of meshes 
in a circuit increases, the work involved in complying with Kirch- 
hoflf’s first law becomes more and 
more involved, and it may happen 
that too few (or too many) 
variables are chosen and too 
many (or too few) simultaneous 
equations are obtained. In order 
to simplify the setting up of 
these equations, Kirchhoff's first 
law may be replaced by Maxwell’s 
method of cyclic currents. In 
each mesh a cyclic current is 
imagined to flow. This immedi¬ 
ately gives the same number of 
unknowns as simultaneous 
equations. The second law of 
Kirchhoff applied to each mesh 
gives an equation as before. 
Fig. 4 shows the Wheatstone 

Fio. 4.—^Wheatstone Bridge Network. 
Maxwell’s Cyclic Currents. 

bridge network of Fig. 3 as solved 
by Maxwell’s cyclic currents. Cyclic currents of Ii, /, and /. 
flow in the meshes ABC- generator, ADB and DCB respectively. 
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In the first mesh, the e.m.f. is the p.d. across is /iZi, the 
p.d. across Zg is (/j — /2)Z6 and the p.d. across Z4 is {I^ — Ii)Z^y and 

or /i(Zi+Z4+Z6) — IzZf^ — I^Z^ — El = 0. 

Similarly, in the second mesh, 

{12 Il)^h “h -^2-2/3 “l~ (12 = fi 

or — /iZg+I^2(^3+^6 H-'Z#) — I&Zq = 0 

and in the third mesh, 

IiZ2-\-{Ii — Ii)Zx-\r{I z — 12)^6 — fi 

or — — -^2^6+-^3(^2+^4+-^3) ~ fi* 

Solving by means of determinants we have 

and 

Azi' = -|(Z3+Z3+Ze) 

! 

I,A' = -Z, 
-z, 

(Zi-\-Zi-]-Zi) 
I,A' = - -Z, 

i -Z, 

hA' = -E, 

I^A' = 

-Z, 
-z, 

(Zj+Zi+Z,) 

-Z, 
-Z, 

(Z^+Zj+Ze) 

(Z3-^Zi-{-Z^) 
-z. 

-z. 

-E' 
0 

0 I 
-E,\ 

0 
0 

-E, 
0 
0 

-Z, 

— Z4 (Z2+Z4+Z(i) 
= El [Z5(Z2+Z4+Z,)+Z4Z,] 

-Z, (Z,+Z,+Z.) 
- Z4 - z. 

= El [Z5Z,+Z4(Za+Zj+Z»)]. 

The current in the arm BD is (/, — /j), and 

(It — I2)A' = £Ji[Z5Ze+Z4(Z3+Z5-)-Z») — ZiZt — Z^(Z2-j-Zi-\-Zt)] 
= Ei{ZtZi — Z5Z2). 

In this case 

A' = 

(Z1+Z4+Z5) 
-Za 

-Z4 

Z{ Z4 

(Zj-f-Za-t-Ze) Zg 

— Z» (Zj+Zg+Zg) 

If we add the second and third columns to the first, 

A' = 

Z4 

Z. 
-z. 

(Zg+Zg+Zg) 
-Zg . 

-Zg 
-Zg 

(Zg+Zg+Zg) 
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and adding the third column to the second 

Z, -{Z,+Z,) ^z, 
= Z, (Z,+.Zs) - 

^2 (^2+^4) {-2?2+24+^6) 

and is seen to be equal to — /I, and the current in BD is thus 

- Z.Z,) = ^(Z.Z. - Z,Z,). 

If, in the ith mesh of a network, we set up the equation following 
from KirchhofiF’s second law, the equation will have the following 
form 

/i^il+A^i2+ • • • 

where Z^j^ is the impedance which is common to meshes i and k, 
and through which the mesh current in mesh k, has effect on 
the mesh i, and Z^^ is the total impedance of the elements of the 
network which form the immediate boundary of the mesh i. It 
will be seen that Z^j^ = The mesh equations will thus take 
the form 

-^l-^ll+^2^i2+ • • • • • • +-fn^in = ^1 

-f 1^212^22+ • • • +-fi-2!2i+ . . . -\-Ij^Z2n = -®2 

• • • • • > . 2(viii) 

-^l^nl+-f2-^n2+ • • • +-^1^711+ • • • 

and in the symbols of matrix algebra this may be written as 

which in a more symbolic form may be written 

and we may write 

[Z][I] = [E] 

[I] == [Z]-^[E] 

2(x) 

(2xi) 

with a suitable meaning applied to Although the final 
amount of calculation necessary to determine any particular mesh 
current is not reduced by the use of matrix algebra, we are able to 
handle the whole sot of simultaneous equations of a network in 
a suitable shorthand way. A large amount of electric circuit theory 
has been developed, chiefly in Germany, by the use of matrix 
algebra. The book Determinants and Matrices, by A. C. Aitken 
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(Oliver & Boyd), may be referred to for methods of handling 
matrices. 

2.4. ThSvenin’s Theorem. Let us return to 2(viii) and 
solve by determinants. 

Zir . . Zm+1) • • • ^In -E, 

^nl ^n2 • • Znii+l) • • • Znn 111 OQ
 

ZI^ . . Zia-l) Zii . . . Zin 

Zu 

^nl ^2 • • • Zn(i-i) Zni - ■ ■ ̂n(n-l) Znn 
If we add an impedance into mesh i without increasing 

(±)A'= 
G G 

Zn z,, .: Zn ■ . -^1(71-1) Zln H+ZK 

(Z^i -\-Z) 

Znl • • Zni • ■ ^nin-1) Znn 
where K is & determinant obtained from the determinant H by 
striking out the ith row and column. 

G 

Then 

Z+ 
H 
K 

Now if we make Z zero, and all internal sources of e.m.f. zero, 
and add a source of e.m.f. E into mesh i, 

H . 
as will be seen by writing 0 out in full. Thus ^ is the impedance 

of the network as seen by a source of e.m.f. in mesh i. Write this 
impedance Zq{, and 

VI, is made^zero by introducing an e.m.f. of into the tth mesh, 
E^t must be equal and opposite to the p.d. which would be developed 
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between the two severed ends of the mesh i, were it cut. If we 
add — Eoi to in 0, we shall find that 0 becomes 

O - EoiK 
o 

whence E^i — 
A 

and 

We may therefore say that a network with an external pair of 

Equivalent 

Fig. 6.—Equivalent Networks. Th^venin’s Theorem. 

terminals (in our example, in mesh i) may be replaced by a generator 
of internal impedance (Zq^) equal to the impedance measured between 
those terminals with all the internal sources of e.m.f. short-circuited, 
and of e.m.f. {Egi) equal to the p.d. between the pair of terminals 
when open-circuited. This theorem is generally attributed to 
Th6venin, but was stated earlier by Helmholtz. 

A similar representation of a two-terminal network is a constant- 
current generator closed at the terminals by an impedance (Zg^) 
equal to the impedance between the terminals with all of the 
internal sources of e.m.f. short-circuited, and of current (/gj) equal 
to the current between the two terminals when they are short- 
circuited. The two representations are shown in Fig. 6. 



28 INTRODUCTION TO THE LADDER NETWORK [3 

3- INTRODUCTION TO THE LADDER NETWORK. 

The ladder network theory which will be developed in the 
following sections is based on the work of Campbell, Zobel and 
others. 

The basic network in ladder network theory is shown in Fig. 6(a), 
in which and are generalized impedances.* The network is 
unbalanced, but may be made balanced by splitting the series 
arm Z^ equally between the longitudinal connections as shown in 
Fig. 6(6). 

fa.) (h) Y 

Fig. 0.—Unbalanced and Balanced Half-sections. 

In all the work that follows the unbalanced form will bo used, 
and any network can be changed into the balanced form by the 
method of Fig. 6(6). 

The network of Fig. 6(a) will be known as the basic or parent 
half-section. 

We shall associate three parameters with all networks, and in 
particular with this basic half-section. For the basic half-section 
these parameters are not independent as there are only two vari¬ 
ables (i.e. Zi and Za) in the half-section. The three parameters are 
two image impedances, Zqi and Zoa, and an image transfer coefficient, 

p 
They are defined as follows : 

Image Impedance, If the end 2 of a network is closed by its 
image impedance Z02, the impedance shown by the end 1 is its 

♦ The half-section is chosen €is the ba^dc structure as the formulas obtained 
are more simple than are obtained if the whole section is used, the figures 
2 and 4 which appear in the latter case being absent in the former. 
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image impedance Similarly, if the end 1 is closed by Zqi, 
the end 2 shows an impedance of Z02. 

In the case of the basic half-section of Fig. 6(a), Zoi is known 
as the mid-series image impedance, and Zq^ as the mid-shunt 
image impedance. 

Image Transfer Coefficient. If the end 1 (or 2) is closed by its 
image impedance Zoi (or Z02) and a current (or ly) caused to 
flow into the end 2 (or 1), giving rise to a p.d. of Fg (or Vy) at the 
end 2 (or 1), a p.d. of Vy (or V2) at the end 1 (or 2) and a current 
ly (or 12) into the closing impedance Zoy (or Z02), then the image 
transfer coefficient is given by 

Let us now determine these parameters for the basic half-section 

of Fig. 6(a). 
When the end 2 is closed by Z02, the impedance shown by 

end 1 is Zqi, i.e. 

Zoi ^ Zy- 
ZoZn 

^2+^02 
Similarly, when end 1 is closed by Zqi, the impedance 

shown by end 2 is Z02, i.e. 

y _ Z2{Zy-\-ZQy) 

Zy+Z2+Z,y • • • • 

and on solving for Zqi and Z02 we get 

ZfiX — \/{Z^^-\-ZyZ2)'\ 

Z1Z2 

3(ii) 

^/{Zy^-^ZyZ2) 

whence Z01Z02 = ZyZ^ 

3(iii) 

Now close end 1 by Zoi and apply a p.d. of Fa at the end 2. 
Then, since this end presents an impedance Z02, the cmTcnt I2 is 

F Z 
equal to The p.d. Vi across Z#, is and the current 

/i in Zoi is 
"01 

2 

Then 

VI 2^ 2 — ^ 
"02 

and 

♦ — as we are considering a half-section. 
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and from (i) 

[3 

which on eliminating Zqi and Zoa by means of (iii) reduces to 

P 
2 

If we work from the other end of the network, we will find 
p 

that — has the same value. 

P 
An alternative form for — is 

si,>h£ = i[cxpQ-exp (-:?)] and as 

this may be written as 

P 
sinh 

Iz, 

2 V Z\ 

or 

since 

cosh P = 1 +2^ , 
Z^J 

cosh 0 = 1 +2 sinh^ - 
2 

3(iv) 

l(xxvi) 

It will be seen that P is infinite if Zi is infinite, or is zero 
and Zx is not zero. 

If the end 2 is open-circuited, or short-circuited, the impedances 
shown by the end 1 are given by 

Zfi = 

and = Zj respectively, 

and if the end 1 is open-circuited, or short-circuited, the impedances 
shown by the end 2 are given by 

Zf2 = Z^ 

Ze2 = respectively. 

It will be seen from (iii) that 

^01 = 

^0* = 
• 3(v) 
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and as 

31 

cosh- = ^^l+sinh^^^ from l(xxv) 

“ 7{'+D 

3(vi) 

Equations (v) and (vi) are sometimes used to define the three 
image parameters. 

4. CONSTANT-* SECTIONS. 

When the product of the impedances Zi and is a constant 
for all frequencies, the half-section is known as a constant-k half- 
section, and if ZiZ^ — is known as the design impedance 
of the half-section. For such a half-section (iii) and (iv) reduce to 

and 

and 

Zat — 
i?. 

ZoiZtt = i2o* 

z. 

4(i) 

4(ii) 
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5. THE WAVE FILTER. 

It has been shown that 

cosh P = 1+2^. . . . 3(iv) 

In general Zj and Z, are complex and in consequence cosh P will 

also be complex, and we will write 

P = A -yjB .... 6(i) 

where A and B are real. Now we know that 

and if we simplify matters by making Zoi equal to Z02 (which is 
only possible for a more complex form of network), we shall see 

that the root-volt-amps, ratio is equal to either the voltage ratio 

or the current ratio, and 3(i) reduces to 

whence Fi = F^exp 

= FjCxp from .')(i). 

Suppose Vi — fi exp {jeot) 

where co is the angular velocity {—27if) and is the peak value 

of F,. 

Then Fi = Fa exp {j(ot).exp j^- 

= F,cxp(-4yexp[j(«><-|^J. 

This is a voltage of peak value exp of the peak voltage 

at 2, and lagging behind the latter by — radians. 
A 

A is known as the image attenwition coefficient, 
and B is known as the image phase-shift coefficient. 

In all formulae where the natural base e is used, A is given in nepers 

and B in radians. Vili and Fj/* differ by N nepers if 

V(FJx) =exp(±iV).V(W 
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Then will 

5(ii) 

6(iii) 

5{iv) 

To avoid the use of natural logarithms, the decibel is often used, 

and VJi and V2I2 differ by D decibels if 

(F,A) = 
It can easily be shown that 1 neper = 8*686 decibels, and that 

1 db. = 0*1151 neper (l(xii)). 

Let us now make and pure reactances. 

be wholly real, as will be cosh P. 

But cosh P = cosh {A +jB) 
= cosh A cos B +j sinh A sin B 

and is real. 

Hence sinh A sin P = 0 . 

i.e., either sinh ^ = 0, i.e. A = Oy B ^0 

or sin P = 0, i.e. P = nn, A ^0 

As Zi and Z2 vary with frequency one of these two conditions 

must always hold. The first condition forms what is known as a 

pass-band (i.e., A = 0, or no attenuation) and the second is known 
as an atteniuiting-band (i.e. A ^0). 

cosh P may take up any value between — 00 and + 00. Three 

ranges are of interest. 
(а) — 00 < cosh P < — 1. cosh A is always 

greater than 1. Hence cosP must be equal to 

given by 
A = cosh~^.[— cosh P]1 

and P = {2n-\-l)n J ' 

This is an attenuating-band. 

(б) -i <coshP <+l. cosh A cannot be less than 1. 

Hence A — 0 1 

B — cos~ ^ [cosh P] J ' 

This is a pass-band. 

(c) 1 < coah P < -f 00. cosh A is positive, hence cos B must 

also be positive, and A = cosh" ^ [cosh P] "I 
B — 2nn J 

This change of cosh P from — oo to + oo may occur partially, 
or any number of times as the frequency varies from zero to 
infinity. There will therefore be a series of pass-bands alternating 

with attenuating-bands. The frequencies at which the network 
passes over from a pass-band to an attenuating-band, or vioe versa, 
are known as cut-off frequencies. 

E.W.F. 

positive and 
1. is then 

6(v) 

6(vi) 

6(vii) 

D 
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Cut-off frequencies are given by 

cosh P = ± 1 . 

and for the basic half-section are given by 

1 I 0^1 II 

6(viii) 

and ^ = 0 or — 1 1 
Zt \ . 5(ix) 

i.e. = 0, Z, 0; = ± 00, 00; Z, = — zj 

It has been shown that in a pass-band where the network is 
dB 

made of pure reactances, ^ is always positive.* This enables us 

to give a sign to the value of B which on calculation from any of 
the formulas given has an indeterminate sign. 

As Zi and are pure reactances, let us write them as jXi 
and jXt respectively. Then, from 3(iii) 

Zti ~ 

‘■ji-m)] 
Z X 

Now in a pass-band — 1 < -^^ < 0 whence — 1 < < 0 and 
"8 A| 

a X 
is negative. It follows that Zqi is real, and as a passive 

A j* A j 

network cannot have a negative resistance, Z^i is a pure resistance. 
In an attenuating range the reverse holds and Zo, is purely 

reactive. A network theorem | shows that for any pure reactance 

^ is always positive. 
00) 

Thus, in pass-ranges the image impedances are purely resistive, 
and in attenuating ranges they are purely reactive. 

* “ Theory and Design of Wave-filters ”, by Zobel, B.S.T.J., Vol. 2, 
No. 1, Jan. 1923. 

f Poster, B.S.T.J., April 1924. 
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6. m-DERIVATION. 

From the preceding sections we have seen that when a half¬ 
section is placed between generator and load whose impedances are 

equal to the image impedances of the ends of the network adjacent 

to generator and load respectively, the relationship between root- 
volt-amps. entering to those leaving the half-section can be deter- 

P 
mined by the aid of the image transfer coefficient —. If half- 

sections are joined together in cascade, so that at each junction 
the image impedance of the half-section on one side of the junction 

is equal to the image impedance of the half-section on the other 
side of the junction, the image impedances of the whole net¬ 
work are then equal to those of the free ends of the terminal half¬ 

sections, and the image transfer coefficient of the whole network 

is equal to the sum of the image transfer coefficients of its con¬ 
stituent half-sections. It is therefore important for us to be able 

to modify our basic half-section so that one of its image imped¬ 
ances is unaltered whilst its image transfer coefficient is altered 
(preferably in a way which is to our advantage). One such way 

of modifying a basic half-section is known as m-derivation. 
Starting with a basic half-section having image impedances 

Zoi and Zq2, we derive two modified half-sections, one having 

image impedances Zqi and ^02m» the other having image 
impedances and Z02. The former is known as a mid-series 
derived half-section, the latter as a mid-shunt derived half-section, 

6.1. Mid-series Derivation. Here we make the impedance 
of the series arm mZi, The impedance of the shunt arm which 
will leave the mid-series image impedance unaltered at Zqi is 

1 
———Zi+—Zi as shown in Fig. 7(a). Replacing Zi and Z, in 

3 (iii) by these modified values we get 

= from (iii) below 

where Zf^^m i® mid-shunt image impedance of the mid-series 
m-derived half-section. 



36 m-DERIVATION [6 

From 3(v) a similar modification to that use^j for 3(iv) gives 

m 
p 

sinh 
2 

. /r.__T 
\J 1_(1 — m*)Zi+Z2_ 

or cosh P = +”**^^*lh^* 
”• (1 - m^)Z\+Z\ 

6(ii) 

where is the image transfer coefficient of the mid-series m-derived 

half-section. 

6.2. Mid-shunt Derivation. In this derivation we make 

the impedance of the shunt arm and in order to keep the 

mid-shunt image impedance equal to Z02, the admittance of the 

series arm must be 

^Olw ~ 

mZi rnZ 

Z1Z2 

(1 - 

Z1Z2 

as shown in Fig. 7(c), and from 3(iii) 

w-m 
from (i) above 

02m 

6(iii) 

where ^oim mid-series image impedance of the mid-shunt 
m-derived half-section. 

^ mZt 

Ta) Series-derived (^6) Basic half-section rc)Shunt-deriyed 
half-section half-section 

Fio. 7.—Series and Shunt-derived Half-sections. 

From 3(v) we find that the image transfer coefficient of the 
mid-shunt m-derived half-section is equal to that of the mid-series 
m-derived half-section and is given by 6(ii) above. 

In both mid-series and mid-sh\mt m-derivation, P„ is infinite 

when (1 — m*)Zi-t-Z, = 0 . . . 6(iv) 
whence Zoj,„ = j oo and Zo2m = P . . . 6(v) 

From 6(ix) cut-off frequencies of the basic half-section are 
given by 

^ = 0 or — 1 
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and on substituting the series- and shunt-arm impedances of either 
of the m-derived half-sections for and respectively, the same 
condition 6(ix) is found to hold for the cut-off frequencies of the 
m-derived half-sections. Thus the process of m-derivation leaves 
unaltered one image impedance and the cut-off frequencies, but 
modifies the other image impedance and the image transfer 
coefficient. 

6.3. mm'-Derivation. We are not restricted to any par- 

(CL) 

(h) 
Fig. 8.—Shunt and Series Double-(mm') derived Half-sections. 

ticular half-section from which to m-derive, and we may therefore 
use one of the m-derived half-sections already discussed from which 
to derive a further half-section. This process is known as double^ 
derivation or mm'-derivation where m is the parameter referring 
to the first derivation and m' is that referring to the second deriva¬ 
tion. Such half-sections are shown in Fig. 8(a) and (6). 

The double-derived image impedances are given by 

fZ. _^1^2 

"02mm' 
V[Z,*+2i2.] 

(1 — 

(1 — 

6(vi) 
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6{vii) 

and the image transfer coefficient is given by 

coshP = (l+mW^)Z,+Z3 
(1 - m2w'2)Zi+Z, ■ 

and is the same as that for a single m-derived half-section of m 
equal to mm'. 

On the score of attenuation there is no gain in using an mm' 
derivation, but the double-derived image impedances and 

Zo2mm' show desirable characteristics. Zobel has shown that in a 
wave filter a double-derived half-section having m = 0'723 and 

m' — 0'413, and Z^^rnm; differ from ^/[ZlZ^ by less than 
2^ 

±2 per cent, for values of ^ between 0 and — 0-92. This half¬ 

section is thus used when it is necessary to present a very uniform 
image impedance in the pass-band of a filter. 

Laurent * has shown that if the portion of a pass-band over 
2 

which a good impedance is required extends over values of 
Zd2 

lying between 0 and — p (p < 1) the least square deviation from 
a constant image impedance is obtained if 

m '2 

- yja - “^+2^(1 - 6(viii) 

If Zi and Z, are physically realizable, the derived half-sections 

will be physically realizable only if-is positive. This means 
m 

that m must be positive and must not exceed l.f 

♦ “ Th^orie et application pratique des demi-cellules trois branches 
pour filtres ^lectriques.” T. Laurent, Ericssm Technics, 1934, No. 6. 

t In Section 17 it will bo shown that in other types of filter networks 
m may exceed 1. 
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7. EQUIVALENT NETWORKS. 

So far we have considered the image parameters of a network. 
If a network is made up of half-sections whose image impedances 
are matched at the junctions between the half-sections, we end 
up with a network having image impedances equal to the free end 
image impedances of the two terminal half-sections, and an image 
transfer coefficient equal to the sum of those of its constituent 
half-sections. Let the image characteristics be and 
Then if the ends of the network are terminated by the correct 
image impedances, we can calculate the root-volt-amps, ratio 
between the input (one end of the network) and the output (the 
other end of the network). In general, however, a network is 
not terminated by its correct image impedances, and in such a 
case the root-volt-amps, ratio calculation becomes more difficult. 
We shall calculate this ratio with the aid of an equivalent network. 
Such a network simulates the actual network in all external respects 
(i.e. image impedance and image transfer coefficient) but internally 
is of such a form that calculation is made more easy. 

As the network we are considering has only three parameters 
(the image parameters), the equivalent network must have at least 
three independent elements. These three elements may be put 
together either in the form of a T, or of a H. The two forms of 
equivalent networks are known as equivalent-T and equivalent-U 
networks. 

Let us first consider the case where the two image impedances 
and Z()5 are equal. Then there will be no way of distinguishing 

one end of the network from the other and the equivalent network 
will thus be symmetrical. The equivalent-T network will be as 
shown in Fig. 9 with Zq^ = Zq^ and Z„ = Z^. 

Fio. 9.—General T-network. 
For symmetrical network 

Zqa = — Z = Zqa tanh 

* sinh Pab 
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If one end of the network is closed by its image impedance, 
we know that the impedance at the other end is equal to its image 
impedance, i.e. 

When so terminated we know that the root-volt-amps, at A 
are equal to exp times those at B, and since the two image 
impedances are equal the root-volt-amp. ratio is equal to the 
current or voltage ratios. 

If a unit p.d. is applied at the end A of the network, the current 

entering the network is equal to ^—. The current leaving the 

... 1 r z. 1 1 r z 
network at the end B is equal to ^ 

of these two currents is equal to exp i.e. 

exp (P^„) = V . 

Substituting in (i) for 

The ratio 

which reduces to 

^OA — -^a + (^a+^0^) ( “" PAb) 

3 = Zo^tanh— 

and substituting for Z^ in (ii) we find that 

fy _ ^QA Z, = — 
® sinhP, 

In a similar manner the equivalent-IT symmetrical network 
may also be deduced. Its configuration and element values are 
shown in Fig. 10. 

Fig. 10.—General 7r-network. 

For symmetrical network 

Par 
Zqa =3 ZoBt and Z®* = Zy = Zqj, coth —^ 

^Zy »= ZoA sinh Pa a- 
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We could find the equivalent networks for the general network 
where Zqj^ and Zqj^ are not equal, but this would involve solving 
three simultaneous equations giving Z^, Z^ and or Z^., 
and Zg/. A perfect transformer has the property of transforming 
a p.d. Vji) across winding (i) to a p.d. of across the winding (ii), 

of transforming a current through winding (i) to a current 

and an impedance Z^^) across winding (i) to an impedance 
across winding (ii), where <f> is the turns ratio and (f>^ the impedance 
ratio between windings (ii) and (i). A perfect transformer with 
impedance ratio Zq^ : Zqj^ placed with its Z^^ winding connected 
to a symmetrical-T or -IT network will transform it to a network 
having two unequal image impedances Z^^ and Zq^. We can use 
these equivalent networks to determine the behaviour of a given 
network between given terminal impedances. 

8. INSERTION CHARACTERISTICS. 

If a generator of internal impedance Z^ bo connected to a 
load of impedance Z^ and a p.d. of Vn and a current of be 
set up across and through the load respectively, and if a network 
bo inserted between generator and load giving rise to and 
across and through the load respectively, the insertion factor is 

given by or ^ and the insertion loss is given by 

A' 

8(i) 

and the insertion 'phase shift by 

jB' arg 

Ib arg/- 

where |r.exp (j0)| = r 

arg{r.expO‘0)} = 0. 

8(ii) 
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A' may be expressed in decibels by 

J',j = 201ogxo^il 
\ . . 8(io) 

= 20 log,0 4^ I 

Consider the case of a network of image impedances Zqj^ and 
and image transfer coefficient Pab* inserted between generator of 
internal impedance Zj^ and load of impedance and Zq^, 
Zs and Zq^ being together. When the network is absent 

Fig. 11.—Insertion-loss of Network Zqa* Pab> ^ob between Impedance and Z^. 

We can use the equivalent-T network to calculate the current 
Ig. when the network is inserted, as shown in Fig. 11. We have 
to set up two equations from which /, may be determined, and 

fz 
Ig. is obtained from /, by multiplication by / 

The two equations are 

*8inh P, 

-I. . 
sinh P. 

I_: 
2 sinh inh 

and after expressing the hyperbolic functions in their exponential 
forms and eliminating we get 

L = Ab) . {^A +^Qa){^B +<ZfoB) 
/ 2 '2tE Zq^ 

r 1 - exD i 2P 
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and remembering that I^ is equal to /j. / and that the insertion 
^ -"OB 

jsj r 11 
factor is equal to —rs- t~ > finally get the insertion loss 

■“>1+"bL-'B'J 

A' and the insertion phase shift B’ from 

A'= -log, 

+log, 

and 

, log 

Zj^—Z(s 

^V{^a^oa) 
Zt)—Z, 

+log, 1 
V(^b^ob) 

Za~^^0A ^B'^^OB 
.exp {-2P^s) AB 

R'r=_arfr i-arg 4-are 
^2V(25Zo/)+ S2V(Z5Zo«j 

+arg 1 OA z„-z, OB exp {-2P^b) 

where Pjs = 

may be expressed in decibels as 

I +^AB 

8(iv) 

A'db = - 20logi 

+20 log. 

2V(Z^Zs) 
+20 log. ^A'^^OA 

2V(Z^Zoa) 

+ 20 log olO 
2V(ZM 

I OA 

Zj^-^-Zqj^ Z^-^-Zqjj 
fexp(~2P^^) + ^^Bdb. 

In the expressions for both A' and B\ the first term is due to 
the mismatch between generator and load impedances, the second 

is due to the mismatch between generator impedance and the 
input image impedance of the network, the third term is due to 
the mismatch between the output image impedance of the network 

and the load impedance, the fourth term is due to the interaction 
caused by the mismatches at both ends of the network, and the 
fifth term is due to the image transfer coefficient of the network. 

As was shown in Section 5, the image impedance of a wave 
filter in its attenuating bands is a pure reactance. On substituting 
jX for or in the second or third term respectively of (iv), 

and making or Z^ purely resistive, it can be shown that these 
terms lie between + oo and — ^ log^ 2. Thus the insertion loss 
maybe as much as 2 x 0*345 nepers (6 db.) less than the attenua¬ 
tion coefficient of the wave filter in the latter’s attenuating-band. 
This is important when we consider the design of a particular 
wave filter, as we shall have to design the complete filter to have 
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an attenuation coefficient which is 0-69 neper, or 6 db. greater 
than the minimum design requirement. 

Fig. 12 enables the interaction term of the insertion loss to be 

calculated once has been ex- 

^ 
pressed in the form r.expjO. The terms may be 

^A+^OA 

0-^0 '09e 

(Hr:i.--OP*OZ€ 

09:fr-09'00£ 
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obtained when is resistive and the image impedance of a 
filter from the single line nomograph in Fig. 12. 

We will now consider some of the possible ladder-type wave 
filters of the low-pass, high-pass, band-pass and band-stop classes. 

9. LOW-PASS FILTER HALF-SECTIONS. 

Let us make the series arm of the basic half-section an inductor 
of inductance Lj^, Then will be equal to From Section 4, 
the condition for a constant-A: half-section is given by ZiZg = 

Hence Z^ is equal to i.e. This impedance is that of a 

capacitor of capacitance which we will write as (7^ (Fig. 13(6)). 
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sinh-= I 

cosh P = 1 — 

From 5(viii), cut-ofiF frequencies are given by 

coshP = ±1 

whence 

1 — = ±1 

ft) = 0 or 
V{L,C^) 

When 0 < 0) < ,,r"/T'\» will be seen that 1 > cosh P > — 1 
V(^k^k) 

and this is a pass-band. The half-section is therefore known as 

a low-pass half-section. 

Writing 
" V Cu 

ViLifik) 
(O = XCOo 

(ia) and (iia) reduce to 

Zo^k = ^oV[l - 

7 _ ^0 

cosh P == 1 — 2x^. 

When 0 < a; < 1, 1 > cosh P > — 1 and from 5(vi) 

= 0 1 
B = cos-1 (1 _ 2a;*)J • • 

This is a pass-band extending from co = 0 to cuo (i.e. a: = 0 to 1). 

When l<x<oo, —1> cosh P > — oo and from 6(v) 

A — co8h-i(2a;* — 1)1 ... . 
B~n 1 • • 

This ia an attenuating-band extending from coo to oo (i.e. a; = 1 
to oo). 

9.1. m-Derived Half-Sections. From Section 6 mid-series 

and mid-shunt half-sections may be derived from the basic low-pass 
half-section of Fig. 13(6) and are shown in Figs. 13(a) and 13(c) 
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respectively. For these half-sections the derived image impedances 
are obtained from 6(iii) and 6(i), and 

^ __ p V(1 - 1 
"nim — -n-0^-m 

— Hi 

V(i - 
-1 - a:*(l — m*) 

,a;8«V(l -a;*) 
0 

- - 

,1 -a:*(l — m^) 
>0 

V(i - x^) 

- - x"^ 

- X^) 

1 
— ' 

where Xzao^ = j-—.9(vii) 

From 6(ii) 

“"'■t -^J[i -»«(i -»T)] 

= (2a;ioo^ — l)x» — 

ia the value of x for which P is infinite and the frequency 
corresponding to this value is known as the frequency of peak attenua¬ 
tion. In American literature is written as a. It will be seen 
that (i) and (ii) can be obtained from (vi) and (viii) if we make 
m = 1 and = oo. 

When 0 < a: < 1, 1 > cosh P„ > — 1 ^ 

and A = 0 

B — COB~ * ---'--— 

(1 - m»)a:* - 1 

When 1 < a: < Xt„, — 1 > cosh P„ > — oo 

A = cosh-i-Hiil!?^ 
(1 - m*)a:* - 1 

= cosh~^-^ 

B = 7t 
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When ajjoo < a; < oo, + oo > coshP > (2*200® — 1) 

(1 — m^)x^— 1 

= cosh-1 1)** 
^ 2 _ a 
•1/2(30 ^ 

p = 0 

Constan t-'h 77L - deniveot 

9(ix) 

Fig. 14.—Low-pa^s Filter Characteristics. Full Sections. 

Fig. 14 shows the general form taken by the image impedances 
and the image transfer coefficients of constant-A; and m-derived 
low-pass filter half-sections. 

Section 14 deals with the calculation and design of filters of 
all types, and (viii) above is modified to enable the values of A 
and B to be determined by means of a template. 
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10. HIGH-PASS FILTER HALF-SECTIONS. 

If we interchange the series and shunt arms of the constant-i: 
low-pass half-section of Fig. 13(6) the structure we obtain is still 
a constant-^ half-section and is shown in Fig. 15(6). 

Substituting for and joyLjc for in 4(i) and 4(ii) we get 

sinh - = —^ 
2 X 

cosh P = 1 — ~ , 
x'^j 

10(i) 

lO(ii) 

where x = - - 
COo 

J? 2 — 

When 0<a;<l, — oo< cosh P < — 1 and 

A - co»l,-(l - l) 

B — — n 

This is an attenuating-band extending from 0 to co# (i e. a; = 0 to 1). 

When l<a:<oo, —1< cosh P < +1 and 

^ = 0 

This is a pass-band extending from coq to oo (i.e. a: == 1 to oo). 
The half-section is known as a high-pass half-section, 

E.W.F. E 
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10.1. m-Derived Half-Sections. As in the case of the 
low-pass half-section we may use Section 6 to derive mid-series 
and mid-shunt m-derived half-sections from this basic half-section. 

Ta) Series-derived /'t) Constant-fc Tc) Shunt-derived 

Fig. 16.—High-pass Half-sections. a>o® = v * 

They are shown in Figs 15(a) and 15(c) respectively, 
image impedances are obtained from 6(iii) and 6(i). 

y _ p - 1) 1 
^Olm — ^0 

where 
From 6(ii) 

__ (1 _ ^2) 

^ /y»2 __ /y» 2 
•^loO 

— {I — m^) 

ly 2   /y 2 
, .1/ •^Ico 

-1) 

sinh^ =jm -svl 
2 V L** ~ (1 “ m^)\ 

(2 — a:,**) — a:* 

The derived 

10(v) 

lO(vi) 

. lO(vii) 

aJxoo is the value of x for which is infinite and the corresponding 
value of firequency is the frequency of peak attenuation. 

It will be seen on comparing these formulae with those in Section 9, 

that one set may be obtained from the other by writing - for x. 
X 



10.1] 

When 

When 

When 

0 < a; < 

m-DERIVED HALF-SECTIONS 

2 
a^ioo, i" < 00 

X^lQO / 

(1 — m^) — 

= cosh-1 
/y» 2   /y> 2 
•^loo 

B = 0 

Xix <x < I, — 00 < coshP < — 1 

a:^ - (1 - m*) 

= cosh-^(^--^-^-l-^^ 
/y«2 _ /y» 2 

B — — 71 

I <x < CO, --1< cosh P < + 1 
^ = 0 

j (l+m^) — 
B = cos~ 

= cos 

(1 — m^) — 
_,(2_~ _ ^2 

Constant rrt-oleniveol 

Fig. 16.—^High-paee Filter Characteristics. Full Sections. 

51 

lO(viii) 
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Fig. 16 shows the general form taken by the image impedances 
and image transfer coefficients of these high-pass filter half-sections. 
Section 14 deals with the method of calculation of A and B by 
the use of templates. 

11. BAND-PASS FILTER HALF-SECTIONS. 

Let us now make the series arm an inductor of inductance -Lu 
n ^ 

in series with a capacitor of capacitance nCf^ where n is a constant. 
The impedance of this arm is given by 

n 

1 
X — - 

X 
)_ 

n 

if we continue to use the relationships 

/? 2 __ 

COo^ = 

(O 
X — —. 

COo 

Bo 

If we wish to make a constant-A; half-section of design impedance 

Z2 — jBo 
n 

I 
- — X 
X 

n 

which is the impedance of a capacitor of capacitance -C* in parallel 
TV 
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with an inductor of inductance wL*. This network is shown in 
Fig. 17(6). 

From 4(i) and 4(ii) 
(1 - a;2)2]'i 

nx 

nx 

- (1 - 

. , P .1 — X® ^ 
smh-- = - j 

^Olk — ^0 

^02k — ^0 

2 '' nx 

cosh P ~ 1 2n 
'1 - X* 

nx 

Cut-off frequencies are given by cosh P — Ji 1, i.e. by 

or ~ 1. 

11 (ia) 

. ll(iia) 

These are 

rL--T = o 
nx J 

V(w^+4)±^ a; = 1 or 

Write 
2 

X2 = 
‘\/{n^+4)-\-n 

2 
11 (hi) 

then X1X2 = 1 
n = X2 — Xx j 

At a; = 0 and a; = 00 no current can be passed through the 
half-section as the series arm has an infinite impedance and the 
shunt arm has a zero impedance at both these values of x. Hence 
a: = 0 and 00 lie in attenuating-bands and a pass-band extends 
from Xx to ajg. n is then a measure of the band-width. The half¬ 
section is known as a band-pass half-section. The frequency corre¬ 
sponding to a: = 1 is known as the mid-band frequency and is situated 
at the geometrical mean of the two cut-off fi*equencies. 
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The apparent cut-oflF frequency at a; = 1 is a point at which 
both A and B are zero. The general network with a series-resonant 
circuit in the series arm and a parallel-resonant circuit in the 
shunt arm has two pass-bands separated by an attenuating-band 
and as the two resonant frequencies approach each other the two 
pass-bands also approach, joining when the series-arm and shunt- 
arm resonances occur at the same frequency. In this condition 
we have the constant-A; band-pass half-section we have just described, 
and a: = 1 is a point at which two pass-bands have joined together. 
The half-section is therefore known as a confluent band-pass half¬ 
section. 

We may substitute the functions of and for n which were 
found in equations 11 (hi), in 11 (ia) and 11 (ha) as below 

= ^0-- - = -^0 - / V 
nx x{Xi Xt) 1 ii(i) 

'/ -If _ p \ ' 

. . P .1 - x* . 1 - a;* 'I 
sinh - = -3——- = -3-,— 

'x{Xi — Xi) 

cosh P L na; J \x{x^ — Xi) 
When 0 < a: < a^i, — 00 < cosh P < — 1 

= 2 cosh“^ 
1 - x^ 

B — — n 

when a;i < a; < Xj, — 1 < cosh P < 1, and cosh P = — 1 
when a: = a:i or a:2, and cosh P = 1 when a; = 1 

.4=0 

B = cos .Ji_2ri^n I L - 

= — 2 sin“* ^ 

when Xi < X < oOy ~ 1 > cosh P > — oo 

A = cosh-ij2r^^-- 1 
I L - 

= 2 cosh"^ 
1 -** 

ll(iv) 

B = 7t 
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The middle relationship shows more clearly that we are dealing 
with two confluent pass-bands, one for which — 1 < cosh P < 1 
(i.e. Xx <x <\) and the other for which 1 > coshP > 1 
(i.e. I <x < X2). 

11.1, m-Derived Half-Sections. Series- and shunt-derived 
half-sections are obtained by means of Section 6, and are shown 
in Fig. 17(a) and (c) respectively. 6(iii), (i) and (ii) then give 

_ , p nzy'[n‘‘z<‘ - (1 - z^)^] ] 
— -til 

where 

Vz^ - (1 - m*){l - a:*)* 

B - Xl„y^y\z^(Zi — ZrY — (1 - Z^y] 

{Zt — Zi)(z^ — x,«,*)(a:,oo* — a:*) 

„ n^z^ — (1 — m^)(l — z^)^ 

* nz^\n^z^ — (i — z^j^] 

D_- z^) _ 

'‘z(zt^ — «,„) V[a:*(a^2 — *1)* — (1 — a:*)*] 

sinh ^ _ 
2 - (1 - m*)(l - a:*)*] 

^ _ V[(a:»* -a;,„!>)]'l 

11 (Vi) 

ll(vii) 

^100^200 — 1 J 

Xiao Sind Xa« are points of peak attenuation and are symmetrically 
placed about x = 1. 

_ 
When 0 <z < x,*, - --. > cosh > — co 

V(1 — m^) 

A - 2 sinh-1 _B = 0 A - 2, smh _ ^2)2 _ „2a.2]’ 

when x x^j oo cosh -P^n 1 

^ „ 1 , — a:®) D 
^ = 2 cosh- ^ - ,r - -2i71-iT2i> -o = — 

VCw^x* — (1 — m*)(l — x*)*3 

when Xi < X < x„ — 1 < cosh P„ < 1 

^ D m(l-x2) I-, ll(viii) 
A =0, B 

V[w*x® - (1 - m*)(l - X*)®] 

when X, < X < x,*,, — 1 > cosh P > — oo 

= 2 cosh-® - ■ —-, P = 71 
V^[»®x* — (1 — m®)(l — X*)®] 

when X,* < X < 00, — oo < cosh P_, < 
^(l — wi®) 

^ = 2 sinh”® -, P = 0 
-y/ECl — *»*)(! — X®)® — n*x*] 
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The attenuation coefficient of the m-derived half-section is 
symmetrical about the mid-band frequency, the phase coefficient 
at frequencies placed symmetrically about the mid-band frequency 
being of equal magnitude but of opposite sign. 

11.2. mim*-Derived Half-Sections. With the band-pass 
half-section m may be a function of frequency (and therefore of x), 
instead of being a constant as has been the case in all derived 
half-sections which have preceded this paragraph. For a realizable 
m-derived half-section, m {—F{x)) must be chosen so that the 
arms of the half-section are made up of physically realizable com¬ 
ponents. Such is the case if we write 

^a) Series-derived fb) Shunt-derived 

Fig. 18.—mima-derived Band-pass Half-sections. 

Putting nil — ^2 iif fhis relationship makes m = vii — and 
gives the m-derivation which we have discussed in ll(v) to ll(viii). 

The mid-series and mid-shunt mimg-derived half-sections are 
shown in Figs. 18(a) and (6). 

Substituting for m in (v), (vi) and (vii) we get 

7 _ » nx\/[n^x^ — (1 — x^y] 
- (1 - a:*)*+(TO. - ^ 

^ _ P n**® — (1 — x*)*+(m, — mi*®)* 

0 - {1 - a:*)*] - 

sinli - m,*®) 
, 2 — (1 — a:®)®+(m, — mi*®)®] 

ll(ix) 

ll(x) 
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With this half-section and the values of x for which 
is infinite, are given by 

/y* 2/>» 2 
•t'lTO •^2to 

n^ + 2 — 2mim2 
1 m. 

m. 

or if Xioo and a:. 

mi = 

m2 

1 - mi^ 

D given 

-\-h 
Xz^ 

1 - 
y. 2 

g-\-hx^J 

1 - 

^ = V[(l ” V^2^)] 
A ~ \/[(l ^)(1 ^2^/^2oo^)] 

ll(xi) 

Xloo and a^aoo aro independent and not symmetrically placed 
about a: = 1 as was the case with the m-derived half-sections. 

By giving Xi^ and X2^ particular values the number of elements 
in the mimj-derived half-section can be reduced from 6 to 5, 4 
and 3, the characteristics becoming more and more restricted as 
the number of elements is reduced.* 

11.2.1. 5-Element Half-Sections. There are two types of 
5-element half-sections. One has Xi^ = 0, a;a < < oo and the 
other has 0 < a; a: joo = oo. 

When a^ioo = 0, a;a < a;2« < oo ; ma = 1 and 

• 1 -P _ ji'miX^ — 1) 
2 ~ - x^n^+2 - 2m,)] 

and when 0 < Xi^o < Xi, a^aoo = oo ; m^ = 1 and 

sinh? =__ 
2 V[(l - ^2") - x^(n^+2 - 2ma)] 

. ll(xii) 

. ll(xiii) 

11.2.2. 4-Element Half-Sections. There are three 4-element 
half-sections. One has x^^ — 0, a^goo = 00, ~ = \ and is 
the constant-i: half-section. Of the two other types, one has 

♦ Zobel developed the mima band-pass half-section from a consideration 
of a low- and band-pass half-section, and the parameters a, h, c, d, g, h, 

with others, aro used for that type of filter. 
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Constant-k. 6-clement 5-element 
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^Otnhn 
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-oo 

oo 
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2o2rn^ 
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— oo 

oo 
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•ive 
Resist 

-ive 
React 
-ive 

j 
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! 1 
1 
1 
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“ 

/ 
i / 

React Reskt 
-ive ; -ive 

React 
-ive 

! / 

/ / 

/ 
/ 

Z5 
7 

/ 
J 

? 

lfcs/st< React , : React Resist- Reac t 
-tW \ -ive \ -ive ' ; -/Vf _i -Ive; -ive 

—7 r 
r 

/I 

J2 

0 Xr / JTj oo 0 X2X5«oo 0 X; XjXt^OO 6 
X X X X 

Fio. 19.—Characteristics of Band-pass Filters. Full Sections. 

0 < *100 < Xx, *200 = — Xx,* for which 

_ /fa:!® - aJioo*' 

m, = —nil 
*1 

— ’m /r x^ — Xi/xi 1 
2 |_**{1 — m2) — {Xilxt — m2xt/Xi)\ 

I\{x2 - Xi^^)(x^ - x2)-] 
sj L(a:2® - x2){x^ - *!«,*) J 

and the other has *100 = — Xi, *a < Xt^ < 00, for which 

Xi 
m2 = — 

8i„h^=imi /[*__1 
2 sJ 1_**(1 — m2) — {Xt/Xi — «ii**i/*,)J 

— *-*)(** — x2T\ 

ll(xiv) 

/p.«®-a;.®)(*^-*i^)- 

V L(*«® - x2){x^ — aJioo*). 

11 (xv) 

■» i.,-. -1®){*® ®loo®)_, j 

* Zobel assumed *,00 == +*j, but Stetrr (Electric OircuiU and Wave Fitters) 
suggested that *,00 •= — *| is a more reasonable assumption to make. 



0 X, XaXjooOO 0 X; ^2 oo 0 X, X2 C30 
ac oc X cc 

(See Fig. 20 for Component Values.) 

11.2.3. 3-Element Half-Sections. There are two types of 

3-element half-sections. One has Xi^ = 0, Xgoo == — for which 

and the other has Xioo = — Xi, Xg® == oo, for which 

ll(xvi) 

ll(xvii) 

Fig. 19 shows the form taken by the image impedances and 
the image transfer coefficients of all these band-pass half-sections, 
and Fig. 20 shows the actual form of the half-sections. It wll be 
noticed that the form of the arms containing four elements does 
not apparently agree with those shown in Fig. 18. They are, 
however, equivalent, and those shown in Fig. 20 have the advantage 
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over those shown in Fig. 18, that the resonant frequencies of the 

series or parallel resonant combinations are the frequencies of peak 
attenuation of the half-section. These frequencies of peak attenua¬ 
tion are indicated in Fig. 20 by the symbols and adjacent 

to the resonant combinations giving rise to the attenuation peaks. 

The use of the form of construction shown in Fig. 20 enables the 
adjustment of the components to be carried out as described in 18.4.3. 

11.3. Relationships between Band-pass Half-Sections. 
p 

If in the expression for sinh —(ll(x)), we substitute for wii 

and m2 from 11 (xi), may be determined by means of the 
relationship 

sinh"^ 0 = logg {fl + \/(02 + l)} . . l(xxx) 

If, in a similar way, we determine P from ll(xiv) and 11 (xv) giving 

^2 ^nd ajaoo in these last two expressions the same values 
as we used in ll(x) and 11 (xi), it can be shown that the image 

transfer coefficient of a 6-element band-pass half-section is equal 
to the sum of the image transfer coefficients of two 4-element 

band-pass half-sections having the same values of X2 and 

•^200 • 

We may describe the type of a band-pass half-section by a 

figure denoting the number of elements, followed by symbols 

giving the values of x for which P is infinite. The letter P outside 
brackets enclosing these symbols refers to the image transfer 
coefficient of that section. 

From the above it can be shown that 

P(6, Xioo, X200) = P(4, Xioo)+P(4, X200) 

F(5, 0, = P(3, 0)+P(4, 

P(6, a^ioo, 00) = P(4, a;i„)+P(3, oo) 

P(4, 0, 00) =P(3, 0)+P{3, 00) 

P(3, 0) = P(4, 0) 

P(3, 00) = P(4, 00) 
1 

and if XixXt» = 1, P(4, *,») with - written for x is conjugate 
X 

to P(4, *100). 
These relationships are of importance in filter design as they 

enable us to design a filter on the basis of 4-element half-sections 
with their simple expressions for the calculation of P, and to 
combine these 4-element half-sections into more complicated 

structuces with’ a reduction in the number of elements. 
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Section 14 shows the application of templates to the deter¬ 
mination of A and B for band-pass filter sections. 

11.4. Impedance Transformation. The two networks shown 
in Fig. 21(a) and 21(6) can be shown to be equivalent to those 
shown in Fig. 21(c) and 21(d) respectively by equating their open- 
and short-circuited impedances. The transformers shown in 
Fig. 21(a) and 21(6) arc ideal transformers of impedance ratio 
1 : An ideal transformer of impedance ratio 1 : </)^ has the 
properties of showing an impedance of (/>^Z at the (^^-terminals 
when the 1-terminals are closed through an impedance Z, of showing 
a p.d. of (^V at the <^2_terminals when the 1-terminals have a p.d. 

of V applied to them, and of causing a current of - to fiow through 

a circuit connected to the ^-terminals when a current I flows 
into the 1-terminals. 

o— 

(pZ 

o— 

—o 

—o 

(c) 

<H HH ■ H> 

o -X 
I'd) 

Fio. 21.—Impedance Transformation. Equivalent Circuits. 

m 

It will be noticed that one of the elements in each of the equiva¬ 
lent circuits of Fig. 21 (c) and (d) will be a negative quantity times 
the impedance Z. Although this is possible at a single frequency 

^e.g., jcoL and are of opposite sign and of equal magnitude 

when CO* = it is not possible to make such an impedance 

which will hold over an extended frequency range. Thus we can 
use the equivalent circuit only when the “ negative ’’ impedance 
is placed in series or parallel with an impedance of the same kind. 
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An example of impedance transformation is shown in Fig. 22 
(a) to (d). It is obvious that L, could have been used instead of 
Cl in this transformation. 

The impedance ratio of the transformation is limited by the 
condition that there is no negative inductance or capacitance in 

Fig. 22.—Impedance Transformation. Series Condenser. 

the transformed ratio. The limit occurs when the negative com¬ 
ponent is of the same magnitude as the positive component 
with which it is associated. 

From an analysis of the possible series and shunt-elements of 
low-pass, high-pass, band-pass and band-stop half-sections, it will 
be seen that only the band-pass structure is suitable for impedance 
transformation. 

12. BAND-STOP FILTER HALF-SECTIONS. 

If we intercTiange the series and shunt arms of the constant-A; 
band-pass half-section of Section 11, Fig. 17(6), we obtain the 
half-section shown in Fig. 23(6). Using the same symbols as were 
used in Section 11, 

z, =jB,^ 
\x~ 

1 
X- 

X 

n 
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and from 4(i) and 4(ii) 

^02k 

^/[l — x%n^+2)+x^]'\ 

^0-r=r^^- 

R 
°\/[l ~ x%n^ + 2)-\-x^]^ 

nx 

1 

cosh P = 1 — 2 

Cut-off frequencies are given by 

ri-x^y A I — - = 0 or — 1 
I nx j 

i.e. a: = 1 or 
4)d:n 

Write 

then 

X. = 

X. = 

V(^^ + 4) — n'] 

XiXi = 1 
n = X2 — Xi 

63 

12(ia) 

12(iia) 

12(iii) 

At a; = 1 the series arm has an infinite impedance and the 
shunt arm a zero impedance, a; = 1 thus lies in an attenuating- 
band. The half-section has two pass-bands, one extending from 
0 to Xiy and the other from X2 to 00, separated by an attenuating- 
band. The frequency corresponding to a: = 1 is known as the 
mid (-attenuating) band frequency. 

Substituting for n in 12(ia) and 12(iia) we get 

> . 12(ii) 
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When 0 < a; < aJi, 0 > cosh P > — 1 
^ = 0 

1 - 

when Xi < X < 1, — 1 > cosh P > — co 

^ = 2 oosl.- 
1 — 

B = n 
when X == I, A — cG 

when 1 < a; < a:2, — oo < cosh P < — 1 

J = 2co3h-'‘'l*i^> 
ar* - 1 

B — — 71 

when Xi < X < CO, — 1 < cosh P < 0 
^ = 0 

I —X^ 

12.1. m-Derived Half-Sections. Series- and shunt-derived 
half-sections are obtained by means of Section 6 and are shown in 
Fig. 23 (a) and (c) respectively. 6(iii), (i) and (ii) then give 

^oim — ^0 

^02m ~~ ^0 

y[- - 
12(iva) 

sinh ^ - i_—_ 
2 V[(l - **)* - - m*)] ■ 

__ V[(l "" m*)^n2+4] — n(\ — m^) 

12(va) 

V[(l - m^)H^+A\+n{l - m^) 

— 1 

_ ^ _ (^800 ^lco)^j 



= mn 0-ocfco) 

-0-0- 
. Xa^-x,^ mn(f-x/coj Xa^-JC/^ z a2^-x,.rj , 
^^mnrxjVO mnr/-x;^) mnU'i-^-1)^ 

Equivalent form of Equivalent form of 
shunt arm of (d) series arm of (C) 

Fig. 23.—Band-stop Half-sections. 

mn(f-Xjlo) 

Constant -h m -derived 

Fio. 24.—Band-stop Filter Characteristics. Full Sections. 

E.W.F. 65 
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On substituting for m and n we get 

^oiTO — -Ki 

(1 _ _ a,^2)(a.2 _ 

— -^o 

(a:* - 

(x^ 

sinh 
2 

(1 - a;*) ^/[(a:" - a:i*)(x* - a:.*)]J 

■ 2\ 

[12.1 

12(iv) 

12(v) 
(x^ - - x^^^) J 

Fig. 24 shows the form taken by the image impedances and 
the image transfer coefficients of band-stop half-sections. 

Section 14 shows how the use of templates may be applied to 
the calculation of A and B for band-stop filter sections. 

13. EFFECT OF DISSIPATION IN COMPONENTS OF 
A FILTER. 

So far we have assumed that all components used in a filter 
network are pure reactances. As there are no perfect inductors 
or capacitors, this assumption does not hold in practice, and 

Z, 
consequently ^ is not wholly real as was assumed in Section 5. 

Hence cosh P will be complex and as 

cosh P = cosh A cos sinh A sin B 

the second term on the right-hand side of the equation will not 
be zero as was the case (5(ii)) when the elements were pure reactances. 
This means that there is no band of frequencies for which there 
is no attenuation, nor a band for which the phase-shift is an integral 
multiple of n. Fortunately the characteristics of a practical filter 
follow those of the ideal filter fairly closely, dissipation introducing 
only a second-order correction. We are thus able to base our 
design on ideal components, correcting our design characteristics 
where necessary. 

2 
If is complex, and equal to 

■^2 

cosh P = 1-f 2 
Z,' 

3(iv) 

= l-\-2V+j2V 
cosh P — cosh {A -fjJ5) from 6(i) 

= cosh A cos sinh A sin B 
But 
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and equating real parts and imaginary parts, 

cosh A cos B = 1+2U, cos B = 

sinh A B ^ 2V, sin B — 

1+2(7 

cosh 4 

2F 

sinh A 

Now cos^ 0+ sin^ 0 1, whence 

(1 + 217)2 ^ {2VY 
cosh2^ sinh2^ 

= 1 

or sinh^^ (1+2(7)2+cosh2 ^(2P)2 = cosh^^sinh^^ 

and substituting (l+sinh^^) for cosh^^, and rearranging terms, 

sinh^ A — 4[(72+ F2_j_[7] sinh^ A — 4tV^ = 0 

from which 

sinh2^ = 2[{U^-+V^ + U) + ^^{{U^+V^ + UY + V^]\ 

the sign being chosen to make sinh^ A positive. Thus 

A - sinh-V{2[(t^' + ^"" + t^) + V{(f^" + T"' + ?^)“ + ^^'}]} ] 
and similarly > 13(i) 
B = ±sin-V{^[V{(t^'+F2 + (7)2+F2}-(772 + F2^[7)]}J 

If A is small, as for example in the pass-band of a filter, and 

in the attenuating-band near the cut-oflF frequencies, then we can 

use the approximation 

sinh A ‘=i A 

and the expression given in 13(i) for A may be rewritten 

A - V{2[(i7' + F2 + (7) +V{((72+F2 + (7)2+F2}]}. . I3(ii) 

and A^^l^ = S^lA, 

We used the relationship 

sin B — 
2F 

sinh A 

earlier in this section, and substituting A for sinh A we get 

jB = + sin“ 
2F 

13(iii) 

where 13(ii) and 13(iii) apply to the pass-band and the adjoining 
portions of the attenuating-bands. We are generally interested in 

the effect of dissipation in and around the pass-band, and not 

very interested in the effects in the majority of the attenuating- 
bands. Thus equations 13(ii) and 13(iii) will be of use in calculating 

the effect of dissipation over the region in which we are interested. 

Fig. 25 enables A to be determined from U and F for the region 
in and about a transmitting band. 
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For calculation we can go to the expression for sinh 
P 
2’ 

which 

! z • ^ 
is equal to ^ As developed in all the work done so far, sinh — 

is expressed in terms of x, Xioo, Xi, X2 and Xioo- 2 Z~^ 

will be found to contain only even powers of these quantities, 
and in particular of x. It will be seen on examination of the 
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various half-sections, that occurs in an expression referring to 

an inductance and a capacitance, on eliminating the ~ that occurs 
X 

in the impedance of a capacitance. If the components are dissi¬ 
pative, we may write the impedance of an inductor Sbsjx{l — jd£)L 

and that of a condenser as 7—where dr and dr are the 
3x(\ -jdo)C ^ 

dissipation factors of the inductor and condenser respectively. It 
is assumed that all inductors have a dissipation factor dj^, and 
all condensers, d^. Thus x^ will now occur as a;2(l — jdj;^){l — jdr), 
and if dj^ and dr are so small that their squares may be neglected, 
this reduces to a:2(l — jd), where d = dj^+dg. 

An alternative method of expressing the dissipation of a com¬ 

ponent is by means of its Q, and Q == 

^ _ (oL _ 1 ^ _ ooC _ 1 

where R is the series resistance at a frequency ^ of the inductor, 

of inductance L, and 0 is the parallel leakance at a frequency ^ 
Zn 

of the capacitor of capacitance (7. 
Take for cxamxile the m-derived low-pass filter for which 

9(viii) 

sinh^ ^ = 
2 

Allowing for dissipation this becomes 

^ = - ^^(I "jd)(x2^^ - 1) 
Za - x^{l - jd) 

which, if we are only concerned with the pass-band, is approxi¬ 
mately given by 

^ ^ - ^^(^200^ - 1) , - 1)^200^ 

Z/yt 2 _ ^2 7 2 _ ^2\2 
2 *^200 \*^2oo / 

In the attenuating-band the effect of dissipation is most serious 
at the peak of attenuation, i.e. x = x^^, at which point 

^ - ^200 ^(1 -i^)(^2oo^ - 1) 

Z2 X2ao^jd 

= - (ajjoo* - - 1) 

= U+jV. 
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The table on page 70 gives the expression for U-\-jV for low-pass, 
high-pass and the two four-element types of band-pass filter con¬ 
structions. The expressions apply to the pass-band and its adjacent 
regions, and particular values of the expression apply to the cut-off 
and peak-attenuation frequencies. 

Another method is available which may be applied to a complete 
filter, for which we have determined the non-dissipative image 
phase-shift coefficient. 

It can be shown (e.g. Guillomin, Communication Networks, 
Vol. II, p. 445) that 

■^db N 4-35(o(d£-fdc) . . . 13(iv) 

where B„ is equal to the image transfer phase-shift coefficient of 
the non-dissipative network, and ^jb image transfer attenua¬ 
tion-coefficient (in db) of the network when the inductors have 
dissipation factors of and the capacitors have dissipation factors 
of dfj. 

Assuming that and d^ are inversely proportional to w, it 
dR dB 

will be seen that A is proportional to -^. If is constant over 

the pass-band, the dissipation of the elements will add a constant 
attenuation in the pass-band of the filter. Bode has developed a 

dB 
filter theory based on keeping constant through the pass-bands 

of the filters. 
The expression 13(iv) enables us to calculate the attenuation 

coefficient in the pass-band of a complete filter to a fair degree of 
accuracy providing the calculation is not extended to a cut-off 
frequency, at which point J5„ is discontinuous. 
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14. CALCULATION OF IMAGE ATTENUATION AND 
PHASE-SHIFT COEFFICIENTS, DISSIPATION 
LOSS AND INSERTION LOSS BY THE HELP 
OF TEMPLATES. 

The work in the design of a particular filter is simplified by 
the possibility of using templates, first suggested by T. Laurent 
{Ericsson Technics, 1937, No. 4) and extended by E. Rumpelt 
{T.F.T., Vol. 31, No. 8., Aug. 1942, pp. 203-10) who used Laurent's 
templates and frequency transformations. Very similar methods, 
involving frequency transformation and standard curves of the 
shape used in this section, have been in use in the P.O. Engineering ♦ 
Department for some years. 

14.1. Templates for Image Attenuation and Phase-Shift 
Coefficiei\ts. If a template is to be used to draw the curve of 
any function, certain limitations must be recognized. A template 
is capable only of translation and rotation and it is thus only possible 
to use a template to draw the curve of a function of the sum of, 
or difference between, two quantities. 

Consider the image transfer coefficient of a filter section. For 
a given pass-band, the only variables arc x and x^, since the cut-off* 
values Xi and x^ are fixed. 

Thus if it is possible to express the image transfer coefficient, 
P, as 

P = F{j{x)±J(xJ)} . . . 14(i) 

a template can be used to draw the curve of P against a linear 
scale of f{x) instead of against a linear scale of x as is usual. 

It can be shown that 

P = 2 coth“^ cVZ 

where c is a constant and X is a function of x, is a suitable form 
for the use of a template. 

For when x is equal to Xoo, X is equal to Xx and P is infinite, 

from which it follows that cVXoo is equal to one.f 

♦ E.g. P,O.E.EJ„ Vol. 31, p. 269, Jan. 1939 ; Ibid., Vol. 36, p. 6, 
Apr. 1942.^ 

t Since coth oo = 1. 
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xuua i; = — 
vXT _ 

and P — 2 coth“ ^ 
SI I . 14(ii) 

= 2 coth~^ exp [log^ VX — log^ VXoo] ^ 

and this is of the same form as (i), and f(x) is equal to log, Vx 
and F{ } is 2 coth“ ^ exp [ ]. 

In an attenuating-band 

P = A -\-jnn 

where n is an integer, and 

P = 2coth-|^i|^|+j». 

where n is even when X /X^ is positive and odd when X fX^ is 
negative. 

Then A = 2 coth~ ^ L / 
1 Nf 1^00 I 

. “y/ I X/Xfgy 1 -f-l i/i/***\ 

— *’0 loc ^ ^ 1+1 --Ulog„ db J 

For the attenuating-bands a template can be constructed by 
plotting 

* o/\ 1_i 1 I j, , ... . 

A = 2 coth“ ^ 

= log. 

20 logi 

nepers . 14(iii) 

A = 20 logi 
Vx - 1 

. 14(iv) 

on a linear scale of A and a logarithmic scale of X. The template 
cimve is obtained from (iii) by putting X«, = 1. 

In a pass-band, 
P = 0+jR 

and coth ^ = coth"?^ 

= — 1 cot -. 
J 2 

But coth ^ from (ii) 

and 
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As B is real, cot — will also be real, whence 

B — 2 cot 
Vi 

. 14(v) 

As before, a template can be constructed for B by plotting 

jB = 2cot-iVX . . . 14(vi) 

iiiiiiiiiiiiilSI8iBiuuliSI||iiiiililu 

iiiiiiiiiiiiiiiifeSfiii 

iiSiiiiiiiiSiiiiiiiii 

■■■■■■■■■■■■■■■■■■■I ■■■■■■■■■■■■■■■■■■■I 

iiiii 
11111111111 lull 
iiiiiiiiiii r— 
lllllllllll 
IIIIIIIIIII L_ 
KHBHSSiS SI ■■■■■■■■ill If 
iiiiiiiiiii II 
ll■l■■lll■l 1] 
illlillllllllL 
llllll|IIIIIIIL 
IHIIlillllllllL 
IIUlllllllllllll 

$ % 

SIBiiBa«aB 
■llll|■ll1■ll■|mil 
iiiiiEiiiiiiiiiiiiii 

iiiiiiiiiiiiiiiiiiii 
-1I|!Il^III!IIIII 

lllllllllllllllllllllllllllllll 
liiiiiiiiiiiiiiriiiiiiiiiiiiiiii 

■■■■■■■■■■l■■r.il■|■■l■■l■■■■■■ ■■■l■l■■l■iiif iE■■i■■i■■i■l■■■■ ■■ll■■i■l■l■ll■■i■|■■■■■l■■■■■ 
iiiiiiiiiiiiriii|iiiiiiiiiiiii 
■lll■llllll•Jiiiiiiiiiiiiiiiii 
i||||||!IEiril!lll!|lllll!i!!l 

■riSSSSSSSSSSSSSSS 
■I _■ 

,US:S«::SS:s:g:;Ul 
!■■■-■ 

iiiiiiirjiiiiiii 

llllllllllliilil 

■lEiiiiiiiiiii 

■■I 
immiiiilHl_ 
liiiiiiiiiiiiiiiiiiiiiiiiiiiiii 

jiiiiiiiiSSSiiS 
-iiiiiiiiiiiii 

Jiiiiiiiiiiii 
mm »»»: 
“*““!■ iiiiii^ 

I infill 
II iiiiiii 
illlllllli 

_Jlllllll|l 
I llllllllllllil 

1 illllllllllllll 

® I 
^ + 11 

» O 

I ^ i 
A o « 

^ II I) 
*3 05 

o 



14.1] TEMPLATES POP IMAOE ATTENUATION 76 

on a linear scale of B and a logarithmic scale of X. The template 
curve is obtained from (v) by putting X® — 1 as before. 

Fig. 26 shows the shapes of these curves and the table below 

gives construction data. 

. . 

o
 001 003 0*1 0*3 0*5 

^(db) .... 1*74 3*04 6*09 10*69 15*33 

B' (radians) 1*371 1*228 0*958 0*568 0*339 

„ 1 
A or . OC 1 

1 
1 

0*7 0*8 0*9 1*0 
i ! 

^(dl)) .... 
1 

17-92 2102 25*10 31*59 
i 

B* (radians) 0-252 0 177 0*111 0*052 ; 0 

Note.—B » 1*571 + B' for X and 1*571 - B' for i. 

It is useful to have two templates for A and B, one giving 
A 

A for a whole section, one giving ~ for a half-section, one giving 
jd 

B for a whole section and one giving -- for a half-section. A coll¬ 
ie 

venient scale for A is 10 db ^ 1 inch,and for B 1 radian = 1 inch. 
For X a convenient scale is a logarithmic scale of 1 decade = 12*5 cm. 

This latter may be drawn from the upper scale of a 10-inch slide 

rule. 
If only a small number of filters are to be designed, templates 

may be dispensed with and the filters designed on tracing paper, 
the |X| scale and the A and B curves required being obtained by 

tracing from Fig. 26. 
P 

It will be seen from (ii) that coth - - must be expressed as 

before we can use a template. This we will now proceed to do for 

all the types of filter we have dealt with in Sections 9 to 12. 

14.1.1. Low-pass Half-Sections. From 9(vii) it can be 
shown that 

/r 1 - l/a;» ~ 

V [l — IAjoo*. 
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whence XI = I 1 

and from 9(vi) m — VXoo J 

0 < a: < 1, pass-band, oo > | X | > 0 
1 < a: < 00, attenuating-band, 0 < | X | < 1. 

Fig. 27 shows the application of the template method to the 

low-pass half-section. 

O IXx>l 7 «> O ; a:2oo «> 

A ttenuatin^-banoi 
1X1= 7-3^ 

Pass- band 
1X1= 5,-7 

Fig. 27.—Templates applied to Low-pass Filter Section. 

14.1.2. High-pass Half-Sections. From lO(vii) it can be 
shown that 

coth^= /f-i-^ 
2 V Ll ~ 

whence 1-^1 = ! , 14(vi) 
and from lO(vi) m — VXa> j 

0 < a; < 1, attenuating-band, 1 > | X | > 0 
1 < a: < 00, pass-band, 0 < | X | < 1 

It will be noticed that a direct use of the B-template will make 
dB 
■5- negative. It is therefore necessary to change the sign of B. 
00) 
Fig. 28 shows the application of the templates to a high-pass half¬ 
section. 
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Fio. 28.—Templates applied to High-pass Filter Section. 

coth — 
2 1 

14.1 eS. Band-pass Half-Sections (symmetrical). 

11 (vi) it can be shown that 

_ /r(l - - n^x^'] 

L m\\ — x^) 

and on substituting for m and n 

coth^= /r 1 - 
2 V Ll - V(1 - 

whence | X | = | 1 - - a:.)*xV(l - I 

= \{x^ — Xi^){x^ — Xt^)/(\ — X^Y I 

and from 11 (vii) m ~ VX„ 

0 < X < Xi, attenuating-band, 1 < | X | < 0 

a;i < a: < ll T)ass-band ^ 1 I ^ 
1 < a; < x,j’ \oo > I X 1 > 0 
X* < * < 00, attenuating-band, 0 < ] X | < oo 

Here it will be noted that in the pass-band 1 < x < a:i, 

of B obtained from the template will have to be changed 

to be positive. 
Fig. 29 shows the application to this type of filter. 

From 

14(vii) 

the sign 
..95 . 
if IS 

OOi 
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Pass •‘band 

ixl - X,<x< f 

= 1<ac<ac2 

Fig. 29.—Templates applied to Symmetrical Band-pass Filter Section. 

14.1.4. Band-pass Half-Sections (4-element dissym¬ 
metrical). From ll(xiv) or ll(xv) it may bo shown that 

-(X* - x,*)(x„* - X,2)1 
coth —^ 

9 jt 

whence ixi ^ 

(x* — X2*)(x„ 
ir. 2 

“ ^2^)1 

r2 — 

As coth ^ involves the quotient X/X^, we may multiply X by 

any constant, as this cancels out when divided by modified 
similarly. It is thus more symmetrical to write 

1 — 
X2 'x® — Xi®" 

1 “ Xi _x* - x,*J 

and in order to avoid changing the sign of B, it is also convenient 
to take the reciprocal of this quantity. This we may do since 

we are really only concerned with log | X |, and 

log 1 X I = - log 
T 
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Thxis we will write 

and from (xiv) 

and from (xv) 

Xi - XsH 

X, _x2 - a:,*J 
m, = 

m. 

Xi 

VXZ 
1 

777 2 .X 200 

14(viii) 
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0 < a; < ajj, attenuating-band, < \ X \ < oo 
a?! < a: < a^a, pass-band, oo > | X | > 0 
Xi <x < oo, attenuating-band, 0 < | X | < Xi^. 

Fig. 30 shows the appHcation of the templates to the two forms 
of 4-element dissymmetrical band-pass half-section and to a dis¬ 
symmetrical 6-element band-pass half-section (formed by the 
addition of two 4-element curves). 

14.1.5. Band-stop Half-Sections. From 12(va) it may be 

shown that 

V[' 
n^x^ - (1 - 

and on substituting for m and n 

whence 
x^^)(x^ 

x^ 

X, 

Fio. 31.—Templates applied to Band-stop Filter Section. 
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and making this symmetrical by multiplying by a constant, we write 
I . Av / o .. OA I 

I ri _ 
' X^(Xi — Xi)^ 

0 <x <Xi, pass-band, oo > j X j > 0 

cr ^x<l\ . r. , 0< A <1 

l<x<x4 |l > 1J 1 > 0 

Fig. 31 shows the application to a band-stop half-section. 

0 < I X 1 < 1 
1>|X1> 0 

E.W.F 
Q 
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14.2. Image Impedance. Appl3dng the relevant frequency 
transformations to the image impedances of low-pass, high-pass, 
symmetrical band-pass and band-stop half-sections it can be shown 
that the image impedances are given by 

^0 ^02m 

in a pass-band, and by 

Bo 

in an attenuating-band. 

V[X(i+X)] ' 

m^-j-X 

,V[^(i - X)] 

Figs. 32 and 33 show these functions, together with single-line 
nomographs which enable certain of the insertion-loss factors 
(see 8(iv)) to be evaluated. 

r is ratio of terminating resistance to |Zo| 

Ref!Action loss (dh) 

liWAmvaiiii 

Ro 

Rq 

'^02m, 
r=ijz) 
si^n of 
Z chosen 
to make 

rjzo) 
positive 

±J' 

Fig. 33.—Image Impedance of Filters in Attenuating Band. 
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One particular factor is 

20 login 
W[ZaZoa] 

= 20 logic 
1 A-t 
-Or 20 lOg 
2-v/r 

10 

V(l±r^ 
2y'r 

IXJ 

when is a pure resistance, and a pure resistance or a pure 
reactance respectively, and 

= r 
I I ■ 

The other factor is 

~ ^OaI 

- ^A ~^~^0A J 
_ -rl 
~ .1+7] 

when and Zqj^ are pure resistances. 
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As the image-impedance functions are plotted on a logarithmic 

scale of impedance, and the insertion-loss functions are plotted 

to the same logarithmic scale of r, we can for any value of X deter- 
2^ 

mine these insertion-loss functions by discovering the ratio ^ for 
lXc\ 

R 
Zoim ^ Pleasuring the linear difference between 

this value and the image-impedance curve, and, applying this 

difference to the nomograph, read off the factor required. The 

second of the two factors is used in the calculation of the inter¬ 
action factor, which may be neglected in an attenuating-band. 

This explains its absence from the attenuating-band set of curves. 

In order to facilitate the determination of the reflection-loss 
factors in the attenuating-band of a filter. Fig. 34 has been con¬ 
structed from Fig. 33. This graph gives a series of curves of 

given reflection-loss against values of | Z | and | Xoo |. 
From 14(x) and the previous equations, it will be seen that 

m2 = I Zoo I 
as was shown in the sections dealing with the frequency trans¬ 
formations applied to low-pass, high-pass, symmetrical band-pass 

and band-stop half-sections. The image-impedance curves may 

thus be used directly with the curves of attenuation or phase-shift 
coefficient for these half-sections. If, however, we wish to know 

the image impedances of a dissymmetrical band-pass half-section, 

we must use the frequency transformation applicable to a sym¬ 

metrical band-pass filter of the same band-width, calculate rrii and 
mg from the equations ll(xi), and for each value of x (and there¬ 

fore of I Z I) calculate the equivalent value of m from the relation¬ 
ship of 11-2, i.e. 

— niiX^ 

Over a small range of values of x, we may take m as remaining 
sensibly constant. In addition, from 14(vii) and 14(viii) we shall 

find that | Z [ for a symmetrical half-section band-pass filter changes 

with X at very nearly the same rate as does | Z | for a dissymmetrical 
half-section band-pass filter. From Fig. 26 we see that the regions 

of reflection-gain lie close to | Zoo | and it is with these regions 
that we shall be concerned when we come to design a particular 
filter. 

As a workable approximation we may determine the image 

impedance of a dissymmetrical band-pass half-section about | Zoo| 
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in the following way. Determine the ratio of | | to or 
whichever is the nearer (a pair of dividers may be used, as | X | 

is plotted on a logarithmic scale) and express the ratio as a number 

less than 1. On Fig. 33 choose the curve with a value of | Xool 
equal to this ratio. Then the impedance at a value of | X | near 

to I Xoo I on the dissymmetrical band-pass diagram may be obtained 
by determining the ratio of | X | to or Xz^f whichever was chosen 
for the original | Xoo |, expressing this ratio as a number less than 

1, and reading off from Fig. 33, on the curve for the chosen value 
there of | Xoo | the impedance factor for the value of | X | equal 
to this ratio. 

15. PARALLEL OR SERIES CONNECTION OF FILTERS. 

Filters often have to be used so that various bands of frequencies 
may be separated out from a point in a circuit where all tlie bands 

are present. They are also used to assemble at one point in a 

circuit such a set of bands, produced in separate circuits. One 
example is a carrier-current telephone system, in which a number 

of speech circuits, each of equal band-width, are each passed 
through an individual frequency changer which translates the 

speech band to an individual part of a wide frequency band. For 

example, the speech band may be chosen to occupy from 0 to 

3 kc/s, and Channel 1 may be translated to the frequency band 
12 to 15 kc/s, Channel 2 to 16 to 19 kc/s, and so on. In the 

common part of the circuit, all these separate bands of frequencies 

are present, and at the receiving end filters are used to separate 
out the individual channels before they are passed through their 

frequency changers which translate them back to the audio fre¬ 
quency range 0 to 3 kc/s. A similar set of filters is necessary at 

the beginning of the common portion of the circuit. 
One way of connecting two circuits together without any 

mutual interference, is by the use of hybrid transformers or bridge 
networks. Such networks have four pairs of terminals, Ay By C 
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and D. By suitable proportioning of the network and the im¬ 
pedances connected to, say, G and D, A and B may be made con¬ 

jugate. If this is so arranged, power applied to the terminals A 
is divided between the impedances connected to C and Z), and 

n odd\ 

n even 

Fio. 36.—Parallel Connection of Filters. 

none appears at B. Similarly, power applied to the terminals B 
is divided between the impedances connected to C and D, and 
none appears at A. Hence the loss between A and C (or D) cannot 
depend on- the impedance of any network connected to J5, and 
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the loss between B and C (or D) cannot depend on the impedances 
of any network connected to A. The insertion loss of a filter 
between generator and a given load differs by a certain amount 

from that of the same filter between the same generator, and the 
same load connected to C, the end of the filter which was connected 
to the load being connected to A. The actual value of the difference 

between the two insertion-losses depends only on the proportioning 
of the network. Such a network must be used if filters, having 
overlapping pass-bands, are to be connected together. If such a 

set of filters is to be connected together, they may be divided into 
sets which have non-overlapping pass-bands, the sets being con¬ 
nected together as described above, and the individual filters in 

each set are then connected together as described below. 
In the case where the pass-bands of the filters are individual, 

and not shared, Zobel, and later Bode, have developed methods 

of connecting together filters, either in parallel or in series, and in 
using the impedances of the remaining filters to assist in the trans¬ 
mission through a particular filter. 

Let us consider the case of a low-pass and high-pass pair of 
filters to be connected in parallel. Let each filter have a design 
impedance of unity, and let the angular velocities be referred to 

the cut-off angular velocity of the low-pass filter as unity. Let the 

cut-off angular velocity of the high-pass filter be where a> 1. 
CL 

The pass-bands of the filters are thus 0 to 1 for the low-pass, and 

i to cx) for the high-pass. The range 1 to ^ is known as the cross¬ 

over range. We want the impedance of the complete pair of 

filters to be as near as possible a constant resistance in the two 

ranges 0 < a; < 1, and i < cr < oo. For either a low-pass or a 

high-pass filter we have seen that this may be approached in the 
pass-band by an m-derived image impedance. Let us see if a similar 
procedure is possible when the filters are connected in parallel. 

It should be pointed out here that it is essential to terminate 
the far end of each filter by an image impedance which matches 
a constant resistance to some degree of accuracy in the pass-band. 

Terminate each filter at the common end by a mid-series 
constant-/: image impedance. These are then given by 

^nkLv = "/(I — ; ^ouHP = 

which are obtained from 9(i) and 10(i) respectively. 
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Add in series with each filter an impedance m times its constant-I; 
series arm impedance. Then the image impedances of the two 

modified filters are 

ZoiP =jmx+Vil - x^); ZoHP + “ ^)- 

Let us now concentrate on the pass-band of the low-pass filter. 

Its admittance is given by ^— and is equal to Yolp. where 
^OLP 

Yqlp — 
1 

jmx + v'( 1 — x^) 

V(l jmx 
15(i) 

1 — (1 — m^)x^ 1 — (1 — m^)x^ 

If an admittance were added in parallel so that the imaginary 
term were made zero, the image admittance would be a pure con¬ 

ductance of value. 

y - V(1 - 
1 _ (1 _ ^2)^2 

and this is the mid-shunt image admittance of a series-derived 
half-section (see 9(vi)). 

In the pass-band of the low-pass filter the image impedance 

Zqijchp high-pass filter is a pure negative reactance, and the 

admittance of the filter with its added series arm is given by 
^OIIP 

and is equal to where 

Yqhp ~ 

T- /f—-i")--! ” Sj \a*a;* / ax_ 

15(ii) 

In this band the image admittance of the filter pair is equal 
to the sum of 15(i) and ir>(ii) and is given by 

V(1 - X^) 
Yd — Yf^i,p-\-YQiip 

1 

+jx 

(1 

m - 
L« 

- m^)x^ 
a m 

1—(1—m-® 

Zobel suggested that, by a suitable choice of ?n, the imaginary 

part of Fo could be made to be very small over the pass-band. 
The admittance which should be added in parallel with the 

modified low-pass filter in order to make its admittance a pure 
conductance is equal to 

-\-jmx 
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This is the admittance of an impedance given by 

1 — (1 — _ — j_^j{l — m^)x 

jmx mx m 

The impedance of the modified high-pass filter is 
-jm 

ax 

ax 

{a^x ) 

and if wo equate the first terms, giving 
1 1 + m 

mx ax 

or -i + VCa+i] . . . 15(iv) 

the second terms will also be approximately equal over the pass- 
band of the low-pass filter. 

From 15(iv) m varies from 0*54 for a = 0-8 to 0*62 for a = 1-0. 

For these values of m, a good image impedance is obtained (see 
Fig. 32). 

This method of connecting together two filters is known as 

“ fractional terminating ” or ‘‘ a:-terminating 
A similar argument applied to the high-pass filter will show 

that over its pass-band an equally good approximation to a constant 
resistance image impedance is obtained. 

For a better approximation, Bode * has suggested that m be 

chosen from the value which gives the best image impedance over 

the required portion of the pass-band, and that Fq is calculated 
for that value of m (and the given value of a). A network is then 

devised which has an admittance which is — 1 times the imaginary 

portion of Yq, As an admittance is expressed as a conductance 
plus a susceptance (real and imaginary parts of F, respectively) 

this network Bode called a susceptance-annulling network. This 

network must obviously correct the susceptance of both the low- 
pass and the high-pass filter, and must therefore have a negative 

symmetry about x = The most simple network is a series- 

* “ A method of impedance correction H. W. Bode, Oct. 

1930, pp. 794-836. 

t Fi{x) and F^ix) have negative symmetry about x 

FAk = -F, I /I 
[.k \/ a , 

for all values of k. 
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resonant circuit resonating at x and of such an admittance 

that it reduces the susceptance of F# to a very low value over the 
required portion of the pass-band. As the resonant frequency has 
been chosen, only one other variable is left, and with this only 

one pair of conditions can be satisfied. This means that the sus¬ 
ceptance can be completely annulled at only one frequency in each 
of the pass-bands, and these two frequencies are symmetrically 

placed about the geometric mean of the two cut-off frequencies. 

As an approximation it will be found that a suitable value of 
m, when a lies between 0-8 and l-O, is 0-6, and the inductance 

of the inductor forming the susceptance-annulling network should 

have a value of about 5 times the L* value for the low-pass filter. 
Bode has extended the method still further, by making the 

added arm into a ladder network, enabling the conductance to 

approximate more and more nearly to a constant value, and the 
susceptance more and more nearly to approach zero over the 

pass-band. Although the method was designed for single filters, 

it is equally applicable to parallel connection of filters. 
If the filter ends with a mid-series constant-I; image impedance, 

the network consists of a series arm of impedance biZi, followed 

by a shunt arm of impedance followed by a series arm of 

impedance 6,Zi, and so on. If the filter ends with a mid-shunt 

image impedance, the network consists of a shunt arm of impedance 

followed by a series arm of impedance b^Zi, and a shunt 

arm of impedance and so on. Zj and Zj are the series and 

shunt arms respectively of the constant-I: half-section. Bode has 

provided a table giving appropriate values for 6i, 62, 62 for from 

one- to three-element networks. The table is given below. 

Number of h 
elements 0% 

1 . . . 0-5664 0 0 
2 . . . 0*8086 1-693 0 
3 . . . 0-9697 1-924 1*565 

It is suggested in the original article that these values should 
be tised af a starting point for calculation of conductance and 
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susceptance of each filter, the values of the a’s being modified to 
give the best conductance fit over the required range. The com¬ 

bined susceptances are then obtained for the filter pair and a 
network designed to reduce this susceptance to a low value. 

The method is applicable to the parallel connection of a number 

of similar band-pass filters. Each is terminated at its paralleling 
end in its constant-^ mid-series image impedance, and in series 
with each is added a network, of one or more elements as already 

described for the low- and high-pass filter pairs, choosing values 

of a so that the conductances are sufficiently constant. The sus¬ 
ceptances of the filters are then determined and added together, 

and a network constructed which, if connected in parallel with 
the filter group, reduces the susceptance to zero. Such a network 
will consist of two series-resonant circuits, one resonating below, 

and the other above, the two ends of the two extreme filters, and 

a number of series-resonant circuits, one resonating between each 
pair of filters. These last-mentioned networks may not always 

be necessary. 
The susceptance-annulling network provides a peak of attenua¬ 

tion to all the filters at its resonant frequency. The added series 
impedances also add an extra loss at frequencies in the attenuating 

range of each filter. 
As the image impedance of the combined filter is very nearly 

constant over the pass-bands of the separate filters, the p.d. across 

the terminals of the combined filters will be equal to one-half of 
the o.m.f. of the source supplying the filters, assuming that the 
somce is matched to the filters. It may be shown quite simply 

that a loss of 

20 logio 
^/{x^ — l)4-ma; 

1) 
db 

is introduced by the series arm in that part of the attenuating 
range of each filter that lies in the pass-band of another paralleled 
filter, and this we may take as being constant, and equal to 6 db 

over a large portion of the attenuating-band. The value of 5 db is 
a minimum value. The total extra loss of the added impedance 
and the susceptance-annulling network may therefore contribute 

a substantial extra loss in the attenuating-band. 
It should also be noted that there is no refiection-gain at this 

end of the filter, the loss just referred to taking this place. Thus 

a paralleled filter may be designed to an image attenuation coefficient 
of (insertion-loss 3 db -- 6 db) instead of (insertion-loss 3 db+3 db) 

fop a single filter. 
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An exactly similar argument may be used for the series con¬ 
nection of filters, if for admittance we read impedance, and for 

mid-series we read mid-shunt, and vice versa. The filters will be 
terminated in mid-shunt constant-^ image impedances, the added 

networks will be — times the constant-A; half-section shunt arms 
m 

added in parallel with the filters, and the reactance controlling 
network will be a parallel-resonant circuit (or a number of such 

circuits) in series with the whole series-connected circuit. 

It may happen that a filter is required having an image impedance 
which is a constant resistance over the whole frequency range. 

This we can how provide, by designing a filter having an attenuating- 
band where the required filter has a pass-band, and vice versa, and 
combining them in parallel as described in this section. The 

complementary filter need only have one half-section, which should 
present a constant-A image impedance to the paralleled filter and 
an m-derived image impedance at the other end to enable it to be 

terminated by a resistor. 

16- EXAMPLES OF LADDER-TYPE FILTER DESIGN. 

In this chapter we will consider the actual design of a number 

of filters which will have to meet specified requirements. We shall 
also deal with the series or parallel working of filters. 

We have shown (Section 6) that, for a given cut-off frequency, 

or frequencies, it is possible to produce filter half-sections having 

differing image transfer coefficients, but which have either mid¬ 
series or mid-shunt image impedai>ces which are all equal to the 

mid-series or mid-shunt image impedance of the constant-A; half¬ 
section. We have also shown (Section 6) that if half-sections are 
connected in tandem so that adjacent image impedances are equal, 

then the image transfer coefficient of a chain of such half-sections 

is equal to the sum of the image transfer coefficients of the separate 
half-sections, and the two image impedances of the whole network 
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are the image impedances of the two free ends of the two terminal 
half-sections. 

The design of a filter is thus carried out by determining the 
number and types of half-sections which will give a total image 
transfer coefficient equal to the desired values, and adding these 
half-sections together in tandem so that at each junction point 
between adjacent half-sections, equal image impedances are con¬ 
nected together. It is usual to add together similar half-sections 
with the same value of m, so that a whole section is formed, both 
free image impedances being constant-fc mid-series or mid-shunt 
image impedances. These whole sections may then be joined in 
tandem, the complete filter being terminated if necessary in half¬ 
sections, whose constant-A; image impedances are connected to the 
adjacent whole sections, and whose derived image impedances are 
presented to generator and load. 

16.1. Low-pass and High-pass Filter. Let us consider the 
design of a low-pass filter to the following requirements : 

(i) To be used between generator and load each of 500 ohms 
impedance. 

(ii) Insertion-loss from 0 to 3 kc/s to be flat ±0*25 db. 
(iii) Insertion-loss from 4-688 to 7*50 kc/s to exceed 50 db. 
(iv) Insertion-loss from 7-50 kc/s to oo to exceed 30 db. 
At the same time let us consider the design of a high-pass filter 

to meet the following requirements : 
(v) To be used between generator and load each of 700 ohms 

impedance. 
(vi) Insertion-loss from 5 kc/s to oo to be flat ±0-25 db. 

(vii) Insertion-loss from 3-2 kc/s to 2 kc/s to exceed 50 db. 
(viii) Insertion-loss from 0 to 2 kc/s to exceed 30 db. 

These two sets of requirements have been chosen so that a 
similar construction will be suitable for the two filters. 

In the low-pass case, it is obvious that the pass-band must 
extend from 0 to some frequency between 3 kc/s and 4-688 kc/s. 
Let us choose the geometric mean as the cut-off frequency, i.e. 
V(3 X 4*688). This is equal to 3-75 kc/s. Referring all frequencies 

to this cut-off frequency as unity, the requirements may now be 

stated thus: 
(iia) Insertion-loss from a: = 0 to x = 0-8 to be flat ±0*25 db. 

(iiia) Insertion-loss from x — 1-25 to a; = 2-0 to exceed 50 db. 
(iva) Insertion-loss from a; = 2-0 to a: — oo to exceed 30 db. 
Let us now convert these requirements of x (ratio of frequency 
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to cut-off frequency) to equivalent requirements in X, the low-pass 
frequency transformed parameter of 14*1, where 

I z I = 11 - 1AM . . . . I4(v) 
The important points in the requirements have the following 

values of frequency, x and X. 
Sift 

Frequency (kc/s) . | 0 3 
1 

3-75 I 1 4*688 7*5 00 

X. 0 0-8 10 1*25 2*0 00 

1^1. 00 0-56 0 0*36 0*75 1 

pa43S-band attenuating-band 

Slide-rule accuracy is adequate. 
In the high-pass case, the cut-off frequency must lie between 

3*2 kc/s and 5 kc/s. Let us again choose the geometric mean, 
which is 4 kc/s. We may now rewrite the requirements as 

(via) Insertion-loss from X = 1*25 to a: = cx) to be flat ±0-25 db. 
(viia) Insertion-loss from x — 0*8 to a; = 0*5 to exceed 50 db. 

(viiia) Insertion-loss from a; = 0 to a; = 0*5 to exceed 30 db. 
By means of 14-2 let us convert these values of x to equivalent 

values of X by the use of the relationship 

I X 1 = I 1 — a:^ I . . . 14(vi) 

Frequency (kc/s) . 0 ! 2 3*2 4 
1 ^ 

00 

X. 0 0*6 0*8 1 1*26 00 

1^1. 1 0*76 
1 

0*36 0 0*56 00 

-^-/V-^-- 

! attenuating-baud pass-band 

It will be seen that the requirements of both filters may be 
expressed as follows. 

In the pass-band, the insertion-loss is to be flat ±0*25 db 
from I X I = 0*56 to | X | = oo. 

In the attenuating range, the insertion-loss is to be greater 
than 50 db from ] X | = 0*36 to 1 X | = 0*75, and greater than 
30 db from | X | = 0-75 to 1 X | = 1*0. 

In order to save the labour of calculating the whole of the 
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insertion-loss expression in the attenuating-band, let us add 6 db 
to the attenuating-band requirements and design on an image 
attenuation coefficient basis to meet this higher loss requirement. 
Thus when | X | lies between 0*36 and 0*75, let us take the require- 

Fio. 36.—L.P. or H.P. Filter designed on Image Transfer Attenuation. 

ment as a minimum of 56 db, and when | X \ lies between 0*75 
and 1-0, as 36 db. These modified requirements are set out in 

Pig. 36. 
We will start by trying to meet the attenuating-band require¬ 

ments alone. 
It is immediately obvious that a single section will not meet 

these requirements as with JCoo equal to 0*5 an image attenuation 
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of 20 db will be offered at X equal to 0*36 and 0*75. With two 
sections, one with X* equal to 0*36 and one with Xoo equal to 
0-75, it will be found that mid-way between 0-36 and 0*75 the 

curves intersect at an attenuation of about 22 db. Thus the mini¬ 
mum image attenuation will be twice this, i.e. about 44 db. This 

is still insufiScient to meet the requirement of 56 db. Now from 

the point of view of number of elements, a constant-^ section is 
most economical, so as the deficit is small (12 db) let us try-a half¬ 
section of constant-A form. For this m = 1, and — 1. This 

will give us an extra 8 db at the point of intersection of the image- 
attenuation curves of the two whole sections. By moving the 
Xoo values of the two whole sections closer together we ean increase 

the image attenuation between the two points of infinite attenuation, 
at the expense of the image attenuation beyond these points of 
infinite attenuation. The final arrangement is shown in Fig. 36. 

We now have one whole section with Xoo equal to 0*39, one with 

Xoo equal to 0*645 and half a section with Xoo equal to 1*0. The 
attenuation requirements are seen to be realized. On the same 

figure the phase characteristics have been drawn. We will use 
these later to calculate the effect of dissipation in the pass-band. 

The m-values of the sections chosen are given by VXao for 

each section and are 0*6245, 0*8031 and 1*0. Over the required 

pass-band Fig. 32 shows that an m-derived image impedance with 
an m-value of 0*63 does not deviate from by more than 2%. 

Let us choose this as the terminating half-section image impedances. 
In the attenuating-band Fig. 34 shows that with X lying between 
0*011 and 0*27, and between 0*54 and 0*95, the mis-match terms 
of the insertion-loss expression are negative. The dotted curve 

of Fig. 36 shows the effect of these mis-terminating terms. It is 
obtained by adding twice the mis-matching loss obtained from 
Fig. 34 for m = 0*63, to the image-attenuation curve. It will 

be seen that the insertion-loss exceeds the insertion-loss requirements 
with a minimum of some 7 db in hand at X equal to 0*56. It 
is probably just possible to realize the required insertion-loss by 

two sections by careful design, and this we will attempt after 
completing the calculation of the filters as already designed. 

Let us now consider the effect of dissipation in the pass-band. 

Fig. 37 shows the phase-shift coef&cient of the complete low-pass 

filter which has been obtained by converting | X | values to x values 
by the relationship 

1 

V(1 + I^1) 
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cc 

Pio. 37._Image Transfer Phase-shift of L.P. Filter of Fig. 36, and its First 
Derivative with respeet to x. 

where x applies to the low-pass filter. Graphical construction 

(tangents being drawn to the curve) gives the derived curve, 

which is also shown in Fig. 37. It was stated in Section 13 that 

the attenuation coefficient in a pass-band is given by 

. 13(iv) 

and on writing 
CO 

= x 
(Oo 

d = dj^-\-dQ 

this reduces to 

N4-35.xd^~“. 

Now in general, using mica capacitors, dj^ ^ do and to a sufficient 

degree of accuracy we may say that d oc“> ftifd writing do the 

H 
E.W.F. 
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value of djr, at the cut-oflF frequency 

[16 

—; 4'36(io 9^0 

dx ’ 

The difference between at x equal to 0 and 0-8 is 4'2. The 

mis-match over this range is of the order of O-Ol db and may be 

neglected. Thus yljjj may vary by 2 x 0-25 db between x equal 
to 0 and 0-8, and 

0-5 > 4-36do.4-2 

and > 36-6. 
do 

Thus with perfect capacitors and inductors with Q’s 

which at the cut-off frequency exceed say 37, the insertion-loss 

in the pass-band of the low-pass filter will not deviate from a 
constant loss by more than ±0-25 db from 0 to 3 kc/s. 

In the same way we may draw the phase-shift characteristic 

of the high-pass filter by converting from X to x by means of the 

relationship 

X = V(l+^). 
dJB 

A graphical construction will then give us At the required 

lower pass frequency of the filter (5 kc/s) x is equal to 1-25 and 
dS 

here g— is equal to 4-8. At an infinite frequency x is infinite and 

is zero. Thus the change in over the required pass-range 

of X will be 4-8. This is of the same order as was obtained for the 
low-pass filter and it will be apparent that a similar value of Q will 
be necessary to satisfy the design requirements in the pass range. 

Let us now continue with the design of the low-pass filter. 
We have decided that this shall take the form of one half-section 
with m equal to 1, one whole section with m equal to 0-6245 and 

one whole section with m equal to 0-8031, with image impedances 
at both ends of the filter being the derived image impedances with 
m equal to 0-6246. 

There are two ways in which we are able to design to these 
parameters. They are shown in Fig. 38 (o) and (6) in skeleton 
form. 

In the form shown in Fig. 38(a) the left-hand half-section is 
a mid-shunt-derived half-section with m equal to 0-6246. A mid- 
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series-derived impedance is presented to the external circuit. On 

the right of this half-section we have two mid-shunt-derived half¬ 
sections, each with m equal to 0-8031. The two half-sections are 

joined together at their mid-series-derived impedance points, thus 

forming a n whole section, both ends of which have constant-ifc 
mid-shunt image impedances. The left-hand end is connected to 

the left-hand terminal half-section at its mid-shunt constant-A: 
image impedance point. Still further to the right wo have a 
constant-i (i.e. m = 1) half-section, whose mid-shunt image im¬ 

pedance point is connected to the right-hand mid-shimt constant-^: 

image impedance point of the preceding section. Finally, we have 

TTV- 0-6245 0 803! 1-0 0-6245 
(a) 

7TV= 0-6245 0’803l I'O 0-624$ 
(h) 

Fia. 38.—Two Possible Assemblies of L.P. and H.P. Filters in Fig. 36. 

a mid-series-derived half-section with m equal to 0-6245 whose 

mid-series constant-A; image impedance is connected to the mid- 

series constant-A: image impedance point of the preceding half¬ 
section, and whose derived mid-shunt image impedance is presented 

to the external load. Thus, inside the filter, the image impedances 
on both sides of each junction between adjacent half-sections are 

equal, and at the two free ends of the filter, we have derived image 
impedances, one shunt derived and the other series derived, with 

m-values equal to 0-6245. 
The form shown in Fig. 38(6) is similar, but with the expressions 

mid-series and mid-shunt interchanged. The left-hand half-section 
is a series-derived half-section with m equal to 0-6245, showing a 
mid-shunt-derived image impedance to the external circuit. To 

its left is connected a whole series-derived section, each end being 
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a point of mid-series constant-A; image impedance. To its right is 
connected a constant-A; half-section whose mid-series end is con¬ 
nected to the right-hand end of the previous section, and whose 

mid-shunt end is connected to the mid-shunt constant-A: image 
impedance end of a shunt-derived half-section with an m-value of 
0-6245. This last presents a mid-series-derived image impedance 

with m equal to 0-6245 to the external circuit. 
We have the requirement that the filter is to work between 

impedances of 500 ohms and we will choose this as the design 

0‘O829r 

TrL=0’3O3r m=o>803r 

ro (d) 
Fio. 39.—Component Half-sections of Low-pass Filter of Figs. 36-38. 

impedance, R^. In addition, the cut-ofiF frequency was chosen 

as 3-75 kc/s. The cut-off angular velocity, coo. is given by 
2?! X 3-75 X 10® radians per second. 

7? 1 
Thus Lu = and Gu = r=—, from 9(iv). Substituting for 

cOq KqCOq 

Ro and to#, we fir.d that L* is equal to 0-02122 henries, or 21-22 mH, 
and C/c is equal to 0-08488 x 10“* farads, or 0-08488 /tF. In 

addition to these figures we shall use m and -for the derived 
m 
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half-sections. When m is equal to 0-6245, i ~ is equal to 
m ^ 

0*9767, and when m is equal to 0*8031, is equal to 0*4421. 

The inductance values we shall need to make up the filter in its 

0‘08297 0>03758 003753 

7n^ 0>6245 1 0>&03r hO 0'6245 
(b) 

0‘Od29f 0>0rB77 

Fig. 40.—Low-pass Filter of Figs. 36-39. Inductance in mil, 
Capacitances in fx¥. 

two forms are and -and the capacitance values mCj. 

2 _ 
and —-C^. For m equal to 0-6245, is equal to 42-12 mH, 

7t\/ 
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-Lfc is equal to 20-73 mH, mO* is equal to 0-05301 fiE and 
Tfh 

J _ 7/1.^ 

——Oft is equal to 0-08291 /iF. The series- and shunt-derived 

half-sections are shown in Figs. 39 (a) and (6) respectively. With 

m equal to 0-8031, mL*. is equal to 17-00 mH, ——L* is equal 

J _ 77i^ 
to 9*392 mH, is equal to 0*06817 //F and -is equal 

Hfh 

to 0*03753 [iE, The series- and shunt-derived half-sections are 

shown in Fig. 39 (c) and {d) respectively. 
Making up the filter in each of the two forms shown in Fig. 39 

(a) and (5), we get the filter structures shown in Figs. 40 (a) and (6), 

Fig. 41.—L.P. or H P. Filter designed on Insertion-loss. 
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which on combining the arms on either sides of each junction point 
give the final filters of Figs. 40 (c) and {d) respectively. 

The high-pass filter design may be completed in a similar manner. 

In Fig. 36 it will be seen that at the minimum of insertion-loss 
occurring at X equal to 0*55 approximately, the insertion-loss 
exceeds the requirement by 7 db. It will also be noticed that the 

component of the insertion-loss due to the half-section of m = 1 
is 8 db at that same value of X. It seems likely that the insertion- 
loss characteristic could be met by two sections, thus saving half 

a section. If we remove the constant-A; half-section we shall be 
left with a deficit of 1 db at X = 0-65 and about 11 db at X = 0*75. 

We shall, however, have too high an insertion-loss at X less than 

0-36. If we move the left-hand peak away from Xa = 0*39 to 
a higher value of X, the insertion-loss at X less than 0*36 will be 
reduced, and at X greater than about 0*4 will be increased. Let 

us try a peak at X equal to 0-44. Fig. 41 shows its image attenua¬ 

tion in full lines and its insertion-loss in dotted lines, assuming 
that the filter is to be terminated at each end by derived image 

impedances of m equal to V0-44. We can now choose a suitable 

position for X* for the other section, and it is found that X«> =0*72 
will satisfy the insertion-loss requirements. The filter will then 

consist of two whole sections, one with m equal to 0*663 (i.e. V0*44) 

and the other with m equal to 0*849 (i.e. Vo-72). The actual 
form taken by the two possible types of the low-pass filter are 

shown in Figs. 42 (a) and (6). Comparing these with the filters 
shown in Figs. 40 (c) and (d), it will be seen that one element 

la) 

.--I_T_I__. 
Cb) 

Fia. 42.—Form of L.P. Filter of Fig. 41. 
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has been saved in each t5rpe. The time taken to design a filter 
in this way is longer than a design to meet the minimum insertion- 

loss plus 6 db, and it depends on the number of filters of one sort 

to be constructed whether the additional time spent in design is 
outweighed by the reduction in cost of the filters. Space or weight 

may, of course, justify the increase in time spent on a design which 

meets the insertion-loss requirements. One further reason for the 
design to insertion-loss requirements is that in general fewer sections 
will be required. This will mean a reduction in the phase-shift 

dB 
coefficient with a consequent reduction in derived phase-shift, 

which in turn will allow of a reduction in quality (i.e., Q’b) of the 

components. 

16.2. Band-pass Filter. If the design insertion-loss require¬ 

ments are symmetrical about the mid-band frequency, or are very 

nearly symmetrical, the use of the relationship between Xi and | X \ 
given for a symmetrical band-pass filter in 14(vii) should be used. 

In the attenuating-bands ] X \ will lie between 0 and 1 and in the 

symmetrical case the requirements for the two pass-bands, when 
plotted against | X \ will lie one on the other. When the require¬ 

ments are not exactly symmetrical, the two requirements, plotted 

against | X \ will overlap, and we shall have to design to the envelope 
of the requirements. The procedure followed in determining the 

number and m or | X„ 1 values of the sections is as has already 

been described for the low- and high-pass filters we discussed in 16.1. 
In determining the actual element values of the filter, we will, of 
course, use the relationships given in Figs. 17 and 19. 

The case of a dissymmetrical filter will now be considered, 
using the following design as an example. 

Insertion-loss requirements : 

To exceed 30 db from 20’1 to 30-3 kc/s. 
To exceed 60 db from 88-1 to 98-3 kc/s. 

To exceed 40 db from 98-3 kc/s to oo. 

To exceed 60 db at 68 kc/s. 

To deviate from a constant loss by not more than ±0-1 db 
from 37‘7 to 47-9 kc/s. 

Impedance: To work between generator and load, each of 
600 ohms impedance. 

The two cut-off frequencies must lie between 30*3 and 37’7 ko/s, 

and between 47-9 and 68 kc/s. Let us choose the geometric means 
between these pairs of frequencies as the cut-ofif frequencies. Then 
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33*8 kc/s (= V(30'3 x 37'7)kc/s) is the lower cut-off frequency, 

and 67-1 kc/s (= x 68) kc/s) is the upper cut-off frequency. 
These cut-off frequencies will be determined later to a higher degree 

of accuracy which is essential for the calculation of the element 
values, but at present these values, which are 10-inch slide-rule 

values, will suffice. Then the mid-band frequency is 44 kc/s 

(= .^(33-8 X 57-1) kc/s). This last frequency we shall keep 

throughout the design. The insertion-loss requirements are now 
expressed in terms of loss and x values as given below : 

Insertion-loss requirements: 
To exceed 30 db when 0-457 < x < 0-688. 
To exceed 50 db when 2-0 < x < 2-235. 

To exceed 40 db when 2-235 < x < oo. 

To exceed 60 db at x = 1-546 (approx.). 
To deviate from a constant loss by not more than ±0-1 db 

when 0-856 < x < 1-088. 

In addition we have chosen Xj = 0-768 and Xj = 1-298. 

Let us consider first the attenuation-band requirements. 

By the use of 

Xj* — 
Xj* — X*J 

which is obtained from 14(vii) for the attenuating-bands, the 
equivalent values of | X | for the essential values of x are calculated 
and are given below. A slide-rule still gives sufficient accuracy. 

X . , , , 0-457 0-688 0-768 1-298 1-546 2-0 2-235 00 

|X| . . . 2-294 6-10 

i 

00 0 0-2326 0-40 j 0-448 0-59 

The requirements are shown plotted in Fig. 43. 

Let us start by choosing values of | | at 0-233 and at 0-424. 
These two values of | X«, | will very nearly meet the requirements 

in the upper attenuating-band. Sketching in the values of attenua¬ 

tion at 1 X I equal to 2-294 and 6-10 for | X* ] equal to 4 shows 

that the attenuation requirements in the lower attenuating-band 
are also nearly met, and the attenuation in the upper attenuating- 

band will be met with more than 6 db in hand. We shall not, 

therefore, have to consider reflection effects in this attenuating- 
band. The attenuation in the lower attenuating-band does not 

exceed the requirements by at least 6 db and we shall have to 
consider the reflection effects in this band. 
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Let us try terminal impedances which are the derived image 
impedances of half-sections with | | equal to 0-233 and 4-0. 

Then = 0-28 and 2^4 ^ 

a modified value of | Xoo \ of 0*42, it is found from Fig. ,34 that 
the reflection loss at a modified value of | X | of 0-28 is 1 db, and 

at a modified value of | X | of 0-74 is 2-6 db. There will there¬ 
fore be an additional loss of 2 db (= 2 x 1) to be added to the 
image attenuation coefficient at | X | =6-1, and a loss of 5-2 db 

{ = 2 X 2-6) to be subtracted from the image attenuation coefficient 
at I X I = 2-294. A few trials will show that the curve of image 
attenuation coefficient, with [ X® 1 at about 4-0, cannot be shifted 

to give a curve of insertion-loss which meets our requirements. 
The next to try is terminating the filter in constant-/; impedances. 

From Fig. 34, the reflection loss at | X | = 0-28 is — 2-6 db, and 

at I X I = 0-74, — 2-4 db. On doubhng these values (i.e., for 
the two ends of the filter) it will again be foimd that the insertion- 
loss requirement will not be met with this termination. 
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It is therefore necessary to add another section. The most 
economical section to add is one with a peak at zero or infinite fre¬ 
quency, corresponding to values of | X | of or x^ respectively. 
Let us add one with a peak at x^. The total image attenuation 
now exceeds the design insertion-loss requirement by more than 
6 db and there is no need to calculate the reflection-loss factors, 

unless we want to be able to check the actual measured insertion- 
loss of the completed filter. The curve for image attenuation is 
shown in the heavy line in Fig. 43. It will be seen that the image 
attenuation exceeds the insertion-loss requirements in the lower 
attenuating-band by at least 8 db, and in the upper attenuating- 
band by at least 20 db. The requirements in the attenuating- 

band of the filter are met with a large amount of attenuation in 
hand. It will often be found that such is the case. Here, however, 
it is possible to improve on the design. A section having a peak 

of attenuation at either zero or infinite frequency does so by having 
a series arm consisting of a capacitor or an inductor alone, or a 
shunt arm consisting of an inductor or a capacitor alone. A section 

having a peak of attenuation at any other frequency needs a tuned 
circuit in either of these two positions. Thus a section having a 
peak of attenuation at either zero or infinite frequency has fewer 
elements than does any other section. Hence, if we can design 
this filter so that the section, which at present has a peak at | X | 
equal to 0-424, is shifted to | X | equal to 0-59 (i.e., to x — oo), 
we shall have saved in elements. It will be found that with values 

of I Xqo I equal to 0-233, 0-59, 1-69 and 3-33 will meet the attenu¬ 
ating-band requirements. The image attenuation is shown in 
Fig. 44 in the heavy dotted line, and the heavy full line shows 

the calculated insertion-loss, assuming that the terminal image 
impedances have | X | values of 0-233 and 3-33. The fine dotted 
line and the heavy chain-dotted line show the image phase-shift 

coefficient of this filter. 
By means of the expression 

which is obtained from 14(vii) for a pass-band, equivalent values 
of I X I for values of x lying between Xi and x^ are calculated, and 

are given below. 

X 0-8 0-866 1 0-88 0-9 1-0 1-088 1-13 119 1 1-26 

|X| . 12-36 4-37 
1 

2-96 i 
1 1 

^ 2-36 1-0 0-498 0-363 0-182 0-072 
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The phase-shift curve is now drawn against a linear scale of x. 
dB 

This is shown in Fig. 45. The slope of this curve, i.e., is obtained 

at a number of points, by drawing tangents to the curve, and the 

value of so obtained is then used to make an estimate of the 
ox 

effect of dissipation in the pass-band. Let us assume that the 
capacitors will be perfect (i.e. Qq > 1000), and that the inductors 
will have similar Q's, being given by 

- lOOo:. 

This assumes that the Q of each inductor is proportional to the 
frequency and is equal to 100 at the mid-band frequency. {In 
this instance, inductors of such a performance were available.) 
Then the attenuation coefficient in the pass-band is calculated 
from the expression, 

N 4*35x(dj^-j-cZ^)-^ . . . 13(iv) 

which reduces to 

Adb - 0 0435^ db. 

This curve is also shown in Fig. 45. It will be seen that over 
the required pass-band the attenuation coefficient changes by 
0*23 db. The design requirement is for the insertion-loss to vary 
by not more than 0*2 db. We may be able to meet this by termin¬ 
ating the filter by resistive loads which match the image impedances 
of the filter at x equal to 0*856. At this value of x there will be 
no mis-match or interaction-loss factors, and the insertion-loss will 
be equal to the attenuation coefficient. At other values of x there 
will be a mis-match between the terminating impedances and the 
terminal image impedances, which will make the insertion-loss 
exceed the attenuation coefficient. 

The terminal image impedances are nearly symmetrical, as the 
two values of | 1 are nearly reciprocals. We may therefore 
say that nii '== mg and use the image impedance curves shown in 
Fig. 33. 

When X is equal to 0*856, | X | for a symmetrical band-pass 
section is equal to 1*88, and when x is equal to 1*089, | X | is equal 
to 8*67. When x is equal to 1, | X | is equal to oo. Taking a 

mean value of Xjoo and - as 1*5, the value of | X^o | for the 
X200 

symmetrical band-pass section is 0*7. Thus, when x is equal to 
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Zi R 
0-856, —~ = 0-9 approximately, for which the mis-match 

-"o ■^02jn 

loss is of the order of 0-012 db, and for the two ends of the filter, 
0-024 db. It will be seen that this is not sufficient to bring the 

loss to within the required limits, and the Q of the inductors will 
have to be increased in the ratio of 0-23 ; 0-2 (since loss is inversely 

proportional to Q). Thus the coils will have to have Q's which 
exceed 115a:. As there is no appreciable gain in terminating with 
other than the design impedance, the filter will be calculated on 
a design impedance of 600 ohms. 

We have now to determine the loss of the filter to a frequency 
of 68 kc/s (i.e. x = 1-546). 

The insertion-loss at this frequency is caused by one whole 
4-element section for which = 0-768, x^ = 1-298 andxj* = 1-546, 
by the contribution from the other sections of the filter, and by 
the two terminal mis-matches. 

We may calculate the image transfer attenuation at Xj* from 
the expressions given in the table on p. 107. Sufficient accuracy 

will be obtained if we round up our values to Xi = 0-8, Xj = 1-3 
and Xjoo = 1-5. 

Then V = 
(x, *1*) 

dxt^\Xt^ — Xi») 

(2-3 - l-7)(2-3 - 0-6) 

2-3(l-7 - 0-6) 
X 100 X 1-5 

N 60 

and N 8-7 sinh" i 2 | F | = 8-7 sinh-i 120 

= 48 db. 

The contribution from the remaining sections of the filter will be 
seen to be about 20 db (Fig. 44). 

We have decided to terminate the filter at each end with a 
derived image impedance, for which we have chosen Xi* = 0-5, 
«2a> N 1‘5. Thus if the derived image impedances are presented 
to the generator and to the load, the image impedances at x^ 

and Xjoo will be either both very low, or both very high. (They 
will not be 0 or CO because of the dissipation of the components.) 
Thus there will be a mis-match at each end of the filter, between 

the generator and load impedances, and the image impedances. 
Let us assume that series-derived half-sections are used to terminate 
the filter. (Exactly the same result would be obtained if we con¬ 

sidered shunt-derived half-sections.) A rough calculation shows 
that the inductor which gives a series resonance at Xi has an 
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inductance of approximately DSL*. Assuming the dissipation 
factor of this inductor at this frequency to be d/1-5, where d = 0-01, 
the impedance of this series-resonant circuit at resonance (i.e. at 

0-01 X 1-3 
ajjco) is equal to -- x 1-5 Rf, or 0-013 i?o- This is so small 

as to become the image impedance of the filter at this frequency. 

The mis-match loss between generator (or load) of internal impedance 

R^ and this image impedance is equal to 

20 log 
R^+OOnRo 

2v'[i^o(0013i?o)] 

= 20 log,o 
2V0-013 

= 13 db 

and this occurs at each end of the filter. Thus at x 1*546 (or 

68 kc/s), the insertion-loss is given by 

(13+48+20-fl3) or 94 db. 

This is well in excess of the 60 db required. 

Wo have now to calculate the element values of the final filter. 

Let us first, however, decide upon the form of the filter. 
It was decided that the complete filter should have values of 

I Xao I of 0*233, 0*69, 1*69 and 3*33. Equivalent values of 

are 1*546, oo, 0 and 0*518. These are obtained from the relationship 

which is obtained from 14(vii) for an attenuating-band. From the 

relationship given in 11*3 we may combine these values of x^ in 
pairs to enable us to use the economical 6-element structures. 

Thus wo shall combine into one section the two peaks, Xi<^ = 0 

and X200 = 00, which gives a constant-A; structure. The two 
remaining peaks we shall combine into one section, having 

= 0*518 and x^^ = 1*546, which gives a 6-element structure. 
The two possible forms which can be taken by the filter are shown 
in diagrammatic form in Fig. 46, (a) and (6). Let us choose the 

form of Fig. 46(a), for our calculation of element values. 
So far we have used a slide-rule for calculation. The calcula¬ 

tion of element values must, however, be carried out to a higher 

degree of accuracy, as during the calculation small differences 

between large quantities are involved. 
We have decided on a mid-band frequency of 44 kc/s. In 

addition we have chosen Xi as 0*768 and x^ as 1*298. But Xi and 

Xi must be reciprocals, and our modified values of Xi and x^ we 
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Fig. 46.—Two Possible Assemblies of Band-pass Filter of Fig. 46. 

18'724L]c C 56410Cfc V5846l\ 0-5904SCh 

059048 Ck 

o—H 
1‘5&4€Lk 

0'S34/0C)c 

; It 
J’'6724Lfc 

0>53410Ck 

0'S3>4ioi^ 

%4Ck 

059048 Ck 

h 
158461^ 

l-2S97Li 

0-4/575Cji _ ^ 

-o 

1—nrp- -II-, -II— -'Tin—r 
1 (7-50) (0>001690) C0'001690) 

“—1 
(7-50) 1 

7.6-S27Z;fcJo Jo. 
f3-607) }o }e r2'757) ^ 

2 24l5Ck ± ±0 4IStsCk. 
(0013SO) H (O>OO2S08) 

o ^ >o }o 15821 Lk. 

■%^5% r ^ 
0-47S7SCfc-L X 2-24ISCk. 

_(0 002S03)“\ ^ Tr0'C>/350j 

(oL) 
Fio. 47.—Band-paas Filter of Figs. 44 to 46. 

Figures in brackets in (d) are inductances in mH and capacitances in uF. 
112 
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shall choose as 0-76800 and 1-3021. The values of Xx are generally 
not critical, but in our case we have to have a peak of attenuation 
at 68 kc/s. The modified values of are thus 0, 0-51800, 1-5455 
and 00. The value of n is given by Xj — Xi, i.e. 0-53410. 

Let us calculate first the constant-I; half-sections. As will be 
seen from Fig. 17(6) the elements of the half-section are nL^^, L^/n, 
nCj^ and C'jj./n. We have already chosen n as 0-53410, and 1/n 
is therefore equal to 1-8724. The constant-A: half-section is shown 

in Fig. 47(a). 
From Fig. 20 we are enabled to calculate the element values 

of the series-derived half-section having a;,* equal to 0-51800 and 
1-54550. For this half-section 

= 0-76800, xi^ = 0-58982 
Xj = 1-3021, = 1-6957 

= 0-51800, Xioo=® = 0-26832 
X200 =- 1-5455, = 2-3887, l/x^** = 0-41859 

g = - x,«,2)] 

= V'[(0-58982 - 0-26832)(l-6957 - 0-26832)] 
= vfo-32150 X 1-4274] 
= 0-67744 

h = — 1/2^200^)] 
= V[(0-58982 - 0-41859)(l-6957 - 0-41859)] 

= V[9-17123 X 1-2771] 
= 0-46761 

firAsoo® = 0-67744/1-5455 = 0-28363 
hx^J = 0-46761 X 0-26832 = 0-12546 

= 0-26832/2-3887 = 0-11234 

_ _0-28363+0-46761 

“ 1 - T^oT1234 
0-75124 

0-88766 
=0-84633 

mi* = 0-71628 
mjn = 0-84633/0-53410 = 1-5846 

_ _0-67744+0-12546 

T-“0^iT234 

0-802^ 

0-887^ 
=0-90453 

m,* = 0-81818 

n/mj = 0-53410/0-90453 = 0-59048 

a = (1 — mi*)(x2„* — Xioo*)/!7 
= (1 - 0-71628)(2-3887 - 0-2683)/0-67744 

= 0-28372 X 2-1204/0-67744 
= 0-88773 

o/n = 0-88773/0-53410 = 1-6627 

6 = ax^J = 0-88773 x 0-26832 = 0-23828 
E.W.F. I 
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njh = 0-53410/0-23828 = 2-2416 
d, = ag/h = 0-88773 X 0-67744/0-46761 = 1-2865 

Ti/d = 0-53410/1-2865 == 0-41616 

c = d/a;,«* = 1-2865/2-3887 = 0-67811 
c/» = 0-67811/0-53410 = 1-2697. 

The half-section is shown in Pig. 47(6). 

Two constant-A: half-sections and two wiiW, half-sections are 

now connected together as shown in Pig. 47(c). It will be seen 
that at each junction between successive half-sections, the image 

impedances on either side of each junction are equal. By com¬ 

bining similar elements in the series- and shunt-arms, the final 
filter is reduced to that shown in Pig. 47(d). So far the elements 

are related to the inductance L*. and the capacitance 
Prom Section 11 it will be seen that 

C = ^ 

Here coo = 27r.44,000 and i?o = 600. 
Hence = 2*1704 x 10“^ henries = 2*1704 mH 

Cjfe = 6*0288 X 10~® farads = 0*0060288 /^F 

The actual element values of the filter are shown in brackets 

in Fig. 47(d). As the filter is to offer a peak of attenuation to a 
frequency of 68 kc/s, it would be <‘idvisable to make part of the 

capacitance of the arm giving rise to this*peak, from a variable 
condenser, so that the peak may be located accurately during 
manufacture. 

It may appear from the description of the design of this filter 

that a band-pass filter is difficult to design. The design could have 
been made more simple if we had designed to an attenuation 

coefficient which exceeded the insertion-loss requirement by 6 db, 

and the final filter would only have had one extra element in it. 
It obviously depends on the cost of the extra elements compared 

with the time saved in design whether or not the filter is designed 
to an insertion-loss (with a possible saving of elements) or to an 

attenuation coefficient basis (with a certain saving in time). If a 

large number of filters is to be made to a particular design, or if 

space or weight is at a premium, it is obviously worth while to 
spend an extra hour or two on design in order to be sure of obtaining 
the filter which will meet the requirements with the minimum 

number of elements. For example, it may be that an attempt to 
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design the filter we have considered, taking cut-oflf frequencies 

closer to the required pass-band, would have been even more 
economical of elements. 

16.3. Parallel or Series Connection of Filters. 

16.3.1. Fractional Terminating of Paralleled Filters 
(Zobel). Let us consider the design of a pair of filters, whose 

design impedances have been chosen as 1000 ohms, and whose 

cut-oif angular velocities have already been chosen as 10,000 radians 
per second for the low-pass filter, and 12,500 radians per second 

for the high-pass filter. Let us assume that the two filters are to 

be connected in parallel. We have made sure that one end of 
each filter has a mid-series constant-i image impedance, and we 

have designed to an attenuation coefficient equal to the minimum 
insertion-loss requirement, plus 3 db for the imparalleled end 
mis-match, and minus 5 db for the paralleled end mis-match. 

For the phase-shift coefficient ciuve we have added a half-section 

with m equal to 0-54 from 15(iu)(fora = ’ = 0-8, and m is then 
IZjOUO 

equal to 0-54), to the sum of the phase-shift coefficients of the 

sections going to make up each filter (in the pass-band of each of 

the filters the parallel filter and the added impedance forms a 
half-section with m equal to 0'54). 

For the low-pass filter 

L, 

Gu 

Ro _ 

COo 

1 

Rq(Oq 

1000 

10,000 
_ J_ 

= 0-1 henry 

= 10“’ farads. 

For the high-pass filter 

i?o 1000 
Lu = 

COo 12,500 
1 1 

jBqCOo 1'25 X 10’ 

0-08 henry 

-, = 8 X 10“ ® farads. 

Let us also assume that the terminal section at the paralleled 

end of the low-pass filter is a series-derived section with m equal 

to 0'7, and the terminal section of the paralleled end of the high- 

pass filter is a series-derived section with m equal to 0-5. Then 
the terminal series arm of the low-pass filter will have an inductance 

of O-lL/c, i.e. 0-07 henry, and the terminal series arm of the high-pass 

filter will have a capacitance of ^G^, i.e. 1-6 x 10“’ farads, as 

shown in Fig. 48(o). 
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We now have to add an impedance of 0*54 times the impedance 
of the constant-A; series arm to each filter. The impedance to be 
added to the low-pass filter is that of an inductor of inductance 
0*54Ljj., i.e. 0-054 henry, and that to be added to the high-pass 

0124 

Fio. 48.—Parallel Connection of L.P. and H.P. Filters. (Fractional Terminations.) 

filter is that of a capacitor of capacitance 
0-54’ 

i.c. 1-4815 X 10"^ 

farads. These are shown in Fig. 48(6). Combining the similar 
elements in the two series arms gives the parallel combination 
shown in Fig. 48(c). Fig. 40 shows the image impedance of the 
parallel combination. It will be noticed that it is fairly close to 
1000 ohms over the pass-bands of the two filters, the reactive 

cv 
Fio. 49.—Image Impedance of Parallel L.P. and H.P. Filters of Fig. 48(c). 

Solid line: resistive component. Dotted line: reactive component* 



IMPEDANCP. CORRECTION 16.3.2] 117 

component being small, and between the two pass-bands it is a 

pure reactance. 

16.3.2. Impedance Correction applied to Paralleled Filters 
(Bode). Let us now see if it is possible to improve on this design 
Suppose that the low-pass filter has to pass frequencies up to 0-95 
of cut-off frequency, and that the high-pass filter has to pass fre¬ 

quencies above of its cut-off frequency. From Fig. 32 it will 

be seen that with m = 0*49, the mid-shunt-derived image impedance 

varies between 10 and ^ times the design impedance between 

I X I equal to 0*11 ^ 0*95) and oo (x^^p — 0). It will be found 

that this is the best that can be done with a single derivation for 
this range of frequencies. Thus we shall choose m == 0*49, and 
parallel our filters on this basis. The susceptance of the low-pass 

filter when an inductor of inductance 0-49Z/4. is added in series 
with a mid-series constant-^ image impedance is 

— j.0*49a: 

1 ^0^76.^ 
The susceptance of the high-pass filter in its attenuating-band, 

when a capacitor of capacitance added in series with 

its mid-series constant-Z; image impedance is 

X )] 
= 

The susceptance of the two filters is equal to and will be 
found to be negative over the majority of the range from x = 0 
to X = 0*95. 

In Section 15 it was pointed out that the susceptance-annuUing 
network would take the form of a series-resonant circuit, resonating 
at the geometric mean of the cut-off frequencies of the two filters. 

This corresponds to a value of x of Vl'25, or M18. The admittance 
of a series-resonant circuit, whose inductor has I times the inductance 
of the low-pass Lj^ value, and which resonates at x — 1*118, is 
given by 

j{l-llSx) ^ 

/(1-25 - a:2) U' 

The table below gives in condensed form the calculations necessary 
for determining L 
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X 

8r . . 
— 

0 

0 

0-2 

-0101 

0-4 

-0-223 

0-6 

-0-406 

0-8 

-0-763 

0-9 

-M48 

0-95 

-1-484 

1-0 

-2-040 
, 0 0109 0-224 0-364 0-613 0-613 0-673 0-741 

0 0008 0-001 -0-061 -0-250 -0-636 -0-811 -1-299 
*3 • 0 0166 0-368 0-676 1-310 2-045 2-74 4-22 

^3 
• — 0005 0-002 0-068 0-171 0-234 0-267 0-275 

A few trials, for example by plotting (^i+^a) and on logarithmic 

scales of x and s, and moving the scale parallel to the x axis 
until the best fit is obtained from x — 0 to x = 0*95 ; or by calcu- 

3 1 
lating j for several values of Z, show that for ^ = 0*257 (I ~ 3-9) 

the best fit between (^i+^a) and ~ is obtained. 

X 0-2 0-4 0-6 0*8 0-9 0-95 1-0 

0-257«3 . . . 0 0-043 0-096 0173 0-337 0-626 0-704 1-088 

0-26753 4-4- 0 0-051 0-096 0122 0-087 -0-009 -0-107 -0-211 

The residual susceptance will be seen to be small over the 

required range (0 <x < 0*95), and if wo invert the curve for 
susceptance about x = 1*118, and change the sign of 5, we will 

obtain the residual susceptance for the high-pass filter pass-band. 

The filter pair should be terminated in a resistance of — 
Vl-2 

times the design impedance of the filters, and the susceptance- 
annulling network will be a series-resonant circuit, consisting of 
an inductor of inductance 3-9 x L/^p and a capacitor of capacitance 
C^ifcXp/(l-26 X 3-9). 

16.4. Example of Calculation of Insertion-Loss and Phase- 
Shift. Let us consider the calculation of the insertion-loss and 
phase-shift for a low-pass filter, at 0'9 of its cut-off frequency, 
where the image attenuation is 2 db, the image phase-shift 470°, 

one end of the filter having a mid-series constant-I; image impe¬ 
dance, and the other having a mid-series-derived image impedance 
with an m value of 0*32, the generator and load being each equal 
to Bf. 

From 14(v) the value of | X | corresponding to a; = 0-9 is 0-236. 



INSERTION-LOSS AND PHASE-SHIFT 119 

From Fig. 32 the mid-series constant-i; image impedance is 0-43 x jB©- 
Setting a pair of dividers at a separation equal to the distance 
between 1 and 0*43, and transferring to the single-line nomogram, 
we find that with one point set at 1, and the other at 0*43, a quantity 

equal to 20 logi© o ^q right-hand 
'y/U*4o 

scale. This corresponds to a value of 0*8 db. Now r is the ratio 
between iZ© and between and since the generator 

l-fr 
impedance is equal to iZ©* Thus the quantity of 20 logi© is 

equal to 

and is one of the factors of insertion-loss, being equal to the mis¬ 
match loss between generator and image impedance. The quantity 
1 -\-T 
—j- is positive, and therefore there is a zero angle associated with 
2 Yf 
it. Opposite the same point, 0*43, we also see the value of a quantity 

20 logic j-- db and this has a value of 8 db. Expanding the 20 logi 

expression for this quantity we get 

20 log.. 
which is the db equivalent of part of the interaction-loss factor. 
Here and a zero angle must be associated with this factor. 

Similarly, the mid-series-derived image impedance at | X | =0*235 
for m equal to 0*32 is equal to l*6iZo. Again transferring the 
distance between 1 and 1*6 to the nomogram we read off 0*2 db 
from the right-hand scale and 13 db from the left-hand scale. The 
first of these two factors is the mis-match loss between image 
impedance and load, and the second is one of the components of 
the interaction loss factor. As in this case, r > 1 (i.e. > Zg) 
the factor will have a negative sign, i.e. an angle of 180° associated 
with it. 

The interaction-loss factor is given by 

20 logi 
^A'^^OA 

Expressed in db and degrees, 2P is equal to 2 x 2 db and 2 x 470°, 
i.e. 4 db and 940°. The two factors which multiply exp(— 2P) 
contribute — 8 — 13 = —21db and 180°. Thus the second term inside 
the modulus sign has an equivalent value of — 21 — 4 = —26 db. 
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and — 940® + 180® = — 760®. This last angle is equal to 

(__ 720°) - 40®, or - 40®. 
From Fig. 12 we read off the interaction-loss factor as — 0*4 db 

and the interaction phase-shift factor as +15®. 

Thus the interaction loss is 2 db contributed by the image 
attenuation coefficient, plus 0-8 db from the mis-match at the 

constant-i; end of the filter, plus 0*2 db from the mis-match at the 
derived end of the filter, minus 0*4 db interaction loss, a total 
of 2-6 db. The interaction phase-shift is equal to 470® from 

the image phase-shift, no contribution from the mis-matches, 

and 15® from the interaction phase-shift factor, a total of 485® 

(- 360° + 125®). 

17. LATTICE NETWORKS. 

Another form of network is known as the lattice network. Its 

most general form is shown in Fig. 50(a). We shall consider only 
the symmetrical form shown in Fig. 50(6). In this symmetrical 

Za Z5 

Fia. 60.—Dissymmetrical and Symmetrical Lattice Networks. 

form, the two series-arm impedances are eacli equal to Zg, and the 

two lattice-arm impedances are each equal to Z;. It is obvious 
that the series and lattice arms may be interchanged, with the 

only result that a phase-shift of n is introduced between the two 
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ends of the network. As the network is symmetrical, the two 
image impedances are equal, and we shall write them as Zq. 

From 3(v) we see that 

Zo* = 
where Zy and Z^ are the impedances of one end of the network 
when the other end is open-circuited and short-circuited respectively. 

Here we have 

— 1(^8+^/) 

" 7^s+Z 
whence Zq^ = Z^Z^ . . . . . 17(i) whence 

From 3(vi) 

tanh^ P 

{P is used because the lattice section we are considering is a whole 
section and not a half-section, as was the case when we were con¬ 

sidering the ladder half-section.) 
Then 

tanh^P = 4- . 
{Zs+z,y 

Now 

tanh P 

2 tanh — 
2 

1 -ftanh^ ^ 

and on substituting for tanh P and solving we obtain the following 
relationship 

tanh* ? = ^ or I-' . . . 17(ii) 

From 17(i) and 17(ii) we may solve for Z^ and Z^ in terms of 
Zo and P, and 

Z^ = Zo tanh ~ ^or Zq coth --j 

Til = -^0 coth ^ ^or Zo tanh 

. 17(iii) 

Now Z3 and Z^ are the open- and short-circuited impedances 
of a network with one image impedance Zo and image transfer 

P 
coefficient measured at the Z© end, for 

^ = tanh* ~ 
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We may now construct lattice equivalents to all the filter 

networks we have investigated in Sections 9, 10 and 11. 

Take the low-pass series-derived half-section shown in Fig. 13(a). 
At the end with image impedance Zoi, the open-circuit impedance 

is that of the series and shunt arms in series, and the short-circuit 

impedance is that of the series arm alone. Thus the equivalent 
lattice section to a mid-series-derived low-pass section is as shown 

in Fig. 51(a). At the end of the ladder half-section with image 
impedance open-circuited impedance is that of the shunt 

arm alone, and the short-circuit impedance is that of the series 

Fio. 61.—Lattice Equivalents of m-derived Low-pass Whole Section Ladder Filter. 

and shunt arms in parallel. The lattice section equivalent to a 
mid-shunt-derived low-pass section is shown in Fig. 61(6). It 

should bo noted that the two lattice equivalent networks have 

the same image transfer coefficient, i.e. P, but one (Fig. 61(o)) hew 

a mid-series constant-A: image impedance and the other (Fig. 61(c)) 
has a mid-shunt m-derived image impedance. 

In Section 6, it was pointed out that as one of the elements 

of an m-derived half-section was obtained by multiplying or dividing 

one of the arms of the parent half-section by we were 

restricted to values of m lying between 0 and -f 1 if we were to 
realize the half-section in practice. If m is unrestricted in positive 

values, -lies between oo (m = 0) and — m (m = -j- oo). Now 
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from Fig. 51(a), for example, the series arm of the lattice network 

consists of a capacitance in series with an inductance of value 

m / m 

and whilst m is positive, the inductance is positive, lying between 
Ljc(in = 1) and 0(m = +oo). Hence it is possible to construct a 

lattice filter network having an m value exceeding unity. It will 
be found that with lattice equivalents of any of the ladder type 
networks which we have discussed, m values exceeding unity are 

possible. For such networks, the peaks of attenuation occur at 
imaginary frequencies. For example, in the case of a low-pass 

section. 

and when m > 1, X2m is imaginary. 

If we stop at this point, leaving us able to develop lattice 

structures which are equivalent to symmetrical ladder filter struc¬ 
tures, we shall miss the most important of the facilities which the 

lattice type of network gives to us. 

Let us refer back to the expression 

tanh^ ^ = I-* . 
2 Zi 

• 17(ii) 

If we make and Z, from pure reactances, the right-hand side 

of this expression will always be real. If Z^ and Z^ have the same 
P 

sign tanh^ — will be positive, and when Z^ and Z^ are of opposite 

P P . 
sign, tanh^ — will be negative and tanh^ — is never complex. 

Let us now write P = A Then 

tanh ^ = tanh 
2 2 

tanh 4 f-j tan ^ 
2 •' 2 

1 tanh — tan — 
^•'2 2 

tanh ^^1 + tan» ^+j tan - tanh® ^ 

1+tanh® - tan* ~ 
2 2 
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P . 
Thus, when Z* and Zj have the same sign, tanh* — is positive 

P . 
and tanh — is real. Hence 

B 
tan — = 0, B = 7171 

2 

and 

This is an attenuating-band 

tanh — = tanh ~ 
2 2 

17(iv) 

P . 
When Zg and have opposite signs, tanh^ — is negative and 

tanh is imaginary. Hence 

and 

tanh ^ = 0, ^ — 0 
2 

- j tanh ^ = tan ^ 
2 2 

. 17(v) 

This is a pass-band. 
There is a general theorem, generally known as Foster’s React¬ 

ance Theorem, which states that any two-terminal network, com¬ 
posed only of pure reactances, has an impedance given by 

^ ^ - CO*)(«3* - O)*) . . . j> 

jco((Wt* — <0*)(ft>4* — ft>*) . . . — w“) ’ 

where H 'm b. positive constant, n is an integer, and 

0 ^ COi 0^2 ^ 2 ^ ^2n—1 ^ 

As the network is comj)osed of pure reactances, its impedance 
must also be purely reactive, and we may write 

Z = jz 

where 2 is a pure number. Substituting in (vi) for Z we have 

2 = . . . ("2n-i*-«>*) 17/vial 

— C0*)(W4* — (0*) . . . (<W2n-2* — «>*) 

When CO is equal to coi, cog, . . . or ^he impedance Z 

is zero, and when co is equal to cog, CO4, ... or <02n-2> imped¬ 
ance Z is infinite. An analysis of (via) will show that when 

^2m-2 < (o < (02m-if where m is an integer less than n, z is negative, 
and when co2,^_i < co < co2^, z is positive. From this it may be shown 

that is positive. 

coj, CO3, . • . and ^^2n ~i are values of co for which Z is said to 
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have “ z^ros ”, and coa, CO4, . . . and values of co for 
which Z is said to have '^poles''. 

We have already seen (17(iv)) that in an attenuating-band Zg 
and Zi are of the same sign. Thus, in an attenuating-band poles 
of Zg must occur with poles of Z^, and zeros of Zg with zeros of 
Zi. Also, as tanh 00 = 1, peaks of attenuation coefficient will 
occur when Zg and Z^ are equal. 

In a pass-band (17(v)) Zg and Z^ are of opposite sign, and poles 
of Zg must occur with zeros of Z^, and zeros of Zg with poles of Z^. 

In order to get from one condition to the other, a pole or a 
zero of Zg (or Z^) must occur with no pole or zero of Z; (or Zg), 
Such a condition gives a cut-off point. 

Let us now consider the result of these conditions somewhat 

more fully. 
Consider the poles and zeros of Zg and Z^ about a cut-off i)oint 

coi. In the attenuating-band let Zg have i)oles at co^ and cOg, and 
a zero at Then Z^ will also have poles at co^ and and a 
zero at coi,. In the pass-band let Zg have a pole at co^ and zeros 
at and cOy. Then will have a zero at and ])oles at co^ 
and a)y. Between and cd^ let Z^ have a zero at a>i.* Then Zg 
will be given by 

® ja)(. . .){<oJ - - w2)(a)/,2 - . .) 

and Zi will be given by 

7 = - a>^)(V - co^)(. 

‘ joy (. . - a)*)((y/ - 

Then will be given by 

- £o^(. . .) >1 

" co^. . .) W - - «>*)*(• • •) 
and P will be given by ► 

P _ H,(. . .)W z-• •) 
2 H, (. . (0)/ - oy^n- • V 

^_ 
ca^)(. . .) 

. 17(vii) 

The surprising result is that the image impedance depends on 
the positions of the poles and zeros occurring in the attenuating- 
bands, and the image-transfer coefficient depends on the positions 
of the poles and zeros which occur in the pass-bands. It follows 
that we may therefore consider the image impedance requirement 
quite separately from the image-transfer coefficient requirement, 

* (Oa < COb < (Oc < (Oi < (Wot < 
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and vice versa. Our freedom in design is thus greater than it was 
in the case of the ladder-filter. 

17.1 • Cauer Lattice Filters. It was this flexibility which 
made it possible for Cauer to develop his method of filter design. 
His method of design enables one to produce a filter whose image 

R 
impedance over a certain band of frequencies lies between 

and i?o(l+3), and whose image-attenuation coefficient over a 
different band of frequencies exceeds a minimum attenuation of 
^min.y without the trial-and-error methods of curve tracing described 
in the sections dealing with ladder-type filters. 

Cauer uses what are known as Tschebyscheff approximations to 
p 

derive suitable expressions for Zq and tanh —, from which Zg and 

Zi may be obtained by multiplication and division. The actual 
forms of the arms of the lattice network are then calculated from 
the impedance functions Zg and Z^ by means of partial fractions. 
The method is described at some length by A. T. Starr, Electric 
Circuits and Wave Filters^ and by E. A. Guillemin, Communication 
Networks, Vol. II. 

1-f-zl, E.p. tanh-10 If a quantity 0 lies between 

exceeds i log* . 
2 ZI 

l+A 
and 

Writing P as A +jB, and tanh — — y, then if 
2 

l+A 
<y < l+A, 

R.p. tanh- ^y>\ log. 

But 

and 

tanh”1y 

R.p. tanh~i y 

Hence 

and 

A 1, 
2 > 2 '■>* 

ftin. " log. 

or 

= ^ = 
2 2 

= 4 
2' 

2+A 

~A^ 

2+A 

A 
2 

exp {A„ .) - 1’ 
Thus wo have to discover functions, one of which has a value 

<C 2?o(l-)-d) 



CAUER LATTICE FILTERS 

over the required “ pass-band ”, and the other which has a value of 

-L-< e < i-f 2 
___ 6XP ) 1 

exp (A^in.) - 1 
over the required ‘‘ attenuating-band 

If we divide through the impedance requirement by i?o» it will 
be seen that both of the requirements to be met are of the form 

2 
A being equal to d in the impedance case, and--r-- in 

the attenuation case, and U being equal to Zq/Rq and 6 in the 
respective cases, the specified requirements holding over exclusive 
limited ranges of frequency. It is to such a problem that the 
Tschebyscheff approximations give an answer. 

If we write A ~ jXy where x = co/mi in 17(vii), we get 

- ..)' 
* - AM- . ~ A2)2(. . .) 

where a — etc. 
For a simple filter with only one cut-off, this is of the form 

_ V(l+A2).(62+A2)(d2+A2) . . . 

A(a2+A2)(c2+A2) 

and by a suitable choice of a function for A, any impedance- and 
image-transfer coefficient- symmetrical filter may be put in this form. 
As we make C7 more complicated, by adding on factors of the form 
{n^+A“), so we can approximate more and more closely to a con¬ 
stant value for t7. Successively more complicated forms for U are 

1 rr _V(1+A^) 

t/„ = Av'(l+A*) 
" (oa-fA*) 

, n _ V{l+^*)-(6HAa) 
A(aa+Aa) 

(o*-fAa)(ca-|-Aa) 
and so on, where l<a<6<c< . . . 

For a range l/A;<A<oo, A;> 1 a suitable choice of para¬ 

meters a, by c, d, etc., will make <U < l+A, where zl is a 

function of k. The relationships are given below * 
♦ Based on a table (Table 18B, p. 391) in Electric Circuits and Wave 

Filters, A. T. Starr, by permission of Messrs. Sir Isaac Pitman & Sons, Ltd. 
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Class a b C V[1 -(l + ^)-«] 

1 . . . . ■ _ _ ak 
2 . . . . 8n{K/2) — — 

3 . . . . sn(2K/i) sn{K/S) — b*k^ 
4 . . . . 8n(3K/A) 

1 
sn(2K/4:) 8n(K/^) . a^c^k^ 

whore 
do 

0 V(1 - i' sin^e) 

and sn(K/2), etc., are elliptic functions. In the form given above, 
a, 6, c, etc., and A are difficult to determine and it is more useful 
to have the constants a, 6, c, etc., and the correspondmg values of 

A for the class set out graphically. A. T. Starr has provided this 
(in Electric Circuits and Wave Filters)y in the form of a line chart. 

The Cauer method of filter design has been dealt with in a very 

sketchy manner, as the method is not considered to be as flexible 

as the ladder network methods described in earlier sections. The 
Cauer method suffers from the following disadvantages :— 

(a) In its most simple form, (low-pass or high-pass filters), the 

image impedance will lie between the specified limits from 

, and the image attenuation coefficient 

will exceed the minimum requirement from oo (or 0) to ^ 

(or k), 
(b) When the specified limits do not extend to either 0 or cx), 

the work involved increases. 

(c) In the case of band-pass filters, it is only possible to design 
impedance- and image attenuation-symmetrical networks. 

(d) As designed, the filter is in lattice form, which involves the 

use of very accurately adjusted components, and it is not 

always possible to reduce the lattice form to a ladder form. 

In the author’s opinion, it is not worth while using Cauer’s 
method unless the restrictions mentioned in (a) to (d) above do 

not apply, and unless it is essential to be able to reduce the number 
of elements in the filter to its absolute minimum value. Where 
speed is important, and the attenuation requirements are not too 

stringent, it is probably more economical to carry out the design 
as described in the earlier sections of this book. It may be of 
interest to point out that conventional ladder-type filters have been 

designed and made in which, for a low- or high-pass filter, the 
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insertion-loss exceeded 110 db. over a band of frequencies of about 
2:1, and deviated from a low constant value over the required 
pass range by not more than ±0*8 db., the adjacent pass and 
attenuating ranges having a frequency ratio of 1:1-2. 

17.2. Crystal Filters. The main use of the lattice network 
is in the design of crystal filters.* 

When a suitably cut crystal, generally of quartz, has two of 

its faces covered with conducting films, forming the terminals of 
a two-terminal network, it is found to simulate an electrical circuit, 

Fig. 52.—Formation of “ Reduced ” Lattice Network. Extraction of 
Series Impedance, 

consisting of a series-connected inductor and capacitor, in parallel 

with a capacitor, with very low dissipation coefficients, 10~^ being 
a not uncommon upper value. Owing to the relationships between 
the components of the equivalent electrical elements, the crystal 

on its own is restricted to very narrow band-pass filters, which 

can be opened out by the addition of series inductors. As these 
will have to be of conventional construction, the Q of the elements 
will be reduced from 10,000 (== 1/10~^) to a very much lower 

value. In a lattice form of construction, this effect may be reduced 
to a very great extent, with a consequent improvement in the 

performance of the filter. 

* For a very full description of crystal filters, and similar networks, see 
Electro-mechanical Transducers and Wave-filters, Mason, Van Nostrand 
Compauiy, Inc. 

E.W.F. K 
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If a symmetrical T-network were split into two equal //-networks, 

it was shown that the lattice network equivalent to the T-network 

had series-arms of impedance equal to the sum of the impedances 
of the series- and shunt-arms of one of the L-networks, and lattice- 

arms of impedance equal to the impedance of the series-arm of 
the L-network. Thus if the L-networks have series-arms Zj, and 
shimt-arms Zj, the equivalent lattice network will have series-arms 

Zi+Zj and lattice-arms Zi. If from the original T-network we 

take a portion Zi of each of the series-arms, and put them outside 
the network, as shown in Fig. 52 (c) and (d), we have not altered the 

performance of the network in any way. The new T-network has 

series-arms (Zj — Zi) and the L-networks will have series-arms 
(Zi — Zi) and shunt-arms Zg. The equivalent lattice of the “ re¬ 
duced jP-network will thus have series-arms of Z^ — Z1+Z2 and 
lattice-arms of Zi — Zi. The network equivalent to the original 
T-network is obtained by adding impedances to the outside of 

the “ reduced lattice as shown in Fig. 52(d). In practice, of 

course, the impedances external to the lattice network would be 
spht and divided between the two legs of the circuit, as the lattice 

network is a balanced structure. 

From Fig. 52 (6) and (d) it will be seen that we are able to 
subtract an equal impedance from each of the series- and lattice- 
arms of a lattice network and put these impedances outside the 

lattice portion of the network, without affecting the performance 
of the complete network in any way. 

In the design of crystal filters, both the series- and lattice-arms 

will be found to possess an impedance in common, this being part 

of the impedance of the inductance which has to be added to the 
crystal elements in order to widen the pass-band. This common 

impedance may therefore be brought outside the lattice structure, 

and with it may be brought the resistance of the inductors which 
is common to the series- and lattice-arms. These resistances, 

which appear as series resistances at the four terminals of the 

network, may, by the addition of suitable values of shunt resistance, 
be converted to constant resistance, constant attenuation pads, 

and the lattice network has had part of its dissipative components 
removed from it. The effect is to increase the loss of the network 

away from a cut-off frequency, but this loss remains constant 

almost up to the cut-off frequency, at which point impedance mis¬ 

match effects between the image impedances of the lattice network 
and the generator and load impedances become of importance. 

In a similar way it may be shown that a common shunt-admit- 
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tance may be subtracted from each of the arms of a lattice network 
and placed across the input and output terminals of the “ reduced ” 
lattice network, without aiEFecting the properties of the complete 
network. 

Fig. 53 ♦ shows the measured insertion loss of a crystal filter 
consisting of two sections of lattice structure, of such a form that 
the added inductors, external to the crystals, in both series- and 
lattice-arms are all equal, thereby allowing them to be placed 

Fio. 63.—Insertion-loss of Crystal Filter of Fig. 54, compared in Pass-band 
with Calculated Insertion-loss of Similar Coil-condenser Filter. 

Fig. 64.—Circuit of Crystal Filter of Fig. 63. 

Q roprosents crystal unit. Dotted resistors are resistances of inductors. Crystal 
units with the same suffix may be combined into on© crystal unit and inductors 
with the same suffix may bo wound on a common core. 

outside the lattice network. The circuit of the filter is shown in 
Fig. 64, the dotted resistors in the series-arms being the resistances 
of the inductors. It will be seen that, with the additional shunt 
resistors, these form constant-resistance attenuating pads, and the 

dissipative resistors have thereby been removed from the filter 
proper. The curve, shown dotted in Fig. 53, is the calculated 

* P.O.E.E.J., Vol. 31, p. 263, Jan. 1939. (Full line curve.) 
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curve of insertion-loss of a similar filter made with inductors and 

capacitors, the former having Q's of 150. The advantage of using 

crystals as filter elements is thus very great for this particular 
filter. In general, where a constant low loss is desired with a high 

loss at a very near frequency, crystal filters will be found to give 

a better performance than will a conventional inductor-capacitor 

filter. 

17.3. Insertion Characteristics of Lattice-type Filter Net¬ 
works. Where a lattice or symmetrical network is used, the 
calculation of its insertion-loss between generator and load of 

equal impedances can be expressed in a more simple form than 

that given by 8(iv).* By symmetrical network is meant one which 

has equal image impedances at its two ends, and does not depend 

on the internal construction of the network. 

Fig. 55(a) shows a lattice network coimected between generator 

and load, each of impedance Fig. 55(6) is an alternative form 
of this network, and is seen to be a Wheatstone bridge network 
which was considered in some detail in Sections 2.2 and 2.3. 

From Fig. 3, it will be seen that 

E, = E 

~ Z^ ^ Zi 

Z, ^ Ze = 11^ 

The current into Z^ was given by 

r _ — ^\(ZzZ^ — ZjZj) 

* P,O.E»E*J.f Vol. 35, pp. 88-92, 111-14. “Calculation of Insertion- 
loss and Phase-change of 4-Terminal Reactcuice Networks ”, Stanesby, 
Broad A; Corke. 
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■^1 (■^l+'Zs) — Zn 

where A = — (Zj+Zj) — Ze 
Z, -(Z,+Z,) (Z,-|-Z,+Z.) 

and this may be rewritten to suit Fig. 48(fc) as 
_ Z/) 

A 

Ra iZ.VZ,) 
where A = 

-2, 
-R. 

A = 

and / = 

IZ, -(Z,+Z,) 
I ~ (Zs+Zi) (Zg+Zj+F^)| 

which on adding row 1 to rows 2 and 3 reduces to 

I (Z,+Z,) -Z, 
(jS^-j-Zj) 0 — (i?j[+Z,) 
{Ra'^Z^ 0 (F^+Zg)' 

== - 2(z,+z,)[(ft^+z,)(/e^+z,)] 

E(Z,-Z,) 

^{Ra ~^Zi){R^ +Zg) 

If the generator were connected direct to the load, a current 
of E/2Rj^ would flow in the latter, and the insertion coefficient is 
given by [LV2i?^] I, or 

(Ra ~^Zi){R^+Zg) 
RJZi - Zg) • 

If the filter network is made of pure reactances, we may write 
Zi — j^i Zg — jZg, where Zj and Zg are real. Then the insertion 
coefficient is given by 

{RA+jZl){R^+j«s) 

Ra3(^i - ^s) 
and the iasertion-loss is equal to 20 times the logarithm of the 
modulus of this function, and the insertion phase-shift is equal to 
the argument of this function. Dividing throughout by R^, these 
reduce to 

K^i/Ra - Zs/Ra) 
V[{l+zl/R^%l+ZgyRJ)] 

^i/Ra ^s/Ra 
(l+jz,/RJ(l+jZg/R^) 

Hzi/Ra Zg/Rj) 

^'db = 20 log 

= 20 logio 

B' arg 

tan iRa'Ra 
1 

R. 
3 
r: 
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and if we write 0 = tan” ^ 

<ft = tan” ^ Zi/Bj^ 

it can be shown that 

-d'db = 20 logio cosec ~ 0) I 

B'=d+<f,+(2n+li^ I 

where n is an integer. 
A slide-rule has been designed, and is described in the article 

from which this method has been extracted, which enables both 
and B' to be read off in two operations when 2,/J?^ and z^/R^ 

are known for any one frequency. 
We may use this method of calculating the insertion-loss of 

symmetrical filters to design a filter to conform with specified 
requirements, by choosing a tentative design, as explained in 
Section 16 and calculating the series- and lattice-arms of a tentative 
lattice section. Calculation from 17(viii) gives the insertion-loss. 
The series- or lattice-arms may then be modified slightly, and 17(viii) 
recalculated to improve the performance of the filter. According 
to the stringency of the design, one or more successive attempts 
may be necessary to obtain a network which possesses the required 
characteristics. As modification to the series- or lattice-arms may 
displace their poles or zeros, it will be noticed that the poles (or 
zeros) of the series-arm will not coincide with the zeros (or poles) 
of the lattice-arm for the pass-band, nor will the poles (or zeros) of 
the series-arm coincide with the poles (or zeros) of the lattice-arms 
in the attenuating-bands. Thus there will exist small attenuating- 
bands in the pass-bands, and small pass-bands in the attenuating- 
bands. These will, however, be masked by the reflection losses or 
gains, and the result will be a network having “ insertion ” pass- 
bands and “ insertion ” attenuating-bands which are continuous 
throughout the separate bands. 

This method has been used for filters which are to pass frequencies 
very close to the cut-ofiF frequencies and which are to attenuate 
heavily frequencies very close to the cut-off frequencies. The work 
involved is very heavy unless a calculating machine is available. 
It should also be pointed out that the design of such a filter involves 
a great deal of computing, whatever the method used for design, 
and it is probable that this method is more suitable than most 
others. 

[17 

17(viii) 
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18. PRACTICAL CONSIDERATIONS IN FILTER CON- 
STRUCTION. 

In the construction of a filter which has been designed to give 
a certain insertiondoss and phase-shift, a number of points must 

be considered. 
We have so far assumed that it is possible to construct a network 

which corresponds exactly with the designed (“ paper ”) network. 

This is not possible in practice, and the various differences between 
the performances of the ‘‘ paper ” network and of the actual network 
must now be analysed, so that we may allow for them, or reduce 

them to such small values that they have no sensible effect on the 

performance of the network. 
In Section 13 we have considered the effect of dissipation on 

the performance of a filter, and we have seen how to take this effect 
into account during design. 

It has also been assumed that there is no capacitance associated 
with an inductor, nor inductance with a capacitor. This assumption 

is not true, and these deviations from perfection will be considered 
when discussing the filter components later in this Section. 

There remains another assumption—that there is no interaction 

between the various components of a filter. In actual fact, every 
component in a filter has some undesirable effect on every other 
component, and it is therefore necessary to consider how these effects 

may be reduced. The interactions between two components may 

be due to the difference in potential between them (capacitive) or 
to the current in one component giving rise to an induced e.m.f. 

in the other (inductive). 
For example, the potential difference between the two terminals 

of a generator may, by capacitive coupling, give rise to a potential 

difference across the two terminals of the load, even when the filter 

network has been removed. Thus, if the attenuation of the filter 
network were infinite at a particular frequency, the insertion-loss 

at that frequency would not be infinite, owing to the capacitive 
coupling between generator and load. Similarly, an inductive 
coupling between generator and load would give rise to a like 

effect. 

In the same way, capacitive and inductive couplings must be 
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reduced inside the filter network, or it may be found that a section, 
which produces at one frequency a high image attenuation, is 

bypassed by the undesirable coupling and the final image attenuation 

of the filter reduced from its design value. But it is not only 
direct couplings that must be reduced, for it is also possible for 
indirect couplings to give rise to trouble. For example, we could 

interpose a metallic screen between two components. This could 
be of such a size and shape as to reduce the direct capacitance 

between the two components to an extremely low value. But the 

capacitance from the screen to each of the two components could 
be of considerable value, and if the screen were not earthed, it 

would also have a capacitance to earth. Thus between the two 

components, a and fe, would be a T-network, the series arms being 
composed of the capacitances between a and the screen, and b and 
the screen, and the shunt arm being the capacitance between the 

screen and earth. Now each of the components a and b will have 

impedances to earth, and consequently there will be formed two 
drcuit meshes, a—screen—earth—a, b—screen—earth—6, with a 

mutual impedance of the impedance of the capacitance between 

screen and earth. Hence if there exists a potential difference 
between a and earth, a potential difference will be produced between 

6 and earth. Thus a screen does not necessarily eliminate capacitive 

couplings between any two components unless the screen is connected 
to a suitable point in the circuit. Exactly the same effect can be 

produced by mounting metal-cased components on a metal baseboard 

or panel, but insulated from it and leaving the panel free. In such 
a case we must look for a point in the circuit to which we may 
connect the panel without introducing any of these bad effects. In 

the unbalanced filter (see 18.2) it is generally advisable to connect 
the panel to the earthy side of the circuit, and to connect the metal- 

cased components to the panel, unless it is found to be necessary 

to go to the extreme limits of double screening described in 18.5. 
A similar argument may be used with inductive couplings. 

Here a component carrying a current has associated with it a 

magnetic field, and this may be limited in volume by enclosing the 
component completely in a sufficiently thick metal screen. If the 

screen is thick enough to reduce the interaction between two such 
components, it is still possible for an intermediate metal body, 

generally only if of a magnetizable material, to act as a carrier of 
the interference between the two components. The most effective 

remedies are to separate the components from the common path, or 
to increa^ the thickness of the screens surrounding the components. 
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At very low frequencies the capacitive effect is generally small, 

and only very simple methods are necessary to reduce the effects 
to a low value. The inductive screening possible with any type 

screen decreases as the frequency is decreased, and consequently the 
inductive coupling will become more pronounced as the frequency 

decreases. Thus, very generally, capacitive couplings are more 

important at high frequencies, and inductive couplings at low 
frequencies, and with medium frequencies, say from 6 to 100 kc/s, 

both will have to be considered. 

We have now to consider whether a filter should be balanced or 

unbalanced, and what components should be used and how they 
should be adjusted and assembled. 

18.1. Balanced Filters. If the insertion-loss of a filter is not 
to exceed, say, 60db at a low frequency, say 30-60 kc/s, there is 
no great disadvantage in building a filter in a balanced form. In 

general, however, it is safer to build in an unbalanced form, with 
transformers at each end that is to be connected to an external 

balanced circuit. 

The disadvantage in using a balanced form of construction is 
that the insertion-loss of the filter is limited by the unbalance to 
earth of the various filter components, the generator and the load. 

Consider, for example, the network shown in Fig. 56(a). The 

filter is a single balanced T section, having equal image impedances 
Zqi and an infinite image transfer attenuation. The filter is per¬ 

fectly balanced, the opposite series-arms being equal. The generator 

and load have impedances to earth of Zi^ for the former, and 
^3, z^ for the latter. The circuit may be redrawn as Fig. 56(6). 

It will be seen to consist of two Wheatstone bridges p and q. The 

current leaving bridge and entering bridge q is proportional to 

(see Section 2.2). 

The current leaving bridge q and entering the load is proportional to 

Thus the current entering the load is proportional to 

(”-) (3i - 32)(Z3 - St) 

and is only zero if Zi = z,, or Zj = z«, i.e. if either generator or 

load is balanced to earth. But as the uisertion-loss of a network 
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Fio. 66.—Balanced Network between Unbalanced Terminations. 

is equal to the mis-match losses at each end, plus an interaction 
loss, plus the image transfer attenuation, the network we have 

been measuring should have had an infinite insertion-loss. 
The effect of unbalance in the filter itself is still further to 

increase the error, and it will be found that there is an upper limit 

to the attenuation that can be introduced between a particular 

combination of generator and load. 
The use of an unbalanced structure increases the ease with which 

the designed insertion-loss of a filter may be realized, although 
certain precautions have to be taken. 

18.2. Unbalanced Filters. When we were considering the 
unbalanced form of network, it was drawn in the manner shown 
in Fig. 67(a). E, Zj^ is the generator, is the load and /j, /* 
and are the Maxwell circulating currents in the three meshes. 

It was assumed that the impedances were concentrated in the 
rectangles, the lines joining them being connections of zero imped¬ 
ance. In practice, however, the network is as shown in Fig. 67(6). 

Here fj, r, and denote the impedances of the nominally zero 
impedance connections in the lower arm of the network, 
and ^4 denote the impedances to earth of the generator and load. 

As a result of these extra impedances, a current of Ig, flows in the 

mesh earth——r,—r,——earth, and /j, /, and /, are modified 
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by this fourth cyclic current. If the whole network is offering a 
high impedance to the current applied by the generator, ^ /g, 
and the current flowing in the “ earth ” mesh is produced largely 
by the p.d. across r^, which is of value /ifi. Then the current in 
the “ earth ” mesh, I^, is approximately equal to 

_ II = 

Fig. 67.—Unbalaxiced Filter showing Earth Connections. 

if we neglect and in comparison with and Z4, which we may 
do as the former are the impedances of short lengths of wire and 
the latter are the earth Impedances associated with the generator 
and load, and are high. Thus in mesh 3 there is introduced an 
e.m.f. of value given approximately by 

IiTiTz 
z^+z^ 

giving rise to a mesh current of approximately 

ixTxT.r__-1 

2:j+2;4Lself-impedance of mesh Sj 
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This may easily be of the same order as the original mesh current 
/g, and the full insertion-loss, therefore, may not be realized. 

The situation is, however, generally worse than this. There 

is also a fifth mesh to be considered, this including Zi and ^g, and 
a similar effect may arise. 

It is usual to connect the earthy ends of an unbalanced circuit 

to earth. If only the generator is so connected, is short-circuited, 
and the “ earth ” current is thus increased. The effect of Zi is, 

however, eliminated. If, in addition, the earthy end of the load 

is connected to earth, z^ is also short-circuited and is still further 
increased. 

An improvement may be effected by connecting the lower ends 

of all components to earth at one point, as shown in Fig. 57(c), and 
the impedances, ri, rg and rg, may then be absorbed into the shunt- 
arms. 

If the generator, network and load are separated by some 
distance, this method of wiring is not directly applicable. The 

network itself should, however, be connected so that all the earthy 

ends of the shunt elements are joined by separate leads to one 
point, and to this point should be connected the earthy ends of 
both input and output leads to the network. The earth should 

be connected to the earthy side of the whole circuit at one point 
only, and it will probably be found that the earth point of the 
network is the best place for the connection of this earth lead. 

In order to reduce pick-up from stray fields (e.g. radio trans¬ 

mitters working at frequencies near those being transmitted through 
the network) the whole network should be enclosed in a complete 

metal screen which is joined to the earthy side of the network. 
As the earth lead may be connected to the complete circuit at 
another point, the metal screen should be insulated from earth. 

The wiring between generator and load should be carried out in 

coaxial cable which is insulated from earth, and both generator 
and load should be completely screened, and the screens of each 

of these units (which are insulated from earth) are connected to 

the earthy sides of the units. Such a circuit construction will 
assist greatly in enabling a high (design) insertion-loss to be obtained 

in practice. 

It will be noticed that the whole circuit is completely screened, 

and is of coaxial form throughout. At high frequencies this form 

of construction offers great advantages. In a coaxial cable, for 

example, the loop impedance is a minimum for current fiowing on 

the outside of the inner conductor in one direction, and on the 
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inside of the outer conductor in the opposite direction. If an 

alternative path is provided, of low self-impedance, which would 
be expected to short-circuit part of the outer, or central conductor, 

it will be found to have very little effect on the distribution of 

current, as any loop circuit including this alternative circuit will 
have a much higher total impedance than the total loop impedance 
of the coaxial circuit. An extensive review of this subject, with 

many examples, is given in an article entitled “ Some Aspects of 

Crosstalk between Unbalanced Circuits,” H. Stanesby and E. W. 
Ayers, P.O.E.E.J., April, 1943. 

The complete, screened circuit is shown in Fig. 58(o). Zt, 
and 26 represent the impedances to earth of the three screened 
units, the generator, the load and the network, respectively. 

Fig. 58.—(a) Coaxial Circuit. 
(b) Double-screened Transformer. 

Currents or p.d.’s may be induced on the outside of the outer 
conductor or screens, by any external fields, but these should not 

be able to affect the inner circuit owing to the high attenuation 
offered by the outer conductor to current flowing perpendicularl}^ 
to it. The currents flowing in the screen may be high compared 

with the current into the load when the network introduces a high 
insertion-loss, the magnitude of the current being affected by the 
impedances Z2, and and Zi and 23, these two latter being the 

impedances of the screens of the outer conductors of the coaxial 

leads to external currents. 
If the screening effect of the outer conductor is not perfect 

(and this is true at the lower frequencies), this current flowing on 

the outsides of the outer conductors will give rise to smaller currents 
on the insides of the outer conductors, which in turn will give rise 

to loop currents in the various components of the circuit. Thus 

interfering low frequencies may be picked up across the load 
impedance Z^, It is also possible that there exist noise p.d.'s 

between the three earth points shown in Fig. 68(a). These are 
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denoted by dotted generators connected between the three earths. 
These can give rise to currents on the outside of the screens and 

outer conductors which, due to imperfect screening, may be intro¬ 
duced into the internal loop circuits. 

These ill-effects may be reduced by two methods. One is to 
insert double-screened transformers between each pair of large 

units, which will have relatively low impedances to earth, when 

compared with the impedance to earth of the coaxial cable used 
to connect the units together. Such a transformer is shown in 
Fig. 58(6). Zg represents the impedance between the two screens, 

due in the main to the capacitance between them. If such a 
transformer is placed in the circuit at p, the impedance through 
which the outer interfering currents flow is increased by the inter¬ 

screen impedance Zg of the double-screened transformer. If double- 
screened transformers are inserted into the circuit at p and g, it 
may be found that the generator, network and load may each be 

connected to a separate earth, without the interfering noise voltage 

across the load being made too high. As the interfering noise 
increases in frequency, Zg decreases, and the current in the outside 

of the screens increases. The screening effect of the outer con¬ 

ductor and screens increases and offsets this increase in current. 
From the screen to the high potential end of the transformer wind¬ 

ings there exists a capacitance, whose impedance decreases with 

a rise in frequency, and through this path the noise current on 
the outside of the screens has access to the inner conductor and 

thence through the load to the outer conductor and earth. This 
effect becomes more pronounced at the higher frequencies. Thus 
the double-screened transformer has its chief use at the lower 

frequencies. 

The second method is the use of a coaxial choke coil. This is 
constructed by winding a length of coaxial cable on to a laminated 

magnetic core. The impedance offered to a loop current flowing 

along the centre conductor and returning by the outer conductor 
is small and is practically equal to the impedance offered by the 
same length of coaxial cable straight. There is, of course, the 

admittance between the inner and outer conductors, which acts 
as a shunt across the circuit. To a current flowing in the sheath, 
or in the inner conductor alone, the impedance offered by the 

choke is high. Thus, as these longitudinal currents are those which 
may cause interference between the ends of a circuit, or intro¬ 
duce noise from two earth points, the high impedance offered by the 

choke acts so as to reduce the magnitude of these interfering effects. 
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Strictly speaking, the image impedance of the circuit at the 

point at which a coaxial choke is to be introduced, should be equal 
to the image impedance of the coaxial cable from which the choke 

coil has been constructed. In practice, however, this is not essential 

as long as the length of coaxial cable from which the choke coil 
is constructed is small in comparison with the wavelength of the 
highest frequency for that cable. The wavelength A is given by 

_ 3 X 1010 
cm. 

where k is the dielectric constant of the material between the 
inner and outer conductors and / is the frequency in cycles per 

second. If the length of coaxial cable used is less than the 
o 

effect of the coaxial choke coil may be ignored for any of the normal 
values of image impedance which will be met in practice. The 

image impedances of various types of coaxial cable lie between 

40 ohms and 100 ohms, and using circuit image impedance of 
about 75 ohms, the length of coaxial cable may be increased con- 

siderably above the length 
o 

18.3. Components. Other than piezo-electric crystal and 

electro-mechanical elements, the components used in filter con¬ 
struction are condensers and inductors. 

18.3.1. Capacitors. The cheapest form of capacitor is the 

paper capacitor. The dielectric is wax-impregnated paper, the 
paper acting as a carrier of the wax and as a separator between 

the plates, which are usually of metal foil. By a suitable con¬ 

struction, the self-inductance of a paper capacitor can be kept 

low, so that its capacitance remains sensibly constant up to some 
100 kc/s. Such capacitors can be clamped between heavy metal 

plates, thus stabilizing their capacitance values. It is not advisable 
to use clamped paper capacitors where the accuracy of capacitance 
is to be better than ±1%. 2% is a more usual manufacturing 

and working tolerance. The dissipation factor of a good paper 
capacitor may be as low as 0*002 at audio frequencies, the dissi¬ 
pation factor increasing with frequency. 

One of a number of forms of mica dielectric capacitor may be 
used for capacitors of lower dielectric loss than those quoted above 
for paper capacitors. The two chief forms of mica capacitor are 

clamped mica capacitors and silvered mica capacitors. 
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The clamped mica capacitor consists of interleaved mica sheets 

and metal foils, assembled in wax and compressed whilst hot 
between the clamps. Capacitances up to 1/xF are not too expensive, 

and manufacturing tolerances of ± are quite possible. The 

dissipation factor may be as low as 0-0003, this value holding up 
to some 300 to 1000 kc/s. The temperature coefficient of capaci¬ 
tance may be kept low (of the order of 0-02% per degree C.) and 

the stability is high. 
Silvered mica capacitors are made by painting or printing silver 

coatings on to the two sides of mica sheets, the silver after firing 

becoming attached intimately to the mica. The stability is good, 
and clamping is unnecessary. As the silver forming the plates is 
discontinuous the dissipation factor may be found to be somewhat 

higher at low frequencies and high frequencies than in the clamped 
mica construction. 

18.3.2. Inductors. It is essential that the inductors used in 

constructing a filter are so designed that there is no coupling 
between them or to any external circuit. In practice this means 

that the external field of any inductor used should be small. We 

are able to ensure this either by the use of a suitable form of con¬ 

struction or by screening. If the inductor has a large external 
field and is then screened, currents will be induced in the material 

of the screen having the effect of increasing the loss of the 
inductor, and reducing its inductance. We are thus forced into 
using a form of construction which gives rise to a small external 

field, or using very large screens. Even if an inductor having a 
very small external field is used it is advisable to screen it as it 
may have undesirable capacitances to other parts of the circuit. 

Three types of inductor may be used. They are air-cored, laminated- 

cored and dust-cored. 

18.3.2.1. Air-cored Inductors. These have no magnetic 
material within their field. The solenoid, consisting of a number 
of turns of wire wound on a cylinder, has a very large external 

field, and therefore has little use in filter construction. The toroid 

is a more useful form, for by careful construction the external 
field is negligible, and close screening is possible. This enables a 
filter to be constructed in a reasonably compact form. 

The toroid consists of a former in the shape of a ring, the con¬ 

ductor being woimd uniformly around the ring. If the cross- 
sectional area of the ring is A sq. cm. and D is its mean diameter, 

the inductance of a single layer winding of N turns is approximately 
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4NM 
—X 10 • henries. If the winding is multi-layered, A should 

be taken as the mean area of winding. The inductor should be 

sectionalized, equal numbers of turns being wound on equal portions 
of the ring, and the sections connected together so that the potential 
difference between the ends of each section and the adjacent sections 

is a minimum. This cuts down the self-capacitance of the inductor. 
Any air-cored inductor may be considered as being composed 

of an inductance in series with a resistance, in parallel with a 
capacitance and a resistance in parallel. The inductance is known 
as the true or d.c. inductance of the inductor, the series resistance 
is the conductor resistance, the capacitance is the self-capacitance 
and the shunt resistance is the measure of the dielectric loss in 
the dielectric separating the successive turns of the conductor. 
If Lq is the true inductance, and Go the self-capacitance, the induct¬ 

ance at a frequency /, equal to x/2jtVLoCo is given by 

L=Lo[l 

The series resistance of the inductor, when the latter is expressed 

as an inductance in series with a resistance, is increased by a factor 
[1 — and it is not advisable to work to a value of x exceed- 
ing, say, 0-3. Thus, as the inductance is increased, or the frequency 
rises, it is important to reduce the self-capacitance of an inductor, 

and as suggested above, this may be done by sectionalizing the 
winding. 

The resistance offered by a conductor to an alternating current 
depends on the frequency of the current, the diameter of the con¬ 
ductor and the resistivity of the material of the conductor. It 

is also influenced by the presence of other conductors carrying 
alternating currents of the same frequency. The effect is to increase 
the resistance as frequency increases and as the diameter of the 
conductor increases. The increase is a function of frequency, 
diameter of strand, resistivity and shape of inductor. The effect 
may be reduced by reducing the diameter of the conductor by 

stranding and twisting, each strand being insulated from its neigh¬ 
bours. A uniform stranding should be used in making up the 
composite conductor, so that each of the strands is of the same 

length, and each shares the available cross-section of the composite 
conductor, being as frequently in the outer layers of the latter as 
in the inside. One such form of conductor make-up is known as 
Litz wire. The insulation of the separate strands may be enamel, 
and the composite conductor should be insulated with a high- 

B.W.F. L 
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grade insulator, such as pure silk, or some cellulose silk. As the 
latter is hygroscopic, such inductors should be vacuum-dried and 
impregnated with a low' dielectric capacity low-loss material, for 

example, distrene, or the whole inductor should be hermetically 

sealed in its screening can. 

It can be shown that the resistance JR of an inductor of induct¬ 

ance L can be expressed as a power series in frequency, /, and 

neglecting powers of / higher than the second (this is generally a 
justifiable assumption), 

R=L{K+kp) .... I8(i) 

Where K is the d.c. resistance factor for the wire used, and k is 
a wire eddy current factor, the eddy current losses may be con¬ 

sidered as a resistive load on a winding coupled inductively to the 
coil and so capable of being represented as shunt-connected resistor 
invariable with frequency, or alternatively, as a series resistance 

varjdng proportional to frequency squared. 
iT is a factor obtained from two component factors, the one, 

Xi, being the space factor of the wire, being the ratio of conductor 

cross-sectional area to total wire area,"and the other, A2, which is a 
space factor of the winding, being the ratio of wire cross-sectional 
area to the total winding area. K is proportional to l/(AiAa). 

k depends on the cross-sectional area of the separate strands 

of the conductor, and on the closeness with which the strands are 
packed. It is proportional to where d is the diameter of 

the strands. 

If is the cross-sectional area of winding, d the diameter of 
the strands without insulation, n the number of strands to the 

conductor and D is the overall diameter of the conductor, and 

N is the number of turns in the winding, 

X, = nd^D^ 

X2 

From 18(i), it may be shown that 

Q = 
(oL 

2nf 
X+A/* 

18(ii) 

and is independent of L. 
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Differentiating 18(ii) with respect to /, and equating to zero, 
the value of / for Q to be a maximum is given by 

• • 

and the maximum value of Q is given by 

^ VKk 
If we substitute for Q and /o in 18(ii), 

2nf 

18(iii) 

18(iv) 

Q 
WKk 
y— 

7t 

= QVKk 

20 

K+kp 

where y 

1 
y~\— 

y 
■f/fo , 

18(v) 

The curve of the function 
2 

is thus universal for all air-cored 

inductors. When plotted on a log-log paper, it will be seen to 
consist of a straight line, of unit slope, when y < 1, which turns 
so as to be parallel to the y axis and equal to 1 when y is equal 
to 1, and then running off into a straight line of negative unity 
slope when 3/ > 1. It is symmetrical about the line 3/ = 1. 

Thus the Q-curve of an air-cored inductor may be determined 
2 

by the use of the two parameters, /o and Q, and the curve —~ - -. 

For geometrically similar inductors, /o is inversely proportional to, 
and Q is directly proportional to, the square root of the linear 
dimensions. 

For a particular core shape, Ai and may be calculated from 
the dimensions of the core and the available winding space, and 
with a sample winding K may be calculated by measuring the 
inductance and the d.c. resistance. As will be seen from 18(i), 
K is the ratio of d.o. resistance to inductance, / being zero. The 
value of K for any other type of wire can then be determined, 
remembering that K oc l/(AxA|). k may be determined by means 
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of a sample winding, the resistance being measured at two fre¬ 
quencies and k calculated from the measurements. The value of 
k for any other type of wire can be determined by remembering 

that k oc 
For example, an air-cored inductor, wound on a toroidal former, 

of internal diameter of 2 cm., external diameter of 4 cm., and 

axial length of 2*5 cm., wound in six sections and fitting into a 
7 X 7 X 3-75 cm. copper screening can, was found to have the 

following coefficients for a stranded wire with XiXt = 0-2, and 

46 s.w.G. stranding: 

K = 2200 ohm-henry 
k = Q X 10“* ohm-henry-‘ (cycles per sec.)-^ 

The maximum Q is then 240, and the frequency at which Q 
is a maximum is 220 kc/s, and the self-capacitance is about 7 /tifiF. 

An air-cored inductor, of very similar shape, fitting into a screen¬ 

ing can 11-5 X 11-5 X 6 cm., is approximately 1-65 the linear size 
of the inductor we have just seen. Thus the maximum Q would 

be expected to be 240 x Vl-65, i.o. 310, and the frequency of 

maximum Q 220 Vl'65 = 170 kc/s. For the same space factors 
and 46 s.w.G. stranding, K is 1700, k is 5-5 x 10“*, and Q is 335 

at /o of 170 kc/s. 

In the case of this second inductor, the Q at 10 kc/s will be 

about 42, and at lower frequencies will be proportional to the 
frequency. Thus if an air-cored inductor must be used, the size 

must be increased as the frequency of maximum Q is decreased. 
For example, to attain a Q of 200 at 10 kc/s will require an inductor 

fitting into a screening can of about 35 x 35 x 18 cm. This is 
obviously too large for any general application. Recourse, therefore, 

has to be made to inductors having a magnetic material as a core. 
By decreasing the cross-sectional area of the toroid former, 

a Q of 200 at 10 kc/s may be obtained in a screening can of 

25 X 25 X 12-5 cm. 

18.3.2.2. Inductors with Magnetic Cores. If a magnetiz¬ 

able core is placed within the field of a coil of wire, the inductance 

of the latter is increased. If the total resistance is increased to 
a lesser extent than the inductance is increased, the Q will be 

increased. As all magnetizable substances that may be used are 

also conductors, currents will be induced into the magnetizable 
core and energy will be dissipated therein. This has the effect of 

increasing the a.o. resistance of the coil of wire. In order to reduce 

this loss, the resistance of the material of the magnetizable core 
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is split up by laminating or powdering, adjacent laminations or 

particles being separated by insulating materials. In addition, the 
hysteresis effect noted in magnetizable substances gives rise to an 

extra loss of energy with a consequent increase in the a.c. resistance 
of the coil of wire. 

It may be shown that the resistance of an iron-cored inductor 

is given by 

R = L{K+oLf+f}P) . . . 18(vi) 

where AT is a space factor, 

a = F^+F^IVL, 

/? = F,+k, 
Ff, = residual loss factor, 

Ff^ = core hysteresis loss factor, 
I — r.m.s. current in inductor, 

F^ = core eddy-current loss factor 

A: = a wire eddy current factor. 

It will be noticed that the term a is dependent on current, 
and the relationship between current and p.d. is therefore non¬ 

linear. The portion of a which is dependent on current gives rise 
to intermodulation effects. The term “ intermodulation ” covers 
the condition in which an input current of frequencies fi and 

gives rise to p.d.’s of frequencies {nfi ± m/a), where m and n are 
])ositive integers, ranging from zero to infinity. 

We have already discussed K and k in 18.3.2.1. For any par¬ 

ticular core, all the factors of 18(vi) may be determined by measure¬ 

ments on a trial winding, separating out K, ol and ^ by measure¬ 
ments at 3 frequencies (one of which may be d.c.), and by keeping 

the frequency constant, Fj^ may be determined by changing the 

current. The technique of such measurements is described in a 

series of articles in Electronic Engineering, August-December, 1943, 

entitled, “ Dust-Cored Coils ”, by V. G. Welsby. 
Various types of dust core are available, ranging from toroids 

of mean radius 3*2 cm. with a cross-section of 1*52 x 1*41 cm. (axial) 

made of a material of permeability of 125, to small dust cores of 

about 1 cm. in length and 0*3 cm. in diameter, the former being 
suitable for use at about 4 kc/s, and the latter at over 1 Me. The 

range 600 c/s to 2 Mo/s can be covered by dust-cored inductors 

of small size, which have Q’s in excess of 100. By choice of core 
and winding, in excess of 300 may be anticipated over a range 

2kc/s to 1 Me. 
Laminated cored inductors may be considered as being simplified 
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forms of dust cores, the magnetizable material being in the form 
of sheets or laminations, successive laminations being separated by 
means of insulating coatings. The use of such coils is probably 

restricted to the low-frequency ranges (20 c/s to 1 or 2 kc/s), the 
Q'q being generally of the order of 50 for small coils not exceeding 
3-5 X 7 X 8 cm. In order to obtain stability in inductance value, 

an air gap may have to be introduced into the core, and this increases 

the difficulty of designing such coils. 

18.4. Measurement and Adjustment of Components. For 
detailed discussion on the measurement of filter components, 
recourse should be made to some of the books written on that 
subject.* The following is a very brief discussion on this problem. 

18.4.1. Capacitors. These are probably the components of 
a filter which may be measured and adjusted most accurately. 
The change of capacitance with frequency of the good (i.e. low-loss) 

capacitors which may be used in filters is very small, and may 
in most cases be neglected. Internal inductance restricts the actual 

magnitude of capacitance at any frequency, but if care is taken, 

this should not be of great importance. 
Thus we may use a bridge working at a low (audio-) frequency, 

where such a bridge may be made to give a high degree of accuracy, 

and to measure and adjust our capacitor by means of this bridge. 
The bridge should preferably be a unity ratio arm bridge, having 

a fixed earth connection at the junction between the two unknown 

impedances. Of these, one may be a fixed capacitor of capacitance 
greater than the highest capacitance it is required to measure, 
and the other a variable capacitance of the same, or greater, total 

capacitance. Small series resistors in each of these two arms 
enable the bridge balance to be made perfect. The bridge is first 
balanced, the unknown capacitor added in parallel with the variable 

capacitor, and the bridge rebalanced. The difference between the 

capacitance of the variable capacitor in the two balance conditions 
is the capacitance of the added capacitor. An accuracy of ±0*1% 

in measurement should be possible with precision laboratory bridge 

components, and adjustment of capacitance to ±0*5% should prove 
practicable. With variable trimmers across the unknown capa¬ 

citor, adjustment to ±0*1% should prove to be possible. Thus 

capacitors should be able to be produced to an accuracy of 
±0-5%±0*1% for fixed capacitors, and ±0*1% ±0-1% for 

capacitors with continuously variable trimmers. 

* E.g., Alternating Current Bridge Methods, Hague (Pitman & Sons). 
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Complete bridges are available for precision measurements of 

capacitance, and most of the precision instrument manufacturers 
produce suitable pieces of apparatus. 

18.4.2. Inductors. Here the problem is more difficult. One 
method which has been used successfully for inductors to be used 

up to 500 kc/s is described here. 
It will be remembered that an inductor may be considered, to 

a fair degree of accuracy, as consisting of a dissipative inductance 

in parallel with a shunt capacitance. For a given core and shape 

and type of winding, the latter is approximately constant, and 
independent of the inductance. Thus a low-frequency measure¬ 
ment will give the value of the inductance, this being known as 

its D.c. or true inductance. The test frequency must be chosen 
so that the effect of the shunt capacitance is negligible. 

A low-frequency Maxwell Bridge or Owen Bridge * has been 

found to give good results, an overall adjustment and bridge 

accuracy of ±0*7% being obtained if care is taken in screening and 
earthing. A difference method is again essential, and reference 

should be made to Hague’s book for the details. 
For checking the effective series resistance of an inductor near 

its working frequency, a simplified form of the bridge described 

by Welsby {Electro7iic Engineering, 1943) has been developed. 
It enables measurements to be made at 11 frequencies, approxi¬ 
mately logarithmically spaced between 10 kc/s and 470 kc/s, to 

an accuracy of ±10%. This figure can be improved on only by 

producing a precision bridge which may prove impossible to be 
used by other than skilled laboratory staff. 

The bridge consists of twin-wound transformer ratio arms 

supplying the bridge from a pre-set 11 frequency oscillator. The 
resistance arm is a decade h.f. type resistance box, of 100 ohms 

maximum resistance, in 0*01-ohm steps. The unknown arm con¬ 

sists of a double-screened ballast inductor, one for each of the 
chosen frequencies in series with a double-screened compartment 

for the unknown inductor, and in series with a 0-1000 //^F variable 

air capacitor of low loss. The lower ends of the two unknown 
arms are connected together and to earth. The two outer screens 

are connected to earth, and the inner screen of the ballast coil 

container is connected to the transformer ratio arm, the inner 
screen of the unknown inductor container being connected to the 
high potential end of the capacitor. The detector, pre-tuned to 

♦ Alternating GurrerU Bridge Methods, Hague (Pitman & Sons.). 
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the same chosen frequencies, is connected between the centre point 

of the ratio-arm transformer and earth. 
The bridge is used as follows. First the leads appearing in the 

unknown inductor container are connected together, and the bridge 
balanced by adjusting both resistance box and the air capacitor. 
The unknown inductor is then inserted in the container and con¬ 

nected up, and the bridge rebalanced. The difference between 
the two settings of the resistance box is the series resistance of the 

inductor. The Q may then be calculated from the known low- 

frequency inductance. 

18.4.3. Adjustment of Components in a Filter. For 
certain purposes it may be possible to adjust the components of 

a filter in position. 
Calculation shows that it is more important that a resonating 

arm should resonate at its correct frequency than that either one 

or other of its components should be accurate, and the remainder 
inaccurate. Thus it is possible to adjust separately the com¬ 

ponents of a filter, assemble the filter and trim the components 

(usually the capacitors) in the complete filter to give the correct 

resonances. These generally give rise to peaks of high attenuation, 
and a form of measuring set such as will be described in Section 19 

may be used. The procedure is to set the variable frequency 

testing oscillator to one of these resonant frequencies, and trim the 
capacitor (or inductor) of that resonating circuit to give a maximum 

of loss. This method may result in it being made possible for 

components as much as ±5% out from their specified values to 
be used. If the components are separately adjusted before assembly, 

±^% is a more usual figure for adjustment. For narrow band-pass 

filters even this figure of ±|% may prove to be inadequate, 
and recourse may have to be made to the adjustment of resonant 

frequencies in order to produce a filter whose performance agrees 
with the design performance. 

In the case of lattice-type filters, such adjustments must be 

carried out in the completed filter, and this is sometimes a dis¬ 
advantage when a lattice structure is used. 

18.5. Choice of Filter Configuration. In ladder type 
networks, two alternative forms are generally available. One is 

based on a series-derived half-section, and the other on shunt- 
derived half-sections. Where the various circuit capacitances are 

of the order of 100 times the self-capacitances of the inductors, 

there is little to choose between the two alternative forms, except 
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in the cases where price considerations make essential the choice 
of a circuit which has the fewest number of the more expensive 
component (i.e. capacitor or inductor). As the frequency rises, 

however, the circuit capacitances approach the self-capacitances of 

the inductors, and stray component capacitances become important. 
In order to overcome these difficulties, certain precautions should 

bo taken. These include the choice of circuit so that parallel 

resonant circuits are used. The self-capacitances of the inductors 
may be allowed for by providing a parallel capacitor of design 

capacitance less the self-capacitance of its associated inductor. A 

mean figure for the latter, one holding for each type of inductor, 
may be used. In the case of series arms, each resonant circuit 

should be double screened, the outer screen being connected to the 

earthy side of the circuit, and the inner screen connected to the 
resonant circuit so that the capacitance between inner and outer 

screens is thro^vn across a parallel resonant circuit where it may be 

allowed for. 

19. MEASUREMENTS ON ACTUAL FILTERS. 

If the impedance at each end of a network is measured with 

the other end first short-circuited and then open-circuited, the 

image impedance at one end is equal to the square root of the 
product of the two impedances measured at that end, and the 

hyperbolic tangent of the image transfer coefficient is equal to the 
square root of the ratio of the short-circuit and open-circuit imped¬ 
ance measured at either end of the network (see 3(v) and 3(vi)). 

In this way Zoi, Zoa and P may be determined for any particular 

frequency from a set of impedance measurements on the network. 
If, however, the image attenuation coefficient exceeds about 2 nepers, 

or 20 db, the open-circuit and short-circuit impedances differ from 

each other and from the image impedance by a very small amount, 
and although this means that the image impedances may be deter¬ 
mined very accurately, the image transfer coefficient accuracy will 

be of a very low order. 
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It is obvious that, once Zoi, Zoa and P are known, the insertion- 
loss of the network when inserted between generator and load of 

known impedances can be calculated as described in Section 8. 

It is often more useful to be able to measure the insertion-loss 

of a network between two known impedances without having to 
calculate it from the network parameters. A form of transmission¬ 

measuring set enables this measurement to be made. 
By means of such a transmission-measuring set a generator of 

internal impedance and constant e.m.f. v can be connected 

to a load of impedance Zg either direct or through the net¬ 

work under test. If the p.d. across the load in the two cases is 
Fq and Fft respectively, the insertion-loss is given by 

A'db = 20 logio -^1 

and the insertion phase-shift by 

B' = arg - arg 

Let us consider the insertion-loss. 

It will be seen that if is large, F^ ^ F5, and the accuracy 
F 

with which the ratio ~ may be determined will be low, since it 
^ b 

depends on the accuracy of calibration of the voltmeter used, and 
F 

the accuracy with which it may be read. As a ratio of of 1000 

gives a value of of 60 db, and this is not an unusual value 

of insertion-loss, it will be seen that the difficulties in obtaining 
an accurate result are very great. It should be noted, however, 

that the accuracy is a maximum when is zero, i.e. when F^ = F5. 
An improved form of set is shown in Fig. 69. The network 

under test is fed from a generator, of any internal impedance, 

through a series impedance and terminated by an impedance 

Zff. The same generator also feeds a constant resistance attenuator 
of design resistance R through a series resistance JK, the attenuator 

being terminated by a resistance R. The attenuator is adjusted 

so that the same p.d. is measured across the two terminating 
impedances Zjg and R. 

Then 

20 logio — A^i, 4-20 logic 2 

= +20 logic 
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where is attenuation coefficient of the attenuator and 
is i'h® insertion-loss of the network. 

Thus 
2Z^ 

db — A-jr20 logi 
1 

The generator and series impedances act as generators of internal 
impedance equal to the series impedances and of e.m.f. equal to 
the p.d. across the generator terminals. (Thevenin’s Theorem, 
Section 2). The correction factor, 

is necessary to allow for the network under test being measured 
between unequal impedances, and the attenuator being used 
between equal impedances. When and have equal argu¬ 
ments, the table below may be used to determine the value of this 
correction factor. 

^i/^B 
. 

Correction Factor (db) Correction Factor (db) 

0 00 3-26 - 6-5 
01 5-2 3-5 - 70 i 
0-2 4-4 3*75 - 7-5 I 
0-4 31 40 - 80 1 
0-6 20 4-5 - 8-8 

0-8 0-9 50 - 9*6 
10 0 5-5 - 10-2 
1-2 - 0-8 i! 60 - 10-9 
1-5 - 20 1 70 - 120 
1-75 i - 2-8 8-0 - 131 

20 - 3-5 > 90 - 140 
2-25 - 4-2 i 100 - 14-8 
2-5 - 4-9 1 
2-76 - 6-5 
30 - 60 i 

! 

A set suitable for use in this way is shown in Fig. 59. The 
components enclosed within the dotted lines are made up on one 
panel and provide facilities for connecting a generator to the circuit 
under test and to the attenuator, each being fed through its appro¬ 
priate impedance (Z^ and R respectively). The circuit under test 
is terminated with its appropriate impedance Z^ and the attenuator 
by R, A key connects an external high impedance voltmeter to 
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Fiq. 69.—Insertion-loss Measuring Set for Unbalanced Circuits. 
J denotes coaxial jack ; K denotes key; V denotes high-impedance voltmeter. 

either of the two terminating impedances. As shown, the set will 
measure unbalanced circuits, and a balanced form is obviously 
possible by splitting all impedances and putting half into each 
leg of the circuit. The diagram also shows the screening that is 
necessary when high insertion-losses are to be measured. It is 
not advisable to attempt to measure the high insertion-loss of a 
balanced circuit, as very great care has to be taken to prevent 
any direct leak from the generator earth unbalance to the volt¬ 
meter, which sets an upper limit to the loss that can be measured. 

If the insertion phase-shift has to be measured, an additional 

piece of apparatus is necessary, which enables the difference in 
argument between the p.d.’s across the loads and R to be 
measured. One such piece of apparatus is shown in diagrammatic 
form in Fig. 60. It is based on the insertion phase-shift measuring 
set developed by the P.O. Engineering Department.* The portion 
of the circuit to the left of the dotted line is similar to the circuit 
described for the measurement of insertion-loss. The attenuator 
is adjusted until the voltmeter V reads the same p.d. in both 
positions 1 and 2 of the key K, The two p.d.’s across the out¬ 
puts of the amplifiers A\ and A2 differ by the insertion phase-shift 
of the network under test, as the insertion phase-shift of the lower 
network is zero, it being purely resistive. These two p.d.’s are then 
applied to the frequency changers F,C\ and F.C2, which are 
supplied with a modulation current from G2. The difference in 
frequency between the generators 01 and 02 is made equal to a 
low frequency (e.g., 50 c/s) to which the two filters Fl and F2 
offer low attenuation and equal phase-shifts. The difference in 
phase-shifts between the upper and lower circuits is unchanged 
(except in sign) by the change in frequency occurring in the fre¬ 
quency changers. After passing through two amplifiers A,Al and 
A,A2, the residting signals are applied to a direct reading phase¬ 
meter P.ilf, from which the insertion phase-shift may be read, 

♦ “ Apparatus for the Measurement of Insertion Phase-shift at Radio 
Frequencies ”, R. F. J. Jarvis and E. F. S. Clarke, P.O.E.E.J,, Vol. 33, p. 162. 
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An alternative arrangement is to pass the signal from the lower 

circuit through an adjustable phase-changer, and apply it and the 
signal from the upper circuit to a null-indicator. Then adjustment 

of the attenuator and of the phase-changer for a null-reading of 

the indicator enables the insertion-loss and phase-shift to be read 
off from the settings of the attenuator and phase-changer respec¬ 

tively. The alternative arrangement is also shown in Fig. 60. 
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Fio. 60.—A\, A2 == Preamplifiers. 
FCI, FC2 — Frequency Changers (Modulators). 
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The precautions referred to in Section 18 in the cases where 
the insertion-loss is high, must also be taken when measuring 

any piece of apparatus. 
In all cases the generator should have a good wave-form, and 

the voltmeter should have a high input impedance and be tuned 

to the fundamental frequency of the generator. It is possible in 

high-, band-pass and band-stop filters for the second or higher 
harmonics of the testing frequency to fall in pass-bands, or at 

frequencies to which the filter offers a low loss. In such a case 
the maximum loss that can be measured is of the order of 10 to 

20 db less than the ratio between fundamental and any harmonic 

frequency in the generator output. The tuning of the voltmeter 
circuit should be such that the selectivity of the voltmeter at its 
tuned frequency to any harmonic frequency exceeds the highest 

insertion-loss less the fundamental to harmonic ratio of the generator, 

by at least 20 db. 
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20. THE DESIGN OF FILTERS ON AN INSERTION- 
LOSS BASIS. 

It may have been noticed that although each filter network that 
has been designed in the preceding Sections has had to meet an 
insertion-loss requirement, the filters have been designed on an 
image-parameter basis and the insertion-loss has been obtained 
from these parameters by methods which have been fully described 
in the earlier Sections. There is a reason for this indirect design 
method : it is that the image-parameters of a Zobel-type filter 
can be obtained with ease, whereas the direct calculation of the 
insertion-loss characteristic of a network involves an enormous 
amount of computation. The indirect method does give good 
results, but when a steep-sided filter has to be designed it frequently 
happens that the dissipation of the components prevents an accept¬ 
able pass-band insertion-loss characteristic from being obtained and 
the best that can then be done is to design an equalizing network 
which will correct for the failure of the filter to meet the pass-band 
requirements. 

Many attempts have been made to develop a design method 
which starts with the insertion-loss requirements and the dissipation 
coefficients of the components that are to be used and has at its 
end a network meeting the requirements. Of these attempts that 
due to Darlington (of the Bell Laboratories) appears to show the 
most promise and his method is described in this Section. 

20.1. The Choice of an Insertion-loss Characteristic meet¬ 
ing the Design Requirements. The principles underl3dng Dar¬ 
lington’s design method may best be understood if we consider the 
design of a low-pass filter. The application of the method to the 
design of other types of filter will be described later. 

The non-dissipative networks shown in Fig. 61 have complex 
insertion-voltage ratios which may be written as 

= exp {A'+jB') 

where and 3 are polynomials in co® with real coefficients, 
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Fig. 61.—Low-pass Filter Networks. 

A' is the insertion-loss in nepers, 
J3' is the insertion-phase shift in radians, 
if is a positive constant and 

is of the form Tlfco^ — 
r=l 

As our chief concern is with the insertion-loss, we can take the 
squares of the moduli of both sides of the equation given above 
and write 

exp 2i4' = K 20(i) 

The insertion-loss requirements, to which we have to work, 
can be set down as shown in Fig. 62, the insertion-loss of the filter 
having to lie within the shaded areas on the figure. is the 
maximum allowable pass-band distortion, (which is a prescribed 
function of w) is the minimum discrimination insertion-loss and 

“ flat-loss ” of the filter. In general the only require¬ 
ment for is that it shall be as small as possible. 

Let us now rewrite 20(i) as 

exp 2A’ =exp2^W.^lj 

or exp 2{A' - . . . 20(ii) 

The modified insertion-loss requirements can be read off against 
the auxiliary scale {A' — ) which is shown on the left of Fig. 62. 
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Fio. (52,—Insert ion-loss specification for Low-piiss Filter Network. The curve of 
insertion-loss v oj must lie within the shaded area. 

In Fig. 63 the insertion-loss requirements have been expressed in 
terms of exp 2{A' — 

If Ag is independent of co, an expression (in the form given by 
the right-hand side of (i)) may be obtained by the use of elliptic 

exp 2 (A 

J'^expZAp I 

•' 1 

Fio. 63.—Specification in terms of Insertion Voltage-Ratio. 

functions. A method applicable to any form for is described 

below. 
Let ps design a “ reference filter ’’ having a cut-oflF at coq, the 
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highest angular velocity in the specified pass-band, and having an 

image-attenuation which exceeds A'^ by at least log^ /~ nepers 

; 17.4 

if and are in nepers, or by 10 logio Ag are 

in db. At least one constant-A; half section must be included to 

ensure that at co = 00 the image-attenuation is infinite. This is 
necessary as the insertion-loss of any low-pass type of network is 

infinite at co = 00. 
Now let us investigate the function 

l+ijcosh^P .... 20(iii) 

where P is the image-transfer coefficient of the ‘‘ reference filter 
In the pass-band of a dissipationless filter (see Section 5), cosh P 
lies between — 1 and +1 and cosh^ P therefore lies between 0 and 

-fl. Hence in the range 0 to cdq (the pass-band of the ‘‘ reference 
filter ”) function (iii) will lie between 1 and 1+A:. Thus function (iii) 
complies with the pass-band insertion-loss requirements as shown 

in Fig. 64, if we make 10 logjo (1 +k) = A^ db. In the attenuating- 
band of the ‘‘ reference filter ” coshP is of the form A+jnn and 
if A exceeds 3 nepers 

cosh^ P = cosh^ {A +jP) = [(— 1)^1 exp AY' — \ exp 2A 

and J exp 2A will then exceed 40 and we can ignore 1 in comparison 
with k cosh^ P and write * exp 2A for 1 -\-k cosh^ P. 

The ‘‘ reference filter ” was designed so that 

A > Alog,-^7- nepers 

and therefore exp A > y/\2/A^ exp Ag 
i.e. exp 2A > [2/J^] exp 2.4' 

or [-4^/2] exp 2A > \k/A\ exp 2.4 > exp 2.4, 

i.e. the expression (iii) also meets the attenuating-band specification. 
We may therefore write 

exp 2(.4' — ) = l-(-fccosh*P . . 20(iv) 

the right-hand side being of the form required by (ii). 
The first stage in the design is now clear. A “ reference filter ” 

is designed having a cut-off at the top of the required pass-band 
and having an image-attenuation exceeding the specified suppression- 

17.4 
insertion-loss by at least 10 logjo -jr- db when A'p is given in db. 

B.W.F. M 
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Fio. 04.—Stages in the choice of an Insertion Voltage-Ratio Function. 
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The “ reference filter ” may be designed most easily by the use of 
templates as described in Section 14. Only the values of the 
sections used in the “ reference filter ’’ need be noted. The element 

values are not required nor is it jiecessary to incorporate sections 
having image impedances which match the load impedances. The 
cut-off of the “ reference filter ” can coincide with the top of the 

pass-band instead of having to be placed some distance from that 

frequency as would be necessary if a Zobel-type filter were being 
designed. The sole requirement to be met is that the “ reference 

filter ” shall have at least one constant-fc half-section. 

As usual we shall refer all frequencies to the cut-off frequency 

(coo/27i) of the “ reference filter ” and write x = co/wq- Designing 

the “ reference filter ” by the template method, we shall be able 

to note the values of X* for the sections chosen to meet the 
“ reference filter ” requirements. Then we shall be able to write 

coshP 
2nv(x^ -X) 

. 20(v) 

where X ^ I — l/x^ 

and there is one term in each of the //-expressions for each half¬ 
section in the “ reference filter (Using the X-relationships given 

in Section 14 the expression given above can be applied to any 

form of filter ; low-, high- and band-pass, or band-stop.) 
The denominator of the expression for cosh P for a low-pass 

filter, will factorize into terms of the form r- where 

= 1/(1 — X^^). From this stage onward a high degree of 
accuracy in computation is essential. 

We can now write down our expression for the insertion-loss as 

exp 2[A' — ) P = N'{x^)/M'Hx^) 

It is now necessary to substitute ~ for x^ and write 

exp 2(A' - = X(p*)/Jlf2(p®). 

The right-hand sides of the above expressions for 

exp 2[A' - 

are of the form required in (i) and (ii). 
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20.2. Allowance for Dissipation. If a physically realizable 

network is to be constructed having the insertion-loss given by (iv) 
certain restrictions on the form of N{p^) are necessary. 

First factorize N{^^) so that 

N{p^) = — p^) . . . 20(vi) 

where J is a real constant and are either real or occur in 
conjugate pairs. Then write 

P) • • • 20(vii) 

where the p^’s are either real and negative or occur in conjugate 
pairs and have negative real parts. This last requirement is essential 
if the network is not to include sources of power. In (vi) (i/f is 

equal to the even-power terms and p® is equal to the odd-power 
terms. As a check on the accuracy of factorization and square¬ 
rooting, — p^®2 should be equal to N(p^), 

It is at this point that we can take dissipation into account. 

An inductor of inductance L and series resistance r has an 

impedance of jcoZ/+^ == (jcc-fp® == where d is the 

“ dissipation-coefficient ” of the inductor. With r == 0 (i.e. (i = 0) 

the impedance is pL if p =jco. With dissipation present the 
impedance is {p+d)L, Similarly if a capacitor has a capacitance 

C and a shunt conductance g, the admittance of the capacitor is 

pC with = 0 and (p+d)Cy where d g/C, when dissipation is 
present. In other words, if a dissipationless network has an im¬ 

pedance given by /(p), then if dissipation d is added equally to 

each network component the impedance will be given hy f{p+d). 
As the insertion-voltage ratio of a network is a quotient of two 

impedance functions, if the insertion-voltage ratio of a dissipationless 
network is given by F{p), then, when dissipation d is added to each 
component, the insertion-voltage ratio will be given by ®(p-fd). 

jP(p) has been chosen so that the insertion-loss requirement is met 

and we design a dissipationless network to have an insertion-voltage 
ratio given by F{p — d) and we then add dissipation d to each 

component, the insertion-voltage ratio will be given by F{p — d-\-d 
i.e. by F(p), This gives us a method enabling us to allow for the 
dissipation of network components. We now write 

'^d+P^d = ±JMPn+d —p) . . 20(viii) 

where equal to the even-power terms and p'B^ is equal to the 
odd-power terms and d is the dissipation-coefficient of each of the 

components from which we shall make the filter. For the same 

reasons as before the real parts of the p^+d’s must be negative and 
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this sets a limit to the maximum value of d that we may choose. 
In point of fact, d should not exceed one half of this maximum 

allowable figure, or will be found to be very high. To be 
exact we should also modify by writing p — d for p, but 
the error introduced by leaving M%p^) unchanged is so small that 

it may be ignored. The insertion-voltage ratio of our network 
before dissipation is added is given by 

_ Na(p^) 
M^p^) M^p^) 

exp 2{A' - - 20(ix) 

We can now determine by finding the minimum value of 
N^{p^)/M^p^) in the negative range of p^. This minimum is equal 

to exp when is in nepers. 

We must next factorize a new expression, writing 

N^(p^) - M\p^)/exp = J'2;jr(^;2 -p^) , . 20(x) 

where J' is a real constant and are either real or occur in con¬ 

jugate pairs. Now write 

A'+p'B' = ±Jn{p^ — P) • • • 20(xi) 

where the p^^s are either real or occur in conjugate pairs. There 

is however no restriction on the signs of their real parts. A' is 
equal to the even-power terms and p^B' is equal to the odd-power 

terms. There is again a check that we can apply to see if the 

factorization and square-rooting have been correctly performed, for 
— p^B'^ should be equal to N^(p^) — M^{p^)/exp 24^,„ . 

The and 2’s include in themselves factors ± J or which 
may be either positive or negative. The signs of the J’s must be 

chosen so that 

Afi/M{p^) is positive when p = 0 

B'/B^ is negative when 

A'/A^ is positive when = 0 if R^> and negative if 

Ri < R^. 

20.3. Determination of Open- and Short-Circuit Imped¬ 
ances. It is now possible to determine the ratio of the generator 

and load impedances and the open- and short-circuit impedances 

of each end of the non-dissipative network. 
If R^ and R^ are the resistances terminating the ends 1 and 2 of 

the network 
= 1/exp = K 

or if we write r = R\/R% 
r -\ ±2 V(1 - K)/K . . 20 (xii) 

If Zfi is the impedance measured at end 1 of the network with 
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end 2 open-circuited, is the impedance of end 2 of the network 
with end 1 short-circuited and so on, and the dissipation-coefficients 
of all the circuit elements are d. 

ZJR^ 
Z,JR, = 

ZJR^ - ^')J 
If the load resistance R^ is to be infinite. 

. 20(xiii) 

Z,JR^ = ■ • • 20(xiii) 

and if the load resistance is to be zero, 

• • • 20(xiii) 

If, however, the dissipation-coefficients of the inductors are to 
be and those of the capacitors are to bo (dj^ > d^), we write 

d = {di^-\~dQ)/2^ d == (dj^ — da)/2 

and we allow for dissipation in two stages. First we take d into 
account and obtain <z/f^ and as shown in (vii). We then allow 
for d by writing 

■^ds+P'Bds = (^<i+p®d)(p - d){p)* 
= Mp{p)* 

the factor being inserted only if Mp is an odd-power fifiiction 
of p. and are both even-power functions of p. If we 
write 

we can calculate from the minimum value of N^(p^)/M^^(p^) 
in the negative real range of p^. Factorizing 

and square-rooting the zeros gives us tA' and S', where 

^'2 _ p2®'2 ^ Ar^(p*) _ Jlf*^(p2)/exp 2^;„i„. 

We can now write down open- and short-circuit impedances 
from 

Zfj* _(e/fja — c//'')-t-^(Sda-i-S') 
iZi --jp _ -g') - 

^ci* _ p»(Sa. - S')+«^^(Sdj+S')+2.3^d, 

Ri (P — ^){(<v^ + 'vf')+^(S(W+S')} 20fxinl 

Zf,* _ {.Aas + ^')+d(‘Ba,-\-‘S') I 

^2 “ (p -M'Bd^+W) 
Zcz* _ P*(‘Ba, - S')-fa*(Sda+S')+2d^^ 
It, lip - d) - ^')+<5(Sd3+S')} 
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The Z*’a are the open- and short-circuit impedances of a network 

with inductors with dissipation -f-d and capacitors with dissipation 

— To calculate the elements of the network we must have the 

open- and short-circuit impedances Zfi, Z^^, Zf^, Z^ of the network 
when all dissipation has been removed, and these non-dissipative 

impedances can be obtained fromZfi*, Z^i*, Zf^ by substituting 

p for (p — 6) and (p^ — 5^) for p^ in (xiii). 

The method described in the preceding paragraphs is of use 
only in the design of low- or high-pass filters. For (loss frequency) 

symmetrical band-pass or band-stop filters the preliminary design 
can be based on the assumption that dj^ = Section 20.5 will 
show how the value of d has to be chosen when band-pass or band- 

stop networks are to be designed. 

20.4. Determination of the values of the network com¬ 
ponents from Zf and Z^. The filter network will have the form 

shown in either (a) or (6) of Fig. 61 after one constant-^ half-section 
has been removed. 

The design of the reference filter has given the values of z 
(and therefore of p since p = jz) for which P (and therefore exp 2A') 
is infinite. We can now allocate as we please these values of p 
(i.e. Pft, Pc, etc.) to the resonant or anti-resonant elements of 

the network of Fig. 61. From the open- or short-circuit impedances 

of the network at oo we can decide whether (a) or (6) of 

Fig. 61 is the type of network to which the impedances refer. For 

if Zfi and approach Hp* as p^-> — oo Z^i and Z^ are 
inductive at those values of p^ and (a) is the relevant network. 

If Zfi and Zci approach H/p as p^-> — oo the impedance is 

capacitive and (b) is the relevant network. Fig. 65 shows the two 

forms of the low-pass network with the addition of the minimum 
number of parameters necessary for the complete specification of 

all the component values. We know and have allocated the p/s 
and we have therefore only to find one parameter for each arm of 
the network. These parameters are the quantities Uj, Ug, etc. 

If in the networks {a) and (6) of Fig. 65 the corresponding a^’s are 

equal, the insertion-loss characteristics of the two networks will be 
identical and the open- or short-circuit impedances of one network 

are the short- or open-circuit admittances of the other network. 

Thus if wo find that the impedances we have obtained refer to one 
type of network, it is easy to modify them so that they refer to 

the type of network we wish to design. 

* Where H is a positive constant. 
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Darlington has given a method for calculating the a^’s, but it 

is probably more simple to proceed as described below. 
Let us assume that the open- or short-circuit impedances show 

that we are dealing with a network of the form (a), Fig. 65. Choose 

a2 as 

Fig. 65.—Component values in Low-pass Filter Networks. 

that impedance, Zf^/R^ or which has the simpler form. At 
—p^ the first shunt arm has a zero impedance and Zf^jR^ or 

Zc\/R\ is then equal to the impedance of the first series arm at 
that value of p. 

Thus {Zfi or Z^i)v\/Ri = 

from which we can determine a^. 
Zfi/Ri or Z^i/Ri must be equal to a^p plus the impedance of 

the first shunt arm in parallel with the rest of the network. Hence 

the impedance (Z'fi/Ri or Z],i/Ri) of the first shunt arm in parallel 
with the rest of the network may be written down, as it is given by 

{Zfi or Z'^i)/Ri = {Z,i or - Uip 
By inverting this expression we have the admittance of the network 
to the right of the first series arm. This admittance is equal to 

the sum of the admittances of the first shunt arm and the rest of 

the network. If we express the admittance RifZ'j^ or in 
partial fractions, it will be found that one term will be of the form 

^ Pa)] from which we can determine Knowing 
and ag we can say that the first shunt arm consists of an inductor 

of inductance in series with a capacitor with which it resonates 

at p^. The remainder of the admittance R^/^jx or Ri/Z'^,^ is the 

admittance of that part of the network to the right of the first 

shunt arm. Expressing this as an impedance we can determine 
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by putting p* after which Ui can be found. Successive 
operations will give all the a^’s with the exception of that one 
proper to the series or shunt arm adjacent to the end 2 of the 

network. Our choice between and of the simpler 
expression will always leave the last arm-parameter indeterminate. 

This parameter we can most easily obtain from Z^JR^ or ZJR^. 
The network whose element values we have calculated must 

now have the dissipation resistors added and is then a filter net¬ 
work having = 1 and coq — 1. It can be changed to a network 

having = R^ and coq — o)q by multiplying all inductances by 

Ri/coq, all capacitances by l/iR^coQ) and all resistances by iZi. 

20*5. The Design of High-Pass, Band-Pass and Band- 
Stop Networks. So far we have considered only the design of 
a low-pass network. The extension to a high-pass network is simple 

as we have only to invert our insertion-loss requirements about coq, 
design a low-pass network meeting these requirements, and call 

each arm-impedance in the low-pass network an arm-admittance. 

The symmetrical band-pass network is also relatively simple to 

design. If a>i and cog the extreme ends of the specified pass- 

band and n = (wg — ^yi)/V(^2e>i)» design a “ reference filter as 
described in Section 14.1.3 which has an image-attenuation exceeding 

17-4 
the specified discrimination insertion-loss by at least 10 logio db 

and including at least one constant-A; half-section. Note the values 

of Xoo and write down cosh P from the expression given in (v), 
where X and x refer to the equivalent low-pass ‘‘ reference filter 
Design a low-pass network as described in the preceding sub-section 

and then replace each inductor L by an inductor L/n in series with 
a capacitor n/L and each capacitor C in the low-pass network by 
a capacitor C/n in parallel with an inductor n/C, the resistors 

being left unchanged in position and value. If the components in 
the low-pass network had dissipation-coefficients each of value p, 

then it will be seen that it is sufficient in the band-pass case to 

make the sum of the dissipation-coefficients of the capacitor-inductor 
pairs each equal to d/n. One way of doing this in practice is to 
assume that the capacitors have negligible dissipation-coefficients 

(this is generally a justifiable assumption) and adjust the dissipation- 

coefficients of each of the inductors to d/n. 
If we replace each inductor L in the low-pass network by an 

inductor nL in parallel with a capacitor l/(nL) and each capacitor 

G in the low-pass network by a capacitor nC in series with an 
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inductor l/{nc), the resulting network will be a band-stop network 
of band-width (toj — oii)/V{o)iCOi) equal to n. 

If a dis-symmetrical band-pass network is to be designed, we 
can design by the template method described in Section 14.1.4 a 
“ reference filter ” to meet the discrimination insertion-loss plus 

17-4 
10 logio —7T- db, including in the reference filter one constant-A: 

half-section, cosh P can be determined as before by putting 
^2 _ ^ 2 

X = in (v) there being as many 77 terms as there are 
X X2 

dis-symmetrical half-sections in the reference filter. The low-pass 

method of design is then followed until the element values have 

to be calculated. The dis-symmetrical band-pass network will be 
like one of the low-pass networks of Fig. 65 with each inductor 
replaced by an inductor in series with a capacitor and each capacitor 

replaced by a capacitor in parallel with an inductor. The resonant 

values of x (or p) giving rise to the infinite insertion losses are 
known from the “ reference filter design and these should be 

distributed so that an arm giving rise to two poles of insertion-loss 
produces one pole below the pass-band and one above. 

Consider as an example a dis-symmetrical filter starting with 

a first series arm consisting of an inductor in series with a 

capacitor Ci followed by a first shunt arm consisting of the series 
connection of an inductor, a capacitor and an inductor in parallel 

with a capacitor. We have chosen two values of p and 

for which the first shunt arm is of zero impedance. At 

[Zfi or =i>({)£'i + l/[p«)C'i] 

and at p^^^^ 
[ZfyOvZ.A =P(iiA+ !/!>(« A] 

(l-t) 

from which Li and can be determined. Wo can then remove 
p7/j +1/[pCi] from Zfi and Z^i leaving and Zji. Expressing 
Y'f^(= 1/Z;,) or YU = 1/Zpi) as partial fractions will discover two 

factors, one of the form p/ia^P^ — PiU)] the other of the 
form p/\(i(ii){p^ — J>(ii)®)] each of which is the admittance of an 
inductor in series with a capacitor, the two branches being connected 

in parallel. 
The arm so obtained has the same impedance as has the first 

shunt arm consisting of the series connection of an inductor, a 

capacitor and an inductor in paraUel with a capacitor. 

20.6. Orchard’s Modification to Darlington’s Method. A 
filter deigned by Darlington’s method has an insertion-loss which. 
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in the pass-band, osciUate between the limits set by the pass-band 
insertion-loss specification (Fig. 66(a)). It is sometimes advan¬ 

tageous to have a pass-band insertion-loss characteristic which does 

not osciUate (Fig. 66(6)). Orchard, of the G.P.O. Research Station, 
has shown how Darlington’s method can be modified to give the 

insertion-loss characteristics of Fig. 66(a) when the minimum 
discrimination insertion-loss in the attenuating-band does not 

depend on frequency. 

Fig. 66.—Comparison of Pass-band In.sertion-loss Characteristics 
designed by (a) Darlington, (6) Orchard method. 

If a characteristic similar to that shown in Fig. 66(6) is required, 

a high-pass “ reference filter ” is designed, having a cut-off at tOo 
(the lowest angular velocity in the attenuating-band), which uses 

only constant-iS: half-sections and which has an image-attenuation 
, 17'4 

exceeding by at least 10 logio -jy- db* in the pass-band 0 to cog 
Ap 

of the specification (Fig. 67(a)). 

For this “ reference filter ”, cosh P can be written down from 
(v) using the form for X appropriate to a high-pass filter. 

At (Og let cosh P be equal to (f> (Fig. 67(o)). 

Then <f>^ — [cosh* 
and if the design requirement is just met, P will be equal to 

^;+iog. J^ 

Hence 

where and A'p are in nepers. 

.^* = i exp 2^A;-|-log. ^1^) 

* 9 2 
= i exp 2^,.^- 

A p 

= ^ 

= ^exp 2A; 

* A' and being in decibels. 
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When CO < coq, oo > cosh® P > 

and when to > coi, 0 < cosh® P < -f-l (Fig. 67(a) ) 

Now write cosh* Pj =(^®.cosh®P 

When CO < to#, 0 < cosh® P^< +1 

and when to > toj, oo > cosh® Pj > <^® (Fig. 67(b) ) 

The insertion-loss ratio of the low-pass filter can now be written 
as 1 -f cosh® Pi 

for when to < coq, 0 < ^• cosh® Pj < +k 

i.e. 1 < 1 -f-A: cosh® Pj < 1 -t-A: 

Fio. 67.—Stages in obtaining cosh* Pj for an Orchard Low-pass Filter 
with the Characteristic shown in Fig. 67(6). 

and the pass-band requirement is met with a non-oscillatory char¬ 
acteristic, and when 

to > toi, 00 < A: cosh® Pi < 

i.e. 00 > 1 -l-A: cosh® P^ > exp 2^4, 

and the attenuating-band requirement is also met. The design of 
the filter now proceeds as was described in Section 20.2 et aeq. 

Of the two design methods, Darlington’s is the more economical 
of components, but Orchard’s generally allows the use of more 
dissipative (and therefore less expensive) components. 
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20.7. Example. The Design of a Low-pass Filter. Re¬ 
quirements : To pass frequencies between 0 and 3400 c/s with a 
distortion not exceeding 1 db; to suppress frequencies above 

3800 c/s by at least 28 db more than the minimum loss in the 

Fio. 68.—Stages in the choice of an Insertion Voltage-Ratio for the 
Low-pass Filter of Section 20.7. 

band 0 to 3400 c/s ; to operate between a generator of 600 ohms 

impedance and a load of infinite impedance. 
Referring all frequencies to 3400 c/s the attenuating-band 

requirements call for a discrimination insertion-loss which exceeds 
28 db when x exceeds 1'12. 

In this specification ^4^ is equal to 1 db and to 28 db ; k is 
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17-4 
equal to 0-26 and 10 logm -jr- db is equal to 12 db. The “ reference 

filter ” has to be designed to have a cut-off at a: = 1 and an image 
attenuation of at least 40 db (= 28 + 12 db) when x exceeds 1-12. 
A “ reference filter ” with one constant-^: half-section, one full- 
section with TO = 0'46 and one full-section with to = 0-7 meets the 
image-attenuation requirements. 

Substitution in (v) gives 

, p _ 15a;(a:* - 0-565)(a;=' - 0-9623) 

“ (x^ - r25¥9)(a:*^ 1-9608) 

Writing p = jx, = — x^ this expression becomes 

cosh P = 
jl5p(p*+0-566)(p*+0-9623) 

(p2 +1 -2539)(p -t-1 -9608)' 

and our insertion-loss is given by 

exp 2(+' — A'min.) = 1 cosh* P 

[ (p* + l-2539)(p* +1-9608) J 
51-75(-pW - 3-03528p* - 3-29581p« 

_ - l-36607p«+0-00985p*+0-11681) 

(p* +1 -2539)*(p* +1-96087* 

= Ar(p*)/Af*(p*). 

Factorizing the numerator, 

N(p^) = 51-75 

(0-22812 - p*)( - 1-00163+^0-06758 - p*) 
(-1-00163 -jO-06758 - p*). 

(- 0-63007+j0-33406 - p*) 
(- 0-63007 - jO-33406 - p*). 

and on square-rooting the p„*’b 

e/lT+P® — V(51-75) 

■(-0-47762 -p)(-0-03362 - jl-00136 - p)' 
(- 0-03362+jl-00136 - p). 

(- 0-20334 - jO-81941 -p) 
(- 0-20334+j0-81941 - p). 

[Note : V(0-22812) = ±0-47762 
V'(1 00163+j0-06758) = ±0-03362±jl-00136 

V(1 00163 - jO-06758) = ±0-03362+jl-00136 
V(- 0-63007+j0-33406) = ±0-20334±j0-81941 

V(- 0-63007 - jO-33406) = ±0-20334+j0-81941 

and in the expression for e/Z+plS the lower signs of the square 
roots have been chosen so that the p„’s have negative real parts.] 
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We can now take dissipation into account by adding d to each 
of the p^’s making sure that their real parts remain negative. Thus 
d may not exceed 0 03362 and as was pointed out in 20.2 it should 
not exceed one half of this maximum figure. At the frequencies 
we are interested in inductors and capacitors can easily be made 
having dissipation-coefficients of less than 0-01, so we can design 
our network with d = 0-01. When 0*01 has been added to each 
of the p^’s 

“ (-0-46762 -p)( -002362 -fj1 00136 -p) ’ 
(-0 02362-jl-00136-p). 

(-0-19334-j0-81941-p) 
(-0 19334+j0-81941-p). 

and on multiplying-out the right-hand side of this expression and 
equating the even-power terms to and the odd-power terms 

to pHa 
'^d = ±\/(61-75)[0-90164p* +1-230582)*+0-33254] 

p‘Bd = ±\/(61-75)|>® + 1-933272)»+0-908202)] 

From (xiii) 
Zfi _ ofd _ 0-90154p* + L23058p2+0-33254 

^1 'P'Bd p^ + l-93327p»4-0-90820p 

ZfJR^ approaches 0-33254/(0-90820p) as p—>0 and 0-90164/p as 
p —> 00 and the network will therefore start at end 1 with a shunt 
capacitor. Fig. 69(a) shows the “ reference filter ’’ and Fig. 69(6) 
shows the form of the actual filter network we are designing. Its 
form is that of the “ reference filter ” with the constant-fc half¬ 
section removed. The section of the ‘‘ reference filter ” with 
m = 0-45 produces a pole in the insertion ratio at p^ = 1-2539 
and the section with m — 0-7 a pole at p* = — 1-9608. In net¬ 
work Fig. 69(5) the anti-resonance of has been chosen to give 
an infinite insertion-loss at p^ = — 1-2539 and the anti-resonance 
of has been chosen to give an infinite insertion-loss at 
p* = — 1-9608. Let us connect end 1 to the generator and end 2 
to the (open-circuit) load. 

At p’^ = 1-2539 the impedance of will be infinite and Z^JE^ 
will then be equal to the impedance of at that value of p; 

i-e- = [l/(i>C^3)]p„ 
Substituting — 1-2639 for p^ 

[2/i/^i]-i.25S» = 1/(0-272102)] 

and Cs is therefore equal to 0-27210. Now the impedance of 
end 1 of the network is equal to the combined impedances of 
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^nd the open-circuit impedance Zp^ of the rest of the network. We 

know Zp and C^, thus we can determine Zp. 
The open-circuit admittance of end 1 is RJZp, the admittance 

Fio. 69.—(a) Reference Filter ; (6) Actual Filter ; (c), (d) and 
(e) breakdown of actual filter for element calculations. 

of C3 is pCa = 0-27210p and the admittance of the network to the 

right of Cj {= Ri/Z'p) is given by 

Rx/z;,=^ Ri/Z'p- 0-27210P 

ps-f l-93327p»+0-90820p 

0-90164p« +1 -2.3068^*+0-33254 
- 0-27210p 

0-75469p® + l-59843p®+0-81772p 

0-90154p*+T23^8p^+0-33264 

, 0-90164p*+l-23058p*+0-33254 
Then Z,^/Rl = Q:75409^iiqri[T6984^®+O-81772p 

Now Zp is the impedance of LjCi plus the impedance of C, in 

parallel with LjOt in series with Ci. 
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Expressing in partial fractions 

0-90164p« + l-23058p2-t-0-33264 

0-76469p*+l-59843p*+0-81772p 

^ _b__c 1 

^ Ij)* +1 -25384 +0-8641 ej 

the denominators of the right-hand side being the factors of the 
denominator of the left-hand side. 

It will be seen from a comparison of the last equation that a, 

b and c must satisfy the relationship 

a(p^ +1 •25384)(p2+0*86416) +o*86416) +cp2(2)2 +1.26384) 
= {0*90154p* + l‘230582)2+0*33254)/0*75469 

We can determine a by putting = 0, 6 by putting p® = — 1*25384 
and c by putting — 0*86416. On performing these operations 

we shall find that 

Z' /P - 0*40614 0*22678p 
^ "■p2 +1.25384^ p p2+o.86416 

The first term is the impedance of a parallel LC network with an 
anti-resonance at = — 1*25384. (This value of differs from 

the chosen value of — 1*25390 by 0*005%.) The impedance of the 

, ^ ^ , r. , 0*56114® 
network is therefore equal to 9 . 1 ^ and its admittance is, 

2)2 + 1*25384 

2)2 + 1*25384 _ p 1*25384 

0*56114 0*56114“^0*56114^ 

1 
= 1*7822)- 

0*44752) 

= (7,p + 
1 

LiP 

and Li = 0-4475, = 1-782 

The impedance Z'fi of C^, L^C^, Ct is equal to minus the imped¬ 
ance LjCi and is given by 

z;;/i?i = 0-56114p 

p* + l-25384p 

0-40614 0-22678p 

p ^p*+0-86416 

0-63292p*+0-35097 

p(p'»+0-86416)” 
B.W,F. N 
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We can calculate the value of Gx as we calculated C3 by equating 

1.9808 fo [l/(l’^)]-i-9608- If ^c perform this operation we 
shall find that = 1-2321. The impedance Z"f[ of the rest of the 

network and may be obtained from 

RJZ-^RJZ';, -pC, 

= p(i>*+0-86416) _ ^ 23210^ 
0-63292p2+0-35097 

_ p(0-22018p*+0-43173) 

~ 0-63292p2+0-35097 

and .^../^ 0-63292p^+0-35097 

‘ p(0-22018p2+0-43173) 

_ p(2-87456p* + l-59401) 

“ +1-96081) 

_ 1 2-06162p 

~ l-23012p'^p’*+ 1-96081 

from which = 1-052, = 0-4851 and C's = 1-2301. 

(a) i, = 0-4476H ; r, = 0 00448fl 
L, = 1 052H : r, = 0-015213 
C, = 1-782jP’; = 56113 
C, = 0-4851^’; r^ == 20613 
C, = 0-27213!’; r, = 36813 
C« = 1-23213!'; r, = 81-213 
05 = 1-23013’; r, = 81-313. 
33, = 113; wp — 1 

Insertion-l 

(6) 5, = 12-75jnH ; r, = 2-713 
= 29-53m3? ; r, = 6-313 

O, = 0-1390/13!’; r, = 33,00013 
O, = 0 03784/xF ; r, = 122,00013 
Cj =-- 0-02123/13!’; r, = 220,00013 
Oj = 0-09613/13!’; r, = 47,00013 
O5 = 0-09697/13!’; r, = 47,00013 
33, = 60013; o), = 2n- x 3400 

= 201og,„ l-l-l 

A filter network of the form shown in Fig. 69(6) with the com¬ 
ponent values we have just calculated, when inserted between a 

generator of 1 ohm internal impedance and an open-circuit load, 
will give an insertion-ratio of which ratio, it 



20.8] THE ZEROS OF A POLYNOMIAL 179 

will be remembered, was obtained by predistorting the insertion-ratio 

If we now add dissipation d = 0 01 to all the components of 
our network its insertion-ratio will again be and the 
dissipative network will then meet the design requirements when 
i? = 1 and coq = 1. 

Fig. 71.—Measured Insertion-loss of Filter Network Fig. 70(6). Inductances and 
capacitances correct to ± ^%, resistances to (Change of vertical scale 
at 3*4 kc/s.) 

When dissipation is added, the network has the component 
values shown in Fig. 70(a), and if we multiply all resistors by 600, 

all inductors by by eoiTx X 3,400 

we have the network of Fig. 70(6) which has a measured insertion- 
loss between a 600 ohm generator and an open-circuit load shown 
in Fig. 71. The actual values of the resistors in the practical circuit 
were chosen so that each reactor had a total dissipation-coefficient 
of 0 01. 

20.8. Determination of the Zeros of a Polynomial. A 
polynomial such as an+®n-i+«n-2**+ • • • +®o®" is 

N* 
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zero for n values of x and these values of x are known as the n 
zeros of F{x); they are also the n roots of the equation F{x) = 0. 

These zeros are generally complex and if the coefficients Uq, 

Uj . . . are all real, the zeros will occur in conjugate pairs such 
as a-\-jbj a —jb. We are interested only in polynomials having 

real coefficients and we shall therefore deal here only with such 

polynomials. 

If n is odd there must be at least one real zero and any other 

real zeros must occur in conjugate pairs. 

A real zero can be found to any degree of accuracy by plotting 
F(x) for real values of x and increasing the scale of the curve around 
the value of x at which the curve crosses the x axis. 

If n is odd, we can therefore find the one real zero x^ and divide 
F(x) by {x — x^). This will leave as quotient an even-power 

polynomial in x, 
K n = 2, the zeros can be found by the use of the quadratic 

root-extraction formula l(i). 
If n = 4, divide F{x) by the coefficient (a^) of x^ and write 

F{x)/aQ ^ a-\-bx-\-cx^-\-dx^-\~x^. If a is positive, write down an 

auxiliary cubic m®+cm^ + (6d — 4a)m+4ac — ad^ — 6*. This has 

a real zero (mj) greater than 2Va and it can be found to a high 

degree of accuracy by the graphical method described above. The 

zeros (Xj, X2, Xg and x^) of the quartic are then given by 

^1 == i[- - m, ^2 = viB^ - m 
^3 = i[“ T+V(T^ - 4>S)], 0:4 = ^[-.T - - ^S)] 

where Q or S = 
B or T = ^[d±\/{d^ — 4c — 4mi)] 

and the signs of the expressions for Q, B, S and T are chosen so 
that R8-\~QT = 6. 

If n is even and greater than 4 we can proceed as follows. 

Divide F{x) by a^, the coefficient of the highest power of x and 

write F{x)/aQ as 

• • • +a„ = F(x) 

If the zeros of this polynomial are x^, x, . . . x„, the zeros of 
x" — (Oi* — 2oj)x*''^+(a2® — 2aia3+2o4)x"~^ 

— (Oj* — 2aja4+2oiO# — 2o4)x“"® 
+(04® — 2agag-|-2a2a« — 2aia<,+2a,)x^~* . . . +a„* 

(n even) are x,*, x**, Xg* . , . x„*. Successive operations give rise 

to polynomials having zeros which are the squares, fourth powers, 
eighth powers, sixteenth powers and so on of the original zeros. If 
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two numbers are in the ratio of say 1 to M, the 128th powers of 
the numbers are in the ratio of 1 to about 2 x 10®. This fact 
enables us to separate out the zeros of a polynomial. Suppose for 
example that we have found the ‘‘ 128th power polynomial by 
seven operations on the original polynomial. If the “ 128th power 
polynomial ” is + . . . +a^ it will have zeros 

such that 
a; . +^^128 

^2 = • • • +V^®) 
^-^2"®®(a:3^2®+ . . . +V"®)+ • • • 

a's =:ril28^^128(^^128+^^128+ . . . 
+ Xi128^^128(^^128_(. . . . +a;^128)_|. , . . 

and so on 

Now if x^> X2> x^> , . , > x^ 

then ^ a;a^28 ^ ^^128 ^ ^^^128 

and we can say 
rp —, /y* 128 ft   /y< 128/>* 128 ft —~ /)• l28/y* 128/y. 128 
Cw j — wC/j ) CC'2 — *^1 *^2 > ^3 — **^1 *^2 **^3 > * • • 

and so on. 

If the coefficients of the polynomial are real, \xi\ = | a^a |, 
\x^\ =: \x^ \ and so on, as the zeros occur in conjugate pairs. 

Thus a'j = = [( | a^i 1 exp^’0i)( | x, \ exp - 
= ! X, 

ai=[\x,\ .\x,\ ]^<>« 
a'l = [ I a^i I . I X31 . I Xi I ]**«• 

and so on. 

Now *1 = I Xi 1 exp j0i, *2 = I Xj I exp j0, = 1 | exp — jd^ 
and if we go back to our original polynomial ^'{x) and plot 
J'( I Xi I exp j0i) for values of 61, lying between 0 and n we can 
find a value of 6, for which ^( | x^ | exp j0i) is approximately zero. 
More exact values of | Xj | and di, can be obtained as described 
below. 

Write 
X* — 2a; I Xj I cos 0i + | Xj |* = x®+wx+» 

F(x)/(x*+mx+n) = Q(x)+«x+6 
Q(x)/(x*+mx+») = Q'{x)+cx+d 

. _ ad — be 
^ ~ d» - 2cdm+c*n 

f. _bd — bcm-\-acm 
~ d* — 2cdm+c*n 
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Then a better factor of F{x) than x^+mx-\-n is 

a:®+{m -\-bm)x+(w -\-bn) 

When a and b are zero as the result of several operations similar 
to those described above, then the quadratic factor x^-\-m'x+n' 
can be factorized to give an exact pair of conjugate zeros and the 
quotient Q(x) obtained by dividing F{x) by the exact quadratic 
factor can be manipulated to give the next largest pair of conjugate 
zeros. 
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IMAGE 
attenuation coefficient, 6 
attenuation coefficient template, 14 
impedance, 3 
impedance, curves for, 14.2 
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phase-shift coefficient template, 14 
transfer coefficient, 3 
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16.3.2 
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band-stop, 12.1 
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11.2 
6-element half-section, 11.2 
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Mid-band frequency 
band-pass filter, 11 
band-stop filter, 12 

NEPER, 5 
Network, equivalent, 7 
Network, Wheatstone bridge, 2.1, 2.3 
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measurement of insertion, 19 



188 INDEX 

Potential difference, 2.1 
Progressions, arithmetic and geo¬ 

metric, 1.5 

QUADRATIC equations, 1.1 

RADIAN, 6 
Resistance, 2.1 
Roots of equation, relationship be¬ 

tween coefficients and, 1.2 
extraction of, 20.8 

SERIES connection of filters, 15 
Simultaneous equations, 1.3.1 
Susceptance annulling network for, 

parallel connection of filters, 16 

example of design of, 16.3.2 

TEMPLATES applied to calculation 
of image transfer coefficients, 14 

of band-pass filters, dis-symmetri- 
cal, 14.1.4 

of b€wid-pass filters, symmetrical, 
14.1.3 

of band-stop filters, 14.1.5 

of high-pass filters, 14.1.2 
of low-pass filters, 14.1.1 

Thevenin’s theorem, 2.4 
Transformation,, impedance, applied 

to band-pass filter, 11.4 

UNBALANCED filter, 18.2 
earthing methods in, 18.2 
effect of earth currents on, 18.2 

Unbalanced half-section, 3 

WHEATSTONE bridge network, 2.1, 

2.3 





^ATE OF ISSUE 
book must bet reiijru**(l 

3,7, 14 (lays of itw A 

fir>o uf ONE AN?«A per day will 

be chargeti ii the book i« i>vordi»e. 




