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PREFACE 

This book was originally written as an informal mimeographed text for 
one of the so-called “ Out-of-Hour ” courses at Bell Telephone Labora¬ 
tories. The bulk of the material was prepared in 1938 and 1939 and was 
given in course form to my colleagues there in the winters of 1939-40 
and 1940-41. During the war, however, the text has also been supplied 
as a reference work to a considerable number of other laboratories en¬ 
gaged in war research. The demand for the text on this basis was un¬ 
expectedly heavy and quickly exhausted the original supply of mimeo¬ 
graphed copies. It has consequently been decided to make the text 
more widely available through regular channels of publication. 

In revising the material for publication, the original theoretical dis¬ 
cussion has been supplemented by footnote references to other books and 
papers appearing both before and after the text was first written. In 
addition, an effort has been made to simplify the theoretical treatment 
in Chapter IV, and minor editorial changes have been made at a number 
of points elsewhere. Otherwise, however, the text is as it was originally 
written. 

The book was first planned as a text exclusively on the design of feed¬ 
back amplifiers. It shortly became apparent, however, that an extensive 
preliminary development of electrical network theory would be necessary 
before the feedback problem could be discussed satisfactorily. With the 
addition of other logically related chapters, this has made the book pri¬ 
marily a treatise on general network theory. The feedback problem is 
still conspicuous, but the book also contains material on the design of 
non-feedback as well as feedback amplifiers, particularly those of wide 
band type, and on miscellaneous transmission problems arising in wide 
band systems generally. Much of this is material which has not hitherto 
appeared in previous texts on network theory. On the other hand, trans¬ 
mission line and filter theory, which are the primary concerns of most 

earlier network texts, are omitted. 
Two further explanatory remarks may be helpful in understanding the 

book. The first is the fact that, although the feedback amplifiers en¬ 
visaged in most of the discussion are of the conventional single loop, 
absolutely stable type, the original plan for the text called for two final 
chapters on design methods appropriate for multiple loop and condition¬ 
ally stable circuits. Invincible fatigue set in before these chapters could 
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IV PREFACE 

be written. In anticipation of these chapters, however, the preliminary 

analysis in the early portions of the book was carried forward in more 
general terms than would otherwise have been necessary. In Chapters 
JV-VI, particularly, this appreciably complicates the discussion, and the 
reader interested only in conventional feedback amplifiers can afford to 
omit the more difficult portions of these chapters. 

The second general remark concerns the apparently unnecessary re¬ 
finement to which the design methods described in the book are sometimes 
carried. This is explained by the fact that the amplifiers of particular 
interest to the class for which the notes were originally prepared were 
those used as repeaters in long distance telephone systems. Since a long 
system may include many repeater points, the cumulative effect of even 
quite small imperfections in individual amplifiers may be serious. Thus, 
the amplifier design requires more care than might be justified in an ordi¬ 
nary engineering application. 

Under the circumstances in which the text was originally prepared, it 
naturally benefited by suggestions from many sources. I am indebted 
for such help to too many of my colleagues to enumerate individually. 
Special mention should, however, be made of Mrs. S. P. Mead for her 
assistance in the final preparation of the material for publication. It is 
a particular pleasure also to express my thanks to Dr. Thornton C. Fry, 
without whose support and encouragement the book could scarcely have 
been written. 

H. W. Bode 

Bell Telephone Laboratories, Inc. 
New York City 
April 1945 
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CHAPTER I 

Mesh and Nodal Equations for an Active Circuit 

1.1 Introduction 

The networks to be considered consist of ordinary lumped inductances, 
resistances, and capacities, together with vacuum tubes. The accessible 
terminals of the vacuum tubes will be taken as the grid, plate, and cathode. 
Auxiliary electrodes, such as a suppressor or screen grid, are thus ignored, 
and the analysis assumes, in effect, that they are grounded to the cathode 
at signal frequencies. For purposes of discussion the tubes will be replaced 
by equivalent structures consisting of ordinary circuit elements connected 
between the accessible terminals, together with a source of current or volt¬ 
age to represent the amplification of the tube. This ignores such effects 
as transit time and distributed inductance in the wires inside the 
tube envelope, which may appear in physical tubes at sufficiently high 

frequencies. 
It will be assumed throughout that all the elements are linear. This 

chapter is intended principally as a recapitulation of the conventional 
theory for networks including vacuum tubes in a form which can be used 
as a foundation for the chapters to follow.* 

1.2. Branch Equations for a Passive Circuit 

It is simplest to begin by ignoring the active elements in the circuit. The 
network can then be regarded as an arrangement of individual branches, 
which may include any combination of the elements R> C, and L in series, 
connected together at various junctions or nodes. An example is shown by 
Fig. 1.1. The circuit contains six branches, as indicated by the subscripts 
a • • • /, and four nodes represented by the points A • • • D. Generators to 
furnish the driving forces on the circuit are shown in three of the branches. 

* A good general reference to the mesh analysis of passive networks is Guillemin 
“ Communication Networks,” Vol. I. See also Shea “ Transmission Networks and 
Wave Filters ” for a brief discussion emphasizing the stock theorems, such as the 
superposition theorem, reciprocity theorem, and Th£venin’s theorem, which follow 
readily from the mesh analysis. The theorem on the use of an equivalent plate 
generator to represent the amplification of a vacuum tube, on which the extension 
of the mesh analysis to active circuits depends, is described in most books on radio 
engineering. See, e.g., Terman “ Radio Engineering ” or " Radio Engineer’s Hand¬ 
book,” or Everitt “ Communication Engineering.” 

1 



2 NETWORK ANALYSIS Chap. 1 

The condensers are specified in units of stiffness, or reciprocal capacity, 
D = 1/C, in order to simplify later equations. Each branch has been 
shown as including all three types of elements but in an actual network 
many of the elements might, of course, be omitted. 

Fundamental expressions for the analysis of such a network can be set 
up by equating*thp instantaneous voltage drops in each branch of the net¬ 
work to the voltage applied to that branch. For example, if Ia represents 

Ld &d 

D 

Fig. 1.1 

the instantaneous current in the first branch of Fig. 1.1, the voltages across 
the individual elements of that branch are /?0/a> pLaIa> and (1 /p)DaIa> 
where/) and l/p represent respectively differentiation and integration with 
respect to time. The sum of the voltage drops through these three ele¬ 
ments must be equal to the voltage of the generator Ea plus the difference 
between the voltages at the nodes A and D at which the branch terminates. 
If we let Eji and Ed represent the node voltages, we therefore have 

(pLa + Ra + Ia ~ Ea + Ed — Ea. (1-1) 

There will be one equation similar to (1-1) for each branch of the net¬ 
work, or B equations in all if B represents the number of branches. In 
addition to these equations, however, further equations follow from the 
fact that, since no electrical charge can accumulate at any node, the sum of 
the instantaneous currents leaving each node must be equal to the sum of the 
currents entering it. In Fig. 1.1, for example, this leads to the condition 
Ta m h + /<*• There is one such equation for each node. Qne of the 
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equations, however, is superfluous, since if the law of conservation of 
charge is satisfied at all but one of the nodes, it will automatically be satis¬ 
fied at the last one also.* If the number of nodes is represented by AT, 
there will then be N — 1 current equations. The original branch equations 
included, in addition to the branch currents, the N nodal voltages. One 
of these voltages, however, can be chosen arbitrarily, since the branch 
equations involve only voltage differences. There are thus B + N — 1 
unknowns to be determined, and the N — 1 current equations together 
with the original B branch equations are just sufficient to permit a solution. 

The N — 1 conditions at the nodes allow us to express N — 1 of the 
branch currents in terms of the others so that a corresponding number of 
the branch voltage equations similar to (1-1) can be eliminated. This 
reduction becomes particularly easy if we follow the familiar device of 
regarding the remaining branch currents as flowing through complete closed 
loops in the network. The assumption of dosed loops or meshes has two 
advantages. In the first place it evidently leads to automatic satisfaction 
of the condition of conservation of charge at each node, since in each mesh 
as much current flows away from any node as flows into it. In the second 
place, it eliminates the differences in node voltages which appeared in the 
original branch equations, since the sum of all such voltage differences 
around a complete loop must be zero. We may also notice that, since there 
were originally B branch currents and A^ — 1 of them have been eliminated, 
the number of remaining currents or meshes is given by the 

Theorem: In any conductively united network the number of inde¬ 
pendent closed meshes or loops is one greater than the 
difference between the number of branches and the number 
of nodes. 

An illustration of the reduction from branch to mesh currents is fur¬ 
nished by Fig. 1.2, which shows a choice of mesh currents which is appropri¬ 
ate for the circuit of Fig. 1.1. The independent branch currents in terms 
of which the other currents are expressed are those flowing through branches 
a, dy and/, each of which is included in only one mesh. There are three 
meshes since the circuit contains six branches and four nodes. 

It is apparent that in general the meshes can be chosen in a variety of 
ways. Thus in Fig. 1.2 the independent branch currents might be chosen 
as those flowing through, for example, ay dy and ey or ay by and c. These 

♦This analysis neglects mutual inductance couplings as a matter of simplicity. 
If the network consists of a number of isolated fragments connected only by mutual 
inductance, there is evidently one superfluous condition of this sort for each con¬ 
ductively separate fragment of the network 
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possibilities are useful since they allow us 
to assign branches in which we may have 
particular interest, such as the generator or 
receiver impedances, to individual meshes. 
In a given physical circuit such assignments 
cannot be made with unlimited freedom. In 
Figs. 1.1 and 1.2, for example, it is not pos¬ 
sible to assign branches a, b> and d to three 
separate meshes because the corresponding 
branch currents are related by the condition 

at node A and are not independent variables. For purposes of future an¬ 
alysis, however, it will be assumed that there are no restrictions on the 
choice of meshes, since an adequate mesh system can always be obtained 
by the addition of ideal transformers or other elements of vanishing 
physical importance. 

1.3. Mesh Equations for a Passive Circuit 

It is evident that each mesh equation can be obtained by adding together 
the branch voltage equations around the complete loop and at the same 
time eliminating the superfluous branch currents by means of the nodal 
current conditions. Since this introduces only linear combinations of the 
coefficients in the original branch equations, the resulting system of equa¬ 
tions must be in the general form 

Znh + Z12I2 + • • • + Zinin = 
Z21I1 + Z22I2 + • • • + Z2nln ~ 

. d-2) 

Fig. 1.2 

Zn\I\ + Zn2l2 + * * * + ZnnIn = En 

where the Z’s in the left-hand side are of the form 

Z%j = pL%j + Rtf + - Da 
P 

and p still represents d/dt. 
The mesh currents are indicated by numbered subscripts to distinguish 

them from the branch currents. The coefficients Zn, Z22, etc., will be 
called the self4mpedances of the various meshes and the coefficients Z12, 
Z13, Z23, etc., the mutual or coupling impedances between meshes. 

The mesh equations are expressions of voltage equilibrium. They express, 
in other words, the fact that the sum of the driving voltages around 
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a closed loop must be equal to the sum of the voltage drops in the 
loop. This makes it easy to evaluate the £’s and Z’s in the equations. 
In the first mesh equation, for example, let it be supposed that we set 

Is = I3 = • • • = In = 0. This can be done without disturbing the 
first mesh by inserting sufficiently high impedances in each of the other 
meshes. The first mesh equation then reduces to 

(^>L\i + Rn + - /1 = E\. (1-3) 

Since there are no other currents flowing in the structure, the left-hand 
side of this expression evidently represents the voltage drop due to the 
flow of the current Ii through all of the elements in the first mesh. The 
coefficients L\\y Rny and Du thus represent respectively the sum of the 
inductances, resistances and stiffnesses in the first mesh. Correspondingly, 
£1 on the right-hand side represents the sum of the generator voltages in 
this mesh. Now, if we allow I2 to flow, an additional voltage drop Z12I2 

appears in the first mesh. This must evidently be due to the flow of /2 

through the elements which are shared by the first and second meshes. 
Similarly, ZX3 represents the elements which are common to the first and 
third mesh, etc. 

The coefficients in the equations for the other meshes can be determined 
in analogous fashion. In the purely passive circuits now under considera¬ 
tion, the coefficients representing a coupling between two meshes must be 
the same in each mesh equation. In other words, Zii in the /th equation 
must be the same as Zji in the yth equation, since either quantity merely 
represents the elements which are common to the two meshes. 

The determination of the coefficients in the mesh equations can be illus¬ 
trated by reference to the structure of Figs. 1.1 and 1.2. The self-impedance 
Z\\ of the first mesh is equal to the sum of the impedances around that 
mesh. We thus have Ln ~ La + Lb + LCy R\\ = Ra + Rb + Rc> and 
Du = Da + Db + Dc. Similarly, the voltage Ex is equal to the total 
voltage Ea + Eb + Ec of all the generators in this mesh. The impedances 
Z12 and Z\3 represent the elements which the first mesh shares respectively 
with the second and third. As Fig. 1.1 is drawn, however, the positive 
direction of the first mesh current opposes that of the second and third 
mesh currents in each common branch. The coupling elements must there¬ 
fore be taken negatively to account for the fact that the voltage drops across 
them due to the flow of the second and third mesh currents are opposite to 
those produced by the flow of the first m|sh current. We thus have 
Z*a —£&, Rn * —Rb> etc. The terms spearing in the other mesh 

can be determined in a similar fashion. 
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1.4. Mesh Equations for an Active Circuit 

To generalize equation (1-2) to fit a circuit containing vacuum tubes, 
we may suppose that only one of the E*s on the right-hand side of (1-2) 
is an actual driving voltage and that the remaining E*s are apparent plate 
generators representing the amplifications of the tubes. For example, in 
one particular tube, let us suppose that the jth mesh current flows from 
grid to cathode and the £th mesh current from cathode to plate as shown by 

Fig. 1.4 

Fig. 1.3. Following the usual assumptions, the amplification of the tube 

can then be represented by inserting an equivalent generator — fie in series 

with the plate impedance R0y where e is the grid voltage, as shown by 

Fig. 1.4. The passive impedances of the tube can be incorporated as part 

of the passive circuit and play no part in this analysis. 

Since e = ZQIj in Fig. 1.4, the equivalent plate generator voltage can 

also be written as — fiZgIj. The £th of equations (1-2) can therefore be 

written as 

Zklll + • * * + Zkjlj + • • * + Zknln — —pZglj 

or 

Zhlll + * * * + (Zicj + fjZg)Ij + • * • + Zknln = 0 (1~4) 

where Zkj is the passive coupling between the two meshes. It is obvious 
that the equation is still in the same form as the original £th equation of 
(1-2) provided we redefine Zkj to include the added quantity nZ0. This is 
the familiar result that the amplifications of the tubes can be represented 
by modifications in the various coupling terms in the mesh equations. So 
far as the general form of the equations goes, the only distinction between 
active and passive structures is the fact that we can no longer assume in 
general that the principle of reciprocity holds. In other words, we can no 
longer assume that Zij — Zj{. The quantity vZg will be called the mutual 
impedance or transimpedance of the tube, after the analogy with trans¬ 
conductance in the following discussion. j 

In order to prevent future confusion with signs, it is important to notice 
here the convention adopted in Fig. 1.3 for the positive Jlirectionof grid 
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and plate currents. It has been so chosen that the transimpedances in the 
left sides of the mesh equations will be positive when the p’s are positive's 
they are in normal tubes, and also so that a uniform convention of sign can 
be adopted for a number of tubes in tandem coupled by ordinary interstage 
networks. With this choice, however, the equivalent plate generator volt¬ 
age is negative, so that successive tubes in an amplifying circuit give suc¬ 
cessive phase reversals, in addition 
to any phase shifts which may be 
ascribed to the purely passive ele¬ 
ments of the circuit. Similar re¬ 
marks apply to the nodal analysis 
given later. 

As an example of the processes in¬ 
dicated by (1-4) we may consider the 
mesh equations for the circuit of 
Fig. 1.5. The structure represents 
broadly one stage of an amplifier with grid plate coupling. The coupling is 
indicated by the impedance Z4 and the preceding and following interstages 
by the impedances Z\ and Z5. Z2 is the grid cathode capacity of the tube 
and Z3 represents its plate impedance. 

The circuit has three meshes. They are chosen in the form shown by 
Fig. 1.5 in order to assign the generator impedance, the grid impedance 
and the plate impedance each to only one mesh. If we assume for the 
moment that the tube has no amplification the mesh equations are readily 
set up in the form 

(Zi + Z4 + Z5)IX —- (Z4 + Z5)/2 + Z5/3 = E 

- (Z4 + z»)A + (Z2 + Z4 + Z5)/2 - Z5/3 - 0 (1-5) 

Z5/1 — Z5/2 + (Z3 + Z$)Is = 0. 

Since the voltage across the grid is +/2Z2 when the currents are taken in 
the directions shown in Fig. 1.5, the equivalent generator in the plate circuit 
is —fjiZJ2* This appears as an effective voltage in the third mesh equation. 
When this term is transposed to the left side of the equation in the manner 
described previously, the third equation thus becomes 

Z$/i + (mZ2 — Z$)/2 + (Z3 + Z«)/8 0 (1-6) 

the other mesh equations remaining unaffected. 

1.5. Steady State Solution for the Mesh Equations 

As the mesh equations have been developed thus far, they have always 
represented differential equations for the circuit. Thus, for example, in 
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(1-2) the E’s and Fs represent instantaneous values of voltages and 
currents and# represents differentiation with respect to time. In order to 
find the response of the circuit when one of the E’s is a voltage varying 
sinusoidally with time, therefore, we should, strictly speaking, substitute 
sin c*j/ or cos cot for the appropriate E and attempt to find expressions for the 
Fs as sums of sine and cosine terms in a form which would satisfy the set 
o^differential equations. 

In accordance with the usual practice, this procedure can be much simpli¬ 
fied if we represent a physical sinusoid by the exponential exut.* The 
currents and voltages in the system are then written in the form Ijexu>t and 
Eje%(aty where the Fs and E’s are now merely constants instead of being 
quantities varying with time as they were in (1-2). The advantage of this 
substitution results from the fact that differentiating or integrating elut 

with respect to time merely multiplies or divides the exponential by iu. 
Thus, any quantities of the form pelu,t or (1 /p)eXU)t which result when the 
currents Ielb>t are substituted for the original currents in (1-2) become 
simply io)exut and (l/ico)ex<at when the differentiation and integration 
symbolized by p and l/p are carried out. Each p on the left-hand side of 
(1-2) is then replaced by /«. The time factors el<at in the current and volt¬ 
age expressions are unchanged, and can be divided out of the final equations. 

1.6. Driving Point and Transfer Impedance 

It follows from the considerations just advanced that the differential 
equations (1-2) can also be regarded as a solution for the steady state 
response of the network to sinusoidal voltages of frequency w/2t provided 
p is replaced by i<a and that we regard the Fs and E’s as representing merely 
the constant coefficients in the general current and voltage expressions 
Iei<a* and Eex<at. With this understanding, the determination of any 
particular current flowing in response to a particular voltage is equivalent 
to the solution of a set of ordinary linear equations. As an example, the 
current I\eiv>t in the first mesh flowing in response to the voltage E\e%<t>t 
also in that mesh is given by 

he”* = ^ Exeiat (1-7) 
A 

where A is the determinant of the coefficients in the left-hand side of (1—2) 
and An is the determinant obtained when the first row and the first column 

of A are omitted. 
The driving point impedance Z in the first mesh is by definition the ratio 

* A discussion of the physical meaning of tins substitution is avoided here, since 
tite subject is taken up again in the next chapter. 
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of the voltage to the current in equation (1-7). 
by 

Z = 
Ei 

h 

It is given in other words 

(1-8) 

In a similar fashion the equations can be solved to determine the current 
in any other mesh in response to this same voltage. For example, the 
current in the second mesh is given by 

heial = — Eieiat 
A 

0-9) 

where Ai2 is the determinant of the coefficients in the left-hand side of 
(1-2) after the elements in the first row and second column have been 
omitted.* 

The ratio between the voltage E\ and the current /2 will be called the 
transfer impedance, Zr, from the first to the second mesh. It is given by 

d-10) 

1.7. Z and Zt as Functions of a Single Element 

In future discussion, we will have frequent occasion to study the depend¬ 
ence of the driving point and transfer impedance upon a single element in 
the network. Let it be supposed, for example, that we are interested in the 
variation of Z with respect to a bilateral impedance z in the jth mesh.f 
This can be investigated by examining the way in which z enters the deter¬ 
minants A and An of (1—8). 

In general, any determinant can be regarded as the sum, with appropriate 
signs, of all possible products formed by multiplying together elements of 
the determinant, when each product includes just one element from each 
row and column of the determinant. Since z is in the^th row and column 
of A, it must therefore be multiplied by all possible products of elements 
taken from every row and column of A except the jth. These, however, 
evidently form the minor Ay,* of the original determinant. Similarly, in 

* Strictly speaking, the symbols An, A12, etc., represent cofactors here. In 
other words, they are the determinants as defined in the text multiplied by +1 or 
—1 iti accordance with the usual rules of determinant theory. In particular, A12 

is negative. This may be ignored for theoretical analysis, however, since it is only 
necessary to treat the symbols as cofactors consistently. 

fit is assumed here, in other words, that z is found in the^th mesh and in none of 
the others so that it is a constituent of only the self-impedance Z/,- in (1—2). 
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forming An the terms by which z is multiplied must be the minor An// 
obtained by omitting both the first and jth rows and columns. If we let 
A0 and A?! represent, respectively, A and An when 2 = 0, therefore, we 
have 

A° + zAyy 

A?i + zAn^- 
(1-11) 

Since A// and An// are evidently independent of z they can equally well 
be written as A# and An//. This will occasionally be done in later analysis 
in order to facilitate further transformations. 

The relation between Zt and z can be found in similar fashion. It is 
given by 

A° + zA// 

A?2 + zAi2// 
(1—12) 

If z represents a unilateral coupling term, instead of a bilateral element, 
the expansion is essentially the same. Thus, if we suppose that 2 is a part of 
Zu in the original determinant, we readily find 

Z = 
A° + 

A?i + zAh,7 
d-13) 

and 

Zt 
A° + zA,-/ ^ 

A?2 + zAi2»7 
(1~14) 

1.8. Nodal Equations for a Passive Circuit* 

In the mesh equation formulation, the driving sources are regarded as 
voltages. The dependent variables, whose determination constitutes the 
solution of the structure, are the currents in the several closed loops or 
meshes. There is one equation for each mesh and each equation represents 
the fact that it is physically necessary for all the meshes to be in voltage 
equilibrium. 

As we might expect, it is also possible to set up a system of equations in 
reciprocal form with the activating forces taken as currents and their 
responses as voltages. In this case, the nodes replace the closed loops in 
the mesh equation analysis. Figure 1.6 shows the form which such an 
analysis may take. The driving sources are the currents ii • • * /* 
impressed on the nodes 1 • - • n from some outside sources. The responses 
are the voltages • En for the individual nodes. Each voltage is sup- 

*The writer is indebted to Prof. R. M. Foster, of the Polytechnic Institute of 
Brooklyn, for pointing out the superiority of the nodal analysis. 
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posed to be measured with reference to some particular node which is 
chosen as ground. 

The fundamental equations in the nodal system are expressions of current 
equilibrium. They represent, in other words, the fact that the driving 
current flowing into any node from the outside must be equal to the total 
current flowing away from that node into the rest of the network, just as 

Fig. 1.6 

the mesh equations represent an equilibrium between driving voltages and 
voltage drops in any mesh. In Fig. 1.6, for example, the current flowing 
into the first node from the outside is Ix. The current flowing from that 
node directly to ground must be YiEx. The current flowing from that 
node to the second node must be YX2(EX — £2), etc. The complete equa¬ 
tion is therefore 

YlEl + YX2{EX -£» + ■•■ + YM - En) = Ix (1-15) 

which can evidently be written as 

YXXEX — YX2E2 — Y\2E2 — ... — YinEn = Ix (1-16) 

where 

YX1 - Yx + YX2 + Fi3 + • ■ • + YXn. (1-17) 

In equation (1-17) Yxx is obviously the total admittance between the 
first node and all the others when the others are shorted together. It will 
be called the self-admittance of the node and is evidently analogous to the 
self-impedance of a mesh, which can be defined as the impedance of the 
mesh when all other meshes are opened. Similarly, the terms YXj are 
mutual admittances corresponding to the mutual impedances appearing in a 

set of mesh equations. 
Since an equation analogous to (1-16) can be written for each node, the 
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complete system of equations becomes 

YnE1 - Y12E2-YlnEn = h 

— Y2\E\ + Y22E2 — • • • — Y2nEn = I2 

. (1-18) 

Yn\E\ — Yn2E2 + YnnEn = In- 

It is not necessary to write a separate equation for the last or “ ground ” 
node. Since as much current must leave the network as a whole as enters 
it, the condition of current continuity will automatically be satisfied for 
this node if it is satisfied for each of the others. We thus have the 

Theorem: In any conductively united network the number of inde¬ 
pendent nodal equations is one less than the total number 
of nodes. 

At first sight, it might appear that the cases in which we can regard the 
energizing sources as constant current generators or, in other words, as 
generators with infinite internal impedances would be rather rare. In the 
mesh equation analysis, however, we seldom deal with generators having 
zero internal impedance and it is customary to allow for this by adding the 

Fig. 1.7 Fig. 1,8 

internal impedance of the generator to the impedance of the mesh in which 
it appears. When consideration is given to this fact the two methods stand 
on an absolute parity. 

To show this, let us suppose that the actual driving source is a generator 
of internal emf E and internal impedance Zo connected between terminals i 
and j as shown by Fig. 1.7. It is easy to see that this must be equivalent 
to the circuit shown in Fig. 1.8 for any connections between i and / In 
other words, the source shown in Fig. 1.7 can be represented in the nodal 
admittance analysis merely by choosing the energizing currents 7<and/y 
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as E/Zq and ~E/Z0, respectively, and adding the admittance l/Z0 across 
terminals i and j. 

In this discussion we are concerned with the use of current rather than 
voltage sources only to establish the broad possibility of writing network 
equations in the general form given by (1-18). It is interesting to note, 
however, that the formal symmetry between the current and voltage 
methods of analysis can also be extended to the individual terms in these 
equations. This follows from the fact that the current and voltage rela¬ 
tions for a resistance or conductance can be written as E = RI and 
I = GEy while the corresponding expressions for a capacity or inductance 
are E = Lpl and I = CpEy where p may be either io> or d/dt. 

It is obvious from the symmetry of these expressions that we can erect 
a set of nodal equations formally identical with a given set of mesh equa¬ 
tions by interchanging R and G and L and C wherever they appear. In 
other words, the general term Z*y = pLy -f Rij + Dij/p in (1-2) is re¬ 
placed by Yij = pCij + Gij + Tij/p in (1-18), where T stands for a 
reciprocal inductance, just as D represents a reciprocal capacity. The 
two sets of equations will evidently be equal, term for term, provided we 
set L%j = Gijy Rij = Gijy and T)%j = Ft*y. 

The recognition of these general possibilities constitutes the so-called 
principle of duality in network theory.* If the mesh equations for one 
network correspond, term for term, with the nodal equations for another, 
the two networks are called inverse structures. It is not always possible 
to obtain the exact inverse of a given structure. There are difficulties, 
for example, with networks including mutual inductance coupling, since 
the capacitance dual of a coupling between coils does not exist. The 
inverse may also fail because the inverse set of equations does not corre¬ 
spond to any conceivable arrangement of impedance branches. In most 
of these instances, however, it is possible to obtain a network which will 
behave like the desired inverse so far as external connections are con¬ 
cerned, though it may have a different internal structure. The detailed 
discussion of these possibilities is beyond the scope of this chapter. The 
subject is resumed in Chapter X. 

1.9. Nodal Equations for an Active Network 

The modifications which are necessary in order to include vacuum tubes 
in a nodal admittance analysis are essentially similar to those we have 
already made in the mesh analysis. Suppose, for example, that the grid, 

* Good general discussions are given in Guillemin “ Communication Networks,” 
Vol. II, and Gardner and Barnes “ Transients in Linear Systems,” Vol. I. The 
latter reference may also be cited for its detailed description of the method of setting 
up a system of nodal equations, especially in circuits containing mutual inductance. 
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plate, and cathode of a given vacuum tube are respectively nodes k> and m 
of the complete network. The voltage between grid and cathode is then 

Ej — Em> and in accordance with our 
preceding discussion the effect of the am¬ 
plification of the tube can be represented 
by introducing an equivalent generator 
—n{Ej — Em) in the plate circuit. It 
follows from Figs. 1.7 and 1.8, however, 
that this equivalent generator can in 
turn be replaced by two current sources 
of strengths —fi(Ej — Em)/R0 and 
n(Ej — Em)/Ro applied to the plate and 

cathode, respectively, where Ro is the internal resistance of the tube, pro¬ 
vided the admittance l/Ro between plate and cathode is incorporated as 
part of the network. 

With the application of these two current sources, the £th and /wth 
nodal equations become 

-Y*i£i - Yk2E2-YknE„ = 
k0 

(1-19) 

— YmiEi - Ym2E2-YmnEn = 

The terms on the right-hand side can now be transposed and incorporated 
as part of the mutual admittance terms appearing in the left-hand side. In 
most cases, the *»th or cathode node will be at ground. If we make this 
assumption, which corresponds to the assumption made in connection with 
Fig. 1.3, that the grid and plate circuits are in separate meshes, the second 
of equations (1-19) can be ignored. The first equation then becomes 

— Yk\Ei - Yk2E2-(Ykj - Gm)£y-YknEn - 0 (1-20) 

where Gm — n/Ro and is the quantity usually described as the transcon¬ 
ductance of the tube. As in the mesh analysis, the effect of adding vacuum 
tubes is not to change the form of the equations but merely to destroy the 
reciprocity condition Yu - Yji. 

As an illustration of these processes, nodal equations will be developed 
for the circuit shown in Fig. 1.9. This is the same network as the one 
previously shown by Fig. 1.5, redrawn to suit the nodal analysis. Since 
the bottom or cathode node can be taken as ground, there are two equations. 
If we suppose initially that the apparent current generator —GmEi in the 
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plate circuit is zero, the equations are readily found to be 

(Yx + Y2 + Y*)Ei - Y4E2 - / 

IS 

d-21) 
-Y4Ex + (Y3 + Y4 + Y6)E2 - 0. 

The introduction of the plate generator is equivalent to adding — GmEx 
to the right-hand side of the second of these equations. After this term is 
transposed to the left-hand side, this equation becomes 

- (Y4 - Gm)Ei + (Ys + Y4 + Y5)E2 « 0 (1-22) 

the first of equations (1-21) remaining unchanged. 
A solution of the nodal equations to find the steady state voltages corre¬ 

sponding to any given set of sinusoidal driving currents can evidently be 
obtained by the processes already used for mesh equations. For example, 
the driving point admittance Y between the first node and ground will be 
defined as the ratio between the driving current entering that node and the 
resulting voltage at the node. It is evidently given by 

Y = 
h 
Ex An 

(1-23) 

where the primes are used to indicate that the determinants refer to the 
system of equations given by (1-18). Similarly, the transfer admittance Yt 
between the first and second node will be defined as the ratio of current 
applied at the first node to the resulting voltage at the second node. It 
can be written as 

(1-24) 

In view of the obvious analogy between the mesh and nodal methods of 
analyzing a circuit, the two methods will be used indifferently in most of the 
following discussion. The primes, which were used in equations (1-23) 
and (1-24) to distinguish the nodal determinants from those obtained from 
the mesh equations, will ordinarily be omitted. The determinant A will 
thus be used to refer to either system unless there is some particular reason 
for distinguishing between them. The symbol W, which may perhaps be 
called an “ adpcdancc99 or “ immittance,” will be used to refer to an element 
in either system. 

1.10. Choice between Mesh and Nodal Analysis 

The above discussion has emphasized the fact that mesh and nodal 
equations can be used symmetrically in a general theoretical analysis. 
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The reader is cautioned, however, against concluding from this that the 
choice betweeif the two systems is a matter of indifference when one is 
dealing with a definite physical circuit. In most circumstances the nodal 
analysis will be found appreciably more convenient. 

The advantages of the nodal analysis may be traced to several causes. 
The most obvious is, of course, the fact that many circuits contain screen 
grid tubes having a very high plate resistance. Since such tubes are very 
nearly constant current devices, circuits containing them can evidently be 
analyzed more conveniently on the nodal than on the mesh basis. 

Another advantage of the nodal formulation results from the fact that 
the equations can be more directly correlated with the physical structure 
of the network than is possible with the mesh formulation. The nodal 
equations can be written down directly, but to use the mesh analysis it is at 
least necessary to begin by selecting a suitable system of closed loops. In a 
complicated circuit, this may not be as easy a problem as it appears. The 
difference becomes particularly conspicuous in the inverse situation, when 
one has been given a set of equations and wishes to determine a correspond¬ 
ing physical structure. It is evident that the corresponding structure can 
be written down directly if we use nodal equations. If we begin with mesh 
equations, on the other hand, the process may be quite difficult. In fact, 
it is theoretically possible to write down a plausible looking set of “ mesh 
equations ” for which no corresponding circuit configuration exists. 

The final consideration is the fact that, although either mesh or nodal 
equations can be used in analyzing any given circuit, it is not necessarily 
true that the two formulations will require the same number of equations. 
The preceding discussion gives the required number of equations as 
B — (N — l) for the mesh system and as N — 1 for the nodal system. 
In order to compare these expressions, suppose that the network is originally 
very simple and is built up to its final form by the addition of one node at a 
time. Obviously, each new node must be connected with the original 
circuit with at least two new branches if the node is to be an operative part 
of the structure. We may expect therefore that B will be at least twice as 
great as N — 1, so that in general the number of mesh equations will not 
be less than the number of nodal equations and may be much greater if the 
circuit is complicated.* For example, it required three mesh equations 
and only two nodal equations to analyze the structure shown by Figs. 1.5 

* These conclusions are true only “ in general ” because of the possibility of simul¬ 
taneously creating two new nodes by means of a cross-connection between them, 
so that one branch serves for both. An example is furnished by a balanced ladder 
line, the cross-connections being the shunt branches. These, however, are excep¬ 
tional cases which are not representative of ordinary physical circuits. 
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and 1.9. In general, the nodal analysis appears to be partisularly adapted 

to complicated high frequency circuits where we must® consider many 

capacities to ground. Evidently, ground capacities from any of the exist¬ 
ing nodes will not greatly complicate the nodal equations, but they may 
considerably increase the number of meshes in the circuit. 



CHAPTER II 

# The Complex Frequency Plane 

2.1. Introduction 

In actual engineering applications we are concerned with the response 
of a circuit only to currents and voltages at real frequencies, that is, to 
ordinary sinusoids. For purposes of analysis, however, it is often neces¬ 
sary to give attention also to the response of the circuit to driving forces 
whose frequencies are complex. This chapter will consider the physical 
meaning which may be assigned to the term u complex frequency ” and 
some of the elementary ways in which the conception of complex frequencies 
may be used in describing circuit characteristics. 

2.2. The Single Resonant Circuit 

It will be recalled that the general circuit equations in the last chapter 
were first developed in differential form, and that integrated or “ steady- 

state ” solutions for sinusoidal driving forces 
pUUUUL»—WWH I—| were obtained by supposing that the exponen- 
1 & ^ I ^ e%ut could be substituted for a physical sinu- 
^ soid. The meaning of a complex frequency can 

Fio. 2.1 be understood most easily if we return for a 
moment to this last step. It will be sufficient 

to examine the solution for the single resonant circuit consisting of resist¬ 
ance, inductance, and stiffness in series, as shown by Fig. 2.1. 

Let the sinusoidsd driving voltage be written as Eq cos «/. If q repre¬ 
sents the charge on the condenser, so that the current I = dq/dt> the differ¬ 

ential equation of the circuit is 

+ Dq = E0 cos at. (2-1) 

We may assume that the solution of this equation can be written in the 

general form 

q = A cos wt + B sin wt (2-2) 
or 

/ = — = —Aw sin wt + Bw cos at 
dt 

(2-3) 

where A and B are constants still to be determined. ■ ' ' '1, 

IS • - 
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The substitution of the assumed form (2-2) for q in (2-1) gives 

—ALn? cos &>t — BLa2 sin at — ARu sin at 

+ BRu cos at + AD cos at + BD sin at = Eo cos at. (2-4) 

This equation must hold for all values of /. In particular, it must hold for 
values of t at which sin at is zero and also at values of t for which cos at 

is zero. But when the sine terms are zero (2-4) becomes 

-ALa2 + BRa + AD = E0 (2-5) 

and when the cosine terms are zero it becomes 

-BLa2 - ARa + 5D = 0. (2-6) 

These equations can be solved simultaneously for A and B. 

(D - La2)E0 
(Ra)2 + (D ~ La2)2 

This gives 

(2-7) 

(Ra)Eo 

(/?o>)2 + (D - L«2)2 
(2-8) 

from which the assumed solution for q becomes 

_ f_(D-La2) Ra . 1 

q £°L (Ra)2 + (D- La2)2 C°S W/ + (Ra)2 + (D - La2)2 S1" “j 

(2-9) 
or 

r ir T R , Zxo - D/co 1 
I ~ &o \—77-777“To cos cot + ;——-7—73 sin cot | • 

u LR2 + (Lu - D/co)2 R2 + (Leo - D/0))2 J 

(2-10) 

The fact that these are correct solutions is easily established by direct sub¬ 
stitution in equation (2-1). The coefficients in equation (2-10) are, of 
course, the familiar expressions for the in-phase and quadrature components 
of the total current. 

2.3. Exponential Representation of Physical Sinusoids* 

The expression given by (2-10) is evidently the true physical current 
which would flow in response to the assumed sinusoidal driving voltage. 

*Thc use of the exponential solution in electric circuit theory goes back at least 
as far as Heaviside, “ Electromagnetic Theory.” For later discussions see G. A. 
Campbell, u Cisoidal Oscillations,” Trans. A.I.E.E., April, 1911; J. R. Carson," Elec¬ 
tric Circuit Theory and Operational Calculus,” 1926 (Bibliography); T. C. Fry, 
” Elementary Differential Equations,” 1929. The last reference gives a particu- 
Ihdy complete discussion. 
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The method required to derive (2-10), however, is cumbersome and labori¬ 
ous and these objections would appear still more forcefully if we had dealt 
with a multi-mesh system. The use of the exponential ei<at to represent 
the actual physical sinusoid provides a way of analyzing the circuit much 
more expeditiously. 

The justification for the use of et0)t in place of a physical sinusoid depends 
upon the principle of superposition. It depends, in other words, upon the 
fact that in a lirtear system such as (2-1) the current flowing in response to 
two driving forces acting together is the sum of the currents which would 
flow in response to the two separately. Thus, in (2-1), if qx(t) is the 
response of the network to E\ (/) so that 

L^ + R^ + Dgi = Edt) (2-11) 

and q2(t) is the response to E2(t) so that 

Llp+R^t+Dq2 = Ez{t) (2_12) 

then 

L + R d{qijt q— + £>(<71 + q2) = El (/) + E2(i) (2-13) 

follows obviously from simple addition of equations (2-11) and (2-12). 
This principle is usually applied to find the response to Ex{t) + E2(/) 

from the responses to Ex(/) and E2{t) separately. In this application, 
however, the principle is made to work backward to give the responses to 
Ex(t) and E2{t) separately when the response to Ex(t) + E2{t) is known. 
Obviously, it is not always possible to do this, since the knowledge merely 
of the sum qx{t) + q2{t) does not necessarily tell us how much is qx(t) and 
how much is g2(0* The decomposition can, however, be effected without 
ambiguity if Ex{t) is real while E2(/) is a pure imaginary quantity, since it 
follows from the fact that the coefficients of (2-1) are real quantities that 
the corresponding qx(t) and q2{t) must then be real and pure imaginary, 
respectively. In this special case, therefore, we can work backward from 
equation (2-13) to equations (2-11) and (2-12) merely by picking out the 
real and imaginary components of the q which is a solution of (2-13). 

In the present application, we have exu>t = cos w/ + t sin «/. The real 
and imaginary components of the q which corresponds to the driving voltage 
ei(at must therefore be the q*s which would correspond respectively to the 
voltages cos wt and i sin &>/. For example, let q% and iq2 be the solutions 
which would correspond to the voltages Eq cos wt and iEo sin «/ in (2-1). 
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and let q = qi + iq%. We then have 

d2g\ 

dt2 

, dqi 
dt 

L Tq + R ~ + Dqi = Eq cos ut 

, r,d(iq2) , N . . 
■L —^2-r R —Jt-1- D(tq2) = lEo sin ut. 

Adding (2—14) and (2-15) together gives us 

z5+/?f+z)?=E°eiut=E°'pt 

(2-14) 

(2-15) 

(2-16) 

where/) has been written for ico. By the previous argument, the real com¬ 
ponent of the q which satisfies this equation will be the q\ which satisfies 
equation (2-14). Upon assuming that q = q§ept we find readily 

q0(p2L + pR + D)ept = E0ept. 

It follows that 

9o 
p2L + pR + D 

or 

I = 
pE0ept 

p*L + pR + D 

Upon substituting tea for p in (2-19) we secure 

E0(cos a)t + i sin co/) 
/ = 

R + i 
("l-\d) 

(2-17) 

(2-18) 

(2-19) 

(2-20) 

The real component of (2-20) should be the current flowing in response 
to the voltage Eq cos cat. It turns out to be 

A-eal — E0 
R COS ict 

(uL-l-p}s\ sin cat 
XV ^ w / 

R2 +(uL - 1 d)* R2 +(uL - 1 d)' 

(2-21) 

which agrees with equation (2-10). The method also gives as a by-product 
the current which will flow in response to the voltage E0 sin ut. We have 
merely to take the imaginary component of (2-20), discarding the i. 
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This gives 

/imag Eq 
R sin a)t 

cos (at 

(2-22) 

This process can evidently be extended directly to multi-mesh circuits. 
If we begin with a driving voltage Eept the solution of the circuit equations 
for any one of the currents will appear in the general form lept> and if the 
real component of Eept is taken as the true physical voltage the real com¬ 
ponent of lepi will be the physical current. 

It will be convenient to summarize this discussion in a form in which it 
appears as a set of definitions of the meanings we shall ascribe to the terms 
“ frequency ” and “ impedance.” Thus 

(1) A voltage of frequency / will be written as Etfpt where p = lirtf'. 
Physically, we shall interpret such an expression by taking only its real 
component. £o> which was taken as a real quantity in the previous 
example, may in general be complex. The use of a complex value of Eq 
amounts simply to a shift in the phase of the physical voltage, as we can 
readily see by taking the real component of (EqX + iEo2)epi. 

(2) We shall take as the current in any mesh the quantity which satisfies 
the differential equations of the circuit with the voltage of (1) as the 
driving force. It will appear in the form I0ept where Iq is another complex 
constant. The actual physical current corresponding to the actual physi¬ 
cal voltage will be the real component of this expression. For brevity, the 
constants E0 and Io alone will sometimes be spoken of as “ voltage ” and 
“ current.” 

(3) The self- or transfer impedance, depending upon whether the current 
and voltage are in the same or different meshes, will be defined as the ratio 
Eo: Io of the constants in the voltage and current expressions of (1) and 
(2). 

(4) The impedance is obtained as an algebraic quantity from the solu¬ 
tion of the set of linear equations which result when the differential opera¬ 
tor d/dt is replaced by p = tea in the differential equations of the circuit* 

2*4* The Complex Frequency Plane 

The definitions of frequency and impedance which have just been given 
were developed on the assumption that the driving force would be a simple 
sine wave. The frequency/ is then a real quantity and the new variable p 
is a pure imaginary. Quite evidently, However, the definitions can be 
extended formally to situations in which both/ and p are complex* The 
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physical meaning of such an assumption is easily determined. Suppose, for 
example, that we are dealing with the driving voltage Let E0 and p 
be, respectively, -Eoi + <-£o2 and pi + ip2. The voltage can then be written 
as 

(£01 + iEo2)e<'pl+'Vt)t = (Eqi cos p2t — E02 sin pit)#* 

+ i (£0i sin p2t + E02 cos p2t)ent. (2-23) 

By the definitions just established the physical voltage is the real com¬ 
ponent of this expression or, in other words, (E01 cos p2t — jE02 sin p2t)eVit. 
It is obviously a sinusoidal oscillation with positive or negative damping 
depending upon whether pi is negative or positive. The physical current 

Fio. 2.2 

corresponding to this voltage is obtained by dividing the complex voltage 
by the impedance and taking the real component of the result. It will 
evidently be a damped sinusoid with the same frequency and damping as 
the driving voltage. 

We will hereafter consider that frequency is in general a complex quan¬ 
tity, It can conveniently be represented on a plane such as that shown 
by Fig. 2.2. As the figure is drawn, the horizontal axis represents real 
values of p, and the vertical axis imaginary values of p or real values of fre¬ 
quency. Real frequencies are therefore obtained by reading up the vertical 
scale. This arrangement is normally the most convenient one in theoretical 
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analysis, since p is a more convenient variable than/. If we prefer, how¬ 
ever, the diagram can be given a quarter turn in a clockwise direction, so 
that real values of frequency are found on a scale reading from left to right 
in the normal fashion. In this event, complex frequencies are found above 
and below the real frequency axis. The other axis, corresponding to real 
values of p or pure imaginary values of frequency, represents the limiting 
case in which fche^driving voltage and responses are exponentially increasing 
or decreasing without oscillation. 

It will be noticed that the diagram represents negative as well as posi¬ 
tive values of frequency. The lower half of the plane, in which negative 
frequencies are found, is seldom of much actual concern in network analysis. 
In any physical circuit, the real component of the impedance is an even 
function of frequency, and the imaginary component is an odd function. 
In other words, the real component of the impedance at a negative fre¬ 
quency is equal to its value at the corresponding positive frequency, while 
the imaginary component at a negative frequency is the negative of the 
imaginary component at the corresponding positive frequency. Simple 
relations of symmetry, therefore, connect the upper and lower halves of 
the plane. 

The distinction between the right and left halves of the p plane, or the 
upper and lower halves of the frequency plane, on the other hand, is of 
primary importance. This arises from the fact that on one of these halves, 
the driving voltage and response correspond to functions which decrease ex¬ 
ponentially with time, while on the other half they represent exponentially 
increasing functions. As our later discussion will show, there is a close 
connection between the steady state response characteristics of the net¬ 
work, and its transient characteristics. Since a network whose transients 
increase as time goes on is unstable, or, in other words, non-physical, the 
characteristics of physical networks in the half of the plane corresponding 
to exponentially increasing functions are severely limited. 

2.5. Zeros and Poles of Impedance and Admittance 

The functions whose behavior on the complex plane will be of chief 
interest are the driving-point and transfer impedances Z and Z^, and the 
corresponding admittances Y and Yt» Each of these can be expressed in 
terms of determinants whose elements are relatively simple functions of 
frequency. In the mesh system, for example, the general impedance 
coefficient can be written as Z# = (p2Lij + pRy + &ij)/p. Since any of 
the determinants A, An, Ai2 used in the definitions of Z and Z? can be 
expressed as the sum of products of quantities of this type, it is clear that 
they must all be polynomials in p divided by some power of p. The same 
result, of course, holds for determinants taken from the nodal system. 
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The individual functions, Z, Zt, F, and Fy, are each expressible as the 
ratio of two determinants, from equations (1-8), (1-10), (1-23) and 
(1-24). Evidently, therefore, they must each appear, in general, as the 
ratio of two polynomials, as shown by 

Ampm + Am—\pm 1 + * ■ • + A\p + Ap * 

Bnpn + Bn—ipn~l + • • • + B\p + Bo 
(2-24) 

Such an expression is called a rational junction of p. 
In studying the behavior of such a function as (2-24) on the complex 

frequency plane, it is convenient to give special attention to its zeros and 
poles, which are respectively the points at which the function becomes zero 
and infinite. This is easily expressed by rewriting both numerator and de¬ 
nominator of (2-24) as a product of factors, so that the equation becomes 

rrr = Am(p - j>i)(p - />2) ' ‘ ’ (p ~ Pm) % 

<r) Bn{p - p'2) •••(/> - p'n) 
(2-25) 

Evidently pi • • • pm are the zeros, and p[ • • • prn are the poles. Ordinarily 
the p’s andp^s will all be different, so that the zeros and poles are all of the 
first order, or “ simple.” In special cases, however, two or more zeros or 
poles may coincide to give a multiple zero or pole. The zeros and poles 
are obviously the analogues, for general networks, of the resonances and 
anti-resonances which are familiar in purely reactive structures. The prin¬ 
cipal difference is the fact that the “ resonances ” and “anti-resonances ” 
in a general network may occur at complex frequencies. 

The consideration of the zeros and poles is important for two reasons. 
The first is the fact that except for the constant multiplier Am/Bn they 
evidently specify (2-25) completely. Assuming, then, that fV represents 
a driving-point impedance or admittance, we can conclude that two 
driving-point impedances or admittances having the same zeros and poles can 
differ only by an ideal transformer. Similarly, if W is a transfer impedance 
or admittance, we can say that two transfer impedances or admittances 
having the same zeros and poles can differ only by a constant gain or loss. 

The other reason for paying particular attention to the zeros and poles 
will appear more clearly in later chapters. It depends broadly upon the 
fact that the location of the zeros and poles in the frequency plane fornishes 
our best index in classifying networks. Thus, unless the zeros and poles 
meet certain restrictions, the impedance functions which they specify can¬ 
not be furnished by a physical network. Assuming that these restrictions 
are met, further study of the zeros and poles permits the function to be 
assigned to one of several general categories. 
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2.6. Zeros and Poles of a Resonant Circuit Impedance 

As an illustration of this discussion we may return to the resonant circuit 
which was analyzed earlier in the chapter. The impedance of this circuit, 
as given by (2-19), can be written as 

where 

~ L (g — j>i)(? — j>a) 

P 

P2 = - 
R_ //* Y _ R. 
2L \\2LJ L 

(2-26) 

(2-27) 

The quantities pi and p-2 are evidently the zeros of the impedance. Their 
location depends upon the two quantities, R/L and D/L. If we multiply 
R/L by any quantity, and D/L by the square of that quantity, however, p\ 
and p<2 will merely be multiplied by the same quantity. It is, therefore. 

-h> 

Fig. 2.3 

while D/L is held fixed. If R/L is small compared to D/L, which corre¬ 
sponds to a resonant circuit with small damping, the quantities under the 
square root signs will be negative, and pi and pz will therefore be conjugate 
complex numbers with negative real parts. Typical locations for pi and 
p2 are represented by the circles in Fig. 2.3. The cross at the origin repre¬ 
sents the pole of impedance which is found when p — 0. It is customary to 
consider that there is another pole at p = «, since the impedance is also 
infinite there. 

It is easily shown that, as R/L varies, pi and p2 move along the circular 
paths indicated by Fig. 2.4. At the extreme points A and A' > for which R 
vanishes, pi and pi lie on the real frequency axis. This corresponds to the 
ordinary resonance of a non-dissipative resonant circuit, in which the 
impedance vanishes at a real frequency. The points B and B‘ represent the 
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tu) 

/> plane 

zeros when the circuit contains a moderate amount of dissipation. This is 
similar to the case previously illustrated by Fig. 2.3. At C, on the other 
hand, (R/2L)2 = D/L and the two 
zeros are equal. In other words, the 
impedance has a double zero at this 
point. This is the critically damped />* 
case. Since C is found on the real p f 
axis the corresponding physical volt- -/> tc 
age and current are non-oscillatory z>' d~ 
exponentially decreasing functions. \ 
If R/L is still larger, px and p2 are \ B' 
found respectively to the right and °vs.% 
left of C on the real p axis as illus¬ 
trated by D and D'. It will be no- .a) 
ticed that* although the zeros can be Fig* 2 4 
assigned a great variety of positions by varying the relations among R, L, 
and D9 they are always found in the left half of the p plane. 

2.7. Analytic Functions 

The introduction of complex values of frequency is equivalent in mathe¬ 
matical terms to studying such quantities as the driving-point and transfer 
impedance by the methods of function theory. In this field, one of the 
most important tools available to the mathematician is the conception of 
an analytic function. 

Definition: A function is said to be analytic at a given point in the 
plane of the independent variable provided it has a finite 
derivative, independent of direction, at that point. 

The function is analytic over a given region provided it is analytic at 
every point in that region. Points for which it is not analytic are called 
singular points or singularities. 

The restriction that the derivative be independent of direction is rela¬ 
tively unimportant for engineering purposes. It is effective only in elimi¬ 
nating such functions as the real component of Z, or the absolute value 
of Z. For example, | Z | cannot be an analytic function of p at any point 
because d\ Z | must be a real quantity, and the phase angle of the derivative 
d\ Z \/dp must therefore change as we change the phase angle, or direction, 
in which dp is taken. As long as we restrict ourselves to functions which 
are in general complex, such as Z or log Z, however, the fact that the deriva¬ 
tive will be independent of direction can be taken for granted. The essen¬ 
tial feature of the definition, then, is the fact that if the function is to be 
analytic the derivative must be finite. 
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The points at which the derivative of a rational function, such as (2-25), 
becomes infinite are readily determined. If, for example, we let N and D 
represent respectively the polynomials in the numerator and denominator 
of (2-25), the ordinary rules for differentiation give 

D— — N — 
dWm _ dp dp 

dp ~ Z)2 
(2-28) 

Since N and D are ordinary polynomials, neither they nor their derivatives 
can become infinite for any finite value of p. We can thus conclude that 
(2-28) will become infinite only at the points at which D vanishes, or in 
other words only at the poles of the original function. The singular points 
of an impedance or admittance function are therefore its poles, and the function 
will be analytic in any part of the/> plane which contains no poles. 

It will be seen that the analyticity of the impedance or admittance func¬ 
tion W is not dependent upon the location of its zeros. If W is a trans¬ 
fer impedance or admittance, however, it is usually convenient to specify 
it in terms of attenuation and phase shift. This is equivalent to dealing 
with the function log W, rather than with W itself. The expression 
corresponding to (2-28) for the derivative of log W is 

dN „dD 
D-N — 

d log ttjT) = dp dp 

dp ND K ’ 

This is evidently infinite whenever either N or D vanishes. The singular 
points* of the logarithm of an impedance or admittance are therefore the zeros 
and poles of the original function. Log W will be analytic only in regions 
which contain no zeros or poles of W. 

The properties of analytic functions furnish the most direct method of 
establishing Nyquist’s criterion for stability. The first application of this 
material will be made in Chapter VIII, where Nyquist’s criterion is 
discussed. 

2.8. Physical Validity of Complex Frequencies 

The conception of a complex frequency can be looked upon in several 
ways. If we like, we can think of complex frequencies as having real 

*The singular points are “logarithmic singularities” and not poles. For the 
point po to be a pole the function must approach infinity near po as l/(p — po)n9 
where n is an integer. Although log W approaches infinity at the zeros and poles 
of W9 the approach is at a much slower rate. For example, it is shown in ordinary 
calculus that, although log x * — log (l/x) approaches — <*> as x vanishes, it in¬ 
creases so slowly that the limit of x log x is zero. 
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physical existence. The definitions of complex frequency and impedance 
have been so drawn that an analysis stated in terms of complex frequencies 
can be submitted to physical verification. There is no difficulty in suppos¬ 
ing that a generator can be constructed to give a driving voltage varying as 
an exponentially increasing or decreasing sinusoid for a reasonable period of 
time. By energizing a network with such a generator, the response charac¬ 
teristics of the structure can be obtained by direct physical measurement. 
The conception of complex frequency can thus be checked in the laboratory 
by a direct comparison of measurement and computation. 

Although this physical possibility is present, another point of view is 
more illuminating. We are finally interested in the response of the network 
only at real frequencies. It is only this characteristic which is specified in 
ordinary design problems. Moreover, the Fourier integral analysis tells 
us that if we know the responses of the network to driving voltages repre¬ 
sented by pure sinusoids, we can find its response to any other driving 
voltage. The real frequency characteristic, therefore, tells the whole 
story. So far as the purely theoretical relations are concerned, we might 
start with the response at real frequencies and compute the response to the 
exponentially increasing and decreasing sinusoids corresponding to complex 
frequencies by Fourier integral methods. 

Although the complex frequency conception is thus not essential, its 
introduction is of great value in facilitating the mathematical treatment of 
the theory. From a purely mathematical point of view, it is simpler to 
study the impedance function on the complex frequency plane than it is to 
consider only real frequencies. We have already noticed an analogous 
situation in the discussion of the response of the resonant circuit to a sinu¬ 
soidal driving voltage. The addition of an imaginary component to the 
voltage, although it is later discarded, makes the mathematical expressions 
so much more symmetrical that the algebra is actually much simplified. 
Somewhat the same advantages are obtained when we generalize the con¬ 
ception of frequency to include complex as well as real values. In this 
book we will use the idea of a complex frequency chiefly as a tool to specify 
what kinds of network characteristics are physically realizable. The same 
conclusions theoretically should be obtainable by the use of Fourier meth¬ 
ods on the real frequency characteristic, but the mathematics required 
with that treatment is much more difficult. 

A curious and interesting qualification of this discussion of the relation 
between the complex and real frequency response arises when we consider 
the physical significance of a complex frequency in more detail. The 
characteristics we are examining are, of course, those which correspond to 
the steady state response of the network. Since we never have a network 
which has been acted upon by a given voltage for an infinite length of time. 
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the steady state is never realized exactly in any experimental situation. 

We are accustomed to supposing, however, that a physical measurement of 

the steady state response can be obtained with sufficient exactness with a 

suddenly applied voltage if we delay the measurement until the transients 

have had time to decay sufficiently. There is evidently no difficulty 

about doing this when the driving voltage is a pure sinusoid. It is also 

possible if thfe driving voltage lies oh the right side of the p plane, since 

then the steady state characteristic will emerge as an increasing exponential, 

while the transient terms are dying out. If the driving voltage is suffi¬ 

ciently far to the left of the p plane, on the other hand, the “ steady state ” 

response will diminish with time even more rapidly than do the transients. 
Evidently for frequencies in this part of the plane no physical measurement 

can be made which will lead to a response which is chiefly determined by 

the steady state characteristic of the network. Since the physical response 
can always be computed from the real frequency characteristic by the Four¬ 

ier integral method, this suggests strongly that the connection between the 

steady state characteristics in the extreme left of the p plane and the 

characteristics at real frequencies is somewhat tenuous. It should be 

possible to manipulate the characteristics at the extreme left of the p plane 

with considerable freedom without affecting the characteristics at real 

frequencies appreciably, if at all. These possibilities have been exploited in 
some branches of network theory. A description of these methods, how¬ 

ever, is beyond the scope of this book. 



CHAPTER III 

Feedback 

3.1. Introduction 

This and the following three chapters are devoted to a general analysis of 
feedback circuits and a discussion of the meaning of feedback. The princi¬ 
pal object of the analysis is the development of a general feedback theory 
in terms of the mesh or nodal equations of the amplifier as a whole without 
distinction between y and 0 circuits. This is attempted partly because the 
mesh or nodal formulation is the most satisfactory one for analytical work, 
and partly because without such a general foundation it is difficult to pro¬ 
vide a satisfactory theory for the multiple loop circuits which appear with 
increasing frequency in current design practice. As an introduction to this 
discussion, however, the present chapter gives a summary of the familiar 
theory of feedback amplifiers in terms of y circuits and 0 circuits and also a 
description of some of the commonest feedback arrangements. This part 
of the discussion is given only in outline form since a general acquaintance 
with feedback circuits is assumed in this book.* 

3.2. Elementary Theory of Feedback Circuits 

In its simplest form, a feedback amplifier can be regarded as a combina¬ 
tion of an ordinary amplifier, or y circuit, and a passive network, or 0 cir¬ 
cuit, by means of which a portion of the output of the y circuit can be 

In pu+ Eft Ou+pulr 

p2 Line 

Fio. 3.1 

returned to its input. Such a combination is shown by Fig. 3.1. Both 
the y and 0 circuits are, of course, actually four-terminal structures. The 
circuits are represented by single lines in Fig. 3.1 for simplicity. 

When a portion of the output voltage is returned to the input, the circuit 

* See H. S. Black “Stabilized Feedback Amplifiers,” B.S.T.J., or “Electrical 
Engineering ” for Jan. 1934, also U. S. Patent No. 2,102,671. Good textbook refer¬ 
ences are Terman “ Radio Engineer’s Handbook,” or “ Applied Electronics ” by 
the Electrical Engineering StafiF of M.I.T. 

31 
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may, in fact, break into spontaneous oscillation. In this event the circuit 

is normally inoperative as an amplifier. * If we suppose for the moment that 

oscillations are avoided, however, the characteristics of the structure can be 

obtained without difficulty. It is merely necessary to recognize the fact 

that the operation of the m and 0 circuits separately is fully defined by the 

voltages appearing across their terminals, without regard to the fact that 

they are parte of the feedback loop. For example, let E0 and ER represent, 

respectively, the signal voltage applied to the input and the final voltage 

delivered to the output, as is shown in Fig. 3.1, and let E\ represent any 

additional voltage supplied at the input by the return of a part of the output 

voltage through the 0 circuit. Then the m circuit, operating as an ordi¬ 

nary amplifier, must satisfy the equation 

Er = fi(E0 + £i). (3-1) 

Similarly, if we let 0 represent the transmission characteristic of the 0 
circuit, the voltage which it supplies at the input terminals must be given 

by 

Ex = I3Er. (3-2) 

Upon eliminating E\ between these two equations, we find 

Er = nE0 + fi0ER, (3-3) 

or in other words 

Er = < Eo. (3-4) 
1 - MP 

Without the 0 circuit, the output voltage would be given by ER = /xE0. 
We therefore have the 

Theorem: Feedback reduces the gain of an amplifier by the factor 

1 - rtS.* 

The quantity y.0 can be called the feedback factor, f It evidently repre- 

* All the theorems in this chapter are to be taken as approximate, in the sense 

that they will be superseded by the more general propositions given in Chapters V 
and VI. We may also notice that in many statements of this theorem the factor 
by which the gain is reduced is written as 1 + fi0. The choice of the sign of n0 
depends upon the way in which the phase shifts of the tubes are counted. Ordinary 
vacuum tubes give a phase reversal of the signal, in addition to any phase shifts 
contributed by the interstage impedances. In the standard n circuit containing an 
odd number of tubes, therefore, there will be one net phase reversal. If this is in¬ 
cluded as part of n the factor appears as 1 — f*0. If the phase reversal is counted 
separately, on the other hand, the proper expression is 1 + fi0. 

f Cf. Terman, loc. cit. p. 395. The term “ feedback ” will be used in the follow¬ 

ing chapters for a quantity analogous to 1 — fi0. 
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sents the transmission around the complete loop from the input of the 

amplifier back to the input again. In ordinary practice, is very much 

larger than unity. Under these circumstances, equation (3-4) is con¬ 

veniently rewritten as 

1 
Eq 1 — up p 

(3-5) 

and since the first factor on the right-hand side of (3-5) must be substan¬ 

tially unity in absolute value when fxP is large, we can conclude that the 

gain of the amplifier varies approximately inversely with the transmission 

through the P circuit or, in other words, is approximately proportional to 

the P circuit loss. The error in this conclusion due to the departure of 

| m£/(1 — vP) | from unity will be called the jxP effect or the jjlP error in 

subsequent discussion. 

Equation (3-5) evidently implies that the gain of the amplifier may be 

much affected by slight variations in the P circuit but that it is almost inde¬ 

pendent of variations in n. In order to show this more clearly, we may 

differentiate (3-4), keeping P constant, to give 

dER_1 df± * 

Er 1 — nP n 
(3~6) 

In this equation, the quantities dER/ER and dn/p evidently represent corre¬ 

sponding changes in the amplifier gain and in the gain of the ja circuit 

when both gains are expressed in logarithmic units, such as nepers or deci¬ 

bels. We therefore have the 

Theorem: The variation in the final gain characteristic in db, per db 

change in the gain of the /i circuit, is reduced by feedback in 

the ratio (1 — /x£) : 1. 

The final property of feedback of fundamental engineering importance 

is the fact that it reduces the effects of extraneous noise or non-linear dis¬ 

tortion in the m circuit. In a broad physical sense, extraneous noise and 

non-linear distortion in any element can be regarded as “ variations ” in 

that element, and the sensitiveness of the circuit to such variations is 

always correlated with its sensitiveness to normal variations in the value 

of the element.* Fundamentally, therefore, this property is merely a 

reflection of the theorem just established. In order to demonstrate it 

independently, however, let it be supposed that a generator Do is inserted 

somewhere in the interior of the m circuit as shown by Fig. 3.2. Dq may 

represent either an extraneous noise voltage, such as would be produced, for 

* This is shown generally in Chapter V. 
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example, by a bad contact or by hum in the power supply, or it may be 
taken to represent the voltages of the modulation products arising from 
non-linear distortion in the m circuit. Let Ed represent the actual output 

voltage which appears on the line in consequence of this noise generator and 
let D\ represent the additional voltage which appears between mi and M2 

by transmission around the nP loop. Since the total voltage at this junc¬ 
tion is Do + Di and the gain between this junction and the output line is 
H2y we must have 

Ed = M2 (D0 + Di). (3-7) 

The voltage D\ which is returned to the junction by transmission through 
the P circuit and through mi is evidently given by 

Di — Mi PEd. (3-8) 

Upon eliminating Di we therefore have 

M2D0 
Ed = 

1 - f±P 
(3-9) 

where m has been written for the total gain miM2* Since the noise which 
would appear in the output in the absence of feedback is M2A>> this result is 
equivalent to the 

Theorem: The noise level in the output of a feedback amplifier is 
reduced by feedback in the ratio (1 — fxp): 1. 

We cannot conclude from this that the signal-to-noise ratio is reduced by 
this factor, because feedback may also change the effective signal level in 
the m circuit. An accurate statement can, however, be easily obtained by 
comparing the structure with a non-feedback amplifier which has the same 
final gain m/( 1 — vfi) and the same input and output voltages £0 and Er. 
The comparison is made most easily if we suppose that the complete m 
circuit is broken up into mi and M2 portions, as in Fig. 3.2, having respec¬ 
tively the gains 1 — m£ and m/(1 m£)« Then since both M2 and the 
comparison non-feedback amplifier have the same gain and deliver thfc 
same output voltage Er, they will have the same signal levels throughout, 
and we can conclude that feedback is fully effective in improving the signal- 
to-noise ratio for any noises originating in this part of the circuit. In 
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on the other hand, the signal level is less than it is in any portion of the 
comparison amplifier and the improvement in the signal-to-noise ratio for 
noises originating in this portion of the fi circuit is consequently only 
partial. At the input terminals of the first tube, where the signal is also 
reduced by the factor 1/(1 — nfi)> feedback has no effect on the signal-to- 
noise ratio. Feedback is thus a useful tool in combating troubles due to 
modulation and perhaps power supply hum, in the case of tubes with 
directly heated cathodes, which are characteristic of output stages. It is of 
little value, however, in dealing with noises due to thermal agitation, shot 
effects, etc., which may be expected to be troublesome in the input stages. 

The engineering importance of feedback circuits results from the possi¬ 
bilities they present of diminishing markedly the effects of noises or varia¬ 
tions in gain in the n circuit. The decrease in the external gain which 
follows from the use of feedback is unfortunate and makes it necessary in 
general to use a more complicated n circuit to obtain adequate final gain. 
This, however, is an easy sacrifice to make to secure the improvements 
which are available in other directions. As an example, we may consider 
an amplifier having 40 db external gain and 40 db feedback. The ju circuit 
is then required to furnish 80 db gain, so that it represents an increase of 
2 to 1 over the gain which would be required of a non-feedback amplifier. 
For this 2 to 1 increase in the complexity of the n circuit, however, we secure 
an improvement of 100 to 1 in its effective linearity and gain stability. 

3.3. Types of Feedback Circuits 

The principal circuit configurations useful in feedback circuits can be 
classified most easily in terms of the way in which the /x and circuits are 
connected to each other and to the line at the ends of the amplifier. The 

Fio. 3.3 

varieties of connections which may be made do not appear very clearly 
from a single line drawing such as that of Fig. 3.1. Physically, however, 
the fi circuit, the p circuit, and the line must all be two-wire circuits. The 
actual situation is therefore that shown broadly by Fig. 3.3 in which the 
three circuits are connected together by means of a six-terminal network. 
The classification of feedback circuits thus depends upon the forms which 
these six-terminal connecting networks assume. 
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There may, of course, be an unlimited variety of six-terminal arrange¬ 
ments to select from. The simplest ones, and the ones which appear to be 
most useful are, however, shown by Figs. 3.4 to 3.8. In each structure, the 
terminals are labeled in accordance with the notation used in Fig. 3.3. 
Figure 3.4, for example, shows a series type of feedback circuit. The m 
circuit is taken as a conventional three-stage amplifier, the interstage imped¬ 

ances being indicated by I\ and /2- The 0 circuit is represented for con¬ 
creteness as the 7r of branches B, and C, but it may, of course, reduce to a 
single branch or it may assume a still more elaborate form. The effective 
line terminals e-f and e-f are indicated at the high sides of the trans- 

Fig. 3.5 

formers since the line and transformer characteristics evidently add di¬ 
rectly.* The characteristic feature of this amplifier is the fact that the m 
and 0 circuits, as seen from the line, are in series at each end of the amplifier. 

Figure 3.5 shows a shunt type feedback system. The 0 circuit is here 
represented as a T, but, as in Fig. 3.4, it may in general be taken as any 

* It is also possible to feed back on the low sides of the transformers. In this 
case the transformers become part of the m circuit. 
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four-terminal structure.* The characteristic feature of this type of feed¬ 
back is the fact that the /z circuit, circuit, and line are all in parallel at 
each end of the amplifier. 

Series and shunt feedback circuits are the simplest and probably the most 
convenient arrangements for most applications. In ordinary circumstances 
they are also the circuits which give a maximum amount of feedback. 
They suffer, however, from two major disadvantages. The first, which is 

Fig. 3.6 

discussed in more detail in Chapter V, is the fact that in these circuits 
feedback changes the impedance of the amplifier as seen from the line to 
either a very high or a very low value. They are thus not convenient 
arrangements to use with amplifiers which must have a good reflection 
coefficient against the line. The second is the fact that the line impedances 
form a part of the loop. Variations in the line impedance may therefore 
affect the characteristic and in some cases the effect may be great enough 
to cause instability. 

These difficulties are overcome by the use of a bridge type feedback 
circuit, such as that shown by Fig. 3.6. This circuit includes three new 
branches, represented by Z2, Z3, and Z4 in Fig. 3.6, at each end of the 
amplifier. A fourth branch, which is represented by Zx, is also included to 
permit control of the input and output impedances of the fx circuit if neces- 
sary.f The three new branches, together with the impedances of the 
fi circuit, the (3 circuit, and the line, give a network having a total of six 

* It should be noticed, however, that if the 0 circuit in Fig. 3.4 were chosen as 
a T, or that in Fig. 3.5 as a 7T, the extreme branches could in either case be assimilated 
as part of the line impedances. Since the insertion of unnecessary impedances in 
the line is likely to waste power, it is clear that these are unacceptable configura¬ 
tions unless the contributions of the extreme branches are so small as to be almost 
meaningless. The configurations actually shown in Figs. 3.4 and 3.5 are thus repre¬ 
sentative of those which would be appropriate in practical cases. These considera¬ 
tions are discussed in more detail in subsequent chapters. 

t See the discussion of the effect of omitting Zi given later in Chapter V, 
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branches. If anyone of the six is taken as a generator impedance, the remain¬ 
ing five can be arranged as the four arms of a bridge plus a galvanometer 
arm. For example, if the generator impedance is taken as the line, the 
galvanometer arm becomes the P circuit impedance. When the bridge is 
balanced in this arrangement the nP loop is independent of the line imped¬ 
ance. The conjugacy between the line and the p circuit also destroys the 
effect of feedback on the amplifier impedance so that it becomes compara- 

Fig. 3.7 

tively easy to secure a moderate impedance which can be adjusted to match 
a given line by controlling the elements in the bridge. 

The bridge type circuit suffers from the general disadvantages that it 
may require extreme impedance levels and that a portion of the output 
power may be consumed by the branches added to secure a bridge balance. 
These difficulties can be ameliorated by replacing the bridge by a three- 

r e a _ _ _ a1 e* /*/ 
i 

Fic. 3.8 

winding transformer or hybrid coil. In view of the several known equiva¬ 
lences between a bridge and a three-winding transformer, there are several 
ways in which this substitution may be effected. Figure 3.7, for example, 
shows a “ high-side ” hybrid coil feedback. In this case Zn represents the 
" balancing ” impedance. Figure 3.8 shows a “ low-side ” feedback. 

In the preceding figures, the same circuit connections have been shown 
at each end of the amplifier as a matter of simplicity. The number of 
available configurations, however, is much increased by the possibility of 
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combining different connections at input and output. For example, 
Fig. 3.9 shows a series connection at the input terminals in combination 

with a shunt connection at the output. Figure 3.10 shows a combination 
of series input and hybrid coil output. 

3.4. Cathode Feedback Circuits 

In addition to these general arrangements, a wide variety of other feed¬ 
back circuits may be used in practice. A particularly important example, 
for practical purposes, is furnished by the so-called “ cathode ” feedbacks. 
These may exist in two forms, depending upon the number of stages in the 
H circuit. In either case, the arrange¬ 
ment is essentially a modification of a 
series feedback amplifier. Figure 
3.11 for example, shows a series 
feedback for two stages in compari¬ 
son with the corresponding cathode 
feedback shown by Fig. 3.115. The 
8 circuit is represented by the single 
branch Zp. In this instance, the 
cathode connection is used to secure 
a phase reversal* As the discussion in 
Chapter I pointed out, the successive 

M 

Fm. 3.11 
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tubes in the m circuit produce successive phase reversals. With an odd 
number of tubes it turns out that the net resulting phase is of a sign suitable 
for feedback without instability. If there are an even number of stages as 
shown by Fig. 3.1 \A, however, the current delivered by the m circuit has 
the wrong sign for direct return to the input. This is avoided in Fig. 3.1 IB 
by crossing the terminals in the P circuit to secure an additional phase 
reversal, llie “circuit is called a “ cathode ” feedback because the cathode 
of the first tube is off ground.* 

The use of a cathode feedback circuit to replace a corresponding series 
feedback circuit when the \i circuit contains an odd number of stages is 
shown by Fig. 3.12. Here the cathode feedback is introduced principally 
to minimize distributed capacities to ground. As Fig. 3.12A shows, the 
conventional series feedback circuit is grounded at the cathode junction, 
P\. The junction P2, to which the transformers are connected, is off 
ground and their capacities to ground fall effectively across the p circuit. 
No improvement is obtained by transferring the ground terminal from Pi 
to P2 because this leaves the ground capacity of the n circuit, which is at 
least equally large, to be accounted for. The total capacity can, however, 
be minimized by grounding most of the forward circuit in the manner 
shown by Fig. 3.125. Since the cathodes of both input and output tubes 
are off ground there is no net phase reversal. 

A special feature of the cathode circuits is the fact that some feedback 
may exist for the tubes whose cathodes are off ground even when the 
remaining tubes are dead. Thus in Fig. 3.115 the plate current for the 

* We can evidendy cross terminals without a change in ground by including a 
transformer in the loop. In ordinary situations, however, the inclusion of a trans¬ 
former so restricts the available feedback, as determined by the methods described 
later, that Fig. 3.11 represents a preferable solution. 
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first tube can return to its cathode only by flowing through the |8 circuit 
impedance9 so that some voltage would be returned to the first grid even 
if the second tube were removed. In Fig. 3.122? a similar situation holds 
for both the first and third tubes. 

Speaking rather roughly, we can suppose that the 0 circuit impedance 
operates independently in producing this residual feedback and in produc¬ 
ing the principal feedback. For example, Fig. 3.13 gives the approximate 
equivalent of Fig. 3.122? under this method of treatment. It is obtained 

Fig. 3.13 

from the original series feedback amplifier of Fig. 3.12^f by inserting new 
impedances equal to the /S circuit impedance in the cathode leads of the 
first and third tubes. The first and third tubes can evidently be regarded 
by themselves as miniature feedback amplifiers of the series type. These 
tubes thus have more total feedback than would appear if we considered 
only the transmission around the principal loop. On the other hand, since 
the local feedback reduces their gain, the transmission around the principal 
loop will be decreased unless some compensating change is made. 

3.5. Multiple Loop Feedback Amplifiers 

The circuits of Figs. 3.112? and 3.122? are examples of multiple loop 
amplifiers, or in other words of amplifiers in which voltage can be returned 
to some of the grids by more than one path, so that the effective feedbacks 
on the various tubes are different. In these particular structures the 
subsidiary paths are accidental results of the type of feedback connections 
adopted. In current amplifier development, however, there appears to be 
an increasing tendency to turn to multiple loop circuits deliberately in 
order to obtain results not available from single loop structures. 

One simple type of multiple loop structure is shown by Fig. 3.14. The 
circuit is a series feedback amplifier with additional feedback on the last 
tube through the insertion of an impedance in its cathode lead. The 
structure is thus similar to the “ equivalent ” amplifier previously shown by 
Fig. 3,13, except that since the local feedback is now produced by the 
impedance which is independent of the principal feedback impedance 
Zfli, it can be chosen arbitrarily. We can look upon the circuit as a device 
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for securing more reduction in the non-linear distortion in the last tube than 
can be obtained, according to the principles laid down later, by feedback 
around the main loop alone. 

Figure 3.15 shows a second type of multiple loop structure. It is similar 
to that shown by Fig. 3.14 except that the local path represents shunt rather 
than series feedback. The subsidiary path may be regarded either as a 

branch deliberately added to improve the characteristics of the output 
tube, as in Fig. 3.14, or as a representation of a large parasitic grid-plate 
capacity, such as is found, for example, in the power triodes used for radio 
broadcasting. 

Still a third example is shown by Fig. 3.16. Here local series feedback 
is applied around the first two stages of the complete circuit. We may 
imagine the local feedback to be regenerative, so that it provides a higher 
jw$ gain around the complete loop than would otherwise be obtainable. In 
addition to the particular structures shown by Figs. 3.14 to 3.16, many 
other multiple loop amplifiers can evidently be secured either by combining 
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two or three of the local feedback paths shown by these figures in a single 
amplifier or by providing still more paths. 

3.6. Other Feedback Circuits 

The preceding sections have been intended as a brief sketch of the types 
of physical configurations directly envisaged in this book. They are com¬ 
posed characteristically of linear vacuum tubes and passive elements. 
Feedback circuits may, however, also be designed to include non-linear or 
non-electrical elements. Many of these are sufficiently similar in funda¬ 
mentals to a linear electrical circuit to be treated by the same methods, 
provided the proper precautions are taken. 

The diversity of applications will be indicated by two illustrations. The 
first consists of a feedback circuit including frequency translating devices. 
Figure 3.17, for example,shows 
a radio transmitter in which 
a portion of the output is de¬ 
modulated and returned to 
the signal input as voice fre¬ 
quency or “ envelope ” feed¬ 
back. If the modulator and 
demodulator are nearly ideal „ „ 
and the carrier frequency is 

much higher than the voice band this can be analyzed essentially as a lin¬ 
ear circuit. It is merely necessary to consider the transmission of an 
equivalent voice frequency around the complete loop. If the modulator 
outputs include a variety of products which can be transmitted around 
the loop, however, or if the carrier frequency is within a few octaves of the 
top of the voice band, the situation is more complicated and will not be 
considered here. 

The second general example is furnished by regulator circuits for such 
purposes as speed, voltage, or frequency control. Here the fact that the 
control circuit acts as a valve, producing a large change in output for the 
comparatively slight expenditure of energy required to change the control, 
gives an equivalent of vacuum tube amplification. The use of a portion 
of the output to adjust the control circuit is, of course, feedback. There 
is no definite useful band, in the sense in which this term is ordinarily 
understood in communication circuits, but an approximate effective band 
can ordinarily be assigned the circuit from a consideration of the rapidity 
with which the controls should operate. The essential problem, of course, 
is to avoid hunting, which is the equivalent of instability in a feedback 
amplifier* 



CHAPTER IV 

"Mathematical Definition of Feedback 

4.1. Introduction 

The conception of a feedback amplifier developed in the preceding 
chapter can be summarized in the following words: The amplifier consists 
of a forward or /x circuit and a backward or p circuit. The feedback can 
then be determined from the product /x/?, which represents the transmission 
around the complete loop formed by the /x and P circuits together. The 
circuit has the fundamental physical property that the effects of variations 
in the /x circuit, whether they are taken as changes in the normal /x gain or as 
departures from strict linearity or from freedom from extraneous noise, 
are reduced by the factor 1 — nP in comparison with the effects which 
would be observed in a non-feedback amplifier. 

This set of conceptions is almost indispensable in describing a feedback 
amplifier or in reasoning generally about the functions of the various parts. 
They will be retained here for this general purpose. For future analytical 
work, however, they are extended in this chapter to provide a purely mathe¬ 
matical definition of feedback. The mathematical definition is framed in 
terms of the general mesh or nodal equations introduced in^the first chapter. 
The system of equations is taken with reference to the complete amplifier, 
without distinction between /x and P circuits, so that these conceptions 
disappear from the formal analysis. 

This change is made for two reasons. The more obvious one is the fact 
that the mesh or nodal analysis furnishes a convenient foundation for 
further theoretical work. It is especially appropriate in discussing the 
relationship between feedback and stability. 

The second reason for developing a general definition of feedback in 
terms of the equations of the circuit as a whole is that it allows us to avoid 
the ambiguities and uncertainties which appear if we rely exclusively upon 
ai^analysis in terms .of separate /x and P circuits. The m and P analysis 
supposes that these circuits are clearly distinguishable entities to which can 
be ascribed definite properties independently of one another. This was 
suggested, for example, in the generalized sketch shown by Fig. 3.1 of the 
preceding chapter. In fact, however, the actual physical configurations ' 
shown by the figures which appeared later in the chapter do not permit 
such a clear-cut separation between the two circuits so that what we are to 

44 



MATHEMATICAL DEFINITION OF FEEDBACK 43. 

call ix and what remains somewhat vague. Since the properties of gain 
stabilization and distortion reduction hold only for the m circuit, and the 
eventual gain is determined by the /3 circuit, this is a matter of considerable 
importance. 

The simplest example of the difficulty of distinguishing sharply between 
H and P is furnished by the computation of gain from the familiar equation 

The computation requires a knowledge of /x and ii/3. The product ix(}, 
representing the transmission around the loop, is itself well defined. The 
H which must be used in order to make the equation an accurate expression 
for the amplifier gain is, however, not so apparent. It depends in part upon 
the way in which the current divides in '.he six-terminal connecting net¬ 
works shown at the ends of the amplifier in Fig. 3.3 of the preceding chapter. 
In evaluating #1 we must therefore make some allowance for the /S circuit 
impedance, instead of removing (9 entirely, since otherwise the division of 
current in these networks will, in general, be changed. For particular cir- 

Fig. 4.1 

cuits this can be examined by setting up detailed circuit equations, but 
without further theoretical study it is difficult to see, in general, just what 
branches of the /3 circuit should be included in making the allowance, and 
in any event it is clear that the problem of designing a circuit to give a 
specified external gain characteristic may be confused by the fact that any 

elements we put in affect both n and nP. 
The difficulty of separating the amplifier into n and /3 parts may become 

much greater in a multiple loop structure containing several feedback 
paths. A particularly extreme example is furnished by the cathode feed¬ 
back circuit shown by Fig. 3.125 in the preceding chapter. As drawn 
there, the circuit includes only the elements which would be supplied in the 

process. In a physical embodiment, however, it would be necessary 
to consider also the parasitic capacities between grid and cathode and 
between plate and cathode in each tube. When these are added the circuit 
appears in the form shown by Fig. 4.1. For design purposes it is possible to 
divide the elements of the circuit into a group which is most important 
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in determining forward gain and another which is chiefly effective for feed-¬ 
back. It is clear, however, that no sharp division into ju and p circuits can 
be made. Every element in the structure enters to some extent into both 
forward and backward transmission. 

4.2. Return Voltage and Reduction in Effect of Tube Variations 
* 

The consideration of multiple loop structures leads to another reason for 
developing a general mathematical definition of feedback, which may be 
less obvious than those previously discussed. In a single loop structure the 
fundamental quantity appears to be the loop transmission ftp. This is the 
same as the return voltage which would appear by transmission around the 
complete loop if we applied a unit voltage to any grid and opened the circuit 
just behind it. In such a structure we know that the factor measuring the 
reduction in the effect of tube variations is 1 — nft, so that it is always 
closely correlated with the return voltage. 

In a multiple loop structure voltages may be returned to the grids of the 
tubes by various paths which differ from tube to tube. For any particular 

tube, however, the total return voltage can be 
obtained, at least on paper, by adding together 
the contributions from all available paths through 
the network. This is illustrated by Fig. 4.2. 
N represents the complete circuit exclusive of the 
tube in question and Pi and p2, connected to¬ 
gether, the grid terminal for normal operation. 
The return voltage can then be defined as the 

voltage which would appear between Px and G in response to a unit voltage 
between P2 and G when the connection between Pi and P2 is broken. The 
grid-plate and grid-cathode capacities Cx and C2 are shown as going to P\ to 
indicate the fact that opening the loop should not disturb the admittances 
seen from the end point Px. 

Given any individual tube, it is also possible to determine the ratio 
between a prescribed small variation in its gain and the resulting change in 
the transmission characteristic of the complete circuit. It is natural to 
suppose that the correlation between this ratio and the return voltage on 
the tube will be the same for a general circuit as it is for a single loop 
structure. This is substantially true in the simplest and most common 
circuits. In exceptional circuits, however, the actual effect of individual 
tube variations on the final transmission characteristic may be much greater 
or much less than would be predicted from the return voltage. One of 
the objects in setting up a general mathematical definition of feedback h 

therefore to determine when the return voltage computation is a tehpfefe 
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index of the effect of tube variations and what corrections must be applied 
when it fails. 

One other aspect of the general situation deserves attention. Since the 
vacuum tubes are ordinarily the most variable and non-linear constituents 
of a complete amplifier, feedback is of engineering importance chiefly in 
correcting for their characteristics. An incidental result of the application 
of feedback, however, is the fact that it also reduces the effect of variations 
in some of the bilateral elements of the circuit. The effects of variations 
in the elements of an interstage impedance, for example, are reduced by 
feedback to the same extent as are those of variations in the transconduct¬ 
ances of the associated vacuum tubes. In any discussion of the relation 
between feedback and the effects of element variations, it is therefore 
legitimate to extend consideration to bilateral as well as unilateral elements. 
The analytical treatment of feedback developed in this chapter applies, in 
fact, equally well to elements of either type. In order to simplify exposi¬ 
tion, however, each step in the development is introduced as though uni¬ 
lateral elements only were in question, the extension of the analysis to 
bilateral elements being described subsequently. 

4.3. Return Ratio, Return Difference, and Sensitivity 

The preceding section has indicated that the usual conception of feedback' 
includes two distinct ideas. The first is that of a loop transmission or 
return of voltage, and the second that of a reduction in the effects of varia¬ 
tions in the tube characteristics. In normal circuits these two are related 
by simple mathematical laws so that the term “ feedback ” can refer 
genetically to both. 

In exceptional circuits, when the correlation between the two breaks 
down, the first idea is evidently the one which most nearly agrees with the 
usual physical conception of feedback. It will therefore be taken as the 
basis for the definition of feedback in the general case. To prevent any 
possible confusion, this idea will also be described by the new name return 
difference. It is still worthwhile, however, to retain the general idea of a 
reduction in the effects of tube variations. This will be referred to by the 
name sensitivity. 

The return difference, or feedback, and the sensitivity will be repre¬ 
sented by the symbols F and Sy respectively. They are to be regarded as 
the analogues, in general, of the quantity 1 — in a single loop structure. 
Thus, “ return difference ” is an abbreviation for “ return voltage differ¬ 
ence,w meaning by this the voltage difference existing between Pi and P% 
in J*%. 4,2 under the conditions of measurement indicated there. The 
tjUSatity 1 /u£, rather than rfi itself, is chosen as the fundamental unit, 
kmmm it turns out to lead to simpler and more compact formulae in most 
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situations. In order to have a symbol corresponding to the loop trans¬ 
mission itself, however, we will also write F =» 1 + T. Thus, T ** — fifi 
in an ordinary amplifier.* T will be called the return ratio. To complete 
the nomenclature, we might similarly introduce a symbol for the quantity 
S — 1, but the number of occasions when such a symbol would be useful is 
too small to make this step worthwhile. 

0 

4.4. Definitions of Return Ratio and Return Difference 

In order to secure more precise definitions of the quantities described in 
the preceding section, let the input of the general circuit be taken as the 
first mesh or node, and the output as the second mesh or node. We will 
also suppose that the grid and plate terminals of the tube under examina¬ 
tion are labeled respectively 3 and 4, and that its transconductance or 
mutual impedance is represented by /F. W is thus a constituent of Z43 or 
Y43 in the general system of mesh or nodal equations. In later sections the 
definitions of return ratio and return difference will be extended to bilateral 
elements. The form of these statements remains the same when W is a bi¬ 
lateral element, except that it is taken as a constituent of the self-impedance 
or admittance Z33 or Y33, rather than of the coupling term Z43 or Y43. 

The loop transmission or return voltage in Fig. 4.2 can be obtained by 
multiplying the transimmittance, W> of the tube itself by the backward 
transmission from the plate to Pi. In making the latter calculation, the 
open circuit which appears between Pi and P2 can evidently be represented 
by supposing that Pi and P2 are connected together, as in normal opera¬ 
tion, but that the tube is dead. If we let A0 represent the circuit deter¬ 
minant when W = 0, therefore, equations (1-10) and (1-24) of Chapter I 
give the backward transmission as A43/A°. Since the negative sign intro¬ 
duced by the phase reversal in the tube is canceled by the fact that T is 
analogous to — ju/3, we therefore have 

f= 1 + r= 1 + (4-1) 

But it follows from the discussion in connection with equations (1-11) to 
(1-14) that A0 + /TA43 is the value which the circuit determinant assumes 
when the tube transimmittance has its normal value W* If we represent 
the normal circuit determinant by the usual symbol A, therefore, equa* 

* The introduction of the minus sign may be explained by the fact that an ordinary 
feedback amplifier contains an odd number of tubes, which contribute an odd number 
of phase reversals to the loop. Thus Tt as defined, is equal to the loop transmission 
without these phase reversals, and will ordinarily be a positive quantity except for the 
effects of possible phase shifts in the interstage or feedback networks. The sign 4mm 
for Pis also more convenient in dealing with bilateral elements. *• 
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tion (4-1) can also be written as 

(4-2) 

In order to emphasize the importance of this last formula, and to pave the 
way for the treatment of bilateral elements in a subsequent section, the 
relation embodied in (4-2) will be restated as the 

Definition: The return difference, or feedback, for any element in a 
complete circuit is equal to the ratio of the values assumed 
by the circuit determinant when the specified element has 
its normal value and when the specified element vanishes. 

Equation (4-2) probably represents the most convenient working for¬ 
mula for the analytic treatment of feedback. A number of examples of its 
use in feedback circuit analysis will be given in the next chapter. The 
fact that the equation expresses Fin terms of the determinant of the system 
is particularly convenient in studying the relation between feedback and 
stability since, as we shall see later, the roots of the determinant tell whether 
or not a system is stable. The formula is also especially useful in studying 
multiple loop systems, since if we once know the determinant we can 
readily evaluate the individual feedbacks without making a complete sepa¬ 
rate calculation for each tube. 

4.5. Return Difference for a General Reference 

It is convenient to introduce here a generalization of the conception of 
return difference whose meaning will probably not be fully apparent until a 
considerably later point. In developing equation (4-1), we based the 
calculation, in a sense, upon the reference condition of the circuit obtained 
by setting W = 0. Thus the backward transmission from plate to grid was 
obtained for this condition of the circuit, and the forward transmission 
by which the backward transmission was multiplied to produce the com¬ 
plete loop gain, may be thought of as W — 0, or the surplus of the actual 
tube transimmittance over this reference value. 

We can evidently perform a similar computation for any reference con¬ 
dition W =» k. The " loop gain,” then, becomes the effective transimmit¬ 
tance, W — k9 multiplied by the backward transmission from plate to grid 
evaluated for the condition W ** k. Since the tube is no longer completely 
dead, this backward transmission must include the effects of a certain 
amount of physical feedback, but this is a practical rather than a theoretical 
complication. The reference k can be anything we like. For example, it 
might be the value of transimmittance at which the tube would be dis¬ 
carded in favor of a new one, or it might be the transimmittance which 
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would lead to a certain specified gain through the over-all circuit. The 
latter condition is the one which will be used in future applications of this 
concept. 

The return ratio and return difference resulting from this computation 
will be spoken of as the return ratio and return difference of W for the 
reference k. F* represents this return difference, we evidently have 

Fk = 1 + (JV - k) ^ > (4-3) 

where A* is the value assumed by A when fV = k. But since 
A* = A0 + £A*3 and A = A0 + WA43, where A0 is, as before, the value of 
A when W = 0, equation (4-3) can be rewritten as 

• (4-4) 

This equation is obviously analogous to (4-2) and, like (4-2), will be 
regarded as a definition in future discussion. 

Equation (4-4) leads to an easy method of computing the return differ¬ 
ence for the reference k from the return difference for zero reference. 
Thus, if we multiply and divide the right side of (4-4) by A0, we have 

A A0 

(4-5) 

F(JV) 

F(k) 

Stated in words, this result is the 

Theorem: The return difference of W for any reference is equal to the 
ratio of the return differences, with zero reference, which 
would be obtained if W assumed, first, its normal value, and, 
second, the chosen reference value. 

The conception of a return difference for a reference other than zero will 
be utilized at the end of this chapter. Meanwhile, it can be assumed that 
the term “ return difference ” applies only to the zero reference '■ 

4.6. Return Difference for a Bilateral Element 

In setting up equation (4-2) as a definition of return difference* 
dently extended the analysis formally to bilateral as well as unilatx^ ^w 
ments, since A and A0 are meaningful quantities for elements of 
The physical significance of the return difference of a bil 
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the other hand, is most easily studied if we replace (4-2), for a bilateral 
element, by an equation more nearly in the form of (4-1). This is readily 
done. Thus, if W is a constituent of Y33 or Z33, we evidently have 
A as A0 + WA33 in the bilateral case. Substitution of this relation in 
(4-2) gives 

1 + 1 +ir-gr> (1-6) 

which is like (4-1) except that A43 is replaced by A33. 
The meaning of the return difference for a bilateral element is easily 

understood from an examination of the terms in (4-6). Let it be sup¬ 
posed, for example, that W represents an impedance. Then A°/A33 repre¬ 
sents the impedance which would be seen by a generator in the mesh con¬ 
taining W if W were zero. In other words, it is the impedance which 
W faces. The return ratio T = WA33/A0 is therefore equal to the ratio 
of the impedance W to the impedance presented to W by the rest of the 
circuit. The return difference F is equal to the ratio of the complete imped¬ 
ance, including PFy to the impedance of the external circuit. Similarly, if W 
represents an admittance, the return ratio T and the return difference F 
are, respectively, equal to the ratio of the admittance W to the admittance 
of the rest of the circuit, and the ratio of the admittance of the complete 
circuit, including W> to the admittance of the rest of the circuit.* 

Viewed in this light, the conception of return difference for a bilateral 
element appears as an expression of the fact that a generator with internal 
impedance cannot be fully effective in driving an external circuit. The 
internal voltage drop is the “ returned ” voltage. It is “ returned ” to the 
source in the sense that it is unavailable to drive the external circuit. 
Thus, suppose that W is the impedance Z and that the impedance of the 
external circuit is represented by Z0. In the absence of Z a unit generator 
would produce a current 1/Zo in the circuit. The insertion of Z into a cir¬ 
cuit carrying this current is equivalent to adding or “ returning ” the volt¬ 
age —Z/Zq to the source. The current strength is not supposed to be 
changed when Z is added since this is the logical equivalent of opening the 
loop in the unilateral case to prevent the return voltage itself from produc¬ 
ing a response. The return difference is then the difference between the 

* These relations hold, of course, for both active and passive circuits. If the circuit 
does in fact contain vacuum tubes, however, it is important to notice that the imped¬ 
ance assigned to the external circuit must be the active impedance obtained when the 
tubes are lit. This may be quite different from the impedance which would be 

';dbt|»aod from the passive elements alone. Methods of computing the active imped- 
in the next chapter. 
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original and the returned voltage and measures the net voltage available to 
drive the external circuit. 

4.7. Definition of Sensitivity 

We turn now to the second leading conception of the present chapter, 
that of sensitivity. This conception can be illustrated by reference to 
equation (3-6)* of the preceding chapter, which appeared as 

dKji 1 dfx 

Er 1 — m/? M 
(3-6) 

Evidently, the equation states in effect that 1 — up is the factor relating 
any given percentage variation in the circuit to the resulting percentage 
variation in the output voltage. In other words, 1 — tip is a measure of the 
sensitiveness of the over-all circuit to small variations in /*. 

Equation (3-6) is, of course, limited to the /jl elements in an ordinary 
feedback circuit. In order to generalize appropriately to any circuit, let 
the gain through the complete system be represented by Q. We then have 
the 

Definition: The sensitivity, S, for an element W is given by 

3 log W 

The definition is intended to apply to both unilateral and bilateral elements. 
The relation between (4-7) and (3-6) may be made more apparent if 

we express 6 in terms of the logarithm of the output voltage Er, and replace 
the partial derivative by ordinary differentiation, on the assumption that 
W is the only element in the circuit which varies. This allows (4-7) to be 
written as 

dER = IdtF' 

Er ~ S W' 
(4-8) 

Thus, S is the ratio between a given percentage change in in the general 
case, and the resulting percentage change in the delivered voltage just 
as 1 — expresses the corresponding ratio between changes in /* and Er 
in the special case of the single loop amplifier. 

In an average situation, we may expect S to be of the order of magnitude 
of unity. In an ordinary non-feedback amplifirr, for example, the over-all 
gain varies by 1 db for each db change in the gain of any one of the tubes, 
and S for any tube is evidently 1 exactly. On the other hand, S may be 
much greater than unity. Thus, ignoring phase angles, if the final gain 
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varies by 0.01 db for 1 db variation in IV, the sensitivity S is 100. This is 
the result we would expect for the elements in the forward circuit of an 
amplifier with 40 db feedback. We might also secure such a result, how¬ 
ever, even in a purely passive circuit, if W were an impedance element 
having comparatively little to do with the over-all transmission. 

It is also possible for S to be much smaller than unity. This might occur, 
for example, in a regenerative amplifier at the point of singing or in an 
ordinary circuit which depends on a critical bridge balance or on sharply 
tuned reactance branches. 

It is to be noticed that in the discussion of the return difference we 
labeled the input and output terminals of the system, but the input and 
output terminals did not actually enter into the analysis. Since the 
sensitivity, on the other hand, depends upon the transmission through the 
circuit, it must in general depend upon the nodes or meshes which we choose 
to regard as the terminals of the system, as well as upon the chosen element 
W itself. 

4.8. General Formula for Sensitivity 

The definition of sensitivity given by equation (4-7) can be made more 
concrete by an examination of the functional relationship between 6 and IV. 
If we retain the notation used in the preceding sections and represent the 
output impedance or admittance by IVr, the gain through the circuit can be 
written in the general form 

The discussion of Chapter I shows, however, that both Ai2 and A must be 
linear functions of IV. If we let A?2 and A0 represent the values of these 
determinants when W = 0, we can therefore write equation (4-9) as 

o Ai2 + IVA1243 

A0 + IVA43 
(4-10)* 

This equation of course holds for any value of W. For purposes of future 
discussion, it will be convenient to pay particular attention to the case 
when W is zero. The gain under these conditions constitutes the so-called 
direct transmission gain.* If we let 0<> represent this gain, we evidently 
have 

(4-11) 

* So-called because it represents a current transmitted directly to the output, 
without the intervention of the element W. 
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Returning to the general formula (4-10), if we apply the definition of S 
given by (4-7) to it directly, the result, after some manipulation, appears as 

„ 1 (A?2 + ^A1243)(A° + ^A43) . 
O — — ~FT~ "Til ' * V. *—1 / w ^°^1243 ^12^43 

This can be simplified by means of a general identity in determinant theory, 
which is of frequent application in network analysis. The identity is* 

&&ab,cd ~ ^ab^cd Aae;Ac&, (4—13) 

where A is any determinant, a and c are any two rows of A, and b and d are 
any two columns of A. If we let A0 of (4-12) be the general determinant A 
which appears in this equation and make the proper identifications of 
subscripts, this allows (4-12) to be written as 

1 AA] 2 

W Ai3A42 
(4-14) 

If we assume that W is a bilateral element in Z33 or Y33, rather than a uni¬ 
lateral element in Z43 or Y43, all the steps from (4-9) to (4-14) can be 
repeated exactly, except that each subscript 4 is replaced by a subscript 3. 

4.9. Return Difference and Sensitivity in Simple Cases 

The general formula (4-14) in the preceding section was developed 
largely as a matter of completeness. In actual practice, it is ordinarily 
easier to evaluate the sensitivity indirectly from the return difference. 

In general, the sensitivity and the return difference for a given element 
are not equal, so that if we are to calculate S from F it is first necessary to 
establish the relation between them. This will be the subject of the next 
several sections. For the moment, however, it is convenient to dispose 
of the especially simple case when the two are, in fact, equal. This occurs 
when the direct transmission term (4-11) vanishes. If we assume, then, 
that A?2 is zero, the analysis of the preceding section becomes very much 
simpler. Thus, if we substitute this condition directly in equation (4-12), 

we readily find 
A0 + /^A48 A 

A0 ~ A0 (*-U) 

This, however, is exactly the same formula as \ e one which was developed 
for the return difference in equation (4-2). 1 \ therefore have the 

Theorem: The sensitivity and return difference tre equal for wf de¬ 
ment whose vanishing leads to zero t ansmission through 
the circuit as a whole. 

•See, for example, Scott and Mathews Theory of Dete\ nimmts> p, 64. 
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The most familiar examples of elements meeting this condition are 
probably the tubes in the forward circuit of an ordinary feedback amplifier. 
We can assume, for practical purposes, that the transmission through the 
structure will be zero if any one of the tubes fails. In strict accuracy, this 
is seldom exactly true. Some current will ordinarily* trickle through the 
ft circuit into the load, even when = 0. This trickle, however, is usually 
so much smaller than the normal output current that it can be neglected, 
so that the forward circuit can be regarded as falling within the scope of the 
theorem for practical purposes. In this case, of course, the theorem express¬ 
es nothing new. Since the theorem requires no assumption except that of 
negligible direct transmission, however, its application can evidently be 
extended to circuits which differ fairly substantially from the conventional 
single loop configuration. 

In the field of bilateral elements, simple examples of the theorem are 
obtained from series-shunt or ladder networks. We can obtain zero trans¬ 
mission when W = 0 in circuits of this type by 
adopting an impedance analysis if W represents 
an element in shunt, or an admittance analysis if 
W is an element in series. 

A specific example is furnished by the circuit 
of Fig. 4.3. The transmission is supposed to 
take place from Z\ to Z2, while Z represents the 
variable W\ The return difference is an impedance ratio which can be 
written down by inspection as 

Z + -^- 
^ Z\ + Z2 ZiZ2 + Z(Zi + Z2) /Jt 

F-~ZA~-ZA-<M6) 
Z\ + z2 

On the other hand, the current flowing in Z2 in response to a unit generator 
in Z\ is given by 

ZjZ2 + Z(Z\ + Z2) 
(4-17) 

Hence, 

dd 
Z\Z2 dZ 

ZjZj -j- Z(Z\ + Za) Z 
(4-18) 

Since the coefficient on the right-hand side of (4-18) is 1/S, by (4-8), the 
theorem is verified for this case. \ 

* That is, in die absence of a balanced bridge at either input or output. 
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A second example, this time for a bridge circuit, is furnished by Fig. 4.4. 
The transmission is from Z\ to Z$ and the variable element is taken as 

Z, the remaining impedances being so chosen 
that the bridge is balanced when Z vanishes. 
For simplicity, let every impedance but Z 
be taken as 1. This makes Z and Z4 con¬ 
jugate so that Z4 can be removed in deter¬ 
mining the impedance which Z faces. With 
the help of this simplification, we readily 
find that Z faces the impedance 2. We 
therefore have 

2 dZ 
dd = — — - 

2 + Z Z 
(4-19) 

This can be verified by direct consideration of the transmission equations 
for the bridge, but the algebra is too lengthy to be included here. 

4.10. Circuits with Appreciable Direct Transmission 

- We turn now to situations in which the assumption of negligible direct 
transmission is no longer valid. Instances of elements giving a substantial 
direct transmission term are readily found even in conventional single loop 
amplifiers. For example, the 0 circuit elements belong generally to this 
class, as do many of the elements in customary input and output circuits. 
In the field of passive circuits, the elements of bridge type networks are 
usually of this type.* 

More difficult situations involving a substantial amount of direct trans¬ 
mission may be found if W is the transimmittance of a tube in a multiple 
loop circuit. An example is shown by Fig. 4.5. The structure is drawn as 
a single stage feedback amplifier but it may also be taken as the last stage 
in the double loop feedback structure shown by Fig. 3.14 of the preceding 
chapter. The impedances Zj and Z$ can be regarded as the terminating 
impedances in the single stage case. Z3 represents the feedback branch apd 
Z2 and Z4 are, of course, parasitic grid-cathode and plate-cathode imped¬ 
ances. 

When the gain of the tube vanishes, the circuit reduces to the form shown 
by Fig. 4.6 and in the single stage case the transmission through this net¬ 
work evidently represents the quantity edo defined in equation (4-11). By 
proper adjustment of the elements Z2, Z3, and Z4, the transmission through 
this path can be made anything we like in comparison with that through 

* That is, in the absence of special situations like that of Fig. 4.4, where the bridge 
is supposed to balance when the variable dement is zero. 
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the tube. For example, if Z3 is very small while Z2 and Z4 are quite large,, 
the direct transmission becomes insignificant. If we make Z2 and Z4 
small enough, however, and Z3 very large, it may be much more important 
than the transmission through the tube. By proper adjustment of the 
impedances, we can also secure an intermediate case in which the two 
paths exactly cancel, so that the net output under operating conditions is 
zero. In ordinary physical cases, Z3 will, of course, be small, while Z2 and 
Z4 will be quite large so that we can regard,the directly transmitted current 
as being much smaller than that flowing through the tube. 

When the circuit represents a complete amplifier, this means that the 
directly transmitted current can be neglected in any ordinary situation. 
If the circuit is the last stage of a multiple loop structure, on the other 
hand, the rest of the structure must also be considered in determining the 
direct transmission to the final output impedance. In this case, even a 
slight trickle of current directly through the passive elements of Fig. 4.6 
may be important in some circumstances. The reason for making this 
distinction will appear in a later section. 

4.11. General Relation between Sensitivity and Return Difference 

When the direct transmission is substantial, it is simplest to use it as a 
reference from which the remainder of the actual output voltage or current 
is calculated. We are then concerned explicitly only with the difference 
between the normal output and the directly transmitted term. Thus, from 
(4-10) and (4-11) we can write 

/ - e*' - 
Al2 + WA1243 

A0 + WA43 

Ai243 — Ai2A43) 

A0(A0 + *FA«a) 
(4-20) 

This can be simplified with the help of the general relation (4-13). The 
result is 

—/FA13A42 ™ 

A°(A° + ^A4s) * 
(4-21) 
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Let us now consider the “ sensitivity ” of the quantity e9 — using the 
term in our customary fashion to mean the ratio between a given percent¬ 
age variation in W and the corresponding percentage variation in e9 — /°. 
As a function of W> the right-hand side of (4-21) is very like (4-10) in the 
special case A?! = 0. The only difference is the fact that A1243 in (4-10) is 
replaced by — A13A42/A0 in (4-21). But when we calculated the sensitivity 
from (4-10) for the special case Aj2 = 0, we were led to (4-15), which does 
not depend upon A1234. We may therefore draw the following conclusion: 

Theorem: The sensitivity of the difference, e9 — e9°, between the 
normal output and the direct transmission for any element 
W is equal to the return difference for W\ 

This result, of course, includes our earlier theorem on circuits with zero 
direct transmission as a special case. If we begin with that earlier theorem, 
the present result is an obvious one for a circuit composed of two inde¬ 
pendent parallel paths, one of which contains W and has no direct trans¬ 
mission, and the other of which furnishes the over-all direct transmission 
and is independent of W\ This is a situation which is very unlikely to 
occur physically, since there would almost always be interaction between 
the two paths at input and output terminals, if nowhere else, but the theo¬ 
rem states in effect that any circuit can be thought of in these terms even 
when the physical*”separation into two independent paths cannot be 
achieved. 

The theorem just established can also be stated in an analytic form which 
is somewhat more convenient for purposes of calculation. It is obvious 
that if the output voltage of the system varies by a given amount, the per¬ 
centage change which the given variation represents will be inversely pro¬ 
portional to the output we are considering. Thus, the percentage changes 
in £ and £ — corresponding to a given variation in the element W> will 
be in the same ratio as the quantities e9 — and Since sensitivity is 
an inverse measure of percentage change, from (4-8), the result expressed 
by the theorem can therefore be transformed immediately to the relation 

F e9 - th , 

s~ <? “ 1 “ 

(4-22) 

where S is, as before, the sensitivity for the complete output This 
result can also be established by direct calculation from equations (4-2), 
(4-10), (4-11), and (4-14). It holds for any circuit and for either uni* 
lateral or bilateral elements. 

Equation (4-22) is of particular interest as a means of estimating quickly 
whether the return difference is a reliable measure of sensitivity or whether 
a more elaborate calculation should he made. Since we ate ordinarily 
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interested in the sensitivity only to within several db, we can say, in general, 
that the return difference will be a conservative measure of sensitivity as 
long as the absolute value of e6° is not greater than that of e$. It will, 
however, be a very pessimistic estimate if the two quantities happen to be 
nearly equal in phase angle as well as magnitude. On the other hand, the 
sensitivity is much poorer than the return difference in circuits for which the 
absolute value of ee° is much greater than that of e*. 

The use of equation '(4-22) will be illustrated in more detail by a con¬ 
sideration of three different situations. As a first example, let it be sup¬ 
posed that W is the transconductance of one of the tubes in a normal feed¬ 
back amplifier. We may suppose for concreteness that the normal gain / 
is 40 db. The transmission e9° which is obtained when W vanishes will 
depend somewhat upon the type of circuit which has been chosen. If 
either the input or the output is a balanced bridge, so that the 0 circuit and 
the line are conjugate, for example, this quantity is zero. In other circum¬ 
stances it will not be precisely zero but we can estimate its value as —40 db 
from the general rule that the external gain is equal to the (3 circuit loss. 
Thus, the ratio e9o/ee is of the order of magnitude of —80 db and the dis¬ 
tinction between return difference and sensitivity is entirely negligible. 

As a second example, let it be supposed that W is in the 0 circuit. It may 
be taken to represent a shunt impedance, a series admittance, or the trans¬ 
conductance of the final tube in the circuit shown later by Fig. 4.9. In any 
of these cases setting W = 0 opens the feedback so that e$0 is much greater 
than ee. Variations in W are thus much more important in affecting"the 
final transmission characteristic than a calculation of the return voltage 
would indicate. This is, of course, to be expected for elements in the 
(3 circuit. 

The third situation is represented by the circuit shown previously by 
Fig. 4.5. If this structure is taken as a complete feedback amplifier, the 
situation is essentially the same as that first described. The only difference 
results from the fact that, since the circuit contains only a single tube, $o 
and 6 would probably be numerically smaller than was assumed there. We 
might suppose, for example, that the ratio e9f>/ed is —30 db. This would 
still give a negligible distinction between return difference and sensitivity 
for most applications. An entirely different situation, on the other hand, 
may be obtained if the circuit is the last stage of a double loop amplifier. 
In these circumstances 8q and 0 refer to the transmission characteristics of' 
the complete amplifier and in virtue of the feedback around the principal 
loop this may not be much affected even by a considerable change in the 
transmission of the last tube. For example, if the normal feedback around 
the principal loop is 40 db, the assumed decrease of 30 db in the gain of the 
Circuit of Fig. 4.5 when W vanishes will still leave a net feedback of 10 db 
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around the principal loop. The difference between ee° and e9 is thus only 
that due to the change in the m/3 effect in the principal loop caused by the 
reduction from 40 to 10 db. It is clear therefore that F will be much 
smaller than S in (4-20), so that the actual stabilization of the circuit 
against variations in the last tube is much greater than would be indicated 
by a computation of the return voltage on that tube.* 

4.12. Reference Value for W 

The method of computing sensitivity which we have thus far considered 
consists essentially in separating out the directly transmitted component 

of the total output current, so that in effect it becomes the origin from 
which the net output current is computed. This is illustrated for an 
ordinary single loop amplifier by Fig. 4.7. The actual bilateral p circuit in 
the amplifier is represented symbolically as the sum of the two unilateral 

* A physical interpretation of this apparently surprising result can be obtained by 
noticing that in the multiple loop structure voltage can be returned from the plate of 
the last tube to its grid by two different paths. The first passes through the principal 
P circuit and the first stages of the forward circuit, while the second passes directly 
through the local feedback elements. These two paths together can be regarded as 
forming a feedback amplifier, the m circuit of which is the first path, while the P circuit 
is represented by the second. Under the conditions which have been assumed, there is 
a net gain around the complete feedback loop of this amplifier and the insertion of the 
feedback path must therefore diminish its gain. The insertion of the local feedback 
elements in the final structure, in other words, reduces the return voltage on the last 
tube. 

Speaking approximately, the difference between F and S is an indication that this 
effect should be neglected. The return voltage which most nearly represents the 
effective stabilization of the circuit against variations in W is that which would he 
obtained if the local feedback network were omitted. To a first approximation, the 
insertion of the local feedback circuit does not affect the feedback on the last tube, but 
it does of course affect the feedback on the remaining tubes by changing the trans¬ 
mission characteristic around the principal Wop. This is discu&ed in moifc detail in a 
liter chapter, 
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components ft and 02. If we suppose that the variable element TV is here 
identified with the whole m circuit, the component 02 will provide the 
directly transmitted term. The use of this term as a reference is equivalent 
to saying that the contribution of 02 to the final output is to be considered 
separately from the contribution of the ideal feedback amplifier represented 
by the combination of m and ($i enclosed by the broken lines. 

As an alternative to this procedure, we may also take account of the 
direct transmission term by changing the origin from which the variable 
element TV is measured. In the circuit of Fig. 4.7, for example, we might 

begin by lumping \x and 02 together, as shown by Fig. 4.8. The structure 
thus becomes an ideal single loop amplifier, without direct transmission, in 
which the effective forward gain is y! = y + jS2. This is equivalent to 
computing n from the origin — j$2 rather than from zero. The use of an 
offset reference point for the variable element in this manner is merely an 
unnecessary complication in most elementary situations, where the methods 
we have already developed are adequate to deal with the problem. It is 
worth some attention, however, since in certain circuits it leads eventually 
to a simplified analysis. This will appear more clearly in Chapter VI. 

For the general case the new origin for TV will be called the reference value' 
of TV. It will be symbolized by TV0 and is specified by the 

^Definition: The reference value of any element is that value which 
gives zero transmission through the circuit as a whole when 
all other elements of the circuit have their normal values. 

It was indicated earlier in the chapter that return difference computations 
could in general be based upon any arbitrary reference value for TV. From 
this point of view? TV0 is only a special case which is called the reference in 
recognition of the unique output current to which it leads. The reference 
condition is evidently somewhat like a bridge balance and expressing TV in 
terms of its departure from TVq is similar to expressing the impedance of one 
area of a bridge in terim of its departure from the impedance which would 
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give an exact balance, rather than in terms of its actual value. It will be 
recalled that this is the device which was used to simplify the analysis of the 
circuit in Fig. 4.4. 

It is apparent from such an expression as (4-10) that is given, for 
unilateral and bilateral elements respectively, by 

0 
w - A°u > " 0 = A 

A1243 
(4-23) 

^1233 
(4-24) 

If we let W* represent the departure, W — /F0, from the reference value, 
such an equation as (4-10) therefore becomes 

/-12*2-Wr. (4-25) 

A0 - —^ A43 + 
^1243 

This expression has the same form as a function of Wf as the original 
equation (4-10) had as a function of W when we assumed A?2 = 0. Thus 
we can apply to it the procedures we used previously to establish equation 
(4-15) for the sensitivity in the case of zero direct transmission. Since a 
given percentage change in Wr will not be equal to the same percentage 
change in W, unless W and Wf happen to be equal, however, the “ sensitiv¬ 
ity ” computed from (4-25) will not in general be equal to the sensitivity 
defined in (4-7) or (4-8). To prevent confusion, therefore, the result of 
the present computation will be called the relative sensitivity, symbolized 
by S\ With this understanding, we can evidently write 

•S'-+ <*-“> 

a log w’ 

where the symbol A' is given by 

A' - A0 — A43, (4-27) 
Aims, 

and evidently represents the value assumed by A when W* *» 0.' If (4-27) 
is simplified by means of (4-13), the expression for S' can also be written as 

S’ mm l — W* £k4SAl2t3 mm -. 
AjsAsj AuAtf (4-28) 
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It is evident that there is a complete formal parallelism between this 
analysis and that of an ordinary circuit with zero direct transmission. For 
example, (4-26) is exactly like (4-15) except for the substitution of Wr 
for W and A' for A0. These, however, are exactly the modifications which 
are made in converting a return difference for zero reference into a return 
difference for the reference We therefore have the 
* 

Theorem: The relative sensitivity for any element W is equal to the 
return difference of W for the reference W& 

There remain the problems of determining S' from more immediately 
measurable quantities and of relating S' to the actual sensitivity S. Of a 
variety of equations which can be used to determine S', perhaps the 
simplest is 

S' = 
mo, 
Wo) 

(4-29) 

where F(W) is, as usual, the return difference for W when W has its normal 
value, and F(JVo) is the return difference for W, calculated for W = 
This result follows immediately from (4-5). Another simple formula, 
useful in special circumstances, is 

(4-30) 

where e0*> stands for (A1243/A43)^r and is, from (4-10), the transmission 
through the system when the variable element fV is infinite. If W repre¬ 
sents a tube, this condition is, of course, an unrealizable one. It is also 
possible to determine S' from measurements made when W = 0, by modify¬ 
ing the circuit in certain special ways. The development of these methods, 
however, is postponed until Chapter VI. 

The most straightforward relation between S' and S is probably 

This equation can be established immediately if we recall that the distinc¬ 
tion between S and S' is due only to the fact that a given actual change in 
the physical network will produce different percentage changes in W and 
W* when these two quantities are unequal* Other useful formulae for the 
relation between <5 and S' are 

-j£t«*';«• S (4-32) 
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and 

They are both readily established from the preceding general equations for 
F9 S, and S' and the identity (4-13). The various situations which may 
arise in these Equations for different relations between ee° and ee can be 
illustrated again by the examples used in the discussion of equation (4-22). 

4.13. Reference Value of W as an Index of Location in the Loop 

If we exclude the special problems presented by multiple loop amplifiers, 
the introduction of the reference value fV0 into computations of sensitivity 
is, in a broad sense, the analytical counterpart of the physical fact that the 
properties of feedback circuits vary with the location of the element in the 
loop. It corresponds in other words to the fact that the stabilizing and dis¬ 
tortion reducing properties of feedback hold only for elements in the n 
circuit. Since we cannot, at best, decide what part of the complete loop is 

Fig. 4.9 

fj, and what part is 0 until we have chosen the input and output terminals, 
these properties thus depend not so much upon the fact that a feedback 
loop exists as they do upon the location of the element in question with 
respect to the transmission path which is eventually of interest. The refer¬ 
ence value fV0y since it depends upon the particular choice of input and out¬ 
put terminals, takes this factor into account. 

As the preceding examples have shown, the reference value for an 
element in the ju circuit is ordinarily quite small so that with a large return 
voltage the effective sensitivity is also large. When the element is in the 
/S circuit, on the other hand, the value of W which will produce zero trans¬ 
mission in the complete system is in general large and variations in W 
when computed against this extreme reference correspond to relatively 
little stabilization of the final amplifier transmission characteristics. 

The way in which the reference value appears^as an index of location can 
be illustrated concretely by the circuit of Fig. 4.9. The structure is a 
normal single loop feedback amplifier with the output impedance taken 
as j?2, with the exception that the second interstage includes a transformer- 
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resistance combination instead of some more conventional configuration. 
Letting W represent the transconductance of the output tube and assum¬ 
ing that the reference value for W is negligibly small, we readily find that 

JEr _ A0 dW 1 dW 

ER~AfV~~\ + T!V 
(4-34) 

where T = fV{A43/A0) and can be identified with the negative of the trans¬ 
mission characteristic around the complete loop. This expresses the 
familiar result that feedback reduces the effect of variations in the tube 
gain by the factor 1 — fxfi. 

Let it be supposed now that the output impedance is taken as Ru but 
that R2 is retained as an ordinary circuit element. The feedback loop, 
regarded as a complete loop, is exactly the same as it was before. The 
change in the choice of output impedance has, however, transferred the last 
tube to the p circuit so that we may expect that the stabilizing properties 
of feedback have disappeared for variations in the gain of this tube. The 
situation can be analyzed by using the formula for relative sensitivity given 
by equation (4-26). If we set A' = A — this formula can be 
written as 

dER A - !V'a43 dW 

-gr"—4—w <4-3S) 

We now determine the fVo which will lead to zero transmission through 
the complete amplifier. In the present instance JVq must obviously be 
infinite since zero transmission can be obtained only with an infinite p 
circuit gain. If fV0 is infinite, however, Wf must also be infinite and 
(4-35) therefore reduces to 

dJEn 

Er 
(4-36) 

Upon multiplying and dividing the right-hand side of (4-36) by W and A0 
and comparing with (4-34), this becomes 

dEu _ A0 WA43 dW ^ -T dW 
Eg ~ A A0 IV 1 + T W ’ 

(4-37) 

where T still represents — ju/3 for normal operation. We can readily verify 
that this is the correct formula by direct differentiation of the ordinary 
equation for the gain of a feedback amplifier as a function of /3. 



CHAPTER V 

General Theorems for Feedback Circuits — A 

5.1. Introduction 

This chapter and the one which follows will continue the general dis¬ 
cussion of feedback circuits begun in the preceding chapter in terms of the 
definitions of return difference and sensitivity which were established there. 
They have for their principal object the development of general theorems 
on the relation between these quantities and impedance, gain, non-linear 
distortion, etc. The theorems of the present chapter are developed from 
simple mathematical identities which remain valid whatever the reference 
values for the elements may be. They are thus stated in terms of the 
return difference for a general reference, including the relative sensitivity 
and the return difference for zero reference as special cases. 

5.2. Impedance of an Active Circuit* 

The first general theorem relates to the effect which feedback may have 
upon the impedance measured between any two points of the circuit. In 
addition to its general interest the theorem is of particular application with 
respect to the calculation of the return difference for bilateral elements, since 
it was shown in the preceding chapter that that depended upon the imped¬ 
ance of the circuit to which the element was connected. In developing the 
theorem it is supposed that the impedance which would be obtained in the 
absence of active elements is first determined by ordinary circuit methods. 
The theorem then is concerned with the modification produced in this 
impedance by the addition of the active elements. This is, of course, the 
heart of the problem. 

The fact that the active elements must in general produce some effect is 
easily seen if we consider, for example, the input impedance of an ordinary 
feedback amplifier. By definition this impedance must be the ratio of die 
input voltage to the current which flows through the line into the amplifier. 
The net current which flows past the input terminals, however, is a com- 
posite of the current which would flow if we considered only the passive 
elements and of the current which is returned to the source through dt£; 
feedback circuit. The presence of this feedback current may obviously 

‘The material of this section is a modified version of results origitudj^ d^ 
R. B.Blackman {B.S.T.J.,October, 1943). 
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make the impedance of the amplifier quite different from the impedance 
which we would measure if the tubes were not operating. 

Although the impedance of an active circuit may be quite different from 
that of the passive structure the relation between the two is easily built up. 
Let it be supposed, for example, that we are interested in the active imped¬ 
ance Z which would be measured from the terminals of a resistanceless 
generator inserted in the nth mesh of the circuit. This is obviously 

Z = (5-1) 

Now suppose that we choose any element, W> within the network. It is 
convenient to assume that W represents some mutual impedance Z,;, 
although the final results are the same whether W is a unilateral or a 
bilateral element. We can rewrite (5-1) as 

A0 A 

Ann 

_ A 4m 
a£„ A0 a„„' 

(5-2) 

where, as in the preceding chapter, A0 and represent A and Ann when 
i 

In equation (5-2), A°/A®n is evidently the impedance which would be 
measured if W — 0. Assuming that W or Z,-j is the mutual impedance of 
one of the vacuum tubes, then, we can call this the passive impedance Z0, 
or the impedance which would be measured if this tube were dead. More¬ 
over, A/A0 is the return difference for fV with the circuit in its normal 
condition, that is, with the terminals between which Z is measured shorted 
together. In addition, A„„ and a£„ are the coefficients of Znn in A and 
A0 respectively. The ratio A„„/a2„ is therefore the limit approached by 
A/A0 as Znn becomes indefinitely great. It consequently follows that 
Ann/A^n represents the return difference for W when the self-impedance 
of the »th mesh is made infinite, or in other words when the terminals 
between which Z is measured are left open. We can therefore write 
equation (5-2) as 

Z = ^5-3) 

where F(0) and F(*>) are the return differences for W when the terminals 
between which Z is measured are respectively short-circuited and open- 
circuited. 

If we base the analysis on admittances instead of impedances the result is 
the same and we can write 

(K-t\ 
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where F(0) and F( *>) now represent the return differences with respect to 
W when zero and infinite admittance, respectively, are added across the 
terminals between which Y is determined. 

Equations (5—3) and (5-4) describe the impedance or admittance at any 
part of a feedback circuit in terms of the impedance or admittance which 
would be obtained with any arbitrary element vanishing, and the return 
difference for that element. If the arbitrary element W is the mutual 
impedance or transconductance of a vacuum tube, therefore, we can dis¬ 
count the effect of this active element in the circuit. In ordinary feedback 
amplifiers zero gain in any one tube will interrupt the feedback circuit so 
that the actual impedance or admittance can be computed directly from 
(5-3) or (5-4) by choosing any one of the tubes as W. In more complicated 
cases a single dead tube may not reduce the calculation of impedances to 
the completely passive case. Evidently, however, by starting with all the 
tubes as dead and applying (5-3) and (5-4) repeatedly as each tube in 
turn is assigned its normal gain we can cover all circuits. 

The analysis used in developing (5-3) and (5-4) has been based upon the 
assumption that the reference for W is zero. Since (5-2) is merely an 
identical form of (5-1), however, the zero value for W is a matter of indif¬ 
ference and we can choose any reference we like as long as we choose the 
same reference for both F*s. The general result can therefore be stated in 
the following words. 

Theorem: The ratio of the impedances seen at any point of a network 
when a given element W is assigned two different values is 
equal to the ratio of the return differences for W when the 
terminals between which the impedance is measured are 
first short-circuited and then open-circuited, if the return 
differences are computed by letting the first value of W be 
the operating value and the second the reference. 

The relation between feedback and impedance can also be stated in 
another way. Let it be supposed that an arbitrary impedance Zn is added 
in series with the nth mesh, and let A' and A0' represent A and A0, respec¬ 
tively, after the introduction of Zn. The return difference for any W after 
Zn is added can be written as 

AA + ZnAnn 

A0' = A° + Z„A°.‘ 
(5-5) 

Now lot Zn be so chosen that F = 0. Upon comparing the result with 
(5-1) we readily establish the 



THEOREMS FOR FEEDBACK CIRCUITS —A 69 

Theorem: The impedance seen in any mesh is the negative of the 
impedance whose insertion in that mesh would give zero 
return difference for an arbitrarily chosen element in the 
circuit. 

This is an obvious theorem in the light of the discussion of stability given 
in a later chapter since it will appear that either a zero return difference or 
zero impedance at any frequency corresponds to the possibility of a natural 
oscillation in the circuit at that frequency. 

5.3. Examples of Active Impedances 

To exemplify these relations we will consider the series feedback amplifier 
shown by Fig. 5.1. Let the Z of equation (5-3) be the impedance which 
would be measured in series with any one of the series connected branches 
such as Z2, Z6 or either of the high side transformer windings. In other 
words it is the impedance which would be measured between any such pairs 
of terminals as AA\ CCf > or DDr in Fig. 5.1. 

It will also be assumed that the /Fof equations (5-1) and (5-2) is the 
transconductance of any one of the tubes. With terminals AA\ CC\ or 
DD' shorted together the return difference with respect to W is 
F(0) = 1 — where is the transmission around the loop computed in 
the normal fashion. With the terminals opened, on the other hand, the 
return difference with respect to W is unity. Equation (5-3) consequently 
gives 

Z - Z0(l - i#)9 (5-6) 

where Zo is the impedance which would be measured with one of the tubes 
dead and is evidently the ordinary passive impedance. The impedance 
measured in any series line is thus much larger than the passive impedance. 
For the impedance between A and A9 for example we find 

Z » (l -^KZx + Za + Za), (5-7) 
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upon the assumption that the input and output impedances of the tubes are 
very large in comparison with the impedances in the j8 circuit. 

Next consider the apparent impedance which would be measured between 
any such points as A or C and ground. We now find that the normal 
return ratio will be obtained when the impedance connected between A or 
C and ground is infinite and that the return ratio vanishes when the termi¬ 
nals are short-circuited. In other words F(0) = 1 and F(a>) = 1 — 
Equation (5-3) thus gives 

Z - - 
1 -ju/3 

(5-8) 

1 he impedance measured across the path of the feedback loop is therefore 
reduced by feedback. For the impedance between A and ground, for 
example, we have 

1 Z\ (Z2 + Z3) 
1 — Z% + Z2 + Z3 

(5-9) 

As a more complicated example we may consider the impedance meas¬ 
ured across the terminals E, E' in Fig. 5.1. Here we have 

rj r, , Z7(Zg + Zio) 
20 = z8 + vvrrr- (5-10) 

while 

F(0) =1-m0. 

F(») = 1 — rtS 
1 

Z7 + Z8 

Zr(ZB + Zip) ~| .v 

Z7 + Zfl + ZjoJ 

(5-11) 

the factor multiplying ju/9 in the second equation being obtained by calculat¬ 
ing the change produced in the transmission characteristic of the interstage 
when E, E' is open-circuited. The substitution of these values in equa¬ 
tion (5-3) then gives the impedance sought for. If in particularwe assume 
that w? is very great the result becomes 

Z = Z7 + Zg. (5-12) 

This result, of course, might have been foreseen from (5-6). If we con¬ 
sider that Z7 and Zg together represent a series impedance it follows from 
tikis equation that the impedance of the circuit to which they are connected 
must be very high if the feedback is large. Only Zr and Zg therefore need 
be considered in determining the impedance at terminals E, E'. 

These calculations have been based upon the first of the two theoroms 
given in the preceding section. The same results follow from thejteQOnd 
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theorem. As an example, we may return to the discussion of the effect of 
feedback on a series impedance, as expressed by (5-6). Let the imped¬ 
ance whose insertion in the series arm would reduce the return difference to 
zero be represented by Z;. Its insertion in series with Zq will produce the 
loss Zo/ (Z' + Z0) in the transmission around the loop. For the return 
difference to vanish, however, the loop transmission, *$, must be reduced to 
unity. We therefore have 

Zp _ ± 

Z' + Zq 
(5—13) 

or 

z* - <M0 - 1)Z0, (5-14) 

which is the negative of the active impedance given by (5-6). 

5.4. Feedback f or Bilateral Elements 

A knowledge of the active impedances of the circuit makes it a simple 
matter to compute the return differences and sensitivities of its bilateral 
elements in accordance with the methods of the preceding chapter. As an 
example we may choose the impedance Zq of Fig. 5.1. By the previous 
analysis, the return ratio for this element is equal to the ratio of its imped¬ 
ance or admittance to the impedance or admittance of the circuit which 
it faces, the return difference is equal to the return ratio increased by unity, 
and the sensitivity is equal to the return difference suitably modified to 
take account of direct transmission. If we exclude the slight trickle of 
current directly through the & circuit, zero output current is obtained when 
the branch Zq is an open circuit. It is obviously convenient, therefore, to 
use an admittance analysis, in which case the direct transmission term is 
zero and the sensitivity can be taken equal to the return difference. 

It follows from (5-3) that the impedance seen at terminals C, Cr of 
Fig. 5.1 is (1 — n&)(Zt + Zq + Zq) and the admittance which Zq faces is 
therefore the reciprocal of (1 — m£)(Z4 + Z5 + Zq) — Zq. Upon divid¬ 
ing the admittance of Zq by this admittance the return ratidi and the return 
difference or sensitivity for the element Zq are obtained in the form 

T - Yq[( 1 - )(Z4 + Zq + Zq) - Zq], 

and 

F*- — %S-— • <5-15) 
"6 

Hie factor (1 — pfi) in this expression is self-explanatory. The remain- 
inf factor (Z. + Z6 + Z«)/Z« reflects the fact that the p circuit gain does 



72 NETWORK ANALYSIS Chap. 5 

not vary in strict proportion to Zq because of the presence of the other 

impedances. If Z$ were very small, for example, its impedance might vary 

considerably in per cent without greatly affecting y and a corresponding 

term in the sensitivity expression must therefore be included in virtue of the 

fundamental definition given by equation (4-8) of the preceding chapter. 

If we consider a shunt impedance such as Z4 the procedure is essentially 

the same. In this case, the reference condition is a short circuit and it is 

convenient to use impedances rather than admittances in the analysis. 

Since the impedance which Z4 faces, however, is now reduced by feed¬ 

back the ratio between Z4 and the impedance of the rest of the circuit is 

correspondingly increased. The essential result is of the same general type 

as equation (5-15). 

As a third example we may consider the impedance Z2 in the P circuit of 

Fig. 5.1. So far as the calculation of return ratio and return difference is 

concerned, the situation with respect to this element is exactly the same 

as it was for Z6, and we can make use of (5-15) again, with appropriate 

substitution of Z\> ^2, and Z3 for Z4, Z5, and Z6. The presence of a large 

direct transmission term, however, complicates the computation of sensitiv¬ 

ity. It is simplest to begin by determining the relative sensitivity S'. 
We can evidently secure zero transmission from the amplifier as a whole by 

assigning the p circuit a large gain equal to that of the y circuit and a phase 

which will cancel the y circuit output. The reference value for Z2 must 

therefore be very nearly — (Zi + Z3) or, in other words, very nearly the 

negative of the passive impedance which it faces. The effective impedance, 

Wfy can therefore be taken as Z\ + Z2 + Z3. The impedance which W* 
faces must be the difference, yP(Z\ + Z2 + Z3), between Wf itself and the 

total impedance calculated in equation (5-7). The relative and absolute 

sensitivity are readily found from these facts, plus the relation 

s'IS = W*/fr* to be 

S' 
1 - Mg 

M0 

and 

\ — tjfi Z\ + Z2 4~ Z3 

ixf! Z2 
(S-16) 

and are obviously small in normal situations. The result is easily checked 
by direct differentiation of the gain equation for the amplifier in accordance 
with the fundamental definition of Chapter IV. It is interesting to notice 
that the difference between the very large sensitivity represented by 
equation (5—15) and the low value obtained in equation (5-16) is the result 
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entirely of the difference in the two reference conditions. The situations 

otherwise are exactly the same. 

5.5. Effect of Feedback on Input and Output Impedances of Amplifiers 

The distinction between the active and passive impedances of a feedback 

circuit is particularly important in considering the effect of feedback on the 

impedance which an amplifier presents to the line. The principal results, 

for the basic connections described in Chapter III, can be listed as follows. 

1. The active impedance of a series feedback amplifier is (1 — pjff) times 

its passive impedance. Since the input and output impedances of 

tubes are normally high anyway, the active impedance is, in general, 

almost infinite. A similar statement can be made for a cathode feed¬ 

back circuit. 

2. The active impedance of a shunt feedback amplifier is 1/(1 — pf}) 
times its passive impedance. It is thus relatively low. 

3. The active impedance of a balanced bridge amplifier is the same as its 

passive impedance. This connection is therefore intermediate be¬ 

tween the series and shunt connections. 

4. If the balance of the bridge in the circuit of the preceding paragraph is 

disturbed by a change in the final tube impedance, the reflection 

coefficient between the active impedance so obtained and the active 

impedance before the change is 1/(1 — nft) times the reflection 

coefficient which would be obtained if the circuit were passive, where 

represents the loop transmission after the change is made. 

The first three of these statements can be dismissed briefly. The line 

impedance in a series or shunt feedback amplifier is merely a special case of 

a general series or shunt impedance, the results for which have already been 

given by equations (5-6) and (5-8). In the balanced bridge circuit, the 

bridge balance produces conjugacy between the line and the circuit. It 

follows from this that the loop transmission is independent of the line 

impedance.* We therefore have F(0) = F(oo) in (5~3), so that feedback 

does not affect the impedance. 

The fourth statement may require amplification. In the theoretical 

balanced bridge connection the tube impedance is one of the arms through 

which the balance is obtained. Since tube impedances are ordinarily quite 

variable, the balance which can be relied upon in practice is imperfect. 

Moreover, it may be necessary to shunt the tube with a dissipative branch 

* This follows readily from the principle of reciprocity. See, for example, the dis¬ 
cussion in the next chapter under die heading “ Reference Feedback as a Balanced 

Bridge.*' 
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in order to secure an impedance whose phase angle and magnitude are 
appropriate to produce a balance with permissible impedances in the other 
arms of the bridge. This is particularly unfortunate in an output bridge 
because of the wastage of output level to which it leads. The final state¬ 
ment says in effect that if the feedback is large the departures produced in 
the impedance which the amplifier presents to the line will be extremely 

small even when no effort is 
made to control the impedance 
of the tube. Naturally, how¬ 
ever, the other property of a 
bridge circuit, that the loop 
transmission is independent of 
the line impedance, will no 
longer hold. 

This effect of feedback is 
easily demonstrated by using 
(5-3) in two different ways. 

Let Za in Fig. 5.2 represent the impedance whose removal produces 
the disturbance under consideration. It will be supposed that with 
Za present the bridge is perfectly balanced. Let Zd represent the line 
impedance. Let Zbi and Zi>2 represent respectively the passive impedances 
of the circuit to the right of Za when Zd has its normal value and when 
Zd is replaced by a short circuit. Finally, let Zc\ and Zc2 represent respec¬ 
tively the active impedances looking into the amplifier when Za is present 
and when Za is removed by opening the terminals Pi, P2. 

The first step is the computation of the active impedance Zi looking into 
the terminals Pi, P2 when the neighboring impedance is taken as Z&i. 
Let this be the Z of (5-3) and let the P’s of this equation refer to the last 
tube. Let the loop transmission with Za absent be represented by \>$ 
so that F(oo) =» 1 — From ordinary circuit considerations, the intro¬ 
duction of Za changes the loop transmission to [Za/(Za + Z&i )]/*/?. More¬ 
over, the passive impedance Z0 is Za + Z*,i. We therefore have 

i a 
nr i >7 

Zt= (Za + zbl)-- (5-17) 

Now consider the impedance Z2 corresponding to Z&2. The passive 
impedance becomes Za + Zj2- F(0) is the same as it was in developing 
(5-17), since with Za present the bridge is balanced and a change ini the line 
impedance does not affect the feedback loop. The ratio between the loop 
transmissions with Za present and Za absent is Z*/(Z*+ £**)« We there- 
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fore have 

= (Za 4* Zb2) 
Za 4 Zbi 

Za + Zb2 n 
1 ~ 

Za + Z[ '61 

(5-18) 

In this computation the F’s of (5-3) have referred to the last tube. We 
now apply (5-3) again with the F’s taken with respect to Za. It follows 
from (5-3) that the ratio of the return differences for Z& with Za present 
and absent must be the same as the ratio of Z\ to Z2. We can therefore 
write 

Zc 1 + Za 

Zci __ Zif 

ZC2 4 Zd Z% 
ZC2 

(5-19) 

Zd(Zc 2 —• Zcl)_Z\ 

Zci(ZC2 4 Zd) Z2 

1 Zbl — Zb2 ' 

1 — Za 4 Zb2 
(5-20) 

If we set Zd = Zci the left-hand side of (5-20) is the reflection coefficient 
between the active impedances of the network before and after the removal 
of Za. On the right-hand side all the quantities except the factor 1 — fifi 
represent the network in its passive state. The original statement is 
therefore proved. 

5.6. Use of Impedance Measurements to Determine Feedback 

The theorems in the first section were developed as a means of computing 
the active impedance of a circuit when the return differences are known. In 
practice, however, they are perhaps more frequently applied as a means of 
determining the return difference from impedance measurements. This is 
often a more convenient method of obtaining the return difference than a 
direct transmission measurement would be, since it does not require open¬ 
ing the feedback loop. The method can be applied even to unstable struc¬ 
tures by including in the measurement a known impedance of a magnitude 
which will stabilize the circuit. 

5.7* Relation between Feedback for Two Elements 

The process used to develop the formula for active impedances can also 
be applied to obtain a theorem relating the return differences for two ele- 
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ments in the circuit under actual operating conditions to the return differ¬ 
ences which would be found for each element if the other vanished. Let the 
two elements be represented by and fF2. To express the fact that the 
determinant of the system will depend upon both Wt and JV2, we may write 
it, in general, as A(JV\JV2). Then JV2) represents the determinant 
when W\ is zerd, A(/iPi,0) the determinant when W2 is zero, and A(0,0) 
the determinant when both W\ and W2 are zero. 

The return difference for either element can be expressed as the ratio 
of the complete determinant to the determinant obtained when that ele¬ 
ment vanishes. Letting F\ and F2 be the return differences for and 
W2> respectively, these relations, in our present notation, are 

„ A(/F\yW2) 

(5-21) 
„ a(/f„^2) 

or 
Fi _ MTuO) _ A(/Ft,0) A(0,0) 

F2 A(0,W2) A(0,0) A(0,^2) 

(5-22) 
F,{W2 = 0) 

F%Wi =0)‘ 

Equation (5-22) is evidently unaffected if the TV’s are assigned any 
reference values, as long as the reference values are taken as the same on 
both sides of the equation. We can therefore state the 

Theorem: The ratio between the actual return differences for any two 
elements, for any reference conditions, is the same as the 
ratio which would be obtained if the return difference for 
each element were computed with the other element at its 
reference value. 

As an example, we may take Wx as T6 in Fig. 5.1 and as 
the transconductance of one of the tubes. We see by inspection that 
FifW\1 = 0) = 1 and FX{W2 = 0) = (Z4 + Z5 + Z6)/Z6. The theorem 
states that the ratio between these two F’s will be preserved for any values 
of the fVs. This is, of course, verified by equation (5-15). 

5.8. Thfvenin’s Theorem in Active Circuits 

The general formula for return difference also can be used to develop 
another type of identity which is even simpler than those dcscribed previ- 
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ously. Let it be supposed, for example, that W represents the transimmit- 
tance of the tube whose grid and plate are labeled respectively i and j. 
W must be a constituent of or Yji in the general determinant. The 
return difference for W can be written, from (4-2), Chapter IV, as 

where A0 represents A when W = 0 and k is any other node or mesh in the 
circuit. 

In equation (5-23) the determinant A** can equally well be written as 
Ajli since it contains no terms from the ith column of the original determi¬ 
nant and is therefore independent of W* The ratios A*t*/A and A*y/A° are 
thus the transmissions* from k to i when W has its normal value and when 
W vanishes. Moreover, the identity evidently holds equally well if we 
use any arbitrary value instead of zero as a reference for W. We can there¬ 
fore draw the following conclusion: 

Theorem: The ratio between the transmissions from any point of the 
network to the grid of a given tube for an arbitrarily chosen 
reference condition and for the normal operating condition 
is equal to the return difference of the tube for the chosen 
reference. 

A simple example is furnished by the transmission from the input line to 
the ji circuit of an ordinary amplifier. The effective signal level on the grid 
of any tube is 1/(1 — nP) times the level which would exist if that tube 
were dead. 

We can also write the return difference equation as 

_A 

A0 
A Ay** 

Ay* A0 * 
(5-24) 

The quantities Ay*/A and Ay*/A0 evidently represent transmissions from 
the plate to k under normal and reference conditions. We therefore have 
the 

Theorem: The ratio between the transmissions from the plate of a 
given tube to any point of the network for an arbitrarily 
chosen reference condition and for the normal operating 
condition is equal to the return difference of the tube for 
the chosen reference. 

This is best exemplified by the discussion of the following sections. 

* “ Transmission ” is used here as an abbreviation for transfer admittance in a mesh 
analysis or transfer impedance in a nodal analysis. 
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If W is a bilateral element the situation is essentially the same except 
that no distinction need be made between the “ grid 99 and “ plate ” ends 
of W\ We therefore have the 

Theorem: The ratio between the transmissions from a given bilateral 
element to any point in the network, or vice versa, for an 
arbitrarily chosen reference condition and for the normal 
operating condition is equal to the return difference of the 
given element for the chosen reference. 

The last theorem gives a clue to the characterization of the three theo¬ 
rems as a whole. If W is a bilateral element the return difference for W 
corresponding to any given reference is the ratio of the total immittances 
seen from W when W has its normal and reference values. But the state¬ 
ment that this is the same as the ratio of the transmissions from k to W 
under the two conditions is merely another way of expressing Thevenin’s 
theorem.* On this account the group of three theorems on the relation 
between return difference and transmission will be described as the general¬ 
ized Thevenin's theorem, applicable to unilateral as well as bilateral elements. 
In other words the return difference for a unilateral element plays the same 
role in determining the final response that the impedance relations at 
generator or receiver terminals would play in an ordinary transmission 
calculation. 

5.9. Computation of Wq 

As an example of these theorems we will consider the determination of 
the reference for one of the tubes in the circuit. It will be recalled that 
Wo is the value which W must assume in order to provide zero trans¬ 
mission through the complete structure. An equation for Wq has already 
been given by (4-23) of the previous chapter but the A’s which appear in it 
are not easily recognized as quantities which could be determined by 
physical measurement. With the help of the generalized Th6venin*s 
theorem of the preceding section it is possible to develop an alternative 
formula for W0 involving quantities of more direct physical significance. 

Let the input and output of the circuit as a whole and the grid and plate 
of the tube W be labeled respectively 1, 2, 3, and 4. The quantities 
7i = A12/A0, 72 * Aj3/A°, 73 = A42/A0, and 74 = A48/A0 represent 
respectively the transmissions from input to output, from input to gp-id, 
from plate to output, and from plate to grid, all evaluated on the assump- 

* Thevenin’s theorem is discussed in most books on communication circuits. See, 
e«g.. Shea, ** Transmission Networks and Wave Filters,” p. 55, or Terman, ^ 

, Engineer’s Handbook,’* p. 198. _ . 
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tion that the tube is dead. It will be supposed that all these transmissions 
are known. 

If we begin with the tube dead, the excitation on the grid for a unit source 
in the input will be 72. The fact that the tube has the residual gain WQ 
in the reference condition can therefore be represented by inserting an 
equivalent generator —/Fo72 m the plate circuit.* If this generator were 
actually an independent source of current or voltage it would evidently pro¬ 
duce the response ~/^o7273 in the output. The reference condition could 
then be established by finding what value of Wo would lead to exact cancel¬ 
lation between this response and the direct transmission 71. But the 
introduction of the equivalent generator coincides with a change in tube 
gain from zero to WQ. In accordance with the theorems of the preceding 
section, this must reduce the transmission from plate to output by a factor 
equal to the return difference of the tube when W = JVq. This last 
quantity can be found from a knowledge of the transmission 74 from plate 
to grid. The correct relation is thus easily seen to be 

W07273 

1 + ^074 
(5-25) 

or 

Wo ----1 (5-26) 
7273 - 7174 

in which all the quantities can be measured directly. The fact that this is 
actually the same as the original formula for Wo can be established by means 
of equation (4-13) of the preceding chapter. 

5.10. Reduction of Distortion by Feedback 

One of the principal practical advantages of feedback is the fact that its 
use reduces the flow of modulation currents in the load due to the non¬ 
linear distortion of the elements in the m circuit. In order to investigate 
this, let it be assumed that the non-linear distortion is represented by the 
addition of a separate “ distortion generator ” in the plate circuit of the 
distorting tube, while the circuit itself remains linear. This supposes that 
the level of the fundamental components of the signal has been established 
in advance, so that the amount of non-linear distortion can be calculated, 
and also that the distortion is a small part of the signal, so that second ordet 
effects representing “ distortion of the distortion ” can be ignored. The 
distortion generator may also be used to represent a source of extraneous 
noise rather than a source of modulation products. 

♦The negative sign is due to the phase reversal in the tube. 
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An appropriate relation can be developed immediately from the generali¬ 
zation of Th6venin*s theorem described previously. It is merely necessary 
to choose the point k to represent the output circuit. The second of the 
preceding three theorems can then be restated as the 

Theorem: The noise or distortion current in the output produced by a 
prescribed distortion generator in one of the elements of the 
circuit is equal to the current which would be found with 
the element in an arbitrarily chosen reference condition 
divided by the return difference of the element for the chosen 
reference. 

But, if we deal only with the portion of the output current which flows 
because the given element is activated, the return difference is also a measure 
of the sensitivity of the circuit to variations in the linear properties of the 
given element. It thus appears that the contributions of the given element 
to the distortion and to the fundamental frequency currents in the output 
are governed by the same laws. This is not surprising if it is recalled 
that a slight change in the linear properties of a circuit can be represented 
by the introduction of a small generator at the disturbed point.* The 
circuit must naturally have the same properties whether the generator 
represents distortion or a change in the linear characteristics of the circuit. 

5.11. Exact Formula for External Gain with Feedback 

The relation between feedback and external gain is customarily expressed 
by the statement that the gain is reduced by the amount of feedback. 
Equation (3-4) of Chapter III, for example, gives this result for the simple 
analysis in terms of independent n and /3 circuits. 

If we wish to make very precise gain calculations, this statement suffers 
from two objections. The first is that the meaning of gain in the absence 
of feedback is somewhat uncertain, on account of the interaction between 
the impedances of the /x and p circuits at the ends of the amplifier. It is not 
perfectly clear whether we should simply remove the feedback circuit 
entirely in making the calculation of gain before feedback, or whether we 
should make some allowance for the energy absorption of the P circuit 
elements at input and output, and if so, what that allowance should be* 
The second difficulty is the fact that the relation between gain and feedback 
was developed only for the conventional single loop amplifier. It is not 
clear how the relation should be applied to other situations, and in particu¬ 
lar to situations in which there is an appreciable direct transmission term. 
As a final example of the methods established in Chapter IV, therefore, we 

* See the “ Compensation Theorem,” in Shea, p. 56, or Terman, loc. cit.,p. 198. 
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will develop an exact expression for the external gain in the presence of 
feedback. 

It is convenient to begin with equation (4-21) of Chapter IV. If we 
multiply and divide by A0, this equation can be written as 

— evu = 

— WAj3 A42 

A0 + /FA43 A0 A0 
IPr-J (5-27) 

The quantity A0/(A0 + /FA43) in this expression will be recognized as the 
reciprocal of the return difference F. If we replace the remaining terms by 
e0Fy the expression as a whole becomes 

ee - ee° = y6*, (5-28) 

while if we make use of (4-22), Chapter IV, the equation can also be 
written as 

(5-29) 

The quantity e6F will be called the fractionated gain. It may be regarded 
as an exact statement of what is meant by “ gain before feedback/’ We 
notice that it is essentially the product of three factors. Two of them, 
A13/A0 and (A42/A°)Wr, represent, respectively, the transmission from the 
input to the grid and from the plate to the output with the tube dead. 
They thus include,the input and output impedances of the P circuit just as 
it stands. The third is the gain Wof the tube itself. In a single loop struc¬ 
ture the fractionated gain is then the gain which would be realized if it were 
possible to open the P circuit without affecting its impedance at either end. 
An example is furnished by the circuit of Fig. 4.5 in the preceding chapter. 
If this structure is taken as a complete amplifier, the fractionated gain is 
readily computed to be 

e*F * - 

Z\ + Z2 + 
Z3(Z4 + Z5) (Zi + Z2)Z3 

■z6/f, 

Z3 + Z4 + Z5 Z\ + z2 + z3 
+ Z4 + Z5 

(5-30) 

where Z5 on the right-hand side is identified with Wr in the general expres¬ 
sion (5-27) and the two preceding factors will be recognized as the input- 
grid and plate-output transmissions, A13/A0 and A42/A°, for this particular 

structure. 
Equations (5-28) and (5-29) offer alternative ways of treating the gain 

reduction due to feedback in systems with appreciable direct transmission. 
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In equation (5-28), the gain reduction is applied only to the surplus of the 
total output over the direct transmission term. This is the most natural 
relation if we continue to think of the system as made up of two non¬ 
interacting paths in parallel, one of which is simply a fixed structure fur¬ 
nishing the over-all direct transmission, while the other contains the vari¬ 
able W and /xhibits the essential phenomena of feedback. Equation 
(5-29) shows, however, that it is also permissible to apply the gain 
reduction due to feedback to the complete output provided we take “ feed¬ 
back ” to be F2/S. 

Equation (5-27) can be regarded as a relation which is appropriate if we 
wish to give special attention to the reference condition W = 0. The 
quantities ee° and A0 evidently apply to this state. Just as with most of 
the other equations in this chapter, however, an analogous expression can 
be developed for any reference. The use of the reference W© is of particular 
interest, since it leads to an alternative “ gain before feedback ” expression 
based upon measurements made with an interrupted feedback path. This 
is discussed in the next chapter. 



CHAPTER VI 

General Theorems for Feedback Circuits — B 

6.1. Introduction 

This chapter will continue the development of general feedback theorems 

begun in the preceding chapter. The center of attention in the present 

chapter, however, is the relative sensitivity, S\ and its use in expediting 

feedback and gain calculations. A large part of the discussion is concerned 

with multiple loop circuits, where the conception of relative sensitivity is 

most useful. The chapter can be omitted by readers interested only in 

simple feedback circuits. 

6.2. Reference Feedback as a Balanced Bridge 

In ordinary circuit calculations we frequently encounter a condition of 

bridge balance between two branches by means of which transmission 

calculations can be considerably simplified 

even when the transmission is not taken di¬ 

rectly between the two branches in question. 

As an example we may consider the calcula¬ 

tion of the current which would flow in 

branch F of Fig. 6.1 as a consequence of a 

generator in branch^/ under the assumption 

that branches B and F are conjugate. Such 

a problem might be encountered,for example, 

in connection with the design of a constant R 

equalizer structure. Since A and B are not conjugate and current must 

flow in B as a result of the generator in A> it might appear at first sight that 

the conjugacy condition allows no simplification in computing transmission 

from A to F. It follows from the principle of reciprocity,* however, that 

the current flowing in F as a result of the generator in A must be equal to 

the current which would flow in A when the generator is inserted in F. 

When the generator is inserted in F, however, no current can flow in B and 

we can consequently choose any value we like for this impedance without 

affecting the result. Obviously convenient values of B are zero and 

infinity, since with either one the circuit is reduced to a simple series-shunt 

See Shea or Terman, loc. cit., pp. 52 and 198, respectively, or Guillemin “Com¬ 
munication Networks,’* Vol. I, p. 152. 

83 
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configuration which is readily computed. A third convenient value for B 

is that one which balances the bridge composed of branches 5, C, E> and F. 

This allows us to omit Z), if we assume that the generator is in so that 

we can again reduce the structure to a simple series-shunt network. 

In a broad sense computations on a feedback circuit in its reference con¬ 

dition present an analogous situation. Evidently, the reference, since it 

demands zero*output current for any input generator, is somewhat similar 

to a bridge balance between input and output. Since the principle of 

reciprocity breaks down in circuits containing unilateral elements, we can¬ 

not use as simple a device as was suggested in connection with Fig. 6.1 in 

exploiting this possibility. This complicates the analysis without essen¬ 

tially affecting the results, however. We will find that in a number of sub¬ 

sequent theorems computations in the reference condition can be made 

with arbitrary choices of the impedances in the input and output circuits. 

The choice of an impedance which will simplify the calculation then becomes 

principally a matter of ingenuity. 

6.3. Return Difference and Relative Sensitivity 

The simplest illustrations of these possibilities are furnished by a set of 

relations between the return difference, the sensitivity, and the trans¬ 

mission from input to grid and output to plate terminals of the tube in 

question. As in Chapter IV, let 1, 2, 3, and 4 denote, respectively, the 

input, output, grid and plate. Then from (4-2) and (4-26) of Chapter IV 

we can write 

A_ 

S' A_ A0 A0 Ai3 * 

A' 

(6~1) 

where, as before, the superscripts 0 and ' indicate that the determinants to 

which they are attached are to be evaluated with W = 0 and Wf = 0, 

respectively. We observe that the determinant A13 in (6-1) is independent 

of JV and might equally well be written as Aj3 or A(3. Thus the factor 

A13/A0 in (6-1) is the transmission from input to grid with the tube dead, 

while the factor Ar/Ai3 is the reciprocal of the transmission between the 

same points when the tube is in its reference condition. If we begin by 
multiplying and dividing F/Sf by A42, instead of A43, we can also obtain an 
analogous expression involving the transmissions from plate to odtput for 
these two values of JV. 

The principal difficulty with these expressions as they stand is the fact 
that the input to grid or plate to output transmission in the reference state 
cannot be calculated without allowing for the residual feedback which 
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exists because the residual transimmittance IVq remains in the tube For 

most circuits, however, the idea of bridge balance between input and out¬ 

put in the reference condition allows the problem to be much simplified. 

Since the balance cannot depend upon the input and output impedances, 

we can study the input to grid transmission for an arbitrary value of the 

impedance connected to the output terminals, or the plate to output trans¬ 

mission for an arbitrary value of the input impedance. By choosing the 

proper values in each case it is generally* possible to interrupt the residual 

feedback path. 

These possibilities are reasonably obvious physically, but it will simplify 

later analysis if we also verify them mathematically. To represent the 

effect of a change in the output line upon the input to grid transmission in 

the reference condition, then, we can rewrite (6-1) as 

F __ Aj3 a' + W2A22 

A0 A'1S + tr2A'U22 9 1 ; 

where W2 is an arbitrary immittance added at the output terminals when 

the tube is in the reference condition. But we can also write 

ArA[z22 s= Aj3A22> } (6—3) 

from the general identity (4-13), Chapter IV, if we recall that A(2 = 0, 

since there is zero transmission from input to output in the reference state. 

It follows from (6-3) that (6-2) is independent of /F2, so that we can 

choose any value we like for this quantity without vitiating the original 

relationship between S' and F given by (6-1). In particular, then, we 

may give fV2 a value which will interrupt the return path from plate to 

grid, or in other words will make A43 = 0. With this choice the second 

factor of (6-2) becomes independent of so that we are at liberty to 

suppose that the tube is dead rather than that it is in its reference condition. 

We can therefore state the following 

Theorem: The ratio between the return difference and the relative 

sensitivity for any tube is equal to the ratio between the 

transmission from the input circuit to the grid of the tube 

when the output impedance has its normal value and the 

transmission between the same two points when the 

output impedance is assigned the value which interrupts 

the return path from the plate to the grid of the tube, if the 

tube itself is dead in both cases. 

* That is, in the absence of some such special situation as that represented by the 
bridge-type feedback amplifiers described in Chapter III, in which the loop trans¬ 
mission is independent of the input and output line impedances. 
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If the transmission path is taken from plate to output the analysis is 

precisely similar and we have the 

Theorem: The ratio between the return difference and the relative 

sensitivity for any tube is equal to the ratio between the 

transmission from its plate to the output circuit when the 

inpfit circuit has its normal value and the transmission 

between the same points when the input circuit is assigned 

the value which interrupts the return path from the plate 

to the grid of the tube, if the tube itself is dead in both cases. 

Simple illustrations of these theorems aie furnished by ordinary single 

loop amplifiers. If we apply the first theorem to a series feedback amplifier, 

for example, the interruption of the return path is accomplished by open- 

circuiting the output line. This evidently produces a slight change in the 

input impedance of the 0 circuit, which would otherwise be terminated by 

the output line impedance in series with the output impedance of the a 

circuit. Since the input line, the input of the m circuit, and the input 

impedance of the 0 circuit are all in series at the input terminals, there is a 

corresponding slight change in the transmission from the input line to the 

fA circuit. In a shunt feedback structure the situation is similar except that 

the interruption in the return path is produced by short-circuiting the out¬ 

put terminals. In either instance, of course, the change in transmission is 

small in any ordinary application. 

A more specific example can be obtained by returning to the structure 

shown by Fig. 4.5, in Chapter IV. If we use the first theorem, the interrup¬ 

tion of the return path is accomplished by open-circuiting Z6. For either 

the open-circuit or the normal value of Z5, however, the transmission from 

a generator in series with Z\ to the grid is inversely proportional to the 

impedance seen from the generator terminals. We can therefore write by 

inspection 

F 
S' 

Z\ + Z2 + Z3 

Z\ + Z2 

£3(^4 + Z5) 

z3 + z4 + z6 
(6-4) 

6.4. External Gain with Feedback 

* It was suggested at the end of the last chapter that gain expressions 

analogous to the ones given there could be developed by starting with any 

reference for the variable element W\ If we begin, in particular, with the 

reference we are led to formulae involving considerations very similar 

to those we have just discussed. 

The appropriate gain equation for calculations based on the reference JP* 
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is easily written from analogy with (5-27) of the preceding chapter. It is 

, 1 — /F'Ai3A42 r 

' ~ J' d'y ** 
(6-5) 

or 

(6-6) 

if e$ is written in place of the last group of factors in (6-5). The validity 

of (6-5) can be verified by direct calculation from equations (4-25) and 

(4-28) of Chapter IV, if we make use of the condition A'a£243 = — A13A42, 

which follows from an argument similar to that used for (6-3) in the 

present chapter. In view of the various relations among Sy Sf9 and F 

which were developed in the last section and in Chapter IV it is also possi¬ 

ble to write (6-5) and (6-6) in a variety of other obvious ways. 

If we confine our attention to equations (6-5) and (6-6) as they stand, 

we are concerned principally with the quantity This is evidently a 

fractionated gain expression very similar to the original fractionated gain 

e°F which appeared in Chapter V, except that each of the three transmission 

factors of which it is composed is calculated with respect to the condition 

W = rather than with respect to the condition W = 0. As in the pre¬ 

ceding section, the input and output transmission factors A^/A' and 

A42/A^ can be calculated with an arbitrary value for the line impedance 

not directly involved in the transmission path, If we choose in particular 

the values which interrupt the return path, the calculations can be made 

with the tube dead. Thus the difference between these factors and those 

appearing in edF is that at each end they include the p circuit impedance as 

it would appear with the feedback loop interrupted at the other end, rather 

than as it would appear for the circuit connections as they stand. 

A simple example is furnished by the series feedback amplifier shown by 

Fig. 4.5 of Chapter IV, which we used previously to illustrate the calcula¬ 

tion of fractionated gain in the zero reference case. Evidently, the trans¬ 

mission from Z\ to the grid in this structure is most easily evaluated if we 

suppose that Z5 is infinite and the transmission from plate to Z$ if we assume 

Zi to be infinite. The fractionated gain for the reference can, there¬ 

fore, be written down as 

^2_£4_ 

Zi + Z2 + Z3 Z3 + Z4 + Z5 
ZhW. (6-7) 

This may be compared with equation (5-30) of the preceding chapter. 
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6.5. Simplified Computation of IFq 

The material of the previous sections has been chosen principally to 
provide the simplest possible illustrations of the use of the bridge balance 
condition when the analysis, as a whole, is based upon the reference 
It is somewhat misleading, however, in the sense that we are, in fact, likely 
to choose rather than zero for the reference only if a relatively elaborate 
computation is to be attempted. The reason is apparent if we notice that 
the analysis in terms of W§ depends essentially upon the variables W' and 
S', which are obviously more difficult to evaluate than are the correspond¬ 
ing variables W and F in the zero reference analysis. Thus, the use of the 
reference calls for an initial investment in labor not required with the 
other procedure. On the other hand, it leads in general to simpler rela¬ 
tions. For example, (6-7) is simpler than its zero reference counterpart, 
and the simplification is enhanced if we include the fact that (6-7) can be 
applied directly to find the final output, while with the zero reference method 
it is still necessary to compute the direct transmission. We also need to 
know the direct transmission to find the absolute sensitivity in the zero 
reference case, whereas equation (4-31) of Chapter IV gives S directly if we 
begin with W' and S'. In general, it appears that these advantages should 
outweigh the extra difficulty of determining W' and S' initially if the circuit 
is complicated or if a long series of results is to be obtained, but the zero 
reference analysis is probably more advantageous in elementary situations. 

Since the computation in terms of hinges primarily upon W' and S', 
it is of considerable interest to consider how these variables can best be 
evaluated. W*, of course, depends directly upon PF0. S' can be deter¬ 
mined indirectly from F by the methods described earlier in this chapter 
and in Chapter IV. This, however, involves the intermediate step of 
computing F. If we wish to determine S' directly, we are concerned, in 
general, with the backward transmission from plate to grid in the reference 
condition, since it was shown earlier that S' is equal to the return difference 
for the reference W{0. 

Fortunately, the computation both of TVq and of the backward trans¬ 
mission in the reference state can be simplified by means of the bridge 
balance condition we have already discussed. The situation is particularly 
favorable if the circuit belongs broadly to any one of the general types 
illustrated by Figs. 6.2, 6.3, 6.4, and 6.5. In each figure the networks N% 

and N2 are arbitrary, but it will be seen that the relations between either 
the source and the grid or the plate and the load are particularly simple. 
For example, in Fig. 6.2, the plate and the load are “ effectively in parallel ” 

in the sense that if the plate-cathode impedance is a short circuit, there cm 
be no transmission between either the input or the grid and the load. 
Similarly, Fig. 6.3 represents a series arrangement for the plate and load# 



THEOREMS FOR FEEDBACK CIRCUITS —B 89 

while Figs. 6.4 and 6.5 give analogous relations between the input and the 
grid. The circuit need belong only “ broadly ” to one of these classes since 
minor departures will not seriously affect the results. For example, there 
may be other paths between input and output in addition to those shown 
by the figures, provided the transmission through these paths by them¬ 
selves is relatively small, since Chapter IV shows that the distinction 
between S' and S or F depends only upon the ratio of ee° to e9. 

Fig. 6.4 Fig. 6 5 

This section will deal only with the computation of If we consider 
in particular the circuit of Fig. 6.2, we notice that since no voltages can 
exist in the output in the reference condition, no voltage difference can 
exist across terminals AAf either. We can therefore determine the refer- 
ence condition equally well if we begin by short-circuiting these terminals, 
provided we define the reference condition as that one which gives zero 
current through the short-circuit. This evidently demands cancellation 
between the current which would be supplied to the short-circuit by the 
rest of the network with the tube dead and the current supplied directly by 
the tube. In evaluating the latter, howevej^_VE£.need make no_allpwance 
for residual " feedback ** since the short-circuit destroy s_the return path. 
The reference transconductance of the tube for the circuit of Fig. 6.2 is 
therefore equal to the ratio of the current flowing between A and A* to the 
voltage between grid and cathode, both quantities being evaluated with 
AAf short-circuited and the tube dead. It will be noticed that this requires 
a knowledge of only two transmissions, in comparison with the four appear¬ 
ing in (5-26) of the previous chapter. 

A simple example is furnished by the structure of Fig. 6.6. Obviously a 
voltage Eg between grid and cathode will deliver a current Y^E0 to a short- 
circuit between plate and cathode when the tube is inactive. We therefore 
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have at once 

TVo = Fa- (6-8) 

A structure belonging to the general class of Fig. 6.3 can be analyzed in a 
similar fashion if we replace the short-circuit between A and A' by an 
open-circuit between B and B\ The reference transimpedance is equal to 

Fig. 6.7 

the ratio between the voltage across BBf and the current in the grid circuit 
both quantities being evaluated with BB' open-circuited and the tube dead. 
For example, in the structure of Fig. 6.7 we have 

Wo = Z3. (6-9) 

We may also continue to specify the reference condition in Fig. 6.7 in terms 
of admittances. Thus if we begin with any voltage between grid and 
cathode in that figure and compute directly the transconductance which will 
give a balance between the voltages across Z3 and Z4, with Z5 open, we 
readily find that Wo, as a transconductance, is given by 

Wo 
Z3 

Z2Z4 

(6-10) 

In a circuit belonging to the general class shown by Fig. 6.4 the interrup¬ 
tion of the residual feedback path can be accomplished by supposing that a 
voltage generator, of zero internal impedance, is applied between grid and 
cathode, while in Fig. 6.5 we may assume that the circuit includes a current 
generator, of infinite impedance, in series with the grid lead. The reference 
transimmittance is equal to the ratio between a current or voltage source in 
the plate circuit and this voltage or current source in the grid circuit, when 
the plate and grid sources are adjusted to produce the same response in the 
output with the tube dead. These relations can be exemplified by using 
the structures of Figs. 6.6 and 6.7 again, and lead to the results we have 
already found in (6-8) and (6-9). 

Although these results are physically obvious it will simplify the dis¬ 
cussion in the next section to show how they can be demonstrated mathe- 



THEOREMS FOR FEEDBACK CIRCUITS —B 91 

matically. We will consider in particular the structure of Fig. 6.2. It is 
convenient in this structure to use a nodal analysis, with the cathode of the 
tube on ground. In agreement with our earlier conventions, the input, 
output, grid, and plate will be taken as, respectively, the first, second, 
third, and fourth nodes. The short-circuit between A and A' will be repre¬ 
sented by adding the arbitrarily large quantity Y4 to the self-admittance 
of the fourth node. 

In terms of this notation, the voltage on the grid and plate corresponding 
to a unit source applied to the input with the tube dead cafi be written as 

' — ^13 + F4A1344 

'3“ A0 + Y4A44 ’ 
(6-11) 

and 

E4 
Al4 

A0 + Y4A44’ 
(6-12) 

where A0 represents the system with the tube dead and Y4 = 0. 
The current in Y4 is £4!^. The statement to be established is that the 

reference transconductance of the tube is equal to the ratio of this current 
to the grid voltage £3 when Y4 becomes infinite. A general formula for 
the reference is, however, given by (4-23) of Chapter IV. Upon inspecting 
(6-11) and (6-12) to find the current-voltage ratio when Y4 becomes infin¬ 
ite we therefore obtain the required relation in the form 

Al4 - (6-13) 
Al344 

A?2 ^ 

Ai243 

To prove this equation, let the voltage on the output node be written as 

E2 
A?2 + Y4A1244 
a° + y4a44 

(6—14) 

When Y4 becomes infinite, however, the configuration in Fig. 6.2 is such 
that £2 vanishes. We must therefore have A1244 = 0. Upon identifying 
A1244 with Aab,cd in (4-13), Chapter IV, this gives 

A?2A44 = A14A42. (6-15) 

The result (6-13) follows readily from (6-15) if we use (4-13) of Chap¬ 
ter IV again to replace A1344 and Ai243 by their values in terms of first 
order minors. 

6.6. Simplified Computation of Transmission from Plate to Grid 

The fact that the input and output must be conjugate in the reference 
condition, which we have just used to simplify the computation of the 
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reference itself, can also be applied to the computation of the plate-grid 
transmission when W = /F0. This can be illustrated by an examination of 
Fig. 6.2. For example, it follows from the conjugacy condition that the 
impedance looking to the left from terminals AAf in Fig. 6.2 must be inde¬ 
pendent of the input circuit when W = fF0. Otherwise, if we were to 
vary the input circuit, we would expect to find a varying impedance across 
AAf for a prescribed plate generator and consequently a varying current 
in the output circuit. Since a variation in the input impedance can be 
represented by keeping the input impedance constant and adding a suit¬ 
able generator in series with it, this is impossible by the conjugacy condi¬ 
tion. Similarly, once the current gets over to the input impedance and the 
associated elements in iVj, the way in which it divides in the various meshes 
of Ni must be independent of the output impedance. We can therefore 
divide the total transmission between plate and grid in the reference con¬ 
dition into two factors, one of which depends broadly upon the load imped¬ 
ance and upon the elements of A2, but is independent of the input imped¬ 
ance, and another which depends upon the input impedance and the ele¬ 
ments of N\y but is independent of the output. 

These relations may be expressed by the following 

Theorem: If the structure is in any one of the forms shown by Figs. 
6.2, 6.3, 6.4, or 6.5 the actual circuit used in computing the 
transmission between plate and grid in the reference con¬ 
dition can be replaced by an equivalent circuit in which the 
output impedance is assigned an arbitrary value, provided 
the strength of the energizing source in the equivalent cir¬ 
cuit is so chosen with respect to the source in the original 
circuit that they give the same voltages on the input side of 
the tube for any one arbitrarily chosen value for the imped¬ 
ance of the amplifier input circuit. 

The equivalent source may be associated either with the plate circuit or 
with the load and the comparison of voltages may be made either at the 
grid itself or at the input circuit terminals. In the application of the 
theorem, of course, one would attempt to choose the output impedance in 
a way to facilitate the final computation of feedback, while the input 
impedance would be chosen to facilitate the intermediate step of comparing 
the voltages. 

The notation of the preceding section will be retained in the proof of the 
theorem. The fact that the output circuit is arbitrary in the equivalent 
structure will be represented by adding the arbitrary quantity Y* to the 
self-admittance Y22> while the arbitrary input mesh assumed in the voltage 
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comparison will similarly be represented by the addition of Y\ to Yu* 
Let I4 represent the actual plate source and /2 the equivalent source, 
while Ei is the voltage which each produces across the input. When the 
voltage comparison is made, we have 

(w6) 

and 

Ei = I2 
Ao 21 

+ Y\&[i + Y2A22 + yiy2A1'122 
(6-17) 

where A! is the determinant of the actual circuit when Yi = Y2 = 0 and 
W = Wq. In accordance with the conditions of the theorem /2 must be so 
chosen with respect to 74 that the £i’s determined by the two equations 
are equal. 

On the other hand, when the input circuit is assigned its actual admit¬ 
tance value, the equivalent source /2 will produce a voltage between grid 
and cathode given by 

£3 — 72 

A23 # 

Af + Y2A 22 
(6-18) 

If we replace /2 by its value in terms of /4 as determined from equa¬ 
tions (6-16) and (6-17) this can also be written as 

i-. _ j A4jA23 A^A' + YiA'u + Y2A22 + YiY2An22) ,, 

A3“*/4A'A^ (A' + Y1A'1)(A' + Y2A'2) ’ 1 ' 

It follows from (4-13), Chapter IV, however, that 

A/Aji22 “ AiiA22) (6—20) 

if we recall that, since there can be no transmission from input to output in 
the reference condition, we can set A(2 = 0. 

With the help of (6-20), it is readily seen that the second factor of 
(6-19) must be equal to unity. This equation therefore reduces to 

£3 * 74 
A4lA23 

A'A^ ' 
(6-21) 

* With corresponding changes in wording, if we use an impedance rather than an 
admittance analysis. As in the preceding section, it is assumed as a matter of simplic¬ 
ity that the input, output, and cathode are all grounded, so that changes, for example, 
in the input and output affect only a self-admittance term. 
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But the transmission from plate to grid for the actual circuit is given by 

F - T e3 - IA A, (6-22) 

The theorem is therefore demonstrated provided we can assume that 

A41A23 

A43A21 

(6-23) 

The final step is to establish the fact that (6-23) holds for any structure 
of the general type illustrated by Figs. 6.2 to 6.5. It is sufficient to examine 
Fig. 6.2. From an argument similar to that used to establish equation 
(6-15) it is clear that A2144 = A2344 = 0 for this structure. Correspond¬ 
ing to (6-15) itself we must therefore have 

A21A44 = A24A41, (6-24) 

and 

A23A44 = A24A43, (6-25) 

from which (6-23) follows by direct division. 
The proof of (6-23) for the other configurations can be made by the same 

methods. We may also notice that although (6-23) was established on the 
assumption that the equivalent source was associated with the output and 
that the voltage comparison was made at the input, it would also have been 
obtained if we had introduced the equivalent source in the plate and com¬ 
pared the two voltages at the grid, so that the theorem holds for this con¬ 
dition also. 

As a simple example of the theorem, we may consider the structure 
previously shown by Fig. 6.7. Z\ in this figure will be taken to represent 
the input circuit and Z5 to represent the load. For the equivalent source, 
it is convenient to suppose that Zg = <», since this removes all the plate 
side elements from the computation. In making the voltage comparison, 
on the other hand, it will be supposed that Z\ = «> since this allows us to 
ignore the grid elements. If the original plate current source is J4, the 
voltage across Z3 (or across Z\) for the comparison condition is given by 
/JZ3Z4/(Z3 + Z4 + Zg)]. The equivalent source must of course be 
adjusted to give this same voltage across Z3. The equivalent source, how¬ 
ever, corresponds to an open plate circuit. When we restore the input 
impedance to make the actual measurement, therefore, we find that a 
fraction Z2/(Z\ + Z2 + Z3) of the voltage which it would produce across 
Z3 in the comparison condition must appear between grid and cathode* If 
we include also the factor W* to give complete loop transmission, therefore, 
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the return ratio for the reference TFq can be written as 

Z4 

Z\ + Z2 + Z3 Z3 + Z4 + Z5 
ZiW'. (6-26) 

Equation (6-26) is evidently the expression for the return voltage which 
would be deduced by inspection upon the assumption that Z3 is so small 
compared to the other impedances that there is no interaction between the 
two ends of the network. The choice of the reference value W§ is equiva¬ 

lent in effect to destroying the interaction between input and output, so 
that in terms of this reference value the equation becomes an exact expres¬ 
sion for T* even when Z3 is not small. In other words, in the reference con¬ 
dition the two forward couplings represented by Z3 and the transconduct¬ 
ance of the tube cancel one another. The transmission backward from 
plate to grid is therefore unilateral and the two ends of the network are 
independent of one another in exactly the same way that the plate circuit 
and grid circuit of an ideal vacuum tube are independent. 

6.7. Amplifier with Local Feedback — Computation of 

These various theorems will be exemplified by means of the structure 
shown in Fig. 6.8. The circuit is a multiple loop amplifier of the general 
type illustrated by Figs. 3.14 and 3.15 of Chapter III. The main feedback 
is provided by the branch Yg. The last tube is provided with additional 
local feedback by means of branches Y3 and Y6. This stage is evidently 
similar to the structures which we have already analyzed, as complete 
amplifiers rather than as constituents of a multiple loop circuit, in connec¬ 
tion with Figs. 6.6 and 6.7 of the present chapter. 

Although the analysis does not depend upon any particular assumption 
concerning the elements, we may conveniently suppose that Ye is a para¬ 
sitic grid plate capacity and that Y3 is a physical element deliberately 
added to enhance the total feedback on the tube. Y2 and Y4 are intro- 
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duced to represent the fact that in a physical tube a portion of the total 
grid and plate admittances must be considered as going directly to the 
cathode and this portion must be distinguished from the portion which goes 
to ground when the cathode is off ground, as it is in this case. Y\ and Yg 
represent normal parasitic capacities and design elements connected to 
ground while Y7is used to represent the total output admittance. 

The presence of both Y3 and Y6 does not appreciably complicate the 
structure in theory, but it leads to considerably more complicated circuit 
equations, principally because the circuit with both elements present is 
essentially a bridge rather than a series-shunt configuration. In order to 
simplify the discussion, therefore, each stage of the analysis will be begun 

on the assumption that only one of these two ele¬ 
ments is present and the complete equation will be 
supplied only as a final step. 

Since the properties of the circuit for the first and 
second tubes are similar to those which would be 
found in a single loop amplifier, we can turn im¬ 
mediately to the output stage. The first step is to 
determine the reference value for the transcon¬ 
ductance. Since no current can flow in the output 
circuit for the reference condition, we can sup¬ 
pose that Y7 is removed and the fundamental con¬ 

dition then becomes that the sum of the voltages across Yg and Y5 must 
vanish. The voltage across Yg, however, is obviously very small and will 
be neglected also. The circuit is thus reduced to the form shown by Fig. 
6.9 and the problem becomes that of determining a transconductance W§ 

such that there is zero transmission from A to B. 
It follows from the discussion early in this chapter that must be inde¬ 

pendent of Yi and Yg, so that any convenient values for these admittances 
can be assumed in making the computation. If one of the branches 3 or 6 
is missing the structure reduces to one of the types shown by Figs. 6.6 and 
6.7, for which the reference transconductance has already been calculated 
by equations (6-8) and (6-10). With suitable changes in notation to agree 
with Fig. 6.9 the results may be reproduced here as 

(6-27) 

if Yg vanishes, and 

fT0 - Y6, (6-28) 

if Y3 is infinite. 
In the general case, when neither Y3 nor Ye can be ignored, we can con- 

1—GO—1 

Fig. 6.9 
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tlnue to determine from a transmission computation, using arbitrary- 
values of Y\ and Y$. A convenient choice is now Yg = 0 and Y\ = — Yg. 
This choice interrupts the return path from plate to grid, so that the net 
output voltage, which must be set equal to zero, can be calculated by simple 
superposition of the voltage due to the original source and the voltage due 
to the flow of plate current. With the tube dead, and these values for Y\ 
and Yg, it is easy to calculate that a current source I a applied to node A 
in Fig. 6.9 will produce the voltage 

eBi - - y^yf+Ye) (Y*Yq + Y2Y6 + V2V4+ Y3Y6) (6~29) 

from node B to ground, that is, across Yg. The grid-cathode voltage pro¬ 
duced by the same energizing current is —7a/Y3. Allowing for the phase 
reversal in the tube, the corresponding plate current in the reference con¬ 
dition is Ia^o/Ys. When this current source is applied to the network, 
again with the tube dead and the chosen values inserted for Y\ and Yg, the 
resulting voltage drop across Yg is 

I_aW0 _1_ 
y3 y4 + n (6-30) 

But the sum of the two voltages in (6-29) and (6-30) must be zero. The 
correct value of W0 is consequently 

fT0 
nn + y2y» + y2y4 + r»r« 

y3 - n 
(6-31) 

from which (6-27) and (6-28) follow as special cases. 
It is also possible, on the other hand, to determine Wo directly from the 

nodal equations without using any special devices. Since this procedure is 
perfectly general, it is worth illustration. For the circuit of Fig. 6.9, the 
nodal equations appear as 

EA(Yl + Y2 + Ye) - EBY6 - ECY2 = IAy 

-EA(Y0 - W) + EB(Y4 + Y5 + Y6) -Ec{Yt + W)= 0, (6-32) 

-Ea{Y2 + W)~ EBYt + Ec(Y2 + Y3 + Yi + W)= 0, 

if we assume that the circuit is energized by the current Ia flowing into 
node A. When W = Wo we must have zero transmission from A to B. 
This corresponds to Aab — 0 so that Wq \s the solution of 

-(Y6-W0) -(Yt + Wo) 

- (Y» + Wo) (Y2 + Y3 + Yi + W<^ 
(6—33) 

When the determinant is expanded, we obtain again the formula for Wo 
already found in (6-31). 
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6.8. Amplifier with Local Feedback — Computation of Local Feedback 
We will assume that the final object of the analysis of the circuit of 

Fig. 6.8 is the determination of the relative sensitivity for the last tube. 
The absolute sensitivity for this tube can, of course, be determined immedi¬ 
ately from the relative sensitivity and the ratio W/W' y which is fixed by 
the known value mf Wg. It is convenient to base the computation of S' 
for the last tube upon the theorem following equation (5-22) of Chapter V. 
We will take W\ to represent the transconductance of the output tube and 
Wg that of one of the preceding tubes. The reference values which appear 
in the statement of the theorem will be chosen as fV0 and zero, respectively. 
The return difference of the output tube for the reference Wg is, of course, 
the same as S'. Moreover, when W\ assumes its reference value the 
return difference for Wg is unity, since the main loop is opened. Similarly, 
with IV2 at reference the return difference of Wx for the reference Wg is 
merely that which would be obtained from a consideration of the “ local ” 
structure of Fig. 6.9, including the associated line and ft circuit impedances. 
It follows from the theorem, therefore, that the actual relative sensitivity 
for W\ is the product of the return difference for W2 and the “local” 
relative sensitivity for W\. 

This section will be concerned only with the computation of the local 
sensitivity. If Yg = 0, the local circuit is identical with that previously 
shown by Fig. 6.7 except that Z7 + Z8 has been added in parallel with Z5. 
The local sensitivity can, therefore, be immediately written down from 
equation (6-26) in the form 

Si - 1 + 
Z2 Z4 

Z\ + Z2 + Zz Z3 + Z4 + Z9 
ZzW\ (6-34) 

where Zg has been written for brevity to represent the complete impedance 
composed of Z7 and Z8 in parallel with Z5. 

If Z3 vanishes, on the other hand, the circuit is of the type represented 
by Fig. 6.2. The theorem on the computation of the feedback by the use 
of an equivalent source is, therefore, still valid. In this instance it is con¬ 
venient to suppose that the equivalent source is defined by T9 = 00 and 
that the comparison of grid responses is made for the condition Yx ** 00. 
With Yi = 00, a current J, in the plate circuit will evidently produce a 
voltage I3/(Y4 + Yg + Yg) between B and C. With Y\ normal, on the 
other hand, a generator of unit voltage and zero internal impedance applied 
across B and C will produce a voltage Yg/(Y\ + Yg + Yq) between A and 
C. The local sensitivity is, therefore, 

F0 W 
Yx + y2 + y6 y4 + y6 + Yg 

s{ - 1 + (6-35) 
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If neither of the branches 3 or 6 can be ignored the analysis becomes 
considerably more complicated. Since the circuit no longer falls in any one 
of the classes represented by Figs. 6.2 to 6.5, it is not possible to use the 
theorem on equivalent sources to compute the feedback. We can, how¬ 
ever, develop a suitable expression directly from the expansion of the 
system determinant. As an alternative which requires substantially the 
same algebraic work, although it may seem simpler, it is also possible to 
derive the sensitivity from the return difference. By ordinary circuit 
analysis the return difference for the local circuit can be found as 

where 

.= YtYQ + YeXYi + Yg) + YZY6 

+ * + bY3 + cYq + dY3Y6 ’ 

b - (Fi + Y2)(Y4 + ye), 

f = (Fi + y9ky2 + y4), 

d = Yi + Y2 + Y* + Ya. 

(6-36) 

(6-37) 

We know, however, that Sf is equal to the F of (6-36) divided by the value 
which F would assume if we set W = IVFrom the known value of W9 

this gives 

, [Y\Ya + YefFt + Y») + YsYeKYs - Y*)W 
1 (YiY2 + Y3Y6) (Y4Ys + YaY6) + Ya (a + bY3 + dY3Y6) ’ 

(6-38) 

6.9. Amplifier with Local Feedback — Final Properties 

In accordance with our preceding discussion the actual Sf for the third 
tube in Fig. 6.8 can be obtained by multiplying (6-38) by the return differ¬ 
ence for one of the other tubes. The return ratio for either the first or 
second tube, however, is simply the transmission around the main loop. 
This in turn can be broken up into two components, one representing the 
transmission from A in Fig. 6.9 to some point such as B, say, and the second 
representing the transmission around the rest of the loop. The second will 
be symbolized by K and will be assumed to be known since it presents no 

special problem. 
Since we already know S{ for the last tube, equations (6-5) and (6-6) 

allow us to compute the transmission from A to B as soon as the fraction¬ 
ated gain of this tube for the reference condition is determined. It will be 
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recalled that the grid transmission term in this gain can be calculated for an 
arbitrary choice of the load impedance and the plate transmission term for 
an arbitrary choice of the input impedance. 

Let it be supposed, first, that Y6 = 0. It is then convenient to choose 
the arbitrary impedance as an open circuit in each computation. This 
has already beei> examined in connection with (6-7). For the present 
circuit the resulting transmission from A to B can be written as* 

Aab 
zxz2 Z$Zg 

S( Z\ + Z2 + Z3 Z3 + Z4 + Zq 
w, (6-39) 

where, corresponding to the fact that we have assumed Y$ = 0, S{ must be 
determined from (6-34). 

If we assume Z3 = 0, on the other hand, it is most convenient 
to determine the grid transmission for the condition Zg = 0 and 
the plate transmission for the condition Zx = 0. With these two assump¬ 
tions the two transmissions are readily seen to be 1/ (Yx + Y2 + Y6) and 
1/(Y4 + Yq + Yg). The gain from A to B consequently becomes 

(&AB 
1 1 1 

s[ Yx + Y2 + Y9 Y4 + Y6 + Ys 
(6-40) 

where S[ is determined from (6-35). 
If neither of the branches 3 or 6 can be neglected the analysis is naturally 

somewhat more complicated but it can be made by the same general 
methods. For example, in computing the transmission to the grid, we can 
conveniently assume that Yg = — Y9[(Yi + Y3)/(Yi + Ye)]. This is 
the value of Yg which gives zero transmission from Y4 to Y2 so that the flow 
of current in Y4 due either to transmission in the passive parts of the net¬ 
work or to transmission through the residual transconductance W0 will not 
affect the voltage across Y2. The computation can thus be made 
for any assumed value, such as a short circuit, for Y4. Similarly 
in computing the transmission from plate to load we can assume 
Y\ = -Y6[(Y3 + Y4)/(Y6 + Yg)] which allows us to short-circuit Y2. 

* The numerator of (6-39) includes the factors Z\ and Zq, for which no correspond¬ 
ing terms exist in (6-7). These factors are introduced to express the result in nodal 
rather than mesh terms. Thus in (6-7), where an impedance analysis was used, the 
driving force was taken as a unit generator in series with Z\ and the response was 
stated in terms of the current through the load. The introduction of the factor Z\ 
in effect expresses the driving force as a unit current applied to Z\, while the intro¬ 
duction of Zq is equivalent to expressing the response as the voltage across the load. 
A nodal analysis is chosen here for consistency with the other equations of this section. 
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The expression for the transmission from A to B is accordingly 

_y3-y8_ 

YiY2 + y1y3 + y2y3 + y3y6 

X__W> 

y3y4 + y3y3 + y3y9 + y4y9 ’ (6-41) 

where the first and second expressions involving the Y9s are, respectively, 
the transmission from the source to the grid and from the plate to the load. 

Upon multiplying the appropriate one of these expressions by K> which 
represents the transmission from B around the rest of the loop, including 
the transconductance of the second tube, we secure the complete jj.fi charac¬ 
teristic. This then is —T for either the first or the second tube. In 
accordance with the theorem on the relation between two return differ¬ 
ences, the actual relative sensitivity for the third tube can be obtained by 
multiplying the corresponding F for the first or second tube by the S{ 
for the third tube, as expressed by equations (6-34), (6-35), or (6-38). 
For example, if we assume Y3 = oo and write S' for the total relative 
sensitivity of the third tube, the result from (6-35) and (6-40) is 

s' s' 0 + s; Yt + v 
i 

= i + 
i 

Y2 + Fe Y4 + n + Yg 

1 

tr'K) 

(6-42) 

Yi + Y2 + Y6 Y4 + Y6 + Yq 
(Yq + K)W'. 

As the final step in the analysis we may compute the distortion which 
would appear in the load as the result of a prescribed distortion generator 
in the plate circuit of the third tube. The theorems of Chapter V show 
that this is equal to the distortion which would flow in the load when the 
third tube is in the reference condition divided by S' for that tube. We 
have, however, already computed the ratio between a given plate current 
and the voltage between B and ground for the reference condition. If we 
let k represent the ratio between the voltage at B and the resulting voltage 
across the final load impedance with the amplifier input circuit open, there¬ 
fore, the results can be immediately written down as 

El = 
Z4Z9 

S' Zq + Z4 + Z9 

k 1 

Th for 0 

Ij, for Z8 = 0 
5' Y4 + Ye + Y9 

7 YgYt + Y3yI + Y3Y9 + Y4Y* Ih m gCnera1’ 

(643) 
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where Ij is the prescribed distortion generator and Sf in each case is the 
appropriate relative sensitivity for the third tube. 

It will be recalled that a double loop feedback circuit essentially similar 
to the one under discussion here was used in Chapter IV to illustrate the 
fact that the sensitivity of a tube in the n circuit of a multiple loop structure 
was not necessarily equal to its return difference. The illustration can be 
made somewhat more specific with the help of the present equations. For 
example, suppose we set W' = — W0 in (6-42). This is equivalent to 
setting W ~ 0, so that the corresponding return difference will be unity. 
It is clear, however, that the ratio of relative sensitivity to return difference 
is independent of W> so that it will be the same for actual operating con¬ 
ditions as it is for this special choice. Upon introducing JV§ = y6, from 
(6-28), for the case represented by (6-42) we therefore have 

_jeOe + K)_ 
F (Yx + Y2 + Yq)(Y4 + Yq + ye) 

(6-44) 

It is evident from (6-44) that if we can make K large enough the sensi¬ 
tivity* can be made much greater than the return difference. On the 
other hand, by choosing special values for K and the various Y*s we can 
also secure a sensitivity which is much smaller than the return difference. 
The values of these quantities which would appear naturally in normal 
design practice are probably not such as to make either extreme very likely. 
The fact that the sensitivity and return difference are not necessarily identi¬ 
cal is of considerable theoretical interest, however, since the limitations on 
available “ feedback ” developed in the following chapters are actually 
limitations only on the return difference. 

* No distinction between S and S' need be made here, since we can readily choose a 

W* small enough to make the two approximately equal, without affecting the rest of 

the argument. 



CHAPTER VII 

Stability and Physical Realizability 

7.1. Introduction 

The preceding chapters have been devoted largely to the problem of 
active network analysis. It has been assumed, in other words, that the 
structure under consideration was given, and that we were interested in 
finding out what it would do. To this end, the mesh and nodal equations 
were first introduced. The succeeding chapters consist principally of 
applications of these equations to various situations, with particular atten¬ 
tion to what they could tell us about the relation between a single given 
element and the characteristics of the complete network within which it 
appears. 

Beginning with the present chapter, attention will be turned broadly 
from problems of analysis to those of synthesis or design. It will be 
assumed in other words that our primary interest is in working backward 
from a prescribed type of response characteristic to a network which might 
exhibit it. This chapter will serve only to introduce the subject. It is 
devoted principally to a consideration of the requirements which a net¬ 
work must meet if it is to be stable and of the limitations which this imposes 
on the network characteristics which are available for design. 

7.2. Design Methods and the Problem of Physical Realizability 

The development of final design methods for feedback amplifiers is 
approached here by way of a lengthy and perhaps indirect introduction. 
Before beginning the discussion it may consequently be desirable to say a 
few words concerning the point of view which motivates this approach. 
It must be recognized to begin with that the processes of synthesis or design 
are in some respects essentially different from those of analysis. If a net¬ 
work is given, only one response to any prescribed force is possible, and that 
response can, in theory, be obtained by a mechanical computation, so that 
the whole operation is reduced to a routine level. The design process can¬ 
not be described so exactly. In a broad sense it consists in the construction 
of a larger unit by the establishment of a pattern of relationships among a 
number of smaller and more easily controlled units. In a feedback ampli¬ 
fier, for example, we are concerned in the first instance with the provision 
of suitable characteristics for the amplifier as a whole by the establishment 
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of an appropriate pattern of relationships among the separate units, such as 
tubes, input and output circuits, feedback and interstage networks, etc., 
of which it is composed. Beyond this point we may be concerned with the 
relation between any one of these circuits individually and the various 
elements from which it is built. 

In almost all design situations several or many patterns of relationships 
may yield a satisfactory result. For example, we may obtain a given for¬ 
ward gain for a feedback amplifier from various combinations of input and 
output circuits, tubes, and interstage networks. On a smaller scale, a 
given interstage characteristic can usually be represented, within tolerable 
limits, by structures of several different physical configurations. The 
choice between the possible solutions may depend upon ulterior considera¬ 
tions, such as economy, reliability, power consumption, the speed with which 
parts can be secured, etc., which are not readily taken into account, at 
least in detail, in a theoretical discussion. Or it may be purely arbitrary. 
In any event the establishment of any one pattern involves essentially an 
effort of imagination on the part of the designer. As such it is a creative 
operation, on a more or less difficult plane, and defies exact analysis. In a 
group of structures which are very much alike, such as a set of amplifiers 
meeting similar requirements in about the same frequency range, a general 
type of pattern may become so well established that much of the work is 
reduced to a routine level. As the diversity of application increases, how¬ 
ever, the essentially creative nature of the design process becomes more 
apparent. 

It follows from this discussion that design methods suitable for a variety 
of applications can never be reduced entirely to a set of rules. They are 
best when they leave the final synthesis in the hands of the designer but 
stress the development of conceptions and processes which make the 
establishment of any particular set of relationships as simple and easy a 
matter as possible. This can be done in part by pointing out types of 
relationships which are plausible but either cannot be carried out or lead to 
unsatisfactory results. It is futile, for example, to plan a feedback ampli¬ 
fier about an assumed input transformer whose gain is greater than can be 
obtained with the existing parasitic capacities. On the positive side, 
design can be expedited by the construction of general patterns of relations 
which can be extended to a variety of situations by the choice of numerical 
values for a few parameters, and by the discovery of simple methods of 
specifying the subsidiary units which make up a complete structure. An 
excellent example here is furnished by conventional filter theory. The 
general pattern is the composite filter with matched image impedances. 
The subsidiary units are the discrete sections. They are particularly easy 
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to deal with since an individual section is specified, in essentials, by a single 
parameter, and in their significant properties the sections are directly 
additive. The choice of any particular combination of sections to meet a 
particular set of requirements, however, is left in the hands of the 
designer. 

It is evident from this background that what we need most of all in 
developing design methods for feedback structures is a characterization of 
the available units which may enter the complete structure in terms which 
are as easy as possible to handle in planning the over-all design. This is, 
of course, necessary if we are to avoid blind alleys of the type described 
previously. It is also required in planning any general design patterns 
which are likely to be of practical value and it is necessary again in fixing 
the proportions of any specific pattern. As a matter of actual experience, 
it appears that if the characteristics of the units of the amplifier can be 
properly specified in broad terms the road to a final detailed design is 
relatively straight. 

In network synthesis, a characteristic is “ available ” in the broadest 
sense if it can be furnished from some combination of physically obtainable 
elements. The restriction to physical elements is one which does not 
appear in network analysis. It makes no difference in the routine of deter¬ 
mining the response of a given structure whether the elements are positive 
or negative, to say nothing of whether or not they are accompanied by 
parasitic effects of the types which might occur in practice. In network 
design, however, the restriction is fundamental and will be the next object 
of investigation. It is unfortunately a difficult topic and will require 
several chapters. 

The quantities which appeared most conspicuously in the preceding 
analysis were the driving point and transfer immittances, the return differ¬ 
ence, and the sensitivity. They may be lumped together under the general 
name, network functions. They are all defined as ratios of determinants so 
that they are all rational functions of p. It will be recalled from Chapter I 
that any rational function can be specified, except for a constant multiplier, 
by its zeros and poles. In the next few chapters the condition of physical 
realizability will be discussed in terms of the restrictions it imposes upon 
the location of the zeros and poles of the various network functions on the 
complex p plane. Following this discussion, the restrictions on the zeros 
and poles will be converted into equivalent restrictions on the behavior of 
the functions on the real frequency axis. This background is necessary in 
order to provide a specification in useful form of what is available in design¬ 
ing a feedback structure. With it as a foundation we will at length be 
able to approach the actual design problem directly. 
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7.3. Criteria of Physical Realizability 
Before we can study the restrictions which the condition of physical 

realizability places upon available network functions, it is evidently neces¬ 
sary to find some formulation of what we mean by physical realizability 
which can be used as a basis for deduction. Perhaps the most obvious for¬ 
mulation is expressed by the statement that a physically realizable network 
is a combination of vacuum tubes and positive inductances, capacities, and 
resistances. This, however, is both awkward and misleading. Except in 
the very simplest configurations a study of the relationship between the 
signs of the elements and the resulting network characteristic entails 
intolerable algebraic complexities. Moreover, it can readily be shown* 
that any negative element can be simulated, at least in the ideal case, by a 
suitable combination of tubes and positive elements. The distinction 
between positive and negative elements thus cannot be the heart of the 
problem. 

Although the sign of the elements cannot be used as a basis for analysis, 
some importance can be attached to the fact that the elements must at 
least be real. It follows immediately from this that if the frequency vari¬ 
able is taken as p, the coefficients in the mesh and nodal equations, and 
therefore the coefficients in the network functions, must also be real. If 
we replace p by its conjugate in any term of a network function, conse¬ 
quently, that term must assume the conjugate of its original value. Since 
conjugate values everywhere in the function must lead to a conjugate result, 
this establishes the 

Theorem: A physically realizable network function assumes conjugate 
complex values at conjugate complex points on the p plane. 

For most applications this theorem can be expressed more conveniently 
by means of the following two corollaries: 

1. Any zeros and poles of a physical network function which are not real 
must occur in conjugate complex pairs. 

2. The real and imaginary components of a physical network function 
on the real frequency axis have respectively even and odd symmetry 
about the origin. 

The first of these evidently follows from the fact that zero and infinite values 
of a network function are their own conjugates, while the second is estab¬ 
lished if it is noticed that symmetrical positive and negative real frequencies 
are a special case of conjugate p’s. We may also observe that since the 
zeros and poles specify the network completely except for a constant 

* See, for example, the circuits described near the end of Chapter IX. 
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multiplier, and the multiplier must be real if the second corollary is to hold, 
the two corollaries together are equiv alent to the original theorem. 

The theorem on real element values is sufficient to restrict the range of 
available characteristics only very generally. The field can be narrowed 
much further from a consideration of the stability of the network. It is a 
familiar fact that many hopefully designed feedback structures “ sing,” or 
break into spontaneous oscillation, when the circuit is closed. This is 
customarily explained by regarding the free oscillation as a manifestation 
of one of the natural transients of the system. It is assumed, in other 
words, that the system has been exposed to some small shock which pro¬ 
duces a normal transient response. In most systems transients are expon¬ 
entially decreasing functions of time and quickly die out. If the system 
sings, however, it is supposed that one of the transients is negatively 
damped, and so increases with time. In this case it will eventually become 
very large, no matter how small the initial shock may have been. Since 
random small shocks, on the level of thermal vibrations at least, are una¬ 
voidable, the phenomenon must occur if the system has any possible tran¬ 
sient response which increases with time. 

In a physical situation the amplitude of the oscillation may become 
large enough to burn out part of the system. Otherwise, it is limited by 
the inability of the system to maintain a linear response characteristic for 
amplitudes beyond a certain range. This is true, for example, in an ordi¬ 
nary oscillator, where the amplitude is limited normally by the physical 
possibilities of the output tube. Since the analysis in this book is con¬ 
fined to linear circuits either eventuality removes the structure from our 
purview.* 

It may seem at first sight that although the possibility that the network 
may break into free oscillation may be important, it should be considered 
separately from our immediate problem, which is the investigation of the 
steady state characteristics of the network. A connection between the 
two problems, however, appears from the well-known fact that the tran¬ 
sient response of a network can be predicted from its steady state charac¬ 
teristics. The analysis given in later chapters shows that this connection 
is so close that the steady state characteristics which may be obtained from 
stable structures are radically limited in comparison with the characteris¬ 
tics obtainable from mathematical functions chosen at random. Since 
there is no point in discussing the hypothetical “ steady-state ” character- 

* In some modern oscillator circuits the amplitude of the oscillation is limited by a 
thermally controlled element. These are essentially linear circuits, since the change 
in the thermistor over one cycle is negligible, and it is not intended to exclude them 
here. After the thermistor reaches its steady value they can be regarded as stable 
structures, but with a root on the real frequency axis, as described later. 



108 NETWORK ANALYSIS Chap. 7 

istic of a structure which will in fact sing when it is constructed, there 

is economy of thought in combining the two ideas to begin with. The 

essential statement of what we will mean by physical realizability can 

therefore be expressed by the following 

Definition: A Network function will be said to be physically realiz¬ 

able if it corresponds to a network of real elements having 

no modes of free vibration whose amplitudes increase 

indefinitely with time. 

This will also be regarded as a definition of what is meant by a stable* 

circuit. The relationship between the modes of free vibration and the 

steady state network functions is described in the following sections and, 

more generally, in later chapters. 

The definition just given is the foundation upon which the analysis of 

general circuits, including both vacuum tubes and passive elements, will 

be based. A structure composed exclusively of passive elements, on the 

other hand, cannot give as wide a variety of characteristics as would be 

admissible from this definition alone. Since many of the units of which a 

typical feedback amplifier is composed, such as the interstage networks and 

the feedback circuit itself, are purely passive, it is of interest to determine 

what these additional restrictions on passive circuits may be. An analysis 

of this problem is given at the end of this chapter. Pending this analysis, 

the following results will be assumed: 

1. A passive circuit is always stable. 

2. The real component of a passive immittance is never negative at real 

frequencies. 

3. If a passive network is driven by a single real frequency generator the 

power delivered to the network as a whole is always at least as great 

as the power consumed by any one resistance in the structure. 

The second and third of these conditions are evidently merely consequences 

of the principle of conservation of energy, in combination with the fact 

that a passive network cannot contain a source of power. The justification 

for the first may not be quite so obvious, but the proof given later estab¬ 

lishes it on the same general grounds, using the methods of classical 

dynamics. 

* It is to be noticed that stability as defined here includes, as a limiting case, the 
possibility of purely sinusoidal transients which neither increase nor decrease with 

time, such as characterize purely reactive structures. This limiting case is discussed 
in more detail in a later section. 
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7.4. Stability and the Roots of A 

Our first object will be the development of some analytic tool for investi¬ 

gating the relation between the steady state characteristics of the network 

and its stability. The stability of the circuit depends upon its possible 

transient responses and is therefore best determined from a study of the 

differential equations representing it. This is facilitated by the fact that 

the general mesh and nodal equations of Chapter I were first developed in 

differential form. Equations (1-2) of that chapter, for example, give the 

differential mesh equations and can be rewritten here as 

L\i + ^11*1 + D11 j f i\dt + • • - 
+ Rinin + Din j 

O
 

II £ 

di\ 
L21 — + ^21*1 + D21 J f i\dt + • • • 

+ LJ~jt + R-2nin + D2n J O
 II £ 

(7-1) 

Ln 1 + ^nl*l + Dnl i\dt + * • * 

+ Lnn ~ + Rnnin + Dnn indt = 0. 

These are essentially the same as the original expressions, but the instan¬ 

taneous currents have been represented by small rather than capital letters 

and differentiation and integration with respect to time have been written 

out explicitly in order to avoid confusion with later notation. The driving 

voltages on the right-hand side of the equations have also been omitted, 

since we are interested only in the free response of the system. 

Let it be supposed that the possible transients are exponentials of the 

general form ept. The individual currents i\y i2, * • •, in can be written as 

I\epty • • •> Inepty where the Fs are constants whose magnitudes will 

depend upon the original disturbance. In general, the p's representing 

possible transients may exist either as real quantities or as conjugate 

complex pairs. If p is complex the “ currents ” I\epty etc., must 

also be complex. As in Chapter II, however, the real components of 

these “ currents ” satisfy the differential equations by themselves and 

may be taken to represent the actual physical transients. 

Upon substituting etc., in (7-1) and dividing out the com¬ 

mon time factor, epty the result appears as 
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[pL 11 4- 4* I* 4" i2 4- Ria 4- /* 4-• • • 

+ ^Lln + /?ln + y)/n=0 

^P^21 + 7?21 + + ^P^22 + R22 + *^2 + * * * 

+ + R211 + -^n = 0 

... (7-2) 

^/>£nl + Rnl + 11 (pLn2 4* Rn2 + ^2 +‘ * * 

+ (p£nn + /?nn + 

It is evident that 7i = 72 = • • • = 7n = 0 is always a solution of equations 

(7-2). Since there are n equations and nVs we may expect, in general, 

that the 7’s will be uniquely determined, so that this is the only solution. 

If the transient is to exist physically, however, some, at least, of the 7’s 

must be different from zero. This will be possible provided p is so chosen 

that the n equations represent fewer than n independent conditions on the 

7’s. We might find, for example, that with a special choice of p one of the 

equations was equal to the sum of two others. It can be shown* that the 

general condition for the n equations to represent fewer than n independent 

relations is that the determinant of the coefficients in the equations should 

vanish. The expression which fixes the values of p which may represent 

transients is therefore 

A = 0 (7-3) 

where A is, of course, identical with the A we have previously used and is a 

polynomial in p divided by some power of p. 

If one of the p’s which satisfies (7-3) lies in the left half-plane, it follows 

from the discussion in connection with Fig. 2.2 that the correspond¬ 

ing physical transient will be a damped sinusoid of the general form 

C** cos fit. If p lies in the right half-plane, on the other hand, the transient 

will be of the form d*1 cos fit, where a is positive in either case. A sinusoid 

with exponentially increasing amplitude, such as eat cos fit, is, however, a 

* See, for example, Dickson’s Modem Algebraic Theories, p. 55, or B6cher’a Intro¬ 
duction to Higher Algebra, p. 47. 
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runaway transient of the type barred out by our preceding definition of 

physical realizability. We can therefore state the following 

Theorem: None of the zeros of the principal determinant of a physical 

network can lie in the right half of the p plane. 

An example of a permissible dis- I 

tribution of zeros is given by Fig. 

7.1. As the figure shows, some of 

the zeros are taken as real and others 

as conjugate complex pairs. Most ° | pla e 

of the zeros are found in the interior _ 

of the left half-plane, but there is in ~~~ 

addition one zero at the origin and o 

a pair of conjugate zeros on the real 

frequency axis. Zeros of this type 

correspond to transients whose am¬ 

plitudes are maintained with time 

but do not increase. There is thus Fio. 7.1 

no physical reason for barring them 

out on grounds of instability, but they represent the extreme limit which 

can be attained in a stable structure. 

A more detailed example of permissible zeros can be obtained by return¬ 

ing to the damped resonant circuit which was used as an illustration in 

Chapter II. The zeros were given by equation (2-27) of that chapter as 

R , 

p'~~iL + (7-4) 

They were described there as the zeros of impedance but since Z = A/An 

they are evidently the same as the zeros of A. When R = 0 the two p9s 

lie on the real frequency axis. With moderate damping they occupy con¬ 

jugate points in the left side of the p plane, while when the damping is 

extreme they are found on the negative real axis. This is illustrated by 

Fig. 2.4 of Chapter II. It is interesting to notice that in this simple case 

the stability requirement corresponds almost exactly to the requirement 

that all the elements be positive. If we change the sign of any one or 

any two of the elements at least one of the zeros will be found in the right 

half-plane. The only possibility is the obviously symmetrical situation 

obtained by making all three elements negative. 

7.5. Zeros of Lon the Real Frequency Axis 

The possibility of securing zeros of A at real frequencies, which was 

exemplified by Fig. 7.1, merits further discussion. In passive structures 
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zeros must be found at real frequencies if the network is composed only of 

pure reactances.* In the resonant circuit just described, for example, real 

frequency zeros were obtained by setting R = 0. They may also be 

obtained, even with dissipation, in active circuits containing sources of 

power which just balance the dissipative losses. As an example of this 

condition we msty imagine a feedback amplifier which is normally stable 

but can be made unstable by an appropriate change in some continuously 

variable control. Zeros would be found on the real frequency axis in this 

circuit if we could set the controlling element on the exact point dividing 

the regions of stability and instability. 

The probability of securing such exact balances or such ideally dissi¬ 

pationless elements in a physical structure is evidently infinitesimal. We 

are thus entitled to assume, if we wish, that all the zeros in physical 

circuits are somewhat to the left of the real frequency axis. This possi¬ 

bility will not be utilized in dealing with ordinary reactive resonances in 

passive circuits. The assumption of zero dissipation is frequently a con¬ 

venient idealization, especially in dealing with driving-point immittances. 

On paper, it may also arise in transfer immittance problems, as it would, for 

example, if we were computing the transmission through a dissipationless 

filter which is either open- or short-circuited at both ends. For practical 

purposes, however, the consideration of four-terminal problems will be 

restricted to circuits in which the terminations, at least, are dissipative. 

The other possibilities of securing real frequency zeros arise in circuits 

containing active elements. Here it will be convenient to suppose that the 

zeros lie, in fact, slightly to the left of the real frequency axis. Aside from 

the question of convenience, there are special physical reasons for making 

this assumption. At a real frequency zero a driving force of corresponding 

frequency inserted in any part of the circuit will produce an infinite response 

everywhere else in the circuit. For example, if the input and output of an 

amplifier are represented respectively by 1 and 2 the output current in 

response to a unit input voltage is Ai2/A, so that there should be infinite 

gain to a driving force whose frequency coincided with one of the zeros of A. 

In a physical situation, of course, we would expect the active elements to 

become overloaded and excessively non-linear as soon as this frequency was 

approached. Since the exact location of the zero would be immaterial in 

any case if we were interested only in driving forces at more remote fre¬ 

quencies, there is thus a special justification for the assumption on grounds 

of linearity. 

A convenient example is furnished by the thermistor controlled oscillator 

described in a previous footnote. If the amplitude of the oscillation is 

* See, for example, the discussion ffiven near the end of the chapter. 
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small and there is reasonable selectivity in the thermistor circuit this should 

be a linear network for signal voltages at frequencies remote from that of 

the natural oscillation. In these ranges, however, the steady state charac¬ 

teristics are negligibly affected if we move the zero of A slightly away from 

the real frequency axis. If driving forces in the neighborhood of the zero 

are applied the circuit must become non-linear, since we can no longer 

assume high discrimination against signal currents in the thermistor circuit, 

and the thermistor temperature will be affected by the heat generated due 

to the passage of signal currents through it. 

If zeros of A are assumed to occur at real frequencies they are subject to 

one restriction which has not appeared heretofore. It was tacitly assumed 

in discussing (7-3) that all the zeros were separate. In special cases, 

however, multiple zeros may occur. It is known that in such circumstances 

the form of the transient solution may be changed. Instead of consisting 

solely of exponentials it may also include exponentials multiplied by powers 

of /. For example, ifp is a double zero of (7—3) the corresponding transient 

appears in the general form Aepi + Btept. If p is in the interior of either 

the right or left half-plane the extra factor t in the second term is of no 

significance in determining whether the transient will increase or diminish 

with time, since it is overwhelmed by the exponential. In the special case 

when p is on the real frequency axis, however, it makes an increasing tran¬ 

sient of one which would otherwise be merely persistent. Since transients 

which increase with time are inadmissible we can therefore state the 

Theorem: Zeros of A on the real frequency axis must be simple.* 

7.6. Zeros of Other Determinants 

In addition to A itself, the network formulae which have been developed 

involve other determinants derivable from A in various ways. One group 

of these includes A0 and what may be called the “ symmetrical ” minors 

A«, Ajjy Aujjy etc. Each of these quantities can be regarded as the form 

to which A reduces when some prescribed change is made in the network 

* This theorem is not rigorously true in degenerate circuits. Suppose, for example, 
that the system consists of two identical but entirely independent units. A single 
set of mesh equations may be used to describe both units. The determinant of the 
system will be the product of the determinants for the two units separately, and must 
have a double zero at any real frequency at which the determinants of the separate 
units have simple zeros. The slightest coupling between the units, however, will 
destroy this relation. In any event, such an exception does not destroy the physical 

consequences of the theorem, since we are eventually interested in the zeros, not of A 
itself, but of the ratio of A to one of its principal minors. If A has a multiple zero 
because of such a degeneracy, the minor will have a zero one order lower, so that the 
zero of the ratio is still simple. 
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and their zeros can consequently be limited in the same way as those of A 
itself if the network is known to be stable after the change is made. Thus 

A0is the form to which A reduces when some given element W vanishes and 

can have no zeros in the right half-plane, and only simple zeros at real 

frequencies, if the circuit is stable with W absent. This would certainly 

be true, for example, if represents one of the tubes in an ordinary single 

loop amplifier, since when W vanishes the loop is opened. 

Similarly, such quantities as An or Ayy are the cofactors of Wxx or W)j 
in A. They are thus the forms to which A reduces* when tFn or PFjj 
becomes infinite. This is equivalent to open-circuiting the z’th or jth 
mesh, if we are using a mesh analysis, or short-circuiting the ith or7th node 

to ground, if we are using a nodal analysis. In the same way, Agives 

the result when the open or short circuit is applied both at i and at j. The 

zeros of any of these quantities are restricted in the same way as those of A 

itself if the network is stable after the open or short circuit is applied. This 

is true, for example, if we are dealing with a series impedance or shunt 

admittance in a single loop amplifier, since an open-circuited series branch 

or a short-circuited shunt branch will break the feedback loop. 

All these relations become particularly simple in passive networks. 

Obviously, a passive network is still passive after any of these various 

operations is performed upon it. The proposition stated previously, that a 

passive network is always stable, therefore allows us to establish the 

Theorem: In a passive circuit none of the zeros either of A0 or of any 

of the symmetrical minors of A can lie in the right half of the 

p plane, and any zeros on the real frequency axis must be 

simple. 

The remaining determinants which appear in the network formulae are 

“ unsymmetrical ” minors of the general types A»y, AA*7*1, etc. These 

can evidently be regarded as the forms to which A reduces when indefinitely 

large unilateral couplings are added to the circuit. For example, since 

A a is the cofactor of it is the limit which would be approached by A 

if we introduced into the circuit an ideal vacuum tube of extremely high 

gain with grid terminals at j and plate at /. Unfortunately, there is 

ordinarily no simple method of determining whether the circuit will be 

stable after this modification is made, so that such a physical interpreta¬ 

tion is of no great value. For circuits of general physical configuration it 

appears that the zeros of these unsymmetrical cofactors may appear in any 

part of the plane, even when the structure is made up entirely of passive 

* Obviously, the limits approached by A in the two cases are actually WnAn and 
JVjjAjj. Since we are concerned only with the location of the zeros of A, however, the 
multipliers Wn and Wn can be disregarded. 
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elements. They are restricted only by the conjugacy condition. Restric¬ 

tions on these zeros can sometimes be imposed when the network is known 
to have one of certain special physical 

configurations, but this is more con¬ 

veniently discussed in a later chapter. 

7.7. Zeros in an Illustrative Circuit 

These principles will be exemplified 

by means of the circuit shown by Fig. 

7.2. The structure will be taken ini¬ 

tially as the Bridged-T of purely passive 

elements. The broken lines shown 

going to A and B are connections made 

to the vacuum tube at a later stage to show how an active element affects 

the stability of the circuit. 

It will be assumed for concreteness that all the passive elements are of 

unit magnitude. If the meshes are chosen as shown in the figure, with 

the tube deleted, the mesh equations in the absence of any driving force are 

(p+ 1 H ^ 11 — pi2-^3 — 0 
\ pi p 

-Ph + (2p + 1) h - ph = 0 (7-5) 

~-h -ph + (p + 1 + i)/3 = 0. 
p \ p/ 

The equation corresponding to (7-3) is consequently 

A = 

p +1 + - p 
- p 

_ I 
p 

-p 

ip + \ 

-p P + i + l 
p 

= o (7-6) 

or 

A = - (3/ + 4p2 + Ip + 2) = 0. (7-7) 
P 

The roots of (7-7) are p = —and p = —i(l ± *V7), They are 

indicated by the circles in Fig. 7.3. They are all on the left half of the 

p plane, as of course they should be, since the network, being passive, is 

necessarily stable. 
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a 

A 

Fig. 7.3 

We may next proceed to verify that 

the zeros of A0 and of the symmetrical 

minors of A are also confined to the left 

half-plane, for the passive structure. 

Let it be supposed that A0 represents 

the system when L2 = 0. The disap¬ 

pearance of £2 is equivalent to replac¬ 

ing the Z22, Z23, Z32, and Z33 terms 

in (7-6) respectively by (p + 1), 0, 0, 

and (1 + 1/p). We readily find that 

the equation corresponding to (7-7) 

appears as 

A° = - (1 + p)2. (7-8) 
P 

This has a double root at p = — 1, 

which is, of course, in the left half-plane. The double root is represented 

by the crosses in Fig. 7.3. Similar results hold if A0 represents the system 

after any other element has vanished. 

As an example of a symmetrical minor we will take A22- This quantity is 

given from (7-6) as 

A22 — 

p+l+l 
P 

_ l 

P 

_ 1 

P 

P 

= - (p3 + 2p* + 3p + 2). 
P 

(7-9) 

The roots are in the left half-plane at the points —1 and —^(1 ± is/'7). 

They are indicated by the squares in Fig. 7.3.* The second order symmet¬ 

rical minors are still simpler since they are the same as the self-impedances 

* The fact that many of the roots of these various expressions happen to coincide 
is due to the specially simple and symmetrical form of the network, and would not be 
true in general. For example, Riy R3, L\y and constitute a balanced bridge as seen 
from R2. A generator in series with R2 can therefore produce no current in Z), so 
that the driving point impedance measured in the second mesh must be much simpler 
than the structural complexity of the circuit would indicate. This is reflected by the 
fact that A and A22 have common roots, which cancel out in the ratio A/A22, repre¬ 
senting this impedance. 
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of the several meshes. For example, we have An33 = 2p + 1, with a root 

at p = ~h 
The properties of the unsymmetrical minors will be illustrated by means 

of A31. We find from (7—6) that 

A3j = 
~ P 

2p+ 1 

= ; (p3 + 2p + 1). 
P 

(7-10) 

The roots occur at p = —0.453 and at p = +0.227 ± z'1.47, as shown by 

the triangles in Fig. 7.3. They are thus found in both halves of the plane. 

This must be anticipated, in general, whenever we are dealing with unre¬ 

stricted circuits. By choosing special configurations or special element 

values, on the other hand, the roots of an unsymmetrical minor may be con¬ 

fined to the left half-plane, just as are those of the determinants previously 

considered. As an example, suppose that a resistance R is added in series 

with L\ of Fig. 7.2. We may suppose that R is simultaneously subtracted 

from R\ and R2> so that the change affects Z12 and Z2i but not the self¬ 

impedances Zn and Z22. It is readily shown that (7-10) becomes 

a£, = - (p3 + Rp2 + 2p + 1). (7-11) 
P 

All the roots lie in the left half-plane when R > J. For example, if 

R = % they are found at p = —0.52 and at p = —0.074 dh z‘1.38. These 

locations are shown by the primed triangles in Fig. 7.3. The reason for 

paying particular attention to networks for which the roots of at least 

certain specified unsymmetrical minors can be confined to the left half¬ 

plane is that this leads to the “ minimum phase ” condition, which is of 

considerable importance in amplifier theory. “ Minimum phase ” net¬ 

works are mentioned again in one of the following sections, but a detailed 

discussion of their properties is reserved for a later chapter. 

In order to exemplify the changes which may be produced in these results 

by the presence of an active element, we may suppose that the vacuum 

tube is added to the network by closing the connections indicated by the 

broken lines in Fig. 7.2. We can take R\ and R& to represent the grid and 

plate impedances of the tube. Since R\ = 1, the transimpedance of the 

tube, which is equal in general to m times its grid impedance, becomes 

simply and the incorporation of the tube is equivalent to adding to Z3i 

in the mesh equations. The new determinant of the system is readily 
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found from this as 

p+\+\ -p 
P 

A = — p Ip + 1 

- 1 
At — “ —p 

P 

= 1 [3/ + 4p2 + Ip + 2 + nip3 + 2p+ 1)]. (7-12) 
P 

When n is very small the zeros of (7-12) will evidently be very close to 

those originally determined from (7-7). As n is made larger and larger, 

however, some of them will eventually appear in the right half*plane, so 

that the network will become unstable. This can be studied most easily 

by observing that since the zeros must vary continuously with they can 

go from one half-plane to the other only by crossing the real frequency axis. 

If we assign a pure imaginary value to p in (7-12), however, the real and 

imaginary components of the expression can be separated and equated to 

zero individually. This gives 

(3 + »)p3 + (7 + 2riP - 0 (7-13) 

and 

V + (2 + ri - o. (7-14) 

If we eliminate n between (7-13) and (7-14) the result is 

4p6 + 7p3 - 3p - 0, (7-15) 

which is satisfied by p = 0, p2 = —2.1, and p2 = +0.35. The last of 

these can be disregarded, since it evidently does not correspond to a point 

on the real frequency axis. It represents an accidental solution of (7-13) 

and (7-14) in another part of the plane. The first two, however, are valid 

solutions and correspond respectively to /jl = —2 and p = +6.4. We can 

therefore conclude that the network will be stable for 6.4 > > —2, and 

will sing when is taken beyond these limits. For example when = 9 

the zeros are p = —0.43 and p = +0.05 =fc *’1.45, while when ju = —2.5 

they are p = +0.18, p == —0.74 and p = —7.5.* 

These relations are illustrated by Fig. 7.4. As the gain of the tube is 

changed from n = 0 to ju = +» the zeros move along the approximate 

* The negative p assumed here could not, of course, be obtained from an ordinary 
tube, but it might be secured by using one of the “ negative transconductance ” tubes 
which have been developed experimentally. 
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paths shown by the solid lines in the drawing, following the directions indi¬ 

cated by the arrows. The paths for the range /i = 0 to /i * — <x> are 

shown by the broken lines. The crosses and squares correspond to the 

roots just determined for the special values fx = 9 and n = —2.5. The 

circles give the original positions of the zeros when fx = 0 and the triangles 

their final positions when tx = =t°o. As a comparison of (7-10) and 

(7-12) indicates, the final positions are the same as those of the roots of 

A3i. Since some of the roots of A3i are found in the right half-plane in this 

illustration, it is evident without further analysis that the circuit must 

sing if m is made sufficiently large in either direction. This may serve to 

explain to some extent the reason why so much stress was laid in our previ¬ 

ous discussion on the possibility of confining the roots of this determinant 

to the left half-plane. 

The modifications produced in the other determinants of the network by 

the addition of the active element are of a similar type. The chief point 

to notice is that the zeros of A0 and of the symmetrical minors necessarily 

occur in the left side of the plane only when the circuit is passive. After 

the addition of the tube they will, in general, appear in the right side for 

tx s beyond a certain range. As a final example we may consider the effect 

of the tube on A22- When ix is included this determinant becomes 

A22 ~(p8 + 2p2 + 3p + 2 + y). (7-16) 
P 

We readily find with the help of methods similar to those used in connection 

with (7-12) that all the zeros of this expression lie in the left half-plane 
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for 4 > /x > —2, but that some of them occur in the right half-plane for fis 
outside this range. 

It is to be observed that the range of stability for A22 is not identical 
with that for A. For example, if we were to choose /x = 5 the network as 
it stands would be stable, since all the zeros of A are still in the left 
half-plane, but the structure would sing if R2 were open-circuited, since 
with this value of fx some of the zeros of A22 have crossed the real frequency 
axis. 

7.8. Summary of Requirements on Network Fu?Jctions 

It is convenient to pause here to summarize the implications of the preced¬ 
ing discussion for the various network/unctions. The network functions can 
be listed as the driving point immittance W = A/Ajjy the transfer immit- 
tance Wt = A/At-y, the return difference F — A/A0, the absolute sensitivity 
S = — AAi2//irAi3A42, and the relative sensitivity Sf ■=* — AA1243/A13A42. 
The two sensitivities and the return difference are included here largely 
for the sake of completeness. Design methods to give direct control of 
sensitivity, in cases where it departs materially from the return difference, 
have not yet been developed. The return difference is under better design 
control, but in ordinary circumstances it is most easily treated in terms of 
the return ratio, which, since it is a loop transmission characteristic, has 
properties essentially similar to those of the transfer immittance. 

We will begin by listing the requirements which must be met by network 
functions corresponding to any stable physical circuit, and continue 
with additional requirements which are satisfied by special classes of struc¬ 
tures of particular interest, though not by all structures. The most 
obvious requirements arise from the fact that the driving point and trans¬ 
fer immittances, the return difference, and the two sensitivities are all 
rational functions of p with real coefficients. They must therefore meet 
the following conditions: 

1. Zeros and poles are either real or occur in conjugate complex pairs. 
2. The real and imaginary components are respectively even and odd 

functions of frequency on the real frequency axis. 

These are the only requirements which can be placed upon the sensitiv¬ 
ities, in general. We cannot even restrict the location of their zeros, since 
the numerators of the two expressions include, respectively, the unsym- 
metrical minors Ai2 and A1243, whose roots may lie anywhere. These 
functions will therefore not be considered further here. The numerators of 
the remaining three functions consist of A alone. For these functions, 
consequently, we can state the following additional requirements: 
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3. None of the zeros can be found in the right half-plane. 

4. Zeros on the real frequency axis must be simple.* 

These four requirements are the only ones which can be stated for the 

driving point and transfer immittances and the return difference in the 

general case. For example, in terms of the notation adopted earlier in this 

section the poles of these several functions are respectively the roots of the 

determinants A#, A*y, and A0. It will be recalled from our earlier discus¬ 

sion that nothing in general could be said about the roots of Aty. The 

roots of Ajj and A0 were interpreted as the natural modes of vibration of the 

network after it was modified in certain special ways, and therefore could 

not appear in the right half-plane if the modifications did not make the 

circuit unstable. In general, however, there is no necessary connection 

between the stability of the modified and unmodified structures. For 

example the illustrative circuit described in the preceding section was stable 

in its normal condition when the gain of the tube lay in an intermediate 

range near jm = 5, but became unstable in this range for the condition repre¬ 

sented by making A22 the criterion. 

We must therefore conclude that in the most general case the poles of the 

return difference and of the driving point and transfer immittance functions 

may lie anywhere in the plane. Nevertheless, the special conditions for 

which they are confined to the left half-plane are of particular interest. 

They may be listed as follows: 

5a. None of the poles of the return difference can lie in the right half¬ 

plane, and poles on the real frequency axis must be simple, if the circuit 

remains stable when the specified element W vanishes. This requirement 

is always met by a passive network. 

5b. None of the poles of a driving point immittance can lie in the right 

half-plane, and poles on the real frequency axis must be simple, if the circuit 

remains stable when an infinite immittance is added between the driving 

terminals. This requirement is always met by a passive network. 

5c. Poles of the transfer immittance may occasionally be found in the 

right half-plane, even for passive networks. Transfer immittances having 

no poles in the right half-plane, however, have the special property of being 

“ minimum phase shift ” functions. The reason for adopting this name, 

and the significance of the minimum phase relation, will be discussed in 

later chapters. It makes no difference for the minimum phase property 

whether poles on the real frequency axis are simple or multiple. 

These five requirements complete the list of conditions of special interest 

* With the restriction that zeros exactly on this axis may sometimes be regarded 
as inadmissible from the considerations discussed previously. 
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for the return difference, but it is desirable to carry the consideration of 
driving point and transfer immittances one or two steps further. The 
principal remaining point is the fact that either of these immittance func¬ 
tions can satisfy all the preceding requirements and still not correspond 
to a passive network. The additional requirements which must be satisfied 
by passive structures are, however, readily derived from the conditions 
described earlier and can be written as follows: 

6a. The real component of the driving point immittance of a passive 
circuit cannot be negative at real frequencies. 

6b. If a transfer immittance function corresponds to a passive net¬ 
work, the response which it specifies in the final branch, representing 
the load, must not be so great that the power consumed in the load at any 
real frequency would exceed the power which would be delivered by the 
generator if it were separated from the network and connected to a load 
equal to the conjugate of its own internal immittance. 

Condition 6a is evidently only a restatement of the second of the three 
conditions given previously for passive structures. The fact that it is not 
a consequence of the first five conditions is easily seen if we notice that they 
would be satisfied equally well by the negative of a passive immittance. 
It is also possible to satisfy them with an immittance function whose real 
component is positive in some frequency ranges and negative in others, as 
is shown by the examples given in the next section. Condition 6b can be 
understood if it is recalled that the maximum power obtainable from a 
generator with a prescribed internal immittance is secured when the load is 
equal to the conjugate of the internal immittance.* This maximum must 
evidently be at least as great as the power which would flow from the 
generator into the actual network, and therefore, from the last of the three 
power conditions, at least as great as the power consumed by the actual 
load. 

It is important to notice that 6a and 6b, although they both refer to 
passive circuits, are in other respects quite dissimilar and cannot be inter¬ 
changed. For example, another way of expressing 6a is to say that the 
phase angle of a driving point immittance cannot exceed ±90°. This 
would be an entirely irrational limitation in most transfer immittance 
problems, where the phase shifts may, in general, be made as large as we 
please. Similarly, in dealing with 6b we may notice that the transfer 
immittance, since it is a rational function of frequency, is completely deter¬ 
mined by its zeros and poles together with a multiplying constant. The 

* See, for example, K. S. Johnson, Transmission Circuits jor Telephonic Communica¬ 
tion, p. 14. 
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response in the final branch varies inversely with the transfer immittance 
and, with given zeros and poles, can be made as small as we please* every¬ 
where on the real frequency axis, by choosing the constant multiplier large 
enough. Condition 6b is thus, in effect, a limitation on the constant multi¬ 
plier and would have no meaning in a driving point immittance problem. 

One final requirement, which specifies a particular class of driving point 
immittances analogous to the minimum phase shift class of transfer immit- 
tances, may also be mentioned. As in the minimum phase shift case, the 
properties to which the restriction leads will be discussed in a later chapter. 
It is introduced here merely to secure a complete list for future reference. 
We have: 

7. A driving point impedance which meets the foregoing requirements on 
driving point immittances and in addition has no zeros on the real fre¬ 
quency axis is of “ minimum susceptance ” type, and it is of “ minimum 
reactance ” type if it has no poles on the real frequency axis. If the 
function represents a driving point admittance the terms “ minimum sus¬ 
ceptance ” and “ minimum reactance ” are interchanged. It is evidently 
possible for an immittance to be both “minimum susceptance” and 
“ minimum reactance.” 

7.9. Examples of Admissible Network Functions 

These various requirements may be exemplified by the set of expressions 
given in the following list. 

/>2 + p + 2 _ 5<o4 - llo>2 + 8 

1 5p2 + 3p + 4 1 (4 - 5co2)2 + 9u2 

_ f_±P± 2 

2 4p2 + 2p + 2 

4(1 - co2)2 

” (2 - 4w2)2 + 4ti>2 

7 P2 + P + 2 
3 3p2 + p 

/ + p + 2 

4 2p2 — 2 

_ 3<o2 - 5 

R3~9JT~1 

(j£? — 2 

R4 = 2(c02 + 1)’ 

(7-17) 

The expressions have been written as impedances, since driving point 
immittance functions, in general, may satisfy the most elaborate set of 
requirements. The R9s represent the real components of the corresponding 

* Since the analysis implies that the circuit is dissipative, zeros of transfer immit¬ 
tance at real frequencies, which would invalidate this argument, are ruled out for the 
reasons given previously. 
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Z*s at real frequencies, and are determined by substituting p — ica and 
rationalizing in the ordinary manner. Each impedance is obtained from 

the preceding one by combining it in parallel 
with a resistance of value — 1.* This is illustra¬ 
ted by Fig. 7.5, where the internal impedance of 
the generator is assumed to be zero. The short- 
circuit generator impedance is important, since 
the impedance zeros which determine stability 
are those of the complete network, including 

the generator. If the generator impedance is not zero the addition of the 
successive negative resistances may evidently affect the zeros of the com¬ 
plete impedance, and therefore the stability. 

Turning first toZi in (7-17), we notice that it is a rational function of p 
with real coefficients whose zeros and poles are all in the left half-plane. It 
thus meets requirements 1, 2, 3, 4, and 5b of the preceding list. In the 
corresponding R\, the denominator, being a sum of squares, is always 
positive at real frequencies. The numerator is also always positive, since 
it can change sign only by passing through zero, and it is readily seen that it 
has no zeros for real values of a>. Z\ therefore meets requirement 6a also 
and represents a passive impedance. Since it has no zeros or poles on the 
real frequency axis, it also meets, incidentally, the “ minimum reactance ” 
and “ minimum susceptance ” conditions as given by requirement 7. 

As we add negative conductance gradually in parallel with Ziy there is at 
first no change in the character of the function.f The resistance component 
however diminishes and may at length become negative. The boundary 
condition is represented by Z2. R2 is still positive everywhere, but 
touches zero at w = ±1. With further increments of negative conduct¬ 
ance, condition 6a is no longer satisfied, although the remaining conditions, 
including 5by may still be valid. For example, in Z3 the resistance com¬ 

ponent changes sign at w = =fcV5/3'. The poles are still in the left half¬ 
plane, although one of them is on the boundary at p = 0. Finally, Z4 

represents an impedance satisfying only the first four conditions. 
The addition of more and more negative conductance in the circuit of 

Fig. 7.5 will evidently not make the circuit unstable, so that beyond Z4 
the first four conditions are always satisfied. An example of an unstable 

* The introduction of the negative resistance is adopted merely to provide a system¬ 
atic way of going from one impedance expression to the next, and is not intended to 
raise any questions concerning the physical construction or characteristics of such a 
device. The purposes of the present section are served if we take the impedance 
expressions one at a time without regard to any physical relation between them. 

f That is, it still meets the passive requirements and CQulcJ be represented by some 
network including only positive passive elements, 

Fig. 7.5 
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circuit can, however, be obtained by adding an appropriate negative 
resistance in series with the early Z’s, or either a negative or a positive 
resistance in series with Z4. Thus if we add +2 to Z4 the result is 

Sp2+p- 2 

2P2 ~ 

(7-18) 

This has zeros at p = —0.74 and p — +0.54 and therefore represents an 
unstable structure. 

The same set of rational expressions can also be used to exemplify the 
other network functions. For example, if we regard the various Z’s as 
representing transfer rather than driving point impedances, we can imme¬ 
diately classify Zu Z2, and Z3 as physically realizable expressions of the 
minimum phase type. Z4 is physically realizable but non-minimum phase, 
since it includes a pole in the right half-plane, while Z5 is non-physical. 
The chief differences occur in the application of the passive network con¬ 
ditions. For the transfer impedance case, the vanishing of the real com¬ 
ponent on the real frequency axis, as exemplified by Z2, is no longer a 
matter of particular significance. We are interested, on the contrary, in 
the minimum absolute values of the various functions on the real frequency 
axis. For example, it is readily shown that the minimum absolute value of 
Z2 at real frequencies is 0.19. This means that the maximum current flow¬ 
ing in the load in response to a unit generator in the source will be 
1/0.19 = 5.29, so that if we represent the load resistance by Rj the corre¬ 
sponding power is 28.0Rj. The maximum power obtainable from a unit 
generator is however 1/4/?,*, where Ri is the internal resistance of the 
generator. The passive network condition therefore demands that 

28.0*; < ™ (7-19) 

Z2 as it stands will therefore represent a passive function if Ri and Rj are 
sufficiently small. In other cases it can be made into a passive function by 
multiplying it by a suitable constant. 

If the rational functions are taken as return differences, the first four 
Z’s represent physically realizable expressions, although Z4 corresponds to a 
network which would be unstable if the prescribed W vanished. If the 
expressions represent sensitivities the situation is still simpler, since there is 
no limitation even on the zeros of this function, and all five expressions can 
be regarded as physically realizable. 

7.10. Energy Relations in a Passive Network 

As the final step in this discussion, we will turn to the consideration of the 
three special conditions on passive networks which were postulated, with- 
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out proof, near the beginning of the chapter. Since the distinctive feature 
of a passive network is the fact that it does not contain a source of power, 
an obvious point of departure in establishing these conditions is found in a 
study of the power and energy relations in the circuit.* 

The instantaneous power dissipated in any one resistance R in the struc¬ 
ture is i2Ry wherej is the instantaneous current flowing through the element. 
Similarly, the instantaneous energy stored in the magnetic field of an 
inductance is \i2Ly while the instantaneous energy storage in a condenser is 

\<pD> where q = J*i dt is the charge on the condenser. Each of these 

quantities must be positive if the corresponding R, Ly or D is positive and 
in a network containing only positive elements the total stored energy or 
dissipated power must therefore be positive for any choices of the instan¬ 
taneous Vs and qfs. This is the fundamental condition upon which the 
analysis is based. 

The expression of the total stored energy or dissipated power directly in 
terms of the individual elements of the network is not very useful, princi¬ 
pally because none of our other formulae are stated in these terms. It is a 
comparatively simple matter, however, to construct alternative power and 
energy formulae in terms of the coefficients in the mesh or nodal equations. 
We may begin, for example, with a set of differential mesh equations similar 
to (7-1), except that the equations will be referred to the steady state 
condition by introducing the instantaneous voltages eiy • • *, en on their right- 
hand sides. Let it be supposed that the first equation is multiplied by i\y 
the second by i2y etc., and that the equations are then added. The result is 

ZZR 
1 

f,**n 

r.tri. + L£ Lr 
1 

du 
dt 

+ Drains 

1 
= £ erir 

r-1 
(7-20) 

where the first summation, for example, represents a series of terms of the 
form 

RllA + Rl2*l*2 + • • • + Rlnh*n + ^21*2*1 + f?22*2 + * ’ * + 

and q8 in the third summation has been written, for brevity, in place of 

/'•* 
On the right-hand side, each term of the form erir is evidently equal to 

the instantaneous power fed into the circuit by the rth generator, so that 
the summation gives the total instantaneous power supplied to the circuit 

* The method given here is a paraphrase of the standard dynamical treatment of 
small oscillations. See, for example, Webster's Dynamicsy Chapter V, or Whittaker 
Analytical Dynamicsy Chapters II and VII. 
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from the outside. The first summation on the left-hand side must repre¬ 
sent the instantaneous power dissipated by the resistances, since it is the 
only term which would be present in a purely resistive network. It 
can be written as twice* the “ dissipation function ” Fy where F is defined 
by 

F=|LEW,. (7-21) 
r **1 6-1 

The remaining terms on the left-hand side represent the rates of change 
of the stored energies associated with the coils and condensers of the net¬ 
work. For example, if r = s in the second summation we can write the 
corresponding term as Lrrir(dir/dt) = (d/dt) \Lrrir- If r 9* s we may make 
use of the fact that since this is a passive circuit we must have Lra = Lar*f 
The sum of the corresponding rs and sr terms can therefore be written as 

L- ('-f + <• f) - L- J, <«•> - 
Evidently, the complete second summation becomes dT/dty where T is the 
stored magnetic energy and can be written as 

T = § E if Lrairia. (7-22) 
r-1 a — 1 

In the third summation it is convenient to set ij = dqjjdt. Following the 
procedure just used, this allows us to write the summation as dV/dt, where 
V represents the stored energy in the condensers and is given by 

T (7-23) 
r *1 a *»1 

The essential result of this discussion has been the development of the 
expressions for the quadratic forms Fy Ty and Vy as given by (7-21), 
(7-22), and (7-23). It follows from our previous discussion that in a net¬ 
work composed only of positive elements, Fy Ty and V must all be positive. 
Moreover, we can regard the individual Vs and /s as assuming arbitrary 
values in making this statement, since we began with arbitrary generators 
in each mesh. Fy Ty and ^must therefore remain positive if we assign the 

* The factor two is introduced arbitrarily to secure symmetry with the functions 
considered later. The use of the symbols Fy Ty and V for the energy functions follows 
standard dynamical usage. There should be no confusion with the other meanings, of 
return difference, return ratio, etc., assigned to the same symbols, since the energy 
function discussion is not continued beyond the present chapter, 

f The use of the reciprocity condition here and in later sections should be noticed 
particularly, since it explains why this type of analysis is restricted to passive networks. 
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Vs and q*s any other values whatever, positive or negative, and can vanish 
only if all the i*s and q s vanish.* In mathematical language the three 
functions are positive definite. 

The positive definite conditions can best be understood as a set of 
restrictions on the values which the mesh coefficients Rra, Lra, and Dra can 
assume if the system of mesh equations as a whole is to correspond to a 
passive network. Suppose, for example, that all the Vs except i\ were 
chosen equal to zero. F would reduce to ^R\\i\. The positive definite 
condition evidently requires that Rn > 0. Similarly, all the other coeffi¬ 
cients of the type /?yy, Ljjy or Djj must be positive. If the energy functions 
included only “ self ” coefficients of this type, as they would if they repre¬ 
sented sums of powers and energies for the individual physical elements, 
this would be the whole story. Account must, however, also be taken of 
coupling terms such as Rrairi8, where r 5^ s. Whatever the sign of Rra 
may be, this term may evidently be made negative by proper choice of the 
signs of ir and ia. The positive definite condition therefore requires that 
the absolute values of such mutual coefficients as Rra be not too great 
in comparison with the self coefficients. An example is furnished by the 
function 

F = i\ + khi2 + t% (7-24) 

If | k | <2, this expression is positive for all real values of i\ and i%, as we 
can see most easily by setting the expression equal to zero and noticing that 
the roots, in terms of *i//2> must be complex. For other values of k, how¬ 
ever, the expression may be made to cross zero and become negative by 
varying /1//2 appropriately. For | k | > 2, therefore, the expression is no 
longer positive definite. With more than two t s the situation is more 
complicated but the essential pattern of relationships is preserved. In 
general, the self and mutual coefficients obey the same laws as the self and 
mutual inductances in a set of coils with physically realizable coefficients 
of coupling, as we might expect, since both conditions reflect a positive 
energy requirement. 

7.11. Impedance and Energy Relations at Real Frequencies 

With the development of expressions for the functions F\ T> and V we 
are prepared to prove the three special conditions on passive networks 
postulated near the beginning of the chapter. The present section will 
consider only the second and third of these conditions. 

* The last part of this statement is intended as a characterization of networks in 
general, and may have exceptions in special cases. For example, if the first mesh 
includes no inductance the stored magnetic energy will evidendy be zero for any choice 
of *1, as long as the other i*s vanish. 
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Since the second and third conditions are stated in terms of steady state 
characteristics, it is natural to begin with the ordinary steady state mesh 
equations for the circuit. The analysis will be based upon a set of energy 
expressions built up by multiplying each mesh equation by a corresponding 
current and then summing all the equations, much as was done in obtain¬ 
ing (7-20). One modification, however, must be made to take account of 
the fact that since (7-20) was developed from the differential equations of 
the circuit, its energy functions were expressed in terms of the true instan¬ 
taneous currents and voltages in the structure. The 7’s and Es which 
appear in a set of ordinary steady state mesh equations, on the other hand, 
are merely complex quantities which are brought into the analysis when the 
true currents and voltages are replaced by fictitious expressions of the type 
Ijevt and Ejept, in accordance with the conventions described in Chapter II. 
This, however, still allows us to secure a meaningful result if, instead of 
multiplying each mesh equation by the corresponding 7, we multiply it by 
the conjugate of that 7. If the equations are then added, the result appears 
as 

i* ZZ Ljrh + ZZ RrJrls + ~ Z Z DrJrh = Ejy (7-25) 
r,a — 1 r,s— 1 r,s=l 

where p has been replaced by io since we are interested only in real fre¬ 
quency characteristics, and Ij represents the conjugate of Ij. Only the 
single generator E\ is included, in order to state the eventual result in terms 
of the impedance seen in the first mesh. 

Since the 7*s in (7-25) are not functions of time the three summations 
cannot represent the actual instantaneous physical energy functions. The 
summations can, however, be identified term-by-term with multiples of 
the time averages of the corresponding terms in the true energy expressions. 
To show this, we may begin by considering a “ self ’’-inductance term such 
as LnlJu Upon replacing I\ and 1\ by I\a + il\b and I\a — H\6, 
respectively, this term becomes L\\{l\a + l\b)• The corresponding term 
in the expression for the true electromagnetic energy of the circuit is 
§Ln/i2, where 7* represents the instantaneous physical value of the first 
mesh current. It follows from the definition of 7i, however, that 

n Real component of (71o + /7ib)(cos wt + t sin cot) 
r t • (7—26) 
I\a COS 0)t — lib sin cot. 

This term in the true electromagnetic energy can therefore be written as 

\LiiT\2 = |LU (7fa cos2 cot — 27ia7i6 sin cot cos cot + 7f& sin2 cot). (7-27) 

If we average this expression over a long period of time, the sin cot cos cot 
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term disappears while the cos2 cat term and the sin2 cat term each becomes §. 
The average value of the electromagnetic energy due to the flow of I* in £n 
is therefore 

(i£ll/?2)av = \Ln Cl\a + In) (7-28) 

which is just J of the value found for the term £n/i/i in the first summation 
of (7-25). * • 

Similarly, when we examine a pair of “ mutual ” inductance terms of 
(7-25), such as £12/2^1 + £2i/i72, we readily find, with the help of the 
relation L12 = £21, that they may be written as 2£12(/ia/2o + /i&/2d)* 
The corresponding term in the expression for the true electromagnetic 
energy is 

§(£12/1/2 + £21/1/2) = £l2f/lo/2a COS2 cat 

— (/ia/26 + /2a/i&) sin cat cos cat + /i&/2& sin2 cat] (7-29) 

whose average value is 2^12(/1 a/20 + I\bl2b)- This is again just § of the 
amount given by the summation of (7-25). We conclude, therefore, that 
when all the terms of this summation are evaluated they will represent four 
times the average value of the total electromagnetic energy T, taken over 
a long period of time. 

Obviously the second summation of (7-25) is in a precisely similar fashion 
equal to four times the average value of the dissipation function F. The 
third summation of (7-25) cannot be identified directly with a multiple of 
the average value of the final energy function V since it depends upon 
products of currents, and if it were to represent V, the quantities should, on 
the contrary, be charges. We may notice, however, that since a current is 
the derivative of a charge, the effect of introducing a current in place of a 
corresponding sinusoidally varying charge is to produce a shift in phase, 
which is of no importance for averages taken over a long period of time, and 
to multiply the expression by ca. Since there are two Fs in the third sum¬ 
mation, the introduction of currents for charges therefore increases its 
value by a factor of co2, and we can conclude that the summation is equal to 
4ca2 times the average value of the stored energy of the condensers. 

Using the values just found for the three summations replaces (7-25) by 

4/coTav + 4Fav - McaVw = Ejx. (7-30) 

If we assume that the driving voltage E\ is of unit amplitude, the current I\ 
will be equal to the admittance of the network. /1 is, of course, the same 
as I\ except for a change in the sign of the imaginary part. Equa¬ 
tion (7-30) can therefore be used to furnish a relation between the energy 
functions of the network and its input admittance. We find 

Y - 4[Fav + ica{V„ - Tav)] (7-31) 
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where Fav, FAVy and !Tav, are to be evaluated under the assumption that the 
network is energized by a voltage of unit amplitude.* 

The second of the three conditions on passive networks postulated at the 
beginning of this chapter is to the effect that the real component of a 
driving point immittance is never negative at real frequencies. Since F 
must be positive this is established immediately by (7-31). The third 
condition states that the total power fed into the network by an outside 
generator at real frequencies must be at least as great as the power con¬ 
sumed by any one resistance. This can be shown by investigating the way 
in which any individual element enters the expression for F. A simpler 
method, however, is to suppose the given resistance removed and replaced 
by a generator having a voltage equal to the drop across the resistance 
produced by the prescribed external generator. This will leave the dis¬ 
tribution of currents in the rest of the network unaltered. If we repeat the 
analysis which led to (7-31) for the modified network driven by both 
generators, however, the real component of the right-hand side of the result- 

L Cz L/lf" 

°-rJUJLr|-1 1 *—1—a 
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Fig. 7.6 Fig. 7.7 

ing expression will still represent the average F for the modified structure 
and must be positive or zero. Evidently, therefore, the power consumed 
by the rest of the network cannot be negative, so that the total power con¬ 
sumed by the complete structure must be at least as great as that consumed 
by the prescribed resistance. 

As examples of (7-31) we may take the networks of Figs. 7.6 and 7.7. 
The impedance of the network of Fig. 7.6 is a pure resistance when the 
inductance and capacity resonate. The average values of the energies stored 
in the inductance and capacity must therefore be equal at this frequency. 
The network of Fig. 7.7 is equivalent to a pure resistance at all frequencies. 
By the same reasoning, therefore, the average values of its T and V must 
be the same at all frequencies. Both of these conclusions can, of course, be 
readily checked by calculation. 

* " Unit amplitude ” here means that the maximum value of the sinusoidal wave 
representing the voltage is unity. Since we are dealing with energy, it is perhaps more 

natural to use the rms or “ effective99 emf, which is \/y/l times the maximum value. 
If we use a unit effective voltage, therefore, the constant 4 in the right-hand side of 
(7-31) should be replaced by 2. 
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7.12. Stability of Passive Networks 

The first of the three special conditions on passive circuits mentioned 

near the beginning of the chapter states that a passive circuit is always 

stable. As the final step in this analysis we will prove that this is a conse¬ 

quence of the fact that the three energy functions F, Ty and Vy of a passive 

network are positive definite. The relation between stability and energy 

arises, of course, from the fact that it takes energy to set a circuit into 

motion and that, generally speaking, the greater the disturbance the greater 

the energy. It might appear at first sight from this argument that stability 

will be assured from the positiveness of F alone, since if F is positive the 

circuit as a whole will lose energy continuously, whatever the sign of T 
and V may be. In fact, however, the positiveness of T and V is equally 

important. If one of these functions may be negative the circuit may lose 

energy through I2R losses continuously and still remain very far from its 

position of equilibrium provided more and more negative energy* is stored. 

Insolvency is no bar to a spendthrift life as long as one's credit at the bank 

is good. 

The relation between stability and the energy functions can be developed 

most easily if we return to the set of equations given by (7-2) of the present 

chapter. These were identical with the ordinary mesh equations except 

that the driving voltages were set equal to zero and p was supposed to 

assume one of the special values corresponding to a transient oscillation in 

the network. Upon treating the equations by the processes used in 

developing (7-25) the result is readily seen to be 

r,««n r,«=»n 1 r,**n 

p ZE Lr.lrI. + ZZ Rr.Irl. + " ZZ DM. = 0 (7-32) 
r,*=l r,a*»l P r,a»=l 

which is the same as (7-25) except that the right-hand side has been set 

equal to zero and has been replaced by p since transient oscillations are 

not necessarily restricted to real frequencies. 

In the previous discussion we identified each of the summations of 

(7-32) with the average value of one of the energy functions of the network. 

We cannot make the same identification here, since if the frequency is 

* If a “ negative energy ” is difficult to visualize, we may suppose that the circuit 
under consideration is a passive structure except for the inclusion of the equivalent 
of a negative inductance, provided by means of one of the vacuum tube circuits 

described later. As long as the negative inductance is taken as an entity the complete 
circuit can still be analyzed by the methods used for passive structures, since the prin¬ 
ciple of reciprocity is maintained. The “ negative energy ” stored in the inductance, 
however, can be regarded physically as positive energy drawn from the vacuum tubes 
and transmitted to the rest of the circuit. 
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complex the physical currents in the network will be increasing or decreas¬ 

ing and there is no good way of taking a time average. Fortunately, how¬ 

ever, no such precise physical interpretation is necessary. It will be re¬ 

called that when 1% in (7-25) was replaced by its value in terms of 7ia and 

lib the Ln term of the first summation became Lu (7i0 + lib)• Similarly, 

the sum of the £12 and L21 terms became (£12 + L2i)(Iial2a + IuJ2b)- 
Both the “ self ” and “ mutual” inductance terms therefore broke up into 

the sum of two terms, one involving products of the Ia*s and the other, 

products of the 7&’s. Corresponding results, of course, held for the R and 

D terms. Even without the help of a physical interpretation of the sum¬ 

mations, therefore, we can rewrite (7-32) in the same way as 

Lrs{lrulsa + 1rlJab) + 7?ra(7ro7ao + IriJab) 
r,s=l 

~ -Dr«(7ro7ao Irb^ab) 885 0. (7—33) 
P rf8= 1 

r,8 ®=n 
The summation Z,rs7ra7,a is obviously twice the energy function T 

r,8 =1 
when for each instantaneous physical current we use the corresponding 

quantity 7ro. We can, therefore, represent this portion of equation (7-33) 
r,a —n 

by 2T(a). Similarly, the summation ££ LrsIrtJsb represents twice the 
r,8 =1 

T function when each physical current is replaced by the corresponding 7&. 

It can therefore be written as 2T(b). The other parts of equation (7-33) 

represent in the same fashion twice the F and V functions when we substi¬ 

tute the Ia9s and Ib$ for the corresponding physical currents and charges. 

The complete expression can therefore be written as 

p[T(a) + T(b)) + F(a) + F(b) + - [V{a) + V{b)] = 0. (7-34) 
P 

The T’s, F9s, and V9s which appear in (7-34) do not necessarily corre¬ 

spond to any physical energies actually present in the circuit. They are 

merely certain mathematical expressions secured by replacing the instan¬ 

taneous currents in the true energy expressions by the 7y0’s and 7y*/s. In 

general, they may be expected to have different values as we go from one 

possible transient to another, since the distribution of currents in the net¬ 

work, and therefore the 7ya,s and 7J*6,s, will depend upon the transient fre¬ 

quency. However, we at least know that the original energy expressions 

were positive for all possible values of the instantaneous currents. It 

follows that the new T9s, F9s, and V’s must be positive in all cases. Any p 
corresponding to a possible transient must therefore satisfy a quadratic 

equation like (7-34) in which all the coefficients are positive. From the 
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usual formula for the roots of a quadratic we can readily deduce that per¬ 
missible p’s, or zeros of A, must satisfy the following conditions: 

1. The zeros will be found at negative real values of p if either T or V \s 

identically zero. In other words, impedances corresponding to networks 
containing only-capacities and resistances, or only inductances and resist¬ 
ances, must have zeros on the negative real axis of p. 

2. The zeros will be found on the negative real axis even if both T and V 

are present provided F is sufficiently great. This means that very highly 
dissipative networks will have negative real zeros even when both kinds of 
reactive elements are present. 

3. If F is identically zero, the zeros will occur on the imaginary axis. In 
other words, the impedance of a non-dissipative network vanishes only at 
real frequencies. 

4. If none of these conditions is met, the zeros ordinarily occur in con¬ 
jugate complex pairs. The real parts of the zeros are always negative. 

These propositions are best exemplified by the discussion given in a later 
chapter. They evidently contain much more detailed information than is 
provided by the bare statement that a passive network must be stable. It 
is clear, however, that among them they at least confirm that statement. 

7.13. Comparison of Criteria of Physical Realizability 

The preceding discussion has developed the properties of physically 
realizable structures from a variety of criteria. In dealing with passive 
structures, for example, we began with the statement that the circuit could 
contain only positive elements and later replaced it by the statement that 
its energy functions must be positive definite. In dealing with active 
structures, on the other hand, we relied chiefly upon the postulate that a 
physical circuit must be stable. As they stand, these criteria are not 
readily compared directly, chiefly because the formulae for the energy 
functions were developed on the assumption that the circuit met the reci¬ 
procity condition Z# = Zy*, so that they are not easily extended to the 
general case. To put the criteria on the same footing, it will be assumed 
that the active elements appear only as parts of negative impedance 
devices, so that if these devices are taken as entities the circuit can be 
regarded as made up exclusively of bilateral elements.* It is then readily 
seen that the various criteria are not logically equivalent. As the list was 

* Cf. the discussion in an earlier footnote. In accordance with the assumption 
made here, the word “ element ” in the present section will be taken to mean a bilateral 
element. 
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given, the criteria appear in the order of diminishing severity. In other 
words, a network all of whose elements are positive always has positive 
definite energy functions and a network with positive definite energy func¬ 
tions is always stable. The converses of these propositions are, however, 
not true. A network which is stable does not necessarily possess positive 
definite energy functions, and a network with positive definite energy 
functions is not necessarily composed exclusively of positive elements. 

The fact that the positive energy condition is not equivalent to the posi¬ 
tive element condition is easily seen in trivial cases. For example, the 
energy condition will evidently be maintained if we add a negative resist¬ 
ance either in series with an actual network containing an equal or larger 
positive series resistance, or in series with an equivalent of such a network. 
A more elaborate example is suggested by the equivalent T of a two-winding 
transformer. It will be recalled that the central branch of the T con¬ 
tains a negative inductance representing the mutual coupling. The energy 
stored in the inductances as a whole, however, is always positive. Evi¬ 
dently the energy would still be positive if we replaced the transformer by a 
corresponding arrangement of three separate positive and negative induct¬ 
ances. The energy conditions will also be fulfilled if, instead of using 
inductances, we insert positive and negative impedances of any description 
in the same ratio. On the other hand we will be able to show that any 
impedance function meeting the requirements derived from the energy 
conditions can always be represented by some network containing only 
positive elements together with systems of ordinary mutual inductances. 
In this sense, therefore, the energy conditions and the positive element 
conditions are equivalent. 

The relation between the conditions that the network be stable and that 
its energy functions be positive definite is less easy to understand. If the 
network includes only two kinds of elements, it can be shown that it will be 
stable only when both associated energy functions are positive definite. 
When all three kinds of elements are present, however, the positive definite 
condition is not necessary. This may be exemplified by means of the 
illustrative impedance formulae given by (7-17). For example, the last 
two of these represented impedances which met the stability requirement 
but had real components which were negative in some portions of the real 
frequency spectrum. Evidently in such impedances the positive definite 
condition does not apply to the dissipation function F. We may also 
recall that, in order to restrict the location of the poles of impedance, it was 
necessary to suppose that the structure would be stable when its driving 
point terminals were open-circuited. Since positive definite energy func¬ 
tions remain positive definite when the current in the driving mesh is set 
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equal to zero, open circuit stability is assured when the energy conditions 
are met. As such examples as Z4 of (7-17) show, however, open circuit 
stability is not a property of all structures which are stable under their 
nominal operating conditions, so that this represents another way in which 
a stable structure which does not meet the energy conditions can be 
obtained. * . 



CHAPTER VIII 

Contour Integration and Nyquist’s Criterion for Stability 

8.1. Introduction 

The analysis of the preceding chapter consists, in essentials, of an 

investigation of the restrictions which must be placed upon the zeros and 

poles of the several network functions if the structure is to be stable under 

various conditions. This is obviously a necessary first step in attacking 

the general problem of determining the characteristics obtainable from 

physically realizable structures. Of itself, however, it is of limited utility. 

Its chief limitation is the fact that the restrictions are stated in terms of the 

behavior of the function at complex frequencies, while for practical design 

purposes only the real frequency characteristics are ultimately of interest. 

As the situation stands, the relations between the two are too indirect to be 

of much value. For example, it is not very clear from the restrictions on 

the zeros and poles just what sorts of real frequency characteristics are 

physically possible. Moreover, if we have a known structure, whose com¬ 

puted real frequency characteristics are satisfactory, it is a long and tedious 

process, in general, to determine whether the roots of A meet the stability 

requirement. If some of the roots turn out to be in the wrong side of the 

plane we are still at a loss to know whether we have merely made an un¬ 

fortunate choice in some unimportant feature of the design or whether the 

result is inevitable in any circuit having the desired type of behavior. 

What we evidently need in order to bring the analysis to a useful con¬ 

clusion is some mathematical tool by means of which the restrictions on the 

behavior of network functions at complex frequencies can be transformed 

directly into equivalent restrictions on their behavior at real frequencies. 

The real frequency axis can be looked upon as the boundary of the right 

half-plane, which is the region in which special restrictions on the network 

functions occur, so that the broad mathematical problem is that of relating 

the behavior of a function inside a given region to its behavior on the 

boundary of the region. The most useful tool for this purpose is found in 

Cauchy’s theory of analytic functions in terms of integrals around closed 

contours. This chapter is intended primarily as a sketch of some of the 

elementary aspects of this theory.* The most extensive applications of 

* For supplementary reading, reference may be made to any book on the theory of 
functions of a complex variable. Particularly good accounts are found in Goursat, 
Townsend, or Pierpont. 
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the material are made several chapters later, after an intermediate discus¬ 

sion of the general properties of driving point and transfer immittances. 

The theory is exemplified in the present chapter by a discussion of the 

Nyquist diagram method of determining stability. The chapter also 

includes two specific theorems which are useful in the discussion of driving 

point and transfer immittances given in the next few chapters. The analy¬ 

sis relies upon the general framework of ideas given by Chapter II, and this 

material should be reread if necessary before the present chapter is under¬ 

taken. 

8.2. Integration in the Complex Plane 

In ordinary calculus we are familiar with the conception of an integral as 

the area under a curve. Figure 8.1, for example, shows the approximation 

to the area under a given curve by means of a number of thin vertical strips. 

We say that the integral of the function from x\ to x2 is equal to the limit 

approached by the area of the strips when the number of strips becomes 

indefinitely great and each one is made indefinitely thin. The area of any 

strip, such as the shaded one in the figure, however, is evidently equal to its 

height times its breadth or, in other words, to f(xj) (*7+1 — Xj). This 

definition of an integral can therefore be expressed by the equation 

D \x)dx = lim E/(*;)(*>+! “ *;)• (8-1) 

Integrals of functions of a complex variable are defined in a precisely 

similar way. If we suppose, for example, that the function /(z) is to be 

integrated along a prescribed curve running from Z\ to z2 in the complex z 

plane, as shown by Fig. 8.2, we may begin by choosing a number of inter¬ 

mediate points, zy. For any given choice of the intermediate points we can 
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set up the corresponding sum Z/(zy)(zy+i — zy). The integral, then, is 

defined as the limit* approached by this sum when the number of points of 

division is made indefinitely great and the successive points are brought 

indefinitely close together. In other words, the integral may be expressed 

by 

jf /(z)<& = Km £/(zy)(zy+i - Zy). (8-2) 

It will be seen that this is formally similar to equation (8-1). The only 

difference lies in the fact that since f(zj) and (z;+1 — Zj) will in general be 

complex quantities, the final result will ordinarily be 

complex. 

8.3. Integrals in Limiting Cases 

The definition of an integral given by equation 

(8-2) leads immediately to a simple consequence 

which we will use repeatedly in later discussion. We 

observe from (8-2) that the absolute value of the 

integral cannot be greater than the sum of the 

absolute values of all the component terms, 

f{zj) (zy+i — Zj). Now suppose that M represents 

the largest absolute value of /(z) over the path con¬ 

sidered. The absolute value of each of the component terms can be no 

greater than the absolute value which would be obtained if J(zf) were re¬ 

placed by M. We therefore have 

f f(z)dz < f M\ dz \ = M X path length. (8-3) 

As an example of this relation, let it be supposed that the path of inte¬ 

gration is the semicircle with radius R shown by Fig. 8.3, where it is sup¬ 

posed that R can be made indefinitely large. The path length is irR. 

If/(z) varies as some positive power of z for very large values of z, we can 

evidently say nothing about the integral on the basis of equation (8-3) 

since both M and the path length will become very large as R becomes large. 

Equation (8-3) also fails to provide a limit if/(z) approaches a constant 

value other than zero as z approaches infinity. On the other hand, if/(z) 

varies as some negative power of z, such as z~2, M must vary as RT2. 

We see from equation (8-3) that the integral must therefore vanish for a 

sufficiently large value of R in spite of the fact that the path length is 

* This discussion, of course, ignores such questions as the demonstration that the 
limit exists, for an appropriate/(z), and that it is independent of the precise choice of 
the z/s, which would require consideration in a formal analysis. 
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indefinitely great. The same result, of course, holds i f/(z) varies as any 

larger negative power of z. 

If the semicircle of Fig. 8.3 is supposed to be very small, rather than very 

large, essentially similar results are secured. The path length now vanishes 

in the limit, so that it is clear from (8-3) that the integral also vanishes if 

/(z) either approaches a constant value or behaves as any positive power of 

z near the origin. If/(z) behaves as z~2, or as any larger negative power of 

z, on the other hand, M increases so rapidly as R diminishes that we can 

say nothing about the integral on the basis of (8-3). 

In both situations, an intermediate case occurs if/(z) varies as z”1. 

When the semicircle is very large this gives an M which diminishes as the 

path length increases, while when the semi¬ 

circle is small M increases as the path length 

decreases, the relative rates of increase and 

decrease being such that in either case the 

product of the two is a constant. Equation 

(8-3) thus gives a finite upper limit to the 

integral, but we are not sure just what its 

exact value may be. 

This situation can be treated by specifying 

2 in terms of a polar angle 6, as shown by 

Fig. 8.4. For the sake of generality the path 

Fiu. 8.4 is shown as an arbitrary arc of a circle, with 

end-points at 9 = and 6 = Q2, rather than 

as a complete semicircle. If we write z == Re® we evidently have 

dz = iRet6dd, so that the integral from 8i to $2 becomes 

iReldd6 

Re* 

6do r*2., 
— = / id% = -*( 

while if the integral is taken in the other direction the result is evidently 

the same except for a reversal in sign. We thus have the 

Theorem: The integral of z~l over an arc of a circle centered at the 

origin is +/ or — i times the central angle of the arc, in 

radians, accordingly as the integration is taken in a counter¬ 

clockwise or in a clockwise direction. 

The importance of these results lies in their utility in evaluating integrals 

in many limiting cases. For example, in future discussion we will have fre¬ 

quent occasion to consider the integrals, over a very large semicircle, of func¬ 

tions which behave near infinity like (A-i/z) + {A-2I#) + (^_3/z3) H-. 

Evidently if the semicircle is sufficiently large we can discard all the 
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terms in this series except the first and evaluate that one by means of 

the theorem just given. 

For purposes of future analysis this discussion requires amplification in 

one particular. We have thus far merely rejected cases, for either the very 

large or very small semicircle, in which f(z) varies as such a power of z that 

the product M X path length becomes indefinitely large as the limiting 

case is approached. We can draw no conclusions about such situations 

from (8-3) alone, and nothing significant can be said, in fact, as long as the 

path of integration is an arbitrary arc of a circle. In the following sections, 

however, there will be occasion to consider paths of integration extending 

around a complete circle and back to the starting point. This gives a 

particularly symmetrical situation for which the integral can be much 

simplified. To show this, we may repeat the analysis of (8-4), replacing 

z~x by zn and the upper and lower bounds of integration by — ir and ir. 

This gives 

inO \iRe*dQ 

[cos (n + 1)0 + i sin (n -f- 1 )0]d0. (8-5) 

If n is any positive or negative integer except —1 these expressions must 

vanish since the integral of either a sine or a cosine over a complete cycle is 

zero. If n = —1 the result is —27r/, for the clockwise direction of inte¬ 

gration indicated, as we can see either from (8-5) or by the preceding 

theorem. We therefore have the 

Theorem: The integral of zn around a complete circle centered at the 

origin is zero unless n = — 1. If n = —1 it is — 2W for 

integration in a clockwise direction and +2wi for integra¬ 

tion in a counterclockwise direction. 

8.4. Relation between the Integral and the Path of Integration 

In spite of the parallelism which exists between the definitions of real 

and complex integration as indicated by equations (8-1) and (8-2), one 

difference exists which has not been previously emphasized. In defining 

the real integral in equation (8-1) it was sufficient to give the integration 

limits x\ and since it was clear that the points Xj were necessarily taken 

on the x axis between these limits. For the complex variable z, on the 

other hand, it was necessary to specify not only the limits Z\ and z2 but also 

the particular curve between those limits on which the points of subdivision 

Zj were supposed to be chosen. The question naturally arises whether the 
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choice of the path between Z\ and z2 is significant or whether the same 

result would be secured if we connected Zx and z2 by some different path, 

as shown by Fig. 8.5. 

This question is answered by an important theorem, due to Cauchy, 

which is sometimes called the “ Principal Theorem of Analysis." Cauchy’s 

theorem states rfiat the integral between Zi and z2 will be the same for 

either of the two paths provided the function to be integrated is analytic on 

both paths and in the intermediate region 

bounded by the paths. In most circum¬ 

stances it is convenient to replace the con¬ 

ception of an integration from Z\ to z2 along 

two different paths by the conception of an 

integration around a complete closed loop 

and back to the starting point. In Fig. 8.5, 

for example, we might regard the loop in¬ 

tegration as composed of a forward integra¬ 

tion from Zx to z2 along path A and a back¬ 

ward integration from z2 to Z\ along path B. 

Clearly, however, the integral from z2 to Zi 

along B must be the negative of the integral from Zi to z2 along B. It must 

therefore also be the negative of the integral from Zx to z2 along A> if the 

integrals from Z\ to z2 along the two paths are equal. Cauchy’s theorem 

can consequently be stated in the following words: 

Theorem: If a function/(z) is analytic within a closed curve and also 

cn the curve itself, the integral of/(z) taken around that 

curve is equal to zero. 

This theorem will be assumed here without proof. 

Cauchy’s theorem is readily illustrated by our preceding discussion of the 

integration of powers of z on circular paths. Let it be supposed, for 

example, that the closed loop is taken as a circle about the origin and that 

/(z) is chosen as the polynomial Aq + AiZ + • * • + dnzn. Then /(z) is 

analytic on and within the circle so that according to Cauchy’s theorem the 

integral around the complete circle must vanish. This is, of course, verified 

by the preceding discussion, which showed that the integral of each term in 

the polynomial vanishes. 

We may next suppose that the term k/z is added to the polynomial. 

This additional term produces a pole at the origin so that the function is no 

longer analytic at all points within the circle and the conditions of Cauchy's 

theorem are not met. Correspondingly, we find from our preceding dis¬ 

cussion that the integral no longer vanishes, but becomes 2W£, if the inte¬ 

gration is supposed to take place in a counterclockwise direction. On the 



CONTOUR INTEGRATION 143 

other hand, if we were to add k/z2y rather than k/zy to the polynomial the 
loop integral would remain zero, although the new function would still not 
be analytic at the origin. It thus appears that the converse of Cauchy’s 
theorem is not true. In special cases the loop integral may be zero even 
though the function is not analytic at all points 
within the contour. 

In these examples the closed contour has been 
taken as a circle. This, of course, is a partic¬ 
ularly easy path for purposes of computation. 
It is important to notice, however, that 
Cauchy’s theorem shows that the same results 
would be secured if the circle were distorted 
into a path of any other shape. To illustrate 
this, we will consider the integral of z2 around 
the square path shown in Fig. 8.6. The side Fig. 8.6 

of the square is taken as 3 units and the 
corners Ay B, C, and D as 1 - *, 1 + *2, -2 + ily and —2 — f, re¬ 
spectively. If we write z = x + iy, z2 becomes x2 — y2 + 2ixy. On the 
side AB we have x = 1 and dz = idy. This portion of the complete loop 
integration can therefore be written as 

/> y2) + 2 iy\idy. 

This can be evaluated by the methods of ordinary calculus and is equal to 
— 3. Similarly, over the side BC we have y = 2, 

| dz = dxy and the integral becomes 

PP*ne_\ The integrals over the remaining two sides can 
T be treated in the same way and are equal re- 

) J spectively to — 6 — 9i and 3i. The sum around 
/ the complete loop is easily seen to vanish, thus 

y/ confirming Cauchy’s theorem for this case. 
In future discussion, Cauchy’s theorem will 

be applied chiefly to closed loops in the p 

^10* plane of the type shown by Fig. 8.7. The 
loop consists broadly of a large semicircle in 

the right half of the p plane closed by a diameter lying on the real fre¬ 
quency axis. The small indentations away from the real frequency axis 

Fig. 8.7 

j£W 4) + 4 ix]dx 

= 9 + 6 i. 
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are supposed to be very small semicircles introduced to avoid any singu¬ 
larities which may be found there. The integral around the complete 

path will be represented by the symbol and the integral around the 

large semicircle by the symbol 

This path is chosen because our previous discussion on the location of the 
zeros and poles of physically realizable network functions can readily be 
converted into a specification of the analyticity either of the network 
functions themselves or of certain derived functions in the right half of the 
p plane. Cauchy's theorem can thus be used in studying the integrals of 
these expressions around the complete loop. If we suppose that the path 
is very large, however, the integrals around both the large semicircle and 
the small indentations can be dismissed easily by means of the methods 
described in a preceding section. What is left, then, is an integral along 
the real frequency axis from some very large negative frequency to a corre¬ 
spondingly large positive frequency so that Cauchy's theorem allows us to 
relate the real frequency characteristics of the structure directly to the 
conditions of physical realizability. 

8.5. The Calculus of Residues 

Before studying these possibilities in detail, it is desirable to consider 
briefly what happens to the integral of a given function around a closed 
path when the function is not analytic inside the path. The results have 
already been suggested by the examples given previously. To study the 
general case, suppose that the function is analytic except for a simple pole 
at za so that near za it can be expanded in the form* 

/(2) = -4=S- + A0 + Ax(z - za) + A2(z- za)2 + ■ ■ : (8-8) 
z za 

Now choose the path of integration shown by Fig. 8.8. The function is 
analytic within this closed path so that the integral around the complete path 

* The series in (8-8) is introduced here as a convenient way of characterizing the 
behavior of the function in die neighborhood of Zo. From the point of view of pure 
mathematics its use is somewhat illogical, since the justification for such an expansion 
depends upon an analysis of the type under consideration at present. We may notice, 
however, that all we really need to know is that/(z) can be represented as the sum of 
the first term in (8-8) and a remaining portion which is bounded in the neighborhood 
of Za. This is readily established from the definition of a pole. It follows from 
(8-5), however, that the integral of the bounded portion around a very small circle 
near Za can be ignored, so that the correct result is secured without using the com¬ 
plete expansion. 
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must be zero. The contributions of the integrations along the path between 
Pi and P2 in each direction, however, evidently cancel out. The integral 
around the outside loop from P] back to P\ again must therefore be the 
negative of the integral around the small inside circle enclosing the point ztt. 
If we integrate /(z), as given by 
(8-8), around this small circle, 
however, all the terms except the 
first must drop out, while if we 
transfer the origin to za the first can 
be evaluated by the methods of 
equation (8-4). We therefore find 
that the integral around the outside 
loop is given by* 

j> f{z)dz = -2tt (8-9) 

The coefficient A_\ is called the 
residue of the function at the pole Fig. 8.8 

za. If there are a number of poles 
in the interior of the loop, then by a continuation of the same process we 
can include them one by one, thus securing in general, an expression of 
the form 

§ f(z)dz = — 2iri[d_i + 5_! + C_! + • • • + Ml]. (8-10) 

Since equation (8-5) shows that only simple poles have integrals different 
from zero around small circular paths enclosing them, only the coefficients 
of the first order poles at any point should be considered in building up an 
expression such as (8-10). 

Illustrations of the calculus of residues can be obtained by using the same 
material as was previously employed to illustrate the general Cauchy 
theorem. Since the fact that the integral of 1 /z over a small circle about the 
origin is equal to 2m was used in establishing (8-9) and (8-10), we are 
perhaps not justified in regarding this result as an illustration. We can, 

* It is important to notice that the negative sign in the right-hand side of (8-9) 
appears because of the direction of integration (clockwise around the outer loop) 
which is chosen in Fig. 8.8. It is convenient to choose this direction here because it 
leads to a positive direction of integration along the real frequency axis when we 
eventually apply the result to contours of the type shown by Fig. 8.7. In most treat¬ 
ments of the Cauchy integral, however, the loop integration is conventionally taken 
in the opposite direction, so that the equation corresponding to (8-9) appears without 
the minus sign. 
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however, at least exemplify the fact that the result is independent of the 
shape of the path by considering the integral of the same function around 
the square contour of Fig. 8.6. Setting z = x + iy, as before, we have 
1/z = [x/(x2 + .y2)] — [iy/{*2 + y2)]- The integral from A to B is 
readily written from this as 

*£*-£[rh-rf?h- (8-n) 
This can be evaluated by ordinary calculus and gives the result 
\ log 5 — \ log 2 + i tan-*1 (2) — i tan-"1 (—1). In the same way we find 
that the integral from B to C can be written as 

Jfdz f"”2f * 2i 1 

B z J1 U2 + 4 X2 + 4 J 
= | log 8 - | log 5 — i tan”"1 (—1) + i tan~l (|). (8-12) 

Using similar methods, the results for the other two sides are found 
to be, respectively, \ log 5 — \ log 8 — i tan”"1 ( — 1) + t tan”"1 (|) and 
\ log 2 - | log 5 + i tan"”1 (1) - i tan”"1 (-2). 

If theintegrals for all four sides are added together it is readily seen that the 
sum of the real components vanishes. The sum of the imaginary compo¬ 
nents can be studied most readily by observing that each component sepa¬ 

rately is equal to the central angle sub¬ 
tended at the origin by the correspond- 

C ■ B C* ln£ s^e# ^or example> the imaginary 
J* T component i tan””1 2 — i tan”"1 (—1) 

_ t j obtained from the integration along 
2    —J •••J 9 <dB is equal to the angle, in radians, 

^ ^ between straight lines drawn from 
the origin to the corners A and B. 

Fig. 8.9 Evidently, the total central angle 
subtended by all four sides is one 

revolution, or 2w radians. The complete loop integral is therefore 2*7. 
This agrees with (8-9) if account is taken of the fact that the direction of 
integration in the present instance is counterclockwise. 

The fact that the imaginary component produced by integration along 
each side is equal to the central angle subtended by that side is important, 
since it indicates why the significant feature of the situation is not the exact 
shape of the path, but the fact that the pole at the origin is inside the path. 
Evidently, any slight distortion of the path would still leave the total 
central angle subtended equal to one revolution, or 2w radians. On the 
other hand, suppose that the path were translated without distortion to 
some position such as A'B'C'D9 in Fig. 8.9 for which it no longer included 

Fig. 8.9 
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the pole at the origin. Then evidently the total central angle subtended 

by all four sides would be zero, so that the loop integral would vanish. 

An example of a different sort is furnished by one of the classical theorems 

in the calculus of residues. Let £(z) be a function which is analytic on and 

within a given closed contour and let q be any point within the contour. 

Then g(z)/(z — q) is a function which is analytic in the same region except 

for a simple pole at z = q. The residue at this pole must be g(q)> the value 

assumed by g when z = q, as we can easily see by expanding ^(z) near this 

pointin theTaylor’s series g(q) + g (q)(z— q) + (l/2!)/'(^)(z — q)2-1-, 

and noticing that after division by z — q the series takes the same form 

as that given for /(z) in (8-8). If we identify g(z)/{z — q) with /(z), 

therefore, (8-9) allows us to write 

/ ^-dz = -27Ttr(q) 
z - q 

(8-13) 

where, as before, the integration is taken in a clockwise direction. 

This theorem is of interest here because of its bearing on the general 

problem of relating the values assumed by an analytic function within a 

given region to its values on the boundary of the region, which was dis¬ 

cussed earlier in the chapter. Evidently, if we know g{z) we can perform 

the integration on the left-hand side of (8-13) and calculate the special 

value g(q) directly. In order to make this possible, however, we need know 

#(z) only on the path of integration, that is, only on the boundary. Equa¬ 

tion (8-13) thus provides a method of determining an analytic function 

anywhere inside a given region from a knowledge of its behavior only on the 

boundary of the region. The problem with which we are actually con¬ 

cerned is that of determining what properties a function must have on the 

boundary of the region when it is known to have certain properties in the 

interior. This problem is evidently in many respects the converse of that 

solved by (8-13), although it is much more general, since we begin with a 

specification only of the general properties of the function rather than with 

a knowledge of its behavior in detail. On this account it is not possible to 

present an adequate answer in terms of a single compact formula such as 

(8-13). The range of questions of practical interest requires the develop¬ 

ment of a considerable variety of formulae, only a few of which are given 

in the present chapter. Except for these qualifications, however, the solu¬ 

tion of the converse problem will be found to imply relations between the 

values of a function on the boundary of a region and in its interior as 

tightly knit as that given by (8-13). 

8.6. Integral of the Logarithmic Derivative 

For the immediate purposes of the present chapter, the preceding dis- 
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cussion is valuable chiefly because it permits the development of a theorem 
which is of direct interest for amplifier design. Let it be supposed that 
/(z) is some given function which may, in general, have both zeros and 
poles, but no singularities aside from poles, within some prescribed con¬ 
tour. The object of the theorem is to determine, as far as possible, how 
many zeros and poles lie within the contour from an inspection of the values 
assumed by/(z) on the contour itself. 

The theorem is developed from a study of the integral of the derivative of 
the logarithm of the function. In other words, we let 6 = A-\- iB — log/(z), 
and write 

(8-14) 

The integrand in the last expression of (8-14) will evidently be analytic 
within the contour except possibly for points at which/(z) is either zero or 
infinite. If we suppose that z0 represents one such point and that the func¬ 
tion has an nth order zero or pole at z0, we can write 

/(*) = (* - *)**«> 
/(z) = n(z - z0)n~\g-(z) + (z - z0)Y (z), (8-15) 

/(*) = n j g{z) 

f(z) z - z0 g(z) 

where n will be positive if z0 is a zero and negative if Zo is a pole and g(z) 
is analytic and not zero in the neighborhood of z0. We thus see that 
/(z)//(z) has a simple pole of residue n at z = z0. 

The integral around the complete contour, as expressed by (8-14), must 
be — 2tti times the sum of all these residues, if the integration is taken in a 
clockwise direction. At the points for which/(z) is zero, however, n will be 
positive and the sum of such residues is therefore equal to the total number 
of zeros within the contour when each zero is counted in proportion to its 
multiplicity. Similarly, at a pole n will be negative, and the sum of all such 
residues will therefore be equal to minus the number of poles when multiple 
poles are weighted according to their multiplicity. The complete equation 
(8-14) must therefore be 

f dz = 2Ti(P - N) (8-16) 

where N and P are respectively the number of zeros and the number of 
poles, and the integration is supposed to take place in the clockwise direc¬ 
tion. 

On the other hand, the first and second expressions in (8-14) are merely 
the integrals of the derivative of 0, or A + *5, and can therefore be iflte- 
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grated directly. The result must be the difference between the initial and 
final values of 0, or A + iB, as we go around the complete loop. Since the 
right-hand side of (8—16) is pure imaginary, we have only to consider the 
imaginary term iB. If we let 1 and 2 symbolize the initial and final points, 
this equation consequently becomes 

±\B$ = P-N. (8-17) 

The relation expressed by (8-17) can be given a simple graphical inter¬ 
pretation. If we represent /(z) on a complex plane of its own, the values 
which/(z) assumes as z traverses the prescribed contour can be represented 
as a moving point in that plane. But the left-hand side of (8—17) is 1/2t 
times the total change in the phase angle of/(z) as z itself travels around 
the complete contour. Since 2w radians is one revolution, this is the same 
as saying that the left-hand side of (8-17) is equal to the number of times 
the moving point representing/(z) revolves around the origin in the/(z) 
plane while z itself moves once around the path of integration. In order to 
evaluate the left-hand side, therefore, we need merely plot the values of 
/(z) which correspond to z’s on the prescribed contour and count the num¬ 
ber of loops of the plot which encircle the origin. The result given by 
(8-17) can consequently be expressed as the following 

Theorem: If a function /(z) is analytic, except for possible poles, 
within and on a given contour the number of times the plot 
of/(z) encircles the origin of the /(z) plane in the positive 
direction,* while z itself moves around the prescribed con¬ 
tour once in a clockwise direction, is equal to the number 
of poles of/(z) lying within the contour diminished by the 
number of zeros of/(z) within the contour, when each zero 
and pole is counted in accordance with its multiplicity. 

As an elementary example of this theorem, let it be supposed that 
/(z) = z and that the contour of integration in the z plane is chosen either 
as the unit circle or the square of Fig. 8.6. Evidently in this case the paths 
traced out by the moving point in thef(z) plane are the same as these con¬ 
tours in the z plane. They are shown by I and II in Fig. 8.10. Corre¬ 
sponding to the fact that each contour in the z plane includes one zero 
and no poles, each of these paths is traversed once in the clockwise direc¬ 
tion as z moves clockwise once around the associated integration contour. 

* The positive direction is, of course, that one for which the phase angle of/(z) is 
increasing. In other words, it represents a counterclockwise encirclement of the origin 
in the/fcl plane by. the moving point. 
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On the other hand, if/(z) = 1/z, the paths in the f(z) plane corresponding 
to the circle and the square in the 2 plane are respectively the circle and the 
curvilinear quadrilateral shown by I and II in Fig. 8.11. Each of these 
paths is traversed once in the counterclockwise direction as z moves clock¬ 
wise once around the associated z contour, corresponding to the fact that 

Fig. 8.11 

each contour now includes one pole and no zeros of/(z). If we choose more 
complicated expressions for/(z) the paths will, of course, ordinarily become 
more complicated and may encircle the origin more than once. Such 
situations, however, can best be illustrated by the examples given in later 
sections. 

As the preceding examples may suggest, the theorem on the logarithmic 
derivative amounts, in simple cases, to a statement of a certain corre¬ 
spondence between specified areas in the z and/(z) planes. Thus suppose 

that the z contour is that shown by Fig. 8.12, and that it encloses one zero 
and no poles of/(z), although zeros and poles may be found outside the 
contour. The associated /(z) path must encircle the origin in the /(z) 
plane once, as shown by Fig. 8.13. Then the theorem says, in effect, that 
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in a certain sense the interiors of the two contours correspond to one 
another. For example, there is, by assumption, one point in the interior 
of the z contour of Fig. 8.12 at which /(z) = 0. Correspondingly, the 
point /(z) = 0, or the origin in the/(z) plane, is found in the interior of the 
contour in that plane, as shown by Fig. 8.13. Suppose, however, that we 
were to choose any other point Zo inside the z contour. Then the new 
function /(z) — /(z0) would still have a zero but no pole inside this con¬ 
tour, so that its plot must enclose the origin in its own plane. The plot of 
/(z) — /(z0) can be obtained from that of/(z) in Fig. 8.13, however, merely 
by a translation of amount/(z0), so that this result is only possible if/(z0) 
lies inside the contour in Fig. 8.13.* Thus every point in the interior of the 
contour of Fig. 8.12 corresponds to some point in the interior of the contour 
of Fig. 8.13. 

If, on the other hand, the contour of Fig. 8 12 includes a pole but no zeros 
we can show by an argument of the same type that any point in the interior 
of the z contour must correspond to a point which is outside the contour for 
/(z). Thus the interior of one contour corresponds to the exterior of the 
other. This is manifested by the fact that the /(z) contour is traversed in 
the reverse direction. As the number of zeros and poles in the interior of 
the z contour is increased, these relations, of course, grow more complicated. 
We must, in general, think of the interior of the z contour as being broken 
up into several subregions, some of which correspond to the interior and 
others to the exterior of the /(z) plot, or to the interior and exterior of 
specified loops in the/(z) plot if the plot crosses itself several times. 

8.7. Nyquist's Criterion for Stability — Single Loop Case 

The importance of the theorem just established arises from the fact that 
it leads immediately to the familiar criterion for stability due to Nyquist.f 
To show this, let the independent variable, which has hitherto been taken 
as z, be represented by p. Let the integration contour be the path in the 
p plane shown previously by Fig. 8.7. It will be supposed that this path is 
made indefinitely large. We will let the function whose logarithmic 
derivative is integrated around this path be the return difference F — A/A° 
for one of the tubes in the circuit. It will be assumed that F has no 

* The interior loop in Fig. 8.13 has been drawn to illustrate the fact that for special 
values of /(zo) the plot of the new function/(z) —/(z o) may encircle the origin more 
than once. Thus there may be more than one point inside the z contour corresponding 
to a prescribed /(zo). This is evidently only possible when the/(z) contour crosses 
itself. In other circumstances there is a one-to-one correspondence between the points 
in the two interiors. 

t Regeneration Theory, B.S.T.J., Jan. 1932. See also Peterson, Kreer, and Ware, 
Regeneration Theory and Experiment^ Proc. I.R.E., Oct. 1934. 
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singularities on the real frequency axis so that the small indentations shown 
by Fig. 8.7 can be ignored. 

The Nyquist diagram for determining the stability of a circuit is in 
essentials a plot of the values of F corresponding to p's lying on this con¬ 
tour, prepared in the manner described in the preceding section. In draw¬ 
ing the diagram,1iowever, advantage may be taken of a number of simpli¬ 
fying possibilities. In the first place, any physical tube must contain 
parasitic plate-cathode and grid-cathode capacities which will short-circuit 
the transmission path from plate to grid at extremely high frequencies. 
This is equivalent to saying that the return ratio of the tube will vanish, 
or its return difference will approximate unity, if p is made indefinitely 
great. As we make the contour in Fig. 8.7 larger and larger, consequently, 
the moving point which traces the path of F in the F plane will become 
more and more nearly stationary as p moves around the semicircular part 
of the complete contour. In the limit, this part of the contour can be dis¬ 
regarded entirely so that the complete diagram becomes a plot of only the 
real frequency values of F for the complete real frequency axis from 
— 00 to + 00 • 

The second simplification arises from the even and odd symmetry, 
respectively, of the real and imaginary components of F on the real fre¬ 
quency axis, which was discussed in the preceding chapter. This makes it 
necessary to compute the path in the F plane only for positive frequencies. 
The half of the path which corresponds to negative frequencies can be 
inserted as the mirror image of this part with respect to the real axis of 
the plane. 

The third simplification is perhaps more important than either of the 
first two. The zeros and poles of F are respectively the roots of A and 
of A0. If we make the path of integration in Fig. 8.7 sufficiently large we 
can suppose that all the roots in these two quantities which lie in the right 
half-plane will fall within the contour. We can therefore determine the 
difference between the number of roots of A and A0 which lie within the right 
half-plane by counting the number of loops of the plot of F which encircle 
the origin. But the stability of the structure depends upon the location 
of the roots of A only, so that counting the loops gives only ambiguous infor¬ 
mation concerning the stability of the circuit unless we know how many 
roots of A0 are included in the total. For the time being this difficulty will 
be avoided by assuming that the circuit is known to be stable when the 
prescribed W vanishes. This is true, for example, for an ordinary single 
loop amplifier, which was the case actually considered by Nyquist in his 
original treatment of the problem, since the failure of any one of the tubes 
will open the feedback loop. In these circumstances A0 can have no roots 
in the right half-plane so that the stability or instability of the circuit can 
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be determined unambiguously from the Nyquist plot. Evidently the con¬ 
dition for stability is that the plot shall not encircle the origin, while any 
encirclements which do occur must be in the clockwise direction. 

A number of illustrative plots are shown by Figs. 8.14, 8.15, and 8.16. 
In each case the region of maximum F is taken as a band centered about 
some point As we go from coq to infinite frequency the return difference 
must, of course, reduce to unity for the reasons mentioned previously. In 
each drawing F is shown as reducing to unity at zero frequency also, since 
plate supply coils and blocking condensers will normally interrupt the d-c 

F plane F plane F plane 

feedback path.* The portions of each plot corresponding to positive and to 
negative frequencies are shown respectively by the solid and the broken 
lines. The directions in which the plots are traced as o> varies from — oo 
to +00 are indicated by the arrows. Evidently, Fig. 8.14 represents a 
stable structure. Figure 8.16, on the other hand, represents a structure 
which is unstable, with four roots in the right half-plane, since the plot 
encircles the origin four times. At first glance, it may appear that the 
structure of Fig. 8.15 is also unstable. It is easy to see, however, that the 
net phase rotation of a vector connecting the origin to a moving point on 
the path, over the complete contour, is zero, so that this structure is stable. 

The foregoing description of the Nyquist diagram has been based upon the 
return difference-F as a matter of theoretical simplicity. In practice,however, 
the diagram is usually plotted in terms of the return ratio T, or the loop 

* By using special circuits, however, it is possible to provide a d-c return path, so 
that maximum feedback can be assumed to occur over a band centered about zero 
frequency. It is also often convenient to assume such a case, ignoring the power 
supply elements, in analytic work in order to make use of the transformation from 
symmetrical band-pass to low-pass characteristics described in one of the following 
chapters. The two examples given later in this section are of this type. Approxi¬ 
mate illustrative characteristics can be obtained from Figs. 8.14 to 8.16 by omitting 
the portions of each plot between —o?o and +c*?o and identifying =fca>o with zero 
frequency. 
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transmission characteristic /ifi. Since F=l-)-T=l—it/3 the relations 
among the three plots are easily ascertained. For example, Fig. 8.17 
shows the diagram of Fig. 8.14 plotted in terms of T. It is the same as 
Fig. 8.14 except for a translation one unit to the left. Figure 8.18 shows 
the same plot in terms of m& and is the same as Fig. 8.17 rotated through 
180°. In each ffigpre the negative frequency characteristic has been 
omitted for simplicity. Evidently a loop around the origin in the F 

Fig. 8.17 Fig. 8.18 

diagram is the same as a loop around —1,0 in the T diagram, or a loop 
around 1,0 in the iu/3 diagram. Calling these three the critical points, 
therefore, the general result of this discussion can be summed up in the 

Theorem: If a structure is stable when a given element vanishes, the 
necessary and sufficient condition for it to remain stable 
when the element assumes its normal value is that the 
Nyquist diagram for the return difference, return ratio, or 
loop transmission of the element should not encircle the 
appropriate critical point. 

The choice between the T and m/3 diagrams can conveniently be related 
to the well-known fact that under normal circumstances a feedback ampli¬ 
fier must contain an odd number of stages in its forward circuit. In an 
ordinary design, for example, the purely passive parts of the feedback loop 
will give a very small phase shift in the neighborhood of the band center 
wo, while on each side of w0 they will vary in a manner somewhat similar 
to that shown by the diagram of Fig. 8.17. It is clear that if the passive 
circuits furnish the complete m/3 characteristic such a diagram will encircle 
the point 1,0 and produce instability unless the loop transmission is very 
small. There is, however, a phase reversal associated with each tube. By 
using an odd number of tubes we secure one net phase reversal. This 
rotates the m/3 diagram into the position shown by Fig. 8.18, and permits 
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the use of a substantial amount of feedback near a>0 without instability. 
The nf$ diagram is thus appropriate when we consider the complete phase 
shift around the feedback loop, including the tubes, while the use of the T 

diagram, in an amplifier containing an odd number of stages, is equivalent 
to considering the phase shifts of only the passive parts of the structure. 
The amplifier can, of course, be built with an even number of stages by using 
one of the devices described in Chapter III. 

Fig. 8.19 

As a quantitative example of-a Nyquist diagram we may consider the 
circuit shown by Fig. 7.2 in the preceding chapter. It is apparent from 
equation (7-12) of that chapter that the return ratio T for the tube can be 
written as 

rp _ P3 + IP + 1 
M3/ + 4/ + 7* + 2 

(8-18) 

If we assume, for definiteness, that /x 
in the following table. 

Cl) T 

0 2.5 - <0 
0.5 1.73 - *1.05 
1.0 0.5 - *1.5 
1.2 -0.33 - *1.17 
1.4 -0.79 - *0.26 
1.5 -0.73 + <0.23 
1.6 -0.53 + <0.61 

5, this yields the values of T given 

U3 T 

Tj -0.26 + <0.87 
1.8 0 + <1.02 
2.0 0.44 + *1.12 
3.0 1.29 + <0.81 
4.0 1.48 + <0.59 
6.0 1.59 + <0.38 

10.0 1.64 + <0.22 

The Nyquist diagram obtained by plotting these points is shown by 
Fig, 8.19, The plot does not enclose the point —1,0 so that the system is 
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stable. We may notice, however, that the whole diagram is proportional 
to v and would enclose —1,0 if were multiplied by perhaps 1.25 or 1.3. 
This agrees with the calculations made in the preceding chapter, where it 
appeared that some of the zeros of A would be found in the right half-plane 
for ijl > 6.4. The stability of the circuit for negative ju’s can be examined 
conveniently by rising the same diagram with the critical point taken as 1,0. 
We observe that to make the system stable under these conditions we 
must multiply n by a factor of about 0.4, which agrees with the limit 
H = — 2 determined in the preceding chapter. We may also notice that 
the values of w at which the Nyquist plot crosses the real axis, which, of 
course, mark the places at which the plot encounters the two critical points 
when fx is assigned its limiting values, are respectively dtl.45 and 0. These 
agree with the values given in Chapter VII for the points at which the vari¬ 
ous zeros of A cross from the left to the right side of the plane. 

Fig. 8.20 Fig. 8.21 

A second example is furnished by the circuit of Fig. 8.20. The structure 
represents a normal three stage amplifier with shunt feedback except that 
to simplify the computations all the branches have been taken as propor¬ 
tional to a given admittance y. Let the transconductances of the three 
tubes be represented by S\, 62, and S3. If we ignore the phase reversals 
due to the tubes, the voltage gains from the first grid to the second and 
from the second to the third are respectively S\/y and Sz/y, while that from 
the third grid back to the first is kSa/(l + 2k)y. The product of these 
three is the return ratio T for any one of the tubes. We therefore have 

T = TT2kSlS2Sa?' (8"19) 

To plot the Nyquist diagram, we will suppose that y = 1 + p + (1/p). 
This corresponds to a resistance, capacity, and inductance all in parallel. 
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Such a structure might represent a simple form of amplifier transmitting a 
band of frequencies in the neighborhood of the resonance of the coil and 
condenser. If we choose ^^1 ^2^3/(1 + 2£) = 6, this gives the Nyquist 
diagram shown by Fig. 8.21. Only the positive half of the diagram is 
shown, since with the symmetrical characteristics chosen the negative half 
is an exact duplicate. It will be seen that the circuit is stable and gives a 
return difference in the center of the band of 17 db. The circuit becomes 
unstable, however, if the tubes are assumed to have slightly more gain. 

8.8. Nyquist* s Criterion for Stability — Multiple Loop Case 

The discussion in the foregoing section has been based upon the assump¬ 
tion that none of the roots of A0 can be found in the right half-plane, or in 
other words, that the circuit is stable when the prescribed W vanishes. 
This assumption is, of course, valid if W represents a tube in any single 
loop amplifier, and it can also be expected to hold for the majority of 
multiple loop cases. On the other hand, certain multiple loop circuits may 
be stable under operating conditions but become unstable when specified 
tubes fail. This section will consider the application of the Nyquist 
diagram to such situations. 

If some of the roots of A0 are found in the right half-plane, it is evident 
that the circuit will 7iot be stable if the Nyquist diagram fails to encircle 
the critical point. In accordance with (8-17) such a situation implies 
that there are as many roots of A as there are of A0 in the right half-plane. 
To assure stability the Nyquist plot should encircle the critical point 
in a counterclockwise direction as many times as there are roots of 
A0 to consider. It is therefore necessary to know the number of these 
roots. This can be determined from the Nyquist diagrams for the other 
tubes of the circuit with the original tube dead. To analyze the situation 
generally, let it be supposed that the tubes are originally all dead and are as¬ 
signed their normal gains one by one in some chosen order. As each tube is 
restored to its operating condition we may compute its return difference for 
the condition of the other tubes existing at that stage of the process and 
plot the corresponding Nyquist diagram. It follows from (8-17) that the 
diagram for the jt\i tube will encircle the critical point Pj — Nj times in a 
counterclockwise direction, if Pj and Nj represent respectively the numbers 
of poles and zeros of the ,/th return difference which appear in 
the right half-plane. The total number of encirclements for all plots 
is {Pi — N\) + (P2 — N2) + • • • + {Pn — Nn). But the A which 
appears in the numerator of any return difference is the same as the A0 in 
the denominator of the succeeding return difference. We therefore have 
Nj = Py-fi« Moreover, Pi = 0, since the circuit with all tubes dead must be 
stable. The final circuit will be stable if Nn ~ 0. We therefore have the 
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Theorem; If a circuit is stable when all its tubes have their normal 

gains, the total number of clockwise and counterclockwise 

encirclements of the critical point must be equal to each other 

in the series of Nyquist diagrams for the individual tubes 

obtained by beginning with all tubes dead and restoring 

the* tubes successively in any order to their normal 

gains. 

In applying this theorem, it is important to notice that the gains of the 

tubes may be restored in a variety of orders. If the amplifier contains rt 
tubes there are, in the general case, n \ possible arrangements. Although 

the final index of stability or instability must be independent of the order 

in which the tubes are chosen, the diagram for any individual tube may be 

vastly affected by the point in the series 

at which its gain is supposed to be restored. 

An example of this theorem is furnished 

by the circuit of Fig. 8.22. The structure 

is the same as that shown previously by 

Fig. 8.20 except for the addition of a sub¬ 

sidiary feedback around the first two 

stages of the forward circuit.* A two- 

stage subsidiary loop is a convenient 

choice here, where we are interested in il¬ 

lustrating a circuit which may become un¬ 

stable when one of the tubes fails, since, as shown previously, an even number 

of stages leads to a returned voltage which is broadly of the wrong sign for 

stability. In the present instance we may therefore expect the circuit to 

sing when the output tube fails, if the gain of the first two stages is suffi¬ 

ciently great. 

It will be assumed, for definiteness, that k\ = 0.001 and k2 = 0.01. We 

may expect from these numbers that questions of stability will arise as 

soon as the voltage gain per stage is greater than about 10. The several 

Nyquist diagrams which are required to determine whether the structure 

will be stable can, of course, be obtained from loop transmission compu¬ 

tations, as was done in connection with Fig. 8.20. For the variety of cases 

to be considered here, however, it is simpler to base the analysis upon 

the determinant of the system. Using nodal methods, we readily find 

that 

* This general type of circuit was described by F. B. Llewellyn, (U.S, Pat. No. 
2,245,598), who called the subsidiary feedback the a circuit, in distinction to the 
principal, or /8, feedback. The present example is, of course, not intended to illus. 
trate the contemplated engineering applications of such a circuit. 
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0 
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S3 0 + h)y 

— y4 + kxk2y*Sz ~ k2y2SiS2 + kxyS\S2S2 (8-20) 

where SXy S2, and S3 are, as before, the transconductances of the three 

tubes, and the second expression has been simplified by ignoring the small 

quantities kx and k2 in comparison with unity. 

Since the circuit contains three tubes there are 31 = 6 orders in which 

the gains of the tubes can be restored. The first two tubes, however, can 

be regarded for analytic purposes as a single tube, since they are directly in 

tandem and cannot affect the stability of the circuit unless both are opera¬ 

tive. This is evidenced by the fact that Si and 

S2 appear only as the product S\S2 in (8-20). 

We need consider, consequently, only two possi¬ 

bilities, one in which the gains are restored in the 

order 63;Si62, and the other in which they are re¬ 

stored in the order SiS2;S3. 

The simpler Nyquist diagrams are found if we 

begin by restoring the gain of S3. After S3 is re- Fig. 8.23 

stored, its return ratio is readily found from (8-20) 

by means of the formula T = (A/A0) — 1, where, of course, A represents 

the determinant when S3 has its normal value, A0 the determinant when S3 

vanishes, and both quantities are to be evaluated under the assumption 

that SiS2 = 0, since the gains of these tubes have not yet been restored. 

This gives 

k\k2 S3 

y 
(8-21) 

Upon choosing y — 1 + p + (1 //>), as before, this leads to a Nyquist 

diagram whose positive frequency half is shown by Fig. 8.23. For practical 

values of S3 the path would be very small because of the very small value 

of k\k2> but in any event it is clear that it does not encircle the critical point 

-1A 
We next restore the gains of the tubes Si and S2 to their normal values. 

The resulting return ratio for these tubes can be found by the same general 

method as was used in obtaining (8-21) and appears as 

T = 
*iS3 - k2y 

*i*2/S3+/ 
(8-22) 
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A series of curves for the positive frequency half of T for co > 1 is shown by 

Fig. 8.24.* In each case it has been assumed that S1S2 = 200. The re¬ 

sults for other values of Si S2 can, of course, be obtained merely by expand¬ 

ing or shrinking the curves actually given. Assuming that *S*i*S*2 = 200, 

Curve I gives the Nyquist plot when £3 = 40. It will be seen that the plot 

encircles the critical.point —1,0. In the preceding diagram of Fig. 8.23, on 

the other hand, the critical point was not encircled. The net number of 

encirclements in the two plots together is therefore not zero and in accord¬ 

ance with the preceding theorem the structure is consequently unstable. 

Fig. 8.24 

Curve II gives the result when 63 is assumed to be 20. The circuit is now 

on the edge of instability, since the plot passes directly through the critical 

point. As *5*3 is diminished below 20 the circuit becomes definitely stable. 

Curve III, for example, shows the result when *S*3 = 10. Very low values 

of *5*3, on the other hand, lead once more to instability. For example, when 

*S*3 = 4 the plot is that shown by Curve IV and once more encircles the 

critical point. 

Instead of following this arrangement we can also restore the gains in the 

order Si S2;Ss. The return ratio for Si and *S*2 with S3 = 0 can be obtained 

from (8-20) as 

(*-23) 

* The images of these curves about the real axis correspond to values of <a < 1. 
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The corresponding Nyquist diagram where S1S2 — 200 is shown by 

Fig. 8.25. 

It will be seen that the curve in Fig. 8.25 encircles the critical point once 

in a clockwise direction.* In accordance with the preceding theorem the 

final plot of the return ratio for S3 must consequently encircle the critical 

point once in a counterclockwise direction if the complete circuit is to be 

stable. This can be examined by setting up 

the return ratio for S3 as 

k3y2+S1S2 { 
T = k 1 

yO'2 - hSiS2) 
(8-24) 

CJrOD 

\ 
\ The Nyquist diagram corresponding to this 

equation when £3 = 10 and SiS2 = 200 is 

shown by the solid curve of Fig. 8.26, while 

the diagrams obtained for the same value of 

63, but with Si $2 chosen as 100 and 400, are 

shown respectively by the broken line Curves 

I and II. Considering in particular the solid 

curve, it will be seen that the plot does in fact loop around —1,0 once 

in a counterclockwise direction, so that the final structure is stable. This 

is, of course, in agreement with the conclusion previously reached in con¬ 

nection with Fig. 8.24, since the assumed *S”s are the same as those which 

apply to Curve III of that figure. 

Fig. 8.25 

Fig. 8.26 

By varying S3 it is also possible to confirm the conclusions reached previ¬ 

ously for the conditions represented by the other curves of Fig. 8.24. The 

changes in 63 can be represented in Fig. 8.26 by expanding or contracting 

* Figure 8.25 gives only the positive frequency half of the complete plot. A second 
loop around the critical point is, of course, provided by the negative half. 
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the diagram or, more conveniently, by keeping the plot fixed and moving 

the critical point. If we retain the choice = 200, it will be observed 

that the circuit remains stable if £3 is varied by a small amount in either 

direction from the original value 10, but that it becomes unstable for larger 

changes. As an example we may select 63 — 4 which corresponds to 

Curve IV in Fig*8.24. This is equivalent to moving the critical point to 

the position P\ in Fig. 8.26. The critical point is thus placed outside the 

solid curve, which corresponds to instability in this situation. On the 

other hand, the choice S% = 40, which corresponds to Curve I in Fig. 8.24, 

moves the critical point to the position P2. With this change, the point is 

still encircled by the curve, but the encirclement takes place in the wrong 

direction. 

Fig. 8.27 Fio. 8.28 

8.9. Conditional and Unconditional Stability 

In a formal mathematical sense, the above criteria of stability, based 

entirely upon the encirclement of the critical point in the Nyquist diagram, 

require no qualifications. Any structure that meets them is stable. For 

practical engineering purposes, however, it is desirable to pay some atten¬ 

tion to the general shape of the Nyquist plot in addition to counting the 

number of times It loops around the critical point. This gives rise to two 

general classes of stable structures, as illustrated by the return ratio dia¬ 

grams for single loop structures shown by Figs. 8.27 and 8.28. Both dia¬ 

grams represent stable circuits. The first, however, is absolutely or uncon¬ 

ditionally stable, while the second is merely Nyquist* or conditionally stable. 

The reason for making this distinction appears if it is recalled that for 

practical purposes we are really interested in the stability of an amplifier 

* So-called because it was generally assumed before Nyquist’s work that it was not 
possible to obtain a positive real fifi greater than unity without instability. 
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over a period of time. Most of the elements of the amplifier can be 

expected to remain fairly constant. The gains of the tubes, however, are 

likely to diminish with age and since one of the usual objectives in applying 

feedback to a circuit is to allow a large variation in the tubes without much 

effect on the external gain, it must be supposed that this diminution will be 

substantial. Since the return ratio diagram in a single loop feedback 

structure swells or shrinks in direct proportion to the gain of the tubes, the 

effect of aging therefore will be to contract the loop. If a diagram such as 

that shown in Fig. 8.28, in which the return ratio path goes beyond 180° 

for an interval in which there is a net 

gain around the loop, is sufficiently 

decreased the plot will take the form 

shown by Fig. 8.29 and evidently 

represents an unstable circuit. If 

the diagram is of the uncondition¬ 

ally stable type shown by Fig. 8.27, 

on the other hand, it can be de¬ 

creased indefinitely without produc¬ 

ing instability. 

Another possibility of securing a 

change in tube gains with time occurs 

when the power is first applied to the 

tubes. Until the cathodes are warm 

the gain of the tubes will be very small. As power is applied to the circuit, 

therefore, we must imagine that the return ratio diagram begins by being 

very small and expands continuously to its final position as the cathode 

temperatures increase. If the final diagram is of the type shown by 

Fig. 8.28, there will be an intermediate point in the course of this expansion 

for which the system is unstable. When this intermediate point is reached 

natural oscillations begin and build up exponentially. At the same time, 

of course, the gains of the tubes increase as the cathodes approach their 

operating temperatures so that there is a tendency for the amplifier to pull 

itself out of the unstable condition. In most circumstances, however, the 

sing develops so rapidly that the tubes are overloaded before the gain is 

sufficient to bring the Nyquist diagram out of the unstable condition. 

Since overloading usually reduces the effective gains of the tubes, the system 

is very likely to persist in an unstable condition permanently. 

These difficulties are not necessarily unanswerable. For example, we 

may close the feedback loop after the gains of the tubes have reached their 

normal values, or we may apply “ B ” battery to the tubes after the cath¬ 

ode temperatures are sufficiently high. For practical purposes, however, 

these devices represent undesirable complications. Moreover, even if 

Fig. 8.29 
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they are used the amplifier is somewhat unreliable, since it may still sing if 

the tubes age sufficiently or if the power supply is momentarily interrupted. 

For these reasons, most of the analysis which follows will assume that the 

amplifier is to be unconditionally stable. On the other hand, it turns out 

that under equivalent circumstances a conditionally stable amplifier may 

exhibit much more feedback than would be obtainable from an uncon¬ 

ditionally stable structure. Conditional stability thus represents an 

important possibility when adequate feedback is hard to secure. 

A second qualification on this discussion is also pertinent. In describing 

the characteristics of a conditionally stable circuit it was tacitly assumed 

that the structure contained only a single feedback loop. Evidently, the 

same physical considerations affect multiple loop structures also. In the 

single loop case, however, we can distinguish between conditionally and 

unconditionally stable situations merely by inspecting the shape of the 

Nyquist diagram, since changes in tube gains affect only the size of the 

diagram. In a multiple loop circuit, on the other hand, both the shape and 

the size of the Nyquist diagram for any one tube may be affected by 

changes in the gains of the other tubes. Examples are furnished by the 

preceding Figs. 8.24 and 8.26. This evidently produces a much more 

complicated situation. The analysis of the problem is too lengthy to be 

given here and will be presented at a later point. 

8.10. Extensions of Nyquist*s Criterion 

Thus far we have applied the Nyquist diagram method of determining 

stability only to the return difference A/A0. Since A will appear in almost 

any transmission or impedance expression we care to set up, however, it is 

clear that the application of the criterion is not necessarily restricted to this 

one function. Some of the possible extensions are considered here. The 

discussion is given only in outline, since the essential situation is the same 

as it is for the return difference function. The chief point to notice is that 

any transmission or impedance expression will contain A in combination 

with some other determinant, just as the return difference includes both A 

and A0. In general, the Nyquist diagram will give only the difference 

between the zeros and poles of the impedance or transmission function or, 

in other words, only the difference between the number of zeros of A and of 

the determinant with which it is associated. In extending Nyquist’s cri¬ 

terion, therefore, it is necessary to assume that we have some means of 

determining the number of zeros in the right-hand half-plane furnished by 

the other determinant. This is usually equivalent to saying that we must 

know that the structure is stable for some particular reference condition or 

if it is not stable what modes of instability it has. 
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1. Nyquist's Criterion for a Driving Point Immittance. The immittance 

which will be seen at the terminals of a generator applied to the nth mesh 

or node of a general network can be written as 

(8-25) 

If we make a Nyquist plot of this expression, it follows from (8-17) that 

the number of loops encircling the origin will be the difference between the 

number of zeros of A and of Ann in the right-hand half-plane. The quan¬ 

tity Ann, however, is the form to which the determinant of the system 

reduces when an infinite immittance is across the driving terminals or, in 

other words, when the driving terminals are open-circuited in an impedance 

analysis or short-circuited in an admittance analysis. If the system is 

known to be stable under these conditions (8-25) can have no poles in the 

right half-plane. If it also has no zeros in this region, so that the system is 

stable under normal conditions, it follows that the Nyquist plot cannot 

encircle the origin. 

This result can be generalized. Suppose that instead of adding an 

infinite immittance between the driving terminals we add only the finite 

amount Wn. Since Awn must be independent of Wn (8-25) becomes 

W = W + JVn = ~ (8-26) 
Ann 

where Ar represents the new value of A. Division of (8-25) by (8-26) gives 

W W A 

w* ~ w + wn " a! ’ (8-27) 

If the system is known to be stable after the addition of Wny (8-27) can 

have no poles in the right half-plane and the previous argument applies. 

We therefore have the 

Theorem: If a system is stable when a prescribed immittance is added 

between a pair of terminals it will be stable without the 

given immittance provided the Nyquist plot of the ratio 

between the total immittances at the terminals in the two 

cases does not encircle the origin. In particular, it is neces¬ 

sary to plot only the normal immittance itself if the system 

is stable when an infinite immittance is added between the 

driving terminals. 

In applying this theorem, it must be borne in mind that the complete 

Nyquist contour of Fig. 8.7 includes the large semicircle in the right half- 
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plane as well as the real frequency axis. This part of the path was dis¬ 

missed in the consideration of F on the assumption that a physical return 

difference always approached unity at infinite frequency. The same 

simplification obtains here if the quantity which is plotted approaches a 

constant value at infinity. If it behaves as either a positive or a negative 

power of frequency near infinity, however, the Nyquist diagram must 

include an arc of a very large or very small circle to represent the values 

assumed by the function over this part of the path. 

2. Nyquist's Criterion for a Transfer Immittance. The transfer immittance 

from point i to point j in a general network can be written as 

WT = —■ (8-28) 

The Nyquist diagram corresponding to (8-28) will encircle the origin as 

many times as there are roots of A in the right half-plane provided there are 

no roots of A,-y in this region. From the discussion under Sc in the list of 

general network conditions given in the preceding chapter, the restriction 

on the roots of A,-y is equivalent to specifying that the transfer immittance 

must be a minimum phase shift function. We can therefore conclude that 

if the transfer immittance is known to be of minimum phase type the net¬ 

work will be stable provided the Nyquist diagram of the transfer immittance 

does not encircle the origin. As an example we may consider the familiar 

expression n/(l — nP) for the gain of an ordinary feedback amplifier. 

Since a transfer immittance has the physical significance of a loss, this 

expression can be regarded as the reciprocal of the transfer immittance 

from input to output. The poles of transfer immittance are consequently 

either points at which p vanishes or points at which p becomes infinite. 

None of the latter group of points can be found in the right half-plane, since 

the P circuit, being passive, is necessarily stable. None of the former group 

of points will appear in the right half-plane if the gain ju by itself represents 

a minimum phase shift expression. This will be true for any of the n cir¬ 

cuits encountered in ordinary design practice. In any ordinary situation, 

therefore, the stability of the amplifier can be determined by observing 

whether or not the Nyquist plot of its external gain encircles the origin.* 

This analysis can be generalized by methods similar to those used for the 

* In making such a plot, however, allowance must again be made for the fact that 
die complete Nyquist path includes the large semicircle in the right half-plane. In 
practical situations, the gain of the amplifier must eventually drop off as some nega¬ 

tive power of frequency. The final part of the diagram must include an arc of a very 
small circle to represent the behavior of such a function over the large semicircular 
portion of the path. 
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driving point immittance. We observe that A„ in (8—28) must be inde¬ 

pendent of the self-immittances at i and j. If we make an arbitrary change 

in either or both self-immittances, therefore, we can write the new transfer 

immittance as 

W'T (3-29) 

where A' represents the new value of A. The ratio of (8-28) and (8-29) is 

Wt = _A 

W’T ~ A' 
(8-30) 

and the Nyquist diagram of this function will encircle the origin as many 

times as there are roots of A in the right half-plane if there are no roots 

of Ar in this region. We therefore have the 

Theorem: If a system is stable when prescribed immittances are added 

at two points in a circuit, it will also be stable without the 

added immittances if the Nyquist plot of the ratio of the 

transfer immittances between the two points in the two 

cases does not encircle the origin. In particular, it is neces¬ 

sary to plot only the transfer immittance in the second case 

if the function is known to be of minimum phase type. 

8.11. Two Theorems from Function Theory 

The discussion of this chapter will be concluded by the demonstration of 

two standard theorems from function theory. The theorems are developed 

here for use in the next few chapters. They can conveniently be regarded 

as by-products of the Nyquist diagram method of treating stability, 

although they are usually established independently. 

To develop the first theorem, letf\(z) and/2(z) be two functions which 

are analytic within and on the boundary of a given region. Both/i (z) and 

/2(z) may, however, have zeros within the region. It will be assumed that 

l/i(z)| > l/2(2)| at all points on the boundary. Consider the function 

F(z) defined by 

F(z) = 
/1 (2) +/2(z) 

/l(2) 
« 1 + 

M*) 

/l(2) 
(8-31) 

In accordance with (8-17), the number of times the origin is encircled by 

the Nyquist plot of F(z) is equal to the difference between the number of 

zeros of F(z) and the number of poles of F(z) lying within the region. But 

the zeros and poles are respectively the roots offi(z) +/2(z) and/i(z). 

Furthermore, since we have assumed l/i(z)| > |/2(z)| on the boundary, 

it is clear from the right-hand side of (8-31) that the Nyquist plot must be 
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inside the unit circle in Fig. 8.30. Evidently the plot cannot encircle the 

origin at all. We therefore have the 

Theorem: If/i(z) and/2(z) are analytic on and within a given closed 

contour and | f\ (z) | > |/2(z)| on the contour, the func¬ 

tions ft (z) and/1 (2) +/2(z) have the same number of roots 

within* the contour. 

The general field of application of this 

theorem is obviously that of determining 

rough limits within which changes in a 

structure can be expected not to affect 

its stability. As an example, suppose 

f\ (2) represents an impedance looking 

into some pair of terminals in an ampli¬ 

fier. It will be supposed that /i(z) is 

“ open-circuit stable ” — so that it has no 

Fig. 8.30 poles in the right half-plane. Let /2(z) 

be an ordinary passive impedance added 

between these terminals. If |/i(z)| > |/2(z)| at all points on the real 

frequency axis the addition of the passive impedance cannot affect the 

stability or instability of the structure. 

To establish the second theorem, let /(z) be analytic within and on the 

boundary of some given region. The Nyquist plot of/(z) will take one of 

the forms indicated by Figs. 8.31 and 8.32, depending upon whether or not 

there is a root of/(z) in the region. Let zo be any point in the region. In 

accordance with the argument advanced in connection with Fig. 8.13, 

/(zo) can be represented by some point P lying within the Nyquist plot in 

Fig. 8.31 or 8.32. Evidently the real component of/(zo) cannot be as great 

as the real component exhibited by/(z) in some parts of the boundary 
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because in either figure we can find some point P\ on the plot itself which 

lies to the right of P. Similarly, the existence of points such as P2 indi¬ 

cate that there must be parts of the boundary for which the real component 

of/(z) is less than that of/(z0). The points P$ and P4 illustrate similar 

relations for the imaginary component. In both plots, also, there is a 

point P5 corresponding to an absolute value of/(z) greater than that of 

/(z0). In Fig. 8.32 we can, in addition, pick out a point Pq corresponding 

to a smaller absolute value than that of/(z0), as well as points P7 and Ps 

at which the phase angle is greater than and less than that of/(z0). But 

the Zo with which we started was any point in the interior of the region. 

We have therefore established the 

Theorem: If/(z) is analytic within and on a given closed contour the 

maxima and minima of the real and imaginary components 

of/(z) and the maximum absolute value of/(z), for the 

region composed of the contour itself and the points interior 

to it, are all found on the contour. If/(z) has in addition 

no zeros within the contour the minimum absolute value of 

/(z) and the maximum and minimum phase angles of/(z) 

are also found on the contour. 

An example of this theorem is furnished by the common engineering 

problem of maximizing or minimizing some aspect of the performance of a 

complete passive network at a prescribed frequency by making the most 

suitable choice of some branch impedance which is under our control. It 

will be supposed that the branch impedance may be a reactance, a resist¬ 

ance, or some combination of the two. In general, any ordinary passive 

network characteristic, such as a driving point or transfer impedance, will 

have neither zeros nor poles considered as a function of one of the branch 

impedances, as long as the branch impedance has a positive resistance com¬ 

ponent.* In other words, both the driving point or transfer impedance and 

its logarithm will be analytic functions in the right half of the plane repre¬ 

senting the branch impedance. It follows that the real and imaginary 

components of the driving point and transfer impedances, their absolute 

values, and their phase angles will all assume both larger and smaller values 

on the imaginary axis than they do anywhere in the right half-plane. Since 

we cannot assign a negative resistance component to the branch impedance, 

the maximum and minimum values which are physically obtainable for any 

of these quantities must therefore be found when the branch impedance is a 

pure imaginary. It is not necessary to examine dissipative impedances. 

* An exception to this statement must be made for the transfer impedances for 
certain types of bridge circuits, in which zero delivered current can be secured by 
bridge balance. These are the non-minimum phase shift networks described in a later 
chapter. 



CHAPTER IX 

Physical Representation of Driving Point Impedance Functions 

9.1. Introduction 

This and the succeeding chapter are devoted to a general discussion 

of the properties of driving point impedance and admittance functions on 

the basis of the requirements laid down in Chapters VII and VIII. The 

material is not intended to constitute a complete theory. It is presented 

principally to illustrate the general requirements deduced in preceding 

chapters by showing some of the more elementary physical consequences to 

which they lead. For the sake of logical coherence, however, the present 

chapter will be centered about the general problem of showing that the con¬ 

ditions on driving point impedances laid down in Chapter VII are sufficient 

as well as necessary or, in other words, that any impedance functions meet¬ 

ing these conditions can be realized in a physical structure. Miscellaneous 

additional topics will then be treated in Chapter X. 

The list of requirements on driving point impedance functions given in 

Chapter VII includes both general conditions applicable to all networks, 

active or passive, and additional special conditions applicable only to 

passive structures. Purely passive impedances, however, are both those 

for which the greatest experience is available and those of greatest present 

importance in design. The discussion will consequently be directed princi¬ 

pally at impedances of this type. Active impedances are treated by indi¬ 

cating the points at which they require formal extensions in the passive 

analysis. In particular, the present chapter will begin by showing how 

any impedance function meeting the passive requirements can be realized. 

The problem of realizing an active impedance expression is then treated by 

showing that any active impedance can be obtained from a combination of a 

passive impedance and a negative resistance. 

9.2. Resistance Reduction of Passive Impedances 

The conditions which must be met by any passive impedance function 

were given as 1, 2, 3, 4, Sb> and 6a in the list of Chapter VII. Our first 

object is to show that an actual physical structure can be found which will 

represent any impedance function meeting these requirements. Methods 

170 
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of solving this problem have been invented by Brune* and Darlington.f 

Darlington’s structure consists of a four-terminal reactance network termi¬ 

nated in a resistance. He is able to show that by properly proportioning 

the network the input impedance of the structure can be assigned any 

functional form which meets these requirements. 

For the purposes of this book the method developed by Brune is the 

more useful. Brune’s method depends upon two principles. In order to 

explain the first, let it be supposed for simplicity that the impedance func¬ 

tion has no zeros or poles on the imaginary axis. The fact that this assump¬ 

tion is immaterial is shown in the next section. Both the impedance and 

admittance will then be analytic in the right-hand half of the p plane, 

including the imaginary axis. This is a situation which can be examined 

by the second of the two theorems developed at the end of the preceding 

chapter if we regard the right half of the p plane as the region of analyticity 

and the imaginary axis as the boundary. For our present purposes, we will 

be particularly interested in the conclusion that the minimum value of the 

resistance or conductance along the imaginary axis is less than any value of 

resistance or conductance in the right-hand half-plane. Since the real 

component of the impcda ice is positive at all points on the real frequency 

axis, from 6a of Chapter VII, it consequently follows that it must also be 

positive throughout the right half of the p plane. Brune described this 

situation by the statement that a passive impedance is a positive real 
function, by which he meant that the real component of Z is always positive 

when the real component of p is positive. 

The same result can also be established by the energy function argument 

of Chapter VII if we write the right-hand side of equation (7-32) of that 

chapter as E\li> as in the preceding equation (7-25), instead of zero, so 

that the equation refers to the steady-state rather than to the transient 

condition of the network. The term E\l\ will, of course, be retained in the 

final expression (7-34) and can be interpreted as the conjugate of the driv¬ 

ing point admittance in the same way as was done in connection with 

(7-30). If we represent the phase angle of the impedance by 0, set 

P = Pi + ip2> and write T, F, and V for brevity to represent the sums 

Ta + Tby etc., this allows us to write 

0 = tan”1 

F+ti(T+tfh) 
(9-1) 

* Journal of Mathematics and Physics, M.I.T., Vol. X, Oct. 1931, pp. 191-235. 

f Journal of Mathematics and Physics, M.I.T., Vol. XVIII, No. 4, Sept. 1939, 

pp. 257-353. 
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The quantities Ty F\ and V are, of course, always positive. In the right 

half-plane, where pi is also positive, it is easily seen that the absolute value 

of 6 is less than, or at most equal to, the absolute value of tan~* pz/pi- 

In other words, when p lies in the right half-plane, Z must have a phase 

angle less than or in the limit equal to that of p itself. Evidently, there¬ 

fore, the phase angle of Z cannot reach ±90°, so that the real component of 

Z must be positive. 

The fact that the minimum resistance occurs on the real frequency axis 

may also be used to deduce a second result. Evidently, if we subtract any 

resistance not greater than this minimum from the impedance function we 

will still have a positive resistance throughout the right half-plane. The 

new function can therefore have no zeros in this region. The poles of the 

function and the various conditions of conjugacy are, moreover, not affected 

by the subtraction of a finite real constant. Since an exactly symmetrical 

situation is obtained if the analysis is expressed in terms of admittances 

rather than impedances, this allows us to state the 

Theorem: A passive immittance will continue to meet the conditions 

of physical realizability in passive networks if it is dimin¬ 

ished by any real constant as long as the real component of 

the resulting expression does not become negative at any 

real frequency. 

An immittance function will be called a minimum resistance or minimum 

conductance expression if its real component vanishes at some point on the 

real frequency axis, so that no further diminution is possible without vio¬ 

lating the passive conditions. 

As an example of these relations we may consider the impedance Zi 

given by the first of equations (7-17) of Chapter VII. The corresponding 

Riy also given by these equations, has a minimum at o>2 = 1.63, at which 

point it is equal to 0.105. The impedance will consequently continue to 

satisfy the passive conditions if we subtract from it any resistance not 

greater than 0.105. The limiting, or minimum resistance, expression is 

given by 

- 0 105 0-48p2 + 0.69p + 1.58 

Z‘ " Zl - °-105 ~ V + 3^+4 

As an alternative to this procedure we may also examine the reciprocal of 

Zi, using an admittance analysis. The real component of 1/Zi reaches a 

minimum value of unity at «2 = 1. The corresponding minimum con¬ 

ductance expression is 

y, m 1 _ . 4j>2 + 2p + 2 

1 Zl »2+p + 2 
(9-3) 
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This is the same as 1/Z2 in (7-17) in Chapter VII, as we might expect from 
the relation between Z\ and Z2 indicated by Fig. 7.5 in that chapter. 

The principle of resistance or conductance reduction has been introduced 
here primarily as a step in the development of Brune's method of synthe¬ 
sizing networks. It is, however, of occasional value also in actual design 
problems. As an example, let it be supposed that an interstage network 
has been designed without regard to plate or grid-leak conductance and 
that we wish to take account of these quantities. If the interstage design 
includes a parallel resistance of sufficiently low value there is, of course, no 
difficulty in making the appropriate changes. The preceding theorem 
shows, however, that if the minimum conductance of the network is 
sufficiently large the impedance can always be represented with such a 
branch, even if the original structure of the network is quite different. In 
this example, of course, the equivalent circuic while it may be physically 
realizable in a theoretical sense, may not be found in a configuration which 
lends itself readily to actual construction. 

9.3. Reactance Reduction of Passive Impedances 

The preceding section has shown that the real component of a passive 
immittance can be varied by a constant amount, within certain limits, 
without affecting the passive character of the complete expression. Similar 
possibilities may also exist for the imaginary component except that the 
change, instead of being a constant, is a prescribed function of frequency. 

These possibilities are associated with the presence of zeros and poles of 
impedance on the real frequency axis. It will be recalled that zeros and 
poles of impedance at real frequencies are always simple and occur in plus 
and minus pairs. Let zbp0 represent such a pair of zeros or poles. If po 

represents a pole we can write Z = Zf/(p — po), where Zf has no pole at po 

and can consequently be expanded in a Taylor's series about this point. 
We can therefore write 

Z = -\Ao + A\(p — po) + A 2 (p — po)2 + • • •] 
P - Po 

= ---V A\ -{- A2 (p — po) + • • * (9-4) 
P — Po 

If po represents a zero, we have, similarly, 

Z = (p — po)[Bo + B\(p — po) + 52(p — po)2 + •••]• (9-5) 

When p is very close to po, the terms A0/(p — po) and B0(p — po) in 
these expressions are much more important than any others. Since 
p — po is a positive imaginary for values of p on the imaginary axis on one 
side of po and a negative imaginary for values on the other side, both Aq 
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and Bo must be real quantities if the impedance is not to have a negative 
resistance component for frequencies sufficiently close to po on one side or 
the other. 

Both Ao and Bo must also be positive. This is immediately apparent if 
we make use of (9-1). Unless A0 and Bq are positive the impedance will be 
approximately a aegative resistance, with a phase angle certainly greater 
than ±90°, for values of p sufficiently close to po in the right-hand half¬ 
plane. The fact that Ao and 50 must be positive can also be shown 
directly from a Nyquist stability diagram. In applying this method it 
must be recalled that the integration contour assumed in preparing the 

diagram may include small indentations 
away from the real frequency axis, as shown 
by Fig. 8.7 of Chapter VIII, to avoid singu¬ 
larities of the integrand on that axis. Since 
the integrand in the Nyquist method is the 
logarithmic derivative of the impedance 
function such an indentation must be made 
for each zero and pole of impedance on 
the real axis. If we consider in particular 
a pole, the resulting Nyquist diagram may 
be studied by means of Fig. 9.1. The solid 
line shows the behavior of the function on 
the small indentation and adjacent parts 
of the real frequency path when Ao is 

supposed to be positive, while the broken line gives a similar plot when Ao 

is negative. The dotted line indicates the plot corresponding to other 
parts of the real frequency axis. The exact shape here is unimportant, but 
this part of the complete plot must of course link up with either the solid or 
the broken line portions without leaving the right half-plane. It is clear 
that if we choose the broken line path the complete plot will encircle the 
origin, so that the stability condition will be violated. 

From these facts, it is easy to show that a zero or pole at real frequencies 
can always be represented as an ordinary resonant or anti-resonant network. 
Corresponding to (9-4), for example, there must be a similar expansion 
about the conjugate pole at — po* While the two expansions will not, in 
general, be identical, it is easy to see that the constant Ao, at least, will be 
the same in both. The sum of the two terms representing the poles is, 
however, 2Aop/(p2 — po)• This can be identified with pD/{p2 + D/L), 

which represents the impedance of an anti-resonant network, provided we 

have 

Fig. 9.1 

2Ao 

Po ’ 
D = 2A0; L (9-6) 
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Since Aq is positive and Pq is negative, both elements must be positive. In 
the special case when the pole occurs at zero or infinity the anti-resonant 
network reduces to a condenser or an inductance. In an exactly similar 
way, of course, we can represent zeros of impedance, or poles of admittance, 
by series resonant circuits in parallel with the rest of the network. 

An impedance all of whose real frequency poles have been deleted in this 
manner will be called a minimum reactance network, while if the zeros have 
been removed it will be called a minimum susceptance structure. In 
either case the removed branch is, of course, a pure imaginary on the real 
frequency axis.* The resistance of the remainder at real frequencies is 
therefore still positive and we need merely repeat the argument of the 
preceding section to show that the remainder must consequently meet all 
the passive conditions. This establishes the 

Theorem: A passive impedance or admittance will continue to meet 
the conditions of physical realizability in passive networks if 
it is diminished by the reactance or susceptance correspond¬ 
ing to its real frequency poles. 

As an example of this process we may consider the impedance function 

2p2 + p + 1 ^ 

p6 + p2 + P + 1 
(9-7) 

The expression meets all the requirements of physical realizability in a 
passive network. There are three poles, one at p = — 1 and the remaining 
two at p = dbi. The latter pair, since they occur on the real frequency 
axis, indicate that Z is not a minimum reactance function. In order to 
extract these poles, it is convenient to begin by noticing that Aq in (9-4) 
and (9-6) must satisfy the relation 

A0 = lim [(p - po)Z\ 
p—4p0 

(9-8) 

* In the right half-plane, however, it has a positive real component, as we can see by 
inspection of the branch immittance expression. This is of interest in connection 
with the analysis of the preceding section, which was based upon the assumption that 
the immittance had no singularities on the real frequency axis and the consequent fact 
that its real component attains smaller values on the axis than it does anywhere in the 
interior of the right half-plane. It is clear that the argument holds a fortiori if we 
begin with a non-minimum reactance or susceptance expression. 
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In the present instance, where po = —1, this gives 

Aq = limp 
p-wL 

>2 + 1 

2 i 
_ i 
= 2* 

2p2 + p + 1 1 

(P+ D(P2 + DJ 
(9-9) 

Using this in (9-35), we find that the elements of the corresponding anti¬ 
resonant circuit are given by L = D = 1. If the impedance of these com¬ 
ponents is written separately the complete expression corresponding to 
(9-7) appears as 

Z = 
1 +P‘ 

+ 
1 

1 + P 
(9-10) 

The first term on the right-hand side represents the anti-resonant network, 
while the second is the minimum reactance part 
of the complete expression. The second is 
readily identified with the impedance of a re¬ 
sistance in parallel with a condenser so that the 
complete structure is that shown by Fig. 9.2. 

In amplifier design, the principle of reactance or susceptance reduction 
is chiefly useful as a guide to available interstage configurations. An 
example is shown by Figs. 9.3 and 9.4. In Fig. 9.3 we observe that, aside 

*CH> 
Fig. 9.2 

Fig. 9.3 Fig. 9.4 

from the parasitic capacity, the interstage impedance must have a pole at 
infinity, since both branches contain series inductances. It is conse¬ 
quently possible to represent this portion of the network as a single induc¬ 
tance in series with some other physical impedance. This is illustrated by 
Fig. 9.4, the residual network after the pole at infinity is extracted being 
represented by the box. The exact configuration of the residual portion 
will depend somewhat upon the numerical values of the elements in the 
original structure, but one possibility is indicated by the broken lines. 
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Although the two structures are theoretically equivalent the structure of 
Fig. 9.4 has the practical advantage that it tends to minimize the effects of 
element capacities to ground. At high frequencies, in Fig. 9.4, we have, in 
effect, to reckon with the ground capacity of only the single series coil, so 
that the introduction of interstage elements produces 
only a slight increase in the total interstage capacity. 

As a second example, let it be supposed that the 
structure of Fig. 9.2, in association with the usual 
parasitic capacity, represents an interstage impedance. 
This particular configuration is a convenient one for 
many design purposes. From a theoretical point of 
view, however, it is obviously inefficient, since it in¬ 
cludes a capacity path through the network at high 
frequencies. This corresponds analytically to a pole 
of admittance at infinity. As the previous discussion 
shows, the pole can be split out as a separate shunt 
capacity which can be absorbed as part of the normal 
parasitic capacity of the interstage, thus allowing the same impedance 
characteristics to be duplicated at a higher level. The decomposition is 
effected by writing the admittance corresponding to (9-7) as 

p 1 p2 + p + 2 

2 + 2 2p2 + p + f 
(9-11) 

The network corresponding to this expression is shown by Fig. 9.5. The 
first term in (9-11) is, of course, represented by the parallel capacity. The 
method by which a representation of the second term is secured may be less 
obvious, but it will be explained in a later section. The fact that this part 
of the network requires mutual inductance for an exact representation is 
unfortunate, but for most purposes a sufficiently good approximation can 
be obtained with a network of the same configuration without the mutual 
coupling. 

9.4. Properties of Networks of Pure Reactances* 

In later chapters it will be shown that minimum resistance and mini¬ 
mum reactance networks have the special property that in each case one 
of the components of the impedance is fully determined as soon as the other 
is known. Thus, for example, if a network is of minimum reactance type 
its reactance characteristic can be computed from its resistance characteris¬ 
tic. The only possibilities of changing the reactance without affecting the 

The material of this section is based upon the classic paper by R. M. Foster, “ A 
Reactance Theorem,” B,S*TJ, April 1924, pp. 259-267. 
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resistance lie in the addition of a pure reactance network. Particular 
interest thus attaches to the properties of purely reactive impedances. 

As we have already seen, any zeros or poles of impedance on the real 
frequency axis can be represented by resonant or anti-resonant networks. 
Conversely, if the network is composed exclusively of pure reactances, this 
is the only possiBle location for the zeros and poles. The proof depends 
merely on the fact that the reactive component of any physical network 
must always be an odd function of frequency. If the network is composed 
of pure reactances, therefore, the impedance as a whole must be an odd 
function. It follows that if the reactive network has a zero or pole at 
any point po in the complex plane, there must be a corresponding zero or 

pole at —po. Since we can never have zeros or 
poles in the interior of the right half-plane, how¬ 
ever, this means that no zeros or poles can be found 
in the interior of the left half-plane either. The 
zeros and poles must consequently be confined to 

Fig. 9.6 the imaginary axis. They must, of course, then 
be simple and occur in positive and negative pairs. 

One more fact will complete the mathematical specification of the 
impedance of a network of pure reactances. In a general network there is 
no particular restriction on the relative number or arrangement of the real 
frequency zeros and poles. In a purely reactive network, on the other 
hand, the number of zeros must be the same as the number of poles if we 
include the extreme zeros and poles at zero and infinite frequency, and zeros 
and poles occur alternately along the real frequency axis. To show why 
this must be so, let it be supposed, on the contrary, that two zeros were to 
occur consecutively. The reactance characteristic in their neighborhood 
would evidently take some such shape as that indicated by the broken or 
sqlid lines of Fig. 9.6. In either case, the derivative of the reactance 
characteristic is positive at one zero and negative at the other. In equa¬ 
tion (9-5), however, Bo can evidently be identified with the derivative at 
the corresponding zero. If all the jBo’s are to be positive, therefore, the 
situation shown in Fig. 9.6 is not possible. A similar argument can be used 
to show that two poles cannot occur in succession. 

With this background, we can write a general formula for the impedance 
of any reactive network in the following form 

- , (p2-pI)(p2-pI)---(p2-pD 

p 0p2 - pi)(p2 - pi) • • • (p2 - pi-1) 
(9-12) 

In this expression, the quantity £ is a positive real constant, while p2, p%> 

etc., are negative real quantities. Each of the factors (p2 — p\) thus 
represents a pair of zeros or poles at positive and negative real freauenctes* 
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We can take care of the fact that zeros and poles must alternate by impos¬ 
ing the condition that 

-pi > -Pi-i > ■ ■ • > -pl > ~p\ > 0. 
As equation (9-12) is written, the impedance is zero at zero frequency and 

infinite at infinite frequency, which means that there is an inductive path 
but no capacitative path through the network. Evidently either a zero or 
pole must be found at both zero and infinite frequency, but there is no 
particular reason in general why either point should be one thing rather 
than the other. We can therefore classify reactive networks into L-L, 
L-Cy C-Ly and C-C forms,^depending upon the types of elements which their 
impedances approximate at these frequencies. For example, equation 
(9-12) as it stands represents an L-L network. In order to take care of 
the other cases, we shall suppose that p\ may assume the special value zero 

if we wish to represent a network whose reactance is similar to that of a 
capacity at zero frequency, and that the last factor/)2 — /& may be omitted 
in order to represent networks which behave like a capacity at infinite fre¬ 
quency. A sketch of a typical characteristic corresponding to (9-12) is 
shown by Fig. 9.7, the modifications necessary to represent other types of 
networks being indicated roughly by the broken lines. 

Granted any such general formula as (9-12), a corresponding physical 
network can be obtained either by representing the poles by anti-resonant 
networks in series or by representing the zeros by resonant networks in 
parallel, following the methods already described. The only change arises 
from the fact that if the structure is composed of pure reactances the repre¬ 
sentation of the real frequency zeros or poles gives the complete network. 
There is no residual “ minimum reactance ” or “ minimum susceptance ” 
network requiring some other form of representation. Thus if we expand 
in terms of impedance poles the resulting structure takes the general form 
shown by Fig. 9.8, while if the expansion is taken with respect to the imped- 
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ance zeros the result is of the form shown by Fig. 9.9. In Fig. 9.8 the final 
series inductance and capacity represent poles at infinite and zero frequency, 

-rW-» 
Fig. 9.8 

XJUL 
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respectively, so that the structure is of the C-L type, in the notation of the 
previous paragraph. In Fig. 9.9, on the other hand, the parallel inductance 

and capacity indicate a structure of the L-C 

type. In both cases, however, the networks 
can be modified to suit other conditions by 
omitting either or both of the odd elements. 

With either configuration, the element values 
can be computed by the methods already dis¬ 
cussed in connection with (9-4) and (9-6). 
In the structure of Fig. 9.8, if Lj and Cy rep¬ 
resent the elements of the anti-resonant net¬ 

work corresponding to the poles at ±:pj, these equations can conveniently 
be combined to give 

EUUUUL 

Hh 

Fic. 9.9 

£ = -p?lj = \r~r-z W L Vi Jp=Pj 

The corresponding formula for the elements in Fig. 9.9 is 

PiZ _ 
.2 I 

"Pi 
pfCj Lp2-p1 Jp. 

(9-13) 

(9-14) 

In most circumstances, the choice between the two configurations depends 
upon which one leads to more convenient element values. In general, we 
find that the configuration of Fig. 9.9 is the one which requires the larger 
inductances and smaller capacities. 

o—| 

. T T T-.J - 
Fig. 9.10 Fio. 9.11 

Reactive networks can, of course, be built also in a variety of other 
configurations. Two fairly obvious possibilities are given by Figs. 9.10 
and 9.11. In order to represent any reactance network in the form shown 
by Fig. 9.10, for example, we may begin by representing the network in the 
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form shown by Fig. 9.8, and identifying the first series coil in that structure 
with the first series coil in Fig. 9.10. The remainder of the reactive net¬ 
work can then be converted to the form shown by Fig. 9.9, and the shunt 
condenser identified with the first shunt condenser of Fig. 9.10. By 
repeating the process the complete circuit is built up. 

For general engineering purposes, the most significant aspect of net¬ 
works of pure reactances is perhaps the fact that the characteristics which 
they may exhibit exist in such limited variety. Over the complete positive 
and negative real frequency axis a simple inductance or capacity sweeps 
once with positive slope through all values between — «> and + <». The 
most general reactive network characteristic, as illustrated by Fig. 9.7, is 
merely the same characteristic repeated several times on a distorted fre¬ 
quency scale. 

The distortion of the frequency scale always leads to a reactance charac¬ 
teristic whose slope is greater than that of a simple inductance or capacity. 
This can be shown most easily by returning to the energy analysis given in 
Chapter VII. Thus in the special case of a purely reactive structure 
equation (7-31) of that chapter reduces to 

% = 4c»(r - V). (9-15) 

For a purely reactive network, however, it is also possible to establish the 
relation 

^=4 X*(T+V), (9-16) 

where, as in (9-15), T and V are evaluated on the assumption that the 
network is energized by a voltage of unit maximum amplitude. If the 
second of these relations is divided by the first the result is 

dX _ X T + V 

du o} T — V “ 
(9-17) 

where the equality sign holds, of course, only if the network consists 
exclusively of inductances or exclusively of capacities. This establishes the 

Theorem: The slope of the reactance characteristic of a general reac¬ 
tive network at any frequency is always greater than that 
of a simple inductance or capacity having the same reactance 
at the given Frequency. 

These relations are illustrated by Fig. 9.12. 
It is to be noticed that (9-15) and (9-16) together determine T and V 

from X and dX/dv. This is of some interest in connection with high power 



182 NETWORK ANALYSIS Chap. 9 

circuits, such as radio transmitters, where the cost of the elements is largely 
determined by their kva ratings. It is clear that the total kva rating of the 
complete network, for any single frequency signal, depends only upon its 
external characteristics and is independent of its configuration. 

9.5. Brune's Method of Developing a General Passive Impedance 

The two processes of resistance reduction and reactance reduction were 
used by Brune to show that any impedance expression meeting the general 
passive conditions could actually be represented by a physical network. 
Brune’s method of finding the network is a step-by-step one. The succes¬ 
sive branches are found one at a time until the last branch is a pure resist¬ 
ance. 

The process begins by the representation of the impedance poles at real 
frequencies as a number of anti-resonant net¬ 
works in series, in the manner just described. 
After all the poles of impedance have been 
removed, the zeros of impedance, or poles 
of admittance, of the reduced impedance are 
similarly treated. There will result then as 
the next few elements of the network a num¬ 
ber of resonant circuits in parallel. After 

Fig. 9.13 the zeros of impedance have been removed 
we may find new poles which must be taken 

out, and then again new zeros, and so on. We will thus secure as the first 
part of the expansion a ladder network of the general type shown by 
Fig. 9.13. 

Since each stage in the representation of the zeros and poles decreases the 
degree of the rational function representing the impedance, it is obvious 
that the process will either succeed in giving us the complete impedance or 
else that we must eventually reach a stage at which there are neither zeros 
nor poles on the real frequency axis. Suppose that Z% of Fig. 9.14 repre¬ 
sents the impedance after it is no longer possible to subtract purely reactive 

X 
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elements from the circuit either in series or in parallel. In order to continue 

the analysis we artificially introduce a zero along the real frequency axis 

so that reactive elements in shunt can again be subtracted. The first step 

in this process is to subtract from the impedance a series resistance (R of 

Fig. 9.14) equal to the minimum value of the resistance along the axis. 

This leaves the new impedance Z2, which at some point along the axis is a 

pure reactance. The reactance at this point is eliminated by subtracting a 

suitable element. An inductance rather than a capacity is chosen for this 

purpose since we will later require a negative mutual impedance, which can 

be obtained physically with inductances but not with capacities, to con¬ 

struct the network. 

Suppose first that the required inductance is negative, as shown by — L\ 

on Fig. 9.14. Subtracting it leaves the impedance Z3, which must be zero 

at the frequency at which the resistance component of Z\ was a minimum. 

Fig. 9.14 

We can therefore introduce a corresponding resonant circuit L2-D in 

shunt. This leaves Z4. Now the impedance Z2 had no pole at infinity, but 

the introduction of — L\ gave us a pole at infinity in Z3 and obviously Z4 

must still have such a pole. Let this be removed by the introduction of the 

element L3, leaving the impedance Z5, which again has neither poles nor 

zeros along the imaginary axis. It is easily shown that if neither Z2 nor Z5 

is to have a pole at infinity, the inductances — L\> L2> and Z,3 must represent 

the equivalent T of a transformer having finite inductance and perfect 

coupling. By using such a transformer, therefore, we can provide the nega¬ 

tive inductance —which is required. If L\ is positive the process is 

exactly the same except that now Z,3 turns out to be negative. 

It is easily seen that if the original impedance met the requirements of 

physical realizability, each of the successive new impedances will also meet 

these requirements.* Z§ therefore meets the same conditions as Zi, except 

that as a rational function it is of somewhat lower degree. By repeating 

the process, therefore, we will eventually construct the complete network. 

As an example of this process we may consider the representation of twice 

* There is a temporary departure from the strict requirements if L\ is positive. 
This is amended, however, as soon as L3 is added. 
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the residual admittance {p2 + p + 2)/2(2p2 + p + 1) which appears in 

(9-11). This expression is already of minimum susceptance and minimum 

reactance type, so that we can begin immediately with the stage in the 

expansion represented by Fig. 9.14. Upon identifying the reciprocal of the 

admittance with t£e Zx of Fig. 9.14, we readily find that the corresponding 

resistance is 

Rx = 2 
(i - «2)2 

Cia* — 3o)2 -f- 4 
(9-18) 

This reaches its minimum value, zero, at w2 = 1. In the present instance, 

therefore, it is not necessary to consider the resistance reduction sym- 

1 
**Z O.IOS -0.165 0.338 

bolized by R in Fig. 9.14. At w = 1 we find that Zx = *. The inductance 

represented by —L\ in Fig. 9.14 is therefore +1. After the subtraction of 

this inductance, Z3 is given by 

Z3 = 
2p2 + p + 1 

P2 + P + 2 
~P “ 

(1 -/>)(! +p2) 
p2 + p + 2 

(9-19) 

The factor (1 + p2) in (9-19) represents the zero corresponding to the 

resonance of L2 and D in Fig. 9.14. With the help of (9-14) these ele¬ 

ments can be evaluated as L2 = D = 1. When their contribution is sub¬ 

tracted from Z we obtain, finally, 

Zi= - \ + \' (9-20) 

The term —p/2 evidently represents the inductance Lz in Fig. 9.14. It is, 

of course, negative, since the first inductance was positive. The term § 

represents the terminating impedance Z5. In this example it is necessary 

to carry the process illustrated by Fig. 9.14 through only one stage in order 

to reach a terminating impedance which is a constant resistance because the 

original impedance expression was of only the second degree. The complete 

structure is shown by Fig. 9.15. 

Since Zx in (7-17) of Chapter VII has been used frequently for illustra¬ 

tive purposes it is convenient to adopt this expression as a second example 

of Brune’s expansion. The situation is essentially the same as that just 

examined except for the fact that the present impedance is not initially in 
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minimum resistance form. We have already found in connection with 

(9-2), however, that the minimum resistance of Z\ is 0.105. This gives 

the R of Fig. 9.14 and the remainder of the network follows readily. The 

complete structure is shown by Fig. 9.16. 

As an alternative, we may begin with a conductance reduction of the 

impedance, following the analysis given in connection with (9-3). Since 

a minimum conductance network is also minimum resistance, this is an 

equally legitimate method of going from the initial expression to the stage 

represented by Z2 in Fig. 9.14. In the present instance it yields the struc¬ 

ture shown by Fig. 9.17. 

For practical purposes the chief objections to B rune’s method are the 

facts that it uses mutual inductance and that a very considerable amount 

of labor is required to compute the elements one by one. On the other 

hand, the technique demands a knowledge of the impedance only at real 

frequencies, so that it has some advantage in the simulation of impedances 

which are specified only by curves. 

-0.5 

9.6. Negative Resistances 

The discussion thus far has considered only impedance functions meet¬ 

ing the passive requirements. The corresponding physical structures, of 

course, then consist of combinations of the three passive elements, 

resistance, inductance, and capacity. To consider more general cases we 

need one additional building block. The additional unit can conveniently 

be taken as a negative resistance, since such an element expresses most 

distinctively the difference between a passive network and a general circuit, 

containing a source of power. 

A negative resistance can be obtained in a variety of rather familiar 

ways. No attempt will be made to consider this field in any detail here. 

Broadly, one possibility rests upon the difference between the active and 

passive impedances of feedback circuits as expressed, for example, by (5-3) 

or (5-4) of Chapter V. Evidently, a negative resistance can be obtained 

from any feedback circuit of pure resistances if the circuit is so arranged 

that the two return differences F(0) and F(») in these equations are of 

opposite sign. An example is shown by Fig. 9.18. If we assume that the 
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vacuum tubes are ideal the passive impedance at the input terminals is 
+ R4)/(Ri + R3 + -&*)• The return difference F(0) reduces to 

unity, since the return ratio vanishes when the input terminals are short- 
circuited. The return ratio with the input terminals opened is negative, 
corresponding to the fact that with the two stages indicated in Fig. 9.18 
there is no net phase reversal in the tubes, and is readily evaluated as 
—GtnfimJliRzRz/(R-i + R3 + /?4)> where Gmi and Gm2 are the transconduct¬ 
ances of the tubes. Substitution in (5-3) of Chapter V therefore gives 

2 = ^1(^3 + R4)_1_ 

Ri + R3 + ^4 1 _ GmiGmiRiR2Ra 

Ri + R& + R4 
_Ri (R3 + R/_ 
R1+R3+R4- GmiGm2R1R2R3 * 

(9-21) 

Z will evidently be a negative resistance if the R's are chosen appropriately. 
For example, if R\ and Z?3, which are introduced only to make the idealiza¬ 
tion of the circuit appear somewhat less forbidding, are made infinite, Z will 
always be negative, as evidenced by the expression 

Z = 
-1 

GmyGm2R2 
(9-22) 

Negative resistances can also be secured through a variety of other 
. devices, such as the dynatron or an arc- 

discharge. An illustrative characteristic for 
/ the dynatron is shown by the solid line in 
/ Fig* 9.19. The ratio <?//, representing the 

b_L resistance to any steady voltage ef is always 
7 positive. Near the point C, however, the 

a/--- slope of the characteristic is negative. If 
/ the impressed e is taken as the sum of a d-c 

{f--—e component and a small superimposed a-c 
FI0> 9J9 component, as in the analysis of the charac¬ 

teristics of a vacuum tube, the effective resist¬ 
ance to the a-c component, therefore, will be negative when the operating 
point is near C. 

Negative resistances are introduced here merely as convenient devices 
to explore the purely mathematical implications of the general set of 
requirements on driving point immittance functions laid down in Chapter 
VII. For this purpose they will be regarded as idealized elements of 
exactly the same type as positive resistances. Too much emphasis, how¬ 
ever, cannot be laid upon the fact that an actual negative resistance is a 
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much more complicated device, subject to many restrictions which are 
ignored in such an idealization. Depending upon the circuit to which the 
negative resistance is connected, and perhaps even upon the past history 
of the circuit, this may lead on occasion to marked departures from the 
behavior which would be computed from an idealized analysis. For 
example, Fig. 9.19 represents a characteristic which we might expect to 
trace physically if the circuit were energized by a battery of controllable 
voltage and zero internal impedance. Suppose, on the other hand, that 
the device is supplied by means of a much higher voltage operating through 
a high external impedance. Then, in effect, we are controlling the current, 
rather than the voltage, at the negative resistance terminals. It is evi¬ 
dently possible that the actual characteristic may skip from one branch to 

Fig. 9.20 Fig. 9.21 

the other, as suggested by the broken lines AD and BE, in such a way as to 
avoid the negative slope part of the nominal characteristic entirely. If 
the external impedance includes reactive elements the skip may depend 
upon transient effects or, in other words, upon the past history of the circuit 
and the rate at which the energizing source is varied. Since some external 
impedance is required in order‘to segregate the a-c and d-c components 
these considerations cannot be avoided entirely in any application. 

In a negative resistance device which relies upon vacuum tubes compli¬ 
cating factors are introduced principally by the unavoidable parasitic 
capacities of the tubes. These will evidently convert the negative resist¬ 
ance into an ordinary passive impedance at sufficiently high frequencies. 
The change may be unimportant in some applications, but in others it may 
produce singing. Which type of behavior is actually followed will depend, 
in general, upon both the external circuit and the type of feedback used to 

produce the negative resistance. 
If we do postulate ideal negative resistance elements it follows immedi¬ 

ately that negative elements of other types are also available. This can be 
shown most easily by reference to the well-known circuits shown in 
Figs. 9.20 and 9.21. A simple computation shows that the input imped¬ 
ance Z\ is given in either case by 

(9-23) 
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Thus any negative impedance, including as special cases a negative capacity 
and a negative inductance, can be produced by terminating the T in the 
positive inverse of the required impedance. 

9.7. Representation of General Driving Point Immittance Functions 

The requiremeifts.of the general list in Chapter VII which are relevant 
to driving point immittance functions are 1, 2, 3, 4, 5by and 6a. Of these, 
the first four must be satisfied by any immittance function. This suggests 
that possible functions may be divided into three general classes, depending 
upon whether they meet the first four requirements alone, the first four and 
Sby or all six requirements.* With the addition of two rather obvious sub¬ 
classes the scheme is 

la. Functions which have no poles in the right half-plane and whose real 
components are positive (or zero) at all points of the real frequency axis. 

lb. Functions which have no poles in the right half-plane and whose real 
components are negative (or zero) at all points of the real frequency axis. 

II. Functions which have no poles in the right half-plane and whose real 
components are positive on some parts of the real frequency axis and nega¬ 
tive on others. 

Ill a. Impedance functions in which some poles occur in the right half¬ 
plane. 

Illb. Admittance functions in which some poles occur in the right half¬ 
plane. 

The Class la is, of course, the class of ordinary passive immittances. The 
functions in lb are exactly the negatives of ordinary passive functions. 
They will be called negative immittances. The more general functions 
described in the later classes will be called general or active immittances. 
The conception of a negative immittance is introduced here as a convenient 
theoretical abstraction. Such a function can evidently be obtained, under 
idealized circumstances, by the methods suggested by Figs. 9.20 and 9.21. 
In view of the limitations of physical negative resistance devices, however, 
it is probable that any actual function would belong to one of the more 
general Classes II or III. 

Impedance functions and admittance functions have been written sepa¬ 
rately in Class III to emphasize the fact that the driving source for an 

*The apparent fourth class, consisting of functions which meet the first four 
requirements and 6a but fail to satisfy 5by cannot exist. If 5b is not satisfied, so that 
there are poles in the right half-plane, the Nyquist plot of the function must encircle 
the origin, which is inconsistent with 6a. The specification of both the sign of the real 
component and the location of the poles in some of the items of the subsequent list is 
introduced merely for clarity. 
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B B' 

impedance function is a voltage generator of zero internal impedance, while 
for an admittance function it is a current generator of infinite internal 
impedance. Networks corresponding to functions of the two types may 
then be described as short-circuit stable and open-circuit stable respectively. 
If the functions belong to Class III the corresponding networks will not, of 
course, remain stable if the energizing sources are interchanged. In the 
other classes, which have zeros and poles confined to the same half-plane, 
these distinctions are unnecessary. If 
the active immittance is obtained from 
a feedback circuit we can frequently de¬ 
termine whether it is open-circuit stable 
or short-circuit stable by inspection. 
For example, any immittance measured 
in series with the feedback loop, as at 
AAf or BBf in Fig. 9.22, must be open- 
circuit stable, while any immittance 
measured across the loop, as at CCf or 
DD'y must be short-circuit stable, since in either case the introduction of 
the appropriate generator impedance will interrupt the feedback. 

For purposes of analytic description, the construction of active imped¬ 
ances is most easily treated by an extension of the processes of resistance 
and conductance reduction described earlier in the chapter. In discussing 
passive immittances these processes were limited by the fact that the real 
component of a passive immittance could not become negative. With the 
addition of a negative resistance to the normal passive elements this limi¬ 
tation is unnecessary and we are led at once to a representation of active 
immittances by a simple extension of the methods used for passive circuits. 

To exemplify this process, let it be assumed that the function to be repre¬ 
sented is an impedance of Class Ilia. It will also be supposed that none of 
the zeros of the impedance occur exactly on the real frequency axis.* 

Fig. 9.22 

* If zeros on the real axis do occur, the corresponding residues of 1/Z must be 
positive real, negative real, or complex. Zeros corresponding to positive real residues 
can be represented separately by resonant circuits in the manner already described for 
passive networks. The other possibilities pose a more difficult problem. They may 
exist theoretically in, for example, a feedback amplifier which is on the point of singing. 
Consideration of these possibilities will, however, be avoided here on the ground, 
mentioned in Chapter VII, that a physical circuit exhibiting such zeros would be 
excessively non-linear. Negative real residues can, of course, be represented theoreti¬ 
cally by negative reactance elements but the consideration of this possibility is 
especially unrealistic because, in addition to the question of non-linearity, a structure 
exhibiting such zeros must necessarily become unstable if it is fed through a generator 
circuit including the slightest trace of dissipation. 
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The reciprocal, Y, of the specified impedance will consequently be analytic 
in the right half-plane including its boundary, the real frequency axis. Let 
G\ and — G2 represent the maximum and minimum values of the real com¬ 
ponent of Y on the axis. In accordance with the preceding theorems these 
will also be the maximum and minimum values of the real component with 
respect to the complete right half-plane. If we rewrite the admittance as 
~G2 + (Y + G2), therefore, the term Y + G2 will have a positive real 
component throughout the right half-plane. In B rune’s language it is a 
“ positive real ” function and can be represented by an ordinary passive 
impedance. The first term —G2 represents, of course, a parallel negative 

« b 
Fig. 9.23 

resistance. The combination is shown by Fig. 9.23a. Similarly, if we write 
Y as Gi + (Y — Gi) the complete impedance appears as a positive resist¬ 
ance in parallel with a negative impedance. This is illustrated by 
Fig. 9.23b. If we begin with a function of Class IIIb the analysis is essen¬ 
tially the same, except that we are now led to a series combination of a 
positive or negative resistance and a negative or positive impedance, as 
shown by Figs. 9.24* and 9.24£. The results can be summarized as the 

Theorem: If an active network is stable with an energizing source of 
zero internal impedance, the impedance facing the source 
can be represented either by a negative resistance in paral¬ 
lel with an ordinary passive network or by a positive resist¬ 
ance in parallel with the negative of a passive network. If 
the network is stable with an energizing source of infinite 
internal impedance, the network impedance can be repre¬ 
sented either by a negative resistance in series with a passive 
network or by a positive resistance in series with the nega¬ 
tive of a passive network. 

This discussion has been advanced specifically for functions of Class III. 
It is apparent, however, that it is equally valid for functions of Classes I 
and II. We need only recognize that functions of these classes are both 
open-circuit stable and short-circuit stable so that they can be represented 
in any one of the four ways shown by Figs. 9.23 and 9.24. It may also be 
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interesting to notice that the methods of representation can be combined 
to give still other possible configurations. For example, since the negative 
impedance in Fig. 9.23b is open-circuit stable as well as short-circuit stable 
it can itself be represented in the form shown by Fig. 9.24*, leading to a 
representation of the original expression by a positive impedance and an L 

of positive and negative resistances. 
As a matter of emphasis it may be desirable to say once more that the 

circuits of Figs. 9.23 and 9.24 do not necessarily constitute either a unique 
way or a physically desirable way of constructing active impedances. They 
are introduced merely as a convenient method of expressing the physical 
significance of the conditions on active and passive driving point immit- 
tances laid down in Chapter VII. It will be seen that the difference 
between an active and a passive driving point immittance amounts essen¬ 
tially to a single negative resistance, appropriately located. There is a close 
analogy between this result and a result derived later for the distinction 
between active and passive transfer immittances. 

9.8. Combinations of Active Impedances 

In dealing with passive circuits we are accustomed to thinking of the 
individual passive impedances as units which can be combined with one 
another and associated with a driving generator in arty way we like. What¬ 
ever arrangement is chosen, the circuit as a whole will remain passive, and 
therefore stable. In active circuits, on the other hand, no such freedom is 
possible. Impedances which are stable for one energizing source may 
become unstable if the source is altered and two impedances which are 
individually stable for a given source may become unstable when they are 
added together, even if the source itself is unchanged. In dealing with 

active circuits, therefore, it is necessary to study the stability of the structure in 

terms of the complete impedance or admittance facing the current or voltage 

source, including the self-impedance or self-admittance of the source itself. 
This is evidently a grave restriction. It affects both the freedom with 

which the active network itself can be designed and the freedom with which 
the energizing source can be chosen. The latter is perhaps particularly 
important. The analysis thus far has assumed that the self-impedance of 
the source would be either zero or infinite, whereas most practical sources 
have a finite, non-zero, self-impedance. The problem of relaxing these 
restrictions will be attacked here through a consideration of the open-circuit 
or short-circuit stability of a combination of two immittances in series or 
parallel, as illustrated by Figs. 9.25 and 9.26. Each of the two immit¬ 
tances can be regarded as an active structure if we wish, or one of them can 
be taken as a representation of the actual self-immittance of a physical 
generator. 



192 NETWORK ANALYSIS Chap. 9 

The two situations illustrated by Fig. 9.25 can be dismissed easily. If an 
impedance is to be short-circuit stable, as in Fig. 9.25*z, none of its zeros can 
lie in the right half-plane. But since the zeros of an impedance obtained 
from a number of branches in parallel are the same as the zeros of the 
separate branches^ each of the individual branch impedances must be 

Fig. 9.25 

similarly restricted. Correspondingly, the zeros of admittance, or poles of 
impedance, in the structure of Fig. 9.25^ are the same as the admittance 
zeros of the component structures and must be excluded from the right 
half-plane if the complete structure is to be stable. We therefore have 
the obvious 

Theorem: A parallel combination of impedances will be short-circuit 
stable if and only if all the individual impedances are short- 
circuit stable. Similarly, a series combination will be open- 
circuit stable if and only if all the individual impedances 
are open-circuit stable. 

The combinations illustrated by Fig. 9.26 present a more difficult prob¬ 
lem. The discussion here will present only a few elementary rules which 
may be useful in some situations. To give the problem a physical context, 
we may suppose that Z\ and Y% in Figs. 9.26a and 9.26b are respectively 
short-circuit stable and open-circuit stable structures and that Z2 and Y2 

represent allowances for the self-impedance or admittance of the actual 
generator. The question which will be attacked is that of estimating under 
what circumstances Z2 and Y2 can be introduced without upsetting the 
stability of the circuit. 

If Z2 and Y2 are real constants their effect on the stability of structure is 
most easily determined from an inspection of the Nyquist diagram of the 
original Z\ or Y\. The addition of a constant Z2 or Y2 is equivalent to a 
lateral translation of the whole diagram. It is clear that the lateral trans¬ 
lation will not affect the stability of the circuit as long as it is not large 
enough to carry any of the points of intersection between the Nyquist path 
and the horizontal axis from one side of the origin to the other. This 
leads to the 
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Theorem: The series combination of a short-circuit stable impedance 
and a positive or negative resistance is itself a short-circuit 
stable impedance if the addition of the resistance leaves the 
sign of the real component of the impedance unchanged at 
every point on the real frequency axis at which the imagi¬ 
nary component of the impedance vanishes. Similarly, an 
open-circuit stable structure will remain open-circuit stable 
when combined in parallel with a positive or negative re¬ 
sistance for the same condition on the real and imaginary 
components of the initial and final admittance. 

If Z2 or y2 are functions of frequency rather than real constants the 
problem is more difficult, but it is still possible to show that they will not 
affect the stability of the circuit if they meet certain conditions. The 
situation can be expressed by the 

Theorem: The series combination of a short-circuit stable impedance 
Z\ and an open-circuit stable impedance Z2 will be short- 
circuit stable if | Zi | > | Z2 | at all points on the real fre¬ 
quency axis. Similarly, the parallel combination of an 
open-circuit stable admittance Y\ and a short-circuit stable 
admittance Y2 will be open-circuit stable if | Y\ | > | Y2 | 
at all real frequencies.* 

The wording of the theorem is not intended to imply that an immittance 
which is specified, for example, as short-circuit stable cannot also be open- 
circuit stable. The stability of the immittances for the non-specified con¬ 
ditions is a matter of indifference. 

The theorem is easily demonstrated by methods similar to those used 
for the first theorem at the end of the preceding chapter. If we consider in 
particular the relation between Z\ and Z2, for example, we can write 

Zl + Z2 = Z1(l+fy (9-24) 

The quantity Z\ + Z2 can have no zeros in the right half-plane if it is to be 
short-circuit stable and its poles must be the same as those of Z\ since Z2, 
being open-circuit stable, has no poles in this region. The Nyquist plot of 
Z\ + Z2 must therefore encircle the origin the same number of times in the 

* Throughout this discussion it is assumed for simplicity that none of the zeros and 
poles of the various immittances occurs exactly on the real frequency axis, including 
infinity. The theorems are not necessarily invalid even when this assumption is vio¬ 
lated, as it might be, for example, in circuits controlled at high frequencies by parasitic 
capacities, but such situations evidently require careful handling. 
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same direction as the plot of Z\ alone. It is evident, however, that the 
number of times the plot of Z\ + Z2 encircles the origin is equal to the sum 
of the encirclements obtained by plotting the factors Z\ and 1 + (Z2/Z1), 
on the right-hand side of (9-24), separately. Since the plot of 
1 + (Z2/Zi) cannot encircle the origin at all under the assumed conditions, 
as Fig. 8.30 in the preceding chapter shows, this establishes the theorem. 

It is evident from the proof of the theorem that the condition 
I | > | Z2 | or | Yi J > J Y2 I does not necessarily fix the actual upper 
limit of values which may be assumed by the added Z2 or Y2. In many 
circumstances the circuit will remain stable even if the condition is violated 
over a portion of the frequency spectrum. If we disregard one special 
case, however, there is a final upper limit beyond which the added immit- 
tance cannot go without necessarily producing instability. This is shown 
by the following 

Theorem: The series combination of a short-circuit stable impedance 
Zi and an open-circuit stable impedance Z2 cannot be short- 
circuit stable when ) Z2 | > | Zx | at all points on the real 
frequency axis unless Z\ is also open-circuit stable and Z2 

is also short-circuit stable. Similarly, a parallel combina¬ 
tion of an open-circuit stable admittance Y\ and a short- 
circuit stable admittance Y2 can be open-circuit stable when 
I Y2 I > | Y\ | at all real frequencies only if both Y\ and Y2 

are actually both short-circuit stable and open-circuit 
stable. 

The proof of this theorem is essentially similar to that of the preceding 
theorem. We begin by writing the total impedance as 

Zi + Z2 = Z2 (1 + |i) • (9-25) 

Under the assumed conditions the plot of the factor 1 + (Zx/Z2) cannot en¬ 
circle the origin. The total number of encirclements by the plot of Z\+Z»j 
must therefore be the same as those by the plot of Z2. They must be in 
the direction appropriate for zeros since by hypothesis Z2 is open-circuit 
stable and has no poles in the right half-plane. Just as in the preceding 
theorem, however, the plot of Zj + Z2 must encircle the origin the same 
number of times and in the same direction as the plot of Zx if Zx + Z2 is to 
have no zeros in the right half-plane. This must be in the direction corre¬ 
sponding to poles since Z\ is short-circuit stable. Evidently the require¬ 
ments cannot be met unless neither plot actually encircles the origin at all, 
which is the same as saying that each of the impedances Z% and Z2 must be 
both short-circuit stable and open-circuit stable. 
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The preceding theorems cover all combinations of the two impedances 
except those in which both impedances are open-circuit stable, but not 
short-circuit stable, or vice versa. A guide to this last situation is fur¬ 
nished by the 

Theorem: A series combination of two impedances cannot be short- 
circuit stable and a parallel combination of two impedances 
cannot be open-circuit stable, when both impedances are 
either short-circuit stable but not open-circuit stable or vice 
versa, if the absolute magnitude of either impedance is 
greater than that of the other at all points on the real fre¬ 
quency axis. 

It is assumed that the degenerate case in which the two immittances 
have strictly coincident poles in the right half-plane can be disregarded. 

The proof is similar to those of the preceding theorems. If we suppose, 
for example, that | Z2 | > ] Z\ | and that Zx and Z2 are short-circuit stable 
their sum will be short-circuit stable only if the plot of Z\ + Z2 encircles 
the origin as many times as there are poles of Zx and Z2 in the right half¬ 
plane. In accordance with (9-25), however, the actual plot will encircle 
the origin only as many times as there are poles of Z2 alone in this region. 
The two conditions cannot be reconciled except for the trivial case when Z\ 

and Z2 have identical poles in the right half-plane. 
A curious feature of this result is the conclusion that the stability of a 

short-circuit stable impedance will not be disturbed by the addition of a 
small open-circuit stable impedance but it may be entirely upset if the 
added impedance, even though very small, is also short-circuit stable. 

Neither of the last two negative theorems applies to combinations of 
impedances which are both open-circuit stable and short-circuit stable. 
It is natural to expect that this combination is more likely to give a stable 
result than any other. If the two impedances are passive, for example, 
they can be combined in any proportion. In more general cases, however, 
it is still necessary to pay attention to the possible instability of the final 
circuit. An example is furnished by a final 

Theorem: If Z\ and Z2 are respectively a positive impedance and a 
negative impedance it is always possible to find values of the 
positive constant multiplier X such that the series combina¬ 
tion of Zi and XZ2 will not be short-circuit stable and their 
parallel combination will not be open-circuit stable unless 
Z\ and Z2 are exactly proportional to one another. 

The proof is obvious from a Nyquist plot of (Zx + XZ2)/Zj. 



CHAPTER X 

Topics in the Design of Impedance Functions 

10. 1. Introduction 

The preceding chapter was essentially an attempt to explore the general 
physical significance of the list of restrictions on driving point immittance 
functions given in Chapter VII. The present chapter continues this dis¬ 
cussion but in a different way. The material selected consists chiefly of 
devices and conceptions of direct application in design work. The chapter 
is thus intended broadly as a resume of design methods, but its scope is 
limited by the fact that it includes no material not easily related to the 
analytic framework already established. The discussion is directed prima¬ 
rily at driving point immittance functions, but many of the results apply 
also to network functions of other types. Unless otherwise specified a 
passive network will be assumed. 

Since the chapter does not contribute directly to the theoretical structure 
of the book as a whole it can be omitted, if necessary, especially if the 
reader is reasonably familiar with elementary passive network theory. If 
the omission is made, however, note should at least be taken of the fre¬ 
quency transformations described near the end of the chapter, since they 
will be used in several later discussions. 

10.2. Inverse Networks 

The duality between the impedance and the admittance methods of 
analyzing a network suggests a conclusion which was mentioned briefly 
in Chapter I but has not otherwise been dealt with explicitly. This is 
the proposition that to every network there corresponds an inverse. 
The result arises, of course, from the fact that the requirements on physical 
driving point functions are the same whether we consider an impedance 
or an admittance. If we are dealing with a passive structure, for example, 
the requirement that the real component of the impedance be positive at 
real frequencies implies that the real component of the admittance must 
also be positive. Moreover, the restrictions on the zeros and poles are sym¬ 
metrical, so that the interchange of zeros and poles which occurs when an 
impedance is replaced by its reciprocal does not affect the satisfaction of the 
conditions of physical realizability. It therefore follows that if a passive 
impedance is physically realizable, its reciprocal is also realizable. 

196 
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In ordinary networks, a suitable structural form for the reciprocal imped¬ 
ance can be found by the familiar procedure exemplified by Fig. 10.1.* 
Each series connection is replaced by a parallel connection, and vice versa. 
The individual elements are found by replacing resistances by resistances, 
inductances by capacities, and capacities by inductances, in such a way 
that the product of corresponding resistances or corresponding inductances 
and stiffnesses is always constant. In Fig. 10.1 the constant product of 
corresponding impedances, including the driving point impedances, is 
taken as 

We can regard the type of inverse network illustrated by Fig. 10.1 as the 
structural inverse of the original network. Evidently the procedure which 
has been suggested for finding the structural inverse is not a general one. 
For example, since it considers only series and parallel connections, it offers 

no means of finding the inverse of a Wheatstone bridge. A structural 
inverse of a bridge network can, however, still be found by an extension of 
the original process. The extension depends upon the consideration of the 
network as a geometrical diagram of lines and points by means of which the 
plane is divided into areas. Physically, the points represent network junc¬ 
tions and the lines the various elements connecting them, while the areas 
represent closed meshes in the circuit. The process of finding the inverse 
network consists broadly in an interchange of areas and points. A new 
point is taken in each area and each such new point is connected with each 
new point in the neighboring areas by a branch which is the inverse of the 
branch separating the corresponding areas. The process is illustrated by 
Fig. 10.2, the new points being /f, 5, C, and D. It will be seen that the 
inverse of the Wheatstone bridge is another bridge. 

♦See, for example, O. J. Zobel, B.S.T.J., Jan., 1923, and July, 1928. A good 
textbook reference is Guillemin, “ Communication Networks/’ Vol. II, p. 203. 
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In spite of this generalization a structural inverse cannot be found for every 

network. No structural inverse exists, for example, for the Brune network 
described in the previous chapter since we cannot find the equivalent of a 
pair of perfectly coupled capacities to represent the reciprocal of the coupled 
coils in the original network. Moreover, as R. M. Foster has shown,* certain 
kinds of network Configurations may not be representable as configurations 
of points, lines, and areas on a plane, in the manner assumed by the pre¬ 
ceding discussion. No structural inverse exists for such networks even 
when mutual inductance is ignored. 

Although a structural inverse is not always obtainable, the analytic 
argument remains valid. If we disregard the structural relationship, 
therefore, we can always find some network whose impedance is the recipro- 

Fig. 10.2 

cal of the impedance of any given network. For example, the inverse of a 
Brune network is another Brune network. This can be illustrated by the 
networks shown by Figs. 9.15 and 9.17 of the preceding chapter. The first 
of these corresponds to the impedance Z = (2p2 + p + l)/(p2 + /> + 2). 
The second was developed to represent the impedance Z\ of (7-17) in 
Chapter VII. If we remove the parallel resistance at its input, however, 
it represents the impedance Z2 of the same set of expressions, and satisfies 
the equation Z2 * ^(p2 + p + 2)/(2p2 + p + 1). Thus if this branch 
is removed the two networks become inverse structures of impedance 
product 

This discussion has been directed, for simplicity, at passive networks* 
There is evidently no difficulty, however, in extending it to negative 

* “ Geometrical Circuits of Electrical Networks,” Trans. A.I.E.E., June, 1932. 
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impedances or to active impedances belonging to what was described as 
Class II in the preceding chapter. If we turn to Class III, on the other 
hand, the restrictions on the zeros and poles of immittance are no longer 
symmetrical. Only the zeros need be confined to the left half-plane. 
Nevertheless, the impedance functions of Class III a and the admittance 
functions of Class Yllb are evidently inverse in a certain sense. The differ¬ 
ence is merely that in going from Class Ilia to Class III£ or vice versa, the 
source as well as the network itself must be reciprocated, while we have 
thus far assumed that the source itself would remain unaltered. If this 
change in the source is regarded as permissible, therefore, the general result 
can be summed up in the 

Theorem: Corresponding to any physically realizable impedance 
expression there is an identical physically realizable admit¬ 
tance expression, and vice versa. The transformation from 
one mode of expression to the other need not include the 
generator if the original impedance or admittance is both 
open-circuit stable and short-circuit stable. 

If active impedances are represented by combinations of passive net¬ 
works and negative resistances, as was done in the preceding chapter, the 
previous remarks on the structural inverse of a given network can evidently 
be carried over to the general case without change. The problem of finding 
the structural inverse of a circuit containing vacuum tubes explicitly has 
not been studied. 

10.3. Complementary Networks 

In addition to the inverse of a given immittance function we can also 
speak of its complement. The complement may be defined by the require¬ 
ment that the sum of the original function and its complement must be a 
real constant. The complement will exist as a passive impedance, pro¬ 
vided we meet the requirements of the following 

Theorem: A passive complement can be found for any immittance 
function if the prescribed function has no poles in the right 
half-plane or on the real frequency axis and if the sum of the 
prescribed function and its complement is chosen at least 
as great as the maximum value of the real component of the 
prescribed function on the real frequency axis. 

The proof of the theorem is omitted here, since it can readily be obtained 
by a repetition of the methods used in the previous chapter. If we take 
as an example a passive impedance the requirement means simply that the 
impedance must be of minimum reactance type and that the final resist- 
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ance must be at least as great as the maximum resistance of the original 
structure. 

The familiar constant resistance combinations of ordinary network 
theory represent simple special cases of the complementary relationship. 
An example is given by Fig. 10.3. 

0 

L C 

10.4. Partial Fraction Expansion of a General Impedance 

We saw in the previous chapter that poles of impedance or admittance 
on the real frequency axis could be detached from the complete impedance 
expression and represented separately by reactive networks in series or 
parallel with the structure as a whole. The same process can be extended, 
at least formally, to the other poles of impedance or admittance also. The 
representation of the network impedance which is thus secured is particu¬ 
larly valuable for theoretical purposes. Its utility in practical problems 
is restricted by the fact that in the most important special case, that of 
passive circuits, it does not invariably lead to a passive network to repre¬ 
sent a passive immittance function. Even so, however, it is useful in many 
situations. 

It will simplify discussion to restrict our attention to passive circuits 
and to assume that the prescribed function is an impedance. Let it be 
supposed, then, that the poles of the impedance are represented by the 
points pi • • • pn. In order to avoid complications in exposition, we will 
also assume that all the poles are simple. The procedure is essentially 
similar to that which was followed in connection with equation (9-8) of 
Chapter IX. Corresponding to any particular pole py, we can define a 
quantity Cy by 

Cj = [(p — pj)Z]p-pr uo-i) 

It is easily seen that Cy is equivalent to the quantity which was called Aq 

in the preceding equation (9-8). We can therefore conclude from the 
discussion of this equation that Cy/(p — pj) affords a representation of the 
pole pj. In other words, the quantity Z — Cj/(j> — pj) will have no pole 
at pj. Let us suppose that all the poles are removed from the original 
impedance expression by the repeated application of this process. The 
quantity which remains then has no poles anywhere in the complex plane, 
and it follows from general function theoretic principles that it must be a 
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constant.* We can easily show that the constant is a real quantity or, in 
other words, a resistance.! If we represent it by Rq this is equivalent to 
saying that the impedance can be represented by the formal expansion 

Z = 
Cl 

+ ' 
P ~ pi P — p2 

+ 
Cn 

pn 
+ Ro- (10-2) 

As equation (10-2) stands, it suggests that the impedance can be repre¬ 
sented by a number of networks in series, each network corresponding to 
one term in the expansion. Whether or not such a representation is 
actually possible with a passive network depends essentially on the con¬ 
stant Ro. In order to represent any term in the expansion as a simple 
passive network, it must, of course, meet the condition that its individual 
resistance characteristic be positive at all real frequencies. If the individ¬ 
ual term fails to meet this condition as it stands, it may still be possible to 
represent it as a passive network if we can add to it a sufficiently high 

cjl'pj Cjlpj 
■~/wwv— —VN/VW— 

—o o— 

—11— —'JLSdLSJLrr 

Cj/f cJ'Hj 

Fig. 10.4 Fig. 10.5 

resistance, which must, of course, be subtracted from the Ro term, to satisfy 
the resistance condition. The essential requirement which must be satis¬ 
fied is, therefore, that Rq be large enough to allow all the constituent net¬ 
works to furnish a positive resistance at real frequencies without leaving a 
negative resistance in series with the structure as a whole. There is a close 
analogy between this result and a proposition in four-terminal network 
theory. As we will see later, the transmission characteristics of a general 
four-terminal network can always be represented by a number of simple 
structures in tandem provided the general level of loss in the original net¬ 
work is high enough to allow each of the constituents to furnish a positive 
loss at all frequencies. 

In order to illustrate this relationship, let us suppose that pj is found on 
the negative real axis. It is then easy to show that the corresponding Cj 

must be a real quantity. If Cj is positive, the term Cj/(p — pj) can be 

* Liouville’s Theorem — see any text on function theory. 
f As (10-2) indicates, the constant is equal to the resistance of the network at 

infinite frequency. 
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easily identified with the parallel combination of resistance and capacity 
shown by Fig. 10.4. If Cj is negative this representation is non-physical. 
By adding the resistance Cj/pj, however, the expression becomes 
Cjp/pj(p — pj)y which corresponds to the inductance-resistance network 
shown by Fig. 10.5. 

If the pole is complex, a more elaborate analysis is required. Complex 
poles, of course, occur in conjugate pairs, and the pairs must be kept to¬ 
gether if we are to secure a physical network. Let us suppose that a 
particular pair of Conjugate poles is written as pa ipb• It is easily shown 
that the corresponding C’s must also be conjugate quantities. If we repre¬ 
sent them as Ca ± iCb we can write the component impedance Zj as 

2 _ Ca + iOb ^_Ca iCb 

; P — {pa + ipb) P — {pa — ipb) 
(10-3) 

_ ry Cap {Capg Cbpb) * 

P2 ~ 2paP + {pl + Pb) 

In many cases, the real component of (10-3) will not be positive for all 
real frequencies. If we add enough resistance, however, a passive structure 

Fig. 10.6 Fig. 10.7 Fig. 10.8 

can be secured. When the added resistance is the least possible, the struc¬ 
ture will take the form of the last stage of a Brune network, as shown by 
Fig. 10.6. If the resistance component is great enough, other configura¬ 
tions are also possible. In general, they will contain one inductance, one 
capacity and three resistances. The particular configurations which can 
be used, however, depend upon the numerical values of the constants in 
(10-3). Typical circuits are illustrated by Figs. 10.7 and 10.8. 

— R pjy^-AVVS p 0 Q r— 
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These considerations can evidently be extended to all the poles. If we 
adopt in particular the Brune representation of the complex poles and 
regard the structures of Figs. 10.4 and 10.5 as special cases of the Brune 
network, the complete circuit takes the form shown by Fig. 10.9. The 
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corresponding parallel combination obtained from an admittance analysis 
is given by Fig. 10.10. 

As the figures show, the resistance or conductance which remains after 
all the poles of immittance have been represented 
may be either positive or negative. It will, of 
course, be positive if the original resistance or 
conductance is large enough. Since the minima 
of the various component resistance or conduct¬ 
ance characteristics will ordinarily occur at different 
frequencies, on the other hand, we may expect 
that the sum of the component characteristics will 
be substantially greater than zero at all points on 
the real frequency axis. We may therefore expect 
that the final branch will be negative if the original 
immittance approximates the limiting minimum 
resistance or minimum conductance type. This 
is, of course, a serious practical limitation. In 
theoretical work, however, the fact that the com¬ 
plete immittance is exhibited as the sum of a 
number of very simple terms may still make the structure quite useful. 
For these applications, at least, we can therefore formulate the result as the 

Theorem: A passive immittance having no multiple poles can always 
be represented as the sum of a number of passive immit- 
tances, each of which is at most of the second degree, and a 
positive or negative real constant. 

The extension of this analysis to active impedances involves only two 
considerations. In the first place, if the impedance is not both short-circuit 
stable and open-circuit stable some of the poles either of its impedance or 
admittance will be found in the right half-plane. In the corresponding 
expansion the component networks representing these poles can still be 
built, but they will not be passive structures. The second consideration 
is the obvious one that if we are dealing with an active circuit anyway the 
fact that the final resistance or conductance term may be negative should 
be of no particular consequence. 

10.5. Reconstruction of a Passive Impedance from a Knowledge of Either 

Component* 

The discussion in the previous chapter shows that the resistance and 
reactance characteristics of a passive network can be varied independently 

* As a general reference to transformations of this sort, see Darlington, “ Synthesis 
of Reactance 4-Poles,” Journal of Mathematics and Physics, Sept., 1939. 
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within certain limits. Thus, we can change the resistance characteristic of 
a network by a constant amount without changing its reactance, and we can 
add or subtract a reactance corresponding to poles on the real frequency 
axis without affecting the resistance. These are, however, the only two 
ways in which tfae two components can be varied independently. If we 
restrict ourselves to minimum resistance and minimum reactance networks, 
the resistance and reactance are uniquely related. If we know either one, 
we can determine the other, and therefore the impedance as a whole. 

Since we are considering the real and imaginary components of the 
impedance at real frequencies, it is simplest to write Z as a function of 
rather than as a function of p. In general, of course, Z can be represented 
as the ratio of two polynomials in p. On the real frequency axis the even 
powers in each polynomial will be real quantities and the odd powers pure 
imaginaries. We can therefore write 

ZM = 

A + icoB 

C -f- icoD 
(10-4) 

where Ay By C, and D are polynomials in co2 with real coefficients. If we 
rationalize this expression in the usual manner by multiplying the numera¬ 
tor and the denominator by C — iuD, the result becomes 

Z(«) = 
AC + u2BD 

C2 + w2D2 
+ /CO 

BC - AD 

C2 + co2£>2' 
(10-5) 

The resistance is thus an even rational function of co with real coefficients, 
while the reactance is a similar function multiplied by co. 

Our problem is that of finding the complete expression for Z from a 
knowledge of either of its components. Let it be supposed that we know 
the even rational function representing the resistance. We begin by 
expanding this expression in partial fractions in the manner described in 
the preceding section. Since the denominator is an even function of co, 
the poles must occur in positive and negative pairs. To each pole, more¬ 
over, must correspond its conjugate since the coefficients in the denomina¬ 
tor are all real quantities. The poles thus occur in sets of four symmetri¬ 
cally placed about the origin. In the special case in which poles are found 
on the imaginary frequency axis the sets of four may reduce to pairs. The 
poles might also reduce to pairs, on the face of the situation, if they occurred 
on the real frequency axis, but if the assumed resistance characteristic corre¬ 
sponds to a physical network, there can be no such poles. 

The poles of the resistance function which lie below the real frequency 
axis* were introduced when the numerator and denominator of the original 

* That is, below the real axis in the frequency plane, or to the right of the imagi¬ 
nary axis in the p-plane. Cf. the relations described in connection with Fig. 2.2. 
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impedance were multiplied by C — iuD. They must be eliminated in 
reconstructing the expression for Z if the final result is to correspond to a 
physical network. Let us suppose that the poles above the axis are repre¬ 
sented by an • • • wn and the corresponding residues, i.e., the C/s of (10-2), 
by Ci • • • Cn. The poles below the axis will then be the conjugate points 
Si ■ • • 3n, while it is easily shown that their residues will be the correspond¬ 
ing conjugate quantities Ci • • • Cn. If we assign the constant R0 of (10-2) 
equally to the two groups of poles this allows us to write the complete 
partial fraction expansion corresponding to (10-2) in the symmetrical form 

The two bracketed expressions in (10-6) evidently represent conjugate 
quantities on the real frequency axis. Each, therefore, provides half the 
final resistance characteristic. If we multiply the first by two we secure 
the required impedance expression in the form 

n 2 C* 
z --= £-*— + *0. (10-7) 

1 CO — OJj 

The fact that this is actually the sought-for expression for the impedance is 
easily established. It evidently gives the right resistance characteristic 
and its poles are in the proper portion of the plane. The fact that the zeros 
are also in the proper half of the plane follows at once if we remember that 
the resistance must be positive on the real frequency axis and make use of the 
general theorem on the location of the maxima and minima of an analytic 
function. It is easily shown also that (10-7) is the only valid impedance 
corresponding to the original resistance characteristic if we exclude the 
possibility of introducing pure reactance networks by the addition of poles 
on the real frequency axis. 

If we begin with the reactance characteristic, the procedure is essentially 
the same. The only distinction arises from the fact that because of the 
presence of the multiplier /<■>, the residues of the poles below the real fre¬ 
quency axis are the negative conjugates of the residues above the real 
frequency axis/ Along the real axis, therefore, the sums of the contribu¬ 
tions of the two groups of poles have real components of opposite sign and 
imaginary components of the same sign. A constant real quantity can 
therefore be added to one group and its negative to the other without affect¬ 
ing the result. This corresponds, of course, to the fact that the reactance 
component of any network is not changed by the addition of an additive 
constant to its resistance. 

The extension of the analysis to active impedances evidently presents, in 
general, no great difficulty. It is necessary to assume, however, that the 
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desired type of stability is appropriate for the restrictions on the poles of 
the given functions. Thus if we begin with a resistance we can readily 
construct a corresponding complete impedance function which will be open- 
circuit stable. It is not so easy, however, to determine an impedance which 
is short-circuit stable but not open-circuit stable since the poles of the short- 
circuit stable function may occur in both halves of the plane and there may 
be several ways of separating the partial fraction expansion of the resistance 
into two halves. 

10.6. Choice of Coefficients in Impedance Expressions 

Thus far in our discussion we have considered the physical restrictions on 
possible impedance expressions and some of the ways in which a definite 
circuit corresponding to any particular impedance can be obtained. We 
have not, however, considered the design problem, which is that of choosing 
an expression for the impedance to simulate a characteristic which has 
already been prescribed. There are a number of ways in which this prob¬ 
lem can be attacked, especially when the characteristic we have in view is in 
some analytically simple form. Space does not permit consideration of all 
these possibilities. For the sake of completeness, however, the simplest 
and most direct attack is outlined below.* 

Let it be supposed that the rational function representing the impedance 
is written as 

_ Ao + A\P + A2p2 + - • • + Ampm 

Bq + B\p + B2P2 + • • • + Bmpm 
(10—8) 

If we replace p by iw on the real frequency axis and multiply through by 
(Bo + • • • + Bmpm)y we can equate real and imaginary parts separately to 
secure the pair of equations 

(Ao — A2^2 A^uf — • • •) — R(Bq — B2o)2 -f" B^of — * • •) 

+ Xcc(B\ — 2?3^2 + B^of — • • •) = 0, 
(10-9) 

(A\ — A$u? + A$of —••••)— R(B\ — 2?3<o2 H~ B$<*f — • • •) 

--(Bo- B2J + 54«4-) = 0. 

Now let o)9 Ry and X in these expressions be assigned particular values 
chosen from the characteristic we are trying to meet. If we choose a 
sufficient number of sets of values of these three quantities the result will 
be a system of simultaneous equations in the A’s and B*s whose solution 

* The method which is described is essentially a modification of a method due to 
O. J. ZobeL See " Distortion Correction in Electrical Circuits/' B.S.T.July, 1928. 
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gives a network approximating the desired impedance. Since the equations 
are all linear the solution is relatively simple. 

The most straightforward process is obtained if we use both of equations 
(10-9) at each matching frequency. In some instances, however, a better 
overall characteristic is found if we choose twice as many matching fre¬ 
quencies and apply the equations alternately. Since equation (10-8) will 
obviously not be affected if the numerator and denominator are divided 
through by any constant, one of the A's or B*s is arbitrary and can be 
conveniently set at the value unity. The process evidently carries with it 
no guarantee that the resulting impedance expression will be physical. 
Since, as we have already seen, the resistance and reactance characteristics 
of a physical network can be chosen independently only within narrow 
limits, this is inherent in the nature of the problem. 

The same general method can also be applied to the simulation of either 
component separately. For example, if we begin with a resistance function 
of the form 

Ap -j- Aico2 -f- A*#*j4 + • • ■ Hh 

Bq + Bio)2 + B2u>* -f- • • • Bmo)2m 
(10-10) 

we can evidently choose appropriate values of the constants by means of 
the set of simultaneous linear equations obtained by substituting special 
values of w and R in the equation 

(A0 + Aicj2 + • • • + Amco2vn) — R(Bq + B\(x)2 + • • • + 5mo)2m) = 0. 
(10-11) 

The expression for the complete impedance can then be built up from the 
formula for R by the method described previously. 

With this procedure the requirements for physical realizability are much 
less onerous than they were before. We must still be careful, however, 
that the rational function which is obtained for R has no poles of any 
order, and no zeros of odd order, on the real frequency axis. Although this 
procedure appears to take cognizance of only one component, it may still 
be appropriate for the simulation of a complete impedance. Since the 
minimum reactance and the resistance characteristic of a network are 
always dependent on one another, there is no essential loss of generality in 
restricting ourselves initially to the resistance characteristic alone. We 
can always control the reactance characteristic to some extent by the final 
addition of a series reactance network. 

The process of resistance simulation is particularly simple if we make use 
of the fact that networks whose physical configuration is that of a “ con¬ 
stant k ” high-pass or low-pass filter terminated in a resistance furnish input 
resistances of the type of (10-10) in which all the terms in the numerator 
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except the first or last are zero.* The analytic problem is then that of 

simulating a prescribed characteristic by a polynomial, and ordinary 

polynomial or Taylor’s series methods are applicable. 

10.7. Transformations of the Frequency Variable 

If we turn back* to such general equations as (1-2) of Chapter I, we 

observe that aside from the resistance terms, every quantity is either of the 

form Lijp or of the form Dij/p. The impedance as a whole, of course, is 

some function of^> which depends upon the particular values assigned to the 

Ls, D’s, and R’s. Now suppose that in the given network we replace each 

inductance by an impedance varying with frequency as some function f{p) 

and each capacity by an impedance varying as 1 tf(p)- We will also sup¬ 

pose that the various impedances replacing the original inductances or 

capacities are in the same proportions as the original inductances or capaci¬ 

ties themselves. Evidently this merely replaces p by f(p) in every equa¬ 

tion, so that the impedance Z(p) becomes transformed into Z[f(p)\. In 

other words, if we know the impedance function of a given structure, we 

can find immediately the impedance function of the structure obtained 

when each inductance is replaced by a proportional impedance of some 

other type, and each capacity by the related inverse impedance. It is 

merely necessary to replace p in the original impedance function by the 

expression for the impedance which replaces the inductances. While the 

result has been stated only for driving point impedances, it evidently holds 

also for the transmission properties of a network. 

So far as the formal statement of the principle goes, each inductance 

might be replaced by a dissipative impedance, such as that illustrated by 

Fig. 10.11. In practical applications, however, the principle is of impor¬ 

tance chiefly when each inductance is replaced by a 

network of pure reactances. This can be explained 

from the fact that if we deal with a network of pure 

reactances, both the original variable p and the new 

variable f{p) assume only pure imaginary values at 

real frequencies. The real frequency characteristics of the transformed 

network can therefore be obtained from the real frequency characteristics 

of the original structure merely by correlating corresponding values of p 

and/(/>), whereas if we use a dissipative network the characteristics of 

the transformed structure must be obtained by computation. Since the 

most elaborate reactive network can merely run through all reactance 

values from to +« repeatedly, where the original variable p ran 

through such values only once, the transformed characteristics are, at 

* Further details are given in “ A Method of Impedance Correction/* H. W. Bode, 
B.S.T.J., Oct. 1930. 
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most, repeated copies of the original characteristics, with some distortion 

of the frequency scale and perhaps an inversion in frequency. 

The best illustrations of this principle are found in filter theory. For 

example, if we begin with the low-pass structure shown by Fig. 10.12Ay 

the simplest transformation is effected if we make/(/>) = k/p where k is a 

real constant. This replaces each inductance by a capacity and each 

capacity by an inductance as shown by Fig. 10.125. The characteristics 

are the same as those of the original structure except that the frequency 

scale is inverted and positive and negative frequencies are interchanged. 

In other words, the new structure is a high-pass filter. The relation 

between any two corresponding frequencies, such as the cutoffs of the two 

structures, on the absolute frequency scale, 

can, of course, be controlled by means of the 
constant k. 

The next simplest transformation is 

f(p) = k{p!wr + ov/p). This replaces each 

inductance by a series resonant circuit, and 

each capacity by an anti-resonant circuit, as 

indicated by Fig. 10.12C. The result is 

easily seen to be a band-pass filter. The 

resonant frequencies of the networks replac¬ 

ing the original coils and condensers corre¬ 

spond to zero frequency in the low-pass 

filter and represent the center of the trans¬ 

mitted band. As we go either way from 

this frequency, we secure a distorted replica 

of the original low-pass filter characteristics. 

The frequency at which the center of the pI(i 10 12 

band is found is, of course, determined by 

the constant wr, while the width of band can be controlled by the constant k. 

These relations are shown in more detail in Fig. 10.13. The solid and 

broken lines at the top of the figure represent respectively the real and 

imaginary components of the complete filter characteristic. As the 

figure is drawn the characteristic itself is regarded as fixed and the changes 

which occur in going from one type of filter to another are expressed by 

distorting the frequency scale, as indicated by the horizontal axes at the 

bottom of the drawing. The topmost axis represents the scale in the low- 

pass case. Since it may be taken as a reference it has been drawn in the 

usual arithmetic fashion, without distortion. 

In order to express the correspondence among the three characteristics 

completely it is necessary to draw both the positive and negative halves of 

the real frequency axis in the low-pass case. The fact that the positive 
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half is the one of direct design interest is indicated by drawing it very 

heavily. Since the real and imaginary components of the characteristic 

must be respectively even and odd functions of frequency in accordance 

with the general principle outlined in previous chapters, the relations 

between the twojialves are easily determined. 

The second horizontal axis gives the scale appropriate for the high-pass 

filter. The constant k has been chosen as unity. The transformation is 

essentially merely a matter of replacing the frequencies in the low-pass case 

% ' 

j-1-1-4—■—l—— k.mi ■ i u) Low Pass 
-3 0 -2.0 -10 .0 10 2 0 30 

J -■-1_t— CJ Hi^h Pass 
0 33 0.5 1.0 2 0 co -|.0 -0 5 -0.33 

. _. ^ Band Pass 
(J, 

0.5 0.62 0.78 1.0 1.28 1.5 20 # 

Fig. 10.13 

by their reciprocals, but in order to secure an exact correspondence the 

positive frequency half of the high-pass scale must be identified with the 

negative frequency half of the low-pass scale. The bottom axis gives the 

band-pass scale, the constant k being chosen as two. Here the positive 

and negative halves of the low-pass scale correspond respectively to positive 

frequencies above and below the center of the band in the band-pass scale* 

10.8. Frequency Transformations in Amplifier Design 

These frequency transformations will be used in later chapters to simplify 

the discussion of amplifier design methods. Most practical amplifiers arc 

called upon to transmit a band extending from one finite non-zero frequency 

to another. For purposes of analysis, however, we will take as our point of 

departure a structure transmitting from direct current up to some pre¬ 

scribed frequency. This will be called the equivalent low-pass amplifier. 
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The modification of the characteristics of the equivalent amplifier to suit 

the actual requirements can be made by either of two methods, depending 

upon the band width of the actual amplifier on a logarithmic frequency 

scale. If the band is relatively broad it is simplest to suppose that the 

characteristics of the equivalent amplifier are the same as those of the 

actual structure at all high frequencies and to superimpose upon them a set 

of low-frequency characteristics to take account of the fact that the trans¬ 

mission band of the actual amplifier does not extend to zero frequency. 

The required low-frequency characteristics can be obtained from any 

suitable high-frequency design by drawing the characteristics on a recipro¬ 

cal frequency scale, using the transformation from low-pass to high-pass 

filters which was described in the preceding section. This is illustrated by 

Fig. 10.14. The solid line represents the loop gain characteristic in the 

original equivalent low-pass design and the broken line the modification 

in the characteristic near the lower edge of the useful band. 

If the band of the actual amplifier is relatively narrow, on the other hand, 

it is more desirable to treat the complete characteristic as a single unit, 

obtaining it from the equivalent low-pass structure by means of the trans¬ 

formation relating low-pass and band-pass filters. Fig. 10.15, for example, 

shows a band-pass characteristic corresponding to the low-pass characteris¬ 

tic of Fig. 10.14. Since the low-pass to band-pass transformation always 

leads to characteristics which are symmetrical about the center of the band, 

this leaves amplifiers with dissimilar characteristics at the upper and lower 

edges of the band to be treated directly. Narrow-band amplifiers with 

dissymmetrical requirements, however, are very exceptional. 

These frequency transformations have been introduced here as an ana¬ 

lytic simplification. They are, however, frequently convenient also in the 

preliminary stages of an actual design, since the branches of the equivalent 

amplifier are usually more easily computed than those of the actual struc¬ 

ture. 

10.9. Principle of Conservation of Band Width 

The low-pass to band-pass transformation has one simple property of 

considerable importance. This is the fact that the transformation from a 
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coil to a resonant circuit or from a condenser to an anti-resonant circuit 

does not affect the band width, in cycles, over which the impedance or 

admittance of the branch stays within any prescribed limits if we keep the 

coil unchanged in the first case and the condenser in the second. For exam¬ 

ple, in a low-pass circuit the susceptance of a given capacity C will be less 

than some fixed value Bq between zero and a point co0 for which Bo = w0C. 

In the band-pass circuit the susceptance of the corresponding branch can be 

written in general as 

co5 = io2C — y • (10-12) 
La 

B will assume the values at two points on opposite sides of the band. 

At these points, which may be indicated by a>i and a>2, (10-T2) becomes 

0)2^0 — tof C — ~r > 

— a>i Bq — cvfC-— 

(10-13) 

Subtracting the second equation from the first gives 

or 

(<^2 — &\)C — (o>2 4~ 0)\)Bq — (o>2 4" 0Ji)<j)qC 

0>2 — — Wq. (10-14) 

The frequency interval between corresponding points in the band-pass 

characteristic is thus the same as the equivalent interval* in the low-pass 

characteristic no matter how the mid-band frequency, which depends upon 

Ly is chosen. A similar result evidently follows if we keep the inductance 

constant in the transformation from a simple coil to a series resonant circuit. 

The transformation to a single band-pass circuit is the only one of 

particular engineering interest. As a matter of fact, however, similar 

relations also hold if we replace an individual coil or condenser by a re¬ 

active network of any arbitrary complexity, subject only to the condi¬ 

tion that the network becomes equal to the element that it replaces at 

infinite frequency. The impedance or admittance of the branch will 

* This interval is, of course, only the positive frequency part of the low-pass band. 
Since the band-pass characteristic was compared with the sum of the positive and 
negative frequency characteristics of the low-pass structure in Fig. 10.13 it may 
appear at first sight that the band-pass interval should be doubled. The apparent 
discrepancy is explained by the fact that there must be a negative frequency band¬ 
pass characteristic also. The total interval on the complete real frequency axis in the 
two cases is the same. 
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then lie within specified limits in a number of discrete bands, whose 

breadth and arrangement depend upon the resonances and anti-resonances 

chosen for the branch. The sum of all these intervals, however, is equal 

to the corresponding interval for the original inductance or capacity. 

The importance of these conclusions will appear more clearly in later 

chapters. It will be shown that, broadly speaking, most of the characteris¬ 

tics of feedback amplifiers are ultimately limited by the parasitic elements 

in the circuit, which are principally shunt capacities to ground and second¬ 

arily series inductances. For example, tube gains are ultimately limited 

by interstage capacities. Input and output transformers, at least at high 

frequencies, are restricted principally by leakage inductance and high side 

capacity. The amount of feedback which can be secured is limited in the 

same way by the miscellaneous parasitic elements in the feedback loop. 

Evidently, in all these cases the result just established can be applied to the 

parasitic elements when they are resonated as part of the transformation 

from a low-pass to a band-pass system. Since the relative impedance levels 

of the various branches in the complete circuit are not affected by the trans¬ 

formation, however, the reactance or susceptance of any branch containing 

a parasitic element is correlated with any* overall response characteristic of 

the circuit in the same way after the transformation as it is in the low-pass 

structure. With the understanding that this is what is meant, therefore, 

the general result can be expressed as the 

Theorem: The width of the frequency band, in cycles, over which a 

given response can be maintained in a circuit of given general 

configuration containing prescribed series inductances and 

shunt capacities is independent of the location of the band in 

the spectrum. 

* That is, any characteristic which can be determined from single frequency imped¬ 
ance values of the branches. This would evidently eliminate a delay, for example, 
since the result here depends both upon the impedances of the branches and upon 
the rate at which they vary with frequency. It is also assumed, of course, that the 

fact that the sign of such a response characteristic as a reactance may be opposite, on 
one side of the band, to that obtained from a low-pass circuit is immaterial. 
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The conservation of band width in the low-pass to band-pass transforma¬ 

tion is illustrated by Fig. 10.16. The characteristics are the same as those 

originally shown in Figs. 10.14 and 10.15. Typical equal intervals in the 

two cases are indicated by the horizontal lines A> 5, and C. 

10.10. Frequency* Transformations to Dissipative Impedances 

It was suggested in connection with Fig. 10.9 that frequency transfor¬ 

mations which replaced the reactive elements in the original structure by 

dissipative impedances were of comparatively little value. This is gener¬ 

ally true. There are, however, two particular cases of such transformations 

of somewhat special interest. The first occurs when the original structure 

is composed only of reactances. In this case the transformation method 

can be used to generalize Foster’s results for networks of pure reactance to 

include networks of any two types of impedance elements whatever. It is 

not necessary to assume, as was done in the previous discussion, that the 

impedance elements replacing the coils and condensers, respectively, in the 

original structure are inverse. 

The rule for making the transformation can be expressed most easily in 

terms of equation (9-12) of Chapter IX. The structure to which this 

equation refers reduces to an inductance at high frequencies. Evidently, 

the p which multiplies the whole right-hand side of the equation can be 

thought of as the expression for the impedance of this inductance. Simi¬ 

larly, the p2 terms which appear in the various factors of numerator and 

denominator correspond to resonances between the inductances and capaci¬ 

ties of the network and can be thought of as the ratio between the imped¬ 

ance of an inductance and that of a capacity. It can be shown by a more 

detailed analysis that this identification is correct. Evidently, therefore, 

if we replace the inductances and capacities in a network of pure reactances 

by proportional impedances of any other two types the new impedance 

expression can be obtained from the 

Theorem: The expression for the impedance of a network made up of 

any two kinds of impedance elements can be obtained from 

the expression for the impedance of a corresponding net¬ 

work of pure reactances by replacing the multiplier p in the 

pure reactance expression by the impedance which corre¬ 

sponds to a unit inductance and by replacing the p2 terms 

in the rest of the pure reactance expression by the ratio of 

the impedances corresponding to a unit inductance and 

to a unit capacity. 

Since the original reactance expression was derived for an L-L configuration 

it is assumed in the statement of the theorem that a structure of this type 
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is in view. Modifications to suit other cases, however, are easily made by 

the methods described in the preceding chapter. 

As an example of this theorem we may consider a network of inductances 

and resistances. The transformation to such a structure from a network 

of pure reactances leaves a unit inductance as a unit inductance but a unit 

capacity is replaced by a unit resistance. Thus the multiplier p in the 

expression for a pure reactance network is unchanged, but each p2 is 

replaced by p. Substituting in (9-12) of Chapter IX, the new impedance 

expression becomes 

(p - f%Hp - pf) • . 
(J> ~ Pi) (p - Pi) • • * (p - Pm-1) 

(10-15) 

As a second example, let the network be composed of capacities and 

resistances. This leaves a unit capacity as a unit capacity while a unit 

inductance is replaced by a unit resistance. In the impedance formula, 

the multiplier p is replaced by unity and each p2 is replaced, as before, by p. 

The result is 

7 = , (/>-/>!)(/>-/>!)••• (p-/&) 

(p -/>!)(/>- pi) • • • (j> - pi-1) 
(10-16) 

In both (10-15) and (10-16) the zeros and poles are found on the negative 

real p axis and occur alternately. The only distinction between the two 

expressions is the fact that as we proceed along this axis, starting from the 

origin, the alternation begins with a zero when the network is made up of 

inductances and resistances and with a pole when the network is made up of 

capacities and resistances. 

LywJ L/wtycl bywu 

Fio. 10.17 

■—OLULr^f 

Fig. 10.18 

Both types of networks can be represented in partial fraction form. 

Corresponding to the network of inductances and resistances, for example, 

we may secure either of the configurations shown by Figs. 10.17 and 10.18. 

These expansions have already been described in substance, in connection 

with Figs. 10.3, 10.4 and 10.5 of the present chapter. As the analysis 

shows, the poles of inductance-resistance and capacity-resistance networks, 
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although they are both found on the negative real axis, correspond to C/s, 

or residues, of opposite sign. When we add together corresponding terms 

from a capacity-resistance and an inductance-resistance network, as in 

Fig. 10.3, therefore, the poles may cancel out, leaving merely a constant. 

10.11. Effects of Parasitic Dissipation 

The second situation in which frequency transformations which replace 

reactive elements by dissipative impedances may be useful occurs when we 

are trying to express the effects of the normal parasitic dissipation of coils 

and condensers in the formulae for the network. For example, if R is the 

parasitic resistance associated with a coil L we can write the impedance of 

the coil as pL + R = ip + R/L)L. The effect of dissipation can thus be 

represented by replacing p by p + R/L in the impedance of the non- 

dissipative coil. Similarly, the impedance of a capacity including a para¬ 

sitic conductance G can be written as 1 / (pC + G) = l/(p + G/C)C, and 

is the same as the impedance of a non-dissipative capacity with p + G/C 
substituted for p. 

In most networks the ratio R/L is about the same for all coils and the 

ratio G/C is about the same for all condensers. If, in addition, the two 

ratios are equal to one another the network may be spoken of as one having 

uniform dissipation. It is less often true that this second requirement 

is satisfied by actual circuits. In ordinary networks, however, the effects 

of dissipation are much the same whether we regard the dissipation as being 

concentrated principally in the coils alone or the condensers alone or assume 

it to be equally divided between elements of the two types.* Under these 

circumstances we can evidently represent the effects of dissipation by 

replacing p by p + \ {R/L + G/C) in the impedance expressions for both 

coils and condensers. This therefore leads to the 

* This can be taken as a matter of experience, but it can also be justified, for many 
networks, theoretically. Thus if we go back to the energy analysis of Chapter YII it is 
evident that the effects of parasitic dissipation must be attributed to the power loss 
in the dissipative elements. The ratio of the power loss, PR, in a dissipative coil to 
its stored energy, \PL, however, is simply 2R/L, while in a dissipative condenser the 

ratio is 2G/C. In a complete network, therefore, the dissipated power must be 
(2R/L)T + (2G/C)V, which can also be written as (T+ V)(R/L + G/C) + 
{T — V)(R/L — G/C). The first term of this expression evidently represents the 
average dissipation assumed above while the second term gives the error in this 

assumption. Since T — V is proportional to the input susceptance by (7—31) of 
Chapter VII, the error will be negligible for any network whose impedance is approxi¬ 
mately a pure resistance. Even if this condition is not met the second term will be 
negligible in comparison with the first, as shown by (9-15) to (9-17) of Chapter IX, if 
the network is a sharply varying two terminal reactance, or, as shown by later equa¬ 

tions of similar type, if the network is any electrically long filterlike structure. 



THE DESIGN OF IMPEDANCE FUNCTIONS 217 

Theorem: If a network can be regarded as uniformly dissipative any 

of its actual characteristics can be obtained by replacing p 
by p + ^ (R/L + G/C) in the equations for the corre¬ 

sponding characteristics in the absence of dissipation. 

In a mathematical sense the theorem states in 

effect that the changes due to dissipation can be 

represented by evaluating the function on a line 

somewhat to the right of the real frequency axis 

rather than on the real frequency axis itself. 

This is illustrated by Fig. 10.19. The light solid 

line represents the new axis when R/L + G/C is 

constant with frequency and the broken line the 

result if R/L + G/C increases with frequency, 

which is the usual case in practice. As an alter¬ 

native, we can of course say that the computa¬ 

tions are still made on the real frequency axis 

but that the function itself, including its zeros, 

poles, and other reference points, has been displaced an equivalent dis¬ 

tance to the left. 

These relations lead to a simple method of designing 

networks to give automatic compensation for the effects 

of parasitic dissipation. The method was first used by 

Darlington* in the design of filters which would give 

flat transmission bands when constructed with dissipa¬ 

tive elements. It consists in designing the network 

without regard to parasitic dissipation and then trans¬ 

lating all the zeros and poles in the impedance ex¬ 

pressions which result | (R/L + G/C) units to the right 

in the p plane. When the effects of parasitic dissipa¬ 

tion are included the zeros and poles move back, of 

course, to their proper positions. If R and G are con¬ 

stant with frequency the required displacement is the 

same for all poles and zeros. Otherwise, it is usually 

sufficiently accurate to displace each pole or zero by the 

appropriate value of § {R/L + G/C) at the adjacent real 

frequency. An example is shown by Fig. 10.20, which 

represents the distribution of zeros and poles of the 

transfer impedance, A/A12, through a low-pass filter. The heavy line 

indicates the approximate transmission band. The crosses represent poles 

or infinite loss points, and the circles represent zeros, or points of infinite 

Fig. 10.20 

* loc. cit., pp. 335 ff. 
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gain.* The predistortion of the characteristic to compensate for parasitic 

dissipation is accomplished by moving the poles and zeros to the positions 

indicated by the primes, f 

In translating the zeros and poles to the right in this way it is of course 

necessary to make certain that the resulting network will not be non¬ 

physical. For example, in the illustration just described the zeros are the 

roots of A and cannot be moved into the right half-plane, even in the pre¬ 

liminary design, if we are dealing with a passive network. In this particu¬ 

lar example there is no essential limitation on the location of the poles of the 

function. If the method were applied to a passive driving point impedance, 

however, it would be necessary to suppose that both the zeros and poles 

of the original design were found at least \{R/L + G/C) units to the left 

of the real frequency axis in order to prevent critical frequencies of either 

type from entering the right half-plane as a result of the shift. The area 

between the imaginary axis and a line %(R/L + G/C) units to the left thus 

represents a forbidden ground within which we may not be able to permit 

zeros and poles of the original design to lie if the method is to work. Other¬ 

wise, however, the application of the method is quite general. 

This frequency transformation can also be used to provide a convenient 

way of estimating the effects of parasitic dissipation directly from an 

inspection of the real frequency characteristics of the structure. To show 

this, let it be supposed that we are interested in some particular characteris¬ 

tic $ = A + iB, It will be assumed that $ is an analytic function of fre¬ 

quency in the neighborhood of the point which we are investigating. If we 

exclude such isolated frequencies as poles or cut-offs, this still allows us to 

consider almost any network characteristic we please. The method can be 

applied, for example, to such diverse functions as an impedance, a voltage 

ratio, an actual transmission characteristic, or an image transfer constant. 

It is necessary to remember, however, that if $ is to be analytic both its real 

and imaginary components must be represented. In other words, if we are 

interested in such functions as the resistance or attenuation of a network, 

we must also include in $ the associated reactance or phase shift. 

The method depends upon the representation of the change in # 

by means of a Taylor’s series. As we have already seen, the intro¬ 

duction of dissipation in the network is equivalent to replacing p, or 

la?, by id? + %(R/L + G/C). The variable « is therefore changed by an 

* This is discussed in more detail in the next chapter. The reasons why a distribu¬ 
tion of poles and zeros of this type should be appropriate for a low-pass filter are 
beyond the scope of the present treatment. 

f In practice, the poles are usually not moved since the change in their location has 
relatively little effect on the distortion in the transmission band and requires an 
increase in the structural complexity of the network. 
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amount Aco = — i\(R/L + G/C). In terms of the customary symbol Qy 
representing the average dissipation in coils and condensers, this change in 

co can be written as — iw/Q. The Taylor’s series expansion for $ therefore 
appears as 

$ = #o + 
. co\ d$ o 

1 Q) du 
( • i^V d2$o 
\'q) do? 

+ (10—17) 

where represents the characteristic corresponding to the actual parasitic 

dissipation, and <i>o the characteristic when dissipation is neglected. In 

order to apply the series, it is necessary, of course, to know the numerical 

values of the derivatives. The change in co is imaginary, while ordinarily 

the behavior of <£ will be known only along the real frequency axis. Since 

$ is analytic, however, its derivatives are the same in every direction. We 

can therefore evaluate them by means of the equations 

dfo _d?A_ . d?B 
do) do) do) ’ do? do? do? ’ 

(10-18) 

* Pi p* Axis of 

res! CjJ’s 

where the differentiations are supposed to be made at real frequencies. 

This is illustrated by Fig. 10.21. The actual displacement of co is from Px 
to a point P*^ off the real frequency 

axis. It is legitimate, however, to con¬ 

struct the Taylor’s series on the as¬ 

sumption that we are concerned with _ 

an equivalent real frequency displace¬ 

ment to either of the points Pz or 

obtaining the final answer by rotating 

the change in co through 90° in each 

term of the series. The result is se¬ 

cured analytically by substituting (10-18) in (10-17). This gives 

1 o?(d?A 
2 \Q2\df + 1 dO 

-T—. 

A CJ Pz 

Fio. 10.21 

A + %B = A$ + iBo 
. co / dA . dB\ 
Q\do) do)/ !> 

, 1 .f(#A , .d3B\ , 
+ 3!' 0s V^5 + -1-* (1<M9) 

Now equating reals and imaginaries separately, we find 

udB l fd2 A l ffB ^ 
A-A0 + Qdu 2 du2 3! Q3 df ’’"*'** 

udA 1 ffB, 1 a.8^3// 

B~ B* Q du 2! du2 3! j?3 df "*"*'"* 

(10-20) 

(10-21) 
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Since the effects of dissipation will ordinarily be small the terms of higher 

order can be dropped, leaving the convenient formulae 

. . w dB _ _ v 

a~a° = qTu’ (10_22) 
# 

B~B« (10~23) 

In numerical applications it is important to remember that the Q in these 

expressions represents the average dissipation of the coils and condensers 

and must be set equal to twice the Q of the coils alone when the dissipation 

of the condensers can be neglected. 

Equations (10-22) and (10-23) 

show that, to a first approximation, 

the change produced by dissipation 

in the real component of a network 

characteristic is proportional to the 

slope of its imaginary component 

and vice versa. For example, if we 

interpret A as the resistance and B 
as the reactance of a network, we 

see that the resistance introduced 

by dissipation should be propor¬ 

tional to the derivative of the react¬ 

ance characteristic and, conversely, 

the reactance change is proportional 

to the derivative of the resistance. 

If we interpret A and B as the loss 

and phase of a network, on the other 

hand, (10-22) shows that the change 

in attenuation produced by dissipa¬ 

tion should be proportional to the 

“time of delay.” Similarly, (10-23) 

shows that the effect of dissipation 

upon the phase displacement depends upon the rate of changeof the attenu¬ 

ation characteristic. 

An example of these relations is given by Fig. 10.22. The solid lines in 

the figure give the real and imaginary components of the transfer constant 

of a non-dissipative low-pass filter. This function is an unfortunate choice, 

in one sense, since it has singularities at the cut-off and at the points of 

infinite loss. As the figure indicates, the slope of the attenuation charac¬ 

teristic is infinite at each of these points. In addition, the phase charac- 
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teristic exhibits discontinuities at the infinite loss points, corresponding to 
the change in the sign of the current delivered to the load when it passes 
through zero. The formulae cannot, of course, be applied at any singu¬ 
larity. Theoretically, they should also be inapplicable at any frequency so 
close to a singularity that the singularity falls within the interval P3P4 

in Fig. 10.21, since the series in (10-20) and (10-21) will fail to converge in 
this event, while for slightly more remote frequencies we should expect the 
convergence to be so slow that (10-22) and (10-23) would not be useful 
approximations. It turns out, however, that these formulae are at least 
qualitatively correct even at frequencies very close to the singularities. 

The dissipative phase and attenuation characteristics of the filter are 
shown by the broken lines in Fig. 10.22. In order to make the example 
roughly quantitative let it be supposed that the filter is a voice frequency 
structure with a cut-off at w = 20,000. It will also be supposed that dissi¬ 
pation in the condensers can be neglected but that the coils have a Q which 
is equal to 20 at the cut-ofF.* The average Q which appears in (10-22) 
and (10-23) is therefore 40 at the cut-ofF and if we suppose Q to be pro¬ 
portional to frequency the factor u/Q can be replaced by the constant 500. 

Turning first to the efFects of dissipation on the phase characteristic, we 
observe that inside the transmission band the slope of the attenuation 
characteristic is negligible. In accordance with (10-23), the dissipative 
and non-dissipative phase characteristics are almost identical in this region. 
Between the cut-ofF and the first peak of attenuation the slope of the attenu¬ 
ation characteristic is positive and, as (10-23) indicates, parasitic dissi¬ 
pation reduces the phase shift. About halfway between the cut-ofF and the 
first peak, where the slope is least, we can estimate that dA/du is about 
1 neper per thousand units of co. At this point, therefore, the reduction in 
phase shift is about half a radian, but it grows progressively greater as we 
go toward either the cut-ofF or the peak. In the region just beyond the 
first peak, on the other hand, the attenuation slope is negative, and the 
phase shift is increased by dissipation, and so on. 

Turning now to equation (10-22), we observe that dissipation increases 
the attenuation in the transmission band, where the phase characteristic 
has a positive slope. With the three-section filter assumed here the phase 
shift at the cut-ofF is 3w radians. This corresponds to an average dB/d<a 
over the band of about 5 X 10"”4, or with the given value of w/£?> to an 
average attenuation of about 0.25 neper. At low frequencies, where dB/du 
is only about half this average, the attenuation is correspondingly reduced, 
but it is much greater near the cut-ofF, where the phase slope is high. 

* A low Q is assumed here in order to make the efFects of parasitic dissipation appre¬ 
ciable in an overall plot like Fig. 10.22. Even so, however, no attempt has been 
made to draw the curves exaedy to scale. 
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Beyond the cut-off the phase slope is generally zero and dissipation has 
relatively little effect on the attenuation. Dissipation does, however, 
reduce the peaks of attenuation from infinite to finite values, which may be 
regarded as corresponding qualitatively to the associated breaks in the 
phase characteristic, 

10.12. Parasitic Dissipation in Distortionless Media 

Equations (10-22) and (10-23) give particularly interesting results when 
they are applied to a network whose dissipationless characteristics approxi¬ 
mate those of an ideal medium. In general, it appears that the characteris¬ 
tics of such a structure will not be seriously impaired by dissipation, or, in 
other words, a network whose characteristics approach the ideal is roughly 
self •compensating for the effects of uniform dissipation. For example, if the 
impedance of a network approximates the ideal constant resistance charac¬ 
teristic, the derivatives of its resistance and reactance with frequency will 
ordinarily be quite small.* The changes produced by dissipation in resist¬ 
ance and reactance, as found from (10-22) and (10-23), must of course be 
correspondingly small. As judged from these formulae, therefore, the 
impedance should be about the same whether it is computed on a dissipative 
or a non-dissipative basis. 

If the network is to have an ideal transmission characteristic as well as an 
ideal impedance, its attenuation must be constant and its phase shift must 
vary linearly with frequency.! By the previous argument, the constancy 
of the attenuation shows that the phase characteristic will be disturbed 
only slightly by dissipation. We cannot use the same logic to show that 
the attenuation is unchanged by dissipation since linearity of phase shift 
means a constant, but not in general a zero, value of dB/dco. We can, 
however, at least see from (10-22) that over narrow frequency ranges the 
percentage distortion in a circuit with constant delay can be no greater 
than the percentage band width unless Q actually decreases with fre¬ 
quency. Over broader ranges the loss introduced by dissipation will 
depend upon the variation of the factor o)/Q. Since Q is directly propor¬ 
tional to frequency when the resistances of the coils and leakages of the 
condensers are constant, the structure will also be distortionless over broad 
ranges in this limiting case. 

These relations are most easily exemplified in transmission line theory. 
It is well known, for example, that an ideal non-dissipative transmission 
line is distortionless and that it remains distortionless if dissipation is 
added in accordance with the relation R/L = G/C, or, in other words, 

* Impedance characteristics which fluctuate rapidly, without ever departing far 
from the ideal value, must, of course, be excepted in this argument. 

tJ.R, Carson, “ Electric Circuit Theory and the Operational Calculus/* p. 183. 
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uniformly. Actual lines, which do not satisfy this relation, exhibit marked 
distortion at low frequencies. They tend to approximate distortionless 
lines, however, as soon as the frequency is high enough to give reasonably 
large j?’s for the distributed series impedance and shunt admittance, even 
though the distortion remains non-uniform.* For practical application, 
the relations are probably most useful for complicated aggregations of 
filters, equalizers, and phase correctors having an overall characteristic 
which is substantially distortionless. Evidently the effects of parasitic 
dissipation in the individual units should tend to be compensatory so that 
labor will be saved by postponing consideration of this problem until pre¬ 
liminary designs of the complete system are available. 

10.13. Variations in a Network Characteristic Produced by Changes in a 

Single Element 

In many network design problems it is convenient to study the effects 
of the most important elements on the network characteristic individually 
by assigning them various values while the remaining elements are held 
fixed. In such circumstances the study may be considerably facilitated by 
the use of certain elementary propositions from function theory. Broadly 
speaking, the applications of function theory are similar to those we have 
seen before, except that the independent variable is taken as a complex 
branch impedance rather than as a complex frequency. 

The simplest proposition we can use depends merely upon the general 
form of the functional relationship between the network characteristics of 
greatest interest and any individual branch impedance. For example, if 
Z is either a driving point or a transfer impedance, it follows from (1-11) 
and (1-12) of Chapter I that it must be related to any given branch imped¬ 
ance, z, by an equation of the type 

_ A + Bz 

~ C + Dz 
(10-24) 

where Ay By Cy and D are quantities which depend upon the other elements 
of the circuit. They will, of course, normally vary with frequency. If we 
keep the frequency fixed, however, so that Ay By C, and D are merely con¬ 
stants, equation (10-24) represents a so-called “ bilinear transformation ” 
of the variable z. It is a property of such a transformation that if z assumes 
values lying on a circle (including as a special case a straight line) the corre¬ 
sponding values of Z will also lie on a circle. If z is a resistance, we can 

* This assumes, of course, that R and G do not vary with frequency. In physical 
lines R and G usually increase with frequency, so that the attenuation also increases 
instead of flattening out. This corresponds to the variation in the factor <a/Q dis¬ 
cussed previously. 
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regard the “ circle ” on which it lies as the real axis, including both posi¬ 
tive and negative portions, while if z is a reactance, the “ circle ” will 
similarly be the complete imaginary axis. 

The circle described by Z, corresponding to either of these cases, is deter¬ 
mined as soon a$ we know three points on it. In most circumstances 
two of these points can be found readily by assigning z the special values 
zero and infinity. The third can be found by choosing any convenient 
intermediate value, or the circle can frequently be located directly Ly con¬ 
ditions of symmetry. For example, if we are dealing with a variable resist¬ 
ance in a network all of whose remaining elements are reactances, the por¬ 
tions of the Z circle corresponding to positive and negative resistances 
must evidently be located symmetrically about the axis of pure imaginaries. 
An example is furnished by the network and associated impedance plot 
shown in Fig. 10.23. The solid and broken line portions of the plot corre- 

-2/X 

4-21 A' 

spond respectively to positive and negative values of the variable resistance 
in the network. The structure is a so-called “ constant impedance ” device 
since it has the property that the absolute value of its impedance is inde¬ 
pendent of the variable resistance. This can be verified by direct com¬ 
putation, but we may notice that it must follow from the symmetry of the 
plot about the imaginary axis if the network is so chosen that the reactances 
corresponding to zero and infinite values of the variable resistance are 
equidistant from the origin. 

A second example, this time showing symmetry about the real axis, is 
shown in Fig. 10.24. The broken line represents the locus of Z when the 
condenser is replaced by an inductance. 

Some assistance in making studies of this sort can frequently be obtained 
merely from the broad fact that, except possibly for isolated points, any 
ordinary network characteristic must be an analytic function of any one of 
the branch impedances. If we vary this impedance, therefore, the network 
characteristic must vary “ conformally.” This means that if we know the 
effect on the characteristic produced by a slight variation of the branch 
impedance in any given direction, we can find the effect produced by a slight 
variation in the branch impedance in any other direction by rotating the 
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original change in the characteristic through the same phase angle as that 
by which the variation in the branch impedance is rotated. For example, 
the effects on a network impedance produced by a slight change in the 
resistance of one branch and by a slight change in its reactance are at right 

Fig. 10.24 

angles to one another. Thus in Fig. 10.23 if we vary the inductance while 
we hold the resistance fixed at any assigned value, the new circle must cut 
the original circle of Fig. 10.23 orthogonally. This is illustrated by 
Fig. 10.25 for a resistance equal to X, which corresponds to the point P in 
Fig. 10.23. The original circle of Fig. 10.23 is reproduced by the broken 
lines. 

We can also study the effect of a single branch impedance on the complete 
network by means of the theorem on the maxima and minima of analytic 
functions described in Chapter VIII. For example, if we assign z to 

Fig. 10.25 

larger and larger circles in the right half-plane the corresponding circles for 
Z also grow larger, so that variations in Z produced by changes in z become 
more extreme. The largest possible “ circle ” for z, in a passive network, is 
the axis of pure reactances and the maximum and minimum for either com¬ 
ponent of Z must consequently be found when z is a pure imaginary. This 
has already been discussed in Chapter VIII. 



CHAPTER XI 

Physical Representation of Transfer Impedance Functions 

ll.L Introduction 

Viewed broadly, the analysis of the last several chapters has consisted 
of an attempt to construct a general network theory upon the postulate 
that a realizable network must be stable. Chapters VII and VIII gave the 
essential framework of such a theory and the formal requirements to which 
it leads for the various network functions. Chapters IX and X were an 
effort to clothe the driving point immittance requirements with physical 
meaning by deducing from them a number of particular consequences for 
more or less specialized circuits. The present chapter and the one which 
follows attempt to do the same thing for transfer immittance functions. In 
particular, the present chapter can be looked upon as the analogue, for 
transfer immittances, of the discussion of driving point immittances in 
Chapter IX. It consists essentially in an attempt to show that the require¬ 
ments for transfer functions laid down in Chapter VII are sufficient as well 
as necessary by a demonstration that any function meeting these conditions 
can be realized in a physical circuit of a certain type. 

There is a very close parallel between the theory of driving point immit¬ 
tances and the theory of transfer immittances. The logical analogue of a 
driving point immittance, however, is not a transfer immittance itself but 
its logarithm. Thus we may look upon attenuation and phase in the trans¬ 
fer analysis as taking the place of resistance, or conductance, and reactance, 
or susceptance, in the driving point analysis. The present discussion 
attempts to stress this analogy as much as possible. Thus the initial 
operations of resistance, or conductance, reduction and reactance, or sus¬ 
ceptance, reduction in Chapter IX are replaced here by the corresponding 
operations of attenuation reduction and phase reduction. As in the dis¬ 
cussion of driving point functions, attention is first restricted to passive 
networks. In the driving point analysis the solution for passive circuits 
was extended to the general case by the addition of a negative resistance 
which made it possible to disregard the limitation that the resistance or con¬ 
ductance component of a passive driving point immittance cannot be 
negative. Similarly, the solution for passive transfer functions can be 
extended to the general case by the addition of an ideal amplifier, which 
allows us to realize negative attenuations. In the next chapter the analogy 
is carried further by the representation of the general transfer function by a 

22$ 
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number of simple structures in tandem. This corresponds to the represen¬ 

tation of the general driving point function by a number of simple imped¬ 
ances in series or parallel. 

The analogy just described breaks down in only one important respect. 

The general discussion thus far has been carried forward in dual terms to 

take account of the fact that the analysis may employ either mesh or nodal 

methods. In the consideration of driving point functions this mathe¬ 

matical dualism is of some physical consequence since it leads naturally to 

alternative series and parallel representations for a given function. It 

leads also to such complexities as occurred in Chapter IX when we 

attempted to determine the short-circuit stability of impedances in series 

or the open-circuit stability of impedances in parallel. In the analysis of 

transfer functions, on the other hand, the mathematical dualism has no 

particular physical significance. There is no inverse to a tandem combina¬ 

tion of networks, in the sense that a series combination of networks is the 

inverse of a parallel combination. To simplify the language, therefore, the 

discussion will treat only of transfer impedances. 

11.2. Statement of the Problem 

In previous chapters transfer impedances and admittances have been 

used rather generally as measures of the response which would be obtained 

at one point of the network if a current or voltage source were introduced 

at some other point. So far as this formulation of the problem goes, the 

two points may be any two branches or nodes chosen at random. The 

self-impedances or admittances at the two points need not be sharply dis¬ 

tinguishable from the rest of the network. In practical situations, how¬ 

ever, the two points are usually the actual source of the signals in which we 

are ultimately interested and the actual receiv¬ 

ing device, and the problem is that of inter¬ 

polating some network which will control the 

transmission between them in some desired 
• R 

way. Since the source and receiver are usu- * 

ally given while the network is still to be found, 

this makes it desirable to distinguish between 

the network proper and its terminations, as 

indicated by Fig. 11.1. The network proper 

is represented by the box and the terminations 

by the two resistances Ri and R2* 

* For descriptive purposes the terminations may as well be general impedances, 
since any reactances they include can be regarded as part of the network. They are 
assumed to be resistances here, however, to avoid any restrictions on the network 
when we come to the problem of simulating any possible transfer impedance. 
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The formulation of the situation given by Fig. 11.1 raises a number of 

questions which have not previously appeared. In two-terminal networks, 

for example, the specification of the driving point impedance of the struc¬ 

ture fixes it completely so far as its participation in the overall operation of 

the complete circuit m which it appears is concerned. The choice of the 

transfer impedance of a four-terminal network, on the other hand, specifies 

the network only partially. In Fig. 11.1, for example, it fixes only the 72 

which will flow in response to the generator E\. We may also be interested 

in the input current 7i which would be caused by the same generator or 

either the I\ or the I2 which would flow if a second generator jE2 were 

added in the output circuit. Evidently, before taking further steps it is 

necessary to know how many parameters are required to fix the network 

completely and what disposition of the additional parameters will be made 

in the present situation. 

This problem is most easily investigated by means of the mesh equation 

solution for /1 and 72 in terms of E\ and E2. If we suppose that the input 

and output circuits are chosen respectively as the first and second meshes, 

the result from (1-7) and (1-9) of Chapter I is easily seen to be 

h^E^ + E,^* 
A A 

(11-1) 

h = Ex ^ + E2 ^ > 
A A 

where A is the determinant of the complete network, including the termina¬ 

tions R\ and /?2- We can, however, also write the equations in a form which 

segregates the properties of the network itself from its terminations. Using 

the expansion methods indicated by such equations as (1—11) or (1-12) of 

Chapter I, this results in 

r» + ^i, LSi+a„J71 - 
^21 

All22 
7o = Ex 

A12 

A1122 
7i + ["#2 + . —172 = E2, 

L A1122J 

(11-2) 

where Aji and A22 represent An and A22 when i?i = R2 — 0. The super¬ 

scripts are immaterial for the other determinants. 

Equations (11-2) show that if the operation of the network is to be 

specified completely for any choice of the E9s and the R9s it is necessary, 

in general, to know the four quantities A22/A1122, A2i/Au22, Ai2/An22» and 

A$i/Aii22. In passive networks, to which the discussion is restricted at the 
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moment, one of these can be eliminated by the principle of reciprocity, 

which allows us to write Ai2 == A2i. The remaining three quantities can, 

of course, be replaced by other sets of three functionally related to them. 

For example, if we interpret equations (11-2) as the mesh equations of the 

structure shown in Fig. 11.2, the network is specified in effect by the three 

branches of an equivalent 

T. This is a familiar de¬ 

vice. We may also analyze 

the network in terms of its 

image parameters or its iter¬ 

ative parameters. In any 

event, however, the com¬ 

plete specification of the 

network requires at least Fig. 11.2 

three parameters and we 

must know all of them in order to determine its operation for all possible 

terminal conditions. 
An elaborate and somewhat unwieldy solution of the general problem of 

designing the network when the three parameters are chosen arbitrarily, 

within physical limits, has been advanced by Ge wertz.* For the purposes 

of the present discussion, however, it is sufficient to demonstrate that a 

specified transfer impedance A/Ai2, from input to output, can be obtained 

when the terminations have their prescribed values. This leaves two 

parameters which can be chosen arbitrarily and by choosing them in differ¬ 

ent ways a rich variety of solutions can be obtained. All the solutions, of 

course, will be alike, so far as the specified transmission characteristic is 

concerned, but they may differ widely in such properties as the impedance 

which the network presents to the source or the load. One possibility is 

furnished by a method due to Darlington.f Here the two arbitrary param¬ 

eters are specified, by implication, by the assumption that the network is 

to contain only reactive elements. This solution is particularly applicable 

to filter problems. 

The solution developed here will be based upon the assumption that 

the network is to have a constant resistance image impedance at each end. 

This choice is a particularly convenient one for theoretical purposes, since 

it allows us to ignore reflection effects in evaluating the transmission charac¬ 

teristic. This will be especially useful later when we come to the problem 

of representing a complete characteristic by a number of simple structures in 

*€t Synthesis of a Finite, Four-Terminal Network,” Journal oj Mathematics and 
Physics, Vol. 12, 1932-33, pp. 1-257. 

f “ Synthesis of Reactance 4-Poles,” Journal of Mathematics and Physics, Sept., 
1939, pp. 257-353. 
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tandem. It has the additional advantage, for the purposes of this book, 

that it converts the analysis, in effect, into a theory of equalizers. The 

material thus becomes directly pertinent to problems of pre-equalization 

or p circuit equalization in amplifier design, as well as being more remotely 

pertinent to the design of such structures as interstage networks, which are 

broadly like equalizers. 

11.3. Construction of a General Transfer Impedance 

The transfer impedance A/Ai2 between R\ and R2 in Fig. 11.1 will be 

symbolized by Zt» Since Zt represents a transmission it is also convenient 

to measure it in logarithmic units. The most efficient possible transmission 

between Rx and R2 with passive networks would be obtained if the two were 

matched by an ideal transformer, and corresponds to Zr = 2\/RXR2. If 

this value of Zt is used as a reference, the logarithmic measure of Zt is 

given by 6 = log (Zt/2\/RXR2), where 6 = A + iB may be called the 

transfer loss and phase. Since Zt is evidently a rational function of p 

these relations can also be written as 

Zt = • = 2VRiR2 ee = 2V^ 
A12 

= 2VRxR2k 
(p ~ OlUp ~ *2) •••(/> ~ On) 
(p ~ h){p ~ b2) • • • (p - bn) ' 

(11-3) 

The a*s and Rs in (11—3) are, of course, the zeros and poles of Zt, or the 

points of infinite gain and infinite loss in terms of 6. The conditions which 

they must meet if Zt is to represent a physical circuit are given by the 

general list in Chapter VII. The requirements are, broadly speaking, that 

both zeros and poles must either be real or occur in conjugate complex pairs, 

and that the zeros must be found only in the interior of the left half-plane. 

The poles, however, may occur in any part of the plane.* As long as the 

discussion is restricted to passive circuits it is necessary, in addition, to 

satisfy requirement 6b> which states, in effect, that the network cannot 

serve as a source of power. In the present instance, this means that the 

constant k must be large enough to make the absolute magnitude of the 

last expression in (11-3) at least equal to 2VrxR2 at all points on the real 

frequency axis. In other words, the transfer loss A cannot be negative. 

* It will be observed that the “ minimum phase " condition, 5c in the list of Chap¬ 
ter VII, is not involved here. Minimum phase networks are discussed later. It is also 
assumed, in accordance with the discussion of Chapter VII, that none of the zeros 
lies exactly on the real frequency axis, 
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In comparing this formulation of the restrictions on passive transfer 

impedances with those developed for passive driving point impedances, we 

notice two important differences. The first is the fact that the previous 

requirement that the real component of the impedance cannot be negative 

along the real frequency axis has been eliminated. It is replaced by the 

requirement that the real component of 6 cannot be negative at real fre¬ 

quencies. The second is the fact that the poles of the function are no 

longer confined to the left half-plane. As later discussion Will show, these 

are the changes which are necessary if the real and imaginary components 

of 6 are to be taken as the analogues 2 

of the real and imaginary compo- (JfeR/Rg . 

nents of a driving point impedance 

function. 

The structure which will be used * 

to represent this general passive 

transfer function is the combination ^1 

of a symmetrical lattice network* 

and ideal transformer shown by Fig. 

11.3. In terms of its branch im¬ 

pedances, Zx and Z„, the image impedance and image transfer constant of 

the lattice can be written in general as 

Zj = Vz^Zy (11-4) 

and 

(11-5) 

As suggested in the previous discussion, the image impedance of the lattice 

will be assumed to be a constant resistance. It can be set equal to the 

terminating impedance R2 by choosing Zx and Zv as inverse networks of 

impedance product ZXZV = R2 in (11-4). With this choice the input 

impedance of the lattice is, of course, also R2. The transformer in Fig. 11.3 

is introduced to provide a final impedance match between this resistance 

* For the benefit of readers unfamiliar with the lattice configuration it may per¬ 
haps be helpful to point out that if the structure is unfolded it takes the form of a 
Wheatstone bridge in which opposite arms are equal. The lattice is much used in net¬ 
work analysis both because of the simplicity of its design equations and because it is 
capable of representing any characteristics obtainable from any other symmetrical 
structure. Further details of its properties will be given in the next chapter. For a 
more complete discussion, especially of the use of the lattice in filter design,the reader 
may also refer to Guillemin, " Communication Networks,” Vol. II, Ch. X. The 
introduction of the lattice structure into network theory appears to be due originally 
to Campbell, " Physical Theory of the Electric Wave Filter,” B.S,T.Nov., 1922. 
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and the generator resistance R\, It can be omitted if the loss due to the 
mismatch between the two resistances is not of importance. 

With these assumed impedance relations it is clear that the 6 of equa¬ 
tion (11—5) representing the transfer constant of the lattice can be identified 
with the 6 representing the so-called “ transfer loss and phase ” in equa¬ 
tion (11-3). Since Zy can be expressed in terms of Zx and R2 from the 
image impedance condition, however, (11-5) is readily rewritten in either 
of the forms 

1 + Z, 
R* 

1 - 
Z* 

R2 

(11—6) 

or 

= (H-7) 

The problem thus reduces to that of choosing a Zz from equation (11-7) 
which will give the prescribed transmission characteristic. Since ee is a 
rational function of frequency, it is clear that Zx will be a rational function 
also. To complete the analysis we must show that this rational function 
can be represented as a physical two-terminal impedance when ed meets the 
conditions we have established for transfer impedances. 

The proof that Zx can be constructed depends upon an application of the 
preceding theorem on the maxima and minima of analytic functions. 
Although e$ may have poles in the right half of the p plane its reciprocal, at 
least, will be an analytic function in this region. The absolute value of the 
reciprocal function is therefore greater at some point on the real frequency 
axis than it is anywhere in the interior of the right half-plane. This is the 
same as saying that the minimum value of the transfer loss A in the whole 
right half of the p plane is found on the real frequency axis. We have 
already seen, however, that if the network is passive the minimum A on 
the real frequency axis cannot be less than zero. Within the right half of 
the plane, therefore, A > 0. It follows from equation (11-7) that Zx 
can have neither zeros nor poles in this range. Moreover, if we write 
£ — ^ cos B + /V1 sin B the real component of Zx is readily found to be 

n n €<2A ~~ 1 /H m 
Rx = Rz {? COS B + l)2 + (✓* sin 5)2 * (11-8) 

Under the assumed conditions, this will evidently be positive on the real 
frequency axis. Zx thus meets all the conditions of physical realizability 
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and can be represented as a two-terminal Brune network or some equivalent 
structure. Since the inverse impedance Zy is obviously also physical, this 
allows us to state the 

Theorem: The transfer impedance of any passive network* can be 
represented by a symmetrical constant resistance lattice 
network with resistance terminations. 

This conclusion is of engineering as well as of theoretical interest. It 
indicates, for example, that any filter characteristic can be duplicated in a 
constant resistance structure, thus avoiding the erratic impedances which 
ordinarily characterize filters. The difficulties with the/nethod lie in the 
fact that the two-terminal impedance branches of the lattice may be 
complicated and difficult to adjust, and that the constant resistance struc¬ 
ture as a whole requires appreciably more elements than would a conven¬ 
tional filter. The first of these difficulties can be avoided by the decom¬ 
position method described in the next chapter, at the cost°of a considerable 
increase in the fixed attenuation of the network. As the method stands 
thus far, of course, the constant attenuation characteristic can be made as 
small as any passive network can give if we include the ideal transformer 
matching the resistances R\ and 

11.4. Examples of the Representation of Transfer Functions by Lattices 

As an elementary example of these processes we may consider the circuit 
shown by Fig. 11.4. The transfer impedance from one resistance to the 

other is ^iven by Zt = 2 + p. Since 2V//?1/?2 = 2 p 

in this circuit, the corresponding transfer loss 
and phase is given by e9 = 1 + p/2. Substituting 
in (11-7) gives the result 

p/ 4 

p + 4 P/4 + 1 
(11—9) 

which represents the impedance of a unit resist¬ 
ance in parallel with an inductance of one quarter unit, 
lattice is shown by Fig. 11.5.f 

The complete 

* It is assumed that none of the zeros of A lies exactly on the real frequency axis. 
Otherwise, however, the phraseology is somewhat too restrictive since, as later dis¬ 
cussion shows, an active transfer impedance can also be represented by a passive 
lattice if the lattice terminations are allowed to be different from those in the original 
circuit. 

fThe broken lines in this and subsequent lattice diagrams indicate series and 
cross-arm impedances identical with those shown explicitly. 
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The example is made slightly more complicated by including a parallel 
capacity in the original circuit, as shown by Fig. 11.6. The transfer imped¬ 
ance is readily found as 

Zt = p2 + 2p + 2 (11—10) 

and is again just twice e9. The corresponding Zx therefore appears as 

Zx = 

//4 

p2 + 2p 

p2 + 2p + 4 
(11-11) 

It will be noticed that Zx has a zero at the origin. We can conveniently 
begin the process of representing the impedance with a susceptance reduc¬ 
tion at this point. With this beginning the complete network is easily 
determined. In admittance form, it appears as 

(11-12) 

which represents an inductance in parallel with a series combination of a 
capacity and a resistance. The lattice is shown by Fig. 11.7. 

// 2 
0.8/ 1.4/ 

The structure of Fig. 11.6 can evidently be regarded as an elementary 
filter. If we begin with more complicated filters the general procedure can 
still be carried out, but the degree of the impedance expression is higher and 
the numerical work becomes much more onerous. It is convenient, how¬ 
ever, to include one example of a more complicated filter in order to pave 
the way for the description of the alternative procedure given in the next 
chapter. The structure is shown by Fig. 11.8. It is a conventional one 
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and one-half section low-pass filter with a cut-off at « = 1 and with the loss 

characteristic shown by Fig. 11.9.* The transfer impedance expression, as 

Attenuation in db 

determined by the ordinary mesh computation methods used for filters, is 

given by 

„ a 1.65V + 4.264/ + 6.576/ + 6.84/ + 4.4^> + 2 

Zr 2* ~ 0.23/ + / + 1 
(11-13) 

The corresponding Zx is obtained as 

7 1.1/1 + l.lp + 1.495/ + 0.864/ + 0.376/) 

* 1 + Lip + 2.21/ + 1.644/ + 1.181/ + 0.413/* ^ ' 

Following Brune’s methods this can be developed in the form shown by 

Fig. 11.10. 

♦The filter consists of a full section with m = 0.8 and a half section with m » 0.6. 
The transfer impedance and loss characteristics shown later correspond to the exact 
element values for a structure of this type, rather than to the approximate values 

given by Fig. 11.8. 
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11.5. Loss and Phase Reduction of the Transfer Impedance 

In discussing two-terminal networks, it was pointed out that the resist¬ 

ance and reactance characteristics could ordinarily be reduced to certain 

minimum values independently of one another. For example, we could 

always subtract resistance from a network until the resistance characteristic 

became zero at some point on the real frequency axis. Correspondingly, 

we could always subtract pure reactance elements until all the poles at 

real frequencies were eliminated. Similar transformations are possible in 

four-terminal networks if we consider attenuation and phase shift instead 

of resistance and reactance. 

The possibilities of attenuation reduction follow immediately from the 

discussion of the previous section. Evidently, the proof given there 

remains valid if the transfer loss is changed by any constant, provided only 

that it does not become negative at any point on the real frequency axis. 

This can be expressed by the 

Theorem: A passive transfer loss and phase will continue to meet the 

conditions of physical realizability in passive networks if the 

transfer loss is diminished by any real constant as long as it 

does not become negative at any real frequency. 

A transfer function will be called a minimum loss or minimum attenuation 

expression if the minimum transfer loss on the real frequency axis is zero, 

so that no further diminution is possible without violating the passive 

conditions. 

The phase shift reduction of the network requires a more elaborate dis¬ 

cussion. In this reduction the analogue of a pole on the real frequency 

axis in a driving point impedance is a pole anywhere in the right half of the 

p plane in the expression for Zt> while the analogue of a two-terminal 

network of pure reactances is an all-pass phase correcting structure. 

In order to show the correspondence in detail, let us suppose that one of 

the poles, by, of Zt in (11-3) is found on the positive real p axis. Zt will 

evidently be unchanged if we replace the corresponding factor, p — bjy 

by p + bjy and at the same time multiply the complete expression by 

(p + bj)/(p — bj). This leads to 

Zt = Z'tp-±h (11-15) 
P - bj 

where ZfT represents Zt after p — bj is replaced by p + bj. But since p is 

imaginary on the real frequency axis while bj is a real constant, the absolute 

value of (p + bj)/(p — bj) at real frequencies must be unity. Thus the 

minimum transfer loss of Z'T is the same as that of Zt> and it is obvious 

that Zf meets all the requirements of physical realizability if Zt is 
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physically realizable. Moreover, it is apparent from (11-6) that the 

quantity (p + bj)/(p - b j) can be identified with an all-pass phase 

correcting section of the type shown by Fig. 11.11, in which Zx = R2 (bj/p). 

Since the multiplication of Z'T and (p + bj)/(p - bj) is equivalent to the 

addition of the corresponding loss and phase characteristics, ZT can thus be 

constructed by combining the network shown in Fig. 11.11 in tandem with a 

network representing Z'T. This is illustrated by Fig. 11.12. 

Fig. 11.11 Fig. 11.12 

The elimination of a pair of conjugate complex poles in the right-hand 

half-plane can be performed in the same manner. If we represent the poles 

as bji ± ibj2 the equation corresponding to (11-15) is 

z = zf — ^^2 ±hi ~ itilt 
T T (P - bji - ibj2)(p - bn + ibj2) 

1 +_lb±2_ 
p2 + (bji + bj2) 

Mj\p 

P2 + {bl + b%) 

(11-16) 

Evidently, the expression 2bjip/[p2 + (bfi + b%)] in this equation repre¬ 

sents an anti-resonant circuit and can be identified with Zx/R2 in (11-6). 

The corresponding phase shifting network is 

therefore of the type shown by Fig. 11.13.* By 

continuing step-by-step in this way all the 

poles in the right-hand half of the plane can 

be replaced by their negatives in the left half 

of the plane. We will eventually secure a 

number of structures of the types illustrated 

by Figs. 11.11 and 11.13 in tandem with a network whose transfer imped- 

Fig. 11.13 

*In Fig. 11.13 the anti-resonant branch appears in the diagonal rather than the 
series branch. It is apparent from an inspection of either the lattice structure itself 
or equations (11-4) and (11-5) that interchanging the series and diagonal branches 
of the lattice merely reverses the sign of the output current, without otherwise 
affecting the situation. In view of this simple relation no systematic attempt to 
distinguish between series and diagonal branches is made in future discussion. 
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ance has zeros and poles only in the left half of the plane. In accordance 

with the definition enunciated in Chapter VII, the residual network will 

be called a minimum phase shift structure. 

This discussion has emphasized the substitution of poles in the left 

half-plane for polgs in the right half-plane because the minimum phase con¬ 

dition will play an especially important role in our future analysis. It is, 

however, equally possible to transfer poles in the other direction. Each 

time a real pole or a pair of conjugate complex poles is moved from the left 

half-plane to the right half-plane the phase shift is, of course, increased by 

an amount corresponding to one all-pass section. This is of some practical 

importance because the complexity of the network will depend in general 

upon the number of the poles and not upon the sides of the plane in which 

they appear.* By permitting any of the poles to lie on either side of the 

plane, therefore, we can secure some control of the phase characteristics of 

equalizers having given loss characteristics without adding to the number of 

elements in the structure. This general possibility can be formulated as the 

Theorem: A passive transfer impedance will continue to meet the 

requirements of physical realizability in a passive network 

if any of its real poles or any pair of its conjugate complex 

poles are replaced by their negatives. The change is equiv¬ 

alent to increasing or decreasing the transfer function by 

the phase shift of a corresponding all-pass section. 

A simple example of these transformations 

is given by the function 

Fig. 11,14 

* - (11-17) 
p - 2 

Upon making use of (11-7) and assuming 

that Ri = i?2 = 1> for simplicity, the corre¬ 

sponding network is found in the form 

shown by Fig. 11.14/f. Its attenuation and 

phase characteristics are shown by Fig. 

11.15 and the solid line in Fig. 11.16, respec¬ 

tively. To perform the phase reduction, the 

function is written ?.s 

P + 2±p- 2j 
(11-18) 

* It is assumed here that the structure will be built as a lattice. With unbalanced 
configurations the statement is still true in a purely theoretical sense, but changes in 
the locations of the poles may affect the ease with which a circuit with positive ele¬ 
ments can be found. This question is discussed in the next chapter. 
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The two terms on the right-hand side correspond respectively to the equal¬ 

izer and phase corrector in Fig. 11.145.* The attenuation characteristic, 

which, of course, is furnished entirely by the equalizer, is still that given by 

Fig. 11.15. The phase characteristics of the two components are shown 

respectively by the broken lines I and II in Fig. 11.16. In this circuit 

there are only two possible phase characteristics which can be associated 

with the additional loss characteristic without the use of extra elements. 

In an equalizer whose transfer impedance contained more poles, however, 

the number of options is evidently much greater.! 

11.6. Properties of All-Pass Structures 

In addition to the specific networks shown on Figs. 11.11 and 11.13, all¬ 

pass networks can also be constructed in a variety of other forms. For 

example, it is clear that a lattice will be an all-pass network provided its 

Zx and Zv branches are inverse reactances of any complexity. Since a 

purely reactive Zx will always be an odd function of frequency, it is easy to 

see from equation (11-6) that any such structure will have the property, 

which we previously established for the simple networks of Figs. 11.11 and 

11.13, that the zeros and poles of the transfer impedance will be negatives of one 

another. This will be taken as a definition of what is meant by an all-pass 

network. A typical arrangement is shown by Fig. 11.17. The zeros are 

represented by circles and the poles by crosses, corresponding zeros and 

poles being identified by corresponding letters Py (?, etc. 

In a broad sense, the all-pass sections play the same role in four-terminal 

* As the reader may have observed, replacing a pole by its negative, as in equa¬ 
tion (11-15), reverses the sign of ZfT with respect to Zt at zero frequency. This 
is compensated for by a similar reversal at zero frequency in the extracted all-pass 
section. Since it is usually desirable to keep the phase shifts of all components 
equal at zero frequency for comparative purposes, however, additional phase reversals 
to zero have been introduced in both networks of Fig. 11.145 by interchanging 
their Zx and Zy branches. 

f For additional examples of optional phase characteristics in simple circuits see 
O. J. Zobel, “ Distortion Correction in Electrical Circuits,” B.S.T.July, 1928. 
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network theory as pure reactance networks play in two-terminal theory. 

In their respective fields, both types of structures represent the essential 

shown by Figs. 11.11 and 11.13. This 

ways we have available for chang¬ 

ing the imaginary component of 

a network characteristic without 

affecting its real component. Al¬ 

though all-pass sections of great 

complexity may exist, the fact 

that their zeros and poles must 

occur in positive and negative 

pairs makes it possible to treat 

them very simply, since it is ob¬ 

vious that the individual combin¬ 

ations of zeros and poles can be 

represented separately by ele¬ 

mentary networks of the types 

can be stated as the 

Theorem: Any all-pass network is equivalent to a number of first and 

second degree all-pass networks in tandem. 

An illustration showing the resolution of an all-pass network of the fifth 

degree (i.e., having five zeros and five poles in its transfer impedance) 

into simpler constituents is shown by Fig. 11.18. 

From the point of view of the general analogy between all-pass networks 

and two-terminal reactances this proposition may be said to correspond to 

the theorem that a general two-terminal reactance can always be repre¬ 

sented by a number of simple anti-resonant circuits in series, as illustrated, 

for example, by Fig. 9.8 of Chapter IX. The two-element structure 

of Fig. 11.13 may thus be said to correspond to an anti-resonant circuit, 

while the single element structure of Fig. 11.11 is equivalent to a single coil 

or condenser in series. Since the development in terms of all-pass networks 

may lead to a number of simple networks in tandem, the analogy is not 

quite exact. The formal analogy can be continued, however, if we combine 

the simple structures in pairs to secure two-element networks, by means 

of an equivalence described in the next chapter. In essentials, the parallel¬ 

ism fails at only one point. In two-terminal network theory, the existence 
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of inverse relationships allows us to choose between a development in terms 

of a number of anti-resonant circuits in series and a development in terms 

of a number of resonant circuits in parallel. In all-pass structures, on the 

other hand, there appears to be no equivalent to this inverse relationship, 

and pairs of reciprocal developments therefore do not exist. 

The analogy between two-terminal reactances and all-pass structures can 

be extended to include their energy relationships also. Corresponding to 

equation (9-16) of Chapter IX, for example, it is possible to establish 

the expression 
JD 2 

Y^r^t+V)> (11-19) 

where B represents phase shift, Ro represents the image impedance of the 

network, and the energy functions are evaluated on the assumption that a 

current of unit maximum amplitude flows into the structure. 

Since the energy functions are necessarily positive quantities, it follows 

from the equation in Chapter IX that the reactance of a physical reactive 

network is always an increasing function of frequency. Correspondingly, 

we see from equation (11-19) that the phase characteristic of an all-pass 

structure must always have a positive slope. Typical characteristics are 

shown by Fig. 11.19.* Curve I corresponds to a 

“ single-element ” section of the type shown by 

Fig. 11.11. With only one element in the series 

branch of the lattice, sections of this type have only w 

one design parameter, and this is consumed in fixing 

the unit of frequency. Thus the characteristics of 

all sections of this type are of the same general Fig. 11.19 

shape. They satisfy the equation 5 = 2 tan-1 kf.f 

In the two-element sections we can regard the unit of frequency as being 

established by the resonances of the lattice branches. This leaves one 

parameter which can be employed to control the shape of the curve. 

The additional parameter can be taken as the relative stiffness of the 

anti-resonant branch impedance, say, or as the phase angle of the com¬ 

plex roots and poles of the transfer function, the relation between the two 

• In Fig. 11.19 the phase characteristics are taken as zero at zero frequency as a 
matter of convenience. With the usual conventions, the phase shift at zero in the 
structures of Figs. 11.11 and 11.13 is actually This difference, of course, is only 
a phase reversal such as might be secured by interchanging either the input or output 

terminals. 
t For a more complete discussion of the design of all-pass structures, and of their 

uses in communication systems, see S. P. Mead, “ Phase Distortion and Phase Dis¬ 
tortion Correction,” April, 1928, or H. Nyquist, “ Phase Compensating 
Network,” U. S. Patent No. 1,770,422, July IS, 1930. 
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being easily understood from (11-16). If the anti-resonant circuit is 

relatively stiff the roots and poles will be nearly real,* as typified by the 

points Q in Fig. 11.17, and the phase characteristic will be nearly 

equal to twice the phase characteristic of some single-element struc¬ 

ture. This is illustrated by Curve II of Fig. 11.19. At the other extreme, 

an anti-resonant circuit of low stiffness leads to zeros and poles which 

are almost pure imaginary, such as the points P in Fig. 11.17. The zeros 

and poles are substantially opposite the point on the real frequency axis at 

which the anti-resonance occurs and the phase characteristic changes 

rapidly as we move along the axis in this vicinity. This is illustrated by 

Curve III of Fig. 11.19. 

11.7. Minimum Phase Shift Networks 

In four-terminal network theory a minimum phase shift network is 

similar to a two-terminal impedance after all the poles on the real frequency 

axis have been extracted. Once the minimum condition has been reached, 

we can make no further change in the phase characteristic without at the 

same time affecting the attenuation. Since both the zeros and the poles 

of a minimum phase transfer impedance must be found in the left half of 

the p plane, the analytical restrictions on such an impedance are the same 

as they are for a two-terminal impedance, except that there is no necessity 

that real frequency poles be simple or that the real component of the func¬ 

tion be positive at all points on the real frequency axis. 

Since minimum phase shift networks will be postulated frequently in 

later discussion, it is important to know when a structure is actually of 

minimum phase shift type. This is not always an easy question to answer. 

Some assistance, however, can be obtained from two general rules. The 

first can be expressed as the 

Theorem: A transfer impedance which has poles of multiplicity n\ 

and n2 at zero and infinite frequency respectively is of mini¬ 

mum phase shift type if and only if the net phase displace¬ 

ment between zero and infinity is + n2) (tt/2) radians. 

In particular, if the attenuations at zero and infinity are both finite the net 

phase change must be zero. In a non-minimum circuit the net change is, 

of course, always positive. The theorem is easily established from a con¬ 

sideration of the Nyquist diagram of the structure. 

The second distinction is structural. It will be recalled that the poles 

of the transfer impedance are frequencies at which the current delivered 

* With a very stiff anti-resonant circuit all the zeros and poles are real. In this 
case, of course, the two-element structure can be represented by two single-element 
structures and contributes nothing new. 
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to the load is zero. In a ladder network, however, the current delivered to 

the load impedance can become zero only because some shunt impedance 

becomes zero or because some series impedance becomes infinite. Since 

the zeros and poles of the branch impedances must be found in the left half 

of the plane if the branch impedances are passive, this leads at once to the 

Theorem: Any passive ladder network is a minimum phase shift 

structure. 

This, of course, includes the transmission through a series of unilateral 

vacuum tubes with ladder-type interstages. 

Circuits which are broadly not of the ladder type are those in which the 

current can reach the load by alternative paths. This is shown symboli¬ 

cally by Fig. 11.20. Specific examples, in addition to the lattice network, 

are given by the bridged-T and the ladder with inductive coupling shown by 

Fig. 11.21. In such structures the poles of the transfer impedance are not 

necessarily coincident with zeros or poles of the branch impedances. 

Zero received current can also be obtained because the currents delivered 

to the load by various paths cancel out. The poles are consequently not 

necessarily restricted to the left half-plane and the network may have a 

non-minimum phase characteristic. Whether or not the given network 

actually has such characteristics of course depends upon the particular 

values of the elements it happens to contain. In default of any other 

remedy it may be necessary to compute the poles directly. 

The structures just discussed can be described broadly as bridge-type 

circuits. The lattice itself is, of course, a true Wheatstone bridge while the 

other structures at least depend upon a balance. The discussion can thus 

be looked upon as a statement of the essential design distinction between a 

bridge and a ladder or series-shunt circuit. Evidently, the distinction is 

one between the available phase characteristics for any given loss charac- 
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teristic. The possible loss characteristics by themselves are theoretically 

the same for the two types of structures.* 

In practical engineering, this last conclusion should be qualified in one 

respect. As we saw in the preceding chapter, the introduction of parasitic 

dissipation is equivalent to a displacement of all the critical frequencies of 

the network, including its frequencies of infinite attenuation, slightly to the 

left in the p plane. If a network is originally of the minimum phase shift 

type, therefore, it cannot produce infinite attenuation at real frequenciesf 

when parasitic dissipation is taken into account. A non-minimum phase 

shift network, on the other hand, can be assigned frequencies of infinite 

attenuation which will fall on the real frequency axis after the dissipation 

shift is made. A simple example is furnished by the phase correcting sec¬ 

tion of Fig. 11.13. At the resonance frequency both branches of this struc¬ 

ture become resistances when dissipation is taken into account. With 

proper proportioning the two resistances can be made equal, so that the 

structure will give infinite attenuation at this frequency. In this particu¬ 

lar circuit, of course, the proper relation will normally lead to extreme values 

of the elements. In other structures, however, the same result can be 

secured with more reasonable element sizes. This use of non-minimum 

phase shift networks is of importance chiefly in filter problems and similar 

situations, where extremely sharp selectivity may be required. 

11.8. Representation of Active Transfer Impedances 

In dealing with driving point impedance and admittance functions it 

appeared that the essential distinction between active and passive functions 

could be represented by the addition of a negative resistance in series or 

parallel with the rest of the network. The negative resistance takes 

account of the fact that the real component of a passive driving point func¬ 

tion must be positive at real frequencies and allows all the rest of the struc¬ 

ture to be built as a passive circuit. 

Active transfer impedances can be treated in a similar way. Evidently, 

they are exactly the same as passive transfer impedances except that it is 

not necessary to assume, as was done in connection with (11-3), that the 

absolute magnitude of the function is so chosen that the transfer loss is 

positive at all real frequencies. This limitation can be overcome by 

adding a negative loss, or, in other words, an ideal flat gain amplifier, to the 

passive circuit. In the driving point discussion, however, it was necessary 

to consider alternative series and parallel combinations of a negative resist- 

* This can be shown rigorously by the methods used in the next chapter if the 

absolute level of loss is not regarded as important. 
f Aside possibly from zero and infinity, depending largely upon the way in which 

dissipation is supposed to take place. 
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ance and a passive circuit, as indicated by Figs. 9.23 and 9.24 of Chapter IX, 

to take account of the distinction between an impedance and an admittance 

specification of the complete structure. In 

discussing transfer functions the passive and 

active constituents can be placed directly in 

tandem with either analysis, as shown by Fig. 

11.22. This result can be summarized as the 

Theorem: A general transfer immittance function can always be repre¬ 

sented by a passive circuit and an ideal flat amplifier in 

tandem. 

This theorem is of service chiefly in resolving apparent paradoxes in 

active circuit theory. Since all this analysis depends fundamentally upon 

the postulate that the network is stable, we can at once suspect that any 

particularly wonderful or unusual transmission characteristic, departing 

radically from the characteristics of ordinary experience, was computed 

from an unstable circuit. We may take as an example the problem of con¬ 

structing a negative all-pass network or a negative length of line.* Since 

the gain of a feedback amplifier is the same as the loss of its /3 circuit in the 

region of high feedback, we should be able to simulate such a characteristic 

over a reasonable frequency range 

by building an amplifier with a 

corresponding positive structure in 

its feedback circuit. We might 

also attempt to obtain such a char¬ 

acteristic through the use of one or 

more negative elements. Figure 

11.23, for example, shows the equivalent of a negative all-pass circuit 

secured with the help of a negative resistance. 

There is nothing actually impossible about the problem of simulating 

either a negative all-pass section or a negative length of line over a modest 

frequency range. Either characteristic can, in fact, be approximated by 

ordinary equalizers. If we use equalizers, however, we know that this 

apparent reversal of normal behavior at low frequencies is obtained only at 

the cost of a tremendous change in the nature of the characteristic beyond 

the range of approximation. The change is in the direction of a decreasing 

loss at high frequencies and is usually sufficient to nullify whatever result 

we might hope to secure from such a device. If we simulate a negative line, 

for example, the envelope delay at low frequencies will be negative, but the 

Fio. 11.23 

* That is, a structure whose attenuation and phase characteristics at every fre¬ 
quency are exactly the negatives of those of an ordinary all-pass network or trans¬ 
mission line. 
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response to the high frequency components of any suddenly impressed 

signal will be so greatly enhanced that the low frequency delay is not a true 

measure of the actual delay of the signal. Whatever the signal may be, the 

circuit will not actually exhibit a transient at negative time. To take a 

perhaps less obvious situation, we may suppose that either the line or the 

all-pass structure is to be used to cancel the phase shift of a low-pass filter. 

If the phase shift is actually cancelled the change in loss at high frequencies 

is so great that the original discriminating properties of the filters are also 

cancelled. 

The point of the theorem is that limitations exactly similar to these must 

hold in an active circuit, provided the circuit is stable. In the feedback 

amplifier representing a negative line or a negative all-pass network, for 

example, any choice of p and P which will provide the representation and 

also give a stable circuit must lead to an actual gain /a/ (1 — pP) which 

rises beyond the useful band in the same violent and uncontrollable way as 

does the equalizer characteristic. A circuit like that of Fig. 11.23, which 

has a constant gain characteristic, is unstable, as we can easily see by 

inspection of the resonance around the first interstage loop. 

As an example of another aspect of the theorem, we may consider the 

provision of a very narrow band-pass characteristic by the use of a very 

narrow band-elimination structure in the P circuit of a feedback amplifier. 

In practice, a very narrow band-pass characteristic is not obtainable with 

purely passive elements, whereas the inverse characteristic can be secured 

fairly easily by the use of some type of bridge circuit varying rapidly 

through a balance point. The theorem, however, states flatly that the 

final amplifier transmission characteristics can be duplicated, except for a 

constant loss, by a passive circuit. The point here is that the theorem is 

stated for idealized passive elements. It takes no account of limitations 

due to element sizes or, what is more important for this problem, limitations 

due to parasitic dissipation in the elements. The advantage of the feed¬ 

back design, in a broad sense, is that it provides an easy and convenient 

way of supplying energy to neutralize element dissipation. 

11.9. Constituents of General Driving Point and Transfer Functions 

Most of the work of the remaining chapters is based upon a discussion of 

the relations which must necessarily exist between the real and imaginary 

components of driving point and transfer functions if the functions are to 

represent physical networks. This discussion is complicated by the fact 

that no altogether exact and universal relation between the two compon¬ 

ents can exist. For example, if we begin with a given resistance charac¬ 

teristic we can always secure a variety of corresponding reactance charac¬ 

teristics by adding pure reactance networks to the circuit. Chapter IX 
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and the present chapter have been devoted chiefly to an examination of the 

ways in which the real and imaginary components of driving point and 

transfer functions can be varied independently, in an effort to clear up 

ambiguities of this sort before proceeding with the general problem. The 

results of both chapters are summarized in Fig. 11.24. 
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Fig. 11.24 

The top of the figure shows a minimum resistance and minimum react¬ 

ance structure in the driving point column and a minimum loss and mini¬ 

mum phase structure in the transfer column. The particular circuits 

shown utilize the simplest form of Brunei network. More complicated 

functions can be represented by extending the network. In virtue of the 

discussion of Chapter X, however, we can also represent more complicated 

driving point functions, to within an additive resistance, by summing up a 

number of the elementary structures. It is shown in the next chapter that 

a corresponding result holds for transfer functions. The networks thus 

represent, in some sense, the principal ways in which physical driving point 

and transfer impedances can behave. In these networks, moreover, the real 

and imaginary components of the driving point or transfer function are 

uniquely related. Granted either component, the other can be found 

exactly. 

The remaining portions of the figure show the possible ways of changing 

one component of the driving point or transfer function of the basic net¬ 

work without affecting the other. Thus we can change the imaginary 

component by the addition of anti-resonant networks or all-pass sections, as 
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indicated by the second line of the figure. The real component can be 

changed by the addition of a positive resistance or a positive loss, as indi¬ 

cated by the third line. Finally, if we include active elements as well as 

passive elements the real component of the original functions can be 

changed by the addition of a negative resistance or a negative loss. If the 

diagram is allowed to symbolize parallel as well as series combinations 

of driving point units, the list gives a complete statement of all possible* 

driving point and transfer functions. 

* It must be remembered, of course, that the analysis has been simplified at various 
points by ignoring multiple poles, zeros and poles exactly on the real frequency axis, 
etc. 



CHAPTER XII 

Topics in the Design of Equalizers 

12.1. Introduction 

This chapter continues the discussion of transfer functions, with special 

reference to equalizers, in terms of the foundation laid down in Chapter XI. 

The chapter is intended as a summary* of miscellaneous methods and ideas 

of interest in practical equalizer design. It is thus broadly similar to 

Chapter X, which contained a similar summary for driving point functions, 

and like Chapter X it can be omitted without injury to the general theoreti¬ 

cal development of the book. If it is undertaken, however, it will facili¬ 

tate study to recognize that much of the material it contains is essentially 

parallel to the material in Chapter X, except that attenuation and phase 

shift replace resistance and reactance. 

12.2. Complementary Characteristics 

In discussing two-terminal impedances, it was shown that if a given 

impedance is of the minimum reactance type it is always possible to find a 

second impedance such that the sum of the two will be a constant resist¬ 

ance. A similar relation can be developed for minimum phase shift trans¬ 

fer functions, if we exclude the limiting case for which points of infinite 

attenuation occur on the real frequency axis itself. With this restriction, 

both the zeros and poles of the original transfer impedance must be found 

within the left half of the p plane, excluding its boundary. The reciprocal 

transfer impedance, which, of course, will produce complementary phase 

and attenuation characteristics, will evidently have the same properties. 

This allows us to state the 

Theorem: Corresponding to any minimum phase shift transfer func¬ 

tion having no poles of attenuation on the real frequency 

axis there exists a complementary function such that the 

sum of the two gives a constant loss and zero phase shift at 

all frequencies. The complementary function will be realiz¬ 

able in a passive network if the final constant loss is at least 

equal to the maximum loss of the original function on the 

real frequency axis. 

* There is no existing treatment of equalizers which covers ail the ground of the 
present chapter. For a much more thorough treatment of many of the topics, how- 
ever, see O. J. Zobel, loc. cit. 
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A simple example is given by Fig. 12.1. 

0.5R, 0.5JL 0.5RM 

12.3. Partial Product Expansion of a General Transfer Impedance 

In discussing two-terminal impedances we considered two general ways 

in which the impedance might be represented. The first led to the con¬ 

struction of the complete impedance as a single elaborate Brune network. 

We also saw, however, that it is possible to represent the impedance as a 

combination of much simpler networks in series, by means of a partial frac¬ 

tion expansion, provided the resistance component of the total characteris¬ 

tic is sufficiently great. In a somewhat similar fashion, it is possible to 

replace the single elaborate lattice which we have heretofore used to repre¬ 

sent a transfer impedance by a number of simpler structures in tandem, 

provided a sufficiently high constant attenuation can be tolerated. Since a 

constant change in attenuation is frequently not of great significance, this 

feature of the process is not as important as it was in the discussion of two- 

terminal impedances. 

The expansion into the tandem section configuration can be obtained 

merely by rewriting the original Zt of equation (11-3) in Chapter XI as 

the expression 

Zt = 
(p - ai) 

(p-h) 

(p-at)m]rr 

(p - h)JL 2 (p - */+i) •••(*- *»)J 
(12-1) 

where the product k\k2 is equal to the k of the original equation. Evidently 

each of the terms in the right-hand side of this expression is itself of the 

proper form to represent a transfer impedance. The equation thus sug¬ 

gests that the original transfer impedance can be represented by two net¬ 

works in tandem, each corresponding to one of the terms in (12-1). The 

representation will be physical if we satisfy two conditions. The first is 

that the original k9 which fixes the constant loss of the network, must be 

large enough to allow each of the constituent networks to be assigned a 

positive attenuation on the real frequency axis. Since the constituent net¬ 

works will not ordinarily have attenuation minima at the same frequencies, 

this implies in general that the composite network will exhibit a greater 
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fixed loss than would be necessary to construct the structure as a single 
lattice. The second condition is merely that both members of any conju¬ 
gate complex pair of zeros or poles must be assigned either to one network 
or the other. Since the order in which the zeros and poles in (12-1) are 
arranged is otherwise arbitrary, and no special requirement need be placed 
upon the relative numbers of the factors assigned to the two constituent 
networks, these requirements still allow us to break up the complete struc¬ 
ture in a tremendous variety of ways. 

The decomposition of the network into a number of simpler structures in 
tandem can evidently be continued by the decomposition of either of the 
structures first found. For theoretical purposes particular interest attaches 
to the result secured when this process is carried as far as possible. In this 
event, many of the final structures will be of the first degree, with a transfer 
impedance expression containing a single real zero and a single real pole. 
Since a pair of conjugate zeros or poles must be kept together, some of the 
final structures may also have transfer impedances of the second degree. It 
is easy to see, however, that no more complicated cases need be considered. 
This result can be formulated as the 

Theorem: Any physically realizable transfer impedance can be repre¬ 
sented, to within a constant loss, by a combination of passive 
constant resistance iattice sections in tandem, each of the 
constituent sections being of at most the second degree. 

A list of elementary first and second degree structures, correspond¬ 
ing to the elementary transfer impedances to which this reduction may 
lead, is shown by Figs. 12.2 and 12.3. In each instance it is supposed that 
the elementary structure will have zero loss at one frequency. In general, 
the physical configurations of the networks might be altered appreciably if 
greater losses were allowed. As an aid to the use of the structures in 
practical design, the figures also include rough plots of their attenuation 
and phase characteristics, the attenuation and phase being represented, 
respectively, by the solid and broken line curves at the right of the figures. 

The two necessary first degree networks are given by structures III 
and IV of Fig. 12.2. It will be seen that together these two structures 
include all possible arrangements of one real zero and one real pole. 
Figure 12.2 also includes the two phase correcting sections shown pre¬ 
viously in Figs. 11.11 and 11.13 of Chapter XI. In view of their presence 
we can assume that the attenuating structures are of the minimum phase 
shift type. All the structures can, however, be assigned non-minimum 
phase shift characteristics if we so desire. Since the physical configura¬ 
tions of the structures remain the same when they are assigned non¬ 
minimum characteristics, this is evidently of importance if we wish to 
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simulate a non-minimum phase shift transfer impedance without using 
unnecessary elements. 

The second degree structures are shown by Fig. 12.3. Together, they 
are sufficient to represent all possible second degree transfer impedances, 
except for certain cases in which both the zeros and poles are real. These 
cases are omitted since, of course, any such transfer impedance can be 
represented by two first degree networks.* As Fig. 12.3 indicates, struc- 
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tures V and VI will usually be required when the poles are complex and the 
zeros are real, or nearly so, and VII and VIII are appropriate for complex 
zeros and real poles, while any one of the structures may be needed when 
both poles and zeros are complex. This correlation, however, is only 
approximate. 

* Naturally, corresponding second degree structures can also be found. In order 
to cover all possible second degree functions we must include in Fig. 12.3 two addi¬ 
tional networks, which are similar to V and VI except that the reactive elements in 
each lattice branch are both inductances or both capacities. The conditions for 
physical realizability for these two networks in terms of the a’s and b*s are the same 
as for the corresponding network V or VI having a reactive element of the same type 
in parallel with the Zf branch, 
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The element values of the first degree networks are given by explicit 
formulae in Fig. 12.2. The element values of the second degree networks 
are less easily written. For the structures of V and VI they can, however, 
be computed, and are shown, for the Zx branch, by Figs. 12.4 and 12.5. 
In the Brune networks represented by structures VII and VIII reasonably 
explicit formulae are hardly possible. It is simplest to give formulae for the 
lattice branch impedance as a whole, leaving the individual elements to be 

Fig. 12.3 

determined subsequently from this expression. If we write the lattice 
branch Zx as 

A\ + A$p + A^p2 > 

A2 + A4P + A$p2 
(12-2) 

the coefficients Af • * A* must satisfy the system of equations 

At — A2 =* hh(A5 — As), 

At + A2 = ata2(As + As), 

A$ — A4 = — (h + h)(A$ — As)t 
(12-3) 

Az + Aa = — (at + a2)(A$ + As), 
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where, of course, ax> a2, bx, and b2 are the zeros and poles of the second 
degree function which is to be represented, and are supposed to satisfy the 
inequalities given on Fig. 12.3. The four conditions (12-3) allow us to 

L R2 

-AA/j\A- 

H h 

_Rorh±h ai + a2 
2 L 

Ri = Ro 

*2 = 

a&2 J 

b\ -f fa _ Hh #2~12 
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^1^2 4* ^1^2 /e0 
b\b2 — -&1 

^ (b\ 4* b2)a\a2 — (*i + a2)b\b2 „ 
— 7~7 ^2 
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— ^1^2 

Fig. 12.5 

solve for the six A%s as soon as any two, say A& and A$, are known. Since 
(12-2) will not be altered if numerator and denominator are multiplied by 
any constant, however, one of the A's is arbitrary. We can conveniently 
suppose that A§ = 1. A5 is then given by 

Kxx2 + K2x 4- K3 = 0, (12-4) 
where 

= *{<«? + 4) - (4 + 4)]2 
*2 = it(4 + 4)2 - (4 + 4)2] - (44 - 44) 
*3 - it(4 + 4) + (4 + 4)12 - 2(44 + 44) 

and x = A& + l//f6. 1° solving (12-4), the larger root must be taken, 
but it makes no difference which value of A& we choose to correspond to the 
* thus determined, since replacing Af, by its reciprocal merely interchanges 
Zx and Zy. Once the A’s are determined, the elements of the Brune net¬ 
work can, of course, be found by the methods described previously. The 
solution for the elements can be expedited by the fact that the minimum 
resistance point is given by uq = A\A%I A&A*. 
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12.4. Partial Product Expansion of an Illustrative Transfer Function 

The methods just discussed will be exemplified by the filter structure 
shown originally by Fig. 11.8 of Chapter XI. The transfer impedance of the 
structure is given by equation (11-13) of the same chapter. In order to 
break the impedance up into a product of simpler expressions it is first 
necessary to determine its roots and poles. This can be done by any of the 
standard methods of solving for the roots of a polynomial. In the present 
instance the result can be written as 

(p2 + l-127p + 1.043) (p2 +0.268ft + 0.981) (/> +1.183) 

*T (p2 + 1.5625) (p2 + 2.778) 
(12-5) 

The quadratic factors, such as p2 + 1.1 Tip + 1.043 or p2 + 1.5625, repre- 
sent pairs of conjugate complex zeros or poles. There is in addition a single 
real zero represented by the factor p + 1.183 and a single pole at infinity. 

It is apparent from an inspection of (12-5) that the complete transfer 
function can be represented by three elementary structures in tandem. If 
we accept the factors in numerator and denominator in the order in which 
they appear in (12-5) this is equivalent to rewriting the equation as 

where 

gAoge _ e»le9le9t (12-6) 

«, . p2 + 1.127/> + 1.043 

r a p2 + 1.5625 
(12-7) 

p2 + 0.268/> + 0.981 

* 6 p2 + 2.778 
(12-8) 

e9> = kc(p + 1.183). (12-9) 

In these expressions the constant multipliers ka> £&, and kc must be supposed 
to have such values that the attenuation of each constituent network 
is positive or zero at all points on the real frequency axis. The quantity A0 

measures the net increase in the attenuation of the complete network which 
may be required to satisfy this condition. It is evident from a comparison 
of the behavior of (12-5) and (12-6) at infinite frequency that 
eAo = kakbkc/3.S9, The k's need not be known in order to follow through 
the design method outlined in Figs. 12.2 to 12.5. They are ordinarily 
determined most easily by inspection of the final networks. In anticipa¬ 
tion of the calculation, however, it may be stated that they turn out to be 
respectively 1.498, 7.034, and 0.845. Thus eA° = 2.48, which corresponds 
to a net increase in loss of about 8 db. 

It is convenient to begin with the construction of a network to represent 
e\ The function has a zero at —1.183 and a pole at infinity. Since these 
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can be identified with the quantities a and b in Fig. 12.2 it is clear from the 
formulae that the required lattice is of the type indicated by III in the 
figure. The solution for the elements gives the specific circuit shown by 
Fig. 12.6.* 

The discussion of the other constituent networks is facilitated if we make 
use of the relations between the roots of a quadratic and its coefficients. 

If r\ and r2 are the roots of the quadratic 
p2 + ap + P, for example, it will be recalled that 
P = rir2 and a = — (m + r2). In equation 
(12-7) this evidently signifies that a\a2 = 1.043 
and b\b2 = 1.5625, so that the corresponding 
lattice must be one of the types indicated by 
VI and VIII in Fig. 12.3. To determine which 
should be chosen, it is convenient to write the 

numerator and denominator of (12-7) in negative powers ofp. Thus if the 
numerator is written as 

0.42 p 

1 L127 

,1.043 + 1.043 P 
1.043 P2 

we evidently have 

1 = 1 d 1 + 1= U27; 
01*2 ~ 1.043 an *i a2 1.043' 

from which we can conclude that 

1 1 = /1.127V 2 

a\ + 4 “ \1.043/ 1.043 * 

With the help of a similar computation for the denominator it appears that 
the required structure is of type VI. The element values for its Zx branch, 
as determined from the formulae in Fig. 12.4, are shown by Fig. 12.7. 
Equation (12-8) is treated in the same way except that it leads to a struc¬ 
ture of the type indicated by VIII in Fig. 12.3. The element values for its 
Zx branch, computed by the method outlined in connection with equa¬ 
tions (12-2) to (12-4), are shown by Fig. 12.8. 

As a check on this analysis, the attenuation characteristics of the three 
constituent networks have been computed and are shown, respectively, by 
Curves I, II and III of Fig. 12.9. The total attenuation is shown by Curve 
IV. It is, of course, the same as the attenuation characteristic for the filter 
given originally in Chapter XI except for an additional constant loss of 8 db. 

In developing this solution, the quadratic factors in the numerator and 

* All illustrative circuits, except where otherwise noted, are drawn on the assump¬ 
tion that Rq « 1. 
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denominator of (12-5) have been paired off in the order in which they are 

written in that equation. We can evidently develop an alternative solution 

0.5403 / 

,-nrnrrrrtn—, 
2.22 

AAAAAAA— 

0.743Jp 0.219 

Fig. 12.7 

0.769/ -0.594/ 

Fig. 12.8 

Atfenua+ion in db 

by reversing the order in which the numerator and denominator factors are 

paired off. This is equivalent to replacing (12-7) and (12-8) by 

e9[ = k! 
,p2 + 1.127p + 1.043 

p2 + 2.778 
(12-10) 

and 
+ 0.268/>+ 0.981 

C = Kh 
p2 + 1.5625 

(12-11) 

With the help of the methods already described it is found that (12-10) 

represents a structure of type VI* in Fig. 12.3 and (12-11) a structure of 

* Strictly speaking, the required structure is of type VIII. Since it lies very close 
to the boundary line between the two types, however, the simpler type VI has been 
chosen instead. Opportunities of simplifying in this way, or of going still further by 
simulating a whole group of constituents with a single elementary network, are not 
uncommon with the technique. 
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type VIII. The corresponding Zz branches are shown by Figs. 12.10 and 

12.11 and the various attenuation characteristics by Fig. 12.12. It will be 

0,54/ 

L-J (—VW—' 
0.83// 0.454* 

0.618/ 
o^nrrrr 

1.65/ 

1.37 

Fig. 12.10 Fig. 12.11 

Attenuation in db 

seen that the characteristics are of essentially the same type as those 

shown previously by Fig. 12.9 but the additional constant loss in the circuit 

has been reduced from 8 to 4 db. 

12.5. Introduction of Surplus Factors 

The preceding analysis has shown that any transfer impedance with 

sufficient flat loss can be represented as a composite of a number of first 

and second degree lattices. Even with this restriction on the complexity 

of the constituent structures, however, the networks corresponding to any 

particular transfer impedance will not ordinarily be unique. For example, 

one possibility of changing the individual constituent networks consists 

merely in varying the order in which the factors in the numerator and 

denominator of the original transfer function are paired off. This was 

illustrated in the preceding section. If there are n pairs of factors to be 
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established this leads to n! possible combinations of constituent sections. 

A still wider variety of constituent sections can be obtained if we include 

the possibility of multiplying both the numerator and denominator of the 

transfer function by additional arbitrary factors before the order of the 

factors is rearranged. This procedure was used in Chapter XI, in connec¬ 

tion with equation (11-15), in order to reduce a general transfer function to 

the minimum phase case. An example of its application to an ordinary 

equalizer is shown by Fig. 12.13. Structure A in the figure corresponds to 

the transfer function (p + 4)/(p + 2) while B and C are the equivalent 

structures which we can secure by rewriting the transfer function respec- 

dveiy „-£+i£+2 „d t±* t±l. 

’ >+!• + ! p+lp-t-2 
In forming structure C, it is 

necessary to suppose that an additional constant loss in the circuit can be 

tolerated. 

For practical purposes, the use of surplus factors suffers from the obvious 

disadvantages that it increases the number of elements in the circuit and 

may also increase its flat loss. The method may, however, be of occasional 

value in simplifying the networks which must be constructed. As an 

example, let it be supposed that the mutual inductance coupling required 

for the Brune networks used in realizing the transfer function of (12-11) is 

objectionable. The difficulty can be avoided by writing the function as 

_ ,,/>2 + \j> +0.981 / +0.268/+ 0.981 

h p2 + 1.5625 p2 + \p + 0.981 U) 

If we choose X greater than about 0.85 the first rational function on the 

right-hand side meets the requirements for construction in the form shown 

by VI of Fig. 12.3. The second can be represented by the first of the struc¬ 

tures shown later in Fig. 12.14. 

If we carry the process illustrated by (12-12) far enough, paying no 

regard either to the number of elements in the network or to its flat loss, it is 

possible to show that a general transfer impedance can be represented by a 

much simpler set of elementary constituent sections than those shown 

by Figs. 12.2 and 12.3. Thus, in discussing second degree functions previ¬ 

ously the possibilities we were forced to consider included a pair of conju- 
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gate zeros in association with a pair of real poles, a pair of conjugate poles 

in association with a pair of real zeros, and a pair of conjugate zeros in 

association with a pair of conjugate poles. But if we multiply and divide 

a transfer impedance of the last type by appropriate real factors, it can 

evidently be represented as a product of transfer impedances of the first 

two types. In dealing with second degree networks, therefore, we need 
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consider only functions of these types. Moreover, even with these func¬ 

tions, the introduction of additional surplus factors evidently allows us to 

choose the real zeros or poles arbitrarily, provided we compensate for the 

errors thus produced with first degree networks. The only essential prob¬ 

lem is that of representing the complex zeros or poles. 

With the help of these possibilities the most general structures which are 

required in constructing second degree functions can be reduced to the two 

shown by Fig. 12.14. The first is appropriate for a pair of complex zeros 

associated with real poles, and the second for a pair of complex poles asso¬ 

ciated with real zeros. As the figure shows, in both networks the products 

of the poles and zeros must be equal. In applying the networks, it is of 

course assumed that the complex zeros or poles will be specified from the 

transfer impedance to be represented and the real zeros or poles then 

assigned any convenient values consistent with this restriction. Since all 

the networks of Fig. 12.2 are special cases of these two, Fig. 12.14 can be 

regarded as presenting a complete list of the elementary constituents of a 

general transfer impedance. 
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12.6. Reconstruction of the Transfer Impedance from a Knowledge of 
Either Component 

We saw in a preceding chapter that while the resistance and reactance 

components of a physical two-terminal network can be varied with respect 

to one another, the ways in which they can be varied are defined within 

narrow limits. For example, if the reactance characteristic is fixed, the 

resistance can be changed only by a constant, while if the resistance charac¬ 

teristic is fixed, the reactance can be changed only by an amount corre¬ 

sponding to the addition of an ordinary series reactance. For a minimum 

resistance, minimum reactance structure, therefore, the complete imped¬ 

ance expression can be reconstructed if we know either component alone. 

A similar situation exists with respect to transfer impedances. The loss 

and phase characteristics of the network can be varied with respect to one= 

another only by amounts corresponding to a constant loss or to an added 

all-pass network. If we assume that the network is of the minimum loss, 

minimum phase shift type, the complex transfer impedance characteristic 

can therefore be obtained if we know either the loss or the phase shift 

separately. 

The process of reconstructing the characteristic is similar to that which 

we have previously described. Along the real frequency axis the even 

powers in the rational function representing Zt will be real quantities 

while the odd powers will be pure imaginary. We can therefore write 

C\ -f- iu>C2 

C3 + iaiCt 
(12-13) 

where Ci, C2, C3, and C4 are polynomials in co2 with real coefficients. The 

attenuation and phase can consequently be expressed as 

and 

2A __ jh u2C\ __ (Ci + ;a?C2) (Ci — i&Cf) 

Cl + w2Cf (C3 + /C0C4) (C3 — /coC4) 

tan B = w 
C2C3 — C1C4 ^ 

C1C3 + a>2C2C4 

(12-14) 

(12-15) 

The latter of these can be more conveniently written as 

1 + i tan B __ (Ci + z'cuC2) (C3 — *a?C4) 

1 — i tan B (C3 + *a>C4)(Ci — f«C2) 

The forms in which equations (12-14) and (12-16) have been written 

indicate immediately how the process of reconstruction may take place. 

Suppose, for example, that the formula for e2A is given. If the expression 

is to correspond to a physical network, it must be a rational function of 
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o>2.* When we determine the zeros and poles, therefore, we will find that 
they occur in positive and negative pairs, one member of each pair lying in 
each half of the plane. The formula for e2A can consequently be written as 

2a (P ~ *1) (P Z ^2) • * * (P ~ **)"] rh CP + gi) (P ga) 1 * • (P + *n)l 

L (p+*i)cp+^)-(p+*»)J 
(12-17) 

where the first bracketed expression includes the zeros and poles in the left 
half of the p plane and the second bracketed expression includes their 
counterparts in the other half of the plane. Evidently the first bracketed 
expression can be identified with Zt and is the transfer impedance expres¬ 
sion which we seek. 

The reconstruction of the complete transfer impedance from a knowledge 
of the phase characteristic proceeds similarly. If the expression for tan B 
corresponds to a physical network it must be an odd rational function of 
frequency with real coefficients. We begin by constructing the expression 
(1 + i tan B)/{ 1 — i tan B) as indicated by equation (12-16) and calcu¬ 
lating its zeros and poles. Since i tan B is an odd function of frequency, 
the points at which it assumes the values +1 and — 1 are negatives of one 
another. In other words, the zeros of (1 + i tan B)/( 1 — i tan B) must 
be the negatives of its poles. Suppose that the zeros and poles are com¬ 
puted and arranged into groups corresponding to their locations in the 
right and left sides of the p plane. The zeros in the right side of the plane 
will then be the negatives of the poles in the left side, and vice versa. A 
result consistent with (12-16) will evidently be obtained if we identify 
Ci + IC0C2 with the product of the factors corresponding to zeros in the 
left side of the plane and C3 + uaC* with the product of factors correspond¬ 
ing to poles in the left side of the plane. The ratio of these quantities, from 
(12-13), is then the desired expression for the transfer impedance. Since 
the fixed loss cannot be determined from the phase characteristic this ratio 
can be multiplied by any suitable constant. 

In both of these reconstructions, the resulting transfer impedance is 
unique only if we assume that the structure is of the minimum phase shift 
type. This is, of course, obvious when we begin with the attenuation char¬ 
acteristic. In addition to the Zt specified by equation (12-17) an infinite 
number of other solutions can be obtained by interchanging the poles on the 
left-hand side of the p plane with their negatives or by adding extra zeros 
and poles symmetrically located with respect to the real frequency axis. 
When we begin with the phase characteristic itself, on the other hand, we 

* In addition, the coefficients must, of course, be real and there can be no zeros and 
no odd order poles on the real frequency axis. 



TOPICS IN THE DESIGN OF EQUALIZERS 263 

might expect that there would be no difficulty in determining whether the 

network is of minimum or non-minimum phase shift type. Uncertainty 

arises, however, when we select the zeros of Zt from the zeros of 

(1 + i tan B)/(1 — i tan B). While it is clear that only zeros in the left 

side of the p plane are admissible, it is not, in general, necessary that all the 

zeros in this region be chosen as zeros of Zt. Some zeros can be omitted 

from Zt by regarding them instead as zeros of C3 — io)C4 in (12-16). In 

this case the corresponding poles of Z^, as determined from the rule sug¬ 

gested by (12-16), will lie in the right-hand side of the plane, so that a solu¬ 

tion which is of the non-minimum phase shift type is obtained. Evidently, 

several solutions may be possible by omitting various combinations of 

zeros.* This is illustrated in the next section. 

12.7. Networks with Equal Phase Shifts 

The discussion just finished suggests that it should be possible to dupli¬ 

cate the phase characteristic of a non-minimum phase circuit with a mini¬ 

mum phase circuit. This is a question of some special interest, since it 

represents a point at which the analogy between driving point and trans¬ 

fer functions breaks down. Evidently we cannot duplicate the reactance of 

a pure reactance network with a minimum reactance structure. Moreover, 

it implies that although we cannot obtain a varying attenuation without a 

corresponding phase shift we can arrange two transmission paths which will 

have a varying difference in attenuation with no relative phase displace¬ 

ment. If the attenuation characteristics of the two paths were made 

approximately equal to one another over a specified range and a device 

were added to balance the outputs of the paths against one another such a 

circuit might conceivably be used as an alternative to ordinary filters in 

providing frequency selectivity. 

As an example of the possibility of securing equal phase characteristics 

from minimum and non-minimum phase shift devices we may consider 

the function (1 + iX)2, where X is some reactance. This expression evi- 

* Each time a zero is omitted, however, the degree of the numerator of the corre¬ 
sponding Zt goes down while that of the denominator goes up. Since the rational 
function representing a physical transfer impedance can have no zeros at infinity this 
sets a limit on the total number of zeros which can be omitted. Evidently, no zeros of 
(1 + 1 tan B)/(1 — i tan B) in the left half-plane can be omitted in constructing Zt 
unless the total number of zeros in the region exceeds the number of poles by at least 

two. This can be correlated with the net phase displacement between zero and 
infinity through Contour integral considerations. If the net phase shift is negative, the 
characteristic is non-physical. If it is either zero or 90°, the characteristic must be of 

the minimum phase type. Beyond this point ambiguity arises because a displace¬ 
ment of 180° can be attributed either to an all-pass section or to a minimum phase 
network having infinite loss at the ends of the spectrum. 
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dently represents the transfer function through the two identical lattices in 
tandem shown by Fig. 12.15a. The associated phase shift, 2 tan""1 X, 
however, is the same as that of the all-pass network shown by Fig. 12.15^. 
Evidently, therefore, the fact that a network has an all-pass phase charac¬ 
teristic is not sufficient to ensure that it is actually an all-pass network. 
It may be a com&irfation of simple equalizing structures. 

The result just established can be made somewhat more general. If 
we set iX = ap the quantity (1 + iX) can be regarded as the factor 
representing a real zero in a general transfer function. Similarly, if 

iX = ap + P/p we can regard (1 + iX) 
as a representation of a pair of conjugate 
complex zeros. The relation illustrated 
by Fig. 12.15 is thus equivalent to the 
statement that the phase shifts associated 
with the zeros of a general transfer func¬ 
tion are equal to half the phase shifts of 
a number of elementary phase correctors 
of the types illustrated by Figs. 11.11 and 
11.13 of Chapter XI. Since the same 
result must hold for the poles of the 

function except that the phase shifts are negative we are thus led to the 

Theorem: A general transfer phase characteristic is always half the 
characteristic of a number of elementary positive or nega¬ 
tive phase correctors. 

With this theorem as a basis it is easy to formulate the relations which 
must hold between two transmission paths if they are to have the same 
phase characteristic but different attenuation characteristics. The princi¬ 
pal requirement is that the transfer functions in the two paths be selected 
initially so that their ratio or product is the square of a rational function of 
frequency. This is accomplished if the two transfer functions appear as 
e6le6* and e9le0*> where e9i and e°* represent complementary characteristics 
and eBl is any arbitrary transfer function. It is apparent from the comple¬ 
mentary relationship and the preceding theorem that the difference between 
the phase characteristics in the two paths must then be the characteristic 
of a number of integral positive or negative phase correctors. In order to 
make the phase difference zero it is merely necessary to add corresponding 
positive all-pass sections in one path or the other. 

12.8. Choice of Parameters 

The choice of the coefficients in the rational function representing the 
transfer impedance to meet a prescribed characteristic can evidently be 

(B) 

Fig. 12.15 
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accomplished by methods similar to the linear equation scheme described 
in connection with two-terminal impedances. For example, if we are 
attempting to simulate a given attenuation characteristic and a given phase 
characteristic simultaneously, we can write 

ap + + *2 (*<*>)2 + * ‘ • 

bp + *!(/«) + b2(io))2 + - • • 
== Zt = £* cos B + teA sin 5, (12-18) 

or, equating real and imaginary parts separately, 

(a0 — a2o>2 + a^u4 — • • •) — eA cos B (b0 — b2o)2 + b±b>4 — • • •) 

+ ueA sin B (bx — b^o)2 + b5w4 — • •)== 0; (12-19) 

o)(ai — a%(ti2 -f- a$034 — • • ■) —- ueA cos B (b\ — b^w2 + b&co4 — • • •) 

- <?A sin B (bo - b2u2 + b*»4-) - 0. (12-20) 

If we substitute sets of values of w, A, and B in these expressions, by the use 
of selected points taken from the prescribed characteristic, we will evi¬ 
dently secure a set of simultaneous linear equations whose solution deter¬ 
mines the as and b*s. 

We can also deal with the attenuation characteristic and phase charac¬ 
teristic separately. Thus if we are particularly interested in the attenua¬ 
tion we may write 

c0 + civ2 + c2o)4 H-h cna2n _ 2A 

dp + d\o)2 + d2o)4 + • ■ • + dnu>2n y 
or 

(fo + *i«2 + • • • + r»o>2n) — <?A(d0 + dico2 + • * • + dnu2n) = 0 (12-22) 

and, of course, as in the general case, this basic linear relation gives rise to 
a set of simultaneous equations for the determination of the c’s and d's. 
The complex transfer impedance expression can then be reconstructed by 
the method described in the preceding section. For the reasons discussed 
in connection with the corresponding problem in two-terminal impedance 
design, this is an appropriate method even when we are finally interested 
in the simulation of phase shift as well as attenuation. Reliance in meeting 
the phase requirements is based upon the final design of a separate phase 
corrector.* 

The desirability of using these methods in practical circumstances 
depends largely upon the particular problem in hand. In many instances a 
structure which will furnish a required characteristic with sufficient accu- 

* For a more detailed exposition see Zobel, loc. cit. 
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racy can be determined by inspection and the design accomplished without 
the labor of setting up auxiliary mathematical machinery. The simul¬ 
taneous equation process, however, furnishes a simple and systematic 
design method when the straight cut-and-try procedure fails. 

12.9. Networks Equivalent to the Lattice 

For purposes of theoretical analysis, the lattice, which is the only struc¬ 
ture we have considered thus far, is particularly valuable both because of 
its generality and because of the simplicity and symmetry of its design 
equations. In practical application, however, other types of circuits are 
frequently preferable. It will be the object of this section to list a number 
of network equivalences by means of which the application of the lattice 
analysis to other types of structures can be facilitated. 

The basic equivalence between the lattice and any other symmetrical 
four-terminal network is that illustrated broadly by Fig. 12.16*. The T 

C 

t 
D 

Fio. 12.17 

structure appearing in the figure is introduced merely for definiteness and is 
not intended to imply that the equivalence is restricted to any particular 
configuration. The equivalence is easily understood if we notice that the 
branches of an actual lattice can be oBtained directly from external imped¬ 
ance measurements if we introduce appropriate short circuits between pairs 
of external terminals to eliminate one pair of branches at a time. For 
example, if we short-circuit terminals A and C and also B and D in the 

•This is a slight modification of the equivalence originally described by G. A. 
Campbell. See “ Physical Theory of the Electrical Wave Filter,” B.S.T.J. Nov., 
1922. 
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lattice of Fig. 12.17, the impedance between AC and BD will obviously be 
Zv/2. Similarly, if we connect A to D and B to C, the impedance between 
AD and BC will be Zx/2. Figure 12.16 states, in effect, that the branches 
of the lattice equivalent to a general symmetrical network can be deter¬ 
mined by making these two measurements on the corresponding terminals 
Ay By Cy and D of the general structure. 

The ideal transformers at the ends of the structure in Fig. 12.16 are of 
unity ratio. They are introduced merely to take account of the fact 
that the network whose lattice equivalent we are determining is not neces¬ 
sarily a balanced structure, and it is only its side circuit properties that are 
considered here. The arrows in Fig. 12.16 indicate the proper orientations 
of the transformer windings. Since a reversal in the direction of one 
winding amounts merely to an interchange of Zx and Zy in the equivalent 
lattice, however, or to a phase reversal in going through the network, this 
is almost a matter of indifference. 

The transformers can evidently be omitted when the network under con¬ 
sideration is completely balanced. If we change the diagram slightly they 
can also be omitted for a completely unbalanced network, such as the 
particular T structure shown in Fig. 12.16. We notice that the only differ¬ 
ence between the measurements determining Zx and Zv is the fact that the 
current in one transformer is reversed in going from one measurement to the 
other. From symmetry, however, the currents in the two transformers 
must be of equal magnitude in each measurement. In determining Zy the 
currents in the secondaries flow in the same direction, so that the voltage 
between Af and B1 is equal to that between Cf and D'y or in other words 
terminals Ar and Cr are at the same potential. The impedance Zy/2, 
which is measured between AC and BD, is consequently the same as that 
which would be found if we omitted the transformers and measured 
directly between terminal Br and terminals A' and C' strapped together. 
When we determine Zxi on the other hand, the currents in the two second¬ 
aries are in opposite directions, so that no current enters or leaves the 
network through the ground wire. The measurement would consequently 
be unchanged if the bottom terminals of the transformer secondaries were 
connected directly together rather than to terminals Br and Df. If we take 
account of the fact that a four-to-one impedance transformation results 
from the fact that with this connection the primary windings of the trans¬ 
former are in parallel while their secondaries are effectively in series, we can 
therefore conclude that the impedance ZJ2 is just one-fourth the imped¬ 
ance which would be found between terminals A9 and Cf if no external 
connections were made to any other part of the circuit, including termi¬ 
nal B9. This leads to the equivalence between a lattice and a symmetrical 
unbalanced network shown in Fig. 12.18, where Z\ represents the im- 
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pedance between Af and Cf which has just been described, and Z2 repre¬ 
sents the impedance between A' and B\ with C' strapped to A\ which was 
described earlier.* 

Fio. 12.18 

12.10. Illustrative Lattice Equivalences 

The application of the equivalence of Fig. 12.18 to T and w networks is 
shown in Figs. 12.19 and 12.20. The central branches of the T and w 
structures are represented in two equal parts, to illustrate the fact that the 

Fig. 12.19 

Zx and Zy branches of the equivalent lattice are respectively equal to the 
short-circuit and open-circuit impedances of the half T or tt sections. It 
is easy to see that a physical lattice can always be obtained for any T or 7r 
structure, but that the converse is not necessarily true. 

* Essentially the same relationships are expressed by the so-called bisection theorem, 
due to Bartlett ("The Theory of Electrical Artificial Lines and Filters,” p. 28). 
Bartlett’s theorem states that the Zx and Zy impedances of the lattice equivalent of a 
given symmetrical network can be found by bisecting the network along the plane of 
symmetry and measuring the input impedance of either half when the terminals 
which would normally connect it to the other half are first short-circuited and then 
left open. This is an obvious relation from Fig. 12.18 since it follows from symmetry 
that in the measurement symbolized by Z\ all the terminals on the plane of sym¬ 
metry are at the same potential, so that they can be connected together without 
affecting the result, while in the Z* measurement the wires connecting the two 
halves of the network carry no current, so that they can equally well be opened. 
The equivalence of Fig. 12.18, however, applies also to the exceptional circuit which 
has symmetrical external characteristics without being structurally symmetrical. 
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Other examples of these equivalences are furnished by Figs. 12.21 and 
12.22. As the figures imply, an impedance which occurs either in series or 

Fig. 12.20 

in shunt with both lattice branches can be removed and placed in series or 
shunt with the lattice as a whole. For purposes of equalizer design perhaps 

the most useful application of these relations is that shown by Fig. 12.23. 
Since the series and shunt resistances appearing outside the lattice on the 
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right-hand side of Fig. 12.23 can be regarded simply as attenuating pads, 
we notice that the essential effect of introducing a constant loss is to add 
series and shunt resistances to both lattice branches. Conversely, if a 
lattice is of the minimum loss type, either the resistance or the conduct¬ 
ance of each branch must vanish at some point along the real frequency 
axis. 

A more difficult example of these equivalences is furnished by Fig. 12.24, 
which represents the combination of two lattice networks to form a single 

equivalent lattice. As the relation ZXlZVl = ZXjZ„2 shown in the figure 
implies, the original lattice structures must have the same image impedance. 
This condition is necessary, in general, if the resulting structure is to be 
symmetrical. Our preceding discussion in this chapter has been largely 
devoted to a description of the ways in which a general transfer impedance 
characteristic could be broken down to produce a number of very simple 
structures in tandem. The equivalence shown by Fig. 12.24 evidently 
represents the inverse operation, by means of which the elementary struc¬ 
tures can be recombined as far as desired. 

12.11. Alternative Forms of Equalizing Structures 

With the help of these equivalences a lattice equalizer can be replaced 
by a number of alternative structures, of which 
two of particular interest are described in this 
section. The first is an equivalent of the 
lattice only in a restricted sense. It is ob¬ 
tained merely by replacing either the Zx or 
Zv branches of the original structure by sim¬ 
ple resistances equal to the terminal imped¬ 
ances as shown by Fig. 12.25. The transfer 
impedances of the resulting networks are easily 
computed if we first represent them as T*s or 
ic’$ by means of Fig. 12.19 or Fig. 12.20. In Fig, 12.25 
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both cases we find 

Zt — (12-23) 

As we see by comparison with equations (11-3) and (11-6) of Chapter XI 
this is just twice the transfer impedance of the original network. In ex¬ 
change for an added attenuation of 6 db, therefore, we secure a considerable 
simplification in the complexity of the network. It is to be observed, how¬ 
ever, that the new networks are not of constant R type. The “ equiva¬ 
lence ” therefore holds only for the transmitted current when both terminal 
impedances have their assumed values. The networks cannot be used if 
the terminal impedances do not meet this condition, or if we must combine 
a number of structures in tandem. 

A second alternative for the lattice is the bridged-T structure shown by 
Fig. 12.26.* The equivalent lattice of this network, as determined by the 
method of Fig. 12.18, has a Zx branch consist¬ 
ing of the Zc impedance of the bridged-T in 
parallel with half its Za impedance, while 
the Zy branch consists of the Z0 impedance in 
series with twice the Z& impedance. If the 
bridged-T is physically realizable, therefore, 
the equivalent lattice is always realizable, but 
we can convert the lattice into a bridged-T 
only if we can find an impedance, to represent 
Zcy which is in series with one branch of the lattice and in parallel with the 
other. 

For purposes of equalizer design, it is customary to suppose that the 
bridged-T is a constant resistance structure in which the Z0 impedance is 
equal to the terminating impedance Ro, as shown by Fig. 12.27. With this 
value of Zc it is easily shown that the constant resistance condition will be 
met provided Z\\ and Z21 are inverse networks with an impedance product 

Fig. 12.26 

*The bridged-T is discussed here because it is the configuration which is most 
used in equalizer design work. In other applications, however, it is at least equally 
customary to convert the lattice into any one of several combinations of two im¬ 
pedance branches, proportional respectively to the Zx and Zy impedances of the 
original lattice, and a two or three winding transformer. A good brief list of these 
possible configurations is given in Starr, “ Electric Circuits and Wave Filters,” p. 
366. A very general theoretical study of the possible ways of constructing lattice or 
bridge circuits with the help of transformers is given by Campbell and Foster, “ Maxi¬ 
mum Output Networks,” Trans. AJ.E.E., Vol. 39, Part 1,1920, pp. 231-280. 
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given by Z11Z21 = /?§. When the structure is terminated at the far end by 
the circuit resistance Ro, the first series resistance Ro, the two inverse 
impedances Z\\ and Z21, and the final terminating impedance represent the 

four arms of a bridge whose galvanometer 
arm is the second series Ro* The relation 
Z11Z21 = /2o, however, requires that the bridge 
be balanced so that no current can flow through 
the galvanometer arm. Strictly speaking, 
therefore, this element of the network is super¬ 
fluous. It might be replaced by either an open 

Fig. 12.27 circuit or a short circuit without disturbing 
either the driving point impedance or the trans¬ 

mission characteristics of the structure. These two possibilities are ex¬ 
hibited by Figs. 12.28 and 12.29. It is customary to include the second 
resistance, however, since its presence makes the circuit less sensitive to 
slight departures of the terminal impedances from their nominal values. 

12.12. Design Formulae for Bridged-T Equalizers 

Although the bridged-T has been developed merely as an equivalent of 
the lattice, it is ordinarily easier to apply it to design problems if we deal 
directly with its own design equation. Upon substituting the expression 
for Z* in terms of Zn in equation (11-6) of Chapter XI we find 

/-1 + fr- (12-24) 
Kq 

Since for this circuit Zt = 2RtfB if both terminating impedances are equal 
to R0, the transfer impedance of the bridged-T is proportional to the design 
impedance Zn in series with a resistance. We can apply equation (12-24) 
immediately to develop certain properties of the bridged-T in analogy to 
properties we have already established for the lattice. For example, we 
saw in connection with Fig. 12.23 that the addition of a constant loss to the 
lattice was.essentially equivalent to adding resistances in series and parallel 
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with both lattice branches. In order for a lattice to be of the minimum loss 
type, it was necessary for either the resistance or the conductance compo¬ 
nent of each branch impedance to vanish at some real frequency. If we add 
a constant attenuation, Ao, to the 6 defined by (12-24), on the other hand, 
the expression becomes 

-0-MLo — jAo [ I j_ * 

\ + *0 

« , + Ro(eA° - 1) 

i+—%— 
(12-25) 

Aside from a change in scale, the addition of a constant loss to the bridged-T 
is therefore equivalent to the addition of a resistance in series with Z\\, 

Conversely, a constant loss can be subtracted from the bridged-T if the 
resistance component of its Zn impedance is greater than zero at all real 
frequencies. 

The use of equation (12-24) also allows us to replace the bridged-T by a 
simpler structure in somewhat the same way that a constant resistance 
lattice can be replaced by one of the networks shown by Fig. 12.25. In this 
instance, however, the substitute network is still more elementary. It 
consists merely of a simple series or parallel impedance proportional to the 
original Zn or Z2i branch, as shown by Figs. 12.30 and 12.31. The fact 

Fig. 12.30 Fig. 12.31 

that the insertion loss characteristics of these circuits is the same as that 
defined by equation (12-24) can be seen by inspection. Although these 
circuits are logically analogous to those of Fig. 12.25 they have the advan¬ 
tage that we now no longer are required to accept an additional 6 db in the 
loss characteristic. Of course none of these “ equivalents ” can be used if 
the terminating impedances are not at their prescribed values or if we wish 
to combine a number of structures in tandem. 

It is apparent from the preceding discussion that the constant resistance 
bridged-T of Fig. 12.27 is considerably less general than a constant resist¬ 
ance lattice. For example, the two can be made equivalent only if re¬ 
sistances Rq are found in parallel with the Zx branch of the lattice and in 
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series with its Z„ branch. The significance of this structural requirement 
is best seen from equation (12-24). It is apparent from this equation that 
Zn will be a physical impedance only if e6 is a minimum phase shift expres¬ 
sion, and then only if the phase shift is nowhere greater than =fc90°. On 
the other hand, if we begin with any such expression and introduce enough 
constant loss a physical Zu is always obtainable. 

In general, the limitation on the maximum phase shift of a bridged-T 
becomes more troublesome as the complexity of the structure increases. In 
dealing with lattices, for example, we saw that two simple structures in 
tandem could always be replaced by one more elaborate lattice. No such 
relationship can exist for bridged-T’s, however, since two structures whose 
individual phase shifts are less than 90° may easily give a total phase shift 
in excess of this limit. With increased complexity, therefore, the bridged-T 
becomes relatively less and less general. On the other hand, it is easily 
seen by inspection of the design formulae that when the minimum phase 
requirement is met, the structures of Fig. 12.14 can always be built as 
bridged-T’s. If we begin by splitting up the characteristic into sufficiently 
simple components, therefore, any minimum phase shift transfer impedance 
can be represented by bridged-T networks. 

For practical purposes, bridged-T equalizers can usually be designed most 
simply on a cut-and-try basis. The configuration adopted for the Zu 
branch is most commonly a resistance in parallel with a network of pure 
reactances. It is evident that the resulting attenuation characteristic will 
reach equal maxima at every anti-resonance of the reactance network, and 
will become zero at every series resonance. This is illustrated by Fig. 12.32. 

Fig. 12.32 

A structure of this type is usually applied when the required loss characteris¬ 
tic in the frequency range of interest is similar to the characteristic of 
Fig. 12.32 between two successive maxima, two successive minima, or one 
maximum and the preceding or following minimum. Since the maximum 
value of attenuation is fixed by the parallel resistance, this element of the 
network can usually be chosen immediately. The design problem there¬ 
fore reduces to the choice of a suitable two-terminal reactive structure. In 
the useful range, however, the resonances and anti-resonances are fixed by 
the location of the maxima and minima of loss. The cut-and-try work 
therefore consists chiefly in the selection of the constant multiplier of the 
reactance expression, and perhaps additional elements resonating outside 
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the useful range, in order to shape the characteristic at intermediate points. 
For purposes of calculation, the equation 

^ = 1 + 
1/go + 2G 

R0{G2 + B2) 
(12-26) 

which is easily derived from equation (12-24), may be used. In this 
expression G is the conductance of the (known) parallel resistance, while B 
represents the susceptance of the reactive network which must be found. 



CHAPTER XIII 

General Restrictions on Physical Network Characteristics 

at Real Frequencies 
m 

13.1. Introduction 

The preceding chapters have shown that the mathematical specifica¬ 
tion of any of the usual characteristics of a network must be restricted in 
certain ways if the structure is to be physical. In particular, it is necessary 
for most network functions to behave in an especially simple way in the 
right-hand half of the p plane. This formulation of physical realizability 
is perhaps adequate in a formal sense. In practical engineering problems, 
however, we usually wish to be concerned only with the behavior of the 
structure at real frequencies. The question thus naturally arises as to the 
ways in which the restrictions on network performance in the right half¬ 
plane affect the characteristics which can be secured from physical circuits 
at points on the real frequency axis. 

This problem has already been discussed at some length in Chapter VIII 
and Cauchy’s theory of integration in the complex plane was introduced 
there as the principal mathematical tool which would be used in treating it. 
The theorynvas applied, however, only to the demonstration of Nyquist’s 
stability criterion. In the present chapter and the ones which follow it the 
theory will be used to develop a number of additional relationships which 
physical network functions must satisfy. The discussion will utilize in 
particular Cauchy’s theorem on the integral of an analytic function around 
a closed contour and the various special results on the integration of powers 
of z on circular arcs, which were described in the introduction to Chap¬ 
ter VIII. The student should reread this material, if necessary, before 
undertaking the present chapter. 

13.2. Nature of Restrictions on Physical Network Characteristics 

Before beginning the analysis, it may be profitable to consider the general 
nature of the relations which one should anticipate. Essentially, the 
problem of providing a given characteristic with a physical network is that 
of simulating the characteristic over a prescribed range with a rational 
function of frequency. If there were no restrictions on the rational func¬ 
tion, this could always be done as accurately as we please. In general, 
however, the resulting function would have zeros and poles scattered in all 
parts of the p plane. Since only half the plane is actually available, this 
means that in a certain sense the conditions of physical realizability specify 

27$ 
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half of any problem. Broadly speaking, for each fact we can introduce 
arbitrarily, a matching fact is forced upon us if the zeros and poles are to 
lie in the proper half of the plane. It is as though we were Nature’s tenants 
on a share basis. We must surrender half the crop for the privilege of farm¬ 
ing the land. 

As an example of this sort of relation, we may consider the processes of 
reconstructing a complete impedance from a known resistance characteris¬ 
tic or a complete transfer function from a known loss characteristic, which 
were described in Chapters X and XII. In each case it is possible to start 
with any even rational function of frequency to represent the given resist¬ 
ance or attenuation characteristic. Evidently, therefore, there are no 
restrictions on the problem of simulating any prescribed resistance or 
attenuation characteristic we choose as long as we assume even symmetry.* 
In reconstructing the complete driving point <^r transfer impedance, how¬ 
ever, we found in general that the result is completely prescribed from the 
initial function. As our payment to Nature for freedom to choose the 
resistance or attenuation characteristic as we please, therefore, we must sur¬ 
render control of the reactance or phase characteristic. Conversely, if we 
choose the imaginary component we find that Nature insists on specifying 
the real component. Our only advantage in the bargain lies in the possi¬ 
bilities presented by non-minimum phase or reactance networks. 

Contour integral theorems can be developed to express these relations 
and many others besides. For example, instead of choosing as our half of 
the characteristic the real component alone or the imaginary component 
alone over the complete frequency spectrum, we may elect to specify the 
real component in some parts of the spectrum and the imaginary component 
in the rest of the spectrum. The remaining portions of the complete char¬ 
acteristic are then determined. We may also choose to specify only a single 
isolated fact about the situation. Nature’s due, then, is a corresponding 
isolated fact. For example, if we specify that an impedance shall vanish at 
infinite frequency like a prescribed capacity, but impose no other restriction 
on the characteristic, there is a single requirement on the behavior of the 
impedance at finite frequencies. Similarly, if we specify, as an isolated fact, 
that the difference between the attenuations at two chosen frequencies shall 
be a prescribed amount, there exists, as an isolated fact, a corresponding 
single requirement on the phase characteristic of the structure. 

Contour integral relations of these types exist in great variety. Unfortu¬ 
nately it is extremely difficult to organize all the possible relations in any 
very coherent way. In a purely mathematical sense most of the formulae 
are related to one another by such obvious transformations and changes of 

* Except, of course, for the fact that if the discussion is restricted to passive struc¬ 
tures, the resistance or attenuation cannot be negative. 
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variable that there is no good reason for picking out any particular set as 
independent. Basically they are all merely reflections of Cauchy's theo¬ 
rem. Thus the expressions which one chooses to regard as distinctive must 
be selected for their physical meaning for the particular problem in hand. 
It is easy to isolate a limited set which are useful for relatively common 
problems. Beyond this point, however, there is an almost inexhaustible 
list of formulae which might conceivably be useful in more specialized 
situations. Reliance here must evidently be placed upon the manipulative 
and interpretive skill of the individual engineer. 

As a practical program, the present chapter will be devoted principally to 
theorems of the type which apply when a single isolated restriction is 
placed upon the function. Most of the discussion will be devoted to two 
of the simplest theorems. Various devices by means of which a wider 
variety of relations can be built up are described more briefly at the end of 
the chapter. Later chapters give expressions which are particularly appli¬ 
cable when we have chosen one half of the characteristic completely, either 
by specifying the real component at all frequencies, the imaginary com¬ 
ponent at all frequencies, or the two components alternately in successive 
frequency ranges. 

p plane 

13.3. Analytic Conditions 

The contour integral will be taken over the path shown in Fig. 13.1. 
This is the same path as that used in Chapter 
VIII to demonstrate Nyquist's criterion 
for stability. As in that discussion, the semi¬ 
circular part of the path is supposed to be 
extremely large while the small indentations 
on the real frequency axis are included to 
avoid any singularities in the integrand 
which may happen to fall there. The in¬ 
tegral around the complete path will be 

symbolized by and the integral around 

the semicircular portion of the path by • 

Let the function in which we are interested be represented by $ * A + iB. 
It will be supposed that 6 satisfies the following conditions: 

1. The real component, A, is an even function of frequency. 
2. The imaginary component, B> is an odd function of frequency. 
3. There are no singularities in the interior of the right half-plane. 
4 Singularities at any finite point po on the real frequency axis are of 

such a nature that (p — po)0 vanishes as p approaches po* This 
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admits logarithmic singularities and branch points but not poles on 
the real frequency axis. 

5. In general, it will be supposed that 0 is analytic at infinity. Many of 
the theorems, however, admit a singularity here provided 0/p vanishes 
when p is made indefinitely great. 

6. If 0 is assumed to be analytic at zero and infinite frequency, the quan¬ 
tities A0, Bo9 A0o, Boe, etc., will be defined as the coefficients in the 
corresponding power series expansions 

0 = Aq + iB()Q) + A\o? + iB\uz + • • • (13-1) 

and 

0 = A^ + i — H—sT + i —g + • • •• (13-2) 
(a co <o 

The most important functions satisfying these restrictions are passive 
impedances of minimum reactance type, or passive admittances of mini¬ 
mum susceptance type, and transfer loss and phase functions of minimum 
phase shift type. The transfer function, for example, is included because, 
in addition to satisfying the obvious requirements 1 and 2, it has no 
singularities in the interior of the right half-plane and the singularities, or 
infinite loss points, on the real frequency axis are only logarithmic. Mini¬ 
mum reactance impedance functions and minimum susceptance admittance 
functions are also included but non-minimum functions must be excluded 
because they have poles on the real frequency axis. 

In addition to these two principal possibilities 0 may also represent func¬ 
tions of several other types. For example, we can include active driving 
point functions in the analysis if we are careful to analyze a network which 
is open-circuit stable but not short-circuit stable as an impedance rather 
than as an admittance, and vice versa. We can also admit the logarithm 
of any passive two-terminal impedance without restriction to a minimum 
reactance or susceptance structure. Conversely, transfer impedances or 
admittances can be treated arithmetically in most cases without the neces¬ 
sity of expressing the transmission in terms of attenuation and phase. 
Since branch points on the real frequency axis are admissible, 0 may also be 
an image impedance or an image transfer constant. 

These functions are all of a type which would be appropriate for the 
analysis of networks of lumped elements. It is only lumped constant cir¬ 
cuits which are of concern here. With suitable modifications, however, 
the contour integral theorems can be extended in many cases to circuits 
with distributed elements also. This question is discussed briefly at the 

end of the chapter. 
In general, the first step in developing the theorems which follow is to 
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combine 0 with some other function in such a way that the result vanishes 
at infinity at least as rapidly as of"1. This makes it possible to evaluate 
the contribution of the large semicircular path to the complete integral. 
If the integrand vanishes more rapidly than of*1, it follows from the dis¬ 
cussion in Chapter VIII that the integration along the semicircular path 
can be neglected entirely as soon as the path is made sufficiently large. 
Otherwise, this part of the loop must be taken into account, but its con¬ 
tribution is easily determined from equation (8-4) of Chapter VIII. 
The contour integration thus reduces in effect to an integration along the 
real frequency axis from some very large negative frequency to an equally 
large positive frequency. But the real and imaginary components of 0 

have respectively even and odd symmetry about the origin on the real fre¬ 
quency axis. If the same symmetry is maintained in the complete inte¬ 
grand the positive and negative frequency halves of the integral of the 
imaginary component will evidently cancel out, while the integral of the 
real component can be replaced by twice the integral along the positive half 
of the axis alone. From Cauchy’s theorem, however, the integral around 
the complete contour is zero. In the result, therefore, the integral of the 
real component over all positive frequencies is set equal either to zero, if 
the integrand vanishes more rapidly than oT1 at infinity, or to some known 
constant, if the integrand varies exactly as vT1. 

13.4. Resistance Integral or Attenuation Integral Theorem 

The simplest possible example of this process is obtained if we construct 
an integrand which varies in the desired way at high frequencies by sub¬ 
tracting Aa, in equation (13-2) from 0. Since the integral around the 
complete loop must vanish, we can therefore write 

f(P- AJ d<* = 0. (13-3) 

This can be broken up into an integration around the semicircle and an inte¬ 
gration along the real frequency axis, and the limits of integration for the 
latter can be taken as — °o and + ® if the path is made indefinitely large. 
This gives 

f (o- Ax) du + j* (0- Am) da - 0. (13-4) 

In the second integral of (13-4), only the leading term, f(5«/»), of the 
power series for 0 — An in (13-2) makes any contribution to the result. 
If we also break up the first integral into separate expressions for the real 
and imaginary components of 0 — An this allows the complete expression 
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to be written as 

f (A - Ax) du + i f BJu + fi^Ju^O. (13-5) 
V —oo */ —00 V W 

Since B is an odd function of frequency, the second integral in equation 
(13-5) must be equal to zero. Correspondingly, since A is even, the first 
integral can be replaced by twice the integral which would be obtained 
between the limits zero and infinity. Finally, the third integral can be 
evaluated as tB* by the formula given in equation (8-4) of Chapter VIII. 
Collecting results, therefore, the expression re- ^ 
duces to |-11 —1i 

f<4 
«/o 

Ax) du — — -Bx (13-6) 

The theorems of the chapter will be illus- I-jjjl-I 
trated by the two networks shown in Fig. 13.2. ° I R9 f 
If we let 8 represent the impedance of one of the 
networks A and B will be respectively resist- Fig 
ance and reactance. We see by inspection that 
A& = 0 and B* = —1/C. Equation (13-6) consequently becomes 

f Rdu = —— • ( (13-7) 

This result is easily confirmed by direct calculation. The resistance of 
the network in Fig. 13.2^, for example, is R = R0/(1 + a>2Co^o). Substi¬ 
tuting in (13-7) therefore gives 

-fr 

\ r _ 
CJn T 

d (RqCoi) 

+ (£oC«)a 
(13-8) 

= - [tan-1 RoCwtf 

by ordinary integration. 
The calculation for the structure of Fig. 13.25 is somewhat more difficult 

but it can be made by the same general method. The resistance of the 
structure is given in general by 

R " f+ - ILQJ* + L2CV* (13_9) 
If this is split into partial fractions the resistance integral appears as 

— f - 
— 0 Jo 1 

Ro 
+ GUti2 -r- a«/o 1 

R0 du) 

TS? (13-10) 
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where 

a = K*oC2 -2LC+ RoCVRtC2 - 4LC), 

_ (13-11) 

0 = C2 -2LC - RQCVRlC2 - 4LC). 
« 

By integrating each term in the manner indicated by (13-8) we secure again 
the result w/2C. The equality of the areas under the resistance charac¬ 

teristics where the capacity C is fixed is illus¬ 
trated by Fig. 13.3. The Curves I and V 
give typical characteristics for the structure 
of Fig 13.2a. Curves II and II7 represent 
characteristics obtained from Fig. 13.2b. 

Equation (13-7) also holds for any other 
minimum reactance network including the 
parallel capacity C. It does not hold, how¬ 
ever, for such structures as those shown by 
Figs. 13.4 and 13.5 since neither of these con¬ 

figurations is of the minimum reactance type. In order to perform the 
contour integration for the impedance of such a network, it is necessary to 
indent the contour slightly as indicated by Fig. 13.1 in order to avoid the 

poles of impedance, and the contribution of these small indentations to the 
complete loop integral also requires consideration. Since the residue at a 
pole on the real frequency axis is always positive, however, the sign of this 
contribution, at least, is known. We can if we like therefore generalize 
(13-7) to include both minimum and non-minimum cases by writing it in 
the form 

where the equality sign holds for minimum structures. 
Equation (13-6) has been included as equation I (a) in the list of formulae 

given at the end of the chapter. The remaining equations !(&), 1(c) and 
1(d) in the first group of formulae in the list are alternative forms of the 
same relation. For example, equation 1(b) is the same as 1(a) expressed 
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on an inverse frequency scale, while I (c) and I (d) are relations obtained by 
integrating the first two expressions by parts. 

13.5. Equalizers and Local Feedback Circuits with Parasitic Capacities 

By interpreting 0 in other ways than as an impedance, the general 
equation (13—6) can be made to yield a variety of other special results. 
Many of these are of importance in considering the characteristics obtain¬ 
able from a network including some parasitic element, such as a shunt 
capacity, which defines its behavior at high frequencies. If 0 is chosen 
appropriately in such a situation it is ordinarily possible to identify A with 
the characteristic in which we are interested at ordinary frequencies, while 
B0o can be evaluated in terms of the parasitic element from a study of the 
high frequency behavior of the structure. By using (13—6), then, the 
maximum response obtainable from a physical structure including the pre¬ 
scribed parasitic element can be computed. 

Most of these applications depend also upon some analytic tools we have 
not yet developed and are most readily considered at a later point. In 
order to illustrate the process, however, we will consider the particular 0 
given by 

0 = log (l + fr)- (13-13) 

This equation represents the loss and phase shift of a constant resistance 
equalizer of the general type described in Chapter XII and shown here by 
Fig. 13.6. In accordance with the general relations developed in Chap¬ 
ter XII the analysis also covers situations in 
which the equalizer is replaced by a simple two- 
terminal network inserted in series or shunt 
with the circuit. 

It will be assumed that the Z\\ impedance 
includes a prescribed shunt capacity C as in¬ 
dicated by Fig.* 13.6. Obviously, if C is large 
Zu cannot be a large impedance over a broad 
frequency band and in accordance with equa¬ 
tion (13-13) the attenuation will be corre¬ 
spondingly small. On the other hand, as C 
is made smaller, Z\\ and the attenuation A 
can assume larger and larger values. The theorem described in this section 
is concerned with the exact relation among these quantities. 

The reason for considering such a problem as this is that we frequently 
haye occasion to introduce equalizers into $ circuits of amplifiers in order to 
control their gain characteristics. It is shown in a later chapter, however, 

.. ■ .—O 

Fig. 13.6 
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that the amount of feedback which can be secured from the amplifier 
depends upon the asymptotic characteristics of the feedback at frequencies 

remote from the band and is diminished by anything which introduces 

attenuation into the feedback loop in the asymptotic region. Obviously, 

the behavior of the equalizer at very high frequencies depends upon the 

value assigned to C, and the relation between C and the general level of 

attenuation which can be secured from the structure is therefore useful in 

determining the extent to which the available feedback is reduced by the 

introduction of equalization into the circuit. 

In addition to this particular problem, the analy¬ 

sis can also be applied to a number of parallel 

problems in which the function of interest has a 

form similar to (13-13). An example is furnished 

by the introduction of local feedback through the 

use of an impedance between cathode and ground 

in one tube as shown by Fig. 13.7. The equation 

Fig. 13.7 f°r the gain of such a circuit, neglecting grid- 

» cathode and plate-cathode admittances in com¬ 

parison with the other admittances of the circuit, is given by 

Gm 

1 +GmZ* 
(13-14) 

The reduction in gain produced by the local feedback is therefore measured 

by 1 + GmZ. This is evidently the same expression as that in equa¬ 

tion (13-13) if we replace the transconductance Gm by the reciprocal of /?<>• 

Since Z will generally be controlled at high frequencies by the parasitic 

capacity C in Fig. 13.7, between cathode and ground, the situation is 

essentially similar to that discussed for the equalizer. 

The relation between the equalizer loss, or the reduction in gain due to 

local feedback, and the capacity C can be established by replacing Zn in 

(13-13) by its high frequency value 1/iwC. It is easily shown that 

log (1 + 1/icaCRo) reduces approximately to 1/iuCRo when co is very large. 

We thus have A* = 0 and = — 1 /CRq, Substitution in (13-6) there¬ 
fore gives 

555- (I3-15) 

As an example, let it be supposed that we wish to apply local feedback to 
a tube for which Gm = 4 X 10-3 mhos, and C = 40 ppf. The equivalent 
Ro which appears in (13-15) is 1 /Gm, or 250 ohms. An easy calculation 
shows that die total local feedback obtainable amounts to 1 neper over a 
25 me band or 2 nepers over a 12.5 me band. Since the integral in (13^11) 
runs to infinite frequency, however, and we evidently cannot reduce d 
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abruptly to zero, the feedback available over a definite 12.5 or 25 me band is 

slightly less than these figures would indicate.* 

13.6. Regeneration and Degeneration in a General Feedback Circuit 

The analysis just concluded can also be used to derive a second result 

which is at least curious, although it may not be of great practical impor¬ 

tance. We are accustomed to thinking of feedback amplifiers as being either 

regenerative, in which case the external gain is increased at the cost of an 

increase in the effects of tube variations, or degenerative, in which case the 

gain is reduced in exchange for a corresponding improvement in the effects 

of tube variations. It is apparent, however, that the expression 

log (1 + GmZ)y which we have just studied, is merely a particularly simple 

form to which the general expression log (1 — /*/3) reduces for the special 

case of a single tube feedback amplifier. Equation (13-15) therefore 

measures the total reduction in gain or degeneration for such a system. In 

a similar fashion we might replace the 6 in (13-13) by log (1 — nfi) for a 

general amplifier and proceed with the analysis in the same way as before. 

In the general case only one difference would appear. Whereas in the 

single tube feedback amplifier the feedback /z0 varies, in general, inversely 

as the first power of the frequency at high frequencies, in a general multitube 

amplifier, the feedback would vanish as some higher power of frequency. 

If the feedback drops off as a higher power than the first, however, the con¬ 

tribution of the integral around the infinite semicircle is evidently zero and 

the right-hand side of equation (13-15) therefore vanishes. This can be 

formulated as the 

Theorem: In a single loop feedback amplifier of more than one stage 

the average regeneration or degeneration over the complete 

frequency spectrum is zero. 

In a typical amplifier, in other words, the increase in gain at high fre¬ 

quencies due to the fact that | 1 — nfi | is less than one just balances the 

* This example is taken from the design of a repeater amplifier used some years 
ago in an experimental system for long distance broad-band transmission over coaxial 
lines. The system was intended to transmit carrier telephone messages over a 2 me 
band; a modified form of the system with a somewhat extended band to accommodate 
television as well as telephone signals is described by Strieby and Wentz, “Television 
Transmission over Wire Lines,” B.S.T.J., Jan., 1941. The 40 \xyj cathode-ground 

capacity mentioned in the text is much greater than the physical capacity in the 
actual amplifier, but the grid-cathode and plate-cathode capacities lead to an effective 
C of about this magnitude. The reason for maintaining the local feedback over a 
band as great as 12 to 25 me is that otherwise the stability of the system is jeopardized 
by a decrease in the gain of the tube to which the local feedback is applied, even if the 
characteristics around the main loop are apparently absolutely stable. TTie design is 
described in more detail in a later chapter. 
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reduction in gain due to feedback in and near the useful band. It must be 

remembered that the comparison takes place on an arithmetic frequency 

scale and the high frequency region over which a perceptible increase in gain 

takes place may be very broad. 

13.7. Phase or Reactance Integral 

Equation (13-6) gives the integral of the real component of a network 

function over the real frequency axis in terms of the behavior of the imag¬ 

inary component at infinite frequency. A second contour integral theorem 

gives an analogous relation between the integral of the imaginary compo¬ 

nent of the function over the real frequency axis and the behavior of the real 

component at extreme frequencies. 

In developing (13-6) the integrand was made to vary as oT1 near 

infinity, so that the integration around the large semicircle could be per¬ 

formed, by subtracting A* from 0. We can also secure a manageable inte¬ 

grand at high frequencies by dividing 0 by w. This leads to 

/ - du = 0. 
0) 

(13-16) 

When the path is made very large, the integral around the complete loop 

can again be broken up into an integration along the real frequency axis 

and an integration around an infinite semicircle. It is necessary, however, 

also to include the contribution of a very small indentation around the 

origin to take account of the fact that the integrand has a pole at this point. 

Equation (13-16) thus becomes 

f - da + f - do> + f - da = 0, (13-17) 
t/ _oo £0 */ 0) J CO 

where the third integral represents the very small semicircle near the 

origin. 

In evaluating the first term of (13-17) we find we need again to consider 

only the component having even symmetry over the positive and negative 

frequency ranges. In this instance, however, this component is iB/w. 
The integrands in the remaining terms can be written as A^/u and AQ/w> 
since the contributions of the higher order terms in (13-2) disappear when 

the path is pushed to the limiting case. This gives 

2i f -Jo+ <f — du>+ f — </a> = 0. (13-18) 
t/o w J <a J 0} 

The second and third integrals of (13-18) can be evaluated by means of 

equation (8-4) of Chapter VIII. They are equal to — wiA# and TtAo, 
respectively. The complete expression is therefore 

/" Bdu A0), (13-19) 
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where du = d{log co) has been written for du/«. This equation is evi¬ 

dently exactly analogous to the integral for the real component given by 

(13-6) except for the fact that the integration is taken on a logarithmic 

frequency scale and the right-hand side involves the difference between the 

values of the real component at zero and infinite frequency. The reason 

for this latter change is physically evident from the fact that the absolute 

level of resistance or attenuation in a circuit can always be varied at will 

without affecting the rest of the circuit characteristics. 

Equation (13-19) states, in effect, that the total area under the imaginary 

component plotted on a logarithmic frequency scale depends only upon the 

difference between the values assumed by the real component at zero and 

infinite frequency, and not upon the way in which the real component varies 

between these limits. This is illustrated by Fig. 13.8. If the change in the 

real component is concentrated in a narrow portion of the frequency spec- 

A B 

trum the imaginary characteristic rises to a sharp peak, while if the change 

in the real component is more gradual the imaginary characteristic is broad 

and flat. For a given total change in the real characteristic, however, the 

area under the imaginary characteristic is always the same. If A and B are 

attenuation and phase the units in which (13-19) is expressed are nepers 

and radians and it is easily seen that the phase area is equal to 90° multi¬ 

plied by a frequency interval equal to the change in loss expressed as a 

current ratio. For example, a low-pass filter having 40 db loss at high 

frequencies* has an accompanying phase area equal to 90° over a frequency 

range of 100 :1. 

* Taken literally, A» in [(13-19) represents the loss at infinite frequency, where 
the attenuation of any actual low-pass filter is infinite because of reflection effects. 
It is obvious, however, that if Am is taken as the loss at some fairly representative high 

frequency the equation should give an approximately correct value for the phase area 
at lower frequencies. The difficulty can also be avoided by allowing 0 to stand for the 
transfer constant rather than the insertion loss of the filter. 
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In order to exemplify the relation in detail, we may consider again the 

simple networks shown by Fig. 13.2, allowing A and B to represent resist¬ 

ance and reactance, respectively. If we choose the structure of Fig. 13.2#, 

we have Aq = Ro, Ax = 0, and B = — (a)CR$)/(l + o)2C2Rq)» Equa¬ 

tion (13-19) therefore becomes 

CRl 

1 + a>2C2Rl 
(13-20) 

which can easily be checked by ordinary integration. The analogous expres- 

X sion for the structure of Fig. 13.2b is 

(L - RlO - a>2L2C 

u=logO 

r (l - 
Jq (1 — CO1 2LCf + (o>R0C)2 du> 

(13-21) 

This can also be confirmed by ordinary 

integration, although the algebra is 

somewhat more difficult. The equality 

of reactance areas for these networks 

for a specified value of R0 is illus¬ 

trated by Fig. 13.9, where the curves 

represent the reactance characteristics 

corresponding to the resistance charac¬ 

teristics of Fig. 13.3. The reactance 

corresponding to Curve I' in Fig. 13.3 has been divided by two in order 

to permit all the characteristics to correspond to the same value of R0. 

Fig. 13.9 

13.8. Applications of Phase Area Law in Amplifier Design 

In amplifier design, equation (13-19) can be used either in planning the 

general form of an overall loop cut-off characteristic or in making minor 

adjustments in a design which is nearly satisfactory. As an example of the 

first application, let it be supposed that we are dealing with an equivalent 

low-pass amplifier, as described in Chapter X, and let 6 — log Ty where 

T represents the return ratio for one of the tubes and is the same as — 

for the usual single loop amplifier. Obviously, Aq in (13-19) represents the 

effective feedback in the useful band* in nepers. Above the useful band 

must decrease until it becomes less than unity beyond the amplifier cut-off. 

This change in gain can evidently be identified roughly with the quantity 

Aqe — Aq in (13-19). Associated with it must be a certain definite phase 

area. If the amplifier is to be absolutely stable, however, it follows from 

* That is, as a negative loss. It must be remembered that is stated as a gain 
while the A in (13-19) is taken to represent an attenuation. 
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the Nyquist plot of T given by Fig. 8.27 of Chapter VIII that the maximum 

phase shift at any frequency in the region below the cut-off must be less than 

180°. Since the total phase area is fixed, this requirement can be met only 

if the area is distributed over a sufficiently wide range. For example, if the 

feedback in the useful range is 40 db and the phase shift is nowhere greater 

than 180°, equation (13-19) indicates that the phase area must extend over 

a frequency range of at least 10 to 1. 

It is fairly evident physically that this must correspond approximately to 

the region of decreasing between the useful band and the cut-off, and the 

calculation therefore gives an estimate of the maximum rate at which we 

can allow nf$ to decrease in the feedback loop design. If the design calls 

for a cut-off which is more abrupt than this the peak phase shift will neces¬ 

sarily be more than 180° and the amplifier will be either Nyquist stable or 

unstable. A more precise estimate, which allows for the possibility that a 

certain amount of die total phase area may be found above or below the 

cut-off interval, can be obtained by the methods described later. 

As an example of the use of the phase area 

law in detailed design work let it be supposed 

that as a result of a preliminary design the 

Nyquist diagram for T near the cut-off point 

takes the form shown by the solid line in Fig. 

13.10. The corresponding separate gain and 

phase characteristics, plotted against log w, 

are shown by the solid lines in Figs. 13.11 and 

13.12. The useful band is supposed to be 

found at relatively low frequencies, well below the region covered by the 

sketches. The amplifier is, of course, unstable. It would become stable, 

however, if the characteristics were moved to the positions indicated by 

the broken lines in the three figures.* 

Fig. 13.10 

Fig. 13.11 Fio. 13.12 

* The reasons why it is necessary to assume that both the loop gain and loop phase 
characteristics will be changed, and why the new characteristics should be chosen as 
they are in Figs. 13.11 and 13.12 may be seen in part from the present discussion, but 
they will appear more clearly from the analysis in later chapters. 
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Turning first to the phase characteristic, we notice that the change 

decreases the phase area by the amount indicated by the shading in 

Fig. 13.12. There must be a corresponding change in Ao — A*.* In a 

physical circuit, however, we can assume that the characteristics of the 

feedback loop at extremely high frequencies are determined by parasitic 

elements, such as interstage capacities, and are beyond our control. The 

change must therefore affect A0 rather than A*. It is indicated by hA in 

Fig. 13.11 on the assumption that since the Nyquist diagram is satisfactory 

at lower frequencies the solid and broken line characteristics in Fig. 13.11 

will remain parallel below the region covered by the drawing. The phase 

area law thus makes it possible to estimate what sacrifice in feedback in the 

useful band will be required in order to make the amplifier stable. 

With this clue at one’s disposal the choice of an 

appropriate detailed design should be a relatively 

simple matter. Let it be supposed, for example, 

that the external gain of the amplifier is satisfac¬ 

tory. Then the feedback in the useful band must 

be diminished by changing the n circuit rather 

than the 0 circuit. One possibility is afforded by 

the addition of a so-called “ trap circuit ” to one 

of the interstages. This is illustrated by Fig. 

13.13. The original interstage is shown by Fig. 

13.13# and the modified structure including the 

trap circuit by Fig. 13.13^. At low frequencies, 

where the elements L and R of the trap circuit are 

unimportant, the second structure evidently has 

the same characteristics as the first except for a constant change in 

level equal to log (1 + k). We can therefore determine k> and con¬ 

sequently the trap circuit capacity C in terms of the interstage capacity 

C0, from the results of the phase area computation. For example, 

if the phase area computation indicates that the feedback in the useful 

band must be decreased 12 db we must choose k = 3. The trap circuit 

inductance L is chosen to resonate with kCo at about the frequency indicated 

by wo in Fig. 13.12, where the maximum phase change is to be made, and R 
is fixed by the phase change required at this point. Since the total phase 

area is correct, this should lead to a reasonably satisfactory result without 

further trouble in most cases, but minor improvements may be obtainable 

by making slight changes in L and R or by introducing part of the damping 

* In a physical amplifier A<& must be infinite. Since the high frequency characteris¬ 
tics around the loop are not changed, however, it is sufficient, for the purposes of this 
calculation, to identify A» with the attenuation at any frequency beyond the range 
of interest. 
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in shunt rather than in series with L. No special attention need be paid to 

the change in the gain characteristic illustrated by Fig. 13.11, since it 

follows automatically if the desired phase characteristic is realized. 

The m circuit gain can also be depressed by the introduction of a local 

feedback circuit for one of the tubes. This is illustrated by Fig. 13.14. 

R is chosen from (13-14) to give the required decrease in gain at low fre¬ 

quencies. The capacity C can at least be estimated from the relation given 

in a preceding section, and L and C together form a simple filter which cuts 

off in the general neighborhood of a>o. It is, of course, permissible to 

generalize the filter, either by replacing L by an anti-resonant 

circuit or by adding more branches to the network, in order 

to control the characteristics more carefully. The reader 

should also understand that these illustration« are given in 

advance of the general design technique described later and 

are somewhat subordinate to considerations which have not_ 

yet appeared. For example, if the local feedback struc- pIG 1314 

ture is used, it is necessary to consider whether the circuit 

will remain stable if the gain of the tube to which it applies is decreased. 

13.9. Other General Relationships 

The preceding discussion has emphasized the formulae for the integral 

of the real component and for the integral of the imaginary component both 

because these are the simplest possible results of the contour integral analy¬ 

sis and because they are of particularly broad application. If we choose 

more and more complicated integrands the analysis can also be made to 

yield an almost interminable list of other possible formulae. As the for¬ 

mulae become more complicated, however, their application in physical 

problems becomes increasingly difficult. The derivation of additional 

formulae will therefore not be considered in great detail. The following 

headings summarize some of the methods which can be used in extending 

the analysis. Typical results to which they lead are given in the list at the 

end of the chapter. 

1. Formulae Involving Coefficients of Higher Order Terms in Power Series 
for 0. In deriving (13-6) we began by subtracting the first term in the 

series expansion for 0 near infinite frequency. The leading term of the 

series which was left thus consisted of the second term of the original 

series and the coefficient of this term could be evaluated by means of the 

integration around the large semicircle. One possible method of extending 

the preceding theorems is obtained by continuing this process. If we sub¬ 

tract successively more and more terms of the original series the successive 

coefficients in the expansion can be represented one by one. Equations 
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Ill(tf) and III(£) in the list at the end of the chapter, for example, show 

how the coefficients A\ and A[ in the expansions of equations (13-1) and 

(13—2) can be represented. 

A simple illustration of these formulae can be obtained by returning to 

the structures of Fig. 13.2. In Fig. 13.2a we have A[ = 1//?0C2, while for 

Fig. 13.2^, A[ is evidently zero. Equation III {a) for the two networks thus 

becomes 
o>2CRl 11 t 1 

1 + a>2C2R2o + CJ “ 2 C2R0 
(13-22) 

and 
r00 |VZ,(1 - co2£C) - o?RlC n 

Jo L(l- <*2LC)2 + («/?0C)2 + CJ d03 ~ °' 
(13-23) 

The first of these is obvious by inspection. The second can be verified by 

writing it as 

" (13-24) 

f. 0 (1 + 
or 

r (1~'—fc~+ r 

Rlc 2 0 

(1 - y2) /fa 

(1 _ ~2 + 
= 0 (13-25) 

where x2 = u2LC. If we replace * by 1/* in the second integral of (13-25) 

it is easily seen that it is exactly the negative of the first integral. 

We can express the physical meaning of equations HI (a) and III(£) 

most easily if we rewrite III (a), for example, in either of the forms 

or 

(13-26) 

(13-27) 

Corresponding expressions hold for equation III(b) if co is replaced by l/«. 

In (13-26) and (13-27) Bx/u is, of course, the imaginary characteristic 

which would be realized if the infinite frequency behavior of the structure 

were maintained over the complete frequency spectrum. If we suppose 

that A[ is zero the equations say that the average value of the actual 

imaginary characteristic is, in a certain sense, the same as that of this limit¬ 

ing infinite frequency characteristic. In (13-26), for example, the areas 

under the two characteristics are the same when the computation is made 

on a frequency squared scale. In (13-27) the average percentage depar- 
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ture of one characteristic from the other is zero if we make the computation 

on an ordinary arithmetic frequency scale. 

Equation (13-27) is illustrated, for the structure of Fig. 13.2, by the 

curves shown in Fig. 13.15. In these networks is evidently the 

capacity reactance —1 /Cw, and B/(BJu>) is therefore the ratio of the 

actual reactance to the capacity reactance. Curves I and V of Fig. 13.15 

show this ratio for the reactance 

characteristics given originally by ( 
Curves I and V of Fig. 13.9. ^— 

Since these curves correspond to 03 

the structure of Fig. 13.2*2, for 

which A[/Bx in (13-27) is -1 /R0C, 1>0 

the area under the curves is less 

than that under the unit line. On 

the other hand, the coefficient A\ 
is zero for the network of Fig. 13.2b 
and the average height of the cor¬ 

responding Curves II and II7 is 

consequently unity. In other 

words, the average reactance char- ® 

acteristic obtained from a network 

of the type shown by Fig. 13.2b 
is, in a sense, unaffected by the addition of the elements R0 and L. 

2. Formulae Involving Products of Functions. A second general method 

of extending the list of formulae is found if we regard the original function 0 

as the product of two functions 8\ = a + ifi and 62 — y + <$. Both 8\ 
and 82 may themselves be “ network functions ” or one of them can be 

regarded as the particular network characteristic with which we are con¬ 

cerned, while the other is some arbitrary function of frequency introduced 

to give some desired special weighting to the various parts of the frequency 

spectrum. It is convenient, however, to suppose that in any case the real 

component y of 82 vanishes at infinity. If we suppose that 8\ and 82 behave 

otherwise at infinity in the way we have previously specified for the original 

function 0, this means that all the terms in the product 0x02, except 

<*oo vanish at least as rapidly as of"2 and can be ignored in the integration 

over the infinite semicircle. The contribution of the infinite semicircle to 

the complete integral is therefore 5*. On the real frequency axis, 

on the other hand, we need retain only the even component ay — of the 

integrand. The result can therefore be written in the general form 
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The cases in which one of the two functions is chosen arbitrarily to pro¬ 
duce a desired weighting of the results on the real frequency axis are 
described later. The simplest example of the use of the formula when $i 
and 02 are both “ network functions ” is furnished if we assume 
$l = $2 = 0 — 0»* This gives equation IV (a) in the list at the end of the 
chapter. On a reciprocal frequency scale the relation can also be written 
as equation IV (b). The process can of course be continued to include still 
higher powers of 0 — 0oo. Equation IV (c), for example, gives the result 
when 0i = 0| = (0 — 0oo)2* Although none of the resulting formulae are 
given in the list, equation (13-28) can evidently be applied also to situa¬ 
tions in which 0i and d2 are network functions derived from different net¬ 
works. For example, if 0i and 02 are the impedances R\ + tX\ and 
R2 + iX2 of two networks of the general types illustrated by Fig. 13.2, 
equation (13-28) evidently yields 

R\R2 da = I XxX2 da. (13-29) 
o ** o 

Instead of considering two quite distinct impedances we may also consider 
one impedance, R + iX, and the change in that impedance, AR + iAX> 
produced by some physical change in the network. If we assume that the 
impedance vanishes at infinity both before and after the change is made the 
result is 

RAR da = XAX da. (13-30) 

Equations IV{a) and IV(b) are of some special interest as an indication 
that, in addition to meeting the general integral conditions set by the 
previous equations, the real and imaginary components of 0 must be so 
related that they have approximately equal sinuosity. Thus, for example, 
equation (13-19) allows us to conclude that a low-pass or high-pass filter 
without phase shift cannot be constructed, but it gives no information on 
structures having the same attenuation at zero and infinite frequencies. 
Equations IV (a) and IV (b), on the other hand, give a much more general 
result. This can be formulated as the 

Theorem: A network whose reactance or phase characteristic is zero 
at all points on the real frequency axis cannot have a resist¬ 
ance or attenuation characteristic which varies in any way 
whatsoever with frequency. Conversely, if the resistance 
or attenuation characteristic of the network is constant its 
reactance or phase characteristic can be only that which 
would be obtained from a two-terminal reactive network or a 
phase correcting structure* 
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3. Formulae Involving Products of Functions with Reversed Symmetry. 
As a further extension of this process, we may also suppose that the inte¬ 
grand appears in the general form 0i02/w. We can suppose that 0i and 02 

have the same significance as they had before except that it is no longer 
necessary to assume that the real component of one of the functions vanishes 
at infinite frequency. The introduction of the factor 1/a> has the effect of 
changing the symmetry of the real and imaginary components of 0i02 on the 
real frequency axis from even to odd or vice versa. The result which is 
secured is thus the complement of equation (13-28) in much the same sense 
that (13-19) is the complement of (13-6). We readily find that 

/°° T 
(0y + ad) du - - (a„y„ — a0y0) (13-31) 

—-00 * 

where u = log a?. 
If we let 0i sb 02 = 0 this expression yields V(a) in the list given at the 

end of the chapter. Similarly, the choices 0i = 02 = /o>(0 — 0W) and 
01 = 02 = (l/i«)(0 — 0o) lead to V(£) and V(r), respectively. As in the 
previous discussion, the formula can also be applied when 0X and 02 refer to 
different networks. For example, the equation corresponding to (13-29) is 

s: {R1X2 + R2X1) du = — - i?01^02 (13-32) 

where R0x and R02 are the zero frequency values of the two impedances. 
Similarly, we can replace (13-30) by 

RAX du = XAR du (13-33) 

if we suppose that AR vanishes at both zero and infinite frequency. 
The most interesting equation of this group is probably V (d). This is an 

equivalent form of V (a) which is obtained with the help of some of the pre¬ 
ceding equations by means of the transformations 

f. 
80 + Xq T 

AB du =--x 2 ~ ^ 

A# + A(s 1,50 
(13-34) 

Equation \(d) follows directly from this if we interpret Jas {Am + Aq)/2. 
The equation states in effect that the real and imaginary components of 0 
ate orthogonal on a logarithmic frequency scale, if we measure the real 



296 NETWORK ANALYSIS Chap. 13 

component from this reference value. A simple example is furnished by the 
network of Fig. 13.2a. The reactance characteristic of the structure and its 

resistance characteristic, measured from Afy 
are shown respectively by the broken and 

ii* log cj s°bd lines in Fig. 13.16. In this instance the 
orthogonality of the two components is easily 
seen from the fact that they have respectively 
odd and even symmetry about the center 

Fig. 13.16 point of the characteristic. 

4. Formulae Involving A and B at Finite Points or Integrals of A and B 
over Finite Ranges. The equations considered thus far fall into two general 
classes. In one, which may be illustrated by IV (a), the integrals of two 
aspects of the network performance are compared to one another. In the 
other, which may be illustrated by 1(a) y one such integral is related to a 
specific number which is derived from a different aspect of the characteris¬ 
tic. In either case, however, the integrals extend over the complete fre¬ 
quency spectrum, from zero to infinity, and any specific numbers which 
may enter the equations are descriptive of the behavior of the structure 
only at these extreme points. 

The practical utility of the formulae would be greatly extended if these 
specifications could be exchanged for specifications on the behavior of the 
function at finite points or over finite ranges. For example, 1(a) shows 
what restrictions must be placed on the real component if the imaginary 
component behaves in a prescribed way at infinity. For some design 
problems it would be more useful to know how the real component is 
restricted if the imaginary component assumes some chosen value at a 
prescribed finite point. We might also conceive of using 1(a) the other 
way around, to determine how the imaginary component must behave at 
infinity if the real component is prescribed over the complete spectrum. 
In practical design problems, however, the characteristics are usually pre¬ 
scribed over only a finite range. For such applications a formula which 
stated how B must be restricted when the integration of A is carried out 
over only a finite interval would evidently be more valuable. 

Extensions of these general types can be obtained by modifying the inte¬ 
grands in the earlier formulae appropriately. For example, such quantities 
as Ao, Bo, An and B* appear in the earlier formulae because they are resi¬ 
dues of the integrand which are evaluated by the integration around either 
the large semicircular portion of the complete path or the small indentation 
near the origin. Residues which specify A and B at other points can be 
obtained if we introduce corresponding poles into the integrand and indent 
the contour of integration appropriately. For example, we can secure 
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an integrand with poles at +«o and —wo, to preserve symmetry, 
by multiplying the integrands in any of the preceding expressions by 
l/(w — w0) =fc l/(w + w0). Similarly, we can restrict the range of inte¬ 
gration of either A or B by introducing branch points, which interchange 
the real and imaginary components in the complete integrand. 

These possibilities are mentioned here largely for the sake of complete¬ 
ness. They grade insensibly into the analysis presented in later chapters 
and it will simplify exposition to consider them from the point of view 
adopted there. As an example of the introduction of branch points to 
generalize such a formula as I(tf), however, we may consider the equation 

/ 0 Ayo j 

============ aw 
V1 — W2/w? 

= 0, (13-35) 

where it is supposed that the “ positive ” square root of Vl — «2/w2 is 

taken. In other words Vl—wVwf is a positive real quantity for 
—wc < w < wc, it is a positive imaginary for w > wc and a negative imagi¬ 
nary for co < — wc.* This is the same convention as would be used if 

vT — w2/wc represented a filter image impedance. 
It is evident that the integration around the large semicircle in (13-35) 

can be ignored. The integral from zero to infinite frequency of the even 
component of the integrand must therefore vanish also. In virtue of the 

way in which \/l — w2/w2 behaves, however, (A — A^/Vl — w2/w2 is 
an even function of frequency for j w | < coc and is odd thereafter, while 

iB/w1 — w2/w2 is even for | w J > wc and is odd for smaller values of w. 
The equation therefore reduces to 

A Ago 

Vl — w2/w2 

B 

V O,2/ co\ 
’ doo. (13-36) 

This expression has been written as equation VI (a) in the list at the end of 
the chapter. The corresponding expression in terms of reciprocal fre¬ 
quencies is listed as equation VI (b). In addition to these two, a variety 
of other more or less closely related expressions can be obtained by multi¬ 
plying or dividing the original integrands in VI (a) and VI (b) by w or by 
applying the same methods to other formulae in the general list. 

The physical application of (13-36) can be illustrated by supposing 
that we have an amplifier whose characteristics outside the useful band are 

* In mathematical terms the branch cut between +we and —w0 must be so chosen 
that the integration contour lies on one sheet of the Riemann surface. These are the 

appropriate signs for Vl — wtywf if we regard Vl — w2/wJ as positive for positive 
real values of p and move continuously to the real frequency axis without leaving the 
sheet. 



298 NETWORK ANALYSIS Chap. 13 

satisfactory but which has an unsatisfactory feedback characteristic within 
the useful band. For example, the feedback in the useful band may be 
irregular, whereas it should be flat, or it may be flat when a varying feed¬ 
back would be more desirable. In order to apply (13-36) we may identify 
o)c with the edge of the band in the low-pass equivalent design and let A and 
B represent respectively the gain and the phase shift. The desirable 
characteristics outside the band will be retained if we do not change B in 
the second integral of (13-36) or A*, which may be taken as the gain at any 
representative high frequency point, in the first integral. The equation 
thus states that the reproportioning of the feedback in the useful band must 

_ _ 
leave I A du>/v\ — <o2/o>2 unchanged. Since doo/^/l — co2/co2 = oocd<py 

do 
where <p = sin*”1 (<o/a>c), this is the same as saying that the area under the A 
characteristic when plotted against <p must be kept constant. A similar 
rule holds for the maximum gain obtainable from an interstage network 
with a varying characteristic. These applications are described in more 
detail in later chapters. 

13.10. Extensions of Contour Integral Formulae to Other Systems 

This discussion has been directed primarily at systems of lumped electri¬ 
cal elements. It is reasonable to suspect from the generality of the contour 
integral process, however, that the formulae may apply to other systems as 
well. As examples we might take a system including mechanical as well as 
electrical elements or a system of distributed electrical elements like a trans¬ 

mission line. 
The problem of extending the contour integral formulae to other systems 

can be treated very easily if we know the analytic form of the function 0 
which we wish to study. Evidently, it is merely necessary to examine the 
function to determine whether it meets the list of conditions given at the 
beginning of the chapter. The condition to which special attention must be 
paid is the one which limits the behavior of 0 at infinite frequency. In 
many of the formulae developed in this chapter it is necessary to assume 
that 0 remains finite at infinity. In others, and in all the formulae devel¬ 
oped later, this restriction is not necessary, but it is generally necessary to 
assume, at least, that 0/w vanishes when w is made indefinitely great. The 
function 0 will, of course,be finite at infinite frequency if it represents a driv¬ 
ing point impedance or admittance of minimum type in a lumped constant 
circuit. If 0 represents a transfer loss and phase this is not necessarily 
true, but since the function can increase only logarithmically, at most, the 
requirement on 0/co, at least, is always met. If we are dealing with the 

ordinary transmission line equation 0 = V(R + iwL) (G + *o>C), pn the 
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other hand, neither requirement is met, since 0 varies near infinity as 

fwVZc. The term ico^LC is, of course, a linear phase characteristic corre¬ 
sponding to the electromagnetic delay in the propagation of the wave down 
the line and we naturally cannot expect it to be correlated with the attenua¬ 
tion characteristic of the line. In this instance, we can evidently apply the 
contour integral formulae merely by subtracting this linear characteristic 
from the total phase characteristic. 

The difficulty with this attack is, of course, the fact that we frequently do 
not have a precise analytic formula for 0 at our disposal and it is exactly in 
situations when our knowledge of the behavior of the function is somewhat 
incomplete that the additional help afforded by the contour integral rela¬ 
tions is most useful. For example, in a physical transmission line the 
“ constants ” Ry Ly Gy and C usually vary somev hat with frequency because 
of skin effects, proximity effects, etc. Although it is possible to establish 
formulae which describe the behavior of the line over a broad frequency 
range, the discovery of exact formulae which work literally to infinity is 
another question. 

If we nevertheless postulate that there is an analytic function 0y even 
though the form of the function may be unknown, it is possible to conclude, 
on general grounds, that it should meet most of the conditions in the list 
given previously. For example, the symmetry of the real and imaginary 
components of 9y as described in conditions (1) and (2), depends, in a 
structure of lumped electrical elements, only upon the fact that the coeffi¬ 
cients in the differential equations for the structure are all real quantities. 
Evidently the same considerations should apply to any physical system. 
Except for the obvious qualifications required to take care of such functions 
as a non-minimum transfer loss and phase, condition (3) is satisfied in the 
lumped electrical structure merely because the circuit is stable. The same 
general argument can obviously be extended to any system specified by 
ordinary linear differential equations analogous to the mesh equations of the 
electrical circuit. The argument also applies to systems of distributed 
constants if we suppose, as is commonly done, that such a system can be 
represented as the limit of a series of lumped constant systems. 

As an alternative to the limiting process, we can also study the behavior 
of the function on the right half-plane directly. The situation is most 
readily expressed by the 

Theorem: The input or transfer admittance of a stable physical sys¬ 
tem cannot become indefinitely great in the neighborhood of 
any point in the interior of the right half-plane if the corre¬ 
sponding indicial admittance of the system is bounded. 
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The theorem is easily established with the help of the familiar equation* 

/(/) - £(0)A(t) + [' A(t - \)£'(X) Jk, (13-37) 
Jo 

where E(t) is a voltage applied to some point in the structure at the time 
/ = 0, £'(/) is the time derivative of £(/), /(/) is the current flowing in 
response to £(/), either at the same or at some other point in the circuit, 
and A{f) is the indicial admittance between the two points. If M is the 
upper bound of A(t) the equation can be written as 

| /(/) | < | E0 \M + M f | E'(\) | d\. (13-38) 
Jo 

But the actual response must also be the sum of a steady state term and a 
transient term. If we let E{t) = ept, where p is chosen in the neighbor¬ 
hood in which the steady state response becomes indefinitely great, it is 
clear that the limit represented by (13-38) can be made an indefinitely small 
fraction of the envelope of the steady state response. Thus the transient 
term must approximate the steady state term and must increase exponen¬ 
tially as the steady state term does. In other words, the system is unstable. 

If the admittance is a single valued function of p its only possible singu¬ 
larities in the right half-plane are poles or essential singularities. In either 
case, however, these possibilities are ruled out by the theorem just estab¬ 
lished, since the admittance will become indefinitely great at appropriately 
chosen points in the neighborhood of the singularity.! We may also 
imagine the admittance to be a multiple valued function. If the admit¬ 
tance is to represent something physically determinable, however, the 
possibility that it may have branch points in the right half-plane is greatly 
restricted by the consideration that we must choose one branch of the func¬ 
tion to represent the “ physical ” admittance without introducing branch 
cuts which will give discontinuities in the physical response characteristic.! 
Even without this argument, the previous theorem excludes such possi¬ 
bilities as logarithmic singularities or branch points of the type represented 

by 0> - *r1/2. 

* See, for example, Bush's Operational Circuit Analysis, p. 56, or Carson's Electric 
Circuit Theory, p. 16. 

t See, for example, Goursat-Hedrick, A Course in Mathematical Analysis, Vol. II, 
Part I, p. 92. 

! This argument does not apply with equal force to branch points in the left half¬ 
plane because it is not necessarily possible to determine " steady state " characteris¬ 
tics by physical measurements in this region. See, for example, the discussion at the 
end of Chapter II. 
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An example of branch points which might conceivably exist in the right 
half-plane is furnished if we suppose that the admittance includes the 
factors (p — ot\)l,2(p — «2)1/2* This situation is evidently not ruled out 
by the previous theorem. Moreover, if the rest of the function is real for 
real values of p, the complete function will be a pure imaginary on a branch 
cut extending from a\ to «2 on the real p axis. Thus the physical response, 
which is defined as the real component of ept Y> is zero at the cut and there is 
no discontinuity in moving from the top to the bottom halves of the plane. 
If ai and <*2 are almost equal the two irrational factors can be replaced 
approximately by an ordinary zero. Since a zero in the right half-plane 
in an ordinary network merely indicates a non-minimum phase shift func¬ 
tion, the existence of this possibility is perhaps not unnatural. 

This discussion has been presented for what it may be worth. It is 
evidently unwise to dogmatize about so vague and general a problem. The 
implication of the discussion, however, is that if a linear physical system is 
known to be stable, which is proved by its mere existence, its driving point 
and transfer functions must satisfy most of the conditions for the contour 
integral analysis. Aside from singularities of the type just described 
difficulties are likely to appear principally because of the existence of singu¬ 
larities on the real frequency axis, and especially at infinity. If we are 
concerned in particular with transmission, these effects may be looked upon 
as departures from a minimum phase condition. They are qualitatively 
similar to the departures which one might expect in lumped constant net¬ 
works, although they may differ from possible lumped constant characteris¬ 
tics in detail. 

Tabulation of Contour Integral Formulae 

Group Integrand Result 
r» _ 

I («) e - k J (A-AJd* = -- Bx 

0*) 
0 — 0O 

«2 J q o) 2 

(0 e-em r* dA T 
J„ "aT'" “ 2s- 

W 
e-e0 

«2 
r* 1 dA J x n 

h ^ ‘2'S“ 

II («) 
6 
0 

f**Bdu = ^(A„-A0) 



302 NETWORK ANALYSIS Chap. 13 

Tabulation of Contour Integral Formulae (Continued) 

Group Integrand Result 

III (a) w(e - Ax - (uB - BJ dw — ^A'i 

(*) 
6 — y/o — HJqO) 

a)3 J0 --5* 

r00 
IV («) (0 - 0.)2 / {A-Am)2du*= / 52c/co 

do 

W 
(0 - 0o)2 

2 r /■s* 
CO J0 CO J0 to 

(c) (0 “ 0J3 f (A-AJ3dw = 
Jo 

_O0 

3/ {A—Ax)B2du 
Jo 

V « 
el 
CO 

f ABdu 
J — QO 

\ 

S
 

k 1
^

 
II 

(« «(0 — 0»)2 JT u(A-AJBdu= 

(0 
(0 - 0o)2 

CO3 

C* (d - ^o)5 , 

N 1 ^
 

II 

(d) ?! 
^oo 

/ (A-J)Bdu = 0 
CO U —00 

VI M 
9-Aa r -- 

y/1 — co2/co3 Jo Vl-wV«2 *Lv'a,2/<o2-l 

(*) 
0 ~ ^0 /*°° — //o c/co /•“' 5 <&> 

a,2Vl - <4/<o2 «L V1 -«2/u>2 *A> Vw2/w2-l w3 

In II, V(ci) and V(c/), u = log co. 



CHAPTER XIV 

Relations Between Real and Imaginary Components of 

Network Functions* 

14.1. Introduction 

The theorems developed in the preceding chapters are concerned with a 

number of rather specialized relations between the real and imaginary com¬ 
ponents of network characteristics. The first theorem, for example, allows 
us to calculate the resistance or attenuation integral when the behavior of 
the corresponding reactance or phase characteri >tic at infinite frequency 
is known. The second theorem gives a similar relation for the integral of 
the imaginary component in terms of the behavior of the real component at 
extreme frequencies. Except for rather specific limitations of this sort, 
however, the theorems leave the detailed real and imaginary characteristics 
still to be determined. 

The present chapter continues this discussion to consider the problem of 
determining one characteristic completely when the other is known at all 
frequencies. The three special problems considered are: 

1. The computation of the imaginary characteristic corresponding to a 
real characteristic which is prescribed over the complete frequency 
spectrum. 

2. The computation of the real characteristic corresponding to a pre¬ 
scribed imaginary characteristic. 

3. The computation of the remaining portions of the two characteristics 
when the real component is prescribed in some parts of the fre¬ 
quency spectrum and the imaginary component is prescribed in the 
rest of the spectrum. 

* The fact that there must be an analytic connection between the real and imagi¬ 
nary components of a network characteristic has been recognized by a number of 
previous writers. The literature of the field includes a considerable list of more or less 
specific results, developed usually by Fourier or operational methods. No attempt 
is made to review this work here, partly because the variety of attacks which have been 
followed are difficult to reduce to a coherent basis and partly because the formulae 
are frequently ambiguous, because of the authors* failure to recognize the minimum 
phase condition. Special mention should, however, be made of the work of Norbert 
Wiener and his students. See, for example, Y. W. Lee's paper in the Journal qf 
Mathematics and Physics for June 1932, which includes formulae equivalent to a 
number of the formulae in the present chapter. 
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The results are stated here in terms of analytic formulae. Methods of 
making approximate computations graphically are considered in the next 
chapter. 

14.2. Applications of Formulae for Relations between Real and Imaginary 
Characteristics 

Formulae for the relation between the real and imaginary components in 
the three situations just listed are developed here principally as tools in 
feedback amplifier design. If we are concerned with the overall feedback 
loop characteristic, for example, the phase integral theorem of the preced¬ 
ing chapter gives some information on the loop phase characteristic which 
we may expect to accompany a loop cut-off characteristic of given general 
type. If we are to be certain that the maximum phase shift will not exceed 
a safe limit, however, it is necessary to secure much more detailed infor¬ 
mation concerning the relation between the two characteristics. Any one 
of the three formulae of the present chapter, but in particular the first and 
the third, may be used for this purpose. The formulae may also be used in 
detailed amplifier design problems. Examples here are furnished by the 
discussion of interstage circuits and input and output circuits given in later 
chapters. 

The formulae may also be applied to many problems of ordinary net¬ 
work theory. As one illustration, we may consider the design of the Zn 
impedance in a constant resistance equalizer of the type described in 
Chapter XII. Both the magnitude and phase angle of the Z\\ impedance 
are determined if we specify both the loss and phase shift of the complete 
structure. If we deal only with the loss characteristic, however, we can 
secure a required attenuation, at any one frequency, from a Z\\ impedance 
of any phase angle provided the magnitude of the impedance is properly 
chosen. This appears at first sight to add an element of flexibility to the 
problem. In accordance with the results of the present chapter, however, 
the phase characteristic of the equalizer would be completely fixed if the 
required loss characteristic extended over all frequencies, and it ^approxi¬ 
mately fixed throughout the center of any reasonably broad band over 
which the loss characteristic is prescribed. In fact, therefore, the Z\\ 
impedance of many equalizers can be fairly accurately determined in both 
magnitude and phase angle. In many equalization problems a rough pre¬ 
liminary computation of this sort may serve as a useful guide to design 
work. Since a phase angle of more than 90° cannot be provided for the Zn 
impedance, the preliminary computation is also useful in determining 
whether the prescribed characteristic is physically obtainable with a single 
equalizer section. 

These uses of the formulae are sufficiently exemplified by the discussion 
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in later chapters. The formulae will be illustrated in the present chapter, 
consequently, by a study of the general problem of providing a selective 
system without phase distortion. Such a system might, of course, be a 
linear phase shift low-pass filter. The “ system ” may, however, be either 
more or less complicated than a filter. For example, a very simple system 
of this type is represented by an interstage network in a non-feedback video 
amplifier. Here the selectivity depends upon the fact that the gain of the 
interstage must decrease at high frequencies because of the interstage 
capacities. At the other extreme, the system might consist of a length of 
coaxial line, complete with repeaters, equalizers, etc., transmitting tele¬ 
vision signals. In this instance, the selectivity of the system may be 
ascribed to the increase in the line attenuation at high frequencies and to 
the fact that normal repeaters cannot be expected to maintain their gain 
at frequencies well above or below the useful band. 

In practice, satisfactory characteristics are usually obtained in situations 
like these by means of additional phase equalization in the systems. The 
formulae developed here, however, refer only to minimum phase shift net¬ 
works. Thus the discussion attempts to show only what types of distor¬ 
tion are to be expected in selective systems not including separate phase 
equalization and, very roughly, how the amount of phase equalization 
required can be related to the selectivity characteristic. 

<iM37 Phase Characteristic Corresponding to a Prescribed Attenuation 
Characteristic* 

The equation relating the imaginary characteristic and real characteris¬ 
tic in general is in effect an extension of equation (13-6) in the preceding 
chapter. As it was discussed there, this equation was regarded as a con¬ 
dition imposed on the real characteristic for a prescribed variation of the 
imaginary characteristic in the neighborhood of infinity. On the other 
hand, we can equally well regard the equation as a method of determining 
the behavior of the imaginary component at high frequencies when the real 
component is known. 

The reason for the appearance of B* in the final expression is that the 
function has a residue of this amount at infinity, which is evaluated by the 
integration around the large semicircle. If we can create a corresponding 
residue at any finite frequency, it should be equally easy to determine the 
corresponding B at that point. Let it be supposed, for example, that we 
wish to evaluate B at «c. It is first necessary to create a pole at this point 

• As a matter of simplicity of expression the real and imaginary components of the 
function 6 are referred to frequently as “ attenuation ” and “ phase ” in the rest of this 
chapter. The reader will of course understand, however, that 6 can be any function 
meeting the requirements given in the preceding chapter. 
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by dividing 0 by w — a>e. In order to preserve the symmetry of the expres¬ 
sion a term to give a pole at the complementary point —should also be 
introduced. If we also suppose that AC9 the value assumed by A at 
o) = a?c, is subtracted from 6* the resulting contour integral can be written 
as 

f(£ 
-Ac 

u0 
- ~~7~)d<* = 0. 

w + <*>c/ 
(14-1) 

It is readily seen that the integrand vanishes at least as rapidly as <*f“2 
at high frequencies. The contribution of the large semicircular path to 
the complete integral can therefore be ignored. The remaining portion of 
the path consists of the real frequency axis and two small semicircular 
indentations of the type shown by Fig. 13.1 in the preceding chapter, which 
are taken to avoid the poles at w = zba>c. If the indentations are very 
small, 6 on each of them can be assumed to be constant and equal to the 
value Ac + iBc or Ac — iBcy which it assumes at the corresponding point 

This allows (14-1) to be written as 

f -5^-i (A - Ae + iB) Jo + f'iBe (—-) Jo 
J _00 or — «/ \« — b)c + 0)c/ 

-<f"iBe(—-j—)jo = 0, (14-2) 
J \(0 — <ti0 Cl) + 0)e/ 

in which the first term represents the contribution of the real frequency 
axis and the second and third terms the contributions around the two small 
indentations. In the first integral we can neglect the imaginary com- 

* This is done essentially to facilitate exposition. In equation (14-2), for example, 
it allows us to avoid consideration of the A terms which would otherwise appear in the 
two primed integrals. It also simplifies the consideration of (14-3) since the vanish¬ 
ing of A — Ac at w * a>c prevents the integrand from exhibiting a pole at this point. 
These, however, are reasons of convenience rather than necessity. Thus in (14-2) 
the contributions of the A terms in the two primed integrals would cancel out anyway, 
even if they were left in. The difficulty with (14-3) can be avoided if we notice that 
the method of deriving (14-3) leads to the so-called “ principal value ” of the integral. 
In other words, if the small quantity e represents the radius of the semicircular inden¬ 
tations around ±ci>c, the actual limits of integration run from zero to<ae — e and from 
u>0 + e to infinity. For these limits, it is easily shown by direct integration that the 
At term contributes nothing to the result when e is made sufficiently small. If the 
integrals are defined in terms of their principal values, therefore, this term can be 
omitted from (14-3) and all subsequent equations. This will be of some importance 
later in the chapter where terms analogous to At are occasionally omitted to simplify 
the formal expressions. 
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ponent from considerations of symmetry In the second integral we can 
neglect l/(w + o)e) in comparison with l/(co — coc) if we suppose that this 
indentation is the one near wc. With the help of (8-4) in Chapter VIII 
the integral can be evaluated as iir(iBc) = — tBc. This is also the value 
obtained for the third integral from similar considerations. The result is 
therefore 

B (14-3) 

An alternative form of equation (14-3) will be developed in a succeeding 
section. The present form is particularly useful in studying the approxi¬ 
mate phase characteristic corresponding to an attenuation characteristic 

which is nearly constant in the frequency range near wc but which may vary 
appreciably at more remote frequencies. This is illustrated by Figs. 14.1 
and 14.2. In Fig. 14.1, for example, the attenuation characteristic is nearly 
constant in the region below some point w*. If wc is less than A — Ac 

in (14-3) will be very small throughout this low-frequency region and this 
portion of the total integral can be neglected. If we also ignore in 
comparison with «a in the integration beyond the equation can be 
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written as 

(A - At) d 

(14r-4) 

In other words, the low frequency phase shift is proportional to frequency 

and to the area under the high-frequency attenuation characteristic com¬ 

puted on a reciprocal frequency scale. This is illustrated by the broken line 

in Fig. 14.1. The result is, in form, the same as equation \(b) of the pre¬ 

ceding chapter, but the method of derivation allows it to be used over a con¬ 

siderably wider range than we would be entitled to assume with the deriva¬ 

tion used there. For further purposes perhaps the most important feature 

of the equation is the fact that it states that any high-frequency attenua¬ 

tion characteristic is reflected at low frequencies as a linear phase shift. 

This property will be much used in shaping amplifier cut-off characteristics 

at high frequencies, since it allows us to adjust the high-frequency charac¬ 

teristics with considerable freedom and still produce corresponding phase 

characteristics which cancel one another out over a wide low-frequency 

band. 

If the attenuation characteristic is of the form shown by Fig. 14.2 we can 

proceed in the same way, except that now o>2 must be neglected in com¬ 

parison with o?c in the denominator of the integrand in (14-3). The result 

is 

Bc = — \- f ' (A - Ac) dJ\, (14-5) 
Wc L™0 J 

where wj, as shown in Fig. 14.2, is the point at which the low-frequency 

attenuation characteristic begins. Thus the high-frequency phase shift 

varies inversely with frequency and is proportional to the negative of the 

area under the low-frequency attenuation characteristic computed on an 

arithmetic frequency scale. The phase shift is shown by the broken line in 

Fig. 14.2. 
If the attenuation characteristic is constant in the neighborhood of o)e 

but varies at both high and low frequencies we can, of course, obtain the 

phase shift by adding together the elementary results (14-4) and (14-5). 
This gives 

Be = K^c - (14-6) 

where the constants ATj and K2 are written for brevity in place of the terms 



RELATIONS BETWEEN COMPONENTS 309 

enclosed by the brackets in (14-4) and (14-5). If the F*s are both posi¬ 

tive the net phase characteristic is evidently similar to the reactance charac¬ 

teristic of an ordinary resonant circuit. 

The simplest illustrations of these formulae are furnished by filters. Let 

it be supposed, for example, that we are dealing with a low-pass filter which 

has an average attenuation of about 6 nepers over a frequency range 

extending from about 3000 cps to infinity. The low-frequency phase shift 

is, from (14-4), given approximately by 

= 2 X 10-V. 
(14-7) 

It is to be noticed that this low-frequency delay, equal to about 0.2 

millisecond, is a consequence merely of the fact that the high-frequency 

selectivity exists, and does not depend upon the particular configuration 

adopted for the filter. This is of some interest in connection with the dis¬ 

cussion given near the end of Chapter XI on the problem of designing a 

negative all-pass network to cancel a filter phase characteristic. 

——44.4. Phase Equalization of a Broad-Band System 

A more elaborate example of the use of equations (14-4) to (14-6) is fur¬ 

nished by a study of the overall phase characteristic of a complete telephone 

system. This was discussed briefly in one of the preceding sections. It is 

convenient to suppose that the system under consideration is a broad-band 

affair, like a coaxial line with its associated repeaters and equalizers, and 

that we are chiefly interested in isolating the factors which determine how 

much phase equalization would be required in order to fit the system for the 

transmission of television signals.* 

If the equalizers and repeater gains are properly adjusted, the net attenu¬ 

ation of the system must be constant and substantially zero over a useful 

band extending from wi to co2. We may, however, expect the attenuation 

to rise rapidly below and above co2 due to the failure of the repeaters to 

maintain their gains outside the useful band and to the increase in the 

line attenuation at high frequencies. The complete attenuation character¬ 

istic thus takes the form shown by the solid line in Fig. 14.3. In a long 

system including many repeater points the losses below a>i and above o>2 

may amount to hundreds or thousands of db. 

It will be supposed that the repeaters and equalizers are all of minimum 

phase shift type. In accordance with the discussion of the preceding chap- 

* For an example of such a system, see the paper by Strieby and Wentz, referred 
to in the preceding chapter. 
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ter it will be assumed that the line can also be included in a minimum phase 
shift analysis if we disregard a linear phase characteristic representing the 
infinite frequency behavior of the structure.* Corresponding to the overall 

attenuation characteristic shown by the solid line in Fig. 14.3, therefore, 
the net phase characteristic must take the form defined by equation (14-6). 
It is illustrated by the broken line in Fig. 14.3. Upon studying the rela¬ 
tionship expressed by (14-6) we may draw the following conclusions: 

1. There is a strong tendency for the attenuation equalization of the line 
to produce automatic compensation for its phase characteristic also. 
This tendency becomes more pronounced as the band width in octaves 
is increased. In other words, equation (14-6) shows that only the 
variations in the attenuation characteristic beyond the band con¬ 
tribute to the phase characteristic. If the band is very broad the 
regions of increased attenuation are so remote from the center of the 
useful band that the net phase characteristic in this range is very 
small. If the transmitted band is not over 1 or 2 octaves wide, on the 
other hand, the tendency of the system to provide automatic phase 
equalization will manifest itself only very imperfectly. 

2. To a first approximation, the attenuation characteristic at high fre¬ 
quencies corresponds to a linear phase shift in the useful range. It 
is therefore not a factor in producing delay distortion. The low- 
frequency attenuation, on the other hand, produces a delay charac¬ 
teristic varying as 1/w2. In a broad-band system, therefore, the 
low-frequency attenuation characteristic may produce a substan¬ 
tial amount of delay distortion. It follows that if the final phase 

* The attenuation characteristic of the line at infinite frequency of course remains. 
If the analysis is to apply it is necessary to assume that A/<a vanishes at infinity. 
This requirement is met by a coaxial line, where the attenuation varies approxi¬ 
mately as \/3 At high frequencies. 
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equalization of the system is to be as simple as possible the overall 
low-frequency attenuation should be substantially less than the overall 
high-frequency attenuation. Since the line attenuation at frequencies 
below the band should be much smaller than it is above the band this 
is fortunately not a difficult condition to achieve. 

3. Near the edges of the band the approximate formula (14-6) becomes 
inaccurate. We note, however, that when wc approaches the edge of 
the band the integrand of equation (14-3) exceeds the approximate 
value assigned to it in equations (14-4), (14-5), and (14-6) through¬ 
out the range of integration. At the edges of the band, therefore, the 
net phase characteristic must be greater than the approximate for¬ 
mula indicates. This is illustrated by the dotted lines in Fig. 14.3. 
In virtue of this effect, we cannot conclude *-hat the contribution of the 
high-frequency attenuation characteristic gives no phase distortion. 
It is apparent, however, that the ratio between the approximate value 
of the integrand in equations (14-4) to (14-6) and the exact value at 
any prescribed frequency coc is greater for the part of the total range 
of integration which lies near the useful band than it is for remote 
regions. The high-frequency phase distortion and the increase in the 
low-frequency phase distortion will therefore be much reduced if the 
loss characteristic can be made to cut off gradually just beyond 
the useful band. This problem is discussed at greater length later 
in the chapter. 

4. The same considerations also lead to a second conclusion. Since the 
influence of the attenuation characteristic just beyond the useful band 

is preponderant, a relatively small negative attenuation in this range 
should cancel the phase distortion due to the much larger positive 
attenuations which are physically inevitable at more remote fre¬ 
quencies. In other words, a system having a transmission character¬ 
istic of the general type illustrated by Fig. 14.4 should be substantially 
phase distortionless. Transmission characteristics of this type are not 
generally admissible for a variety of reasons. For example, in a long 
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system the required net gain at the edges of the band, although it may 
be relatively small, is still so great in db that random noise picked up 
in this part of the spectrum will eventually overload the repeaters. 
The device may, however, be useful in special applications. 

A%.5. Alternative Formula for the Relation between Loss and Phase 

Equation (14—3) is a useful tool in studying the phase characteristic 
corresponding to attenuations at relatively remote frequencies. When 
the attenuation characteristic varies appreciably in the neighborhood of the 
frequency at which the phase is to be determined, however, it is more con¬ 
venient to use an alternative expression. The alternative formula is found 
by writing (14-3) on a logarithmic frequency scale. If we set 
u = log (co/wc) the expression becomes 

A — Ac do) 

0)/o)c — 0)c/o) 0) 

A - Ac 

e — e 
; du 

A - Ac 

sinh u 
du. (14-8) 

This equation is next integrated by parts much as equation I (a) was 
integrated in the preceding chapter to secure equation 1(c). The integra¬ 
tion of (14-8), however, is simplified if we divide the complete range of 

integration into separate ranges above and below u = 0. Considering 
first the integration over positive values of «, we have 

Bi = — ~ dc) log coth l°g coth jdu. (14-9) 

If we replace u by — u the integration over negative values of u can be per¬ 
formed in a similar manner* and yields 

B2 = ^£(^ — dc) log coth J + ^ J ^log coth — du. (14-10) 

*That is, the integral of 1/sinh «, which was taken as log coth (u/2) for positive 
values of u9 is taken as log coth (—u/2) when u is negative. The imaginary compo¬ 
nent which would appear if the integral were taken as log coth (u/2) for negative 
values of u also is not actually of importance, since it cancels out when the limits of 
integration are introduced, but its presence complicates the discussion. A some¬ 
what similar point is exemplified by a number of later equations, such as (14-20) 
and (14-28), 
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Near u = 0, the quantity A — Ac must be approximately proportional 
to u while log coth uf 2 will vary as —log (u/2). At the limit u = 0, there¬ 
fore, the integrated portions of both (14-9) and (14-10) must appear in the 
general form u log «, which is known to vanish when u vanishes. At the 
other limits, the log coth term approximates 2<?“u or 2(coc/a>), in equa¬ 
tion (14-9) and 2eu, or 2(o>/wc), in equation (14-10). Since we have 
already restricted the permissible loss functions to those for which cjA 

and A/vs vanish at zero and infinite frequency, respectively, this means 
that the integrated portions of (14-9) and (14-10) vanish at these limits 
also and can be disregarded entirely. When the two equations are added 
together to find the complete phase shift, therefore, the result appears as 

Bc - - f — log coth -1™- du. (14-11) 
7T «/ _oo dU 1 

Although equation (14-11) may appear to be a more complicated expres¬ 
sion than equation (14-3), it can be givtn a simple physical interpretation. 
We observe in the first place that the equation implies broadly that the 
phase characteristic is proportional to the derivative of the attenuation 

characteristic on a logarithmic frequency scale. Thus, if we double 
dAjdu we will also double Bc. Since the integration includes the complete 
frequency spectrum, however, the phase characteristic at any point depends 
upon the slope of the attenuation characteristic in all parts of the spectrum. 
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The relative importance of the slopes in various parts of the spectrum is 
given by the term log coth J u/2 | which can also be written as 
log | (co + 6>c)/(c*> — coc) j. This term thus acts as a weighting factor. It 
is plotted in Fig. 14.5. 

As we might expect physically, the weighting factor is large in the vicinity 
of u = a)e. In fact, it becomes logarithmically infinite at this point. 
Thus, the derivative of the attenuation characteristic in the neighborhood 
of the frequency at which the phase is to be computed is much more 
important in determining the result than the attenuation slope at more 
remote points. For frequencies much larger than wc the weighting factor is 
approximately 2(wc/a>), while at frequencies much smaller than cac it is 
approximately 2(co/a>c). Thus in either case the importance of a remote 
attenuation slope is inversely proportional to the interval, expressed as an 
arithmetical frequency ratio, between the point at which the slope occurs 
and the point at which the phase is to be computed. This is evidently in 
agreement with our previous result that attenuations remote from the use¬ 
ful range will produce a phase characteristic which is proportional to fre¬ 
quency if the attenuation is found above the useful band and one which is 
inversely proportional to frequency if the attenuation characteristic is 
below the useful range. 

Phase Characteristics Corresponding to Illustrative Attenuation Charac¬ 
teristics 

With equation (14-11) at hand, it is evidently theoretically possible to 
determine the phase characteristic corresponding to any attenuation 
characteristic. We need merely differentiate the attenuation characteris¬ 
tic on a logarithmic frequency scale, multiply it by the weighting curve and 
integrate the result, using graphical integration if necessary. If a large 
number of points of the phase characteristic must be obtained, however, 
repeated computations of this sort become quite tedious. An easier 
method, which applies in most situations, is described in the next chapter. 
For the purposes of the present discussion (14-11) will be illustrated by a 
number of very simple attenuation characteristics for which the correspond¬ 
ing phase characteristics can be found analytically. 

The simplest possible illustration of (14-11) is obtained if the attenuation 
characteristic has a constant slope on a logarithmic frequency scale at all 
frequencies. If we set dAjdu = k in (14-11) the equation becomes 

k /*°° I u I 
5 = -/ log coth du. (14-12) 

T v —oo * 

The definite integral, however, is known* to be x*/2. The phase shift is, 

* See Bienne de Hun, “ NouveDes Tables D’Inttgrales Dfcfinies,” Table 256. 
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therefore, given by 

(14-13) 

fadigni 

10* 

-20 

Fig. 14.6 

The phase characteristic is therefore constant and equal to 90° multiplied 
by the slope of the attenuation characteristic. These relations are illus¬ 
trated by Fig. 14.6. 

For purposes of future dis- 20*i 
cussion it is desirable to iden¬ 
tify the units in terms of which 
the slope k is expressed. Since 
u is a natural logarithm and 
A is written in nepers, choos¬ 
ing k = 1 is equivalent to 
supposing that A will change 
by one neper between frequen¬ 
cies which are in the ratio, 
e = 2.7183. In other words, 
if k = 1, the attenuation, ex¬ 
pressed as a current ratio, is 
proportional to the arithmetic 
frequency. This will be called a unit slope in future discussion. A unit 
slope is evidently the same as a change of 6 db per octave or 20 db per 
decade* and may also be referred to in these terms. 

As a second example of (14-11), 
let it be supposed that the attenua¬ 
tion is everywhere constant except 
for a discontinuity at one frequency. 
This is illustrated by Curve A of 
Fig. 14.7. We can represent the 
discontinuity, for the purpose of 
applying (14-11), by supposing 
that dA/du is very large over a 
very narrow range in the neighbor¬ 
hood of the break. Since dAjdu 

is elsewhere zero, we need carry the integral in (14-11) only over this narrow 
range. Since the weighting function can be regarded as a constant over 
this narrow range, however, the integral reduces, in effect, to the integral of 
dAfdu itself over the region of the break. This is the same as the total 

radians 

Fio. 14.7 

* In accordance with a growing usage, the term decade is used here to mean a 
frequency interval of ten to one, or an interval of one cycle of graduations in a plot on 
ordinary log paper. 
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change in A at the discontinuity. The phase shift at any point is therefore 
equal to the product of the change in A and the value of the weighting 
function corresponding to the interval between the break frequency and the 
frequency at which the phase shift is computed. It can be written as 

03 + fa?Q 

03 — 0)Q 

(14-14) 

Fig. 14.8 

where k is the change in A in nepers and w0 is the break frequency. This is 
illustrated by Curve B in Fig. 14.7 for k = 1. 

A third elementary characteristic of special interest is that in which the 
r*d,»n« w attenuation is constant on one side 

of a prescribed frequency «o and has 
a constant slope thereafter. This is 
illustrated by Curve A in Fig. 14.8. 
Characteristics of this type are de¬ 
scribed in more detail in the next 
chapter and will be used at several 
points in later discussions. They will 
be called semi-infinite constant slope 
characteristics in future analysis. 

The computation of the phase characteristic accompanying an attenua¬ 
tion characteristic of this sort is more difficult than it was for either of the 
preceding examples. A detailed analysis of the problem is consequently 
postponed to the next chapter. The general properties of the phase charac¬ 
teristic can, however, be understood from Curve B of Fig. 14.8. For 
example, at a frequency which is well within the sloping part of the attenua¬ 
tion characteristic the phase shift is only slightly less than £(7r/2), where 
k is the attenuation slope. It is thus almost equal to the phase shift 
which would be obtained with an attenuation characteristic having the 
constant slope k at all frequencies. It is apparent from (14-11) that this 
must be so, since the only difference between the two situations is the fact 
that in the semi-infinite case dA/du = 0 in (14-11) over a range of inte¬ 
gration corresponding to one of the tails of the weighting curve. We may 
also observe that the phase shift at o)o is just half the asymptotic value 
k(w/2) and that the characteristic exhibits odd symmetry on a logarithmic 
frequency scale about this point. The reason for this relationship is again 
obvious from (14-11) if it is noticed that the sum of two semi-infinite 
characteristics with the same slope k9 but running in opposite directions 
from wo, must be equal to a constant slope characteristic. This is shown by 
Fig. 14.9, the two semi-infinite characteristics being identified by the solid 
and broken lines. The sum of the accompanying phase characteristics 
must, of course, be equal to k(ic/2), while it is apparent from the symmetry 
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of (14-11) for positive and negative values of u that the two characteristics 
must be equal at reciprocally related frequencies. 

In accordance with the earlier discussion, the low-frequency phase shift 
for the semi-infinite characteristic of Fig. 14.8 must be substantially 
linear on an arithmetic scale. The exact expression is readily obtained 
from (14-4) and appears as 

2 w 
B = - k — , a. < w0. (14-15) 

T W() 

Thus if we assume k = 
is equal to 2/t radians, or about 
36.5°. The actual phase shift at 
this point, as determined from the 
considerations just discussed, is 
x/4 radians, or 45°. It is evident 
from these figures that the phase 
characteristic is at least roughly 
linear over the complete frequency 
range below w0. Over most of 
the range in fact, the approxi¬ 
mation is even better than these 
figures might suggest, since the 
departure of the actual phase 
characteristic from the linear ap¬ 
proximation occurs chiefly in the 
range just below w0. This can be 
seen most easily from the equation 

phase characteristic extrapolated to wo 1 the linear 

dB k wo + w 
— log - > 

7TW Wq — W 
(14-16) 

which is established in the next chapter. This expression is roughly con¬ 
stant over the first two-thirds or three-quarters of the band. At higher 
frequencies, however, it increases rapidly and approaches infinity logarith¬ 
mically as o) approaches wo« The very high value of dB/do) near w0 is, 
of course, a reflection of the artificiality of the postulated attenuation 
characteristic and would be avoided if the attenuation varied smoothly 

through w0. 
The elementary characteristics illustrated by Figs. 14.6, 14.7, and 14.8 

have been introduced principally for their application in the approximate 
study of attenuation-phase relations according to the methods developed 
later. They are also of some interest, however, in connection with the 
general problem of the phase distortion in selective circuits, which was 
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discussed earlier. For example, we can evidently take Fig. 14.7 to repre¬ 
sent an idealized low-pass filter, with infinitely sharp discrimination between 
the transmission and attenuation regions. Equation (14-14), then, shows 
the phase distortion which such a system must have in the absence of phase 
equalization and represents the limit approached by a physical filter as it 
becomes more and more sharply discriminating. On the other hand, com¬ 
parison of Figs. 14.7 and 14.8 shows that the phase distortion is due pri¬ 
marily to the presence of a sharp rise in attenuation just beyond the useful 
band and not to the fact that the system discriminates, on the whole, 
between a wanted and an unwanted range. Thus the phase characteristic 
of Fig. 14.8 is reasonably linear over most of the useful band in spite of the 
fact that the attenuation eventually rises far beyond the highest value 
attained in Fig. 14.7. Moreover, even the residual phase distortion in 
Fig. 14.8 can be somewhat reduced if the transition between the wanted 
and unwanted regions is made more smoothly. These results are con¬ 
firmed and extended by later examples. 

14.7. Relation between Phase and Attenuation Characteristics on an Arithmetic 
Frequency Scale 

Equation (14-11) has been expressed in terms of the logarithm of fre¬ 
quency since this is usually the scale which lends itself most appropriately 
to physical problems. By a direct transformation, however, the equation 
can also be expressed in terms of any other frequency variable z. This 
process is especially useful if z represents either frequency itself or the recip¬ 
rocal of frequency. 

The transformation to the new frequency scale z is facilitated by the 
fact that the term (dA/du)du in the integrand of (14-11) becomes simply 
(dA/dz)dz> whatever z may be. In order to complete the transformation, 
therefore, it is merely necessary to express the weighting function appropri¬ 
ately on the new scale and to change the limits of integration so that they 
will continue to embrace the complete positive real frequency axis. Thus, 
if z represents «, equation (14-11) is transformed into 

Bc = 
0? + coc 

0) — 0>c 
doty (14-17) 

while if z represents l/«, the equation becomes 

Be 
1 f°° dA 1/cj + 1/qi« 

ttJo </(!/«)IOg !/»-!/«, 
</(!/«). (14-18) 

As an example of these transformations, let it be supposed that the 
attenuation characteristic for which a corresponding phase shift is to be 
determined is one which has constant slope for a finite interval of an arith- 
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metic frequency scale. Such a characteristic is shown by Curve A in 

Fig. 14.10 where, for convenience, the slope is supposed to begin at the 

origin.* The characteristic is, in a sense, the counterpart of the semi¬ 

infinite slope on the logarithmic frequency scale which was considered 

previously. It is important to notice, however, that in contrast to a slope 

on a logarithmic frequency scale, the characteristic we are now considering 

cannot be regarded as extending over an indefinitely large interval since 

this would violate the condition that Ajto must vanish at infinite frequency. 

Let the slope dA/doo between the origin and the point co0 be represented 

by k. Then since dA/dco = 0 at higher frequencies, equation (14-17) can 

be written as 
co + ooc 

CO — C0C 
dco. (14-19) 

This is readily evaluated as 

Be = [(* + 1) log (* + 1) + (# - 1) log | * - 11 - 2* log *], (14-20) 
TT 

where x equals coc/coo* 
A sketch of the function defined by (14-20) is shown by Curve B in 

Fig. 14.10. Its general shape is about what one would expect from (14-11) 

if it is recalled that a constant attenuation slope on an arithmetic scale is 

equivalent to a slope which gradually decreases toward low frequencies 

when the characteristic is plotted on a logarithmic frequency scale. 

* Since, by postulate, A is an even function of frequency this means that the curve 
must change direction sharply at the origin. The behavior of the phase characteris¬ 
tic at extremely low frequencies is consequently rather peculiar, as inspection of 
equation (14-20) or Fig. 14.10 shows. This somewhat unnatural choice of the atten¬ 
uation characteristic can be disregarded here, since its effects disappear in the applica¬ 
tions of the analysis made later in this chapter and in the next chapter. 



320 NETWORK ANALYSIS Chap. 14 

14.8. Attenuation Characteristic Corresponding to a Given Phase Characteristic 

Thus far in this chapter, the problem under consideration has been that of 

determining the phase characteristic corresponding to a given attenuation. 

We will now turn to the converse problem of determining the attenuation 

when the phase is known. In its general features the solution of this 

problem differs from the preceding one in only one important respect. 

When the attenuation is prescribed, the corresponding minimum phase is 

uniquely determined. Since we can always add or subtract an arbitrary 

loss in a physical circuit without affecting its phase characteristic however, 

the attenuation corresponding to a given phase can be determined only to 

within an arbitrary additive constant. In the equations which follow this 

is taken into account by referring the attenuation characteristic to the 

attenuation at zero or infinite frequency. 

The required formulae can be obtained most simply by replacing 9 by 

either /co(0 — A<*) or (9 — Ao)/iw in all the preceding equations. The 

introduction of the factor /a> has, as its chief effect, the interchange of the 

real and imaginary components at each stage of the analysis. Thus, if we 

begin with io)(9 — A*), the real component is —uB, and has even sym¬ 

metry, while the imaginary component is io)(A — A*,) with odd symmetry. 

If we replace A by — uB and B by u(A — A*0), therefore, the formulae 

which have been used to determine B from A can be applied equally well to 

determine A from B. Similarly, the adoption of the function (9 — Ao)/iw 
is equivalent to replacing the original A and B by B/w and — (A — A0)/a\ 

respectively. The terms Ao and A^ are included in the new expressions in 

order to prevent them from having a pole at zero or infinite frequency, 

which would be contrary to our original assumptions about the function to 

be integrated. Their introduction is equivalent to measuring the attenua¬ 

tion from its zero or infinite frequency value, as discussed previously. 

With this as a basis, the development of appropriate formulae for the 

computation of the loss characteristic corresponding to a given phase 

characteristic is a matter of simple substitution. Thus, if we begin with 

the function iw(9 — Aao)> equation (14-3) is transformed into 

Ac Aye — 

2 /*°° coB — (w5)c 
/ 2 2 

T Jo 0) — C0c 
(14-21) 

while if we begin with (9 — Ao)/ioo, the result is 

Ac- A0 = 
2o)g /*°° B/ (a — B/(ji>c 

/ 2 2 
IT Jo 03 — 030 

(14-22) 

Similarly, the derivative formula of equati on (14-11) can be transformed into 

du 
log coth (14-23) 
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ab - a0=r d-isM log codl iii du. (M_24) 
7T J _oo dll 2 

In physical problems the phase shift is frequently constant over broad 

intervals so that the functions J9co and B/co will vary respectively as co 

or 1/co. This makes the expression of the formulae in terms of arithmetic 

frequency scales or reciprocal frequency scales of greater interest than it is 

when the known component was the attenuation. Appropriate formulae 

for these scales are easily obtained by modifying equations (14-17) and 

(14-18). If we let z represent either co or 1/co, the results of both equations 

can be written as 

Ac — A* — ± 

Ac - A0 = ± - f 
7T Jq 

*°° d(c*B) 

0 dz 

’ d (fi/co) 

2 — Zc 
(14-25) 

z+s' & 
2 Zc 

(14-26) 

where, in each expression, the negative sign must be chosen if z = co and the 

positive sign if z = 1/co. 

All these formulae assume that either A0 or A* will be finite. This is, 

of course, not invariably true. In physical systems, however, the losses at 

zero and infinite frequency, if they are not finite, will become infinite 

logarithmically. One or the other of the two losses can therefore always be 

made finite by the addition of a suitable constant slope characteristic. 

The required slope is easily determined from a consideration of the phase 
characteristic at the limit. 

Elementary illustrations of these transformations are most readily 

obtained by returning to the characteristics shown previously in Figs. 14.6, 

14.7, 14.8, and 14.10. We can transform any of these figures to give new 

relations between A and B by ^ radians 
multiplying or dividing the char- ioi II i 

acteristics as they stand by co and A’A™_■—/ \ 

interchanging the real and im- 

aginary characteristics. As an o.-....iTTrr*- o 

example, consider Fig. 14.7. If B 

we suppose that we are dealing 

with the transformation which re- -io ■ * * *i 

places 0 by iw(d — A*), Curve A ai 02 o.V oe 1^2 4~e 10 

in that figure can be identified ^ 

with the product of — w and the *'5s 

new 5, while Curve B is co times the new A — A«>. We can conse¬ 

quently divide the original curves by dbco to secure the characteristics for 

the new B and the new A — Am shown by Fig. 14.11. 

16 1 <#Jo2 
Fig. 14.11 
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Conversely, if we suppose that 8 has been replaced by (0 — Ao)/i<a, 
Curves A and B in Fig. 14.7 become respectively plots of 5/co and 

— {A — Aq)/u for the new function. The new B and the new A — Aq 
consequently take the form shown by Fig. 14.12. It will be noticed that 

the new B becomes infinite at infinite frequency. This merely illustrates 

the fact that the transformations allow us to deal in some instances with a 8 

whose behavior at zero or infinite frequency is less restricted than was 

previously assumed. In Fig. 14.12, for example, the infinite B at infinite 

frequency indicates a departure from a minimum phase shift condition of 

the type which was described in 

the preceding chapter as appro¬ 

priate for an ordinary transmis¬ 

sion line. We can correct the 

phase curve if we like by subtract¬ 

ing a linear component or, what 

amounts to the same thing, by 

displacing the original attenuation 

characteristic in Fig.l4i7 to make 

the infinite frequency attenuation 

zero. This leads to the new 

phase curve shown by B' in Fig. 

14.12. If the practical problem 

is that of constructing the attenu¬ 

ation characteristic corresponding 

to a prescribed phase character¬ 

istic which is known to have been derived from a minimum phase shift 

structure, questions of this sort naturally cannot arise. 

14.9. Linear Phase Shift Systems 

As a more elaborate example of the calculation of the attenuation charac¬ 

teristic corresponding to a given phase characteristic we will return again 

to the problem of designing a selective system without distortion in the 

useful range. Unless the band is infinitely broad, the requirements of zero 

attenuation distortion and zero phase distortion cannot be met simultane¬ 

ously with minimum phase shift characteristics. In the earlier treatment 

of the problem, it was assumed that the attenuation characteristic over the 

band was ideal and we attempted to determine the residual phase distortion 

which remained for phase equalization. Here we will assume, on the other 

hand, that the minimum phase characteristic is ideal and study the residual 

attenuation distortion which is to be expected in consequence. 

In order to simplify the problem, the lower cut-off of the system will be 

ignored. It will be supposed, then, that the desired phase characteristic 

is that shown in Fig. 14.13. The slope of the phase characteristic is taken 

radians 
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at the constant value dB/du = 0 between zero and some point while 

above o>0 the phase shift 5 itself is constant and equal to acoo. The constant 

value of B at high frequencies evidently means that the attenuation will 

eventually increase logarithmically with frequency, much like the semi¬ 

infinite slope characteristic of Fig. 14.8. As we have already seen, the semi¬ 

infinite characteristic gives a roughly linear phase characteristic at low 

frequencies and the approxima¬ 

tion to linearity is improved by 

making a more gradual transi- aC*o 

tion between the sloping and non¬ 

sloping parts of the attenuation 

characteristic. The present cal¬ 

culation thus amounts to a de¬ 

termination of the exact rounding 
oflf in the attenuation characteristic which is required in order to make the 

phase characteristic exactly linear. 
The preceding general equations give us the option of determining the 

attenuation characteristic corresponding to the phase characteristic of 

Fig. 14.13 by a study of either Bo) or B/co. In the present instance, the 

function B/o) is obviously the one which it will be convenient to use. A 

further simplification is afforded by adoption of an inverse frequency scale. 

With this choice B/w is a straight line with the slope aw0 from 1/co = 0 to 

1/co = l/co0 and is constant for 

higher values. This is indicated 

by the solid line in Fig. 14.14. 

The analysis of this characteristic 

has already been given in effect by 

(14-20). In order to adapt the 

result in (14-20) to the present 

problem it is merely necessary to 

replace Bc by (l/coc)(^c — Ao) and make the changes called for by the 

inversion of the frequency scale. This gives 

Fig. 14.13 

- (Ac - Ao) - 
«C 

2r(-+iW(-+o+(--‘V°s — 2—log—1! 
T L\wc / \«c / \«c / «d Wc J 

(14-27) 

which can be reduced to 

A_A.?[(,+^)|og(,+2) + (,^),o8|1-^|]. (14-28) 
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A sketch of the attenuation characteristic defined by (14-28), with the 

constant amo chosen as unity, is shown by Fig. 14.15. The originally 

prescribed phase characteristic is indicated by the broken lines. It will be 

seen that the characteristics are much like those of a low-pass filter except 

for a considerable amount of attenuation distortion near the edge of the 

band. 

A different form of attenuation characteristic is obtained if we assume 

that the phase shift is zero between the origin and co0 while it retains its high 

frequency value, am0, beyond this point. This is equivalent to supposing 

that the characteristic B/m drops abruptly to zero at the edge of the band, 

as indicated by the broken line in Fig. 14.14. The effect of such an abrupt 

break can be obtained by replacing Bc by (l/coc) (Ac — A0) in the previous 

solution (14-14) for the phase characteristic corresponding to a discon¬ 

tinuous attenuation characteristic. The result is 

(Ac - AqY - log 
7T 

0)Q + C0c 

o)q — coc 
(14-29) 

and this, when added to equation (14-28), gives 

Ac *“ Aq 
0)Q 

(14-30) 

A sketch of the characteristics corresponding to (14-30) is shown by 

Fig. 14.16. It will be seen that with this solution the attenuation charac¬ 

teristic in the band curves downward rather than upward, as it does in 

(14-28). This evidently suggests that still better characteristics might be 

obtained from a combination of the two solutions. If we multiply (14-28) 

by X and (14-30) by 1 — X and add the equations the result is 
m 

2 1+* 
log 

CO* -f wc 
1 — 2 + X — log 

«0 

<o0 Wo 
1 

<00 

• (14-31) 
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If X = 0.63 this gives the phase and attenuation characteristics shown by 
the solid lines of Fig. 14.17. 

The curves of Fig. 14.17 are of interest chiefly as an exemplification of 

the argument advanced earlier in connection with Fig. 14.4. It will be 

seen that the introduction of a rather narrow region of net gain near the 

edge of the useful band allows the system to be designed with substantially 

zero attenuation and phase distortion throughout the rest of the useful 

band, in spite of a high loss at more remote frequencies. For practical 

purposes the net gain characteristic need not, of course, take exactly the 

form assigned to it by this analysis. It might, for example, be distorted 

into some such form as that indicated by the dotted lines in Fig. 14.17. 

If no net gain can be permitted, however, it is necessary either to accept 

attenuation distortion of the general type exemplified by Fig. 14.15 or to 
resort to phase equalization. 
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l*he simplest physical illustrations of circuits having the characteristics 

shown by Figs. 14.15, 14.16, and 14.17 are obtained if we imagine that we 

are attempting to design an interstage network for a non-feedback video 

amplifier. The construction of a network to simulate the characteristics 

of Fig. 14.16 is particularly easy, since if the multiplier awo/w in (14-30) 

equals one-half, the equation will be recognized as the expression for the 

absolute value of the image impedance of a mid-shunt terminated low-pass 

filter of the constant k type.* Thus the interstage network can be con¬ 

structed as a conventional filter circuit, with the interstage capacity taken 

as the final shunt branch. 

The characteristics in the other figures can be simulated with impedances 

of the same general type, but using somewhat distorted values of the filter 

elements. As an example, we may consider the design of an interstage to 

represent the characteristics of Fig. 14.15. At high frequencies the net¬ 

work must reduce physically to the interstage capacity, so that its loss will 

be given by log c*>Co, where C0 represents the capacity. We see without 

difficulty, however, that when co is large the attenuation in (14-28) is 

approximately (lawo/w) log co/w0- We must consequently have a = x/2co0. 

With this value at hand it is a simple matter to compute, from Fig. 14.15, 

the impedance which the interstage network, less the capacity, must have. 

The result is shown by Fig. 14.18. The impedance is very nearly equal to a 

mid-series filter image impedance of constant k type plus an added induct¬ 

ance. If this form of representation is adopted the complete interstage 

* This is a reference to standard filter theory as developed largely by O. J. Zobel 
(B.S.T.J., Jan. 1923, and later papers). Filter image impedances, and filter-like 
networks in general, appear frequently in the circuits used for illustrative purposes 
from this point on, and it will be necessary to suppose that the reader has at least a 

rough acquaintance with the filter field. Of a rather extensive list of possible ref¬ 
erences, Terman’s “ Radio Engineer’s Handbook,” pp. 226-244, may be mentioned 
for a good brief treatment, while Guillemin’s “ Communication Networks,” Vol. II, 

gives a more substantial discussion. If either reference is consulted, the reader’s 
attention is directed particularly to the sections on lattice filters. They contain 
general analytic formulae for available filter image impedances of the types used here. 
Although these image impedance formulae are developed only for lattice structures, 
they can also be realized in sufficiently elaborate ladder circuits, as the references 
given later show. 

On the particular problem of designing a finite network to furnish a close approxi¬ 

mation to a theoretical filter image impedance, the best references are perhaps Zobei’s 
paper in the Bell System Technical Journal for April, 1931, and the writer’s U. S. 
Patent No. 2,249,415. In addition, a number of specific designs will be given in 
Chapter XVII. In view of the existence of this material, it will hereafter be assumed 

that any given illustrative design has been finished if it can be constructed by using 
filter image impedances as elements. 
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takes the form shown by Fig. 14.19. Its phase and attenuation characteris¬ 

tics are shown by Fig. 14.20. The solid and broken lines represent, respec¬ 

tively, the attenuation and phase characteristics originally specified in 

Fig. 14.15, but with each characteristic multiplied by t/2 to fit the value 

of ao)o adopted in this illustration. The crosses represent the characteristics 
actually obtained from the structure of Fig. 14.19. 
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14.10. A and B Prescribed in Different Frequency Ranges 

The third general problem considered in this chapter is that of deter¬ 

mining a complete impedance or transmission characteristic when the real 

component is specified in certain frequency ranges and the imaginary com¬ 

ponent in the rest of the spectrum. Let it be supposed, for example, that 

the attenuation is known at frequencies below a>o and the phase shift in the 

range above coo* The problem to be solved, then, is that of completing the 

characteristic by calculating the phase in the range below a>o and the attenu¬ 

ation above this point. 

In each of the preceding theorems, the known component has been an 

even function of frequency and the component to be evaluated an odd 

function. Thus, in the first theorem, the attenuation, which has even 

symmetry, was supposed to be known and the phase was determined from 

it. In the second theorem, the roles of the two components were reversed 

by multiplying or dividing the original 0 by /«. 

The same procedure can be adopted for the present problem, except that 

the function by which 0 is multiplied or divided isVl — w2/a>o rather than 

ica. The properties of the function \/l — w2/coq when the Riemann surface 

on which the square root is defined is chosen appropriately were described 

in the preceding chapter. It will be recalled that between o>0 and — c*>0 the 

“ positive ” square root is a positive real quantity and has even symmetry. 

In this frequency region, therefore, the introduction of the new function 

does not disturb the original even or odd symmetry of A and B. Above 

c*>o, on the other hand, the positive square root ofVl — co2/a>o is a positive 

imaginary while below — a>o it is a negative imaginary. In these ranges, 

therefore, the function has odd symmetry, which cancels the odd symmetry 

of B. Thus in each part of the spectrum the portion of the integrand 

which has even symmetry, and is consequently retained in the final inte¬ 

gration, depends upon the component of 0 which is specified there. 

This procedure can be made more definite if we write the ratio* of 

$ to VY as 

0_A B 

Vl — co2/coq Vl — c*>2/coo Vl — oj2/wo 

B . A 

Vco2/4 -1 vw2/a>§ - r 

w < a>o 

(14-32) 

co > wo> 

* The product is not chosen in this situation since at high frequencies it reduces to 
/c*>(^oo/&>o), with a pole at infinity. The effect of this pole could easily be discounted 
if Aao were known, but since the high frequency behavior of A is one of the functions 
which the analysis seeks to determine, the presence of the pole introduces a compli¬ 
cating feature which it is desirable to avoid. 
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where all the square roots on the right-hand side are positive real quantities. 

Any of the formulae developed previously can be applied to the present 

situation if we replace the original A and J9, respectively, by the real and 

imaginary components of the expression given by (14-32). If we make 

these substitutions in (14-3), for example, the result is 

2w, A_du 

7T Jo V1 - £tf2/a>0 0,2 ~ UC 

(14-33) 

B da 

Va>2/o>o - 1 o)2 - o?a 
wc < a>o 

wc > w0, 

where the two integrals on the left-hand side replace the single integral in 

(14-3)* and the terms on the right-hand side replace the original Bc. 

Since we originally assumed that A was known below w0 and B above coo 

the two integrations can be carried out and the remaining portions of both 

characteristics evaluated. 

It is also possible to make use of the derivative form of relationship as 

given by (14-11). If this formula is adopted, however, special precautions 

are necessary to take account of the sharp changes in the slope of the real 

component of 0/V 1 — w2/wo in the neighborhood of w0. For practical 

purposes it is probably simplest to flatten oflf the peak of the real component 

curve, as indicated by the broken Rea| Component 

lines in Fig. 14.21, leaving the peak nf- .ft — 
itself to be treated by formulae ^1-cj2/cjc2 

analogous to (14-33). It may also M 
be desirable to adjust the constant / l 

level of attenuation to give A and / \ 

B the same value at wo, so that the 1 \ 

peak curve will be symmetrical in V 

the neighborhood of wo. This an--^ , W^o ^ ^ ^ 

alysis can be extended in obvious °\0'6 1 2 4 * ^ 

ways to take account or situations 

in which A and B are specified in other frequency ranges. For ex¬ 

ample, if B is specified below wp and A above wo the function which it is 

appropriate to use is /w0/v/1 — w2/w§ and the formula corresponding to 

"oTaS 04 os i 
Fig. 14.21 

* In equation (14-33) and also in the succeeding equations, the term corresponding 
to At in equation (14-3) has been omitted for simplicity. As shown in connection 
with the discussion of equation (14-1), this is permissible provided the integrals are 
defined in terms of their M principal values/’ 
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(14-33) is 

2o)c r**0 —o)5 d<a 

\/1 — a? 

2o)c Z*00 C)A_<&) _ 

* J*0 vV/«o - 1 "2 - »? Vl - CO? 

(14-34) 

j > 0>c < 0>o 

?A*o - 1 
> CDc > 0>q. 

Similarly, if A is specified in a band extending from a>i to o)2 and 5 at fre¬ 

quencies outside the band the proper division of the spectrum is obtained 

if we begin with the function ;a>0/(Vl — o)2/o)2 Vl — o)2/o>2). This 

leads to the formula 

' (12 + 5 + T) 
f1 — Wc/o>i V1 — 0)*/o>2 

0)c < 0>1 

where 

Vw?/w? - 1 Vl - C0e/coi 

= _—0>cAc_ ^ 

Vcof/co? - 1 Vcof/coi - 1 ’ 

_ —w5 do) 

Jo Vi - co2/«? Vi - «*/«8 «2 - 

_ /*wa 0)/f djo> 

t/Wl Vo)2/«! 1 vT~^ O)2/0)2 w2 

^°° 0)5 do) 

~ X, Vc02/C0? - 1 Vco2/«2 - 1 0,2 ~ W«* 

» 0)2 > 0)c > 0)j 

0)c > 0)2. 

(14-35) 

For simple examples of these transformations we can return again to the 

elementary characteristics of Fig. 14.7. Thus if we are concerned with the 

function 0/V1 — o)2/o)o and let o)o represent the point of discontinuity in 

Fig. 14.7, Curve A in that figure can be identified with A/\/l — o)2/a>o 

below o)o and with 5/Vo)2/o>q — 1 above o>q. Similarly, Curve 5 repre¬ 

sents 5/Vl — o)2/o)q below o)o and —/^/Vo)2/o)§ — 1 above o>o* An 

easy calculation therefore leads to the curves for the new A and the new 5 

shown by Fig. 14.22. As in the discussion of Fig. 14.12, the new 5 has a 
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pole at infinity. If a constant is subtracted from the original A curve of 

Fig. 14.7 to avoid this difficulty the modified characteristics take the form 

indicated by the broken line Curves A' and B' of Fig. 14.22. If we begin 

radians 

with the function /co0/Vl — co2/coo the analysis is essentially the same, 

except that there is no difficulty with the behavior of the new function at 

infinity, and leads to the result shown by Fig. 14.23. 

14.11. Linear Phase Systems with Prescribed Discrimination 

In the earlier discussion of selective systems with linear phase characteris¬ 

tics over a prescribed low frequency range it was assumed that the phase 

shift would be constant beyond the prescribed range. This is a convenient 

assumption to make for systems like the interstage network of Fig. 14.19 

in which it is physically necessary for the attenuation to increase logarith¬ 

mically at high frequencies. As Fig. 14.15 shows, however, it leads to a 

rather low discrimination just beyond the band and an unnecessarily high 

loss, for most purposes, at more remote frequencies. When the physical 

situation permits, it is consequently more desirable to specify in advance 

the loss which is to be realized beyond the linear phase shift range. The 

discussion of this problem affords a convenient example of the general 

methods of analysis described in the preceding section. 

It will be assumed that B = aa> below a>o and that A = K above wq. 

This is illustrated by the solid lines in Fig. 14.24. The remaining portions 

of the two characteristics are indicated by the broken lines. Their exact 

shape can be found by means of (14-34). Since the solution will evidently 

not be affected by the introduction of a constant gain or loss we can assume 

for the purpose of studying (14-34) that the constant K which fixes the 

high frequency attenuation is zero. This allows us to neglect the second 
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integral in (14-34). The equation consequently becomes 

2ojc r 

T J 0 

— ao) do: 0)CJC 

V1 - oi2/o>l "2 Vi - 

UcBc 

V^/wo - 1 ’ 

Wc < C*>0 

(14-36) 

Wc > Wq. 

It is convenient to begin with the solution for Bc. If we split the integral 
in (14-36) into two parts the equation appears as 

2 

*._z2g-s_1rr. 
7r \wq L«7o i 

do: r*0 a>;_do: ~ 

Jo Vl- Ci)2/Wn w2 ~ wL V1 — W2/Wo o V1 — W2/wq 

(14-37) 

The first integral in this expression can be evaluated immediately as 

(7t/2)w0. To evaluate the second, let w/w0 be replaced by x/Vl + x2. 
This gives 

2 do: /*°° dx 

f «/o V1 - O)2/o)0 “2 - “c 
2 = ~ «0 

X T + (1 — wg/w?) AC2 

Wr 

Vwc2/wo — 1 ^ 

Upon substituting in (14-37), we consequently find 

/wc R \ 
Bc = ao:o I-\l~~2 “ 1 J ’ 

\w0 \ w0 / 

(14-38) 

(14-39) 

yf (nepers) 
and 

This characteristic has already been shown in Fig. 14.24. 
The computation of Ac from (14-36) follows similar lines, but it is 

necessary to make one modification to take 
account of the fact that when wc < wo the in¬ 
tegrand in (14-36) has a pole in the range of 
integration. In accordance with the previous 
discussion, the “ principal value ” of the inte¬ 
gral is to be taken in this situation. This is of 
importance principally in evaluating (14-38). 
If we set w2/wg — 1 = \/k2 the pole in the in¬ 
tegrand in (14-38) occurs at x = k. In order 
to determine the principal value of the in¬ 

tegral we split the total range of integration into two parts, one ex¬ 
tending from zero to k — e and the other extending from k + e to infinity, 
where e is some very small quantity. This allows the second integral in 

U/U>o 

Fig. 14.24 



RELATIONS BETWEEN COMPONENTS 333 

(14-38) to be written as 

dx r* dx rkt 
'WOJo 1 - X2/k2 - “°Jo i 

dx dx 
\-i 

A;-f e 1 X 1 - X2/k2 Vk2 
(14-40) 

But if we substitute^ = k2/x it is easily seen that the second integral in the 

right-hand side of (14-40) is exactly the negative of the first. In evaluating 

Ac from (14-36), therefore, there is no contribution corresponding to 
(14-38). This gives Ac as 

= K — aO)Q yj 1 2 
w0 

(14-41) 

where the constant loss AT, which was ignored in making the analysis, has 

been restored to the equation. The results given by (14-39) and (14-41) 

can evidently be combined with the original specifications on A and B to 

give the complete characteristic by means of the single equation 

0 = A+ iB = K I “2 — au0 * 1-2 
\ W0 

+ iau. (14-42) 

A large scale plot of this characteris- * (nepers) 

tic with K = aoj0 is shown by Fig. 

14.25. 

Although the characteristic in Fig. 

14.25 approximates a filter more 

closely than did the earlier charac¬ 

teristic of Fig. 14.15, it still exhibits 

an appreciable rounding in the trans¬ 

mission band. In order to secure a 

flatter final characteristic we might 

suppose that the system is to be 

used for vestigial sideband trans¬ 

mission. This requires only that the 

proportions of the characteristic be 

db 
Wl 

R (radians) 

*4>e 

Fig. 14.25 

Side Band FreQuenci| 

uf- 
Carrier 

-1.0J Fig. 14.26 

so chosen that the carrier will fall at the point having 6 db loss. For 

example, if the high frequency loss is 30 db the 6 db point occurs at 
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o> = 0.6a?o« This leads to the net transmission characteristic shown by 
Fig. 14.26. 

With the proportions chosen for Fig. 14.26 the wanted sideband covers 
the first 60 per cent of the linear phase range and the vestigial sideband the 
last 40 per cent. Thus the vestigial sideband is two-thirds as great as the 
wanted sideband and is rather more than a “ vestige.” This ratio can be 
considerably reduced if we suppose that the actual transmission occurs in a 
logarithmically narrow band and that the characteristics of Fig. 14.25 
represent merely the low-pass equivalent of such a circuit, in accordance 
with the relations described in Chapter X. In this event the region 
covered by Fig. 14.25 corresponds to only one-half the total band and the 

other half is also available for the 
transmission of the wanted side¬ 
band. If it is supposed that the 
other half can be flattened out with¬ 
out seriously disturbing the charac¬ 
teristics in the vestigial region this 
leads to an overall characteristic of 
the type shown by Fig. 14.27. It 

will be seen that the vestigial sideband region is now about one-fourth 
as broad as the region occupied by the wanted sideband. 

This discussion applies, of course, only to minimum phase shift struc¬ 
tures. We can obviously narrow the vestigial sideband region much fur¬ 
ther by using phase equalization in the final circuit. On the other hand, a 
minimum phase shift characteristic of the type shown by Fig. 14.27 can 
usually be realized relatively easily by ordinary filters and loss equalizers, 
while the addition of any substantial amount of phase equalization adds 
considerably to the total complexity of the structure. Thus Fig. 14.27 
can be looked upon as at least a rough guide to the proportions which should 
be followed when frequency space is not at a premium but when it is 
important to use relatively simple network designs. Such a problem might 
be encountered, for example, in the short-wave transmission or reception of 
television signals. In practice, of course, it may be necessary to assign 
the vestigial sideband a frequency region even greater than the 20 per cent 
of the total band which is allotted to it in Fig. 14.27. For example, this 
estimate depends upon the assumption that 30 db attenuation outside the 
band is sufficient and must be increased, as inspection of Fig. 14.25 shows, 
if greater discrimination is required. If a linear phase characteristic must 
be maintained throughout the region covered by the wanted sideband it is 
also impossible to flatten out the characteristics in the lower half of the total 
band to the extent suggested by Fig. 14.27, so that the relative breadth of 

the vestigial region is still further increased. 

Carr1«i )«r/ 

1.0 -0.G -**0.4* 

Wanted Sideband 

Fig. 14.27 

Vestiqiat 
Sideband 
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Tabulation of Relations Between Real and 

Imaginary Components of Network Functions 

Group 

(«) 

« 

(0 

(d) 

Formula 

2^ r A-Ac 

Bt~ rJo 

l r*dA. , |«| . 
= - I — log coth i-r- 

7T t/_oo 2 

do* 

I/O) + l/o>c 

= IJ T-'og 
7T i/q do? 

do* 

03 + 03c 

03 — 

--*/ tJq 

dA_ 
d (l/«) 

log 
1/w — l/wc 

</(!/«) 

II (a) 

(*) 

(e) 

ttJ o 

(wfi) — (coJS)€ 
do* 

=--/ 7TG)C •/« 

_ ±_L r*d(«B) 

T03c Jq dz 

^ log coth ^ 
du * 2 

.lid. 

log 
z + zc 
Z — 2- 

<& 

HI (a) 

W 

(0 

2w? r“ (5/«) - (£/«)„ 2<oT A 
= - — / 

IT 

_ coc Z*00 (B/u) 
IT U _oo 

'djBM 

dz 

2 2 O) ~ 01- 
z/oj 

log coth */# 
atf 2 

- [' 
ir J o 

log 
z + : 
2 — Zc 

dz 

IV («) —Ii - 
*■ i 

«? 1/2 
-- (M+AO = 5e, 

«o 
o*c < w0 

1 II wc > WO 
where 

M = 
/*«0 A do* 

Jo Vf i e 1 «?f
c9 

N = C— 
5 </a> 

Jut i ►-*
 i 
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Group Formula 

IV (« 
2 o? 72 

i--§ (P + 0 Acy COc < COo 
IT “0 1 

~ BCy COc > COQ 

where P 
-co5 do 

t/ o V1 — <o2/wo 
2 2 co — COc 

r* oA 

J uq V W2/Wo 

do 

/wo “ 1 w 

v W 

where 

1 - 
CO? »/» CO? 

1 _ z® 
1 2 ” 2 

COi co2 

where 

5 

T 

V 0 \/1 — CO Jr."2 

—oB 

= /fc> CO* < Wl 

= 5C, C02 > C0c > Wl 

= — Ac> <*>c > 032 

do 

7«? Vi - a.2/4 «2 - «? 

CO/f c/co 

rx_cofl 

*7CO2/'CO? — 1 's/co' 

- 0)1 V CO2/CO? — 1 V1 — „7«g C°2 w? 
do) 

(7 — 

, co? *'2 

1 2 

CO? 
1 — — 
1 2 

7TC0C <*>1 C02 

'M 

1/2 

t; 
jv*l 

0 V21 — co‘ 

7*i - i « - < 

{U+V + W) = Bc, 03c < 031 

= —ACy 032 > 03e > 03l 

= —BCy 03e > 032 

o?A do 

_IS 

VoVoi — I 

7«! V1 - co2/co| "2 - «i 

co25 c/co 

'/co? - 1 VT ~ co2/wl "2 ~ 

= r°°_-<02^_</co 

V u>, Vco2/cO? — 1 \/<i)2/ci>2 — 1 0,2 WC 

Note: In K, IK, and UK,« = log co/co<.. In Hr and Illcy z may be either 
o or 1/co. In either equation the plus sign must be chosen if z *a l/<o and 
the negative sign if z = co. 



CHAPTER XV 

Graphical Computation of Relations Between Real and 

Imaginary Components of Network Functions 

15.1. Introduction 

This chapter consists principally of a set of charts which are intended to 

facilitate the approximate computation of attenuation-phase relations in 
practical cases. The theoretical development consists merely of a state¬ 

ment of the methods by which the charts were prepared and the way they 

are to be used. 

15.2. Approximation of Actual Characteristics by Straight Lines 

The analysis of the preceding chapter is already in a form which makes it 

theoretically possible to determine the relationship between the real and 

imaginary components of network 

functions by graphical methods. If 

we make use of equation (14-11), for 

example, both the differentiation of A 

and the integration of the product of 

dA/du and the weighting function are 

operations which can be performed 

graphically. When a large number of 

points on the imaginary characteristic 
are to be determined, however, calculations of this sort become quite 

tedious. 
As an alternative procedure the present chapter is based upon the 

assumption that the real component will be approximated by a series of 
straight line segments. This is illustrated by Fig. 15.1. The real charac¬ 
teristic which is approximated in this manner may be either a physical real 
component, such as an attenuation or a resistance, or an equivalent charac¬ 
teristic like o)B or B/w derived by the methods described in the preceding 
chapter. In choosing the set of straight lines it is ordinarily sufficient to 
represent the major trends in the real characteristic correctly. As the dis¬ 
cussion in the preceding chapter in connection with equation (14-11) 
indicated, the relation between the real and imaginary components involves 
in any case a smoothing out or averaging out of the real characteristic. If 
the major trends are correctly represented, therefore, the imaginary 
characteristics corresponding to the actual real characteristic and to the 

337 



338 NETWORK ANALYSIS Chap. 15 

straight line approximation to it should be much more nearly equal than 
are the actual and approximate real characteristics themselves. 

The advantage of the straight line approximation scheme is, of course, 
that it reduces the complete real characteristic to a sum of elementary 
characteristics. Since the imaginary component corresponding to each 
elementary characteristic can be computed once for all, this reduces the 
calculation of the complete imaginary characteristic to the addition of a 
number of known curves. In theory, it is sufficient to consider only one 
elementary characteristic, the semi-infinite slope. Figure 15.2, for exam¬ 
ple, shows how the straight line characteristic of Fig. 15.1 can be represented 
as the sum of three such slopes. 

Fio. 15.2 Fig. 15.3 

This form of representation reduces the work of preparing chart infor¬ 
mation to the simplest possible level, since the complete imaginary charac¬ 
teristic can be built up if we know one primitive curve. It suffers, how¬ 
ever, from the disadvantage that the phase contributions of the individual 
slopes may be rather large positive and negative quantities even though the 
net phase shift is fairly small. It is consequently necessary to determine 
the constituent phase characteristics quite accurately in order to obtain a 
reasonably accurate final result. This is particularly likely to be true if 
the straight line approximation to the complete real characteristic includes 
a number of short and steeply sloping line segments. For practical pur¬ 
poses it is consequently preferable to regard the individual finite line seg¬ 
ments themselves as the elementary characteristics upon which the analy¬ 
sis is based. As an example, Fig. 15.3 shows the representation of the 
characteristic of Fig. 15.1 by means of one such segment plus a semi-infinite 
slope. 

This chapter is devoted principally to large scale plots of the phase 
characteristics of semi-infinite slopes and finite line segments. There is, of 
course, only one semi-infinite characteristic to consider, but it requires a 
series of curves to represent finite segments of different breadths. In addi¬ 
tion to these curves, which assume that the real characteristic was originally 
plotted on a logarithmic frequency scale, a few curves of the phase charac- 
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teristics corresponding to straight line segments on an arithmetic frequency 
scale are also included. 

Although the imaginary characteristic computed by these processes 

should match the true imaginary characteristic quite accurately, on the 

whole, there will naturally be certain divergences which can be attributed 

to the sharp changes in slope in the straight line approximation in compari¬ 

son with the smooth variations of a physical characteristic. The general 

situation here can be most conveniently expressed by the 

Theorem: If either component of 6 itself or of any derivative of 6 is 

discontinuous at some point, the other component of 6 or of 

the derivative must be logarithmically infinite at that point. 

This relation has already been established for a discontinuity in the real 

component of 6 itself by the discussion in connection with Fig. 14.7 of the 

preceding chapter. Its extension to the imaginary component or to a 

derivative follows readily from the methods of interchanging real and 

imaginary components described previously, plus the reflection that 6 and 

its derivatives meet the same general analytic specifications. 

In the straight line approximation scheme dA/du is discontinuous at the 

junctions between the line segments. This gives 

rise to situations of the type exemplified by Fig. 

15.4. The solid lines indicate the actual charac¬ 

teristics and the broken lines the characteristics 

which appear in the approximate analysis. There 

is a kink in the broken line phase characteristic at 

the point at which the slope of the real characteris¬ 

tic changes, corresponding to the fact that the 

slope of the phase characteristic must be infinite 

there. Since the infinity is only logarithmic, how¬ 

ever, the kink is very small and is scarcely perceptible in practice unless 

the characteristics are drawn on an extremely large scale. 

15.3. Summary of Charts 

Of the charts given at the end of the chapter, the first two give the 
imaginary characteristic corresponding to a semi-infinite real characteristic 
of unit slope. Chart I gives the imaginary characteristic plotted against 
the logarithm of frequency and is the same as Fig. 14.8 of the preceding 
chapter drawn on a larger scale. Chart II gives the same information on 
an arithmetic frequency scale. It also includes an enlarged version of the 
region near «o> where the characteristic is varying most rapidly. The for¬ 
mulae by means of which the characteristic is computed are somewhat 
complicated and are described in the next section. The curves cover only 
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the region below wo since the rest of the plot can be obtained from the 
relations of symmetry described in the earlier discussion of this 
characteristic. 

Charts III and IV are similar plots of (1/tt) log coth | u/2 |, where 
log coth | u/2 | is the weighting function of equation (14-11) in the 
preceding chapter. They satisfy the equation 

D . M 1, 5 = - log coth —r1 = - log 
7T 2 7T 

W + 

0) — 0>o 
(15-1) 

The curves cover only the range below w0 since the function has the same 
value at w and at wo/w. As shown in connection with Fig. 14.7 of the pre¬ 
ceding chapter, this plot also represents the phase shift corresponding to a 
discontinuous attenuation characteristic. To facilitate this application 
of the curves the imaginary component has been expressed in terms of 
two scales. The first gives the phase shift in radians for a change in 
attenuation of 1 neper and the second the phase shift in degrees for an 
attenuation change of 1 db. Since there are 180/tt degrees in 1 radian and 

— 8.686 db in 1 neper the scales are in 
the ratio 180/8.6867T = 6.6. The reader 
should note that although the degree and 
jb relationship is applicable to attenua¬ 
tion and phase computations, nepers and 
radians are proper theoretical units which 

can be used also in other problems. For example, the radian scale gives 
the reactance, in ohms, corresponding to a 1 ohm discontinuity in a resist¬ 
ance characteristic. 

The next series of charts gives the imaginary characteristics corresponding 
to finite line segments of the type shown earlier by Fig. 15.3. They are 
obtained by taking the difference between two semi-infinite characteristics. 
The reference frequency wo is supposed to occur at the geometric center of 
the segment and the slope extends from <ao/a to 0a>o. This is illustrated 
by the solid line in Fig. 15.5. As in Charts III and IV, two scales for the 
imaginary component are shown. The first is in terms of theoretical units. 
If, for example, A and B are attenuation and phase, this scale gives the 
phase shift in radians when the total attenuation change, hA in Fig. 15.5, 
is 1 neper. The second scale gives the phase shift in degrees when the 
attenuation change is 1 db. For other attenuation changes the phase shift 
must, of course, be multiplied appropriately. In each chart the curves are 
drawn only for the region in which they differ appreciably from the curve 
labelled a » 1.0 on the charts. This limiting curve is the one which would 
be obtained if the real characteristic changed discontinuously by one unit at 

as indicated by the dotted lines in Fig. 15.5 and is the same as the curve 

T 
$ A 

± 

Fig. 1S.S 
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given in Charts III and IV. Beyond the region covered by the curves, 
therefore, the characteristics should be determined from these earlier charts. 

Charts X and XI give the imaginary characteristic corresponding to the 
real characteristic shown by Fig. 15.6, where it is supposed that the fre¬ 
quency scale is arithmetic. This is the same characteristic as that shown 
by Fig. 14.10 of the preceding chapter, with ko0 = 1, and the equation for 
the imaginary component was given then as 

5 = -[(*+ 1) log (*+ 1) +(* — 1) log | * — 1 | — 2* log *]> (15-2) 
7r 

where x = o)/aj0. The general arrangement of the charts is similar to that 
of the earlier plots. The only difference which need be observed is the 
fact that since (15-2) has no symmetrical properties it is necessary to 
extend the plot to cover the complete frequency range. 

The remaining charts give the imaginary characteristic corresponding to 
a finite segment of a straight line when the frequency scale is arithmetic. 
The curves are intended as alternatives to those given in Charts V to IX, 
for situations in which the straight line approximation method is simplified 
by the use of an arithmetic rather than a logarithmic frequency scale. 

They are, of course, obtained as differences between two characteristics of 
the type given by (15-2). The reference frequency w0 is taken as the 
arithmetic center of the segment and the slope is supposed to extend from 
(1 — a)wo to (1 + a)o)0. These relations are illustrated by Fig. 15.7. No 
curves are drawn for very small values of a since over narrow intervals 
straight line segments on arithmetic and logarithmic frequency scales are 
indistinguishable. 

15.4. Computational Methods for the Semi-Infinite Constant Slope Character¬ 

istic 

Most of the computations required to prepare the charts can be based 
upon explicit formulae which were given from time to time in the course of 
the preceding discussion. The computation of the imaginary component 
corresponding to a semi-infinite constant slope, however, requires special 
consideration. 
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If we suppose that the slope is unity and starts at wo the imaginary com¬ 
ponent at any point oc is given by (14-11) of the preceding chapter as 

(15-3) 

where uc = logw0/wc, since in the range below uc the slope is zero and the 
integrand in (14-11) vanishes. For purposes of computation (15-3) can 
be conveniently rewritten as 

Bc 
1 +* 
1 — x 

dx 

x 
(15-4) 

where xc = wc/w0. 
It appears that the result in (15-4) cannot be expressed in closed form, 

using elementary functions. We can, however, evaluate Bc by means of a 
power series expansion. The procedure is simplified by the symmetry of 
Bc about the point w0, as described previously. This allows us to restrict 
the computation to values of xc below unity. 

A second simplification of the same sort is provided by a relation between 
B at a frequency slightly below w0 and B at a corresponding frequency near 
w = 0. To develop this relation, set 

1 — * _ 1 — xc m 

i + * y° ~ i + *c ’ 
(15-5) 

In terms of the new variable y, (15-4) can be written as 

B(xc) = - - /** * log y <f(log x). (15-6) 
7T Jx„0 

Let this equation be integrated by parts. The result is 

B(xc) = - - [log x logyg:? + - f log * d([ogy), (15-7) 
7T TT U x «*0 

which is easily transformed into 

B(xe) = — - log log yc — - f log * d(logy). (15-8) 
* Tt «/ y**yc 

The transformation between x and y given by (15-5) is, however, sym¬ 
metrical. In other words, if y is given in terms of x by (15-5), x is given in 
terms ofy by the precisely similar expression x = (1 — y)/(l + y). Thus, 
the integral in (15—8) is in the same form as that in (15-6). The only 
difference arises from the fact that the range of integration in (15-6) 
extends from zero to xe while in (15-8) it extends from ye to one. We 
may, however, write the integral in (15-8) as the difference between an 
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integration from zero to one and an integration from zero to yc. The first 
of these must represent the imaginary characteristic of a semi-infinite slope 
at the point «o and is therefore equal to 7r/4 by the discussion in the previ¬ 
ous chapter. The integral from zero to yc is the imaginary characteristic 
at the pointyc from (15-6). Equation (15-8) can therefore be written as 

B(xc) + B(yc) = j - - log *c log ye (15-9) 
T 7T 

provided xc and^c satisfy equation (15-5). 
If xc in (15-5) is near unity, the corresponding yc is very small but it 

increases as xc decreases and the two become equal at xc = yc = 0.414. 
Thus, the phase characteristic can be computed at all frequencies if we know 
it only between zero and 0.414. Within this region, we can expect a power 
series expansion for B to converge rapidly. A suitable series is obtained by 
writing 

log(HH;) = 2(* + j + J +'' )• (1S-10) 
Upon substituting this expression in (15-4) and integrating term by term, 
the result is 

2 / x3 xs \ 
B(*c) = ~(xc + f + -!+•••)' (15-11) 

If we use only the first term of (15-11) in conjunction with (15-9), we 
can write 

D(xc) 
2 

— Xc* 
TT 

7r 

4 
-log xc log 

7T 

1 — Xc 

1 + *c 

2 1 - *c 

7r 1 + xc * 

0<*c < 0.414 

(15-12) 

0.414 < *c < 1. 

The maximum error in B as computed from these expressions is about 
2 per cent. If we use the first two terms in (15-11) the result is almost 
exact. 

The most rapid variation in B occurs in the range near unity. In this 
range the behavior of the function is best characterized by its derivative. 
Since the derivative of an integral with respect to a variable upper limit is 
equal to the integrand, we see readily from (15-4) that 

\_dB 

dco0 c*>o dxe VO)qX0 

1 + x0 

1 — X0 
(15-13) 

The delay is thus logarithmically infinite at the point at which the slope 
starts. This is, of course, a special case of the theorem on the effect of a 
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discontinuity in one component, either of 6 or of one of its derivatives, 
which was discussed earlier. 

15.5. Illustrative Application of the Charts 

In order to illustrate the use of the charts and the accuracy which may be 
expected from them in a simple case, let it be supposed that we are dealing 

^ with the impedance of the network shown in Fig. 15.8. 
Its resistance and reactance characteristics, on a 
logarithmic frequency scale, are shown by the broken 
lines in Figs. 15.9 and 15.10. A simple straight line 
approximation to the resistance is furnished by the 

7x3 solid line characteristic I in Fig. 15.9. The sloping 
Fig. 15.8 segment in this characteristic is centered about the 

point u = 1 and its width is defined by the parameter 
a = 2.8. The corresponding reactance characteristic can consequently be 
read off immediately from the curves in Chart IX. It is shown by the 
solid line Curve I in Fig. 15.10. 

A more elaborate straight line approximation is furnished by the solid 
line characteristic II in Fig. 15.9. Here the central segment and the two 
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neighboring segments are all specified by a = 2.0. The corresponding 
reactance characteristics are found on Chart V. Allowance must be 
made for the facts that the central points of the side segments occur at 
a? = 0.25 and ca = 4.0 and that the three reactance characteristics must be 
multiplied respectively by the factors , and to agree with the total 
resistance changes represented by the corresponding line segments. This 
leads to the constituent reactance characteristics shown by Curves 11a, 
lib and lie in Fig. 15.10. Their sum is indicated by the crosses. 
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CHAPTER XVI 

Application of General Theorems to Input and Output 

Circuit Design 

16.1. Introduction 

Beginning with the present chapter the emphasis in the book will shift 

from the development of general design principles to the discussion of 

special problems in amplifier circuit design. As a general procedure, each 

chapter begins with a discussion of the application of the general methods 

developed in preceding chapters to the particular problem in hand and con¬ 

tinues with one or more illustrative designs. The illustrations are based 

broadly upon actual past designs, but it has been necessary in many 

instances to simplify and modify the design somewhat in order to focus 

attention on the particular design procedure under discussion. The state¬ 

ment that any particular illustration represents a network designed for 

such-and-such a purpose should therefore not be taken literally. 

The present chapter is based upon two theorems, one directed at the 

design of an input or output transformer terminated in an open circuit 

except for a specified parasitic shunt capacity, and the other directed at 

transformers terminated in a finite resistance in addition to the parasitic 

capacity. The theorems are illustrated by an input or output circuit 

design for one of the coaxial repeaters* and by an antenna coupling circuit 

designed for a radio transmitter. The succeeding chapter gives a similar 

discussion of the design of interstage networks including a specified shunt 

capacity. 

Before beginning these two chapters it may be desirable to mention that 

the mathematical expressions upon which the discussion depends are not 

necessarily restricted in their physical application to the problems of input 

and output circuit design and interstage design for which they are nominally 

developed. For example, the principal theorem of the present chapter is 

one on the reflection coefficient obtainable in a circuit including a pre¬ 

scribed parasitic element. Since expressions having the mathematical 

form of a reflection coefficient appear frequently in network analysis this 

theorem may be useful in fields having nothing to do with an input or out- 

* This is a reference to the transmission system described in Chapter XIII. (See 
footnote, p. 285.) 
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put circuit. It is therefore of some importance to pay attention to the 

mathematical form of the functions examined, without regard to the physi¬ 

cal context in which they appear. It may also be observed that since the 

analysis always postulates a prescribed parasitic element it is governed 

generally by the theorem on the conservation of band width in a circuit 

with prescribed parasitic elements which was developed in Chapter X. 

This material should be re-read if necessary before the present chapter is 

undertaken. 

16.2. Input and Output Circuits with Infinite Ter?ninations 

The first theorem deals with the maximum performance obtainable from 

an amplifier input or output circuit when the amplifier impedance itself is 

merely a shunt capacity. Figure 16.1, for example, represents an output 

network of an amplifier whose last tube is of screen grid type, so that its 

plate resistance can be regarded as substantially infinite in comparison with 

the other impedances in the structure. Figure 16.2 shows a corresponding 

Fig. 16.1 

input circuit. In each figure the resistance Rl represents the line and iV”is 

the coupling network. Physically, N will of course be a transformer in 

most cases. For the purposes of this discussion, however, it will be sup¬ 

posed that N may include any number of tuning or shaping elements in 

addition to the transformer proper. Although Figs. 16.1 and 16.2 are 

drawn for non-feedback amplifiers, the conditions of the theorem will fre¬ 

quently be fulfilled also by feedback structures, especially if the feedback is 

of series or cathode type. With either of these feedbacks the active imped¬ 

ance of the amplifier proper is very high, as the discussion in Chapter V 

pointed out, so that the input or output circuit is effectively open-circuited. 

The only difference to be observed is that with feedback the capacity C in 

Figs. 16.1 and 16.2, instead of representing the sum of the tube capacity 

and the high side capacity of the input or output transformer, reduces to 

the transformer capacity alone.* 

If the parasitic capacity C were not present we could evidently imagine 

that the network N consisted of an ideal transformer of indefinitely high 

* See, however, the discussion of “ volume performance ” given later in the chapter. 
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turns ratio. This would allow us to make the current ratio 7i,//in Fig. 16.1 

or the voltage ratio E/El in Fig. 16.2 as large as we pleased over any pre¬ 

scribed band. The capacity, however, limits the response by tending to 

short-circuit the transformer when its impedance ratio is made too high. 

The theoretical problem is that of determining how large a response can be 

obtained over any given band when the best possible network N> including 

both a transformer and additional tuning elements, is used. 

This problem is easily solved by means of the resistance integral condition 

X Rdo) = ^c (16-1) 
which was originally developed as equation (13-7) of Chapter XIII. For 

example, if we let Z = R + iX represent the impedance looking away from 

the output tube proper, as indicated by Fig. 16.1, the power delivered by 

the tube is | I \ 2R. If the network is non-dissipative, which is evidently 

the most favorable case, this is the same as the power | II which 

reaches the line. We therefore have 

= y[rL' (16~2) 

With the help of the principle of reciprocity it is easily shown that the volt¬ 

age step-up in the input circuit is given by the precisely similar expression 

E 

El 
(16-3) 

If we let ea represent either the current ratio | Il/I I or the voltage ratio 

| E/El I and introduce the limitation on R given by (16-1) this leads 

immediately to the general formula 

(16-4) 

As (16-4) is written, the response characteristic extends over the com¬ 

plete frequency spectrum. Since R cannot be negative, however, it is clear 

from (16-1) that the maximum response over a finite range will be obtained 

if tf2® is zero outside that range. This allows us to replace the limits of inte¬ 

gration in (16-4) by an and o>2, if these quantities represent the edges of the 

useful band. If a flat transmission characteristic is demanded, for example, 

it leads to 

a ^ \ log \ 1 
-, 

(o>2 — U3\)CRl 
(16-5) 

where the equality sign holds in the limiting case when the transmission 
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outside the useful band is zero. The difference (o?2 — c*>i) is evidently an 

illustration of the principle of conservation of band width discussed earlier. 

We observe that the best obtainable response is the same as that which 

would be secured if the network, including C, were replaced by an ideal 

transformer whose high side impedance when terminated in the line is 

equal to tt/2 times the absolute value of the impedance of C for the given 

band width.* 

The same formula can evidently be extended to include the case when 

the desired response characteristic varies with frequency. Such a problem 

might be encountered, for example, if we wished to adjust the input or out¬ 

put circuit to compensate for the characteristics of an associated transmis¬ 

sionline. Letitbesupposedthatthetransmissionaiswrittenasa = a0 + ax 
where ax represents the desired variation in the characteristic and «o 

fixes the general level of response. We then readily find 

a o < h log 2CRl 

"1 

e2aidu 
i 

(16-6) 

and since ax is known as a function of frequency, a0 can be computed. The 

results in both cases can be summarized as the 

Theorem: The average effective impedance ratio, over a given band,oi 

an input or output circuit terminated in a prescribed capac¬ 

ity C is not greater than that of an ideal transformer whose 

high side impedance, when terminated in the line, is 7r/2 times 

the absolute value of the impedance of C for the prescribed 

band. 

Examples of the use of this theorem in input and output circuit design 

are given later. 

16.3. Input and Output Circuits for Finite Terminations 

The second theorem deals with input and output circuits terminated at 

one end by a finite resistance and capacity in parallel. This is illustrated 

by Fig. 16.3, the terminating elements being indicated by Rx and C. 

A situation of this sort might arise, for example, if the output pentode in 

Fig. 16.1 were replaced by a triode having appreciable plate conductance. 

Since the networks of Figs. 16.1 and 16.2 are pure reactances and thus 

present a very poor impedance to the line, we might also imagine Rx to be 

* The phrase “ the impedance of C for the given band width ” is used here and in 
later discussion for the quantity l/(co* — «i)C. In accordance with the principle of 
conservation of band width, it represents the impedance of C at the edge of the band 
in an equivalent low-pass problem. 
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an element deliberately added to the circuit to secure an improved amplifier 

impedance. An analytic situation which is similar to that presented by 

Fig. 16.3 may also appear in other physical contexts. For example, in 

certain long-distance telephone systems the power supply to the repeaters 

is fed over the line. The shunt inductances and series capacities required 

to separate power and signal currents at 

each end of the repeater in such a system 

play a role which is somewhat analogous 

to that of the shunt capacity in Fig. 16.3. 

The theorem to be established depends 

upon a study of the reflection coefficient, 

P, between Ri and the impedance it faces. 

If we write Z = R + iX for the imped¬ 

ance looking away from Ru as indicated by Fig. 16.3, the formula for p 

appears as 

N 

•L. 

Ry S z*R+i x 

E Q 
: c ] 

1 
Fig. 16.3 

Rx - Z 

Ri+Z* 
(16-7) 

Although p itself is not of direct interest it is easily related either to the 

impedance which the amplifier presents to the line or to the transmission 

through the network. For example, if the network is non-dissipative and 

Za and Zi represent the impedances looking in each direction from any 

junction, as illustrated by Fig. 16.4, it is 

easily shown that 

Za ~ 2b ' ■ (16-8) 1 = 
Za + Zb 

1 

1 
*«| CJ 

Za 
<— 

zT 

NZ 

j 
_______ 
Fig. 16.4 

where Z& is the conjugate of Z&. Thus in 

particular, if we take the junction as the line terminals, and assume the line 

impedance to be a pure resistance, we can conclude that the absolute value 

of the reflection coefficient between amplifier and line will be the same as 

the absolute value of p. 

The relationship between p and the transmission through the network 

can be established by writing the power which a generator E in series 

with R\ will deliver to the network as 

E2R 

Power = (R + Ri)2 + X2’ (16_9) 

If the network is non-dissipative this must, of course, also be the power 

which flows into the line. The maximum power which the generator E in 

series with i?i can deliver to any external load, however, is E2/4Ri* If we 

let a represent the transmission loss with respect to this optimum, therefore, 
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we have 

(R + Ri)2 + X2 

= 1 - I P I2- 

(16-10) 

The limitation on p which follows from the fact that Z must include the 

parasitic capacity C can be studied most easily by integrating log (1/p) 

around the usual semicircular path. The real component, log | 1/p |, of 

this expression will be recognized as the quantity which is usually spoken 

of as the “ return loss ” (in nepers) in reflection coefficient theory. In 

performing the integration, however, allowance must be made for the fact 

that log (1/p), or log [(/?x + Z)/(Rx — Z)], is not necessarily analytic in the 

right half-plane. No trouble is to be expected from the factor Ri + Z in 

the numerator, since if R\ and Z are both passive impedances their sum 

Ri + Z must also be a passive impedance and can have neither zeros nor 

poles in the right half-plane. This argument, however, does not apply to 

the roots of Ri — Z. It is consequently necessary to suppose that, like a 

non-minimum transfer impedance, 1/p may have poles in the right half¬ 

plane. 

Let the possible poles in the right half-plane be represented by a\ • • • an. 
They will be replaced by corresponding poles in the left half-plane if we 

multiply 1/p by factors of the form (j> — aj)/(p + aj). This procedure is 

essentially similar to the method which was followed in reducing a non¬ 

minimum phase shift transfer impedance to a minimum phase expression. 

Since the function is now analytic in the right half-plane it evidently allows 

us to write 

R\ ~f~ Z 

Ri — Z (P + ^l) ■••(? + #n)J 
(16-11) 

As in all the previous analysis, only the real component of the integrand 

in (16-11) need be considered in evaluating the integral along the real 

frequency axis. At real frequencies, however, it is evident that the abso¬ 

lute value of the product of all the factors involving the a’s is unity. In 

this range the integrand thus reduces effectively to log | 1/p |. 

When w is very great, on the other hand, Z becomes l//wC and 

log [(/?i + Z)/(R\ — Z)] is approximately 2/iwCRi* If we deal with any 

pair of factors of the form (j> — */)/(/> + */) we find similarly that their 

contribution reduces to — 2a^/ico. These are evidently the expressions 

which it is appropriate to use in the integration around the large semi- 
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circular portion of the contour. The complete integral therefore reduces 

to 

2 
1 

P 
d(j& -f- /(£-**] f:=o> (16-12) 

which is readily transformed into 

dw’=CR1~ ’r^‘ 
(16-13) 

The a’s in (16-13) are evidently real or conjugate complex quantities and 

in either case they must have positive real components, since they represent 

poles of the function (Ri + Z)/(Ri — Z) lying in the right half-plane. 

Thus Yiaj must be a positive real quantity and serves to reduce the limit 

on the integral in (16-13) which would appear if we considered C and Ri 
alone. The reason why such a term must appear in a general analysis is 

obvious if it is recalled, from (16-8), that the absolute vaiue of the reflec¬ 

tion coefficient must be the same whether it is measured at the terminals 

of Ri or of Rl in Fig. 16.3. An equation of the type given by (16-13) can 

be developed equally well for either pair of terminals. If C in Fig. 16.3 is 

the controlling capacity in the circuit, however, the quantity which would 

correspond to \/CR\ if we conducted the analysis at the line terminals 

must, in general, be smaller than l/CR\ itself. Thus the line terminal 

result, at least, must include a term of the type represented by if 

the equality of the reflection coefficients is to be realized. 

In special circumstances the additional term may appear at the Ri 
terminals also. Suppose, for example, that the structure of Fig. 16.3 

takes the special form shown by Fig. 16.5, in which i?o represents Rl as seen 

through a transformer. If the elements are 

correctly chosen the network represents a simple 

filter and we can expect that Ri and Z will be 

R* reasonably well matched, so that log | 1/p | will 

be correspondingly large, over at least a limited 

range. If Ro is made very small, on the other 

hand, the network approximates an anti-resonant 

circuit with small damping and gives a very poor match to Ri at all fre¬ 

quencies. For purposes of practical design, however, such an unnecessary 

loss in performance need not be taken seriously, since it is usually a com¬ 

paratively simple matter to secure a design in which no term of the form 

appears in the equation for the reflection coefficient at the terminals 

of the controlling parasitic element. The conditions which the network 

must satisfy in order to secure this result are described in a later section* 
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Like the corresponding earlier expression (16-4), equation (16-13) as it 

stands involves the reflection coefficient over the complete frequency spec¬ 

trum. The response can, however, be restricted to a finite range by notic¬ 

ing that log | 1/p | can be written as 

log 
1 

P 
log 

Ri+Z _A (gi + R)2 + X2 

Ri - Z 2 °g (Rx - R)2 + X2' 
(16-14) 

It is apparent that the right-hand side of (16-14) will be zero when R = 0 

and will be greater than zero for any positive value of R. As in the preced¬ 

ing theorem, therefore, we can conclude that the maximum value of 

log | 1/p | in any prescribed interval will be obtained if R vanishes outside 

that interval. If oox and a>2 represent the edges of the prescribed band, this 

allows (16-13) to be written as 

1 

P 
dw < -> 

~ CRX 
(16-15) 

where the equality sign obtains in the limiting case when ^a3 = 0 and R is 

negligible below a>i and above a>2- 

The simplest example of (16-15) is found, of course, when the reflection 

coefficient is constant in the prescribed range. We then have 

log 
(o>2 “ <j)\)CRi 

(16-16) 

which can also be written as 

I P I > (16-17) 

where Q represents the reactance-resistance ratio (a>2 — u>x)CRx. If we 

make an obvious extension to include circuits in which | p | varies with fre¬ 

quency this general result can be summed up as the 

Theorem: If a circuit including a final shunt capacity is connected to a 

terminating resistance, the average value of the return loss, 

in nepers, between the resistance and the circuit impedance 

is not greater than ir divided by the reactance-resistance 

ratio of the prescribed resistance and capacity in parallel 

for the band width over which the average is taken. 

A plot of | p | against 0, as determined from (16-17) is shown by 

Fig. 16.6. The broken line gives, for comparison purposes, the value which 

| p | would assume if the network AT in Fig. 16.3 presented the fixed resist¬ 

ance R\ to the terminating elements Rx and C in parallel. It will be seen 

that when Q is less than about 0.7 or 0.8 a suitable design for N allows the 

presence of C to be compensated for almost completely and even if Q * 1 



368 NETWORK ANALYSIS Chap. 16 

the reflection coefficient can be reduced from 45 per cent to about one- 

tenth this amount. For higher Q’s, however, the smallest obtainable p 

increases rapidly and depends less and less on what can be done in the 
design of N. 

In virtue of the relation between reflection coefficient and transmission 

loss given by (16-10), the same data can also be plotted in terms of the 

transmission efficiency of the circuit. This is shown by Fig. 16.7. Since 

| p | appears only as the square in (16-10) the losses are extremely small for 

moderate Q’s but they increase rapidly as Q grows larger. When Q is 

indefinitely great the physical situation is, of course, the same as that 

described by the first theorem. 

db 

16.4. Implications of Input and Output Circuit Theoremsfor Practical Design 

The two theorems just established have been presented in the first 

instance as general theoretical measures of the maximum performance 

possibilities of input and output circuits incorporating prescribed parasitic 
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elements. It is perhaps equally important to notice, however, that the 

theorems also suggest how the general framework of a practical design 

approximating the theoretical limits can appropriately be obtained. 

These implications do not provide, of themselves, a complete design 

technique, but they may be useful as accessories to other methods. 

The most obvious suggestion of this type arises from the fact that the 

input or output circuit reaches the theoretical limit of performance only 

when the resistance component of the impedance seen at the terminal of 

the parasitic element is negligibly small at frequencies outside the useful 

band. Since the resistance is a measure of the power which can be absorbed 

by the network and transmitted to the line this means that the ideal solu¬ 

tion must be obtained from an infinitely selective structure, or, in other 

words, a perfect filter. The tuned transformers of ordinary design practice 

are, of course, somewhat like simple filters in their properties. The analy¬ 

sis thus suggests that closer approximations to the limiting response, if 

required, should be obtainable by adding more elements to bolster up the 

selectivity of the circuit. The same considerations also apply to interstage 

network design, since it is shown in the next chapter that maximum inter¬ 

stage gain in a prescribed band likewise calls for a negligible resistance 

component outside the useful band. 

If the circuit is regarded as a filter, it should differ from conventional 

filters in one important respect. Since R is a measure of power, the degree 

of approximation to the ideal depends upon the loss of the filter expressed 

as a power ratio. In these terms an attenuation of the order of 15 to 25 db, 

which would be regarded as quite low in ordinary filter design, is evidently 

substantial. On the other hand, the same considerations point to the 

importance of minimizing the breadth of the “ transition region ” just 

beyond the useful band, in which the loss is extremely low. Thus a design 

giving a reasonably close approximation to the maximum performance may 

have a low general level of attenuation outside the useful band* but its 

selectivity should be relatively sharp. Aside from considerations of 

simplicity and economy, the amount of filtering which it is desirable to add 

is limited by the effects which parasitic dissipation in the circuit elements 

may be expected to have. If the approximation to the theoretical limit is 

already reasonably good a further increase in the selectivity of the circuit 

may evidently lose more by increased dissipative losses than remains to be 

gained by a closer approach to the nominally ideal characteristic. 

* These remarks apply to regions not more than a moderate distance from the useful 
band, where design control is both possible and important. Since the integrations are 
carried to infinite frequency the resistance at more remote frequencies must be 
indefinitely small if the result is not to be infinite. This, however, is cared for auto¬ 
matically by the parasitic elements in the circuit. 
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A question which frequently arises is that of the relation between the 

number of elements which are used in the design and the degree of approxi¬ 

mation to the theoretical limit which may be expected as a result. A 

rough answer here can be obtained from known relationships in filter theory 

between the number of sections in a filter and the amount of discrimination 

which can be obtained from it over any given band. The filter relationship 

is best expressed by the formula* 

<xa = [10 log10 (e2** — 1) — 10 (2* + 1) logio q - 12], (16-18) 

where aa is the minimum attenuation in db over the prescribed attenuation 

range, ap measures the allowable distortion in the pass band, n is the num¬ 

ber of sections in the filter, and q is a parameter measuring the frequency 

interval between the prescribed transmission and attenuation ranges. It 

is, of course, assumed that for any given n the individual sections are chosen 

to give the maximum possible aa. 

Since the input resistance in the attenuating band depends upon the 

power flowing through the structure we can represent it approximately by 

e~2<*a. But if ap and q are taken as constants it is clear from (16-18) that 

the addition of one unit to n will change e~2<*a by a constant factor, what¬ 

ever n may be. Moreover, in the situation to which the preceding general 

theorems on input and output circuits apply, the difference between the 

theoretical limiting performancef of the circuit and the actual performance 

obtained by any particular network depends upon the resistance outside 

the useful band. If we generalize n to represent number of elements 

rather than number of sections this evidently allows us to conjecture the 

Theorem: If a circuit is limited by a parasitic element in such a way 

that maximum performance over a prescribed band can be 

obtained only if the real component of a certain impedance 

is substantial within the band but vanishes outside it, the 

difference between the actual performance and the limiting 

performance tends to be reduced by a constant factor each 

time an element is added to the circuit, provided the design 

is readjusted at each stage to make the maximum possible 

use of the elements available. 

This proposition is stated as a “ theorem 99 only to make it conspicuous. 

Aside from the vagueness of its phraseology, which is intended to cover the 

* Darlington, “ Synthesis of Reactance 4-Poles/* Journal of Mathematics and 
Physics, Sept., 1939, p. 332. 

f The units in which “ performance99 is to be measured are not stated in this dis¬ 
cussion because the issue is not usually important when the theoretical limit is ap¬ 
proached very closely and in any event the discussion is only very roughly quantitative. 
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interstage networks of the next chapter as well as the input and output 
circuits now under discussion, the statement can be attacked on the ground 
that the reasoning on which it depends is inadequate. For example, 
(16-18) is only an approximate relation, 
based on the assumption that aa is reason¬ 
ably large. Moreover, in view of the rela- M\ 
tive importance of the region just outside * 
the band in the total resistance integral, as 
discussed earlier, it is naturally to be expected 
that additional elements will be used to make 
the circuit more sharply selective as well as 
to increase the discrimination ota. This does not necessarily upset the con¬ 
clusion expressed by the theorem but it affects the quantitative relation 
given by (16-18). 

If we nevertheless accept the statement of the theorem at face value it 
leads to the relation between performance and number of elements illus¬ 
trated by Fig. 16.8. The curve corresponds to the equation 

P = M - *<r6n, (16-19) 

where a and b are constants, P is the actual performance, Mis the maximum 
performance, and n is the number of elements used in the design. A study 
of the relation between (16-18) and (16-19) indicates that the constant a 
is analogous to ap> in the sense that it can be regarded physically as an 
index of the accuracy with which the desired characteristic is to be realized 
in the useful band. If we disregard the difficulty that the theoretical 
justification for the equation extends at best only to situations in which the 
limiting performance is approximated fairly closely, it should be possible to 
determine a in most cases by an inspection of the circuit before any shaping 
elements are added to the design. If an open-circuited input or output 
circuit with flat response is required, for example, we might determine a by 
removing N in Figs. 16.1 and 16.2 and computing how large Rl may be 
before the distortion over the useful band caused by the parasitic capacity C 
exceeds a prescribed limit. The constant b is a scale factor which can best 
be determined by comparing the results obtained with two different net¬ 
works. If (16-18) is followed, however, b depends principally upon the 
way in which q should be chosen to secure the best compromise between 
sharp selectivity and eventual loss, and is independent of the accuracy 
requirement ap. Thus b should be roughly the same for all designs of a 
given type, without regard to changes in the constant a. If parasitic dissi¬ 
pation is considered it is, of course, necessary in interpreting (16-19) to 
assume that M may be somewhat smaller than the theoretical formulae 
based on non-dissipative networks indicate. 

p 

Fig. 16.8 
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16.5. Reconstruction of Imaginary Component as an Aid to Design 

The input and output circuit theorems can also be studied from another 
point of view, which can be used to aid design work whether the structure 
is regarded as a filter or is obtained by straight cut-and-try methods. The 
theorems as they stand appear as limitations on the values which the real 
component of some function related to the impedance of the structure can 
assume in the useful band. If the efficiency of the circuit is to be reason¬ 
ably close to the theoretical limit, however, the real component must be 
quite small outside the useful band. We thus know the behavior of the real 
component with fair accuracy over the complete spectrum and it is conse¬ 
quently possible to use the methods described in the previous chapter to 
estimate what the associated imaginary component will be. This fixes the 
complete impedance seen at the terminals of the parasitic element, or, if we 
subtract the contribution of this element, the impedance of the network 
proper. Once the network impedance is known, however, it is generally an 
easy matter to find its structure. 

As a simple example, let it be supposed that an open-circuited input 
transformer having a flat characteristic equal to the theoretical limit is to be 
designed. In terms of the low-pass equivalent, the high side resistance 
must be that shown by Fig. 16.9, where unit impedance is taken as the 
impedance of the capacity for the prescribed band width. This is a 
discontinuous real characteristic for which the corresponding imaginary 
characteristic is readily found from the charts in the preceding chapter 
and takes the form shown by the curve —-Y in Fig. 16.9. 

If we subtract the parallel impedance of the capacity, the resistance and 
reactance of the network proper appear as shown by the curves in 
Fig. 16.10. Let the reactance component be ignored for the moment. The 
resistance characteristic can be matched with sufficient accuracy for practi- 
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cal purposes by an ordinary mid-series image impedance of the constant k 
type.* In order to illustrate the theoretical basis of the method, however, 

we will use the more complicated function 

(16-20) 

which matches the required characteristic to the accuracy indicated by the 

crosses in Fig. 16.10. The image impedance given by (16-20) can be 

obtained from a number of different networks. If we choose in particular 

a double m derived section the circuit takes the general form shown by 

Fig. 16.11. The parasitic capacity is indicated by C0. The box represents 

Fig. 16.11 

the filter, the elements shown explicitly in the box being the double m de¬ 

rived termination. It is, of course, assumed that the filter is terminated 

at the other end in a section which matches the line impedance Rl with 

sufficient accuracy over the transmitted band. 

* For references on standard filter theory, see the footnote in Chapter XIV, p. 326. 
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We now consider the reactance component in Fig. 16.10. It is obvious 
that it can be supplied approximately by the simple series inductance L in 
Fig. 16.11. An improved match can, however, be obtained by viewing the 
problem more generally. Broadly speaking, the analysis begins with an 
impedance, that shown by Fig. 16.9, which is appropriately chosen to 
include the parallel capacity C0 and whose real and imaginary parts satisfy 
the relations necessary to permit the function as a whole to be represented 
by a physical network. It consequently follows that the impedance which 
remains when Co is removed must also be physically realizable. Any 
physically realizable impedance, however, can be regarded as a combination 
of a minimum reactance network and a purely reactive structure. If the 
resistance component is matched with sufficient accuracy with a minimum 

reactance circuit, consequently, we may ex¬ 
pect that it will always be possible to find 
a physical pure reactance network to complete 

q the design. 
In the present instance the difficulty with 

the reactance match evidently arises from the 

Fig. 16.12 feet that the impedance presented by the 
filter is not of minimum reactance type. It 

has a pole on the real frequency axis both at infinity and at the anti¬ 
resonance of the elements L\ and C\ indicated by the broken lines in 
Fig. 16.11. The pole at infinity is not 
troublesome, since a series inductance must 
be added in any case, but the finite pole is 
objectionable and should be removed by ^l 
deleting the corresponding elements from the 
network.* With this modification, the ad¬ 
dition of the coil L in Fig. 16.11 allows the 
required reactance to be matched to the 
accuracy indicated by the crosses in Fig. 16.10. The final characteristics, 
including the parasitic capacity, are shown by the crosses in Fig. 16.9. 

The design can be converted to a practical form with the help of the 
familiar representation of a physical transformer shown by Fig. 16.12. The 
transformer in the drawing is supposed to be ideal, while the leakage induct¬ 
ance, mutual inductance, and parasitic capacity which would appear in an 

*A similar reduction can be made for an image impedance of any complexity. 
The method is given in the author’s U. S. Patent No. 2,249,415. It is also possible to 
remove the pole at infinity. Although this does not improve the reactance match in 
this circuit, it might have the practical advantage that it increases the inductance 
which can be identified with the leakage inductance of the final transformer* 

Fio. 16.13 
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actual structure are represented respectively by L\y Z^, and C. If the 
useful band covers several octaves we can neglect Lm> on the assumption 
that Fig. 16.11 refers only to the high frequency behavior of the system. 
This evidently leads to the circuit shown by Fig. 16.13, where the box 
represents the original filter elements of Fig. 16.11 translated to the low side 
of the transformer and La is an inductance which may be added, if neces¬ 
sary, to facilitate the adjustment of the transformer leakage. If the 
useful band is relatively narrow, on the other hand, or if the coefficient of 
coupling in the transformer is low, it is more satisfactory to regard Fig. 16.11 
as merely the low-pass equivalent of the actual circuit. In this event, the 
coils and condensers in Fig. 16.11 represent, respectively, resonant and 
anti-resonant branches in the physical structure. This gives a circuit of 
the form shown by Fig. 16.14. The box is now the band-pass equivalent of 

the original low-pass filter. La and Ca are adjusting and tuning elements to 
convert the leakage to an appropriate resonant circuit. The inductance Lb 
is added to produce the correct anti-resonance in the final branch of the 
circuit, on the assumption that C rather than Lm is the limiting element in 
the branch as it stands. If the mutual inductance is the limiting factor 
the added element must, of course, be a capacity. 

For practical purposes, the design procedure just described may be 
modified in two fairly obvious ways. In the first place, instead of simulat¬ 
ing the resistance component by a filter image im¬ 
pedance, with all the network complexity which 
that implies, we may represent it directly by a 
suitable resistance-reactance combination. For 
example, the resistance characteristic in Fig. 16.10 

is very nearly the characteristic we would expect 
to secure from a resistance in parallel with a tuned 
circuit resonating just outside the band. With the addition of a series in¬ 
ductance to furnish the necessary reactance this leads to the structure 
shown by Fig. 16.15. In spite of its simplicity the network gives an ade- 

\JJJU~ 

R*iX 

Fig. 16.15 



376 NETWORK ANALYSIS Chap. 16 

quate practical match to the final theoretical characteristic, as Fig. 16.16 

indicates. 

If a more elaborate resistance characteristic is called for, use may also be 
made of the fact that an n element line of alternating series inductances and 
shunt capacities terminated in a resistance Rl> as indicated by Fig. 16.17, 
has an input resistance given by* 

R = 
Rl 

f 

1 -f- A\w2 + A2co4 + • • • + An(j?n 
(16-21) 

where the n constants A\ • • • An are related to, and can be used to deter¬ 
mine, the n elements in the network. In this formulation, the ratio of Rl 
to the desired R fixes the curve which the polynomial 1 + • * • + Anco2n 
should follow and the design process reduces to the choice of suitable values 
for the A's by known methods of polynomial approximation. 

We may also modify the procedure by changing our conception of the 
final performance which the complete network will exhibit. For example, 

with the assumption made thus far, 
that the gain of the transformer is to be 
the maximum theoretically possible, 
all the area corresponding to the inte¬ 
gral of the resistance looking into the 
high side terminals of the transformer 
must be found in the useful band. 
This may be spoken of as a “ resistance 

efficiency ” of 100 per cent. On the other hand, if the gain of the trans¬ 
former can be 1 db less than the theoretical limit the resistance efficiency * 

* H. W. Bode, “ A Method of Impedance Correction,” B.S.T.J., Oct., 1930. 

Fio. 16.17 
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need be only 80 per cent, and 20 per cent of the area can be used to cushion 
the sharpness of transition between the transmitted and attenuated regions. 
This is illustrated by Fig. 16.18, where the resistance is shown as a single 
straight line slope outside the band and the accompanying reactance is 
determined by the charts given in the preceding chapter. The resistance 
variation outside the band can be chosen in any way which appears realis¬ 
tic, as long as the total area is kept constant, but the simple slope charac¬ 
teristic given in the figure should be adequate for most purposes. 

Fig. 16.18 

The advantage of making this modification is, of course, that it leads to a 
residual impedance, after the parasitic capacity is subtracted, which is more 
easily matched by a simple network. The reduction in the sharpness of 
selectivity in the circuit as a whole is also helpful in minimizing the effects 
of parasitic dissipation in the network. An estimate of the quantitative 
importance of these changes can be made from the design examples given 
in the next sections. 

The design procedure just described for input and output circuits has 
been given in great detail, in spite of its elementary nature, because the 
possibility of applying the contour integral relations to expedite design 
work in similar ways arises in many other network problems. For example, 
the interstage network design technique described in the next chapter 
follows a similar pattern. We begin with a relationship between the gain 
available from the interstage and its parasitic capacity. After the gain 
characteristic is thus determined the corresponding phase characteristic is 
computed. If the contribution of the parasitic capacity is allowed for, 
this fixes the resistance and reactance required from the interstage network 
proper. The design problem reduces, in effect, to the discovery of a mini¬ 
mum reactance network which will simulate the required resistance with 
sufficient precision. For the reasons described earlier, the additional 
reactance required to complete the design can always be obtained from a 
physical network and in practice the necessary network is usually so simple 
that it can be determined without effort. The same general attack can be 
used in many other situations. In principle, the procedure rests merely 
upon a recognition of the fact that the contour integral formulae make it 
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possible to develop a relatively precise and detailed picture of the properties 
which any physical network giving the desired final characteristic must 
have. Since design assumptions leading to non-physical networks are thus 
eliminated the amount of cut-and-try work in the design is correspondingly 
reduced. 

16.6. Illustrative Reflection Coefficient Design 

An example of the theorem on reflection coefficients is furnished by the 
design of a network coupling the output stage of a long wave radio trans¬ 
mitter to its antenna.* If the antenna is identified with the output line 
the situation is broadly similar to that shown by Fig. 16.3. In discuss¬ 
ing Fig. 16.3, however, it was assumed that the controlling parasitic 
element was the capacity C, at the terminals of the output tube, and 
that the reflection coefficient of physical importance was that measured 
at the terminals of the line. The situation was analyzed in terms of 
the reflection coefficient at the terminals of the output tube, the results 
being transferred to the line terminals by making use of the fact that 
if the network is non-dissipative the absolute value of the reflection coeffi¬ 
cients at the two points must be the same. 

In the present problem all these relations are reversed. Over a narrow 
band the capacity of the output stage can be tuned out or otherwise dis¬ 
posed of and is not limiting. On the other hand, the antenna is physically 
large to radiate effectively at the long wave lengths employed by the trans¬ 
mitter, and has an enormous capacity to ground. When this is tuned by 
suitable inductances in the antenna lead-in and down leads the net antenna 
impedance appears approximately as a constant resistance in series with a 
rapidly varying resonant circuit whose resonance frequency occurs in the 
center of the band to be transmitted. 

Conversely, the impedance which is of direct engineering interest is that 
which the antenna and coupling network jointly present to the output 
tubes. At the 100 kw power level at which the transmitter operates the 

* The transmitter under discussion is the original one located at Rocky Point, Long 
Island, to furnish commercial telephone service to England. The system is described 
in an article “Transatlantic Telephony,” by O. B. Blackwell, appearing in the B.S.T,/. 
for April, 1928. The transmitter operates on a wave length of about 5000 meters. 
The reader will, of course, understand that the high antenna-ground capacity in the 
circuit is a consequence of the large antenna structure necessary to support such a 
wave length and does not appear in more modern short-wave systems. 

The original antenna coupling network was designed by the author's colleague, 
Mr. E. L. Norton. It was redesigned some years ago by Mr. R. B. Blackman to 
provide two-channel operation. Only the redesign actually made use of the reflection 
coefficient theorem given in the text, but for the sake of illustration the entire design 
has been described from the point of view of this theorem* 
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current and voltage at the plate terminals are at best extremely high by 
ordinary standards. If the coupling network impedance oscillates between 
very large and very small values, so that the tubes work almost into an 
open circuit for certain signal frequencies and almost into a short circuit for 
others, the danger that they will 
either flash over or burn out is 
serious. For practical purposes, 
this amounts to a limitation on the 
absolute value of the reflection 
coefficient which can exist between 
the coupling impedance and the plate 
impedance of the tubes. The situation is illustrated by Fig. 16.19. The 
elements Ray Lay and C0 represent the antenna impedance. The reflection 
coefficient between Ra and Z\ is that to which direct design attention is 
paid, while the reflection coefficient of final interest is that between the 
plate impedance Rp and Z2. 

The values of Ra, Lay and Ca determined by measurement give an 
antenna reactance equal to about 2.5 times the antenna resistance at either 
edge of the band.* If the coupling network were merely a transformer 
matching the antenna and plate resistances this would give a reflection 
coefficient of 78 per cent. In accordance with (16-17) the minimum 
reflection coefficient obtainable with an ideal network is 28 per cent. Since 
it is not economically feasible to employ a large number of elements in a 
circuit operating at so high a power level, however, it must be expected 
that the final reflection coefficient will be somewhat worse than this limit. 

To explore the situation, let it be supposed that networks are to be 
designed which are respectively 60 per cent and 80 per cent efficient. In 
other words, the networks are to be such that 60 per cent or 80 per cent of 
the total integral of log j 1/p | in (16-15) falls within the useful band. This 
will give reflection coefficients in the useful range of 47 per cent and 36 
per cent respectively. In terms of the relationship expressed by equation 
(16-19), the reduction of the original reflection coefficient of 78 per cent to 
47 per cent is of the reduction, from 78 to 28 per cent, which could be 
obtained by using an infinite number of elements. Similarly, the reduction 
from 47 to 36 per cent wipes out ^ of the amount remaining torbe gained. 
Since the two ratios, and are approximately equal, the rule given by 
(16-19) would lead us to expect that the network with 80 per cent efficiency 
would require about twice as many elements as that with 60 per cent 

* This assumes a rather narrow voice band. For a band of normal width the ratio 
is somewhat higher. A narrow band is used here for purposes of calculation since the 
final circuit is not very selective and effective transmission can be secured over a band 
somewhat greater than the nominal one, 
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efficiency.* It is interesting to notice that the rule is borne out in this 
particular case. 

The actual design process begins with the construction of hypothetical 
complete characteristics for log J 1/p | and the computation of the imag¬ 
inary components which must correspond to them, in accordance with the 
methods described in the preceding section. The results for the 60 per cent 
and 80 per cent cases are shown respectively by Figs. 16.20 and 16.21. All 
the curves are drawn for the low-pass equivalent circuit. The curves 

labelled A are drawn for log | 1/p j and those labelled B for the correspond¬ 
ing phase angle. In Fig. 16.21 the real component outside the band is 
drawn in the simplest possible way, as a single straight line segment. 
Figure 16.20 includes also an alternative characteristic which varies in a 
way more nearly in accordance with the characteristics one would intui¬ 
tively expect from a physical circuit, in order to illustrate how different 
choices in this region may affect the solution. In any event, the area under 
the real characteristic outside the band must, of course, be the proper frac¬ 
tion, 20 or 40 per cent, of the total. 

Since the curves in Figs. 16.20 and 16.21 specify the reflection coefficient 
between Zx and Ra in Fig. 16.19 completely we can readily determine from 
them what Zx must be in terms of Ra. If the parasitic reactances La and 
Ca are subtracted the computation also fixes the network impedance Z3, 
which is the quantity with which we will deal directly. For the two cases 
illustrated by Figs. 16.20 and 16.21 the resulting Z3 characteristics are 
those shown by Figs. 16.22 and 16.23, respectively. 

* Roughly the same results are secured if the performance is measured in terms of 
log | 1/p | rather than in terms of | p | itself, although the two measures would evidently 
depart seriously from one another if the limiting reflection coefficient were very much 
smaller than 28 per cent. In view of the uncertain logical foundation for (16-19), 
especially in the region of small values of w, it is scarcely feasible to decide which meas¬ 
ure should be chosen. When n is large and the approximation to the limit is very close, 
it is of course permissible to use either measure since departures from the ideal meas¬ 
ured in arithmetic and logarithmic terms become proportional to one another. 
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It is next necessary to determine suitable configurations for the coupling 
circuit by inspection, using the characteristics in Figs. 16.22 and 16.23 as 
guides in the process. For the characteristics of Fig. 16.22 this is a simple 
matter. An appropriate circuit is obviously the resistance and capacity in 

parallel shown by Fig. 16.24. This gives the result indicated by the 
broken lines in Fig. 16.22. The simulation of the characteristics in 
Fig. 16.23 requires a more complicated network. Advantage may, how¬ 
ever, be taken of the fact that since the characteristics must obviously 
represent a physical structure of minimum reactance type it is necessary to 
give explicit consideration only to the resistance component. The react¬ 
ance will be supplied automatically. If the resistance is simulated by the 
method described in connection with equation (16-21) the resulting con¬ 
figuration is that shown by Fig. 16.25. It leads to the characteristics shown 

Fig. 16.24 

by the broken lines in Fig. 16.23. The characteristics of Fig. 16.23 can also 
be simulated by first converting them to an admittance. Regarded in this 
form they must, of course, still specify a physical network, although not 
necessarily one of minimum susceptance type. With this procedure the 
resistance and inductance in Fig. 16.25 are determined from the con¬ 
ductance requirement and the capacity is supplied as a final step to give 

the required susceptance. 
This design procedure has been described in great detail, in spite of its 

almost childish simplicity, chiefly to illustrate the advantages which accrue 
when the contour integral relations are used to provide a complete initial 
picture, including both real and imaginary components at all frequencies, 
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of the network function to be realized in the design. The further steps 
in the design, however, are of less interest and need only be summarized. 
Briefly, the structure of Fig. 16.24 was chosen as giving an adequate result 
in the simplest possible manner. In band-pass terms it represents, directly, 
a resistance in parallel with an anti-resonant circuit. Unfortunately, how¬ 
ever, the resistance does not have the right value to be identified with the 
plate resistance of the tubes. To avoid this difficulty the circuit was 
actually constructed in the form shown by Fig. 16.26. The theoretical 
justification for making this change can be understood if it is recalled from 
the discussion at the end of Chapter X that the locus of the impedance of a 

Fig. 16.26 Fig. 16.27 

resistance and anti-resonant circuit in parallel must be a circle, as shown 
by the solid line in Fig. 16.27. If we regard the condensers in Fig. 16.26 
as fixed reactances over a narrow band, however, the argument in Chap¬ 
ter X shows that the impedance locus in Fig. 16.26 will be a circle also. It 
is shown by the broken line in Fig. 16.27. The diameter of the new circle 
can be adjusted to the proper value, for a given Rpy by a suitable choice of 
the shunt capacities and it can be moved vertically into coincidence with 
the old circle by the addition of a final reactance, which can be incorporated 
with the antenna tuning. The shunt condensers, since their kva require¬ 
ment is small, do not add greatly to the cost of the network. 

Although the analysis has envisaged single-band transmission, in the 
actual network it was necessary to provide for the transmission of two 
bands, one centered at 60 kc and the other at 68 kc. This was accom¬ 
plished by replacing each resonant circuit by two resonant circuits in paral¬ 
lel and making minor readjustments to compensate for changes in the 
resistance of the antenna and the reactance of the shunt condensers in 
Fig. 16.26 in going from one band to the other. In virtue of the conserva¬ 
tion of band width principle, double tuning the antenna doubles the Q 
which the antenna will exhibit over a single band. To avoid this, a fixed 
resistance, producing 3 db loss, was added in series with the antenna. 
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The final result is shown by Fig. 16.28. The diagram represents the 
plot of the impedance Z% of Fig. 16.19. The point P represents the plate 
resistance of the output tubes and the heavy circle the locus of impedances 
whose reflection coefficient against this resistance is 45 per cent. It will be 
seen that the plot of Z% encircles the point P. This is because the reflection 
coefficient at this point is necessarily not a “ minimum phase ” function, for 

A' 

the reasons described in connection with the proof of the reflection coeffi¬ 
cient theorem. The corresponding plot of the Z\ impedance of Fig. 16.19, 
on the other hand, gives the same absolute value of the reflection coefficient 
but it does not encircle the reference point. This is illustrated by the small 
scale plot of Fig. 16.29. 

16.7. General Consideration in the Design of Input and Output Circuits for 
Feedback Amplifiers 

If we are to apply the theorems on the characteristics obtainable from 
input and output circuits terminated in various ways, it is obviously neces¬ 
sary to know, first of all, what elements of the amplifier are to be regarded 
as furnishing the termination. There is, of course, no difficulty with this 
question if the amplifier is of non-feedback type, like the structure which 
was used in illustrating the reflection coefficient theorem. In a feedback 
structure, however, the elements with which the input or output circuit is 
effectively terminated under operating conditions are not necessarily those 
which would be important if we opened the loop and analyzed the structure 
as a straightforward non-feedback device. An indication of how these 
changes may come about is furnished by the various theorems in Chapter V, 
which showed that the actual or active impedance presented by the ampli¬ 
fier proper to the input or output circuit, or through the input or output 
circuit to the line, may be quite different from the impedance which would 
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be computed in the absence of feedback. Unfortunately for the simplicity 
of the situation, however, these modifications hold only for certain charac¬ 
teristics of the input and output circuits. In studying other aspects of 
their performance, apparent changes in impedance caused by feedback do 
not appear. If the example given later of the design of an input circuit for 
a feedback amplifier is to be intelligible it is first necessary to review this 
ground. 

It is simplest to begin by listing the characteristics of the input or output 
circuit which are most commonly of engineering interest. In a non¬ 
feedback amplifier we are ordinarily interested in one or both of the follow¬ 
ing considerations: 

1. The impedance which the input or output circuit presents to the line.* 
2. The contribution of the circuit to the total amplifier gain. This is, of 

course, the transmission from the input line to the input grid, in the 
case of an input circuit, or the transmission from the output plate to 
the output line, in the case of an output circuit. 

The use of feedback affects this situation in two respects. In the first 
place, it makes it necessary to evaluate both characteristics just men¬ 
tioned in terms of the active rather than the passive state of the system. 
The fact that the active impedance of a feedback amplifier may differ from 
its passive impedance has already been mentioned. As later discussion 
shows, a similar correction may be necessary in evaluating the contribu¬ 
tion of the input and output circuits to the overall amplifier gain. The 
use of feedback also makes it desirable to study the characteristics of the 
input or output circuit from two additional points of view. These are 

3. The contribution of the input or output circuit to the transmission 
around the feedback loop. 

4. The efficiency of the circuit in delivering power from the output tube 
to the line, in the case of an output circuit, or in providing a high 
signal-to-tube-noise ratio at the grid of the input tube, in the case of 
an input circuit. 

The first of these is self-explanatory. The second would be indistinguish¬ 
able from the straightforward transmission characteristic of the circuit, as 

*In practical amplifiers the impedance which the circuit presents to the tubes 
may also be of direct importance. For example, if the output tube is of screen grid 
type, the impedance to which it is connected should be kept below some limiting value, 
irrespective of other considerations, in order to minimize non-linear distortion. 
Questions of this sort are not considered here, however, since in the situations at 
which the discussion is directed the impedance levels attainable in the circuit art 
limited much more severely by parasitic capacities. 
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given by (2) above, if we were dealing with a non-feedback amplifier. In a 
feedback structure, however, the characteristics defined by paragraphs (2) 
and (4) are not necessarily identical. In many applications the distinction 
between them is, in fact, the crux of the problem. 

The situation can be studied most easily by recalling from Fig. 3.3 of 
Chapter III that the input or output circuit of an ordinary feedback ampli¬ 
fier must actually be regarded as a network having three pairs of terminals. 
One pair leads to the line, one pair to the n circuit proper, and one pair to 
the p circuit proper. For the purposes of this discussion the diagram can 
conveniently be represented in the form shown by Fig. 16.30. The mean- 

Fic. 16.30 

ings of the various symbols should be easily understood from the drawing. 
For example, kx represents the path from the input line to the input grid 
and is so chosen, as a numeric, that if the line voltage is E0y the input grid 
voltage En is kiE0. Similarly, Gm0 represents the circuit from the input 
grid to the output plate and corresponds to the output plate current 
Iii = GmoE,. In the same way the current delivered to the P circuit on 
account of the flow of plate current is given by Ip = k2In and this produces 
a corresponding voltage Ep = PoIp at the terminals connecting the other 
end of the p circuit to the input circuit.* With the exception of Gm0, 
which represents the ordinary forward circuit gain, all these quantities are 
to be evaluated with the tubes dead. It is convenient to suppose that the 
tube admittances are incorporated as part of the input and output circuits, 
so that the box Gmo exhibits an infinite impedance at each end. 

The input and output circuits in Fig. 16.30 are defined by the passive 
impedances Zp and Zfv and the sets of parameters kXy k2y and £3, or k[9 k2y 

* The p circuit is supposed here to be driven by a current and to produce a voltage 
in response under the assumption that its impedance is much smaller than that of the 
rest of the circuit, as it is, for example, in the series feedback amplifier to be examined 
later. Other assumptions, which may be more convenient for other types of feedback, 
are, however, obviously equally legitimate and affect the final results only in self- 
evident ways. 



386 NETWORK ANALYSIS Chap, 16 

and ks9 representing various possible transmission paths through the circuit. 
The passive impedances and the parameters k3 and k'3 specifying the trans¬ 
mission between the P circuit and the input or output lines are, however, of 
interest only in determining the actual impedance of the amplifier at input 
or output and can be dismissed briefly. If we assume that the feedback is 
very large, for example, it can be shown that the current flowing in the 
input line, with the tubes active, in response to the generator 2£0> is 

Io = Eq r-j— L zp + R0 

kskxl 

k2y (16-22) 

Thus the active admittance of the circuit, including the line impedance, is 
equal to the passive admittance, 1/ (Zp + R0), of the input circuit in series 
with the line diminished by k3k\/k2. Equation (16-22) is included here 
merely for the sake of completeness, since this discussion will not deal with 
amplifier impedances. For practical purposes, moreover, it is not very 
useful, except perhaps as a convenient expression of the fact that the active 
impedance of the amplifier can be equal to its passive impedance only if we 
set k3 = 0, or, in other words, only if we choose a circuit having zero trans¬ 
mission, on a passive basis, between the P circuit and the line. In ordinary 
circuits the rules established in Chapter V should be more convenient. 

The input and output circuit parameters which remain to be investigated 
are k\ or k[ and k2 or k2. In view of their obvious role the second of these 
pairs can be immediately identified and named as the loop transmission 
characteristics of the input and output circuits. The first pair, of course, 
represent the transmission from input line to input grid, or from output 
plate to output line, when the amplifier is passive, but since we may expect 
the active and passive characteristics of the network to be somewhat 
different it is not immediately clear what physical significance they may 
have for the final amplifier. We observe, however, that k[ determines 
the ratio of the final output current to the current /M whether the circuit 
is supposed to be active or passive. Since the tube admittance is supposed 
to be part of the output circuit, must be the actual plate current flowing 
in the plate circuit of the last tube and is fixed by the power handling 
capacity of the tube, without regard to the fact that the tube is part of a 
feedback circuit. Thus the parameter k[ determines the efficiency of the 
output circuit in providing a large power output from the final amplifier. 
Similarly, the parameter k\ measures the efficiency of the input circuit in 
providing a high ratio of signal to tube noise in the first tube. This can be 
seen most easily by recalling from Chapter V that the final signal output 
for a unit generator in the input line is equal to the fractionated gain of the 
amplifier, taken with respect to the first tube, divided by the return differ¬ 
ence for that tube. The formulae of Chapter V, however, show that the 
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current flowing in the output in response to a noise generator in the first 
tube is equal to the current which would flow if the first tube were dead, 
divided, again, by the return difference for the tube. When the signal-to- 
noise ratio is computed, the two F’s cancel out and the result reduces, in 
effect, to that which would be secured from the non-feedback amplifier 
obtained by opening the feedback path in the actual structure. The 
parameters k\ and k[ will be called the passive transmission or volume 
performance characteristics of the input and output circuits on this account. 

The contributions of the input and output circuits to the final gain 
characteristics of the operating amplifier are still to be considered. They 
can be evaluated most easily by studying the expression for the final gain 
directly. The fractionated gain with respect to any one of the tubes in the 
forward circuit is evidently kik\GmQy and the .eturn ratio for any tube is 
— k2k2Gmoft)- If the direct transmission can be neglected, the current 
flowing in the output line in response to the generator E0 is given by (5—28) 
of Chapter V as the ratio of the fractionated gain to the return difference. 
The reference from which the net gain is computed can be taken as the 
current E0/2Ro which would flow in the output line if the amplifier were 
removed and the input and output lines connected directly together. This 
gives the final gain expression as 

$ _ 2kikiGmoRo * o'i'v 

~ 1 - k2k'2Gm0fo ( } 

When the loop gain is high, equation (16-23) reduces to 

Q __ £i k[ 2Rp * 

&2 &2 Pq 
(16-24) 

In this expression 2Ro/0o evidently represents the gain characteristic which 
can be ascribed to the 0 circuit proper, while the ratios kx/k2 and k[/k2 are 
the contributions of the input and output circuits. These last will be 
called the external gain or active transmission characteristics of the input and 
output circuits. In view of the significance which has already been 
assigned to the separate k’s we can evidently state the 

Theorem: The external gain characteristic of an input or output circuit 
is equal, in logarithmic units, to the difference between the 
volume performance and loop transmission characteristics of 

the circuit. 

Although this relation is direct enough analytically, its implications for 
actual network design are somewhat less binding than they may appear to 
be. This is because we are usually interested in the gain and volume 
characteristics only in the useful band, while the problem of stabilizing the 
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feedback loop, which involves the loop transmission characteristic, is most 
acute beyond the useful band. For practical purposes, consequently, it is 
often possible to regard the three transmission characteristics as inde¬ 
pendent, within modest limits. 

In an actual amplifier, the distinction between the gain characteristics 
of the input and output circuits and their efficiency in transferring energy 
into and out of the amplifier is usually dependent principally upon the 
admittances at the input and output ends of the jli circuit proper. As 
noted previously, these admittances are incorporated as part of the input 
and output circuits for purposes of analysis. It is evident that if they are 
greatly increased both the volume and loop characteristics will be corre¬ 
spondingly degraded. The changes in these characteristics must, however, 
be the same, by Th^venin’s theorem, and the external gain characteristic 
will consequently be unaffected. Thus in a low-frequency amplifier the 
distinction between the gain and volume characteristics is generally insignif¬ 
icant, unless the plate conductance of the output tube represents an effect 
worth considering. At higher frequencies, on the other hand, where the 
parasitic tube capacities lead to large tube admittances, the distinction 
becomes more important. 

16.8. Volume Performance and External Gain Characteristics of Input and 
Output Circuits for Coaxial Repeaters 

An illustration of the analysis just concluded is furnished by the input 
and output circuits in certain of the repeaters used in the coaxial system.* 
The feedback connections in the repeaters are of series or cathode type. If 
we consider the series connection for simplicity the general repeater 
schematic takes the form shown by Fig. 16.31. The input and output 
circuits are identical. The controlling parasitic elements in the structure 
are the capacities C and C0. The tube capacities, Co, furnish the reference 
impedance in terms of which the impedance level of the rest of the circuit 

* See footnote, p. 285. 
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is determined.* They should be as small as possible. The capacity C is a 
prescribed multiple of C0, determined by methods described later, and is 
furnished physically by the high-side capacity of the transformers plus, 
usually, an additional padding condenser. The feedback impedance Zp 

is evidently equal to the voltage-current ratio which was symbolized by 0o 
in the preceding discussion. In accordance with (16-24) it can be fixed as a 
multiple of the line impedance as soon as the required final gain and the gain 
of the input and output circuits are determined. It is ordinarily very small 
in comparison with the other impedances in the feedback loop. 

The volume characteristic, of these circuits is easily identified. If we 
neglect the small impedance Zp it is evidently the transmission between high 
side and line when the high-side termination of the circuit is taken as the 
total capacity C + C0. The loop characteristic, k2, can be obtained if it is 
recognized that the feedback voltage is, broadly, the voltage drop across Zp 

caused by the flow of plate current from the output tube. Because of the 
presence of C0, however, only a fraction of the plate current actually 
reaches Zp. If we neglect Zp again in comparison 
with the other impedances of the circuit this 
fraction, in the notation of Fig. 16.31, is obviously 
Z0/(Z + Z0). Similarly, at the input end the 
impedances Z and Z0 in series form a potenti¬ 
ometer which imposes the fraction Z0/(Z + Z0) 
of the total voltage across Zp on the input grid. In either case, the frac¬ 
tion Z0/(Z + Z0) is obviously k2. This quantity is frequently called the 
transformer potentiometer term in practical design. 

The relation among the loop transmission, volume performance and 
external gain gives the external gain characteristic as (Z + Z0)/Z0 times 
the volume performance for either the input or output circuit. This can 
be given a simple physical interpretation. With the inputf circuit redrawn 
in the form shown by Fig. 16.32, let E represent the high-side voltage when 
the terminals AAr are open-circuited. It follows from Thevenin’s theorem 
that the voltage existing across C0 when the~terminals A Af are closed will be 
Z0£/(Z + Z0), and this must, of course, be the volume performance volt¬ 
age. The external gain voltage is therefore E itself. In other words, the 
external gain characteristic is the same as the open-circuit characteristic of 
the input or output circuit proper, when no allowance is made for the para- 

*This assumes a high frequency broad-band structure of the type used in the 
coaxial system. In a low frequency amplifier the limiting impedance levels might be 
found from other considerations, the tube admittances themselves being negligibly 
small. 

t The principle of reciprocity shows that the same result follows for the output 
circuit. 

a a' 

Fig. 16.32 
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sitic admittances of the forward circuit. This may be verified by recalling 
from Chapter V that the active impedance which terminates the input or 
output circuit proper in a series feedback amplifier is substantially an open 
circuit. 

The principal result established by this analysis is the conclusion that 
the parasitic capacity which limits the input or output circuit response is 
either C or C + Co, depending upon whether we are examining the external 
gain or the volume characteristic. In practical design the choice of C in 
terms of Co depends upon a compromise between considerations of volume 
performance and feedback. The volume performance obtainable is 
maximized if C is very small in comparison with Co. On the other hand, 
the loop transmission characteristic of the circuit reduces at very high 
frequencies to C/ (C + C0). It is shown in a later chapter that maximum 
feedback in the useful band will be realized, other things being equal, if C 
is very large, so that the asymptotic loss represented by the factor 
C/ (C + Co) is correspondingly small. For practical purposes we can 
suppose that a suitable compromise between these considerations is found 
when C is chosen in the general range 1.2C0 to 2C0.* The exact value of C 
is not very critical and is used as a design parameter in the discussion given 
later. 

The physical significance of the conceptions of external gain and volume 
performance can be illustrated by a consideration of the requirements on 
these characteristics which would be imposed in a somewhat simplified and 
idealized coaxial system. In the idealized system the external gain and 
volume performance are the same for any input or output circuitf and each 
is equal, as a function of frequency, to one-half the characteristic required 
to equalize the attenuation of the line connecting successive repeaters. 
The reason for setting these requirements can be understood from 
Fig. 16.33. The sketch represents the output stage of one repeater, the 
first stage of the succeeding repeater, and the intervening line. 

The external gain requirement on the input and output circuits is speci¬ 
fied in order to allow the complete system to have a flat transmission 

* The lower limit is a theoretical value, based upon the assumption that feedback 
is of interest chiefly in reducing modulation distortion and that the volume perform¬ 
ance is of interest in determining signal-to-noise ratio according to the analysis made 
in the following paragraphs. Modulation and signal-to-noise ratio are related by the 
fact that one can be improved at the expense of the other by changing the signal level 
at which the system operates. The optimum compromise under these conditions is 
obtained for C - 1.2Co. The use of a larger C is suggested because feedback is fre* 
quently of interest for other reasons than modulation reduction. 

f It is assumed, as in the previous discussion, that the input and output dmfiti 
are identical. 
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characteristic without the use of equalization in the line.* This is desirable 
for reasons which will appear later. In Fig. 16.33 it leads to a flat trans¬ 
mission characteristic between points B and C and the overall transmission 
characteristic of the system will be flat if the repeaters are so designed that 
the 0o of (16-23) is a constant. In general, we might, of course, avoid 
the necessity of introducing equalization in the line without specifying the 
external gain of the input and output circuits, by supposing that 0O is an 
appropriately varying function of frequency. In the actual coaxial repeat¬ 
ers, however, the 0 circuit design must include regulation in any case. If 
the configuration is to be one permitting a maximum amount of feedback 
this makes it difficult to incorporate also any very substantial amount of 0 
circuit equalization. 

FOR AU. CHANNELS FOR ALL CHANNELS 

Fig. 16.33 

The volume performance requirement depends upon a consideration of 
the signal-to-noise ratio in the system. The signal level at which the 
system operates is determined broadly by the power capacity of the repeater 
output tube and we can suppose that the tube will work at maximum effi¬ 
ciency if the signal level at its grid, point A in Fig. 16.33, is the same for all 
channels. Since the self-shielding properties of the coaxial line allow 
external interference to be neglected, the sources of noise to be considered 
are resistance noise and tube noise in the first stage of the repeater. These 
two can be represented as voltages appearing, respectively, at the points E 

and D in Fig. 16.33 and will, likewise, be constant with frequency. 
It is assumed in setting the requirements that tube noise is more impor¬ 

tant than resistance noise. The signal-to-noise ratio of the system then 

* In practice the equalization method described here is carried out only partially so 
that residual equalization does actually appear in the line at low frequencies. This is 
desirable in any event since, with the unterminated transformers described here, the 
repeater impedances give a very poor match to the line and it is necessary to maintain 
a certain minimum loss in the line to suppress interaction effects between successive 
line-repeater junctions. 
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depends upon the transmission from A to D in Fig. 16.33. This trans¬ 
mission may be called the volume performance per repeater link .* We will 
evidently secure the best repeater link volume performance, on the whole, 
if the line contains no unnecessary loss. This is the reason for equalizing 
the system by means of the external gain characteristics of the transformers 
in the manner just described. If the volume characteristic of the trans¬ 
formers themselves were flat this would give a repeater link performance 
which would be poorest for the top channel of the system, where the loss 
of the line is greatest, and would become increasingly better at lower 
frequencies. When the transformer volume characteristic assumes the 
prescribed shape, however, the response of the upper channels is improved 
at the expense of the others until the complete repeater link characteristic 
from A to D becomes constant at all frequencies in the useful band. This 
is evidently the optimum condition if the merit of the system is evaluated 
in terms of the signal-to-noise ratio in its weakest channel. It may be 
noticed in passing that if we assume that resistance noise rather than tube 
noise is controlling, the analysis follows the same lines except that now the 
transmission from A to E in Fig. 16.33 should be flat, so that the volume 
characteristic of the output circuit alone should equalize the complete line. 
That of the input circuit should be flat if there is residual tube noise to be 
overridden, and is otherwise unimportant. 

16.9. Illustrative Design of an Unterminated Input or Output Circuit 

As the final topic in this chapter we will consider the design of a network 
to illustrate the theorem on open-circuited input or output circuits which 
was developed at the beginning of the chapter. It will be assumed that the 
circuit is intended for a series feedback amplifier of the type described in the 
preceding section and that its external gain and volume performance 
characteristics are to satisfy approximately the idealized requirements 
developed there. In accordance with that discussion the external gain and 
volume characteristics depend respectively upon the real components, 
Ri and /?2> of the impedances Z\ and Z2 in Fig. 16.34. The two resistances 
must evidently be equal throughout the useful band since it is physically 
obvious that they will be equal at low frequencies and the equalization 
requirement is the same for the external gain and volume characteristics. 

* A more complete discussion of this and other aspects of volume performance is 
given in the author's U. S. Patent No. 2,242,878. It is also possible to extend the 
volume performance conception still further, as has been done principally by the 
author's colleague Mr. J. M. West, to make it apply to transmission through a com¬ 
plete communication system including intermediate repeaters, or to make it cover 
such situations as the transmission of television signals, where noise interference in 
different parts of the band is of varying relative importance. 
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Outside the useful band, however, the two resistance characteristics must 

be different since they correspond to different limiting capacities and there¬ 
fore to different resistance inte- 

i_ 

ti “1 
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Fio. 16.34 

grals. Since the ^characteristic 

is the one which determines the 

final signal-to-noise ratio we can 

suppose that this design will be 

quite efficient, with a relatively 

small surplus resistance beyond 

the band. The surplus in the Ri characteristic, which corresponds to a 

smaller limiting capacity, must, however, be fairly substantial. 

The design begins with the computation of the desired characteristic for 

Ri or R2. In order to equalize half the power loss between repeaters these 

characteristics should vary as <?a, where a represents the complete line loss 

per repeater link. If we suppose that a is 40 db at the top frequency and 

varies as which is the correct assumption for the attenuation corre¬ 

sponding to about 5 miles of ordinary coaxial cable with a top frequency of 

2 me, this leads to the resistance characteristic shown by Curve I of 

Fig. 16.35. The scale of the plot and the portion of it which lies beyond 

the edge of the useful band, at w = w0> can be ignored for the moment. In a 

practical design, of course, we cannot expect to control the transformer 

characteristics at low frequencies in the manner indicated by this curve. 

If we assume only a conservative amount of tuning the actual resistance 

characteristic, for design purposes, may be supposed to take some such 

shape as that shown by Curve II. Since the final limit on the performance 
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of the circuit depends upon the resistance integral condition, it is evident 
that even as conservative a choice as this allows us to realize a large fraction 
of the advantage which can theoretically be obtained by using a sloped 
rather than a flat characteristic. 

We have next to consider what condition must be met if the two resist¬ 
ances Ri and R2 are to be equal to each other and to the characteristic 
specified by Fig. 16.35 when account is taken of the fact that the corre¬ 
sponding impedances, Z\ and Z2 in Fig. 16.34, differ only by the parallel 
capacity Co- It is readily shown that the requisite condition is one which 
applies to the accompanying reactance characteristics X\ and X2 and is 
given by 

Xi = -X2 = — [1 - Vl - ^CgR2], (16-25) 
wCo 

where R> as in Fig. 16.35, represents either Ri or R2- The reactance speci¬ 
fied by this equation tends to be small when ccC0R is small but it increases 

rapidly when caCoR approaches unity, while beyond unity a solution is no 
longer possible. In Fig. 16.35 the resistance scale has been so chosen that 
the maximum value of wC0R is 0.95. This approximates the maximum 
possible value but leaves a slight margin to avoid the sharp changes which 
occur when the limit is approached extremely closely. If we deal in 
particular with Curve II of Fig. 16.35 the resulting X2 characteristic is that 
shown by Curve I of Fig. 16.36. 

The determination of a desirable reactance characteristic from equa¬ 
tion (16-25) is unfortunately not enough to allow us to proceed with the 
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design. If the final network is to be realizable we must also make certain 

that the reactance is physically consistent with the prescribed resistance. 

This question is most easily settled for a low-frequency region extending 

over perhaps one-half or two-thirds of the total band. It is easily shown 

that the reactance characteristic in this region will be almost zero whether 

it is specified by (16—25) or by the general relations between the real and 

imaginary components of network functions developed in preceding chap¬ 

ters. In any event, an accurate reactance characteristic is not necessary 

in order to provide substantial equality between and R2 at these fre¬ 

quencies. 

Near the top of the band advantage may be taken of the fact that the 

reactance which must correspond physically to the required resistance will 

depend largely upon the way in which the resistance behaves just beyond 

the useful band. Since this part of the resistance characteristic is not 

specified it can be employed to secure the reactance required by (16-25). 

The procedure is especially simple if we deal with R2 and X2 rather than 

with Ri and Ari since, as the previous discussion pointed out, the surplus of 

R2 beyond the band is much less than that of R\. Thus the R2 characteris¬ 

tic outside the band can be basically nothing more than a relatively rapid 

diminution to zero in any event, and to secure the proper reactance we need 

merely make slight adjustments in the speed at which it decreases. 

In order to make these adjustments we begin by computing the react¬ 

ance which corresponds to the prescribed resistance characteristic within 

the useful band. If we use the straight line approximation to Curve II of 

Fig. 16.35 shown by the broken lines in the figure, together with the charts 

of Chapter XV, this gives the reactance shown by Curve II in Fig. 16.36. 

At u = co0 the reactance is +0.5 while the required reactance given by 

Curve I is —0.7. The necessary difference, —1.2, must be supplied by the 

resistance characteristic outside the useful band. As a preliminary 

assumption, we may suppose that the resistance characteristic outside the 

band is merely a discontinuous drop, as indicated by the broken line III7 in 

Fig. 16.35. With the help of the charts again, we find that the necessary 

reactance at o>0 will be supplied if the drop occurs at co = 1.04«o. In 

order to make the solution more realistic the drop may be replaced by a 

slanting line of the type shown by III in Fig. 16.35. This makes a minor 

quantitative change in the result which is included in this example although 

it is scarcely large enough to be important in a practical design. The 

complete reactance characteristic corresponding to the slanting line is 

shown by Curve III of Fig. 16.36. When added to Curve II it gives the 

match to the required reactance indicated by Curve IV. The simulation 

of the required reactance is not perfect in an intermediate range between 

<a = O.5o?0 and « = O.8o>0 but in a practical design, where relatively large 
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tolerances may be permitted in volume performance if the external gain is 

precise, the difference between Ri and R2 to which the error corresponds 

may be regarded as insignificant. 

If more equalization is demanded from the input and output circuits 

the analysis follows the same general pattern. The reactance shown by 

Curve II in Fig. 16.36 will, however, tend to increase, since it reflects the 

slope of the resistance in the useful band. This makes it necessary to allow 

the resistance characteristic to drop off more sharply beyond the band in 

order to secure the correct reactance at the band edge and it also tends to 

open the gap between Curves I and IV in Fig. 16.36. Conversely, as the 

circuits are assigned flatter characteristics they may be made less selective 

and their external gain and volume performance may be made more nearly 

identical. 

— 
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Fio. 16.37 

The rest of the design procedure follows the routine described earlier in 

the chapter and need not be described in detail. Briefly, the next step in 

the design consists in the calculation of the area bounded by the lines II 

and III in Fig. 16.35. If we make an allowance for a slight high-fre¬ 

quency tail on the resistance characteristic, as indicated by the broken 

line III// in Fig. 16.35, the area amounts to 0.53, in the units in which the 

figure is drawn. Since we are dealing with the R2 characteristic, whose 

limiting capacity is C + Co, however, it also follows from the resistance 

integral theorem (16-1) that the area in these units is (tt/2)[Co/(C + C0)]. 

We can consequently determine that C = l,96£?o. 

To continue the design we next compute the impedance Z3 in Fig. 16.34 

by subtracting the parallel capacity C + C0 from the Z2 specified by 

Figs. 16.35 and 16.36. In making this computation the reactive com- 
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0.124 

ponent of Z2 should, of course, be taken as Curve IV rather than the 

desired Curve I in Fig. 16.36, since it is a waste of effort to attempt to go 

beyond the limit of what is physically possible. The im¬ 

pedance obtained from the computation is shown by Fig. 

16.37. We next match the real component of this new 

impedance by a suitable structure of minimum reactance 

type. This must be done by cut-and-try methods. In 

the present situation a suitable structure is found in the 

combination shown by Fig. 16.38. The element values 

are given on the assumption that the frequency and im¬ 

pedance units are taken as co0 and l/wo^o respectively. 

The design is easily obtained by observing that the resistance R$ to which it 

leads satisfies the formula 

RlXI 
Rz = 

Ri + (*1 + *2)2 
(16-26) 

0.124 
0.660 

0.333 

where X\ and X2 are respectively the reactances of the anti-resonant circuit 

and of the capacity. The maximum value of R3/X2 obviously occurs when 

X\ + X2 = 0. But since X2 must vary as of1 we need merely plot w2/?3 

in order to locate the maximum, and with this much established the rest of 

the design follows readily. It leads to the match to the desired R% charac¬ 

teristic shown by the crosses in Fig. 16.37. 

As the final step the reactance furnished by the resistance matching 

network is computed and subtracted from X3 in Fig. 16.37. The difference 

is then simulated by a series inductance. The crosses in Fig. 16.37 show 

the accuracy of simulation obtained 

when the inductance is chosen as 

0.660, in the units used previously. 

If we include also the parasitic capaci¬ 

ties the complete network takes the 

form shown by Fig. 16.39. It can be 

converted into a physical circuit in¬ 

cluding a transformer by identifying the series inductance with the leakage 

of the transformer, in the manner already described in connection with Fig. 

16.13. The final characteristics for Ri and R2 are given by Fig. 16.40. 

The crosses are points introduced from the original characteristic of Fig. 

16.35 for the sake of comparison. 

The series inductance which is obtained as the final element in the design 

process deserves a further word of comment. It follows from the discus¬ 

sion given earlier in the chapter that the reactance characteristic which 

must be simulated at the final stage in the design is always that of a physical 

reactive network, but it may appear to be only a lucky accident that the 



398 NETWORK ANALYSIS Chap. 16 

required network is a coil, and so can be identified with the leakage induct¬ 

ance of a transformer. In fact, however, this is a result which is reason¬ 

ably to be expected if the other parts of the design process, and in particu¬ 

lar the estimation of C from the resistance integral theorem, are accurately 

Fig. 16.40 

carried out. To illustrate this, the design has been repeated on the 

assumption that C has been chosen through some mistake as 1.75C0 

rather than as the correct value 1.96C0. This change leads to new charac¬ 

teristics for Rz and Xz differing slightly from those shown by Fig. 16.37. 

The new Rz can, however, be simulated by a configuration of the same type 

as that employed previously, and to about the same accuracy. 

The major effect is encountered when we attempt to choose the final series 

reactance. This is illustrated by Fig. 16.41. Curve I is the reactance 
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which must be supplied in the earlier design and Curve II the reactance 

required in the new design. The first curve is quite accurately a straight 

line but the second bends slightly upward and would require an anti¬ 

resonant circuit, with a rather remote anti-resonance, to represent it to the 

same standard of precision as has been employed in the rest of the design. 

If we introduce such a circuit the configuration of Fig. 16.39 is replaced by 

that shown in Fig. 16.42. In addition to the original parasitic capacities C 
and C0 there is a new capacity path, composed of Ci and C3 in series, 

through the network at high frequencies and 

the new path is exactly sufficient to com¬ 

pensate for the difference, 1.96Co — 1.75Co, 

between the values assumed for C in the 

two cases. Conversely, if too large a C 

is assumed we may expect the required 

reactance to be that which would be ob¬ 

tained from an inductance in parallel with a negative condenser, with a 

downward curvature as illustrated by the broken line Curve III in 

Fig. 16.41. If either of these reactance characteristics is encountered the 

obvious remedy is to repeat the design with a corrected value of C. An 

irregular characteristic, falling into none of these three categories, is symp¬ 

tomatic of inaccuracy in one of the earlier stages of the design. 

16.10. Practical Modifications in the Design 

The illustrative design just discussed has been intended primarily as an 

example of the application of the methods developed in previous chapters 

rather than as a model for practical design. For practical purposes the 

chief objections which may be directed at it appear to be the unnecessary 

accuracy with which the volume performance characteristic is controlled 

and the sharp selectivity of the circuit. The two are related by the fact 

that the sharp selectivity is introduced to provide a reactance component 

which will make the volume performance and external gain characteristics 

identical near the edge of the band. It can be reduced by relaxing this 

requirement and by accepting a somewhat less efficient design, including a 

resistance maximum which approaches the limit l/w0Co set by (16-25) less 

closely. 

Examples of practical circuits with somewhat reduced selectivity are 

shown by Figs. 16.43 and 16.44. They are intended for amplifiers with 

useful bands of the order of 2 or 3 me. In Fig. 16.43 the place of the 

shunt capacity and anti-resonant network of Fig. 16.39 in controlling 

Rs is taken by the simple capacity Ci, the other elements retaining their 

previous functions. In Fig. 16.44, R& is controlled by the three elements 

Cu Lu and C2, using the technique described in connection with equa- 

4* 
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Fig. 16.42 
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tion (16-21).* The leakage inductance is identified, in this circuit, with 

L\. The control of Xz is exercised by the separate electrical coil L2 with 

parasitic capacity represented by C3. The proper parasitic capacity 

appears automatically in the simulation of Xz if it is allowed for in advance 

as part of the total high-frequency path through the network, in accordance 

with the discussion given in connection with Figs. 16.41 and 16.42. The 

physical significance to be ascribed to Co and C is also changed in this 

circuit. In the series feedback amplifiers previously discussed they were 

identified respectively with the tube capacity and the transformer high-side 

capacity, plus padding. The amplifier with which Fig. 16.44 is used is, 

however, of the cathode feedback type shown originally by Fig. 3.12 of 

Chapter III. Since the substitution of cathode for series feedback places 

the cathodes of the input and output tubes off ground, a distinction must be 

made between the capacity of the input grid or output plate to its cathode 

and the capacity of the grid or plate to ground. These capacities can evi- 

Fig. 16.43 Fi 16.44 

dently be identified respectively with C(, and C in Fig. 16.44. It is to be 

observed that in the cathode connection the volume performance capacity 

C + Co is the same, except for slight padding adjustments, as the total 

tube capacity, while in a series feedback amplifier the tube capacity is 

identified with C0 alone and the sum C + C0 is necessarily much greater. 

This economy of capacity with the improved performance which it makes 

possible is one of the principal advantages of cathode feedback in a high- 

frequency design. 

The suggestion that a practical input or output circuit design should be 

less selective than the illustrative circuit described in the preceding section 

is made in part to take account of the effects of dissipation, which were 

previously ignored. In view of the low value to which Rz drops in 

Fig. 16.37, it is clear that any substantial resistance associated with the final 

inductance in the circuit will consume a large fraction of the power which is 

* In this particular amplifier the volume performance requirement extends only to 
2 me, but an extremely accurate external gain characteristic is called for throughout a 
high frequency region extending to 3 me. The use of as many as three elements in 
this part of the network is dictated by the necessity of making the external gain at high 
frequencies very accurate rather than by the shaping required below 2 me, where 

volume performance and external gain considerations are jointly effective. 
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nominally transmitted through the structure. This is particularly impor¬ 

tant in Fig. 16.43 where the inductance represents the transformer leakage 

and has a relatively low Q. It is less serious in a circuit of the type shown 

by Fig. 16.44, in which the final inductance is a separate coil and can be 
assigned a much higher Q. 

The other reason for attempting to secure a design without too great 

selectivity has to do with the loop transmission characteristic of the circuit. 
Within the useful band the loop 

transmission characteristic is com¬ 

pletely fixed by the external gain 

and volume performance require¬ 

ments since it depends only upon 

the impedances Zi and Z2 of Fig. 

16.34, both of which are fixed by 

these requirements. Moreover, 

the loop transmission changes from 

zero loss at zero frequency to a 

loss represented by the fraction 

1/(C + Co) at infinite frequency. 

If the ratio of C to Co is fixed this must correspond, in accordance with 

(13-19) of Chapter XIII, to a certain definite phase area. Since the 

phase characteristic within the useful band is fixed the phase area outside 

the useful band is also fixed. For practical purposes, however, it makes a 

great difference how this area occurs. The solid line in Fig. 16.45, for ex¬ 

ample, shows the loop phase shift 

exhibited by the illustrative design 

of the preceding section. The cor¬ 

responding gain characteristic is 

shown by Fig. 16.46. In this in¬ 

stance the circuit is so selective 

that the resistance component of 

the high-side impedance of the 

transformer becomes negligible and 

both impedances in the loop poten¬ 

tiometer reduce to capacity react¬ 

ances at frequencies slightly beyond 

the useful band. Since a capacity 

potentiometer cannot physically produce a phase shift this means that the 

phase area is packed into a narrow region just beyond the useful band and 

the characteristic must rise to a high peak. It is theoretically possible to 

compensate for the presence of such a peak in the design of one of the 

other parts of the feedback loop, such as an interstage network, so that 

o 1.0 2 

Fio. 16.46 
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the overall loop characteristic will reduce to one of the smoothly varying 

curves described in a later chapter. It is evident, however, that such a 

compensation must at least be exceedingly awkward, especially when ac¬ 

count is taken of the fact that both input and output circuits must be 

considered. The overall loop design is much simplified if the circuits are 

made less selective so that the phase area can be spread over a broader 

region, as illustrated roughly by the broken line in Fig. 16.45. 



CHAPTER XVII 

Application of General Theorems to 

Interstage Network Design 

17.1. Introduction 

This chapter continues the discussion of the design of particular parts 

of a complete amplifier which was begun in the preceding chapter. The 

particular circuits treated here are interstage networks. As in the preced¬ 

ing chapter the material is actually intended merely as an illustration 

of the uses of the contour integral formulae and does not pretend to be 

comprehensive. 

In a feedback amplifier the most satisfactory interstage networks are 

ordinarily two-terminal structures, that is, simple shunt impedances. A 

four-terminal interstage, containing a series impedance interpolated 

between the plate capacity of one tube and the grid capacity of the follow¬ 

ing tube usually produces a phase shift which is intolerably great in a feed¬ 

back loop unless the series impedance is so small that the circuit does not 

differ materially from a two-terminal network. Most of the analysis is 

directed at the examination of two-terminal interstages in terms of one 

principal theorem which relates the gain of the interstage* in the useful band 

and its phase shift beyond the band to the parasitic capacity in the circuit. 

After the development of the theorem, the cases in which we are interested 

only in the gain characteristic, the phase characteristic being immaterial, 

and those in which requirements must be placed on both gain and phase, 

are taken up in order. The chapter closes with a brief and rather incom¬ 

plete account of the corresponding limitations which may be expected to 

exist in four-terminal interstages, the gain characteristic alone being 

considered. 

17.2. General Theorems on Two-Terminal Interstages 

The two-terminal interstage is shown by Fig. 17.1. The plate is repre¬ 

sented as a current source, in accordance with the nodal analysis method 

* Strictly speaking, of course, the word “ gain ” should apply to a complete am¬ 
plifier stage including both tube and interstage. Thus, in the notation of Fig. 17.1 

the stage gain and phase are given by log Ei/Eo * log GWZ, where Gm = Ii/Eo is 
the transconductance of the first tube. Since Gm is merely a prescribed constant, 

however, calculations will normally be based on log Z alone, as a matter of brevity. 
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described in Chapter I. This places the plate resistance Rp effectively 

in parallel with the rest of the interstage, just as I3 appears in parallel 

with Y5 in Fig. 1.9. The grid resistance is represented by Rg in Fig. 17.1 

and the total parasitic capacity by C. The elements introduced into the 

interstage by the design, exclusive of such elements as blocking condensers, 

effective only at very low frequencies, are represented by Z'. Together 

with Rpy Rg and C they form the total effective interstage impedance Z. 

The grid and plate resistances are included here for the sake of com¬ 

pleteness, but they will ordinarily be omitted 

in the interstage configurations shown later, 

since in most broad-band circuits the tubes 

are pentodes, in which both Rp and Rg are 

very high impedances in comparison with the 

rest of the interstage. The general theorems 

in the chapter remain valid even when Rp 

the calculations on maximum gain possibil- 

be modified, since they depend upon the 

assumption that the interstage can be assigned a purely reactive charac¬ 

teristic outside the frequency range of interest. 

The simplest result which can be established for circuits of the type 

shown by Fig. 17.1 is one relating the gain obtained from the actual inter¬ 

stage to that which would be obtained if we removed Z' entirely, except 

perhaps for infinite inductance choke coils to supply battery power to the 

tubes. It is given by the 

Theorem: The average gain of a physical interstage network including 

a prescribed parasitic capacity C over the complete fre¬ 

quency spectrum is not greater than that which would be 

obtained if the network were composed of the capacity C 

alone. 

Fig. 17.1 

and Rg are significant, but 

ities of interstages should 

To prove the theorem it is merely necessary to set 8 = log iwCZ. Near 

infinite frequency we can write 

from which 8 is given to a first approximation as 

^iogri+^,^ 
L o> J Of 

(17-1) 

(17-2) 

If we identify this 8 with the 8 which appears in equation (13-6) of Chap¬ 

ter XIII, therefore, we have * 0; B*> = k\C, The result in Chap- 
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ter XIII thus gives 

log | 
0 

iuCZ \du = - | *xC. (17-3) 

But the integrand in the left-hand side is obviously the difference between 

the gain obtained from the actual interstage impedance Z and that which 

would be obtained if we were dealing with C alone. On the right-hand side 

ki cannot be negative since we can readily show from (17-1) that it is 

1/C2 times the conductance of the network at infinite frequency. Thus 

the average gain of the actual interstage cannot be greater than the gain 

obtained from C alone and will be equal to the gain obtained from Conly if 

the infinite frequency conductance is zero. 

As an example of the theorem let it be supposed that the interstage takes 

the form shown by Fig. 17.2. The corresponding gain characteristic is 

shown by the solid line Curve I of Fig. 17.3, the gain which would be 

Fig. 17.2 

obtained from the capacity alone being represented by the broken line. In 

this instance the infinite frequency conductance is zero and the average 

height of the two curves is the same. If we remove the coil from the net¬ 

work, however, the gain drops to the position shown by Curve II, below the 

capacity gain. 

The weakness of this result is, of course, the fact that it involves the 

interstage gain over the complete frequency spectrum. In a practical 

situation we are ordinarily interested in the gain over a prescribed finite 

band, which we can suppose, for the sake of definiteness, to extend from 

zero to wo* This problem can be studied by using equation (13-36) rather 

than (13-6) in Chapter XIII. It is also convenient, although not neces¬ 

sary, to suppose that the expression log/wCZ, which has previously been 

used for 0, is replaced by log ^(Vw§ — w2 4- iu)CZ. Since it will be 



406 NETWORK ANALYSIS Chap. 17 

shown later that the admittance of the interstage giving the maximum 

possible flat gain between zero and co0 is ^(Vwq — w2 + *w)C this change 

is equivalent to using this interstage rather than the bare capacity C as the 

standard against which Z is measured. So far as their behavior at infinite 

frequency is concerned the two 0’s are evidently identical. 

If we use the new 0 and substitute directly in (13-36) of Chapter XIII 

we secure 

log £ 1 (VJ0 - a,2 + iu>)CZ | 

V1 — u>2/u>l do> = 
B 

vV/ug - i 
dw. (17-4) 

where B in the right-hand side is retained, for brevity, as the imaginary 

component of 0. The expression can be somewhat simplified by writing 

log Z = a + ip. This allows us to replace B by w/2 + p. On the left- 

hand side of the equation the numerator of the integrand becomes 

a + log£ | vwo — o)2 + ua | C, which canjalso be written as a + log (w0C/2), 

since the absolute value of Va>o — w2 + i<a in the range of integration is 

o)0. This allows (17-4) to be written as 

r ========== d(ji + 
0 v 1 — «2/a> o r log (uqC/2) 

do) = -/' £i> A 

ir/2 + (l 

V«2/«§ — 1 
dco 

(17-5) 

VI - co2/a>o 

or, if we integrate the second term explicitly, as 

Equation (17-6) is the principal result of the chapter. Its physical 

significance can be understood most easily if we suppose for the moment 

that the second integral is ignored. Then the equation expresses a relation 

between the gain a in the useful band and the parasitic capacity C. If 

the relative gains at various frequencies in the useful band are prescribed 

we can readily determine from the equation what the absolute level of gain 

may be. 

If we consider now the second integral we notice that 0, since it repre¬ 

sents the phase angle of Z, can be expected to approach — r/2 at high 

frequencies as Z degenerates into the parasitic capacity C. We cannot, 

however, assign 0 a larger negative value than —r/2 since Z cannot have a 

negative resistance component. Thus the second integral in (17-6) is 

always positive or zero and the assumption made previously, that it can be 

ignored in evaluating the gain, represents the optimum case. We may also 
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notice that the optimum can be realized only if the resistance component of 
Z is zero outside the band, so that the interstage network giving maximum 
absolute gain is always an ideally selective filter of some description, no 
matter how the relative gains at various points in the useful band are pre¬ 
scribed.* In a non-feedback amplifier the complexity of the network re¬ 
quired to give a reasonable approximation to an ideal filter is the most 
important design consideration. The situation here is broadly similar to 
that described for input and output circuits in the previous chapter. In a 
feedback amplifier, on the other hand, it may be necessary to impose a 
definite requirement on the phase angle of the interstage impedance over at 
least part of the range beyond the useful band in order to secure a stable 
circuit. In this event the second integral can be used to determine how 
much the gain in the useful band must be reduced in order to provide any 
given margin between the actual phase angle c f the network and the pure 
capacitance phase which would be exhibited by a maximum gain structure. 
These calculations are described in more detail in succeeding sections. 

This discussion implies one further corollary, which is of some incidental 
interest in connection with the theorem first developed. Since an inter¬ 
stage giving maximum gain in the useful band has a phase angle of — tt/2 
outside the band, it can have no appreciable conductance component in this 
region. With the help of the earlier analysis we can consequently state 
the 

Theorem: The average gain of a two-terminal interstage network 
including a prescribed parasitic capacity C over the com¬ 
plete frequency spectrum is always the same if the network 
is of the type giving the maximum absolute level of gain in a 
prescribed finite band, without regard to the variation of the 
gain characteristic over the prescribed band, and is equal to 
the average gain which would be obtained if the network 
were composed of C alone. 

In other words if we are dealing with an interstage network of maximum 
gain type we have at our disposal a fixed fund of what may be called gain 
area between zero frequency and some arbitrarily chosen high-frequency 
point at which the network may be regarded as degenerating into the para¬ 
sitic capacity. Shaping the characteristic in various ways in the useful 
band redistributes this area without changing its amount.f 

* This, of course, assumes also that the grid and plate conductances are negligible. 
Cf. the discussion in connection with Fig. 17.1. 

f Allowance must, however, be made for the fact that area changes may occur just 
outside the useful band as well as within it. See the discussion of this point given 
later. 



408 NETWORK ANALYSIS Chap. 17 

17.3. Two-Terminal Interstages with Maximum Constant Gain 

As an illustration of the theorem just established we will consider the 

design of an interstage network having the largest possible constant gain 

over the range between zero and o>0. The solution has been known empiri¬ 

cally for many years* but the analysis is nevertheless presented in detail 

because of the theoretical interest of the subject. 

If we neglect the second integral in (17-6) and replace a in the first inte¬ 

gral by the constant ao the equation becomes 

(17-7) 

But since the left-hand side can be integrated directly to give (ir/2)ao the 

obtainable gain can be written as 

«o = log-V (17-8) 
co0C 

We notice that if the capacity were alone in the circuit the gain at the edge 

of the band would be log 1/a>0C. The maximum constant gain is therefore 

just 6 db higher than the gain represented by the capacity impedance at the 

limiting frequency. 

The phase angle of the interstage impedance must, of course, be —Tr/2 at 

frequencies outside the useful band if the maximum gain within the band is 

to be realized. With the gain characteristic inside the band and the phase 

characteristic beyond the band thus determined the rest of the complete 

interstage characteristic can be found by the formula which appears as 

equation (14-33) of Chapter XIV. The computation is simplified if we 

notice that the prescribed gain, log 2/woC, in the useful band can serve 

physically only as a reference which determines the absolute level of gain 

in the final characteristic. We can suppose it to be zero instead if we make 

a corresponding correction in the gain computed for the region outside the 

useful band. This modification allows the first integral in the equation to 

* A published account is given by H. A. Wheeler (Proc. of the I.R.E., July, 1939). 
The potentialities of the full-shunt terminated filter as a two-terminal interstage 
were, however, familiar to filter specialists, although they were apparently not widely 
known to amplifier designers in general, at a much earlier date. To the best of the 

author’s knowledge, the original discovery is due to his colleague Mr. E. L. Norton 
and was made some time prior to 1930. 

Wheeler’s paper also includes a discussion of the application of the filter structure 
to four-terminal interstages. This is described later in Section 17.8. 

Filter-type interstages have also been described by W. S. Perdval (Brit. Pat. 
Nos. 460,562 and 475,490, filed July 24, 1935, and Feb. 21,1936). 
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be omitted. If we substitute /3 = — tt/2 in the second integral the result¬ 

ing formulae for a and /3 in the portions of the spectrum in which they are 

not directly specified appear as 

__ /*“ Uc_dw _ |3(aic) s 

«/»# Vw2/wq - i «2 - <4 V i - uc2/«o 

__ — k(coc) — log(2/a?oC)] ^ 

y/o>c/u)Q - l 

Equation (17-9) is easily integrated by means of the 

co2/a>o = 1/(1 — x2). If we consider in particular the formula for 0 this 

gives 

/»(«.) = - ~r==2 f1 F1 + 2 1 Jx, «. < “0, (17-10) 
Vcog -wc2«/o L OJ0 ~ C0C J 

which can be evaluated by standard methods as 

«c < «o 

(17—9) 

C0C > 0)0* 

substitution 

j9(coc) = —tan' —l 

Vwg - coc2 

Similarly,* the result for a appears as 

= —sin -i ^ . 
<*>o 

a(co«) = log -2- - coth 1 y=== 
WqC VCt)2 — OJq 

= log 

_2_ 

woC 

8 _ 1 + 
\ 0>o O)0 

(17-11) 

(17-12) 

The complete gain and phasef characteristics of the interstage, as deter¬ 

mined by these equations, are shown by the solid lines in Figs. 17.4 and 

* Although the integrals for & and for a are formally identical, account must be 
taken of the fact that <ac is less than o)o in the first case and greater than o)o in the 
second. The pole at w = coc in the integrand of (17-9) consequently falls outside the 
range of integration when we are studying but not when we are studying a. In 
accordance with the discussion in Chapter XIV the “ principal value ” of the integral 
must be taken in the second case. In other words, in evaluating a the integral from 
o)0 to •» in (17-9) must be understood as signifying the sum of two integrals, one 
running from o)o to <ac — e and the other from coc + e to °o. The result (17—12) 
follows readily with this understanding. 

t The negative of the phase characteristic in (17-11) is plotted to correspond with 
the usual convention that a shunt capacity phase is positive. 
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17.5. The broken line in Fig. 17.4 gives the gain characteristic which 

would be obtained from the capacity alone. With the logarithmic fre¬ 

quency scale employed in the figures this gain characteristic is a straight 

line and has a slope of 6 db per octave. The actual gain characteristic 

merges with this line at high frequencies, as we can see by noticing that 

(17-12) reduces to log l/wcC when o?c is large, but it rises more rapidly near 

the edge of the band to give the 6 db gain advantage at the band edge 

required by (17-8). In terms of the general relationship between phase 

shift and attenuation slope given by (14-11) of Chapter XIV the increased 

slope of the actual characteristic in comparison with the capacity charac¬ 

teristic just beyond the useful band and the decreased slope within the use¬ 

ful band can be looked upon as compensatory adjustments which together 

maintain the phase characteristic at its original value throughout the range 

in which the interstage is cutting off. The characteristics shown by 

Figs. 17.4 and 17.5 should be examined with some care since they will also 

be used, except for a change in scale, as the basis of the general method of 

overall feedback loop design described in the next chapter. 

A physical circuit which will represent these characteristics can be 

obtained most easily if it is noticed that the parts of a and p which were 
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this expression can readily be identified with a full-shunt terminated low- 

pass filter in which the parasitic capacity C forms the final shunt branch. 

The structure is illustrated by Fig. 17.6. The network in the box repre¬ 

sents an ideal low-pass structure of con¬ 

stant k type terminated at the orthodox 

mid-shunt junction and with cut-off at 

co = co0. It supplies the admittance 

^co0C\/1 — co2/coq. The final shunt 

branch is equal to half the parasitic ca¬ 

pacity. The remaining half of the capac¬ 

ity appears outside the box and serves to Fig. 17.6 

build out the termination from mid-shunt 

to full-shunt. The fact that half the capacity is incorporated as part of 

the filter proper, whose admittance disappears at the cut-off is, of course, the 

reason why the gain of the interstage is 6 db greater than the gain which 

would be obtained from C alone at this frequency. 

For practical purposes the impedance of the ideal structure of Fig. 17.6 

can be approximated by a finite network giving a reasonably accurate 

match to the terminating resistance 2/a>oC. Methods of constructing such 

networks are described in filter theory and need not be dealt with here. As 

a matter of completeness, however, a list of some special structures, graded 

in order of complexity, is shown by Fig. 17.7. In each circuit the element 

values are stated in terms of the frequency and impedance units a>0 and 

2/o)qC The two final capacities, each equal to 1 in these units, are, of 



412 NETWORK ANALYSIS Chap. 17 

course, to be identified with the capacities C/2 in Fig. 17.6. The structure 

specified by the first set of element values in Fig. 17.7C and the structures 

of Fig. 17.75 and 17.75 are conventional filter networks in which the match 

(1)1.80 
mi.70 

(n) 0.7 5 

(nr) 1.60 
(nni.50 

c 

0.600 
(32)2.000 0.600 

0.2989 

to the final terminating resistance is obtained by terminations respectively 

of the single m-derived and double /w-derived* types. The other structures 

were obtained by more or less unorthodox cut-and-try methods. 

The gain and phase curves for the structures of Figs. 17.7^ and 17.75 

are shown by Fig. 17.8. Curves I and I' refer to the successive sets of ele- 

* See O. J. Zobel, “ Extensions to the Theory and Design of Wave Filters/’ 
B.S.T.J.f April, 1931. 
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ment values in Fig. \1.1A and Curve II, to Fig. 17.7.6. The gain and 
phase curves for the remaining structures are shown in Fig. 17.9. Curves 

III and IV refer respectively to the structures of Figs. 17.7C and 17.7D. 
The performance of the structure of Fig. 17.72J, which matches the ideal 
too closely to be shown by a separate curve, is indicated by the crosses. 
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The structures can also be used to represent a mid-series image imped¬ 
ance by removing the parasitic capacity and one unit of the final series 

Q/COo 

inductance. This is occasionally useful in other design situations. Exam¬ 
ples are found in the preceding chapter and will appear again later in the 
present chapter. The reason that filter impedances appear so frequently 
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in a theoretical discussion like the present one is, of course, the fact that 
theoretical problems are frequently specified discontinuously in different 
ranges and require impedances whose character changes abruptly at some 
given point for their solution. For practical purposes the theoretically 
abrupt transition is to be regarded as the limit of a series of continuous but 
increasingly rapid transitions of the type illustrated by Figs. 17.8 and 17.9. 

17.4. Two-Terminal Interstages with Maximum Variable Gain 

If the gain in the useful band must be a function of frequency rather than 
a constant the analysis is naturally somewhat more complicated but it 
follows the same general pattern. For practical purposes the most impor¬ 
tant question is that of determining how high the varying gain characteris¬ 
tic can be placed, in comparison with a corresponding constant gain 
characteristic, when the parasitic capacity is h>.ed. This can be examined 
by replacing the variable of integration o)/coq in the first integral of (17-6) 
by sin <j>. Upon omitting the second integral, to give the maximum gain 
condition, the result is 

x «72 w 2 
ad<t> = - log —> 

o 1 coqC 
(17-15) 

which is obviously equivalent to the 

Theorem: If a two-terminal interstage including a prescribed parasitic 
capacity has the maximum absolute level of gain between 
zero and some fixed point coo the area under its gain charac¬ 
teristic when plotted against <t> = sin””1 oj/ojo is a constant, 
whatever the relative gains at various points in the pre¬ 
scribed band may be. 

The application of this relation is illustrated by Fig. 17.10. Zero gain is 
taken for convenience as log l/oi0C. 
The rectangle labelled I represents the 
plot of gain against when the interstage 
is of the maximum constant gain type 
described in the preceding section. 
Curves II and III represent two extreme 
cases of interstages with tilted character¬ 
istics. In the first the interstage is 
merely the parasitic capacity and this 
characteristic if drawn on log frequency 
paper would consequently have a con¬ 
stant downward slope of 6 db per octave. Curve III represents the in¬ 
verse situation, in which the gain has a constant upward slope of 6 db 
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per octave. This characteristic corresponds to the expression 

a + ip = log 
1 

(17-16) 

Wc notice that the quantity (oj0C/2)Vl — a? + i(taC/2) — *(a>oC/4a>), 
which is evidently the interstage admittance, is the same as the denomina¬ 
tor of the final expression in (17-14) except for the additional term 
— /(o>oCy4w). The interstage can therefore be obtained by adding a paral¬ 
lel inductance to a " constant gain ” interstage, as illustrated by Fig. 17.11. 
It is worth noticing also that an amplifier containing two “ constant gain ” 
interstages can be replaced by one containing one interstage each of the 
types represented by Curves II and III, with an economy of elements, 
provided the changes in impedance and signal level within the amplifier 
can be tolerated. The final curve, labelled IV in Fig. 17.10, represents a 
tilted interstage of the type commonly encountered in practice. Its gain 
characteristic on an arithmetic frequency scale is shown by Fig. 17.12. 

Fio. 17.11 

In accordance with the theorem developed earlier in this section the 
areas under all the curves in Fig. 17.10 must be the same. If a tilted inter¬ 
stage is to be physically realizable it must in addition meet the requirement 
that its phase angle in the useful band will not exceed the limits ±tt/2. 
Otherwise, of course, it cannot be constructed without the use of a negative 
resistance. No difficulty is to be anticipated here if the gain characteristic 
varies only moderately, like that represented by Curve IV in Fig. 17.10, 
but the phase characteristic may become too great if very large variations 
are attempted. Curves II and III were described as " extreme ” when they 
were first introduced because their associated phase shifts just reach the 
limit. They can thus be taken as representing roughly the limit of what 
can be attained if we consider the variation of the gain characteristic over 
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the complete band, but sharper variations over a small portion of the band 

are of course permissible. 

The transformation from an arithmetic frequency scale to the <f> scale has 

as its chief effect a spreading out or accentuation of the region near the 

edge of the useful band. The reason for emphasizing this portion of the 

gain characteristic can be understood most easily if it is recalled from one 

of the earlier theorems in the chapter that when the gain characteristic is 

plotted on an arithmetic frequency scale the total gain area over the com¬ 

plete frequency spectrum is the same for any maximum gain structure. As 

long as we are dealing with the characteristic only at frequencies well below 

the edge of the band this principle allows us to rearrange the gain area as 

we see fit, without penalty. Changes in the characteristic near the edge of 

the band, on the other hand, imply concomitant changes in gain area just 

beyond the useful band which must be allowed for even though they are 

not directly part of the useful char¬ 

acteristic. This is illustrated by Fig. 

17.13, which represents the capacity 

gain and constant gain characteris¬ 

tic of Fig. 17.4 redrawn on an arith¬ 

metic frequency scale. In accordance 

with the gain area theorem, area I is 

equal to the sum of areas II and III. 

Area III is not directly useful but it 

cannot be dispensed with if area II is 

to exist because the gain character¬ 

istic cannot drop off beyond the band 

more rapidly than it does in the figure without producing a phase shift 

greater than t/2. The additional weighting of the gain characteristic just 

below ojq which the transformation to the <t> scale produces is evidently an 

expression of the existence of this necessary surplus area beyond a>o. 

The design of a tilted interstage of maximum gain type may be obtained 

by following broadly the procedure described previously. With a deter¬ 

mined inside the useful band and £ beyond it, it is first necessary to compute 

the rest of the characteristic from (14-33) of Chapter XIV, much as was 

done in connection with (17-9) of the present chapter except that both inte¬ 

grals of the general formula must be considered. A rough computation 

may be sufficient at this step. The parasitic capacity is next subtracted 

from the complete interstage admittance and the remainder simulated by 

cut-and-try methods. The basic constituent of the simulating network 

will, of course, be a filter image impedance. Analogous problems were 

discussed in connection with Fig. 14.19 of Chapter XIV and Fig. 16.11 of 
Chapter XVI. 

Gain in db 
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17.5. Explicit Formula for Band-Pass Interstages 

In confining the discussion to interstages of “ low-pass ” type, it is, of 

course, assumed that the solution advanced will be applied to broad-band 

and to symmetrical narrow-band problems by means of the transformations 

described in Chapter X. As a matter of completeness, however, the 

general formula which applies explicitly to both symmetrical and unsym- 

metrical band-pass structures will also be included. It appears as 

Kx + K2 + Ka = l log--?——• 
1 (o>2 — Wi)C 

where 

K: 
' du ra 

O>jco2 vV/o>l - 1 Vl - u2/u2 

-r= *3 
(P + 7r/2) du> 

Vu2/coi ~ 1 Va)2/c4 ~ 1 

where o)\ and u2 are the edges of the useful band and the general significance 

of the terms is the same as that of those appearing in the corresponding 

expression in (17-6). To study the maximum gain condition we omit the 

second and third integrals on the assumption that the interstage phase angle 

is +tt/2, representing an inductive reactance, below the band, and —tt/2, 

representing a capacitative reactance, above it. The remaining integral is 

exactly similar to the gain integral in the low-pass case except that the 

weighting function l/VT- «2/a>o> which accentuates the importance of the 

gain characteristic near w0, is replaced by o)/o)i^VwVwf — lVT - «7«1, 
which emphasizes both edges of the band. 

17.6. Two-Terminal Interstages with Specified Phase Margins 

We have still to examine the situation in which the phase angle of the 

interstage network cannot be as great as 90° everywhere beyond the edge 

of the useful band, so that it is not possible to ignore the second integral 

in (17-6). The difference, p + it/2 in (17-6), between the actual inter¬ 

stage phase shift and its limiting value will be called the interstage phase 

margin. Problems of this sort are particularly likely to arise in feedback 

amplifier design, where it may be necessary to restrict the phase angles of 
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the interstage networks in certain frequency ranges in order to insure a 

stable circuit. The circumstances in which phase control of the interstage 

networks, rather than the feedback circuit, is necessary are described in 

the next chapter. They relate broadly to the amount of final gain re¬ 

quired from the amplifier. For our present purposes we may imagine, as 

the design situation, that the input and output circuits and the feedback 

circuit have already been designed, that their contributions to the trans¬ 

mission around the overall feedback loop are known, that we have estab¬ 

lished what the final loop phase characteristic should be to secure a stable 

amplifier with a specified margin against singing, and that the relative 

feedbacks at various frequencies in the useful band have been specified. 

The reasons for supposing that the design situation takes this form and 

the details of the construction of the phase requirement will be better 

understood from the discussion in the next chapter. With the data as 

assumed, the phase characteristic of the interstage networks beyond the 

useful band and their relative gains within the useful band can be computed. 

What remains is the determination of networks meeting these require¬ 

ments with as high an absolute level of gain in the useful band as is per¬ 

missible with the given interstage capacities.* 

This design problem can be attacked most directly if we begin by using 

(17-6) to determine how much gain must be sacrificed to permit the inter¬ 

stage to have the prescribed phase characteristic. As we have already 

noticed, the sacrifice depends upon the fact that the second integral in 

(17-6) must be positive unless j3 = — 7r/2 at every frequency outside the 

useful band and serves, with a given C, to reduce the value which can be 

assigned to the first integral. To evaluate it, let the variable w/co0 in the 

second integral be replaced by <f>' = sin""1 co0/o>. If we retain the earlier 

substitution <t> = sin""1 w/w0 for the first integral this allows the complete 

equation to be rewritten as 

+ 
2 

■ .. i 

WoC 
(17-18) 

Thus the reduction in gain can be obtained by plotting the function 

(w/u>o) (tt/2 + @) against <£'. In view of the similarity between the two 

* If the design method in the next chapter is followed the absolute level of gain in 
the final interstage can also be determined direcdy from the preliminary computations 
which govern the general choice of circuit arrangements and phase characteristics. 
The independent determination described here is nevertheless useful since it can 
usually be made much more accurately than the preliminary computations, for which 
die data may be approximations or estimates based on scattered measurements. 
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angle scales the result can be conveniently expressed as the 

Theorem: If a two-terminal interstage including a specified shunt 

capacity has a specified phase angle P above a certain point 

w0 the reduction of the absolute level of gain, in nepers, 

below w0 from the theoretical maximum is equal to the 

average height, in radians, of the plot of (w/wo)(x/2 + P) 

against <t>f = sin"”1 w0/w. 

If a complete multi-stage n circuit, rather than a single interstage, is under 

consideration, we can evidently make a single computation for the whole 

circuit and allocate the total gain reduction among the individual inter¬ 

stages in any way which appears likely to give a convenient design. 

It will be noticed that the transformation to the <j>' scale tends to accentu¬ 

ate the importance of the phase characteristic just beyond w0. This 

phenomenon is similar to that which was found for the transformation to 

the <t> scale in the gain analysis and occurs for the same general reason. It 

will be recalled that in the gain analysis the gain area law applied to the 

response over the complete frequency spectrum, but that in dealing with the 

response over a limited region it was necessary to allow for the fact that.a 

change in the gain characteristic near the edge of the band produced area 

changes outside as well as inside the band. In the present situation the 

response over the complete spectrum is governed in a similar way by the 

phase area law developed originally as equation (13-19) of Chapter XIII. 

When w is large'the second integral in (17-6) reduces to 

/(*+')*-/(!+')*• 
where u = log w, and expresses this law explicitly. It may be remembered 

that Chapter XIII also included a discussion, based on the phase area law, 

of the use of trap circuits to control interstage phase characteristics at fre¬ 

quencies remote from the band. If the phase control is exerted near the 

band the phase area law in a broad sense still applies, but a portion of the 

total area change occurs within the useful band and cannot be included 

directly in an integration which begins at the band edge. Exactly as in the 

gain analysis the transformation to the <t>f scale expresses this effect indi¬ 

rectly by a relative increase in the importance assigned to the phase charac¬ 

teristic just beyond the useful band. 

When the absolute level of gain in the useful band has been established 
the rest of the design can be obtained by following a routine somewhat 
similar to that used in several previous problems* It is simplest to describe 
the procedure in terms of an example. Since phase control at high fre¬ 
quencies thrpugh the use of a trap circuit has already been described in 
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Chapter XIII it will be assumed here that the phase control is to extend 

over a range bordering on the useful band. For illustrative purposes it will 

be supposed that the phase shift is to be 60° for one octave beyond the use¬ 

ful band and a slanting line between 60° and 90° for an additional octave, as 

shown by Fig. 17.14. It will also be supposed that the gain in the useful 

band is to be flat. 

-/3 

9oi 

eoT 

30° 

0 
COp ZCj0 4Cj0 

u = loq G 

Fig. 17.14 

The design begins with the plot of (w/coo) (tt/2 4* P) against Using the 

P of Fig. 17.14, this leads to the result shown by Fig. 17.15. The average 

height of the curve is about 32°, or 0.56 radians. It follows from (17-18) 

that the absolute level of gain in the useful band must be 0.56 nepers, or 4.9 

db, less than that of a maximum gain interstage. For a flat characteristic, 

in other words, the gain in the useful band will be 1.1 db above log 1/coqC. 

deq 

We next compute the complete interstage characteristic from the known 

components of gain and phase. It is simplest to suppose initially that the 
phase characteristic is 60° at all frequencies above the useful band. With 
this assumption the situation is evidently the same as that treated by 
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equations (17-9) through (17-13) except that the specified phase is 60° 

rather than 90° and the gain level in the useful band is somewhat different. 

We can consequently obtain the complete gain and phase characteristics by 

multiplying (17-13) by § and adding a constant to give the correct low- 

frequency gain. This leads to the results shown by the broken lines in 

Figs. 17.16 and 17.17. The reference gain in Fig. 17.16 is taken as 

log 1 /«oC and the straight solid line represents the capacity gain, with which 

the actual characteristic must eventually merge. 

The feet .that the interstage phase angle is not actually equal to 60° at 
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all frequencies above «o can be most easily taken into account by intro¬ 
ducing the error as B in equation (14—33) of Chapter XIV and evaluating 
the result by means of the charts in Chapter XV. It will be recalled 
that equation (14-33) is merely an expression of the standard relation 
between the real and imaginary components of network functions when 
the components have the special form indicated by (14-32). In this 
problem the “ real component ” with which we have to deal is evidently the 
difference between the actual interstage phase beyond u>o and 60°, divided by 

Vu2/wq — 1. This function is shown by Curve I in Fig. 17.18. With the 

help of the charts in Chapter XV the corresponding imaginary component 
is found and appears as Curve II in the figure. But the imaginary com¬ 

ponent is equal to B/V1 — «2/«o for » < <*>o and to —A/y/o>2/u% — 1 for 
» > wo- Thus from Curve II we can secure Curves III and IV represent¬ 
ing B and A themselves in these two ranges. These last curves are evi¬ 
dently the corrections which must be applied to the preliminary characteris¬ 
tics for the interstage gain and phase in order to take account of the 
departure of the required phase angle from 60° at high frequencies. When 
the corrections are made the complete interstage characteristics take the 
form shown by the solid lines in Figs. 17.16 and 17.17. 

After this point is reached the design can be finished by following the 
routine described for a number of previous examples. We begin by com- 
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puting from Figs. 17.16 and 17.17 what the impedance of the interstage, 
exclusive of the parasitic capacity, must be. The result is shown by 
Fig. 17.19, where the unit of impedance is taken as l/a>oC. The resistance 
component is next matched with a minimum reactance network. In this 
example the principal portion of the resistance is furnished by a mid-shunt 
low-pass filter image impedance of the constant k type, with cut-off at 
a>/«o = 4, plus a parallel capacity.* The structure is shown by network A 

in Fig. 17.20. The additional peak of resistance near 6>0 is provided by the 
damped anti-resonant network shown as network B in the figure. The 
filter impedance is used in the first network principally to provide a very 

accurate match to the assumed charac¬ 
teristics, for illustrative purposes. In a 
practical design a much simpler structure, 
such as a resistance in parallel with a 
capacity, should suffice. 

The design is completed by adding the 
inductance L in Fig. 17.20 to make up 
the difference between the reactance fur¬ 
nished by networks A and B and the re¬ 
actance specified in Fig. 17.19. The 
reasons for expecting that the reactance 
match can always be obtained and other 
general comments on the process were set 
forth in connection with the discussion of 
similar problems in the preceding chapter 
and need not be reviewed here. The final 

Fio. 17.20 

interstage gain and phase characteristics with the element values given in 

* The additional capacity is almost the right value to change the termination from 
mid-shunt to full-shunt, so that the resistance component is nearly, although not 
exactly, the same as a mid-series constant k image impedance. 
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Fig. 17.20 are shown by Fig. 17.21. The characteristics of Figs. 17.16 and 
17.17 are indicated by the broken lines. 

17.7. Interstage Networks of Simple Types 

The interstage design technique described thus far has been directed 
primarily at two extreme problems. In the first, a close approximation to 
maximum gain in the useful band was sought, while in the second a pre¬ 
scribed relative gain characteristic within the band was combined with a 
prescribed phase margin beyond it. In either case, the problem was con¬ 
ceived as a purely theoretical one, with no restriction on the number of ele¬ 
ments employed, and the resulting structures turn out, in general, to be 
rather complicated. 

In a practical design it is, of course, usually possible to rely upon much 
simpler networks. The extent of the permissible simplification depends, 
in general, both upon the amplifier requirements and upon the skill of the 
designer. The controlling relation is the fact that in any particular ampli¬ 
fier the integral of the sum of the interstage phase margins, plotted against 
<t>'y is a fixed quantity which can be determined from the general arrange¬ 
ment of the circuit and the required final gain. If the sum is zero the phys¬ 
ical limit on the performance of the amplifier is one of available m circuit 
gain. The interstages theoretically should be maximum gain structures 
and any departures from the maximum gain condition due to network 
simplifications are reflected directly in diminished feedback. If the inte¬ 
gral is not zero, on the other hand, the situation is more flexible. For 
example, as long as the integral is fixed the frequency variation of the total /a 

circuit phase margin can usually be altered within wide limits by adjust¬ 
ments of the other parts of the circuit, while within the /a circuit itself the 
phase margin can, of course, be allocated arbitrarily to the several inter- 
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Fio. 17.22 

stages. The design problem thus becomes one of splitting up the integral 
in such a way that the individual pieces correspond to especially simple 
structures* The technique described in the preceding section appears as a 
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last resort when the splitting-up process is not completely successful. 
These relations are described in more detail in the next chapter and are 
merely summarized here. 

When the interstages are very simple they are most easily designed 
directly by cut-and-try methods. As a guide to the process, however, a list 
of configurations is given in Fig. 17.22. The list gives all the structures of 
four elements, including the parasitic capacity, which can be expected to be 
appropriate for amplifier designs carried out on the low-pass equivalent 
basis.* The accompanying curves attempt to show the types of charac¬ 
teristics for which each structure is particularly suitable. For example, the 
first configuration is appropriate if the interstage must give a large and 
fairly uniform phase margin over a broad range beyond the useful band. 
The large phase margin is obtained, however, at the cost of a low and not 
very flat gain within the useful band. The second configuration allows the 
gain to be made higher and reasonably flat, or even upward tilting, but the 
phase margin becomes relatively less at high frequencies. The third con¬ 
figuration is convenient if the interstage should exhibit either a flat or a 
tilted gain characteristic within the useful band together with a modest 
phase margin over an extended high-frequency region. 

The diversity of characteristics obtainable from these three networks is 
only that which may be estimated by physical inspection. The fourth 
configuration can be used only when a high-frequency phase margin is 
unimportant, but within this limitation it can exhibit a considerable variety 
of characteristics. A family of curves showing the characteristics secured 
with representative values of the network elements has therefore been pre¬ 
pared and is given in the charts at the end of the chapter. The charts also 
cover the two degenerate cases, in which the interstage exclusive of the 
parasitic capacity consists of a resistance alone or a resistance and induct¬ 
ance in series, obtainable by assigning extreme values to the elements in 
any of the configurations. 

17.8. Four-Terminal Interstage Networks — General Discussion 

In ordinary amplifier design the interstage networks are frequently four- 
terminal structures, such as tuned transformers and the like, rather than 
the simple shunt impedances which we have thus far considered. Four- 
terminal interstages are often convenient physically. For example, a trans¬ 
former coupled amplifier, aside from being relatively simple of itself, 

* That is, structures giving an infinite loss or gain at finite frequencies are omitted. 
For example, shunt inductance paths to ground are excluded on the assumption that 
in a design on the low-pass basis any such path, if present, will produce only a modifi¬ 
cation of the sort illustrated by the broken line in Fig. 10.14 of Chapter X and can be 
ignored in the high-frequency design. 
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affords a convenient method of introducing plate and grid voltages into the 
circuit. Four-terminal structures are also capable of giving more gain than 
can be obtained from two-terminal interstages. They have been ignored 
thus far principally because they usually exhibit excessively high phase 
shifts, which make them unsuitable in a feedback device. They will be 
considered here briefly, however, as a matter of general interest. 

The reason why a four-terminal interstage can be expected to give more 
gain than a two-terminal struc¬ 
ture can be seen most easily by 
means of the circuit* shown by 
Fig. 17.23. The network is a 
full-shunt terminated low-pass 

Fig. 17.23 filter of the type described orig¬ 
inally in connection with two- 

terminal maximum gain interstages. Instead of lumping plate and grid 
capacities together, however, they appear separately as the two capacities 
labelled C/2 in the drawing. The gain and phase characteristics are given 
by 

a + iP - log —7; - 3 log I"./l — —2 + * —"1 • (17-19) 
woG L\ "0 "oJ 

At high frequencies the gain of the circuit is much less than that of a two- 
terminal interstage and its phase shift is much greater, as we might expect 
from the fact that a filter section has been interpolated between grid^and 
plate. Within the band, on the other hand, the filter is transparent and 
since it is of recurrent structure the absolute value of grid and plate voltages 
must be the same. At the plate terminals, however, the impedance is that 
of a full-shunt terminated constant k filter, and the flow of plate current 
therefore produces a voltage of constant absolute value throughout the 
useful band, just as it did in the case of the two-terminal interstage. The 
only difference lies in the absolute level of gain, which is 6 db higher in 
(17-19) than it is in the corresponding expression (17-13), in agreement 
with the fact that the final shunt branch of the filter can be identified with 
C/2 rather than with C. The separation of grid and plate capacities which 
makes this possible is evidently the general physical advantage of a four- 
terminal over a two-terminal interstage. 

In preparing Fig. 17.23 it has, of course, been assumed that grid and plate 
capacities are equal. This is more or less approximately true with ordinary 
tubes. If the two capacities differ substantially the situation can be 
treated, for analytical purposes, by supposing that the network includes an 

* Wheeler and Pcrcival, loc, cit. 
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ideal transformer or the equivalent, as illustrated by Fig. 17.24. The volt¬ 
age gain of such a circuit in comparison with a similar structure terminated 

in the capacities (Ci + C2)/2 at each end is |(Vc1/C2 + Vc2/Ci)« 
This is always greater than unity but the advantage amounts to only a few 

Fig. 17.24 

tenths of a db for ordinary ratios between Ci and C2 so that we need merely 
take the average of the grid and plate capacities in estimating performance. 
It may be noticed that except as a means of matching capacities there 
appears to be no general theoretical reason, on the basis of the analysis 
given in this section, for including a transformer in the network.* 

For practical purposes the ideal filter structure of Fig. 17.23 can be 
approximated by a finite network in which the mid-shunt image impedance 
from grid to cathode is matched to the terminating resistance by a mid¬ 
series derived half section with m — 0.6 as shown on Fig. 17.25.f Fig- 

* It must be remembered that this discussion is concerned only with the effect of 
capacity limitation on interstage design. In narrow band amplifiers the capacity 
limitation may permit higher impedance levels than can reasonably be constructed or 
than can be used with the tubes, especially in the plate circuit, and a transformer may 
be necessary on this account. Amplifiers with substantial grid or plate dissipation or 

with critical limits on tube loads must also be excluded. 
t As in Fig. 17.7 the numbers refer to a filter with unit cut-off and unit impedance 

level, and the factors «o> for the unit of frequency, and 4/o?oC, for the unit of imped¬ 
ance, must be introduced to give actual element values, in ohms, henries, and farads. 
The same conventions apply to Fig. 17.28. 
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ures 17.26 and 17.27 show the gain and phase characteristics; the dotted 
lines are the theoretical characteristics. 

1.067 

Figure 17.28 illustrates a slightly different form of the structure* in which 
a mid-shunt derived half section is used to match the terminating resistance. 
This configuration is useful in permitting slightly unequal grid and plate 

capacities to be taken into account ana¬ 
lytically, without the necessity of employ¬ 
ing an ideal transformer as was assumed in 

i.o Fig. 17.24. In terms of the parameter m 

of the final half section, the grid and 
plate capacities are [2/(3 + m)]C and 
[(1 + m)/(3 + m)]Cy rather than C/2. 
In Fig. 17.28 it is assumed that m = 0.6 

which corresponds to a capacity ratio of 5 :4. With extreme capacity ratios 
the m becomes too small to provide an effective match to the terminating 

resistance and it is simplest in practice to produce approximate equality 
between the two ends of the circuit by the addition of a certain amount 

* This modification is due to the author's colleague, Mr. W. H. Boghosian. 
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of padding capacity. The particular choice illustrated by Fig. 17.28 leads 
to the approximations to the theoretical characteristics shown by the 
solid lines in Figs. 17.29 and 17.30. 

17.9. Equivalent Representation of a Four-Terminal Interstage 

The four-terminal interstage networks described in the preceding section 
are not necessarily those giving the maximum possible gain with prescribed 
capacities. A general theoretical examination of the problem, however, is 
unfortunately much more difficult for four-terminal interstages than it was 
for two-terminal structures. The chief reason for the added difficulty of 
the problem appears to be the fact that the absolute level of gain of a four- 
terminal interstage is not uniquely fixed by its parasitic capacities and the 
way in which its gain and phase characteristics vary with frequency. This 
is in contrast to the situation in the two-terminal case, where it was possible 
to set up a definite relation such as (17-6) among these quantities. Differ¬ 
ent physical four-terminal structures, on the other hand, may have identical 
parasitic elements, and gain and phase characteristics which vary in an 
identical manner as functions of frequency, and still exhibit different levels 
of absolute gain. Before the maximum gain can be calculated, therefore, 
it is necessary to find out why these differences in level can exist, and what 
further assumptions must be made concerning the network in order to 
secure the most favorable possible case. The discussion presented here 
gives only a general account of the problem and is not intended as either a 
rigorous or an exhaustive analysis. 

The problem of establishing theoretical limits on the gain obtainable 
from a four-terminal interstage will be attacked by representing the inter¬ 
stage as a combination of a number of positive and negative impedances. 
Each impedance includes a parallel capacity, so that it is subject to the re¬ 
sistance integral condition (13-7). The gain limitations are established 
from a study of these conditions. It is convenient for purposes of analysis 
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to suppose that the interstage is represented by its equivalent w of branches 
Zi, Z2, and Z3, as shown by Fig. 17.31. Since Zi is not necessarily equal to 
Z3 the interstage itself need not be symmetrical. The terminating capaci¬ 
ties C/2 are, however, assumed to be the same at grid and plate terminals. 

—, 
x 

o~ 

Fig. 17.31 

It will be supposed that departures from this condition are treated by the 
methods described in connection with Fig. 17.24. Since the unsymmetrical 
7r may include an ideal transformer of any ratio there is no loss of generality 
in making this assumption. 

The gain can conveniently be expressed in terms of the transfer imped¬ 
ance, Zt = Rt + *Xt, representing the voltage at the grid terminals per 
unit current in the plate circuit. We readily find 

Zt — 
zlzl 

Z\ *4” Z2 “h Z3 
(17-20) 

where Z[ and Z3 are written for brevity to represent the parallel combina¬ 
tion of Zi and Z3, respectively, with the terminating capacities C/2. 
Equation (17-20) can be rewritten as 

1 [ Z((Z2 + zi) ZUZ[ + Z2) Z2(Z[ + Z3) 

r 2L Z{ + Z2 + Z'i Z[ + Z2 + Z’z Z[ + Z2 + ZL 

= \[Za+Zb -Zch (17-21) 

where Za, Zb, and Zc represent the corresponding terms in the first expres¬ 
sion. We observe that these three quantities are all physical impedances 
which can be determined by external measurements on the network. For 
example, Za is the impedance which would be measured between termi¬ 
nals Pi and P2, and Zc that which would be measured between Pi and Ps 
in Fig. 17.31. The transfer impedance can consequently be represented 
physically in the form shown by Fig. 17.32 where the successive impedances 
correspond to the successive terms in (17-21). It is to be noticed that each 
constituent impedance includes a parallel capacity and is therefore subject 
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to the resistance integral limitation on its real component. In order to 
utilize these conditions, attention will be directed primarily at the real 
components so that (17-21) can be reduced to the simpler form 

Rt = %(Ra + Rb - Rc). (17-22) 

Fig. 17.32 

17.10. Four-Terminal Interstages with Restricted Phase Characteristics 

It is convenient to begin the analysis by showing that the gain advantage 
of the four-terminal over the two-terminal interstage can be realized only 
if the phase shift of the four-terminal structure is permitted to be more 
than 90°, or, in other words, more than the maximum obtainable from a 
two-terminal structure, over at least a portion of the frequency spectrum. 
Let it be supposed, on the contrary, that the maximum phase shift of the 
four-terminal network is limited to 90°. If we begin with any relative 
gain and phase curves for the interstage, subject to this restriction, we can 
immediately construct from them a curve of the corresponding Rt. With 
the given phase limitation the curve will, of course, always be positive while 
the scale upon which it is drawn will depend upon the assumed absolute 
level of gain. But if the phase shift is to be only 90° at high frequencies the 
gain must decrease at a rate of 6 db per octave or Z^, in other words, must 
vary as l/iku. The relation between the constant k and the area under the 
Rt characteristic in this situation is evidently exactly the same as the rela¬ 
tion between the limiting capacity and the resistance integral in an actual 
two-terminal impedance. If we can find the minimum possible value for ky 
therefore, the area relation will show the scale upon which the Rt character¬ 
istic should be drawn, and from this the maximum permissible absolute 
level of gain can be deduced. Clearly, the absolute level of gain for the 
four-terminal structure will be greater than that of a two-terminal inter¬ 
stage having the same relative gain and phase characteristics only if we 
can assign k a value smaller than C. 

If Za, Zb, and Zc in (17-21) include only the capacity paths shown 
explicitly in Fig. 17.32 the positive and negative resistance areas will cancel. 
In order to secure a net positive area under the Rt characteristic, therefore, 
it is necessary to assume that the interstage circuit proper will include 
capacity paths to supplement the paths furnished by the external parasitic 
capacities. This situation can be examined by supposing that the inter¬ 
stage proper can be represented at infinite frequency by an equivalent * of 
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capacities Cu C2, and C8 as shown by Fig. 17.33.* The corresponding 

expression for Zt is 

Lim ZT 
ta css oo 

J__4Cz_ 
i<a C2 + 2(Ci + 2C2 + C3)C + 4(CiC2 + C1C3 + C2C3) 

(17-23) 

The fact that the actual interstage must be physically realizable does not 

necessarily mean that Ci, C2) and C3 in the equivalent w must all be positive. 

It is obvious, however, that the C’s must 

be so related that a positive capacity will 

result from any external measurement on 

the circuit. Thus Ci + C2, Ci + C3, and 

C2 + C3 must all be positive since each is 

the capacity appearing between two of the 

external terminals when the odd terminal 

is short-circuited to one of these two. If, in addition, we make use 

of the fact that the measured capacity must also be positive when 

no connection is made to the odd terminal, it is a simple matter to show 

that the C’s must satisfy the requirement 

CiC2 + C1C3 + C2C3 > 0. (17—24) 

It is easily demonstrated from these conditions that Zt in (17-23) is not 

greater than l/iwC and reaches this limit only when C2 = 00 and 

Ci = C3 = 0. We therefore have immediately the 

Theorem: The absolute level of gain, over any given band, of a four- 

terminal interstage terminated in prescribed equal capaci¬ 

ties at each end cannot be greater than that of a correspond¬ 

ing two-terminal interstage unless the phase shift of the 

four-terminal structure is greater than 90° over at least a 

part of the frequency spectrum. 

* It is not inevitably true that the branches of the t must reduce to capacities at 
infinite frequency if a finite resistance area is to be secured, especially when account is 
taken of the possibilities afforded by interstages including ideal transformers. In 
general, we must assume that the branches may behave at infinite frequency as 
Ajwn, A 2«*, and A$u)n, where, since the individual branches of the r need not them¬ 
selves be physical impedances, n may be zero, one, or any negative integer. If the 
interstage as a whole is to be physically realizable, however, the branches of the 
equivalent structure must be so related that a physical impedance is obtained by any 
external measurement. This means that A\y At> and A% must satisfy a relation of the 
form (17-24), where only the equality sign is permitted unless n « 0 or =fcl. With 
the help of these conditions it can be shown that the result established in the text for a 
capacity it holds also in the general case. The details of the analysis, however, are 
omitted for the sake of brevity. 
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The conditions C2 = «> and Cx = C3 = 0 which give the maximum gain in 

the four-terminal case are evidently those which apply when the structure 

degenerates physically into a two-terminal network. 

The restriction that the phase shift should not exceed 90° can be looked 

upon in either of two ways. At high frequencies it implies that the gain 

decreases at 6, rather than perhaps 12 or 18, db per octave. In a feedback 

amplifier, interstage phase shifts greater than 90° at high frequencies are 

usually fatal if any very large amount of feedback is to be obtained. A 

phase shift greater than 90° over a limited low-frequency region, on the 

other hand, may not be serious. It should be noticed, however, that if a 

two-terminal and a four-terminal interstage have the same gain and phase 

characteristics at high frequencies they must have the same total gain area 

at lower frequencies. Thus the absence of a iow-frequency phase restric¬ 

tion on the four-terminal structure merely means that its gain can change 

more sharply, and therefore the given total gain area can be distributed 

more flexibly, than is possible with a two-terminal network. In a multi¬ 

stage amplifier, however, this additional flexibility should be important 

only in exceptional circumstances. 

17.11. General Limitations on the Gain of a Four-Terminal Interstage 

In view of these results it will be assumed hereafter that the four- 

terminal structure is to be designed to give the maximum possible gain, 

without regard to any limitation on its phase 

characteristic. This implies, of course, that 

the real component of Zt will be positive in 

some frequency ranges and negative in others, 

as indicated by Fig. 17.34. Since the situa¬ 

tion is now symmetrical, as between positive 

and negative resistances, we may expect that 

the optimum solution will be obtained if posi¬ 

tive and negative areas are equal and are 

as large as possible. In other words, there will be no occasion, as there 

was in the previous discussion, to supplement the capacity paths shown 

explicitly in Fig. 17.32 by others in the interstage proper. 

Let it be assumed, as was done previously, that the shape of Rt in 

Fig. 17.34 has been determined from the relative gain and phase characteris¬ 

tics desired but that the scale of the characteristic remains to be fixed by the 

absolute level of gain. We cannot limit the absolute gain from a considera¬ 

tion of the resistance integral for Rt as a whole, since it follows from the 

statements made in the preceding paragraph that the net area under the 

characteristic can be expected to be zero in the optimum case. A limit 

can, however, be established from the resistance integral conditions apply- 
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ing separately to the positive and negative components %(Ra + Rb) and 
—of Rt in (17-22). For example, it is obviously not permissible to 
choose an absolute level of gain so high that the area under the positive 
parts of Rt exceeds the area under the curve for %(Ra + Rb) alone. 

In a network design chosen at random, it is to be expected that both 
\(JRa + Rb) and %Rc will be appreciable at most frequencies. Thus the 
two components will tend to cancel to some extent and the net area under 
the positive portions of the Rt characteristic alone, or under the negative 
portions, will be less than the integrals of §(/?a + Rb) or individ¬ 
ually. This means, of course, that the absolute level of gain must be 
correspondingly reduced. For example, the broken line curves in Fig. 17.35 

show the several positive and negative resistance components for the 
particular network of Fig. 17.23 and the solid curve the net Rt which 
results.* This network meets the condition that it contains no high fre¬ 
quency paths to supplement those offered by the parasitic capacities, so 
that the area under the positive lobe of extending from o) = 0 to 
u> = 0.5a>o, is equal to the area under the negative lobe, extending from 
w = 0.5o>o to <a = We observe, however, that the component charac¬ 
teristics cancel out to such an extent that either area is only about 40 per 
cent of the areas associated with the characteristics for + Rb) and 
JRc individually. The fact that such cancellations may occur, and to a 
varying extent in different designs, explains why it is possible to have four- 
terminal interstages including the same parasitic capacities and with the 
same relative gain and phase characteristics but with different absolute 
levels of gain. 

*The unit of impedance in Fig. 17.35, and in the corresponding Figs. 17.36,17.38 
and 17*39 given subsequently, is taken as 4/o>oC ohms. 
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It is obvious that the maximum possible gain level would be obtained 

ideally if Rc were zero in frequency ranges for which Rt is positive and 

Ra + Rb were zero when Rt is negative, so that no cancellations could 

occur. This relation, unfortunately, cannot be achieved if the interstage 

network is to be physically realizable. We can, however, determine what 

the minimum amount of cancellation must be. The condition that the 

interstage be physically realizable is* 

RaRb - R2t > 0 (17-25) 

or 

\/RaRb = | Rt | + (17—26) 

where 5i is positive or zero. This condition can be combined with (17-22), 

which is conveniently rewritten as 

Rt = VraRb - %RC + $2, (17-27) 

where 52 = — V/?#)2 and is also either positive or zero. If RT 

is negative the two equations give 

2 Rt = -\Rc + 5i + 82y (17-28) 

while if Rt is positive we have 

%RC = Si + <8- (17-29) 

The optimum condition is readily determined from these expressions. It 

occurs when $i = 52 = 0, which means that the network is symmetrical 

and just meets the requirement of physical realizability given by (17-26). 

With these 5*s we have Rc = 0 when Rt is positive so that the complete 

integral for %Rc is concentrated into frequency ranges in which Rt is 

negative. But Rt in these ranges is only half as great as so that half 

of the integral for %(RA + Rb) must also be found here in order to supply 

the proper cancellation. The remaining half of the integral for 

§(/?a + /?b), of course, supplies the Rt characteristic in the frequency 

ranges for which it is positive. These relations are illustrated by Fig. 17.36, 

which shows the positive and negative components which would correspond 

to the Rt characteristic of Fig. 17.35 in the ideal case. Only the total 

positive component, §(/?a + /?b)> is drawn, since if the network is to be 

symmetrical we must, of course, have Ra = Rb> 

* Adapted from the conditions given by Gewertz, “Network Synthesis,” Part III. 
The requirement is fundamentally similar to that established for a capacity network 
in (17-24). It can be deduced by studying under what conditions the input resistance 
of the network will remain positive when a pure reactance of arbitrary magnitude and 

sign is connected to the output terminals. 
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Since the capacities which limit Z^, Z#, and Zc are known, these con¬ 
clusions can be translated into quantitative terms. The general result 

appears as the 

Theorem: The areas under either the positive or the negative portions 
of the real component of the transfer impedance of a four- 
terminal interstage network terminated in equal capacities 
at both ends cannot exceed the resistance integral associated 
with the sum of the terminating capacities. The limit is 
attained if and only if the network is externally symmetri¬ 
cal and its self and transfer resistances are in the limiting 
relation for physical realizability. 

The fact that the optimum network must be symmetrical makes it 
possible to replace our preceding equation (17-21) for Zt by a somewhat 

Fig. 17.36 

simpler expression in which the necessary minimum of cancellation between 
positive and negative resistance areas is taken into account automatically. 
If we set Z[ = Z3 in (17-20) we readily find that the equation can be 
rewritten as 

Zt 
Z[2 

2Zj + Z2 

- *zS - i 
z[z2 

2Z[+Z2 

— \Z[ — \Zc, (17-30) 

where the symbols have their previous significance. The expression pre¬ 
sents the combination of positive and negative impedances shown by 
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Fig. 17.37. In comparison with the corresponding combination for the 
general case, shown earlier by Fig. 17.32, we notice that the limiting capaci¬ 
ties for the positive and negative component impedances are just twice 
what they were before. 

On the other hand, the positive and negative components can now be 
regarded as entirely independent impedances. It will be recalled that the 
positive and negative components in Fig. 17.32 could be determined by 
various external measurements on the network. In particular the nega¬ 
tive component was a multiple of the impedance appearing between termi¬ 
nals Pi and P3 in the general circuit of Fig. 17.31. This measurement still 
applies in Fig. 17.37, since the negative component appearing there differs 
from the earlier one only by a constant factor. The two positive com¬ 
ponents \Za and \Zb in Fig. 17.32 have, however, been replaced by the 
single impedance \Z[. To determine the new positive component we must 

Fig. 17.37 

substitute for the measurements used earlier a measurement between termi¬ 
nal P2 in Fig. 17.31 and terminals Pi and P3 strapped together. 

With this change the measurements which determine the positive and 
negative components become exactly the same as those used to find the 
branches of the equivalent lattice of a general unbalanced symmetrical 
structure in Fig. 12.18 of Chapter XII. The components are thus merely 
multiples of the branches of the equivalent lattice. We can suppose that 
they are chosen quite independently and that the various network relations 
described in Chapter XII will be used to go from them to a suitable physical 
configuration for the final interstage. This makes it unnecessary to 
suppose that there is any overlapping or cancellation of the positive and 
negative resistance characteristics. The optimum result is attained if we 
postulate that the positive parts of the Rt characteristic are due entirely to 
the positive component impedance and vice versa. The fact that a cancel¬ 
lation of at least 50 per cent was found to be necessary in the analysis of the 
general case is accounted for by the fact that the capacities limiting thg 
component impedances are twice as large as they were previously, so that 
the resistance integrals are correspondingly reduced. 

Since the absolute level of gain is finally limited by the positive and nega¬ 
tive resistance integral conditions it is natural to suppose that maximum 



440 NETWORK ANALYSIS Crap, 17 

gain in any given region will be obtained if Rt = 0 outside that range so 
that, as in the two-terminal case, the resistance areas are concentrated 
entirely in the useful band. If we make this assumption the design pro¬ 
cedure for a four-terminal interstage having any given relative gain charac¬ 
teristic in the useful range can be reduced to definite form. We begin by 
writing specific formulae for the gain and phase characteristics of the inter¬ 
stage. Such formulae can be constructed by multiplying the gain and 
phase characteristics of an appropriately chosen two-terminal interstage of 
maximum gain type by n> where n is any odd integer greater than one.* 
The Rt characteristic is next obtained and the scale of the drawing, which 
determines the absolute level of gain, is adjusted until the positive and 
negative parts of the characteristic by themselves satisfy the required inte¬ 
gral conditions. The reactances which correspond to the positive and 
negative component resistances, taken separately, may then be determined. 
This fixes the branch impedances of the equivalent lattice of the final struc¬ 
ture and a suitable actual configuration may be found by using the various 
equivalence relations described in Chapter XII. An example is given in 
the next section. 

17.12. Illustrative Design of a Four-Terminal Interstage 

The analysis just concluded will be illustrated by a discussion of the 
problem of designing a four-terminal interstage having the maximum 
possible constant gain over a prescribed band. We begin by constructing a 
formula for the gain and phase characteristics by multiplying the gain and 
phase of a constant gain two-terminal interstage by the odd integer n. 
This leads to 

OL + ip = log ZT = log K - n log L/l - ^ + * ~1 * (17-31) 
L \ w0 J 

When n = 3 this is evidently the same, except perhaps for the absolute 
level of gain, as the expression given in (17-19). 

The Rt characteristic defined by (17-31) follows a curve of the form 
shown by Fig. 17.38. The number of loops depends, of course, upon n 
but it is readily shown that the areas in the positive and negative loops will 
be equal for any permissible n. The problem to be solved is that of adjust¬ 
ing the factor K so that either the positive or negative areas will satisfy the 
resistance integral condition. If we substitute $ = sin”1 w/w0 the curve 
in Fig. 17.38 becomes Rt = K cos n<t> and the equation for the integral of 

* This choice of n is made because it leads to an Rt characteristic which has equal 
positive and negative areas and is zero outside the band. 
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the positive component, say, is jr»ir/2 r p*/2n p5ir/2n 

cos <f> d<j> = K / cos n<j> cos <j> d<f> + / cos n<t> cos <f> d<f> 
0 L«/0 3ir/2n 

+ cos cos <t> d<f> 
(n—2)ar/2n ] 

7T 

2a)0C 
(17-32) 

The coo in the right-hand side and the factor cos </> in each integrand are 
introduced to take account of the fact that the resistance integral condition 
applies to an integration in terms of w rather than </>. 

Equation (17-32) can be integrated directly to give 

nK 

n2- 1 

TT 3 7T SlT 

C°ato + C°,2i + C°,2i + + cos 
(«~2) 

In =] 2o>0C 

(17-33) 

But the trigonometric series is known* to be equal to J cot (w/2n). The 
formula for K consequently becomes 

7T 1 7r 
tan — -—- • 

2wJ 2o)qC 
(17-34) 

The quantity in the brackets reaches its maximum value tt when n == oo. 
The limit on the maximum constant gain obtainable from the structure is 

* Knopp, w Theorie und Anwendung der Unendlichen Reihen,” p. 345. 
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therefore given by the 

Theorem: The maximum transfer impedance which can be realized 
over a given band by a symmetrical four-terminal interstage 
network terminated at each end in the capacity C/2 is not 
greater than 7r2/2 times the impedance of C for the given 
band. 

This limit is about 8 db higher than the maximum gain obtainable from a 
two-terminal interstage, or about 2 db higher than the gam realized from 
the structure of Fig. 17.23. 

Fio. 17.40 

If we approach the theoretical limit extremely closely, by making n very 
large, the positive and negative parts of the Rt characteristic will consist 
of a large number of disconnected segments and the corresponding networks 
must evidently be extraordinarily complicated. There is almost no 
penalty, however, in choosing n = 3, the smallest permissible value, since 
even with this n the bracketed quantity in (17-34) is 3.08, or only 0.2 db 
below the maximum. With this choice, the Rt characteristic takes the 
same form as that shown previously in Figs. 17.35 and 17.36. It is repro¬ 
duced here to the proper scale in Fig. 17.39. 
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The positive resistance component is defined as the Rt characteristic 
from the origin to its intersection with the zero axis and as the zero axis 
thereafter- The curve is roughly filter-like in its characteristics and as an 
initial step in simulating it we may therefore construct the mid-shunt termi¬ 
nated low-pass filter, with cut-off near the point co = 0.5co0 at which the 
positive characteristic reaches zero, shown by the box in Fig. 17.40. This 

_J 

= JTIk_ 
V __ wf 

L.HSCJU, j 

Fig. 17.41 

structure includes the capacity 0.43C as its final shunt branch. Since the 
total parallel capacity for each component impedance in Fig. 17.37 is C, it is 
necessary to add an additional capacity 0.57C to the network. Without 
further modification this leads to the match to the positive resistance 
characteristic indicated by the crosses in Fig. 17.39. 

The negative resistance component is equal to zero from the origin to 
co = 0.5coo and follows the Rt characteristic thereafter. It can be treated 
in much the same way. As the fundamental unit we take a mid-shunt 
terminated band-pass structure transmitting the band extending from 
roughly co = O.5co0 to co = co0. This is shown by the box in Fig. 17.41. 

17.12 
"ETc 

The nominal image impedance is displaced slightly from the theoretical 
value, 4.84/cooC, to make the actual image impedance correct at the peak 
of the negative resistance characteristic. The filter includes the capacity 
0.49C. To complete the network the required additional capacity, 0.51C, 
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is introduced and a tuning coil is added to place the resistance peak at the 
correct frequency. The match to the theoretical characteristic is indicated 
by the circles in Fig. 17.39. 

In accordance with the discussion given in connection with equa¬ 
tion (17-30), the networks of Figs. 17.40 and 17.41 have impedances which 
are half as great as those of the branches of the equivalent lattice of the 
complete circuit. To find the final structure we may begin by removing 
the parallel capacities, using the equivalence shown by Fig. 12.22 of 
Chapter XII. The remainder can be converted to a bridged-T by means 
of the equivalence described in connection with Fig. 12.26 of the same 
chapter. This leads to the circuit shown by Fig. 17.42. The network 
Ni is equal to the structure of Fig. 17.40 after all the elements shown ex¬ 
plicitly in Fig. 17.40 are removed and the network N2 is equal to the 
structure of Fig. 17.41, but at a four times greater impedance level, under 
the same conditions. The final gain and phase characteristics, with the 
reference gain taken as log l/w0Cy are shown in Fig. 17.43. The ripple 

in the center of the band is due to the fact that the filter circuits are too 
selective to follow the characteristics of Fig. 17.39 in this region. It can 
be reduced either by using simplified filters with imperfect selectivity or 
by adding traces of dissipation to the structures. The broken lines in 
Fig. 17.43 show the effect obtained if we suppose that the filters as they 
stand have a Q of 100. 
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CHAPTER XVIII 

Design of Single Loop Absolutely Stable Amplifiers* 

18.1. Introduction 

In the preceding two chapters attention has been centered on the design 
of particular parts of a feedback amplifier. From this point on, however, 
we will be concerned primarily with the overall design of the complete 
structure. Attention will be directed particularly to single loop, absolutely 
stable amplifiers, which are those most commoidy encountered in contem¬ 
porary design practice. Design examples for the theory developed in this 
chapter have been segregated and are presented in the chapter which 
follows. The chapter includes references, however, to permit the reader 
to turn to pertinent examples immediately if he so desires. 

The restriction to single loop amplifiers means physically that the tubes 
are unilateral elements connected directly in tandem, as they are in the 
usual u circuit. For the sake of later discussion, its precise meaning will be 
understood to be that given by the 

Definition: A single loop amplifier is one in which the return difference 
of any tube is equal to unity if the gain of any other tube 
in the circuit vanishes. 

This is evidently equivalent to saying that the transconductances of the 
various tubes can enter the circuit determinant only as the product 
Gmfin^ • • • G^. It implies both that the tubes must be directly in 
tandem, as stated, and that the return differences for all tubes under operat¬ 
ing conditions are the same. 

It should be noticed that the definition excludes amplifiers in which there 
is local feedback on one or more of the tubes produced by an impedance in 
the cathode circuit, parasitic grid-plate capacity, or some similar instru¬ 
mentality. For engineering purposes this restriction is somewhat too rigor¬ 
ous since many such circuits can be analyzed successfully as single loop 
structures merely by taking account of the modifications in the forward 
circuit gain which the local feedback produces. As a more comprehensive 
analysis would show, however, the stability of such a circuit is sometimes 

* See also the author’s paper in the B. S. T. /. for July, 1940, or U. S. Pat. No. 
2,123,178. 
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much affected by the relative rates at which tube gains decay with age, or 
the relative rates at which they increase as the tubes warm up when power 
is first applied to the circuit, so that the assumption that the structure can 
be analyzed as a single loop amplifier, without qualification, is treacherous. 

On the other hand, the definition includes as single loop amplifiers struc¬ 
tures having any number of distinct paths for the return of voltage from 
the plate of the output tube to the grid of the input tube. An example is 
furnished by one of the illustrative designs described in the next chapter. 

The structure has one ju circuit and two 
P circuits as shown by Fig. 18.1. The 
distinction between the two p paths is of 
engineering importance, since only one is 
operative in the useful band and there¬ 
fore has the external characteristics of 
the amplifier under its control. The 

other is added to improve the phase angle of the returned voltage at high 
frequencies. For the purposes of the present discussion, which is con¬ 
cerned primarily with the stability of the circuit, however, any number of 
such alternative paths can be combined and regarded as a single four- 
terminal network. 

The requirement that the structure be absolutely stable refers to the 
analysis developed in Chapter VIII. It will be recalled that the T plot of a 
typical amplifier fell into one of the three categories illustrated by Fig. 18.2. 

HffTT— 

~Wi\- 

Fic. 18.1 

If the path is like Curve II, which encircles the point — 1, 0, the circuit is 
unstable. A stable amplifier is obtained if the path resembles either 
Curve I or Curve III, neither of which encircles —1, 0. The stability 
represented by Curve III, however, is only conditional since the pa,th will 
enclose the critical point if it is merely reduced in scale. Thus the circuit 
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may sing when the tubes begin to lose their gain because of age, and it may 
also sing, instead of behaving as it should, when the /* gain increases from 
zero as power is first applied to the circuit. In this chapter it will conse¬ 
quently be assumed that the amplifier is of the absolutely stable type repre¬ 
sented by Curve I, and remains stable for any reduction in n circuit gain. 

The condition that the amplifier be absolutely stable is evidently that the 
loop phase shift should not exceed 180° until the gain around the loop has 
been reduced to zero or less. A theoretical characteristic which just met 
this requirement, however, would be unsatisfactory, since it is inevitable 

that the limiting phase would be exceeded in fact by minor deviations intro¬ 
duced either in the detailed design of the amplifier or in its construction. 
It will therefore be assumed that the limiting phase is taken as 180° less 
some definite margin. This is illustrated by Fig. 18.3, the phase margin 
being indicated as yir radians. At frequencies remote from the band it is 
physically impossible, in most circuits, to restrict the phase within these 
limits. As a supplement, therefore, it will be assumed that larger phase 
shifts are permissible if the loop gain is x db below zero. This is illustrated 
by the broken circular arc in Fig. 18.3. It is, of course, contemplated that 
the gain and phase margins x and y will be chosen arbitrarily in advance. 
If we choose large values we can permit correspondingly large tolerances in 
the detailed design and construction of the apparatus without risk of insta¬ 
bility. It turns out, however, that with a prescribed width of cut-off 
interval the amount of feedback which can be realized in the useful range is 
decreased as the assumed margins are increased, so that it is generally 
desirable to choose as small margins as is safe. 

It will be assumed throughout the chapter that the amplifier is of the low- 
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pass type. The various transformations described in Chapter X, including 
in particular the theorem on conservation of band width, may be used to fit 
the results obtained to other situations. Examples requiring some of these 
modifications are given in the next chapter. 

18.2. Ideal Cut-off Characteristics 

The essential feature in the situation just discussed is the requirement 
that the gain around the feedback loop be reduced from the large value 
which it has in the useful band to zero or less at some higher frequency 
without producing an accompanying phase shift greater than some pre¬ 
scribed amount. It is evident from the general relations described in 
Chapter XIV that this requirement amounts basically to a condition upon 
the rate at which the gain outside the useful band is reduced. If it were not 
for the phase restriction it would be desirable on engineering grounds to 
reduce the gain very rapidly. The more rapidly the feedback vanishes, for 
example, the narrower we need make the region in which active design 
attention is required to prevent singing. Moreover, it is evidently desirable 
to secure a loop cut-off as soon as possible in order to avoid the difficulties 
and uncertainties of design which parasitic elements in the circuit intro¬ 
duce at high frequencies. But the analysis of Chapter XIV shows that the 
phase shift is broadly proportional to the rate at which the gain changes. 
If the phase shift is not to be greater than a prescribed amount, therefore, 
the rate at which the amplifier cuts off, on the whole, must not exceed a 
fairly well defined limit. For example, if we assume a phase margin of 30° 
the allowable phase shift is 150°, which corresponds broadly to a gain 
characteristic changing at the rate of 10 db per octave. 

It is evidently desirable to have a phase characteristic which is as great 
as possible, within the prescribed limit, in order to secure the most rapid 
cut-off. The exact cut-off shape which best meets this condition can be 
obtained if we return to the analysis which underlies equation (17-13), for 
the maximum gain interstage, in the preceding chapter. It will be recalled 
that this equation was derived from the general formula (14-33) of Chap¬ 
ter XIV by specifying that the interstage gain should be constant in the 
useful band and that its phase angle should be constant and equal to 
—?r/2 beyond it. An essentially similar analytic problem exists in the 
present situation if we suppose that a constant feedback in the useful band 
is desired. The requirement on the gain around the feedback loop merely 
takes the place of the interstage gain requirement, while beyond the band 
the requirement that the loop phase shift should not exceed a prescribed 
amount takes the place of the requirement on the phase artgle of the inter* 
stage. The only noteworthy difference is the fact that the phase require¬ 
ment has been changed from r/2 radians to (1 — y)ir radians* This change 



SINGLE LOOP AMPLIFIERS 455 

multiplies the variable part of the final expression proportionately. We 
can consequently rewrite the interstage gain and phase shift expression to 
suit the feedback loop problem in the form 

A + iB = Ao - 2(1 - y) log fj 1 - ^ 1» (18-1) 
L\ WO W0J 

where ^ and B are respectively the real and imaginary components of 
log T = log (—m/3) and represents the gain around the loop in the useful 
band. A plot of A and B for the choice y = -J, corresponding to a 30° 
phase margin, is shown by Fig. 18.4. The constant gain Aq is, of course, 
still to be added. 
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Fig. 18.4 

In view of the exact analogy between the interstage problem and the 
feedback loop problem most of the detailed conclusions developed in the 
preceding chapter can be applied directly to the present situation. The 
results of principal interest are: 

1. In the interstage analysis the plot of the gain characteristic against 
log (a reduced, at high frequencies, to a straight line with a slope of 6 db 
per octave, representing the characteristic of the parasitic capacity 
alone. Here, similarly, equation (18-1) reduces at high frequencies 
to a straight line with a slope of 12(1 — y) db per octave. This is 
indicated by the broken line in Fig. 18.4. Near the edge of the band 
the actual characteristic varies more rapidly than the straight line, to 
take account of the fact that there is zero slope within the band, and at 
the band edge it lies 12(1 — y) db above the straight line. This corre¬ 
sponds to the 6 db advantage which a maximum fiat gain interstage 
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has over the capacity gain at the band edge and permits us to save one 
octave of the cut-off interval which would be necessary if we relied 
upon a straight line characteristic alone. 

2. If the phase margin and the loop gain at high frequencies are to be kept 
constant, but the loop gain in the useful band is to be variable with 
frequency, the absolute level of loop gain must meet the condition 
that the area under the gain characteristic when plotted against 

= sin""1 #/wo must be kept constant. 
3. If the loop gain at high frequencies and the shape of the gain charac¬ 

teristic in the useful band are prescribed, but a variable rather than a 
constant phase margin is desired over a portion of the cut-off range, 
the absolute level of gain, in nepers, in the useful band should be 
changed by an amount equal to the average height, in radians, of the 
plot of (co/c»>o)l8 — (1 — jy)7r] against <// = sin a>o/co, where B and 
(1 — y)7r represent respectively the variable and constant margin 
phase characteristic**. 

In the interstage design the high frequency gain characteristic is used as a 
reference because it corresponds to the parasitic capacity. The reason for 
supposing that it is fixed in a feedback loop problem, as statements (2) 

and (3) assume, will appear later. It 
may also be noticed that although (2) 
and (3) are formulated for amplifiers in 
which a variable feedback in the useful 
band or a variable phase margin are 
desired, they can also be used in cor¬ 
recting a preliminary design in which 

the feedback and phase margin are variable when they should be constant. 
For example, if the preliminary design is satisfactory except that the 
feedback in the useful band is too irregular, statement (2) shows how 
much feedback we should attempt to get in adjusting the circuit to secure 
a flatter characteristic. 

The close analogy between the ideal cut-off defined by (1) and the 
characteristic of a maximum gain interstage makes it possible to exemplify 
(1) by an amplifier in which the transmission around the loop is determined 
entirely by interstages. The structure is shown by Fig. 18.5. It can be 
regarded as a degenerate shunt feedback amplifier in which the p connec¬ 
tion is reduced to a short circuit and in which the input and output circuits 
are vestigial, and contribute only an infinitesimal admittance across the 
feedback path. The transformer shown in the drawing is supposed to be an 
ideal one, of unity ratio, and is introduced merely to secure the phase 
reversal necessary to permit feedback in the proper sign with an even 

Fig. 18.5 
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number of tubes. We might dispense with it by converting the circuit to a 
push-pull structure with a pair of crossed terminals. The networks N in 
Fig. 18.5 are both maximum gain interstages of the type shown by Fig. 17.6 
of the preceding chapter. The gain around the loop is evidently the sum of 
the gains of the two interstages and can be written as 

J + iB = 2 log^ - 2 log [-/I - -2 + *—l, (18-2) 
W0C L \ wo w0 J 

where Gm is the transconductance and C the sum of the grid and plate 
capacities for either tube. The expression has the form assumed by (18-1) 
in the limiting case of zero phase margin. 

Aside from serving as an example of (18-1) the structure of Fig. 18.5 
is of considerable interest from another point of view. It represents the 
theoretical limiting form to which an amplifier reduces when every other 
design consideration is sacrificed to secure the maximum possible feedback. 
As the structure stands the feedback obtainable over any given band is, of 
course, given by the first term of (18-2) and depends only upon the ratio 
Gm/C and the band width w0. The ratio Gm/C is the so-called “figure of 
merit ” of the tubes. It is equal to the frequency, in radians per second, at 
which the tubes working into their own parasitic capacities would have zero 
gain. Zero feedback is obtained when co0 is twice Gm/C, as we can see either 
from (18-2) or directly from the fact that the gain of a maximum gain 
interstage is 6 db greater than the capacity gain at the band edge. Since 
in some present-day tubes the figure of merit may represent a frequency of 
the order of 100 me, this means that if a structure like Fig. 18.5 could be 
built it should be possible to realize some feedback (i.e., \nP\ >1) over bands 
as broad as 200 me.* If we start with the 200 me band as a basis, the 
feedback which the structure should furnish over narrower bands varies 
inversely as the square of the band width. Thus over a 10 me band it is 
about 50 db, over a 1 me band about 90 db, and over a 10 kc band about 
170 db. 

These are evidently much larger values of feedback than those to which 
we are accustomed in normal design practice. They are achieved, of 
course, only because of the artificial simplicity of the circuit. In a practi¬ 
cal design it would be necessary, at least, to provide input and output cir¬ 
cuits capable of transmitting a finite amount of signal power between the 
amplifier and the line and to include a P circuit having a finite loss, so that 
the amplifier might have some gain. We might also wish to give con¬ 
sideration to such factors as the transit angle of the tubes, the use of tubes 
with poorer figures of merit but better characteristics in other respects, or 
the provision of a definite phase margin to permit the circuit to be con- 

* This ignores the tube transit time, discussed later in the chapter. 
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structed with reasonable standards of precision. These considerations 
inevitably reduce the amount of feedback which can be obtained in a 
practical design very substantially. In a broad sense, however, one of the 
most important problems in feedback amplifier design is that of planning 
the circuit in broad outline to prevent the sacrifice in feedback from becom¬ 
ing intolerably great. The structure of Fig. 18.5 is useful here, in spite of 
its artificiality, as a standard of comparison. 

18.3. Asymptotic Characteristic of the Feedback Loop 

The direct analogy between the interstage gain characteristic and equa¬ 
tion (18-1) for the transmission around the feedback loop breaks down at 
only one important point. In dealing with the interstage the limit on the 
absolute level of gain is obviously set by the fact that the characteristic 
must reduce to that of the interstage capacity alone at sufficiently high 
frequencies. If we begin with too high a gain in the useful band it is 
impossible to reduce the gain fast enough beyond the band to reach the 
capacity characteristic without producing a phase shift which exceeds the 
90° limit for a physical two-terminal structure. 

In the loop transmission problem, the absolute level of loop gain which 
can be assumed to exist in the useful band is limited by similar, but more 
complicated, considerations. So far as a purely theoretical formula like 
(18-1) is concerned, there is clearly no limit to the feedback which can be 
postulated. As the constant A0y representing the feedback in the useful 
band, is increased, however, the interval in which there is appreciable trans¬ 
mission around the loop extends to higher and higher frequencies. The 
process reaches a physical limit, broadly speaking, when the frequency 
becomes so high that parasitic effects are controlling and do not permit the 
transmission characteristic prescribed by (18-1) to be simulated with 
sufficient precision. For example, we are obviously in physical difficulties 
if (18-1) requires a net gain around the loop at a frequency so high that the 
tubes themselves working into their own parasitic capacities do not give a 
gain. This is the limit which is effective in the special circuit of Fig. 18.5, 
and is one of the reasons for regarding this structure as a reference in 
feedback computations. In a practical amplifier, limitations on the loop 
gain must be encountered more quickly because of the additional losses 
contributed to the loop transmission by the input and output circuits and 
the 0 circuit. In comparison with the interstage problem, the chief differ¬ 
ence to be noticed is that the high-frequency transmission around the 
loop is controlled by a complex of elements rather than by a single specific 
parasitic capacity. The characteristic to which the loop transmission 
tends at sufficiently high frequencies under the influence of all the significant 
parasitic elements in the loop will be called the asymptote of the loop. 
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The calculation of the loop asymptote is easily understood from the 
illustrative circuit shown by Kig. 18.6. The structure is a shunt feedback 
amplifier. The /3 circuit is represented by the T composed of networks 
Ns, N$ and N7. The input and output circuits are represented by Ni 
and and the interstage impedances by N2 and N%. The C’s are parasitic 
capacities with the exception of C5 and C6, which may be regarded as design 

m i US BB ■ ■ 
■ B HI B 
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Fio. 18.6 

elements added deliberately to N$ and N$ to obtain an efficient high- 
frequency transmission path from output to input. At sufficiently high fre¬ 
quencies the loop transmission will depend only upon these various capaci¬ 
ties, without regard to the N*s. Thus, if the transconductances of the 
tubes are represented by Gmi, Gm,and Gmjs, the asymptotic gains of the 
first two tubes are Gmi/o>C2 and Gm2/coC3. The rest of the loop includes 
the third tube and the potentiometer formed by the capacities Cx, C4, C5, 
and C6. Its asymptotic gain can be written as GW3/coC, where 

C == Ci + C4 + 14 (C5 + G6). (18-3) 

The complete asymptote is the product of these terms or, in other words, 
GmiGmfimi/^3CC2Cs. It appears as a straight line with a slope of 18 db 
per octave, or 60 db per decade, when plotted on logarithmic paper. The 
fact that the asymptote can be expected to appear as a straight line on 
logarithmic paper in the general case is easily seen if we write the transfer 
impedance around the loop as 

T ~ B0 + Bi(/«) + 52(/co)2 + • • • + 

When co approaches infinity the expression reduces to 

(18-4) 

ZT = -ft t 
A m, (18—5) 

which represents a straight line with slope (m2 — mi) in units of 6 db per 
octave. The quantity (m2 —mi) will be represented by n in future dis¬ 
cussions. In Fig. 18.6, n * 3 and is the same as the number of tubes in the 
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circuit. It is evidently not possible for n to be smaller than the number of 
tubes, since each tube must at least work into its own parasitic capacity, 
but it may be greater in some circuits. For example, if C5 or C6 were 
omitted in Fig. 18.6 and the associated network or Nq were regarded as 
degenerating into a resistance, the asymptote would have a slope of 4 

units and would lie below the present asymptote at any reasonably high 
frequency. 

The effect of the asymptote on the overall feedback characteristics is 
illustrated by Fig. 18.7. The curve ABEF is a reproduction of the ideal 
cut-off characteristic originally given in Fig. 18.4.* It will be recalled 
that the curve was drawn for the choice^ = which corresponds to a phase 
margin of 30° and an almost constant slope, for the portion DEF of the 
characteristic, of about 10 db per octave. The straight line CEK repre¬ 
sents an asymptote of the type just described, with a slope of 18 db per 
octave, and with a zero gain intercept at o> = 9o>0. Since the asymptote 
may be assumed to represent the practical upper limit of gain in the high- 
frequency region, the effect of the parasitic elements can be obtained by 
replacing the theoretical cut-off by the broken line characteristic ABDEK. 
In an actual circuit the corner at E would, of course, be rounded off, but 
this is of negligible quantitative importance. Since EF and EK diverge by 
8 db per octave the effect can be studied by adding a curve of the type shown 
by Fig. 14.8 of Chapter XIV to the original cut-off characteristic. 

The phase shift in the ideal case is shown by Curve I of Fig. 18.8. The 
addition of the phase corresponding to the extra slope of 8 db per octave at 

* Except, of course, for the constant A 0. In Fig. 18.7 and the succeeding Figs. 18.13, 
18.15, and 18.18 the asymptote remains the same and Ao is chosen, in each ease, to 
suit the cut-off characteristic under investigation. 
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high frequencies produces the total phase characteristic shown by Curve V. 
At the point B, where | nfi \ — 1, the additional phase shift amounts to 35°. 
Since this is greater than the original phase margin of 30° the amplifier is 
unstable when parasitic elements are considered. In the present instance 
stability can be regained by decreasing y to which leads to the broken 
line characteristic AGKH in Fig. 18.7. This reduces the nominal phase 
margin to 15°, but the frequency interval between G and K is so much 

Fio. 18.8 

greater than that between B and E that the added phase is reduced still 
more and is just less than 15° at the new crossover point G. This is illus¬ 
trated by II and II' in Fig. 18.8. On the other hand, if the zero gain inter¬ 
cept of the asymptote CEK had occurred at a slightly lower frequency, 
no change in y alone would have been sufficient. It would have been 
necessary to reduce the amount of feedback in the transmitted range in 
order to secure stability. 

18.4. Asymptotic Characteristics in Some Illustrative Circuits 

In later sections the discussion of the effect of the asymptote in limiting 
the amount of feedback available will be based upon a slightly more elabor¬ 
ate relation between the asymptote and the ideal cut-off than that indicated 
by Figs. 18.7 and 18.8. Even the simplified statement of the situation 
given by these figures, however, is sufficient to show the essential r61e which 
the asymptote plays in the design. It is evident that a large feedback 
cannot be obtained if the asymptote crosses the zero gain axis too close to 
the useful band or has too high a slope. Fortunately, the asymptotic 
characteristic can be obtained relatively easily, since it depends only upon 
the parasitic elements of the circuit and perhaps a few of the most signifi¬ 
cant design elements. It can thus be computed from a skeletonized ver- 
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sion of the final structure. If waste of time in attempts to obtain unrealiz¬ 
able amounts of feedback is to be avoided such a computation should be 
made as early as possible, and certainly in advance of any detailed design. 

Broadly speaking, the asymptotic characteristic depends in part upon 
the tubes and interstage capacities and in part upon the input and output 
circuits and the fi circuit proper. This is the division suggested by the dis¬ 
cussion in connection with Fig. 18.5. The particular circuit given there 
represents the extreme case in which the contributions of the input, output, 
and @ circuits to the asymptotic characteristics are reduced to zero by 
reducing these structures themselves to vestigial appendages of the com¬ 
plete amplifier. If we regard the forward circuit as given, the design prob¬ 
lem confronting the engineer is broadly that of introducing functional 
circuits in these positions without unduly degrading the asymptotic charac¬ 
teristic. The solution which is achieved will depend in part upon the type 
of feedback adopted and in part upon the balance which is struck between 
the desirability of a large feedback and other indices of the overall amplifier 
performance. 

These considerations are most easily illustrated by reviewing briefly the 
asymptotic characteristics which we may expect to secure for the elemen¬ 
tary structures listed in Figs. 3.5 to 3.8 of Chapter III. If we begin with a 
shunt feedback amplifier a typical circuit may be assumed to take the form 

already shown by Fig. 18.6 of the 
present chapter. The asymptotic 
path from the output plate to the in¬ 
put grid is shown by Fig. 18.9. The 
inclusion of input and output trans¬ 
formers in the circuit can be repre¬ 
sented in the asymptotic path by 

adding their high side capacities to the shunt capacities Ci and C*. For 
maximum efficiency the added capacities should be small, but if we attempt 
to make them too small, as by reducing the transformers to a few widely 
spaced turns, for example, we may expect malfunctioning of the circuit 
for some other reason. 

The j8 circuit is represented in the asymptotic path by the series combi¬ 
nation of C5 and C6. For maximum feedback these capacities should be 
very large. They can be made as large as we please, for any given circuit 
loss, by scaling down the impedance levels of the series branches in the p 
circuit T of Fig. 18.6, provided the impedance of the shunt branch is also 
decreased by the proper amount. But if the impedance level of the P 
circuit is made very low it becomes an appreciable shunt on the input and 
output circuits within the useful band. This will degrade the volume per¬ 
formance characteristics of these circuits, as defined in Chapter XVI. 

O C& 
li¬ 
es 

~rCA 
T& 
T’ 

Fig. 18.9 
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Thus the exact asymptote depends upon a compromise between volume 
performance and feedback considerations. 

A simple series feedback amplifier is shown by Fig. 18.10. The asymp¬ 
totic path from output plate to input grid is shown by Fig. 18.11. The 
central shunt capacity C7 may be identified with the distributed capacity 
to ground of the P circuit and the input and output transformers. It 
should, of course, be kept as small as possible. The two series capacities, 
Ci and Ce, represent the capacities across the high windings of the trans- 

Fio. 18.10 

formers. The best asymptotic transmission will be obtained if they are 
quite large. On the other hand, the relations of Chapter XVI show that 
the highest levels of volume performance and external gain can be obtained 
if the two capacities are made as small as possible. Thus the exact asymp¬ 
tote depends again upon a compromise between considerations of this sort 
and considerations of feedback, although the particular relationships 
involved are somewhat different from those appearing in the shunt type 
circuit. 

In constructing Fig. 18.10 the P circuit was represented as a simple shunt 
impedance. As an alternative, we may suppose that the p circuit is con¬ 
structed as a 7T• This change may be made either to secure additional 

Fig. 18.11 Fig. 18.12 

flexibility in design or to avoid the extremely low impedance levels which 
are sometimes encountered with single branch structures. If we suppose 
that the central branch of the ir is paralleled by a capacity Cg and that the 
capacity in shunt with the Original P circuit is allocated equally to each end 
of the new structure, the new asymptotic path takes the form shown by 
Fig. 18.12. It is clear that the introduction of the capacity Cg necessarily 
increases the asymptotic loss, so that the single branch B circuit represents 
the optimum choice. If the impedance level of the v circuit is low enough, 
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however, it may be possible to make C$ so large that the asymptotic penalty 
is unimportant. 

The considerations affecting the asymptotic paths in the other principal 
types of feedback circuits are broadly similar. In the bridge type feedback 
illustrated by Fig. 3.6 of Chapter III, for example, the asymptotic path is 
roughly similar to that which might be found in a shunt or series type struc¬ 
ture except that an additional loss due to the bridge is interpolated at each 
end. The amount of the added loss depends upon the bridge ratio. It is 
customary to use an unequal ratio structure to favor transmission between 
amplifier and line, or, in other words, volume performance. If the ratio is 
extreme, however, the loss introduced to transmission around the asymp¬ 
totic loop becomes excessively great, so that here again it is necessary to 
compromise between volume performance and feedback considerations. 
It is also possible to control the asymptotic loss to some extent by intro¬ 
ducing small series coils or shunt condensers into the various bridge arms 
in order to remove them, as far as possible, at high frequencies. 

In hybrid coil circuits the asymptotic characteristic depends largely upon 
whether high side or low side feedback is used. If we use high side hybrid 
coil feedback, for example, the asymptotic transmission may be regarded as 
taking place through the capacities across the high side coil windings. 
This is similar to the situation found in a series feedback circuit and leads 
to the same general type of asymptote. In a low side feedback, on the 
other hand, the asymptotic path goes directly through the hybrid coils, so 
that their leakage inductances appear as series elements between the para¬ 
sitic capacities furnished by the rest of the circuit. In many amplifiers 
this may increase the asymptotic loss so greatly that the amount of feed¬ 
back available is seriously reduced. As a compensation, the fact that the 
feedback path passes through the hybrid coils in the low side case means 
that the external characteristics of the amplifier are stabilized against coil 
variations, which is not true in a high side circuit. 

18.5. Maximum Obtainable Feedback* 

The analysis given in connection with Fig. 18.7 shows why the asymptote 
limits the amount of feedback which can be obtained, but it is not sufficient 
to show exactly what the maximum feedback with any given asymptote 
should be. As the situation was left, the final phase characteristic reaches 
the limiting 180° only at the crossover point, and there is a phase margin, 
of varying magnitude, at all lower frequencies. The relation between 

♦The formulae for maximum available feedback presented in this section are 
based upon loop cut-off characteristics of a type appropriate for practice. By using 
more elaborate characteristics, however, it is theoretically possible to obtain slightly 
more feedback. This is discussed at a later point. 
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phase margin and feedback given earlier in the chapter shows that a some¬ 
what more efficient solution for the extreme case will be obtained if the 
limiting 180° is approximated throughout the cut-off interval. 

The desired phase characteristic is attained if the original ideal cut-off 
is connected to the asymptote in a somewhat more complicated manner 
than was used previously. The new overall cut-off characteristic is shown 
by Fig. 18.13. It consists of the original theoretical characteristic, drawn 
for y = 0, from the edge of the useful band to its intercept,/&, with the 

zero gain axis, the zero gain axis from this frequency to the intercept,/a, 
between the zero gain axis and the asymptote, and the asymptote there¬ 
after. It can be regarded as a combination of the ideal cut-off characteris¬ 
tic, prolonged to infinity, and two semi-infinite slope characteristics. One 
of the added slopes starts at fb and has a positive slope of 12 db per octave, 
since the ideal cut-off was drawn for the limiting value of y. The other 
starts atfa and has a negative slope equal to that of the asymptote itself. 

As equation (15-12) of Chapter XV shows, the phase characteristic corre¬ 
sponding to a semi-infinite slope is proportional to frequency at low fre¬ 
quencies. The phase shifts corresponding to the two additional slopes thus 
vary in the same way with frequency and since they are of opposite sign 
they can be made to cancel one another provided the constants determining 
the scales on which they are drawn are suitably chosen. The proper rela¬ 
tion is evidently obtained if the frequencies at which the slopes begin are 
in the same ratio as the slopes themselves. If we represent the slope of the 
asymptote, in units of 6 db per octave, by », this fixes fb in terms offa by 
the equation 

(18-6) 
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In Fig. 18.13, for example, where the asymptotic slope is 18 db per octave 
the frequency ratio is 18 :12 or 3 :2. At low frequencies, this leaves the 
complete phase characteristic equal to that which would be obtained from 
the unmodified ideal curve alone. At higher frequencies, where the linear 
approximation to .the phase characteristics of the semi-infinite slopes is not 
quite accurate, some account of these constituents must, of course, also be 
taken. As Fig. 18.14 shows, however, the exact curve dips slightly below 
180° at the point at which the gain characteristic reaches the zero axis, so 
that the circuit is in fact stable. 

Fio. 18.14 

Once fb has been determined the proportions of the drawing make it an 
easy matter to determine how large a feedback can be obtained within the 
useful band. It is merely necessary to allow 12 db for each octave between 
the band edge and/&, together with an additional 12 db to take account of 
the increased slope of the cut-off characteristic near the band edge. With 
the help of (18-6) the result can be written as 

Am — 40 log10 (18-7) 
nfo 

where/o represents the band edge and Am is the feedback in the useful band 
in db. 

If the feedback indicated by (18-7) is more than is required in the final 
amplifier the surplus can be utilized to provide a cut-off characteristic hav¬ 
ing definite gain and phase margins against singing. This is illustrated by 
the characteristics of Figs. 18.15 and 18.16. The curves are drawn for the 
gain and phase margins x = 9 and y *= in the notation of Fig. 18.3. 
The phase margin y ~ or 30°, is provided by drawing the ideal cut-off 
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portion of the characteristic for a 10 db per octave, rather than a 12 db per 
octave, slope. The gain margin is provided by drawing the flat part of the 
characteristic, linking the ideal cut-off and the asymptote, a corresponding 
distance below the zero gain axis. As in the preceding analysis, the ratio 

of the frequencies terminating the flat portion is supposed to be the same 
as that of the slopes to which it is connected, so that the net phase charac¬ 
teristic in the cut-off range proper is substantially the same as that of the 
ideal characteristic. 

The degradation in feedback in the useful band which must be accepted 
to provide prescribed phase and gain margins in this manner can be deter¬ 
mined by a relatively simple calculation. To begin with, the frequency fc 
in Fig. 18.15, at which the cut-off finally joins the asymptote, is fixed in 
terms of fa by the asymptotic slope and the gain margin Since 
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the asymptotic slope is 6m db per octave, or 20m db per decade, we evidently 
have logjo fjfa — x/20n, or, in other words, fc = 10*/20yo. But the ideal 
cut-off slope is 12(1 — y) db per octave, or 40(1 — y) db per decade. The 
relation between the slopes and the frequencies bounding the flat portion of 
the characteristic therefore gives fd = (2(1 — y)/n\fc. Finally, the known 
proportions of the ideal cut-off show that the feedback at the band edge,/o, 
must exceed that at fd by 40(1 — y) logio 2fd/fo db. But this difference is 
equal to A + x, where A is the feedback in the useful band. Upon collect¬ 
ing results, therefore, we have 

A = 40(1 - y) logio [4(1 10*/?0n^] - * 

= 40(1 — y) logio ^7 + 40(1 - y) logio (1 — y) + —-— x — x. 
M/o m 

(18-8) 

Since y is small we may expand logio (1 — jv) in a power series 
and ignore powers of y higher than the first. This permits the term 
40(1 ~ y) logio (1 — y) in (18-8) to be replaced by — 17.4y. If we also 
replace 40 logio 4fjnfo by Am,, from (18-7), we secure the final expression 

Am - A = (Am + 17.4)_y + x + -xy. (18-9) 
n n 

Since the xy term is usually small the total degradation in feedback appears 
substantially as the sum of separate degradations due to the phase and gain 
margins individually. An example of the relation is furnished by a com¬ 
parison of Figs. 18.13 and 18.15. In both cases the asymptotic frequency/a 
was chosen as 9f0. In accordance with (18-7) this permits a maximum 
feedback, Amy of 43 db, which is the feedback realized in Fig. 18.13. The 
realized feedback in Fig. 18.15, however, is only 29 db. Of the 14 db 
difference, about 10 db is spent in the phase margin term of (18-9), about 
3 db in the gain margin term, and about 1 db in the product term. 

18.6. Relation between Corrected and Uncorrected Loop Characteristics in 
Typical Cases 

The precise methods by which such a cut-off characteristic as that shown 
by Fig. 18.13 is to be achieved will naturally differ from amplifier to ampli¬ 
fier. The various possibilities are discussed at some length later in the 
chapter and will be suggested in greater detail by the illustrative designs in 
the chapter which follows. It is possible, however, to make one general 
physical observation which applies to the great majority of amplifier 
designs. In ;u« amplifier designed in the simplest way, without regard to 
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the shaping of the cut-off characteristic, it is generally true that some, at 
least, of the circuits which are responsible for a flat feedback characteristic 
in the useful band will tend to maintain their uniform response also for 
some distance beyond the useful band. At higher frequencies, however, 
their response characteristics begin to fail because of the parasitic elements 
which the circuits contain and as the frequency increases still further 
parasitic effects become more and more important until finally the overall 

loop characteristic merges smoothly into the asymptotic condition, in 
which the response of every circuit varies in a manner dictated essentially 
by the parasitic elements alone. Thus the overall loop gain characteristic 
tends to be concave downward at least at high frequencies, if not over the 
complete cut-off interval. The cut-off characteristic shown by Fig. 18.13, 
on the other hand, is concave upward. Thus the general design problem 
in most amplifiers is that of introducing such losses in the loop that the 
cut-off rate will be increased at frequencies moderately removed from the 
useful band and decreased at more remote frequencies. This is equivalent 
to discounting parasitic effects in advance, so that they do not control the 
loop characteristic until the cut-off finally meets the asymptote and design 
effort is abandoned. 

As a somewhat extreme example of these relationships we may consider 
the circuit shown in Fig. 18.17. The structure is supposed to represent a 
simple band-pass amplifier in which the interstage and input and output 
coupling networks are damped tuned circuits. All the circuits will be 
supposed to have the same Q. In terms of the equivalent low-pass struc¬ 
ture the loop characteristic may be written as 140/(1 + 0.287/<o)4. The 
constants in the expression are chosen to permit easy comparison with 
Fig. 18.13. They give the same low frequency gain and the same* asymp¬ 
tote as were used in that figure. The loop gain characteristic of the struc- 

* That is, the asymptotic slope n of Fig. 18.13 has been increased from 3 to 4 but 
die zero gain intercept /« is changed in proportion to give the same effective con¬ 
dition at lower frequencies, in accordance with (18-6). 
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ture is shown by Curve I of Fig. 18.18, the theoretical cut-off of Fig. 18.13 
being shown by Curve II. The difference indicated by the shaded area is 
therefore the loss characteristic which should be introduced into the loop, 
by an equalizer or some analogous means, in order to stabilize the circuit. 

The effect of such a change may be studied by comparing the correspond¬ 
ing phase characteristics shown by Curves I and II of Fig. 18.19. The 

Fig 18.18 

areas under the two curves are 
the same, but the insertion of 
the additional loss characteristic 
redistributes the total area so 
that the maximum phase shift 
remains less than 180° over a 
much broader interval. It will 
be seen that the unmodified 
phase characteristic crosses 180° 
at / = 3.5 /o. If the circuit 
were stabilized by a gain control 

which reduced the loop gain to zero at this point the resulting feedback 
in the useful band would be 12 db. This compares with the 43 db obtained 
with the theoretical cut-off. About half the 30 odd db of additional feed¬ 
back would be obtained if Curve I of Fig. 18.18 were replaced merely by 
a straight line of appropriately chosen slope. The increased slope of the 
actual theoretical characteristic just beyond the edge of the useful band is 
responsible for an increment of about 12 db and the final flat portion just 
before the junction with the 
asymptote for an improvement 
of about 5 or 6 db. The first 
example of the next chapter 
shows a design problem of this 
sort in more detail. 

The analysis just concluded 
leads to one other conclusion of 
considerable general importance. 
This has to do with the effec¬ 
tive band width, for design pur¬ 
poses, of a feedback amplifier. Fig. 18.19 

If we accept the proportions in Fig. 18.15 as typical for a practical design, 
we notice that the interval, in octaves, between the edge of the useful band 
and the frequency at which the cut-off characteristic intersects the zero 
gain axis is one less than the feedback in the useful band, expressed as a 
multiple of 10 db* Between the zero gain intercept and the junction of the 
characteristic with the asymptote, where we can say that design control is 
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finally relaxed, there is an additional interval of nearly two octaves. Thus 
the total effective design range is roughly one octave for each 10 db of feed¬ 
back in the useful band, plus one additional octave. 

Changes in the phase and gain margin assumed for the amplifier, or in its 
asymptotic slope, may affect this estimate somewhat, but not enough to 
alter the order of magnitude of the result. If we take the estimate at face 
value it indicates that an amplifier with a useful feedback of 30 db will have 
an effective band which is 4 octaves, or 16 times, broader than the useful 
band. If we raise the feedback to 60 db, the effective range must be more 
than a hundred times the useful range. If the useful band is itself large 
these factors may lead to enormous effective ranges. For example, in a 
4 megacycle television amplifier they indicate an effective range of about 
60 megacycles for 30 db feedback, or of moic than 400 megacycles if the 
feedback is 60 db. 

The general engineering implications of this result are obvious. It evi¬ 
dently makes even the paper design of a feedback amplifier a far more 
formidable undertaking than one might anticipate from a consideration of 
the useful band alone. The construction and testing of the apparatus to 
follow a prescribed characteristic over such wide bands is perhaps a still 
more difficult problem. Unfortunately, the situation, in unconditionally 
stable amplifiers, at least, appears to be an inevitable one. It merely 
reflects the fact that the cut-off rate is broadly proportional to the loop 
phase shift and must be held within comparatively modest limits if the 
phase shift is not to be excessive. 

18.7. Alternative High-Frequency Cut-off Characteristics 

It will be recalled that the determination of theoretical loop characteris¬ 
tics for a feedback amplifier was first attacked by constructing an ideal 
cut-off characteristic which extended from the edge of the useful band to 
infinity and produced a prescribed constant phase characteristic through¬ 
out this complete range. In order to fit the solution for practical applica¬ 
tion, however, it was necessary to allow for the fact that the loop charac¬ 
teristic of a physical amplifier at extremely high frequencies must follow 
the asymptotic line determined by its parasitic elements rather than the line 
representing the ideal characteristic. The adjustment was made in 
Figs. 18.13 and 18.15 by connecting the ideal characteristic and the asymp¬ 
tote by a horizontal straight line “ step ” of particular length. 

This appears to be the simplest device. There are, however, other ways 
in which the two characteristics may be connected and some of the alterna¬ 
tives permit slightly more feedback than can be obtained with the simple 
step connection. Thus the statement that Am in (18-7) is the maximum 
available feedback cannot be taken rigorously. For practical purposes the 
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alternative solutions need not be regarded seriously, since they lead to at 
most only a few db more feedback in ordinary situations and they envisage 
a degree of design control which is scarcely feasible in a frequency region 
where, by definition, parasitic effects are substantially controlling. They 
are, however, of theoretical interest and they are of some practical impor¬ 
tance, indirectly, as measures of the accuracy with which the step charac¬ 
teristic must be realized in order to secure a satisfactory result. 

The reason why we may expect that the step type cut-off* leaves some¬ 
thing still to be gained can be understood from an inspection of the phase 
characteristic to which it leads. It follows from the phase integral theorem* 
that the difference between the loop gain at some extremely low frequency 
in the useful band and the loop gain at some extremely high frequency, 
where we can regard the asymptotic condition as thoroughly established. 

is measured by the area under the phase characteristic between these two 
points. Thus a slight improvement on the step type cut-off should be 
obtained if the phase characteristic of Fig. 18.14 were replaced by one 
which followed the 180° line exactly below the loss crossover and rose more 
rapidly to its ultimate value thereafter. 

This problem can be attacked either theoretically or by cut-and-try 
modifications of the step type characteristic. Examples of possible cut- 
and-try modifications are shown by the gain curves of Fig. 18.20 and the 
associated phase curves of Fig. 18.21. The figures cover only the region of 
transition from the ideal cut-off to the asymptote. In each figure the 
curves labeled I represent the original step type solution while the remain¬ 
ing curves correspond to the various modified characteristics. In prepar- 

* Equation (13-19) of Chapter XIII. 
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ing the curves, it has been assumed as a matter of simplicity that the low- 
frequency feedback for all the modified characteristics is the same and is 
2 db greater than the feedback obtained from the unmodified characteristic. 
This is, in fact, approximately the maximum improvement which the modi¬ 
fications permit for the case considered, in which the asymptote has a slope 
of 3 units. A slightly greater 
advantage can, however, be ob¬ 
tained with larger values of n. 

The simplest possible modi¬ 
fication is represented by Curves 
II. It consists in reducing 
slightly the length of the hori¬ 
zontal step in the original char¬ 
acteristic. The effect this has 
in improving the approximation 
of the phase characteristic to 
180° in the region near the loss 
crossover can be understood 
from a study of the phase curves 
of Fig. 18.21. Strictly speak¬ 
ing, this modification is inadmissible in an absolutely stable amplifier, since 
it leads to a phase shift slightly greater than 180° at low frequencies. The 
overswing is very small, however, and can be neglected if it is assumed that 
the amplifier will actually be built with a definite phase margin, so that Am 
is of interest only as one of the quantities entering equation (18-9). 

The modification illustrated by Curves III consists in replacing the 
original horizontal step by a line having a slight slope. Except for the 
fact that the phase overswing at low frequencies is avoided, the results to 
which it leads are similar to those produced by the first modification. In 
view of the difficulty of controlling the loop characteristics in the asymp¬ 
totic region with precision, however, these curves represent a more nearly 
attainable result than do either Curves I or Curves II. 

Curves IV have been introduced to illustrate the effect of prolonging the 
flat step beyond its junction with the asymptote. We might imagine such 
a characteristic to be produced by anti-resonating a parasitic capacity in 
one of the low impedance portions of the loop in this general region. On 
paper, this method permits a large increase in available feedback if the pro¬ 
longation is carried sufficiently far, to a frequency perhaps ten or more 
times the intersection between the asymptote and the zero gain axis. It is 
obvious, however, that these proportions require an impossible increase in 
loop gain at high frequencies. As a more direct limitation, we may notice 
that as the flat portion of the characteristic is extended to higher and higher 

Fig. 18.21 
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frequencies the contribution of the steeply sloping line which is necessary to 
join it finally to the asymptote leads to a larger and larger maximum phase 
shift. But if the loop is regarded as consisting essentially of n reactive 
branches in series or shunt, corresponding to the n parasitic elements in 
the circuit, the maximum phase shift which is physically possible is »(t/2) 
radians. It will be seen that this limit is slightly exceeded even with the 
proportions actually used in Figs. 18.20 and 18.21. 

A somewhat more systematic approach to the general problem is obtained 
if we begin by specifying exactly the phase characteristic which is to be 
secured at all points above the useful band. The final asymptotic behavior 
of the loop is taken into account by specifying that the phase shift at very 
high frequencies shall be equal to n(tt/2) radians. The corresponding gain 
characteristic can then be determined either by inspection or by applica¬ 
tion of the general formulae of Chapter XIV. One example of the results 
to which this attack leads is furnished by the expression 

A + iB - - 2 lcg^I - ^ + i£]- (» - 2) log i[l + \/l - ^]. 

(18-10) 

where, as in (18-1), A and B represent the loop gain and phase and Aq is 
the loop gain in the useful band. Sketches of the A and B characteristics 
to which the expression leads are shown by Curves I, Figs. 18.22 and 18.23. 

A second example is furnished by the expression 

A-f iB ■» A$ — 2 log j"-/l — Tf + i —1 — (» — 2) logx/l — 
L> wo wo J \ <4 

(18-11) 
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This corresponds to the A and B characteristics shown by Curves II in 
Figs. 18.22 and 18.23. It will be seen that the two expressions give quali¬ 
tatively similar characteristics, but the distinctive features of the charac¬ 
teristics are greatly exaggerated in the second case. 

The meaning of (18-10) and (18-11) can best be understood by compar¬ 
ing them with (18-1). It is evident that the first portion of either expres¬ 
sion represents an ideal cut-off solution taken for the limiting case of zero 
phase margin. The final terms in the two expressions are transition factors 
which convert the ideal cut-off solution at high frequencies into the asymp¬ 
totic characteristic. Thus neither term makes any appreciable contribu¬ 
tion to the loop gain in the useful band* and both leave the loop phase shift 
unchanged below/r. This frequency corresponds to the corner in Curve I 
of Fig. 18.22 or to the peak in Curve II. At frequencies well above fr, on 
the other hand, the final terms contribute a phase shift of (n — 2)(v/2) 
radians and a slope of n — 2 units. In combination with the phase and 
slope contributions of the ideal cut-off this leads to the n unit slope and 
corresponding n(ir/2) radian phase shift which are appropriate for the 
asymptote. 

The expressions are made quantitative by choosing/r and the feedback 
Aq in the useful band to satisfy two conditions. The first condition, obvi¬ 
ously, is that the equations must correspond to an asymptote which has 
the correct level of absolute gain as well as the correct slope. The second 
condition requires that the minimum occurring in each gain characteristic 
just below fr should fall on the zero gain axis. This arrangement permits 
the maximum possible feedback in each case. It leads to stable circuits if 
we suppose that the two phase characteristics have a differentially small 
slope near the minimum point and cross 180° at the minimum. This per¬ 
mits the resulting Nyquist plots to skirt just around the critical point, as 
Figs. 18.24 and 18.25 show, so that the region of net loop gain and large 
phase shift nearfr does not indicate instability. The broken line arc in the 
second figure is intended to represent the circular arc of infinite radius which 
would correspond ideally to the gain peak and phase discontinuity at fT in 

Curves II of Figs. 18.22 and 18.23. 
The algebraic relations to which these conditions lead are somewhat 

complicated and will not be reproduced here. For the characteristics of 
equation (18-11) they indicate an increase in feedback over the maximum 
available with the step type cut-off of about 4 cfc when n = 3. The feed- 

* The integral relations of Chapter XIV evidendy make it possible to derive solu¬ 

tions in which the feedback in the useful band remains strictly constant. This possi¬ 
bility is ignored here, however, since it results in much more complicated formulae and 
the variation in feedback to which the actual expressions (18-10) and (18-11) lead is 

insignificant in practical cases. 
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back advantage rises gradually with n and reaches 8 db when n = 6. This 
is evidently a meager return for the design complexity which would be 
necessary to approximate such a cut-off. If the less extreme solution 
furnished by equation (18-10) is followed the improvement in feedback is 
about 1 or 2 db sfnaller. Neither solution can be used when n > 6, since 
with larger values of n the phase shift at frequencies above the gain 
minimum becomes so great that the Nyquist plot encloses the critical 
point on the second trip around the origin. 

Fig. 18.24 Fig. 18.25 

18.8. Relative Importance of Tubes and Circuit in Limiting Feedback 

The discussion of the last few sections has shown how the feedback 
which can be obtained in any given amplifier depends upon the high- 
frequency asymptote of the feedback loop. It is a matter of some impor¬ 
tance, then, to determine how the major portions of the amplifier contribute 
to the asymptote and what the effect of an improvement in any one of them 
may be on the total feedback available. In the earlier discussion the 
asymptotic loop was regarded as made up of two principal portions. One 
consisted of the forward circuit proper and the other of the return path pro¬ 
vided by the input and output circuits and the feedback circuit proper. As 
we saw, the tubes furnish a positive upper limit on the asymptote, since we 
can scarcely improve upon the result secured when the return path is a 
direct short circuit from output plate to input grid, but within this limit a 
great deal depends upon the skill of the design engineer in providing func¬ 
tioning circuits in the return path without adding unduly to the asymptotic 
loss. It is convenient to continue this discussion by showing in more detail 
how the two factors affect the total feedback available. 

The contributions of the forward circuit and the return path to the 



SINGLE LOOP AMPLIFIERS 477 

complete asymptote can be segregated most easily if we add a second 
asymptote, representing the gains of the tubes working into their own para¬ 
sitic capacities, to the diagram of Fig. 18.13. This leads to the result illus¬ 
trated by Fig. 18.26. The tube asymptote is shown by the broken line. It 
crosses the zero gain axis at the frequency /* = Gm/2wCy where Gm and C 
are respectively the transconductance and capacity of a typical tube. 
Since the ratio Gm/C is the so-called “ figure of merit ” of a tube we may call 
ft the “ figure-of-merit frequency ” ^ 
for the forward circuit. The distance 40 
between the two asymptotes at /* is in¬ 
dicated as the loss A%. It is evidently 20 

equal to the contribution of the return 
path to the asymptotic loss at this o 
frequency. In the simplest and, for 
feedback purposes, most favorable cir- -2 o 
cuits, such as those shown in Figs. 
18.6 and 18.10, the return path re¬ 
duces at high frequencies to a capacity potentiometer and its asymptotic 
contribution is merely a constant potentiometer loss. This is illustrated 
in Fig. 18.26 by drawing the two asymptotes with the same slope but in 
more complicated circuits we may, of course, expect the slopes to be 
different. 

The desired formula is obtained by expressing the asymptotic crossover 
frequency fa in terms of/*, At> and n. This allows us to replace (18-7) by 

Am — 40 logio ~ (18-12) 
nfo n 

The first term of (18-12) shows how the available feedback depends upon 
the intrinsic band width of the available tubes. In low power tubes 
especially designed for the purpose it is possible to secure an/* as high as 50 
or 100 me, but if/o is small the first term will be substantial even if tubes 
with much lower values of/* are selected. The second term of (18—12) 
measures the sacrifice in feedback which can be ascribed to the rest of the 
circuit. If the amplifier is well planned and the other requirements on it are 
reasonably favorable it is possible for this term to be as small as 10 or 
15 db. With present-day tubes the second term must necessarily be of this 
order of magnitude if the amplifier is to have a reasonably large feedback 
over a useful range of several megacycles. If the requirements on the 
input, output, and $ circuits are particularly severe, on the other hand, or if 
the useful band is so narrow that adequate feedback can be obtained with¬ 
out careful planning, the second term may be very much greater. 
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18.9. Optimum Number of Stages in a Feedback Amplifier 

In addition to ft and Aty equation (18-12) includes the asymptotic 
slope n. Since the tubes make no contribution to the asymptotic loss at 
f —ft we can vary n without affecting At by changing the number of tubes 
in the circuit. This makes it possible to compute the optimum number of 
tubes which should be used in any given situation in order to provide the 
maximum possible feedback. If At is small the first term of (18-12) will 
be the dominant one and it is evidently desirable to have a small number of 

stages. The limit may be taken as n = 2 since with only one stage the 
feedback is restricted by the available forward gain, which is not taken into 
account in this analysis. On the other hand since the second term varies 
more rapidly than the first with n, the optimum number of stages will 
increase as At is increased. It is given generally by 

n — Al. 
8.689 

(18-13) 

or in other words the optimum n is equal to the asymptotic loss at the tube 
crossover in nepers. 

The effect of choosing an n which is greater or less than the optimum 
can be studied by setting n = X(^/8.68). This permits (18-12) to be 
replaced by 

An - 40 logio ~ ^ - [40 logio X + ^ Y~ X)-] * (18-14) 

The first term obviously represents the feedback obtained when the opti¬ 
mum number of stages is used and the second term the reduction in feed¬ 
back which follows from the use of some number other than the optimum. 
A plot of the second term is shown by Fig. 18.27. We see that there is 
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comparatively little penalty in using any number of stages between half and 
twice the optimum, but that larger departures are more serious. 

Since feedback amplifiers are usually constructed with three stages in the 
forward circuit we can conveniently illustrate these relations by consider¬ 
ing under what circumstances a three stage amplifier is likely to give the 
maximum amount of feedback. One extreme is represented by a very 
broad band amplifier, such as a television amplifier with a 4 me useful band. 
With such a large/0 a reasonable amount of feedback is obtainable only if 
ft is as large and At as small as possible. Let it be supposed, for example, 
that the best obtainable values for these quantities are 80 me and 18 db, 
respectively. If we assume that n = 3 the maximum available feedback, 
from (18-12), is 45 db. An appreciably smaller feedback is to be expected 
in practice, when allowance is made for reasonable phase and gain margins. 
With the assumed At the nearest integral n satisfying (18-13) is 2, but it is 
clear from Fig. 18.27 that the use of a three stage circuit instead makes only 
an insignificant difference in the result. A severe penalty will be incurred, 
on the other hand, if we either use many more than three stages with the 
same At or increase the optimum n by increasing At. 

When the amplifier has a much narrower band it becomes relatively 
much easier to secure a large feedback. Let it be supposed, for example, 
that ft — 40 me and that At = 3 nepers, or 26 db, so that three stages is the 
optimum number. Then in the three stage circuit the maximum feedback 
is 68 db for a useful band of 400 kc, it is more than 90 db for a useful band 
of 100 kc, and more than 130 db for a useful band of 10 kc. Except perhaps 
for the first, these values lie beyond any range of normal practical interest. 
They are not readily approximated in actual amplifiers principally because 
the values of At which are usually encountered, in fact, are much greater 
than the value, 3 nepers, which was postulated in the computation. This, 
of course, implies that the optimum number of stages is correspondingly 
greater than 3. As a general rule of thumb, therefore, we can say that 
when present-day high gain tubes are used the most appropriate number of 
stages is likely to be two or three for amplifiers whose useful bands cover a 
few megacycles but that for narrow band structures, extending perhaps to a 
few hundred kilocycles, the available feedback can always be increased by 
increasing the number of stages beyond three unless the feedback available 
even with three stages is so great that there is no practical incentive to 
secure further improvement in any event. 

This discussion obviously ignores the fact that in many amplifiers the 
number of stages which can be used is limited by economic considerations. 
In other circumstances, however, the addition of extra stages to compen¬ 
sate for a high At is frequently a comparatively simple means of increasing 
the available feedback. An example is furnished by high power circuits. 
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such as radio transmitters, where circuit limitations are usually severe but 
the cost of additional tubes, at least in low power stages, is relatively unim¬ 
portant. As an extreme example, we may consider the problem of provid¬ 
ing envelope feedback around a transmitter. With the relatively sharp 
tuning ordinarily nised in the high-frequency circuits of a transmitter the 
asymptotic characteristics of the feedback path will be comparatively 
unfavorable. For illustrative purposes we may assume that fa = 40 kc 
and n = 6. In accordance with (18-7) this would provide a maximum 
available feedback over a 10 kc voice band of 17 db. It will also be 
assumed that the additional tubes for the low power portions of the circuit 
have an ft of 10 me.* The corresponding At is 33 nepersf so that equa¬ 
tion (18-13) indicates that the feedback would be increased by the addition 
of as many as 27 tubes to the circuit. Naturally in such an extreme case 
this result can be looked upon only as a qualitative indication of the direc¬ 
tion in which to proceed. If we add only 4 tubes, however, the available 
feedback becomes 46 db while if we add 10 tubes it reaches 60 db. The 
ultimate feedback, when all 27 tubes are added, is given by the first term of 
(18-14) as 66 db. It is to be observed that only a small part of the avail¬ 
able gain of the added tubes is used in directly increasing the feedback. 
The remainder is consumed in compensating for the unfortunate phase 
shifts introduced by the rest of the circuit. 

18.10. Amplifiers with Excess Phase Shift 

Thus far it has been assumed that the loop phase shift of the amplifier is 
the minimum consistent with the loop gain characteristic. In occasional 
amplifiers, however, departures from the minimum phase shift laws are 
encountered. The departure can usually be represented by adding a phase 
characteristic which is proportional to frequency to the normal minimum 
characteristic, and only added characteristics of this type will be considered 
here. The additional phase shifts are usually trivial if we consider the 
useful band alone. They may be worth taking into account, however, 
when we give consideration to the fact that the effective band width of a 
feedback amplifier, for design purposes, is many times its useful band. 

* In tubes operating at a high power level ft may, of course, be quite low. It is 
evident, however, that only the tubes added to the circuit are significant in interpret¬ 
ing (18-13). The additional tubes may be inserted directly in the feedback path if 
they are made substantially linear in the voice range by subsidiary feedback of their 
own. This will not affect the essential result of the present analysis. 

f It is, of course, not to be expected that the actual asymptotic slope will be con¬ 
stant from 40 kc to 10 me. Since only the region extending a few octaves above 40 kc 
is of interest in the final design, however, the apparent At can be obtained by extrap¬ 
olating the slope in this region. 
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Departures from the minimum phase shift laws in the feedback loop may 
occur for a variety of reasons. Some of the principal causes are given in the 
list below. 

1. It is well known that the response of an electrical system can be 
studied exactly only by means of the electromagnetic field equations. 
The circuit laws are approximations which work well when the wave¬ 
length of the signal employed is very much larger than the geometrical 
dimensions of the apparatus, but which become erroneous when these dis¬ 
tances are comparable. In the design of a feedback loop, this means that 
difficulties with additional phase shifts are to be expected whenever the dis¬ 
tance around the loop is not small compared with the wavelength corre¬ 
sponding to the highest effective design frequency. 

As an example, let it be supposed that the distance around the loop is one 
meter. This is the wavelength of a 300 me wave. Since one full wave 
corresponds to a phase retardation of 360°, we can consequently say 
roughly* that the actual loop phase characteristic contains an added linear 
component having a slope of 1.2° per me. In a narrow band amplifier this 
much excess phase is insignificant, but if the useful band is of television 
size, so that the effective design band extends over perhaps 50 or 100 me,* 
it constitutes an important problem. It can evidently be dealt with most 
directly by building the amplifier as compactly as possible, so that the 
distance around the loop becomes much less than the one meter originally 
postulated. Conversely, much more excess phase shift is to be expected 
when the feedback path is very long, as it might be, for example, if we 
attempted to feed back around a radio transmitter through pick-up from an 
antenna located at some distance from the transmitter proper. 

2. A second general cause of excess phase is found in the transit times of 
vacuum tubes. The transit time of the tube is the time required for the 
passage of electrons from cathode to plate under the influence of the B 
battery voltage and depends broadly upon the battery voltage and the 
spacing between electrodes. It can be treated as the equivalent of a linear 
phase characteristic, just as we treat the “ delay ” of an ordinary electrical 

* The reason why the computation may not lead to an accurate result can be under¬ 
stood from a consideration of the transmission down an ordinary transmission line. 
On the average, the phase characteristic is the straight line corresponding to the delay 
of the circuit. If the transmission line is badly mismatched at both ends, however, 
the actual phase characteristic ripples about the linear characteristic, intersecting it at 
the quarter wave points. Thus the actual characteristic may depart appreciably from 
the linear characteristic, especially in the region below the first quarter wave point. 
The various components of the feedback loop, when analyzed in terms of distributed 
constant^ may obviously present a broadly analogous situation. 
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system. In present-day tubes adapted for high-frequency operation the 

corresponding phase angle may be as little as a few tenths of a degree per 

megacycle per tube. Even so, however, the total phase shift may be serious 

if we add the phase shifts of several tubes and consider effective bands of the 

order of 50 to 100 fnc. 

3. In occasional amplifiers excess phase shift may appear accidentally 

through the use of a non-minimum structure in some part of the loop. 

These difficulties are usually easy to avoid. An example is furnished by 

Fig. 18.28, which represents a shielded input transformer used as part of a 

series feedback amplifier. Ideally, the transformer enters the feedback 

loop only as a two-terminal impedance inserted in series between the 0 

Fig. 18.28 Fig. 18.29 

circuit and the input grid. As the drawing shows, however, there is dis¬ 

tributed capacity between the transformer high winding and the shield. If 

the shield is connected to ground, as shown by broken line I, this capacity in 

association with the inductance of the high winding produces a non¬ 

minimum phase four-terminal network with properties very similar to those 

of a transmission line, and a large amount of excess phase will result. This 

difficulty is avoided by connecting the shield to one end of the high winding, 

as indicated by the broken line II. 

4. Departures from the minimum phase characteristic may also be pro¬ 

duced in some amplifiers by parasitic local feedback paths associated with 

the individual tubes in the forward circuit of the amplifier.* An example 

is furnished by the triode with parasitic grid-plate capacity C\ shown by 

Fig. 18.29.t The circuit is supposed, for simplicity, to be energized by a 

generator of zero internal impedance and the following interstage is taken 

as an elementary capacity-resistance combination. We notice that the 

signal can pass to the following interstage by either of two paths. The 

* Strictly speaking, amplifiers of this type are multiple loop structures and do not 
fall in the class of circuits considered in this chapter. They are included in the present 
list on the assumption that the local feedbacks are small enough to make the single 
loop analysis adequate. 

f The author is indebted to his colleague, Dr. C. R. Burrows, for this analysis. 
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first is the normal path directly through the tube while the second is the 
path through Ci which would exist even if the tube were dead. The first 
path is, of course, dominant at low frequencies but it becomes less efficient 
than the second when the frequency is made sufficiently great. Moreover, 
the outputs of the two paths are broadly of opposite sign, because of the 
phase reversal in the tube, and therefore tend to cancel. These, however, 
are the general conditions which were shown in Chapter XI to lead to trans¬ 
mission of the non-minimum type and we may therefore expect that the net 
phase characteristic will include an all-pass phase in excess of the minimum. 

The situation illustrated by Fig. 18.29 can be treated analytically by 
writing the voltage gain £2/£i, as 

E>2 __ GmR io)C\R 
E\ 1 + #»(Ci + C2 )R 1 + la? (Ci + C2)R 

(18-15) 

where Gm is the transconductance of the tube and the two terms on the 
right-hand side represent transmission through the two separate paths. 
The equation can be rewritten as 

R>2 _ Gm + tOiCi Gm — io)Ci t 
E\ 1 + la)(Ci -j- C2)R Gm 4" /coCi 

(18-16) 

In this form the second factor, which corresponds to an all-pass structure of 
the elementary type shown by Fig. 11.11 of Chapter XI, represents the 
excess phase. At moderate frequencies the excess appears as a linear 
characteristic with a slope of 7.2 X lO^Ci/G,*) degrees per me. 

5. The final source of excess phase is not due, strictly speaking, to a 
departure from minimum phase shift configurations, but it is convenient to 
include it in this list for purposes of discussion. It will be recalled that 
we have thus far assumed that the 
asymptotic characteristic of the ampli¬ 
fier would be fully established, so that 
it could be represented by a simple 
straight line on logarithmic paper, by 
the time design control of the feed¬ 
back loop was finally relinquished. In 
exceptional amplifiers this may not be 
true and an excess phase term should 
be used to represent subsequent changes 

Fio. 18.30 

in the behavior of the asymptote. As an example, let it be supposed 
that JV5 and Nq in Fig. 18.6 reduce to resistances at high frequencies 
and that the capacities C5 and C6 which parallel them are extremely small. 
If we neglect C« and C« entirely the loop gain characteristic takes the form 
shown by Fig. 18.30, where ABC is the asymptotic characteristic with the 
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two capacities absent. The actual high frequency behavior, with C$ 
and Ce included, follows the broken line path ABD. We can evidently 
represent this situation most simply by supposing that ABC is the asymp¬ 
tote, for purposes of analysis, and that the divergence between BC and BD 
will be treated by-adding a corresponding linear phase shift to the loop 
characteristics at lower frequencies. The “ excess ” phase shift in this case 
will, of course, be negative. The broken line BE represents a modification 
leading to an increased loss at extremely high frequencies, and a correspond¬ 
ing positive excess phase. 

18.11. Adjustment of Overall Cut-off Characteristic to Compensate for Excess 
Phase 

It will be recalled that the sharp changes in slope at the ends of the 
horizontal step in the overall loop gain characteristic produce linear phase 
characteristics which can be made to cancel one another by choosing the 
correct ratio for the terminating frequencies of the step. Since the excess 
phase characteristic is also assumed to be linear we can evidently cancel it 
out also by making an appropriate change in the step length. In terms of 
the notation of Fig. 18.13, for example, the phase characteristics corre¬ 
sponding to the changes in slope at the ends of the step are respectively 
— (4/tt) (f/fb) and (2n/ir) (f/fa)- If we specify the excess phase characteris¬ 
tic, from whatever source, by means of the frequency fv at which it would 
equal 2n/ir radians, if extrapolated, the required relation therefore becomes 

4 f , 2n / , 2n f ^ 

* fb * fa * fv 

from which fb is fixed in terms of fa and fp by the equation 

/■ = 2 fafy 

Jb nf.+fp' 

(18-17) 

(18-18) 

Since the cut-off proportions below fb are not affected by these changes, 
equation (18-18) evidently implies that formula (18-7) for the maximum 
available feedback should be rewritten in the general case as 

Am - 40 logic 4 rzr * (18-19) 
w/o/o i Jv 

Thus the effective asymptotic frequency in limiting feedback is the “ paral- 
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lei combination ” of/, and/p. If we make the same changes in (18-12) 
we secure 

4,1-40 logl° «/0 Tv + l*wr*/20n “ T* * (18_20) 

This equation is of particular interest for extremely broad band amplifiers, 
where the fundamental physical limitations are found in the figures of merit 
and transit times of available tubes. We notice that when At is very 
small the figure of merit frequency ft and the transit time frequency fp are 
of equal importance in limiting the available feedback. As the circuit loss 
At grows, however, an improvement in ft becomes more effective than an 
improvement in /p. 

If the amplifier is to be built with prescribed margins the procedure is the 
same, except that since a gain margin shifts the step of the cut-off to a 
slightly higher frequency it makes the importance of the excess phase 
characteristic somewhat greater. One modification should, however, be 
introduced when the amplifier is to trans- 0_| 
mit a geometrically narrow band. Here it 
is desirable to break down the total excess 
phase characteristic into a constant, repre¬ 
senting the phase displacement at the cen- o- 
ter of the band, and a variable portion o—^ 
representing the phase variation over the 
effective design band on each side of the 
center. The constant is treated by cross¬ 
ing terminals, if necessary, and adding 0 
either a short length of line or some rela¬ 
tively unselective lumped constant structure, such as one of those shown by 
Fig. 18.31, to make the net phase displacement at the center of the band 
equal to an integral number of revolutions.* This leaves only the variable 
characteristic to be considered in converting the actual band-pass amplifier 
to an equivalent low-pass structure of the type described in this chapter. 
The principle of conservation of band width is maintained for this part of 
the total phase shift. In other words, an excess phase characteristic having 
a given slope in degrees per megacycle will be equally limiting for a band 
of a given breadth, in megacycles, whatever the absolute location of the 
band in the frequency spectrum may be. In extreme cases this arrange¬ 
ment may evidently lead to a Nyquist plot which encircles the origin many 

♦ See R. C. Shaw, U. S. Pat No. 2,210,503, 



486 NETWORK ANALYSIS Chap. 18 

times above and below the effective design range, but if the amplifier is 
properly cut off within the effective range, the stability of the system is not 

jeopardized. 

18.12. Relation between the Loop Design and the External Gain of the Amplifier 

The discussion thus far has been concerned with the most desirable shape 
for the overall loop cut-off characteristic without regard to the portion of 
the loop in which the shaping is to be obtained. It is clear, however, that 
the loop characteristic can ordinarily be adjusted most easily by the inter¬ 
stage networks which, unlike the input and output circuits or the p circuit, 
are independent of any of the other characteristics of the amplifier. In the 
absence of any special reasons to the contrary, it is most logical to begin the 
overall amplifier design with the design of the input and output circuits, 
paying especial attention to impedance and volume performance require¬ 
ments, for which these circuits are controlling. The contributions of the 
input and output circuits to the external gain can then be computed and a 
P circuit chosen to give the required final gain characteristic. The inter¬ 
stage networks are designed as a last step to furnish the difference between 
the overall loop characteristic and the loop characteristic supplied by the 
input, output, and p circuits. 

This general procedure must be qualified in one respect to take account 
of the fact that the impedance, external gain and volume performance 
characteristics are normally specified only within the useful band. Thus 
there is, at least on paper, a certain element of arbitrariness in the way in 
which the various components of the feedback loop enter into the overall 
loop characteristic in the cut-off interval. On the other hand, as we 
approach higher and higher frequencies and parasitic elements become more 
and more significant, it is increasingly difficult to secure effective design 
control of any one of the components over a very wide range. Thus it is 
important to allocate the overall characteristic among the various com¬ 
ponents with reasonable care if difficult or impossible design problems are to 
be avoided. 

The allocation of the loop cut-off characteristic among the various com¬ 
ponents beyond the band is governed, broadly speaking, by the external 
gain requirement within the useful band. In general, the cut-off will be 
shaped chiefly by the interstage networks when the gain is relatively low 
and chiefly by the p circuit when the gain is relatively high. An illustra¬ 
tion is furnished by the series feedback amplifier shown previously in 
Fig. 18.10. If a low external gain is required in the useful band the imped¬ 
ance of the feedback network Nz must be correspondingly high. This evi¬ 
dently implies that the feedback network will be governed in the cut-off 
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interval principally by the prescribed parasitic capacity C7 in shunt with it, 
and cannot be put under effective design control. On the other hand, the 
low P circuit loss requires only a low interstage gain to give the prescribed 
loop gain and since low gain interstages are comparatively flexible they can 
be used to control the loop characteristics in the cut-off interval as well as 
in the useful band. Conversely, if the required external gain is high the 
interstage networks must be approximately of the maximum gain type* 
and will have determinate characteristics outside the band. The ft circuit, 
however, will be well under our control, since the high external gain corre¬ 
sponds to a feedback impedance so low that C7 is no longer hampering. 
Since maximum gain interstages cut off rapidly outside the band the 
required feedback impedance will evidently be one which increases gradu¬ 
ally through the cut-off interval, in order to b: ing the total loop cut-off rate 
within safe limits. 

The situation can be studied quantitatively by means of equation (17-18) 
of the preceding chapter. It will be recalled that this equation was 
developed to show how much it was necessary to reduce the gain of an inter¬ 
stage below the maximum possible level within the useful band in order to 
provide any prescribed interstage phase shift less than 90° beyond the band. 
In the present situation the same relation can be used backward. If we 
begin by comparing the interstage gain necessary for the required feedback 
with the maximum possible interstage gain the formula gives the integrated 
phase margin which will be exhibited by the interstage networks and from 
this it is easy to determine the phase margin which must be derived from 
the rest of the circuit. For example, if a three-stage n circuit is used, the 
phase angle of the two interstage circuits in the cut-off interval will be 
approximately 180°. Since the total loop phase shift is also about 180° 
the net phase shift of the return path from output plate to input grid must 
be roughly zero. The loop phase margin can be obtained either by using 
interstage circuits with phase angles slightly less than 90° or by using a 
return path with a negative phase angle. The reduction-in-gain integral 
gives the fraction of the total which must be obtained from the interstages. 

* It is evident here that if the external gain is very high even maximum gain inter¬ 
stages may not be sufficient to supply it and also the feedback which would otherwise 
be obtainable with the given asymptotic conditions. This is an obvious physical 
limitation which applies to all the analyses of this chapter and requires no further dis¬ 
cussion. It should also be noticed that in the particular circuit of Fig. 18.10 changes 
in external gain do not affect the asymptote, and therefore the available feedback. 
This tends to be true whenever pains are taken to choose configurations with favorable 
asymptotes, but it may not hold in other circumstances, as when the gain change is 
made by die addition of a simple loss pad in the 0 circuit. 
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Once this allocation has been made the areas under the phase margin plots 
can be distributed as functions of frequency in any way which seems likely 
to give simple network designs. In general, it is convenient to employ the 
interstage phase margin near the edge of the useful band, where use may be 
made of the shaping elements required within the band, and to rely upon the 
rest of the circuit at more remote frequencies, where adjustments can be 
made with considerable freedom without marring the precision of the exter¬ 
nal gain characteristic in the useful band. An illustrative design involving 
calculations of this sort is given in the next chapter. 



CHAPTER XIX 

Illustrative Designs for Single Loop Feedback Amplifiers* 

19.1. Introduction 

This chapter consists of a number of examples of the overall feedback 
loop design method advanced in the preceding chapter. An attempt has 
been made to choose designs which will illustrate, for a variety of situations, 
some of the detailed ways in which the theoretical overall cut-off character¬ 
istic can be realized. In view of the enormou; range of possibilities, how¬ 
ever, many other techniques can, of course, also be used. In each design 
example attention is focused primarily on the feedback loop problem. The 
other aspects of the amplifier design are described only briefly, and some¬ 
times in an oversimplified fashion. Two of the designs include subsidiary 
feedback on individual tubes in addition to the principal loop feedback. 
These are treated, for simplicity, as single loop structures although they do 
not, of course, meet the strict requirements of the definition advanced in the 
last chapter. 

Fig. 19.1 

19.2. Feedback Design for a Frequency Modulation Receiver 

The first example is the feedback design for the frequency modulation 
receiver shown diagrammatically in Fig. 19.1.f If we suppose for the 

* Most of the designs in this chapter are due to the author's colleagues R. L. Dietz- 
old, H. G. Och, and W. H. Boghosian. The double feedback path design is due to 
J. G. Kreer and E. H. Perkins, the forward circuit of the radio transmitter with 
envelope feedback to C. R. Burrows and A. Decino, and some of the lower cutoff 
designs to J. M. West. 

t This circuit is the invention of J. G. Chaffee — see B. S. T. July, 1939. 
489 
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moment that terminals A A1 are open, the “ frequency modulated oscilla¬ 
tor ” in the drawing becomes an ordinary fixed frequency local oscillator, 
and the circuit reduces to a conventional superheterodyne receiver for FM 
signals. The conversion circuit is the usual “ slope ” network which 
changes frequency modulated to amplitude modulated signals, and the 
detector is an ordinary rectifier which recovers the audio signal from this 
amplitude modulated wave. When the feedback loop is closed, the local 
oscillator frequency is varied in accordance with the audio signal and this 
frequency variation is superposed upon that of the incoming wave in trans¬ 
mission through the intermediate frequency stages. 

A detailed exposition of the operation of this device is beyond the scope 
of this book. Briefly, however, it may be recalled that external inter¬ 
ference in an FM signal can be resolved into two components, one repre¬ 
senting frequency modulation and the other amplitude modulation of the 
incoming wave. The first of these cannot be separated from the frequency 
modulation representing the signal proper, but its interfering effect can be 
made very small by using a very large frequency swing to represent the 
signal. The amplitude modulation component is, however, more serious. 
Since the final detector is an amplitude modulation device, this component 
may evidently appear in the final audio output, and be large enough to be 
important in the signal-to-noise ratio for the system. In the orthodox 
Armstrong circuit, consequently, the amplitude modulation due to inter¬ 
ference (or fading) is first eliminated by passing the incoming wave through 
a volume limiter which restricts it to a nearly constant amplitude. 

The feedback circuit in Fig. 19.1 serves as an alternative to the volume 
limiter. Its operation can be understood most readily if we think of it as 
an ordinary feedback amplifier in which n is the voice frequency output 
per unit frequency displacement at the modulator terminals and p is the 
frequency displacement of the local oscillator per unit voice frequency out¬ 
put. This is equivalent to measuring the signal by current or voltage in 
the voice frequency parts of the circuit and by frequency displacement from 
the carrier in the intermediate frequency stages. From these definitions, 
the product nP is the voice frequency transmission from terminals AAf 
around the complete loop and back to AAf again. In the ordinary feed¬ 
back amplifier, the signal intensity in the early stages of the forward circuit 
is reduced by feedback, and it is necessary to make a corresponding increase 
in the forward circuit gain if the input signal level and output power are to 
be kept constant. Here, similarly, the FM feedback reduces the frequency 
swing in the intermediate frequency stages. The “ gain ” of the forward 
circuit is increased correspondingly by increasing the slope of the conversion 
circuit to provide the same efficiency of conversion from frequency to 
amplitude modulation with the reduced frequency swing. 
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In these terms the reduction, by the feedback circuit, in the effects of 
amplitude modulation due to external sources can be treated exactly as the 
reduction, by feedback, in forward circuit noise in an ordinary amplifier was 
treated in Chapter III. Just as in that analysis, we find that if we regard 

the voltage appearing in the detector due to amplitude modulation of the 
incoming signal as an extraneous noise generator applied at that point, its 
effects are reduced through feedback in the ratio (1 — ju/3): 1. As an alterna¬ 
tive, we may notice that since the voice frequency output is proportional to 
the amplitude as well as the frequency displacement of the modulator out¬ 

put, amplitude changes in the incoming signal may also be regarded as 
changes in m. These again are reduced by feedback in the ratio (1 — nfi): 1. 

Fortunately, a detailed understanding of the operation of the high fre¬ 
quency portions of the circuit is not necessary for the feedback design 
problem. If we view the circuit from terminals AA\ we are interested 
only in shaping the transmission characteristic around the loop at voice 
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frequencies to conform with the ideal cut-off. Since the contribution of the 
high frequency portions of the structure can be determined by measure¬ 
ment, the problem reduces to that of finding a passive equalizer which can 
be inserted in the £ path to give the required total characteristic. This is 
the simplest as well as one of the most common forms in which a feedback 
design problem may be presented. 

The measured gain and phase characteristics between the input terminals 
of the local oscillator and the output terminals of the rectifier are shown by 
Curves I of Figs. 19.2 and 19.3. It will be seen that the gain becomes 
zero at about 50 kc and that the high frequency slope of the gain characteris¬ 
tic may be estimated at about 36 db per octave. These figures may be 
taken to represent the asymptotic performance of the complete loop if we 
suppose that the loss introduced by the equalizer at high frequencies will 
not be great. They indicate, from equation (18-7) of the preceding chap¬ 
ter, that the maximum available feedback will be about 36 db for the 
prescribed useful band of 4 kc. When allowances are made for phase and 
gain margin, the expected feedback may be taken as 25 db. The ideal 
cut-off characteristics for this feedback with a phase margin of 30° and a 
gain margin of 2 db* are shown by Curves II of Figs. 19.2 and 19.3. 

The rest of the design consists in the simulation of the difference between 
the measured loop gain characteristic and the theoretical gain characteristic 
by an equalizer. This difference, expressed as a loss, is shown by the solid 
curve of Fig. 19.4 and the loss actually obtained from the equalizer by the 
broken curve of the same figure.! The equalizer structure itself is shown by 

* A small gain margin is assumed in the design since the experimental circuit 
included a gain control by which the margin could be adjusted. 

t The low-frequency behavior of the broken curve in this figure, or in Figs. 19.2 
and 19*3, is explained by the presence of a blocking condenser in the feedback path. 
This element is not shown explicitly in Fig. 19.5 since only the high frequency charac¬ 
teristic is of immediate design interest. 
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Fig. 19.5.* The complete loop characteristic with the equalizer included 
is shown by the broken lines in Figs. 19.2 and 19.3. 

The feedback of 25 db obtained by the design is adequate in this applica¬ 
tion. It is interesting to notice, however, that the assumed asymptotic 
characteristic for the loop corresponds to a very high “ circuit loss ” At. 
Thus it follows from equation (18-20) of the preceding chapter that it 
should be possible to secure much more feedback over the given band, or 
the same feedback over a wider band, if we add several stages of vacuum 
tube gain as well as a passive equalizer in the feedback circuit. A design 
including tubes can be obtained by following principles somewhat similar 
to those used here, although it will naturally be much more complicated. 

Fig. 19.5 Fig. 19.6 

19.3. Envelope Feedback /or a Radio Frequency Transmitter 

The second example consists of the feedback design for a low-power radio 
transmitter transmitting multiplex signals on an ultra short wavelength. 
The circuit is of particular interest as an illustration of the principles devel¬ 
oped in the preceding chapter on the optimum number of stages for a feed¬ 
back amplifier. 

The transmitter is shown diagrammatically in Fig. 19.6. The low- 
frequency signal is applied at the left. It consists actually of one group of 
12 telephone channels. With the standard 4 kc channel spacing the signal 
occupies only 48 kc but the useful band is assumed for design purposes to 
extend to 100 kc to permit the transmitter to carry a second 12-channel 
group if desired. The signal is first stepped up to its final power level by 
means of the signal amplifier, and it is then applied to the antenna at radio 
frequencies by the modulator and local oscillator shown in the drawing. 
The carrier frequency is 141 me. A portion of the output is passed through 
the demodulator and reapplied at the original signal frequency to the input. 

♦The tubes in Fig. 19.5 were part of the original circuit. The equalization is 
obtained by replacing the constant resistance interstage which connected them origi¬ 
nally by the general impedance shown in the figure. The absolute level of gain 
depends upon a gain control elsewhere in the circuit. 
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This provides envelope feedback around the complete structure. The 
feedback is useful chiefly in suppressing distortion due to inter-channel 
modulation which would otherwise appear in a transmitter carrying so 
many channels. The desired value of feedback is 30 or more db. 

All parts of the loop enter to some extent into the determination of the 
envelope feedback characteristic. The detailed shaping of the loop charac¬ 
teristic, however, is most conveniently obtained in the circuits of the signal 
amplifier. The circuits associated with the modulator are not very suit- 

Carrier 

> p Output 

Fig. 19.7 

able for this purpose because of the high frequency and power level at which 
they operate. Neither of these objections applies to the circuits associated 
with the demodulator. We must observe, however, that the demodulator is 
effectively part of the Q circuit. Evidently, the reduction in interchannel 
modulation which is desired from the complete system will be realized only 
if the demodulator operates very accurately as a linear rectifier without 
introducing unwanted modulation products. The problem of providing a 
demodulator meeting these conditions is so difficult that it is undesirable to 
complicate it by introducing any other considerations in the design of this 
part of the structure. 

A preliminary layout for the transmitter on this basis is shown by 
Fig. 19.7. A 283H tube has been chosen for the output power stage for the 
signal amplifier. The output impedance of the tube, consisting of 7000 
ohms* in parallel with the plate capacity, is selected to secure the most 
efficient delivery of power from the tube, and should not be regarded as one 
of the circuits at our disposal in shaping the ixfi characteristics. The output 
stage is preceded by a 7708 tube giving high gain but relatively low power 

• This is not an inserted resistance; it represents the loading on the 283H tube due 
to the modulator stage. 
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to provide the rest of the forward gain for the circuit. The interstage net¬ 
work N is reserved in this tentative design for the solution of the loop 
shaping problem. 

The networks associated with the modulator and demodulator need not 
be described in detail. They are represented in the drawing by much sim¬ 
plified versions of the actual structures. Broadly speaking, the modulator 

networks consist of resonant circuits tuned to the carrier, the tuning being 
broad enough to prevent them from adding excessively to the asymptotic 
loss of the loop, as seen from the low-frequency parts of the circuit. The 
feedback path is assigned a loss of about 60 db from the modulator termi¬ 
nals to the input grid of the signal amplifier. About 30 db of this loss is 
furnished by the coupling circuit between modulator and demodulator. 
This places a very light load on the demodulator, which favors its opera¬ 
tion as a linear rectifier. The remaining 30 db is furnished by the poten¬ 
tiometer of resistances and capacities connecting the demodulator to the 
input circuit. The potentiometer impedances are also chosen to provide 
maximum linearity of operation in the demodulator. 

The loop transmission of the structure shown in Fig. 19.7 measured from 
the grid of the output tube to the grid of the input tube is given by Fig. 19.8. 
From this curve, and the known data for the transconductance and inter¬ 
stage capacity for the first tube in Fig. 19.7, we can easily estimate what 
the asymptotic performance of the complete loop will be. We find that the 
asymptote has a slope of 4 units, or 24 db per octave, and crosses the zero 
gain axis at about 1.5 me. With the help of equation (18-7) of the pre¬ 
ceding chapter and these figures the maximum available feedback over the 
nominal 100 kc signal band is found to be 47 db. This is more than the 
required feedback, but the excess is too small to provide large gain and 
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phase margins.* It is consequently desirable to review the structure in an 
attempt to secure an improved asymptote before the detailed shaping of the 
fjfi characteristic is undertaken. 

Inspection of the circuits associated with the modulator and demodulator 
shows several ways in which an improved asymptotic performance might 
be obtained. For example, the high-frequency path in the present circuit 
includes as series elements the small capacity in parallel with the 100,000 
ohm resistor in the demodulator output. If the resistor were replaced by a 
filter, exhibiting an impedance of 100,000 ohms at low frequencies but 
reducing to a capacity at high frequencies, the contribution to the asymp¬ 
totic loss secured from this part of the circuit might evidently be decreased. 
We might also modify the coupling network between the modulator and 
demodulator to produce a decreasing loss at frequencies remote from the 
band. These are possibilities which might be exploited if no better alterna¬ 
tive were available, but they evidently lead to circuit complications which 
it is desirable to avoid if possible. 

A simpler method of improving the asymptotic characteristic in the 
structure under consideration is obtained by increasing the number of volt¬ 
age stages in the signal amplifier. The 7708 tube already used for one stage 
of the amplifier has a “ figure of merit ” frequency ft of about 50 mc.f 
From the known asymptote for the present loop the circuit loss At at this 
frequency is about 120 db, or 14 nepers. It follows from the discussion in 
the preceding chapter that if we add more 7708 tubes the available feedback 
will reach a maximum when enough tubes have been added to make the 
asymptotic slope equal to 14 units. Since the asymptotic slope in the 
circuit as it stands is 4 units, this would require the addition of 10 more volt¬ 
age stages. The feedback obtained under these conditions is given by the 
first term of equation (18-14) of the preceding chapter and is equal to 
69 db. The feedback obtained with any other number of stages in the 
forward circuit can be determined by subtracting the amounts indicated by 
the corresponding Fig. 18.27 in the preceding chapter from this limit. Thus, 
for example, in the circuit as it stands before any extra tubes are added, 
we have X = 0.286 and the available feedback becomes 69 — 22 — 47 db. 

* In the structure of Fig. 19.7 the available feedback is, in fact, still more severely 
limited by the amount of gain which can be obtained from the first tube. This 
difficulty is ignored here, since in the final circuit the available forward gain is more 
than adequate for the feedback requirement. 

t This figure refers to a number of 7708 tubes in tandem. A considerably lower ft 
is realized in the single tube of Fig. 19.7 because of the large contribution of the inter¬ 
stage capacity furnished by the succeeding power tube and the decreased transcon¬ 
ductance obtained from the tube when it delivers sufficient power to drive the final 
stage. 
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This agrees with the result obtained previously from a direct computa¬ 
tion of the asymptotic performance of the structure. If we add two 
stages to the present circuit we find X = 0.43 and the available feedback 
is 60 db. This choice was decided upon for the actual design, since 
the improvement in available feedback is quite adequate to give a con¬ 
venient loop characteristic and the further advantage obtainable by adding 
more than two stages is comparatively small. 

With the figure of 60 db for the maximum available feedback at hand, the 
feedback which can be realized with any given phase and gain margins is 
readily determined from equation (18-9) of the preceding chapter. In this 
design, the margins were chosen as 30° and 12 db respectively and lead to a 
useful feedback of 38 db. The rest of the design consists merely in shaping 
networks which will provide the difference between the characteristic of 
Fig. 19.8 and an ideal cut-off characteristic corresponding to these values. 
With the two extra stages added to the amplifier, we now have, of course, 
three interstages among which the difference characteristic is to be allo¬ 
cated. The arrangement finally chosen is shown by Fig. 19.9. The last 
interstage, which has the highest power level, is made very simple, and it is 
also assigned most of the gain in order to make the power level in the earlier 
stages quite low. The first two interstages are essentially “ trap circuit ” 
designs of the type described in connection with Figs. 13.10 to 13.13 of 
Chapter XIII. The very low level of gain which these interstages are 
required to furnish permits the trap circuits to be designed at a very low 
impedance level so that they are effective in controlling the loop characteris¬ 
tics over a broad frequency range beyond the useful band. 

The gain and phase characteristics obtained from the three interstages 
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are shown by Fig. 19.10,* and the total loop gain and phase shift by 
Fig. 19.11. It will be seen that a feedback of about 35 db in the useful band 
is realized. This compares with the theoretical feedback of 38 db computed 

earlier. The slight difference may be attributed to the fact that the design 
does not follow the sharp corner in the theoretical characteristic at the edge 
of the useful band accurately. No attempt was made to procure a precise 
match in this region, since adequate feedback was obtained without it. 

* The relatively simple characteristics obtained from the second interstage. In Spite 
of the complexity of the network, arc explained by the fact that this structitre^was 
actually Intended to be adjustable* The characteristics shown correspond to %re&r~ 
ence setting for which the effect of the trap circuit is pot prominent. 
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19.4. Illustrative Design of an Amplifier with a Double Feedback Path 

The next example is an amplifier design for the type J system.* Since 
the circuit is relatively complicated it will not be described in detail. It 
does, however, afford a very interesting illustration of the salient role which 
the asymptote plays in determining the amount of feedback available and 
will be considered briefly from this point of view. 

Fig. 19.12 

The amplifier under consideration was intended to serve as a repeater 
in the type J open wire carrier system. It consists of three principal parts: 
the forward circuit, an outer or principal 0 path, and an inner 0 path. 
The general arrangement was shown schematically by Fig. 18.1 of the pre¬ 
ceding chapter. If we ignore the inner 0 path for the moment, the struc¬ 
ture is given in more detail in Fig. 19.12. The 0 circuit includes a gain 
control and an equalizer to compensate for variations in line attenuation. 
Otherwise the amplifier is characterized chiefly by the fact that the feed¬ 
back is of the low side hybrid coil type at both ends. This feedback con¬ 
nection is particularly appropriate for the type J system, where one of the 
controlling problems is that of providing very good impedance matches 
everywhere in the system to avoid reflection crosstalk. As the discussion 

♦Thisis a reference to a carrier telephone system for open-wire lines, operating in 
tile frequency range between 30 and 140 kc. For a more complete description see 
B* W. Kendall and R A. Affel, Jan., 1939. 
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of previous chapters showed, a hybrid coil feedback at input or output per¬ 
mits the active impedance of the amplifier to be controlled by the balancing 
network so that it can be matched very accurately to the characteristic 
impedance of the line. Low side rather than high side feedback is chosen 

for this application because with the low side connection most of the hybrid 
coil can be regarded effectively as part of the m circuit and the impedance 
match to the line consequently remains good even if manufacturing varia¬ 
tions in the coil are large. 

Although the choice of the low side hybrid coil circuit is most satisfactory 
for the operating requirements on the amplifier, it carries with it one 

unfortunate consequence. Since the feedback path goes through the coils, 
their leakage inductances appear as series elements in the asymptotic loop 
and the asymptotic characteristics of the circuit are consequently much less 
favorable than those obtained with most other types of feedback. This is 
illustrated by Curves I of Figs. 19.13 and 19.14, which represent the gain 
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and phase characteristics for the loop composed of the forward circuit and 
the outer 0 circuit in Fig. 19.12 with the element values as they were 
established in the final design. The estimated asymptote for this loop is 
shown by the broken line I' in Fig. 19.13. As the curves stand, they 
provide the desired feedback (45 db) in the useful band extending up to 
150 kc. The circuit is, however, unstable, since the phase shift crosses 180° 
before the loop gain reaches zero. Stability might, 
of course, be retained by redesigning the circuit 
with a lower feedback. With an asymptote as un¬ 
favorable as the one indicated in the drawing, how¬ 
ever, a sacrifice of at least 10 or 15 db in feedback 
would be necessary to secure a stable circuit. 

This difficulty is overcome by the introduction 
of the inner feedback path. The structuic used 
for the inner path is shown by Fig. 19.15. It is 
connected directly between the output plate and 
the input grid. The properties of the circuit 
are broadly similar to those of a high-pass filter. 
Within and near the useful band its attenuation is so great that the current 
fed through it can be neglected in comparison with the feedback through 
the outer 0 path. Thus computations of the gain and impedance character- 

Fig. 19.15 

istics of the amplifier based upon the outer circuit remain valid after the 
inner path is added. At higher frequencies, on the other hand, the inner 
path becomes more and more transparent until it constitutes an effective 
by-pass on the outer circuit at frequencies for which the asymptotic loss 
of the outer circuit is large. 

These relations are shown in more detail in Figs. 19.16 and 19.17. The 
first curves in the two figures give the loss and phase corresponding to trans- 
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mission from the output grid to the input grid through the outer fi circuit. 
The second curves give the corresponding quantities for transmission 
through the inner circuit, while the third curves represent the net trans¬ 
mission from output grid to input grid through the two paths in parallel. 
The third curves are, of course, the ones of interest in a stability calcula¬ 
tion, since from the. point of view of the tubes all possible feedback paths 

can be lumped together as a single four-terminal network, without regard to 
their relations to the input and output lines. With the design elements as 
chosen, the transition from the region in which the outer path is dominant 
to the region in which the inner path is dominant occurs at about 1 me. 
The total transmission characteristic of course depends upon the phase as 
well as the magnitude relations between the two paths. In this design the 
phase difference between the paths at the transition point is 140°, which 
increases the net transmission loss above that of either component. With 
a phase difference of 120° all three loss curves would cross at the transition 
point. 

The effect of the addition of the inner & circuit on the overall yfi charac¬ 
teristic can be found by correcting the first curves in Figs. 19.13 and 19.14 
for the difference between the outer p circuit transmission and the resultant 
transmission in Figs. 19.16 and 19.17. This leads to the results shown by 
Curves II in Figs. 19.13 and 19.14. It will be seen that the amplifier is now 
absolutely stable. The improved asymptote secured by the introduction 
of the inner circuit is shown by the second broken line in Fig. 19.13. 

19.5. Amplifiers with Band-Pass Transmission Characteristics 
The illustrative designs presented thus far in the chapter have been of 

the M low-pass 99 type. In other words, the useful band extended to such 
low frequencies that it could be regarded as including direct current, so far 
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as the characteristics near or beyond the upper edge of the band were 
concerned. In accordance with the principles described several times 
previously, amplifiers transmitting relatively narrow bands may be treated 
as low-pass amplifiers by means of the low-pass to band-pass transforma¬ 
tion described in Chapter X. It will be recalled that the band-pass 
amplifier and its low-pass equivalent have the same breadth of useful band 
in cycles per second. The band-pass structure can be obtained from the 
low-pass design by replacing coils and condensers, respectively, in the 
low-pass design by resonant and anti-resonant circuits tuned to the center 
of the design band. The coil in each resonant circuit and the condenser in 
each anti-resonant circuit are the same as the coil or condenser which is 
replaced. The resistances in the original circuit are not changed. 

Fig. 19.18 Fig. 19.19 

The low-pass to band-pass transformation is relatively easy to apply in 
most cases. When the band is extremely narrow, however, the use of the 
transformation may be hampered by two practical difficulties of a type 
familiar in the analogous problem of building a very narrow band-pass 
filter. One such difficulty has to do with the range of element values 
necessary in the transformed network and the other with the Q*s required 
in the individual elements. This may be seen most easily from a considera¬ 
tion of the networks in Figs. 19.18 and 19.19. The first represents a tuned 
circuit in the low-pass equivalent structure. We may imagine that the 
circuit resonates near the edge of the useful band in the low-pass design 
and that the two reactive elements represent reasonable element sizes for 
this design region. Parasitic dissipation is allocated for convenience 
equally between the inductance and capacity and is represented by the two 
resistances in the circuit. The band-pass transform is shown by Fig. 19.19. 
The elements L and C remain the same, but elements Cf and ll are added to 
resonate with them at/f, the center of the final band. Thus, from the 
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assumption made previously, we must have L/Lr = C/Cf where 
/o is the edge of the useful band in the low-pass design. IffT is much greater 
than/o this relation obviously indicates an extreme disparity in the element 
sizes of the network, so that some of die elements are almost certain to be 
inconveniently large while others are inconveniently small. We may also 
notice that since the resistances in the circuit remain the same the jj’s 
required in the reactive elements will be larger in the band-pass design in 
the proportion fr/fo* The difficulty with element sizes can frequently be 
overcome, or at least ameliorated, by representing the network branches in 
other equivalent forms, but the problem of providing an adequate Q is not so 
easily avoided. 

A simple illustration of the low-pass to band-pass transformation is 
furnished by a set of preliminary designs for an intermediate power radio 
transmitter. The structure was intended to operate on a carrier frequency 
of 20 me and to transmit 12 channels, occupying 50 kc on a single side 
band basis. The feedback was applied to suppress interchannel modula¬ 
tion. Thus the circuit is somewhat similar to the transmitter described 
previously, with the exceptions that radio frequency rather than envelope 
feedback is used, so that it contains no modulator or demodulator, and 
that it operates on a somewhat higher power level, which means that 
tubes with a lower figure of merit must be used. 

A tentative design for the transmitter is shown by Fig. 19.20. Each 
coil resonates with the associated capacity reactance at the center of the 
band. The source and load impedances, the latter including the parallel 
plate resistance of the output tube, are represented by the 10,000 and 3500 
phm resistances at input and output. The feedback circuit is of shunt 
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type. Its loss is controlled chiefly by the potentiometer formed by the L 
of capacities in the drawing. The additional series resistance is added to 
present a reasonably high impedance at the input and it is shunted by the 
anti-resonant network to diminish its effect on the asymptotic loop. In 
the forward circuit, the interstages are simple tuned circuits. The parallel 
resistances are introduced to represent the effects of coil dissipation and also 
the plate and grid dissipation of the adjacent tubes. The second and third 
tubes are power triodes having relatively large grid-plate capacities. They 
are coil neutralized, as the drawing indicates. 

Since the tuned circuits are all anti-resonant networks, the low-pass 
equivalent is obtained merely by deleting all the coils in the structure.* 
This leads to the unfolded loop shown by Fig. 19.21. The computed gain 
and phase characteristics for the structure are shown by the solid line 
Curves I in Figs. 19.22 and 19.23. The asymptote, as determined graphi¬ 
cally, crosses the zero gain axis at 2 me and has a slope of 12 db per octave.f 
The loop characteristic depends largely upon the grid-plate coupling capaci¬ 
ties in the last two tubes. To illustrate this, the broken lines in the two 
figures have been drawn to show the gain and phase characteristics which 
would be obtained if the coupling capacities were neglected. It is also 
important to recall, from the discussion in the previous chapter, that the 
presence of the coupling condensers changes the structure from a minimum 
to a non-minimum phase configuration. This is indicated by the dotted 
line in Fig. 19.23, which represents the minimum phase characteristic corre¬ 
sponding to the actual gain characteristic shown by Curve I in Fig. 19.22. 

The ideal cut-off characteristics are shown by Curves II in Figs. 19.22 
and 19.23. Phase and gain margins of 30° and 10 db, respectively, are 
shown. It may be noticed that the horizontal step in the gain characteris¬ 
tic is much broader than it would be in a normal design. With the usual 
proportions the limiting frequencies of the step would be in the same ratio, 

* The elements in the capacity potentiometer introduce no difficulty because the 
coil in the output plate circuit is supposed to tune with the total capacity (about 
29 nyf) which it faces. This permits the low-pass equivalent in Fig. 19.21 to be a 
valid representation of the actual circuit except for very low frequencies (of the order 
of 0.1 me or below), where the impedance of the potentiometer shunt branch in 
Fig. 19.21 is so large in comparison with the impedances which follow it that the 
potentiometer can no longer be thought of as operating essentially as a voltage divid¬ 
ing circuit. Hence the curves of Figs. 19.22 to 19.24 do not correspond to Fig. 19.21 

at the lowest frequencies. 
t That is, this is the assumed slope for purposes of computation. The actual high- 

frequency characteristic depends largely upon the grid-plate coupling condensers and 
eventually reaches a slope of 6 db per octave, whereas the slope would be 18 db per 
octave if the coupling condensers were omitted. The effect of this subsequent slope 
change is lumped with the excess phase term described later. 
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12 :10, as the adjacent slopes. In accordance with the discussion near the 
end of the last chapter, however, the actual step is made nearly half an 
octave broader than this to compensate for the excess phase m the loop. 

The ideal cut-off can be simulated without trouble at frequencies more 
than a few hundred kilocycles from the band, but near the edge of the 
band the Q and element value limitations in the low-pass to band-pass trans¬ 
formation make it difficult to secure a sufficiently selective characteristic. 

This is illustrated by Curves II of Figs. 19.24 and 19.25, which represent 
the result secured when the original first interstage in Fig. 19.21 is replaced 
by the structure shown in Fig. 19.26/f. It will be seen that the lack of 
adequate low-frequency selectivity leads to a feedback in the useful band 
which is nearly 20 db less than the amount promised by the theoretical cut¬ 
off, shown by Curves I in the two figures. 

The structure of Fig. 19.26/f is a simple trap circuit design with a trap 
circuit resonance near 1 me to fill in the difference in loss between Curves I 
and II of Fig. 19.22 in this general region. Figure 19.265 represents a 
slightly modified form of the network having a distribution of dissipation 
more suitable for the band-pass equivalent structure. As either structure 
stands we could evidently secure a considerably larger feedback in the use- 
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ful band without materially affecting the /xfi characteristic at higher fre¬ 

quencies merely by decreasing the zero frequency conductance path 

through the network. If we transform the network of Fig. 19.26B to the 

band-pass equivalent shown by Fig. 19.27 however, we notice that even 

Fig. 19.28 

with the present element values the coils in the two anti-resonant circuits 

must have j?’s of more than 200 at the carrier frequency. If Q*s this large 

are not available the feedback in the useful band will, of course, be still 

further diminished. Curves III of Figs. 19.24 and 19.25, for example, show 

the result secured if the maximum obtainable Q is 100. 

In view of these limitations it appeared that adequate feedback could be 

obtained more simply by adding a fourth stage* to the existing structure of 

* The phase reversal necessary for operation with an even number of stages is 
obtained merely by crossing terminals. The amplifier is actually a push-pull circuit, 
shown single sided in this discussion as a matter of simplicity. 
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Fig. 19.21. This leads to the same general advantages that an increased 

number of stages permitted in the transmitter described previously. The 

configuration chosen for the new interstage is again of the trap circuit type, 

as shown by Fig. 19.28. It leads to the overall loop gain and phase shown 

by Curves I of Figs. 19.29 and 19.30. The Q required in the band-pass 

structure is in this case 100. Curves II and III show the results obtained 

with Q*s respectively one-half and one-quarter as great. 

19.6. Lower Cut-Off Characteristics for Feedback Amplifiers 

The low-pass to band-pass transformation just described is appropriate 

for amplifiers in which the ratio of the upper to the lower edge of the useful 

band is not very great. When the lower frequency limit for the band is 

only a small fraction* of the upper, it is simpler to regard the cut-off charac¬ 

teristic below the useful band as an independent problem. An appropriate 

shape for the lower cut-off can evidently be obtained by plotting the upper 

cut-off characteristic on a reciprocal frequency scale. Figure 19.31, for 

example, shows, on an arithmetic frequency scale, a combination of upper 

* Since the band-pass characteristic is always theoretically more efficient than a 
combination of low-pass and high-pass characteristics, the dividing line depends upon 
the amount of improvement in feedback which is regarded as worthwhile. The 

advantage of the band-pass characteristic is easily computed by identifying /o in 
equation (18-7) of the preceding chapter with, first, the upper edge of the useful band 
and, second, the difference between the upper and lower edges. For example, if the 

edges are in the ratio 5:1 the use of the band-pass characteristic allows an increase of 
about 4 db in available feedback, while if the edges are in the ratio 10:1 the improve¬ 
ment is about 2 db. It should be noticed, however, that the various power supply ele¬ 
ments, such as grid leaks, blocking condensers, choke coils, etc., can be used as control¬ 
ling elements in shaping the lower cut-off in the combination characteristic, while the 
band-pass characteristic is valid, strictly speaking, only when these elements are made 
so large that they do not enter into the characteristic in the cut-off range. This 
consideration usually limits the applicability of the band-pass characteristic to much 
narrower bands than the above figures might suggest. 
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and lower characteristics for an amplifier whose useful band in octaves is 
very broad. 

If we use a combination characteristic of this type, the asymptote for 
the lower cut-off characteristic is furnished by the various elements control¬ 
ling the direct current potentials in the amplifier. The chief of these are 
usually choke coils, blocking condensers, and grid-leak combinations in the 
interstages, filtering elements in the plate supply circuits, and condenser- 
resistance combinations in the cathode leads to provide self-bias on the 
tubes. The low-frequency cut-off is not usually so difficult a design prob¬ 

lem as the high-frequency cut-off, since we can obtain as favorable an 
asymptote as we need by making the various blocking condensers and 
choke coils large enough. For this reason it is not usually necessary to 
provide a very efficient cut-off, having a low phase margin and a sharp 
corner at the band edge. It should be emphasized, however, that a neces¬ 
sary minimum of design effort in shaping the low-frequency cut-off must 
be expended. It is not enough merely to make the power supply elements 
very large. For example, if we double all the coils and condensers which 
are effective at low frequencies, the original frequency characteristics will 
be repeated one octave lower. If the amplifier is unstable on account of the 
original elements it will still be unstable. It can be stabilized only by alter¬ 
ing the relative proportions of the low-frequency elements. 

An example of a low-frequency cut-off characteristic is furnished by the 
low-frequency design of a preliminary version of the amplifier used as the 
concluding illustration in this chapter. The lower edge of the useful band 
occurs at 60 kc. A sketch of the amplifier to show the elements effective 
at low frequencies is given in Fig. 19.32.* The 4200 ohm, 2000 ohm, and 

* The value assumed for the impedance of the first interstage corresponds to the 
configuration in Fig. 19.57 without the 5657 /uh coil. In the final low-frequency design 
there were a number of changes which made the presence of this coil appropriate. 
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550 ohm resistances are the low frequency values for the impedances of the 
two interstage networks and the p circuit. The other elements will be 
recognized as self-biasing units in the cathodes,f blocking condensers, grid 

Fic. 19.32 

leaks, and condenser-resistance filters in the plate supply leads. If we 
consider each blocking condenser and its associated grid leak as a unit, 
all these structures, as it happens, are simple capacity-resistance combina¬ 
tions. Thus they can be specified by their CR products, which fix the 
frequency at which the capacity and resistance exhibit impedances of 
equal absolute value. A table showing the CR products and the asso¬ 
ciated frequencies for the various units is given below. 

Network CR fr 

First Cathode 6 X 10r« 26.5 kc 
Second Cathode 6 X 10“* 26.5 kc 
Big. Cond. — Grid Leak in first interstage 50 X 10"8 3.2 kc 

in second interstage 100 X 10"6 1.6 kc 
in P circuit 5 X 10-8 32.0 kc 

CR filter in first plate cct. 50 X 10r® 3.2 kc 
in second plate cct. 50 X lO"6 3.2 kc 
in third plate cct. 125 X 10r* 1.3 kc 

The principle upon which the design is based can be understood from an 
inspection of the table* It consists, broadly speaking, in staggering the 
CR products so that the various networks are effective in different parts 

f Self-bias on the power tube is provided by a simple resistance, without a shunting 
capacity, in older to provide additional local feedback on the tube within the useful 
band. 
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of the frequency range, and a fairly uniform cut-off rate can be established. 
For example, two of the three networks with the largest values of jt are 
the cathode biasing units, each of which has an fr occurring slightly more 
than one octave below the useful band. The two biasing units are of no 

effect at very high frequencies, while at very low frequencies they intro¬ 
duce local feedbacks which depress the gain of each stage by about 11 db. 
The CR product marks the approximate frequency below which the local 
feedback characteristic is fairly well established. Thus with the CR products 
as chosen for the biasing units, most of the 22 db total change in gain 

which they produce occurs in the first octave and a half, roughly, below 
the useful band, and represents the chief constituent of the char¬ 
acteristic in this region. The effect of the biasing units is shown in more 
detail by Curves I of Figs. 19.33 and 19.34.* 

* As Fig. 19.33 is drawn, it appears that the local feedback characteristic extends 
sufficiently far into the useful band to produce an appreciable rounding of the 
characteristic above 60 kc. In the actual design this was largely compensated for by 
the varying interstage and 0 circuit impedances, which had not yet reached the low- 
frequency condition indicated in Fig. 19.32. In the absence of such compensation, it 
would probably be desirable to choose //$ another half octave or so lower. 
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The third network having a comparatively high fr is the blocking 
condenser-grid leak combination associated with the grid of the first tube. 
The characteristics of this structure are shown by Curves II in Figs. 
19.33 and 19.34. It introduces a 6 db per octave loss slope in the range 
below its /r, i.e., at frequencies more than one octave below the useful 
band, and comparatively little effect above its /r. Thus it comes into 
play as the slope introduced by the biasing units begins to fail. The com¬ 
bination, as shown by Curves III in the two figures, provides a fairly con¬ 
stant slope of about 9 db per octave for several octaves below the use¬ 
ful band. 

The remaining elements in the loop become effective at much lower 
frequencies. The chief contributors are the blocking condenser — grid- 
leak combinations associated with the second and third grids. Together 
with the similar combination for the first grid, already considered, they 
produce a final asymptotic slope of 18 db per octave. The junction with 
the final asymptote is, however, slightly retarded by the elevation in loop 
gain due to the CR combinations used as plate supply filters in the leads 
to the two interstages and the 0 circuit. This produces a slight “step” 
in the cut-off. The final loop characteristics, including some slight effects 
not considered here and adjustment for the loop gain level in the useful 
band, are shown by Fig. 19.35. 

In the method of design just described, the slope of the lower cut-off 
characteristic is controlled essentially by choosing constituent networks 
having a variety of CR products so that they will come into play in dif¬ 
ferent parts of the cut-off interval. This is possible in an amplifier oper¬ 
ating at moderate frequencies where reasonable element sizes are to be 
anticipated. When the useful band extends to extremely low frequencies, 
on the other hand, the limitations represented by permissible sizes of 
blocking condensers and grid leaks require consideration. Evidently 
the method of distributing the CR products is likely to fail in this case. 
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since the largest product may be expected to correspond to an excessively 
large condenser or resistance. 

An alternative way of controlling the characteristic at extremely low 
frequencies can be obtained if we suppose that the grid leaks in the con¬ 

ventional amplifier may be replaced 
by some more elaborate arrangement 
of condensers and resistances. The 
advantage of using the grid circuit to 
shape the characteristic is, of course, 
the fact that the impedance level 
represented by the usual grid leak is 
so great that the capacities required 

in the shaping networks are relatively small even at very low frequencies. 
A typical arrangement is shown by Fig. 19.36. The resistance R and 
condenser C in the drawing represent a conventional interstage impedance 
and blocking condenser, but the usual grid leak is replaced by the three- 
element network composed of R0> Ru and C\. 

Fig. 19.36 

Fiq. 19.37 

If we suppose that the d-c grid resistance Ro + Ri is fixed, the shape 
of the characteristic obtained in the low-frequency region depends upon 
the ratios Ri/Ro and C/Ci. These may be specified by the parameters 
k and/o//o defined in the figure. In terms of k and the frequency ratio, 
a simple calculation shows that the voltage £2 across the grid for a 
voltage E\ across R is given by 

*■ q±*l&±£ w 
** " tJ lift + if Id + k)/0+/oJ ~f 

Sample characteristics corresponding to two special choices of k and 
fa/fh are shown by Curves II and III in Fig. 19.37. Curve I, which gives 
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Fig. 19.384 

the result for a simple grid leak, is introduced for comparison. It will be 
seen from the curves that the networks have roughly the fundamental 
property necessary for a cut-off solution, that they permit a predetermined 
average cut-off slope and corresponding phase to be maintained over a 
considerable region. The degree of approximation can be improved by 
staggering the designs in the various grid circuits. 

An example of the use of this technique is furnished by the design of a 

Output Circuit 

first Interstate 

Fig. 19.385 

Second Interstate 



516 NETWORK ANALYSIS Chap. 19 

laboratory amplifier intended to give 60 db feedback in the frequency 
region from 5 to 25 cycles. A schematic of the amplifier is shown by 
Figs. 19.38^ and 19.385. The principal constituent of the 0 circuit is a 
condenser-resistance bridge intended to give a peak of loss at an ad- 

1 

justable frequency in the 5 to 25 cycle range. For design purposes it can 
be regarded as a flat high impedance pad. The grid circuit designs are of 
the type just described with k = 5 and fo/f'o = 40 in each case. These 

parameter values correspond to the character¬ 
istic shown by Curve II in Fig. 19.37. The 
designs are, however, staggered in frequency, 
the reference frequency /o being increased by a 
factor of three as we go from the first to the 
second or from the second to the third grid. 
The overall low-frequency gain and phase char¬ 
acteristics are shown by Fig. 19.39.* It will be 
seen that a cut-ofF slope of 9 db per octave is 
realized with great accuracy down to a fre¬ 
quency of one cycle per minute. 

In designing the low-frequency cut-ofF it was assumed, as Fig. 19.36 
indicates, that the impedance in the plate circuit of each interstage is a 
rather low resistance. The high-frequency cut-ofF of the amplifier must 
be obtained by adding suitable shaping elements to these resistances. In 
the present instance advantage may be taken of the fact that if we re¬ 
place if/fo by fo/if the expression for E%/Ei given by (19-1) can also 
be interpreted as the impedance of the structure shown by Fig. 19.40. 

Fig. 19.40 

* The absolute level of gain depends, of course, upon the ti be transconductances and 
die loss assumed for the 0 circuit. This discussion is omitted here since the 0 circuit 
design involves a number of questions of no particular interest for the overall loop 
design. 
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Thus by suitable adjustments of the unit of impedance and frequency the 
lower cut-off design which has already been found provides a ready-made 
design for shaping networks which will furnish a precisely symmetrical 
upper cut-off characteristic. The remaining elements in the two inter¬ 
stage networks, Fig. 19.38, were determined by this means. The 150 ohm 
resistance and associated three element CR structure in the 0 circuit per¬ 
forms the same function for the circuit leading to the first grid. We observe 
that the complete m0 characteristic is obtained without the use of coils, 
which would evidently be undesirable in a circuit operating at such low 
frequencies. 

19.7. Illustrative Design of a Regulating Broad-Band Amplifier 

The final example consists of one of the repeaters designed for the co¬ 
axial system.* The useful band of the structure extends from 60 to 
2000 kc. Since low-frequency cut-off designs have been described in 
the preceding section, only the high-frequency characteristic will be 
considered here. The spacing between repeaters is nominally 5 miles, 
which corresponds at 2000 kc to a line loss, which the repeater must 
overcome, of about 40 db. In order to compensate for irregularities in 
repeater spacing and for variations in line attenuation due to temperature, 
however, the amplifier is supposed to include a variable 0 circuit control 
which will introduce a positive or negative characteristic proportional to 
that of a small length of line. The maximum swing is dbl.2 miles of linef 
or from about 30 to about 50 db in gain at 2000 kc. Feedback of the 
order of 25 to 30 db is desired. 

With a useful band as great as the one specified, the problem of securing 
adequate feedback must be the controlling consideration in choosing the 
general arrangement of the amplifier. It appeared upon investigation 
that series feedback would give the most favorable asymptote.J A circuit 
of this type was therefore adopted. The general configuration is shown 
by Fig. 19.41. Aside from the use of the series feedback circuit, the 
asymptote was made as favorable as possible by reducing all parasitic 

* See footnote, p. 285. The regulating network in the feedback path of the 
amplifier belongs to the general class of structures described in “ Variable Equalizers ” 
by H. W. Bode, B.S.T.April, 1938. 

t As a matter of simplicity the complete regulator range over which the amplifier 
was supposed to remain stable is given here. The useful range for normal service is 
somewhat smaller. 

t The cathode feedback circuit, which is slightly more favorable, was not developed 
at the time this amplifier was designed. Comments of a similar sort apply to the 
numerical values given for the capacities and transconductances of the tubes in the 
circuit. 
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capacities to a minimum and by constructing the variable 0 circuit as a 
single shunt branch, so that a small series coil would remove it entirely 
from the high frequency path. 

The physical origins of the various capacities shown in the drawing 
should be self-evident, with the possible exception of the capacity across 
the 0 circuit, which* is due chiefly to the capacity to ground of the trans¬ 
formers. With the indicated transconductances and interstage capacities 
the “ figure of merit ” frequency /< is about 50 me. The asymptote has 

<V4000 <?mr4000 4000 

a slope of 18 db per octave and the “ circuit loss ” A% at 50 me is 18 db. 
The resulting Am over the useful band is obtained from equation (18-12) 
of the preceding chapter as 48 db. It is interesting to notice that the 
series feedback circuit used in the amplifier is quite close to the ideal. With 
tubes of the given figure of merit, the available feedback could be increased 
only 12 db even if we had a theoretically perfect circuit with A% = 0. 

The detailed amplifier design begins with the input and output circuits. 
These structures, however, are not of great interest here and will be dis¬ 
missed briefly. Broadly speaking, the input and output circuits provide 
a varying gain characteristic which compensates (at normal line lengths 
and temperatures) for the varying attenuation of the line in the upper part 
of the useful band. Supplementary equalization at lower frequencies is 
supplied by an additional conventional equalizer inserted in front of the 
amplifier.41 The general technique of design is the same as that described 
in Chapter XVI. For our present purposes the input and output circuit 
designs are of interest chiefly for their effect on the overall loop characterise 

* In general, of course, line equalization might also be provided by a variable loik 
in the 0 circuit. When the 0 circuit is required to be a regulator ofthe single branch 
type, however, k appears that its normal far the mean ityylatte 
setting, f&tast he almost constant. The characteristic of the actual 0 circuit is gimi 
later in F%. 19.50. 
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tic through the so-called “ transformer potentiometer terms ” described in 
connection with Fig. 16.31 of that chapter. A plot of the sum of the 
potentiometer terms for the two circuits is shown by Fig. 19.42. 

We have next to consider the design of the forward circuit and feedback 
impedances to secure an appropriate loop characteristic. This problem is 
complicated by the fact that the loop characteristic must obviously vary 
as we vary the P circuit to compensate for different lengths of line. The 

situation can be examined by plotting the variable characteristic on the 
$ scale described in Chapters XVII and XVIII. Thus Fig. 19.43 shows 
die required change in loss from the mean to one extreme regulator setting 
plotted On an ordinary: 4©g frequency scale, while Fig. 19.44 gives the 
same characteristic on thfc $ scale. < The average height of the plot on the 
4 scale is about 74 db. The variable changes in loop transmission intro- 
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duced by regulation are consequently equivalent at extreme settings to a 
constant change of db in feedback in either direction from the mean. 

Since the asymptote is fixed these changes in effective feedback must 
evidently imply corresponding changes in the gain or phase margins, or 
both, assigned to the loop cut-off. For design purposes it was assumed 

that the gain margin would remain fixed and equal to 15 db for all settings 
of the regulator and that changes in effective feedback due to regulator 
operation would be taken up by varying the phase margin. Specifically, 
a constant feedback of 28^ db in the useful band was assumed for the mean 

regulator setting. The variable characteristics for the extreme settings, 
then, are equivalent to constant feedbacks of 21 and 36 db, respectively. 
Since Am is known, equation (18-9) of the preceding chapter allows the 
corresponding phase margins to be determined. They turn out to be 
equal to 17°, 35°, and 53°, respectively, for the maximum, average, and 
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minimum settings. Detailed cut-off characteristics computed from these 
data* are shown by Figs. 19.45 and 19.46. 

Since the difference between the successive curves in Figs. 19.45 and 
19.46 must be equal to the regulator characteristic this analysis leads to the 
complete specification of the regulator loss and phase characteristics at 
all frequencies, in spite of the fact that only the loss in the useful band is 
specified by the overall amplifier requirements. The loss and phase spec¬ 
ification above the useful band need not be taken very literally since 

reasonable departures from constancy of phase margin in the character¬ 
istics corresponding to the intermediate and lowest regulator settings are 
tolerable if the characteristic for the maximum setting is well designed, but 
they represent a useful general guide in choosing the regulator circuit. 
The characteristics actually obtained from the regulator are shown by 
solid lines in Figs. 19.47 and 19.48-f The “theoretical” characteristics, 
obtained as differences between the overall cut-off characteristics, are 
shown by the broken lines. 

The details of the regulator design are beyond the scope of this treat¬ 
ment. The structure itself is shown by Fig. 19.49. The reference loss 
and phase at the average setting, from which the regulator characteristics 
are computed, are shown by Fig. 19.504 The curves take account of 
parasitic capacities, as well as the elements shown explicitly in Fig. 19.49. 

* An exact computation for the extreme settings, for which the feedback in the use¬ 
ful band varies with frequency, requires the application of some such formula as equa¬ 
tion (14-33) of Chapter XIV but it is sufficiently accurate to estimate the characteris¬ 
tics from the known loop characteristic for a circuit having an equivalent constant 
feedback. 

tOnly one characteristic is shown in each figure, since positive and negative 
departures from the reference condition are symmetrical. 

t The curves represent the gain and phase which would be obtained if the network 
were used as an interstage for one of the tubes in the forward circuit. Since the trans¬ 
conductance is 4000 micromhos this is equivalent to choosing 250 duns as the unit of 
impedance. 
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146*4 

*61 3BZ 

PlO. 19.49 



ILLUSTRATIVE DESIGNS 523 

The exact behavior of the circuit is, of course, quite complicated. In the 
high frequency range, however, it is roughly similar to that of the well 
damped anti-resonant circuit shown in Fig. 19.51. The condenser repre¬ 
sents the 26 iufxf transformer-to-ground capacity shown in Fig. 19.41, 
together with allowances for the shunting effect of the input and output 
circuits on the 0 circuit impedance and for the parasitic capacity of the 0 
circuit elements themselves. The inductance is, of course, the same as the 
leading element in Fig. 19.49, while the 115 ohm resistance represents the 
rest of the network. Within rather broad limits the anti-resonant fre¬ 
quency can be placed arbitrarily by varying the inductance. The reason 
for setting it at the very high value which is found in the actual circuit 
will appear later. 

The design is completed by supplying a circuit which, in cooperation 
with circuits already designed, will provide the requisite overall cut-off 
characteristics. In general, a large number of possible designs can be 
obtained both because the division of labor between the two interstages 
can be changed and because we can change the required forward circuit 
characteristic as a whole by varying the 0 circuit anti-resonance in Fig. 
19.51. Since some of these combinations may be much simpler than 
others, it is worthwhile to survey the situation before a 
detailed design is attempted. One clue is afforded by 
the relations between excess gain and phase margin 0.44 

developed for interstages in Chapter XVII and for the M1 
feedback loop as a whole at the end of Chapter XVIII. ^ 
Another attack is obtained if we attempt to correlate 
the various corners and slopes in the ideal cut-off char¬ 
acteristic wi£h the separate physical parts of the ampli¬ 
fier which may be supposed to produce them. Fio. 19.51 

The excess gain and phase margin computation is conveniently begun 
by the observation that if we begin with the gain characteristics shown 
by Figs. 19.42 and 19.50 the required 28^ db feedback for the normal 
regulator setting is obtained with a nearly constant total interstage gain 
of about 35 db throughout the useful band. With the prescribed trans¬ 
conductances and interstage capacities, however, the maximum available 
gain from the two interstages over the useful band is 66 db. Thus there 
is an available surplus gain of 31 db, or 3.6 nepers. In accordance with 
equation (17-18) of Chapter XVII, this means that the average height 
of the interstage phase margin plot on the scale must be 3.6 radians. 
The relations are shown in more detail in Fig, 19.52. Curve I represents 
the plot of («/«o) (180° — Bl) where Bt is the phase shift for the ideal 
cut-off characteristic at normal setting. Curves II and III are similar 
plots for («/«o)5r and where B? and B$ represent the trans¬ 
former phase terms and the 0 circuit phase given by Figs. 19.42 and 19.50, 
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respectively. Since with two interstages the limiting phase shift against 
which the interstage phase margins are computed is 180°, it is easy to see 
that the sum of all three curves represents the interstage phase margin 
function which appears in equation (17-18) of Chapter XVII. 

The sum of the three curves in Fig. 19.52 has been plotted as the heavy 
curve of Fig. 19.53. The broad shoulder extending from about = 50° 
to = 90° is relatively easy to interpret. Since = sin””1 wo/«, this 

interval on the scale corresponds to a relatively narrow interval just 
beyond the useful band on the true frequency scale. We would evidently 
expect to secure a phase margin characteristic which is relatively con¬ 
stant in this range, but drops off gradually as we approach lower values 
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of from a well damped interstage of the simple type indicated by Fig, 
19.54. We may consequently assume, tentatively, that the first inter¬ 
stage will be of this simple form and will introduce a phase margin con¬ 
tribution of the type indicated roughly by Curve I in Fig. 19.53.* In an 
ordinary amplifier it would be worthwhile to redesign the p circuit in an 
attempt to concentrate all the area under the phase margin curve into a 

Fio. 19.54 Flo. 19.55 

shoulder near the right-hand end of the plot. This would permit both 
interstages to be realized by relatively simple structures. In this ampli¬ 
fier, however, the regulation requirement on the p circuit permits no 
effective design control of its normal characteristics beyond the shifts in¬ 
troduced by varying the anti-resonance in Fig. 19.51. It is consequently 
necessary to elaborate the forward circuit design to obtain the required 
phase margin at low values of 

In the actual design the peak in the phase margin plot near = 5° 
was provided by inserting the network shown by Fig. 19.55 in the cathode 
of the third tube. The 13 mmf condenser represents the parasitic ca¬ 
pacity from cathode to ground and is not a physical element. The struc¬ 
ture provides local feedback on the third tube which depresses its gain 
by 12 db. In other words, it consumes 12 db of the total of 31 db surplus 
gain which is to be expended. The local feedback remains almost con¬ 
stant in the useful band and beyond it up to about 20 me. At higher fre¬ 
quencies, however, it is eliminated by the filterlike action of the anti¬ 
resonant circuit and parallel capacity in Fig. 19.55. This leads to an 
increased gain in the third stage with the associated phase shift shown 
by Curve II in Fig. 19.53. 

* That is, Curve I is roughly a plot, against <f>', of (o)/cc0) (90° — ft), where ft is the 
phase characteristic to be expected from an interstage of the type shown by Fig. 19.54. 
Similarly, Curve III is a plot of («/«<>) (90° — ft), where ft is the phase characteristic 
of the interstage in Fig. 19.56, while Curve II is a plot of — (w/G>0)ft, where ft is the 
phase shift introduced into the forward circuit by the cathode network of Fig, 19,55, 
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The loss and phase characteristics introduced by the local feedback cir¬ 
cuit might also be obtained very nearly from an interstage trap circuit. 
The local feedback solution is preferred because of the additional advan¬ 
tage which it gives in reducing the effects of non-linear distortion in the 
output tube. One difficulty connected with its use, however, should be 
mentioned. Since the phase shift introduced by the local feedback term 

depends upon the transconductance of the last tube, 

2000 :i3 
MMf 

the circuit may conceivably become unstable if the 
gain of this tube fails through age, even though 
the ideal cut-off characteristic for^the principal loop 
is met exactly for normal tube gains. In the pres¬ 
ent amplifier this difficulty is avoided by concen¬ 
trating the phase protection obtained from the local 
feedback circuit into the very high frequency range 
beyond the loop cut-off. In order to produce this 
result, however, it is necessary to limit the local 

feedback in the useful band to approximately the 12 db value which was 
actually assigned to it, since if we begin with a much larger cathode im¬ 
pedance the shunting effect of the parasitic cathode-ground capacity 
becomes conspicuous at too low a frequency. 

The provision of the peak and shoulder in the phase margin curve leaves 
a nearly constant residue remaining. This was provided by the second 
interstage, whose structure is shown by Fig. 19.56. Its contribution to 
the total phase margin is represented by Curve III in Fig. 19.53. The 
physical interstage resistance is only about one-third as large as the capacity 
impedance at the top of the band, so that this interstage consumes about 
half the total 31 db of surplus gain. This proportioning between the 
resistance and capacity is, as it happens, well suited to the solution of the 
phase margin problem, but it is also chosen for another purpose. If the ca¬ 
pacity reactance is represented by X’, the interstage phase shift is evidently 
B » tan""1 R/X — tan""1 a>RC. From this we can write 

dB <*C 1/^,1 V1 

dR ~ 1 + o>2R*C2 ~ RVKC+o>Rc) 
(19-2) 

But it is well known that the function (z + l/z) is approximately sta¬ 
tionary for values of z anywhere in the neighborhood of z 1. With the 
proportions chosen wRC becomes unity at 6 me, which is at the geo¬ 
metrical center of the cut-off interval stretching from 2 to 15 or 20 mega¬ 
cycles. Thus a small change in R produces a more or less constant change 
in phase margin throughout the cut-off interval. Since a small change in 
R evidently produces a nearly constant change in gain in the useful band 
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also, the structure thus provides a simple means of adjusting the balance 
between feedback and phase margin. 

As the final step, the tentative configuration assumed for the first inter¬ 
stage was elaborated to produce a better match with the desired feedback 
characteristic in and near the useful band. The final configuration for 
this interstage is shown by Fig. 19.57. It gives 
the contribution to the overall phase margin curve 
shown by Curve I in Fig. 19.53, corresponding to 
the consumption of about 4 db of surplus gain. The 
crosses in Fig. 19.53 show the sum of the three 
constituent characteristics in relation to the heavy 
solid line, representing the ideal phase margin 
characteristic. 

This discussion has been conceived primarily in 
terms of the phase characteristics of the various net¬ 
works in order to illustrate how the phase margin plot Fio. 19.57 

may be used as an aid in the selection of suitable 
configurations. In a practical design, of course, a study of the relation 
between the gains of the various components and the overall loop gain 
may be equally useful. In this particular circuit we may divide the loop 
characteristic roughly into a region of sharp slope just beyond the edge of 

the band, a region with nearly constant slope of about 9 to 10 db per 
octave extending from about 3 to about 25 megacycles, and the final hori¬ 
zontal step. With the networks as they have been chosen, the initial 
sharp slope is contributed principally by the transformer potentiometer 
term shown by Fig, 19.42. Since the transformer term is, however, some¬ 
what more selective than it should be, a compensating characteristic is 
introduced by peaking the gain of the first interstage slightly above the 
useful band. At higher frequencies this interstage contributes a 6 db per 
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Fio. 19.61 
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octave slope to the overall characteristic. The remaining 3 or 4 db per 
octave required by the overall characteristic is contributed chiefly by the 
second interstage, whose slope is dampened considerably from the usual 
6 db per octave by the parallel resistance in the circuit. For example, 
the slope of this interstage is exactly 3 db per octave at 6 me, where the 
resistance and the capacity reactance are equal. The final horizontal 
step is obtained, roughly, by balancing the interstage slopes against the 
increases in loop gain due to the £ circuit anti-resonance and to the re¬ 
moval of the local feedback on the last tube. 

The collected results are shown in Figs. 19.58 to 19.61. The first pair 
of figures gives the gain and phase characteristics of the various forward 
circuit components plotted on an ordinary log frequency scale. Curves 
I, II, and III refer respectively to the first interstage, the local feedback, 
and the second interstage. The other figures give the overall loop char¬ 
acteristics for the mean and the two extreme settings of the regulator. 
The maximum feedback setting matches the theoretical curves of Figs. 
19.45 and 19.46 quite closely. The others are amply stable but they 
depart somewhat from the theoretical curves because of the departures of 
the regulator characteristics beyond the band illustrated by Figs. 19.47 
and 19.48. 
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Conservation of band width, 211- 

214, 361, 363, 382, 
454,485 

Constant impedance devices, 224 
-ik high-pass or low-pass filter, 207 
loop gain area condition, 456 
resistance equalizers, 283-285 

filters, 255 
image impedance, 229 
representation of a general 

transfer impedance, 
227-235 

Constituents of general impedances, 
246-248 

Construction of a general transfer 
impedance, 230-235 

Contour integrals in limiting cases, 
139-141 

integration, formulae for network 
functions, 277-280, 
291-302, 305-307 

general, 137-169 
in the complex plane, 138-139 
of the logarithmic derivative, 

147-151 
path, 143, 278-280, 296 

relation between integral 
and, 141-144 

relations in input and output 
network design, 377, 
380-381 

interstage network design, 
377 

two theorems from function 
theory, 167-169 

Conversion circuit, FM to AM, 490 
CR product, 511-513 
Critical frequency, 218 

displacement by parasitic dissi¬ 
pation, 244 

point, 154, 158, 452, 475-476 
Current, 22 

branch,3 
condition, nodal, 2,4 
equilibrium, 1, 11 
generator, 12, 14,189 
in-phase and quadrature compo¬ 

nents, 19 
instantaneous, 8 
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Current, mesh, 3, 6 
nodal, 7 

Cut-off characteristics, alternative, 
471-476 

loop, see Loop 
Q and element value limitations 

on, 507 
variable, see Regulating broad¬ 

band amplifier 
rate, 471 

DARLINGTON, S., 171, 203, 217, 
229, 370 

Decade, definition, 315 
Decibels, 33 
DECINO, A., 489 
Decomposition of general transfer 

characteristic, 251 
Degeneration in a general feedback 

circuit, 285-286 
Delay distortion, 310 
Design formulae for bridged-T 

equalizers, 272-275 
methods for feedback structures, 

104-105, see Feedback 
amplifier 

Determinants, 24 
DICKSON, L. E., 110 
DIETZOLD, R. L., 489 
Differential mesh equations, 109- 

no 
Direct transmission, 53, 56-57, 60- 

61,82 
Discontinuity in one component of 

6 or its derivative, 339 
Dissipation, energy function, 127, 

171 
in filter design, 217 

Taylor's series expansion, 219 
parasitic, 216 

formulae for effects of, 220-222 
in distortionless media, 222-223 

Distortion generator, 79-80 
reduction of effects of, by feed¬ 

back, 45, 79-80 
Distortionless media, 222 

Double feedback path, 499-502 
Driving-point functions, 226-228, 

231-232, 236, 263 
constituents of general, 246-248 

immittance, 196, 226, 244-248 
functions, representation of gen¬ 

eral, 188-195 
impedance, 8-9, 223, 244-248 

as a function of a single element, 
9—10 

physical representation of, 170- 
195 

Duality between impedance and ad¬ 
mittance analysis, 13, 
196, 227 

Dynatron, 186 

Effective asymptotic frequency, 
484-485 

band width of feedback amplifier, 
453-458, 470-471 

Effects of parasitic dissipation, 216- 
222 

ELECTRICAL ENGINEERING 
STAFF of M.I.T., 31 

Element values, range of, 503 
Elementary equalizer structures, 

251-253 
theory of feedback circuits, 31- 

35 
Energy functions in a passive net¬ 

work, 125-128 
dissipative, 127 
positive definite, 128, 134 
relation to impedance and 

power to, 127-132 
to stability, 132-134 

stored, 127 
Envelope feedback for radio fre¬ 

quency transmitter, 
479-480, 493-498 

Equalizer, 83, 238-239, 245, 518 
design, 249-275 

alternative forms of, 270-272 
bridged-T, 271-275 
parameters, 265-266 
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Equalizer in /3-circuit, 492-493, 518 
the line, 391, 518 
with parasitic capacity, 283-285 

Equilibrium, current, 11 
voltage, 10 

Equivalent low-pass amplifier, 210- 
211, 288, 298, 469 

plate generator oltage, 1, 7 
T-network, 229, 459 
it for four-terminal interstage, 432 

Even and odd symmetry, 106, 120 
EVERITT, W. L., 1 
Excess gain and phase margin com¬ 

putation and alloca¬ 
tion, 523-526 

phase in feedback loop, 480 
causes of, 481-484 
compensation for, 484, 486 
frequency, fp, 484 
margins, 485 
maximum available feedback 

with, 484-485 
Exponential representation of physi¬ 

cal sinusoids, 19-22 
External gain, 35, 86, 290 

characteristic, 45, 389-392, 401 
definition, 387 

requirement, 463 
voltage, 389 
with feedback, 80-81, 86-87 

Extraction of poles of driving-point 
impedance, 175-176 

Feedback, 31-43, see Return dif¬ 
ference 

amplifier, 31, 156 
backward circuit, see /5-circuit 
characteristic, active admit¬ 

tance, 386 
external gain, 387 
loop transmission, 4447,386, 

389 
volume performance, 387,389 

design, 305 
single loop, see Single loop 

amplifiers 

Feedback amplifier, forward or M-cir- 
cui t, see Forward circuit 

gain, 245-246 
input and output circuits, 56 
mathematical definition, 44 
reduction factor, 44, 46-47 
representation of negative 

structure by, 246 
transconductance of tubes in, 

156-162 
circuits, elementary theory of, 

31-35 
general theorems for, 66-102 
ideal, 60-61 
regeneration and degeneration 

in general, 285-286 
types of, see Type of feedback 

circuit 
effect of, on input and output 

impedances of ampli¬ 
fiers, 73-75 

envelope or voice-frequency, 479- 
480, 493498, 504 

external gain with, 80-81, 86-87 
factor, 32 
for bilateral elements, 71-73 

two elements, 75-76 
impedance, 67-68, 387, 389, 519 
in band, 457458, 474 

limiting circuit, 456 
individual, 49 
loop asymptote, 458459 

capacity potentiometer, 459 
characteristic, see Loop cut-off 

characteristic 
excess phase, 480 
principal and subsidiary, 158, 

489 
maximum available, see Maxi¬ 

mum available feed¬ 
back 

paths, 45, 60-61 
radio frequency, 584 
reduction of distortion by, 79-80 
reference, as a balanced bridge, 

83-84 
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Feedback, relation to stability, 44 
residual, 89 

Figure of merit, 457, 477, 485, 518 
frequency, 477-480, 496 

Filter, see Wave filter 
Final gain characteristic, 33-34 
Finite line segments in attenua¬ 

tion-phase computa¬ 
tions, 338 

Flat loop gain, in useful band, 455- 
456, 486 

advantage at edge of band 
of, 455 

Formulae for networks of lumped 
electrical elements ex¬ 
tended to other sys¬ 
tems, 298-301 

physical network characteris¬ 
tics at real frequen¬ 
cies, 291-302 

involving A and B at finite points, 
296-298 

coefficients of higher order 
terms in power series, 
291-293 

integral of A and B over finite 
ranges, 296-298 

products of functions, 293-294 
with reversed symmetry, 

V 295-296 
tabulation of, 301-302 

Forward circuit, 44-45, 55, see In¬ 
terstage network 

design, 523 
gain, 45, 490, 492, 499, 501 
impedance, 519 

FOSTER, R. M., 10, 177, 198, 271 
Four-terminal interstage network, 

427-431 
equivalent circuits, 431-433, 

440,444 
filter types of, 407, 428-431 
gain, general limitations on, 

435-440 
of maximum constant gain, 

AAf\ AAA 
TUT 'II I 

Four-terminal interstage network, of 
symmetrical config¬ 
uration, 438 

positive and negative resist¬ 
ance integral relations 
in, 434 

relation to two-terminal in¬ 
terstage, 440, 442 

separation of plate and grid 
capacities, 428 

with ideal transformers, 429 
restricted phase shift, 433- 

435 
network, 31, 228, 236, see 

Equalizer 
parameters, 201 
representation by simple struc¬ 

tures in tandem, 201 
Fractionated gain, 81, 87, 386-387 
Free oscillations, 107 
Frequency, asymptotic crossover, 

465 
complex, 23, 28-30 

plane, 24 
definition, 22 
effective asymptotic, 484 
figure of merit, 477 
horizontal step, 465-467 
ideal cut-off, 455 
modulation receiver, 489-493 
negative, 24 
real, 23 
transformations, 196,208-210,218 

for dissipation, 214-216 
parasitic, 216-222 

filters, 210-211, 214 
networks of two kinds of ele¬ 

ments, 214-215 
in amplifier design, 210-211 

transit time, 484 
FRY, T. C., 19 

Gain, 52-53, see Loop cut-off char 
acteristic 

area redistribution, 407 
before feedback, 81-82 
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Gain characteristics, 498 ff 
of simple interstages, 426-427 

external, with feedback, 32-33, 
80-82, 87 

fractionated, 81 
in interstage, 403-440 

local feedback circuit, 284 
j8-circuit, 283-284 

margin, 453, 466-467, 479, 492, 
495-496, 505, 523-529 

reduction rate, 454 
with W* reference, 88-97 

GARDNER, M. F., 13 
Generator, current, 12, 14 

equivalent cathode, 6 
plate, 1, 6-7, 15 

voltage, 2, 5 
equivalent plate, 6-7 

with zero or infinite internal im¬ 
pedance, 12 

GEWERTZ, C. M., 229, 437 
GOURSAT-HEDRICK, 137, 300 
Graphical computation of relations 

between real and im¬ 
aginary components of 
network functions, 
337-345 

Grid, 1, 6, 13 
Grid-cathode impedance, 6-7, 284, 

457, see Parasitic ca¬ 
pacity 

Grid-leak combinations, 510-511, 
514-516 

Grid-plate coupling capacities, 7,42, 
46, 95, 505 

GUILLEMIN, E. A., 1, 13,83, 197, 
231, 326, 373 

HEAVISIDE, O., 19 
High frequency path, see Asymp¬ 

totic characteristic 
Horizontal step in loop cut-off char¬ 

acteristic, 471, 505, 

513 
for excess phase, 484-485, 507 

ideal phase, 465 

Horizontal step with gain and phase 
margins, 468 

Hunting, 43 
Hybrid coil circuits, 464 

feedback, high side, 464 
low side, 464, 499 

Ideal flat gain amplifier, 244-245 
non-dissipative transmission line, 

222 
transformer, 25, 230-233 

for phase reversal, 456 
in input and output circuits, 

363 
interstage circuits, 429, 432 

transmission characteristics, 222 
Image parameters, 229 
Imaginary component charts, see 

Charts I-XIV 
Immittance, 15, see Driving-point 

immittance 
also Transfer impedance 

Impedance, 8-9 
active, 66-71 
bilateral, 9 
coefficient, general, 24... 
complex, 22-24 

self- and transfer, 22 
coupling, 4 
driving-point, see Driving-point 

impedance 
energy relations at real frequen¬ 

cies, 128-131 
expressions, choice of coefficients 

in, 206-208 
general, partial fraction expan¬ 

sion of a, 200-203 
generator, 7 
grid, 7 
input, of an ordinary feedback 

amplifier, 66 
level, 388 
measurements to determine feed¬ 

back, 75 
mutual or coupling, 4 

between two meshes, 11 
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Impedance of C for the given band 
width, 363,372 

passive, 51, 56 
reconstruction of a, from a knowl¬ 

edge of either com¬ 
ponent, 203 

with addition of active ele¬ 
ments, 66 

self-, of a mesh, 4 
transfer, see Transfer impedance 
transimpedance or mutual, of a 

tube, 6-7 
values at infinite frequency, 298 
with feedback, 66-69 
zeros and poles of, 24-25 

Index of stability, 158 
Indicial admittance, 299-300 
Inductance, 5, 13 

coupling, 3 
distributed, 1 
lumped, 1 
mutual, 3 
reciprocal, 13 

Input and output amplifier imped¬ 
ances with feedback, 
73-75 

circuit design, 372-378, 383- 
388, 392-402 

applications of general 
theorems to, 360-402 

impedance match with 
filter, ladder structure, 
or resistance-react¬ 
ance combination, 
373-376 

theorems, 368-371 
Input and output circuits, 360-402, 

462-463, 469, 486 
contribution of, to final 

gain, 387 
equivalent ideal trans¬ 

former for, 363 
external gain character¬ 

istic of, 387 
filters as ideal designs for, 

369 

Input and output circuits, for series 
feedback amplifier, 
392-399 

illustrative reflection coeffi¬ 
cient design of,378~383 

number of elements in the 
design of, 370 

reconstruction of the im¬ 
aginary component as 
an aid to the design of, 
372-378 

reflection coefficient theo¬ 
rem for, 364 

terminated in capacity, 
361-363 

and resistance, 363-368 
volume performance in, 

387, 389 
with varying gain charac¬ 

teristic, 518 
or output transformer, 360-362, 

463 
Instability, see Stability 
Integration in the complex plane, 

138 ff 
around a circle, 141 

square, 143 
of 2Tl, 140 
z”, 141 
over very small or large paths, 

139-140 
Interstage capacities, 213, 419, 436, 

462, 495, 518 
circuit, see Interstage network 

gain, 458, 498 
impedance, 32, 47, 511 

network, 48, 230, 469, 486, see 
Four-terminal inter¬ 
stage network 

also Two-terminal interstage 
network 

design, application of general 
theorems to, 403-444 

technique, 377 
in a non-feedback video ampli¬ 

fier, 305 
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Interstage phase, 488 
Introduction of surplus factors, 258- 

260 
Inverse network, definition, 196 

analytic, 198 
for active impedance, 199 

Wheatstone bridge, 197 
structural, 197-498 

relationship, 231, 233, 241 
structures, 13, see Inverse net¬ 

work 
Iterative parameters, 229 

JOHNSON, K. S., 122 

KENDALL, B. W., 499 
KNOPP, K., 441 
KREER, J. G., 151, 489 
Kva rating, 182-185, 382 

Ladder circuits, 243, 326 
Lattice network, all-pass, 237 

construction of branch imped¬ 
ances in, 231-233 

conversion to bridged-T, 444 
equalizer circuits, 270-271 

bridged-T equivalent of, 271 
equivalents, 266-270 
filters, 326 
for four-terminal interstages, 

440 
interchange of branches in, 237 
representation of transfer im¬ 

pedance by, 230-235 
symmetrical, 231-233 
with ideal transformer, 231 

Leakage inductance of transformer, 
374-375, 464 

hybrid coils, 500 
LEE, Y. W., 242, 303 
Linear phase shift, in useful range, 

310 
systems, in general, 322-327 
with prescribed discrimina¬ 

tion, 331-334 
vestigial side-band, 333 

Liouville’s theorem, 200 
LLEWELLYN, F. B., 158 
Local feedback, 41-42 

cathode circuit, 451 
computation, 95-99 
parasitic capacity, 283-285,291, 

451 
paths, 43, 482, 512 
properties, 99-102 

Logarithmic derivative, integral of, 

147 
frequency scale, 287, 338, 344 

Loop characteristic, see Loop cut¬ 
off characteristics 

closed, 3 
cut-off characteristics, alternative 

high frequency, 471- 
476 

asymptotic, 458-464 
basic, 410 
contribution of tubes and cir¬ 

cuits to, 476-477 
corrected vs uncorrected, 468- 

471 
cut-off interval in, 453 
excess phase compensation in, 

480-486 
frequency ratios for ideal phase 

corresponding to, 465, 
468, 484 

general design procedure for 
simulating, 486-488 

horizontal step, 465 
ideal, 454-458, 470-471, 475, 

491-492, 505, 507 
margins for, 453 
variable, 456 
with maximum obtainable feed¬ 

back, 464-468 
multiple fi paths, 452 

dimensions, 481 
gain, 49 
phase characteristic, see Loop cut¬ 

off characteristic 
transmission, 45-49,495 

characteristic, 386, 389 
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Loop transmission characteristic, 
gain and phase shift 
components, 401,498 ft 

Loss and phase reduction in four-ter¬ 
minal networks, 236- 
239 

Lower cut-off characteristic, for 
broad-band amplifier, 
509-517 

adjustment of low frequency 
elements for, 510-517 

reciprocal frequency trans¬ 
formations for, 509 

Low-pass equivalent amplifier, 503, 
505 

filter of constant-^ type, 411, 424, 
428 

^-derived type, 412,429 
to band-pass transformation, 418 
type of amplifier, 453-454,489-502 

Maxima and minima of analytic 
functions, 169, 224, 
232 

Maximum available feedback, 464— 
468, 471, 475, 485, 
495-496 

reduction for circuit loss, 
476-479 

for excess phase, 484-485 
gain and phase margins, 

467-468, 495-497 
inadequate low frequency 

selectivity, 507 
small number of tubes, 

478-480, 496 
phase shift below cut-off, 288-289 
power, 364-365 
rate of decrease of ju/3, 289 

MEAD, S. P., 241 
Mesh, 53 

analysis, 1, 15-17 
with reference to complete am¬ 

plifier, 44 
equations, 1, 8, 10, 31, 44, 48 

for a passive circuit, 4-5 

Mesh equations for an active circuit, 
6—7 

steady-state solution of, 7-8 
system, multi-, 20, 22 

Mid-series image impedance of 
constant-^ type filter, 
326-327, 373 

ofw-derived type filter, 373 
Mid-shunt terminated low-pass con¬ 

stant-^ type filter, 326 
Minimum attenuation structure, 

236, 247 
conductance network, 172, 185 
loss structure, 236, 247 

transfer function, 261, 273 
phase condition, 117, 301, 365 

shift networks, 230, 238, 242- 
244,247,305,309,322, 
505 

definition, 121, 242 
of bridged-T type, 243, 

273-274 
ladder type with induc¬ 

tive coupling, 243 
lattice type, 243 
unilateral vacuum tubes 

with ladder inter¬ 
stages, 243 

transfer functions, 249, 251, 
261, 263, 274 

reactance network, 184, 247, 249, 
377, 397, 424 

definition, 175 
driving-point impedance, 123 
filter characteristic, 374 

resistance network, 183, 185, 
247 

definition, 172 
susceptance network, 184 

definition, 175 
driving-point impedance, 123 

Minors, symmetrical and unsym- 
metrical, 113 

Modulation distortion, reduction by 
feedback, 79-80, 390, 
494, 504 
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Modulator, 43, 490, 493-495 
Multiple loop feedback amplifiers, 

41-43,45,49, 56, 83 fir 
illustrative analysis of, 95-102 
stability criteria for, 157-162 

Multiplex radio transmitter, 493^98 
Multi-stage ^-circuit gain alloca¬ 

tion, 420 
Mutual impedance of a vacuum 

tube, 6-7 
inductance, 185 

Negative elements, 106 
envelope delay, 245 
impedance devices, 134 

due to positive inverse termina¬ 
tion, 188 

line, 245 
loss, 244, 288, 298 
phase correcting section, 245 
resistances, 185-188, 244-245, 248 

Network characteristics, variations 
of, produced by 
changes in a single 
element, 223-225 

functions, definition of, 105 
admissible, 123-125 
conjugacy conditions for, 106 
even and odd symmetry of com¬ 

ponents of, 106 
physically realizable, 108 
real and imaginary components 

of, see Relations be¬ 
tween 

requirements of, for stable net¬ 
works, 120-123 

parameters, 227-230 
Networks, see Circuits 

complementary, 199-200 
equivalent to the lattice, 266-270 
inverse, 196-199 
of pure reactances, 177-182 
with any two kinds of elements, 

214 
equal phase shifts, 263-264 

Nodal analysis, 7,24 

Nodal analysis, mesh and, 15-17 
of interstage, 403-404 
with reference to complete am¬ 

plifier, 44 
equations, 1, 31, 44, 48 

for an active circuit, 13-15 
a passive circuit, 10-13 

Node, 1, 53 
ground, 12 

Noise generator, extraneous, 34, 79- 
80, 491 

Non-feedback amplifier, 34, 44, 361 
Non-linear distortion, 33 

in ^-circuit, 34 
reduction, 42, 79-80 

Non-minimum phase or reactance 
networks, 482, 505 

advantage of, 277 
NORTON, E. L., 378, 408 
Number of stages, choice of, 497, see 

Optimum number of 
stages 

zeros and poles of a function 
within a contour, 149- 
151 

NYQUIST, H., 151, 241 
Nyquist diagram method of deter¬ 

mining stability, 138, 
154-158, 174, 242 

plot of T, 193-195, 288-290, 475- 
476, 485 

Nyquist’s criterion for stability, 137, 
276,278 

extensions of, 164 
for driving-point and transfer 

immittances, 165-167 
for single and multiple loop 

cases, 151-162 

OCH, H. G,, 489 
Open-circuit stable networks, 19, 

189-191,199,203,206, 
227, 279 

Optimum number of stages in 
a feedback amplifier, 
478-480,493 
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Optimum effect of taking a fraction, 
X, of, 478,496 

rule of thumb for, 479 
Optional phase characteristics, 239, 

243 
Orthogonality of real and imaginary 

components of net¬ 
work functions, 296 

Over-all feedback loop design char¬ 
acteristics, basic, 410 

loop cut-off characteristic, see 
Loop cut-off charac¬ 
teristics 

low-frequency gain and phase 
characteristics, 516 

phase characteristic of complete 
transmission system, 
309-312 

/i/3 characteristic, 502 

Parallel combination of fa and 
484-485 

Parasitic capacity, grid-cathode, 45- 
46 

grid-plate, 42, 46 
in equalizers, 283-285 

input and output circuits, 
365,371-374,377,388, 
390,400 

interstages, 404, 406, 411- 
415, 429, 431, 464 

limiting feedback loop, 290 
local feedback circuits, 283- 

285 
plate-cathode, 45 

dissipation, 216-222, 369, 371, 
377, 503 

displacement of critical fre¬ 
quencies by, 244 

formulae for effects of, 220 
in distortionless media, 222-223 
relation to selectivity, 400 

elements, 213, 360-361, 365, 369, 
371-373 

at high frequencies, 454, 469- 
472,486 

Parasitic elements, conservation of 
band width principle 
in relation to, 211-214 

impedance, grid-cathode, 56 
plate-cathode, 56 

Partial fraction expansion of dissi¬ 
pative passive imped¬ 
ance, 200-203 

product expansion of a general 
transfer impedance, 
250-254 

an illustrative transfer func¬ 
tion, 254-258 

Passive circuits, branch equations 
for, 1-4 

mesh equations for, 4-5 
nodal equations for, 10-13 

driving-point impedance function, 
minimum resistance or con¬ 

ductance, types of, 172 
reactance or susceptance, 

types of, 123, 175 
physical representation of, 

170-185 
reduction of reactance or 

susceptance of, 173- 
177 

resistance or conduct¬ 
ance of, 170-173 

elements, 7 
ladder network, 243 
network functions, see Physically 

realizable network 
functions 

parameters, 227-230 
transfer function, loss and phase 

reduction of, 236-238 
minimum phase shift, 242-244 
physical representation of, 

226-244 
transmission characteristic, 387, 

see Volume perform¬ 
ance 

Path of integration, relation be¬ 
tween integral and, 
141-144 
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PERCIVAL, W. S., 408, 428 
PERKINS, E. H., 489 
PETERSON, E., 151 
Phase area, 287, 401 

law in amplifier design, 287- 
291, 420 

spread over broad region, 402 
characteristic, as related to atten¬ 

uation slope, 313 
attenuation characteristic for a 

given, 320-322 
for a prescribed attenuation 

characteristic, 305- 
309,314-318 

of constant slope, 315 
semi-infinite constant slope, 

316 
on an arithmetic frequency 

scale, 318-319 
with a discontinuity, 315 

characteristics, 498 ff 
loss and, prescribed in different 

frequency ranges, 328- 
331 

the relation between, 312— 

314 
of semi-infinite slopes and finite 

line segments, 338 
optional, 239 

control of interstage, relation of 
amount of final gain 
to, 419 

correctors, 239, 264-265, 294 
negative, 245 

displacement for minimum phase 
shift transfer imped¬ 
ance, 242 

distortion in selective systems, 
305, 317-318 

equalization, 305, 317-318, 322 
of a broad band system, 309- 

312 
integral, 286-288, 419-420, 472 
margin, 453-457, 464-465, 475, 

479, 495-496 
plot as an aid to design, 524-527 

Phase reduction, 226, 236 
reversal, 7, 32, 48, 186, 508 
shift, 7, 22, 28, 32, 39-40, 48, 79, 

249, 474 
compensation for, 479-480 
minimum,' see Minimum phase 

condition 
proportional to rate of change 

of gain, 454 
shifts, networks with equal, 263- 

264 
sign of, 409 
systems, linear, 322-327 

with prescribed discrimina¬ 
tion, 331-334 

Physical elements, 105 
network characteristics at real 

frequencies, general 
restrictions on, 276- 
302, see Contour inte¬ 
gration formulae 

realizability, see Physically real¬ 
izable network func¬ 
tions 

design methods and the prob¬ 
lem of, 103-105 

representation of active trans¬ 
fer impedances, 244- 

246 
driving-point impedances, 170- 

195 
by Brune networks, 182- 

185 
general driving-point functions, 

188-191, 246-248 
transfer impedance functions, 

226-248 
by lattices, 230-235, 251- 

253 
sinusoid, 8 

exponential representation of, 
19-22 

transformer representation, 374- 
375 

validity of complex frequencies, 
28-30 
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Physically realizable network func¬ 
tions, 103-136, see 
Physical representa¬ 
tion 

definition of, 108 
design methods for, 103-105 
energy and impedance relations 

in, 125-131 
expressions exemplifying, 123- 

125 
requirements for, 106-108, 120- 

123, 132-136 
on driving-point functions, 121, 

188-191 
zeros of the determinants for, 109- 

120 
PIERPONT, J., 137 
Plate, 1, 6, 14 

impedance, 6 
resistance, 16 
supply circuits, 510-511 

Plate-cathode admittance, 284 
Plate-grid transmission, computa¬ 

tion of, 91-95 
Poles, 144-149, 152, 172-174, 188- 

189, 194-195, 232, 
236-239, 249, 255, 
260, 262, 279, 296, 
300, 306, 332, 365, 
374, 409 

at infinity, 177, 183 
complex, 250, 252 

physical representation of, 202- 
203 

of capacity-resistance and induct¬ 
ance - resistance net¬ 
works, 216 

relation of, to minimum phase 
condition, 236-238 

representation of, by partial frac¬ 
tions, 200 

single real, 251-252 
Positive definite, energy functions, 

134 
quadratic forms, 128 

elements, 134 

Positive real function, 171,190 
jC-plane, 24 
Pre-equalization or 0-circuit equal¬ 

ization in amplifier de¬ 
sign, 230 

Principal value of an integral, 306, 
332,409 

Principle of conservation of band 
width, 211-214 

duality, 13 
reciprocity, 6, 73, 83-84, 229, 

389 
superposition, 20 

Pure reactance networks, 177- 
180 

Q in band-pass structures, 508-509 
damped tuned circuits, 469 
low-pass equivalent coils and 

condensers, 503 
resonant and anti-resonant cir¬ 

cuits, 503 
of transformer leakage inductance, 

401 
relation of reflection coefficient to, 

367-36% 
transmission characteristic to, 

368 

Radio transmitters with feedback, 
illustrative designs for, 
493-498, 504-509 

Rate of cut-off, 311 
Rational functions, 25 

specifications of, by zeros and 
poles, 105 

Reactance integral, 286-288 
pure, properties of networks of, 

177-182 
reduction of passive impedances, 

173-177, 226, 236 
in interstage networks, 176- 

177 
residual network after, 176 

slope, 181 
Reactance-resistance ratio, Q, see Q 
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Real and imaginary components 
of network functions, 
see Relations between 

graphical computation of, 
337-345. 

characteristics approximated by 
straight lines, 337 

elements, 106 
frequencies, 131, 137 

Reciprocal frequency plot for lower 
cut-off characteristic, 
509 

Reciprocity, 1, 6, 14 
Reconstruction of impedances, from 

a knowledge of either 
component, 203-205, 
261-263 

Reduction factor, 44 
in effect of tube variations, 33, 

46-47 
of distortion by feedback, 34, 

79-80 
Reduction-in-gain integral, 487 

distribution of area in, 488 
Reference condition of the circuit, 

simplified computa¬ 
tion of, 88-91 

plate-grid transmission for, 91- 
92 

feedback as a balanced bridge, 
83-84 

return difference for any, 49 
value of an element, 60-65 

a tube, 78-79 
Reflection coefficient, 37, 73, 75, 

360, 364-367 
constant, in prescribed range, 

367 
formula, 364 
illustrative design, 378-383 
relation of, to Q of terminating 

impedance, 367-368 
crosstalk, 499 

Regeneration and degeneration in a 
general feedback cir¬ 
cuit, 285-286 

Regenerative amplifiers, 53 
Regulating broad-band amplifier, 

509-529 
high frequency characteristic for, 

517-529 
lower cut-off characteristic for, 

509-517, see Variable 
cut-off characteristic 

Regulator circuits for speed, voltage 
or frequency control,43 

to compensate for temperature 
and repeater spacing 
irregularities, 518-519, 
523 

Relations between real and imagi¬ 
nary components of 
network functions, 
303-336 

applications of formulae for, 304- 

305 
graphical computation of, 337-345 
tabulation of, 335-336 

Relative importance of tubes and 
circuit in limiting feed¬ 
back, 476-477 

sensitivity, 62-63, 66, 73 
in multiple loop circuits, 83 
ratio of return difference to, 

84-86 
Representation of impedance func¬ 

tions, see Physical rep¬ 
resentation 

Residual attenuation distortion with 
linear minimum phase 
shift characteristic, 
322-327 

Residue of a function at a pole, 145, 
296, 305 

Resistance and reactance, relation 
between, 204 

for minimum resistance and 
reactance networks, 
205-206 

efficiency, definition, 376 
reduction for transition region, 

377 
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Resistance integral condition, 362, 
394-396, 431-435 

for four-terminal interstage 
gain, 435-436,438,440 

theorem, 280-283 
minimum, 172 
negative, 185-188 
reduction of passive impedances, 

170-173, 226, 236 
extension to active impedances, 

189 
for plate or grid-leak-conduct¬ 

ance in interstage de¬ 
sign, 173 

theorem, 172 
terminating, 227 

Resonant and anti-resonant net¬ 
works, 174, 178, 183, 
495 

Q and element value limitations 
in, 503 

circuit, the single, 18-19 
Return difference and impedance, 

68-69 
measurements, 75 
sensitivity, 47-48, 54-60 
relative, 84-86 

definition, 47-49 
for bilateral elements, 50-52,71 

open- or short-circuited ele¬ 
ments, 67, 69 

reference k, 49-50, 66, 186 
two elements, 75-78 
zero reference, 50, 66, 186 

plot, 151-153 
loss in reflection coefficient theory, 

365-367 
ratio, 47-48, 65, 186 

definition, 48-49 
for bilateral elements, 50, 71 

reference value k, 51, 95 
zero reference, 48 

plot, 154-156, 160-163, 476 
voltage, 48 

and tube variations, 46-47 
difference, see Return difference 

“ Returned ” voltage, 51 
Riemann surface, 297 
Roots of A, and A°, 109-113, 134, 

152, 157, 164 

SCOTT, R. F. and MATTHEWS, 
G. B., 54 

Screen-grid type tube, 1,16,361,384 
Self-admittance of a node, 11 

biasing units in a cathode, 510— 
513 

immittance, 48 
impedance, 11, 48 

Senrcircular integration path, 143- 
144, 365-367 

Semi-infinite constant slope charac¬ 
teristic, 338, 341-344 

Sensitivity, 47-48, 52-60, 63, 71, 
84-86 

definition, 47 
general formula for, 53-54 
relation of, to return difference, 

54-60 
relative, see Relative sensitivity 

Series feedback amplifier, 86, 463, 
485-486, 517-529 

impedance of, 73 
in coaxial repeaters, 361, 388 

SHAW, R. C., 485 
SHEA, T. E., 1, 78, 80, 83 
Short-circuit stable networks, 19, 

189-191,203,206,227, 
279 

Shot effect, 35 
Shunt feedback amplifier, 86, 459, 

462 
impedance of, 73 

Signal-to-noise ratio, 34, 384, 386- 
387, 390, 393, 490 

relation of modulationand signal 
level to, 390 

volume performance and signal 
level to, 391 

Simulation of resistance character* 
istic by ladder line, 376 

Singing, see Stability 
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Single loop amplifiers, definition of, 
451 

absolutely stable, 288, 451- 
487,489, see Loop cut¬ 
off characteristics 

illustrative feedback designs 
for, 489-529 

Singularities, 27-28, 144, 147, 152 
at infinity, 301 
branch point, 279, 300-301 
essential, 300 
logarithmic, 28, 278-279, 300 

Six-terminal network, 35 
Sources, current and voltage, 13 

energizing, 10, 190 
Stability, 44, 49, 154, 226, 245-246, 

486 
and physical realizability, 103-136 

the roots of A, 109-111 
correction of loop characteristics 

to produce, 470 
effect of changes in tube gain on, 

453 
excess phase on, 386 

index of, 158 
limitations on network functions 

resulting from require¬ 
ments for, 103-136 

limiting gain and phase margin 
for, 453 

of passive networks, 132-134 
relation of, to singing, 107 

steady-state characteristics, 
109-110 

transients, 107 
zero impedance or return dif¬ 

ference, 69 
requirements on the roots of A, 

109-110, 137 
derived from the energy func¬ 

tions, 132-134 
type of, absolute or unconditional, 

162-164, 288, 453 
conditional or Nyquist, 162- 

164, 289,452 
open- or short-circuit, 189 

Stable amplifier circuits, 419, 475, 
see Stability 

Stage gain and phase, 403 
Stages of an amplifier, increase in the 

number of, 496, see 
Optimum number of 

Staggered grid circuit designs, 515 
STARR, A. T., 271 
Steady-state solution for the mesh 

equations, 7, 18 
characteristics, 300 

relation of stability to, 109-110 
Step-type cut-off, 465, 476, see 

Horizontal step in loop 
cut-off characteristics 

Stiffness, 5 
Stored energy functions T and V\ 

127, 171, 216 
Straight-line approximation method, 

337-339 
STRIEBY, M. E., 285, 309 
Subsidiary feedback path, 158, 489 
Superposition, principle of, 20 

theorem, 1 
Surplus factors in equalizer expan¬ 

sions, 258-260 
Susceptance reduction, 173-177,234, 

see Reactance reduc^ 
tion 

Symmetrical interstage networks, 
438-440 

lattice network, see Lattice net¬ 
work 

minors, 113 
roots of, 116 

upper cut-off characteristic, 517 
Synthesis vs analysis of networks 

for feedback ampli¬ 
fiers, 103 

T and w networks, 268-269 
Tandem configurations, 229, 237, 

251 
Television transmission, 309 
TERMAN, F. &, 1, 31-32, 78, 80, 

83,326,373 
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Thermal agitation, 35 
Th6venin’s theorem, 11, 387-389 

generalized, 78, 80 
in active circuits, 76-78 

TOWNSEND, E. J., 137 
T-plot, 154-156, 160-163, 476 
Transconductance, 14, 47-48, 156, 

186, 385, 387, 403, 
451, 457, 459, 477, 
483, 495, 518 

product, 451 
Transfer constant, 230-233 

impedance, active, 244-246 
all-pass, 239-242 
as a function of a single element, 

9-10, 223 
passive network parameter, 

227-230 
choice of parameters in, 265-266 
complementary characteristic 

for a general, 249 
constituents of a general, 246- 

248, 252-253, 260 
construction of a general, 230- 

233 
driving-point and, 8-9, 24 
in terms of external impedance 

measurements, 266- 
268, 432 

loss and phase reduction of, 
236-238 

minimum phase shift, 238, 242- 

244 
partial product expansion of a, 

250-258 
reconstruction of a, from a 

knowledge of either 
component, 261-263 

representation by lattices, 258- 
259 

surplus factors in, 258-260 
Transformations, frequency, see Fre¬ 

quency transforma¬ 
tions 

from low-pass to band-pass inter¬ 
stages, 418 

Transformer characteristic, 36 
equivalent T> 183 
for crossing terminals, 40 
potentiometer terms, 389-390,519 
tuned, 369 

as interstage network, 427-428 
with lattice and bridge circuits, 271 

Transients, 30, 107, 110 
Transimpedance, 6, 7,48, see Trans¬ 

conductance 
Transit time, 1, 457,481,485 

frequency,/,,, 485 
Transmission, definition, 77 

line, 222-223, 298-299 
Trap circuit, 290-291,420-421,497- 

498, 507-509 
Tube, see Vacuum tube 
Two-terminal impedance of Brune 

type, 182-185 
interstage, band-pass, 418 

gain, 403-406 
general theorems on, 403-407 
ideal, 411-412 
of specified phase margin, 418- 

425 
simple types of, 425-427 
with maximum constant gain, 

406, 408-415 
variable gain, 415-417 

network, see Driving-point im¬ 
pedance 

Type J open-wire carrier telephone 
system, 499-502 

Type of feedback circuits, balanced 
bridge, 37-38, 73, 85, 
464 

cathode, 39-40,86,361,400 
double loop, 56 
general, 35-39 
hybrid coil, high and low 

side, 38, 464, 499 
local, 41, 95-101 

series and shunt, 42 
multiple loop, 42, 45 
series, 36—37,39-41,73,86, 

361, 463, 485-486 
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Type of feedback circuits, shunt, 36- 
37,39,73,86,504 

single loop, 41, 46-47, 55, 
61, 86, 451-487 

Unfolded loop, 505 
Uniform dissipation, definition, 216 

frequency transformation for, 
217 

Unilateral element, see Vacuum 
tube 

Unit amplitude, definition, 131 
slope, definition, 315 

Unsymmetrical minors, 113 
roots of, 116 

Vacuum tube, 1, 6-7, 13-14, 31-81, 
186, 451, 462, 494 

amplification, 6 
currents and voltages, 6-7 
distortion, 79-80 
elements, 6 
figure-of-merit, 477 
grid-plate coupling, 7 
impedances, 6-7 
linear or non-linear, 43 
mutual impedance, 6, 67 
parasitic capacities, see Para¬ 

sitic capacity 
phase reversal, 7, 48 
plate generator, apparent or 

equivalent, 6 
reference value, 78-79 
return difference, 77 
transconductance, see Trans¬ 

conductance 
transimmittance, 48-49, 56 
transimpedance, 6-7 
variations in gain, return volt¬ 

age as index of effect 
of, 46-47 

tubes in tandem, 7, 31-81 
optimum number of, 478- 

480 
to furnish negative resistances, 

187 

Vacuum tubes working into their own 
parasitic capacities, 
457-458,477 

Variable cut-off characteristic, mean 
and extreme values of, 
520-521 

required changes in loss and 
phase margins of, 519— 
520 

simulation by circuit with 
regulator, 527-529, see 
Regulatingbroad-band 

amplifier 
theoretical, 519-521 

loop gain in the useful band, 456 
phase margin over cut-off region, 

456 
Variations in a network character¬ 

istic produced by 
changes in a single 
element, 223-225 

Video amplifier interstage, 326 
Voice-frequency band, 43 
Voltage, driving, 4-10, 29 

complex, exponential or si¬ 
nusoidal, 8-9, 18-23, 
29-30 

instantaneous, 8 
steady-state, 15, 30 

equations, branch, 4 
equilibrium, 4, 10 
equivalent plate generator, 7 
generator of zero internal imped¬ 

ance, 188-189 
input and output, 31, 34 
node, 2-3 
of frequency /, 22 
source, 1,10,13,190 

Volume limiter, 490 
performance, 387-392, 399-401, 

486 
characteristics, definition, 387 
compromise between feedback 

and, 390,463 
in illustrative design, 392 
per repeater link, 392 
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Volume performance requirement, 
391-392 

vs external gain, 396, 399 

Wo, see Computation of 
WARE, L. A., 151 
Wave filter, 1 

dissipative, 217 
for input and output circuits, 

369, 372-378 
interstage networks, 417 

image impedance, 326 
representation by lattices, 234- 

235 
simple circuits approximating 

the impedance of a, 
312-315 

WEBSTER, A. G., 126 
Weighting factor for computing 

phase, 313 
WENTZ, J. F., 285, 309 
WEST, J. M., 392, 489 
Wheatstone bridge, inverse net¬ 

work for, 197 
unfolded lattice as a, 231, 243 

WHEELER, H. A., 408, 428 
WHITTAKER, E. T., 126 
WIENER, N., 242, 303 

Zero gain intercept of asymptote, 
460 

reactance or phase characteristic, 
294 

reference for an element, 48-49 
Zeros and poles in equalizer design, 

249-262 
general physical network 

characteristics, 105- 
106, 111, 120-123,134, 
276-277 

Zeros and poles in phase reduction, 
365 

pure reactances, 215 
transfer impedance func¬ 

tions, 230-240 
interchange of, 196 
location of, on complex p- 

plane, 105 
of impedance and admittance, 

24-28 
resonant circuit impedance, 

26-27 
on real frequency axis, 105, 

111-113, 171-178 
translation of, for parasitic 

dissipation, 217-218 
for stable networks, 134 
in an illustrative circuit, 115— 

120 
of A on real frequency axis, 111— 

113 
other determinants, 113-114 

ZOBEL, O. J., 197, 206, 239, 249, 
265, 326, 373 

a and P loops in a feedback circuit, 
158 

p circuit, 35, 44-45, 56, 385 
equalization, 283, 391 
loss, 457, 462, 477, 486, 511 

H and P circuits, 31-40 
circuit, see Forward circuit 

also Interstage network de¬ 
sign 

np> 32-33, 47 
characteristic, 32-33, 512-513, see 

Loop cut-off charac¬ 
teristic 

effect or error, 33 
loop, 32-42 
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